Science.gov

Sample records for breakdown spectroscopy measurements

  1. Measurement of Irradiated Pyroprocessing Samples via Laser Induced Breakdown Spectroscopy

    SciTech Connect

    Phongikaroon, Supathorn

    2016-10-31

    The primary objective of this research is to develop an applied technology and provide an assessment to remotely measure and analyze the real time or near real time concentrations of used nuclear fuel (UNF) dissolute in electrorefiners. Here, Laser-Induced Breakdown Spectroscopy (LIBS), in UNF pyroprocessing facilities will be investigated. LIBS is an elemental analysis method, which is based on the emission from plasma generated by focusing a laser beam into the medium. This technology has been reported to be applicable in the media of solids, liquids (includes molten metals), and gases for detecting elements of special nuclear materials. The advantages of applying the technology for pyroprocessing facilities are: (i) Rapid real-time elemental analysis|one measurement/laser pulse, or average spectra from multiple laser pulses for greater accuracy in < 2 minutes; (ii) Direct detection of elements and impurities in the system with low detection limits|element specific, ranging from 2-1000 ppm for most elements; and (iii) Near non-destructive elemental analysis method (about 1 g material). One important challenge to overcome is achieving high-resolution spectral analysis to quantitatively analyze all important fission products and actinides. Another important challenge is related to accessibility of molten salt, which is heated in a heavily insulated, remotely operated furnace in a high radiation environment with an argon atmosphere.

  2. Laser Induced Breakdown Spectroscopy (LIBS) Applied to Reacting Gases for Mixture Ratio Measurement and Detection of Metallic Species

    DTIC Science & Technology

    2007-03-29

    et al, Laser Diagnostics of Painted Artworks: Laser Induced Breakdown Spectroscopy in Pigment Identification, Applied Spectroscopy , Vol. 51, No. 7...Laser-Induced Breakdown Spectroscopy for Online Engine Equivalence Ratio Measurements, Applied Spectroscopy , Vol. 57, No. 9, pp. 1183-1189, 2003. Fisher...A. K., at al. Flame Emission Spectroscopy for Equivalence Ratio Monitoring, Applied Spectroscopy , Vol. 52, No. 5, pp. 658-662, 1998. Laser Induced

  3. Measurement of nutrients in green house soil with laser induced breakdown spectroscopy.

    PubMed

    Hussain, T; Gondal, M A; Yamani, Z H; Baig, M A

    2007-01-01

    Laser-induced breakdown spectroscopy (LIBS) has been applied for the determination of nutrients in the green house soil samples. We determined appropriate spectral signatures of vital nutrients and calibrated the method to measure the nutrients in a naturally fertilized plot, cultivated with tomato and cucumber plants. From the calibration curves we predicted the concentrations of important nutrients such as Ca, K, P, Mg, Fe, S, Ni and Ba in the soil. Our measurements proved that the LIBS method rapidly and efficiently measures soil nutrients with excellent detection limits of 12, 9, 7, 9, 7, 10, 8 and 12 mg/kg for Ca, K, P, Mg, Fe, S, Ni and Ba respectively with a precision of approximately 2%, The unique features of LIBS for rapid sample analysis demonstrated by this study suggests that this method offers promise for precision measurements of soil nutrients as compared to conventional methods in short span of time.

  4. Laser-induced breakdown spectroscopy measurement in methane and biodiesel flames using an ungated detector

    SciTech Connect

    Eseller, Kemal E.; Yueh, Fang Y.; Singh, Jagdish P

    2008-11-01

    Laser-induced breakdown spectroscopy (LIBS) has been applied to measure the equivalence ratio of CH4/air flames using gated detection. In this work, we have developed an ungated, miniature LIBS-based sensor for studying CH4/air and biodiesel flames. We have used this sensor to characterize the biodiesel flame. LIBS spectra of biodiesel flames were recorded with different ethanol concentrations in the biodiesel and also at different axial locations within the flame. The sensor performance was evaluated with a CH4/air flame. LIBS signals of N, O, and H from a CH4/air flame were used to determine the equivalence ratio. A linear relationship between the intensity ratio of H and O lines and the calculated equivalence ratio were obtained with this sensor.

  5. Real-time specific surface area measurements via laser-induced breakdown spectroscopy

    USGS Publications Warehouse

    Washburn, Kathryn E.; Birdwell, Justin E.; Howard, James E.

    2017-01-01

    From healthcare to cosmetics to environmental science, the specific surface area (SSA) of micro- and mesoporous materials or products can greatly affect their chemical and physical properties. SSA results are also widely used to examine source rocks in conventional and unconventional petroleum resource plays. Despite its importance, current methods to measure SSA are often cumbersome, time-consuming, or require cryogenic consumables (e.g., liquid nitrogen). These methods are not amenable to high-throughput environments, have stringent sample preparation requirements, and are not practical for use in the field. We present a new application of laser-induced breakdown spectroscopy for rapid measurement of SSA. This study evaluates geological samples, specifically organic-rich oil shales, but the approach is expected to be applicable to many other types of materials. The method uses optical emission spectroscopy to examine laser-generated plasma and quantify the amount of argon adsorbed to a sample during an inert gas purge. The technique can accommodate a wide range of sample sizes and geometries and has the potential for field use. These advantages for SSA measurement combined with the simultaneous acquisition of composition information make this a promising new approach for characterizing geologic samples and other materials.

  6. Sensitive cesium measurement in liquid sample using low-pressure laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Zhen Zhen; Yan, Jun Jie; Liu, Ji Ping; Deguchi, Yoshihiro; Katsumori, Shunpei; Ikutomo, Akihiro

    2015-12-01

    The environmental pollution by trace heavy metals is a severe problem for the environment and human health. In this paper, the liquid jet of CsNO3 solution employed was introduced to the measurement chamber and detected using laser-induced breakdown spectroscopy (LIBS) directly at low pressure to determine the detection features of trace Cs element in liquid. The distinct and round plasma can be acquired when reducing the pressure. The interaction between the plasma core of the liquid jet and the surrounding gas can be controlled to enhance Cs detection ability. Cs emission was mainly in the surrounding area in the plasma. The influences of laser focal point and plasma measurement area on the measured signals were studied under low-pressure condition. When employing the defocus mode and varying the measurement area within a certain range, Cs signal and the signal-to-background ratio were improved. Cs detection limit can reach to 22.8 ppb (3σ/ms) at pressure of 26 kPa in this paper. According to the discussion, the detection limit will be enhanced when improving the experimental conditions using this method, which shows the great application potential of liquid sample measurement.

  7. [A method for time-resolved laser-induced breakdown spectroscopy measurement].

    PubMed

    Pan, Cong-Yuan; Han, Zhen-Yu; Li, Chao-Yang; Yu, Yun-Si; Wang, Sheng-Bo; Wang, Qiu-Ping

    2014-04-01

    Laser-Induced Breakdown Spectroscopy (LIBS) is strongly time related. Time-resolved LIBS measurement is an important technique for the research on laser induced plasma evolution and self-absorption of the emission lines. Concerning the temporal characteristics of LIBS spectrum, a method is proposed in the present paper which can achieve micros-scale time-resolved LIBS measurement by using general ms-scale detector. By setting different integration delay time of the ms-scale spectrum detector, a series of spectrum are recorded. And the integration delay time interval should be longer than the worst temporal precision. After baseline correction and spectrum fitting, the intensity of the character line was obtained. Calculating this intensity with differential method at a certain time interval and then the difference value is the time-resolved line intensity. Setting the plasma duration time as X-axis and the time-resolved line intensity as Y-axis, the evolution curve of the character line intensity can be plotted. Character line with overlap-free and smooth background should be a priority to be chosen for analysis. Using spectrometer with ms-scale integration time and a control system with temporal accuracy is 0.021 micros, experiments carried out. The results validate that this method can be used to characterize the evolution of LIBS characteristic lines and can reduce the cost of the time-resolved LIBS measurement system. This method makes high time-resolved LIBS spectrum measurement possible with cheaper system.

  8. Measurements of deuterium retention and surface elemental composition with double pulse laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Almaviva, Salvatore; Caneve, Luisa; Colao, Francesco; Maddaluno, Giorgio; Krawczyk, Natalia; Czarnecka, Agata; Gasior, Pawel; Kubkowska, Monica; Lepek, Michal

    2016-02-01

    Estimating the tritium amount retained in the plasma facing components and their surface layer composition is of crucial importance for ITER. Laser-induced breakdown spectroscopy (LIBS) is an analytical technique suitable for in situ measurements of both these quantities. For improving its sensitivity, the double pulse (DP) variant can be used, instead of the standard single pulse (SP). In this work Mo samples coated with 1.5-1.8 μm thick W-Al (as a proxy for Be) mixed layer, with co-deposited deuterium were analyzed under vacuum (˜5 × 10-5 mbar) by SP and DP LIBS, showing enhancement of the spectral intensity for the latter. Calibration free method was applied to the LIBS data for getting the elemental concentration of W and Al. Results are in satisfactory agreement with those obtained from preliminary, ion beam analysis measurements. Deuterium concentration was tentatively estimated by accounting for the intensity ratio between Dα and nearby WI lines.

  9. Sample Preparation for Repeated Measurements on a Single Liquid Droplet Using Laser-Induced Breakdown Spectroscopy.

    PubMed

    Lazic, Violeta; Fantoni, Roberta; Palucci, Antonio; Ciaffi, Massimiliano

    2017-01-01

    We studied changes in laser-induced breakdown spectroscopy (LIBS) signal intensity with the thickness of a liquid layer placed on a solid substrate, where an easily evaporating methanol sample was used. For a certain optimal liquid film thickness we obtained a manifold increase of the LIBS signal from methanol. Progressive liquid film thinning leads to a reduction and a successive disappearance of laser-induced splashes; the latter condition drastically reduces the sample consumption and allows measurements to be repeated many times on a single liquid droplet. In following, we developed two methods for actively controlled deformation, i.e., thinning of a liquid droplet (volume ∼10 µl) prior to its sampling by LIBS. Control of the droplet's height was achieved on a Si-SiO2 wafer substrate by electro-wetting in the case of water solutions or by target rotation in the case of viscous liquids. The chosen substrate also has the advantages of low cost, easy manipulation, and very high purity, thus minimizing interference with analytes. Through the droplet deformation, in a single-pulse excitation at moderate laser energy (70 mJ), we clearly detected Fe and Mn in peanut oil, which represent trace elements in edible oils (∼ 1 part per billion), according to results published in the literature.

  10. Application of distance correction to ChemCam laser-induced breakdown spectroscopy measurements

    NASA Astrophysics Data System (ADS)

    Mezzacappa, A.; Melikechi, N.; Cousin, A.; Wiens, R. C.; Lasue, J.; Clegg, S. M.; Tokar, R.; Bender, S.; Lanza, N. L.; Maurice, S.; Berger, G.; Forni, O.; Gasnault, O.; Dyar, M. D.; Boucher, T.; Lewin, E.; Fabre, C.

    2016-06-01

    Laser-induced breakdown spectroscopy (LIBS) provides chemical information from atomic, ionic, and molecular emissions from which geochemical composition can be deciphered. Analysis of LIBS spectra in cases where targets are observed at different distances, as is the case for the ChemCam instrument on the Mars rover Curiosity, which performs analyses at distances between 2 and 7.4 m is not a simple task. In our previous work we showed that spectral distance correction based on a proxy spectroscopic standard created from first-shot dust observations on Mars targets ameliorates the distance bias in multivariate-based elemental-composition predictions of laboratory data. In this work, we correct an expanded set of neutral and ionic spectral emissions for distance bias in the ChemCam data set. By using and testing different selection criteria to generate multiple proxy standards, we find a correction that minimizes the difference in spectral intensity measured at two different distances and increases spectral reproducibility. When the quantitative performance of distance correction is assessed, there is improvement for SiO2, Al2O3, CaO, FeOT, Na2O, K2O, that is, for most of the major rock forming elements, and for the total major-element weight percent predicted. However, for MgO the method does not provide improvements while for TiO2, it yields inconsistent results. In addition, we have observed that many emission lines do not behave consistently with distance, evidenced from laboratory analogue measurements and ChemCam data. This limits the effectiveness of the method.

  11. [Research on accurate measurement of oxygen content in coal using laser-induced breakdown spectroscopy in air environment].

    PubMed

    Yin, Wang-bao; Zhang, Lei; Wang, Le; Dong, Lei; Ma, Wei-guang; Jia, Suo-tang

    2012-01-01

    A technique about accurate measurement of oxygen content in coal in air environment using laser-induced breakdown spectroscopy (LIBS) is introduced in the present paper. Coal samples were excited by the laser, and plasma spectra were obtained. Combining internal standard method, temperature correction method and multi-line methods, the oxygen content of coal samples was precisely measured. The measurement precision is not less than 1.37% for oxygen content in coal analysis, so is satisfied for the requirement of coal-fired power plants in coal analysis. This method can be used in surveying, environmental protection, medicine, materials, archaeological and food safety, biochemical and metallurgy application.

  12. Laser ablation-laser induced breakdown spectroscopy for the measurement of total elemental concentration in soils.

    PubMed

    Pareja, Jhon; López, Sebastian; Jaramillo, Daniel; Hahn, David W; Molina, Alejandro

    2013-04-10

    The performances of traditional laser-induced breakdown spectroscopy (LIBS) and laser ablation-LIBS (LA-LIBS) were compared by quantifying the total elemental concentration of potassium in highly heterogeneous solid samples, namely soils. Calibration curves for a set of fifteen samples with a wide range of potassium concentrations were generated. The LA-LIBS approach produced a superior linear response different than the traditional LIBS scheme. The analytical response of LA-LIBS was tested with a large set of different soil samples for the quantification of the total concentration of Fe, Mn, Mg, Ca, Na, and K. Results showed an acceptable linear response for Ca, Fe, Mg, and K while poor signal responses were found for Na and Mn. Signs of remaining matrix effects for the LA-LIBS approach in the case of soil analysis were found and discussed. Finally, some improvements and possibilities for future studies toward quantitative soil analysis with the LA-LIBS technique are suggested.

  13. Laser-induced breakdown spectroscopy measurements of uranium and thorium powders and uranium ore

    NASA Astrophysics Data System (ADS)

    Judge, Elizabeth J.; Barefield, James E., II; Berg, John M.; Clegg, Samuel M.; Havrilla, George J.; Montoya, Velma M.; Le, Loan A.; Lopez, Leon N.

    2013-05-01

    Laser-induced breakdown spectroscopy (LIBS) was used to analyze depleted uranium and thorium oxide powders and uranium ore as a potential rapid in situ analysis technique in nuclear production facilities, environmental sampling, and in-field forensic applications. Material such as pressed pellets and metals, has been extensively studied using LIBS due to the high density of the material and more stable laser-induced plasma formation. Powders, on the other hand, are difficult to analyze using LIBS since ejection and removal of the powder occur in the laser interaction region. The capability of analyzing powders is important in allowing for rapid analysis of suspicious materials, environmental samples, or trace contamination on surfaces since it most closely represents field samples (soil, small particles, debris etc.). The rapid, in situ analysis of samples, including nuclear materials, also reduces costs in sample collection, transportation, sample preparation, and analysis time. Here we demonstrate the detection of actinides in oxide powders and within a uranium ore sample as both pressed pellets and powders on carbon adhesive discs for spectral comparison. The acquired LIBS spectra for both forms of the samples differ in overall intensity but yield a similar distribution of atomic emission spectral lines.

  14. Dealloying evidence on corroded brass by laser-induced breakdown spectroscopy mapping and depth profiling measurements

    NASA Astrophysics Data System (ADS)

    Cerrato, R.; Casal, A.; Mateo, M. P.; Nicolas, G.

    2017-04-01

    The dealloying phenomenon, also called demetalification, is a; consequence of a corrosion problem found in binary alloys where an enrichment of one of the two main elements of the alloy is produced at the expense of the leaching of the other element. In the present work, the ability of laser induced breakdown spectroscopy (LIBS) for the detection and characterization of dealloying films formed on metal has been tested. For this purpose, specific areas of brass specimens have been subjected to a chemical attack of the surface in order to produce a selective leaching of zinc or dezincification. For the lateral and in-depth characterization of the dealloyed areas by LIBS, depth profiles, 2D and 3D maps have been generated from the treated samples and from a reference non-treated sample. The differences in the maps and depth profiles between the corroded and non-corroded regions have allowed to reveal the localization and extension of the dealloying process along the brass sample surface and to estimate the thickness of the dezincification layers, demonstrating the capability of LIBS technique for the characterization of dealloying phenomena.

  15. Novel Multivariate Analysis for Soil Carbon Measurements Using Laser-Induced Breakdown Spectroscopy

    SciTech Connect

    Martin, Madhavi Z; Labbe, Nicole; Andre, Nicolas O; Wullschleger, Stan D; Harris, Ronny D; Ebinger, Michael H

    2010-01-01

    Laser-induced breakdown spectroscopy (LIBS), a rapid and potentially field-deployable technology for estimating total carbon in soil, represents a novel approach to address important issues in soil science and carbon management. Our study has shown that models relating LIBS signal intensity at 247.85 nm to percent total carbon determined by dry combustion vary as a function of elemental and textural characteristics of the soil, and, to a lesser extent, wavelength and excitation energy of the laser. To better quantify these sources of variation, two wavelengths and three excitation energies were used to analyze soils from various locations. The emission line of carbon at 247.85 nm was pronounced at an excitation wavelength of 532 nm and energy of 45 mJ, but it was largely obscured by the 248.9 nm Fe line at 1064 nm and excitation energies of 90 and 135 mJ. Univariate analysis revealed linear, but soil-specific correlations between signal intensity at 247.85 nm and total carbon concentration. A single calibration model correlating LIBS spectra to carbon concentration in all samples was obtained using a multivariate approach. Several emission lines in addition to the strong carbon line contributed significantly to the multivariate model. These results show that multivariate analysis can be used to construct a robust calibration model for LIBS spectra and therein provide a reliable estimate of total soil carbon. Such results must be confirmed for a broader range of soils, yet crop and soil scientists, carbon managers, and instrument developers should find these results encouraging.

  16. Study on the effect of beam propagation through atmospheric turbulence on standoff nanosecond laser induced breakdown spectroscopy measurements.

    PubMed

    Laserna, J J; Reyes, R Fernández; González, R; Tobaria, L; Lucena, P

    2009-06-08

    We report on an experimental study of the effect of atmospheric turbulence on laser induced breakdown spectroscopy (LIBS) measurements. The characteristics of the atmosphere dictate specific performance constraints to this technology. Unlike classical laboratory LIBS systems where the distance to the sample is well known and characterized, LIBS systems working at several tens of meters to the target have specific atmospheric propagation conditions that cause the quality of the LIBS signals to be affected to a significant extent. Using a new LIBS based sensor system fitted with a nanosecond laser emitting at 1064 nm, propagation effects at distances of up to 120 m were investigated. The effects observed include wander and scintillation in the outgoing laser beam and in the return atomic emission signal. Plasmas were formed on aluminium targets. Average signal levels and signal fluctuations are measured so the effect of atmospheric turbulence on LIBS measurements is quantified.

  17. Laser-induced breakdown spectroscopy in Asia

    NASA Astrophysics Data System (ADS)

    Wang, Zhen-Zhen; Deguchi, Yoshihiro; Zhang, Zhen-Zhen; Wang, Zhe; Zeng, Xiao-Yan; Yan, Jun-Jie

    2016-12-01

    Laser-induced breakdown spectroscopy (LIBS) is an analytical detection technique based on atomic emission spectroscopy to measure the elemental composition. LIBS has been extensively studied and developed due to the non-contact, fast response, high sensitivity, real-time and multi-elemental detection features. The development and applications of LIBS technique in Asia are summarized and discussed in this review paper. The researchers in Asia work on different aspects of the LIBS study in fundamentals, data processing and modeling, applications and instrumentations. According to the current research status, the challenges, opportunities and further development of LIBS technique in Asia are also evaluated to promote LIBS research and its applications.

  18. Laser-Induced Breakdown Spectroscopy (LIBS) for the Measurement of Spatial Structures and Fuel Distribution in Flames.

    PubMed

    Kotzagianni, Maria; Kakkava, Eirini; Couris, Stelios

    2016-04-01

    Laser-induced breakdown spectroscopy (LIBS) is used for the mapping of local structures (i.e., reactants and products zones) and for the determination of fuel distribution by means of the local equivalence ratio ϕ in laminar, premixed air-hydrocarbon flames. The determination of laser threshold energy to induce breakdown in the different zones of flames is employed for the identification and demarcation of the local structures of a premixed laminar flame, while complementary results about fuel concentration were obtained from measurements of the cyanogen (CN) band Β(2)Σ(+)--Χ(2)Σ(+), (Δυ = 0) at 388.3 nm and the ratio of the atomic lines of hydrogen (Hα) and oxygen (O(I)), Hα/O. The combination of these LIBS-based methods provides a relatively simple to use, rapid, and accurate tool for online and in situ combustion diagnostics, providing valuable information about the fuel distribution and the spatial variations of the local structures of a flame.

  19. Surrogate measurement of chlorine concentration on steel surfaces by alkali element detection via laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Xiao, X.; Le Berre, S.; Hartig, K. C.; Motta, A. T.; Jovanovic, I.

    2017-04-01

    Chlorine can play an important role in the process of stress corrosion cracking of dry cask storage canisters for used nuclear fuel, which are frequently located in marine environments. It is of significant interest to determine the surface concentration of chlorine on the stainless steel canister surface, but measurements are often limited by difficult access and challenging conditions, such as high temperature and high radiation fields. Laser-induced breakdown spectroscopy (LIBS) could enable chlorine concentration measurements while meeting the other constraints of this application, but suffers from high excitation energy of chlorine and the interference of the atomic emission lines of iron, thus limiting the sensitivity of detection, especially when LIBS has to be delivered over an optical fiber. We demonstrate that chlorine surface concentrations in the range of 0.5-100 mg/m2 can be inferred by the detection and quantification of sodium contained in chlorine salts if the speciation and neutralization of salts are not of major concern, whereas minor components of sea salt such as magnesium and potassium are less attractive as surrogates for chlorine due to the lower sensitivity of LIBS for their detection and quantification. The limit of detection, measurement accuracy, and other features and limitations of this surrogate measurement approach are discussed.

  20. In-line measurements of chlorine containing polymers in an industrial waste sorting plant by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Huber, N.; Eschlböck-Fuchs, S.; Scherndl, H.; Freimund, A.; Heitz, J.; Pedarnig, J. D.

    2014-05-01

    We report on laser-induced breakdown spectroscopy (LIBS) of chlorine containing waste polymers in-line of an industrial materials sorting plant. Material from municipal waste plastic collection containing different types of plastic pieces and impurities is measured without pre-treatment directly on the conveyor belt (conveyor speed 2 m/s). The encapsulated LIBS system mounted to the conveyor comprises a fast Nd:YAG laser and spectrometer with charge-coupled device (CCD) detector, a distance sensor, and a software for quasi real-time evaluation of measured LIBS spectra. Approximately 800,000 spectra are collected during the in-line measurement series using one laser pulse per spectrum. The optical plasma emission of Cl I at 837.6 nm is detected to identify waste polymers with high Cl content such as polyvinylchloride (PVC). The LIBS spectra are evaluated employing a fast linear correlation algorithm. The correlation histogram for more than 20,000 spectra shows three distinct peaks that are associated to different materials containing high amount of Chlorine (>20 wt %), Titanium, and low amount of Cl (<20 wt%). Signals of the LIBS sensor and a commercial near-infrared (NIR) optical reflection sensor were found to deviate for some samples. Such deviations might be caused by dark PVC samples that are detected by LIBS but missed by NIR reflection. Our results show that fast in-line identification of Cl containing waste polymer by LIBS is feasible under industrial conditions.

  1. New Approach for Near-Real-Time Measurement of Elemental Composition of Aerosol Using Laser-Induced Breakdown Spectroscopy

    PubMed Central

    Diwakar, Prasoon; Kulkarni, Pramod; Birch, M. Eileen

    2015-01-01

    A new approach has been developed for making near-real-time measurement of elemental composition of aerosols using plasma spectroscopy. The method allows preconcentration of miniscule particle mass (pg to ng) directly from the sampled aerosol stream through electrostatic deposition of charged particles (30–900 nm) onto a flat-tip microneedle electrode. The collected material is subsequently ablated from the electrode and monitored by laser-induced breakdown spectroscopy. Atomic emission spectra were collected using a broadband spectrometer with a wavelength range of 200–980 nm. A single-sensor delay time of 1.3 μs was used in the spectrometer for all elements to allow simultaneous measurement of multiple elements. The system was calibrated for various elements including Cd, Cr, Cu, Mn, Na, and Ti. The absolute mass detection limits for these elements were experimentally determined and found to be in the range of 0.018–5 ng. The electrostatic collection technique has many advantages over other substrate-based methods involving aerosol collection on a filter or its focused deposition using an aerodynamic lens. Because the particle mass is collected over a very small area that is smaller than the spatial extent of the laser-induced plasma, the entire mass is available for analysis. This considerably improves reliability of the calibration and enhances measurement accuracy and precision. Further, the aerosol collection technique involves very low pressure drop, thereby allowing higher sample flow rates with much smaller pumps—a desirable feature for portable instrumentation. Higher flow rates also make it feasible to measure trace element concentrations at part per trillion levels. Detection limits in the range of 18–670 ng m−3 can be achieved for most of the elements studied at a flow rate of 1.5 L min−1 with sampling times of 5 min. PMID:26692632

  2. New Approach for Near-Real-Time Measurement of Elemental Composition of Aerosol Using Laser-Induced Breakdown Spectroscopy.

    PubMed

    Diwakar, Prasoon; Kulkarni, Pramod; Birch, M Eileen

    A new approach has been developed for making near-real-time measurement of elemental composition of aerosols using plasma spectroscopy. The method allows preconcentration of miniscule particle mass (pg to ng) directly from the sampled aerosol stream through electrostatic deposition of charged particles (30-900 nm) onto a flat-tip microneedle electrode. The collected material is subsequently ablated from the electrode and monitored by laser-induced breakdown spectroscopy. Atomic emission spectra were collected using a broadband spectrometer with a wavelength range of 200-980 nm. A single-sensor delay time of 1.3 μs was used in the spectrometer for all elements to allow simultaneous measurement of multiple elements. The system was calibrated for various elements including Cd, Cr, Cu, Mn, Na, and Ti. The absolute mass detection limits for these elements were experimentally determined and found to be in the range of 0.018-5 ng. The electrostatic collection technique has many advantages over other substrate-based methods involving aerosol collection on a filter or its focused deposition using an aerodynamic lens. Because the particle mass is collected over a very small area that is smaller than the spatial extent of the laser-induced plasma, the entire mass is available for analysis. This considerably improves reliability of the calibration and enhances measurement accuracy and precision. Further, the aerosol collection technique involves very low pressure drop, thereby allowing higher sample flow rates with much smaller pumps-a desirable feature for portable instrumentation. Higher flow rates also make it feasible to measure trace element concentrations at part per trillion levels. Detection limits in the range of 18-670 ng m(-3) can be achieved for most of the elements studied at a flow rate of 1.5 L min(-1) with sampling times of 5 min.

  3. Automated Measurement of Magnesium/Calcium Ratios in Gastropod Shells Using Laser-induced Breakdown Spectroscopy for Paleoclimatic Applications.

    PubMed

    Cobo, Adolfo; García-Escárzaga, Asier; Gutiérrez-Zugasti, Igor; Setién, Jesús; González-Morales, Manuel R; López-Higuera, José Miguel

    2017-01-01

    The chemical composition of mollusk shells offers information about environmental conditions present during the lifespan of the organism. Shells found in geological deposits and in many archeological sites can help to reconstruct past climatic conditions. For example, a correlation has been found between seawater temperature and the amount of some substituent elements (e.g., magnesium, strontium) in the biogenerated calcium carbonate matrix of the shell, although it is very species-specific. Here we propose the use laser-induced breakdown spectroscopy (LIBS) to estimate Mg/Ca ratios in modern specimens of the common limpet Patella vulgata. An automated setup was used to obtain a sequence of Mg/Ca ratios across a sampling path that could be compared with the seawater temperatures recorded during the organism's lifespan. Results using four shells collected in different months of the year showed a direct relationship between the Mg/Ca ratios and the seawater temperature, although the sequences also revealed small-scale (short-term) variability and an irregular growth rate. Nevertheless, it was possible to infer the season of capture and the minimum and maximum seawater temperatures from the LIBS sequences. This fact, along with the reduction in sampling and measurement time compared with other spectrometric techniques (such as inductively coupled plasma mass spectrometry [ICP-MS]), makes LIBS useful in paleoclimatic studies.

  4. Evaluation of Laser-Induced Breakdown Spectroscopy (LIBS) for Measurement of Silica on Filter Samples of Coal Dust

    PubMed Central

    Stipe, Christopher B.; Miller, Arthur L.; Brown, Jonathan; Guevara, Edward; Cauda, Emanuele

    2015-01-01

    Airborne silica dust (quartz) is common in coal mines and represents a respiratory hazard that can lead to silicosis, a potentially fatal lung disease. With an eye toward developing a portable monitoring device for rapid analysis of silica dust, laser-induced breakdown spectroscopy (LIBS) was used to quantify quartz in coal dust samples collected on filter media. Pure silica (Min-U-Sil™ 5), Georgia kaolin, and Pittsburgh-4 and Illinois-6 coal dusts were deposited separately and at multiple mass loadings onto 37-mm polyvinylchloride (PVC) filters. LIBS-generated silicon emission was monitored at 288.16 nm, and non-silica contributions to that signal from kaolinite were removed by simultaneously detecting aluminum. Measurements of the four samples were used to calculate limits of detection (LOD) for silicon and aluminum of approximately 0.08 µg/cm2 and 0.05 µg/cm2, respectively (corresponding to 0.16 µg/cm2 and 0.20 µg/cm2 for silica and kaolinite, respectively). Relative errors of prediction are around 10%. Results demonstrate that LIBS can dependably quantify silica on filter samples of coal dust and confirm that accurate quantification can be achieved for very lightly loaded samples, which supports the potential application of LIBS for rapid, in-field monitoring. PMID:23146184

  5. Evaluation of laser-induced breakdown spectroscopy (LIBS) for measurement of silica on filter samples of coal dust.

    PubMed

    Stipe, Christopher B; Miller, Arthur L; Brown, Jonathan; Guevara, Edward; Cauda, Emanuele

    2012-11-01

    Airborne silica dust (quartz) is common in coal mines and represents a respiratory hazard that can lead to silicosis, a potentially fatal lung disease. With an eye toward developing a portable monitoring device for rapid analysis of silica dust, laser-induced breakdown spectroscopy (LIBS) was used to quantify quartz in coal dust samples collected on filter media. Pure silica (Min-U-Sil™ 5), Georgia kaolin, and Pittsburgh-4 and Illinois-6 coal dusts were deposited separately and at multiple mass loadings onto 37-mm polyvinylchloride (PVC) filters. LIBS-generated silicon emission was monitored at 288.16 nm, and non-silica contributions to that signal from kaolinite were removed by simultaneously detecting aluminum. Measurements of the four samples were used to calculate limits of detection (LOD) for silicon and aluminum of approximately 0.08 μg/cm(2) and 0.05 μg/cm(2), respectively (corresponding to 0.16 μg/cm(2) and 0.20 μg/cm(2) for silica and kaolinite, respectively). Relative errors of prediction are around 10%. Results demonstrate that LIBS can dependably quantify silica on filter samples of coal dust and confirm that accurate quantification can be achieved for very lightly loaded samples, which supports the potential application of LIBS for rapid, in-field monitoring.

  6. Acidity measurement of iron ore powders using laser-induced breakdown spectroscopy with partial least squares regression.

    PubMed

    Hao, Z Q; Li, C M; Shen, M; Yang, X Y; Li, K H; Guo, L B; Li, X Y; Lu, Y F; Zeng, X Y

    2015-03-23

    Laser-induced breakdown spectroscopy (LIBS) with partial least squares regression (PLSR) has been applied to measuring the acidity of iron ore, which can be defined by the concentrations of oxides: CaO, MgO, Al₂O₃, and SiO₂. With the conventional internal standard calibration, it is difficult to establish the calibration curves of CaO, MgO, Al₂O₃, and SiO₂ in iron ore due to the serious matrix effects. PLSR is effective to address this problem due to its excellent performance in compensating the matrix effects. In this work, fifty samples were used to construct the PLSR calibration models for the above-mentioned oxides. These calibration models were validated by the 10-fold cross-validation method with the minimum root-mean-square errors (RMSE). Another ten samples were used as a test set. The acidities were calculated according to the estimated concentrations of CaO, MgO, Al₂O₃, and SiO₂ using the PLSR models. The average relative error (ARE) and RMSE of the acidity achieved 3.65% and 0.0048, respectively, for the test samples.

  7. Measuring Breakdown Voltage.

    ERIC Educational Resources Information Center

    Auer, Herbert J.

    1978-01-01

    The article discusses an aspect of conductivity, one of the electrical properties subdivisions, and describes a tester that can be shop-built. Breakdown voltage of an insulation material is specifically examined. Test procedures, parts lists, diagrams, and test data form are included. (MF)

  8. Improved Measurement Performance of Inorganic Elements in Coal by Laser-Induced Breakdown Spectroscopy Coupled with Internal Standardization

    NASA Astrophysics Data System (ADS)

    Yao, Shunchun; Xu, Jialong; Bai, Kaijie; Lu, Jidong

    2015-11-01

    Laser-induced breakdown spectroscopy was employed to determine the inorganic elements in coal. To improve the measurement's accuracy and precision, a new internal standardization scheme, which we named changed internal standardization, was compared with the traditional internal standardization and no internal standardization for the analysis of inorganic elements. The new internal standardization scheme used the atomic line of carbon at 247.86 nm and the molecular band of CN at 388.34 nm and C2 at 516.32 nm to normalize the lines of inorganic elements that were distributed in the same spectral channel. The performance of the utilization of the new internal standardization scheme was evaluated using a set of coal samples, including twenty calibration samples and five validation samples. The results show that the coefficients of determination R2 and the slope of calibration models coupled with changed internal standardization are better than that of the calibration models coupled with fixed internal standardization and no internal standardization. Moreover, the measurement accuracy and reproducibility of changed internal standardization for the analysis of five validation samples also yielded further improvement. The results that we obtained suggest that changed internal standardization could compensate for the matrix effects, as well as the influence of the difference in the spectral response of the light collection system. supported by Open Research Fund of State Key Laboratory of Pulsed Power Laser Technology of China (No. SKL2013KF03), National Natural Science Foundation of China (Nos. 51206055, 51476061), the Fundamental Research Funds for the Central Universities of China (No. 2014ZZ0014), the New Star of Pearl River on Science and Technology of Guangzhou, China (No. 2014J2200054), the Key Laboratory of Efficient and Clean Energy Utilization of Guangdong Higher Education Institutes of China (No. KLB10004) and Guangdong Province Key Laboratory of Efficient and

  9. Comparison of field portable measurements of ultrafine TiO2: X-ray fluorescence, laser-induced breakdown spectroscopy, and Fourier-transform infrared spectroscopy.

    PubMed

    LeBouf, Ryan F; Miller, Arthur L; Stipe, Christopher; Brown, Jonathan; Murphy, Nate; Stefaniak, Aleksandr B

    2013-06-01

    Laboratory measurements of ultrafine titanium dioxide (TiO2) particulate matter loaded on filters were made using three field portable methods (X-ray fluorescence (XRF), laser-induced breakdown spectroscopy (LIBS), and Fourier-transform infrared (FTIR) spectroscopy) to assess their potential for determining end-of-shift exposure. Ultrafine TiO2 particles were aerosolized and collected onto 37 mm polycarbonate track-etched (PCTE) filters in the range of 3 to 578 μg titanium (Ti). Limit of detection (LOD), limit of quantification (LOQ), and calibration fit were determined for each measurement method. The LOD's were 11.8, 0.032, and 108 μg Ti per filter, for XRF, LIBS, and FTIR, respectively and the LOQ's were 39.2, 0.11, and 361 μg Ti per filter, respectively. The XRF calibration curve was linear over the widest dynamic range, up to the maximum loading tested (578 μg Ti per filter). LIBS was more sensitive but, due to the sample preparation method, the highest loaded filter measurable was 252 μg Ti per filter. XRF and LIBS had good predictability measured by regressing the predicted mass to the gravimetric mass on the filter. XRF and LIBS produced overestimations of 4% and 2%, respectively, with coefficients of determination (R(2)) of 0.995 and 0.998. FTIR measurements were less dependable due to interference from the PCTE filter media and overestimated mass by 2% with an R(2) of 0.831.

  10. Comparative measurements of mineral elements in milk powders with laser-induced breakdown spectroscopy and inductively coupled plasma atomic emission spectroscopy.

    PubMed

    Lei, W Q; El Haddad, J; Motto-Ros, V; Gilon-Delepine, N; Stankova, A; Ma, Q L; Bai, X S; Zheng, L J; Zeng, H P; Yu, J

    2011-07-01

    Mineral elements contained in commercially available milk powders, including seven infant formulae and one adult milk, were analyzed with inductively coupled plasma atomic emission spectrometry (ICP-AES) and laser-induced breakdown spectroscopy (LIBS). The purpose of this work was, through a direct comparison of the analytical results, to provide an assessment of the performance of LIBS, and especially of the procedure of calibration-free LIBS (CF-LIBS), to deal with organic compounds such as milk powders. In our experiments, the matrix effect was clearly observed affecting the analytical results each time laser ablation was employed for sampling. Such effect was in addition directly observed by determining the physical parameters of the plasmas induced on the different samples. The CF-LIBS procedure was implemented to deduce the concentrations of Mg and K with Ca as the internal reference element. Quantitative analytical results with CF-LIBS were validated with ICP-AES measurements and nominal concentrations specified for commercial milks. The obtained good results with the CF-LIBS procedure demonstrate its capacity to take into account the difference in physical parameters of the plasma in the calculation of the concentrations of mineral elements, which allows a significant reduction of the matrix effect related to laser ablation. We finally discuss the way to optimize the implementation of the CF-LIBS procedure for the analysis of mineral elements in organic materials.

  11. Influence of oxygen addition to the carrier gas on laser-induced breakdown spectroscopy measurements on aerosols

    NASA Astrophysics Data System (ADS)

    Palazzo, N.; Migliorini, F.; Dondè, R.; Maffi, S.; De Iuliis, S.

    2016-01-01

    In this work, laser-induced breakdown spectrosopy is implemented on aerosol particles for absolute concentration analysis. The aim of this work is the investigation of the effect of the bath gas used for nebulizing the aerosol. Nitrogen, air, and 50% O2 in N2 mixture have been chosen as carrier gasses in order to analyze the effect of oxygen addition to the gas. LIBS measurements have been carried out on aerosol particles produced from CuCl2 2H2O solutions, and the 324.7 nm Cu line is considered. As a first analysis, plasma parameters, such as temperature and electron density, have been evaluated changing the carrier gas. Measurements to derive the LIBS calibration curve of the 324.7 nm Cu line are carried out in air and in N2. The significant difference in the slope of the resulting calibration curves has to be attributed to the oxygen addition to the bath gas. To explore such behavior, time-resolved measurements of the Cu line and peak/base ratio have been performed. The presence of two competitive effects have been observed that becomes significant increasing the amount of oxygen in the carrier gas. One is the oxygen-quenching effect, already observed in the literature, and the other one is the enhancement of the Cu LIBS signal, expecially at short delay times. These effects have been observed also at other Cu lines and changing the analyte source. The results are presented and widely discussed.

  12. Development of microwave-enhanced spark-induced breakdown spectroscopy

    SciTech Connect

    Ikeda, Yuji; Moon, Ahsa; Kaneko, Masashi

    2010-05-01

    We propose microwave-enhanced spark-induced breakdown spectroscopy with the same measurement and analysis processes as in laser-induced breakdown spectroscopy, but with a different plasma generation mechanism. The size and lifetime of the plasma generated can contribute to increased measurement accuracy and expand its applicability to industrial measurement, such as an exhaust gas analyzer for automobile engine development and its regulation, which has been hard to operate by laser at an engineering evaluation site. The use of microwaves in this application helps lower the cost, reduce the system size, and increase the ease of operation to make it commercially viable. A microwave frequency of 2.45 GHz was used to enhance the volume and lifetime of the plasma at atmospheric condition even at elevated pressure.

  13. Medical Applications of Laser Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Pathak, A. K.; Rai, N. K.; Singh, Ankita; Rai, A. K.; Rai, Pradeep K.; Rai, Pramod K.

    2014-11-01

    Sedentary lifestyle of human beings has resulted in various diseases and in turn we require a potential tool that can be used to address various issues related to human health. Laser Induced Breakdown Spectroscopy (LIBS) is one such potential optical analytical tool that has become quite popular because of its distinctive features that include applicability to any type/phase of samples with almost no sample preparation. Several reports are available that discusses the capabilities of LIBS, suitable for various applications in different branches of science which cannot be addressed by traditional analytical methods but only few reports are available for the medical applications of LIBS. In the present work, LIBS has been implemented to understand the role of various elements in the formation of gallstones (formed under the empyema and mucocele state of gallbladder) samples along with patient history that were collected from Purvancal region of Uttar Pradesh, India. The occurrence statistics of gallstones under the present study reveal higher occurrence of gallstones in female patients. The gallstone occurrence was found more prevalent for those male patients who were having the habit of either tobacco chewing, smoking or drinking alcohols. This work further reports in-situ LIBS study of deciduous tooth and in-vivo LIBS study of human nail.

  14. Plasma temperature clamping in filamentation laser induced breakdown spectroscopy

    SciTech Connect

    Harilal, Sivanandan S.; Yeak, J.; Phillips, Mark C.

    2015-10-19

    Ultrafast laser filament induced breakdown spectroscopy is a very promising method for remote material detection. We present characteristics of plasmas generated in a metal target by laser filaments in air. Our measurements show that the temperature of the ablation plasma is clamped along the filamentation channel due to intensity clamping in a filament. Nevertheless, significant changes in radiation intensity are noticeable, and this is essentially due to variation in the number density of emitting atoms. The present results also partly explains the reason for the occurrence of atomic plume during fs LIBS in air compared to long-pulse ns LIBS.

  15. Rapid long-wave infrared laser-induced breakdown spectroscopy measurements using a mercury-cadmium-telluride linear array detection system.

    PubMed

    Yang, Clayton S-C; Brown, Eiei; Kumi-Barimah, Eric; Hommerich, Uwe; Jin, Feng; Jia, Yingqing; Trivedi, Sudhir; D'souza, Arvind I; Decuir, Eric A; Wijewarnasuriya, Priyalal S; Samuels, Alan C

    2015-11-20

    In this work, we develop a mercury-cadmium-telluride linear array detection system that is capable of rapidly capturing (∼1-5  s) a broad spectrum of atomic and molecular laser-induced breakdown spectroscopy (LIBS) emissions in the long-wave infrared (LWIR) region (∼5.6-10  μm). Similar to the conventional UV-Vis LIBS, a broadband emission spectrum of condensed phase samples covering the whole 5.6-10 μm region can be acquired from just a single laser-induced microplasma or averaging a few single laser-induced microplasmas. Atomic and molecular signature emission spectra of solid inorganic and organic tablets and thin liquid films deposited on a rough asphalt surface are observed. This setup is capable of rapidly probing samples "as is" without the need of elaborate sample preparation and also offers the possibility of a simultaneous UV-Vis and LWIR LIBS measurement.

  16. Quantitative analysis of gallstones using laser-induced breakdown spectroscopy

    SciTech Connect

    Singh, Vivek K.; Singh, Vinita; Rai, Awadhesh K.; Thakur, Surya N.; Rai, Pradeep K.; Singh, Jagdish P

    2008-11-01

    The utility of laser-induced breakdown spectroscopy (LIBS) for categorizing different types of gallbladder stone has been demonstrated by analyzing their major and minor constituents. LIBS spectra of three types of gallstone have been recorded in the 200-900 nm spectral region. Calcium is found to be the major element in all types of gallbladder stone. The spectrophotometric method has been used to classify the stones. A calibration-free LIBS method has been used for the quantitative analysis of metal elements, and the results have been compared with those obtained from inductively coupled plasma atomic emission spectroscopy (ICP-AES) measurements. The single-shot LIBS spectra from different points on the cross section (in steps of 0.5 mm from one end to the other) of gallstones have also been recorded to study the variation of constituents from the center to the surface. The presence of different metal elements and their possible role in gallstone formation is discussed.

  17. A Fundamental Study of Laser-Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements Of Trace Metals

    SciTech Connect

    Scott Goode; S. Michael Angel

    2004-01-20

    Develop a fiber-optic imaging probe for microanalysis of solid samples; Design a time-resolved plasma imaging system to measure the development of the LIBS signal; Setup a laboratory system capable of timing two lasers independently, for optimizing and characterizing dual-pulse LIBS; Compare the development of laser-induced plasmas generated with a single laser pulse to the development of laser-induced plasmas generated with a pre-ablation spark prior to sample ablation; Examine the effect of sample matrix on the LIBS signals of elements in different sample matrices; Investigate the effect of excitation wavelength of the ablation beam in pre-ablation spark dual-pulse LIBS experiments; Determine the effect of the physical properties of the sample on the mass of materials ablated.

  18. Construction of a Laser Induced Breakdown Spectroscopy Setup

    NASA Astrophysics Data System (ADS)

    Mays, Joseph; Palmer, Andria; Amos, James; Dynka, Tom; Ujj, Lazlo

    Laser Induced Breakdown Spectroscopy (LIBS) is a practical spectroscopy to determine the chemical and atomic composition of materials. The third harmonic output of a Nd:YAG Q-switched laser generating 5ns pulses with 10Hz repetition rate was used to ablate the sample and create a micro-plasma. The emission of the radiating plasma was focused into an optical fiber with 0.22 numerical aperture. The spectra was measured with an Ocean Optics micro spectrometer. A synchronized shutter was used to select single laser pulses. In order to reach the breakdown threshold of the sample using the available energy of the laser pulses (<5 mJ) a beam expander and a parabolic mirror was used for tight focusing. The optical and technical details including the characterization of the system will be presented. LIBS spectra taken from a variety of metal and organic samples show appropriate selectivity for quantitative and qualitative analysis for materials. UWF NIH MARC U-STAR 1T34GM110517-01, UWF Office of Undergraduate Research.

  19. High-precision potassium measurements using laser-induced breakdown spectroscopy under high vacuum conditions for in situ K-Ar dating of planetary surfaces

    NASA Astrophysics Data System (ADS)

    Cho, Yuichiro; Sugita, Seiji; Kameda, Shingo; Miura, Yayoi N.; Ishibashi, Ko; Ohno, Sohsuke; Kamata, Shunichi; Arai, Tomoko; Morota, Tomokatsu; Namiki, Noriyuki; Matsui, Takafumi

    2015-04-01

    We conducted a series of laser induced breakdown spectroscopy (LIBS) experiments for K measurements under high vacuum conditions (10- 6 Pa) for the purpose of developing in-situ isochron type K-Ar dating instruments for planetary missions. Unlike whole rock measurement methods, isochron measurements require LIBS experiments in a vacuum chamber because simultaneous Ar isotopic measurements are necessary. However, detailed examination of detection limits and accuracy of this method at low pressures has not been examined extensively before. In this study, the capability of K measurements under high vacuum conditions was examined using LIBS. A compact Czerny-Turner type spectrometer equipped with a charge-coupled device (CCD) as a detector was employed. Twenty-three geologic standard samples were measured using the LIBS method. The second strongest K emission line at 769.89 nm was used for calibration because the strongest emission line at 766.49 nm may suffer from strong interference from another emission line. A calibration curve was constructed for K using internal normalization with the oxygen line at 777 nm and well fitted by a power-law function. Based on the prediction band method, the detection limit and the quantitation limit were estimated to be 300 and 800 ppm, respectively. The 1σ relative uncertainty of the K calibration was 20% for 1 wt.% K2O and 40% for 3000 ppm K2O. If the amount of Ar is measured with 15% error for the 3.5 billion years rocks containing 1 and 0.3 wt.% K2O, the K-Ar ages would be determined with 10% and 20% 1σ errors, respectively. This level of precision will significantly improve the current Martian chronology, which has uncertainty about a factor of two to four. These results indicate that the concentration of K can be measured quantitatively under high vacuum conditions using a combination of instruments that have previously been carried in planetary missions, which suggests the viability of building in situ isochron K-Ar dating

  20. Laser-Induced Breakdown Spectroscopy on Solution Samples Using Surface Excitation

    DTIC Science & Technology

    1996-12-01

    and R. Kellner, "New IR Fiber-Optic Chemical Sensor for in Situ Measurements of Chlorinated Hydrocarbons in Water," Applied Spectroscopy 47 (9), 1484...34Quantitative Elemental Analysis of Iron Ore by Laser-Induced Breakdown Spectroscopy," Applied Spectroscopy 45 (4), 701-705 (1991). 7. D.A. Cremers...to 950 nm," Applied Spectroscopy 49 (10), 1490-1499 (1995). 17. J. Belliveau, L. Cadwell, K. Coleman, L. Huwel, and H. Griffin, "Laser- Induced

  1. Apparatus, system, and method for laser-induced breakdown spectroscopy

    SciTech Connect

    Effenberger, Jr., Andrew J; Scott, Jill R; McJunkin, Timothy R

    2014-11-18

    In laser-induced breakdown spectroscopy (LIBS), an apparatus includes a pulsed laser configured to generate a pulsed laser signal toward a sample, a constructive interference object and an optical element, each located in a path of light from the sample. The constructive interference object is configured to generate constructive interference patterns of the light. The optical element is configured to disperse the light. A LIBS system includes a first and a second optical element, and a data acquisition module. The data acquisition module is configured to determine an isotope measurement based, at least in part, on light received by an image sensor from the first and second optical elements. A method for performing LIBS includes generating a pulsed laser on a sample to generate light from a plasma, generating constructive interference patterns of the light, and dispersing the light into a plurality of wavelengths.

  2. Analysis of fresco by laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Caneve, L.; Diamanti, A.; Grimaldi, F.; Palleschi, G.; Spizzichino, V.; Valentini, F.

    2010-08-01

    The laser-based techniques have been shown to be a very powerful tool for artworks characterization and are used in the field of cultural heritage for the offered advantages of minimum invasiveness, in situ applicability and high sensitivity. Laser induced breakdown spectroscopy, in particular, has been applied in this field to many different kinds of ancient materials with successful results. In this work, a fragment of a Roman wall painting from the archaeological area of Pompeii has been investigated by LIBS. The sample elemental composition resulting from LIBS measurements suggested the presence of certain pigments. The ratio of the intensities of different lines related to some characteristic elements is proposed as an indicator for pigment recognition. The depth profiling permitted to put in evidence the presence of successive paint layers with different compositions. A comparison with the results obtained by the microscopy inspection of the sample has been done.

  3. Elemental Analysis of Soils by Laser Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gondal, Mohammed Ashraf; Dastageer, Mohamed A.

    The chemical and elemental composition of soil is very complex as it contains many constituents like minerals, organic matters, living organisms, fossils, air and water. Considering the diversity of soil contents, quality and usability, a systematic scientific study on the elemental and chemical composition of soil is very important. In order to study the chemical composition of soil, Laser induced breakdown spectroscopy (LIBS) has been applied recently. The important features of LIBS system and its applications for the measurement of nutrients in green house soil, on-line monitoring of remediation process of chromium polluted soil, determination of trace elements in volcanic erupted soil samples collected from ancient cenozoic lava eruption sites and detection of toxic metals in Gulf war oil spill contaminated soil using LIBS are described in this chapter.

  4. Nanosecond-gated laser induced breakdown spectroscopy in hydrocarbon mixtures

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kazunobu; Bak, Moon Soo; Tanaka, Hiroki; Do, Hyungrok

    2015-09-01

    Nanosecond-gated laser induced breakdown spectroscopy have been carried out in four different hydrocarbon gas mixtures (CH4/CO2/O2/N2, C2H4/O2/N2, C3H8/CO2/O2/N2 and C4H10/CO2/O2/N2) to investigate the effect of gas species on the laser induced breakdown kinetics and resulting the plasma emission. For this purpose, each mixture that consists of different species has the same atom composition. It is found that the temporal emission spectra and the decay rates of atomic line-intensities are almost identical for the breakdowns in the four different mixtures. This finding may indicate that the breakdown plasmas of these mixtures reach a similar thermodynamic and physiochemical state after its formation, resulting in a similar trend of quenching of excited species.

  5. Laser-Induced Breakdown Spectroscopy of Trace Metals

    NASA Technical Reports Server (NTRS)

    Simons, Stephen (Technical Monitor); VanderWal, Randall L.; Ticich, Thomas M.; West, Joseph R., Jr.

    2004-01-01

    An alternative approach for laser-induced breakdown spectroscopy (LIBS) determination of trace metal determination in liquids is demonstrated. The limits of detection (LOD) for the technique ranged from 10 ppb to 10 ppm for 15 metals metals (Mg, Al, Si, Ca, Ti, Cr, Fe, Co, Ni, Cu, Zn, As, Cd, Hg, Pb) tested.

  6. Cropland Field Monitoring: MMV Page 1 Montana Cropland Enrolled Farm Fields Carbon Sequestration Field Sampling, Measurement, Monitoring, and Verification: Application of Visible-Near Infrared Diffuse Reflectance Spectroscopy (VNIR) and Laser-induced Breakdown Spectroscopy (LIBS)

    SciTech Connect

    Lee Spangler; Ross Bricklemyer; David Brown

    2012-03-15

    There is growing need for rapid, accurate, and inexpensive methods to measure, and verify soil organic carbon (SOC) change for national greenhouse gas accounting and the development of a soil carbon trading market. Laboratory based soil characterization typically requires significant soil processing, which is time and resource intensive. This severely limits application for large-region soil characterization. Thus, development of rapid and accurate methods for characterizing soils are needed to map soil properties for precision agriculture applications, improve regional and global soil carbon (C) stock and flux estimates and efficiently map sub-surface metal contamination, among others. The greatest gains for efficient soil characterization will come from collecting soil data in situ, thus minimizing soil sample transportation, processing, and lab-based measurement costs. Visible and near-infrared diffuse reflectance spectroscopy (VisNIR) and laser-induced breakdown spectroscopy (LIBS) are two complementary, yet fundamentally different spectroscopic techniques that have the potential to meet this need. These sensors have the potential to be mounted on a soil penetrometer and deployed for rapid soil profile characterization at field and landscape scales. Details of sensor interaction, efficient data management, and appropriate statistical analysis techniques for model calibrations are first needed. In situ or on-the-go VisNIR spectroscopy has been proposed as a rapid and inexpensive tool for intensively mapping soil texture and organic carbon (SOC). While lab-based VisNIR has been established as a viable technique for estimating various soil properties, few experiments have compared the predictive accuracy of on-the-go and lab-based VisNIR. Eight north central Montana wheat fields were intensively interrogated using on-the-go and lab-based VisNIR. Lab-based spectral data consistently provided more accurate predictions than on-the-go data. However, neither in situ

  7. Titanium monoxide spectroscopy following laser-induced optical breakdown

    NASA Astrophysics Data System (ADS)

    Parigger, Christian G.; Woods, Alexander C.; Keszler, Anna; Nemes, László; Hornkohl, James O.

    2012-07-01

    This work investigates Titanium Monoxide (TiO) in ablation-plasma by employing laser-induced breakdown spectroscopy (LIBS) with 1 to 10 TW/cm2 irradiance, pulsed, 13 nanosecond, Q-switched Nd:YAG laser radiation at the fundamental wavelength of 1064 nm. The analysis of TiO is based on our first accurate determination of transition line strengths for selected TiO A-X, B-X, and E-X transitions, particularly TiO A-X γ and B-X γ' bands. Electric dipole line strengths for the A3Φ-X3δ and B3Π-X3δ bands of TiO are computed. The molecular TiO spectra are observed subsequent to laser-induced breakdown (LIB). We discuss analysis of diatomic molecular spectra that may occur simultaneously with spectra originating from atomic species. Gated detection is applied to investigate the development in time of the emission spectra following LIB. Collected emission spectra allow one to infer micro-plasma parameters such as temperature and electron density. Insight into the state of the micro-plasma is gained by comparing measurements with predictions of atomic and molecular spectra. Nonlinear fitting of recorded and computed diatomic spectra provides the basis for molecular diagnostics, while atomic species may overlap and are simultaneously identified. Molecular diagnostic approaches similar to TiO have been performed for diatomic molecules such as AlO, C2, CN, CH, N2, NH, NO and OH.

  8. Development of laser induced breakdown spectroscopy instrumentatin for safeguards applications

    SciTech Connect

    Barefield Il, James E; Clegg, Samuel M; Le, Loan A; Lopez, Leon N

    2010-01-01

    In September 2006, a Technical Meeting on Application of Laser Spectrometry Techniques in IAEA Safeguards was held at IAEA headquarters (HQ). One of the principal recommendations from this meeting was the need to 'pursue the development of novel complementary access instrumentation based on laser induced breakdown spectroscopy (LIBS) for the detection of gaseous and solid signatures and indicators of nuclear fuel cycle processes and associated materials.' Pursuant to this recommendation the Department of Safeguards (SG) under the Division of Technical Support (SGTS) convened the Experts and Users Advisory Meeting on Laser Induced Breakdown Spectroscopy (LIBS) for Safeguards Applications. This meeting was held at IAEA HQ from July 7-11,2008 and hosted by the Novel Technologies Unit (NTU). The meeting was attended by 12 LIBS experts from the Czech Republic, the European Commission, France, the Republic of Korea, the United States of America, Germany, the United Kingdom of Great Britain, Canada, and Northern Ireland. After a presentation of the needs of the IAEA inspectors, the LIBS experts were in agreement that needs as presented could be partially or fully fulfilled using LIBS instrumentation. The needs of the IAEA inspectors were grouped in the following broad categories: (1) Improvements to in-field measurements/environmental sampling; (2) Monitoring status of activity in a Hot Cell; (3) Verifying status of activity at a declared facility via process monitoring; and (4) Need for pre-screening of environmental samples before analysis. Under the Department of Energy/National Nuclear Security Administration (DOE/NNSA) Next Generation Safeguards Initiative (NGSI) Los Alamos National Laboratory is exploring three potential applications of LIBS for international safeguards. As part of this work, we are developing: (1) a user-friendly man-portable LIBS system to characterize samples across a wide range of elements in the periodic table from hydrogen up to heavy elements

  9. Independent component analysis classification of laser induced breakdown spectroscopy spectra

    NASA Astrophysics Data System (ADS)

    Forni, Olivier; Maurice, Sylvestre; Gasnault, Olivier; Wiens, Roger C.; Cousin, Agnès; Clegg, Samuel M.; Sirven, Jean-Baptiste; Lasue, Jérémie

    2013-08-01

    The ChemCam instrument on board Mars Science Laboratory (MSL) rover uses the laser-induced breakdown spectroscopy (LIBS) technique to remotely analyze Martian rocks. It retrieves spectra up to a distance of seven meters to quantify and to quantitatively analyze the sampled rocks. Like any field application, on-site measurements by LIBS are altered by diverse matrix effects which induce signal variations that are specific to the nature of the sample. Qualitative aspects remain to be studied, particularly LIBS sample identification to determine which samples are of interest for further analysis by ChemCam and other rover instruments. This can be performed with the help of different chemometric methods that model the spectra variance in order to identify a the rock from its spectrum. In this paper we test independent components analysis (ICA) rock classification by remote LIBS. We show that using measures of distance in ICA space, namely the Manhattan and the Mahalanobis distance, we can efficiently classify spectra of an unknown rock. The Mahalanobis distance gives overall better performances and is easier to manage than the Manhattan distance for which the determination of the cut-off distance is not easy. However these two techniques are complementary and their analytical performances will improve with time during MSL operations as the quantity of available Martian spectra will grow. The analysis accuracy and performances will benefit from a combination of the two approaches.

  10. Microwave assisted laser-induced breakdown spectroscopy at ambient conditions

    NASA Astrophysics Data System (ADS)

    Viljanen, Jan; Sun, Zhiwei; Alwahabi, Zeyad T.

    2016-04-01

    Signal enhancements in laser-induced breakdown spectroscopy (LIBS) using external microwave power are demonstrated in ambient air. Pulsed microwave at 2.45 GHz and of 1 millisecond duration was delivered via a simple near field applicator (NFA), with which an external electric field is generated and coupled into laser induced plasma. The external microwave power can significantly increase the signal lifetime from a few microseconds to hundreds of microseconds, resulting in a great enhancement on LIBS signals with the use of a long integration time. The dependence of signal enhancement on laser energy and microwave power is experimentally assessed. With the assistance of microwave source, a significant enhancement of ~ 100 was achieved at relatively low laser energy that is only slightly above the ablation threshold. A limit of detection (LOD) of 8.1 ppm was estimated for copper detection in Cu/Al2O3 solid samples. This LOD corresponds to a 93-fold improvement compared with conventional single-pulse LIBS. Additionally, in the microwave assisted LIBS, the self-reversal effect was greatly reduced, which is beneficial in measuring elements of high concentration. Temporal measurements have been performed and the results revealed the evolution of the emission process in microwave-enhanced LIBS. The optimal position of the NFA related to the ablation point has also been investigated.

  11. Laser-induced breakdown spectroscopy for specimen analysis

    DOEpatents

    Kumar, Akshaya; Yu-Yueh, Fang; Burgess, Shane C.; Singh, Jagdish P.

    2006-08-15

    The present invention is directed to an apparatus, a system and a method for detecting the presence or absence of trace elements in a biological sample using Laser-Induced Breakdown Spectroscopy. The trace elements are used to develop a signature profile which is analyzed directly or compared with the known profile of a standard. In one aspect of the invention, the apparatus, system and method are used to detect malignant cancer cells in vivo.

  12. Novel Applications of Laser-Induced Breakdown Spectroscopy.

    PubMed

    Bauer, Amy J Ray; Buckley, Steven G

    2017-01-01

    The goal of this review article is to provide a description of recent and novel laser-induced breakdown spectroscopy (LIBS) applications and developments, especially those discussed during the NASLIBS Conference, held during SciX in Providence, RI, in September 2015. This topic was selected in view of the numerous recent overall review papers that have successfully given a broad view of the current understanding of laser-material interactions and plasma development and have also discussed the wide landscape of analytical applications of LIBS. This paper is divided into sections that focus on a few of the many applications under development in the LIBS community. We provide a summary of updates to calibration-free LIBS (CF-LIBS) and associated developments using plasma characteristics to improve quantification in LIBS output, both in a dedicated section and as applications are discussed. We have also described the most recent publications studying the sources, generation, and use of molecular features in LIBS, including those naturally present in the spectra of organic materials, and those induced with the addition of salts to enable the measurement of halogens, not typically present in LIBS signals. In terms of development of applications of LIBS, we focused on the use of LIBS for indirect measurements such as pH and degree of humification in soil and heating value in coal. We also reviewed the extant literature on LIBS analysis of agricultural materials, coal, minerals, and metals. Finally, we discuss the nascent developments of spatially heterodyne spectroscopy, a method that seeks to circumnavigate a serious drawback of most spectrometers - very small optical throughput - through the use of interferometers.

  13. Analysis of bakery products by laser-induced breakdown spectroscopy.

    PubMed

    Bilge, Gonca; Boyacı, İsmail Hakkı; Eseller, Kemal Efe; Tamer, Uğur; Çakır, Serhat

    2015-08-15

    In this study, we focused on the detection of Na in bakery products by using laser-induced breakdown spectroscopy (LIBS) as a quick and simple method. LIBS experiments were performed to examine the Na at 589 nm to quantify NaCl. A series of standard bread sample pellets containing various concentrations of NaCl (0.025-3.5%) were used to construct the calibration curves and to determine the detection limits of the measurements. Calibration graphs were drawn to indicate functions of NaCl and Na concentrations, which showed good linearity in the range of 0.025-3.5% NaCl and 0.01-1.4% Na concentrations with correlation coefficients (R(2)) values greater than 0.98 and 0.96. The obtained detection limits for NaCl and Na were 175 and 69 ppm, respectively. Performed experimental studies showed that LIBS is a convenient method for commercial bakery products to quantify NaCl concentrations as a rapid and in situ technique.

  14. Analysis of human nails by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Hosseinimakarem, Zahra; Tavassoli, Seyed Hassan

    2011-05-01

    Laser-induced breakdown spectroscopy (LIBS) is applied to analyze human fingernails using nanosecond laser pulses. Measurements on 45 nail samples are carried out and 14 key species are identified. The elements detected with the present system are: Al, C, Ca, Fe, H, K, Mg, N, Na, O, Si, Sr, Ti as well as CN molecule. Sixty three emission lines have been identified in the spectrum that are dominated by calcium lines. A discriminant function analysis is used to discriminate among different genders and age groups. This analysis demonstrates efficient discrimination among these groups. The mean concentration of each element is compared between different groups. Correlation between concentrations of elements in fingernails is calculated. A strong correlation is found between sodium and potassium while calcium and magnesium levels are inversely correlated. A case report on high levels of sodium and potassium in patients with hyperthyroidism is presented. It is shown that LIBS could be a promising technique for the analysis of nails and therefore identification of health problems.

  15. Fast analysis of wood preservers using laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Uhl, A.; Loebe, K.; Kreuchwig, L.

    2001-06-01

    Laser-induced breakdown spectroscopy (LIBS) is used for the investigation of wood preservers in timber and in furniture. Both experiments in laboratory and practical applications in recycling facilities and on a building site prove the new possibilities for the fast detection of harmful agents in wood. A commercial system was developed for mobile laser-plasma-analysis as well as for industrial use in sorting plants. The universal measuring principle in combination with an Echelle optics permits real simultaneous multi-element-analysis in the range of 200-780 nm with a resolution of a few picometers. It enables the user to detect main and trace elements in wood within a few seconds, nearly independent of the matrix, knowing that different kinds of wood show an equal elemental composition. Sample preparation is not required. The quantitative analysis of inorganic wood preservers (containing, e.g. Cu, Cr, B, As, Pb, Hg) has been performed exactly using carbon as reference element. It can be shown that the detection limits for heavy metals in wood are in the ppm-range. Additional information is given concerning the quantitative analysis. Statistical data, e.g. the standard deviation (S.D.), were determined and calibration curves were used for each particular element. A comparison between ICP-AES and LIBS is given using depth profile correction factors regarding the different penetration depths with respect to the different volumes in wood analyzed by both analytical methods.

  16. Dust Removal on Mars Using Laser-Induced Breakdown Spectroscopy

    NASA Technical Reports Server (NTRS)

    Graff, T. G.; Morris, R. V.; Clegg, S. M.; Wiens, R. C.; Anderson, R. B.

    2011-01-01

    Dust coatings on the surface of Mars complicate and, if sufficiently thick, mask the spectral characteristics and compositional determination of underlying material from in situ and remote sensing instrumentation. The Laser-Induced Breakdown Spectroscopy (LIBS) portion of the Chemistry & Camera (ChemCam) instrument, aboard the Mars Science Laboratory (MSL) rover, will be the first active remote sensing technique deployed on Mars able to remove dust. ChemCam utilizes a 5 ns pulsed 1067 nm high-powered laser focused to less than 400 m diameter on targets at distances up to 7 m [1,2]. With multiple laser pulses, dust and weathering coatings can be remotely analyzed and potentially removed using this technique [2,3]. A typical LIBS measurement during MSL surface operations is planned to consist of 50 laser pulses at 14 mJ, with the first 5 to 10 pulses used to analyze as well as remove any surface coating. Additionally, ChemCam's Remote Micro-Imager (RMI) is capable of resolving 200 m details at a distance of 2 m, or 1 mm at 10 m [1,4]. In this study, we report on initial laboratory experiments conducted to characterize the removal of dust coatings using similar LIBS parameters as ChemCam under Mars-like conditions. These experiments serve to better understand the removal of surface dust using LIBS and to facilitate the analysis of ChemCam LIBS spectral data and RMI images.

  17. Laser induced breakdown spectroscopy with picosecond pulse train

    NASA Astrophysics Data System (ADS)

    Lednev, Vasily N.; Pershin, Sergey M.; Sdvizhenskii, Pavel A.; Grishin, Mikhail Ya; Davydov, Mikhail A.; Stavertiy, Anton Ya; Tretyakov, Roman S.

    2017-02-01

    Picosecond pulse train and nanosecond pulse were compared for laser ablation and laser induced breakdown spectroscopy (LIBS) measurements. A detailed study revealed that the picosecond pulse train ablation improved the quality of laser craters (symmetric crater walls and the absence of large redeposited droplets), which was explained by a smaller heat affected zone and suppression of melt splash. Greater plasma dimensions and brighter plasma emission were observed by gated imaging for picosecond pulse train compared to nanosecond pulse ablation. Increased intensity of atomic and ionic lines in gated and time integrated spectra provided better signal-to-noise ratio for picosecond pulse train sampling. Higher temperature and electron density were detected during first microsecond for the plasma induced by the picosecond pulse train. Improved shot-to-shot reproducibility for atomic/ionic line intensity in the case of picosecond pulse train LIBS was explained by more effective atomization of target material in plasma and better quality of laser craters. Improved precision and limits of detections were determined for picosecond pulse train LIBS due to better reproducibility of laser sampling and increased signal-to-noise ratio.

  18. Application of Laser Induced Breakdown Spectroscopy under Polar Conditions

    NASA Astrophysics Data System (ADS)

    Clausen, J. L.; Hark, R.; Bol'shakov, A.; Plumer, J.

    2015-12-01

    Over the past decade our research team has evaluated the use of commercial-off-the-shelf laser-induced breakdown spectroscopy (LIBS) for chemical analysis of snow and ice samples under polar conditions. One avenue of research explored LIBS suitability as a detector of paleo-climate proxy indicators (Ca, K, Mg, and Na) in ice as it relates to atmospheric circulation. LIBS results revealed detection of peaks for C and N, consistent with the presence of organic material, as well as major ions (Ca, K, Mg, and Na) and trace metals (Al, Cu, Fe, Mn, Ti). The detection of Ca, K, Mg, and Na confirmed that LIBS has sufficient sensitivity to be used as a tool for characterization of paleo-climate proxy indicators in ice-core samples. Techniques were developed for direct analysis of ice as well as indirect measurements of ice via melting and filtering. Pitfalls and issues of direct ice analysis using several cooling techniques to maintain ice integrity will be discussed. In addition, a new technique, laser ablation molecular isotopic spectroscopy (LAMIS) was applied to detection of hydrogen and oxygen isotopes in ice as isotopic analysis of ice is the main tool in paleoclimatology and glaciology studies. Our results demonstrated that spectra of hydroxyl isotopologues 16OH, 18OH, and 16OD can be recorded with a compact spectrograph to determine hydrogen and oxygen isotopes simultaneously. Quantitative isotopic calibration for ice analysis can be accomplished using multivariate chemometric regression as previously realized for water vapor. Analysis with LIBS and LAMIS required no special sample preparation and was about ten times faster than analysis using ICP-MS. Combination of the two techniques in one portable instrument for in-field analysis appears possible and would eliminate the logistical and cost issues associated with ice core management.

  19. Analysis of organic vapors with laser induced breakdown spectroscopy

    SciTech Connect

    Nozari, Hadi; Tavassoli, Seyed Hassan; Rezaei, Fatemeh

    2015-09-15

    In this paper, laser induced breakdown spectroscopy (LIBS) is utilized in the study of acetone, ethanol, methanol, cyclohexane, and nonane vapors. Carbon, hydrogen, oxygen, and nitrogen atomic emission spectra have been recorded following laser-induced breakdown of the organic vapors that are mixed with air inside a quartz chamber at atmospheric pressure. The plasma is generated with focused, Q-switched Nd:YAG radiation at the wavelength of 1064 nm. The effects of ignition and vapor pressure are discussed in view of the appearance of the emission spectra. The recorded spectra are proportional to the vapor pressure in air. The hydrogen and oxygen contributions diminish gradually with consecutive laser-plasma events without gas flow. The results show that LIBS can be used to characterize organic vapor.

  20. Measuring H, O, li, B, and BE on Planetary Surfaces: Calibration of Laser-Induced Breakdown Spectroscopy (libs) Data Under Air, Vacuum, and CO2

    NASA Astrophysics Data System (ADS)

    Dyar, M. D.; Nelms, M.; Breves, E. A.

    2012-12-01

    Laser-induced breakdown spectrometer (LIBS), as implemented on the ChemCam instrument on Mars Science Lab and the proposed New Frontiers SAGE mission to Venus, can analyze elements from H to Pb from up to 7m standoff. This study examines the capabilities of LIBS to analyze H, O, B, Be, and Li under conditions simulating Earth, the Moon, and Mars. Of these, H is a major constituent of clay minerals and a key indicator of the presence of water. Its abundance in terrestrial materials ranges from 0 ppm up to 10's of wt.% H2O in hydrated sulfates and clays, with prominent emission lines occurring ca. 656.4 nm. O is an important indicator of atmospheric and magmatic coevolution, and has lines ca. 615.8, 656.2, 777.6, and 844.8 nm. Unfortunately there are very few geological samples from which O has been directly measured, but stoichiometry suggests that O varies from ca. 0 wt.% in sulfides to 21% in ferberite, 32% in ilmenite, 42% in amphiboles, 53% in quartz, 63% in melanterite, and 71% in epsomite. Li (lines at 413.3, 460.4, and 670.9 nm in vacuum), B (412.3 nm), and Be (313.1 nm) are highly mobile elements and key indicators of interaction with water. Local atmospheric composition and pressure significantly influence LIBS plasma intensity because the local atmosphere and the breakdown products from the atmospheric species interact with the ablated surface material in the plasma. Measurement of light elements with LIBS requires that spectra be acquired under conditions matching the remote environment. LIBS is critically dependent on the availability of well characterized, homogeneous reference materials that are closely matched in matrix (composition and structure) to the sample being studied. In modern geochemistry, analyses of most major, minor, and trace elements are routinely made. However, quantitative determination of light element concentrations in geological specimens still represents a major analytical challenge. Thus standards for which hydrogen, oxygen, and

  1. Laser-Induced Breakdown Spectroscopy: Capabilities and Applications

    DTIC Science & Technology

    2010-07-01

    hardness) to the ratio of the intensities of an ionized calcium atomic emission line, Ca II (396.8 nm) and a calcium atomic emission line, Ca I (422.6 nm...N.; McManus, C.; Harmon, R.; De Lucia, F.; Miziolek, A. Laser-Induced Breakdown Spectroscopy Analysis of Complex Silicate Minerals—Beryl. Anal...Analysis of Minerals: Carbonates and Silicates . Spectrochim. Acta, Part B 2007, 62B (12), 1528–1536. 30. Harmon, R. S.; Remus, J.; McMillan, N. J

  2. Spatial confinement effects in laser-induced breakdown spectroscopy

    SciTech Connect

    Shen, X. K.; Sun, J.; Ling, H.; Lu, Y. F.

    2007-08-20

    The spatial confinement effects in laser-induced breakdown of aluminum (Al) targets in air have been investigated both by optical emission spectroscopy and fast photography. A KrF excimer laser was used to produce plasmas from Al targets in air. Al atomic emission lines show an obvious enhancement in the emission intensity when a pair of Al-plate walls were placed to spatially confine the plasma plumes. Images of the Al plasma plumes showed that the plasma plumes evolved into a torus shape and were compressed in the Al walls. The mechanism for the confinement effects was discussed using shock wave theory.

  3. Laser-Induced Breakdown Spectroscopy (LIBS): specific applications

    NASA Astrophysics Data System (ADS)

    Trtica, M. S.; Savovic, J.; Stoiljkovic, M.; Kuzmanovic, M.; Momcilovic, M.; Ciganovic, J.; Zivkovic, S.

    2015-12-01

    A short overview of Laser Induced Breakdown Spectroscopy (LIBS) with emphasis on the new trends is presented. Nowadays, due to unique features of this technique, LIBS has found applications in a great variety of fields. Achievements in the application of LIBS in nuclear area, for hazardous materials detection and in geology were considered. Also, some results recently obtained at VINCA Institute, with LIBS system based on transversely excited atmospheric (TEA) CO2 laser, are presented. Future investigations of LIBS will be oriented toward further improvement of the analytical performance of this technique, as well as on finding new application fields.

  4. Optimization of laser-induced breakdown spectroscopy for coal powder analysis with different particle flow diameters

    NASA Astrophysics Data System (ADS)

    Yao, Shunchun; Xu, Jialong; Dong, Xuan; Zhang, Bo; Zheng, Jianping; Lu, Jidong

    2015-08-01

    The on-line measurement of coal is extremely useful for emission control and combustion process optimization in coal-fired plant. Laser-induced breakdown spectroscopy was employed to directly analyze coal particle flow. A set of tapered tubes were proposed for beam-focusing the coal particle flow to different diameters. For optimizing the measurement of coal particle flow, the characteristics of laser-induced plasma, including optical breakdown, the relative standard deviation of repeated measurement, partial breakdown spectra ratio and line intensity, were carefully analyzed. The comparison of the plasma characteristics among coal particle flow with different diameters showed that air breakdown and the random change in plasma position relative to the collection optics could significantly influence on the line intensity and the reproducibility of measurement. It is demonstrated that the tapered tube with a diameter of 5.5 mm was particularly useful to enrich the coal particles in laser focus spot as well as to reduce the influence of air breakdown and random changes of plasma in the experiment.

  5. Discriminating crude oil grades using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    El-Hussein, A.; Marzouk, A.; Harith, M. A.

    2015-11-01

    The analysis of crude oil using laser-based analytical techniques such as laser-induced breakdown spectroscopy (LIBS) has become of great interest to various specialists in different fields such as geology, petro-chemistry and environmental science. In this work, a detailed study is presented wherein the implementation of an efficient and simple LIBS technique to identify the elemental constituents of crude oil and to distinguish between different grades of petroleum crude oil is discussed. Laser-induced plasma (LIP) technique has been used in this work for direct measurements of atomic, ionic and molecular species in dry crude oil samples with API gravities ranging between 18 and 36. The technique was implemented using the first harmonic of a pulsed Nd-YAG laser source. Atomic and molecular emission bands were observed, consisting of characteristic spectral lines of atoms and diatomic molecular bands, namely from C, H, Si, Na, Ca, Mg, AL, Fe, Ti, Mo, C2 and CN. The intensities of high-resolution spectral lines for some atoms and molecules of elements such as Ca, Na, Fe, Mo, C2 and CN were evaluated at different wavelengths along the obtained spectra. The molecular bands and the elemental spectral lines were used to assess the possibility of adopting the LIBS technique in differentiating between crude oil samples with different American Petroleum Institute (API) gravity values. The results indicate the presence of a distinct correlation between the API gravity values of the various oil samples and the spectral line intensities of the elements and some molecular radical constituents. In addition, the possibility of identifying the API gravity values of unknown oil samples is also indicated.

  6. Flame-enhanced laser-induced breakdown spectroscopy.

    PubMed

    Liu, L; Li, S; He, X N; Huang, X; Zhang, C F; Fan, L S; Wang, M X; Zhou, Y S; Chen, K; Jiang, L; Silvain, J F; Lu, Y F

    2014-04-07

    Flame-enhanced laser-induced breakdown spectroscopy (LIBS) was investigated to improve the sensitivity of LIBS. It was realized by generating laser-induced plasmas in the blue outer envelope of a neutral oxy-acetylene flame. Fast imaging and temporally resolved spectroscopy of the plasmas were carried out. Enhanced intensity of up to 4 times and narrowed full width at half maximum (FWHM) down to 60% for emission lines were observed. Electron temperatures and densities were calculated to investigate the flame effects on plasma evolution. These calculated electron temperatures and densities showed that high-temperature and low-density plasmas were achieved before 4 µs in the flame environment, which has the potential to improve LIBS sensitivity and spectral resolution.

  7. Ultrafast laser induced breakdown spectroscopy of electrode/electrolyte interfaces

    NASA Astrophysics Data System (ADS)

    Zorba, Vassilia; Syzdek, Jaroslaw; Mao, Xianglei; Russo, Richard E.; Kostecki, Robert

    2012-06-01

    Direct chemical analysis of electrode/electrolyte interfaces can provide critical information on surface phenomena that define and control the performance of Li-based battery systems. In this work, we introduce the use of ex situ femtosecond laser induced breakdown spectroscopy to probe compositional variations within the solid electrolyte interphase (SEI) layer. Nanometer-scale depth resolution was achieved for elemental and molecular depth profiling of SEI layers formed on highly oriented pyrolytic graphite electrodes in an organic carbonate-based electrolyte. This work demonstrates the unique ability of ultrafast laser spectroscopy as a highly versatile, light element-sensitive technique for direct chemical analysis of interfacial layers in electrochemical energy storage systems.

  8. Analytical application of femtosecond laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Melikechi, Noureddine; Markushin, Yuri

    2015-05-01

    We report on significant advantages provided by femtosecond laser-induced breakdown spectroscopy (LIBS) for analytical applications in fields as diverse as protein characterization and material science. We compare the results of a femto- and nanosecond-laser-induced breakdown spectroscopy analysis of dual-elemental pellets in terms of the shot-to-shot variations of the neutral/ionic emission line intensities. This study is complemented by a numerical model based on two-dimensional random close packing of disks in an enclosed geometry. In addition, we show that LIBS can be used to obtain quantitative identification of the hydrogen composition of bio-macromolecules in a heavy water solution. Finally, we show that simultaneous multi-elemental particle assay analysis combined with LIBS can significantly improve macromolecule detectability up to near single molecule per particle efficiency. Research was supported by grants from the National Science Foundation Centers of Research Excellence in Science and Technology (0630388), National Aeronautics and Space Administration (NX09AU90A). Our gratitude to Dr. D. Connolly, Fox Chase Cancer Center.

  9. Analysis of the absorption layer of CIGS solar cell by laser-induced breakdown spectroscopy.

    PubMed

    Lee, Seok H; Shim, Hee S; Kim, Chan K; Yoo, Jong H; Russo, Richard E; Jeong, Sungho

    2012-03-01

    Laser induced breakdown spectroscopy (LIBS) was applied for the elemental analysis of the thin copper indium gallium diselenide (CuIn(1-x)Ga(x)Se(2) [CIGS]) absorption layer deposited on Mo-coated soda-lime glass by the co-evaporation technique. The optimal laser and detection parameters for LIBS measurement of the CIGS absorption layer (1.23 μm) were investigated. The calibration results of Ga/In ratio with respect to the concentration ratios measured by x-ray fluorescence and inductively coupled plasma optical emission spectroscopy showed good linearity.

  10. [Spectroscopic study of laser induced breakdown plasma spectroscopy in air and semi-empirical simulation].

    PubMed

    Sun, Dui-xiong; Su, Mao-gen; Dong, Chen-zhong; Ma, Yun-yun; Yang, Feng; Cao, Shi-quan

    2014-12-01

    A laser induced breakdown spectroscopy experiment was carried out using Nd:YAG laser in air, and time-resolved spectra were measured. Based on local thermodynamic equilibrium assumption, a method used to simulate LIBS spectra is proposed. A LIBS spectrum of air in the wavelength range of 700~900 nm was simulated using this method. A good agreement between experiment and simulation was obtained, and moreover, the relative concentrations of the N, O and Ar in air were obtained.

  11. Insulator breakdown measurements in a poor vacuum and their interpretation

    SciTech Connect

    Vogtlin, G.E.

    1990-06-01

    Breakdown measurements have been made on insulators with 0 and 45 degree angle surfaces. A technique of observing the electrons produced from the process has given some insight into the mechanisms involved. A three nanosecond pulse was used to induce breakdown. The electrons striking the anode were observed with a plastic fluor and open shutter camera. Two breakdown patterns were interpreted as cathode initiated and anode initiated breakdown. The breakdown process normally encountered was anode initiated with a positive 45 degree insulator. If the anode side was relieved with an internal electrode, the breakdown changed to cathode initiated at a higher level. If the cathode surface was then anodized, the breakdown switched back to the anode at an even higher level. Individual explosive emission sites on the cathode surface could be observed. Insulator breakdown was usually not associated with these sites. Multiple pulses allowed measurement of plasma expansion of the explosive emission sites. It is believed that breakdown with longer pulses is due to the expansion of the explosive emission site plasma to the insulator surface. Measurements were conducted with and without voltage conditioning. It appears that conditioning is achieved without explosive emission. It is believed that this is due to organic fibers that are removed by the conditioning. Organic fibers were used to induce both anode and cathode breakdown. Measurements of fiberous material have shown explosive emission a low as 100 kV on a three nanosecond time scale and below 20 kv/cm on a longer time scale. 8 refs., 5 figs.

  12. Hydrogen leak detection using laser-induced breakdown spectroscopy.

    PubMed

    Ball, A J; Hohreiter, V; Hahn, D W

    2005-03-01

    Laser-induced breakdown spectroscopy (LIBS) is investigated as a technique for real-time monitoring of hydrogen gas. Two methodologies were examined: The use of a 100 mJ laser pulse to create a laser-induced breakdown directly in a sample gas stream, and the use of a 55 mJ laser pulse to create a laser-induced plasma on a solid substrate surface, with the expanding plasma sampling the gas stream. Various metals were analyzed as candidate substrate surfaces, including aluminum, copper, molybdenum, stainless steel, titanium, and tungsten. Stainless steel was selected, and a detailed analysis of hydrogen detection in binary mixtures of nitrogen and hydrogen at atmospheric pressure was performed. Both the gaseous plasma and the plasma initiated on the stainless steel surface generated comparable hydrogen emission signals, using the 656.28 Halpha emission line, and exhibited excellent signal linearity. The limit of detection is about 20 ppm (mass) as determined for both methodologies, with the solid-initiated plasma yielding a slightly better value. Overall, LIBS is concluded to be a viable candidate for hydrogen sensing, offering a combination of high sensitivity with a technique that is well suited to implementation in field environments.

  13. Quantitative analyses of glass via laser-induced breakdown spectroscopy in argon

    NASA Astrophysics Data System (ADS)

    Gerhard, C.; Hermann, J.; Mercadier, L.; Loewenthal, L.; Axente, E.; Luculescu, C. R.; Sarnet, T.; Sentis, M.; Viöl, W.

    2014-11-01

    We demonstrate that elemental analysis of glass with a measurement precision of about 10% can be performed via calibration-free laser-induced breakdown spectroscopy. Therefore, plasma emission spectra recorded during ultraviolet laser ablation of different glasses are compared to the spectral radiance computed for a plasma in local thermodynamic equilibrium. Using an iterative calculation algorithm, we deduce the relative elemental fractions and the plasma properties from the best agreement between measured and computed spectra. The measurement method is validated in two ways. First, the LIBS measurements are performed on fused silica composed of more than 99.9% of SiO2. Second, the oxygen fractions measured for heavy flint and barite crown glasses are compared to the values expected from the glass composing oxides. The measured compositions are furthermore compared with those obtained by X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy. It is shown that accurate LIBS analyses require spectra recording with short enough delays between laser pulse and detector gate, when the electron density is larger than 1017 cm- 3. The results show that laser-induced breakdown spectroscopy based on accurate plasma modeling is suitable for elemental analysis of complex materials such as glasses, with an analytical performance comparable or even better than that obtained with standard techniques.

  14. Digital barcodes of suspension array using laser induced breakdown spectroscopy

    PubMed Central

    He, Qinghua; Liu, Yixi; He, Yonghong; Zhu, Liang; Zhang, Yilong; Shen, Zhiyuan

    2016-01-01

    We show a coding method of suspension array based on the laser induced breakdown spectroscopy (LIBS), which promotes the barcodes from analog to digital. As the foundation of digital optical barcodes, nanocrystals encoded microspheres are prepared with self-assembly encapsulation method. We confirm that digital multiplexing of LIBS-based coding method becomes feasible since the microsphere can be coded with direct read-out data of wavelengths, and the method can avoid fluorescence signal crosstalk between barcodes and analyte tags, which lead to overall advantages in accuracy and stability to current fluorescent multicolor coding method. This demonstration increases the capability of multiplexed detection and accurate filtrating, expanding more extensive applications of suspension array in life science. PMID:27808270

  15. Laser-induced breakdown spectroscopy analysis of energetic materials

    NASA Astrophysics Data System (ADS)

    de Lucia, Frank C.; Harmon, Russell S.; McNesby, Kevin L.; Winkel, Raymond J.; Miziolek, Andrzej W.

    2003-10-01

    A number of energetic materials and explosives have been studied by laser-induced breakdown spectroscopy (LIBS). They include black powder, neat explosives such as TNT, PETN, HMX, and RDX (in various forms), propellants such as M43 and JA2, and military explosives such as C4 and LX-14. Each of these materials gives a unique spectrum, and generally the spectra are reproducible shot to shot. We observed that the laser-produced microplasma did not initiate any of the energetic materials studied. Extensive studies of black powder and its ingredients by use of a reference spectral library have demonstrated excellent accuracy for unknown identification. Finally, we observed that these nitrogen- and oxygen-rich materials yield LIBS spectra in air that have correspondingly different O:N peak ratios compared with air. This difference can help in the detection and identification of such energetic materials.

  16. Laser-induced breakdown spectroscopy expands into industrial applications

    NASA Astrophysics Data System (ADS)

    Noll, Reinhard; Fricke-Begemann, Cord; Brunk, Markus; Connemann, Sven; Meinhardt, Christoph; Scharun, Michael; Sturm, Volker; Makowe, Joachim; Gehlen, Christoph

    This paper presents R&D activities in the field of laser-induced breakdown spectroscopy for industrial applications and shows novel LIBS systems running in routine operation for inline process control tasks. Starting with a comparison of the typical characteristics of LIBS with XRF and spark-discharge optical emission spectrometry, the principal structure of LIBS machines embedded for inline process monitoring will be presented. A systematic requirement analysis for LIBS systems following Ishikawa's scheme was worked out. Stability issues are studied for laser sources and Paschen-Runge spectrometers as key components for industrial LIBS systems. Examples of industrial applications range from handheld LIBS systems using a fiber laser source, via a set of LIBS machines for inline process control tasks, such as scrap analysis, coal analysis, liquid slag analysis and finally monitoring of drill dust.

  17. Detection of early caries by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Sasazawa, Shuhei; Kakino, Satoko; Matsuura, Yuji

    2015-07-01

    To improve sensitivity of dental caries detection by laser-induced breakdown spectroscopy (LIBS) analysis, it is proposed to utilize emission peaks in the ultraviolet. We newly focused on zinc whose emission peaks exist in ultraviolet because zinc exists at high concentration in the outer layer of enamel. It was shown that by using ratios between heights of an emission peak of Zn and that of Ca, the detection sensitivity and stability are largely improved. It was also shown that early caries are differentiated from healthy part by properly setting a threshold in the detected ratios. The proposed caries detection system can be applied to dental laser systems such as ones based on Er:YAG-lasers. When ablating early caries part by laser light, the system notices the dentist that the ablation of caries part is finished. We also show the intensity of emission peaks of zinc decreased with ablation with Er:YAG laser light.

  18. Analytical study of seashell using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Ying, LI; Yanhong, GU; Ying, Zhang; Yuandong, LI; Yuan, LU

    2017-02-01

    Seashell has been applied as an indicator for ocean research and element analysis of the seashell is used to track biological or environmental evolution. In this work, laser-induced breakdown spectroscopy (LIBS) was applied for elementary analysis of an ezo scallop-shell, and a graphite enrichment method was used as the assistance. It was found that LIBS signal intensity of Ca fluctuated less than 5%, in spite of the sampling positions, and Sr/Ca was related to the shell growth. A similar variation was also found when using a direct LIBS analysis on the shell surface, and it might be more practicable to track shell growth by investigating Sr/Ca ratio with Sr ionic line at 421.6 nm. The obtained results prove that calcium (Ca) is qualified as an internal reference for shell analysis, and LIBS is a potential analytical method for seashell study.

  19. Long-distance remote laser-induced breakdown spectroscopy using filamentation in air

    NASA Astrophysics Data System (ADS)

    Stelmaszczyk, Kamil; Rohwetter, Philipp; Méjean, Guillaume; Yu, Jin; Salmon, Estelle; Kasparian, Jérôme; Ackermann, Roland; Wolf, Jean-Pierre; Wöste, Ludger

    2004-11-01

    We demonstrate remote elemental analysis at distances up to 90m, using a laser-induced breakdown spectroscopy scheme based on filamentation induced by the nonlinear propagation of unfocused ultrashort laser pulses. A detailed signal analysis suggests that this technique, remote filament-induced breakdown spectroscopy, can be extended up to the kilometer range.

  20. Wavelength Dependence on the Forensic Analysis of Glass by Laser Induced Breakdown Spectroscopy

    DTIC Science & Technology

    2009-10-29

    spectroscopy [2,4], atomic absorption spectroscopy (AAS) [3], x - ray fluorescence ( XRF ) [3,4], neutron activation analysis (NAA) [5...micro X - ray fluorescence spectroscopy , and laser induced breakdown spectroscopy for the discrimination of automotive glass,” Spectrochim. Acta Part...refractive index, energy dispersive X - ray fluorescence and inductively coupled plasma atomic emission spectrometry for forensic characterization

  1. Laser-induced breakdown spectroscopy in industrial and security applications

    SciTech Connect

    Bol'shakov, Alexander A.; Yoo, Jong H.; Liu Chunyi; Plumer, John R.; Russo, Richard E.

    2010-05-01

    Laser-induced breakdown spectroscopy (LIBS) offers rapid, localized chemical analysis of solid or liquid materials with high spatial resolution in lateral and depth profiling, without the need for sample preparation. Principal component analysis and partial least squares algorithms were applied to identify a variety of complex organic and inorganic samples. This work illustrates how LIBS analyzers can answer a multitude of real-world needs for rapid analysis, such as determination of lead in paint and children's toys, analysis of electronic and solder materials, quality control of fiberglass panels, discrimination of coffee beans from different vendors, and identification of generic versus brand-name drugs. Lateral and depth profiling was performed on children's toys and paint layers. Traditional one-element calibration or multivariate chemometric procedures were applied for elemental quantification, from single laser shot determination of metal traces at {approx}10 {mu}g/g to determination of halogens at 90 {mu}g/g using 50-shot spectral accumulation. The effectiveness of LIBS for security applications was demonstrated in the field by testing the 50-m standoff LIBS rasterizing detector.

  2. Sample treatment and preparation for laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Jantzi, Sarah C.; Motto-Ros, Vincent; Trichard, Florian; Markushin, Yuri; Melikechi, Noureddine; De Giacomo, Alessandro

    2016-01-01

    One of the most widely cited advantages of laser-induced breakdown spectroscopy (LIBS) is that it does not require sample preparation, but this may also be the biggest factor holding it back from becoming a mature analytical technique like LA-ICP-MS, ICP-OES, or XRF. While there are certain specimen types that have enjoyed excellent LIBS results without any sample treatment (mostly homogeneous solids such as metals, glass, and polymers), the possible applications of LIBS have been greatly expanded through the use of sample preparation techniques that have resulted in analytical performance (i.e., limits of detection, accuracy, and repeatability) on par with XRF, ICP-OES, and often ICP-MS. This review highlights the work of many LIBS researchers who have developed, adapted, and improved upon sample preparation techniques for various specimen types in order to improve the quality of the analytical data that LIBS can produce in a large number of research domains. Strategies, not only for solids, but also liquids, gases, and aerosols are discussed, including newly developed nanoparticle enhancement and biological imaging and tagging techniques.

  3. Laser-induced breakdown spectroscopy of tantalum plasma

    SciTech Connect

    Khan, Sidra; Bashir, Shazia; Hayat, Asma; Khaleeq-ur-Rahman, M.; Faizan–ul-Haq

    2013-07-15

    Laser Induced Breakdown spectroscopy (LIBS) of Tantalum (Ta) plasma has been investigated. For this purpose Q-switched Nd: YAG laser pulses (λ∼ 1064 nm, τ∼ 10 ns) of maximum pulse energy of 100 mJ have been employed as an ablation source. Ta targets were exposed under the ambient environment of various gases of Ar, mixture (CO{sub 2}: N{sub 2}: He), O{sub 2}, N{sub 2}, and He under various filling pressure. The emission spectrum of Ta is observed by using LIBS spectrometer. The emission intensity, excitation temperature, and electron number density of Ta plasma have been evaluated as a function of pressure for various gases. Our experimental results reveal that the optical emission intensity, the electron temperature and density are strongly dependent upon the nature and pressure of ambient environment. The SEM analysis of the ablated Ta target has also been carried out to explore the effect of ambient environment on the laser induced grown structures. The growth of grain like structures in case of molecular gases and cone-formation in case of inert gases is observed. The evaluated plasma parameters by LIBS analysis such as electron temperature and the electron density are well correlated with the surface modification of laser irradiated Ta revealed by SEM analysis.

  4. Elemental analysis of cotton by laser-induced breakdown spectroscopy

    SciTech Connect

    Schenk, Emily R.; Almirall, Jose R.

    2010-05-01

    Laser-induced breakdown spectroscopy (LIBS) has been applied to the elemental characterization of unprocessed cotton. This research is important in forensic and fraud detection applications to establish an elemental fingerprint of U.S. cotton by region, which can be used to determine the source of the cotton. To the best of our knowledge, this is the first report of a LIBS method for the elemental analysis of cotton. The experimental setup consists of a Nd:YAG laser that operates at the fundamental wavelength as the LIBS excitation source and an echelle spectrometer equipped with an intensified CCD camera. The relative concentrations of elements Al, Ba, Ca, Cr, Cu, Fe, Mg, and Sr from both nutrients and environmental contributions were determined by LIBS. Principal component analysis was used to visualize the differences between cotton samples based on the elemental composition by region in the U.S. Linear discriminant analysis of the LIBS data resulted in the correct classification of >97% of the cotton samples by U.S. region and >81% correct classification by state of origin.

  5. Study of Bacterial Samples Using Laser Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    W, A. Farooq; M, Atif; W, Tawfik; M, S. Alsalhi; Z, A. Alahmed; M, Sarfraz; J, P. Singh

    2014-12-01

    Laser-induced breakdown spectroscopy (LIBS) technique has been applied to investigate two different types of bacteria, Escherichia coli (B1) and Micrococcus luteus (B2) deposited on glass slides using Spectrolaser 7000. LIBS spectra were analyzed using spectrolaser software. LIBS spectrum of glass substrate was compared with bacteria spectra. Ca, Mg, Na, K, P, S, Cl, Fe, Al, Mn, Cu, C, H and CN-band appeared in bacterial samples in air. Two carbon lines at 193.02 nm, 247.88 nm and one hydrogen line at 656.28 nm with intensity ratios of 1.9, 1.83 and 1.53 appeared in bacterial samples B1 and B2 respectively. Carbon and hydrogen are the important components of the bio-samples like bacteria and other cancer cells. Investigation on LIBS spectra of the samples in He and Ar atmospheres is also presented. Ni lines appeared only in B2 sample in Ar atmosphere. From the present experimental results we are able to show that LIBS technique has a potential in the identification and discrimination of different types of bacteria.

  6. Laser induced breakdown spectroscopy application in joint European torus

    NASA Astrophysics Data System (ADS)

    Semerok, A.; L'Hermite, D.; Weulersse, J.-M.; Lacour, J.-L.; Cheymol, G.; Kempenaars, M.; Bekris, N.; Grisolia, C.

    2016-09-01

    The results on the first successful application of Laser Induced Breakdown Spectroscopy (LIBS) for remote in situ diagnostics of plasma facing components (a deposited layer on a divertor tile) in Joint European Torus (JET) are presented. The studies were performed with an available JET EDGE LIDAR laser system. For in-depth analysis of deposited layers on JET divertor tiles, a number of laser shots were applied onto the same divertor place without laser beam displacement. The spectral lines of D, CII and impurity elements (CrI, BeII, …) were identified in a wide spectral range (400-670 nm). With the increase in a number of laser shots applied onto the same divertor place, we observed consecutive changes in spectral line intensities of deuterium, carbon, and impurities with the appearance of spectral lines of tungsten substrate (WI). In-depth analysis of deposited layers on JET divertor tiles was made on the basis of the spectral line behaviour in reference to the applied laser shots. The possibility of surface cartography with laser beam displacement on the tile surface was demonstrated as well. Based on the results obtained, we may conclude that LIBS method is applicable for in situ remote analysis of deposited layers of JET plasma facing components.

  7. Unsupervised verification of laser-induced breakdown spectroscopy dataset clustering

    NASA Astrophysics Data System (ADS)

    Wójcik, Michał R.; Zdunek, Rafał; Antończak, Arkadiusz J.

    2016-12-01

    Laser-induced breakdown spectroscopy is a versatile, optical technique used in a wide range of qualitative and quantitative analyses conducted with the use of various chemometric techniques. The aim of this research is to demonstrate the possibility of unsupervised clustering of an unknown dataset using K-means clustering algorithm, and verifying its input parameters through investigating generalized eigenvalues derived with linear discriminant analysis. In all the cases, principal component analyses have been applied to reduce data dimensionality and shorten computation time of the whole operation. The experiment was conducted on a dataset collected from twenty four different materials divided into six groups: metals, semiconductors, ceramics, rocks, metal alloys and others with the use of a three-channel spectrometer (298.02-628.73nm overall spectral range) and a UV (248nm) excimer laser. Additionally, two more complex groups containing all specimens and all specimens excluding rocks were created. The resulting spaces of eigenvalues were calculated for every group and three different distances in the multidimensional space (cosine, square Euclidean and L1). As expected, the correct numbers of specimens within groups with small deviations were obtained, and the validity of the unsupervised method has thus been proven.

  8. Laser-Induced Breakdown Spectroscopy of Cinematographic Film

    NASA Astrophysics Data System (ADS)

    Oujja, M.; Abrusci, C.; Gaspard, S.; Rebollar, E.; Amo, A. del; Catalina, F.; Castillejo, M.

    Laser-induced breakdown spectroscopy (LIBS) was used to characterize the composition of black-and-white, silver-gelatine photographic films. LIB spectra of samples and reference gelatine (of various gel strengths, Bloom values 225 and 75 and crosslinking degrees) were acquired in vacuum by excitation at 266 nm. The elemental composition of the gelatine used in the upper protective layer and in the underlying emulsion is revealed by the stratigraphic analysis carried out by delivering successive pulses on the same spot of the sample. Silver (Ag) lines from the light-sensitive silver halide salts are accompanied by iron, lead and chrome lines. Fe and Pb are constituents of film developers and Cr is included in the hardening agent. The results demonstrate the analytical capacity of LIBS for study and classification of different gelatine types and the sensitivity of the technique to minor changes in gelatine composition. In addition LIBS analysis allows extracting important information on the chemicals used as developers and hardeners of archival cinematographic films.

  9. Direct measurements of sample heating by a laser-induced air plasma in pre-ablation spark dual-pulse laser-induced breakdown spectroscopy (LIBS).

    PubMed

    Register, Janna; Scaffidi, Jonathan; Angel, S Michael

    2012-08-01

    Direct measurements of temperature changes were made using small thermocouples (TC), placed near a laser-induced air plasma. Temperature changes up to ~500 °C were observed. From the measured temperature changes, estimates were made of the amount of heat absorbed per unit area. This allowed calculations to be made of the surface temperature, as a function of time, of a sample heated by the air plasma that is generated during orthogonal pre-ablation spark dual-pulse (DP) LIBS measurements. In separate experiments, single-pulse (SP) LIBS emission and sample ablation rate measurements were performed on nickel at sample temperatures ranging from room temperature to the maximum surface temperature that was calculated using the TC measurement results (500 °C). A small, but real sample temperature-dependent increase in both SP LIBS emission and the rate of sample ablation was found for nickel samples heated up to 500 °C. Comparison of DP LIBS emission enhancement values for bulk nickel samples at room temperature versus the enhanced SP LIBS emission and sample ablation rates observed as a function of increasing sample temperature suggests that sample heating by the laser-induced air plasma plays only a minor role in DP LIBS emission enhancement.

  10. Spectroscopic studies of different brands of cigarettes using laser-induced breakdown spectroscopy

    SciTech Connect

    Sayyad, M. H.; Saleem, M.; Shah, M.; Baig, M. A.; Shaikh, N. M.

    2008-05-20

    In this work the technique of laser-induced breakdown spectroscopy (LIBS) has been used for the elemental analysis of cigarettes. For this purpose emission spectra have been measured of eleven different kinds of cigarette brands sold and/or produced in Pakistan. Analysis of the spectral peaks observed shows that Na, Mg, Al, K, Ca, Cr, Fe, Sr and Ba are contained in all brands. Exhibiting the LIBS results, the powerful potential of this method for the identification of the elemental content of cigarettes is demonstrated.

  11. Spectroscopic studies of different brands of cigarettes using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Sayyad, M. H.; Saleem, M.; Shah, M.; Shaikh, N. M.; Baig, M. A.

    2008-05-01

    In this work the technique of laser-induced breakdown spectroscopy (LIBS) has been used for the elemental analysis of cigarettes. For this purpose emission spectra have been measured of eleven different kinds of cigarette brands sold and/or produced in Pakistan. Analysis of the spectral peaks observed shows that Na, Mg, Al, K, Ca, Cr, Fe, Sr and Ba are contained in all brands. Exhibiting the LIBS results, the powerful potential of this method for the identification of the elemental content of cigarettes is demonstrated.

  12. Commercialization of laser-induced breakdown spectroscopy for lead-in-paint inspection

    SciTech Connect

    Myers, Richard A.; Kolodziejski, Noah J.; Squillante, Michael R

    2008-11-01

    A study was undertaken to determine if laser-induced breakdown spectroscopy (LIBS) can be a practical and competitive alternative to x-ray fluorescence (XRF) methods for lead-in-paint inspection. Experiments in the laboratory confirmed that LIBS is suitable for detecting lead in paint at the hazard levels defined by federal agencies. Although we compared speed, function, and cost, fundamental differences between the XRF and LIBS measurements limited our ability to make a quantitative performance comparison. While the LIBS method can achieve the required sensitivity and offers a way to obtain unique information during inspection, the current component costs will likely restrict interest in the method to niche applications.

  13. Ultrafast laser induced breakdown spectroscopy for high spatial resolution chemical analysis

    NASA Astrophysics Data System (ADS)

    Zorba, Vassilia; Mao, Xianglei; Russo, Richard E.

    2011-02-01

    Femtosecond laser induced breakdown spectroscopy (LIBS) was used to identify the spatial resolution limitations and assess the minimal detectable mass restrictions in laser-ablation based chemical analysis. The atomic emission of sodium (Na) and potassium (K) dopants in transparent dielectric Mica matrices was studied, to find that both these elements could be detected from 450 nm diameter ablation craters, full-width-at-half-maximum (FWHM). Under optimal conditions, mass as low as 220 ag was measured, demonstrating the feasibility of using laser-ablation based chemical analysis to achieve high spatial resolution elemental analysis in real-time and at atmospheric pressure conditions.

  14. Laser-Induced Breakdown Spectroscopy: A Review of Applied Explosive Detection

    DTIC Science & Technology

    2013-09-01

    discrimination. 3.5.2 Frequency Dependence in Laser-Induced Breakdown Spectroscopy Laser-based spectroscopy commonly uses pulsed, nanosecond neodymium ...mononitrotoulene Nd:YAG neodymium -doped yttrium aluminum garnet 47 NIR near infrared PA photoacoustic PAS photoacoustic spectroscopy PCA principal

  15. Characterization of cinematographic films by Laser Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gaspard, S.; Oujja, M.; Rebollar, E.; Abrusci, C.; Catalina, F.; Castillejo, M.

    2007-12-01

    The emulsion-coated transparent plastic-base film has been the main carrier for production and preservation of motion picture contents since the 19th century. The knowledge of the composition of black and white silver gelatine cinematographic films is of great importance for the characterization of the photographic process and for identifying the optimum conditions for conservation. A cinematographic film is a multi-component system that consists of a layer of photographic emulsion overcoating a polymeric support (plasticized cellulose triacetate) and a protective transparent cross-linked gelatine layer coating the emulsion. In the present work, Laser Induced Breakdown Spectroscopy (LIBS) is used to characterize the composition of the materials of cinematographic films. LIB spectra of film samples and of different individual film components, polymeric support and reference gelatines, were acquired in vacuum by excitation at 266 nm (Q-switched Nd:YAG laser, 6 ns, 10 Hz). In the cinematographic film, silver lines from the light-sensitive silver halide salts of the photographic emulsion are accompanied by iron, lead, chrome and phosphorus lines. Iron and lead are constituents of film developers, chrome is included in the composition of the hardening agents and phosphorus has its origin in the plasticizer used in the polymeric support. By applying successive pulses on the same spot of the film sample, it was possible to observe through stratigraphic analysis the different layers composition. Additionally, the results obtained reveal the analytical capacity of LIBS for the study and classification of the different gelatine types and qualities used for the protecting layer and the photographic emulsion.

  16. Determination of the Zinc Concentration in Human Fingernails Using Laser-Induced Breakdown Spectroscopy.

    PubMed

    Riberdy, Vlora A; Frederickson, Christopher J; Rehse, Steven J

    2017-04-01

    The absolute concentration of Zn in human fingernail clippings was determined ex vivo using 1064 nm laser-induced breakdown spectroscopy and confirmed by speciated isotope dilution mass spectrometry. A nail testing protocol that sampled across the nail (perpendicular to the direction of growth) was developed and validated by scanning electron microscopy energy-dispersive X-ray spectrometry. Using this protocol, a partial least squares (PLS) regression model predicted the Zn concentration in the fingernails of five people to within an average of 7 ppm. The variation in the Zn concentration with depth into the nail determined by laser-induced breakdown spectroscopy was studied and showed no systematic variation for up to 15 subsequent laser pulses in one location. The effects of nail hydration (dehydrated and over-hydrated) and nail surface roughness were investigated to explain an anomalously large scatter observed in the measurements. This scatter was attributed to the layered nature and fibrous structure of the fingernails, which resulted in non-uniform ablation as determined by scanning electron microscopy. This work demonstrates that a protocol consisting of low pulse energy (<10 mJ) 1064 nm laser pulses incident on human fingernail clippings in an Ar environment can produce quantifiable Zn emission in the laser-induced plasma and that the measured Zn intensity can be used to accurately predict the Zn concentration in human fingernails.

  17. Laser-induced breakdown spectroscopy and spectral analysis of improvised explosive materials

    NASA Astrophysics Data System (ADS)

    Bauer, Amy J. R.; Farrington, Michael P.; Sorauf, Kellen; Miziolek, Andrzej W.

    2014-05-01

    There exists an unmet need in the discovery and identification of certain improvised explosive (IE) materials. IE contain a wide range of materials, many of which are not well classified by available hand-held tools, especially metal powders and food products. Available measurement approaches are based in the identification of specific subgroups such as nitro/nitrate and chlorate/perchlorate, normally with Raman spectroscopy. The presence of metal powders is not detected by these approaches, and further the powders themselves scatter the laser radiation used in the excitation of the spectra, making other components more difficult to discern. Preliminary work with laserinduced breakdown spectroscopy (LIBS) shows that metal powders are easily detected and identified, and that fuel compounds in flash powder mixtures are easily classified with principal component analysis into those containing oxygen and chlorine or those containing oxygen and nitrogen. Alkali and alkali metal signals are readily used to determine the cation of any salt submitted to analysis.

  18. A Simple LIBS (Laser-Induced Breakdown Spectroscopy) Laboratory Experiment to Introduce Undergraduates to Calibration Functions and Atomic Spectroscopy

    ERIC Educational Resources Information Center

    Chinni, Rosemarie C.

    2012-01-01

    This laboratory experiment introduces students to a different type of atomic spectroscopy: laser-induced breakdown spectroscopy (LIBS). LIBS uses a laser-generated spark to excite the sample; once excited, the elemental emission is spectrally resolved and detected. The students use LIBS to analyze a series of standard synthetic silicate samples…

  19. Note: A novel technique for analysis of aqueous solutions by laser-induced breakdown spectroscopy

    SciTech Connect

    Rusak, D. A.; Bell, Z. T.; Anthony, T. P.

    2015-11-15

    Surface-enhanced Raman spectroscopy (SERS) substrates typically consist of gold or silver nanoparticles deposited on a non-conductive substrate. In Raman spectroscopy, the nanoparticles produce an enhancement of the electromagnetic field which, in turn, leads to greater electronic excitation of molecules in the local environment. Here, we show that these same surfaces can be used to enhance the signal-to-noise ratio obtained in laser-induced breakdown spectroscopy of aqueous solutions. In this case, the SERS substrates not only lower breakdown thresholds and lead to more efficient plasma initiation but also provide an appropriately wettable surface for the deposition of the liquid. We refer to this technique as surface-enhanced laser-induced breakdown spectroscopy.

  20. Elemental analysis of fingernail of alcoholic and doping subjects by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Bahreini, M.; Ashrafkhani, B.; Tavassoli, S. H.

    2014-03-01

    Laser-induced breakdown spectroscopy (LIBS) is applied to investigate the effect of alcoholism and doping on elemental composition of fingernails of subjects. Measurements are made on 36 fingernail clippings including 8 doping, 8 alcoholic and 20 normal subjects. Classification of normal, alcoholic and doping subjects based on 46 atomic and ionic emission lines belonging to 13 elements of fingernail is examined using discriminant function analysis (DFA) method. The most affecting elements in classification of groups are discussed. In order to improve the repeatability of LIBS measurements, an auto-focus system has been designed and used in experiments. Results are promising and show that by improving the repeatability of experiments through improving the setup, some evidence of the impact of the alcohol and doping on elemental composition of fingernails is observed.

  1. Quantification of water content by laser induced breakdown spectroscopy on Mars

    NASA Astrophysics Data System (ADS)

    Rapin, W.; Meslin, P.-Y.; Maurice, S.; Wiens, R. C.; Laporte, D.; Chauviré, B.; Gasnault, O.; Schröder, S.; Beck, P.; Bender, S.; Beyssac, O.; Cousin, A.; Dehouck, E.; Drouet, C.; Forni, O.; Nachon, M.; Melikechi, N.; Rondeau, B.; Mangold, N.; Thomas, N. H.

    2017-04-01

    Laser induced breakdown spectroscopy (LIBS), as performed by the ChemCam instrument, provides a new technique to measure hydrogen at the surface of Mars. Using a laboratory replica of the LIBS instrument onboard the Curiosity rover, different types of hydrated samples (basalts, calcium and magnesium sulfates, opals and apatites) covering a range of targets observed on Mars have been characterized and analyzed. A number of factors related to laser parameters, atmospheric conditions and differences in targets properties can affect the standoff LIBS signal, and in particular the hydrogen emission peak. Dedicated laboratory tests were run to identify a normalization of the hydrogen signal which could best compensate for these effects and enable the application of the laboratory calibration to Mars data. We check that the hydrogen signal increases linearly with water content; and normalization of the hydrogen emission peak using to oxygen and carbon emission peaks (related to the breakdown of atmospheric carbon dioxide) constitutes a robust approach. Moreover, the calibration curve obtained is relatively independent of the samples types.

  2. Experimental measurements of multiphoton enhanced air breakdown by a subthreshold intensity excimer laser

    NASA Astrophysics Data System (ADS)

    Way, Jesse; Hummelt, Jason; Scharer, John

    2009-10-01

    This work presents density, spectroscopic temperature, and shockwave measurements of laser induced breakdown plasma in atmospheric air by subthreshold intensity (5.5×109 W/cm2) 193 nm laser radiation. Using molecular spectroscopy and two-wavelength interferometry, it is shown that substantial ionization (>1016 cm-3) occurs that is not predicted by collisional cascade (CC) breakdown theory. While the focused laser irradiance is three orders of magnitude below the theoretical collisional breakdown threshold, the substantial photon energy at 193 nm (6.42 eV/photon) compared with the ionization potential of air (15.6 eV) significantly increases the probability of multiphoton ionization effects. By spectroscopically monitoring the intensity of the N2+ first negative system (B Σu+2-X Σg+2) vibrational bandhead (v'=0,v″=0) at low pressure (20 Torr) where multiphoton effects are dominant, it is shown that two photon excitation, resonant enhanced multiphoton ionization is the primary mechanism for quantized ionization of N2 to the N2+(B Σu+2) state. This multiphoton effect then serves to amplify the collisional breakdown process at higher pressures by electron seeding, thereby reducing the threshold intensity from that required via CC processes for breakdown and producing high density laser formed plasmas.

  3. Preliminary design of laser-induced breakdown spectroscopy for proto-Material Plasma Exposure eXperiment.

    PubMed

    Shaw, G; Martin, M Z; Martin, R; Biewer, T M

    2014-11-01

    Laser-induced breakdown spectroscopy (LIBS) is a technique for measuring surface matter composition. LIBS is performed by focusing laser radiation onto a target surface, ablating the surface, forming a plasma, and analyzing the light produced. LIBS surface analysis is a possible diagnostic for characterizing plasma-facing materials in ITER. Oak Ridge National Laboratory has enabled the initial installation of a laser-induced breakdown spectroscopy diagnostic on the prototype Material-Plasma Exposure eXperiment (Proto-MPEX), which strives to mimic the conditions found at the surface of the ITER divertor. This paper will discuss the LIBS implementation on Proto-MPEX, preliminary design of the fiber optic LIBS collection probe, and the expected results.

  4. [Joint Analyses of Na2SO4 Solution by Laser Induced Breakdown Spectroscopy and Raman Spectroscopy].

    PubMed

    Guo, Jin-jia; Lu, Yuan; Liu, Chun-hao; Zheng, Rong-er

    2016-01-01

    Spectroscopic sensor is becoming an important issue for the deep-sea exploration due to the advantages of multi-specie, multi-phases and stand-off detection. Different approach have been developing in recent years based on LIBS (Laser Induced Breakdown Spectroscopy) and Raman spectroscopy since Raman-LIBS are complementary techniques with the similar components and the capability of molecular and elementary analysis. In this work, we built a LIBS-Raman system and detected Na2SO4 in aqueous solution to evaluate the potential ocean application. With the same laser, spectrometer and detector, a hybrid of Raman and LIBS system was developed to realize the detection of anions and cations in the seawater. The optics was composed by two parts. Raman channel and LIBS channel, and the signal was collected by a Y type optical fiber bundle. The signal from two channels was separated by imaging on different arrays of the CCD detector. The Raman spectra of SO4(2-) and LIBS spectra of Na was successfully detected simultaneously when the pulse energy was above 3.6 mJ. However, due to the strong bremsstrahlung radiation of LIBS, the signal to noise ratio of Raman was significantly decreased as the laser energy increasing. The results manifested the great potential of Raman-LIBS combination for the underwater detection.

  5. Double-pulse laser-induced breakdown spectroscopy analysis of scales from petroleum pipelines

    NASA Astrophysics Data System (ADS)

    Cavalcanti, G. H.; Rocha, A. A.; Damasceno, R. N.; Legnaioli, S.; Lorenzetti, G.; Pardini, L.; Palleschi, V.

    2013-09-01

    Pipeline scales from the Campos Bay Petroleum Field near Rio de Janeiro, Brazil have been analyzed by both Raman spectroscopy and by laser-induced breakdown spectroscopy (LIBS) using a double-pulse, calibration-free approach. Elements that are characteristic of petroleum (e.g. C, H, N, O, Mg, Na, Fe and V) were detected, in addition to the Ca, Al, and Si which form the matrix of the scale. The LIBS results were compared with the results of micro-Raman spectroscopy, which confirmed the nature of the incrustations inferred by the LIBS analysis. Results of this preliminary study suggest that diffusion of pipe material into the pipeline intake column plays an important role in the growth of scale. Thanks to the simplicity and relative low cost of equipment and to the fact that no special chemical pre-treatment of the samples is needed, LIBS can offer very fast acquisition of data and the possibility of in situ measurements. LIBS could thus represent an alternative or complementary method for the chemical characterization of the scales by comparison to conventional analytical techniques, such as X-ray diffraction or X-ray fluorescence.

  6. Characterization of the globular oxide inclusion ratings in steel using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Jia, Yun-Hai; Yang, Chun; Li, Dong-Ling; Liu, Jia; Chen, Yong-Yan; Liu, Ying; Duan, Yi-Xiang

    2016-12-01

    Grade assessment of steel is generally performed via the metallographic method, which is timeconsuming and is not able to provide the elemental distribution information. In this paper, we present a method to measure the globular oxide inclusion ratings in steel using laser-induced breakdown spectroscopy (LIBS). The measurement is performed in two basic steps: steel samples are polished using metallographic sand paper and the Al2O3 inclusion number and size distribution in a marked area are observed using scanning electron microscope/energy dispersive X-ray spectroscopy (SEM/EDS) for further LIBS scanning analysis. The threshold intensity that distinguishes soluble aluminum and insoluble aluminum inclusions is determined using LIBS combined with the SEM/EDS statistical data. Carbon steel (the sample number is S9256) and bearing steel (the sample number is GCr15) are analyzed in scanning mode, and the number of Al2O3 inclusions in different size ranges is obtained from the statistical information derived from the Al2O3 size calibration curve. According to heavy and thin series for globular oxide inclusions grade assessment, the method we propose is comparable to the traditional metallographic method in terms of accuracy; however, the process is simplified and the measurement speed is significantly improved.

  7. Geochemical analysis of layered outcrops using laser-induced breakdown spectroscopy (LIBS) - Implications for Mars exploration

    NASA Astrophysics Data System (ADS)

    Sobron, P.; Lefebvre, C.; Leveille, R. J.; Koujelev, A.; Haltigin, T.; Hongwei, D.; Wang, A.; Cabrol, N. A.; Zacny, K.; Craft, J.

    2012-12-01

    The chemistry and the stratigraphy of sedimentary, evaporative, and other types of deposits are indicators of their depositional environment and climate, and the evolution of these over time. Over the past eight years, the Mars Exploration Rovers (MER) have investigated several outcrops at Meridiani Planum and Gusev Crater. Compared to the MER, the capabilities of Curiosity to investigate outcrops and other deposits are enhanced because the rover incorporates a stand-off laser-induced breakdown spectroscopy (LIBS) instrument within the ChemCam suite. ChemCam's LIBS instrument has the capability to obtain chemical information from a large variety of targets at various distances, up to 7 m, including targets at a distance within stratigraphic layers non-accessible to other payload elements. In this work we demonstrate that semi-quantitative chemical stratigraphy can be very rapidly obtained by performing LIBS measurements on visually distinct layers within an outcrop at a terrestrial Mars analogue: the Atacama Desert, Chile. Such semi-quantitative chemical stratigraphy provides very valuable information on the distribution of elements within the analyzed layers, which can be used for tactical mission planning purposes. We performed laboratory laser-induced breakdown spectroscopy (LIBS) and laser Raman spectroscopy measurement on field samples from a layered outcrop from the Atacama Desert, Chile. This layered outcrop is a good terrestrial morphological analogue for similar formations that will likely be investigated by the Mars Science Laboratory on Gale crater. Our results demonstrate that LIBS can generate semi-quantitative chemical profiles in less than 1 min using automated data processing tools, and therefore the LIBS instrument can become an invaluable tactical tool on MSL for rapid geochemical survey of layered outcrops. The derived chemical profile at the terrestrial analogue is consistent with the range of minerals identified by Raman spectroscopy. In the

  8. Use of laser induced breakdown spectroscopy for the analysis of poultry products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Laser Induced Breakdown Spectroscopy is evaluated as a potential method to characterize a wide range of poultry product quality and safety characteristics. In one part of this study, breast meat quality indices, including pH and water holding capacity, were treated as dependent variables for correla...

  9. [Laser ignition assisted spark-induced breakdown spectroscopy for element analysis of aluminum alloy with enhanced sensitivity].

    PubMed

    Peng, Fei-fei; Zhou, Qi; Chen, Yu-qi; Li, Run-hua

    2013-09-01

    The analytical performance of laser ignition assisted spark-induced breakdown spectroscopy (LI-SIBS) for the analysis of trace metal in aluminum alloy was reported in the present article. In order to improve the analytical performance of spark-induced breakdown spectroscopy, a low energy laser pulse was focused on the surface of the sample to produce plasma between discharge electrodes to trigger high voltage spark discharge. Under current geometrical arrangement, optimized discharge voltage and capacitance were determined, and copper in aluminum alloy was analyzed under optimized experimental condition. The limit of detection of copper in aluminum alloy was determined to be 0.7 ppm. Both signal stability and measurement accuracy for spark-induced breakdown spectroscopy were improved with the assistance of laser ignition. The discharge voltage could be reduced and the spatial resolution could be improved with the assistance of laser ignition at the same time. It was demonstrated that LI-SIBS has the characteristics of high sensitivity, good stability and better spatial resolution and is suitable for trace elements analysis in different alloys.

  10. Quantitative laser-induced breakdown spectroscopy analysis of calcified tissue samples

    NASA Astrophysics Data System (ADS)

    Samek, O.; Beddows, D. C. S.; Telle, H. H.; Kaiser, J.; Liška, M.; Cáceres, J. O.; Gonzáles Ureña, A.

    2001-06-01

    We report on the application of laser-induced breakdown spectroscopy (LIBS) to the analysis of important minerals and the accumulation of potentially toxic elements in calcified tissue, to trace e.g. the influence of environmental exposure, and other medical or biological factors. This theme was exemplified for quantitative detection and mapping of Al, Pb and Sr in representative samples, including teeth (first teeth of infants, second teeth of children and teeth of adults) and bones (tibia and femur). In addition to identifying and quantifying major and trace elements in the tissues, one- and two-dimensional profiles and maps were generated. Such maps (a) provide time/concentration relations, (b) allow to follow mineralisation of the hydroxyapatite matrix and the migration of the elements within it and (c) enable to identify disease states, such as caries in teeth. In order to obtain quantitative calibration, reference samples in the form of pressed pellets with calcified tissue-equivalent material (majority compound of pellets is CaCO 3) were used whose physical properties closely resembled hydroxyapatite. Compounds of Al, Sr and Pb were added to the pellets, containing atomic concentrations in the range 100-10 000 ppm relative to the Ca content of the matrix. Analytical results based on this calibration against artificial samples for the trace elements under investigation agree with literature values, and with our atomic absorption spectroscopy (AAS) cross-validation measurements.

  11. Determination of elemental impurities in plastic calibration standards using laser induced breakdown spectroscopy

    SciTech Connect

    McIntyre, D.; Ayyalasomayajula, K.; Jain, J.; Singh, J.; Yu-Yueh, F.

    2012-01-01

    Dual-energy computed tomography (CT) scanning is a rapidly emerging imaging technique employed in nondestructive evaluation of various materials. CT has been used for characterizing rocks and visualizing multiphase flow through rocks for over 25 years. The most common technique for dual-energy CT scanning relies on homogeneous calibration standards to produce the most accurate decoupled data. However, the use of calibration standards with impurities increases the probability of error in the reconstructed data and results in poor rock characterization. Laser-induced breakdown spectroscopy was used to determine impurity concentration in a set of commercially purchased calibration standards used in dual-energy scanning for material identification with coal samples. Two calibration models were developed by using univariate calibration with the internal ratio method and multiple linear regression. Seven elements (Al, Fe, Mg, Na, Ni, Sr, and Ti) were examined in five different samples containing varying amounts of each ion to compare calibration from univariate data analysis and from multivariate data analysis. The contaminant concentrations were also measured by a commercially available inductively coupled plasma optical emission spectroscopy instrument, and the data were used as a reference in developing calibration curves for a modified version of the single linear regression model and the multiple linear regression model.

  12. Characterization of alumina-based ceramic nanocomposites by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Ahmad, Kaleem; Al-Eshaikh, Mohammad A.; Kadachi, Ahmed N.

    2015-06-01

    Alumina-based hybrids containing different concentrations of carbon nanostructure and SiC nanoparticles were consolidated by the spark plasma sintering in order to obtain fully dense bulk ceramic nanocomposites. Laser-induced breakdown spectroscopy was employed to determine relationship between plasma temperature and surface hardness of the composites. The characteristic parameters of plasma generated by irradiation of laser Nd:YAG ( λ = 1064 nm) on different bulk nanocomposites were determined at different delay times and energies by assuming the LTE condition for optically thin plasma. The plasma temperatures were estimated through intensity of selected aluminum emission lines using the Boltzmann plot method. The electron density was determined using the Stark broadening of selected aluminum and silicon emission lines. The samples were mechanically characterized by the Vickers hardness test. It has been observed that the plasma temperature increases with the increase in hardness and shows a perfect linear relationship. The results suggest that calibration curve between hardness and the plasma temperature can be employed as an alternate method to estimate the hardness of nanocomposite with varying concentrations of nanostructures just by measuring the plasma temperature with better reproducibility and accuracy. Therefore, laser-induced break down spectroscopy (LIBS) offers potential applications in nuclear industry.

  13. Investigation of common Indian edible salts suitable for kidney disease by laser induced breakdown spectroscopy.

    PubMed

    Singh, V K; Rai, N K; Pandhija, S; Rai, A K; Rai, P K

    2009-11-01

    Salt is an essential and important dietary mineral for maintaining life. Currently, the issue of the potential benefit or damage from salt intake in chronic kidney disease patients is controversial. The attempt of this article is to bring into focus the potential role of elements particularly sodium, Na, and potassium, K, which are the main constituents of dietary salts, in kidney patients by using laser-induced breakdown spectroscopy (LIBS). LIBS spectra of different salt samples have been recorded in the spectral region 200-500 nm with spectral resolution 0.1 nm and in the spectral region 200-900 nm with spectral resolution 0.75 nm. Quantitative elemental study was carried out to determine the constituents of different types of common Indian edible salts by using the calibration-free LIBS method. Our experimental results demonstrate that Saindha salt (commonly known as rock salt) is more beneficial than other edible salts for patients suffering from chronic kidney disease. The results of the quantitative elemental analysis of the salts obtained from LIBS measurements are also compared to atomic absorption spectroscopy (AAS).

  14. Comparison of the detection characteristics of trace species using laser-induced breakdown spectroscopy and laser breakdown time-of-flight mass spectrometry.

    PubMed

    Wang, Zhenzhen; Deguchi, Yoshihiro; Yan, Junjie; Liu, Jiping

    2015-03-11

    The rapid and precise element measurement of trace species, such as mercury, iodine, strontium, cesium, etc. is imperative for various applications, especially for industrial needs. The elements mercury and iodine were measured by two detection methods for comparison of the corresponding detection features. A laser beam was focused to induce plasma. Emission and ion signals were detected using laser-induced breakdown spectroscopy (LIBS) and laser breakdown time-of-flight mass spectrometry (LB-TOFMS). Multi-photon ionization and electron impact ionization in the plasma generation process can be controlled by the pressure and pulse width. The effect of electron impact ionization on continuum emission, coexisting molecular and atomic emissions became weakened in low pressure condition. When the pressure was less than 1 Pa, the plasma was induced by laser dissociation and multi-photon ionization in LB-TOFMS. According to the experimental results, the detection limits of mercury and iodine in N2 were 3.5 ppb and 60 ppb using low pressure LIBS. The mercury and iodine detection limits using LB-TOFMS were 1.2 ppb and 9.0 ppb, which were enhanced due to different detection features. The detection systems of LIBS and LB-TOFMS can be selected depending on the condition of each application.

  15. Comparison of the Detection Characteristics of Trace Species Using Laser-Induced Breakdown Spectroscopy and Laser Breakdown Time-of-Flight Mass Spectrometry

    PubMed Central

    Wang, Zhenzhen; Deguchi, Yoshihiro; Yan, Junjie; Liu, Jiping

    2015-01-01

    The rapid and precise element measurement of trace species, such as mercury, iodine, strontium, cesium, etc. is imperative for various applications, especially for industrial needs. The elements mercury and iodine were measured by two detection methods for comparison of the corresponding detection features. A laser beam was focused to induce plasma. Emission and ion signals were detected using laser-induced breakdown spectroscopy (LIBS) and laser breakdown time-of-flight mass spectrometry (LB-TOFMS). Multi-photon ionization and electron impact ionization in the plasma generation process can be controlled by the pressure and pulse width. The effect of electron impact ionization on continuum emission, coexisting molecular and atomic emissions became weakened in low pressure condition. When the pressure was less than 1 Pa, the plasma was induced by laser dissociation and multi-photon ionization in LB-TOFMS. According to the experimental results, the detection limits of mercury and iodine in N2 were 3.5 ppb and 60 ppb using low pressure LIBS. The mercury and iodine detection limits using LB-TOFMS were 1.2 ppb and 9.0 ppb, which were enhanced due to different detection features. The detection systems of LIBS and LB-TOFMS can be selected depending on the condition of each application. PMID:25769051

  16. Determination of trace metals using laser induced breakdown spectroscopy in insoluble organic materials obtained from pyrolysis of plastics waste.

    PubMed

    Siddiqui, Mohammad N; Gondal, Mohammad A; Nasr, Mohammed M

    2009-07-01

    Laser induced breakdown spectroscopy (LIBS) was applied for the detection of trace elements in non-degradable part of plastics known as insoluble organic material, obtained from thermal and catalytic degradation of plastics. LIBS signal intensity for each metal measured in the test sample was unique and different. The capability of this technique is demonstrated by analyzing various trace metals present inside plastics and also compared with ICP results. The metal concentration (ppm) measured with LIBS and verified by ICP for Ag (901), Al (522), Fe (231), Co (628), V (275), Ni (558), Pb (325), Mn (167) and Cd (378) are higher than permissible safe limits.

  17. Laser-Induced Breakdown Spectroscopy (LIBS) in a Novel Molten Salt Aerosol System.

    PubMed

    Williams, Ammon N; Phongikaroon, Supathorn

    2017-04-01

    In the pyrochemical separation of used nuclear fuel (UNF), fission product, rare earth, and actinide chlorides accumulate in the molten salt electrolyte over time. Measuring this salt composition in near real-time is advantageous for operational efficiency, material accountability, and nuclear safeguards. Laser-induced breakdown spectroscopy (LIBS) has been proposed and demonstrated as a potential analytical approach for molten LiCl-KCl salts. However, all the studies conducted to date have used a static surface approach which can lead to issues with splashing, low repeatability, and poor sample homogeneity. In this initial study, a novel molten salt aerosol approach has been developed and explored to measure the composition of the salt via LIBS. The functionality of the system has been demonstrated as well as a basic optimization of the laser energy and nebulizer gas pressure used. Initial results have shown that this molten salt aerosol-LIBS system has a great potential as an analytical technique for measuring the molten salt electrolyte used in this UNF reprocessing technology.

  18. Development of a remote laser-induced breakdown spectroscopy system for investigation of calcified tissue samples

    SciTech Connect

    Hrdlicka, Ales; Prokes, Lubomir; Stankova, Alice; Novotny, Karel; Vitesnikova, Anna; Kanicky, Viktor; Otruba, Vitezslav; Kaiser, Jozef; Novotny, Jan; Malina, Radomir; Palenikova, Katerina

    2010-05-01

    The development of a remote laser-induced breakdown spectroscopy (LIBS) setup with an off-axis Newtonian collection optics, Galilean-based focusing telescope, and a 532 nm flattop laser beam source is presented. The device was tested at a 6 m distance on a slice of bone to simulate its possible use in the field, e.g., during archaeological excavations. It is shown that this setup is sufficiently sensitive to both major (P, Mg) and minor elements (Na, Zn, Sr). The measured quantities of Mg, Zn, and Sr correspond to the values obtained by reference laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) measurements within an approximately 20% range of uncertainty. A single point calibration was performed by use of a bone meal standard . The radial element distribution is almost invariable by use of LA-ICP-MS, whereas the LIBS measurement showed a strong dependence on the sample porosity. Based on these results, this remote LIBS setup with a relatively large (350 mm) collecting mirror is capable of semiquantitative analysis at the level of units of mg kg{sup -1}.

  19. Biomedical applications of laser-induced breakdown spectroscopy (LIBS)

    NASA Astrophysics Data System (ADS)

    Unnikrishnan, V. K.; Nayak, Rajesh; Bhat, Sujatha; Mathew, Stanley; Kartha, V. B.; Santhosh, C.

    2015-03-01

    LIBS has been proven to be a robust elemental analysis tool attracting interest because of the wide applications. LIBS can be used for analysis of any type of samples i.e. environmental/physiological, regardless of its state of matter. Conventional spectroscopy techniques are good in analytical performance, but their sample preparation method is mostly destructive and time consuming. Also, almost all these methods are incapable of analysing multi elements simaltaneously. On the other hand, LIBS has many potential advantages such as simplicity in the experimental setup, less sample preparation, less destructive analysis of sample etc. In this paper, we report some of the biomedical applications of LIBS. From the experiments carried out on clinical samples (calcified tissues or teeth and gall stones) for trace elemental mapping and detection, it was found that LIBS is a robust tool for such applications. It is seen that the presence and relative concentrations of major elements (calcium, phosphorus and magnesium) in human calcified tissue (tooth) can be easily determined using LIBS technique. The importance of this study comes in anthropology where tooth and bone are main samples from which reliable data can be easily retrieved. Similarly, elemental composition of bile juice and gall stone collected from the same subject using LIBS was found to be similar. The results show interesting prospects for LIBS to study cholelithiasis (the presence of stones in the gall bladder, is a common disease of the gastrointestinal tract) better.

  20. Spatial confinement in laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Xingwen; Yang, Zefeng; Wu, Jian; Wei, Wenfu; Qiu, Yan; Jia, Shenli; Qiu, Aici

    2017-01-01

    The spatial confinement of plasma produced by a nanosecond laser is investigated using time resolved spectroscopy, fast imaging, interferometry, and numerical computation. The dynamics of the plasma, depending on shock waves, laser power, and wall distances, are studied. Experimental results confirm that the plasma is constricted by the reflected shock associated with a temperature and density gradient. The peak laser power determines the initial plasma parameters which affect the spectral intensities and the velocity of the reflective shock waves. The wall distance determines the reflection time of the shocks, which in turn influences the time delay of the collision between the two reflective shocks. The numerical results reveal a fast propagation process surrounding the reflective shocks, which indicates that the velocity of the reflective shock wave is influenced by the density of the plasma. The maximum enhancement factor ~5.2 is realized at a delay time of 11.7 µs under a pulse laser energy of 180 mJ and a wall distance of 9 mm.

  1. Identification of inks and structural characterization of contemporary artistic prints by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Oujja, M.; Vila, A.; Rebollar, E.; García, J. F.; Castillejo, M.

    2005-08-01

    Identification of the inks used in artistic prints and the order in which different ink layers have been applied on a paper substrate are important factors to complement the classical stylistic aspects for the authentication of this type of objects. Laser-induced breakdown spectroscopy (LIBS) is investigated to determine the chemical composition and structural distribution of the constituent materials of model prints made by applying one or two layers of several blue and black inks on an Arches paper substrate. By using suitable laser excitation conditions, identification of the inks was possible by virtue of emissions from key elements present in their composition. Analysis of successive spectra on the same spot allowed the identification of the order in which the inks were applied on the paper. The results show the potential of laser-induced breakdown spectroscopy for the chemical and structural characterization of artistic prints.

  2. Laser-induced breakdown spectroscopy microanalysis of trace elements in Homo sapiens teeth.

    PubMed

    Alvira, F C; Ramirez Rozzi, F; Bilmes, G M

    2010-03-01

    Two of the main items from which to retrieve data in anthropology are teeth and bones. Identification of trace elements in their composition allows valuable information to be obtained about alimentary habits and community life conditions of groups and individuals. Conventional methods used to determine the presence of trace elements require sample preparation, with partial or total destruction of the pieces, which in most cases are unique. In this work we show the possibilities of laser-induced breakdown spectroscopy (LIBS) as a nearly nondestructive tool in anthropology and paleontology for the measurement of the presence and distribution of trace elements in teeth. We applied LIBS to the determination of strontium and magnesium in dentin and enamel of Neolithic, middle age, and modern Homo sapiens teeth. Mg/Ca and Sr/Ca distribution maps of dentin and enamel in modern teeth were created using the data obtained. Ablation threshold fluences of dentin and enamel were also measured using the photoacoustic signal induced by laser ablation. Significant variations were found in the Mg/Ca and Sr/Ca ratios in the tooth dental tissue and between the teeth of the groups and individuals studied. These results can be useful for evolutionary anthropology studies as they can provide information regarding early nutrition, seasonality, and residential mobility.

  3. Detection of tire tread particles using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Prochazka, David; Bilík, Martin; Prochazková, Petra; Klus, Jakub; Pořízka, Pavel; Novotný, Jan; Novotný, Karel; Ticová, Barbora; Bradáč, Albert; Semela, Marek; Kaiser, Jozef

    2015-06-01

    The objective of this paper is a study of the potential of laser induced breakdown spectroscopy (LIBS) for detection of tire tread particles. Tire tread particles may represent pollutants; simultaneously, it is potentially possible to exploit detection of tire tread particles for identification of optically imperceptible braking tracks at locations of road accidents. The paper describes the general composition of tire treads and selection of an element suitable for detection using the LIBS method. Subsequently, the applicable spectral line is selected considering interferences with lines of elements that might be present together with the detected particles, and optimization of measurement parameters such as incident laser energy, gate delay and gate width is performed. In order to eliminate the matrix effect, measurements were performed using 4 types of tires manufactured by 3 different producers. An adhesive tape was used as a sample carrier. The most suitable adhesive tape was selected from 5 commonly available tapes, on the basis of their respective LIBS spectra. Calibration standards, i.e. an adhesive tape with different area content of tire tread particles, were prepared for the selected tire. A calibration line was created on the basis of the aforementioned calibration standards. The linear section of this line was used for determination of the detection limit value applicable to the selected tire. Considering the insignificant influence of matrix of various types of tires, it is possible to make a simple recalculation of the detection limit value on the basis of zinc content in a specific tire.

  4. Accumulation of air in polymeric materials investigated by laser-induced breakdown spectroscopy

    SciTech Connect

    Yip, W. L.; Hermann, J.; Mothe, E.; Beldjilali, S.

    2012-03-15

    We report on spectroscopic analyses of plasmas produced by laser irradiation of nitrogen-free and nitrogen-containing polymer materials. Ultraviolet laser pulses of 5 ns duration and 4 mJ energy were focused onto the samples with a fluence of about 20 Jcm{sup -2}. The plasma emission was analyzed with an Echelle spectrometer equipped with a gated detector. Comparing the spectra recorded during ablation in air and argon, it is shown that the spectral line emission of atomic nitrogen originates from the excitation of the ambient air, whereas the CN molecular bands are essentially emitted from the ablation plume. Furthermore, the measurements demonstrate an additional contribution of nitrogen emission from the air molecules accumulated in the polymer. Storage under vacuum over a duration of the order of one day leads to the release of the absorbed air. As a consequence of the air absorption, the measurement of elemental composition of polymers via laser-induced breakdown spectroscopy is particularly difficult. Here, we quantify the atmospheric contribution to the plume emission during polymer analysis.

  5. Chemical and explosive detection with long-wave infrared laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Jin, Feng; Trivedi, Sudhir B.; Yang, Clayton S.; Brown, Ei E.; Kumi-Barimah, Eric; Hommerich, Uwe H.; Samuels, Alan C.

    2016-05-01

    Conventional laser induced breakdown spectroscopy (LIBS) mostly uses silicon-based detectors and measures the atomic emission in the UV-Vis-NIR (UVN) region of the spectrum. It can be used to detect the elements in the sample under test, such as the presence of lead in the solder for electronics during RoHS compliance verification. This wavelength region, however, does not provide sufficient information on the bonding between the elements, because the molecular vibration modes emit at longer wavelength region. Measuring long-wave infrared spectrum (LWIR) in a LIBS setup can instead reveal molecular composition of the sample, which is the information sought in applications including chemical and explosive detection and identification. This paper will present the work and results from the collaboration of several institutions to develop the methods of LWIR LIBS for chemical/explosive/pharmaceutical material detection/identification, such as DMMP and RDX, as fast as using a single excitation laser pulse. In our latest LIBS setup, both UVN and LWIR spectra can be collected at the same time, allowing more accurate detection and identification of materials.

  6. Evaluation of sandstone surface relaxivity using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Washburn, Kathryn E.; Sandor, Magdalena; Cheng, Yuesheng

    2017-02-01

    Nuclear magnetic resonance (NMR) relaxometry is a common technique used to assess the pore size of fluid-filled porous materials in a wide variety of fields. However, the NMR signal itself only provides a relative distribution of pore size. To calculate an absolute pore size distribution from the NMR data, the material's surface relaxivity needs to be known. Here, a method is presented using laser-induced breakdown spectroscopy (LIBS) to evaluate surface relaxivity in sandstones. NMR transverse and longitudinal relaxation was measured on a set of sandstone samples and the surface relaxivity was calculated from the pore size distribution determined with MICP measurements. Using multivariate analysis, it was determined that the LIBS data can predict with good accuracy the longitudinal (R2 ∼ 0.84) and transverse (R2 ∼ 0.79) surface relaxivity. Analysis of the regression coefficients shows significant influence from several elements. Some of these are elements previously established to have an effect on surface relaxivity, such as iron and manganese, while others are not commonly associated with surface relaxivity, such as cobalt and titanium. Furthermore, LIBS provides advantages compared to current methods to calibrate surface relaxivity in terms of speed, portability, and sample size requirements. While this paper focuses on geological samples, the method could potentially be expanded to other types of porous materials.

  7. Evaluation of sandstone surface relaxivity using laser-induced breakdown spectroscopy.

    PubMed

    Washburn, Kathryn E; Sandor, Magdalena; Cheng, Yuesheng

    2017-02-01

    Nuclear magnetic resonance (NMR) relaxometry is a common technique used to assess the pore size of fluid-filled porous materials in a wide variety of fields. However, the NMR signal itself only provides a relative distribution of pore size. To calculate an absolute pore size distribution from the NMR data, the material's surface relaxivity needs to be known. Here, a method is presented using laser-induced breakdown spectroscopy (LIBS) to evaluate surface relaxivity in sandstones. NMR transverse and longitudinal relaxation was measured on a set of sandstone samples and the surface relaxivity was calculated from the pore size distribution determined with MICP measurements. Using multivariate analysis, it was determined that the LIBS data can predict with good accuracy the longitudinal (R(2)∼0.84) and transverse (R(2)∼0.79) surface relaxivity. Analysis of the regression coefficients shows significant influence from several elements. Some of these are elements previously established to have an effect on surface relaxivity, such as iron and manganese, while others are not commonly associated with surface relaxivity, such as cobalt and titanium. Furthermore, LIBS provides advantages compared to current methods to calibrate surface relaxivity in terms of speed, portability, and sample size requirements. While this paper focuses on geological samples, the method could potentially be expanded to other types of porous materials.

  8. Effect of experimental parameters and resulting analytical signal statistics in laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Klus, Jakub; Pořízka, Pavel; Prochazka, David; Novotný, Jan; Novotný, Karel; Kaiser, Jozef

    2016-12-01

    The purpose of this work is to provide detailed study of statistical behavior of different types of analytical signals in typical of Laser-Induced Breakdown Spectroscopy (LIBS) measurements. The main goal of this work is to justify usage of arithmetic mean and standard deviation as statistical estimates of expected value of selected analytical signal. In contrary to the general assumption that LIBS data show Gaussian distribution, this paper deals with the hypothesis that the data rather demonstrate Generalized Extreme Value Distribution. The study is realized on 10 selected lines measured on NIST glass standard. In order to cover wide range of possible applications three different spectra internal standardization techniques and their influence on distribution were studied. Finally, assuming that the data comes from a single distribution and the central limit theorem is valid, the influence of accumulations on the line distribution is examined and discussed. Statistical tools used and described in this paper can be utilized by other researchers to confirm their hypotheses and verify utilization of Gaussian distribution or even novel data processing methods.

  9. Exploring laser-induced breakdown spectroscopy for nuclear materials analysis and in-situ applications

    NASA Astrophysics Data System (ADS)

    Martin, Madhavi Z.; Allman, Steve; Brice, Deanne J.; Martin, Rodger C.; Andre, Nicolas O.

    2012-08-01

    Laser-induced breakdown spectroscopy (LIBS) has been used to determine the limits of detection of strontium (Sr) and cesium (Cs), common nuclear fission products. Additionally, detection limits were determined for cerium (Ce), often used as a surrogate for radioactive plutonium in laboratory studies. Results were obtained using a laboratory instrument with a Nd:YAG laser at fundamental wavelength of 1064 nm, frequency doubled to 532 nm with energy of 50 mJ/pulse. The data was compared for different concentrations of Sr and Ce dispersed in a CaCO3 (white) and carbon (black) matrix. We have addressed the sampling errors, limits of detection, reproducibility, and accuracy of measurements as they relate to multivariate analysis in pellets that were doped with the different elements at various concentrations. These results demonstrate that LIBS technique is inherently well suited for in situ analysis of nuclear materials in hot cells. Three key advantages are evident: (1) small samples (mg) can be evaluated; (2) nuclear materials can be analyzed with minimal sample preparation; and (3) samples can be remotely analyzed very rapidly (ms-seconds). Our studies also show that the methods can be made quantitative. Very robust multivariate models have been used to provide quantitative measurement and statistical evaluation of complex materials derived from our previous research on wood and soil samples.

  10. Determination of a brass alloy concentration composition using calibration-free laser-induced breakdown spectroscopy

    SciTech Connect

    Achouri, M.; Baba-Hamed, T.; Beldjilali, S. A. Belasri, A.

    2015-09-15

    Laser-induced breakdown spectroscopy (LIBS) is a technique that can provide qualitative and quantitative measurements of the characteristics of irradiated metals. In the present work, we have calculated the parameters of the plasma produced from a brass alloy sample under the action of a pulsed Nd: YAG laser operating at 1064 nm. The emission lines of copper atoms (Cu I), zinc atoms (Zn I), and lead atoms (Pb I), which are elements of a brass alloy composition, were used to investigate the parameters of the brass plasma. The spectral profiles of Cu, Zn, and Pb lines have been used to extract the electron temperature and density of the brass alloy plasma. The characteristics of Cu, Zn, and Pb were determined quantatively by the calibration-free LIBS (CF-LIBS) method considering for accurate analysis that the laser-induced ablated plasma is optically thin in local thermodynamic equilibrium conditions and the plasma ablation is stoichiometric. The Boltzmann plot method was used to evaluate the plasma temperature, and the Stark broadened profiles were used to determine the electron density. An algorithm based on the experimentally measured values of the intensity of spectral lines and the basic laws of plasma physics was developed for the determination of Cu, Zn, and Pb concentrations in the brass sample. The concentrations C{sub CF-LIBS} calculated by CF-LIBS and the certified concentrations C{sub certified} were very close.

  11. A study of association between fingernail elements and osteoporosis by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Bahreini, Maryam; Hosseinimakarem, Zahra; Hassan Tavassoli, Seyed

    2012-09-01

    Laser induced breakdown spectroscopy (LIBS) is used to investigate the possible effect of osteoporosis on the elemental composition of fingernails. Also, the ability to classify healthy, osteopenic, and osteoporotic subjects based on their fingernail spectra has been examined. 46 atomic and ionic emission lines belonging to 13 elements, which are dominated by calcium and magnesium, have been identified. Measurements are carried out on fingernail clippings of 99 subjects including 27 healthy, 47 osteopenic, and 25 osteoporotic subjects. The Pearson correlations between spectral intensities of different elements of fingernail and age and bone mineral densities (BMDs) in nail samples are calculated. Correlations between line intensities of some elements such as sodium and potassium, calcium and iron, magnesium and silicon and also between some fingernail elements, BMD, and age are observed. Although some of these correlations are weak, some information about mineral metabolism can be deduced from them. Discrimination between nail samples of healthy, osteopenic, and osteoporotic subjects is shown to be somehow possible by a discriminant function analysis using 46 atomic emission lines of the LIBS spectra as input variables. The results of this study provide some evidences for association between osteoporosis and elemental composition of fingernails measured by LIBS.

  12. Influence of Metal Substrates on the Detection of Explosive Residues With Laser-Induced Breakdown Spectroscopy

    DTIC Science & Technology

    2013-04-01

    composition because some of the substrate is usually entrained in the laser-induced plasma and the laser– material interaction can be significantly...Detection of Explosive Residues With Laser-Induced Breakdown Spectroscopy Jennifer L. Gottfried Weapons and Materials Research Directorate, ARL...remain. One issue is that the emission spectra of the residues are dependent on the substrate composition because some of the substrate is usually

  13. Analysis Si/Al ratio in zeolites type FAU by laser induced breakdown spectroscopy (LIBS)

    NASA Astrophysics Data System (ADS)

    Contreras, W. A.; Cabanzo, R.; Mejía-Ospino, E.

    2011-01-01

    In this work, Laser Induced Breakdown Spectroscopy (LIBS) is used to determine the Si/Al ratio of Zeolite type Y. The catalytic activity of zeolite is strongly dependent of the Si/Al ratio. We have used Si lines in the spectral region between 245-265 nm to determine temperature of the plasma generated on pelletized sample of zeolite, and stoichiometry relation between Si and Al.

  14. Applications of laser-induced breakdown spectroscopy for geochemical and environmental analysis: A comprehensive review

    NASA Astrophysics Data System (ADS)

    Harmon, Russell S.; Russo, Richard E.; Hark, Richard R.

    2013-09-01

    Applications of laser-induced breakdown spectroscopy (LIBS) have been growing rapidly and continue to be extended to a broad range of materials. This paper reviews recent application of LIBS for the analysis of geological and environmental materials, here termed "GEOLIBS" . Following a summary of fundamentals of the LIBS analytical technique and its potential for chemical analysis in real time, the history of the application of LIBS to the analysis of natural fluids, minerals, rocks, soils, sediments, and other natural materials is described.

  15. Quantitative elemental detection of size-segregated particles using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Zhen Zhen; Deguchi, Yoshihiro; Kuwahara, Masakazu; Taira, Takuya; Zhang, Xiao Bo; Yan, Jun Jie; Liu, Ji Ping; Watanabe, Hiroaki; Kurose, Ryoichi

    2013-09-01

    In order to simulate coal combustion and develop optimal and stable boiler control systems in real power plants, it is imperative to obtain the detailed information in coal combustion processes as well as to measure species contents in fly ash, which should be controlled and analyzed for enhancing boiler efficiency and reducing environmental pollution. The fly ash consists of oxides (SiO2, Al2O3, Fe2O3, CaO, and so on), unburned carbon, and other minor elements. Recently laser-induced breakdown spectroscopy (LIBS) technique has been applied to coal combustion and other industrial fields because of the fast response, high sensitivity, real-time and non-contact features. In these applications it is important to measure controlling factors without any sample preparation to maintain the real-time measurement feature. The relation between particle content and particle diameter is also one of the vital researches, because compositions of particles are dependent on their diameter. In this study, we have detected the contents of size-segregated particles using LIBS. Particles were classified by an Anderson cascade impactor and their contents were measured using the output of 1064 nm YAG laser, a spectrograph and an ICCD camera. The plasma conditions such as plasma temperature are dependent on the size of particles and these effects must be corrected to obtain quantitative information. The plasma temperature was corrected by the emission intensity ratio from the same atom. Using this correction method, the contents of particles can be measured quantitatively in fixed experimental parameters. This method was applied to coal and fly ash from a coal-fired burner to measure unburned carbon and other contents according to the particle diameter. The acquired results demonstrate that the LIBS technique is applicable to measure size-segregated particle contents in real time and this method is useful for the analysis of coal combustion and its control because of its sensitive and

  16. Corrections for variable plasma parameters in laser induced breakdown spectroscopy: Application on archeological samples

    NASA Astrophysics Data System (ADS)

    Lazic, V.; Trujillo-Vazquez, A.; Sobral, H.; Márquez, C.; Palucci, A.; Ciaffi, M.; Pistilli, M.

    2016-08-01

    The final scope of this work was to determine the elemental composition of different types of decorative layers present on ancient ceramic fragments through depth profiling by laser induced breakdown spectroscopy (LIBS). The measurements were performed by a stand-off LIBS system at distance of 10.5 m, by employing ns laser pulses at 1064 nm and an Echelle spectrometer. The detected plume intensity strongly differs from one sample/coating to another and changes importantly also in repeated measurements on the almost homogeneous bulk materials. Furthermore, the plasma intensity and its parameters widely change during the depth profiling, as evident from the ratio of here monitored Fe I and Fe II spectral lines. Averaging the line intensities over six repeated measurements, also on the bulk material and for a selected consecutive shot number, produces the errors up to 60% around the mean value and this makes impossible to compare composition of the ceramic body with its decorative layers. To overcome this problem, we developed a theoretically supported procedure for the spectral line corrections in presence of variable plasma parameters, which considers the relative changes among a sufficiently large data set. This method allowed improving the measurement precision up to five times, obtaining a flat response during the depth profiling, and measuring composition of the surface layers. The correction factors are specific for one analytical line of the considered element. The proposed procedure could be universally applied for increasing the LIBS precision in repeated samplings or during the depth profiling, without time consuming calculations of the plasma temperature and the electron density, which also suffer from large measurement errors.

  17. High repetition rate laser-induced breakdown spectroscopy using acousto-optically gated detection

    SciTech Connect

    Pořízka, Pavel; Kaiser, Jozef

    2014-07-15

    This contribution introduces a new type of setup for fast sample analysis using laser-induced breakdown spectroscopy (LIBS). The novel design combines a high repetition rate laser (up to 50 kHz) as excitation source and an acousto-optical modulator (AOM) as a fast switch for temporally gating the detection of the emitted light. The plasma radiation is led through the active medium of the AOM where it is diffracted on the transient ultrasonic Bragg grid. The diffracted radiation is detected by a compact Czerny-Turner spectrometer equipped with a CCD line detector. Utilizing the new combination of high repetition rate lasers and AOM gated detection, rapid measurements with total integration times of only 10 ms resulted in a limit of detection (LOD) of 0.13 wt.% for magnesium in aluminum alloys. This short integration time corresponds to 100 analyses/s. Temporal gating of LIP radiation results in improved LODs and consecutively higher sensitivity of the LIBS setup. Therefore, an AOM could be beneficially utilized to temporally detect plasmas induced by high repetition rate lasers. The AOM in combination with miniaturized Czerny-Turner spectrometers equipped with CCD line detectors and small footprint diode pumped solid state lasers results in temporally gateable compact LIBS setups.

  18. Analysis of indium zinc oxide thin films by laser-induced breakdown spectroscopy

    SciTech Connect

    Popescu, A. C.; Beldjilali, S.; Socol, G.; Mihailescu, I. N.; Craciun, V.; Hermann, J.

    2011-10-15

    We have performed spectroscopic analysis of the plasma generated by Nd:YAG ({lambda} = 266 nm) laser irradiation of thin indium zinc oxide films with variable In content deposited by combinatorial pulsed laser deposition on glass substrates. The samples were irradiated in 5 x 10{sup 4} Pa argon using laser pulses of 5 ns duration and 10 mJ energy. The plasma emission spectra were recorded with an Echelle spectrometer coupled to a gated detector with different delays with respect to the laser pulse. The relative concentrations of indium and zinc were evaluated by comparing the measured spectra to the spectral radiance computed for a plasma in local thermal equilibrium. Plasma temperature and electron density were deduced from the relative intensities and Stark broadening of spectral lines of atomic zinc. Analyses at different locations on the deposited thin films revealed that the In/(In + Zn) concentration ratio significantly varies over the sample surface, from 0.4 at the borders to about 0.5 in the center of the film. The results demonstrate that laser-induced breakdown spectroscopy allows for precise and fast characterization of thin films with variable composition.

  19. Laser-induced breakdown spectroscopy analysis of complex silicate minerals--beryl.

    PubMed

    McMillan, Nancy J; McManus, Catherine E; Harmon, Russell S; De Lucia, Frank C; Miziolek, Andrzej W

    2006-05-01

    Beryl (Be3Al2Si6O18) is a chemically complex and highly compositionally variable gem-forming mineral found in a variety of geologic settings worldwide. A methodology and analytical protocol were developed for the analysis of beryl by laser-induced breakdown spectroscopy (LIBS) that minimizes the coefficient of variance for multiple analyses of the same specimen. The parameters considered were laser energy/pulse, time delay and crystallographic orientation. Optimal analytical conditions are a laser energy/pulse of 102 mJ and a time delay of 2 micros. Beryl compositions measured parallel and perpendicular to the c axis were identical within analytical error. LIBS analysis of 96 beryls from 16 countries (Afghanistan, Brazil, Canada, China, Colombia, India, Ireland, Italy, Madagascar, Mexico, Mozambique, Namibia, Norway, Russia, Tanzania and United States), Antarctica, and ten US states (AZ, CA, CO, CT, ID, ME, NC, NH, NM and UT) were undertaken to determine whether or not LIBS analysis can be used to determine the provenance of gem beryl.

  20. Repeatability improvement of laser-induced breakdown spectroscopy using an auto-focus system

    NASA Astrophysics Data System (ADS)

    Ashrafkhani, Behnam; Bahreini, Maryam; Tavassoli, Seyed Hassan

    2015-05-01

    Laser-induced breakdown spectroscopy (LIBS) is a novel technique for elemental analysis of materials. The repeatability of LIBS results is an important issue in many applications. Many factors influence the repeatability of LIBS results. The aim of this study is to examine the effect of laser beam focusing position or lens to sample distance (LTSD) as one of the most important factors influencing LIBS spectra. A point auto-focus system is designed and applied to provide the same lens to sample distance in every LIBS experiment. This system is employed and the result is compared to that of non-auto-focus technique on samples with different degrees of evenness such as aluminum, paper, tape and human fingernail. The standard deviation of this experiment is measured in the range of 4 to 26 μm. Then, spectrum's repeatability is examined with two samples of aluminum and human fingernail. The standard deviation of spectra is considerably reduced. In conclusion, repeatability of LIBS results could be optimized by using the auto-focus system.

  1. Surface element-mapping of three dimensional structures by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Beresko, Christian; Kohns, Peter; Ankerhold, Georg

    2014-09-01

    During lateral mapping with laser-induced breakdown spectroscopy (LIBS) the focal position of the plasma-generating laser needs to be kept stable on the sample surface area to be probed. Therefore, three-dimensional structures like edged surfaces require a permanent re-focusing. We describe a new auto-focusing technique to perform surface elemental mapping with LIBS by correcting the focusing lens-to-sample distance using a direct monitoring of the LIBS signal intensity. This method allows the scanning of surfaces with strong height fluctuations of several millimeters without the need of any additional devices. The auto-focusing method is valuable for LIBS applications made on complex-shaped samples or simply to improve the measurement reproducibility. Applications are LIBS analyses of samples exhibiting drill holes or steep edges. Our procedure does not need a constant focal plane and follows the topographic profile of the sample surface. Impurities and material inclusions are well detected. From the topographic information additionally obtained, a three-dimensional image of the sample can be deduced. Depth resolution is limited by the Rayleigh range of the LIBS laser light. The method is best suited for low energy laser pulses with high repetition rate and infrared emission.

  2. Rapid Analysis of Ash Composition Using Laser-Induced Breakdown Spectroscopy (LIBS)

    SciTech Connect

    Tyler L. Westover

    2013-01-01

    Inorganic compounds are known to be problematic in the thermochemical conversion of biomass to syngas and ultimately hydrocarbon fuels. The elements Si, K, Ca, Na, S, P, Cl, Mg, Fe, and Al are particularly problematic and are known to influence reaction pathways, contribute to fouling and corrosion, poison catalysts, and impact waste streams. Substantial quantities of inorganic species can be entrained in the bark of trees during harvest operations. Herbaceous feedstocks often have even greater quantities of inorganic constituents, which can account for as much as one-fifth of the total dry matter. Current methodologies to measure the concentrations of these elements, such as inductively coupled plasma-optical emission spectrometry/mass spectrometry (ICP-OES/MS) are expensive in time and reagents. This study demonstrates that a new methodology employing laser-induced breakdown spectroscopy (LIBS) can rapidly and accurately analyze the inorganic constituents in a wide range of biomass materials, including both woody and herbaceous examples. This technique requires little or no sample preparation, does not consume any reagents, and the analytical data is available immediately. In addition to comparing LIBS data with the results from ICP-OES methods, this work also includes discussions of sample preparation techniques, calibration curves for interpreting LIBS spectra, minimum detection limits, and the use of internal standards and standard reference materials.

  3. Optimization of liquid jet system for laser-induced breakdown spectroscopy analysis

    NASA Astrophysics Data System (ADS)

    Skočovská, Katarína; Novotný, Jan; Prochazka, David; Pořízka, Pavel; Novotný, Karel; Kaiser, Jozef

    2016-04-01

    A complex optimization of geometrical and temporal parameters of a jet system (developed in Laser-induced breakdown spectroscopy (LIBS) laboratory of Brno University of Technology) for direct elemental analysis of samples in a liquid state of matter using LIBS was carried out. First, the peristaltic pump was synchronized with the flashlamp of the ablation laser, which reduced variation of the ablated sample amount. Also, the fluctuation of the laser ray angle incident on the jet surface was diminished. Such synchronization reduced signal standard deviations and thus increased repeatability of the measurements. Then, laser energy and distance of the focusing lens from the sample were optimized. The gate delay time and the gate width were optimized for single pulse (SP) experiments; the gate delay time and the inter-pulse delay were optimized for the use of double pulse (DP) variant. Results were assessed according to the highest signal to noise ratios and the lowest relative standard deviations of the signal. The sensitivity of the single pulse and the double pulse LIBS for the detection of heavy metals traces, copper (Cu i at 324.754 nm) and lead (Pb i at 405.781 nm), in aqueous solution of copper (ii) sulfate and lead (ii) acetate, was estimated in terms of limits of detection (LODs). As a result, sensitivity improvement of DP LIBS system was observed, the LOD of Cu obtained with DP was calculated 40% lower than LOD gained from SP technique.

  4. Evaluation of laser induced breakdown spectroscopy for the determination of micronutrients in plant materials

    NASA Astrophysics Data System (ADS)

    Trevizan, Lilian Cristina; Santos, Dário, Jr.; Samad, Ricardo Elgul; Vieira, Nilson Dias, Jr.; Nunes, Lidiane Cristina; Rufini, Iolanda Aparecida; Krug, Francisco José

    2009-05-01

    Laser induced breakdown spectroscopy (LIBS) has been evaluated for the determination of micronutrients (B, Cu, Fe, Mn and Zn) in pellets of plant materials, using NIST, BCR and GBW biological certified reference materials for analytical calibration. Pellets of approximately 2 mm thick and 15 mm diameter were prepared by transferring 0.5 g of powdered material to a 15 mm die set and applying 8.0 tons cm - 2 . An experimental setup was designed by using a Nd:YAG laser operating at 1064 nm (200 mJ per pulse, 10 Hz) and an Echelle spectrometer with ICCD detector. Repeatability precision varied from 4 to 30% from measurements obtained in 10 different positions (8 laser shots per test portion) in the same sample pellet. Limits of detection were appropriate for routine analysis of plant materials and were 2.2 mg kg - 1 B, 3.0 mg kg - 1 Cu, 3.6 mg kg - 1 Fe, 1.8 mg kg - 1 Mn and 1.2 mg kg - 1 Zn. Analysis of different plant samples were carried out by LIBS and results were compared with those obtained by ICP OES after wet acid decomposition.

  5. Statistical Classification of Soft Solder Alloys by Laser-Induced Breakdown Spectroscopy: Review of Methods

    NASA Astrophysics Data System (ADS)

    Zdunek, R.; Nowak, M.; Pliński, E.

    2016-02-01

    This paper reviews machine-learning methods that are nowadays the most frequently used for the supervised classification of spectral signals in laser-induced breakdown spectroscopy (LIBS). We analyze and compare various statistical classification methods, such as linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), partial least-squares discriminant analysis (PLS-DA), soft independent modeling of class analogy (SIMCA), support vector machine (SVM), naive Bayes method, probabilistic neural networks (PNN), and K-nearest neighbor (KNN) method. The theoretical considerations are supported with experiments conducted for real soft-solder-alloy spectra obtained using LIBS. We consider two decision problems: binary and multiclass classification. The former is used to distinguish overheated soft solders from their normal versions. The latter aims to assign a testing sample to a given group of materials. The measurements are obtained for several laser-energy values, projection masks, and numbers of laser shots. Using cross-validation, we evaluate the above classification methods in terms of their usefulness in solving both classification problems.

  6. Influence of Ambient Gas on Laser-Induced Breakdown Spectroscopy of Uranium Metal

    NASA Astrophysics Data System (ADS)

    Zhang, Dacheng; Ma, Xinwen; Wang, Shulong; Zhu, Xiaolong

    2015-11-01

    Laser-induced breakdown spectroscopy (LIBS) is regarded as a suitable method for the remote analysis of materials in any phase, even in an environment with high radiation levels. In the present work we used the third harmonic pulse of a Nd:YAG laser for ablation of uranium metal and measured the plasma emission with a fiber-optic spectrometer. The LIBS spectra of uranium metal and their features in different ambient gases (i.e., argon, neon, oxygen, and nitrogen) at atmospheric pressure were studied. Strong continuum spectrum and several hundreds of emission lines from UI and UII were observed. It is found that the continuum spectrum observed in uranium not only comes from bremsstrahlung emission but is also due to the complex spectrum of uranium. The influence of ambient gas and the gas flow rate for ablation of uranium metal was investigated. The experimental results indicate that the intensity of the uranium lines was enhanced in argon and nitrogen. However, the intensity of uranium lines was decreased in oxygen due to the generation of UO and other oxides. The results also showed that the highest intensity of uranium lines were obtained in argon gas with a gas flow rate above 2.5 L/min. The enhanced mechanism in ambient gas and the influence of the gas flow rate were analyzed in this work.

  7. Identification of different kinds of plastics using laser-induced breakdown spectroscopy for waste management.

    PubMed

    Gondal, Mohammed A; Siddiqui, Mohammad N

    2007-11-01

    Laser-Induced Breakdown Spectroscopy (LIBS) was applied for the identification of various kinds of plastics for management and recycling of plastic waste. In order to fingerprint these plastics, a laser-produced plasma emission was recorded for spectral analysis of various kinds of plastics. The plasma was generated by focusing a Nd:YAG laser radiation at wavelength = 1064 nm having laser energy = 40 mJ. The 6 main family of plastics tested are: Low Density Polyethylene (LDPE), High Density Polyethylene (HDPE), Polypropylenes (PP), Polystyrene (PS), Polyethylene Terephthalate (PET) and Polyvinyl chloride (PVC). The capability of this technique is demonstrated by the analysis of the major constituents carbon and hydrogen present in polymer matrices. The LIBS signal intensity measured for carbon and hydrogen was detrimental for the fingerprinting of various kinds of plastics. The C/H line intensity ratio was 1.68, 1.51, 1.42, 1.16, 1.01 and 0.91 for HDPE, LDPE, PS, PP, PET and PVC respectively. The detection limits of carbon and hydrogen were found to be approximately 6 micro g/g by applying 20 laser shots. The unique features of LIBS are: it is a simple, rapid, remote, real-time analysis without sampling requirements. The study demonstrated that LIBS could be applied as a best tool for sorting out different kinds plastics on a fast scale for waste management. The health hazards of different kinds of plastics are also described.

  8. Quantification of rare earth elements using laser-induced breakdown spectroscopy

    DOE PAGES

    Martin, Madhavi; Martin, Rodger C.; Allman, Steve; ...

    2015-10-21

    In this paper, a study of the optical emission as a function of concentration of laser-ablated yttrium (Y) and of six rare earth elements, europium (Eu), gadolinium (Gd), lanthanum (La), praseodymium (Pr), neodymium (Nd), and samarium (Sm), has been evaluated using the laser-induced breakdown spectroscopy (LIBS) technique. Statistical methodology using multivariate analysis has been used to obtain the sampling errors, coefficient of regression, calibration, and cross-validation of measurements as they relate to the LIBS analysis in graphite-matrix pellets that were doped with elements at several concentrations. Each element (in oxide form) was mixed in the graphite matrix in percentages rangingmore » from 1% to 50% by weight and the LIBS spectra obtained for each composition as well as for pure oxide samples. Finally, a single pellet was mixed with all the elements in equal oxide masses to determine if we can identify the elemental peaks in a mixed pellet. This dataset is relevant for future application to studies of fission product content and distribution in irradiated nuclear fuels. These results demonstrate that LIBS technique is inherently well suited for the future challenge of in situ analysis of nuclear materials. Finally, these studies also show that LIBS spectral analysis using statistical methodology can provide quantitative results and suggest an approach in future to the far more challenging multielemental analysis of ~ 20 primary elements in high-burnup nuclear reactor fuel.« less

  9. Quantification of rare earth elements using laser-induced breakdown spectroscopy

    SciTech Connect

    Martin, Madhavi; Martin, Rodger C.; Allman, Steve; Brice, Deanne; Wymore, Ann; Andre, Nicolas

    2015-10-21

    In this paper, a study of the optical emission as a function of concentration of laser-ablated yttrium (Y) and of six rare earth elements, europium (Eu), gadolinium (Gd), lanthanum (La), praseodymium (Pr), neodymium (Nd), and samarium (Sm), has been evaluated using the laser-induced breakdown spectroscopy (LIBS) technique. Statistical methodology using multivariate analysis has been used to obtain the sampling errors, coefficient of regression, calibration, and cross-validation of measurements as they relate to the LIBS analysis in graphite-matrix pellets that were doped with elements at several concentrations. Each element (in oxide form) was mixed in the graphite matrix in percentages ranging from 1% to 50% by weight and the LIBS spectra obtained for each composition as well as for pure oxide samples. Finally, a single pellet was mixed with all the elements in equal oxide masses to determine if we can identify the elemental peaks in a mixed pellet. This dataset is relevant for future application to studies of fission product content and distribution in irradiated nuclear fuels. These results demonstrate that LIBS technique is inherently well suited for the future challenge of in situ analysis of nuclear materials. Finally, these studies also show that LIBS spectral analysis using statistical methodology can provide quantitative results and suggest an approach in future to the far more challenging multielemental analysis of ~ 20 primary elements in high-burnup nuclear reactor fuel.

  10. Study on Cluster Analysis Used with Laser-Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    He, Li'ao; Wang, Qianqian; Zhao, Yu; Liu, Li; Peng, Zhong

    2016-06-01

    Supervised learning methods (eg. PLS-DA, SVM, etc.) have been widely used with laser-induced breakdown spectroscopy (LIBS) to classify materials; however, it may induce a low correct classification rate if a test sample type is not included in the training dataset. Unsupervised cluster analysis methods (hierarchical clustering analysis, K-means clustering analysis, and iterative self-organizing data analysis technique) are investigated in plastics classification based on the line intensities of LIBS emission in this paper. The results of hierarchical clustering analysis using four different similarity measuring methods (single linkage, complete linkage, unweighted pair-group average, and weighted pair-group average) are compared. In K-means clustering analysis, four kinds of choosing initial centers methods are applied in our case and their results are compared. The classification results of hierarchical clustering analysis, K-means clustering analysis, and ISODATA are analyzed. The experiment results demonstrated cluster analysis methods can be applied to plastics discrimination with LIBS. supported by Beijing Natural Science Foundation of China (No. 4132063)

  11. Quantification of rare earth elements using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Martin, Madhavi; Martin, Rodger C.; Allman, Steve; Brice, Deanne; Wymore, Ann; Andre, Nicolas

    2015-12-01

    A study of the optical emission as a function of concentration of laser-ablated yttrium (Y) and of six rare earth elements, europium (Eu), gadolinium (Gd), lanthanum (La), praseodymium (Pr), neodymium (Nd), and samarium (Sm), has been evaluated using the laser-induced breakdown spectroscopy (LIBS) technique. Statistical methodology using multivariate analysis has been used to obtain the sampling errors, coefficient of regression, calibration, and cross-validation of measurements as they relate to the LIBS analysis in graphite-matrix pellets that were doped with elements at several concentrations. Each element (in oxide form) was mixed in the graphite matrix in percentages ranging from 1% to 50% by weight and the LIBS spectra obtained for each composition as well as for pure oxide samples. Finally, a single pellet was mixed with all the elements in equal oxide masses to determine if we can identify the elemental peaks in a mixed pellet. This dataset is relevant for future application to studies of fission product content and distribution in irradiated nuclear fuels. These results demonstrate that LIBS technique is inherently well suited for the future challenge of in situ analysis of nuclear materials. These studies also show that LIBS spectral analysis using statistical methodology can provide quantitative results and suggest an approach in future to the far more challenging multielemental analysis of ~ 20 primary elements in high-burnup nuclear reactor fuel.

  12. High-speed identification of polymers by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Moench, Ingo; Sattmann, R.; Noll, Reinhard

    1997-09-01

    One way to reduce the increasing waste streams of used polymers is an efficient material recycling. This requires a technology for the separation of polymer mixtures into different material fractions. For this purpose the principal suitability of laser-induced breakdown spectroscopy was investigated. Plasma emission spectra of LDPE, HDPE, PP, PET, PVC, and PS were studied. Basic investigations were performed in order to assess the influence of different measurement parameters and to optimize the analytical performance. More than 140 spectra lines are identified, which can be related to C, H, O, N, C2, CN and CH from the bulk material and the atmosphere and to Al, Ca, Cu, Fe, Mg, Sn, Ti and Zn from additives of the polymer. Estimated detection limits of down to 2 ppm are achieved for metallic additives. Different artificial neural networks were tested for the evaluation of the spectra. PET and PVC can be identified unambiguously detecting the characteristic elements oxygen and chlorine. For plastics, which differ in their contents of inorganic additives, the line emission of additives can be used as `fingerprints' of the plastics. In this way identification accuracies of 87% to 100% for PE, PP, PET and PVC are achieved.

  13. Studying the enhanced phytoremediation of lead contaminated soils via laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Hassan, M.; Sighicelli, M.; Lai, A.; Colao, F.; Ahmed, A. H. Hanafy; Fantoni, R.; Harith, M. A.

    2008-10-01

    Phytoremediation popularly known as 'green clean technology' is a new promising technology used for toxic contaminants removal from the environment such as heavy metals (HMs), adopting suitable plants. This concept is increasingly being adopted as it is a cost effective and environmentally friendly alternative to traditional methods of treatment. This study was focused on using scented geranium, Pelargonium zonale, as accumulator or hyperaccumulator plant for natural lead extraction from artificially contaminated soil with different Pb concentrations (0, 2000, 5000, 7000 ppm). Utilization of EDTA as a chelator, that would permit higher metal availability and uptake by the tested plants roots, was also tested. Laser Induced Breakdown Spectroscopy (LIBS) was used to follow up Pb concentrations in both soil and plant green harvestable parts known as shoots, before, during and after lead addition in soil. LIBS measurements were conducted in a microdestructive way by focusing a high energy Nd:YAG laser, emitting at 1064 nm, on plant and soil samples previously dried, homogenized and pressed in pellets. The emitted LIBS spectra were acquired by a gated CCD after dispersion on a monochromator and analyzed to retrieve relative concentrations of the selected HM both in the soil and on plants as a function of the time after doping and eventual chelator addition. EDTA was found to enhance Pb uptake from the soil which increased with time, good correlation was found between LIBS and ICP-OES results of plant tissues spectrochemical analysis.

  14. A compact field-portable double-pulse laser system to enhance laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Shuo; Liu, Lei; Yan, Aidong; Huang, Sheng; Huang, Xi; Chen, Rongzhang; Lu, Yongfeng; Chen, Kevin

    2017-02-01

    This paper reports the development of a compact double-pulse laser system to enhance laser induced breakdown spectroscopy (LIBS) for field applications. Pumped by high-power vertical-surface emitting lasers, the laser system that produces 16 ns pulse at 12 mJ/pulse with total weight less than 10 kg is developed. The inter-pulse delay can be adjusted from 0 μ s with 0.5 μ s increment. Several LIBS experiments were carried out on NIST standard aluminum alloy samples. Comparing with the single-pulse LIBS, up to 9 times enhancement in atomic emission line was achieved with continuum background emission reduced by 70%. This has led to up to 10 times improvement in the limit of detection. Signal stability was also improved by 128% indicating that a more robust and accurate LIBS measurement can be achieved using a compact double-pulse laser system. This paper presents a viable and field deployable laser tool to dramatically improve the sensitivity and applicability of LIBS for a wide array of applications.

  15. A Novel and Effective Multivariate Method for Compositional Analysis using Laser Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, W.; Ayhan, B.; Kwan, C.; Qi, H.; Vance, S.

    2014-03-01

    Compositional analysis is important to interrogate spectral samples for direct analysis of materials in agriculture, environment and archaeology, etc. In this paper, multi-variate analysis (MVA) techniques are coupled with laser induced breakdown spectroscopy (LIBS) to estimate quantitative elemental compositions and determine the type of the sample. In particular, we present a new multivariate analysis method for composition analysis, referred to as "spectral unmixing". The LIBS spectrum of a testing sample is considered as a linear mixture with more than one constituent signatures that correspond to various chemical elements. The signature library is derived from regression analysis using training samples or is manually set up with the information from an elemental LIBS spectral database. A calibration step is used to make all the signatures in library to be homogeneous with the testing sample so as to avoid inhomogeneous signatures that might be caused by different sampling conditions. To demonstrate the feasibility of the proposed method, we compare it with the traditional partial least squares (PLS) method and the univariate method using a standard soil data set with elemental concentration measured a priori. The experimental results show that the proposed method holds great potential for reliable and effective elemental concentration estimation.

  16. Optimization of liquid jet system for laser-induced breakdown spectroscopy analysis.

    PubMed

    Skočovská, Katarína; Novotný, Jan; Prochazka, David; Pořízka, Pavel; Novotný, Karel; Kaiser, Jozef

    2016-04-01

    A complex optimization of geometrical and temporal parameters of a jet system (developed in Laser-induced breakdown spectroscopy (LIBS) laboratory of Brno University of Technology) for direct elemental analysis of samples in a liquid state of matter using LIBS was carried out. First, the peristaltic pump was synchronized with the flashlamp of the ablation laser, which reduced variation of the ablated sample amount. Also, the fluctuation of the laser ray angle incident on the jet surface was diminished. Such synchronization reduced signal standard deviations and thus increased repeatability of the measurements. Then, laser energy and distance of the focusing lens from the sample were optimized. The gate delay time and the gate width were optimized for single pulse (SP) experiments; the gate delay time and the inter-pulse delay were optimized for the use of double pulse (DP) variant. Results were assessed according to the highest signal to noise ratios and the lowest relative standard deviations of the signal. The sensitivity of the single pulse and the double pulse LIBS for the detection of heavy metals traces, copper (Cu i at 324.754 nm) and lead (Pb i at 405.781 nm), in aqueous solution of copper (ii) sulfate and lead (ii) acetate, was estimated in terms of limits of detection (LODs). As a result, sensitivity improvement of DP LIBS system was observed, the LOD of Cu obtained with DP was calculated 40% lower than LOD gained from SP technique.

  17. Ash analysis of flour sample by using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Bilge, Gonca; Sezer, Banu; Eseller, Kemal Efe; Berberoglu, Halil; Koksel, Hamit; Boyaci, Ismail Hakki

    2016-10-01

    Ash content is a measure of total mineral content in flour. It is also an important quality parameter in terms of nutritional labeling as well as processing properties of various cereal products. However, laboratory analysis takes a long time (5-6 h) and results in considerable waste of energy. Therefore, the aim of the study was to develop a new method for ash analysis in wheat flour by using laser induced breakdown spectroscopy (LIBS). LIBS is a multi-elemental, quick and simple spectroscopic method. Unlike basic ash analysis method, it has the potential to analyze a sample in a considerably short time. In the study, wheat flours with different ash contents were analyzed using LIBS and the spectra were evaluated with partial least squares (PLS) method. The results were correlated with the ones taken from standard ash analysis method. Calibration graph showed good linearity with the ash content between 0.48 and 1.39%, and 0.992 coefficient of determination (R2). Limit of detection for ash analysis was calculated as 0.026%. The results indicated that LIBS is a promising and reliable method with high sensitivity for routine ash analysis in flour samples.

  18. On the measurement of laser-induced plasma breakdown thresholds

    SciTech Connect

    Brieschenk, Stefan; Kleine, Harald; O'Byrne, Sean

    2013-09-07

    The breakdown threshold of a gas exposed to intense laser-radiation is a function of gas and laser properties. Breakdown thresholds reported in the literature often vary greatly and these differences can partially be traced back to the method that is typically used to determine breakdown thresholds. This paper discusses the traditional method used to determine breakdown thresholds and the potential errors that can arise using this approach, and presents an alternative method which can yield more accurate data especially when determining breakdown thresholds as functions of gas pressure.

  19. Laser-induced breakdown spectroscopy of scaled steel samples taken from continuous casting blooms

    NASA Astrophysics Data System (ADS)

    Meinhardt, Christoph; Sturm, Volker; Fleige, Rüdiger; Fricke-Begemann, Cord; Noll, Reinhard

    2016-09-01

    To analyse continuous casting steel blooms a removal of non-representative surface layers is required prior to the analysis. In this work, an optimized process is developed to ablate such layers and to analyse the bulk material underneath with laser-induced breakdown spectroscopy (LIBS). A high ablation rate is crucial since the time slot for an inline analysis is limited, e.g. to <1 min. To get a deeper understanding of the material structure between bulk material and surface, samples are sawed out of steel blooms. The samples are analysed in lab scale experiments including LIBS measurements and cross-section polish methods. These studies show that the surface layers may consist both of oxides and metallic layers and typically have thicknesses from 200 μm to 600 μm each. The ablation behaviour of the oxide differs significantly from that of the metallic layers. An operation scheme for inline material identification is worked out to perform ablation and analysis with a single laser source. During the ablation phase and the subsequent measurement phase the laser source is operated with individually tailored parameters. A total penetration depth exceeding 1 mm in steel can be achieved within 20 s of ablation. Thereby the influence of non-representative surface layers on the following LIBS measurement can be suppressed to a large extent. For chromium, relative root mean square errors of predictions of less than 13% were achieved on high alloy samples with up to 16 m.-% Cr and on low alloy samples with Cr contents below 2 m.-%.

  20. Laser-induced optical breakdown spectroscopy of polymer materials based on evaluation of molecular emission bands

    NASA Astrophysics Data System (ADS)

    Trautner, Stefan; Jasik, Juraj; Parigger, Christian G.; Pedarnig, Johannes D.; Spendelhofer, Wolfgang; Lackner, Johannes; Veis, Pavel; Heitz, Johannes

    2017-03-01

    Laser-induced breakdown spectroscopy (LIBS) for composition analysis of polymer materials results in optical spectra containing atomic and ionic emission lines as well as molecular emission bands. In the present work, the molecular bands are analyzed to obtain spectroscopic information about the plasma state in an effort to quantify the content of different elements in the polymers. Polyethylene (PE) and a rubber material from tire production are investigated employing 157 nm F2 laser and 532 nm Nd:YAG laser ablation in nitrogen and argon gas background or in air. The optical detection reaches from ultraviolet (UV) over the visible (VIS) to the near infrared (NIR) spectral range. In the UV/VIS range, intense molecular emissions, C2 Swan and CN violet bands, are measured with an Echelle spectrometer equipped with an intensified CCD camera. The measured molecular emission spectra can be fitted by vibrational-rotational transitions by open access programs and data sets with good agreement between measured and fitted spectra. The fits allow determining vibrational-rotational temperatures. A comparison to electronic temperatures Te derived earlier from atomic carbon vacuum-UV (VUV) emission lines show differences, which can be related to different locations of the atomic and molecular species in the expanding plasma plume. In the NIR spectral region, we also observe the CN red bands with a conventional CDD Czerny Turner spectrometer. The emission of the three strong atomic sulfur lines between 920 and 925 nm is overlapped by these bands. Fitting of the CN red bands allows a separation of both spectral contributions. This makes a quantitative evaluation of sulfur contents in the start material in the order of 1 wt% feasible.

  1. Laser-induced optical breakdown spectroscopy of polymer materials based on evaluation of molecular emission bands.

    PubMed

    Trautner, Stefan; Jasik, Juraj; Parigger, Christian G; Pedarnig, Johannes D; Spendelhofer, Wolfgang; Lackner, Johannes; Veis, Pavel; Heitz, Johannes

    2017-03-05

    Laser-induced breakdown spectroscopy (LIBS) for composition analysis of polymer materials results in optical spectra containing atomic and ionic emission lines as well as molecular emission bands. In the present work, the molecular bands are analyzed to obtain spectroscopic information about the plasma state in an effort to quantify the content of different elements in the polymers. Polyethylene (PE) and a rubber material from tire production are investigated employing 157nmF2 laser and 532nm Nd:YAG laser ablation in nitrogen and argon gas background or in air. The optical detection reaches from ultraviolet (UV) over the visible (VIS) to the near infrared (NIR) spectral range. In the UV/VIS range, intense molecular emissions, C2 Swan and CN violet bands, are measured with an Echelle spectrometer equipped with an intensified CCD camera. The measured molecular emission spectra can be fitted by vibrational-rotational transitions by open access programs and data sets with good agreement between measured and fitted spectra. The fits allow determining vibrational-rotational temperatures. A comparison to electronic temperatures Te derived earlier from atomic carbon vacuum-UV (VUV) emission lines show differences, which can be related to different locations of the atomic and molecular species in the expanding plasma plume. In the NIR spectral region, we also observe the CN red bands with a conventional CDD Czerny Turner spectrometer. The emission of the three strong atomic sulfur lines between 920 and 925nm is overlapped by these bands. Fitting of the CN red bands allows a separation of both spectral contributions. This makes a quantitative evaluation of sulfur contents in the start material in the order of 1wt% feasible.

  2. Parameters Optimization of Laser-Induced Breakdown Spectroscopy Experimental Setup for the Case with Beam Expander

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Zhang, Lei; Fan, Juanjuan; Li, Yufang; Gong, Yao; Dong, Lei; Ma, Weiguang; Yin, Wangbao; Jia, Suotang

    2015-11-01

    Improvement of measurement precision and repeatability is one of the issues currently faced by the laser-induced breakdown spectroscopy (LIBS) technique, which is expected to be capable of precise and accurate quantitative analysis. It was found that there was great potential to improve the signal quality and repeatability by reducing the laser beam divergence angle using a suitable beam expander (BE). In the present work, the influences of several experimental parameters for the case with BE are studied in order to optimize the analytical performances: the signal to noise ratio (SNR) and the relative standard deviation (RSD). We demonstrate that by selecting the optimal experimental parameters, the BE-included LIBS setup can give higher SNR and lower RSD values of the line intensity normalized by the whole spectrum area. For validation purposes, support vector machine (SVM) regression combined with principal component analysis (PCA) was used to establish a calibration model to realize the quantitative analysis of the ash content. Good agreement has been found between the laboratory measurement results from the LIBS method and those from the traditional method. The measurement accuracy presented here for ash content analysis is estimated to be 0.31%, while the average relative error is 2.36%. supported by the 973 Program of China (No. 2012CB921603), National Natural Science Foundation of China (Nos. 61475093, 61127017, 61178009, 61108030, 61378047, 61275213, 61475093, and 61205216), the National Key Technology R&D Program of China (No. 2013BAC14B01), the Shanxi Natural Science Foundation (Nos. 2013021004-1 and 2012021022-1), the Shanxi Scholarship Council of China (Nos. 2013-011 and 2013-01), and the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi, China

  3. Hydrogen isotope detection in metal matrix using double-pulse laser-induced breakdown-spectroscopy

    NASA Astrophysics Data System (ADS)

    Fantoni, Roberta; Almaviva, Salvatore; Caneve, Luisa; Colao, Francesco; Maddaluno, Giorgio; Gasior, Pawel; Kubkowska, Monika

    2017-03-01

    The amount of hydrogen isotopes retained in plasma facing components (PFCs) and the determination of their surface layer composition are among the most critical issues for the next generation fusion device, ITER, under construction in Cadarache (France). Laser Induced Breakdown Spectroscopy (LIBS) is currently under evaluation as a technique suitable for quantitative, in situ, non-invasive measurements of these quantities. In order to detect traces of contaminant in metallic samples and improve its limit of detection (LOD), the Double Pulse LIBS (DP-LIBS) variant can be used instead of the standard Single Pulse LIBS (SP-LIBS), as it has been proven by several authors that DP-LIBS can considerably raise the analytical performances of the technique. In this work Mo samples coated with a 1.5-1.8 μm thick W-Al mixed layer, contaminated with co-deposited deuterium (D) were measured by SP- and DP-LIBS under vacuum (p 5 × 10- 5 mbar), with an experimental set-up simulating conditions that can be found in a real fusion device between plasma discharges. A partial Calibration Free procedure (pCF) was applied to the LIBS data in order to retrieve the relative concentration of W and Al in the mixed layer. The amount of deuterium was then inferred by using tungsten as internal standard, accounting for the intensity ratio between the Dα line and nearby W I lines. The results are in satisfactory agreement with those obtained from preliminary Ion Beam Analysis measurements performed immediately after the specimen's realization.

  4. Unreported Emission Lines of Rb, Ce, La, Sr, Y, Zr, Pb and Se Detected Using Laser-Induced Breakdown Spectroscopy

    NASA Technical Reports Server (NTRS)

    Lepore, K. H.; Mackie, J.; Dyar, M. D.; Fassett, C. I.

    2017-01-01

    Information on emission lines for major and minor elements is readily available from the National Institute of Standards and Technology (NIST) as part of the Atomic Spectra Database. However, tabulated emission lines are scarce for some minor elements and the wavelength ranges presented on the NIST database are limited to those included in existing studies. Previous work concerning minor element calibration curves measured using laser-induced break-down spectroscopy found evidence of Zn emission lines that were not documented on the NIST database. In this study, rock powders were doped with Rb, Ce, La, Sr, Y, Zr, Pb and Se in concentrations ranging from 10 percent to 10 parts per million. The difference between normalized spectra collected on samples containing 10 percent dopant and those containing only 10 parts per million were used to identify all emission lines that can be detected using LIBS (Laser-Induced Breakdown Spectroscopy) in a ChemCam-like configuration at the Mount Holyoke College LIBS facility. These emission spectra provide evidence of many previously undocumented emission lines for the elements measured here.

  5. [The auto-focusing remote laser-induced breakdown spectroscopy system].

    PubMed

    Han, Zhen-yu; Pan, Cong-yuan; An, Ning; Du, Xue-wei; Yu, Yun-si; Du, Liang-liang; Wang, Sheng-bo; Wang, Qiu-ping

    2015-02-01

    The present paper presents an auto-focus laser-induced breakdown spectroscopy (LIBS) remote measuring system. This system contains a Schwarzschild telescope, which consists of a convex mirror and a concave mirror. The two spherical mirrors are coaxially placed. The convex mirror is mounted on a motorized linear translation stage. With this motorized linear translation stage, the convex mirror can move along the optical axis to change the spacing between the convex mirror and the concave mirror. Therefore the focal length can be adjusted to focus the laser on samples at different distances and collect the plasma spectra. The advantages of the telescope system include, firstly, the light path of laser focusing and spectra signal collection is the same, which make it easier for mounting and collimation; secondly, the light path of the telescope uses total reflection type, which is fit for the detection in ultra-violate region; finally, the telescope consists of only two spherical mirrors which are relatively easier to manufacture. Within the translation range of the motorized linear translation stage, the focal length of the telescope in this paper can be adjusted from 1.5 to 3.6 m. The diameter of the focusing spot varies from 0.5 to 1.0 mm. Utilizing this telescope system, LIBS experiments were conducted using copper sample. And the characteristic lines of Cu element (Cu I 223.01 nm, Cu I 224.43 nm) obtained are used for the auto focusing. By investigating the relation of the area of spectral lines covered and the spacing between the mirrors, the optimal laser focusing location was obtained. The LIBS experiment results show that the system functions well, fulfilling the demand of remote ablation of sample and LIBS spectral measuring, and the telescope is able to auto-focus the laser on samples at different position to perform remote LIBS experiment.

  6. A PLS model based on dominant factor for coal analysis using laser-induced breakdown spectroscopy.

    PubMed

    Feng, Jie; Wang, Zhe; West, Logan; Li, Zheng; Ni, Weidou

    2011-07-01

    Thirty-three bituminous coal samples were utilized to test the application of laser-induced breakdown spectroscopy technique for coal elemental concentration measurement in the air. The heterogeneity of the samples and the pyrolysis or combustion of coal during the laser-sample interaction processes were analyzed to be the main reason for large fluctuation of detected spectra and low calibration quality. Compared with the generally applied normalization with the whole spectral area, normalization with segmental spectral area was found to largely improve the measurement precision and accuracy. The concentrations of major element C in coal were determined by a novel partial least squares (PLS) model based on dominant factor. Dominant C concentration information was taken from the carbon characteristic line intensity since it contains the most-related information, even if not accurately. This dominant factor model was further improved by inducting non-linear relation by partially modeling the inter-element interference effect. The residuals were further corrected by PLS with the full spectrum information. With the physical-principle-based dominant factor to calculate the main quantitative information and to partially explicitly include the non-linear relation, the proposed PLS model avoids the overuse of unrelated noise to some extent and becomes more robust over a wider C concentration range. Results show that RMSEP in the proposed PLS model decreased to 4.47% from 5.52% for the conventional PLS with full spectrum input, while R(2) remained as high as 0.999, and RMSEC&P was reduced from 3.60% to 2.92%, showing the overall improvement of the proposed PLS model.

  7. Multi-elemental surface mapping and analysis of carbonaceous shale by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Xu, Tao; Liu, Jie; Shi, Qi; He, Yi; Niu, Guanghui; Duan, Yixiang

    2016-01-01

    Gas shale is one of the important unconventional hydrocarbon source rocks, whose composition, such as mineral components and redox sensitive trace elements, has been proved as important geochemical proxies playing essential roles in indicating the gas potential and gas productivity in recent geological researches. Fast and accurate measurements for the shale composition, especially those with spatial resolution, will reveal rich information for the understanding and evaluation of gas shale reservoirs. In this paper, we demonstrated the potentiality as well as feasibility of laser-induced breakdown spectroscopy as an effective technique to perform spectrochemical analysis for shale samples. In case of the bulk analysis of pressed shale pellet, spectral analysis of the plasma emission revealed high sensitivity of LIBS for major, minor and even trace elements. More than 356 lines emitted by 19 different elements can be found. Among these species, redox sensitive trace elements such as V, Cr, and Ni were detected with high signal-to-ratios. Two-dimensional surface micro-analysis for the concerned major or minor elements with strong emissions was then applied to the smoothed shale slab. Local thermodynamic equilibrium for the plasma was first verified with a line profile point-by-point on the sample surface, the matrix effect was then assessed as negligible by the extracted electron density and temperature of the plasmas induced at each position on the same profile. Concentration mappings for the major elements of Si, Al, Fe, Ca, Mg, Na and K were finally constructed with their measured relative variations of line emission intensities. The distribution and correlations of these elements in concentration may reflect changes of shale mineral components with respected to the variations of the depositional environments and provide an important clue in identifying sedimentary processes when combined with other geological or geochemical evidences. These results well

  8. Detection of visually unrecognizable braking tracks using Laser-Induced Breakdown Spectroscopy, a feasibility study

    NASA Astrophysics Data System (ADS)

    Prochazka, David; Bilík, Martin; Prochazková, Petra; Brada, Michal; Klus, Jakub; Pořízka, Pavel; Novotný, Jan; Novotný, Karel; Ticová, Barbora; Bradáč, Albert; Semela, Marek; Kaiser, Jozef

    2016-04-01

    Identification of the position, length and mainly beginning of a braking track has proven to be essential for determination of causes of a road traffic accident. With the introduction of modern safety braking systems and assistance systems such as the Anti-lock Braking System (ABS) or Electronic Stability Control (ESC), the visual identification of braking tracks that has been used up until the present is proving to be rather complicated or even impossible. This paper focuses on identification of braking tracks using a spectrochemical analysis of the road surface. Laser-Induced Breakdown Spectroscopy (LIBS) was selected as a method suitable for fast in-situ element detection. In the course of detailed observations of braking tracks it was determined that they consist of small particles of tire treads that are caught in intrusions in the road surface. As regards detection of the "dust" resulting from wear and tear of tire treads in the environment, organic zinc was selected as the identification element in the past. The content of zinc in tire treads has been seen to differ with regard to various sources and tire types; however, the arithmetic mean and modus of these values are approximately 1% by weight. For in-situ measurements of actual braking tracks a mobile LIBS device equipped with a special module was used. Several measurements were performed for 3 different cars and tire types respectively which slowed down with full braking power. Moreover, the influence of different initial speed, vehicle mass and braking track length on detected signal is discussed here.

  9. Rapid Analysis of Inorganic Species in Herbaceous Materials Using Laser-Induced Breakdown Spectroscopy

    PubMed Central

    Emerson, Rachel M.

    2015-01-01

    Abstract Inorganic compounds in biomass, often referred to as ash, are known to be problematic in the thermochemical conversion of biomass to bio-oil or syngas and, ultimately, hydrocarbon fuels because they negatively influence reaction pathways, contribute to fouling and corrosion, poison catalysts, and impact waste streams. The most common ash-analysis methods, such as inductively coupled plasma-optical emission spectrometry/mass spectrometry (ICP-OES/MS), require considerable time and expensive reagents. Laser-induced breakdown spectroscopy (LIBS) is emerging as a technique for rapid analysis of the inorganic constituents in a wide range of biomass materials. This study compares analytical results using LIBS data to results obtained from three separate ICP-OES/MS methods for 12 samples, including six standard reference materials. Analyzed elements include aluminum, calcium, iron, magnesium, manganese, phosphorus, potassium, sodium, and silicon, and results show that concentrations can be measured with an uncertainty of approximately 100 parts per million using univariate calibration models and relatively few calibration samples. These results indicate that the accuracy of LIBS is comparable to that of ICP-OES methods and indicate that some acid-digestion methods for ICP-OES may not be reliable for Na and Al. These results also demonstrate that germanium can be used as an internal standard to improve the reliability and accuracy of measuring many elements of interest, and that LIBS can be used for rapid determination of total ash in biomass samples. Key benefits of LIBS include little sample preparation, no reagent consumption, and the generation of meaningful analytical data instantaneously. PMID:26733765

  10. Application of laser induced breakdown spectroscopy (LIBS) instrumentation for international safeguards

    SciTech Connect

    Barefield Ii, James E; Clegg, Samuel M; Lopez, Leon N; Le, Loan A; Veirs, D Kirk; Browne, Mike

    2010-01-01

    Advanced methodologies and improvements to current measurements techniques are needed to strengthen the effectiveness and efficiency of international safeguards. This need was recognized and discussed at a Technical Meeting on 'The Application of Laser Spectrometry Techniques in IAEA Safeguards' held at IAEA headquarters (September 2006). One of the principal recommendations from that meeting was the need to pursue the development of novel complementary access instrumentation based on Laser Induced Breakdown Spectroscopy (UBS) for the detection of gaseous and solid signatures and indicators of nuclear fuel cycle processes and associated materials'. Pursuant to this recommendation the Department of Safeguards (SG) under the Division of Technical Support (SGTS) convened the 'Experts and Users Advisory Meeting on Laser Induced Breakdown Spectroscopy (LIBS) for Safeguards Applications' also held at IAEA headquarters (July 2008). This meeting was attended by 12 LlBS experts from the Czech Republic, the European Commission, France, the Republic of South Korea, the United States of America, Germany, the United Kingdom of Great Britain, Canada, and Northern Ireland. Following a presentation of the needs of the IAEA inspectors, the LIBS experts agreed that needs as presented could be partially or fully fulfilled using LIBS instrumentation. Inspectors needs were grouped into the following broad categories: (1) Improvements to in-field measurements/environmental sampling; (2) Monitoring status of activities in Hot Cells; (3) Verify status of activity at a declared facility via process monitoring; and (4) Need for pre-screening of environmental samples before analysis. The primary tool employed by the IAEA to detect undeclared processes and activities at special nuclear material facilities and sites is environmental sampling. One of the objectives of the Next Generation Safeguards Initiative (NGSI) Program Plan calls for the development of advanced tools and methodologies to

  11. Algorithm-Independent Pattern Classification Techniques for Improved Broadband Chemometrics for Laser-Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Dunsin, Kehinde Samuel

    Laser-induced breakdown spectroscopy (LIBS) has seen significant attention in recent years, in part because of several unique characteristics that distinguish it from other techniques for atomic emission spectroscopy. As a technology capable of fielded, portable deployment, it is possible to take analytical chemistry to the field, which may serve in a variety of applications such as industrial monitoring, geological surveys and hazard detection. The use of LIBS in a variety of material applications has been on the rise in recent years, however, in order for LIBS to successfully transition into the field, the sensor must be paired with appropriate algorithm for accurate and robust processing. In this research dissertation, the result of testing two classification algorithms on eight LIBS datasets is reported. The results suggest that the standard cross validation techniques may not accurately estimate generalization performance and a proposed "Leave-One-Sample-Out (LOSO)" approach to experimental design for LIBS classifier validation may provide a more robust measure of performance. In another study focused on building a robust multi class classifier for LIBS, three modifications of the partial least square discriminant analysis (PLSDA) classifier were used to test six distinct LIBS datasets with different number of classes. The results show that the pairwise PLSDA classification scheme performed better than the traditional M-ary PLSDA classification scheme and the One-against-all PLSDA classification scheme especially on datasets with large number of classes. The presence of contaminants in a LIBS spectral measurement can significantly degrade the generalization performance of classifier for LIBS. A proposed technique known as "Localized In-Sample Tunable Extreme-value Remover (LISTER)" is capable of removing these contaminants in a multivariate data, specifically LIBS spectral measurement. Removing the contaminated observations from the "contaminated" LIBS

  12. Quantitative analysis of oxide materials by laser-induced breakdown spectroscopy with argon as an internal standard

    NASA Astrophysics Data System (ADS)

    Lasheras, R. J.; Bello-Gálvez, C.; Anzano, J. M.

    2013-04-01

    Laser-induced breakdown spectroscopy (LIBS) is demonstrated as a quantitative technique for geochemical analysis. This study demonstrates the applicability of LIBS to multielemental analysis of minerals using argon as an internal standard. Laser-induced breakdown spectroscopy has been applied to measure elements in oxide form. In the present study, the contents of several oxides, such as Fe2O3, CaO and MgO, in geological samples from the Tierga Mine (Zaragoza, Spain) were analyzed by LIBS. An argon environment was used to eliminate interference from air at atmospheric pressure. Furthermore, argon was used as an internal standard. The result was enhanced signal and enhanced linearity of the calibration curves. The Fe2O3, CaO and MgO concentrations determined by LIBS were compared with the results obtained using another analytical technique, inductively coupled plasma optical emission spectrometry (ICP-OES). The concentrations found using LIBS were in good agreement with the values obtained by ICP-OES.

  13. Experimental and computational investigation of confined laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Yun; Yuan, Hao; Fu, Yangting; Wang, Zhe

    2016-12-01

    This paper presents an experimental and computational study on laser-induced breakdown spectroscopy (LIBS) for both unconfined flat surface and confined cavity cases. An integrated LIBS system is employed to acquire the shockwave and plasma plume images. The computational model consists of the mass, momentum, and energy conservation equations, which are necessary to describe shockwave behaviors. The numerical predictions are validated against shadowgraphic images in terms of shockwave expansion and reflection. The three-dimensional (3D) shockwave morphology and velocity fields are displayed and discussed.

  14. Impurity diagnosis of a KSTAR graphite divertor tile using laser induced breakdown spectroscopy technique

    NASA Astrophysics Data System (ADS)

    Kim, Minju; Cho, Min Sang; Cho, Byoung Ick

    2017-04-01

    Laser induced breakdown spectroscopy (LIBS) has been tested to diagnose impurity elements on a Korea Superconducting Tokamak Advanced Research (KSTAR) divertor tile. Spectral lines of various impurity elements such as iron, chromium, and nickel were detected from the divertor surface. The variation of spectra with consecutive laser pulses demonstrates the potential for depth profiling analysis for the deposited impurity layer. The LIBS plasma parameters have been qualitatively determined from analysis of the relative line intensities and linewidths for each element. The validity of this analysis has been checked with atomic spectral simulations.

  15. Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Baudelet, Matthieu; Yu, Jin; Bossu, Myriam; Jovelet, Julien; Wolf, Jean-Pierre; Amodeo, Tanguy; Fréjafon, Emeric; Laloi, Patrick

    2006-10-01

    Using femtosecond laser-induced breakdown spectroscopy, the authors have analyzed five different species of bacterium. Line emissions from six trace mineral elements, Na, Mg, P, K, Ca, and Fe, have been clearly detected. Their intensities correspond to relative concentrations of these elements contained in the analyzed samples. The authors demonstrate that the concentration profile of trace elements allows unambiguous discrimination of different bacteria. Quantitative differentiation has been made by representing bacteria in a six-dimension hyperspace with each of its axis representing a detected trace element. In such hyperspace, representative points of different species of bacterium are gathered in different and distinct volumes.

  16. Calibrating the ChemCam laser-induced breakdown spectroscopy instrument for carbonate minerals on Mars

    SciTech Connect

    Lanza, Nina L.; Wiens, Roger C.; Clegg, Samuel M.; Ollila, Ann M.; Humphries, Seth D.; Newsom, Horton E.; Barefield, James E.

    2010-05-01

    The ChemCam instrument suite onboard the NASA Mars Science Laboratory rover includes the first laser-induced breakdown spectroscopy (LIBS) instrument for extraterrestrial applications. Here we examine carbonate minerals in a simulated martian environment to better understand the LIBS signature of these materials on Mars. Both chemical composition and rock type are determined using multivariate analysis techniques. Composition is confirmed using scanning electron microscopy. Our results show that ChemCam can recognize and differentiate between different types of carbonate materials on Mars.

  17. Laser-induced breakdown spectroscopy at high temperatures in industrial boilers and furnaces.

    PubMed

    Blevins, Linda G; Shaddix, Christopher R; Sickafoose, Shane M; Walsh, Peter M

    2003-10-20

    Laser-induced breakdown spectroscopy (LIBS) was applied (1) near the superheater of an electric power generation boiler burning biomass, coal, or both; (2) at the exit of a glass-melting furnace burning natural gas and oxygen; and (3) near the nose arches of two paper mill recovery boilers burning black liquor. Difficulties associated with the high temperatures and high particle loadings in these environments were surmounted by use of novel LIBS probes. Echelle and linear spectrometers coupled to intensified CCD cameras were used individually and sometimes simultaneously. Elements detected include Na, K, Ca, Mg, C, B, Si, Mn, Al, Fe, Rb, Cl, and Ti.

  18. Laser induced breakdown spectroscopy for heavy metal detection in a sand matrix

    NASA Astrophysics Data System (ADS)

    Michel, Anna P. M.; Sonnichsen, Frederick

    2016-11-01

    Sediments in many locations, including harbors and coastal areas, can become contaminated and polluted, for example, from anthropogenic inputs, shipping, human activities, and poor waste management. Sampling followed by laboratory analysis has been the traditional methodology for such analysis. In order to develop rapid methodologies for field analysis of sediment samples, especially for metals analyses, we look to Laser Induced Breakdown Spectroscopy as an option. Here through laboratory experiments, we demonstrate that dry sand samples can be rapidly analyzed for the detection of the heavy metals chromium, zinc, lead, and copper. We also demonstrate that cadmium and nickel are detectable in sand matrices at high concentrations.

  19. Laser-induced breakdown spectroscopy determination of toxic metals in fresh fish.

    PubMed

    Ponce, L V; Flores, T; Sosa-Saldaña, M; Alvira, F C; Bilmes, G M

    2016-01-10

    A method based on laser induced breakdown spectroscopy (LIBS) for monitoring lead and copper accumulation in edible fish, particularly "tilapia del Nilo" (Oreochromis niloticus) is presented. The capability of this analytical method is compared with results obtained by atomic absorption spectrometry. Detection limits by LIBS are 25 parts per million (ppm) for Pb and 100 ppm for Cu, values that are below the maximum permissible levels of some international standards. Application of LIBS detection allows the development of portable instruments for contamination control of edible fish.

  20. Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection

    NASA Astrophysics Data System (ADS)

    Gottfried, Jennifer L.; De Lucia, Frank C.; Munson, Chase A.; Miziolek, Andrzej W.

    2007-12-01

    We have developed a double-pulse standoff laser-induced breakdown spectroscopy (ST-LIBS) system capable of detecting a variety of hazardous materials at tens of meters. The use of a double-pulse laser improves the sensitivity and selectivity of ST-LIBS, especially for the detection of energetic materials. In addition to various metallic and plastic materials, the system has been used to detect bulk explosives RDX and Composition-B, explosive residues, biological species such as the anthrax surrogate Bacillus subtilis, and chemical warfare simulants at 20 m. We have also demonstrated the discrimination of explosive residues from various interferents on an aluminum substrate.

  1. Non-gated laser-induced breakdown spectroscopy in bulk water by position-selective detection

    SciTech Connect

    Tian, Ye; Xue, Boyang; Song, Jiaojian; Lu, Yuan; Zheng, Ronger

    2015-09-14

    Temporal and spatial evolutions of the laser-induced plasma in bulk water are investigated using fast imaging and emission spectroscopic techniques. By tightly focusing a single-pulse nanosecond Nd: YAG laser beam into the bulk water, we generate a strongly expanded plasma with high reproducibility. Such a strong expanding plasma enables us to obtain well-resolved spectral lines by means of position-selective detection; hence, the time-gated detector becomes abdicable. The present results suggest not only a possible non-gated approach for underwater laser-induced breakdown spectroscopy but also give an insight into the plasma generation and expansion in bulk water.

  2. Application of Handheld Laser-Induced Breakdown Spectroscopy (LIBS) to Geochemical Analysis.

    PubMed

    Connors, Brendan; Somers, Andrew; Day, David

    2016-05-01

    While laser-induced breakdown spectroscopy (LIBS) has been in use for decades, only within the last two years has technology progressed to the point of enabling true handheld, self-contained instruments. Several instruments are now commercially available with a range of capabilities and features. In this paper, the SciAps Z-500 handheld LIBS instrument functionality and sub-systems are reviewed. Several assayed geochemical sample sets, including igneous rocks and soils, are investigated. Calibration data are presented for multiple elements of interest along with examples of elemental mapping in heterogeneous samples. Sample preparation and the data collection method from multiple locations and data analysis are discussed.

  3. Laser-induced breakdown spectroscopy at high temperatures in industrial boilers and furnaces

    NASA Astrophysics Data System (ADS)

    Blevins, Linda G.; Shaddix, Christopher R.; Sickafoose, Shane M.; Walsh, Peter M.

    2003-10-01

    Laser-induced breakdown spectroscopy (LIBS) was applied (1) near the superheater of an electric power generation boiler burning biomass, coal, or both; (2) at the exit of a glass-melting furnace burning natural gas and oxygen; and (3) near the nose arches of two paper mill recovery boilers burning black liquor. Difficulties associated with the high temperatures and high particle loadings in these environments were surmounted by use of novel LIBS probes. Echelle and linear spectrometers coupled to intensified CCD cameras were used individually and sometimes simultaneously. Elements detected include Na, K, Ca, Mg, C, B, Si, Mn, Al, Fe, Rb, Cl, and Ti.

  4. Laser-induced breakdown spectroscopy for the classification of unknown powders

    SciTech Connect

    Snyder, Emily Gibb; Munson, Chase A.; Gottfried, Jennifer L.; De Lucia, Frank C. Jr.; Gullett, Brian; Miziolek, Andrzej

    2008-11-01

    Laser-induced breakdown spectroscopy (LIBS) was used to discern between two biological agent surrogates (Bacillus atrophaeus and ovalbumin) and potential interferent compounds (mold spores, humic acid, house dust, and Arizona road dust). Multiple linear regression and neural network analysis models were constructed by using B. atrophaeus and ovalbumin spectra, and limits of detection were calculated. Classification of the agent surrogates' LIBS spectra was attempted by using a neural network model. False negative rates of 0% were observed for B. atrophaeus (100 colony forming units) spore spectra with the neural network model used for classification.

  5. Optical-fiber-based laser-induced breakdown spectroscopy for detection of early caries

    NASA Astrophysics Data System (ADS)

    Sasazawa, Shuhei; Kakino, Satoko; Matsuura, Yuji

    2015-06-01

    A laser-induced breakdown spectroscopy (LIBS) system targeting for the in vivo analysis of tooth enamel is described. The system is planned to enable real-time analysis of teeth during laser dental treatment by utilizing a hollow optical fiber that transmits both Q-switched Nd:YAG laser light for LIBS and infrared Er:YAG laser light for tooth ablation. The sensitivity of caries detection was substantially improved by expanding the spectral region under analysis to ultraviolet (UV) light and by focusing on emission peaks of Zn in the UV region. Subsequently, early caries were distinguished from healthy teeth with accuracy rates above 80% in vitro.

  6. Laser-induced breakdown spectroscopy of dental lesions: diagnostic and therapeutic monitoring tool

    NASA Astrophysics Data System (ADS)

    Borisova, Ekaterina; Uzunov, Tzonko; Penev, Dimitar; Genova, Tsanislava; Avramov, Latchezar

    2016-01-01

    The carious decay develops a tiny area of demineralization on the enamel, which could be detected by element analytic techniques such as laser-induced breakdown spectroscopy (LIBS). That demineralization can quickly turn into a large lesion inside the tooth, it is often discovered too late to prevent the kind of decay that leads to cavities. The same optical LIBS detection approach could be used for monitoring of the caries removal using laser ablation or drilling techniques. For LIBS measurements we applied LIBS 2500Plus (Ocean Optics Inc., Dunedin, USA) system, which consists of seven spectrometric channels, covering spectral region from 200 to 980 nm, which optical resolution 0,05 nm, the spectrometers are connected with sample fiber bundle for 7-channels spectral system to the chamber for solid and liquid samples, Q-switched Nd:YAG laser, at 1 064 nm, with energy per pulse - 40 mJ, which is applied to induce plasma in the samples. LIBS spectra were obtained after single shot of the laser in the region of pathology. Samples investigated by LIBS are extracted teeth from patients, with periodontal problems on different stage of carious lesions, and their LIBS spectra are compared with the LIBS signals obtained from normal enamel and dentine tissues to receive complete picture of the carious lesion development. The major line of our investigations is related to the development of a methodology for real-time optical feedback control during selective ablation of tooth tissues using LIBS. Tooth structures, with and without pathological changes, are compared and their LIBS element analysis is used to differentiate major changes, which occur during tooth carious process and growth.

  7. Determination of Cd, Cr and Pb in phosphate fertilizers by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Nunes, Lidiane Cristina; de Carvalho, Gabriel Gustinelli Arantes; Santos, Dario; Krug, Francisco José

    2014-07-01

    A validated method for quantitative determination of Cd, Cr, and Pb in phosphate fertilizers by laser-induced breakdown spectroscopy (LIBS) is presented. Laboratory samples were comminuted and homogenized by cryogenic or planetary ball milling, pressed into pellets and analyzed by LIBS. The experimental setup was designed by using a Q-switched Nd:YAG at 1064 nm with 10 Hz repetition rate, and the intensity signals from Cd II 214.441 nm, Cr II 267.716 nm and Pb II 220.353 nm emission lines were measured by using a spectrometer furnished with an intensified charge-coupled device. LIBS parameters (laser fluence, lens-to-sample distance, delay time, integration time gate, number of sites and number of laser pulses per site) were chosen after univariate experiments with a pellet of NIST SRM 695 (Trace Elements in Multi-Nutrient Fertilizer). Calibration and validation were carried out with 30 fertilizer samples from single superphosphate, triple superphosphate, monoammonium phosphate, and NPK mixtures. Good results were obtained by using 30 pulses of 50 J cm- 2 (750 μm spot size), 2.0 μs delay time and 5.0 μs integration time gate. No significant differences between Cd, Cr, and Pb mass fractions determined by the proposed LIBS method and by ICP OES after microwave-assisted acid digestion (AOAC 2006.03 Official Method) were found at 95% confidence level. The limits of detection of 1 mg kg- 1 Cd, 2 mg kg- 1 Cr and 15 mg kg- 1 Pb and the precision (coefficients of variation of results ranging from 2% to 15%) indicate that the proposed LIBS method can be recommended for the determination of these analytes in phosphate fertilizers.

  8. [Laser-induced breakdown spectroscopy system for elements analysis in high-temperature and vacuum environment].

    PubMed

    Pan, Cong-Yuan; Du, Xue-Wei; An, Ning; Han, Zhen-Yu; Wang, Sheng-Bo; Wei, Wei; Wang, Qiu-Ping

    2013-12-01

    Laser-induced breakdown spectroscopy (LIBS) is one of the most promising technologies to be applied to metallurgical composition online monitoring in these days. In order to study the spectral characters of LIBS spectrum and to investigate the quantitative analysis method of material composition under vacuum and high temperature environment, a LIBS measurement system was designed and set up which can be used for conducting experiments with high-temperature or molten samples in different vacuum environment. The system consists of a Q-switched Nd : YAG laser used as the light source, lens with different focus lengths used for laser focusing and spectrum signal collecting, a spectrometer used for detecting the signal of LIBS spectrums, and a vacuum system for holding and heating the samples while supplying a vacuum environment. The vacuum was achieved and maintained by a vacuum pump and an electric induction furnace was used for heating the system. The induction coil was integrated to the vacuum system by attaching to a ceramic sealing flange. The system was installed and testified, and the results indicate that the vacuum of the system can reach 1X 10(-4) Pa without heating, while the heating temperature could be about 1 600 degreeC, the system can be used for melting metal samples such as steel and aluminum and get the LIBS spectrum of the samples at the same time. Utilizing this system, LIBS experiments were conducted using standard steel samples under different vacuum or high-temperature conditions. Results of comparison between LIBS spectrums of solid steel samples under different vacuum were achieved, and so are the spectrums of molten and solid steel samples under vacuum environment. Through data processing and theoretical analyzing of these spectrums, the initial results of those experiments are in good agreement with the results that are presently reported, which indicates that the whole system functions well and is available for molten metal LIBS experiment

  9. Laser-Induced Breakdown Spectroscopy Technique in Identification of Ancient Ceramics Bodies and Glazes

    NASA Astrophysics Data System (ADS)

    Elsayed, Khaled; Imam, Hisham; Madkour, Fatma; Meheina, Galila; Gamal, Yosr

    2011-06-01

    In this paper we report a study on Laser Induced Breakdown Spectroscopy (LIBS) as a promising non-destructive technique for the identification of the colored glazes, and clay's bodies of Fatimid ceramics ancient artifacts. The scientific examination of ceramics may be helpful in unraveling the history of ancient shards, particularly as the process of its production such as firing condition and temperatures. The analysis of pottery, ceramic bodies and glazed coatings is required in order to structure the conservation or restoration of a piece. Revealing the technical skills of ancient potters has been one of the most important issues for gaining a deep insight of bygone culture and also it is required in order to structure the conservation or restoration of a piece of art. LIBS measurements were carried out by focusing a Nd-YAG laser at 1064 nm with pulse width of 10 ns and 50 mJ pulse energy on the surface of the sample by a 100-mm focal length lens. The plasma emission was collected by telescopic system and transferred through a fiber to Echelle spectrometer attached to an ICCD camera. The focal spot diameter is found to be in the range of 100-150 μm. which is small enough to consider this technique as a non-destructive technique. LIBS technique clarified that each piece of archaeological objects has its own finger print. X-ray diffraction (XRD) analysis was carried out on these archaeological ceramic body samples to study raw materials such as clays, which allowed the investigation of the crystal structure and showed the changes in its structure through firing process. This provided information on the ceramic characteristic and composition of the ceramic bodies.

  10. Determination of silicon in plant materials by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    de Souza, Paulino Florêncio; Santos, Dário, Júnior; de Carvalho, Gabriel Gustinelli Arantes; Nunes, Lidiane Cristina; da Silva Gomes, Marcos; Guerra, Marcelo Braga Bueno; Krug, Francisco José

    2013-05-01

    In spite of the importance of Si for improving the productivity of many important crops, such as those from the Poaceae family (e.g. sugar cane, maize, wheat, rice), its quantitative determination in plants is seldom carried out and restricted to few laboratories in the world. There is a survey of methods in the literature, but most of them are either laborious or difficult to validate in view of the low availability of reference materials with a certified Si mass fraction. The aim of this study is to propose a method for the direct determination of Si in pellets of plant materials by laser-induced breakdown spectroscopy (LIBS). The experimental setup was designed by using a Q-switched Nd:YAG laser at 1064 nm (5 ns, 10 Hz) and the emission signals were collected by lenses into an optical fiber coupled to an Echelle spectrometer equipped with an intensified charge-coupled device. Experiments were carried out with leaves from 24 sugar cane varieties, with mass fractions varying from ca. 2 to 10 g kg- 1 Si. Pellets prepared from cryogenically ground leaves were used as test samples for both method development and validation of the calibration model. Best results were obtained when the test samples were interrogated with laser fluence of 50 J cm- 2 (750 μm spot size) and measurements carried out at Si I 212.412 nm emission line. The results obtained by LIBS were compared with those from inductively coupled plasma optical emission spectrometry after oven-induced alkaline digestion, and no significant differences were observed after applying the Student's t-test at 95% confidence level. The trueness of the proposed LIBS method was also confirmed from the analysis of CRM GBW 07603 (Bush branches and leaves).

  11. Experimental and theoretical studies of laser-induced breakdown spectroscopy emission from iron oxide: Studies of atmospheric effects

    NASA Astrophysics Data System (ADS)

    Colgan, J.; Barefield, J. E.; Judge, E. J.; Campbell, K.; Johns, H. M.; Kilcrease, D. P.; McInroy, R.; Clegg, S. M.

    2016-08-01

    We report on a comprehensive study of the emission spectra from laser-induced breakdown spectroscopy (LIBS) measurements on iron oxide. Measurements have been made of the emission from Fe2O3 under atmospheres of air, He, and Ar, and at different atmospheric pressures. The effect of varying the time delay of the measurement is also explored. Theoretical calculations were performed to analyze the plasma conditions and find that a reasonably consistent picture of the change in plasma temperature and density for different atmospheric conditions can be reached. We also investigate the sensitivity of the OI 777 nm emission lines to the plasma conditions, something that has not been explored in detail in the previous work. Finally, we also show that LIBS can be used to differentiate between FeO and Fe2O3 by examining the ratio of the intensities of selected Fe emission to O emission lines.

  12. Multielemental analysis of prehistoric animal teeth by laser-induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry

    SciTech Connect

    Galiova, Michaela; Kaiser, Jozef; Fortes, Francisco J.; Novotny, Karel; Malina, Radomir; Prokes, Lubomir; Hrdlicka, Ales; Vaculovic, Tomas; Nyvltova Fisakova, Miriam; Svoboda, Jiri; Kanicky, Viktor; Laserna, Javier J.

    2010-05-01

    Laser-induced breakdown spectroscopy (LIBS) and laser ablation (LA) inductively coupled plasma (ICP) mass spectrometry (MS) were utilized for microspatial analyses of a prehistoric bear (Ursus arctos) tooth dentine. The distribution of selected trace elements (Sr, Ba, Fe) was measured on a 26 mmx15 mm large and 3 mm thick transverse cross section of a canine tooth. The Na and Mg content together with the distribution of matrix elements (Ca, P) was also monitored within this area. The depth of the LIBS craters was measured with an optical profilometer. As shown, both LIBS and LA-ICP-MS can be successfully used for the fast, spatially resolved analysis of prehistoric teeth samples. In addition to microchemical analysis, the sample hardness was calculated using LIBS plasma ionic-to-atomic line intensity ratios of Mg (or Ca). To validate the sample hardness calculations, the hardness was also measured with a Vickers microhardness tester.

  13. Characterization of azurite and lazurite based pigments by laser induced breakdown spectroscopy and micro-Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Bicchieri, M.; Nardone, M.; Russo, P. A.; Sodo, A.; Corsi, M.; Cristoforetti, G.; Palleschi, V.; Salvetti, A.; Tognoni, E.

    2001-06-01

    The most commonly used blue pigments in medieval manuscripts are azurite and lapis-lazuli. The first one is a copper-based pigment; the coloring compound of the latter is lazurite, a sodium silicoaluminate in a sulfur matrix. Knowledge of the chemical composition of the materials is essential for the study of illuminated manuscripts. In this paper, micro-Raman and LIBS have been used for the study of azurite and lapis-lazuli, as well as different mixtures of these pigments applied to parchment to simulate an illuminated manuscript. The results of our work show the importance of using more than one technique for a good comprehension of a manuscript. In particular, the opportunity of combining elemental information (obtained from laser induced breakdown spectroscopy) and vibrational spectroscopy information (obtained from Raman) will be fully exploited.

  14. Detecting salt deposition on a wind turbine blade using laser induced breakdown spectroscopy technique

    NASA Astrophysics Data System (ADS)

    Sathiesh Kumar, V.; Vasa, Nilesh J.; Sarathi, R.

    2013-07-01

    The study of pollution performance on a wind turbine blade due to lightning is important, as it can cause major damage to wind turbine blades. In the present work, optical emission spectroscopy (OES) technique is used to understand the influence of pollutant deposited on a wind turbine blade in an off-shore environment. A methodical experimental study was carried out by adopting IEC 60507 standards, and it was observed that the lightning discharge propagates at the interface between the pollutant and the glass fiber reinforced plastic (Material used in manufacturing of wind turbine blades). In addition, as a diagnostic condition monitoring technique, laser-induced breakdown spectroscopy (LIBS) is proposed and demonstrated to rank the severity of pollutant on the wind turbine blades from a remote area. Optical emission spectra observed during surface discharge process induced by lightning impulse voltage is in agreement with the spectra observed during LIBS.

  15. Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration

    SciTech Connect

    Knight, Andrew K.; Scherbarth, Nancy L.; Cremers, David A.; Ferris, Monty J.

    2000-03-01

    Early in the next century, several space missions are planned with the goal of landing craft on asteroids, comets, the Moon, and Mars. To increase the scientific return of these missions, new methods are needed to provide (1) significantly more analyses per mission lifetime, and (2) expanded analytical capabilities. One method that has the potential to meet both of these needs for the elemental analysis of geological samples is laser-induced breakdown spectroscopy (LIBS). These capabilities are possible because the laser plasma provides rapid analysis and the laser pulse can be focused on a remotely located sample to perform a stand-off measurement. Stand-off is defined as a distance up to 20 m between the target and laser. Here we present the results of a characterization of LIBS for the stand-off analysis of soils at reduced air pressures and in a simulated Martian atmosphere (5-7 torr pressure of CO{sub 2}) showing the feasibility of LIBS for space exploration. For example, it is demonstrated that an analytically useful laser plasma can be generated at distances up to 19 m by using only 35 mJ/pulse from a compact laser. Some characteristics of the laser plasma at reduced pressure were also investigated. Temporally and spectrally resolved imaging showed significant changes in the plasma as the pressure was reduced and also showed that the analyte signals and mass ablated from a target were strongly dependent on pressure. As the pressure decreased from 590 torr to the 40-100 torr range, the signals increased by a factor of about 3-4, and as the pressure was further reduced the signals decreased. This behavior can be explained by pressure-dependent changes in the mass of material vaporized and the frequency of collisions between species in the plasma. Changes in the temperature and the electron density of the plasmas with pressure were also examined and detection limits for selected elements were determined. (c) 2000 Society for Applied Spectroscopy.

  16. Laer-induced Breakdown Spectroscopy Instrument for Element Analysis of Planetary Surfaces

    NASA Technical Reports Server (NTRS)

    Blacic, J.; Pettit, D.; Cremers, D.; Roessler, N.

    1993-01-01

    One of the most fundamental pieces of information about any planetary body is the elemental and mineralogical composition of its surface materials. We are developing an instrument to obtain such data at ranges of up to several hundreds of meters using the technique of Laser-Induced Breakdown Spectroscopy (LIBS). We envision our instrument being used from a spacecraft in close rendezvous with small bodies such as comets and asteroids, or deployed on surface-rover vehicles on large bodies such as Mars and the Moon. The elemental analysis is based on atomic emission spectroscopy of a laser-induced plasma or spark. A pulsed, diode pumped Nd:YAG laser of several hundred millijoules optical energy is used to vaporize and electronically excite the constituent elements of a rock surface remotely located from the laser. Light emitted from the excited plasma is collected and introduced to the entrance slit of a small grating spectrometer. The spectrally dispersed spark light is detected with either a linear photo diode array or area CCD array. When the latter detector is used, the optical and spectrometer components of the LIBS instrument can also be used in a passive imaging mode to collect and integrate reflected sunlight from the same rock surface. Absorption spectral analysis of this reflected light gives mineralogical information that provides a remote geochemical characterization of the rock surface. We performed laboratory calibrations in air and in vacuum on standard rock powders to quantify the LIBS analysis. We performed preliminary field tests using commercially available components to demonstrate remote LIBS analysis of terrestrial rock surfaces at ranges of over 25 m, and we have demonstrated compatibility with a six-wheeled Russian robotic rover vehicle. Based on these results, we believe that all major and most minor elements expected on planetary surfaces can be measured with absolute accuracy of 10-15 percent and much higher relative accuracy. We have

  17. Long-wave, infrared laser-induced breakdown (LIBS) spectroscopy emissions from energetic materials.

    PubMed

    Yang, Clayton S-C; Brown, Ei E; Hommerich, Uwe; Jin, Feng; Trivedi, Sudhir B; Samuels, Alan C; Snyder, A Peter

    2012-12-01

    Laser-induced breakdown spectroscopy (LIBS) has shown great promise for applications in chemical, biological, and explosives sensing and has significant potential for real-time standoff detection and analysis. In this study, LIBS emissions were obtained in the mid-infrared (MIR) and long-wave infrared (LWIR) spectral regions for potential applications in explosive material sensing. The IR spectroscopy region revealed vibrational and rotational signatures of functional groups in molecules and fragments thereof. The silicon-based detector for conventional ultraviolet-visible LIBS operations was replaced with a mercury-cadmium-telluride detector for MIR-LWIR spectral detection. The IR spectral signature region between 4 and 12 μm was mined for the appearance of MIR and LWIR-LIBS emissions directly indicative of oxygenated breakdown products as well as dissociated, and/or recombined sample molecular fragments. Distinct LWIR-LIBS emission signatures from dissociated-recombination sample molecular fragments between 4 and 12 μm are observed for the first time.

  18. Laser-induced breakdown spectroscopy for determination of the organic oxygen content in anthracite coal under atmospheric conditions.

    PubMed

    Zhang, Lei; Dong, Lei; Dou, Haipeng; Yin, Wangbao; Jia, Suotang

    2008-04-01

    Laser-induced breakdown spectroscopy has been used to measure the organic oxygen content in pulverized anthracite coal under atmospheric conditions. Special spectral processing including the optimal O(I) emission-line selection by comparing the spectral correlation coefficients with the N(I) line, internal normalization with the N(I) line, and temperature correction are proposed and employed to satisfy the multi-line analysis method and yield the most accurate quantitative results. The calibration method for determining the organic oxygen content of coal is presented, with an accuracy of 1.15-1.37% and an average relative error of 19.39% being evaluated through an experiment performed on six anthracite coal samples. The relative measurement error distribution has also been studied.

  19. Laser-induced breakdown spectroscopy for determination of the organic oxygen content in anthracite coal under atmospheric conditions

    SciTech Connect

    Zhang, L.; Dong, L.; Dou, H.P.; Yin, W.B.; Jia, S.T.

    2008-04-15

    Laser-induced breakdown spectroscopy has been used to measure the organic oxygen content in pulverized anthracite coal under atmospheric conditions. Special spectral processing including the optimal O(I) emission-line selection by comparing the spectral correlation coefficients with the N(I) line, internal normalization with the N(I) line, and temperature correction are proposed and employed to satisfy the multi-line analysis method and yield the most accurate quantitative results. The calibration method for determining the organic oxygen content of coal is presented, with an accuracy of 1.15-1.37% and an average relative error of 19.39% being evaluated through an experiment performed on six anthracite coal samples. The relative measurement error distribution has also been studied.

  20. The use of laser-induced breakdown spectroscopy for the determination of fluorine concentration in glass ionomer cement

    NASA Astrophysics Data System (ADS)

    Kratochvíl, T.; Pouzar, M.; Novotný, K.; Havránek, V.; Černohorský, T.; Zvolská, M.

    2013-10-01

    The influence of He atmosphere and gate width in laser-induced breakdown spectroscopy (LIBS) determination of fluorine concentration was investigated in detail. The measurements were realized on two double pulse LIBS devices featuring different parameters. Calibration curves, describing the relationship between the fluorine concentration and the corresponding intensity of the LIBS signal, were constructed for both LIBS devices, with and without He flow, respectively. Detection limits achieved were in the range 1.18-0.47 wt.%. The best LOD value was obtained in He atmosphere. The LIBS measurement of fluorine content is influenced by different gate widths and the atmosphere in the working chamber. The proposed method was successfully applied to the determination of fluorine concentration in glass ionomer cements.

  1. Calibration-free quantitative analysis of elemental ratios in intermetallic nanoalloys and nanocomposites using Laser Induced Breakdown Spectroscopy (LIBS).

    PubMed

    Davari, Seyyed Ali; Hu, Sheng; Mukherjee, Dibyendu

    2017-03-01

    Intermetallic nanoalloys (NAs) and nanocomposites (NCs) have increasingly gained prominence as efficient catalytic materials in electrochemical energy conversion and storage systems. But their morphology and chemical compositions play critical role in tuning their catalytic activities, and precious metal contents. While advanced microscopy techniques facilitate morphological characterizations, traditional chemical characterizations are either qualitative or extremely involved. In this study, we apply Laser Induced Breakdown Spectroscopy (LIBS) for quantitative compositional analysis of NAs and NCs synthesized with varied elemental ratios by our in-house built pulsed laser ablation technique. Specifically, elemental ratios of binary PtNi, PdCo (NAs) and PtCo (NCs) of different compositions are determined from LIBS measurements employing an internal calibration scheme using the bulk matrix species as internal standards. Morphology and qualitative elemental compositions of the aforesaid NAs and NCs are confirmed from Transmission Electron Microscopy (TEM) images and Energy Dispersive X-ray Spectroscopy (EDX) measurements. LIBS experiments are carried out in ambient conditions with the NA and NC samples drop cast on silicon wafers after centrifugation to increase their concentrations. The technique does not call for cumbersome sample preparations including acid digestions and external calibration standards commonly required in Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) techniques. Yet the quantitative LIBS results are in good agreement with the results from ICP-OES measurements. Our results indicate the feasibility of using LIBS in future for rapid and in-situ quantitative chemical characterizations of wide classes of synthesized NAs and NCs.

  2. Isotopic determination of uranium in soil by laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Chan, George C.-Y.; Choi, Inhee; Mao, Xianglei; Zorba, Vassilia; Lam, Oanh P.; Shuh, David K.; Russo, Richard E.

    2016-08-01

    Laser-induced breakdown spectroscopy (LIBS) operated under ambient pressure has been evaluated for isotopic analysis of uranium in real-world samples such as soil, with U concentrations in the single digit percentage levels. The study addresses the requirements for spectral decomposition of 235U and 238U atomic emission peaks that are only partially resolved. Although non-linear least-square fitting algorithms are typically able to locate the optimal combination of fitting parameters that best describes the experimental spectrum even when all fitting parameters are treated as free independent variables, the analytical results of such an unconstrained free-parameter approach are ambiguous. In this work, five spectral decomposition algorithms were examined, with different known physical properties (e.g., isotopic splitting, hyperfine structure) of the spectral lines sequentially incorporated into the candidate algorithms as constraints. It was found that incorporation of such spectral-line constraints into the decomposition algorithm is essential for the best isotopic analysis. The isotopic abundance of 235U was determined from a simple two-component Lorentzian fit on the U II 424.437 nm spectral profile. For six replicate measurements, each with only fifteen laser shots, on a soil sample with U concentration at 1.1% w/w, the determined 235U isotopic abundance was (64.6 ± 4.8)%, and agreed well with the certified value of 64.4%. Another studied U line - U I 682.691 nm possesses hyperfine structure that is comparatively broad and at a significant fraction as the isotopic shift. Thus, 235U isotopic analysis with this U I line was performed with spectral decomposition involving individual hyperfine components. For the soil sample with 1.1% w/w U, the determined 235U isotopic abundance was (60.9 ± 2.0)%, which exhibited a relative bias about 6% from the certified value. The bias was attributed to the spectral resolution of our measurement system - the measured line

  3. Monitoring of the heavy-metal hyperaccumulation in vegetal tissues by X-ray radiography and by femto-second laser induced breakdown spectroscopy.

    PubMed

    Kaiser, J; Samek, O; Reale, L; Liska, M; Malina, R; Ritucci, A; Poma, A; Tucci, A; Flora, F; Lai, A; Mancini, L; Tromba, G; Zanini, F; Faenov, A; Pikuz, T; Cinque, G

    2007-02-01

    This article reports on the utilization of X-ray microradiography and laser induced breakdown spectroscopy (LIBS) techniques for investigation of the metal accumulation in different part of leaf samples. The potential of the LIBS-analysis for finding the proper plant species for phytoremediation is compared with the results of microradiography measurements at the HERCULES source at ENEA, Rome (Italy) and X-ray microradiography experiments at the ELETTRA Synchrotron, Trieste (Italy).

  4. Prospects for laser-induced breakdown spectroscopy for biomedical applications: a review.

    PubMed

    Singh, Vivek Kumar; Rai, Awadhesh Kumar

    2011-09-01

    We review the different spectroscopic techniques including the most recent laser-induced breakdown spectroscopy (LIBS) for the characterization of materials in any phase (solid, liquid or gas) including biological materials. A brief history of the laser and its application in bioscience is presented. The development of LIBS, its working principle and its instrumentation (different parts of the experimental set up) are briefly summarized. The generation of laser-induced plasma and detection of light emitted from this plasma are also discussed. The merit and demerits of LIBS are discussed in comparison with other conventional analytical techniques. The work done using the laser in the biomedical field is also summarized. The analysis of different tissues, mineral analysis in different organs of the human body, characterization of different types of stone formed in the human body, analysis of biological aerosols using the LIBS technique are also summarized. The unique abilities of LIBS including detection of molecular species and calibration-free LIBS are compared with those of other conventional techniques including atomic absorption spectroscopy, inductively coupled plasma atomic emission spectroscopy and mass spectroscopy, and X-ray fluorescence.

  5. Remote Laser Induced Breakdown Spectroscopy (LIBS) of Martian Meteorites and Other Basaltic Samples

    NASA Astrophysics Data System (ADS)

    Clegg, S. M.; Thompson, J. R.; Wiens, R. C.; Barefield, J. E.; Vaniman, D. T.; Newsom, H. E.

    2005-12-01

    Laser Induced Breakdown Spectroscopy (LIBS) is a rapid and quantitative analytical tool for elemental analysis in terrestrial1 and Martian environments. LIBS is one of two instruments comprising the "ChemCam" package recently selected for the Mars Science Laboratory (MSL) Rover Mission scheduled to launch in 2009. LIBS will be the first active remote sensing instrument to fly on a NASA rover, designed to interrogate samples to a distance of 9 m. In preparation for the MSL mission, we are working to improve our ability to extract quantitative results under the Martian environment. We recently completed a study in which we extracted quantitative elemental concentrations and calculated the oxide concentrations from two Martian basaltic shergottite meteorites, Dar al Gani (DaG) 476 and Zagami. The current LIBS laboratory setup involves ablating some material from the sample surface with a focused Nd:YAG (1064nm) laser. The ablated material produces a supersonically expanding plasma of electronically excited atoms. A dispersive spectrometer and an ICCD camera are used to record the spectral signatures emitted from the electronically excited atoms. In our experimental set-up, samples were placed at a distance of 5.4 m from the instrument in a vacuum chamber filled with 7 Torr CO2 to simulate the Martian atmosphere. Terrestrial basalt standards were used to generate calibration curves for all of the major elements and some of the minor and trace species including Si, Fe, Mg, Ca, Ti, Al, and Na. First, two blind basalt standards were analyzed and their compositions were found to match the actual compositions within the uncertainty of the measurement, being correctly distinguished from other available basalt standards. Next, LIBS was used to distinguish between two different basaltic Martian meteorites. Using 14 analysis spots of ~400 μm diameter on DaG 476 and 9 analysis spots on Zagami, LIBS distinguished the olivine-phyric (DaG 476) from the basaltic (Zagami

  6. Comparison between elemental composition of human fingernails of healthy and opium-addicted subjects by laser-induced breakdown spectroscopy.

    PubMed

    Shadman, S; Bahreini, M; Tavassoli, S H

    2012-04-20

    The objective of the present work is to identify differences in elemental fingernail composition between opium-addicted and healthy adult human subjects using laser-induced breakdown spectroscopy. Thirty nails from normal, healthy male subjects and 30 nails from opium-addicted male individuals were analyzed. Measurements on 60 nail samples were carried out, identifying 13 key species including 11 neutral elements and 2 ions. Discriminant Function Analysis (DFA) was used to classify the samples between the two groups. Spectral line intensities of elements including Fe, C, Ti, Mg, Si, Al, Ca, H, K, O, and Na were considered variables in DFA. This analysis demonstrates the efficient discrimination between the two groups. However, the number of samples in this work is not sufficient for a decisive conclusion and further research is needed to generalize this idea.

  7. Laser-induced breakdown spectroscopy used to detect endophyte-mediated accumulation of metals by tall fescue

    SciTech Connect

    Martin, Madhavi Z.; Stewart, Arthur J.; Gwinn, Kimberley D.; Waller, John C.

    2010-05-01

    Laser-induced breakdown spectroscopy (LIBS) was used to determine the impact of endophyte (Neotyphodium sp.) infection on elemental composition of tall fescue (Festuca arundinacea). Leaf material from endophyte-infected (E+) and endophyte-free (E-) tall fescue populations in established plots was examined. Leaf-tissue digestates were also tested for metals, by inductively coupled plasma (ICP) mass spectrometry (MS). Seven of eleven metals (Ca, Mg, Fe, Mn, Cu, Ni, and Zn) were measured by both techniques at concentrations great enough for a reliable comparison. Mg, Zn, and Cd, a toxic metal that can be present in forage, were readily detected by LIBS, even though Cd concentrations in the plants were below levels typically achieved using ICP MS detection. Implications of these results for research on forage analysis and phytoremediation are discussed.

  8. Laser-induced Breakdown Spectroscopy used to Detect Endophyte-mediated Accumulation of Metals by Tall Fescue

    SciTech Connect

    Martin, Madhavi Z; Stewart, Arthur J; Gwinn, Dr. Kimberley; Waller, John C

    2010-01-01

    Laser-induced breakdown spectroscopy was used to determine the impact of endophyte (Neotyphodium sp.) infection on elemental composition of tall fescue (Festuca arundinacea). Leaf material from endophyte-infected (E+) and endophyte-free (E-) tall fescue populations in established plots was examined. Leaf-tissue digestates were also tested for metals, by ICP-MS. Seven of eleven metals (Ca, Mg, Fe, Mn, Cu, Ni and Zn) were measured by both techniques at concentrations great enough to reliably compare. Mg, Zn, and Cd, a toxic metal that can be present in forage, were readily detected by LIBS, even though Cd concentrations in the plants were below levels typically achieved using ICP-MS detection. Implications of these results for research on forage analysis and phytoremediation are discussed.

  9. Analysis of geological materials containing uranium using laser-induced breakdown spectroscopy (LIBS)

    NASA Astrophysics Data System (ADS)

    Barefield, James E.; Judge, Elizabeth J.; Campbell, Keri R.; Colgan, James P.; Kilcrease, David P.; Johns, Heather M.; Wiens, Roger C.; McInroy, Rhonda E.; Martinez, Ronald K.; Clegg, Samuel M.

    2016-06-01

    Laser induced breakdown spectroscopy (LIBS) is a rapid atomic emission spectroscopy technique that can be configured for a variety of applications including space, forensics, and industry. LIBS can also be configured for stand-off distances or in-situ, under vacuum, high pressure, atmospheric or different gas environments, and with different resolving-power spectrometers. The detection of uranium in a complex geological matrix under different measurement schemes is explored in this paper. Although many investigations have been completed in an attempt to detect and quantify uranium in different matrices at in-situ and standoff distances, this work detects and quantifies uranium in a complex matrix under Martian and ambient air conditions. Investigation of uranium detection using a low resolving-power LIBS system at stand-off distances (1.6 m) is also reported. The results are compared to an in-situ LIBS system with medium resolving power and under ambient air conditions. Uranium has many thousands of emission lines in the 200-800 nm spectral region. In the presence of other matrix elements and at lower concentrations, the limit of detection of uranium is significantly reduced. The two measurement methods (low and high resolving-power spectrometers) are compared for limit of detection (LOD). Of the twenty-one potential diagnostic uranium emission lines, seven (409, 424, 434, 435, 436, 591, and 682 nm) have been used to determine the LOD for pitchblende in a dunite matrix using the ChemCam test bed LIBS system. The LOD values determined for uranium transitions in air are 409.013 nm (24,700 ppm), 424.167 nm (23,780 ppm), 434.169 nm (24,390 ppm), 435.574 nm (35,880 ppm), 436.205 nm (19,340 ppm), 591.539 nm (47,310 ppm), and 682.692 nm (18,580 ppm). The corresponding LOD values determined for uranium transitions in 7 Torr CO2 are 424.167 nm (25,760 ppm), 434.169 nm (40,800 ppm), 436.205 nm (32,050 ppm), 591.539 nm (15,340 ppm), and 682.692 nm (29,080 ppm). The LOD values

  10. Detection and Classification of Live and Dead Escherichia coli by Laser-Induced Breakdown Spectroscopy

    PubMed Central

    Sivakumar, P.; Fernández-Bravo, A.; Taleh, L.; Biddle, J.F.

    2015-01-01

    Abstract A common goal for astrobiology is to detect organic materials that may indicate the presence of life. However, organic materials alone may not be representative of currently living systems. Thus, it would be valuable to have a method with which to determine the health of living materials. Here, we present progress toward this goal by reporting on the application of laser-induced breakdown spectroscopy (LIBS) to study characteristics of live and dead cells using Escherichia coli (E. coli) strain K12 cells as a model organism since its growth and death in the laboratory are well understood. Our goal is to determine whether LIBS, in its femto- and/or nanosecond forms, could ascertain the state of a living organism. E. coli strain K12 cells were grown, collected, and exposed to one of two types of inactivation treatments: autoclaving and sonication. Cells were also kept alive as a control. We found that LIBS yields key information that allows for the discrimination of live and dead E. coli bacteria based on ionic shifts reflective of cell membrane integrity. Key Words: E. coli—Trace elements—Live and dead cells—Laser-induced breakdown spectroscopy—Atomic force microscopy. Astrobiology 15, 144–153. PMID:25683088

  11. Large-area imager of hydrogen leaks in fuel cells using laser-induced breakdown spectroscopy.

    PubMed

    Hori, M; Hayano, R S; Fukuta, M; Koyama, T; Nobusue, H; Tanaka, J

    2009-10-01

    We constructed a simple device, which utilized laser-induced breakdown spectroscopy to image H2 gas leaking from the surfaces of hydrogen fuel cells to ambient air. Nanosecond laser pulses of wavelength lambda=532 nm emitted from a neodymium-doped yttrium aluminum garnet laser were first compressed to a pulse length Deltat<1 ns using a stimulated Brillouin backscattering cell. Relay-imaging optics then focused this beam onto the H(2) leak and initiated the breakdown plasma. The Balmer-alpha (H-alpha) emission that emerged from this was collected with a 2-m-long macrolens assembly with a 90-mm-diameter image area, which covered a solid angle of approximately 1 x 10(-3)pi steradians seen from the plasma. The H-alpha light was isolated by two 100-mm-diameter interference filters with a 2 nm bandpass, and imaged by a thermoelectrically cooled charge-coupled device camera. By scanning the position of the laser focus, the spatial distribution of H2 gas over a 90-mm-diameter area was photographed with a spatial resolution of < or = 5 mm. Photoionization of the water vapor in the air caused a strong H-alpha background. By using pure N2 as a buffer gas, H2 leaks with rates of <1 cc/min were imaged. We also studied the possibilities of detecting He, Ne, or Xe gas leaks.

  12. Quantitative analysis of metformin in antidiabetic tablets by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Contreras, U.; Ornelas-Soto, N.; Meneses-Nava, M. A.; Barbosa-García, O.; López-de-Alba, P. L.; López-Martínez, L.

    2011-09-01

    Nowadays the production of counterfeit and low quality drugs affects human health and generates losses to pharmaceutical industries and tax revenue losses to government. Currently there are several methods for pharmaceutical product analysis; nevertheless, most of them depend on complex and time consuming steps such as sample preparation. In contrast to conventional methods, Laser-induced breakdown spectroscopy (LIBS) is evaluated as a potential analytical technique for the rapid screening and quality control of anti-diabetic solid formulations. In this paper authors propose a simple method to analyze qualitatively and quantitatively Active Pharmaceutical Ingredients (APIs) such as Metformin hydrochloride. The authors used ten nanosecond duration pulses (FWHM) from a Nd:YAG laser produces the induced breakdown for the analysis. Light is collected and focused into a Cerny-Turner spectrograph and dispersed into an ICCD camera for its detection. We used atomic emissions from Chlorine atoms present only in APIs as analyte signal. The analysis was improved using Bromine as internal standard. Linear calibration curves from synthetic samples were prepared achieving linearity higher than 99%. Our results were compared with HPLC results and validation was performed by statistical methods. The validation analysis suggests that both methods have no significant differences i.e., the proposed method can be implemented for monitoring the pharmaceutical production process in-situ in real time or for inspection and recognition of authenticity.

  13. Eye-safe infrared laser-induced breakdown spectroscopy (LIBS) emissions from energetic materials

    NASA Astrophysics Data System (ADS)

    Brown, Ei E.; Hömmerich, Uwe; Yang, Clayton C.; Jin, Feng; Trivedi, Sudhir B.; Samuels, Alan C.

    2016-05-01

    Laser-induced breakdown spectroscopy is a powerful diagnostic tool for detection of trace elements by monitoring the atomic and ionic emission from laser-induced plasmas. Besides elemental emissions from conventional UV-Vis LIBS, molecular LIBS emission signatures of the target compounds were observed in the long-wave infrared (LWIR) region in recent studies. Most current LIBS studies employ the fundamental Nd:YAG laser output at 1.064 μm, which has extremely low eye-damage threshold. In this work, comparative LWIR-LIBS emissions studies using traditional 1.064 μm pumping and eye-safe laser wavelength at 1.574 μm were performed on several energetic materials for applications in chemical, biological, and explosive (CBE) sensing. A Q-switched Nd: YAG laser operating at 1.064 μm and the 1.574 μm output of a pulsed Nd:YAG pumped Optical Parametric Oscillator were employed as the excitation sources. The investigated energetic materials were studied for the appearance of LWIR-LIBS emissions (4-12 μm) that are directly indicative of oxygenated breakdown products as well as partially dissociated and recombination molecular species. The observed molecular IR LIBS emission bands showed strong correlation with FTIR absorption spectra of the studied materials for 1.064 μm and 1.574 μm pump wavelengths.

  14. Accuracy Enhancement of Raman Spectroscopy Using Complementary Laser-Induced Breakdown Spectroscopy (LIBS) with Geologically Mixed Samples.

    PubMed

    Choi, Soojin; Kim, Dongyoung; Yang, Junho; Yoh, Jack J

    2017-01-01

    Quantitative Raman analysis was carried out with geologically mixed samples that have various matrices. In order to compensate the matrix effect in Raman shift, laser-induced breakdown spectroscopy (LIBS) analysis was performed. Raman spectroscopy revealed the geological materials contained in the mixed samples. However, the analysis of a mixture containing different matrices was inaccurate due to the weak signal of the Raman shift, interference, and the strong matrix effect. On the other hand, the LIBS quantitative analysis of atomic carbon and calcium in mixed samples showed high accuracy. In the case of the calcite and gypsum mixture, the coefficient of determination of atomic carbon using LIBS was 0.99, while the signal using Raman was less than 0.9. Therefore, the geological composition of the mixed samples is first obtained using Raman and the LIBS-based quantitative analysis is then applied to the Raman outcome in order to construct highly accurate univariate calibration curves. The study also focuses on a method to overcome matrix effects through the two complementary spectroscopic techniques of Raman spectroscopy and LIBS.

  15. Fiber optic laser-induced breakdown spectroscopy sensor for molten material analysis

    DOEpatents

    Zhang, Hansheng; Rai, Awadesh K.; Singh, Jagdish P.; Yueh, Fang-Yu

    2004-07-13

    A fiber optic laser-induced breakdown spectroscopy (LIBS) sensor, including a laser light source, a harmonic separator for directing the laser light, a dichroic mirror for reflecting the laser light, a coupling lens for coupling the laser light at an input of a multimode optical fiber, a connector for coupling the laser light from an output of the multimode optical fiber to an input of a high temperature holder, such as a holder made of stainless steel, and a detector portion for receiving emission signal and analyzing LIBS intensities. In one variation, the multimode optical fiber has silica core and silica cladding. The holder includes optical lenses for collimating and focusing the laser light in a molten alloy to produce a plasma, and for collecting and transmitting an emission signal to the multimode optical fiber.

  16. Analysis of material collected on swipes using laser-induced breakdown spectroscopy

    SciTech Connect

    Chinni, Rosemarie; Cremers, David A.; Multari, Rosalie

    2010-05-01

    Laser-induced breakdown spectroscopy (LIBS) was evaluated to determine elements collected on swipes as surface contamination. A series of long laser plasmas formed along the swipe surface (Post-it paper) interrogated the collected contamination. LIBS detection limits, determined for the elements Ag, As, Ba, Be, Cd, Cr, Cu, Hg, Mn, Ni, Pb, Sr, and Zn on swipes (2 cm{sup 2} area), ranged from 0.002 {mu}g (Be) to 1.46 {mu}g (Pb). The elements were introduced as constituents of synthetic silicate particles serving as a contaminant dust stimulant. The average predicted mass was within 16% of the actual mass on the swipe. The efficiency of collecting particles from surfaces including plastic, Formica, and Al metal was also evaluated. The ability to detect and differentiate two amino acids on a swipe from each other and from the swipe using chemometric modeling techniques was also demonstrated.

  17. Laser-induced fluorescence-cued, laser-induced breakdown spectroscopy biological-agent detection

    SciTech Connect

    Hybl, John D.; Tysk, Shane M.; Berry, Shaun R.; Jordan, Michael P

    2006-12-01

    Methods for accurately characterizing aerosols are required for detecting biological warfare agents. Currently, fluorescence-based biological agent sensors provide adequate detection sensitivity but suffer from high false-alarm rates. Combining single-particle fluorescence analysis with laser-induced breakdown spectroscopy (LIBS) provides additional discrimination and potentially reduces false-alarm rates. A transportable UV laser-induced fluorescence-cued LIBS test bed has been developed and used to evaluate the utility of LIBS for biological-agent detection. Analysis of these data indicates that LIBS adds discrimination capability to fluorescence-based biological-agent detectors.However, the data also show that LIBS signatures of biological agent simulants are affected by washing. This may limit the specificity of LIBS and narrow the scope of its applicability in biological-agent detection.

  18. Characteristics of solid aerosols produced by optical catapulting studied by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Fortes, F. J.; Laserna, J. J.

    2010-08-01

    Optical catapulting (OC) constitutes an effective method to transport small amounts of different materials in the form of a solid aerosol. In this report, laser-induced breakdown spectroscopy (LIBS) is used for the analysis of those aerosols produced by OC. For this purpose, materials were catapulted using a Q-switch Nd:YAG laser. A second Q-switch Nd:YAG laser was used for LIBS analysis of the ejected particles. Data processing of aerosols was conducted using conditional data analysis. Also, the standard deviation method was used for the qualitative identification of the ejected particles. Two modes of interaction in OC (OC with focused or defocused pulses) have been evaluated and discussed. LIBS demonstrates that the distribution (spreading) of the ejected particles along the propagation axis increased as a function of the interpulse delay time. The mass density and the thickness of the target also play an important role in OC-LIBS.

  19. Suitability of laser-induced breakdown spectroscopy in screening potential additives to mitigate fouling deposits

    NASA Astrophysics Data System (ADS)

    Balakrishnan, S.; Midhun Reddy, V.; Mehta, A.; Vasa, N. J.; Nagarajan, R.

    2016-04-01

    Alkali vapors present in the flue gas generated during coal-based combustion form fouling deposits as they condense. An additive added to coal can trap alkali elements in ash, therefore suppress the growth rate of fouling deposits, and increase thermal efficiency of a coal-fired thermal power plant. Laser-induced breakdown spectroscopy (LIBS) technique is proposed and demonstrated to screen potential additives to trap alkali elements in ash. Five additives—namely, kaolinite, alumina, silica, magnesia, and pumice—were analyzed for their effectiveness on four Indian coals for retaining/confining alkali elements in ash during coal combustion. Ratio analysis based on LIBS emission intensity values clearly shows that kaolinite and pumice are promising additives to trap sodium. Similarly, kaolinite, pumice, and silica exhibited good potassium retention.

  20. Determination of the postmortem interval by Laser Induced Breakdown Spectroscopy using swine skeletal muscles

    NASA Astrophysics Data System (ADS)

    Marín-Roldan, A.; Manzoor, S.; Moncayo, S.; Navarro-Villoslada, F.; Izquierdo-Hornillos, R. C.; Caceres, J. O.

    2013-10-01

    Skin and muscle samples are useful to discriminate individuals as well as their postmortem interval (PMI) in crime scenes and natural or caused disasters. In this study, a simple and fast method based on Laser Induced Breakdown Spectroscopy (LIBS) has been developed to estimate PMI using swine skeletal muscle samples. Environmental conditions (moisture, temperature, fauna, etc.) having strong influence on the PMI determination were considered. Time-dependent changes in the emission intensity ratio for Mg, Na, Hα and K were observed, as a result of the variations in their concentration due to chemical reactions in tissues and were correlated with PMI. This relationship, which has not been reported previously in the forensic literature, offers a simple and potentially valuable means of estimating the PMI.

  1. Detection of multiple elements in coal samples from Bangladesh by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Haider, A. F. M. Y.; Rony, M. A.; Lubna, R. S.; Abedin, K. M.

    2011-11-01

    Laser-induced breakdown spectroscopy (LIBS) was used to analyze the coal samples from the Barapukuria coal mine of Bangladesh and coal from eastern India. Besides the major elements carbon and silicon, a number of minor and trace elements, such as iron, titanium, aluminum, calcium, sodium, copper, zirconium, neodymium, ytterbium, cerium, samarium, dysprosium and gadolinium were identified. In earlier work some researchers identified the lines around 279 and 280 nm as due to Mg II rather than Yb III. The reasons for identifying these two lines as due to ytterbium in the present work are explained. The detection of multiple elements in one experiment in a commonly used fuel demonstrated the versatility and multi-elemental capability of LIBS.

  2. Validation of the solidifying soil process using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Lin, Zhao-Xiang; Liu, Lin-Mei; Liu, Lu-Wen

    2016-09-01

    Although an Ionic Soil Stabilizer (ISS) has been widely used in landslide control, it is desirable to effectively monitor the stabilization process. With the application of laser-induced breakdown spectroscopy (LIBS), the ion contents of K, Ca, Na, Mg, Al, and Si in the permeable fluid are detected after the solidified soil samples have been permeated. The processes of the Ca ion exchange are analyzed at pressures of 2 and 3 atm, and it was determined that the cation exchanged faster as the pressure increased. The Ca ion exchanges were monitored for different stabilizer mixtures, and it was found that a ratio of 1:200 of ISS to soil is most effective. The investigated plasticity and liquidity indexes also showed that the 1:200 ratio delivers the best performance. The research work indicates that it is possible to evaluate the engineering performances of soil solidified by ISS in real time and online by LIBS.

  3. Use of laser induced breakdown spectroscopy in the determination of gem provenance: beryls

    SciTech Connect

    McManus, Catherine E.; McMillan, Nancy J.; Harmon, Russell S.; Whitmore, Robert C.; De Lucia, Frank C. Jr.; Miziolek, Andrzej W

    2008-11-01

    The provenance of gem stones has been of interest to geologists, gemologists, archeologists, and historians for centuries. Laser induced breakdown spectroscopy (LIBS) provides a minimally destructive tool for recording the rich chemical signatures of gem beryls (aquamarine, goshenite, heliodor, and morganite). Broadband LIBS spectra of 39 beryl (Be3Al2Si6O18) specimens from 11 pegmatite mines in New Hampshire, Connecticut, and Maine (USA) are used to assess the potential of using principal component analysis of LIBS spectra to determine specimen provenance. Using this technique, beryls from the three beryl-bearing zones in the Palermo no. 1 pegmatite (New Hampshire) can be recognized. However, the compositional variation within this single mine is comparable to that in beryls from all three states. Thus, a very large database with detailed location metadata will be required to routinely determine gem beryl provenance.

  4. Use of laser induced breakdown spectroscopy in the determination of gem provenance: beryls.

    PubMed

    McManus, Catherine E; McMillan, Nancy J; Harmon, Russell S; Whitmore, Robert C; De Lucia, Frank C; Miziolek, Andrzej W

    2008-11-01

    The provenance of gem stones has been of interest to geologists, gemologists, archeologists, and historians for centuries. Laser induced breakdown spectroscopy (LIBS) provides a minimally destructive tool for recording the rich chemical signatures of gem beryls (aquamarine, goshenite, heliodor, and morganite). Broadband LIBS spectra of 39 beryl (Be(3)Al(2)Si(6)O(18)) specimens from 11 pegmatite mines in New Hampshire, Connecticut, and Maine (USA) are used to assess the potential of using principal component analysis of LIBS spectra to determine specimen provenance. Using this technique, beryls from the three beryl-bearing zones in the Palermo #1 pegmatite (New Hampshire) can be recognized. However, the compositional variation within this single mine is comparable to that in beryls from all three states. Thus, a very large database with detailed location metadata will be required to routinely determine gem beryl provenance.

  5. Influences on the Emissions of Bacterial Plasmas Generated through Nanosecond Laser-Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Malenfant, Dylan J.

    In the past decade, laser-induced breakdown spectroscopy has been shown to provide compositional data that can be used for discrimination between bacterial specimens at the strain level. This work demonstrates the viability of this technique in a clinical setting. Studies were conducted to investigate the impact of emissions generated by a nitrocellulose filter paper background on the classification of four species: E. coli, S. epidermidis, M. smegmatis, and P. aeruginosa. Limits of detection were determined as 48+/-12 kCFU per ablation event for new mounting procedures using standard diagnostic laboratory techniques, and a device for centrifuge filtration was designed for sampling from low-titer bacterial suspensions. Plasma emissions from samples grown at biological levels of magnesium, zinc, and glucose were shown not to deviate from controls. A limit of detection for environmental zinc was found to be 11 ppm. Discrimination with heat-killed samples was demonstrated, providing a sterile diagnostic environment.

  6. Temperature Effect on the Optical Emission Intensity in Laser Induced Breakdown Spectroscopy of Super Alloys

    NASA Astrophysics Data System (ADS)

    Darbani, S. M. R.; Ghezelbash, M.; Majd, A. E.; Soltanolkotabi, M.; Saghafifar, H.

    2014-12-01

    In this paper, the influence of heating and cooling samples on the optical emission spectra and plasma parameters of laser-induced breakdown spectroscopy for Titanium 64, Inconel 718 super alloys, and Aluminum 6061 alloy is investigated. Samples are uniformly heated up to approximately 200°C and cooled down to -78°C by an external heater and liquid nitrogen, respectively. Variations of plasma parameters like electron temperature and electron density with sample temperature are determined by using Boltzmann plot and Stark broadening methods, respectively. Heating the samples improves LIBS signal strength and broadens the width of the spectrum. On the other hand, cooling alloys causes fluctuations in the LIBS signal and decrease it to some extent, and some of the spectral peaks diminish. In addition, our results show that electron temperature and electron density depend on the sample temperature variations.

  7. Analysis and Discrimination of Sedimentary, Metamorphic, and Igneous Rocks Using Laser-Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Rai, Ab. Kr.; Maurya, G. S.; Kumar, R.; Pathak, A. K.; Pati, J. K.; Rai, Aw. K.

    2017-01-01

    This study deals with the analysis of rocks using laser-induced breakdown spectroscopy (LIBS) coupled with principal component analysis. The spectra of sedimentary, metamorphic, and igneous rock samples were recorded in the 200-900 nm spectral range. The atomic lines of elements such as Si, Ca, Mg, Fe, Na, and K along with lighter elements, namely C, H, N, and O, were observed in these spectra. Multivariate analysis in combination with LIBS was used to classify the samples. For principal component analysis, a 12 × 5849 data matrix was formed using the results of LIBS. The plot of the analysis revealed similarities between the sedimentary and metamorphic rock samples compared with the igneous rock sample. Thus, the present study demonstrates that LIBS coupled with principal component analysis can become an important tool for rapid classification and in-situ discrimination of rock samples.

  8. Laser Induced Breakdown Spectroscopy applications to meteorites: Chemical analysis and composition profiles

    NASA Astrophysics Data System (ADS)

    Dell'Aglio, M.; De Giacomo, A.; Gaudiuso, R.; Pascale, O. De; Senesi, G. S.; Longo, S.

    2010-12-01

    A fast procedure for chemical analysis of different meteorites is presented, based on LIBS (Laser Induced Breakdown Spectroscopy). The technique is applied to several test cases (Dhofar 019, Dhofar 461, Sahara 98222, Toluca, Sikhote Alin and Campo del Cielo) and can be useful for rapid meteorite identification providing geologists with specific chemical information for meteorite classification. Concentration profiles of Fe, Ni and Co are simultaneously detected across the Widmanstätten structure of the iron meteorite Toluca with a view to determining cooling rates. The LIBS analysis of meteorites is also used as a laboratory test for analogous studies on the respective parent bodies (Mars, asteroids) in space exploration missions where one clear advantage of the proposed technique is that no direct contact with the sample is required.

  9. Real-Time Control of Ultrafast Laser Micromachining by Laser-Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Tong, Tao; Li, Jinggao; Longtin, Jon P.

    2004-03-01

    Ultrafast laser micromachining provides many advantages for precision micromachining. One challenging problem, however, particularly for multilayer and heterogeneous materials, is how to prevent a given material from being ablated, as ultrafast laser micromachining is generally material insensitive. We present a real-time feedback control system for an ultrafast laser micromachining system based on laser-induced breakdown spectroscopy (LIBS). The characteristics of ultrafast LIBS are reviewed and discussed so as to demonstrate the feasibility of the technique. Comparison methods to identify the material emission patterns are developed, and several of the resulting algorithms were implemented into a real-time computer control system. LIBS-controlled micromachining is demonstrated for the fabrication of microheater structures on thermal sprayed materials. Compared with a strictly passive machining process without any such feedback control, the LIBS-based system provides several advantages including less damage to the substrate layer, reduced machining time, and more-uniform machining features.

  10. Research progress in Asia on methods of processing laser-induced breakdown spectroscopy data

    NASA Astrophysics Data System (ADS)

    Guo, Yang-Min; Guo, Lian-Bo; Li, Jia-Ming; Liu, Hong-Di; Zhu, Zhi-Hao; Li, Xiang-You; Lu, Yong-Feng; Zeng, Xiao-Yan

    2016-10-01

    Laser-induced breakdown spectroscopy (LIBS) has attracted much attention in terms of both scientific research and industrial application. An important branch of LIBS research in Asia, the development of data processing methods for LIBS, is reviewed. First, the basic principle of LIBS and the characteristics of spectral data are briefly introduced. Next, two aspects of research on and problems with data processing methods are described: i) the basic principles of data preprocessing methods are elaborated in detail on the basis of the characteristics of spectral data; ii) the performance of data analysis methods in qualitative and quantitative analysis of LIBS is described. Finally, a direction for future development of data processing methods for LIBS is also proposed.

  11. Application of laser-induced breakdown spectroscopy to the analysis of algal biomass for industrial biotechnology

    NASA Astrophysics Data System (ADS)

    Pořízka, P.; Prochazka, D.; Pilát, Z.; Krajcarová, L.; Kaiser, J.; Malina, R.; Novotný, J.; Zemánek, P.; Ježek, J.; Šerý, M.; Bernatová, S.; Krzyžánek, V.; Dobranská, K.; Novotný, K.; Trtílek, M.; Samek, O.

    2012-08-01

    We report on the application of laser-induced breakdown spectroscopy (LIBS) to the determination of elements distinctive in terms of their biological significance (such as potassium, magnesium, calcium, and sodium) and to the monitoring of accumulation of potentially toxic heavy metal ions in living microorganisms (algae), in order to trace e.g. the influence of environmental exposure and other cultivation and biological factors having an impact on them. Algae cells were suspended in liquid media or presented in a form of adherent cell mass on a surface (biofilm) and, consequently, characterized using their spectra. In our feasibility study we used three different experimental arrangements employing double-pulse LIBS technique in order to improve on analytical selectivity and sensitivity for potential industrial biotechnology applications, e.g. for monitoring of mass production of commercial biofuels, utilization in the food industry and control of the removal of heavy metal ions from industrial waste waters.

  12. Determination of whey adulteration in milk powder by using laser induced breakdown spectroscopy.

    PubMed

    Bilge, Gonca; Sezer, Banu; Eseller, Kemal Efe; Berberoglu, Halil; Topcu, Ali; Boyaci, Ismail Hakki

    2016-12-01

    A rapid and in situ method has been developed to detect and quantify adulterated milk powder through adding whey powder by using laser induced breakdown spectroscopy (LIBS). The methodology is based on elemental composition differences between milk and whey products. Milk powder, sweet and acid whey powders were produced as standard samples, and milk powder was adulterated with whey powders. Based on LIBS spectra of standard samples and commercial products, species was identified using principle component analysis (PCA) method, and discrimination rate of milk and whey powders was found as 80.5%. Calibration curves were obtained with partial least squares regression (PLS). Correlation coefficient (R(2)) and limit of detection (LOD) values were 0.981 and 1.55% for adulteration with sweet whey powder, and 0.985 and 0.55% for adulteration with acid whey powder, respectively. The results were found to be consistent with the data from inductively coupled plasma - mass spectrometer (ICP-MS) method.

  13. A comparative study of single and double pulse of laser induced breakdown spectroscopy of silver

    SciTech Connect

    Rashid, Babar; Ahmed, Rizwan; Ali, Raheel; Baig, M. A.

    2011-07-15

    We present a comparative study of the collinear and orthogonal pre-ablation dual pulse configurations of laser induced breakdown spectroscopy (LIBS) of silver using Nd:YAG lasers. The effect of the inter-pulse delay and the ratio of the laser pulse energies on the signal intensity enhancement for both the dual pulse configurations have been investigated. Using the first laser at 532 nm and second laser at 1064 nm delayed by 5 {mu}s, we achieved nearly 2 times signal enhancement in the collinear double-pulsed configuration and nearly 12 times in the pre-ablation orthogonal configuration as compared to SP LIBS. It is ascertained that at the optimized value of the inter-pulse delay between the two lasers, the intensity ratio of the neutral silver lines follows the local thermo dynamical equilibrium (LTE) condition and it is also in excellent agreement with that of the relative transitions probabilities ratio listed in the NIST data base.

  14. 3D Imaging of Nanoparticle Distribution in Biological Tissue by Laser-Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gimenez, Y.; Busser, B.; Trichard, F.; Kulesza, A.; Laurent, J. M.; Zaun, V.; Lux, F.; Benoit, J. M.; Panczer, G.; Dugourd, P.; Tillement, O.; Pelascini, F.; Sancey, L.; Motto-Ros, V.

    2016-07-01

    Nanomaterials represent a rapidly expanding area of research with huge potential for future medical applications. Nanotechnology indeed promises to revolutionize diagnostics, drug delivery, gene therapy, and many other areas of research. For any biological investigation involving nanomaterials, it is crucial to study the behavior of such nano-objects within tissues to evaluate both their efficacy and their toxicity. Here, we provide the first account of 3D label-free nanoparticle imaging at the entire-organ scale. The technology used is known as laser-induced breakdown spectroscopy (LIBS) and possesses several advantages such as speed of operation, ease of use and full compatibility with optical microscopy. We then used two different but complementary approaches to achieve 3D elemental imaging with LIBS: a volume reconstruction of a sliced organ and in-depth analysis. This proof-of-concept study demonstrates the quantitative imaging of both endogenous and exogenous elements within entire organs and paves the way for innumerable applications.

  15. Evaluation of factors affecting the analysis of metals using laser-induced breakdown spectroscopy

    SciTech Connect

    Cremers, D.A.; Romero, D.J.

    1986-01-01

    Some of the main factors affecting the analysis of solid steel using laser-induced break-down spectroscopy (LIBS) have been investigated and are reported here. Pulses from an electro-optically Q-switched Nd:YAG laser were focused on steel samples to generate a high temperature plasma. The spectrally resolved plasma light was time resolved and detected using a photodiode array. The effects that changes in the lens-to-sample distance, laser pulse energy, and position of the imaging lens had on the LIBS analysis are described. These effects were minimized by ratioing the absolute element signals to adjacent Fe-lines. Calibration curves for Mn, Si, and Cr are presented and the accuracy and precision of LIBS analysis listed for several elements. 12 refs.

  16. [Application progress of laser-induced breakdown spectroscopy for surface analysis in materials science field].

    PubMed

    Zhang, Yong; Jia, Yun-Hai; Chen, Ji-Wen; Liu, Ying; Shen, Xue-Jing; Zhao, Lei; Wang, Shu-Ming; Yu, Hong; Han, Peng-Cheng; Qu, Hua-Yang; Liu, Shao-Zun

    2012-06-01

    As a truly surface analytical tool, laser-induced breakdown spectroscopy (LIBS) was developed in recent ten years, and in this paper, fundamental theory, instrumentation and it's applications in material science are reviewed in detail. Application progress of elemental distribution and depth profile analysis are mainly discussed in the field of metallurgy, semiconductor and electronical materials at home and abroad. It is pointed out that the pulse energy, ambient gas and it's pressure, and energy distribution of laser beam strongly influence spatial and depth resolution, and meanwhile a approach to improving resolution considering analytical sensitivity is provided. Compared with traditional surface analytical methods, the advantage of LIBS is very large scanning area, high analytical speed, and that conducting materials or non-conducting materials both can be analyzed. It becomes a powerful complement of traditional surface analytical tool.

  17. Quantitative analysis of Cu and Co adsorbed on fish bones via laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Rezk, R. A.; Galmed, A. H.; Abdelkreem, M.; Ghany, N. A. Abdel; Harith, M. A.

    2016-09-01

    In the present work, laser-induced breakdown spectroscopy (LIBS) has been applied for qualitative and quantitative analysis of heavy metals adsorbed by fish bones. Fish bones were used as a natural and low cost heavy metal sorbent (mainly Cu and Co) from synthetic wastewater. The removal efficiency of the adsorbent was studied as a function of initial metal concentration and pH value. Optimal experimental conditions were evaluated for improving the sensitivity of LIBS technique through parametric dependence studies. Furthermore, calibration curves were constructed based on X-ray fluorescence (XRF) analysis technique, whereas, the limits of detection (LOD) for Cu and Co were calculated. The results were validated by comparing LIBS data with those obtained by XRF spectrometry. The results of the two techniques are strongly correlated which verified the feasibility of using LIBS to detect traces of heavy metals adsorbed from wastewater by fish bones. This study reflects the potential of using LIBS in environmental applications.

  18. Detection of Minerals in Green Leafy Vegetables Using Laser Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Shukla, P.; Kumar, R.; Raib, A. Kumar

    2016-11-01

    The distribution of minerals in different green leafy vegetables, such as spinach, chenopodium, chickpea, mustard, and fenugreek, was calculated using laser induced breakdown spectroscopy (LIBS). LIBS can provide an easy, reliable, efficient, low-cost, and in situ chemical analysis with a reasonable precision. In situ LIBS spectra in the range 200-500 nm were carried out using fresh leaves and leaves in the pellet form. As the spectra suggest, magnesium and calcium are present in each vegetable; however, the amount of them varies. It is observed that the amount of iron is maximal in spinach. The nutrition value of the plants was analyzed, and it was revealed that they are low in calories and fat and high in protein, fiber, iron, calcium, and phytochemicals.

  19. Kinetic model of atomic and molecular emissions in laser-induced breakdown spectroscopy of organic compounds.

    PubMed

    Ma, Qianli; Dagdigian, Paul J

    2011-07-01

    A kinetic model previously developed to predict the relative intensities of atomic emission lines in laser-induced breakdown spectroscopy has been extended to include processes related to CN and C(2) molecular emissions. Simulations with this model were performed to predict the relative excited-state populations. The results from the simulations are compared with experimentally determined excited-state populations from 1,064 nm laser irradiation of organic residues on aluminum foil. The model reasonably predicts the relative intensity of the molecular emissions. Significantly, the model reproduces the vastly different temporal profiles of the atomic and molecular emissions. The latter are found to extend to much longer times after the laser pulse, and this appears to be due to the increasing concentration of the molecules versus time. From the simulations, the important processes affecting the CN and C(2) concentrations are identified.

  20. Effect of cylindrical cavity height on laser-induced breakdown spectroscopy with spatial confinement

    NASA Astrophysics Data System (ADS)

    Junfeng, Shao; Tingfeng, Wang; Jin, Guo; Anmin, Chen; Mingxing, Jin

    2017-02-01

    In this paper, we present a study on the spatial confinement effect of laser-induced plasma with a cylindrical cavity in laser-induced breakdown spectroscopy (LIBS). The emission intensity with the spatial confinement is dependent on the height of the confinement cavity. It is found that, by selecting the appropriate height of cylindrical cavity, the signal enhancement can be significantly increased. At the cylindrical cavity (diameter = 2 mm) with a height of 6 mm, the enhancement ratio has the maximum value (approximately 8.3), and the value of the relative standard deviation (RSD) (7.6%) is at a minimum, the repeatability of LIBS signal is best. The results indicate that the height of confinement cavity is very important for LIBS technique to reduce the limit of detection and improve the precision.

  1. Laser Induced Breakdown Spectroscopy of meteorites as a probe of the early solar system

    NASA Astrophysics Data System (ADS)

    Dell'Aglio, M.; De Giacomo, A.; Gaudiuso, R.; De Pascale, O.; Longo, S.

    2014-11-01

    This paper presents an evaluation of Laser Induced Breakdown Spectroscopy (LIBS) as a technique for gathering data relevant to Solar System geophysics. Two test cases were demonstrated: elemental analysis of chondrules in a chondrite meteorite, and space- resolved analysis of the interface between kamacite and taenite crystals in an octahedrite iron meteorite. In particular most major and minor elements (Fe, Mg, Si, Ti, Al, Cr, Mn, Ca, Fe, Ni, Co) in Sahara 98222 (chondrite) and its chondrules, as well as the profile of Ni content in Toluca (iron meteorite), were determined with the Calibration Free (CF) method. A special attention was devoted to exploring the possibilities offered by variants of the basic technique, such as the use of Fe I Boltzmann distribution as an intensity calibration method of the spectroscopic system, and the use of spatially resolved analysis.

  2. Rapid Elemental Analysis and Provenance Study of Blumea balsamifera DC Using Laser-Induced Breakdown Spectroscopy

    PubMed Central

    Liu, Xiaona; Zhang, Qiao; Wu, Zhisheng; Shi, Xinyuan; Zhao, Na; Qiao, Yanjiang

    2015-01-01

    Laser-induced breakdown spectroscopy (LIBS) was applied to perform a rapid elemental analysis and provenance study of Blumea balsamifera DC. Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were implemented to exploit the multivariate nature of the LIBS data. Scores and loadings of computed principal components visually illustrated the differing spectral data. The PLS-DA algorithm showed good classification performance. The PLS-DA model using complete spectra as input variables had similar discrimination performance to using selected spectral lines as input variables. The down-selection of spectral lines was specifically focused on the major elements of B. balsamifera samples. Results indicated that LIBS could be used to rapidly analyze elements and to perform provenance study of B. balsamifera. PMID:25558999

  3. Application of Graph Theory to unsupervised classification of materials by Laser-Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Grifoni, E.; Legnaioli, S.; Lorenzetti, G.; Pagnotta, S.; Palleschi, V.

    2016-04-01

    In this paper we present a new approach for unsupervised classification of materials from the spectra obtained using the Laser-Induced Breakdown Spectroscopy technique. The method is based on the calculation of the correlation matrix between the LIBS spectra, which is interpreted as an Adjacency matrix in the framework of Graph theory. A threshold is applied on the edge values, which is determined through maximization of the Modularity of the Graph. The classification of the spectra is done automatically after the calculation of the Modularity parameter. An example of the application of the proposed method is given, based on the study of six bronze standards of known composition. The advantages of the proposed approach with respect to Principal Component Analysis are also discussed.

  4. Novel estimation of the humification degree of soil organic matter by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Ferreira, Edilene Cristina; Ferreira, Ednaldo José; Villas-Boas, Paulino Ribeiro; Senesi, Giorgio Saverio; Carvalho, Camila Miranda; Romano, Renan Arnon; Martin-Neto, Ladislau; Milori, Débora Marcondes Bastos Pereira

    2014-09-01

    Soil organic matter (SOM) constitutes an important reservoir of terrestrial carbon and can be considered an alternative for atmospheric carbon storage, contributing to global warming mitigation. Soil management can favor atmospheric carbon incorporation into SOM or its release from SOM to atmosphere. Thus, the evaluation of the humification degree (HD), which is an indication of the recalcitrance of SOM, can provide an estimation of the capacity of carbon sequestration by soils under various managements. The HD of SOM can be estimated by using various analytical techniques including fluorescence spectroscopy. In the present work, the potential of laser-induced breakdown spectroscopy (LIBS) to estimate the HD of SOM was evaluated for the first time. Intensities of emission lines of Al, Mg and Ca from LIBS spectra showing correlation with fluorescence emissions determined by laser-induced fluorescence spectroscopy (LIFS) reference technique were used to obtain a multivaried calibration model based on the k-nearest neighbor (k-NN) method. The values predicted by the proposed model (A-LIBS) showed strong correlation with LIFS results with a Pearson's coefficient of 0.87. The HD of SOM obtained after normalizing A-LIBS by total carbon in the sample showed a strong correlation to that determined by LIFS (0.94), thus suggesting the great potential of LIBS for this novel application.

  5. Planetary geochemical investigations using Raman and laser-induced breakdown spectroscopy.

    PubMed

    Clegg, Samuel M; Wiens, Roger; Misra, Anupam K; Sharma, Shiv K; Lambert, James; Bender, Steven; Newell, Raymond; Nowak-Lovato, Kristy; Smrekar, Sue; Dyar, M Darby; Maurice, Sylvestre

    2014-01-01

    An integrated Raman spectroscopy and laser-induced breakdown spectroscopy (LIBS) instrument is a valuable geoanalytical tool for future planetary missions to Mars, Venus, and elsewhere. The ChemCam instrument operating on the Mars Curiosity rover includes a remote LIBS instrument. An integrated Raman-LIBS spectrometer (RLS) based on the ChemCam architecture could be used as a reconnaissance tool for other contact instruments as well as a primary science instrument capable of quantitative mineralogical and geochemical analyses. Replacing one of the ChemCam spectrometers with a miniature transmission spectrometer enables a Raman spectroscopy mineralogical analysis to be performed, complementing the LIBS chemical analysis while retaining an overall architecture resembling ChemCam. A prototype transmission spectrometer was used to record Raman spectra under both Martian and Venus conditions. Two different high-pressure and high-temperature cells were used to collect the Raman and LIBS spectra to simulate surface conditions on Venus. The resulting LIBS spectra were used to generate a limited partial least squares Venus calibration model for the major elements. These experiments demonstrate the utility and feasibility of a combined RLS instrument.

  6. Measurements of electron avalanche formation time in W-band microwave air breakdown

    SciTech Connect

    Cook, Alan M.; Hummelt, Jason S.; Shapiro, Michael A.; Temkin, Richard J.

    2011-08-15

    We present measurements of formation times of electron avalanche ionization discharges induced by a focused 110 GHz millimeter-wave beam in atmospheric air. Discharges take place in a free volume of gas, with no nearby surfaces or objects. When the incident field amplitude is near the breakdown threshold for pulsed conditions, measured formation times are {approx}0.1-2 {mu}s over the pressure range 5-700 Torr. Combined with electric field breakdown threshold measurements, the formation time data shows the agreement of 110 GHz air breakdown with the similarity laws of gas discharges.

  7. Measurements of electron avalanche formation time in W-band microwave air breakdown

    NASA Astrophysics Data System (ADS)

    Cook, Alan M.; Hummelt, Jason S.; Shapiro, Michael A.; Temkin, Richard J.

    2011-08-01

    We present measurements of formation times of electron avalanche ionization discharges induced by a focused 110 GHz millimeter-wave beam in atmospheric air. Discharges take place in a free volume of gas, with no nearby surfaces or objects. When the incident field amplitude is near the breakdown threshold for pulsed conditions, measured formation times are ˜0.1-2 μs over the pressure range 5-700 Torr. Combined with electric field breakdown threshold measurements, the formation time data shows the agreement of 110 GHz air breakdown with the similarity laws of gas discharges.

  8. Effect of sample preparation on the discrimination of bacterial isolates cultured in liquid nutrient media using laser induced breakdown spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Laser induced breakdown spectroscopy (LIBS) is used as the basis for discrimination between 2 genera of gram-negative bacteria and 2 genera of gram-positive bacteria representing pathogenic threats commonly found in poultry processing rinse waters. Because LIBS-based discrimination relies primarily ...

  9. A Simple Laser Induced Breakdown Spectroscopy (LIBS) System for Use at Multiple Levels in the Undergraduate Chemistry Curriculum

    ERIC Educational Resources Information Center

    Randall, David W.; Hayes, Ryan T.; Wong, Peter A.

    2013-01-01

    A LIBS (laser induced breakdown spectroscopy) spectrometer constructed by the instructor is reported for use in undergraduate analytical chemistry experiments. The modular spectrometer described here is based on commonly available components including a commercial Nd:YAG laser and a compact UV-vis spectrometer. The modular approach provides a…

  10. Temperature and Electron Density Determination on Laser-Induced Breakdown Spectroscopy (LIBS) Plasmas: A Physical Chemistry Experiment

    ERIC Educational Resources Information Center

    Najarian, Maya L.; Chinni, Rosemarie C.

    2013-01-01

    This laboratory is designed for physical chemistry students to gain experience using laser-induced breakdown spectroscopy (LIBS) in understanding plasma diagnostics. LIBS uses a high-powered laser that is focused on the sample causing a plasma to form. The emission of this plasma is then spectrally resolved and detected. Temperature and electron…

  11. Simultaneous optimization by neuro-genetic approach for analysis of plant materials by laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Nunes, Lidiane Cristina; da Silva, Gilmare Antônia; Trevizan, Lilian Cristina; Santos Júnior, Dario; Poppi, Ronei Jesus; Krug, Francisco José

    2009-06-01

    A simultaneous optimization strategy based on a neuro-genetic approach is proposed for selection of laser induced breakdown spectroscopy operational conditions for the simultaneous determination of macro-nutrients (Ca, Mg and P), micro-nutrients (B, Cu, Fe, Mn and Zn), Al and Si in plant samples. A laser induced breakdown spectroscopy system equipped with a 10 Hz Q-switched Nd:YAG laser (12 ns, 532 nm, 140 mJ) and an Echelle spectrometer with intensified coupled-charge device was used. Integration time gate, delay time, amplification gain and number of pulses were optimized. Pellets of spinach leaves (NIST 1570a) were employed as laboratory samples. In order to find a model that could correlate laser induced breakdown spectroscopy operational conditions with compromised high peak areas of all elements simultaneously, a Bayesian Regularized Artificial Neural Network approach was employed. Subsequently, a genetic algorithm was applied to find optimal conditions for the neural network model, in an approach called neuro-genetic. A single laser induced breakdown spectroscopy working condition that maximizes peak areas of all elements simultaneously, was obtained with the following optimized parameters: 9.0 µs integration time gate, 1.1 µs delay time, 225 (a.u.) amplification gain and 30 accumulated laser pulses. The proposed approach is a useful and a suitable tool for the optimization process of such a complex analytical problem.

  12. Quantitative analysis of soil calcium by laser-induced breakdown spectroscopy using addition and addition-internal standardizations

    NASA Astrophysics Data System (ADS)

    Shirvani-Mahdavi, Hamidreza; Shafiee, Parisa

    2016-12-01

    Matrix mismatching in the quantitative analysis of materials through calibration-based laser-induced breakdown spectroscopy (LIBS) is a serious problem. In this paper, to overcome the matrix mismatching, two distinct approaches named addition standardization (AS) and addition-internal combinatorial standardization (A-ICS) are demonstrated for LIBS experiments. Furthermore, in order to examine the efficiency of these methods, the concentration of calcium in ordinary garden soil without any fertilizer is individually measured by each of the two procedures. To achieve this purpose, ten standard samples with different concentrations of calcium (as the analyte) and copper (as the internal standard) are prepared in the form of cylindrical tablets, so that the soil plays the role of the matrix in all of them. The measurements indicate that the relative error of concentration compared to a certified value derived by induced coupled plasma optical emission spectroscopy is 3.97% and 2.23% for AS and A-ICS methods, respectively. Furthermore, calculations related to standard deviation indicates that A-ICS method may be more accurate than AS one.

  13. Evaluation of the laser-induced breakdown spectroscopy technique for determination of the chemical composition of copper concentrates

    NASA Astrophysics Data System (ADS)

    Łazarek, Łukasz; Antończak, Arkadiusz J.; Wójcik, Michał R.; Drzymała, Jan; Abramski, Krzysztof M.

    2014-07-01

    Laser-induced breakdown spectroscopy (LIBS), like many other spectroscopic techniques, is a comparative method. Typically, in qualitative analysis, synthetic certified standard with a well-known elemental composition is used to calibrate the system. Nevertheless, in all laser-induced techniques, such calibration can affect the accuracy through differences in the overall composition of the chosen standard. There are also some intermediate factors, which can cause imprecision in measurements, such as optical absorption, surface structure and thermal conductivity. In this work the calibration performed for the LIBS technique utilizes pellets made directly from the tested materials (old well-characterized samples). This choice produces a considerable improvement in the accuracy of the method. This technique was adopted for the determination of trace elements in industrial copper concentrates, standardized by conventional atomic absorption spectroscopy with a flame atomizer. A series of copper flotation concentrate samples was analyzed for three elements: silver, cobalt and vanadium. We also proposed a method of post-processing the measurement data to minimize matrix effects and permit reliable analysis. It has been shown that the described technique can be used in qualitative and quantitative analyses of complex inorganic materials, such as copper flotation concentrates. It was noted that the final validation of such methodology is limited mainly by the accuracy of the characterization of the standards.

  14. Spectral Analysis of Rare Earth Elements using Laser-Induced Breakdown Spectroscopy

    SciTech Connect

    Martin, Madhavi Z; Fox, Dr. Richard V; Miziolek, Andrzej W; DeLucia, Frank C; Andre, Nicolas O

    2015-01-01

    There is growing interest in rapid analysis of rare earth elements (REEs) both due to the need to find new natural sources to satisfy increased demand in their use in various electronic devices, as well as the fact that they are used to estimate actinide masses for nuclear safeguards and nonproliferation. Laser-Induced Breakdown Spectroscopy (LIBS) appears to be a particularly well-suited spectroscopy-based technology to rapidly and accurately analyze the REEs in various matrices at low concentration levels (parts-per-million). Although LIBS spectra of REEs have been reported for a number of years, further work is still necessary in order to be able to quantify the concentrations of various REEs in realworld complex samples. LIBS offers advantages over conventional solution-based radiochemistry in terms of cost, analytical turnaround, waste generation, personnel dose, and contamination risk. Rare earth elements of commercial interest are found in the following three matrix groups: 1) raw ores and unrefined materials, 2) as components in refined products such as magnets, lighting phosphors, consumer electronics (which are mostly magnets and phosphors), catalysts, batteries, etc., and 3) waste/recyclable materials (aka e-waste). LIBS spectra for REEs such as Gd, Nd, and Sm found in rare earth magnets are presented.

  15. Spectral Analysis of Rare Earth Elements using Laser-Induced Breakdown Spectroscopy

    SciTech Connect

    Martin, Madhavi Z; Fox, Dr. Richard V; Miziolek, Andrzej W; DeLucia, Frank C; Andre, Nicolas O

    2015-01-01

    There is growing interest in rapid analysis of rare earth elements (REEs) both due to the need to find new natural sources to satisfy increased demand in their use in various electronic devices, as well as the fact that they are used to estimate actinide masses for nuclear safeguards and nonproliferation. Laser-Induced Breakdown Spectroscopy (LIBS) appears to be a particularly well-suited spectroscopy-based technology to rapidly and accurately analyze the REEs in various matrices at low concentration levels (parts-per-million). Although LIBS spectra of REEs have been reported for a number of years, further work is still necessary in order to be able to quantify the concentrations of various REEs in real-world complex samples. LIBS offers advantages over conventional solution-based radiochemistry in terms of cost, analytical turnaround, waste generation, personnel dose, and contamination risk. Rare earth elements of commercial interest are found in the following three matrix groups: 1) raw ores and unrefined materials, 2) as components in refined products such as magnets, lighting phosphors, consumer electronics (which are mostly magnets and phosphors), catalysts, batteries, etc., and 3) waste/recyclable materials (aka e-waste). LIBS spectra for REEs such as Gd, Nd, and Sm found in rare earth magnets are presented.

  16. Laser Induced Breakdown Spectroscopy in archeometry: A review of its application and future perspectives

    NASA Astrophysics Data System (ADS)

    Spizzichino, Valeria; Fantoni, Roberta

    2014-09-01

    Laser Induced Breakdown Spectroscopy (LIBS) in the last decades has been more and more applied to the field of Cultural Heritage with great results obtained either alone or in combination with complementary laser techniques. Its ability to analyze, with a minimal loss, different kinds of materials in laboratory, in situ and even in hostile environments has been highly appreciated. The main aim of this paper is to present a review of LIBS applications in the interdisciplinary field of archeometry. The LIBS technique is shortly described both from a theoretical and practical point of view, discussing the instrumental setup, also in comparison with typical features of laser induced fluorescence (LIF) and Raman spectroscopy apparata. The complementary with multivariate analysis, a method that can help in reducing data set dimensions and in pulling out effective information, is stressed. In particular the role of LIBS in Cultural Heritage material characterization, recognition of fakes and indirect dating is described, reporting general considerations and case studies on metal alloys, mural paintings, decorated ceramics, glasses, stones and gems.

  17. Spectral analysis of rare earth elements using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Martin, Madhavi Z.; Fox, Robert V.; Miziolek, Andrzej W.; DeLucia, Frank C.; André, Nicolas

    2015-06-01

    There is growing interest in rapid analysis of rare earth elements (REEs) both due to the need to find new natural sources to satisfy increased demand in their use in various electronic devices, as well as the fact that they are used to estimate actinide masses for nuclear safeguards and nonproliferation. Laser-Induced Breakdown Spectroscopy (LIBS) appears to be a particularly well-suited spectroscopy-based technology to rapidly and accurately analyze the REEs in various matrices at low concentration levels (parts-per-million). Although LIBS spectra of REEs have been reported for a number of years, further work is still necessary in order to be able to quantify the concentrations of various REEs in realworld complex samples. LIBS offers advantages over conventional solution-based radiochemistry in terms of cost, analytical turnaround, waste generation, personnel dose, and contamination risk. Rare earth elements of commercial interest are found in the following three matrix groups: 1) raw ores and unrefined materials, 2) as components in refined products such as magnets, lighting phosphors, consumer electronics (which are mostly magnets and phosphors), catalysts, batteries, etc., and 3) waste/recyclable materials (aka e-waste). LIBS spectra for REEs such as Gd, Nd, and Sm found in rare earth magnets are presented.

  18. Spectral Analysis of Rare Earth Elements using Laser-Induced Breakdown Spectroscopy

    SciTech Connect

    Madhavi Z. Martin; Robert V. Fox; Andrzej W. Miziolek; Frank C. DeLucia, Jr.; Nicolas Andre

    2001-05-01

    There is growing interest in rapid analysis of rare earth elements (REEs) both due to the need to find new natural sources to satisfy increased demand in their use in various electronic devices, as well as the fact that they are used to estimate actinide masses for nuclear safeguards and nonproliferation. Laser-Induced Breakdown Spectroscopy (LIBS) appears to be a particularly well-suited spectroscopy-based technology to rapidly and accurately analyze the REEs in various matrices at low concentration levels (parts-per-million). Although LIBS spectra of REEs have been reported for a number of years, further work is still necessary in order to be able to quantify the concentrations of various REEs in realworld complex samples. LIBS offers advantages over conventional solution-based radiochemistry in terms of cost, analytical turnaround, waste generation, personnel dose, and contamination risk. Rare earth elements of commercial interest are found in the following three matrix groups: 1) raw ores and unrefined materials, 2) as components in refined products such as magnets, lighting phosphors, consumer electronics (which are mostly magnets and phosphors), catalysts, batteries, etc., and 3) waste/recyclable materials (aka e-waste). LIBS spectra for REEs such as Gd, Nd, and Sm found in rare earth magnets are presented.

  19. Rapid Detection of Oil Pollution in Soil by Using Laser-Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ali, Khumaeni; Wahyu Setia, Budi; Asep Yoyo, Wardaya; Rinda, Hedwig; Koo Hendrik, Kurniawan

    2016-12-01

    Detection of oil pollution in soil has been carried out using laser-induced breakdown spectroscopy (LIBS). A pulsed neodymium-doped yttrium aluminum garnet (Nd:YAG) laser (1,064 nm, 8 ns, 200 mJ) was focused onto pelletized soil samples. Emission spectra were obtained from oil-contaminated soil and clean soil. The contaminated soil had almost the same spectrum profile as the clean soil and contained the same major and minor elements. However, a C-H molecular band was clearly detected in the oil-contaminated soil, while no C-H band was detected in the clean soil. Linear calibration curve of the C-H molecular band was successfully made by using a soil sample containing various concentrations of oil. The limit of detection of the C-H band in the soil sample was 0.001 mL/g. Furthermore, the emission spectrum of the contaminated soil clearly displayed titanium (Ti) lines, which were not detected in the clean soil. The existence of the C-H band and Ti lines in oil-contaminated soil can be used to clearly distinguish contaminated soil from clean soil. For comparison, the emission spectra of contaminated and clean soil were also obtained using scanning electron microscope-energy dispersive X-ray (SEM/EDX) spectroscopy, showing that the spectra obtained using LIBS are much better than using SEM/EDX, as indicated by the signal to noise ratio (S/N ratio).

  20. Feasibility study for detecting copper contaminants in transformer insulation using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Aparna, N.; Vasa, Nilesh J.; Sarathi, R.; Rajan, J. Sundara

    2014-10-01

    In recent times, copper sulphide (Cu2S) diffusion in the transformer insulation is a major problem reducing the life of transformers. It is therefore essential to identify a simple methodology to understand the diffusion of Cu2S into the solid insulation [oil impregnated pressboard (OIP)]. In the present work, laser-induced breakdown spectroscopy (LIBS) was adopted to study the diffusion of Cu2S into the pressboard insulation and to determine the depth of diffusion. The diffusion of Cu2S in pressboard was confirmed by electrical discharge studies. In general, flashover voltage and increase in ageing duration of pressboard insulation/Cu concentration had inverse relationship. The characteristic emission lines were also studied through optical emission spectroscopy. Based on LIBS studies with Cu powder dispersed pressboard samples, Cu I emission lines were found to be resolvable up to a lowest concentration of 5 μg/cm2. The LIBS intensity ratio of Cu I-Ca II emission lines were found to increase with increase in the ageing duration of the OIP sample. LIBS studies with OIP samples showed an increase in the optical emission lifetime. LIBS results were in agreement with the electrical discharge studies.

  1. Optimal boiler control through real-time monitoring of unburned carbon in fly ash by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Kurihara, Miki; Ikeda, Koji; Izawa, Yoshinori; Deguchi, Yoshihiro; Tarui, Hitoshi

    2003-10-01

    A laser-induced breakdown spectroscopy (LIBS) technique has been applied for detection of unburned carbon in fly ash, and an automated LIBS unit has been developed and applied in a 1000-MW pulverized-coal-fired power plant for real-time measurement, specifically of unburned carbon in fly ash. Good agreement was found between measurement results from the LIBS method and those from the conventional method (Japanese Industrial Standard 8815), with a standard deviation of 0.27%. This result confirms that the measurement of unburned carbon in fly ash by use of LIBS is sufficiently accurate for boiler control. Measurements taken by this apparatus were also integrated into a boiler-control system with the objective of achieving optimal and stable combustion. By control of the rotating speed of a mill rotary separator relative to measured unburned-carbon content, it has been demonstrated that boiler control is possible in an optimized manner by use of the value of the unburned-carbon content of fly ash.

  2. Optimal boiler control through real-time monitoring of unburned carbon in fly ash by laser-induced breakdown spectroscopy.

    PubMed

    Kurihara, Miki; Ikeda, Koji; Izawa, Yoshinori; Deguchi, Yoshihiro; Tarui, Hitoshi

    2003-10-20

    A laser-induced breakdown spectroscopy (LIBS) technique has been applied for detection of unburned carbon in fly ash, and an automated LIBS unit has been developed and applied in a 1000-MW pulverized-coal-fired power plant for real-time measurement, specifically of unburned carbon in fly ash. Good agreement was found between measurement results from the LIBS method and those from the conventional method (Japanese Industrial Standard 8815), with a standard deviation of 0.27%. This result confirms that the measurement of unburned carbon in fly ash by use of LIBS is sufficiently accurate for boiler control. Measurements taken by this apparatus were also integrated into a boiler-control system with the objective of achieving optimal and stable combustion. By control of the rotating speed of a mill rotary separator relative to measured unburned-carbon content, it has been demonstrated that boiler control is possible in an optimized manner by use of the value of the unburned-carbon content of fly ash.

  3. Emission enhancement of underwater collinear dual-pulse laser-induced breakdown spectroscopy with the second pulse defocused

    NASA Astrophysics Data System (ADS)

    Xue, Boyang; Li, Nan; Lu, Yuan; Li, Yuandong; Zheng, Ronger

    2017-03-01

    Axial focusing arrangement effects on collinear dual-pulse laser-induced breakdown spectroscopy (DP-LIBS) in a bulk solution were investigated by spectra and fast images. By properly defocusing the second laser pulse beyond the first laser formed bubble (LFB), brighter and larger plasmas could be produced due to higher breakdown efficiency and higher expansion efficiency. It is attributed to a distinct mechanism of underwater DP-LIBS that the plasma mostly forms at the bubble-water interface and then expands into the gaseous LFB. The results show that optimization of the axial focusing arrangement in underwater collinear DP-LIBS enables significant emission enhancements with relatively low laser energies.

  4. Laser-induced breakdown spectroscopy (LIBS) technique for the determination of the chemical composition of complex inorganic materials

    NASA Astrophysics Data System (ADS)

    Łazarek, Łukasz; Antończak, Arkadiusz J.; Wójcik, Michał R.; Kozioł, Paweł E.; Stepak, Bogusz; Abramski, Krzysztof M.

    2014-08-01

    Laser-induced breakdown spectroscopy (LIBS) is a fast, fully optical method, that needs little or no sample preparation. In this technique qualitative and quantitative analysis is based on comparison. The determination of composition is generally based on the construction of a calibration curve namely the LIBS signal versus the concentration of the analyte. Typically, to calibrate the system, certified reference materials with known elemental composition are used. Nevertheless, such samples due to differences in the overall composition with respect to the used complex inorganic materials can influence significantly on the accuracy. There are also some intermediate factors which can cause imprecision in measurements, such as optical absorption, surface structure, thermal conductivity etc. This paper presents the calibration procedure performed with especially prepared pellets from the tested materials, which composition was previously defined. We also proposed methods of post-processing which allowed for mitigation of the matrix effects and for a reliable and accurate analysis. This technique was implemented for determination of trace elements in industrial copper concentrates standardized by conventional atomic absorption spectroscopy with a flame atomizer. A series of copper flotation concentrate samples was analyzed for contents of three elements, that is silver, cobalt and vanadium. It has been shown that the described technique can be used to qualitative and quantitative analyses of complex inorganic materials, such as copper flotation concentrates.

  5. Quantitative Analysis of Carbon Content in Bituminous Coal by Laser-Induced Breakdown Spectroscopy Using UV Laser Radiation

    NASA Astrophysics Data System (ADS)

    Li, Xiongwei; Mao, Xianglei; Wang, Zhe; Richard, E. Russo

    2015-11-01

    The carbon content of bituminous coal samples was analyzed by laser-induced breakdown spectroscopy. The 266 nm laser radiation was utilized for laser ablation and plasma generation in air. The partial least square method and the dominant factor based PLS method were used to improve the measurement accuracy of the carbon content of coal. The results showed that the PLS model could achieve good measurement accuracy, and the dominant factor based PLS model could further improve the measurement accuracy. The coefficient of determination and the root-mean-square error of prediction of the PLS model were 0.97 and 2.19%, respectively; and those values for the dominant factor based PLS model were 0.99 and 1.51%, respectively. The results demonstrated that the 266 nm wavelength could accurately measure the carbon content of bituminous coal. supported by National Natural Science Foundation of China (No. 51276100) and the National Basic Research Program of China (973 Program) (No. 2013CB228501). The authors also thank the financial funding from the U. S. Department of Energy, Office of Basic Energy Sciences, Chemical Science Division at Lawrence Berkeley National Laboratory (No. 2013CB228501)

  6. Investigation of historical metal objects using Laser Induced Breakdown Spectroscopy (LIBS) technique

    SciTech Connect

    Abdel-Kareem, O.; Ghoneim, M.; Harith, M. A.

    2011-09-22

    Analysis of metal objects is a necessary step for establishing an appropriate conservation treatment of an object or to follow up the application's result of the suggested treatments. The main considerations on selecting a method that can be used in investigation and analysis of metal objects are based on the diagnostic power, representative sampling, reproducibility, destructive nature/invasiveness of analysis and accessibility to the appropriate instrument. This study aims at evaluating the usefulness of the use of Laser Induced Breakdown Spectroscopy (LIBS) Technique for analysis of historical metal objects. In this study various historical metal objects collected from different museums and excavations in Egypt were investigated using (LIBS) technique. For evaluating usefulness of the suggested analytical protocol of this technique, the same investigated metal objects were investigated by other methods such as Scanning Electron Microscope with energy-dispersive x-ray analyzer (SEM-EDX) and X-ray Diffraction (XRD). This study confirms that Laser Induced Breakdown Spectroscopy (LIBS) Technique is considered very useful technique that can be used safely for investigating historical metal objects. LIBS analysis can quickly provide information on the qualitative and semi-quantitative elemental content of different metal objects and their characterization and classification. It is practically non-destructive technique with the critical advantage of being applicable in situ, thereby avoiding sampling and sample preparations. It is can be dependable, satisfactory and effective method for low cost study of archaeological and historical metals. But we have to take into consideration that the corrosion of metal leads to material alteration and possible loss of certain metals in the form of soluble salts. Certain corrosion products are known to leach out of the object and therefore, their low content does not necessarily reflect the composition of the metal at the time of

  7. In situ Laser Induced Breakdown Spectroscopy as a tool to discriminate volcanic rocks and magmatic series, Iceland

    NASA Astrophysics Data System (ADS)

    Roux, C. P. M.; Rakovský, J.; Musset, O.; Monna, F.; Buoncristiani, J.-F.; Pellenard, P.; Thomazo, C.

    2015-01-01

    This study evaluates the potentialities of a lab-made pLIBS (portable Laser-Induced Breakdown Spectroscopy) to sort volcanic rocks belonging to various magmatic series. An in-situ chemical analysis of 19 atomic lines, including Al, Ba, Ca, Cr, Cu, Fe, Mg, Mn, Na, Si, Sr and Ti, from 21 sampled rocks was performed during a field exploration in Iceland. Iceland was chosen both for the various typologies of volcanic rocks and the rugged conditions in the field in order to test the sturdiness of the pLIPS. Elemental compositions were also measured using laboratory ICP-AES measurements on the same samples. Based on these latter results, which can be used to identify three different groups of volcanic rocks, a classification model was built in order to sort pLIBS data and to categorize unknown samples. Using a reliable statistical scheme applied to LIBS compositional data, the classification capability of the pLIBS system is clearly demonstrated (90-100% success rate). Although this prototype does not provide quantitative measurements, its use should be of particular interest for future geological field investigations.

  8. Rapid identification and discrimination of bacterial strains by laser induced breakdown spectroscopy and neural networks.

    PubMed

    Manzoor, S; Moncayo, S; Navarro-Villoslada, F; Ayala, J A; Izquierdo-Hornillos, R; de Villena, F J Manuel; Caceres, J O

    2014-04-01

    Identification and discrimination of bacterial strains of same species exhibiting resistance to antibiotics using laser induced breakdown spectroscopy (LIBS) and neural networks (NN) algorithm is reported. The method has been applied to identify 40 bacterial strains causing hospital acquired infections (HAI), i.e. Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, Salmonella typhimurium, Salmonella pullurum and Salmonella salamae. The strains analyzed included both isolated from clinical samples and constructed in laboratory that differ in mutations as a result of their resistance to one or more antibiotics. Small changes in the atomic composition of the bacterial strains, as a result of their mutations and genetic variations, were detected by the LIBS-NN methodology and led to their identification and classification. This is of utmost importance because solely identification of bacterial species is not sufficient for disease diagnosis and identification of the actual strain is also required. The proposed method was successfully able to discriminate strains of the same bacterial species. The optimized NN models provided reliable bacterial strain identification with an index of spectral correlation higher than 95% for the samples analyzed, showing the potential and effectiveness of the method to address the safety and social-cost HAI-related issue.

  9. High Resolution Applications of Laser-Induced Breakdown Spectroscopy for Environmental and Forensic Applications

    SciTech Connect

    Martin, Madhavi Z; Labbe, Nicole; Andre, Nicolas O; Harris, Ronny D; Ebinger, Michael H; Wullschleger, Stan D; Vass, Arpad Alexander

    2007-01-01

    Laser-induced breakdown spectroscopy (LIBS) has been used in the elemental analysis for a variety of environmental samples and as a proof of concept for a host of forensic applications. In the first application, LIBS was used for the rapid detection of carbon from a number of different soil types. In this application, a major breakthrough was achieved by using a multivariate analytical approach that has brought us closer towards a "universal calibration curve". In a second application, it has been demonstrated that LIBS in combination with multivariate analysis can be employed to analyze the chemical composition of annual tree growth rings and correlate them to external parameters such as changes in climate, forest fires, and disturbances involving human activity. The objectives of using this technology in fire scar determinations are: 1) To determine the characteristic spectra of wood exposed to forest fires and 2) To examine the viability of this technique for detecting fire occurrences in stems that did not develop fire scars. These examples demonstrate that LIBS-based techniques are inherently well suited for diverse environmental applications. LIBS was also applied to a variety of proof of concept forensic applications such as the analysis of cremains (human cremation remains) and elemental composition analysis of prosthetic implants.

  10. High resolution applications of laser-induced breakdown spectroscopy for environmental and forensic applications

    NASA Astrophysics Data System (ADS)

    Martin, Madhavi Z.; Labbé, Nicole; André, Nicolas; Harris, Ronny; Ebinger, Michael; Wullschleger, Stan D.; Vass, Arpad A.

    2007-12-01

    Laser-induced breakdown spectroscopy (LIBS) has been used in the elemental analysis for a variety of environmental samples and as a proof of concept for a host of forensic applications. In the first application, LIBS was used for the rapid detection of carbon from a number of different soil types. In this application, a major breakthrough was achieved by using a multivariate analytical approach that has brought us closer towards a "universal calibration curve". In a second application, it has been demonstrated that LIBS in combination with multivariate analysis can be employed to analyze the chemical composition of annual tree growth rings and correlate them to external parameters such as changes in climate, forest fires, and disturbances involving human activity. The objectives of using this technology in fire scar determinations are: 1) To determine the characteristic spectra of wood exposed to forest fires and 2) To examine the viability of this technique for detecting fire occurrences in stems that did not develop fire scars. These examples demonstrate that LIBS-based techniques are inherently well suited for diverse environmental applications. LIBS was also applied to a variety of proof of concept forensic applications such as the analysis of cremains (human cremation remains) and elemental composition analysis of prosthetic implants.

  11. Analysis of antique bronze coins by Laser Induced Breakdown Spectroscopy and multivariate analysis

    NASA Astrophysics Data System (ADS)

    Bachler, M. Orlić; Bišćan, M.; Kregar, Z.; Jelovica Badovinac, I.; Dobrinić, J.; Milošević, S.

    2016-09-01

    This work presents a feasibility study of applying the Principal Component Analysis (PCA) to data obtained by Laser-Induced Breakdown Spectroscopy (LIBS) with the aim of determining correlation between different samples. The samples were antique bronze coins coated in silver (follis) dated in the Roman Empire period and were made during different rulers in different mints. While raw LIBS data revealed that in the period from the year 286 to 383 CE content of silver was constantly decreasing, the PCA showed that the samples can be somewhat grouped together based on their place of origin, which could be a useful hint when analysing unknown samples. It was also found that PCA can help in discriminating spectra corresponding to ablation from the surface and from the bulk. Furthermore, Partial Least Squares method (PLS) was used to obtain, based on a set of samples with known composition, an estimation of relative copper concentration in studied ancient coins. This analysis showed that copper concentration in surface layers ranged from 83% to 90%.

  12. Signal enhancement in laser-induced breakdown spectroscopy using fast square-pulse discharges

    NASA Astrophysics Data System (ADS)

    Sobral, H.; Robledo-Martinez, A.

    2016-10-01

    A fast, high voltage square-shaped electrical pulse initiated by laser ablation was investigated as a means to enhance the analytical capabilities of laser Induced breakdown spectroscopy (LIBS). The electrical pulse is generated by the discharge of a charged coaxial cable into a matching impedance. The pulse duration and the stored charge are determined by the length of the cable. The ablation plasma was produced by hitting an aluminum target with a nanosecond 532-nm Nd:YAG laser beam under variable fluence 1.8-900 J cm- 2. An enhancement of up to one order of magnitude on the emission signal-to-noise ratio can be achieved with the spark discharge assisted laser ablation. Besides, this increment is larger for ionized species than for neutrals. LIBS signal is also increased with the discharge voltage with a tendency to saturate for high laser fluences. Electron density and temperature evolutions were determined from time delays of 100 ns after laser ablation plasma onset. Results suggest that the spark discharge mainly re-excites the laser produced plume.

  13. Quantitative analysis by laser-induced breakdown spectroscopy based on generalized curves of growth

    NASA Astrophysics Data System (ADS)

    Aragón, C.; Aguilera, J. A.

    2015-08-01

    A method for quantitative elemental analysis by laser-induced breakdown spectroscopy (LIBS) is proposed. The method (Cσ-LIBS) is based on Cσ graphs, generalized curves of growth which allow including several lines of various elements at different concentrations. A so-called homogeneous double (HD) model of the laser-induced plasma is used, defined by an integration over a single-region of the radiative transfer equation, combined with a separated treatment for neutral atoms (z = 0) and singly-charged ions (z = 1) in Cσ graphs and characteristic parameters. The procedure includes a criterion, based on a model limit, for eliminating data which, due to a high line intensity or concentration, are not well described by the HD model. An initial procedure provides a set of parameters (βA)z, (ηNl)z, Tz and Nez (z = 0, 1) which characterize the plasma and the LIBS system. After characterization, two different analytical procedures, resulting in relative and absolute concentrations, may be applied. To test the method, fused glass samples prepared from certified slags and pure compounds are analyzed. We determine concentrations of Ca, Mn, Mg, V, Ti, Si and Al relative to Fe in three samples prepared from slags, and absolute concentrations of Fe, Ca and Mn in three samples prepared from Fe2O3, CaCO3 and Mn2O3. The accuracy obtained is 3.2% on the average for relative concentrations and 9.2% for absolute concentrations.

  14. Analysis of metal surfaces coated with europium-doped titanium dioxide by laser induced breakdown spectroscopy.

    PubMed

    Głogocka, Daria; Noculak, Agnieszka; Pucińska, Joanna; Jopek, Wojciech; Podbielska, Halina; Langner, Marek; Przybyło, Magdalena

    2015-01-01

    The surface passivation with titanium sol-gel coatings is a frequently used technique to control the adsorption of selected biological macromolecules and to reduce the exposure of the bulk material to biological matter. Due to the increasing number of new coating-preparation methods and new gel compositions with various types of additives, the quality and homogeneity determination of the surface covering is a critical factor affecting performance of any implanted material. While coating thickness is easy to determine, the homogeneity of the surface distribution of coating materials requires more elaborate methodologies. In the paper, the laser induced breakdown spectroscopy (LIBS) based method, capable to quantitate the homogeneity and uniformity of the europium in titanium dioxide sol-gel coatings on stainless steel surfaces prepared with two different procedures: spin-coating and dip-coating, is presented. The emission intensity of titanium has been used to determine the coating thickness whereas the relative values of europium and titanium emission intensities provide data on the coating homogeneity. The obtained results show that the spin-coating technique provides better surface coverage with titanium dioxide. However, when the surface coating compositions were compared the dip-coating technique was more reliable.

  15. Wavelength dependence on the elemental analysis of glass by Laser Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Barnett, Cleon; Cahoon, Erica; Almirall, José R.

    2008-10-01

    Laser Induced Breakdown Spectroscopy (LIBS) is presented as a tool for the elemental analysis of glass in forensic applications. Two harmonics of the Nd:YAG laser at 266 nm and 532 nm were used as the irradiation source for the analysis of several glass standards and soda-lime glass samples of interest to forensic scientists. Both lasers were kept at a constant energy of 20 mJ and focused using a 150 mm focal length lens. A series of experiments were also conducted to determine the importance of wavelength on lens-to-sample distance (LTSD) at each wavelength. It was determined that the optimal LTSD was found at ~ 1-2 mm focused into the surface for both wavelengths yet the crater depth resulting from the irradiation at 266 nm was significantly deeper (112 µm) than that from the 532 nm laser (41 µm). In addition, the analytical performance of LIBS on 5 NIST glasses and 6 automobile glasses at both wavelengths is reported. Good correlation for the quantitative analysis results for the trace and minor elements Sr, Ba and Al are reported along with the calibration curves, in most cases R2 > 0.95, using absolute intensities at various emission lines. Although 266 nm resulted in more mass removal, the 532 nm produced greater emission intensities. A slightly higher plasma density was determined for irradiation by 532 nm using the Stark broadening technique in comparison to the 266 nm irradiation.

  16. High-Resolution Laser-Induced Breakdown Spectroscopy used in Homeland Security and Forensic Applications

    SciTech Connect

    Martin, Madhavi Z; Wullschleger, Stan D; Vass, Arpad Alexander; Martin, Rodger Carl; Grissino-Mayer, Henri

    2006-01-01

    The technique of laser-induced breakdown spectroscopy (LIBS) to detect elements for a variety of homeland security applications such as nuclear materials identification and inventory,and forensic applications has been demonstrated. For nuclear materials applications, we detected and profiled metals in coatings that were used to encapsulate nuclear fuel. Multivariate analysis has been successfully employed in the quantification of elements present in treated wood and engineered wood composites. These examples demonstrate that LIBS-based techniques are inherently well suited for diverse environmental applications related to homeland security. Three key advantages are evident: (1) small samples (mg) are sufficient; (2) samples can be analyzed by LIBS very rapidly, and (3) biological materials such as human and animal bones and wood can be analyzed with minimal sample preparation. For forensic applications they have used LIBS to determine differences in animal and human bones. They have also applied this technique in the determination of counterfeit and non-counterfeit currency. They recently applied LIBS in helping to solve a murder case.

  17. Fast detection of tobacco mosaic virus infected tobacco using laser-induced breakdown spectroscopy

    PubMed Central

    Peng, Jiyu; Song, Kunlin; Zhu, Hongyan; Kong, Wenwen; Liu, Fei; Shen, Tingting; He, Yong

    2017-01-01

    Tobacco mosaic virus (TMV) is one of the most devastating viruses to crops, which can cause severe production loss and affect the quality of products. In this study, we have proposed a novel approach to discriminate TMV-infected tobacco based on laser-induced breakdown spectroscopy (LIBS). Two different kinds of tobacco samples (fresh leaves and dried leaf pellets) were collected for spectral acquisition, and partial least squared discrimination analysis (PLS-DA) was used to establish classification models based on full spectrum and observed emission lines. The influences of moisture content on spectral profile, signal stability and plasma parameters (temperature and electron density) were also analysed. The results revealed that moisture content in fresh tobacco leaves would worsen the stability of analysis, and have a detrimental effect on the classification results. Good classification results were achieved based on the data from both full spectrum and observed emission lines of dried leaves, approaching 97.2% and 88.9% in the prediction set, respectively. In addition, support vector machine (SVM) could improve the classification results and eliminate influences of moisture content. The preliminary results indicate that LIBS coupled with chemometrics could provide a fast, efficient and low-cost approach for TMV-infected disease detection in tobacco leaves. PMID:28300144

  18. Improved accuracy in quantitative laser-induced breakdown spectroscopy using sub-models

    DOE PAGES

    Anderson, Ryan B.; Clegg, Samuel M.; Frydenvang, Jens; ...

    2016-12-15

    We report that accurate quantitative analysis of diverse geologic materials is one of the primary challenges faced by the Laser-Induced Breakdown Spectroscopy (LIBS)-based ChemCam instrument on the Mars Science Laboratory (MSL) rover. The SuperCam instrument on the Mars 2020 rover, as well as other LIBS instruments developed for geochemical analysis on Earth or other planets, will face the same challenge. Consequently, part of the ChemCam science team has focused on the development of improved multivariate analysis calibrations methods. Developing a single regression model capable of accurately determining the composition of very different target materials is difficult because the response ofmore » an element’s emission lines in LIBS spectra can vary with the concentration of other elements. We demonstrate a conceptually simple “submodel” method for improving the accuracy of quantitative LIBS analysis of diverse target materials. The method is based on training several regression models on sets of targets with limited composition ranges and then “blending” these “sub-models” into a single final result. Tests of the sub-model method show improvement in test set root mean squared error of prediction (RMSEP) for almost all cases. Lastly, the sub-model method, using partial least squares regression (PLS), is being used as part of the current ChemCam quantitative calibration, but the sub-model method is applicable to any multivariate regression method and may yield similar improvements.« less

  19. Improved accuracy in quantitative laser-induced breakdown spectroscopy using sub-models

    USGS Publications Warehouse

    Anderson, Ryan; Clegg, Samuel M.; Frydenvang, Jens; Wiens, Roger C.; McLennan, Scott M.; Morris, Richard V.; Ehlmann, Bethany L.; Dyar, M. Darby

    2017-01-01

    Accurate quantitative analysis of diverse geologic materials is one of the primary challenges faced by the Laser-Induced Breakdown Spectroscopy (LIBS)-based ChemCam instrument on the Mars Science Laboratory (MSL) rover. The SuperCam instrument on the Mars 2020 rover, as well as other LIBS instruments developed for geochemical analysis on Earth or other planets, will face the same challenge. Consequently, part of the ChemCam science team has focused on the development of improved multivariate analysis calibrations methods. Developing a single regression model capable of accurately determining the composition of very different target materials is difficult because the response of an element’s emission lines in LIBS spectra can vary with the concentration of other elements. We demonstrate a conceptually simple “sub-model” method for improving the accuracy of quantitative LIBS analysis of diverse target materials. The method is based on training several regression models on sets of targets with limited composition ranges and then “blending” these “sub-models” into a single final result. Tests of the sub-model method show improvement in test set root mean squared error of prediction (RMSEP) for almost all cases. The sub-model method, using partial least squares regression (PLS), is being used as part of the current ChemCam quantitative calibration, but the sub-model method is applicable to any multivariate regression method and may yield similar improvements.

  20. Improved accuracy in quantitative laser-induced breakdown spectroscopy using sub-models

    SciTech Connect

    Anderson, Ryan B.; Clegg, Samuel M.; Frydenvang, Jens; Wiens, Roger C.; McLennan, Scott; Morris, Richard V.; Ehlmann, Bethany; Dyar, M. Darby

    2016-12-15

    We report that accurate quantitative analysis of diverse geologic materials is one of the primary challenges faced by the Laser-Induced Breakdown Spectroscopy (LIBS)-based ChemCam instrument on the Mars Science Laboratory (MSL) rover. The SuperCam instrument on the Mars 2020 rover, as well as other LIBS instruments developed for geochemical analysis on Earth or other planets, will face the same challenge. Consequently, part of the ChemCam science team has focused on the development of improved multivariate analysis calibrations methods. Developing a single regression model capable of accurately determining the composition of very different target materials is difficult because the response of an element’s emission lines in LIBS spectra can vary with the concentration of other elements. We demonstrate a conceptually simple “submodel” method for improving the accuracy of quantitative LIBS analysis of diverse target materials. The method is based on training several regression models on sets of targets with limited composition ranges and then “blending” these “sub-models” into a single final result. Tests of the sub-model method show improvement in test set root mean squared error of prediction (RMSEP) for almost all cases. Lastly, the sub-model method, using partial least squares regression (PLS), is being used as part of the current ChemCam quantitative calibration, but the sub-model method is applicable to any multivariate regression method and may yield similar improvements.

  1. Composition analysis of medieval ceramics by laser-induced breakdown spectroscopy (LIBS)

    NASA Astrophysics Data System (ADS)

    Genc Oztoprak, B.; Sinmaz, M. A.; Tülek, F.

    2016-05-01

    Laser-induced breakdown spectroscopy (LIBS) technique is expected to be one of the most preferred techniques in archaeology research since it does not disrupt the structural and chemical form of archaeological samples, and it is considered virtually nondestructive analysis method. In this work, LIBS is used for analyses of glaze, paint, and clay of medieval ceramics collected from East Plain Cilicia, Osmaniye Province during archaeological survey. Transparent glazed and colour-painted ceramics of the Islam and Byzantine pottery traditions are analysed to detect distinctive and common features of the chemical compositions of their glazes. The spectral lines of Islamic and Byzantine glazes indicate that their structures are same. However, strontium (Sr) is determined in the transparent glaze of Islamic ceramics. Elemental composition and homogeneity of paint on one of the sample are determined by LIBS analysis. Colour changes are related with composition differences of the paint content in the archaeological ceramic. In addition, the clay classification of archaeological ceramics taken from the Yapılıpınar mounds, Taşlıhöyük mounds, and Örenşehir ancient sites is done using PCA and PLS-DA chemometric techniques. According to the results of the classification, Yapılıpınar mounds terracotta ceramics differ from those of Taşlıhöyük and Örenşehir ancient sites.

  2. Geographical analysis of ``conflict minerals'' utilizing laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Hark, Richard R.; Remus, Jeremiah J.; East, Lucille J.; Harmon, Russell S.; Wise, Michael A.; Tansi, Benjamin M.; Shughrue, Katrina M.; Dunsin, Kehinde S.; Liu, Chunyi

    2012-08-01

    Laser-induced breakdown spectroscopy (LIBS) offers a means of rapidly distinguishing different geographic sources for a mineral because the LIBS plasma emission spectrum provides information on the chemical composition (i.e. geochemical fingerprint) of a geomaterial. An application of this approach with potentially significant commercial and political importance is the spectral fingerprinting of "conflict minerals" such as columbite-tantalite ("coltan"). Following a successful pilot study of a columbite-tantalite suite from North America, a more geographically diverse set of 57 samples from 37 locations around the world was analyzed using a commercially available LIBS system. The LIBS spectra were analyzed using advanced multivariate statistical signal processing techniques. Partial least squares discriminant analysis (PLSDA) resulted in a correct place-level geographic classification at success rates above 90%. The possible role of rare-earth elements (REEs) as a factor contributing to the high levels of sample discrimination was explored. These results provide additional evidence that LIBS has the potential to be utilized in the field as a real-time screening tool to discriminate between columbite-tantalite ores of different provenance.

  3. Improved accuracy in quantitative laser-induced breakdown spectroscopy using sub-models

    NASA Astrophysics Data System (ADS)

    Anderson, Ryan B.; Clegg, Samuel M.; Frydenvang, Jens; Wiens, Roger C.; McLennan, Scott; Morris, Richard V.; Ehlmann, Bethany; Dyar, M. Darby

    2017-03-01

    Accurate quantitative analysis of diverse geologic materials is one of the primary challenges faced by the laser-induced breakdown spectroscopy (LIBS)-based ChemCam instrument on the Mars Science Laboratory (MSL) rover. The SuperCam instrument on the Mars 2020 rover, as well as other LIBS instruments developed for geochemical analysis on Earth or other planets, will face the same challenge. Consequently, part of the ChemCam science team has focused on the development of improved multivariate analysis calibrations methods. Developing a single regression model capable of accurately determining the composition of very different target materials is difficult because the response of an element's emission lines in LIBS spectra can vary with the concentration of other elements. We demonstrate a conceptually simple "sub-model" method for improving the accuracy of quantitative LIBS analysis of diverse target materials. The method is based on training several regression models on sets of targets with limited composition ranges and then "blending" these "sub-models" into a single final result. Tests of the sub-model method show improvement in test set root mean squared error of prediction (RMSEP) for almost all cases. The sub-model method, using partial least squares (PLS) regression, is being used as part of the current ChemCam quantitative calibration, but the sub-model method is applicable to any multivariate regression method and may yield similar improvements.

  4. Laser-induced breakdown spectroscopy and chemometrics for classification of toys relying on toxic elements

    NASA Astrophysics Data System (ADS)

    Godoi, Quienly; Leme, Flavio O.; Trevizan, Lilian C.; Pereira Filho, Edenir R.; Rufini, Iolanda A.; Santos, Dario, Jr.; Krug, Francisco J.

    2011-02-01

    Quality control of toys for avoiding children exposure to potentially toxic elements is of utmost relevance and it is a common requirement in national and/or international norms for health and safety reasons. Laser-induced breakdown spectroscopy (LIBS) was recently evaluated at authors' laboratory for direct analysis of plastic toys and one of the main difficulties for the determination of Cd, Cr and Pb was the variety of mixtures and types of polymers. As most norms rely on migration (lixiviation) protocols, chemometric classification models from LIBS spectra were tested for sampling toys that present potential risk of Cd, Cr and Pb contamination. The classification models were generated from the emission spectra of 51 polymeric toys and by using Partial Least Squares - Discriminant Analysis (PLS-DA), Soft Independent Modeling of Class Analogy (SIMCA) and K-Nearest Neighbor (KNN). The classification models and validations were carried out with 40 and 11 test samples, respectively. Best results were obtained when KNN was used, with corrected predictions varying from 95% for Cd to 100% for Cr and Pb.

  5. Laser-Induced Breakdown Spectroscopy Coupled with Multivariate Chemometrics for Variety Discrimination of Soil

    NASA Astrophysics Data System (ADS)

    Yu, Ke-Qiang; Zhao, Yan-Ru; Liu, Fei; He, Yong

    2016-06-01

    The aim of this work was to analyze the variety of soil by laser-induced breakdown spectroscopy (LIBS) coupled with chemometrics methods. 6 certified reference materials (CRMs) of soil samples were selected and their LIBS spectra were captured. Characteristic emission lines of main elements were identified based on the LIBS curves and corresponding contents. From the identified emission lines, LIBS spectra in 7 lines with high signal-to-noise ratio (SNR) were chosen for further analysis. Principal component analysis (PCA) was carried out using the LIBS spectra at 7 selected lines and an obvious cluster of 6 soils was observed. Soft independent modeling of class analogy (SIMCA) and least-squares support vector machine (LS-SVM) were introduced to establish discriminant models for classifying the 6 types of soils, and they offered the correct discrimination rates of 90% and 100%, respectively. Receiver operating characteristic (ROC) curve was used to evaluate the performance of models and the results demonstrated that the LS-SVM model was promising. Lastly, 8 types of soils from different places were gathered to conduct the same experiments for verifying the selected 7 emission lines and LS-SVM model. The research revealed that LIBS technology coupled with chemometrics could conduct the variety discrimination of soil.

  6. Determination of the Insoluble Aluminum Content in Steel Samples by Using Laser-Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Jia, Yunhai; Zhang, Yong; Sun, Nian

    2015-08-01

    The insoluble aluminum content in steel samples has a significant influence on the quality of the steel. In this paper, laser-induced breakdown spectroscopy (LIBS) is used to analyze the insoluble aluminum content in steel samples using a scanning mode. The average intensity plus 2.5 standard deviations was iterated and the final iteration value was taken as the threshold that distinguishes soluble and insoluble aluminum, and thus total and soluble aluminum content calibration curves were generated. Using the relevant total and soluble aluminum content calibration curves, the total and soluble aluminum contents in steel samples could be determined. The insoluble aluminum content could be determined by subtracting the soluble aluminum content from the total aluminum content. The insoluble aluminum content of standard samples and process product samples were determined using the present mathematical model; the results agreed well with the certified reference values. This method could be used to rapidly characterize the insoluble aluminum content in steel samples. supported by National Key Scientific Instrument and Equipment Development Project, China (No. 2012YQ20018208)

  7. Detection and classification of live and dead Escherichia coli by laser-induced breakdown spectroscopy.

    PubMed

    Sivakumar, P; Fernández-Bravo, A; Taleh, L; Biddle, J F; Melikechi, N

    2015-02-01

    A common goal for astrobiology is to detect organic materials that may indicate the presence of life. However, organic materials alone may not be representative of currently living systems. Thus, it would be valuable to have a method with which to determine the health of living materials. Here, we present progress toward this goal by reporting on the application of laser-induced breakdown spectroscopy (LIBS) to study characteristics of live and dead cells using Escherichia coli (E. coli) strain K12 cells as a model organism since its growth and death in the laboratory are well understood. Our goal is to determine whether LIBS, in its femto- and/or nanosecond forms, could ascertain the state of a living organism. E. coli strain K12 cells were grown, collected, and exposed to one of two types of inactivation treatments: autoclaving and sonication. Cells were also kept alive as a control. We found that LIBS yields key information that allows for the discrimination of live and dead E. coli bacteria based on ionic shifts reflective of cell membrane integrity.

  8. A quantitative analysis of elements in soil using laser-induced breakdown spectroscopy technique

    NASA Astrophysics Data System (ADS)

    He, G.-C.; Sun, D.-X.; Su, M.-G.; Dong, C.-Z.

    2011-09-01

    Laser-induced breakdown spectroscopy (LIBS) was applied to the quantitative analysis of elemental composition of soil. The experiment was performed in air at atmospheric pressure and at room temperature. A Nd:YAG laser with the fundamental wavelength of 1064 nm was employed to generate the soil plasma. The emission spectra from the plasma were collected by the Cerny-Turner type of spectrometer, which was equipped with an intensified charge-coupled device (ICCD). The plasma temperature and electron density were evaluated by the Boltzmann plot method and the Saha-Boltzmann equation respectively. Then the concentrations of elements in soil were further obtained by the internal standard of iron element and some selected atomic/ionic lines. In order to prove the credibility and reliability of the present LIBS results, a comparison between the LIBS results and the nominal concentrations was performed. It was found that the LIBS results agree with the nominal concentrations. Therefore the LIBS technique promises to fast and in simultaneous multi-element quantitative analysis of soil.

  9. Accuracy improvement of quantitative analysis by spatial confinement in laser-induced breakdown spectroscopy.

    PubMed

    Guo, L B; Hao, Z Q; Shen, M; Xiong, W; He, X N; Xie, Z Q; Gao, M; Li, X Y; Zeng, X Y; Lu, Y F

    2013-07-29

    To improve the accuracy of quantitative analysis in laser-induced breakdown spectroscopy, the plasma produced by a Nd:YAG laser from steel targets was confined by a cavity. A number of elements with low concentrations, such as vanadium (V), chromium (Cr), and manganese (Mn), in the steel samples were investigated. After the optimization of the cavity dimension and laser fluence, significant enhancement factors of 4.2, 3.1, and 2.87 in the emission intensity of V, Cr, and Mn lines, respectively, were achieved at a laser fluence of 42.9 J/cm(2) using a hemispherical cavity (diameter: 5 mm). More importantly, the correlation coefficient of the V I 440.85/Fe I 438.35 nm was increased from 0.946 (without the cavity) to 0.981 (with the cavity); and similar results for Cr I 425.43/Fe I 425.08 nm and Mn I 476.64/Fe I 492.05 nm were also obtained. Therefore, it was demonstrated that the accuracy of quantitative analysis with low concentration elements in steel samples was improved, because the plasma became uniform with spatial confinement. The results of this study provide a new pathway for improving the accuracy of quantitative analysis of LIBS.

  10. Application of Laser Induced Breakdown Spectroscopy to the identification of emeralds from different synthetic processes

    NASA Astrophysics Data System (ADS)

    Agrosì, G.; Tempesta, G.; Scandale, E.; Legnaioli, S.; Lorenzetti, G.; Pagnotta, S.; Palleschi, V.; Mangone, A.; Lezzerini, M.

    2014-12-01

    Laser Induced Breakdown Spectroscopy can provide a useful contribution in mineralogical field in which the quantitative chemical analyses (including the evaluation of light elements) can play a key role in the studies on the origin of the emeralds. In particular, the chemical analyses permit to determine those trace elements, known as fingerprints, that can be useful to study their provenance. This technique, not requiring sample preparation results particularly suitable for gemstones, that obviously must be studied in a non-destructive way. In this paper, the LIBS technique was applied to distinguish synthetic emeralds grown by Biron hydrothermal method from those grown by Chatham flux method. The analyses performed by collinear double-pulse LIBS give a signal enhancement useful for the quantitative chemical analyses while guaranteeing a minimal sample damage. In this way it was obtained a considerable improvement on the detection limit of the trace elements, whose determination is essential for determining the origin of emerald gemstone. The trace elements V, Cr, and Fe and their relative amounts allowed the correct attribution of the manufacturer. Two different methods for quantitative analyses were used for this study: the standard Calibration-Free LIBS (CF-LIBS) method and its recent evolution, the One Point Calibration LIBS (OPC-LIBS). This is the first approach to the evaluation of the emerald origin by means of the LIBS technique.

  11. Pathogenic Escherichia coli strain discrimination using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Diedrich, Jonathan; Rehse, Steven J.; Palchaudhuri, Sunil

    2007-07-01

    A pathogenic strain of bacteria, Escherichia coli O157:H7 (enterohemorrhagic E. coli or EHEC), has been analyzed by laser-induced breakdown spectroscopy (LIBS) with nanosecond pulses and compared to three nonpathogenic E. coli strains: a laboratory strain of K-12 (AB), a derivative of the same strain termed HF4714, and an environmental strain, E. coli C (Nino C). A discriminant function analysis (DFA) was performed on the LIBS spectra obtained from live colonies of all four strains. Utilizing the emission intensity of 19 atomic and ionic transitions from trace inorganic elements, the DFA revealed significant differences between EHEC and the Nino C strain, suggesting the possibility of identifying and discriminating the pathogenic strain from commonly occurring environmental strains. EHEC strongly resembled the two K-12 strains, in particular, HF4714, making discrimination between these strains difficult. DFA was also used to analyze spectra from two of the nonpathogenic strains cultured in different media: on a trypticase soy (TS) agar plate and in a liquid TS broth. Strains cultured in different media were identified and effectively discriminated, being more similar than different strains cultured in identical media. All bacteria spectra were completely distinct from spectra obtained from the nutrient medium or ablation substrate alone. The ability to differentiate strains prepared and tested in different environments indicates that matrix effects and background contaminations do not necessarily preclude the use of LIBS to identify bacteria found in a variety of environments or grown under different conditions.

  12. Laser-induced breakdown spectroscopy is a reliable method for urinary stone analysis

    PubMed Central

    Mutlu, Nazım; Çiftçi, Seyfettin; Gülecen, Turgay; Öztoprak, Belgin Genç; Demir, Arif

    2016-01-01

    Objective We compared laser-induced breakdown spectroscopy (LIBS) with the traditionally used and recommended X-ray diffraction technique (XRD) for urinary stone analysis. Material and methods In total, 65 patients with urinary calculi were enrolled in this prospective study. Stones were obtained after surgical or extracorporeal shockwave lithotripsy procedures. All stones were divided into two equal pieces. One sample was analyzed by XRD and the other by LIBS. The results were compared by the kappa (κ) and Spearman’s correlation coefficient (rho) tests. Results Using LIBS, 95 components were identified from 65 stones, while XRD identified 88 components. LIBS identified 40 stones with a single pure component, 20 stones with two different components, and 5 stones with three components. XRD demonstrated 42 stones with a single component, 22 stones with two different components, and only 1 stone with three different components. There was a strong relationship in the detection of stone types between LIBS and XRD for stones components (Spearman rho, 0.866; p<0.001). There was excellent agreement between the two techniques among 38 patients with pure stones (κ index, 0.910; Spearman rho, 0.916; p<0.001). Conclusion Our study indicates that LIBS is a valid and reliable technique for determining urinary stone composition. Moreover, it is a simple, low-cost, and nondestructive technique. LIBS can be safely used in routine daily practice if our results are supported by studies with larger numbers of patients. PMID:27011877

  13. Identification of quantum dots labeled metallothionein by fast scanning laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Konecna, Marie; Novotny, Karel; Krizkova, Sona; Blazkova, Iva; Kopel, Pavel; Kaiser, Jozef; Hodek, Petr; Kizek, Rene; Adam, Vojtech

    2014-11-01

    The technique described in this paper allows detection of quantum dots (QDs) specifically deposited on the polystyrene surface by laser-induced breakdown spectroscopy (LIBS). Using LIBS, the distribution of QDs or their conjugates with biomolecules deposited on the surface can be observed, regardless of the fact if they exhibit fluorescence or not. QDs deposited on the specific surface of polystyrene microplate in the form of spots are detected by determination of the metal included in the QDs structure. Cd-containing QDs (CdS, CdTe) stabilized with mercaptopropionic (MPA) or mercaptosuccinic (MSA) acid, respectively, alone or in the form of conjugates with metallothionein (MT) biomolecule are determined by using the 508.58 nm Cd emission line. The observed absolute detection limit for Cd in CdTe QDs conjugates with MT in one spot was 3 ng Cd. Due to the high sensitivity of this technique, the immunoanalysis in combination with LIBS was also investigated. Cd spatial distribution in sandwich immunoassay was detected.

  14. Laser-Induced Breakdown Spectroscopy Coupled with Multivariate Chemometrics for Variety Discrimination of Soil

    PubMed Central

    Yu, Ke-Qiang; Zhao, Yan-Ru; Liu, Fei; He, Yong

    2016-01-01

    The aim of this work was to analyze the variety of soil by laser-induced breakdown spectroscopy (LIBS) coupled with chemometrics methods. 6 certified reference materials (CRMs) of soil samples were selected and their LIBS spectra were captured. Characteristic emission lines of main elements were identified based on the LIBS curves and corresponding contents. From the identified emission lines, LIBS spectra in 7 lines with high signal-to-noise ratio (SNR) were chosen for further analysis. Principal component analysis (PCA) was carried out using the LIBS spectra at 7 selected lines and an obvious cluster of 6 soils was observed. Soft independent modeling of class analogy (SIMCA) and least-squares support vector machine (LS-SVM) were introduced to establish discriminant models for classifying the 6 types of soils, and they offered the correct discrimination rates of 90% and 100%, respectively. Receiver operating characteristic (ROC) curve was used to evaluate the performance of models and the results demonstrated that the LS-SVM model was promising. Lastly, 8 types of soils from different places were gathered to conduct the same experiments for verifying the selected 7 emission lines and LS-SVM model. The research revealed that LIBS technology coupled with chemometrics could conduct the variety discrimination of soil. PMID:27279284

  15. Trace element quantification of lead based roof sheets of historical monuments by Laser Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Syvilay, D.; Texier, A.; Arles, A.; Gratuze, B.; Wilkie-Chancellier, N.; Martinez, L.; Serfaty, S.; Detalle, V.

    2015-01-01

    The aim of this paper is to identify the different periods of construction or restoration of the lead roof of a historic monument. Trace elements in a lead matrix can be a signature of the metallurgical processes, allowing identification of a specific time period for the production of the lead used to build the roof. The ability of LIBS (Laser Induced Breakdown Spectroscopy) to detect such trace elements in a lead matrix is therefore explored and checked by comparing its results with LA-ICP-MS as a reference method (Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry). Concentrations of 263 samples were compared between LIBS and LA-ICP-MS data and their correlation was evaluated. Another way to compare their results is also suggested by combining PCA (Principal Component Analysis) and GIS (Geographic Information System). As a result statistical mappings were created, highlighting metallurgical groups of samples across the roof of the building. This innovative approach links concentration and spatial location resulting in an easily interpretable graphical presentation of the data. The results of both spectrometry methods lead to similar conclusions with distinctive areas of different lead compositions and by extension different lead dating across the roof. But since LIBS is portable we can conclude that it is a suitable and reliable instrument for in-situ applications on historic monuments.

  16. Heuristic modeling of spectral plasma emission for laser-induced breakdown spectroscopy

    SciTech Connect

    Wester, Rolf; Noll, Reinhard

    2009-12-15

    A heuristic model was developed to describe the spectral emission of laser-induced plasmas generated for laser-induced breakdown spectroscopy under the assumption that the composition of the plasma and the plasma state is known. The plasma is described by a stationary spherical shell model surrounded by an ambient gas, which partially absorbs the emitted radiation. The radiation transport equation is used to calculate the spectrum emitted by the plasma. Simulations of a multiline iron spectrum and a self-reversed Al line are compared with experimental spectra. For the iron spectrum, the degree of congruence is moderate to good, which may be attributed to a lack of precise atomic and Stark broadening data as well as a simplified plasma model. The line profile of the Al resonance line with self reversal can be simulated with a high degree of agreement. Simulated spectra of a steel sample in the vacuum ultraviolet spectral range demonstrate the strong influence of the ambient atmosphere in the spectral range between 178 and 194 nm. The number of free parameters of the plasma model of 8 can be further reduced down to 3, taking into account the integral parameters of the plasma that are accessible experimentally.

  17. Laser Induced Breakdown Spectroscopy Based on Single Beam Splitting and Geometric Configuration for Effective Signal Enhancement

    PubMed Central

    Yang, Guang; Lin, Qingyu; Ding, Yu; Tian, Di; Duan, Yixiang

    2015-01-01

    A new laser induced breakdown spectroscopy (LIBS) based on single-beam-splitting (SBS) and proper optical geometric configuration has been initially explored in this work for effective signal enhancement. In order to improve the interaction efficiency of laser energy with the ablated material, a laser beam operated in pulse mode was divided into two streams to ablate/excite the target sample in different directions instead of the conventional one beam excitation in single pulse LIBS (SP-LIBS). In spatial configuration, the laser beam geometry plays an important role in the emission signal enhancement. Thus, an adjustable geometric configuration with variable incident angle between the two splitted laser beams was constructed for achieving maximum signal enhancement. With the optimized angles of 60° and 70° for Al and Cu atomic emission lines at 396.15 nm and 324.75 nm respectively, about 5.6- and 4.8-folds signal enhancements were achieved for aluminum alloy and copper alloy samples compared to SP-LIBS. Furthermore, the temporal analysis, in which the intensity of atomic lines in SP-LIBS decayed at least ten times faster than the SBS-LIBS, proved that the energy coupling efficiency of SBS-LIBS was significantly higher than that of SP-LIBS. PMID:25557721

  18. Rapid detection of soils contaminated with heavy metals and oils by laser induced breakdown spectroscopy (LIBS).

    PubMed

    Kim, Gibaek; Kwak, Jihyun; Kim, Ki-Rak; Lee, Heesung; Kim, Kyoung-Woong; Yang, Hyeon; Park, Kihong

    2013-12-15

    A laser induced breakdown spectroscopy (LIBS) coupled with the chemometric method was applied to rapidly discriminate between soils contaminated with heavy metals or oils and clean soils. The effects of the water contents and grain sizes of soil samples on LIBS emissions were also investigated. The LIBS emission lines decreased by 59-75% when the water content increased from 1.2% to 7.8%, and soil samples with a grain size of 75 μm displayed higher LIBS emission lines with lower relative standard deviations than those with a 2mm grain size. The water content was found to have a more pronounced effect on the LIBS emission lines than the grain size. Pelletizing and sieving were conducted for all samples collected from abandoned mining areas and military camp to have similar water contents and grain sizes before being analyzed by the LIBS with the chemometric analysis. The data show that three types of soil samples were clearly discerned by using the first three principal components from the spectral data of soil samples. A blind test was conducted with a 100% correction rate for soil samples contaminated with heavy metals and oil residues.

  19. Quantitative Analysis of Mg in Pipeline Dirt Based on Laser-Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Shaolong; Wang, Yangen; Chen, Shanjun; Chen, Qi

    2015-08-01

    In order to maintain the pipeline better and remove the dirt more effectively, it was necessary to analyze the contents of elements in dirt. Mg in soil outside of the pipe and the dirt inside of the pipe was quantitatively analyzed and compared by using the laser-induced breakdown spectroscopy (LIBS). Firstly, Mg was quantitatively analyzed on the basis of Mg I 285.213 nm by calibration curve for integrated intensity and peak intensity of the spectrum before and after subtracting noise, respectively. Then calibration curves on the basis of Mg II 279.553 nm and Mg II 280.270 nm were analyzed. The results indicated that it is better to use integrated intensity after subtracting noise of the spectrum line with high relative intensity to make the calibration curve. supported partly by the Natural Science Foundation of Hubei Province, China (No. 2012FFB00105) and partly by the Science Research Program of Education Department of Hubei Province, China (No. B2013288)

  20. Fast detection of tobacco mosaic virus infected tobacco using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Peng, Jiyu; Song, Kunlin; Zhu, Hongyan; Kong, Wenwen; Liu, Fei; Shen, Tingting; He, Yong

    2017-03-01

    Tobacco mosaic virus (TMV) is one of the most devastating viruses to crops, which can cause severe production loss and affect the quality of products. In this study, we have proposed a novel approach to discriminate TMV-infected tobacco based on laser-induced breakdown spectroscopy (LIBS). Two different kinds of tobacco samples (fresh leaves and dried leaf pellets) were collected for spectral acquisition, and partial least squared discrimination analysis (PLS-DA) was used to establish classification models based on full spectrum and observed emission lines. The influences of moisture content on spectral profile, signal stability and plasma parameters (temperature and electron density) were also analysed. The results revealed that moisture content in fresh tobacco leaves would worsen the stability of analysis, and have a detrimental effect on the classification results. Good classification results were achieved based on the data from both full spectrum and observed emission lines of dried leaves, approaching 97.2% and 88.9% in the prediction set, respectively. In addition, support vector machine (SVM) could improve the classification results and eliminate influences of moisture content. The preliminary results indicate that LIBS coupled with chemometrics could provide a fast, efficient and low-cost approach for TMV-infected disease detection in tobacco leaves.

  1. Discrimination of bacteria from Jamaican bauxite soils using laser-induced breakdown spectroscopy.

    PubMed

    Lewis, Dawn E; Martinez, Jorge; Akpovo, Charlemagne A; Johnson, Lewis; Chauhan, Ashvini; Edington, Maurice D

    2011-10-01

    Soil bacteria are sensitive to ecological change and can be assessed to gauge anthropogenic influences and ecosystem health. In recent years, there has been a significant increase in the focus on new technologies that can be applied to the evaluation of soil quality. Laser-induced breakdown spectroscopy (LIBS) is a promising technique that has been used for the investigation and characterization of explosives, solids, liquids, gases, biological and environmental samples. In this study, bacteria from un-mined and a chronosequence of reclaimed bauxite soils were isolated on Luria-Bertani agar media. Polymerase chain reaction amplification of the bacterial 16S rDNA, sequencing, and phylogenetic analysis were applied to each isolated soil bacteria from the sample sites resulting in the identification and classification of the organisms. Femtosecond LIBS performed on the isolated bacteria showed atomic and ionic emission lines in the spectrum containing inorganic elements such as sodium (Na), magnesium (Mg), potassium (K), zinc (Zn), and calcium (Ca). Principal component analysis and partial least squares regression analysis were performed on the acquired bacterial spectra demonstrating that LIBS has the potential to differentiate and discriminate among bacteria in the un-mined and reclaimed chronosequence of bauxite soils.

  2. Temperature effect on laser-induced breakdown spectroscopy spectra of molten and solid salts

    SciTech Connect

    Cynthia Hanson; Supathorn Phongikaroon; Jill R. Scott

    2014-07-01

    Laser-induced breakdown spectroscopy (LIBS) has been investigated as a potential analytical tool to improve operations and safeguards for electrorefiners, such as those used in processing spent nuclear fuel. This study set out to better understand the effect of sample temperature and physical state on LIBS spectra of molten and solid salts by building calibration curves of cerium and assessing self-absorption, plasma temperature, electron density, and local thermal equilibrium (LTE). Samples were composed of a LiCl–KCl eutectic salt, an internal standard of MnCl2, and varying concentrations of CeCl3 (0.1, 0.3, 0.5, 0.8, and 1.0 wt.% Ce) under different temperatures (773, 723, 673, 623, and 573 K). Analysis of salts in their molten form is preferred as plasma plumes from molten samples experienced less self-absorption, less variability in plasma temperature, and higher clearance of the minimum electron density required for local thermal equilibrium. These differences are attributed to plasma dynamics as a result of phase changes. Spectral reproducibility was also better in the molten state due to sample homogeneity.

  3. Understanding the signature of rock coatings in laser-induced breakdown spectroscopy data

    USGS Publications Warehouse

    Lanza, Nina L.; Ollila, Ann M.; Cousin, Agnes; Wiens, Roger C.; Clegg, Samuel M.; Mangold, Nicolas; Bridges, Nathan; Cooper, Daniel; Schmidt, Mariek E.; Berger, Jeffrey; Arvidson, Raymond E.; Melikechi, Noureddine; Newsom, Horton E.; Tokar, Robert; Hardgrove, Craig; Mezzacappa, Alissa; Jackson, Ryan S.; Clark, Benton C.; Forni, Olivier; Maurice, Sylvestre; Nachon, Marion; Anderson, Ryan B.; Blank, Jennifer; Deans, Matthew; Delapp, Dorothea; Léveillé, Richard; McInroy, Rhonda; Martinez, Ronald; Meslin, Pierre-Yves; Pinet, Patrick

    2015-01-01

    Surface compositional features on rocks such as coatings and weathering rinds provide important information about past aqueous environments and water–rock interactions. The search for these features represents an important aspect of the Curiosity rover mission. With its unique ability to do fine-scale chemical depth profiling, the ChemCam laser-induced breakdown spectroscopy instrument (LIBS) onboard Curiosity can be used to both identify and analyze rock surface alteration features. In this study we analyze a terrestrial manganese-rich rock varnish coating on a basalt rock in the laboratory with the ChemCam engineering model to determine the LIBS signature of a natural rock coating. Results show that there is a systematic decrease in peak heights for elements such as Mn that are abundant in the coating but not the rock. There is significant spatial variation in the relative abundance of coating elements detected by LIBS depending on where on the rock surface sampled; this is due to the variability in thickness and spatial discontinuities in the coating. Similar trends have been identified in some martian rock targets in ChemCam data, suggesting that these rocks may have coatings or weathering rinds on their surfaces.

  4. 3D Imaging of Nanoparticle Distribution in Biological Tissue by Laser-Induced Breakdown Spectroscopy

    PubMed Central

    Gimenez, Y.; Busser, B.; Trichard, F.; Kulesza, A.; Laurent, J. M.; Zaun, V.; Lux, F.; Benoit, J. M.; Panczer, G.; Dugourd, P.; Tillement, O.; Pelascini, F.; Sancey, L.; Motto-Ros, V.

    2016-01-01

    Nanomaterials represent a rapidly expanding area of research with huge potential for future medical applications. Nanotechnology indeed promises to revolutionize diagnostics, drug delivery, gene therapy, and many other areas of research. For any biological investigation involving nanomaterials, it is crucial to study the behavior of such nano-objects within tissues to evaluate both their efficacy and their toxicity. Here, we provide the first account of 3D label-free nanoparticle imaging at the entire-organ scale. The technology used is known as laser-induced breakdown spectroscopy (LIBS) and possesses several advantages such as speed of operation, ease of use and full compatibility with optical microscopy. We then used two different but complementary approaches to achieve 3D elemental imaging with LIBS: a volume reconstruction of a sliced organ and in-depth analysis. This proof-of-concept study demonstrates the quantitative imaging of both endogenous and exogenous elements within entire organs and paves the way for innumerable applications. PMID:27435424

  5. Signal enhancement in collinear double-pulse laser-induced breakdown spectroscopy applied to different soils

    NASA Astrophysics Data System (ADS)

    Nicolodelli, Gustavo; Senesi, Giorgio Saverio; Romano, Renan Arnon; de Oliveira Perazzoli, Ivan Luiz; Milori, Débora Marcondes Bastos Pereira

    2015-09-01

    Laser-induced breakdown spectroscopy (LIBS) is a well-known consolidated analytical technique employed successfully for the qualitative and quantitative analysis of solid, liquid, gaseous and aerosol samples of very different nature and origin. Several techniques, such as dual-pulse excitation setup, have been used in order to improve LIBS's sensitivity. The purpose of this paper was to optimize the key parameters as excitation wavelength, delay time and interpulse, that influence the double pulse (DP) LIBS technique in the collinear beam geometry when applied to the analysis at atmospheric air pressure of soil samples of different origin and texture from extreme regions of Brazil. Additionally, a comparative study between conventional single pulse (SP) LIBS and DP LIBS was performed. An optimization of DP LIBS system, choosing the correct delay time between the two pulses, was performed allowing its use for different soil types and the use of different emission lines. In general, the collinear DP LIBS system improved the analytical performances of the technique by enhancing the intensity of emission lines of some elements up to about 5 times, when compared with conventional SP-LIBS, and reduced the continuum emission. Further, the IR laser provided the best performance in re-heating the plasma.

  6. Methods of Data Processing for Trace Elements Analysis Using Laser Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Ma, Xiaohong; Yu, Qi; Song, Yang; Zhao, Huafeng; Zhang, Min; Liao, Yanbiao

    2015-11-01

    With the development of Laser Induced Breakdown Spectroscopy (LIBS), increasing numbers of researchers have begun to focus on problems of the application. We are not just satisfied with analyzing what kinds of elements are in the samples but are also eager to accomplish quantitative detection with LIBS. There are several means to improve the limit of detection and stability, which are important to quantitative detection, especially of trace elements, increasing the laser energy and the resolution of spectrometer, using dual pulse setup, vacuuming the ablation environment etc. All of these methods are about to update the hardware system, which is effective but expensive. So we establish the following spectrum data processing methods to improve the trace elements analysis in this paper: spectrum sifting, noise filtering, and peak fitting. There are small algorithms in these three method groups, which we will introduce in detail. Finally, we discuss how these methods affect the results of trace elements detection in an experiment to analyze the lead content in Chinese cabbage. supported by National High-Tech R&D Program (863 Program), China (No. 2013AA102402)

  7. Optical spectroscopy of radiotherapy and photodynamic therapy responses in normal rat skin shows vascular breakdown products

    NASA Astrophysics Data System (ADS)

    Teles de Andrade, Cintia; Nogueira, Marcelo S.; Kanick, Stephen C.; Marra, Kayla; Gunn, Jason; Andreozzi, Jacqueline; Samkoe, Kimberley S.; Kurachi, Cristina; Pogue, Brian W.

    2016-03-01

    Photodynamic therapy (PDT) and radiotherapy are non-systemic cancer treatment options with different mechanisms of damage. So combining these techniques has been shown to have some synergy, and can mitigate their limitations such as low PDT light penetration or radiotherapy side effects. The present study monitored the induced tissue changes after PDT, radiotherapy, and a combination protocol in normal rat skin, using an optical spectroscopy system to track the observed biophysical changes. The Wistar rats were treated with one of the protocols: PDT followed by radiotherapy, PDT, radiotherapy and radiotherapy followed by PDT. Reflectance spectra were collected in order to observe the effects of these combined therapies, especially targeting vascular response. From the reflectance, information about oxygen saturation, met-hemoglobin and bilirubin concentration, blood volume fraction (BVF) and vessel radius were extracted from model fitting of the spectra. The rats were monitored for 24 hours after treatment. Results showed that there was no significant variation in the vessel size or BVF after the treatments. However, the PDT caused a significant increase in the met-hemoglobin and bilirubin concentrations, indicating an important blood breakdown. These results may provide an important clue on how the damage establishment takes place, helping to understand the effect of the combination of those techniques in order to verify the existence of a known synergistic effect.

  8. Laser-Induced Breakdown Spectroscopy Based Protein Assay for Cereal Samples.

    PubMed

    Sezer, Banu; Bilge, Gonca; Boyaci, Ismail Hakki

    2016-12-14

    Protein content is an important quality parameter in terms of price, nutritional value, and labeling of various cereal samples. However, conventional analysis methods, namely, Kjeldahl and Dumas, have major drawbacks such as long analysis time, titration mistakes, and carrier gas dependence with high purity. For this reason, there is an urgent need for rapid, reliable, and environmentally friendly technologies for protein analysis. The present study aims to develop a new method for protein analysis in wheat flour and whole meal by using laser-induced breakdown spectroscopy (LIBS), which is a multielemental, fast, and simple spectroscopic method. Unlike the Kjeldahl and Dumas methods, it has potential to analyze a high number of samples in considerably short time. In the study, nitrogen peaks in LIBS spectra of wheat flour and whole meal samples with different protein contents were correlated with results of the standard Dumas method with the aid of chemometric methods. A calibration graph showed good linearity with the protein content between 7.9 and 20.9% and a 0.992 coefficient of determination (R(2)). The limit of detection was calculated as 0.26%. The results indicated that LIBS is a promising and reliable method with its high sensitivity for routine protein analysis in wheat flour and whole meal samples.

  9. Analysis and classification of heterogeneous kidney stones using laser-induced breakdown spectroscopy (LIBS).

    PubMed

    Oztoprak, Belgin Genc; Gonzalez, Jhanis; Yoo, Jong; Gulecen, Turgay; Mutlu, Nazim; Russo, Richard E; Gundogdu, Ozcan; Demir, Arif

    2012-11-01

    Kidney stones were analyzed using laser-induced breakdown spectroscopy (LIBS), utilizing a high resolution multi-channel charge-coupled device (CCD) spectrometer and a nanosecond-pulse Nd : YAG laser. The kidney stones were also characterized using X-ray diffraction (XRD) and X-ray fluorescence (XRF) techniques for comparative analysis. It was found that the ratio of hydrogen (H) to carbon (C) was an important indicator of organic compounds such as uric acid. Advantages of LIBS, especially with regards to amount of sample required and sample preparation as well as the ability to carry out elemental analysis and classification of kidney stones simultaneously, over other analytical techniques such as XRD and XRF are discussed. The common minor elements detected in the kidney stones include P, S, Si, Ti, and Zn. Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) of broadband LIBS spectra were employed for classifying different types of kidney stones. The results are beneficial in understanding kidney stone formation processes, which can lead to preventive therapeutic strategies and treatment methods for urological patients.

  10. A review of the development of portable laser induced breakdown spectroscopy and its applications

    NASA Astrophysics Data System (ADS)

    Rakovský, J.; Čermák, P.; Musset, O.; Veis, P.

    2014-11-01

    In this review, we present person-transportable laser induced breakdown spectroscopy (LIBS) devices that have previously been developed and reported in the literature as well as their applications. They are compared with X-ray fluorescent (XRF) devices, which represent their strongest competition. Although LIBS devices have advantages over XRF devices, such as sensitivity to the light elements, high spatial resolution and the possibility to distinguish between different layers of the sample, there are also disadvantages and both are discussed here. Furthermore, the essential portable LIBS instrumentation (laser, spectrograph and detector) is presented, and published results related to new laser sources (diode-pumped solid-state, microchip and fiber lasers) used in LIBS are overviewed. Compared to conventional compact flashlamp pumped solid-state lasers, the new laser sources provide higher repetition rates, higher efficiency (less power consumption) and higher beam quality, resulting in higher fluences, even for lower energies, and could potentially increase the figure of merit of portable LIBS instruments. Compact spectrometers used in portable LIBS devices and their parts (spectrograph, detector) are also discussed.

  11. Laser-induced breakdown spectroscopy of silicate, vanadate and sulfide rocks.

    PubMed

    Vadillo, J M; Laserna, J J

    1996-07-01

    Laser-induced breakdown spectroscopy (LIBS) in air at atmospheric pressure has been used to study four geological samples belonging to different structural families. Atomic emission spectra of vanadinite, pyrite, garnet and a type of quartz (compostela's quartz) are shown. The 532 nm line of a Nd:YAG laser at an irradiance of 18 x 10(11) W cm(-2) was used. The precise focus of the beam allowed microanalysis of a 0.02 mm(2) surface area working in single-laser shot mode. The use of an intensified gateable charge-coupled-device (CCD) detector permitted time-resolved studies. The spectral lines have been assigned to transitions in the neutral charge state of the corresponding atom of the material under investigation. The behavior of different transitions with time delay are shown. In experiments, minor components contained in several minerals have been detected. This fact has been used to demonstrate the applicability of the technique to characterize and identify similar minerals.

  12. Study of filtering Ag liquid sample by chitosan biomembrane using laser-induced breakdown spectroscopy (LIBS)

    NASA Astrophysics Data System (ADS)

    Rupiasih, Ni Nyoman; Suyanto, Hery; Sumadiyasa, Made; Purwanto, Christine Prita; Purnomo, Rendra Rustam

    2013-09-01

    The capability of Laser-Induced Breakdown Spectroscopy (LIBS) to resolve filtration process of Ag liquid sample by chitosan biomembrane is demonstrated. The biomembrane was prepared by inversion method used to filter Ag liquid using pressurized technique samples which were then analyzed by monitoring the emission corresponding to Ag (I) at wavelength of 328 nm. The experiment was conducted by varying the laser energy i.e. 80, 120, and 160 mJ, where, subsequently, and its effect on the depth-profile from 20 - 200 μm was characterized by LIBS. The results showed that the physical processes of pressurized filtration led a homogeneous Ag in the membrane from the surface to a depth of 200 μm. The optimum condition was obtained at laser energy of 120 mJ. The adsorption occurred only on the surface of the membrane i.e. 20 μm depth, but there was no inclusion. Improvement of the detection performance of adsorption process was done by heating the dripped membrane at 35 °C and was resulting in increase in emission intensity as expected.

  13. The Use of Laser-Induced Breakdown Spectroscopy for Distinguishing Between Bacterial Pathogen Species and Strains

    PubMed Central

    Multari, Rosalie A.; Cremers, David A.; Dupre, Joanne M.; Gustafson, John E.

    2013-01-01

    Laser-induced breakdown spectroscopy (LIBS) was used in a blind study to successfully differentiate bacterial pathogens, both species and strain. The pathogens used for the study were chosen and prepared by one set of researchers. The LIBS data were collected and analyzed by another set of researchers. The latter researchers had no knowledge of the sample identities other than that (1) the first five of fifteen samples were unique (not replicates) and (2) the remaining ten samples consisted of two replicates of each of the first five samples. Using only chemometric analysis of the LIBS data, the ten replicate bacterial samples were successfully matched to each of the first five samples. The results of this blind study show it is possible to differentiate the bacterial pathogens Escherichia coli, three clonal methicillin-resistant Staphylococcus aureus (MRSA) strains, and one unrelated MRSA strain using LIBS. This is an important finding because it demonstrates that LIBS can be used to determine bacterial pathogen species within a defined sample set and can be used to differentiate between clonal relationships among strains of a single multiple-antibiotic-resistant bacterial species. Such a capability is important for the development of LIBS instruments for use in medical, water, and food safety applications. PMID:20615288

  14. Micro-Crater Laser Induced Breakdown Spectroscopy--an Analytical approach in metals samples

    SciTech Connect

    Piscitelli, Vincent; Gonzalez, Jhanis; Mao Xianglei; Russo, Richard; Fernandez, Alberto

    2008-04-15

    The laser ablation has been increasing its popularity like as technique of chemical analysis. This is due to its great potentiality in the analysis of solid samples. On the way to contributing to the development of the technique, we in this work studied the laser induced breakdown spectroscopy (LIBS) in conditions of micro ablation for future studies of coverings and micro crates analysis. Craters between 2 and 7 micrometers of diameter were made using an Nd-YAG nanosecond laser in their fundamental emission of 1064 nm. In order to create these craters we use an objective lens of long distance work and 0.45 of numerical aperture. The atomic emission versus the energy of the laser and its effect on the size of craters was study. We found that below 3 micrometers although there was evidence of material removal by the formation of a crater, it was no detectable atomic emission for our instruments. In order to try to understand this, curves of size of crater versus plasma temperature using the Boltzmann distribution graphs taking the Copper emission lines in the visible region were made. In addition calibration curves for Copper and aluminum were made in two different matrices; one of it was a Cu/Zn alloy and the other a Zinc Matrix. The atomic lines Cu I (521.78 nm) and Al I (396.15 nm) was used. From the Calibration curve the analytical limit of detection and other analytical parameters were obtained.

  15. Forensic elemental analysis of materials by laser induced breakdown spectroscopy (LIBS)

    NASA Astrophysics Data System (ADS)

    Almirall, Jose R.; Umpierrez, Sayuri; Castro, Waleska; Gornushkin, Igor; Winefordner, James

    2005-05-01

    Materials analysis and characterization can provide important information as evidence in legal proceedings. Although the utility of trace elemental analyses for comparisons of glass, paint chips, bullet lead and metal fragments has been shown to offer a high degree of discrimination between different sources of these materials, the instrumentation required for the generation of good analytical data in forensic comparisons can be beyond the reach of many forensic laboratories. Scanning Electron Microscopy with an Energy Dispersive Spectrometer (SEM-EDS), X-Ray Fluorescence (XRF), Laser Ablation Inductively Coupled Plasma Atomic Emission Spectroscopy (LA-ICP-AES) and, more recently, LA-Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) have been used in forensic laboratories for elemental analysis determinations. A newly developed Laser Induced Breakdown Spectroscopy (LIBS) instrument (Foster and Freeman Ltd., Evesham, U.K.) has been evaluated as a tool for the forensic elemental analysis of glass and compared in performance to other elemental methods in order to determine the utility of comparing casework sized glass samples. Developments in the instrumental design of this LIBS system, which is specifically designed to address the analytical requirements of the forensic laboratory, are presented. The utility of the LIBS system for the analysis of glass, paint, metals, gun shot residue and other matrices are also presented. The power of the LIBS-based elemental analysis to discriminate between different glass samples is also compared to the discrimination power of SEM-EDS, XRF and LA-ICP-MS. The relatively low cost (expected to be $ 60,000.), ease of operation and almost non-destructive nature of the LIBS analysis makes the technique a viable forensic elemental analysis tool.

  16. Direct determination of the nutrient profile in plant materials by femtosecond laser-induced breakdown spectroscopy.

    PubMed

    de Carvalho, Gabriel Gustinelli Arantes; Moros, Javier; Santos, Dário; Krug, Francisco José; Laserna, J Javier

    2015-05-30

    Femtosecond laser-induced breakdown spectroscopy (fs-LIBS) has been used for the first time for quantitative determination of nutrients in plant materials from different crops. A highly heterogeneous population of 31 samples, previously analyzed by inductively coupled plasma optical emission spectroscopy, covering a wide range of matrices was interrogated. To tackle the analysis, laser-induced plasmas under argon atmosphere of pellets prepared from sieved cryogenically ground leaves were studied. Predictive functions based on univariate and multivariate modeling of optical emissions associated to macro- (Ca, Mg, and P) and micronutrients (Cu, Fe, Mn and Zn) were designed. Hierarchical cluster analysis was performed to select representative calibration (n(cal)=17) and validation (n(val)=14) datasets. The predictive performance of calibration functions over fs-LIBS data was compared with that attained on spectral information from nanosecond LIBS (ns-LIBS) operating at different wavelengths (1064 nm, 532 nm, and 266 nm). Findings established higher accuracy and less uncertainty on mass fractions quantification from fs-LIBS, whatever the modeling approach. Quality coefficients below 20% for the accuracy error on mass fractions' prediction in unknown samples, and residual predictive deviations in general above 5, were obtained. In contrast, only multivariate modeling satisfactorily handled the non-linear variations of emissions in ns-LIBS, leading to 2-fold decrease in the root mean square error of prediction (RMSEP) of Ca, Mg, P, Cu, Fe, Mn and Zn in comparison with the univariate approach. But still, an averaged quality coefficient about 35% and residual predictive deviations below 3 were found. Similar predictive capabilities were observed when changing the laser wavelength. Although predicted values by ns-LIBS multivariate modeling exhibit better agreement with reference mass fractions as compared to univariate functions, fs-LIBS conducts better quantification of

  17. Laser-induced breakdown spectroscopy analysis of human deciduous teeth samples.

    PubMed

    Khalid, Arooj; Bashir, Shazia; Akram, Mahreen; Hayat, Asma

    2015-12-01

    Laser-induced breakdown spectroscopy (LIBS) analysis of human deciduous teeth has been performed by employing Nd:YAG laser (1064 nm, 10 ns) for the evaluation of plasma parameters as well as elemental analysis. The plasma parameters, i.e., electron temperature and electron number density of laser-induced teeth plasma at various fluencies, have been evaluated. Both parameters show an increasing trend up to a certain value of laser fluence, i.e., 2.6 J/cm(2). With further increase in laser fluence up to a value of 3.9 J/cm(2), a decreasing trend is observed which is due to shielding effect. With further increase in laser fluence up to a maximum value of 10.5 J/cm(2), the insignificant changes in plasma parameters are observed which are attributed to saturation phenomenon governed by self-regulating regime. Emission spectroscopy results exhibit that laser fluence is the controlling factor for both plasma parameters. The elemental analysis was also performed at constant laser fluence of 2.6 J/cm(2) by evaluating the variation in detected elemental concentration of Ca, Fe, Sr, Zn, and Pb in three different parts of human teeth, i.e., enamel, dentine, and cementum. The lower concentration of Ca as compared to the standard values of CaCO3 (self-fabricated pellet) reveals that enamel is the most deciduous part of the human teeth. However, at the same time, it is also observed that the highest concentration of micro minerals is also found in enamel, then in dentine, and lowest in cementum. Carious or unhealthy tooth is identified by enhanced concentration of micro minerals (Pb, Sr, Zn, and Fe). The highest concentration of micro minerals as compared to other parts of teeth (dentine and root cementum) and lower concentration of Ca as compared to standard CaCO3 pellet in enamel confirm that enamel is the most deciduous part of the teeth.

  18. Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium.

    PubMed

    Senesi, G S; Dell'Aglio, M; Gaudiuso, R; De Giacomo, A; Zaccone, C; De Pascale, O; Miano, T M; Capitelli, M

    2009-05-01

    Soil is unanimously considered as one of the most important sink of heavy metals released by human activities. Heavy metal analysis of natural and polluted soils is generally conducted by the use of atomic absorption spectroscopy (AAS) or inductively coupled plasma optical emission spectroscopy (ICP-OES) on adequately obtained soil extracts. Although in recent years the emergent technique of laser-induced breakdown spectroscopy (LIBS) has been applied widely and with increasing success for the qualitative and quantitative analyses of a number of heavy metals in soil matrices with relevant simplification of the conventional methodologies, the technique still requires further confirmation before it can be applied fully successfully in soil analyses. The main objective of this work was to demonstrate that new developments in LIBS technique are able to provide reliable qualitative and quantitative analytical evaluation of several heavy metals in soils, with special focus on the element chromium (Cr), and with reference to the concentrations measured by conventional ICP spectroscopy. The preliminary qualitative LIBS analysis of five soil samples and one sewage sludge sample has allowed the detection of a number of elements including Al, Ca, Cr, Cu, Fe, Mg, Mn, Pb, Si, Ti, V and Zn. Of these, a quantitative analysis was also possible for the elements Cr, Cu, Pb, V and Zn based on the obtained linearity of the calibration curves constructed for each heavy metal, i.e., the proportionality between the intensity of the LIBS emission peaks and the concentration of each heavy metal in the sample measured by ICP. In particular, a triplet of emission lines for Cr could be used for its quantitative measurement. The consistency of experiments made on various samples was supported by the same characteristics of the laser-induced plasma (LIP), i.e., the typical linear distribution confirming the existence of local thermodynamic equilibrium (LTE) condition, and similar excitation

  19. Quantitative carbon analysis in coal by combining data processing and spatial confinement in laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Xiongwei; Yin, Hualiang; Wang, Zhe; Fu, Yangting; Li, Zheng; Ni, Weidou

    2015-09-01

    Online measurement of carbon content of coal is important for coal-fired power plants to realize the combustion optimization of coal-fired boilers. Given that the measurement of carbon content of coal using laser-induced breakdown spectroscopy (LIBS) suffers from low measurement accuracy because of matrix effects, our previous study has proposed a combination model to improve the measurement accuracy of carbon content of coal. The spatial confinement method, which utilizes the spectral emissions of laser-induced plasmas spatially confined by cavities for quantitative analysis, has potential to improve quantitative analysis performance. In the present study, the combination model was used for coal measurement with cylindrical cavity confinement to further improve the measurement accuracy of carbon content of coal. Results showed that measurement accuracy was improved when the combination model was used with spatial confinement method. The coefficient of determination, root-mean-square error of prediction, average relative error, and average absolute error for the combination model with cylindrical cavity confinement were 0.99, 1.35%, 1.66%, and 1.08%, respectively, whereas values for the combination model without cylindrical cavity confinement were 0.99, 1.63%, 1.82%, and 1.27%, respectively. This is the first time that the average absolute error of carbon measurement for coal analysis has achieved close to 1.0% using LIBS, which is the critical requirement set for traditional chemical processing method by Chinese national standard. These results indicated that LIBS had significant application potential for coal analysis.

  20. ,* Copper transport and accumulation in spruce stems (picea abies(L.) Karsten) revelaed by laser-induced breakdown spectroscopy

    SciTech Connect

    Krajcarova, Dr. Lucie; Novotny, Dr. Karel; Babula, Dr. Petr; Pravaznik, Dr Ivo; Kucerova, Dr. Petra; Vojtech, Dr. Adam; Martin, Madhavi Z; Kizek, Dr. Rene; Kaiser, Jozef

    2013-01-01

    Laser-Induced Breakdown Spectroscopy (LIBS) in double pulse configuration (DP LIBS) was used for scanning elemental spatial distribution in annual terminal stems of spruce (Picea abies (L.) Karsten). Cross sections of stems cultivated in Cu2+ solution of different concentrations were prepared and analyzed by DP LIBS. Raster scanning with 150 m spatial resolution was set and 2D (2-dimentional) maps of Cu and Ca distribution were created on the basis of the data obtained. Stem parts originating in the vicinity of the implementation of the cross sections were mineralized and subsequently Cu and Ca contents were analyzed by inductively coupled plasma mass spectrometry (ICP-MS). The results provide quantitative information about overall concentration of the elements in places, where LIBS measurements were performed. The fluorescence pictures were created to compare LIBS distribution maps and the fluorescence intensity (or the increase in autofluorescence) was used for the comparison of ICP-MS quantitative results. Results from these three methods can be utilized for quantitative measurements of copper ions transport in different plant compartments in dependence on the concentration of cultivation medium and/or the time of cultivation.

  1. Preliminary results of in situ laser-induced breakdown spectroscopy for the first wall diagnostics on EAST

    NASA Astrophysics Data System (ADS)

    Zhenhua, Hu; Cong, Li; Qingmei, Xiao; Ping, Liu; Fang, Ding; Hongmin, Mao; Jing, Wu; Dongye, Zhao; Hongbin, Ding; Guang-Nan, Luo; EAST Team

    2017-02-01

    Post-mortem methods cannot fulfill the requirement of monitoring the lifetime of the plasma facing components (PFC) and measuring the tritium inventory for the safety evaluation. Laser-induced breakdown spectroscopy (LIBS) is proposed as a promising method for the in situ study of fuel retention and impurity deposition in a tokamak. In this study, an in situ LIBS system was successfully established on EAST to investigate fuel retention and impurity deposition on the first wall without the need of removal tiles between plasma discharges. Spectral lines of D, H and impurities (Mo, Li, Si, … ) in laser-induced plasma were observed and identified within the wavelength range of 500-700 nm. Qualitative measurements such as thickness of the deposition layers, element depth profile and fuel retention on the wall are obtained by means of in situ LIBS. The results demonstrated the potential applications of LIBS for in situ characterization of fuel retention and co-deposition on the first wall of EAST. Supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB105002, 2015GB109001, and 2013GB109005), National Natural Science Foundation of China (Nos. 11575243, 11605238, 11605023), Chinesisch-Deutsches Forschungs Project (GZ765), and Korea Research Council of Fundamental Science and Technology (KRCF) under the international collaboration & research in Asian countries (PG1314).

  2. The detection of palladium particles in proton exchange membrane fuel-cell water by laser-induced breakdown spectroscopy (LIBS).

    PubMed

    Snyder, Stuart C; Wickun, William G; Mode, Jeremy M; Gurney, Brian D; Michels, Fred G

    2011-06-01

    Laser-induced breakdown spectroscopy (LIBS) using conditional data analysis was applied to aqueous suspensions of palladium particles in the reformate water of palladium-based proton exchange membrane fuel cells. A significant amount of palladium was found in the water, indicating degradation of the fuel-cell cathode catalytic layers. The palladium particle-size detection limit was found to be about 400 nm. Calibration procedures to quantify the palladium concentration are discussed.

  3. Advanced Signal Processing Analysis of Laser-Induced Breakdown Spectroscopy Data for the Discrimination of Obsidian Sources

    DTIC Science & Technology

    2012-02-09

    SECURITY CLASSIFICATION OF: Obsidian is a natural glass of volcanic origin and a primary resource used by indigenous peoples across North America for...laser-induced breakdown spectroscopy data for the discrimination of obsidian sources Report Title ABSTRACT Obsidian is a natural glass of volcanic ...performing statistical regression on high-dimensional data. Discrimination of samples from the Coso Volcanic Field, Bodie Hills, and other major obsidian

  4. Novel Estimation of the Humification Degree of Soil Organic Matter by Laser-Induced Breakdown Spectroscopy (LIBS) Compared to Laser-Induced Fluorescence Spectroscopy (LIFS)

    NASA Astrophysics Data System (ADS)

    Ferreira, Edilene; Ferreira, Ednaldo; Villas-Boas, Paulino; Senesi, Giorgio; Carvalho, Camila; Romano, Renan; Martin-Neto, Ladislau; Milori, Debora

    2014-05-01

    Soil organic matter (SOM) constitutes an important reservoir of terrestrial carbon and can be considered an alternative for atmospheric carbon storage, contributing to global warming mitigation. Soil management can favor atmospheric carbon incorporation into SOM or its release from SOM to atmosphere. Thus, the evaluation of the humification degree (HD), which is an indication of the recalcitrance of SOM, can provide an estimation of the capacity of carbon sequestration in soils under various managements. The HD of SOM can be estimated by using various analytical techniques including fluorescence spectroscopy. In the present work, the potential of Laser-Induced Breakdown Spectroscopy (LIBS) to estimate the HD of SOM was evaluated for the first time. In a LIBS experiment a high-energy laser pulse irradiates the sample and the energy absorbed by the sample causes a local heating of the material that results in its evaporation or sublimation. The high temperature of the ablated material generates a small plasma plume and, as a result of the plasma temperature, the ablated material breaks down into excited atomic and ionic species. During the plasma cooling, the excited species return to their lower energy state emitting electromagnetic radiation at characteristic wavelengths. In a LIBS spectrum the measurement of the characteristic emission wavelengths provides qualitative information about the elemental composition of the sample, whereas the intensities of the signals can be used for quantitative determinations. The LIBS potential for the analysis of organic compounds has been explored recently by using the emission lines of elements that are commonly present in organic compounds, such as the predominant C, H, P, O and N. LIBS elemental emissions were correlated to fluorescence emissions determined by Laser-Induced Fluorescence Spectroscopy (LIFS), which was considered as the reference technique. The HD of SOM determined by LIBS showed a strong correlation to that

  5. Detection of zinc and lead in water using evaporative preconcentration and single-particle laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Järvinen, Samu T.; Saarela, Jaakko; Toivonen, Juha

    2013-08-01

    A novel laser-induced breakdown spectroscopy (LIBS)-based measurement method for metals in water is demonstrated. In the presented technology a small amount of sodium chloride is dissolved in the sample solution before spraying the sample into a tubular oven. After water removal monodisperse dry NaCl aerosol particles are formed where trace metals are present as additives. A single-particle LIBS analysis is then triggered with a scattering based particle detection system. Benefits are the highly increased metal concentration in the LIBS focal volume and the static NaCl-matrix which can be exploited in the signal processing procedure. Emitted light from the emerged plasma plume is collected with wide angle optics and dispersed with a grating spectrometer. In an aqueous solution, the respective limits of detection for zinc and lead were 0.3 ppm and 0.1 ppm using a relatively low 14 mJ laser pulse energy. Zn/Na peak intensity ratio calibration curve for zinc concentration was also determined and LIBS signal dependence on laser pulse energy was investigated.

  6. Laser-induced breakdown spectroscopy (LIBS) of a high-pressure CO2-water mixture: application to carbon sequestration.

    PubMed

    Goueguel, Christian; McIntyre, Dustin L; Singh, Jagdish P; Jain, Jinesh; Karamalidis, Athanasios K

    2014-01-01

    Geologic carbon storage in deep saline aquifers is considered a feasible and possible approach of mitigating the problem of increasing greenhouse gas emissions. However, there are latent risks in which carbon dioxide (CO2) could migrate from the deep saline formations to shallower aquifers. In the event of a significant CO2 leakage to an underground source of drinking water, CO2 will dissolve in the water, thereby increasing its acidity, which could potentially enhance the solubility of various aquifer constituents, including hazardous compounds, subsequently compromising groundwater quality due to increased concentration of aqueous metals. In this paper we explore the possibility of detecting such leakage by the use of laser-induced breakdown spectroscopy (LIBS). The experiments were conducted in calcium chloride solution at three pressures of 10, 50, and 120 bar. To evaluate the direct effect of elevated CO2 on the intensity of calcium emission lines (422.67 and 393.37 nm), we also performed experiments with pure nitrogen (N2) gas, offering large water solubility contrast. We found that when performed in presence of CO2, LIBS showed only a modest decrease in Ca emission intensity from 10 to 120 bar compared to N2. These results indicate that LIBS is a viable tool for measuring brine/water contents in high-pressure CO2 environment and can be applied for monitoring CO2 leakage and displaced brine migration.

  7. Double-pulse laser-induced breakdown spectroscopy for trace element analysis in sintered iron oxide ceramics

    NASA Astrophysics Data System (ADS)

    Heilbrunner, H.; Huber, N.; Wolfmeir, H.; Arenholz, E.; Pedarnig, J. D.; Heitz, J.

    2012-01-01

    Double-pulse laser-induced breakdown spectroscopy (LIBS) is an emerging technique for accurate compositional analysis of many different materials. We present a systematic study of collinear double-pulse LIBS for analysis of the trace and side elements boron, manganese, copper, aluminum, titanium, silicon, chromium, nickel, potassium, and calcium in sintered iron oxide targets. The samples were ablated in air by single-pulse and double-pulse Nd:YAG laser radiation (6 ns pulse duration, laser wavelength of 532 nm) and spectra were recorded with an Echelle spectrometer equipped with an ICCD camera. We investigated the evolution of atomic and ionic line emission intensities for different interpulse delay times between the laser pulses (from 100 ns to 50 μs) and gate delays after the second laser pulse. We also varied the energy partition between the first and second laser pulse and the size of the irradiated spot at the sample surface. For the trace and side elements, we observed double-pulse LIBS signals that were enhanced as compared to single-pulse measurements depending on the interpulse delay time, the energy partition between the pulses, and the spot size. For the elements boron, copper, aluminum, titanium, chromium, potassium, and calcium limits of detection below 10 ppm were achieved.

  8. Detection of trace phosphorus in steel using laser-induced breakdown spectroscopy combined with laser-induced fluorescence

    SciTech Connect

    Shen, X. K.; Wang, H.; Xie, Z. Q.; Gao, Y.; Ling, H.; Lu, Y. F.

    2009-05-01

    Monitoring of light-element concentration in steel is very important for quality assurance in the steel industry. In this work, detection in open air of trace phosphorus (P) in steel using laser-induced breakdown spectroscopy (LIBS) combined with laser-induced fluorescence (LIF) has been investigated. An optical parametric oscillator wavelength-tunable laser was used to resonantly excite the P atoms within plasma plumes generated by a Q-switched Nd:YAG laser. A set of steel samples with P concentrations from 3.9 to 720 parts in 10{sup 6}(ppm) were analyzed using LIBS-LIF at wavelengths of 253.40 and 253.56 nm for resonant excitation of P atoms and fluorescence lines at wavelengths of 213.55 and 213.62 nm. The calibration curves were measured to determine the limit of detection for P in steel, which is estimated to be around 0.7 ppm. The results demonstrate the potential of LIBS-LIF to meet the requirements for on-line analyses in open air in the steel industry.

  9. Direct spectral analysis and determination of high content of carcinogenic bromine in bread using UV pulsed laser induced breakdown spectroscopy.

    PubMed

    Mehder, A O; Gondal, Mohammed A; Dastageer, Mohamed A; Habibullah, Yusuf B; Iqbal, Mohammed A; Oloore, Luqman E; Gondal, Bilal

    2016-01-01

    Laser induced breakdown spectroscopy (LIBS) was applied for the detection of carcinogenic elements like bromine in four representative brands of loaf bread samples and the measured bromine concentrations were 352, 157, 451, and 311 ppm, using Br I (827.2 nm) atomic transition line as the finger print atomic transition. Our LIBS system is equipped with a pulsed laser of wavelength 266 nm with energy 25 mJ pulse(-1), 8 ns pulse duration, 20 Hz repetition rate, and a gated ICCD camera. The LIBS system was calibrated with the standards of known concentrations in the sample (bread) matrix and such plot is linear in 20-500 ppm range. The capability of our system in terms of limit of detection and relative accuracy with respect to the standard inductively coupled plasma mass spectrometry (ICPMS) technique was evaluated and these values were 5.09 ppm and 0.01-0.05, respectively, which ensures the applicability of our system for Br trace level detection, and LIBS results are in excellent agreement with that of ICPMS results.

  10. A pilot study on the vacuum degree online detection of vacuum interrupter using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, X. H.; Yuan, H.; Liu, D. X.; Yang, A. J.; Liu, P.; Gao, L.; Ding, H. B.; Wang, W. T.; Rong, M. Z.

    2016-11-01

    Vacuum degree online detection of vacuum interrupter has been a great challenge for decades. In this letter, a novel approach based on laser induced breakdown spectroscopy (LIBS) was proposed to solve this tough problem, which is suitable for non-intrusive, electro-magnetic interference free and remote detection. The spectral lines of Cu, H, N and O elements from the interrupter shield were detected for a large gas pressure range from p  =  1  ×  10-3 Pa to 1  ×  105 Pa. It was found that the spectral intensities of O and H increase monotonically with gas pressure, in contrast the spectral intensity of Cu first decreases slightly and then increases. Their intensity ratios, especially for that of Cu to O, change dramatically and monotonically with the gas pressure when p  ⩽  0.1 Pa, indicating that they can be used for determining the vacuum degree values. Spectral ratio method fundamentally reduces the influences of the possible variation in measuring distance and the laser power fluctuation, making LIBS a promising method for vacuum degree online detection of vacuum interrupters.

  11. Pulsed—Laser Deposition Of Oxide Thin Films And Laser—Induced Breakdown Spectroscopy Of Multi—Element Materials

    NASA Astrophysics Data System (ADS)

    Pedarnig, Johannes D.

    2010-10-01

    New results of the Linz group on pulsed—laser deposition (PLD) of oxide thin films and on laser—induced breakdown spectroscopy (LIBS) of multi-element materials are reported. High-Tc superconducting (HTS) films with enhanced critical current density Jc are produced by laser ablation of novel nano-composite ceramic targets. The targets contain insulating nano-particles that are embedded into the YBa2Cu3O7 matrix. Epitaxial double-layers of lithium-doped and aluminum-doped ZnO are deposited on r-cut sapphire substrates. Acoustic over-modes in the GHz range are excited by piezoelectric actuation of layers. Smooth films of rare-earth doped glass are produced by F2—laser ablation. The transport properties of HTS thin films are modified by light—ion irradiation. Thin film nano—patterning is achieved by masked ion beam irradiation. LIBS is employed to analyze trace elements in industrial iron oxide powder and reference polymer materials. Various trace elements of ppm concentration are measured in the UV/VIS and vacuum-UV spectral range. Quantitative LIBS analysis of major components in oxide materials is performed by calibration-free methods.

  12. Double pulse laser induced breakdown spectroscopy: Experimental study of lead emission intensity dependence on the wavelengths and sample matrix

    NASA Astrophysics Data System (ADS)

    Piscitelli S, V.; Martínez L., M. A.; Fernández C., A. J.; González, J. J.; Mao, X. L.; Russo, R. E.

    2009-02-01

    Lead (Pb) emission intensity (atomic line 405.78 nm) dependence on the sample matrix (metal alloy) was studied by means of collinear double pulse (DP)-laser induced breakdown spectroscopy (LIBS). The measurement of the emission intensity produced by three different wavelength combinations (i.e. I:532 nm-II:1064 nm, I:532 nm-II:532 nm, and I:532 nm-II:355 nm) from three series of standard reference materials showed that the lead atomic line 405.78 nm emission intensity was dependent on the sample matrix for all the combination of wavelengths, however reduced dependency was found for the wavelength combination I:532 nm-II:355 nm. Two series of standard reference materials from the National Institute of Standards and Technology (NIST) and one series from the British Chemical Standards (BCS) were used for these experiments. Calibration curves for lead ablated from NIST 626-630 ("Zn 95Al 4Cu 1") provided higher sensitivity (slope) than those calibration curves produced from NIST 1737-1741 ("Zn 99.5Al 0.5") and with the series BCS 551-556 ("Cu 87Sn 11"). Similar trends between lead emission intensity (calibration curve sensitivities) and reported variations in plasma temperatures caused by the differing ionization potentials of the major and minor elements in these samples were established.

  13. Laser-induced breakdown spectroscopy of major and minor oxides in steel slags: Influence of detection geometry and signal normalization

    NASA Astrophysics Data System (ADS)

    Ahamer, C. M.; Eschlböck-Fuchs, S.; Kolmhofer, P. J.; Rössler, R.; Huber, N.; Pedarnig, J. D.

    2016-08-01

    Slag from secondary metallurgy in industrial steel production is analyzed by laser-induced breakdown spectroscopy (LIBS). The major oxides CaO, Al2O3, MgO, SiO2, FeO, MnO, and TiO2 are determined by calibration-free LIBS (CF-LIBS) method. For the minor oxide P2O5 calibration curves are established and the limits of detection (LOD) and the root-mean squared errors of prediction (RMSEP) are determined. The optical emission of the laser-induced plasma is measured for different detection geometries and varying sample position relative to the focal plane of the laser beam. LIBS spectra, plasma parameters, and analytical results are very similar for light collection with optical fibres close to the plasma ("direct detection") and at remote position ("collinear detection"). With collinear detection, the CF-LIBS calculated oxide concentrations are insensitive to sample position along the optical axis over wide range. The detection limits and the prediction errors of minor P2O5 depend on the major slag element used for signal normalization. With Mg and Si as internal reference elements the LOD values are 0.31 wt% and 0.07 wt%, respectively. The RMSEP values are lowest for signal normalization to Si. Calculations of the optical emission of ideal plasma support the experimental preference for Si as reference element in the phosphorous calibration.

  14. [High Precision Identification of Igneous Rock Lithology by Laser Induced Breakdown Spectroscopy].

    PubMed

    Wang, Chao; Zhang, Wei-gang; Yan, Zhi-quan

    2015-09-01

    In the field of petroleum exploration, lithology identification of finely cuttings sample, especially high precision identification of igneous rock with similar property, has become one of the geological problems. In order to solve this problem, a new method is proposed based on element analysis of Laser-Induced Breakdown Spectroscopy (LIBS) and Total Alkali versus Silica (TAS) diagram. Using independent LIBS system, factors influencing spectral signal, such as pulse energy, acquisition time delay, spectrum acquisition method and pre-ablation are researched through contrast experiments systematically. The best analysis conditions of igneous rock are determined: pulse energy is 50 mJ, acquisition time delay is 2 μs, the analysis result is integral average of 20 different points of sample's surface, and pre-ablation has been proved not suitable for igneous rock sample by experiment. The repeatability of spectral data is improved effectively. Characteristic lines of 7 elements (Na, Mg, Al, Si, K, Ca, Fe) commonly used for lithology identification of igneous rock are determined, and igneous rock samples of different lithology are analyzed and compared. Calibration curves of Na, K, Si are generated by using national standard series of rock samples, and all the linearly dependent coefficients are greater than 0.9. The accuracy of quantitative analysis is investigated by national standard samples. Element content of igneous rock is analyzed quantitatively by calibration curve, and its lithology is identified accurately by the method of TAS diagram, whose accuracy rate is 90.7%. The study indicates that LIBS can effectively achieve the high precision identification of the lithology of igneous rock.

  15. Effect of atmosphere on collinear double-pulse laser-induced breakdown spectroscopy

    SciTech Connect

    Andrew J. Effenberger, Jr.; Jill R. Scott

    2010-09-01

    Double pulse laser induced breakdown spectroscopy (DP-LIBS) has been shown to enhance LIBS spectra. Several researches have reported significant increases in signal-to-noise and or spectral intensity [1-4]. In addition to DP-LIBS, atmospheric conditions can also increase spectra intensity. For example, Iida [5] found that He and Ar both increase LIBS intensity compared to air at one 1 atm. It was also found that as the pressure was decreased to 100 Torr, LIBS intensity increased in Ar and air for single pulse (SP) LIBS. In this study, a collinear DP-LIBS scheme is used along with manipulation of the atmospheric conditions. The DP-LIBS scheme consists of a 355 nm ablative pulse fired into a sample contained in a vacuum chamber. A second analytical 1064 nm pulse is then fired 100 ns to 10 µs after and along the same path of the first pulse. Ar, He and air at pressures ranging from atmospheric pressure (630 Torr at elevation) to 10-5 Torr are introduced during DP-LIBS and SP-LIBS experiments. For a brass sample, a significant increase in spectral intensity of Cu and Zn lines were observed in DP-LIBS under Ar compared to DP-LIBS in air (Figure 1). It was also found that Cu and Zn lines acquired with SP-LIBS in Ar are nearly as intense as DP-LIBS in air. Signal-to-noise for lines from various samples will be reported for both DP-LIBS and SP-LIBS in Ar, He, and air at pressures ranging from 630 Torr to 10-5 Torr.

  16. Effect of magnetic field on laser-induced breakdown spectroscopy of graphite plasma

    NASA Astrophysics Data System (ADS)

    Arshad, Atiqa; Bashir, Shazia; Hayat, Asma; Akram, Mahreen; Khalid, Ayesha; Yaseen, Nazish; Ahmad, Qazi Salman

    2016-03-01

    The effect of transverse magnetic field on laser-induced breakdown spectroscopy of graphite plasma as a function of fluence has been investigated. Graphite targets were exposed to Nd:YAG (1064 nm, 10 ns) laser pulses at various laser fluences ranging from 0.4 to 2.9 J cm-2 under two different environment of air and Ar at a pressure of 150 and 760 torr. A transverse magnetic field of strength 0.5 tesla was employed by using permanent magnets. It is revealed that due to the presence of the magnetic field the emission intensity, electron temperature and number density of graphite plasma have been increased at all fluences and for all environmental conditions. The enhancement in plasma parameters is attributed to magnetic confinement effect and Joule heating effect. Initially by increasing the fluence from 0.4 to 1.5 J cm-2 (in air) and 0.4 to 1.8 J cm-2 (in Ar), the emission intensity, electron temperature and number density have been increased and have attained their maximum values. Further increase in fluence was responsible for the decreasing trend in all plasma parameters. More increase in fluence (beyond 1.8 J cm-2 in case of air and 2.2 J cm-2 in case of Ar) up to a maximum value of 2.9 J cm-2, the saturation or self-sustained regime was achieved, which is responsible for insignificant changes in plasma parameters. The value of plasma parameter " β" was also evaluated analytically, and it was less than one for all conditions (fluences as well as environments), which confirmed the existence of confinement effect.

  17. Evaluation of laser-induced breakdown spectroscopy analysis potential for addressing radiological threats from a distance

    NASA Astrophysics Data System (ADS)

    Gaona, I.; Serrano, J.; Moros, J.; Laserna, J. J.

    2014-06-01

    Although radioactive materials are nowadays valuable tools in nearly all fields of modern science and technology, the dangers stemming from the uncontrolled use of ionizing radiation are more than evident. Since preparedness is a key issue to face the risks of a radiation dispersal event, development of rapid and efficient monitoring technologies to control the contamination caused by radioactive materials is of crucial interest. Laser-induced breakdown spectroscopy (LIBS) exhibits appealing features for this application. This research focuses on the assessment of LIBS potential for the in-situ fingerprinting and identification of radioactive material surrogates from a safe distance. LIBS selectivity and sensitivity to detect a variety of radioactive surrogates, namely 59Co, 88Sr, 130Ba, 133Cs, 193Ir and 238U, on the surface of common urban materials at a distance of 30 m have been evaluated. The performance of the technique for nuclear forensics has been also studied on different model scenarios. Findings have revealed the difficulties to detect and to identify the analytes depending on the surface being interrogated. However, as demonstrated, LIBS shows potential enough for prompt and accurate gathering of essential evidence at a number of sites after the release, either accidental or intentional, of radioactive material. The capability of standoff analysis confers to LIBS unique advantages in terms of fast and safe inspection of forensic scenarios. The identity of the radioactive surrogates is easily assigned from a distance and the sensitivity to their detection is in the range of a few hundreds of ng per square centimeter.

  18. Laser-induced breakdown spectroscopy (LIBS): An innovative tool for studying bacteria

    NASA Astrophysics Data System (ADS)

    Mohaidat, Qassem I.

    Laser-induced breakdown spectroscopy (LIBS) has gained a reputation as a flexible and convenient technique for rapidly determining the elemental composition of samples with minimal or no sample preparation. In this dissertation, I will describe the benefits of using LIBS for the rapid discrimination and identification of bacteria (both pathogenic and non-pathogenic) based on the relative concentration of trace inorganic elements such as Mg, P, Ca, and Na. The speed, portability, and robustness of the technique suggest that LIBS may be applicable as a rapid point-of-care medical diagnostic technology. LIBS spectra of multiple genera of bacteria such as Escherichia, Streptococcus, Mycobacterium, and Staphylococcus were acquired and successfully analyzed using a computerized discriminant function analysis (DFA). It was shown that a LIBS-based bacterial identification might be insensitive to a wide range of biological changes that could occur in the bacterial cell due to a variety of environmental stresses that the cell may encounter. The effect of reducing the number of bacterial cells on the LIBS-based classification was also studied. These results showed that with 2500 bacteria, the identification of bacterial specimens was still possible. Importantly, it was shown that bacteria in mixed samples (more than one type of bacteria being present) were identifiable. The dominant or majority component of a two-component mixture was reliably identified as long as it comprised 70% of the mixture or more. Finally, to simulate a clinical specimen in a precursor to actual clinical tests, Staphylococcus epidermidis bacteria were collected from urine samples (to simulate a urinary tract infection specimen) and were tested via LIBS without washing. The analysis showed that these bacteria possessed exactly the same spectral fingerprint as control bacteria obtained from sterile deionized water, resulting in a 100% correct classification. This indicates that the presence of other

  19. Characterization and forensic analysis of soil samples using laser-induced breakdown spectroscopy (LIBS).

    PubMed

    Jantzi, Sarah C; Almirall, José R

    2011-07-01

    A method for the quantitative elemental analysis of surface soil samples using laser-induced breakdown spectroscopy (LIBS) was developed and applied to the analysis of bulk soil samples for discrimination between specimens. The use of a 266 nm laser for LIBS analysis is reported for the first time in forensic soil analysis. Optimization of the LIBS method is discussed, and the results compared favorably to a laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) method previously developed. Precision for both methods was <10% for most elements. LIBS limits of detection were <33 ppm and bias <40% for most elements. In a proof of principle study, the LIBS method successfully discriminated samples from two different sites in Dade County, FL. Analysis of variance, Tukey's post hoc test and Student's t test resulted in 100% discrimination with no type I or type II errors. Principal components analysis (PCA) resulted in clear groupings of the two sites. A correct classification rate of 99.4% was obtained with linear discriminant analysis using leave-one-out validation. Similar results were obtained when the same samples were analyzed by LA-ICP-MS, showing that LIBS can provide similar information to LA-ICP-MS. In a forensic sampling/spatial heterogeneity study, the variation between sites, between sub-plots, between samples and within samples was examined on three similar Dade sites. The closer the sampling locations, the closer the grouping on a PCA plot and the higher the misclassification rate. These results underscore the importance of careful sampling for geographic site characterization.

  20. Laser-induced breakdown spectroscopy for the remote detection of explosives at level of fingerprints

    NASA Astrophysics Data System (ADS)

    Almaviva, S.; Palucci, A.; Lazic, V.; Menicucci, I.; Nuvoli, M.; Pistilli, M.; De Dominicis, L.

    2016-04-01

    We report the results of the application of Laser-Induced Breakdown Spectroscopy (LIBS) for the detection of some common military explosives and theirs precursors deposited on white varnished car's external and black car's internal or external plastic. The residues were deposited by an artificial silicon finger, to simulate material manipulation by terrorists when preparing a car bomb, leaving traces of explosives on the parts of a car. LIBS spectra were acquired by using a first prototype laboratory stand-off device, developed in the framework of the EU FP7 313077 project EDEN (End-user driven DEmo for CBRNe). The system operates at working distances 8-30 m and collects the LIBS in the spectral range 240-840 nm. In this configuration, the target was moved precisely in X-Y direction to simulate the scanning system, to be implemented successively. The system is equipped with two colour cameras, one for wide scene view and another for imaging with a very high magnification, capable to discern fingerprints on a target. The spectral features of each examined substance were identified and compared to those belonging to the substrate and the surrounding air, and those belonging to possible common interferents. These spectral differences are discussed and interpreted. The obtained results show that the detection and discrimination of nitro-based compounds like RDX, PETN, ammonium nitrate (AN), and urea nitrate (UN) from organic interfering substances like diesel, greasy lubricants, greasy adhesives or oils in fingerprint concentration, at stand-off distance of some meters or tenths of meters is feasible.

  1. Nondestructive Determination of Cu Residue in Orange Peel by Laser Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hu, Huiqin; Huang, Lin; Liu, Muhua; Chen, Tianbing; Yang, Ping; Yao, Mingyin

    2015-08-01

    Laser induced breakdown spectroscopy (LIBS) is an emerging tool with rapid, nondestructive, green characteristics in qualitative or quantitative analyses of composition in materials. But LIBS has its shortcomings in detect limit and sensitivity. In this work, heavy metal Cu in Gannan Navel Orange, which is one of famous fruits from Jiangxi of China, was analyzed. In view of LIBS's limit, it is difficult to determinate heavy metals in natural fruits. In this work, nine orange samples were pretreated in 50-500 μg/mL Cu solution, respectively. Another one orange sample was chosen as a control group without any pollution treatment. Previous researchers observed that the content of heavy metals is much higher in peel than in pulp. So, the content in pulp can be reflected by detecting peel. The real concentrations of Cu in peels were acquired by atomic absorption spectrophotometer (AAS). A calibration model of Cu I 324.7 and Cu I 327.4 was constructed between LIBS intensity and AAS concentration by six samples. The correlation coefficient of the two models is also 0.95. All of the samples were used to verify the accuracy of the model. The results show that the relative error (RE) between predicted and real concentration is less than 6.5%, and Cu I 324.7 line has smaller RE than Cu I 327.4. The analysis demonstrated that different characteristic lines decided different accuracy. The results prove the feasibility of detecting heavy metals in fruits by LIBS. But the results are limited in treated samples. The next work will focus on direct analysis of heavy metals in natural fruits without any pretreatment. This work is helpful to explore the distribution of heavy metals between pulp and peel. supported by National Natural Science Foundation of China (No. 31460419) and Major Project of Science and Technology of Jiangxi, China (No. 20143ACB21013)

  2. Remote Raman - laser induced breakdown spectroscopy (LIBS) geochemical investigation under Venus atmospheric conditions

    SciTech Connect

    Clegg, Sanuel M; Barefield, James E; Humphries, Seth D; Wiens, Roger C; Vaniman, D. T.; Sharma, S. K.; Misra, A. K.; Dyar, M. D.; Smrekar, S. E.

    2010-12-13

    The extreme Venus surface temperatures ({approx}740 K) and atmospheric pressures ({approx}93 atm) create a challenging environment for surface missions. Scientific investigations capable of Venus geochemical observations must be completed within hours of landing before the lander will be overcome by the harsh atmosphere. A combined remote Raman - LIBS (Laser Induced Breakdown Spectroscopy) instrument is capable of accomplishing the geochemical science goals without the risks associated with collecting samples and bringing them into the lander. Wiens et al. and Sharma et al. demonstrated that both analytical techniques can be integrated into a single instrument capable of planetary missions. The focus of this paper is to explore the capability to probe geologic samples with Raman - LIBS and demonstrate quantitative analysis under Venus surface conditions. Raman and LIBS are highly complementary analytical techniques capable of detecting both the mineralogical and geochemical composition of Venus surface materials. These techniques have the potential to profoundly increase our knowledge of the Venus surface composition, which is currently limited to geochemical data from Soviet Venera and VEGA landers that collectively suggest a surface composition that is primarily tholeiitic basaltic with some potentially more evolved compositions and, in some locations, K-rich trachyandesite. These landers were not equipped to probe the surface mineralogy as can be accomplished with Raman spectroscopy. Based on the observed compositional differences and recognizing the imprecise nature of the existing data, 15 samples were chosen to constitute a Venus-analog suite for this study, including five basalts, two each of andesites, dacites, and sulfates, and single samples of a foidite, trachyandesite, rhyolite, and basaltic trachyandesite under Venus conditions. LIBS data reduction involved generating a partial least squares (PLS) model with a subset of the rock powder standards to

  3. [Analysis of lead in unknown samples based on the standard addition method using laser induced breakdown spectroscopy].

    PubMed

    Fang, Li; Zhao, Nan-jing; Meng, De-shuo; Yuan, Jing; Tang, Jie; Wang, Yin; Yu, Yang; Ma, Ming-jun; Hu, Li; Zhang, Da-hai; Xiao, Xue; Wang, Yu; Liu, Jian-guo; Liu, Wen-qing

    2015-01-01

    The standard addition method with laser induced breakdown spectroscopy was used to analyze an unknown sample taken from a lead battery factory. the matrix influence on the results was effectively avoided when the external or internal standard method was used, and the pretreatment of samples was simple and quick. The Nd ' YAG pulse laser with wavelength 1 064 nm was used as the excitation source. The echelle spectroscopy with high resolution and wide spectral range was used as the spectral separation device, and the intensified charge coupled device (ICCD) as the spectral detection device in the experiment. The characteristic line at 405. 78 nrn was chosen as the analysis line to measure Pb concentration. Fe I : 404. 58 line was chosen as the internal standard. Pre-experiment was carried out to confirm the appropriate condition. Under the laser energy of 128. 5 mJ, the delay time of 2. 5 tps, and the gate width of 3 ps, it was determined that with the addition of Pb to the sample in the range of 0 and 25 000 mg . kg-1, there wasn't self-absorption. There was a good linear relationship between the intensity of the spectral line of 405. 78 nm and the addition of Pb. The appropriate concentration of Pb added into the sample for analysis was determined by this series of samples. On this basis, four samples were prepared with three parallel samples for each sample in order to verify the repeatability and reliability of the method, i. e. 5 000, 10 000, 15 000, 20 000 mg . kg-1 Pb was added into the original sample. The results were compared with the result of ICP-MS. The twelve samples' relative errors were between -24. 6% and 17. 6%. The average result was 43 069 mg . kg-1 with the relative error -2. 44%.

  4. Microcontroller based system for electrical breakdown time delay measurement in gas-filled devices

    NASA Astrophysics Data System (ADS)

    Pejović, Milić M.; Denić, Dragan B.; Pejović, Momčilo M.; Nešić, Nikola T.; Vasović, Nikola

    2010-10-01

    This paper presents realization of a digital embedded system for measuring electrical breakdown time delay. The proposed system consists of three major parts: dc voltage supply, analog subsystem, and a digital subsystem. Any dc power source with the range from 100 to 1000 V can be used in this application. The analog subsystem should provide fast and accurate voltage switching on the testing device as well as transform the signals that represent the voltage pulse on the device and the device breakdown into the form suitable for detection by a digital subsystem. The insulated gate bipolar transistor IRG4PH40KD driven by TC429 MOSFET driver is used for high voltage switching on the device. The aim of a digital subsystem is to detect the signals from the analog subsystem and to measure the elapsed time between their occurrences. Moreover, the digital subsystem controls various parameters that influence time delay and provides fast data storage for a large number of measured data. For this propose, we used the PIC18F4550 microcontroller with a full-speed compatible universal serial bus (USB) engine. Operation of this system is verified on different commercial and custom made gas devices with different structure and breakdown mechanisms. The electrical breakdown time delay measurements have been carried out as a function of several parameters, which dominantly influence electrical breakdown time delay. The obtained results have been verified using statistical methods, and they show good agreement with the theory. The proposed system shows good repeatability, sensitivity, and stability for measuring the electrical breakdown time delay.

  5. Microcontroller based system for electrical breakdown time delay measurement in gas-filled devices

    SciTech Connect

    Pejovic, Milic M.; Denic, Dragan B.; Pejovic, Momcilo M.; Nesic, Nikola T.; Vasovic, Nikola

    2010-10-15

    This paper presents realization of a digital embedded system for measuring electrical breakdown time delay. The proposed system consists of three major parts: dc voltage supply, analog subsystem, and a digital subsystem. Any dc power source with the range from 100 to 1000 V can be used in this application. The analog subsystem should provide fast and accurate voltage switching on the testing device as well as transform the signals that represent the voltage pulse on the device and the device breakdown into the form suitable for detection by a digital subsystem. The insulated gate bipolar transistor IRG4PH40KD driven by TC429 MOSFET driver is used for high voltage switching on the device. The aim of a digital subsystem is to detect the signals from the analog subsystem and to measure the elapsed time between their occurrences. Moreover, the digital subsystem controls various parameters that influence time delay and provides fast data storage for a large number of measured data. For this propose, we used the PIC18F4550 microcontroller with a full-speed compatible universal serial bus (USB) engine. Operation of this system is verified on different commercial and custom made gas devices with different structure and breakdown mechanisms. The electrical breakdown time delay measurements have been carried out as a function of several parameters, which dominantly influence electrical breakdown time delay. The obtained results have been verified using statistical methods, and they show good agreement with the theory. The proposed system shows good repeatability, sensitivity, and stability for measuring the electrical breakdown time delay.

  6. Microcontroller based system for electrical breakdown time delay measurement in gas-filled devices.

    PubMed

    Pejović, Milić M; Denić, Dragan B; Pejović, Momčilo M; Nešić, Nikola T; Vasović, Nikola

    2010-10-01

    This paper presents realization of a digital embedded system for measuring electrical breakdown time delay. The proposed system consists of three major parts: dc voltage supply, analog subsystem, and a digital subsystem. Any dc power source with the range from 100 to 1000 V can be used in this application. The analog subsystem should provide fast and accurate voltage switching on the testing device as well as transform the signals that represent the voltage pulse on the device and the device breakdown into the form suitable for detection by a digital subsystem. The insulated gate bipolar transistor IRG4PH40KD driven by TC429 MOSFET driver is used for high voltage switching on the device. The aim of a digital subsystem is to detect the signals from the analog subsystem and to measure the elapsed time between their occurrences. Moreover, the digital subsystem controls various parameters that influence time delay and provides fast data storage for a large number of measured data. For this propose, we used the PIC18F4550 microcontroller with a full-speed compatible universal serial bus (USB) engine. Operation of this system is verified on different commercial and custom made gas devices with different structure and breakdown mechanisms. The electrical breakdown time delay measurements have been carried out as a function of several parameters, which dominantly influence electrical breakdown time delay. The obtained results have been verified using statistical methods, and they show good agreement with the theory. The proposed system shows good repeatability, sensitivity, and stability for measuring the electrical breakdown time delay.

  7. Comparative Study of Elemental Nutrients in Organic and Conventional Vegetables Using Laser-Induced Breakdown Spectroscopy (LIBS).

    PubMed

    Bhatt, Chet R; Alfarraj, Bader; Ghany, Charles T; Yueh, Fang Y; Singh, Jagdish P

    2017-01-01

    In this study, the laser-induced breakdown spectroscopy (LIBS) technique was used to identify and compare the presence of major nutrient elements in organic and conventional vegetables. Different parts of cauliflowers and broccolis were used as working samples. Laser-induced breakdown spectra from these samples were acquired at optimum values of laser energy, gate delay, and gate width. Both univariate and multivariate analyses were performed for the comparison of these organic and conventional vegetable flowers. Principal component analysis (PCA) was taken into account for multivariate analysis while for univariate analysis, the intensity of selected atomic lines of different elements and their intensity ratio with some reference lines of organic cauliflower and broccoli samples were compared with those of conventional ones. In addition, different parts of the cauliflower and broccoli were compared in terms of intensity and intensity ratio of elemental lines.

  8. Time-dependent dielectric breakdown measurements of porous organosilicate glass using mercury and solid metal probes

    SciTech Connect

    Pei, Dongfei; Nichols, Michael T.; Shohet, J. Leon; King, Sean W.; Clarke, James S.; Nishi, Yoshio

    2014-09-01

    Time-dependent dielectric breakdown (TDDB) is one of the major concerns for low-k dielectric materials. During plasma processing, low-k dielectrics are subjected to vacuum ultraviolet photon radiation and charged-particle bombardment. To examine the change of TDDB properties, time-to-breakdown measurements are made to porous SiCOH before and after plasma exposure. Significant discrepancies between mercury and solid-metal probes are observed and have been shown to be attributed to mercury diffusion into the dielectric porosities.

  9. Detection of chlorine with concentration of 0.18 kg/m{sup 3} in concrete by laser-induced breakdown spectroscopy

    SciTech Connect

    Sugiyama, K.; Fujii, T.; Matsumura, T.; Shiogama, Y.; Yamaguchi, M.; Nemoto, K.

    2010-05-01

    The chlorine concentration in concrete samples was measured by laser-induced breakdown spectroscopy (LIBS). One or two pulsed second harmonic Nd:YAG lasers ({lambda}=532 nm) were used for the generation of laser-induced breakdown, and an intensified CCD camera, spectrometer, and optical bundle fiber were used for spectral measurement. To maximize the spectral intensity of the chlorine fluorescence line at a wavelength of 837.59 nm, the time delay between laser irradiation and spectral measurement, the time delay between the two laser pulses in double-pulse measurement, and the gate width of the spectral measurement were optimized. The linear relationship between the spectral intensity of the chlorine fluorescence line and the chlorine concentration was verified for pressed samples with chlorine concentrations from 0.18 to 5.4 kg/m{sup 3}. The signal-to-noise ratio was higher than 2 for the sample with a chlorine concentration of 0.18 kg/m{sup 3} (0.008 wt. %). Thus, a chlorine concentration of 0.6 kg/m{sup 3}, at which the reinforcing bars in concrete structures start to corrode, can be detected. These results show that LIBS is effective for the quantitative measurement of chlorine concentration in concrete with high sensitivity.

  10. Preliminary study of laser-induced breakdown spectroscopy (LIBS) for a Venus mission

    SciTech Connect

    Arp, Z. A.; Cremers, D. A.; Wiens, R. C.

    2004-01-01

    Laser-Induced Breakdown Spectroscopy (LIBS) has been proposed as a candidate analysis system for missions to Mars, asteroids, and recently Venus. This technique has several distinct advantages over other techniques which have been used on past missions (X-Ray fluorescence on Viking 1 and 2, 1976; APXS on Pathfiider, 1997; MER, 2004). Two of the more important advantages LIBS has over other techniques for a mission to Venus is rapid elemental analysis of both high and low Z value elements and stand-off analysis at distances of many meters. Rapid elemental analysis and stand-off analysis are very important to missions to Venus due to the harsh environment at the planet surface. From the Venera missions it is known that on the Venusian surface the pressures are approximately 9.1 MPa (90 atm) and the temperature is near 735 K. For these reasons, the Soviet Venera surface probes had operational lifetimes of less than 2 hours. Currently Venus is the target of one of four missions specifically mentioned for consideration for NASA's New Frontier Program with a launch date of 2010 or earlier. In light of this, it is beneficial to evaluate different analysis methods such as LIBS, which offer to greatly increase the scientific return from such a mission. Currently we have begun to evaluate LIBS detection in an environment with pressures and compositions which are similar to those found on Venus. Although the temperature of Venus ({approx} 735 K) has not been taken into account in these experiments, due to the high temperature of the plasma ({approx}8000 K) signifcant perturbations of excitation characteristics sufficient to affect LIBS analytical capability would not be expected. Previous work, however, has shown that the pressure of the surrounding atmosphere can have a strong effect on the detection of elements in soil. These studies have mainly concentrated on pressures at or below earth ambient pressure, but one study has shown successful results at elevated pressures (3

  11. Comparison of baseline removal methods for laser-induced breakdown spectroscopy of geological samples

    NASA Astrophysics Data System (ADS)

    Dyar, M. Darby; Giguere, Stephen; Carey, CJ; Boucher, Thomas

    2016-12-01

    This project examines the causes, effects, and optimization of continuum removal in laser-induced breakdown spectroscopy (LIBS) to produce the best possible prediction accuracy of elemental composition in geological samples. We compare prediction accuracy resulting from several different techniques for baseline removal, including asymmetric least squares (ALS), adaptive iteratively reweighted penalized least squares (Air-PLS), fully automatic baseline correction (FABC), continuous wavelet transformation, median filtering, polynomial fitting, the iterative thresholding Dietrich method, convex hull/rubber band techniques, and a newly-developed technique for Custom baseline removal (BLR). We assess the predictive performance of these methods using partial least-squares analysis for 13 elements of geological interest, expressed as the weight percentages of SiO2, Al2O3, TiO2, FeO, MgO, CaO, Na2O, K2O, and the parts per million concentrations of Ni, Cr, Zn, Mn, and Co. We find that previously published methods for baseline subtraction generally produce equivalent prediction accuracies for major elements. When those pre-existing methods are used, automated optimization of their adjustable parameters is always necessary to wring the best predictive accuracy out of a data set; ideally, it should be done for each individual variable. The new technique of Custom BLR produces significant improvements in prediction accuracy over existing methods across varying geological data sets, instruments, and varying analytical conditions. These results also demonstrate the dual objectives of the continuum removal problem: removing a smooth underlying signal to fit individual peaks (univariate analysis) versus using feature selection to select only those channels that contribute to best prediction accuracy for multivariate analyses. Overall, the current practice of using generalized, one-method-fits-all-spectra baseline removal results in poorer predictive performance for all methods. The

  12. Elemental analysis of powders with surface-assisted thin film laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Tian, Ye; Cheung, Hoi Ching; Zheng, Ronger; Ma, Qianli; Chen, Yanping; Delepine-Gilon, Nicole; Yu, Jin

    2016-10-01

    We have developed in this work a method of elemental analysis of powdered materials with laser-induced breakdown spectroscopy (LIBS). This method requires simple sample preparation. Powders are first mixed into a 75 cSt base oil to obtain a paste which is then smeared onto the polished surface of a solid state substrate, aluminum plate for instance, in the form of a uniform thin film. The prepared sample is ablated by a high energy infrared (IR at 1064 nm) nanosecond laser pulse. The laser beam transmits through the coating layer of the material to be analyzed and induces a strong plasma from the substrate. The initial plasma interacts in turn with the coating layer, leading to the vaporization and excitation of the incorporated powder particles. The subsequent emission from the plasma includes emission lines of the elements contained in the powder, which is preferentially captured by a suitable detection system. The analysis of the recorded spectrum allows the concentration determination of the targeted elements in the powder. We first applied the method on a cellulose powder of 20 μm typical particle size. The powder was spiked with titanium dioxide (TiO2) nanoparticles for Ti concentrations ranging from 25 ppm to 5000 ppm by weight. Calibration graphs were thus built to deduce figures-of-merit parameters such as the coefficient of determination (R2) and the limits of detection and quantification (LoD and LoQ). We optimized especially the choice of reference line for spectrum normalization, which resulted in better analytical performances. In the second step, two sets of powders, the aforementioned cellulose powder and an alumina powder with average particle size of ≤ 10 μm, were spiked with TiO2 nanoparticles. We then assessed the matrix effect between these two different powders for the determination of Ti by comparing their calibration curves. Our results show universal calibration curve in Ti determination in the two tested matrices. The results are

  13. A membrane basis for bacterial identification and discrimination using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Rehse, Steven J.; Jeyasingham, Narmatha; Diedrich, Jonathan; Palchaudhuri, Sunil

    2009-05-01

    Nanosecond single-pulse laser-induced breakdown spectroscopy (LIBS) has been used to discriminate between two different genera of Gram-negative bacteria and between several strains of the Escherichia coli bacterium based on the relative concentration of trace inorganic elements in the bacteria. Of particular importance in all such studies to date has been the role of divalent cations, specifically Ca2+ and Mg2+, which are present in the membranes of Gram-negative bacteria and act to aggregate the highly polar lipopolysaccharide molecules. We have demonstrated that the source of emission from Ca and Mg atoms observed in LIBS plasmas from bacteria is at least partially located at the outer membrane by intentionally altering membrane biochemistry and correlating these changes with the observed changes in the LIBS spectra. The definitive assignment of some fraction of the LIBS emission to the outer membrane composition establishes a potential serological, or surface-antigen, basis for the laser-based identification. E. coli and Pseudomonas aeruginosa were cultured in three nutrient media: trypticase soy agar as a control, a MacConkey agar with a 0.01% concentration of bile salts including sodium deoxycholate, and a trypticase soy agar with a 0.4% deoxycholate concentration. The higher concentration of deoxycholate is known to disrupt bacterial outer membrane integrity and was expected to induce changes in the observed LIBS spectra. Altered LIBS emission was observed for bacteria cultured in this 0.4% medium and laser ablated in an all-argon environment. These spectra evidenced a reduced calcium emission and in the case of one species, a reduced magnesium emission. Culturing on the lower (0.01%) concentration of bile salts altered the LIBS spectra for both the P. aeruginosa and two strains of E. coli in a highly reproducible way, although not nearly as significantly as culturing in the higher concentration of deoxycholate did. This was possibly due to the accumulation

  14. An Assessment of Cellulose Filters as a Standardized Material for Measuring Litter Breakdown in Headwater Streams

    EPA Science Inventory

    The decay rate of cellulose filters and associated chemical and biological characteristics were compared to those of white oak (Quercus alba) leaves to determine if cellulose filters could be a suitable standardized material for measuring deciduous leaf breakdown in headwater str...

  15. An assessment of cellulose filters as a standardized material for measuring litter breakdown in headwater streams

    EPA Science Inventory

    The decay rate of cellulose filters and associated chemical and biological characteristics were compared to those of white oak (Quercus alba) leaves to determine if cellulose filters could be a suitable standardized material for measuring deciduous leaf breakdown in headwater str...

  16. Development of laser-induced breakdown spectroscopy sensor to assess groundwater quality impacts resulting from geologic carbon sequestration

    NASA Astrophysics Data System (ADS)

    Carson, Cantwell G.; Goueguel, Christian; Jain, Jinesh; McIntyre, Dustin

    2015-05-01

    The injection of CO2 into deep aquifers can potentially affect the quality of groundwater supplies were leakage to occur from the injection formation or fluids. Therefore, the detection of CO2 and/or entrained contaminants that migrate into shallow groundwater aquifers is important both to assess storage permanence and to evaluate impacts on water resources. Naturally occurring elements (i.e., Li, Sr) in conjunction with isotope ratios can be used to detect such leakage. We propose the use of laser induced breakdown spectroscopy (LIBS) as an analytical technique to detect a suite of elements in water samples. LIBS has real time monitoring capabilities and can be applied for elemental and isotopic analysis of solid, liquid, and gas samples. The flexibility of probe design and use of fiber optics make it a suitable technique for real time measurements in harsh conditions and in hard to reach places. The laboratory scale experiments to measure Li, K, Ca, and Sr composition of water samples indicate that the technique produces rapid and reliable data. Since CO2 leakage from saline aquifers may accompany a brine solution, we studied the effect of sodium salts on the accuracy of LIBS analysis. This work specifically also details the fabrication and application of a miniature ruggedized remotely operated diode pumped solid state passively Q-switched laser system for use as the plasma excitation source for a real time LIBS analysis. This work also proposes the optical distribution of many laser spark sources across a wide area for widespread leak detection and basin monitoring.

  17. Application of a spectrum standardization method for carbon analysis in coal using laser-induced breakdown spectroscopy (LIBS).

    PubMed

    Li, Xiongwei; Wang, Zhe; Fu, Yangting; Li, Zheng; Liu, Jianmin; Ni, Weidou

    2014-01-01

    Measurement of coal carbon content using laser-induced breakdown spectroscopy (LIBS) is limited by its low precision and accuracy. A modified spectrum standardization method was proposed to achieve both reproducible and accurate results for the quantitative analysis of carbon content in coal using LIBS. The proposed method used the molecular emissions of diatomic carbon (C2) and cyanide (CN) to compensate for the diminution of atomic carbon emissions in high volatile content coal samples caused by matrix effect. The compensated carbon line intensities were further converted into an assumed standard state with standard plasma temperature, electron number density, and total number density of carbon, under which the carbon line intensity is proportional to its concentration in the coal samples. To obtain better compensation for fluctuations of total carbon number density, the segmental spectral area was used and an iterative algorithm was applied that is different from our previous spectrum standardization calculations. The modified spectrum standardization model was applied to the measurement of carbon content in 24 bituminous coal samples. The results demonstrate that the proposed method has superior performance over the generally applied normalization methods. The average relative standard deviation was 3.21%, the coefficient of determination was 0.90, the root mean square error of prediction was 2.24%, and the average maximum relative error for the modified model was 12.18%, showing an overall improvement over the corresponding values for the normalization with segmental spectrum area, 6.00%, 0.75, 3.77%, and 15.40%, respectively.

  18. On the performance of laser-induced breakdown spectroscopy for direct determination of trace metals in lubricating oils

    NASA Astrophysics Data System (ADS)

    Zheng, Lijuan; Cao, Fan; Xiu, Junshan; Bai, Xueshi; Motto-Ros, Vincent; Gilon, Nicole; Zeng, Heping; Yu, Jin

    2014-09-01

    Laser-induced breakdown spectroscopy (LIBS) provides a technique to directly determine metals in viscous liquids and especially in lubricating oils. A specific laser ablation configuration of a thin layer of oil applied on the surface of a pure aluminum target was used to evaluate the analytical figures of merit of LIBS for elemental analysis of lubricating oils. Among the analyzed oils, there were a certified 75cSt blank mineral oil, 8 virgin lubricating oils (synthetic, semi-synthetic, or mineral and of 2 different manufacturers), 5 used oils (corresponding to 5 among the 8 virgin oils), and a cooking oil. The certified blank oil and 4 virgin lubricating oils were spiked with metallo-organic standards to obtain laboratory reference samples with different oil matrix. We first established calibration curves for 3 elements, Fe, Cr, Ni, with the 5 sets of laboratory reference samples in order to evaluate the matrix effect by the comparison among the different oils. Our results show that generalized calibration curves can be built for the 3 analyzed elements by merging the measured line intensities of the 5 sets of spiked oil samples. Such merged calibration curves with good correlation of the merged data are only possible if no significant matrix effect affects the measurements of the different oils. In the second step, we spiked the remaining 4 virgin oils and the cooking oils with Fe, Cr and Ni. The accuracy and the precision of the concentration determination in these prepared oils were then evaluated using the generalized calibration curves. The concentrations of metallic elements in the 5 used lubricating oils were finally determined.

  19. Standoff Laser-Induced Breakdown Spectroscopy (LIBS) using a Miniature Wide Field of View Spatial Heterodyne Spectrometer with Sub-Microsteradian Collection Optics.

    PubMed

    Barnett, Patrick D; Lamsal, Nirmal; Angel, S Michael

    2017-01-01

    A spatial heterodyne spectrometer (SHS) is described for standoff laser-induced breakdown spectroscopy (LIBS) measurements. The spatial heterodyne LIBS spectrometer (SHLS) is a diffraction grating based interferometer with no moving parts that offers a very large field of view, high light throughput, and high spectral resolution in a small package. The field of view of the SHLS spectrometer is shown to be ∼1° in standoff LIBS measurements. In the SHLS system described here, the collection aperture was defined by the 10 mm diffraction gratings in the SHS and standoff LIBS measurements were made up to 20 m with no additional collection optics, corresponding to a collection solid angle of 0.2 μsr, or f/2000, and also using a small telescope to increase the collection efficiency. The use of a microphone was demonstrated to rapidly optimize laser focus for 20 m standoff LIBS measurements.

  20. Remote Raman - Laser Induced Breakdown Spectroscopy (LIBS) Geochemical Investigation under Venus Atmospheric Conditions

    NASA Astrophysics Data System (ADS)

    Clegg, S. M.; Barefield, J. E.; Humphries, S.; Wiens, R. C.; Vaniman, D. T.; Sharma, S. K.; Misra, A. K.; Dyar, M. D.; Smrekar, S. E.

    2010-12-01

    The extreme Venus surface temperatures (~740 K) and atmospheric pressures (~93 atm) create a challenging environment for surface missions. Scientific investigations capable of Venus geochemical observations must be completed within hours of landing before the lander will be overcome by the harsh atmosphere. A combined remote Raman - LIBS (Laser Induced Breakdown Spectroscopy) instrument is capable of accomplishing the geochemical science goals without the risks associated with collecting samples and bringing them into the lander. Wiens et al. [1] and Sharma et al. [2] demonstrated that both analytical techniques can be integrated into a single instrument capable of planetary missions. The focus of this paper is to explore the capability to probe geologic samples with Raman - LIBS and demonstrate quantitative analysis under Venus surface conditions. Raman and LIBS are highly complementary analytical techniques capable of detecting both the mineralogical and geochemical composition of Venus surface materials. These techniques have the potential to profoundly increase our knowledge of the Venus surface composition, which is currently limited to geochemical data from Soviet Venera and VEGA landers that collectively suggest a surface composition that is primarily tholeiitic basaltic [3] with some potentially more evolved compositions and, in some locations, K-rich trachyandesite. These landers were not equipped to probe the surface mineralogy as can be accomplished with Raman spectroscopy. Based on the observed compositional differences and recognizing the imprecise nature of the existing data, 15 samples were chosen to constitute a Venus-analog suite for this study, including five basalts, two each of andesites, dacites, and sulfates, and single samples of a foidite, trachy-andesite, rhyolite, and basaltic trachyandesite under Venus conditions. LIBS data reduction involved generating a partial least squares (PLS) model with a subset of the rock powder standards to

  1. Investigation of the Matrix Effect on the Accuracy of Quantitative Analysis of Trace Metals in Liquids Using Laser-Induced Breakdown Spectroscopy with Solid Substrates.

    PubMed

    Xiu, Junshan; Dong, Lili; Qin, Hua; Liu, Yunyan; Yu, Jin

    2016-12-01

    The detection limit of trace metals in liquids has been improved greatly by laser-induced breakdown spectroscopy (LIBS) using solid substrate. A paper substrate and a metallic substrate were used as a solid substrate for the detection of trace metals in aqueous solutions and viscous liquids (lubricating oils) respectively. The matrix effect on quantitative analysis of trace metals in two types of liquids was investigated. For trace metals in aqueous solutions using paper substrate, the calibration curves established for pure solutions and mixed solutions samples presented large variation on both the slope and the intercept for the Cu, Cd, and Cr. The matrix effects among the different elements in mixed solutions were observed. However, good agreement was obtained between the measured and known values in real wastewater. For trace metals in lubricating oils, the matrix effect between the different oils is relatively small and reasonably negligible under the conditions of our experiment. A universal calibration curve can be established for trace metals in different types of oils. The two approaches are verified that it is possible to develop a feasible and sensitive method with accuracy results for rapid detection of trace metals in industrial wastewater and viscous liquids by laser-induced breakdown spectroscopy.

  2. Investigation of the osteitis deformans phases in snake vertebrae by double-pulse laser-induced breakdown spectroscopy.

    PubMed

    Galiová, M; Kaiser, J; Novotný, K; Ivanov, M; Nývltová Fisáková, M; Mancini, L; Tromba, G; Vaculovic, T; Liska, M; Kanický, V

    2010-09-01

    Double-pulse laser-induced breakdown spectroscopy (DP-LIBS) was optimized for microspatial analyses of fossil and recent snake vertebrae. As complimentary techniques, solution analysis by inductively coupled plasma mass spectrometry and synchrotron radiation X-ray microtomography was utilized in order to determine the overall concentration of the selected elements in the samples and to visualize nondestructively the fossil sample microstructure, respectively. Elemental mapping of pathological bony tissue by DP-LIBS has been proven as a powerful tool for considering the osteitis deformans phases in fossil vertebrae.

  3. A support of restoration intervention of the bust of St. Gregory the Armenian: Compositional investigations by laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Acquaviva, S.; De Giorgi, M. L.; Marini, C.; Poso, R.

    2005-07-01

    Laser induced breakdown spectroscopy was employed in the restoration process of the bust of St. Gregory the Armenian. It was applied to carry out elemental chemical analyses of different details of the bust. The analyses showed that all the investigated pieces are covered by polluted layers, rich mainly in calcium which can be removed by laser ablation. The investigations performed on the cleaned surfaces confirm that the hair is composed essentially of silver and the stole of copper and that no foils were added during the stages of artwork realization. The interesting finding is that the decorative coating of the stole was realized in gold, instead of the supposed brass.

  4. Detection of uranium in solids by using laser-induced breakdown spectroscopy combined with laser-induced fluorescence

    SciTech Connect

    Shen, X. K.; Lu, Y. F

    2008-04-10

    Detection of uranium in solids by using laser-induced breakdown spectroscopy has been investigated in combination with laser-induced fluorescence. An optical parametric oscillator wavelength-tunable laser was used to resonantly excite the uranium atoms and ions within the plasma plumes generated by a Q-switched Nd:YAG laser. Both atomic and ionic lines can be selected to detect their fluorescence lines. A uranium concentration of 462 ppm in a glass sample can be detected by using this technique at an excitation wavelength of 385.96 nm for resonant excitation of U II and a fluorescence line wavelength of 409.0 nm from U II.

  5. Elemental analysis of tissue pellets for the differentiation of epidermal lesion and normal skin by laser-induced breakdown spectroscopy

    PubMed Central

    Moon, Youngmin; Han, Jung Hyun; Shin, Sungho; Kim, Yong-Chul; Jeong, Sungho

    2016-01-01

    By laser induced breakdown spectroscopy (LIBS) analysis of epidermal lesion and dermis tissue pellets of hairless mouse, it is shown that Ca intensity in the epidermal lesion is higher than that in dermis, whereas Na and K intensities have an opposite tendency. It is demonstrated that epidermal lesion and normal dermis can be differentiated with high selectivity either by univariate or multivariate analysis of LIBS spectra with an intensity ratio difference by factor of 8 or classification accuracy over 0.995, respectively. PMID:27231610

  6. Identification of vapor-phase chemical warfare agent simulants and rocket fuels using laser-induced breakdown spectroscopy

    SciTech Connect

    Stearns, Jaime A.; McElman, Sarah E.; Dodd, James A.

    2010-05-01

    Application of laser-induced breakdown spectroscopy (LIBS) to the identification of security threats is a growing area of research. This work presents LIBS spectra of vapor-phase chemical warfare agent simulants and typical rocket fuels. A large dataset of spectra was acquired using a variety of gas mixtures and background pressures and processed using partial least squares analysis. The five compounds studied were identified with a 99% success rate by the best method. The temporal behavior of the emission lines as a function of chamber pressure and gas mixture was also investigated, revealing some interesting trends that merit further study.

  7. Development of a Stand-off Laser Induced Breakdown Spectroscopy (ST-LIBS) system for the analysis of complex matrices

    NASA Astrophysics Data System (ADS)

    Tamboli, M. M.; Unnikrishnan, V. K.; Nayak, R.; Devangad, P.; Muhammed Shameem, K. M.; Kartha, V. B.; Santhosh, C.

    2016-08-01

    In the present work, we discuss the evaluation and optimization of a stand-off laser induced breakdown spectroscopy (ST-LIBS) system, developed indigenously for remote analysis of heavy elements in soil. A compact Q-switched Nd:YAG laser operating at fundamental wavelength 1064 nm was used for plasma generation at distances up to 6 meters. Techniques for optimal experimental results were evaluated for detection of Cd, Cr, Pb, Mo and Ni in soil. The system was evaluated with two NIST certified soil samples. The effect of working distance on the LIBS signal is also discussed briefly. Results confirm the capabilities of the system for remote monitoring.

  8. Laser-induced breakdown spectroscopy for the real-time analysis of mixed waste samples containing Sr

    SciTech Connect

    Barefield, J.E. II; Koskelo, A.C.; Multari, R.A.; Cremers, D.A.; Gamble, T.K.; Han, C.Y.

    1995-05-01

    In this report, the use of Laser-induced breakdown spectroscopy to analyze mixed waste samples containing Sr is discussed. The mixed waste samples investigated include vitrified waste glass and contaminated soil. Compared to traditional analysis techniques, the laser-based method is fast (i.e., analysis times on the order of minutes) and essentially waste free since little or no sample preparation is required. Detection limits on the order of pmm Sr were determined. Detection limits obtained using a fiber optic cable to deliver laser pulses to soil samples containing Cr, Zr, Pb, Be, Cu, and Ni will also be discussed.

  9. Kinetic Model of C/H/N/O Emissions in Laser-Induced Breakdown Spectroscopy of Organic Compounds

    DTIC Science & Technology

    2010-05-01

    the excited, emitting C/H/N/O atomic levels. In previous work, we carried out similar studies of LIBS of metallic lead in air and argon atmospheres...assumption of local thermodynamic equilibrium to derive the tem- perature as a function of time. In this analysis, the line intensities were computed as areas...induced breakdown spectroscopy plume from metallic lead,” Appl. Opt. 42, 5947–5962 (2003). 7. V. I. Babushok, F. C. DeLucia, Jr., P. J. Dagdigian

  10. A Simple Device for Lens-to-Sample Distance Adjustment in Laser-Induced Breakdown Spectroscopy (LIBS).

    PubMed

    Cortez, Juliana; Farias Filho, Benedito B; Fontes, Laiane M; Pasquini, Celio; Raimundo, Ivo M; Pimentel, Maria Fernanda; de Souza Lins Borba, Flávia

    2017-01-01

    A simple device based on two commercial laser pointers is described to assist in the analysis of samples that present uneven surfaces and/or irregular shapes using laser-induced breakdown spectroscopy (LIBS). The device allows for easy positioning of the sample surface at a reproducible distance from the focusing lens that conveys the laser pulse to generate the micro-plasma in a LIBS system, with reproducibility better than ±0.2 mm. In this way, fluctuations in the fluence (J cm(-2)) are minimized and the LIBS analytical signals can be obtained with a better precision even when samples with irregular surfaces are probed.

  11. Effect of sodium chloride concentration on elemental analysis of brines by laser-induced breakdown spectroscopy (LIBS).

    PubMed

    Goueguel, Christian; Singh, Jagdish P; McIntyre, Dustin L; Jain, Jinesh; Karamalidis, Athanasios K

    2014-01-01

    Leakage of injected carbon dioxide (CO2) or resident fluids, such as brine, is a major concern associated with the injection of large volumes of CO2 into deep saline formations. Migration of brine could contaminate drinking water resources by increasing their salinity or endanger vegetation and animal life as well as human health. The main objective of this study was to investigate the effect of sodium chloride (NaCl) concentration on the detection of calcium and potassium in brine samples using laser-induced breakdown spectroscopy (LIBS). The ultimate goals were to determine the suitability of the LIBS technique for in situ measurements of metal ion concentrations in NaCl-rich solution and to develop a chemical sensor that can provide the early detection of brine intrusion into formations used for domestic or agricultural water production. Several brine samples of NaCl-CaCl2 and NaCl-KCl were prepared at NaCl concentrations between 0.0 and 3.0 M. The effect of NaCl concentration on the signal-to-background ratio (SBR) and signal-to-noise ratio (SNR) for calcium (422.67 nm) and potassium (769.49 nm) emission lines was evaluated. Results show that, for a delay time of 300 ns and a gate width of 3 μs, the presence of and changes in NaCl concentration significantly affect the SBR and SNR for both emission lines. An increase in NaCl concentration from 0.0 to 3.0 M produced an increase in the SNR, whereas the SBR dropped continuously. The detection limits obtained for both elements were in the milligrams per liter range, suggesting that a NaCl-rich solution does not severely limit the ability of LIBS to detect trace amount of metal ions.

  12. Development of a coal quality analyzer for application to power plants based on laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Gong, Yao; Li, Yufang; Wang, Xin; Fan, Juanjuan; Dong, Lei; Ma, Weiguang; Yin, Wangbao; Jia, Suotang

    2015-11-01

    It is vitally important for a power plant to determine the coal property rapidly to optimize the combustion process. In this work, a fully software-controlled laser-induced breakdown spectroscopy (LIBS) based coal quality analyzer comprising a LIBS apparatus, a sampling equipment, and a control module, has been designed for possible application to power plants for offering rapid and precise coal quality analysis results. A closed-loop feedback pulsed laser energy stabilization technology is proposed to stabilize the Nd: YAG laser output energy to a preset interval by using the detected laser energy signal so as to enhance the measurement stability and applied in a month-long monitoring experiment. The results show that the laser energy stability has been greatly reduced from ± 5.2% to ± 1.3%. In order to indicate the complex relationship between the concentrations of the analyte of interest and the corresponding plasma spectra, the support vector regression (SVR) is employed as a non-linear regression method. It is shown that this SVR method combined with principal component analysis (PCA) enables a significant improvement in cross-validation accuracy by using the calibration set of coal samples. The root mean square error for prediction of ash content, volatile matter content, and calorific value decreases from 2.74% to 1.82%, 1.69% to 1.22%, and 1.23 MJ/kg to 0.85 MJ/kg, respectively. Meanwhile, the corresponding average relative error of the predicted samples is reduced from 8.3% to 5.48%, 5.83% to 4.42%, and 5.4% to 3.68%, respectively. The enhanced levels of accuracy obtained with the SVR combined with PCA based calibration models open up avenues for prospective prediction in coal properties.

  13. Laser-induced breakdown spectroscopy and multivariate statistics for the rapid identification of oxide inclusions in steel products

    NASA Astrophysics Data System (ADS)

    Boué-Bigne, Fabienne

    2016-05-01

    Laser induced breakdown spectroscopy (LIBS) scanning measurements can generally be used to detect the presence of non-metallic inclusions in steel samples. However, the inexistence of appropriate standards to calibrate the LIBS instrument signal means that its application is limited to identifying simple diatomic inclusions and inclusions that are chemically fully distinct from one another. Oxide inclusions in steel products have varied and complex chemical content, with an approximate size of interest of 1 μm. Several oxide inclusions types have chemical elements in common, but it is the concentration of these elements that makes an inclusion type have little or, on the contrary, deleterious impact on the final steel product quality. During the LIBS measurement of such inclusions, the spectroscopic signal is influenced not only by the inclusions' chemical concentrations but also by their varying size and associated laser ablation matrix effects. To address the complexity of calibrating the LIBS instrument signal for identifying such inclusion species, a new approach was developed where a calibration dataset was created, combining the elemental concentrations of typical oxide inclusions with the associated LIBS signal, in order to define a multivariate discriminant function capable of identifying oxide inclusions from LIBS data obtained from the measurement of unknown samples. The new method was applied to a variety of steel product samples. Inclusions populations consisting of mixtures of several complex oxides, with overlapping chemical content and size ranging typically from 1 to 5 μm, were identified and correlated well with validation data. The ability to identify complex inclusion types from LIBS data could open the way to new applications as, for a given sample area, the LIBS measurement is performed in a fraction of the time required by scanning electron microscopy, which is the conventional technique used for inclusion characterisation in steel

  14. Remote Laser Induced Breakdown Spectroscopy (LIBS) Geochemical Investigation under Venus Atmospheric Conditions

    NASA Astrophysics Data System (ADS)

    Clegg, S. M.; Barefield, J. E.; Humphries, S.; Wiens, R. C.; Vaniman, D.; Dyar, M. D.; Tucker, J. M.; Sharma, S. K.; Misra, A. K.

    2009-12-01

    The extreme Venus surface temperature (740 K) and atmospheric pressure (93 atm) creates a challenging environment for future lander missions. Scientific investigations capable of Venus geochemical observations must be completed within several hours of landing before the lander is overcome by the harsh atmosphere. A combined remote Raman - LIBS (Laser Induced Breakdown Spectroscopy) instrument is capable of accomplishing geochemical science goals without the risks associated with collecting samples and bringing them into the lander. Wiens et al. [1] and Sharma et al. [2] have demonstrated that both analytical techniques can be integrated into a single instrument capable of planetary missions. The focus of this paper is to explore the capability to probe geologic samples with LIBS and demonstrate the quantitative analysis under Venus surface conditions. The LIBS experiment involves focusing a Nd:YAG laser operating at 1064 nm onto the surface of the sample. The laser ablates material from the surface, generating a plasma containing electronically excited atoms, ions and small molecules. Some of this emission is collected with an 89 mm diameter telescope. The light is directed into a Princeton Instruments f/4 0.25 m dispersive spectrometer and recorded with an ICCD detector. The powdered and pelletized samples are placed in a pressure vessel containing supercritical CO2 at 93 atm and at least 423 K and the vessel is placed at least 1.6 m from the telescope and laser. A range of Venus-analog basaltic rock types [3] was chosen for this study to reproduce compositions identified by Soviet Venera and VEGA landers, including several standards: four basalts (BCR-2, BIR-1, GUWBM, JB-2), granite (GBW 07015), andesite (JA-1), carbonate (SARM-40), and Kauai volcanic (KV04-17, KV04-25). We also added a good Venus analog, TAP 04, which is an alkali-rich rock from an olivine minette in the Ayutla volcanic field (Righter and Rosas-Elguera [4]). Our goal was to study samples with a

  15. Multivariate Methods for Prediction of Geologic Sample Composition with Laser-Induced Breakdown Spectroscopy

    NASA Technical Reports Server (NTRS)

    Morris, Richard; Anderson, R.; Clegg, S. M.; Bell, J. F., III

    2010-01-01

    Laser-induced breakdown spectroscopy (LIBS) uses pulses of laser light to ablate a material from the surface of a sample and produce an expanding plasma. The optical emission from the plasma produces a spectrum which can be used to classify target materials and estimate their composition. The ChemCam instrument on the Mars Science Laboratory (MSL) mission will use LIBS to rapidly analyze targets remotely, allowing more resource- and time-intensive in-situ analyses to be reserved for targets of particular interest. ChemCam will also be used to analyze samples that are not reachable by the rover's in-situ instruments. Due to these tactical and scientific roles, it is important that ChemCam-derived sample compositions are as accurate as possible. We have compared the results of partial least squares (PLS), multilayer perceptron (MLP) artificial neural networks (ANNs), and cascade correlation (CC) ANNs to determine which technique yields better estimates of quantitative element abundances in rock and mineral samples. The number of hidden nodes in the MLP ANNs was optimized using a genetic algorithm. The influence of two data preprocessing techniques were also investigated: genetic algorithm feature selection and averaging the spectra for each training sample prior to training the PLS and ANN algorithms. We used a ChemCam-like laboratory stand-off LIBS system to collect spectra of 30 pressed powder geostandards and a diverse suite of 196 geologic slab samples of known bulk composition. We tested the performance of PLS and ANNs on a subset of these samples, choosing to focus on silicate rocks and minerals with a loss on ignition of less than 2 percent. This resulted in a set of 22 pressed powder geostandards and 80 geologic samples. Four of the geostandards were used as a validation set and 18 were used as the training set for the algorithms. We found that PLS typically resulted in the lowest average absolute error in its predictions, but that the optimized MLP ANN and

  16. Laser Induced breakdown spectroscopy: A rapid tool for the identification and quantification of minerals in cucurbit seeds.

    PubMed

    Singh, Jyotsana; Kumar, Rohit; Awasthi, Shikha; Singh, Vinti; Rai, A K

    2017-04-15

    Laser-induced breakdown spectroscopy (LIBS) was investigated to estimate the viability as a simple and rapid method for analysis of nutrient elements in seed kernels of cucurbits. LIBS spectra were recorded in the range of 200-975nm by using Q-switched Nd:YAG laser at 532nm (4ns, 10Hz) attached to echelle spectrometer with intensified charged coupled device (ICCD). The spectral analysis revealed the presence of several elements like C, O, N, Mg, Ca, Na and K in seeds. The quantification of elements (Mg, Ca, Na and K) through LIBS was done using calibration curve method in which all calibration curve shows good linearity (r>0.95). The result obtained through LIBS was in reasonable agreement with that obtained through atomic absorption spectroscopy (AAS). Principal Component Analysis (PCA) was also applied to the LIBS data for rapid categorization of seed samples belonging to same species although samples have similar nutrient elements.

  17. Laser Induced Breakdown Spectroscopy for Elemental Analysis in Environmental, Cultural Heritage and Space Applications: A Review of Methods and Results

    PubMed Central

    Gaudiuso, Rosalba; Dell’Aglio, Marcella; De Pascale, Olga; Senesi, Giorgio S.; De Giacomo, Alessandro

    2010-01-01

    Analytical applications of Laser Induced Breakdown Spectroscopy (LIBS), namely optical emission spectroscopy of laser-induced plasmas, have been constantly growing thanks to its intrinsic conceptual simplicity and versatility. Qualitative and quantitative analysis can be performed by LIBS both by drawing calibration lines and by using calibration-free methods and some of its features, so as fast multi-elemental response, micro-destructiveness, instrumentation portability, have rendered it particularly suitable for analytical applications in the field of environmental science, space exploration and cultural heritage. This review reports and discusses LIBS achievements in these areas and results obtained for soils and aqueous samples, meteorites and terrestrial samples simulating extraterrestrial planets, and cultural heritage samples, including buildings and objects of various kinds. PMID:22163611

  18. Recognition of spectral identifier from green coffee beans of arabica and robusta varieties using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Anggraeni, Karina; Nasution, Aulia; Suyanto, Hery

    2016-11-01

    Coffee is one of the world's commodity that is cultivated in more than 50 countries. Production of coffee in Indonesia is positioned of fourth rank in the world, after Brazil, Vietnam, and Colombia. There are two varieties of coffee grown in Indonesia, i.e. the arabica and robusta. The chemical compositions between arabica and robusta are different each other. A trained coffee tester can distinguish these differences from its taste, but it is very subjective. Laser-Induced Breakdown Spectroscopy (LIBS) is a spectroscopic technique based on the analysis of micro-plasma induced on the surface sample after being shot with a laser pulse. In this study, elemental spectra acquired using Laser-Induced Breakdown Spectroscopy (LIBS) technique were analysed to differentate between green coffee beans of arabica and robusta, which are collected from plantations in Malang, Bondowoso, Prigen, and Pasuruan. Results show that optimum conditions for acquiring spectra from green coffee beans using LIBS are at 120 mJ of laser energy and 1,0 μs of delay time. Green coffee beans of arabica and robusta contain some elements such as Ca, W, Sr, Mg, Be, Na, H, N, K, Rb, and O. Discriminant analysis method was then applied to distinguish the green beans of arabica and robusta coffee. Element identifiers of green coffee beans are Ca, W, Mg, Be, Na, and Sr. The abundant element in green coffee beans is Calcium (Ca), and depth-profile testing shows that Ca is homogeneous inside the beans.

  19. Chemical characterization of single micro- and nano-particles by optical catapulting-optical trapping-laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Fortes, Francisco J.; Fernández-Bravo, Angel; Javier Laserna, J.

    2014-10-01

    Spectral identification of individual micro- and nano-sized particles by the sequential intervention of optical catapulting, optical trapping and laser-induced breakdown spectroscopy is presented. The three techniques are used for different purposes. Optical catapulting (OC) serves to put the particulate material under inspection in aerosol form. Optical trapping (OT) permits the isolation and manipulation of individual particles from the aerosol, which are subsequently analyzed by laser-induced breakdown spectroscopy (LIBS). Once catapulted, the dynamics of particle trapping depends both on the laser beam characteristics (power and intensity gradient) and on the particle properties (size, mass and shape). Particles are stably trapped in air at atmospheric pressure and can be conveniently manipulated for a precise positioning for LIBS analysis. The spectra acquired from the individually trapped particles permit a straightforward identification of the material inspected. Variability of LIBS signal for the inspection of Ni microspheres was 30% relative standard deviation. OC-OT-LIBS permits the separation of particles in a heterogeneous mixture and the subsequent analysis of the isolated particle of interest. In order to evaluate the sensitivity of the approach, the number of absolute photons emitted by a single trapped particle was calculated. The limit of detection (LOD) for Al2O3 particles was calculated to be 200 attograms aluminium.

  20. Atomization efficiency and photon yield in laser-induced breakdown spectroscopy analysis of single nanoparticles in an optical trap

    NASA Astrophysics Data System (ADS)

    Purohit, Pablo; Fortes, Francisco J.; Laserna, J. Javier

    2017-04-01

    Laser-induced breakdown spectroscopy (LIBS) was employed for investigating the influence of particle size on the dissociation efficiency and the absolute production of photons per mass unit of airborne solid graphite spheres under single-particle regime. Particles of average diameter of 400 nm were probed and compared with 2 μm particles. Samples were first catapulted into aerosol form and then secluded in an optical trap set by a 532 nm laser. Trap stability was quantified before subjecting particles to LIBS analysis. Fine alignment of the different lines comprising the optical catapulting-optical trapping-laser-induced breakdown spectroscopy instrument and tuning of excitation parameters conditioning the LIBS signal such as fluence and acquisition delay are described in detail with the ultimate goal of acquiring clear spectroscopic data on masses as low as 75 fg. The atomization efficiency and the photon yield increase as the particle size becomes smaller. Time-resolved plasma imaging studies were conducted to elucidate the mechanisms leading to particle disintegration and excitation.

  1. Measuring Gravitation Using Polarization Spectroscopy

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey; Yu, Nan; Maleki, Lute

    2004-01-01

    A proposed method of measuring gravitational acceleration would involve the application of polarization spectroscopy to an ultracold, vertically moving cloud of atoms (an atomic fountain). A related proposed method involving measurements of absorption of light pulses like those used in conventional atomic interferometry would yield an estimate of the number of atoms participating in the interferometric interaction. The basis of the first-mentioned proposed method is that the rotation of polarization of light is affected by the acceleration of atoms along the path of propagation of the light. The rotation of polarization is associated with a phase shift: When an atom moving in a laboratory reference interacts with an electromagnetic wave, the energy levels of the atom are Doppler-shifted, relative to where they would be if the atom were stationary. The Doppler shift gives rise to changes in the detuning of the light from the corresponding atomic transitions. This detuning, in turn, causes the electromagnetic wave to undergo a phase shift that can be measured by conventional means. One would infer the gravitational acceleration and/or the gradient of the gravitational acceleration from the phase measurements.

  2. Elemental content of enamel and dentin after bleaching of teeth (a comparative study between laser-induced breakdown spectroscopy and x-ray photoelectron spectroscopy)

    SciTech Connect

    Imam, H.; Ahmed, Doaa; Eldakrouri, Ashraf

    2013-06-21

    The elemental content of the superficial and inner enamel as well as that of dentin was analyzed using laser-induced breakdown spectroscopy (LIBS) and x-ray photoelectron spectroscopy (XPS) of bleached and unbleached tooth specimens. It is thus clear from the spectral analysis using both the LIBS and XPS technique that elemental changes (though insignificant within the scopes of this study) of variable intensities do occur on the surface of the enamel and extend deeper to reach dentin. The results of the LIBS revealed a slight reduction in the calcium levels in the bleached compared to the control specimens in all the different bleaching groups and in both enamel and dentin. The good correlation found between the LIBS and XPS results demonstrates the possibility of LIBS technique for detection of minor loss in calcium and phosphorus in enamel and dentin.

  3. Integrated amplification and passivation nanolayers for ultra-high-sensitivity photodetector arrays: application for laser-induced breakdown spectroscopy (LIBS) and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Gardner, Patrick; Yao, Jie; Wang, Sean; Zhou, Jack; Li, Ken; Mokina, Irina; Lange, Michael; Yang, Weiguo; Peltz, Leora; Frampton, Robert; Hunt, Jeffrey H.; Becker, Jill

    2009-05-01

    Miniaturized field-deployable spectrometers used for the rapid analysis of chemical and biological substances require high-sensitivity photo detectors. For example, in a Raman spectroscopy system, the receiver must be capable of high-gain, low-noise detection performance due to the intrinsically weak signals produced by the Raman effects of most substances. We are developing a novel, high-gain hetero-junction phototransistor (HPT) detector which employs two nano-structures simultaneously to achieve 100 times higher sensitivity than InGaAs avalanche photodiodes, the most sensitive commercially available photo-detector in the near infrared (NIR) wavelength range, under their normal operation conditions. Integrated into a detector array, this technology has application for Laser- Induced Breakdown Spectroscopy (LIBS), pollution monitoring, pharmaceutical manufacturing by reaction monitoring, chemical & biological transportation safety, and bio-chemical analysis in planetary exploration.

  4. Elemental content of enamel and dentin after bleaching of teeth (a comparative study between laser-induced breakdown spectroscopy and x-ray photoelectron spectroscopy)

    NASA Astrophysics Data System (ADS)

    Imam, H.; Ahmed, Doaa; Eldakrouri, Ashraf

    2013-06-01

    The elemental content of the superficial and inner enamel as well as that of dentin was analyzed using laser-induced breakdown spectroscopy (LIBS) and x-ray photoelectron spectroscopy (XPS) of bleached and unbleached tooth specimens. It is thus clear from the spectral analysis using both the LIBS and XPS technique that elemental changes (though insignificant within the scopes of this study) of variable intensities do occur on the surface of the enamel and extend deeper to reach dentin. The results of the LIBS revealed a slight reduction in the calcium levels in the bleached compared to the control specimens in all the different bleaching groups and in both enamel and dentin. The good correlation found between the LIBS and XPS results demonstrates the possibility of LIBS technique for detection of minor loss in calcium and phosphorus in enamel and dentin.

  5. Study of foxing stains on paper by chemical methods, infrared spectroscopy, micro-X-ray fluorescence spectrometry and laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Bicchieri, M.; Ronconi, S.; Romano, F. P.; Pappalardo, L.; Corsi, M.; Cristoforetti, G.; Legnaioli, S.; Palleschi, V.; Salvetti, A.; Tognoni, E.

    2002-07-01

    Foxing spots appear on the paper as stains of reddish-brown, brown or yellowish color, generally of small dimensions, with sharp or irregular edges, most of which, if excited with UV light, show fluorescence. The formation mechanisms of foxed areas have been studied since 1935, however, despite more recent intensive research there are still no conclusive results. Some authors found evidence of bacterial or fungal growth in some foxed areas sometimes associated with the presence of iron. We decided to focus our attention on the influence of the different iron valence in the formation of stains in the paper. For this reason we artificially induced the formation of foxing by adding to the paper small, known quantities of iron (III) and iron (II) ions. We prepared aqueous solutions of ferric chloride and ferrous sulfate at three different concentrations and we always used the same quantity of each solution (5 μl) to obtain a foxing stain. Part of the paper samples was artificially aged in a climatic chamber at 80 °C, 65% relative humidity for 15 days and part was submitted to aging for the same period at ambient temperatures under UV light at 240 nm. All papers were then analyzed for stain diameter, chromaticity coordinates, fluorescence under UV illumination, water content in the paper and in the spots, carbonyl content and then examined with infrared spectroscopy, X-ray fluorescence spectrometry and laser induced breakdown spectroscopy. Infrared spectra were collected in transmittance from potassium bromide pellets or directly in reflectance under microscope; X-ray fluorescence analysis were carried out using an X-ray microbeam (350 μm beam spot; W X-ray tube) and LIBS analysis with Nd:YAG laser coupled with a Czerny-Turner spectrometer. As a result it is stated that the foxing phenomenon is related to a strong oxidation of the cellulose chain. Concerning the color coordinates there are no great differences between samples treated with iron (III) and iron (II

  6. Laser induced breakdown spectroscopy of the prickly pear's spines and glochids

    NASA Astrophysics Data System (ADS)

    Flores, T.; Arronte, M.; Ponce, L.; Peña-Díaz, M.

    2006-02-01

    A qualitative analysis of laser breakdown experiment in prickle pear ablation is presented. The experiments were made using a pulse free-running Nd:YAG laser, and consist in irradiating both the areole and cortex zones. It was find out that the intensity of spectra captured from ablated glochids depends from number of pulses and the presence of water. The picks observed on the electronic noise can be associated with combustion products obtained during thermal laser interaction. It was demonstrated that LIBS technique can be used for on-line monitoring in laser de-thorning machine.

  7. Investigation of heavy-metal accumulation in selected plant samples using laser induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Galiová, M.; Kaiser, J.; Novotný, K.; Novotný, J.; Vaculovič, T.; Liška, M.; Malina, R.; Stejskal, K.; Adam, V.; Kizek, R.

    2008-12-01

    Single-pulse Laser-Induced Breakdown Spectroscopy (LIBS) and Laser-Ablation Inductively Coupled Plasma Mass-Spectrometry (LA-ICP-MS) were applied for mapping the silver and copper distribution in Helianthus Annuus L. samples treated with contaminant in controlled conditions. For Ag and Cu detection the 328.07 nm Ag(I) and 324.75 nm Cu(I) lines were used, respectively. The LIBS experimental conditions (mainly the laser energy and the observation window) were optimized in order to avoid self-absorption effect in the measured spectra. In the LA-ICP-MS analysis the Ag 107 and Cu 63 isotopes were detected. The capability of these two analytical techniques for high-resolution mapping of selected trace chemical elements was demonstrated.

  8. Evaluation of a commercially available passively Q-switched Nd:YAG laser with LiF: F2- saturable absorber for laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Carson, Cantwell G.; Goueguel, Christian L.; Sanghapi, Hervé; Jain, Jinesh; McIntyre, Dustin

    2016-05-01

    Interest in passively Q-switched microchip lasers as a means for miniaturization of laser-induced breakdown spectroscopy (LIBS) apparatus has rapidly grown in the last years. To explore the possibility of using a comparatively UV-vis transparent absorber, we herein present the first report on the evaluation of a commercially available flash lamp-pumped passively Q-switched Nd:YAG laser with LiF: F2- saturable absorber as an excitation source in LIBS. Quantitative measurements of barium, strontium, rubidium and lithium in granite, rhyolite, basalt and syenite whole-rock glass samples were performed. Using a gated intensified benchtop spectrometer, limits of detection of 0.97, 23, 37, and 144 ppm were obtained for Li, Sr, Rb, and Ba, respectively. Finally, we discuss the advantages of using such a laser unit for LIBS applications in terms of ablation efficiency, analytical performances, output energy, and standoff capabilities.

  9. Laser-induced breakdown spectroscopy-based geochemical fingerprinting for the rapid analysis and discrimination of minerals: the example of garnet

    SciTech Connect

    Alvey, Daniel C.; Morton, Kenneth; Harmon, Russell S.; Gottfried, Jennifer L.; Remus, Jeremiah J.; Collins, Leslie M.; Wise, Michael A.

    2010-05-01

    Laser-induced breakdown spectroscopy (LIBS) is an analytical technique real-time geochemical analysis that is being developed for portable use outside of the laboratory. In this study, statistical signal processing and classification techniques were applied to single-shot, broadband LIBS spectra, comprising measured plasma light intensities between 200 and 960 nm, for a suite of 157 garnets of different composition from 92 locations worldwide. Partial least squares discriminant analysis was applied to sets of 25 LIBS spectra for each garnet sample and used to classify the garnet samples based on composition and geographic origin. Careful consideration was given to the cross-validation procedure to ensure that the classification algorithm is robust to unseen data. The results indicate that broadband LIBS analysis can be used to discriminate garnets of different composition and has the potential to discern geographic origin.

  10. Micron-sized droplets irradiated with a pulsed carbon dioxide laser: Measurement of explosion and breakdown thresholds

    NASA Astrophysics Data System (ADS)

    Armstrong, R. L.; Biswas, A.; Pinnick, R. G.; Pendleton, J. D.

    1995-03-01

    We present the results of measurements of explosive vaporization and plasma breakdown thresholds of micron-sized droplets irradiated by a pulsed CO2 laser operating at 10.6 microns. Well-defined explosion and breakdown patterns are observed when the incident laser intensity exceeds the threshold value. In the infrared region, the breakdown threshold is larger than the vaporization threshold by a factor of approximately 10(exp 2). Although, to the authors knowledge, no analogous measurements of vaporization and breakdown thresholds of individual aerosol particles exist in the microwave region, scaling of our infrared measurements to deduce the corresponding microwave properties is possible using available theoretical models. When this scaling is performed, it suggests that a dramatic reversal of explosion and breakdown thresholds occurs in the microwave region. In this region, the microwave vaporization threshold is larger than the corresponding breakdown threshold by a factor of greater than 10(exp 4). Recent measurements of breakdown thresholds in aerosol-laden air provide indirect evidence that this reversal has, in fact, taken place.

  11. Remote laser-induced breakdown spectroscopy for the detection and removal of salt on metal and polymeric surfaces.

    PubMed

    Bengtsson, M; Grönlund, R; Lundqvist, M; Larsson, A; Kröll, S; Svanberg, S

    2006-10-01

    The detection of contamination such as salt in outdoor high-voltage insulator systems and its subsequent removal are vital for a reliable transmission of electric power. Remote detection of salt on a copper metal surface was carried out by using a mobile laser-induced breakdown spectroscopy (LIBS) Lidar system with a laser wavelength of 355 nm. Detection of salt on a polymeric high-voltage insulator was obtained when an additional lens was inserted into the beam path, and the number of photons that was detected could be calculated by using a calibrated white light source. Ablative cleaning could readily be carried out with LIBS and was verified by observing the disappearance of the sodium D-line emission.

  12. High-resolution three-dimensional compositional imaging by double-pulse laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Schiavo, C.; Menichetti, L.; Grifoni, E.; Legnaioli, S.; Lorenzetti, G.; Poggialini, F.; Pagnotta, S.; Palleschi, V.

    2016-08-01

    In this paper we present a new instrument specifically realized for high-resolution three-dimensional compositional analysis and mapping of materials. The instrument is based on the coupling of a Double-Pulse Laser-Induced Breakdown Spectroscopy (LIBS) instrument with an optical microscope. The compositional mapping of the samples is obtained by scanning the laser beam across the surface of the sample, while the in depth analysis is performed by sending multiple laser pulses on the same point. Depths of analysis of several tens of microns can be obtained. The instrument presented has definite advantages with respect to Laser Ablation-ICP Mass Spectrometry in many applications related to material analysis, biomedicine and environmental diagnostics. An application to the diagnostics of industrial ceramics is presented, demonstrating the feasibility of Double-Pulse LIBS Imaging and its advantages with respect to conventional single-pulse LIBS imaging.

  13. Space-resolved analysis of trace elements in fresh vegetables using ultraviolet nanosecond laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Juvé, Vincent; Portelli, Richard; Boueri, Myriam; Baudelet, Matthieu; Yu, Jin

    2008-10-01

    Laser-induced breakdown spectroscopy (LIBS) has been applied to analyze trace elements contained in fresh vegetables. A quadrupled Nd:YAG laser is used in the experiments for ablation. Analyzed samples come from local markets and represent frequently consumed vegetables. For a typical root vegetable, such as potato, spectral analysis of the plasma emission reveals more than 400 lines emitted by 27 elements and 2 molecules, C 2 and CN. Among these species, one can find trace as well as ultra-trace elements. A space-resolved analysis of several trace elements with strong emissions is then applied to typical root, stem and fruit vegetables. The results from this study demonstrate the potential of an interesting tool for botanical and agricultural studies as well for food quality/safety and environment pollution assessment and control.

  14. Discrimination of healthy and carious teeth using laser-induced breakdown spectroscopy and partial least square discriminant analysis.

    PubMed

    Gazmeh, Meisam; Bahreini, Maryam; Tavassoli, Seyed Hassan

    2015-01-01

    In the laser drilling of teeth, a microplasma is generated which may be utilized for elemental analysis of ablated tissue via a laser-induced breakdown spectroscopy (LIBS) technique. In this study, LIBS is used to investigate the possibility of discrimination of healthy and carious tooth tissues. This possibility is examined using multivariate statistical analysis called partial least square discriminant analysis (PLS-DA) based on atomic and ionic emission lines of teeth LIBS spectra belonging to P, Ca, Mg, Zn, K, Sr, C, Na, H, and O elements. Results show an excellent discrimination and prediction of unknown tooth tissues. It is shown that using the PLS-DA method, the spectroscopic analysis of plasma emission during the laser drilling, would be a promising technique for caries detection.

  15. Location and detection of explosive-contaminated human fingerprints on distant targets using standoff laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Lucena, P.; Gaona, I.; Moros, J.; Laserna, J. J.

    2013-07-01

    Detection of explosive-contaminated human fingerprints constitutes an analytical challenge of high significance in security issues and in forensic sciences. The use of a laser-induced breakdown spectroscopy (LIBS) sensor working at 31 m distance to the target, fitted with 2D scanning capabilities and designed for capturing spectral information from laser-induced plasmas of fingerprints is presented. Distribution chemical maps based on Na and CN emissions are used to locate and detect chloratite, DNT, TNT, RDX and PETN residues that have been deposited on the surface of aluminum and glass substrates. An effectiveness of 100% on fingerprints detection, regardless the substrate scanned, is reached. Environmental factors that affect the prevalence of the fingerprint LIBS response are discussed.

  16. Can the provenance of the conflict minerals columbite and tantalite be ascertained by laser-induced breakdown spectroscopy?

    PubMed

    Harmon, Russell S; Shughrue, Katrina M; Remus, Jeremiah J; Wise, Michael A; East, Lucille J; Hark, Richard R

    2011-07-01

    Conflict minerals is a term applied to ores mined in conditions of armed conflict and human rights abuse. Niobium and tantalum are two rare metals whose primary natural occurrence is in the complex oxide minerals columbite and tantalite, the ore of which is commonly referred to as coltan. The illicit export of coltan ore from the Democratic Republic of the Congo is thought to be responsible for financing the ongoing civil conflicts in this region. Determining the chemical composition of an ore is one of the means of ascertaining its provenance. Laser-induced breakdown spectroscopy (LIBS) offers a means of rapidly distinguishing different geographic sources for a mineral because the LIBS plasma emission spectrum provides the complete chemical composition (i.e., "chemical fingerprint") of any material in real time. To test this idea for columbite-tantalite, three sample sets were analyzed. Partial least squares discriminant analysis (PLSDA) allows correct sample-level geographic discrimination at a success rate exceeding 90%.

  17. Spatially-offset double-pulse laser-induced breakdown spectroscopy: A novel technique for analysis of thin deposited layers

    NASA Astrophysics Data System (ADS)

    Nishijima, D.; Hollmann, E. M.; Doerner, R. P.

    2016-10-01

    A novel technique, spatially-offset double-pulse laser-induced breakdown spectroscopy (SODP-LIBS), is invented for analysis of thin layers. In this technique, two laser spots are spatially offset by a few mm, while there is no spatial gap for the standard collinear DP-LIBS. It is demonstrated from analysis of thin W layers (∼30-250 nm thickness) deposited on Mo substrates at a reduced ambient pressure of ∼ 5 × 10-3 Torr that (1) the W I signal intensity is enhanced with SODP-LIBS and (2) a clearer transition between W and Mo is obtained with SODP-LIBS, compared to the standard DP-LIBS.

  18. Use of Laser-Induced Breakdown Spectroscopy for the Detection of Glycemic Elements in Indian Medicinal Plants

    PubMed Central

    Rai, Prashant Kumar; Srivastava, Amrita Kumari; Sharma, Bechan; Dhar, Preeti; Mishra, Ajay Kumar; Watal, Geeta

    2013-01-01

    The demand for interdisciplinary research is increasing in the new millennium to help us understand complex problems and find solutions by integrating the knowledge from different disciplines. The present review is an excellent example of this and shows how unique combination of physics, chemistry, and biological techniques can be used for the evaluation of Indian medicinal herbs used for treating diabetes mellitus. Laser-induced breakdown spectroscopy (LIBS) is a sensitive optical technique that is widely used for its simplicity and versatility. This review presents the most recent application of LIBS for detection of glycemic elements in medicinal plants. The characteristics of matrices, object analysis, use of laser system, and analytical performances with respect to Indian herbs are discussed. PMID:24228060

  19. Optimization of laser induced breakdown spectroscopy system by neurogenetic method for multi-elemental analysis of heavy metals in soil

    NASA Astrophysics Data System (ADS)

    Liu, Lituo; Liu, Jianguo; Zhao, Nanjing; Wang, Yin; Shi, Huan; Wang, Chunlong; Zhang, Yujun; Liu, Wenqing

    2011-11-01

    Laser indued breakdown spectroscopy(LIBS) system was used for analysis of heavy metals (Cr, Pb, Cu, Ni, Cd, Zn) in soil. And neuro-genetic method was applied to optimize the system parameters in order to maximize the signal-background ratio of all heavy metals simultaneously. LIBS system equipped with an Andor Echelle spectrometer, coupled to an ICCD detector. A Q-switched Nd:YAG laser was used to induced plazma. Delay time, integration time, scan times of laser pluse, frequency of laser were optimized. The optimized parameters were obtained: 1μs delay time, 4.5μs integration time, 48 scan times, and 11Hz frequency of laser.

  20. Analysis of waste electrical and electronic equipment (WEEE) using laser induced breakdown spectroscopy (LIBS) and multivariate analysis.

    PubMed

    Ángel Aguirre, Miguel; Hidalgo, Montserrat; Canals, Antonio; Nóbrega, Joaquim A; Pereira-Filho, Edenir R

    2013-12-15

    This study shows the application of laser induced breakdown spectroscopy (LIBS) for waste electrical and electronic equipment (WEEE) investigation. Several emission spectra were obtained for 7 different mobiles from 4 different manufacturers. Using the emission spectra of the black components it was possible to see some differences among the manufacturers and some emission lines from organic elements and molecules (N, O, CN and C2) led to the highest contribution for this differentiation. Some polymeric internal parts in contact with the inner pieces of the mobiles and covered with a special paint presented a strong emission signal for Cr. The white pieces presented mainly Al, Ba and Ti in their composition. Finally, this study developed a procedure for LIBS emission spectra using chemometric strategies and suitable information can be obtained for identification of manufacturer and counterfeit products. In addition, the results obtained can improve the classification for establishing recycling strategies of e-waste.

  1. Laser-induced breakdown spectroscopy for the detection of gunshot residues on the hands of a shooter

    NASA Astrophysics Data System (ADS)

    Dockery, Christopher R.; Goode, Scott R.

    2003-10-01

    Laser-induced breakdown spectroscopy (LIBS) has been used to determine whether the hands of a suspected gun user contain traces of gunshot residue. Samples are obtained by pressing adhesive tape against the skin of the suspect and analyzing the tape directly. When the suspect has fired multiple shots, or if the gun has not been cleaned, the gunshot residue provides a spectral signature that is readily apparent, but a person who has fired a single shot from a clean gun is not so easy to identify. The error rates associated with the LIBS identification of a subject who fired one shot from a clean gun have been evaluated by Monte Carlo simulation techniques, and criteria are proposed for defining a positive or a negative test result.

  2. Determination of transition probabilities for the 3p → 3s transition array in neon using laser induced breakdown spectroscopy

    SciTech Connect

    Asghar, Haroon; Ali, Raheel; Baig, M. Aslam

    2013-12-15

    We present here a study of the optical emission spectra of the laser produced neon plasma generated by a Nd:YAG laser at 1064 nm. The spectra were recorded using the laser induced breakdown spectroscopy 2000 detection system comprising of five spectrometers covering the entire visible region. The observed spectra yield all the optically allowed transitions between the 2p{sup 5}3p upper and 2p{sup 5}3s lower configurations based levels. The relative line strengths of all the dipole allowed transitions have been determined using the intensity ratios and compared with the J-file sum rule. The absolute transition probabilities have been calculated by using the lifetimes of the upper levels and the intensities of the observed spectral lines and show good agreement with the literature values.

  3. [Study of laser energy in multi-element detection of pulverized coal flow with laser-induced breakdown spectroscopy].

    PubMed

    Zheng, Jian-Ping; Lu, Ji-Dong; Zhang, Bo; Chen, Shi-He; Yao, Shun-Chun; Pan, Feng-Ping; Dong, Xuan; Zhang, Xi

    2014-01-01

    The logical range of laser power density and optimum laser power density were explored for multi-element analysis of pulverized coal flow with laser-induced breakdown spectroscopy in the present paper. The range of laser energy was chosen from 20 to 160 mJ in the experiment. Pulverized coal less than 200 microm in diameter of particles fell freely through feeder outlet and the rate of flow was controlled by screw feeder. Emissions were collected with pulse laser at 1 064 nm focusing on pulverized coal flow and plasma was generated. The intensity and cause of fluctuation of emission spectra at various laser energy levels were studied. A suitable range of laser power density is from 14.4 to 34.4 GW x cm(-2), and the optimum laser power density is 19.5 GW x cm(-2) for the determination of pulverized coal flow with LIBS.

  4. Use of laser-induced breakdown spectroscopy for the detection of glycemic elements in Indian medicinal plants.

    PubMed

    Rai, Prashant Kumar; Srivastava, Amrita Kumari; Sharma, Bechan; Dhar, Preeti; Mishra, Ajay Kumar; Watal, Geeta

    2013-01-01

    The demand for interdisciplinary research is increasing in the new millennium to help us understand complex problems and find solutions by integrating the knowledge from different disciplines. The present review is an excellent example of this and shows how unique combination of physics, chemistry, and biological techniques can be used for the evaluation of Indian medicinal herbs used for treating diabetes mellitus. Laser-induced breakdown spectroscopy (LIBS) is a sensitive optical technique that is widely used for its simplicity and versatility. This review presents the most recent application of LIBS for detection of glycemic elements in medicinal plants. The characteristics of matrices, object analysis, use of laser system, and analytical performances with respect to Indian herbs are discussed.

  5. Geochemical profile of a layered outcrop in the Atacama analogue using laser-induced breakdown spectroscopy: Implications for Curiosity investigations in Gale

    NASA Astrophysics Data System (ADS)

    Sobron, Pablo; Lefebvre, Catherine; Leveille, Richard; Koujelev, Alex; Haltigin, Timothy; Du, Hongwei; Wang, Alian; Cabrol, Nathalie; Zacny, Kris; Craft, Jack

    2013-05-01

    performed laboratory laser-induced breakdown spectroscopy (LIBS) and laser Raman spectroscopy measurements on samples from a layered outcrop from the Atacama Desert, Chile. This outcrop is a terrestrial morphological and possibly mineralogical analogue for similar formations that will likely be investigated by the Curiosity rover at Gale Crater. Our results demonstrate that fast LIBS analysis can generate semiquantitative chemical profiles in subminute times using automated data processing tools. Therefore, the LIBS instrument can be an invaluable tactical tool on the Curiosity rover for remote, rapid geochemical survey of layered outcrops, thus serving daily operational needs. The derived chemical profiles, supported by the range of minerals identified by Raman spectroscopy, is consistent with the products of a continental evaporitic lake. In the framework of future surface exploration on Mars, a combined Raman/LIBS investigation may provide a rapid mineralogical/chemical evaluation of targets that can be useful for selecting samples to be eventually collected for sample return purposes or for selecting sample sites to be drilled in the search for astrobiology-relevant species.

  6. Nanoparticle Enhanced Laser Induced Breakdown Spectroscopy for Improving the Detection of Molecular Bands

    NASA Astrophysics Data System (ADS)

    Koral, Can; De Giacomo, Alessandro; Mao, Xianglei; Zorba, Vassilia; Russo, Richard E.

    2016-11-01

    Enhancement of molecular band emission in laser-induced plasmas is important for improving sensitivity and limits of detection in molecular sensing and molecular isotope analysis. In this work we introduce the use of Nanoparticle Enhanced Laser Induced Breakdown (NELIBS) for the enhancement of molecular band emission in laser-induced plasmas, and study the underlying mechanisms responsible for the observed enhancement. The use of Ag nanoparticles leads to an order of magnitude enhancement for AlO (B2Σ+ → Χ+ Σ+) system emission from an Al-based alloy. We demonstrate that the mechanism responsible for the enhancement of molecular bands differs from that of atomic emission, and can be traced down to the increased number of atomic species in NELIBS which lead to AlO molecular formation. These findings showcase the potential of NELIBS as a simple and viable technology for enhancing molecular band emission in laser-induced plasmas.

  7. DC Breakdown Experiments

    SciTech Connect

    Calatroni, S.; Descoeudres, A.; Levinsen, Y.; Taborelli, M.; Wuensch, W.

    2009-01-22

    In the context of the CLIC (Compact Linear Collider) project investigations of DC breakdown in ultra high vacuum are carried out in parallel with high power RF tests. From the point of view of saturation breakdown field the best material tested so far is stainless steel, followed by titanium. Copper shows a four times weaker breakdown field than stainless steel. The results indicate clearly that the breakdown events are initiated by field emission current and that the breakdown field is limited by the cathode. In analogy to RF, the breakdown probability has been measured in DC and the data show similar behaviour as a function of electric field.

  8. Probe Beam Detection of Laser-Induced Breakdown for Measuring Solubility of Actinide Compounds

    NASA Astrophysics Data System (ADS)

    Cho, Hye-Ryun; Jung, Euo Chang; Jee, Kwang Yong

    2008-05-01

    A nondestructive laser-induced breakdown detection technique is developed, which entails measuring the deflection of a probe laser beam due to a shock wave generated by a laser-induced breakdown of colloidal nanoparticles in liquids. Comparing this optical method with a previously developed acoustic detection method using a piezoelectric transducer, it enables remote measurement and therefore facilitates the in situ measurement of samples in a radiation-shielded glove box. The probe beam detection of a shock wave shows a sufficiently high sensitivity for monitoring the initial colloid formation when the uranium ion concentration exceeds the solubility limit of uranium hydrolysis compounds at a certain pH. The mean solubility product log Ksp° = -23.23 ±0.04 at an ionic strength of zero determined in this work agrees well with the previously reported result, log Ksp° = -23.19 ±0.43, measured by a calorimetric experiment on UO3·2H2O(cr).

  9. Single-shot measurements of laser-induced avalanche breakdown demonstrating spatial and temporal control by an external source

    NASA Astrophysics Data System (ADS)

    Woodbury, Daniel; Wahlstrand, Jared; Goers, Andy; Feder, Linus; Miao, Bo; Hine, George; Salehi, Fatholah; Milchberg, Howard

    2016-10-01

    We report on the use of single-shot supercontinuum spectral interferometry (SSSI) to make temporally and spatially resolved measurements of laser-induced avalanche breakdown in ambient air by a 200 ps pulse. By seeding the breakdown using an external 100 fs pulse, we demonstrate control over the timing and spatial characteristics of the avalanche. In addition, we calculate the collisional ionization rates at various laser intensities and demonstrate seeding of the avalanche breakdown both by multiphoton ionization and by photodetaching ions produced from a radioactive source. These observations provide proof-of-concept support for recent proposals to remotely measure radioactivity using laser-induced avalanche breakdown. This work supported by a DTRA, C-WMD Basic Research Program, and by the DOE NNSA Stewardship Science Graduate Fellowship, provided under Grant Number DE-NA0002135.

  10. Spectral response measurements of multijunction solar cells with low shunt resistance and breakdown voltages.

    PubMed

    Babaro, Juan P; West, Kevin G; Hamadani, Behrang H

    2016-11-01

    Spectral response measurements of germanium-based triple-junction solar cells were performed under a variety of light and voltage bias conditions. Two of the three junctions exhibited voltage and light bias dependent artifacts in their measured responses, complicating the true spectral response of these junctions. To obtain more insight into the observed phenomena, a set of current-voltage measurement combinations were also performed on the solar cells under identical illumination conditions, and the data were used in the context of a diode-based analytical model to calculate and predict the spectral response behavior of each junction as a function of voltage. The analysis revealed that both low shunt resistance and low breakdown voltages in two of the three junctions influenced the measured quantum efficiency of all three junctions. The data and the modeling suggest that combination of current-voltage measurements under various light bias sources can reveal important information about the spectral response behavior in multijunction solar cells.

  11. Detection of chromium in wastewater from refuse incineration power plant near Poyang Lake by laser induced breakdown spectroscopy.

    PubMed

    Yao, Mingyin; Lin, Jinlong; Liu, Muhua; Xu, Yuan

    2012-04-01

    A laser induced breakdown spectroscopy (LIBS) system was developed for determination of toxic metals Cr in wastewater collected from a refuse incineration power plant near Poyang Lake. The plasma was generated by focusing a pulsed Nd:YAG laser at 1064 nm on the surface of liquid. Experimental conditions were optimized for improving the sensitivity and repeatability of the LIBS system through a parametric dependence study in potassium bichromate (K(2)Cr(2)O(7)) aqueous solutions. Calibration curves for Cr I 425.43 and 357.87 nm lines are compared and the limit of detection is found to be 39 and 86 ppm, respectively. This calibration curve of Cr I 425.43 nm has been used for quantification of Cr in wastewater collected from a refuse incineration power plant near Poyang Lake where the concentration of Cr is found to be 97 ppm. The results between LIBS and standard analytical technique such as atomic absorption spectroscopy were compared, and the relative standard deviation was 8.5%.

  12. Quantitative Sulfur Analysis using Stand-off Laser-Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Dyar, M. D.; Tucker, J. M.; Clegg, S. M.; Barefield, J. E.; Wiens, R. C.

    2008-12-01

    The laser-induced breakdown spectrometer (LIBS) in the ChemCam instrument on Mars Science Laboratory has the capability to produce robust, quantitative analyses not only for major elements, but also for a large range of light elements and trace elements that are of great interest to geochemists. However, sulfur presents a particular challenge because it reacts easily with oxygen in the plasma and because the brightest S emission lines lie outside ChemCam's spectral range. This work was undertaken within the context of our larger effort to identify and compensate for matrix effects, which are chemical properties of the material that influence the ratio of a given emission line to the abundance of the element producing that line. Samples for this study include two suites of rocks: a suite of 12 samples that are mixtures of sulfate minerals and host rocks, generally with high S contents (0.1-26.0 wt% S), and a large suite of 118 igneous rocks from varying parageneses with S contents in the 0-2 wt% range. These compositions provide several different types of matrices to challenge our calibration procedures. Samples were analyzed under ChemCam-like conditions: a Nd:YAG laser producing 17 mJ per 10ns pulse was directed onto samples positioned 5-9 m away from the laser and tele­scope. The samples were placed in a vacuum chamber filled with 7 Torr CO2 to replicate the Martian surface pressure as the atmospheric pressure influences the LIBS plasma. Some of the LIBS plasma emission is collected with a telescope and transmitted through a 1 m, 300 um, 0.22NA optical fiber connected to a commercial Ocean Optics spectrometer. We are testing and comparing three different strategies to evaluate sulfur contents. 1) We have calculated regression lines comparing the intensity at each channel to the S content. This analysis shows that there are dozens of S emission lines in the ChemCam wavelength range that are suitable for use in quantitative analysis, even in the presence of Fe. 2

  13. Development of an apparatus for on-line analysis of unburned carbon in fly ash using laser-induced breakdown spectroscopy (LIBS).

    PubMed

    Zhang, Lei; Ma, Weiguang; Dong, Lei; Yan, Xiaojuan; Hu, Zhiyu; Li, Zhixin; Zhang, Yongzhi; Wang, Le; Yin, Wangbao; Jia, Suotang

    2011-07-01

    The level of unburned carbon in fly ash is an important criteria for evaluating the combustion efficiencies of boilers, as well as the commercial value of the produced fly ash. In this work, an automated prototype laser-induced breakdown spectroscopy (LIBS) apparatus comprising an isokinetic sampler, a sample preparation module, and a LIBS module has been developed for possible application to power plants for on-line analysis of unburned carbon in fly ash without being affected by the type of coal burned. Emphasis is placed on the structure and operation of the LIBS apparatus, the optimum suction capacity selection, the analytical methods for estimation of the exact C line intensity, and the proper calibration model established for minimizing the matrix effects, which enable the minimization of matrix effects and obtaining more accurate compositional measurements. Good agreement has been found between the laboratory measurement results from the LIBS method and those from the traditional method. The measurement accuracy presented here for unburned carbon analysis is estimated to be 0.26%, while the average relative error is 3.81%.

  14. Single-pulse laser-induced breakdown spectroscopy of samples submerged in water using a single-fibre light delivery system

    NASA Astrophysics Data System (ADS)

    Beddows, D. C. S.; Samek, O.; Liška, M.; Telle, H. H.

    2002-09-01

    Using a novel laser-induced breakdown spectroscopy set-up, accurate quantitative analysis of samples submerged in liquids has been demonstrated. The measurements were conducted using a single-fibre plus plastic tube assembly of 20 m length. This delivered the ablation laser light pulse and a buffer gas flow to the sample surface, and collected the light emitted by the micro-plasma for analysis. No distil optics were used at the sample end of the fibre. Argon, nitrogen and compressed air were used as buffer gases; while the rare gas resulted in slightly better signal-to-noise ratios, most analytical measurements were carried out with nitrogen for convenience and to provide comparability with in-air measurements. Detection limits and reproducibility were comparable to those achieved for the same samples placed in standard ambient air, with all other experimental conditions unchanged. In standard steel samples, detection limits of 310±45, 325±48 and 455±55 ppm for Cr, Mn and Si, respectively, could be achieved. Pattern recognition algorithms were used to identify, for classification, spectra of specimen submerged in turbid and non-transparent liquids.

  15. Approach for determination of detonation performance and aluminum percentage of aluminized-based explosives by laser-induced breakdown spectroscopy.

    PubMed

    Rezaei, Amir Hossein; Keshavarz, Mohammad Hossein; Tehrani, Masoud Kavosh; Reza Darbani, Seyyed Mohammad; Farhadian, Amir Hossein; Mousavi, Seyyed Jabbar; Mousaviazar, Ali

    2016-04-20

    Energetic materials containing aluminum powder are hazardous compounds, which have wide applications as propellants, explosives, and pyrotechnics. This work introduces a new method on the basis of the laser-induced breakdown spectroscopy technique in air and argon atmospheres to investigate determination of aluminum content and detonation performance of 1,3,5-trinitro-1,3,5-triazine (RDX)-based aluminized explosives. Plasma emission of aluminized RDX explosives are recorded where atomic lines of Al, C, H, N, and O, as well as molecular bands of AlO and CN are identified. The formation mechanism of AlO and CN molecular bands is affected by the aluminum percentage and oxygen content present in the composition and plasma. Relative intensity of the Al/O is used to determine detonation velocity and pressure of the RDX/Al samples. The released energy in the laser-induced plasma of aluminized RDX composition is related to the heat of explosion and percentage of aluminum.

  16. Study of adsorption Ag and Pb in liquid sample using Berea sandstone by commercial laser-induced breakdown spectroscopy (LIBS)

    NASA Astrophysics Data System (ADS)

    Suyanto, H.; Wendri, N.; Agustiningrum, U.; Manurung, M.

    2016-11-01

    Qualitative and quantitative analysis of Pb and Ag elements in liquid samples had been done by commercial laser-induced breakdown spectroscopy (LIBS) using adsorption method on a Berea Sandstone. The aim of this study is to identify the thickness of the Berea Sandstone for adsorbing Pb and Ag elements in liquid. The experiment was started with characterizing the Berea Sandstone that contains Si, Na, H, Li, K, Ca, O, N, Be, Ti, Al, Mg and Ba. Some of these elements have ability to adsorb Pb and Ag elements in the liquid. To prove this phenomenon, it is required to look for the experiment parameter optimum conditions such as laser energy, adsorption time and sample temperature. The experiment was conducted by dropping 2 ml standard liquid containing 1000 ppm of Pb and Ag to the Berea Sandstone surface. The result showed that the parameter optimum conditions for analyzing Pb and Ag elements in liquid sample with adsorption method were adsorption delay-time of 15 minutes, laser energy of 120 mJ and sample heating of 80 °C. The next experiment was focused on the number of adsorption as a function of depth. The data showed that Pb and Ag elements in liquid sample of 2 ml, 1000 ppm were fully adsorbed by the Berea Sandstone until the depth of 0.372 mm and 10.40 mm from the surface, respectively. The data also showed that the limit of detection predicted to about 22.76 ppm.

  17. Melted Paraffin Wax as an Innovative Liquid and Solid Extractant for Elemental Analysis by Laser-Induced Breakdown Spectroscopy.

    PubMed

    Papai, Rodrigo; Sato, Roseli Hiromi; Nunes, Lidiane Cristina; Krug, Francisco José; Gaubeur, Ivanise

    2017-03-07

    This work proposes a new development in the use of melted paraffin wax as a new extractant in a procedure designed to aggregate the advantages of liquid phase extraction (extract homogeneity, fast, and efficient transfer, low cost and simplicity) to solid phase extraction. As proof of concept, copper(II) in aqueous samples was converted into a hydrophobic complex of copper(II) diethyldithiocarbamate and subsequently extracted into paraffin wax. Parameters which affect the complexation and extraction (pH, DDTC, and Triton X-100 concentration, vortex agitation time and complexation time) were optimized in a univariate way. The combination of the extraction proposed procedure with laser-induced breakdown spectroscopy allowed the precise copper determination (coefficient of variation = 3.1%, n = 10) and enhanced detectability because of the concentration factor of 18 times. A calibration curve was obtained with a linear range of 0.50-10.00 mg L(-1) (R(2) = 0.9990, n = 7), LOD = 0.12 mg L(-1), and LOQ = 0.38 mg L(-1) under optimized conditions. An extraction procedure efficiency of 94% was obtained. The accuracy of the method was confirmed through the analysis of a reference material of human blood serum, by the spike and recovery trials with seawater, tap water, mineral water, and alcoholic beverages and by comparing with those results obtained by graphite furnace atomic absorption spectrometry.

  18. Laser-induced breakdown spectroscopy study of silversmith pieces: the case of a Spanish canopy of the nineteenth century

    NASA Astrophysics Data System (ADS)

    Gómez-Morón, M. A.; Ortiz, P.; Ortiz, R.; Martín, J. M.; Mateo, M. P.; Nicolás, G.

    2016-05-01

    Canopies of needlework velvet or silversmith pieces placed on twelve or more battens are widely employed in Spanish catholic ceremonies to cover the image of the virgin. In this paper, we focus our interest on those pieces made of silver. These silver crafts suffered a revolution in the nineteenth century with the development of an electrolyte system that can be applied over carved metal pieces, in order to obtain a silver layer by electrodeposition similar in appearance to the original sterling silver and cheaper. The aim of this research was the application of laser-induced breakdown spectroscopy (LIBS) to the study of a canopy of the nineteenth century in order to assess the techniques used for its manufacturing and the identification of replacement and restoration of original pieces. The LIBS depth profiles show the presence of a micron silver layer over an alloy of copper and zinc in most of the surfaces. Corrosion products, alloy missing, and the restoration with copper layers were detected. These results are consistent with those obtained by scanning electron microscopy with energy-dispersive of X-ray with the advantage that LIBS is a methodology that allows analysing metal pieces without sampling or preparation. In summary, LIBS is a technique that allows the study of silversmith pieces with electrochemical preparation according to the Ruolz technique, and it is also possible to detect subsequent restoration or corrosion zones.

  19. Analysis of powdered tungsten carbide hard-metal precursors and cemented compact tungsten carbides using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Novotný, K.; Staňková, A.; Häkkänen, H.; Korppi-Tommola, J.; Otruba, V.; Kanický, V.

    2007-12-01

    Laser-induced breakdown spectroscopy (LIBS) has been applied to the direct analysis of powdered tungsten carbide hard-metal precursors and cemented tungsten carbides. The aim of this work was to examine the possibility of quantitative determination of the niobium, titanium, tantalum and cobalt. The investigated samples were in the form of pellets, pressed with and without binder (powdered silver) and in the form of cemented tungsten carbides. The pellets were prepared by pressing the powdered material in a hydraulic press. Cemented tungsten carbides were embedded in resin for easier manipulation. Several lasers and detection systems were utilized. The Nd:YAG laser working at a basic wavelength of 1064 nm and fourth-harmonic frequency of 266 nm with a gated photomultiplier or ICCD detector HORIBA JY was used for the determination of niobium which was chosen as a model element. Different types of surrounding gases (air, He, Ar) were investigated for analysis. The ICCD detector DICAM PRO with Mechelle 7500 spectrometer with ArF laser (193 nm) and KrF laser (248 nm) were employed for the determination of niobium, titanium, tantalum and cobalt in samples under air atmosphere. Good calibration curves were obtained for Nb, Ti, and Ta (coefficients of determination r2 > 0.96). Acceptable calibration curves were acquired for the determination of cobalt (coefficient of determination r2 = 0.7994) but only for the cemented samples. In the case of powdered carbide precursors, the calibration for cobalt was found to be problematic.

  20. Application of picosecond laser-induced breakdown spectroscopy to quantitative analysis of boron in meatballs and other biological samples.

    PubMed

    Hedwig, Rinda; Lahna, Kurnia; Lie, Zener Sukra; Pardede, Marincan; Kurniawan, Koo Hendrik; Tjia, May On; Kagawa, Kiichiro

    2016-11-10

    This report presents the results of laser-induced breakdown spectroscopy (LIBS) study on biological and food samples of high water content using a picosecond (ps) laser at low output energy of 10 mJ and low-pressure helium ambient gas at 2 kPa. Evidence of excellent emission spectra of various analyte elements with very low background is demonstrated for a variety of samples without the need of sample pretreatment. Specifically, limits of detection in the range of sub-ppm are obtained for hazardous Pb and B impurities in carrots and meatballs. This study also shows the inferior performance of LIBS using a nanosecond laser and atmospheric ambient air for a soft sample of high water content and thereby explains its less successful applications in previous attempts. The present result has instead demonstrated the feasibility and favorable results of employing LIBS with a ps laser and low-pressure helium ambient gas as a less costly and more practical alternative to inductively coupled plasma for regular high sensitive inspection of harmful food preservatives and environmental pollutants.

  1. Spectral Interference Elimination in Soil Analysis Using Laser-Induced Breakdown Spectroscopy Assisted by Laser-Induced Fluorescence.

    PubMed

    Yi, Rongxing; Li, Jiaming; Yang, Xinyan; Zhou, Ran; Yu, Huiwu; Hao, Zhongqi; Guo, Lianbo; Li, Xiangyou; Zeng, Xiaoyan; Lu, Yongfeng

    2017-02-21

    The complex and serious spectral interference makes it difficult to detect trace elements in soil using laser-induced breakdown spectroscopy (LIBS). To address it, LIBS-assisted by laser-induced fluorescence (LIBS-LIF) was applied to selectively enhance the spectral intensities of the interfered lines. Utilizing this selective enhancement effect, all the interference lines could be eliminated. As an example, the Pb I 405.78 nm line was enhanced selectively. The results showed that the determination coefficient (R(2)) of calibration curve (Pb concentration range = 14-94 ppm), the relative standard deviation (RSD) of spectral intensities, and the limit of detection (LOD) for Pb element were improved from 0.6235 to 0.9802, 10.18% to 4.77%, and 24 ppm to 0.6 ppm using LIBS-LIF, respectively. These demonstrate that LIBS-LIF can eliminate spectral interference effectively and improve the ability of LIBS to detect trace heavy metals in soil.

  2. Laser-induced breakdown spectroscopy-based investigation and classification of pharmaceutical tablets using multivariate chemometric analysis

    PubMed Central

    Myakalwar, Ashwin Kumar; Sreedhar, S.; Barman, Ishan; Dingari, Narahara Chari; Rao, S. Venugopal; Kiran, P. Prem; Tewari, Surya P.; Kumar, G. Manoj

    2012-01-01

    We report the effectiveness of laser-induced breakdown spectroscopy (LIBS) in probing the content of pharmaceutical tablets and also investigate its feasibility for routine classification. This method is particularly beneficial in applications where its exquisite chemical specificity and suitability for remote and on site characterization significantly improves the speed and accuracy of quality control and assurance process. Our experiments reveal that in addition to the presence of carbon, hydrogen, nitrogen and oxygen, which can be primarily attributed to the active pharmaceutical ingredients, specific inorganic atoms were also present in all the tablets. Initial attempts at classification by a ratiometric approach using oxygen to nitrogen compositional values yielded an optimal value (at 746.83 nm) with the least relative standard deviation but nevertheless failed to provide an acceptable classification. To overcome this bottleneck in the detection process, two chemometric algorithms, i.e. principal component analysis (PCA) and soft independent modeling of class analogy (SIMCA), were implemented to exploit the multivariate nature of the LIBS data demonstrating that LIBS has the potential to differentiate and discriminate among pharmaceutical tablets. We report excellent prospective classification accuracy using supervised classification via the SIMCA algorithm, demonstrating its potential for future applications in process analytical technology, especially for fast on-line process control monitoring applications in the pharmaceutical industry. PMID:22099648

  3. Discrimination between authentic and false tax stamps from liquor bottles using laser-induced breakdown spectroscopy and chemometrics

    NASA Astrophysics Data System (ADS)

    Gonzaga, Fabiano Barbieri; Rocha, Werickson Fortunato de Carvalho; Correa, Deleon Nascimento

    2015-07-01

    This work describes the preliminary application of a compact and low-cost laser-induced breakdown spectroscopy (LIBS) instrument for falsification detection of tax stamps used in alcoholic beverages. The new instrument was based on a diode-pumped passively Q-switched Nd:YLF microchip laser and a mini-spectrometer containing a Czerny-Turner polichromator coupled to a non-intensified, non-gated, and non-cooled 2048 pixel linear sensor array (200 to 850 nm spectral range). Twenty-three tax stamp samples were analyzed by firing laser pulses within two different regions of each sample: a hologram and a blank paper region. For each acquired spectrum, the emitted radiation was integrated for 3000 ms under the continuous application of laser pulses at 100 Hz (integration of 300 plasmas). Principal component analysis (PCA) or hierarchical cluster analysis (HCA) of all emission spectra from the hologram or blank paper region revealed two well-defined groups of authentic and false samples. Moreover, for the hologram data, three subgroups of false samples were found. Additionally, partial least squares discriminant analysis (PLS-DA) was successfully applied for the detection of the false tax stamps using all emission spectra from hologram or blank paper region. The discrimination between the samples was mostly ascribed to different levels of calcium concentration in the samples.

  4. Laser-induced breakdown spectroscopy for determination of uranium in thorium-uranium mixed oxide fuel materials.

    PubMed

    Sarkar, Arnab; Alamelu, Devanathan; Aggarwal, Suresh K

    2009-05-15

    Laser-induced breakdown spectroscopy (LIBS) has been developed for determining the percentage of uranium in thorium-uranium mixed oxide fuel samples required as a part of the chemical quality assurance of fuel materials. The experimental parameters were optimized using mixed oxide pellets prepared from 1:1 (w/w) mixture of thorium-uranium mixed oxide standards and using boric acid as a binder. Calibration curves were established using U(II) 263.553 nm, U(II) 367.007 nm, U(II) 447.233 nm and U(II) 454.363 nm emission lines. The uranium amount determined in two synthetic mixed oxide samples using calibration curves agreed well with that of the expected values. Except for U(II) 263.553 nm, all the other emission lines exhibited a saturation effect due to self-absorption when U amount exceeded 20 wt.% in the Th-U mixture. The present method will be useful for fast and routine determination of uranium in mixed oxide samples of Th and U, without the need for dissolution, which is difficult and time consuming due to the refractory nature of ThO(2). The methodology developed is encouraging since a very good analytical agreement was obtained considering the limited resolution of the spectrometer employed in the work.

  5. Optimally enhanced optical emission in laser-induced breakdown spectroscopy by combining spatial confinement and dual-pulse irradiation.

    PubMed

    Guo, L B; Zhang, B Y; He, X N; Li, C M; Zhou, Y S; Wu, T; Park, J B; Zeng, X Y; Lu, Y F

    2012-01-16

    In laser-induced breakdown spectroscopy (LIBS), a pair of aluminum-plate walls were used to spatially confine the plasmas produced in air by a first laser pulse (KrF excimer laser) from chromium (Cr) targets with a second laser pulse (Nd:YAG laser at 532 nm, 360 mJ/pulse) introduced parallel to the sample surface to re-excite the plasmas. Optical emission enhancement was achieved by combing the spatial confinement and dual-pulse LIBS (DP-LIBS), and then optimized by adjusting the distance between the two walls and the interpulse delay time between both laser pulses. A significant enhancement factor of 168.6 for the emission intensity of the Cr lines was obtained at an excimer laser fluence of 5.6 J/cm(2) using the combined spatial confinement and DP-LIBS, as compared with an enhancement factor of 106.1 was obtained with DP-LIBS only. The enhancement mechanisms based on shock wave theory and reheating in DP-LIBS are discussed.

  6. Wavelength dependence on the forensic analysis of glass by nanosecond 266 nm and 1064 nm laser induced breakdown spectroscopy

    SciTech Connect

    Cahoon, Erica M.; Almirall, Jose R.

    2010-05-01

    Laser induced breakdown spectroscopy can be used for the chemical characterization of glass to provide evidence of an association between a fragment found at a crime scene to a source of glass of known origin. Two different laser irradiances, 266 nm and 1064 nm, were used to conduct qualitative and quantitative analysis of glass standards. Single-pulse and double-pulse configurations and lens-to-sample-distance settings were optimized to yield the best laser-glass coupling. Laser energy and acquisition timing delays were also optimized to result in the highest signal-to-noise ratio corresponding to the highest precision and accuracy. The crater morphology was examined and the mass removed was calculated for both the 266 nm and 1064 nm irradiations. The analytical figures of merit suggest that the 266 nm and 1064 nm wavelengths are capable of good performance for the forensic chemical characterization of glass. The results presented here suggest that the 266 nm laser produces a better laser-glass matrix coupling, resulting in a better stoichiometric representation of the glass sample. The 266 nm irradiance is therefore recommended for the forensic analysis and comparison of glass samples.

  7. Partial Least Squares and Neural Networks for Quantitative Calibration of Laser-induced Breakdown Spectroscopy (LIBs) of Geologic Samples

    NASA Technical Reports Server (NTRS)

    Anderson, R. B.; Morris, Richard V.; Clegg, S. M.; Humphries, S. D.; Wiens, R. C.; Bell, J. F., III; Mertzman, S. A.

    2010-01-01

    The ChemCam instrument [1] on the Mars Science Laboratory (MSL) rover will be used to obtain the chemical composition of surface targets within 7 m of the rover using Laser Induced Breakdown Spectroscopy (LIBS). ChemCam analyzes atomic emission spectra (240-800 nm) from a plasma created by a pulsed Nd:KGW 1067 nm laser. The LIBS spectra can be used in a semiquantitative way to rapidly classify targets (e.g., basalt, andesite, carbonate, sulfate, etc.) and in a quantitative way to estimate their major and minor element chemical compositions. Quantitative chemical analysis from LIBS spectra is complicated by a number of factors, including chemical matrix effects [2]. Recent work has shown promising results using multivariate techniques such as partial least squares (PLS) regression and artificial neural networks (ANN) to predict elemental abundances in samples [e.g. 2-6]. To develop, refine, and evaluate analysis schemes for LIBS spectra of geologic materials, we collected spectra of a diverse set of well-characterized natural geologic samples and are comparing the predictive abilities of PLS, cascade correlation ANN (CC-ANN) and multilayer perceptron ANN (MLP-ANN) analysis procedures.

  8. Application of Laser Induced Breakdown Spectroscopy in Early Detection of Red Palm Weevil: (Rhynchophorus ferrugineus) Infestation in Date Palm

    NASA Astrophysics Data System (ADS)

    A. Farooq, W.; G. Rasool, K.; Walid, Tawfik; S. Aldawood, A.

    2015-11-01

    The Kingdom of Saudi Arabia is one of the leading date producing countries. Unfortunately, this important fruit crop is under great threat from the red palm weevil (RPW) (Rhynchophorus ferrugineus), which is a highly invasive pest. Several techniques, including visual inspection, acoustic sensors, sniffer dogs, and pheromone traps have been tried to detect the early stages of a RPW infestation; however, each method has suffered certain logistical and implementation issues. We have applied laser induced breakdown spectroscopy (LIBS) for the early detection of RPW infestation. Through the analysis of the observed LIBS spectra of different infested and healthy samples, we have found presence of Ca, Mg, Na, C, K elements and OH, CN molecules. The spectra also reveal that with the population growth of the pest, the intensity of Mg and Ca atomic lines in LIBS spectra increases rapidly. Similar behavior is observed in the molecular lines of LIBS spectra. The obtained results indicate that the LIBS technique can be used for the early detection of RPW infestation without damaging the date palms.

  9. Effect of liquid-sheet thickness on detection sensitivity for laser-induced breakdown spectroscopy of aqueous solution.

    PubMed

    Ohba, Hironori; Saeki, Morihisa; Wakaida, Ikuo; Tanabe, Rie; Ito, Yoshiro

    2014-10-06

    For aqueous-solution-based elemental analysis, we used a thin liquid sheet (μm-scale thickness) in laser-induced breakdown spectroscopy with nanosecond laser pulses. Laser-induced plasma is emitted by focusing a pulsed Nd:YAG laser (1064 nm) on a 5- to 80-μm-thick liquid sheet in air. To optimize the conditions for detecting elements, we studied how the signal-to-background ratio (SBR) for Hα Balmer and Na-neutral emission lines depends on the liquid-sheet thickness. The SBR of the Hα Balmer and Na-neutral lines was maximized for a sheet thickness of ~20 μm at the laser energy of 100 mJ. The hydrodynamics of liquid flow induced by the laser pulse was analyzed by laser flash shadowgraph imaging. Time-resolved observation of the hydrodynamics and plasma emission suggests that the dependence of the SBR on the liquid-sheet thickness is correlated with the volume of flowing liquid that interacts with the laser pulses.

  10. Quantitative analysis of toxic metals lead and cadmium in water jet by laser-induced breakdown spectroscopy

    SciTech Connect

    Cheri, M. Sadegh; Tavassoli, S. H.

    2011-03-20

    Laser-induced breakdown spectroscopy (LIBS) has been applied to the analysis of toxic metals Pb and Cd in Pb(NO{sub 3}){sub 2} and Cd(NO{sub 3}){sub 2}.4H{sub 2}O aqueous solutions, respectively. The plasma is generated by focusing a nanosecond Nd:YAG ({lambda}=1064 nm) laser on the surface of liquid in the homemade liquid jet configuration. With an assumption of local thermodynamic equilibrium (LTE), calibration curves of Pb and Cd were obtained at different delay times between 1 to 5 {mu}s. The temporal behavior of limit of detections (LOD) was investigated and it is shown that the minimum LODs for Pb and Cd are 4 and 68 parts in 10{sup 6} (ppm), respectively. In order to demonstrate the correctness of the LTE assumption, plasma parameters including plasma temperature and electron density are evaluated, and it is shown that the LTE condition is satisfied at all delay times.

  11. Nanometer-film analysis by the laser-induced breakdown spectroscopy method: the effects of laser focus to sample distance.

    PubMed

    Sun, Yuxiang; Zhong, Shilei; Shan, Fukai; Lu, Yuan; Sun, Xin; Liu, Zhe; Sheng, Pengpeng

    2015-05-20

    In order to develop a method to analyze metal elements in thin-film samples rapidly, directly and without sample preparation, and to understand the mechanism of laser-film interaction and plasma formation and evolution, a laboratory laser-induced breakdown spectroscopy system was established recently for nanometer-film analysis. ZrO(2) films prepared on silicon chips by a sol-gel process were employed in the following experiment and their thickness was about 40 nm. By the initial investigation that we carried out, the stability of this system was verified and the relative standard deviation of the target peak was found to be lower than 1.6% with the help of a position system. The influences of different experimental parameters, such as laser energy, laser focus to sample distance (LFTSD) settings, and gate delay, were studied under conditions of room temperature and atmospheric pressure. The experimental results show that the LFTSD was one of the most important parameters for plasma formation and spectral collection in comparison with other parameters by means of plasma spectra and images. So the effects of the LFTSD on the spectra, plasma evolution, and craters are specially discussed in this paper. At last, we calculated the plasma temperature and electron density under optimal parameters for quantitative analysis. The result shows that the established system is available for qualitative and quantitative analysis of films under conditions of single pulse and low ablation energy.

  12. Advanced signal processing analysis of laser-induced breakdown spectroscopy data for the discrimination of obsidian sources.

    PubMed

    Remus, Jeremiah J; Harmon, Russell S; Hark, Richard R; Haverstock, Gregory; Baron, Dirk; Potter, Ian K; Bristol, Samantha K; East, Lucille J

    2012-03-01

    Obsidian is a natural glass of volcanic origin and a primary resource used by indigenous peoples across North America for making tools. Geochemical studies of obsidian enhance understanding of artifact production and procurement and remain a priority activity within the archaeological community. Laser-induced breakdown spectroscopy (LIBS) is an analytical technique being examined as a means for identifying obsidian from different sources on the basis of its 'geochemical fingerprint'. This study tested whether two major California obsidian centers could be distinguished from other obsidian localities and the extent to which subsources could be recognized within each of these centers. LIBS data sets were collected in two different spectral bands (350±130 nm and 690±115 nm) using a Nd:YAG 1064 nm laser operated at ~23 mJ, a Czerny-Turner spectrograph with 0.2-0.3 nm spectral resolution and a high performance imaging charge couple device (ICCD) detector. Classification of the samples was performed using partial least-squares discriminant analysis (PLSDA), a common chemometric technique for performing statistical regression on high-dimensional data. Discrimination of samples from the Coso Volcanic Field, Bodie Hills, and other major obsidian areas in north-central California was possible with an accuracy of greater than 90% using either spectral band.

  13. Characterization of local dielectric breakdown in ultrathin SiO2 films using scanning tunneling microscopy and spectroscopy

    NASA Astrophysics Data System (ADS)

    Watanabe, Heiji; Baba, Toshio; Ichikawa, Masakazu

    1999-05-01

    Local dielectric breakdown of ultrathin SiO2 films grown on silicon substrates has been investigated by using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). We found that STM observation can reveal individual quasibreakdown spots created by hot-electron injection into the oxide, as well as features of the topography such as atomic steps on the oxide surface. STS was used to study the local electrical properties of the oxide films before and after electrical stressing. We observed a leakage current at the quasibreakdown spots that passed through defect levels in the ultrathin oxide films. We also found that several tunneling spectra obtained from near leakage sites showed clear negative differential resistance. This phenomenon was attributed to the conductance change in the leakage path due to electron charging effects. Moreover, we confirmed the stressing polarity dependence of the leakage-site creation, and that atomic steps on the oxide and at the SiO2/Si interface did not cause any serous problem in the quasibreakdown process.

  14. A Comparison of Multivariate and Pre-Processing Methods for Quantitative Laser-Induced Breakdown Spectroscopy of Geologic Samples

    NASA Technical Reports Server (NTRS)

    Anderson, R. B.; Morris, R. V.; Clegg, S. M.; Bell, J. F., III; Humphries, S. D.; Wiens, R. C.

    2011-01-01

    The ChemCam instrument selected for the Curiosity rover is capable of remote laser-induced breakdown spectroscopy (LIBS).[1] We used a remote LIBS instrument similar to ChemCam to analyze 197 geologic slab samples and 32 pressed-powder geostandards. The slab samples are well-characterized and have been used to validate the calibration of previous instruments on Mars missions, including CRISM [2], OMEGA [3], the MER Pancam [4], Mini-TES [5], and Moessbauer [6] instruments and the Phoenix SSI [7]. The resulting dataset was used to compare multivariate methods for quantitative LIBS and to determine the effect of grain size on calculations. Three multivariate methods - partial least squares (PLS), multilayer perceptron artificial neural networks (MLP ANNs) and cascade correlation (CC) ANNs - were used to generate models and extract the quantitative composition of unknown samples. PLS can be used to predict one element (PLS1) or multiple elements (PLS2) at a time, as can the neural network methods. Although MLP and CC ANNs were successful in some cases, PLS generally produced the most accurate and precise results.

  15. Comparative study of laser induced breakdown spectroscopy and mass spectrometry for the analysis of cultural heritage materials

    NASA Astrophysics Data System (ADS)

    Kokkinaki, O.; Mihesan, C.; Velegrakis, M.; Anglos, D.

    2013-07-01

    Analysis by laser-induced breakdown spectroscopy (LIBS) is compared, on the basis of a hybrid experimental set-up, with laser ablation time-of-flight mass spectrometry (LA-TOF-MS) for the characterization of materials relevant to cultural heritage. The present study focuses on the analysis of selected paint materials such as lithopone, a white inorganic pigment, and two synthetic organic paint formulations, lemon yellow and phthalocyanine blue. Optical emission spectra, obtained by LIBS, lead to rapid, straightforward identification of the elemental content of the paint samples while mass spectra yield, additionally to elemental analysis, complementary isotopic analysis and, more importantly, enable detection of molecules and molecular fragments, permitting a more complete structural and compositional characterization of composite materials. Mass spectra were recorded either simultaneously with the optical emission ones, or sequentially. The latter was preferred for materials having significantly lower fluence threshold for desorption/ionization relative to plasma formation resulting to optimum mass resolution and minimal surface damage. In all, the results of this study demonstrate the advantages of instrumentally complementing LIBS with TOF-MS in relation to applications in cultural heritage materials analysis, with exciting prospects when laser ablation sampling can be carried out under ambient atmosphere.

  16. Spectrochemical study for the in situ detection of oil spill residues using laser-induced breakdown spectroscopy.

    PubMed

    Fortes, F J; Ctvrtnícková, T; Mateo, M P; Cabalín, L M; Nicolas, G; Laserna, J J

    2010-12-17

    Laser-induced breakdown spectroscopy (LIBS) has been used to identify the differences or similarities between crude oil and fuel residues. Firstly, a man portable LIBS analyzer was used for the on-site environmental control and analysis of the oil spill from The Prestige. An exhaustive analysis of crude oil and oil spill residues (collected during the field campaign in the Galician Coast) was performed in the laboratory. Characteristics elements in petroleum such as C, H, N, O, Mg, Na, Fe and V were detected. In addition, contributions from Ca, Si and Al in the composition of residues have been found. The use of intensity ratios of line and band emissions in the original fuel (crude oil) and in the aged residues allowed a better characterization of the samples than the simple use of peak intensities. The chemical composition between the crude oil and the fuel residues was found completely different. As well, a statistical method was employed in order to discriminate residues. Although significant differences were observed, no conclusions in terms of age and provenance could be reached due to the unknowledgment in the origin of the samples.

  17. Increased power, pulse length, and spectral purity free-electron laser for inverse-Compton X-ray production and laser induced breakdown spectroscopy of thin film photovoltaics

    NASA Astrophysics Data System (ADS)

    Kowalczyk, Jeremy M.

    The free-electron laser (FEL) system can be configured to produce X-ray or extreme ultraviolet (EUV) light via Compton backscattering and to perform many types of spectroscopy including laser induced breakdown spectroscopy (LIBS). In it's most common incarnation, the FEL is limited by three major factors: average laser power, laser spectral purity, and laser pulse length. Some examples of the limitations that these shortcomings give rise to include limiting the range of remote spectroscopy, degrading spectroscopic precision, and lowering the attainable x-ray flux, respectively. In this work, we explored three methods of improving the FEL. First, a beam expanding optic dubbed the TIRBBE was designed, built, and tested to prevent laser damage to the resonator mirrors and allow for higher average power. This optic had the added benefit of increasing the spectral purity. Second, a intra-cavity etalon filter dubbed the FROZEN FISH was designed, built, and tested to increase spectral purity and eliminate the frequency pulling (tendency of an FEL to pull towards longer wavelengths during a macropulse) all in a high damage threshold, fully wavelength adjustable package. Finally, a laser cooling scheme which allows for extension of the electron beam macropulse used to create the FEL light by counter-acting electron back-heating was explored. The first measurements of the back-heating temperature rise were taken, calculations of the required laser parameters were made, design of the full system was completed, and construction has begun. Experimental work using LIBS to characterize thin film solar cells was also completed in anticipation of using the improved FEL to better characterize such materials. The frequency tunability and picosecond micropulse width of the FEL will allow for exploration of the frequency response of LIBS ablation and fine resolution of the make up of these materials with depth unattainable with a conventional fixed frequency nanosecond pulse laser.

  18. Approaching the ppb detection limits for copper in water using laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Tawfik, Walid; Sawaf, Sausan

    2014-05-01

    Copper concentrations in drinking-water is very important to be monitored which can cause cancer if it exceed about 10 mg/liter. In the present work, we have developed a simple, low laser power method to improve the detection limits of laser induced plasma spectroscopy LIBS for copper in aqueous solutions with different concentrations. In this method a medium density fiberboard (MDF) wood have been used as a substrate that absorbs the liquid sample to transform laser liquid interaction to laser solid interaction. Using the fundamental wavelength of Nd:YAG laser, the constructed plasma emissions were monitored for elemental analysis. The signal-to-noise ratio SNR was optimized using low laser fluence of 32 J cm-2, and detector (CDD camera) gate delay of 0.5 μs. Both the electron temperature and density of the induced plasma were determined using Boltzmann plot and the FWHM of the Cu at 324.7 nm, respectively. The plasma temperature was found to be 1.197 eV, while the plasma density was about 1.66 x 1019 cm-3. The detection limits for Cu at 324.7 nm is found to be 131 ppb comparable to the results by others using complicated system.

  19. Breakdown and Partial Discharge Measurements of Some Commonly Used Dielectric Materials in Liquid Nitrogen for HTS Applications

    SciTech Connect

    James, David Randy; Sauers, Isidor; Ellis, Alvin R; Tuncer, Enis; Tekletsadik, Kasegn; Hazelton, Drew

    2007-01-01

    For high temperature superconducting (HTS) power applications it is necessary to improve the understanding of the dielectric properties of materials in a cryogenic environment. It is necessary to know the breakdown strength of materials and systems as a function of gap in order to scale to higher voltages. The partial discharge (PD) onset voltage for materials is also very important since the primary aging mechanism at cryogenic temperature is PD. Another important design characteristic is the surface flashover voltage of a material in liquid nitrogen as a function of gap. With these characteristics in mind, several generic materials were investigated under a variety of electrode and gap configurations. The impulse breakdown voltage and PD onset of three types of commercial polyetherimide, filled and unfilled, were measured at room temperature and 77 K. A modest increase in PD onset voltage was observed at the lower temperature. Breakdown voltages of fiberglass reinforced plastic (FRP) cylinders for two wall thicknesses were measured which showed a decrease in strength at the larger gap. Breakdown voltages for liquid nitrogen using a sphere-plane electrode geometry were measured. Also flashover voltages along a FRP plate immersed in liquid nitrogen were performed for sphere-plane and rod-plane electrodes at 1 bar pressure. It was found that the breakdown voltage increased only slightly with increasing gap lengths.

  20. Mid-infrared, long wave infrared (4-12 μm) molecular emission signatures from pharmaceuticals using laser-induced breakdown spectroscopy (LIBS).

    PubMed

    Yang, Clayton S-C; Brown, Ei E; Kumi-Barimah, Eric; Hommerich, Uwe H; Jin, Feng; Trivedi, Sudhir B; Samuels, Alan C; Snyder, A Peter

    2014-01-01

    In an effort to augment the atomic emission spectra of conventional laser-induced breakdown spectroscopy (LIBS) and to provide an increase in selectivity, mid-wave to long-wave infrared (IR), LIBS studies were performed on several organic pharmaceuticals. Laser-induced breakdown spectroscopy signature molecular emissions of target organic compounds are observed for the first time in the IR fingerprint spectral region between 4-12 μm. The IR emission spectra of select organic pharmaceuticals closely correlate with their respective standard Fourier transform infrared spectra. Intact and/or fragment sample molecular species evidently survive the LIBS event. The combination of atomic emission signatures derived from conventional ultraviolet-visible-near-infrared LIBS with fingerprints of intact molecular entities determined from IR LIBS promises to be a powerful tool for chemical detection.

  1. Analysis of liquid sodium purity by laser-induced breakdown spectroscopy. Modeling and correction of signal fluctuation prior to quantitation of trace elements

    NASA Astrophysics Data System (ADS)

    Maury, Cécile; Sirven, Jean-Baptiste; Tabarant, Michel; L'Hermite, Daniel; Courouau, Jean-Louis; Gallou, Catherine; Caron, Nadège; Moutiers, Gilles; Cabuil, Valérie

    2013-04-01

    Liquid sodium is used as coolant in sodium-cooled fast nuclear reactors. Among many parameters to monitor to ensure the safe operation of the reactor, the coolant chemical purity is a relevant indicator of several undesirable situations, like corrosion of structural materials or sodium contamination, which may release different elements in the coolant. Several techniques have already been implemented to measure the sodium purity, but their response time is long and not suited for continuous monitoring. Therefore, as a complement to them, laser-induced breakdown spectroscopy (LIBS) is considered as a promising technique for real-time analysis of the coolant purity. In this paper we report on the first LIBS quantitative measurements performed in liquid sodium at 150 °C. Calibration curves were traced for lead and indium using the standard addition method. Important intensity drifts and fluctuations were observed, mostly due to pressure variations in the sodium oven. Background subtraction and/or normalization was used to compensate for those intensity fluctuations. To describe the effect of these corrections on the analytical signal noise, a simple model was proposed and its results were found to satisfactorily fit the experimental data. Using this approach, the best detection limits were obtained for the background-subtracted and normalized data, and were found to be 6 ppm for lead and 5 ppm for indium.

  2. In-Field, In Situ, and In Vivo 3-Dimensional Elemental Mapping for Plant Tissue and Soil Analysis Using Laser-Induced Breakdown Spectroscopy

    PubMed Central

    Zhao, Chunjiang; Dong, Daming; Du, Xiaofan; Zheng, Wengang

    2016-01-01

    Sensing and mapping element distributions in plant tissues and its growth environment has great significance for understanding the uptake, transport, and accumulation of nutrients and harmful elements in plants, as well as for understanding interactions between plants and the environment. In this study, we developed a 3-dimensional elemental mapping system based on laser-induced breakdown spectroscopy that can be deployed in- field to directly measure the distribution of multiple elements in living plants as well as in the soil. Mapping is performed by a fast scanning laser, which ablates a micro volume of a sample to form a plasma. The presence and concentration of specific elements are calculated using the atomic, ionic, and molecular spectral characteristics of the plasma emission spectra. Furthermore, we mapped the pesticide residues in maize leaves after spraying to demonstrate the capacity of this method for trace elemental mapping. We also used the system to quantitatively detect the element concentrations in soil, which can be used to further understand the element transport between plants and soil. We demonstrate that this method has great potential for elemental mapping in plant tissues and soil with the advantages of 3-dimensional and multi-elemental mapping, in situ and in vivo measurement, flexible use, and low cost. PMID:27782074

  3. Design of a laser-induced breakdown spectroscopy system for on-line quality analysis of pulverized coal in power plants.

    PubMed

    Yin, Wangbao; Zhang, Lei; Dong, Lei; Ma, Weiguang; Jia, Suotang

    2009-08-01

    It is vitally important for a power plant to determine the chemical composition of coal prior to combustion in order to obtain optimal boiler control. In this work, a fully software-controlled laser-induced breakdown spectroscopy (LIBS) system comprising a LIBS apparatus and sampling equipment has been designed for possible application to power plants for on-line quality analysis of pulverized coal. Special attention was given to the LIBS system, the data processing methods (especially the normalization with Bode Rule/DC Level) and the specific settings (the software-controlled triggering source, high-pressure gas cleaning device, sample-preparation module, sampling module, etc.), which gave the best direct measurement for C, H, Si, Na, Mg, Fe, Al, and Ti with measurement errors less than 10% for pulverized coal. Therefore, the apparatus is accurate enough to be applied to industries for on-line monitoring of pulverized coal. The method of proximate analysis was also introduced and the experimental error of A(ad) (Ash, 'ad' is an abbreviation for 'air dried') was shown in the range of 2.29 to 13.47%. The programmable logic controller (PLC) controlled on-line coal sampling equipment, which is designed based upon aerodynamics, and is capable of performing multipoint sampling and sample-preparation operation.

  4. Investigation of Laser Induced Breakdown Spectroscopy (LIBS) for the Differentiation of Nerve and Gland Tissue—A Possible Application for a Laser Surgery Feedback Control Mechanism

    NASA Astrophysics Data System (ADS)

    Mehari, F.; Rohde, M.; Knipfer, C.; Kanawade, R.; Klämpfl, F.; W., Adler; Oetter, N.; Stelzle, F.; Schmidt, M.

    2016-06-01

    Laser surgery provides clean, fast and accurate modeling of tissue. However, the inability to determine what kind of tissue is being ablated at the bottom of the cut may lead to the iatrogenic damage of structures that were meant to be preserved. In this context, nerve preservation is one of the key challenges in any surgical procedure. One example is the treatment of parotid gland pathologies, where the facial nerve (N. VII) and its main branches run through and fan out inside the glands parenchyma. A feedback system that automatically stops the ablation to prevent nerve-tissue damage could greatly increase the applicability and safety of surgical laser systems. In the present study, Laser Induced Breakdown Spectroscopy (LIBS) is used to differentiate between nerve and gland tissue of an ex-vivo pig animal model. The LIBS results obtained in this preliminary experiment suggest that the measured spectra, containing atomic and molecular emissions, can be used to differentiate between the two tissue types. The measurements and differentiation were performed in open air and under normal stray light conditions.

  5. Improvement of the Laser-Induced Breakdown Spectroscopy method sensitivity by the usage of combination of Ag-nanoparticles and vacuum conditions

    NASA Astrophysics Data System (ADS)

    Sládková, Lucia; Prochazka, David; Pořízka, Pavel; Škarková, Pavlína; Remešová, Michaela; Hrdlička, Aleš; Novotný, Karel; Čelko, Ladislav; Kaiser, Jozef

    2017-01-01

    In this work we studied the effect of vacuum (low pressure) conditions on the behavior of laser-induced plasma (LIP) created on a sample surface covered with silver nanoparticles (Ag-NPs), i.e. Nanoparticles-Enhanced Laser-Induced Breakdown Spectroscopy (NELIBS) experiment in a vacuum. The focus was put on the step by step optimization of the measurement parameters, such as energy of the laser pulse, temporally resolved detection, ambient pressure, and different content of Ag-NPs applied on the sample surface. The measurement parameters were optimized in order to achieve the greatest enhancement represented as the signal-to-noise ratio (SNR) of NELIBS signal to the SNR of LIBS signal. The presence of NPs involved in the ablation process enhances LIP intensity; hence the improvement in the analytical sensitivity was yielded. A leaded brass standard was analyzed with the emphasis on the signal enhancement of Pb traces. We gained enhancement by a factor of four. Although the low pressure had no significant influence on the LIP signal enhancement compared to that under ambient conditions, the SNR values were noticeably improved with the implementation of the NPs.

  6. Wavelength Dependence in the Analysis of Carbon Content in Coal by Nanosecond 266 nm and 1064 nm Laser Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Xiongwei; Wang, Zhe; Fu, Yangting; Li, Zheng; Ni, Weidou

    2015-08-01

    The wavelength dependence of laser induced breakdown spectroscopy (LIBS) in the analysis of the carbon contents of coal was studied using 266 nm and 1064 nm laser radiations. Compared with the 1064 nm wavelength laser ablation, the 266 nm wavelength laser ablation has less thermal effects, resulting in a better crater morphology on the coal pellets. Besides, the 266 nm wavelength laser ablation also provides better laser-sample coupling and less plasma shielding, resulting in a higher carbon line intensity and better signal reproducibility. The carbon contents in the bituminous coal samples have better linearity with the line intensities of atomic carbon measured by the 266 nm wavelength than those measured by the 1064 nm wavelength. The partial least square (PLS) model was established for the quantitative analysis of the carbon content in coal samples by LIBS. The results show that both of the 266 nm and 1064 nm wavelengths are capable of achieving good performance for the quantitative analysis of carbon content in coal using the PLS method. supported by National Natural Science Foundation of China (No. 51276100) and National Basic Research Program of China (973 Program) (No. 2013CB228501)

  7. Portable, real-time alloy identification of metallic wear debris from machinery lubrication systems: laser-induced breakdown spectroscopy versus x-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Suresh, Pooja

    2014-05-01

    Alloy identification of oil-borne wear debris captured on chip detectors, filters and magnetic plugs allows the machinery maintainer to assess the health of the engine or gearbox and identify specific component damage. Today, such identification can be achieved in real time using portable, at-line laser-induced breakdown spectroscopy (LIBS) and Xray fluorescence (XRF) instruments. Both techniques can be utilized in various industries including aviation, marine, railways, heavy diesel and other industrial machinery with, however, some substantial differences in application and instrument performance. In this work, the performances of a LIBS and an XRF instrument are compared based on measurements of a wide range of typical aerospace alloys including steels, titanium, aluminum and nickel alloys. Measurement results were analyzed with a staged correlation technique specifically developed for the purposes of this study - identifying the particle alloy composition using a pre-recorded library of spectral signatures. The analysis is performed in two stages: first, the base element of the alloy is determined by correlation with the stored elemental spectra and then, the alloy is identified by matching the particle's spectral signature using parametric correlation against the stored spectra of all alloys that have the same base element. The correlation analysis has achieved highly repeatable discrimination between alloys of similar composition. Portable LIBS demonstrates higher detection accuracy and better identification of alloys comprising lighter elements as compared to that of the portable XRF system, and reveals a significant reduction in the analysis time over XRF.

  8. Elemental and molecular analysis of metal containing biomolecules using laser induced breakdown spectroscopy and sonic spray ionization mass spectrometry: A step towards full integration and simultaneous analysis

    NASA Astrophysics Data System (ADS)

    Marmatakis, Konstantinos; Pergantis, Spiros A.; Anglos, Demetrios

    2016-12-01

    A novel methodology is proposed that combines sonic spray ionization (SSI) mass spectrometry (MS) with laser induced breakdown spectroscopy (LIBS) for analyzing metal-containing biomolecules and complexes. Focusing pulses from a nanosecond laser (Nd:YAG, λ = 1064 nm) in the microdroplet ensemble produced by a pneumatic nebulizer yielded LIBS spectra that enabled highly sensitive detection of several metal ions in aqueous and aqueous methanolic solutions. Based on the calibration curve method, LOD values at the ng/mL level were achieved for Ca (15 ng/mL), Ba (27 ng/mL), Cu (67 ng/mL) and Fe (650 ng/mL) with accuracy > 90%. LIBS measurements were performed for the first time on aerosols of solutions of known biomolecules such as superoxide dismutase and alpha-lactalbumin, which led to the reliable determination of the concentration of Cu and Ca, respectively, both in the range of a few μg/mL. In parallel, the relative molecular mass of the metalloproteins was determined by separate SSI-MS measurements performed using an identical pneumatic nebulizer based sample introduction system. This is a first step towards the ultimate aim of integrating the two analytical techniques by use of a single pneumatic nebulization system for simultaneous sample introduction for both LIBS and SSI-MS. Such a system is expected to greatly enhance our capabilities to simultaneously acquire molecular and atomic data.

  9. Design of a laser-induced breakdown spectroscopy system for on-line quality analysis of pulverized coal in power plants

    SciTech Connect

    Yin, W.B.; Zhang, L.; Dong, L.; Ma, W.G.; Jia, S.T.

    2009-08-15

    It is vitally important for a power plant to determine the chemical composition of coal prior to combustion in order to obtain optimal boiler control. In this work, a fully software-controlled laser-induced breakdown spectroscopy (LIBS) system comprising a LIBS apparatus and sampling equipment has been designed for possible application to power plants for on-line quality analysis of pulverized coal. Special attention was given to the LIBS system, the data processing methods (especially the normalization with Bode Rule/DC Level) and the specific settings (the software-controlled triggering source, high-pressure gas cleaning device, sample preparation module, sampling module, etc.), which gave the best direct measurement for C, H, Si, Na, Mg, Fe, Al, and Ti with measurement errors less than 10% for pulverized coal. Therefore, the apparatus is accurate enough to be applied to industries for on-line monitoring of pulverized coal. The method of proximate analysis was also introduced and the experimental error of A(ad) (Ash, 'ad' is an abbreviation for 'air dried') was shown in the range of 2.29 to 13.47%. The programmable logic controller (PLC) controlled on-line coal sampling equipment, which is designed based upon aerodynamics, and is capable of performing multipoint sampling and sample-preparation operation.

  10. In-Field, In Situ, and In Vivo 3-Dimensional Elemental Mapping for Plant Tissue and Soil Analysis Using Laser-Induced Breakdown Spectroscopy.

    PubMed

    Zhao, Chunjiang; Dong, Daming; Du, Xiaofan; Zheng, Wengang

    2016-10-22

    Sensing and mapping element distributions in plant tissues and its growth environment has great significance for understanding the uptake, transport, and accumulation of nutrients and harmful elements in plants, as well as for understanding interactions between plants and the environment. In this study, we developed a 3-dimensional elemental mapping system based on laser-induced breakdown spectroscopy that can be deployed in- field to directly measure the distribution of multiple elements in living plants as well as in the soil. Mapping is performed by a fast scanning laser, which ablates a micro volume of a sample to form a plasma. The presence and concentration of specific elements are calculated using the atomic, ionic, and molecular spectral characteristics of the plasma emission spectra. Furthermore, we mapped the pesticide residues in maize leaves after spraying to demonstrate the capacity of this method for trace elemental mapping. We also used the system to quantitatively detect the element concentrations in soil, which can be used to further understand the element transport between plants and soil. We demonstrate that this method has great potential for elemental mapping in plant tissues and soil with the advantages of 3-dimensional and multi-elemental mapping, in situ and in vivo measurement, flexible use, and low cost.

  11. Spectral response measurements of multijunction solar cells with low shunt resistance and breakdown voltages

    PubMed Central

    Babaro, Juan P.; West, Kevin G.; Hamadani, Behrang H.

    2016-01-01

    Spectral response measurements of germanium-based triple-junction solar cells were performed under a variety of light and voltage bias conditions. Two of the three junctions exhibited voltage and light bias dependent artifacts in their measured responses, complicating the true spectral response of these junctions. To obtain more insight into the observed phenomena, a set of current-voltage measurement combinations were also performed on the solar cells under identical illumination conditions, and the data were used in the context of a diode-based analytical model to calculate and predict the spectral response behavior of each junction as a function of voltage. The analysis revealed that both low shunt resistance and low breakdown voltages in two of the three junctions influenced the measured quantum efficiency of all three junctions. The data and the modeling suggest that combination of current-voltage measurements under various light bias sources can reveal important information about the spectral response behavior in multijunction solar cells. PMID:28133534

  12. System for time-discretized vacuum ultraviolet spectroscopy of spark breakdown in air.

    PubMed

    Ryberg, D; Fierro, A; Dickens, J; Neuber, A

    2014-10-01

    A system for time-discretized spectroscopic measurements of the vacuum ultraviolet (VUV) emission from spark discharges in the 60-160 nm range has been developed for the study of early plasma-forming phenomena. The system induces a spark discharge in an environment close to atmospheric conditions created using a high speed puff value, but is otherwise kept at high vacuum to allow for the propagation of VUV light. Using a vertical slit placed 1.5 mm from the discharge the emission from a small cross section of the discharge is allowed to pass into the selection chamber consisting of a spherical grating, with 1200 grooves/mm, and an exit slit set to 100 μm. Following the exit slit is a photomultiplier tube with a sodium salicylate scintillator that is used for the time discretized measurement of the VUV signal with a temporal resolution limit of 10 ns. Results from discharges studied in dry air, Nitrogen, SF6, and Argon indicate the emission of light with wavelengths shorter than 120 nm where the photon energy begins to approach the regime of direct photoionization.

  13. System for time-discretized vacuum ultraviolet spectroscopy of spark breakdown in air

    SciTech Connect

    Ryberg, D.; Fierro, A.; Dickens, J.; Neuber, A.

    2014-10-15

    A system for time-discretized spectroscopic measurements of the vacuum ultraviolet (VUV) emission from spark discharges in the 60-160 nm range has been developed for the study of early plasma-forming phenomena. The system induces a spark discharge in an environment close to atmospheric conditions created using a high speed puff value, but is otherwise kept at high vacuum to allow for the propagation of VUV light. Using a vertical slit placed 1.5 mm from the discharge the emission from a small cross section of the discharge is allowed to pass into the selection chamber consisting of a spherical grating, with 1200 grooves/mm, and an exit slit set to 100 μm. Following the exit slit is a photomultiplier tube with a sodium salicylate scintillator that is used for the time discretized measurement of the VUV signal with a temporal resolution limit of 10 ns. Results from discharges studied in dry air, Nitrogen, SF{sub 6}, and Argon indicate the emission of light with wavelengths shorter than 120 nm where the photon energy begins to approach the regime of direct photoionization.

  14. [Microelements in potato and lily samples studied by laser-induced breakdown spectroscopy technology].

    PubMed

    Zhang, Da-cheng; Ma, Xin-wen; Zhu, Xiao-long; Li, Bin; Zu, Kai-ling

    2009-05-01

    A LIBS setup was built in the Institute of Modern Physics. In our experiments, LIBS spectra produced by infrared radiation of Nd:YAG nanosecond laser with 100 and 150 mJ pulse energy, respectively, were measured by fiber optic spectrometer in the ranges of 230-430 nm and 430-1 080 nm with a delay time of 1.7 and gate width of 2 ms for potato and lily samples prepared by vacuum freeze-dried technique. The lines from different metal elements such as K, Ca, Na, Mg, Fe, Al, Mn and Ti, and nonmetal elements such as C, N, O and H, and some molecular spectra from C2, CaO, and CN were identified according to their wavelengths. The relative content of the six microelements, Ca, Na, K, Fe, Al, and Mg in the samples were analyzed according to their representative line intensities. By comparison we found that there are higher relative content of Ca and Na in lily samples and higher relative content of Mg in potato samples. The experimental results showed that LIBS technique is a fast and effective means for measuring and comparing the contents of microelements in plant samples.

  15. Analysis of water ice and ice/dust mixtures using laser-induced breakdown spectroscopy (LIBS).

    SciTech Connect

    Cremers, D. A.; Brown, Kari; Gibson, L. E.; Ferris, M. J.; Wiens, R. C.; Maurice, S.

    2003-01-01

    In 1992, LIBS was proposed as a new method for stand-off detection of geological samples for use on landers and rovers to Mars. Recently, there has been increased interest in the technique for this and other space applications and studies have determined some of the characteristics and capabilities of the method under the conditions that these measurements will have to be made. In addition to rocks and soils, there is interest in using LIBS to analyze ices and dusts entrained in ice . This is especially true for missions to the Mars polar regions . Of particular interest is determining the nature of polar layered deposits, the geochemistry of polar surface materials, detection of water ice and the distribution of ice, and the presence of possible organics in these materials (via C/N ratios)

  16. Comparison of device structures for the dielectric breakdown measurement of hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Hattori, Yoshiaki; Taniguchi, Takashi; Watanabe, Kenji; Nagashio, Kosuke

    2016-12-01

    Improving the film quality in the synthesis of large-area hexagonal boron nitride films (h-BN) for two-dimensional material devices remains a great challenge. The measurement of electrical breakdown dielectric strength (EBD) is one of the most important methods to elucidate the insulating quality of h-BN. In this work, the EBD of high quality exfoliated single-crystal h-BN was investigated using three different electrode structures under different environmental conditions to determine the ideal electrode structure and environment for EBD measurement. A systematic investigation revealed that EBD is not sensitive to contact force or electrode area but strongly depends on the relative humidity during measurement. Once the measurement environment is properly managed, it was found that the EBD values are consistent within experimental error regardless of the electrode structure, which enables the evaluation of the crystallinity of synthesized h-BN at the microscopic and macroscopic level by utilizing the three different electrode structures properly for different purposes.

  17. A system for gas electrical breakdown time delay measurements based on a microcontroller

    NASA Astrophysics Data System (ADS)

    Todorović, Miomir; Vasović, Nikola D.; Ristić, Goran S.

    2012-01-01

    A new system, called gasmem v1.0, for the measurements of gas electrical breakdown time delay (td), with significantly better characteristics than older systems, has been developed and realized. It is based on the PIC 18F4550 microcontroller and could measure the minimal td of about 1.5 μs with the resolution of 83.33 ns. The relaxation (afterglow) period (τ) could vary from 1 to 232 ms (≈50 days). The successive series of td measurements with various τ could be performed, giving very reliable td data that are stored on the personal computer (PC) hard drive via the USB interface. The td and τ values enable the drawing of memory curves (langtdrang = f(τ)) and the analysis of memory effects in the gases. The randomness of td values measured by the gasmem system for more τ values was tested using the nonparametric Wald-Wolfowitz test showing the stochastic nature of obtained results. The memory curves obtained by this system have shown very high reproducibility. In addition, the system has a capability of operating as a stand-alone system (independently of a PC), with the possibility for the implementation of a touch screen for controlling the system and additional memory (e.g. memory card) for data storage.

  18. A partial least squares and wavelet-transform hybrid model to analyze carbon content in coal using laser-induced breakdown spectroscopy.

    PubMed

    Yuan, Tingbi; Wang, Zhe; Li, Zheng; Ni, Weidou; Liu, Jianmin

    2014-01-07

    A partial least squares (PLS) and wavelet transform hybrid model are proposed to analyze the carbon content of coal by using laser-induced breakdown spectroscopy (LIBS). The hybrid model is composed of two steps of wavelet analysis procedures, which include environmental denoising and background noise reduction, to pretreat the LIBS spectrum. The processed wavelet coefficients, which contain the discrete line information of the spectra, were taken as inputs for the PLS model for calibration and prediction of carbon element. A higher signal-to-noise ratio of carbon line was obtained after environmental denoising, and the best decomposition level was determined after background noise reduction. The hybrid model resulted in a significant improvement over the conventional PLS method under different ambient environments, which include air, argon, and helium. The average relative error of carbon decreased from 2.74 to 1.67% under an ambient helium environment, which indicated a significantly improved accuracy in the measurement of carbon in coal. The best results obtained under an ambient helium environment could be partly attributed to the smallest interference by noise after wavelet denoising. A similar improvement was observed in ambient air and argon environments, thereby proving the applicability of the hybrid model under different experimental conditions.

  19. Double pulse laser induced breakdown spectroscopy: A potential tool for the analysis of contaminants and macro/micronutrients in organic mineral fertilizers.

    PubMed

    Nicolodelli, Gustavo; Senesi, Giorgio Saverio; de Oliveira Perazzoli, Ivan Luiz; Marangoni, Bruno Spolon; De Melo Benites, Vinícius; Milori, Débora Marcondes Bastos Pereira

    2016-09-15

    Organic fertilizers are obtained from waste of plant or animal origin. One of the advantages of organic fertilizers is that, from the composting, it recycles waste-organic of urban and agriculture origin, whose disposal would cause environmental impacts. Fast and accurate analysis of both major and minor/trace elements contained in organic mineral and inorganic fertilizers of new generation have promoted the application of modern analytical techniques. In particular, laser induced breakdown spectroscopy (LIBS) is showing to be a very promising, quick and practical technique to detect and measure contaminants and nutrients in fertilizers. Although, this technique presents some limitations, such as a low sensitivity, if compared to other spectroscopic techniques, the use of double pulse (DP) LIBS is an alternative to the conventional LIBS in single pulse (SP). The macronutrients (Ca, Mg, K, P), micronutrients (Cu, Fe, Na, Mn, Zn) and contaminant (Cr) in fertilizer using LIBS in SP and DP configurations were evaluated. A comparative study for both configurations was performed using optimized key parameters for improving LIBS performance. The limit of detection (LOD) values obtained by DP LIBS increased up to seven times as compared to SP LIBS. In general, the marked improvement obtained when using DP system in the simultaneous LIBS quantitative determination for fertilizers analysis could be ascribed to the larger ablated mass of the sample. The results presented in this study show the promising potential of the DP LIBS technique for a qualitative analysis in fertilizers, without requiring sample preparation with chemical reagents.

  20. Multivariate classification of edible salts: Simultaneous Laser-Induced Breakdown Spectroscopy and Laser-Ablation Inductively Coupled Plasma Mass Spectrometry Analysis

    NASA Astrophysics Data System (ADS)

    Lee, Yonghoon; Nam, Sang-Ho; Ham, Kyung-Sik; Gonzalez, Jhanis; Oropeza, Dayana; Quarles, Derrick; Yoo, Jonghyun; Russo, Richard E.

    2016-04-01

    Laser-Induced Breakdown Spectroscopy (LIBS) and Laser-Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS), both based on laser ablation sampling, can be employed simultaneously to obtain different chemical fingerprints from a sample. We demonstrated that this analysis approach can provide complementary information for improved classification of edible salts. LIBS could detect several of the minor metallic elements along with Na and Cl, while LA-ICP-MS spectra were used to measure non-metallic and trace heavy metal elements. Principal component analysis using LIBS and LA-ICP-MS spectra showed that their major spectral variations classified the sample salts in different ways. Three classification models were developed by using partial least squares-discriminant analysis based on the LIBS, LA-ICP-MS, and their fused data. From the cross-validation performances and confusion matrices of these models, the minor metallic elements (Mg, Ca, and K) detected by LIBS and the non-metallic (I) and trace heavy metal (Ba, W, and Pb) elements detected by LA-ICP-MS provided complementary chemical information to distinguish particular salt samples.

  1. A comparative study of highly-ionized Al plasma based on dual pulse laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Khalil, A. A. I.; Younis, W. O.; Gandol, M. A.

    2016-10-01

    We built a collinear dual-pulse laser-induced breakdown spectroscopy (DP-LIBS) system to study the aluminum (Al) plasma emission by installing a pair of Nd: YAG lasers operating at 266 and 1064 nm. The spectral intensities of selected aluminum doubly-ionized lines were employed to evaluate the optical emission spectra. The influences of the energy ratio of two pulsed lasers on the LIBS intensity for different Al doubly-ionized spectral lines were investigated. The de-excitation rate parameters of the excited ion and the electron impact excitation were computed using the analytical formulas proposed by Smeets and Vriens. The transition probabilities and energy states were computed using Hibbert's configuration interaction, computer package (CIV3). By solving the coupled rate equations including 1s 22s 22p 6ns (2S), 1s 22s 22p 6np (2P), 1s 22s 22p 6nd (2D) (n = 3-5) and 1s 22s 22p 6nf (2F) (n = 4, 5) states, the level population densities were computed. We also proposed a theoretical population model in order to investigate the effectiveness of the various processes that might affect the population of the upper levels in Al plasma by using the rate coefficients. In addition, the population densities for the 19 upper levels were also computed. Good compatibility between the experimental and the theoretical model data had been observed. Our results might be significant as reference data for the optimization of the DP-LIBS spectrometry and diagnostics of laser produced plasmas.

  2. Laser-induced breakdown spectroscopy: technique, new features, and detection limits of trace elements in Al base alloy

    NASA Astrophysics Data System (ADS)

    Hegazy, H.; Abdel-Wahab, E. A.; Abdel-Rahim, F. M.; Allam, S. H.; Nossair, A. M. A.

    2014-05-01

    Laser-induced breakdown spectroscopy (LIBS) has proven to be extremely versatile, providing multielement analysis in real time without sample preparation. The principle is based on the ablation of a small amount of target material by interaction of a strong laser beam with a solid target. The laser must have sufficient energy to excite atoms and to ionize them to produce plasma. We aimed to improve the LIBS limit of detection (LOD) and the precision of spectral lines emitted from the produced plasma by optimizing the parameters affecting the LIBS technique. LIBS LOD is affected by many experimental parameters such as interferences, self-absorption, spectral overlap, signal-to-noise ratio, and matrix effects. The plasma in the present study is generated by focusing a 6-ns pulsed Nd-YAG laser at the fundamental wavelength of 1,064 nm onto the Al target in air at atmospheric pressure. The emission spectra are recorded using an SE 200 Echelle spectrometer manufactured by the Catalina Corporation; it is equipped with an ICCD camera type Andor model iStar DH734-18. This spectrometer allows time-resolved spectral acquisition over the whole UV-NIR (200-1,000 nm) spectral range. Calibration curves for Cu, Mg, Mn, Si, Cr, and Fe were obtained with linear regression coefficients around 99 % on the average in aluminum standard alloy samples. The determined LOD has very useful improvements for Cu I at 521.85 nm, Si I at 288.15 nm, Mn I at 482.34 nm, and Cr I at 520.84 nm spectral lines. LOD is improved by 83.8 % for Cu, 49 % for Si, 84.3 % for Mn, and 45 % for Cr lower with respect to the previous works.

  3. Application of laser-induced breakdown spectroscopy (LIBS) as a tool to determine the origin of 'conflict minerals'

    NASA Astrophysics Data System (ADS)

    Hark, R. R.; Harmon, R. S.; Remus, J. J.; East, L. J.; Wise, M. A.; Tansi, B. M.; Shughrue, K. M.; Dunsin, K. S.; Liu, C.

    2012-04-01

    Laser-induced breakdown spectroscopy (LIBS) offers a means of rapidly distinguishing different places of origin for a mineral because the LIBS plasma emission spectrum provides the complete chemical composition (i.e. geochemical fingerprint) of a mineral in real-time. An application of this approach with potentially significant commercial and political importance is the spectral fingerprinting of the 'conflict minerals' columbite-tantalite ("coltan"). Following a successful pilot study of three columbite-tantalite suites from the United States and Canada, a more geographically diverse set of samples from 37 locations worldwide were analyzed using a commercial laboratory LIBS system and a subset of samples also analyzed using a prototype broadband field-portable system. The spectral range from 250-490 nm was chosen for the laboratory analysis to encompass many of the intense emission lines for the major elements (Ta, Nb, Fe, Mn) and the significant trace elements (e.g., W, Ti, Zr, Sn, U, Sb, Ca, Zn, Pb, Y, Mg, and Sc) known to commonly substitute in the columbite-tantalite solid solution series crystal structure and in the columbite group minerals. The field-portable instrument offered an increased spectral range (198-1005 nm), over which all elements have spectral emission lines, and higher resolution than the laboratory instrument. In both cases, the LIBS spectra were analyzed using advanced multivariate statistical signal processing techniques. Partial Least Squares Discriminant Analysis (PLSDA) resulted in a correct place-level geographic classification at success rates between 90 and 100%. The possible role of rare-earth elements (REE's) as a factor contributing to the high levels of sample discrimination was explored. Given the fact that it can be deployed as a man-portable analytical technology, these results lend additional evidence that LIBS has the potential to be utilized in the field as a real-time tool to discriminate between columbite-tantalite ores of

  4. Monte Carlo standardless approach for laser induced breakdown spectroscopy based on massive parallel graphic processing unit computing

    NASA Astrophysics Data System (ADS)

    Demidov, A.; Eschlböck-Fuchs, S.; Kazakov, A. Ya.; Gornushkin, I. B.; Kolmhofer, P. J.; Pedarnig, J. D.; Huber, N.; Heitz, J.; Schmid, T.; Rössler, R.; Panne, U.

    2016-11-01

    The improved Monte-Carlo (MC) method for standard-less analysis in laser induced breakdown spectroscopy (LIBS) is presented. Concentrations in MC LIBS are found by fitting model-generated synthetic spectra to experimental spectra. The current version of MC LIBS is based on the graphic processing unit (GPU) computation and reduces the analysis time down to several seconds per spectrum/sample. The previous version of MC LIBS which was based on the central processing unit (CPU) computation requested unacceptably long analysis times of 10's minutes per spectrum/sample. The reduction of the computational time is achieved through the massively parallel computing on the GPU which embeds thousands of co-processors. It is shown that the number of iterations on the GPU exceeds that on the CPU by a factor > 1000 for the 5-dimentional parameter space and yet requires > 10-fold shorter computational time. The improved GPU-MC LIBS outperforms the CPU-MS LIBS in terms of accuracy, precision, and analysis time. The performance is tested on LIBS-spectra obtained from pelletized powders of metal oxides consisting of CaO, Fe2O3, MgO, and TiO2 that simulated by-products of steel industry, steel slags. It is demonstrated that GPU-based MC LIBS is capable of rapid multi-element analysis with relative error between 1 and 10's percent that is sufficient for industrial applications (e.g. steel slag analysis). The results of the improved GPU-based MC LIBS are positively compared to that of the CPU-based MC LIBS as well as to the results of the standard calibration-free (CF) LIBS based on the Boltzmann plot method.

  5. Trace element analysis of aqueous samples by laser-induced breakdown spectroscopy based on pre-concentration of electrospray

    NASA Astrophysics Data System (ADS)

    Ni, Kai; Lei, Yu; Yu, Quan; Li, Jianan; Qian, Xiang; Wang, Xiaohao

    2015-08-01

    Laser-induced breakdown spectroscopy (LIBS) is characterized as a powerful tool in in-situ online analysis with its fast and multiple detecting abilities. But in the area of detecting trace sample in aqueous solution of low concentration, the turbulence, scattering, absorbance and cooling effect of liquid medium limits its performance. Traditional method includes liquid jet, liquid-solid transformation and pre-concentration on other medium, yet the procedure of sample preparation is complicated and time consuming. In this work, we propose a new method to achieve pre-concentration, in which filter paper and electro-spray ionization (ESI) are used. In our experiment, we choose MnSO4 as sample. The surface of filter paper is sprayed with MnSO4 aqueous solution of different concentration by an ESI. The pulsed laser is focused on the surface of filter paper and the plasma is formed in the focusing area. Through an optical fiber the spectrum of plasma is detected by a spectrometer. The ESI system, pulses generator system and the UI on PC are home-made. The spectra lines of Mn at 257.6nm, 259.4nm and 260.6nm are analyzed. Results show that the limit of detection at 257.6nm is sub-ppb and the R2 of calibration curve is more than 0.93. Compared with traditional method, like soak and drip processing, our method can increase the concentration of the sample by simply expanding spraying time, achieving a higher signal-to-noise ratio (SNR) and a lower limit of detection (LOD). In addition, the consumption of sample solution is as low as several hundred μl in each detection.

  6. A comparative study of highly-ionized Al plasma based on dual pulse laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Khalil, A. A. I.; Younis, W. O.; Gandol, M. A.

    2017-03-01

    We built a collinear dual-pulse laser-induced breakdown spectroscopy (DP-LIBS) system to study the aluminum (Al) plasma emission by installing a pair of Nd: YAG lasers operating at 266 and 1064 nm. The spectral intensities of selected aluminum doubly-ionized lines were employed to evaluate the optical emission spectra. The influences of the energy ratio of two pulsed lasers on the LIBS intensity for different Al doubly-ionized spectral lines were investigated. The de-excitation rate parameters of the excited ion and the electron impact excitation were computed using the analytical formulas proposed by Smeets and Vriens. The transition probabilities and energy states were computed using Hibbert's configuration interaction, computer package (CIV3). By solving the coupled rate equations including 1 s 22 s 22 p 6n s (2S), 1 s 22 s 22 p 6n p (2P), 1 s 22 s 22 p 6n d (2D) (n = 3-5) and 1 s 22 s 22 p 6n f (2F) (n = 4, 5) states, the level population densities were computed. We also proposed a theoretical population model in order to investigate the effectiveness of the various processes that might affect the population of the upper levels in Al plasma by using the rate coefficients. In addition, the population densities for the 19 upper levels were also computed. Good compatibility between the experimental and the theoretical model data had been observed. Our results might be significant as reference data for the optimization of the DP-LIBS spectrometry and diagnostics of laser produced plasmas.

  7. Determination of Iron in Water Solution by Time-Resolved Femtosecond Laser-Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sergey, S. Golik; Alexey, A. Ilyin; Michael, Yu. Babiy; Yulia, S. Biryukova; Vladimir, V. Lisitsa; Oleg, A. Bukin

    2015-11-01

    The influence of the energy of femtosecond laser pulses on the intensity of Fe I (371.99 nm) emission line and the continuous spectrum of the plasma generated on the surface of Fe3+ water solution by a Ti: sapphire laser radiation with pulse duration < 45 fs and energies up to 7 mJ is determined. A calibration curve was obtained for Fe3+ concentration range from 0.5 g/L to the limit of detection in water solution, and its saturation was detected for concentrations above 0.25 g/L, which is ascribed to self-absorption. The 3σ- limit of detection obtained for Fe in water solution is 2.6 mg/L in the case of 7 mJ laser pulse energy. It is found that an increase of laser pulse energy insignificantly affects on LOD in the time-resolved LIBS and leads to a slight improvement of the limit of detection. supported by the Russian Science Foundation (agreement #14-50-00034) (measurements of limit of detection), Russian Foundation for Basic Research (NK 15-32-20878/15) obtained in the frame of “Organization of Scientific Research” in the Far Eastern Federal University supported by Ministry of Education and Science of Russian Federation

  8. Development of a laser-induced breakdown spectroscopy method for soil and ecological analysis (review)

    NASA Astrophysics Data System (ADS)

    Burakov, V. S.; Raikov, S. N.; Tarasenko, N. V.; Belkov, M. V.; Kiris, V. V.

    2010-11-01

    The application of laser spectrochemical analysis to testing for basic compounds and nutritious/toxic elements in soil has been reviewed. A combined laser-spark approach has been applied for the rapid measurement of the carbon content in soil. Spectra have been excited both directly in a laser-ablation plume and by passing a pulsed electric discharge through the plume. The emission spectrum intensity in the combined plasma is considerably higher. The application of a complex of methods to carbon determination in soil has shown that in fact the data on the humus content usually obtained in agrochemical practice by a conventional method of carbon oxidation by potassium dichromate need to be corrected taking into account the possibility of incomplete oxidation of organic matter in soil. The efficiency of various double-pulse LIBS applications has been demonstrated in solving a number of environmental problems such as the determination of heavy and toxic metals in soil and the detection of sulfur in coal. The instrumentation and analytical procedures have been proposed and optimized for rapid control of the chlorine content in plant samples. The technique can be easily extended to ecological monitoring of toxic elements and heavy metals in any biogenic material.

  9. Shock wave and cavitation bubble measurements of ultrashort-pulse laser-induced breakdown in water

    NASA Astrophysics Data System (ADS)

    Hammer, Daniel X.; Thomas, Robert J.; Frenz, Martin; Jansen, E. Duco; Noojin, Gary D.; Diggs, Sarah J.; Noack, Joachim; Vogel, Alfred; Rockwell, Benjamin A.

    1996-05-01

    Laser-induced breakdown (LIB) has long been used in ophthalmic microsurgery as a mechanism for disruption of tissue. The goal of this surgery has been precise tissue cutting by plasma formation and a minimization of collateral damage due to shock wave and cavitation bubble formation. We investigate the strength of the shock wave emission, the size of the cavitation bubble, and the amount of plasma shielding to determine the efficacy of using femtosecond pulses in surgery to reduce collateral photoacoustic damage. A pump-probe technique is used to image the time-resolved evolution of the cavitation bubble produced by focused laser pulses with pulsewidths of 130 fs, 300 fs, 3 ps, and 60 ps. Simultaneously, a hydrophone is used to measure the pressure response generated by the initial plasma shock wave and subsequent shock waves generated by the collapse and rebound of the cavitation bubbles. In addition, transmission measurements are made which indicate the amount of energy shielded beyond the focus by the plasma. These measurements give a good indication of the degree to which collateral damage may be reduced as the pulsewidths is decreased from the picosecond to the femtosecond time regime.

  10. Coherent Raman spectroscopy for supersonic flow measurments

    NASA Technical Reports Server (NTRS)

    She, C. Y.

    1986-01-01

    In collaboration with NASA/Langley Research Center, a truly nonintrusive and nonseeding method for measuring supersonic molecular flow parameters was proposed and developed at Colorado State University. The feasibility of this Raman Doppler Velocimetry (RDV), currently operated in a scanning mode, was demonstrated not only in a laboratory environment at Colorado State University, but also in a major wind tunnel at NASA/Langley Research Center. The research progress of the RDV development is summarized. In addition, methods of coherent Rayleigh-Brillouin spectroscopy and single-pulse coherent Raman spectroscopy are investigated, respectively, for measurements of high-pressure and turbulent flows.

  11. Analysis of natural and artificial ultramarine blue pigments using laser induced breakdown and pulsed Raman spectroscopy, statistical analysis and light microscopy

    NASA Astrophysics Data System (ADS)

    Osticioli, I.; Mendes, N. F. C.; Nevin, A.; Gil, Francisco P. S. C.; Becucci, M.; Castellucci, E.

    2009-08-01

    Pulsed laser induced breakdown spectroscopy (LIBS) and Raman spectroscopy were performed using a novel laboratory setup employing the same Nd:YAG laser emission at 532 nm for the analysis of five commercially available pigments collectively known as "ultramarine blue", a sodium silicate material of either mineral origin or an artificially produced glass. LIBS and Raman spectroscopy have provided information regarding the elemental and molecular composition of the samples; additionally, an analytical protocol for the differentiation between natural (lapis lazuli) and artificial ultramarine blue pigments is proposed. In particular LIBS analysis has allowed the discrimination between pigments on the basis of peaks ascribed to calcium. The presence of calcite in the natural blue pigments has been confirmed following Raman spectroscopy in specific areas of the samples, and micro-Raman and optical microscopy have further corroborated the presence of calcite inclusions in the samples of natural origin. Finally multivariate analysis of Laser induced breakdown spectra using principal component analysis (PCA) further enhanced the differentiation between natural and artificial ultramarine blue pigments.

  12. Analysis of natural and artificial ultramarine blue pigments using laser induced breakdown and pulsed Raman spectroscopy, statistical analysis and light microscopy.

    PubMed

    Osticioli, I; Mendes, N F C; Nevin, A; Gil, Francisco P S C; Becucci, M; Castellucci, E

    2009-08-01

    Pulsed laser induced breakdown spectroscopy (LIBS) and Raman spectroscopy were performed using a novel laboratory setup employing the same Nd:YAG laser emission at 532 nm for the analysis of five commercially available pigments collectively known as "ultramarine blue", a sodium silicate material of either mineral origin or an artificially produced glass. LIBS and Raman spectroscopy have provided information regarding the elemental and molecular composition of the samples; additionally, an analytical protocol for the differentiation between natural (lapis lazuli) and artificial ultramarine blue pigments is proposed. In particular LIBS analysis has allowed the discrimination between pigments on the basis of peaks ascribed to calcium. The presence of calcite in the natural blue pigments has been confirmed following Raman spectroscopy in specific areas of the samples, and micro-Raman and optical microscopy have further corroborated the presence of calcite inclusions in the samples of natural origin. Finally multivariate analysis of Laser induced breakdown spectra using principal component analysis (PCA) further enhanced the differentiation between natural and artificial ultramarine blue pigments.

  13. Determining the lifetime of detectable amounts of gunshot residue on the hands of a shooter using laser-induced breakdown spectroscopy.

    PubMed

    Rosenberg, Matthew B; Dockery, Christopher R

    2008-11-01

    Laser-induced breakdown spectroscopy (LIBS) has been used to determine the period of time that a shooter will test positive for gunshot residue (GSR) after firing a revolver. Multiple rounds of primer were fired and samples collected at multiple hour intervals using an adhesive tape pressed against the skin. Samples were analyzed directly using a commercially available laser-induced breakdown spectrometer where barium emission (originating from barium nitrate in the primer) was observed. Population statistics were used to compare suspected GSR to a library of blank samples from which a threshold value was established. Statistically significant results, positive for GSR, are obtained 5.27 days after a firearm discharge using these techniques.

  14. Elemental analysis by surface-enhanced Laser-Induced Breakdown Spectroscopy combined with liquid-liquid microextraction

    NASA Astrophysics Data System (ADS)

    Aguirre, M. A.; Legnaioli, S.; Almodóvar, F.; Hidalgo, M.; Palleschi, V.; Canals, A.

    2013-01-01

    In this work, the possibility of using Laser-Induced Breakdown Spectrometry (LIBS) combined with liquid-liquid microextraction techniques is evaluated as a simple and fast method for trace elemental analysis. Two different strategies for LIBS analysis of manganese contained in microdroplets of extraction solvent (Triton X-114) are studied: (i) analysis by direct laser irradiation of microdroplets; and (ii) analysis by laser irradiation of microdroplets dried on metallic substrates (surface-enhanced LIBS — SENLIBS). Experiments were carried out using synthetic samples with different concentrations of manganese in a 10% w/w Triton X-114 matrix. The analysis by direct laser irradiation of microdroplets showed low precision, sensitivity and poor linearity across the concentration range evaluated (R2 < 0.95). On the other hand, the SENLIBS method of analysis improved the sensitivity, the precision and the linearity of the calibration curve with respect to the direct analysis of microdroplets. In comparison with experimental results obtained by direct analysis, SENLIBS also allowed several replicate measurements to be carried out in a single microdroplet. The limit of detection obtained was 6 μg g- 1 of Mn.

  15. Qualitative and quantitative spectro-chemical analysis of dates using UV-pulsed laser induced breakdown spectroscopy and inductively coupled plasma mass spectrometry.

    PubMed

    Mehder, A O; Habibullah, Y B; Gondal, M A; Baig, Umair

    2016-08-01

    Laser Induced Breakdown Spectroscopy (LIBS) is demonstrated for the spectral analysis of nutritional and toxic elements present in several varieties of date fruit samples available in the Saudi Arabia market. The method analyzes the optical emission of a test sample when subjected to pulsed laser ablation. In this demonstration, our primary focus is on calcium (Ca) and magnesium (Mg), as nutritional elements, and on chromium (Cr), as a toxic element. The local thermodynamic equilibrium (LTE) condition was confirmed prior to the elemental characterization of date samples to ensure accuracy of the LIBS analysis. This was achieved by measuring parameters associated with the plasma, such as the electron temperature and the electron number density. These plasma parameters aid interpretation of processes such as ionization, dissociation, and excitation occurring in the plasma plume formed by ablating the date palm sample. The minimum detection limit was established from calibration curves that involved plotting the LIBS signal intensity as a function of standard date samples with known concentrations. The concentration of Ca and Mg detected in different varieties of date samples was between 187 and 515 and 35-196mgL(-1) respectively, while Cr concentration measured between 1.72 and 7.76mgL(-1). In order to optimize our LIBS system, we have studied how the LIBS signal intensity depends on the incident laser energy and the delay time. In order to validate our LIBS analysis results, standard techniques such as inductively coupled plasma mass spectrometry (ICP-MS) were also applied on an identical (duplicate) date samples as those used for the LIBS analysis. The LIBS results exhibit remarkable agreement with those obtained from the ICP-MS analysis. In addition, the finger print wavelengths of other elements present in date samples were also identified and are reported here, which has not been previously reported, to the best of our knowledge.

  16. Stress measurement in MEMS using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Animoto, Sherwin T.; Chang, Dick J.; Birkitt, Andra D.

    1998-09-01

    Raman spectroscopy is used as a non-contact method in measuring stresses at the surface of a crystalline structure or the crystalline-coated surface of an amorphous structure. The stress measurement capability is based on the relative frequency shift of Raman spectra when the crystal lattice is strained. The Raman spectroscopy has a resolution on the order of a few micrometer (micrometers ) which may be used to probe the local non-uniform stress distribution and thus address the material nonhomogeneity. This paper presents the Raman secular equation for general and cubic crystal systems and discusses the stress field effects to Raman frequency shifts and polarization. Experimental testing will include the calibration of the Raman signal versus mechanically applied stresses using single crystal strips, poly-silicon coatings deposited on different specimen configurations, and the stress measurements on a frequently used MEMS structure, cantilever beam, subject to electrostatic forces. Correlation of the experimental results with the analytical prediction will be addressed.

  17. Measurement and modeling of ozone and nitrogen oxides produced by laser breakdown in oxygen-nitrogen atmospheres.

    PubMed

    Gornushkin, Igor B; Stevenson, Chris L; Galbács, Gábor; Smith, Ben W; Winefordner, James D

    2003-11-01

    The production of ozone nad nitrogen oxides was studied during multiple laser breakdown in oxygen-nitrogen mixtures at atmospheric pressure. About 2000 laser shots at 10(10) W cm-2 were delivered into a sealed reaction chamber. The chamber with a long capillary was designed to measure absorption of O3, NO, and NO2 as a function of the number of laser shots. The light source for absorption measurements was the continuum radiation emitted by the plasma during the first 0.2 microsecond of its evolution. A kinetic model was developed that encompassed the principal chemical reactions between the major atmospheric components and the products of laser breakdown. In the model, the laser plasma was treated as a source of nitric oxide and atomic oxygen, whose rates of production were calculated using measured absorption by NO, NO2, and O3. The calculated concentration profiles for NO, NO2, and O3 were in good agreement with measured profiles over a time scale of 0-200 s. The steady-state concentration of ozone was measured in a flow cell in air. For a single breakdown in air, the estimated steady-state yield of ozone was 2 x 10(12) molecules, which agreed with the model prediction. This study can be of importance for general understanding of laser plasma chemistry and for elucidating the nature of spectral interferences and matrix effects that may take place in applied spectrochemical analysis.

  18. Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kaiser, J.; Galiová, M.; Novotný, K.; Červenka, R.; Reale, L.; Novotný, J.; Liška, M.; Samek, O.; Kanický, V.; Hrdlička, A.; Stejskal, K.; Adam, V.; Kizek, R.

    2009-01-01

    Laser-Induced Breakdown Spectroscopy (LIBS) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) were utilized for mapping the accumulation of Pb, Mg and Cu with a resolution up to 200 μm in a up to cm × cm area of sunflower ( Helianthus annuus L.) leaves. The results obtained by LIBS and LA-ICP-MS are compared with the outcomes from Atomic Absorption Spectrometry (AAS) and Thin-Layer Chromatography (TLC). It is shown that laser-ablation based analytical methods can substitute or supplement these techniques mainly in the cases when a fast multi-elemental mapping of a large sample area is needed.

  19. The use of laser induced breakdown spectroscopy for the determination of Li in organic wash solutions during the preparation of lithium based oxide ceramics by sol-gel

    NASA Astrophysics Data System (ADS)

    Sarkar, Arnab; Alamelu, D.; Vittal Rao, T. V.; Bamankar, Y. R.; Mukerjee, S. K.; Aggarwal, Suresh K.

    2011-04-01

    Laser induced breakdown spectroscopy (LIBS) has been investigated for the determination of lithium in various streams generated during the preparation of lithium titanate microspheres employing internal gelation in Sol-gel. Important parameters including laser energy and acquisition delay were optimized to achieve the best signal to noise ratio during the LIBS analysis using filter paper as a solid support. The usefulness of different analytical emission lines of lithium was investigated. The developed LIBS methodology was found to be useful in developing the sol-gel process for preparing the lithium based microspheres for fusion based R&D programs.

  20. Detection of rare earth elements in Powder River Basin sub-bituminous coal ash using laser-induced breakdown spectroscopy (LIBS)

    SciTech Connect

    Tran, Phuoc

    2015-10-01

    We reported our preliminary results on the use of laser-induced breakdown spectroscopy to analyze the rare earth elements contained in ash samples from Powder River Basin sub-bituminous coal (PRB-coal). We have identified many elements in the lanthanide series (cerium, europium, holmium, lanthanum, lutetium, praseodymium, promethium, samarium, terbium, ytterbium) and some elements in the actinide series (actinium, thorium, uranium, plutonium, berkelium, californium) in the ash samples. In addition, various metals were also seen to present in the ash samples

  1. Examining natural rock varnish and weathering rinds with laser-induced breakdown spectroscopy for application to ChemCam on Mars.

    PubMed

    Lanza, Nina L; Clegg, Samuel M; Wiens, Roger C; McInroy, Rhonda E; Newsom, Horton E; Deans, Matthew D

    2012-03-01

    A laser-induced breakdown spectroscopy (LIBS) instrument is traveling to Mars as part of ChemCam on the Mars Science Laboratory rover. Martian rocks have weathered exteriors that obscure their bulk compositions. We examine weathered rocks with LIBS in a martian atmosphere to improve interpretations of ChemCam rock analyses on Mars. Profile data are analyzed using principal component analysis, and coatings and rinds are examined using scanning electron microscopy and electron probe microanalysis. Our results show that LIBS is sensitive to minor compositional changes with depth and correctly identifies rock type even if the series of laser pulses does not penetrate to unweathered material.

  2. A nonlinearized multivariate dominant factor-based partial least squares (PLS) model for coal analysis by using laser-induced breakdown spectroscopy.

    PubMed

    Feng, Jie; Wang, Zhe; Li, Lizhi; Li, Zheng; Ni, Weidou

    2013-03-01

    A nonlinearized multivariate dominant factor-based partial least-squares (PLS) model was applied to coal elemental concentration measurement. For C concentration determination in bituminous coal, the intensities of multiple characteristic lines of the main elements in coal were applied to construct a comprehensive dominant factor that would provide main concentration results. A secondary PLS thereafter applied would further correct the model results by using the entire spectral information. In the dominant factor extraction, nonlinear transformation of line intensities (based on physical mechanisms) was embedded in the linear PLS to describe nonlinear self-absorption and inter-element interference more effectively and accurately. According to the empirical expression of self-absorption and Taylor expansion, nonlinear transformations of atomic and ionic line intensities of C were utilized to model self-absorption. Then, the line intensities of other elements, O and N, were taken into account for inter-element interference, considering the possible recombination of C with O and N particles. The specialty of coal analysis by using laser-induced breakdown spectroscopy (LIBS) was also discussed and considered in the multivariate dominant factor construction. The proposed model achieved a much better prediction performance than conventional PLS. Compared with our previous, already improved dominant factor-based PLS model, the present PLS model obtained the same calibration quality while decreasing the root mean square error of prediction (RMSEP) from 4.47 to 3.77%. Furthermore, with the leave-one-out cross-validation and L-curve methods, which avoid the overfitting issue in determining the number of principal components instead of minimum RMSEP criteria, the present PLS model also showed better performance for different splits of calibration and prediction samples, proving the robustness of the present PLS model.

  3. Determination of inorganic nutrients in wheat flour by laser-induced breakdown spectroscopy and energy dispersive X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Peruchi, Lidiane Cristina; Nunes, Lidiane Cristina; de Carvalho, Gabriel Gustinelli Arantes; Guerra, Marcelo Braga Bueno; de Almeida, Eduardo; Rufini, Iolanda Aparecida; Santos, Dário; Krug, Francisco José

    2014-10-01

    Laser-induced breakdown spectroscopy (LIBS) and energy dispersive X-ray fluorescence spectrometry (EDXRF) were evaluated for the determination of P, K, Ca, Mg, S, Fe, Cu, Mn and Zn in pressed pellets of wheat flours. EDXRF and LIBS calibration models were built with analytes mass fractions determined by inductively coupled plasma optical emission spectrometry after microwave-assisted acid digestion in a set of 25 wheat flour laboratory samples. Test samples consisted of pressed pellets prepared from wheat flour mixed with 30% mm- 1 cellulose binder. Experiments were carried out with a LIBS setup consisted of a Q-switched Nd:YAG laser and a spectrometer with Echelle optics and ICCD, and a benchtop EDXRF system fitted with a Rh target X-ray tube and a Si(Li) semiconductor detector. The correlation coefficients from the linear calibration models of P, K, Ca, Mg, S, Fe, Mn and Zn determined by LIBS and/or EDXRF varied from 0.9705 for Zn to 0.9990 for Mg by LIBS, and from 0.9306 for S to 0.9974 for K by EDXRF. The coefficients of variation of measurements varied from 1.2 to 20% for LIBS, and from 0.3 to 24% for EDXRF. The predictive capabilities based on RMSEP (root mean square error of prediction) values were appropriate for the determination of P, Ca, Mg, Fe, Mn and Zn by LIBS, and for P, K, S, Ca, Fe, and Zn by EDXRF. In general, results from the analysis of NIST SRM 1567a Wheat flour by LIBS and EDXRF were in agreement with their certified mass fractions.

  4. Charge Transfer Reactions Induce Born-Oppenheimer Breakdown in Surface Chemistry: Applications of Double Resonance Spectroscopy in Molecule-Surface Scattering

    NASA Astrophysics Data System (ADS)

    Wodtke, Alec M.

    2013-06-01

    Atomic and molecular interactions constitute a many-body quantum problem governed fundamentally only by the Coulomb forces between many electrons and nuclei. While simple to state, computers are simply not fast enough to solve this problem by brute force, except for the simplest examples. Combining the Born-Oppenheimer Approximation (BOA) with Density Functional Theory (DFT), however, allows theoretical simulations of extraordinarily complex chemical systems including molecular interactions at solid metal surfaces, the physical basis of surface chemistry. This lecture describes experiments demonstrating the limits of the BOA/DFT approximation as it relates to molecules interacting with solid metal surfaces. One of the most powerful experimental tools at our disposal is a form of double resonance spectroscopy, which allows us to define the quantum state of the molecule both before and after the collision with the surface, providing a complete picture of the resulting energy conversion processes. With such data, we are able to emphasize quantitative measurements that can be directly compared to first principles theories that go beyond the Born-Oppenheimer approximation. One important outcome of this work is the realization that Born-Oppenheimer breakdown can be induced by simple charge transfer reactions that are common in surface chemistry. J. D. White, J. Chen, D. Matsiev, D. J. Auerbach and A. M. Wodtke Nature {433}(7025), 503-505 (2005) Y. H. Huang, C. T. Rettner, D. J. Auerbach and A. M. Wodtke Science {290}(5489), 111-114 (2000) R. Cooper, I. Rahinov, Z. S. Li, D. Matsiev, D. J. Auerbach and A. M. Wodtke Chemical Science {1}(1), 55-61 (2010) J. Larue, T. Schäfer, D. Matsiev, L. Velarde, N. H. Nahler, D. J. Auerbach and A. M. Wodtke PCCP {13}(1), 97-99 (2011).

  5. Matrix effect of sodium compounds on the determination of metal ions in aqueous solutions by underwater laser-induced breakdown spectroscopy

    DOE PAGES

    Goueguel, Christian; McIntyre, Dustin L.; Jain, Jinesh; ...

    2015-06-30

    A significant portion of the carbon sequestration research being performed in the United States involves the risk assessment of injecting large quantities of carbon dioxide into deep saline aquifers. Leakage of CO2 has the potential to affect the quality of groundwater supplies in case contaminants migrate through underlying conduits. New remote sensing and near-surface monitoring technologies are needed to ensure that injection, abandoned, and monitoring wells are structurally sound, and that CO2 remains within the geologic storage reservoir. In this paper, we propose underwater laser-induced breakdown spectroscopy (underwater LIBS) as an analytical method for monitoring naturally occurring elements that canmore » act as tracers to detect a CO2 leak from storage sites. Laboratory-scale experiments were conducted to measure Sr2+, Ca2+, K+, and Li+ in bulk solutions to ascertain the analytical performance of underwater LIBS. We compared the effect of NaCl, Na2CO3, and Na2SO4 on the analytes calibration curves to determine underwater LIBS’ ability to analyze samples of sodium compounds. In all cases, the calibration curves showed a good linearity within 2 orders of magnitude. The limit of detections (LODs) obtained for K+ (30±1 ppb) and Li+ (60±2 ppb) were in ppb range, while higher LODs were observed for Ca2+ (0.94±0.14 ppm) and Sr2+ (2.89±0.11 ppm). Evaluation of the calibration curves for the analytes in mixed solutions showed dependence of the lines’ intensity with the sodium compounds. The intensities increased respectively in the presence of dissolved NaCl and Na2SO4, whereas the intensities slightly decreased in the presence of Na2CO3. Lastly, the capabilities of underwater LIBS to detect certain elements in the ppb or in the low ppm range make it particularly appealing for in situ monitoring of a CO2 leak.« less

  6. In vivo absorption spectroscopy for absolute measurement.

    PubMed

    Furukawa, Hiromitsu; Fukuda, Takashi

    2012-10-01

    In in vivo spectroscopy, there are differences between individual subjects in parameters such as tissue scattering and sample concentration. We propose a method that can provide the absolute value of a particular substance concentration, independent of these individual differences. Thus, it is not necessary to use the typical statistical calibration curve, which assumes an average level of scattering and an averaged concentration over individual subjects. This method is expected to greatly reduce the difficulties encountered during in vivo measurements. As an example, for in vivo absorption spectroscopy, the method was applied to the reflectance measurement in retinal vessels to monitor their oxygen saturation levels. This method was then validated by applying it to the tissue phantom under a variety of absorbance values and scattering efficiencies.

  7. Measurement of elemental concentration of aerosols using spark emission spectroscopy.

    PubMed

    Diwakar, Prasoon K; Kulkarni, Pramod

    A coaxial microelectrode system has been used to collect and analyse the elemental composition of aerosol particles in near real-time using spark emission spectroscopy. The technique involves focused electrostatic deposition of charged aerosol particles onto the flat tip of a microelectrode, followed by introduction of spark discharge. A pulsed spark discharge was generated across the electrodes with input energy ranging from 50 to 300 mJ per pulse, resulting in the formation of controlled pulsed plasma. The particulate matter on the cathode tip is ablated and atomized by the spark plasma, resulting in atomic emissions which are subsequently recorded using a broadband optical spectrometer for element identification and quantification. The plasma characteristics were found to be very consistent and reproducible even after several thousands of spark discharges using the same electrode system. The spark plasma was characterized by measuring the excitation temperature (~7000 to 10 000 K), electron density (~10(16) cm(-3)), and evolution of spectral responses as a function of time. The system was calibrated using particles containing Pb, Si, Na and Cr. Absolute mass detection limits in the range 11 pg to 1.75 ng were obtained. Repeatability of spectral measurements varied from 2 to 15%. The technique offers key advantages over similar microplasma-based techniques such as laser-induced breakdown spectroscopy, as: (i) it does not require any laser beam optics and eliminates any need for beam alignment, (ii) pulse energy from dc power supply in SIBS system can be much higher compared to that from laser source of the same physical size, and (iii) it is quite conducive to compact, field-portable instrumentation.

  8. Enhancement of laser-induced breakdown spectroscopy (LIBS) Detection limit using a low-pressure and short-pulse laser-induced plasma process.

    PubMed

    Wang, Zhen Zhen; Deguchi, Yoshihiro; Kuwahara, Masakazu; Yan, Jun Jie; Liu, Ji Ping

    2013-11-01

    Laser-induced breakdown spectroscopy (LIBS) technology is an appealing technique compared with many other types of elemental analysis because of the fast response, high sensitivity, real-time, and noncontact features. One of the challenging targets of LIBS is the enhancement of the detection limit. In this study, the detection limit of gas-phase LIBS analysis has been improved by controlling the pressure and laser pulse width. In order to verify this method, low-pressure gas plasma was induced using nanosecond and picosecond lasers. The method was applied to the detection of Hg. The emission intensity ratio of the Hg atom to NO (IHg/INO) was analyzed to evaluate the LIBS detection limit because the NO emission (interference signal) was formed during the plasma generation and cooling process of N2 and O2 in the air. It was demonstrated that the enhancement of IHg/INO arose by decreasing the pressure to a few kilopascals, and the IHg/INO of the picosecond breakdown was always much higher than that of the nanosecond breakdown at low buffer gas pressure. Enhancement of IHg/INO increased more than 10 times at 700 Pa using picosecond laser with 35 ps pulse width. The detection limit was enhanced to 0.03 ppm (parts per million). We also saw that the spectra from the center and edge parts of plasma showed different features. Comparing the central spectra with the edge spectra, IHg/INO of the edge spectra was higher than that of the central spectra using the picosecond laser breakdown process.

  9. Time-resolved spectroscopy measurements of hydrogen-alpha, -beta, and -gamma emissions

    SciTech Connect

    Parigger, Christian G.; Dackman, Matthew; Hornkohl, James O

    2008-11-01

    Hydrogen emission spectroscopy results are reported following laser-induced optical breakdown with infrared Nd:YAG laser radiation focused into a pulsed methane flow. Measurements of Stark-broadened atomic hydrogen-alpha, -beta, and -gamma lines show electron number densities of 0.3 to 4x10{sup 17} cm{sup -3} for time delays of 2.1 to 0.4 {mu}s after laser-induced optical breakdown. In methane flow, recombination molecular spectra of the {delta}{nu}=+2 progression of the C2 Swan system are discernable in the H{beta} and H{gamma} plasma emissions within the first few microseconds. The recorded atomic spectra indicate the occurrence of hydrogen self-absorption for pulsed CH4 flow pressures of 2.7x10{sup 5} Pa (25 psig) and 6.5x10{sup 5} Pa (80 psig)

  10. Development and Testing of Laser-induced Breakdown Spectroscopy for the Mars Rover Program: Elemental Analyses at Stand-Off Distances

    NASA Technical Reports Server (NTRS)

    Cremers, D. A.; Wiens, R. C.; Arp, Z. A.; Harris, R. D.; Maurice, S.

    2003-01-01

    One of the most fundamental pieces of information about any planetary body is the elemental composition of its surface materials. The Viking Martian landers employed XRF (x-ray fluorescence) and the MER rovers are carrying APXS (alpha-proton x-ray spectrometer) instruments upgraded from that used on the Pathfinder rover to supply elemental composition information for soils and rocks to which direct contact is possible. These in- situ analyses require that the lander or rover be in contact with the sample. In addition to in-situ instrumentation, the present generation of rovers carry instruments that operate at stand-off distances. The Mini-TES is an example of a stand-off instrument on the MER rovers. Other examples for future missions include infrared point spectrometers and microscopic-imagers that can operate at a distance. The main advantage of such types of analyses is obvious: the sensing element does not need to be in contact or even adjacent to the target sample. This opens up new sensing capabilities. For example, targets that cannot be reached by a rover due to impassable terrain or targets positioned on a cliff face can now be accessed using stand-off analysis. In addition, the duty cycle of stand-off analysis can be much greater than that provided by in-situ measurements because the stand-off analysis probe can be aimed rapidly at different features of interest eliminating the need for the rover to actually move to the target. Over the past five years we have been developing a stand-off method of elemental analysis based on atomic emission spectroscopy called laser-induced breakdown spectroscopy (LIBS). A laser-produced spark vaporizes and excites the target material, the elements of which emit at characteristic wavelengths. Using this method, material can be analyzed from within a radius of several tens of meters from the instrument platform. A relatively large area can therefore be sampled from a simple lander without requiring a rover or sampling

  11. Relative Determination of Micronutrients of Different Species of Teff (Eragrestis) Seeds of Ethiopia Origin by Calibration Free Laser Induced Breakdown Spectroscopy Technique

    NASA Astrophysics Data System (ADS)

    Mamo, Dilbetigle Assefa; Chaubey, Ashok K.

    2014-03-01

    The laser-induced breakdown spectroscopy technique has been used to analysis the multi-component of three different species of Teff seeds (Red, White and Sirgegna) of Ethiopia origin using a second harmonic (532 nm) of a nanosecond Q-switched Nd: YAG laser focused on the surface of the pelletized powder of Teff seed. Based on the idea of the plasma is homogeneous. The seven essential micronutrients in three species of Teff seeds are identified carbon as a matrix element. Electron density and plasma temperature are calculated applying Saha-Boltzmann equation and Boltzmann plot method. And making use of the semi-quantitative method the three species relative concentrations of (Ca, Mg, Al, Si, Mn, Fe and K) are obtained using Calibration Free Laser Induced Breakdown Spectroscopy (CF-LIBS) technique. The result demonstrated that the relative concentrations of the some elements in the species are different. In Red Teff species Ca is more, but Mg is least. On the contrary Mg is high in Sirgegna and White Teff as compared to Red Teff. And High content of Calcium, Magnesium and Iron micronutrients are found in the three species.

  12. Laser-induced breakdown spectroscopy with multi-kHz fibre laser for mobile metal analysis tasks — A comparison of different analysis methods and with a mobile spark-discharge optical emission spectroscopy apparatus

    NASA Astrophysics Data System (ADS)

    Scharun, Michael; Fricke-Begemann, Cord; Noll, Reinhard

    2013-09-01

    The identification and separation of different alloys are a permanent task of crucial importance in the metal recycling industry. Laser-induced breakdown spectroscopy (LIBS) offers important advantages in comparison to the state-of-the-art techniques for this application. For LIBS measurement no additional sample preparation is necessary. The overall analysis time is much smaller than for the state-of-the-art techniques. The LIBS setup presented in this study enables mobile operation with a handheld probe for the analysis of metallic materials. Excitation source is a fibre laser with a repetition rate of 30 kHz and a pulse energy of 1.33 mJ. The compact optical setup allows measurements at almost every point of a sample within 5 ms. The generated plasma light is analysed using a Multi-CCD spectrometer. The broad spectral coverage and high resolution provide an outstanding amount of spectroscopic information thereby enabling a variety of calibration approaches. Using a set of Al-based and a set of Fe-based samples the analytical performance of uni- and multivariate calibrations is evaluated. The same sample sets are analysed with a commercial state-of-the-art spark-discharge optical emission spectrometer allowing an assessment of the achieved results. Even though the possible analytical correctness of the fibre laser based LIBS measurements is found to similar or even better than that of the conventional technique, advantages of the multivariate data evaluation have not yet been realised in the investigations. However, due to the in situ sample preparation and short measurement times, fibre-laser based LIBS offers superior features.

  13. Laser-Induced Breakdown Spectroscopy for Detection of Explosives Residues: A Review of Recent Advances, Challenges, and Future Prospects

    DTIC Science & Technology

    2013-04-01

    were also very different at the two wavelengths. They attributed these differences to the increase in inverse bremsstrahlung absorption by the plasma at...the laser (at the target). Infrared lasers (e.g. 1064 nm) are particularly hazardous, because the blink reflex response is triggered only by visible... inverse square law. Breakdown of the focused laser beam on particulates in the path of the standoff laser may occur near the intended target at high peak

  14. Measuring the Photocatalytic Breakdown of Crystal Violet Dye using a Light Emitting Diode Approach

    NASA Technical Reports Server (NTRS)

    Ryan, Robert E.; Underwood, Lauren W.; O'Neal, Duane; Pagnutti, Mary; Davis, Bruce A.

    2009-01-01

    A simple method to estimate the photocatalytic reactivity performance of spray-on titanium dioxide coatings for transmissive glass surfaces was developed. This novel technique provides a standardized method to evaluate the efficiency of photocatalytic material systems over a variety of illumination levels. To date, photocatalysis assessments have generally been conducted using mercury black light lamps. Illumination levels for these types of lamps are difficult to vary, consequently limiting their use for assessing material performance under a diverse range of simulated environmental conditions. This new technique uses an ultraviolet (UV) gallium nitride (GaN) light emitting diode (LED) array instead of a traditional black light to initiate and sustain photocatalytic breakdown. This method was tested with a UV-resistant dye (crystal violet) applied to a titanium dioxide coated glass slide. Experimental control is accomplished by applying crystal violet to both titanium dioxide coated slides and uncoated control slides. A slide is illuminated by the UV LED array, at various light levels representative of outdoor and indoor conditions, from the dye side of the slide. To monitor degradation of the dye over time, a temperature-stabilized white light LED, whose emission spectrum overlaps with the dye absorption spectrum, is used to illuminate the opposite side of the slide. Using a spectrometer, the amount of light from the white light LED transmitted through the slide as the dye degrades is monitored as a function of wavelength and time and is subsequently analyzed. In this way, the rate of degradation for photocatalytically coated versus uncoated slide surfaces can be compared. Results demonstrate that the dye absorption decreased much more rapidly on the photocatalytically coated slides than on the control uncoated slides, and that dye degradation is dependent on illumination level. For photocatalytic activity assessment purposes, this experimental configuration and

  15. Laser-induced carbon plasma emission spectroscopic measurements on solid targets and in gas-phase optical breakdown

    SciTech Connect

    Nemes, Laszlo; Keszler, Anna M.; Hornkohl, James O.; Parigger, Christian

    2005-06-20

    We report measurements of time- and spatially averaged spontaneous-emission spectra following laser-induced breakdown on a solid graphite/ambient gas interface and on solid graphite in vacuum, and also emission spectra from gas-phase optical breakdown in allene C3H4 and helium, and in CO2 and helium mixtures. These emission spectra were dominated by CII (singly ionized carbon), CIII (doubly ionized carbon), hydrogen Balmer beta (H{sub b}eta), and Swan C2 band features. Using the local thermodynamic equilibrium and thin plasma assumptions, we derived electron number density and electron temperature estimates. The former was in the 1016 cm{sup -3} range, while the latter was found to be near 20000 K. In addition, the vibration-rotation temperature of the Swan bands of the C2 radical was determined to be between 4500 and 7000 K, using an exact theoretical model for simulating diatomic emission spectra. This temperature range is probably caused by the spatial inhomogeneity of the laser-induced plasma plume. Differences are pointed out in the role of ambient CO2 in a solid graphite target and in gas-phase breakdown plasma.

  16. Direct determination of Ti content in sunscreens with laser-induced breakdown spectroscopy: Line selection method for high TiO2 nanoparticle concentration

    NASA Astrophysics Data System (ADS)

    Menneveux, Jérôme; Wang, Fang; Lu, Shan; Bai, Xueshi; Motto-Ros, Vincent; Gilon, Nicole; Chen, Yanping; Yu, Jin

    2015-07-01

    Sunscreen represents a large variety of creams which, in the analytical point of view, exhibit a similar matrix. Such matrix corresponds to a semi-solid emulsion of mixture of oil and water. The formulation of a cream can include metal and nonmetal elements in different contents in order to realize specific pharmaceutical or cosmetic functions designed for the product. The complex matrix of these materials makes their analysis challenging for classical elemental analytical techniques with specific and complicated sample pretreatment procedures needed for reliable quantification. In this work we demonstrate and assess direct determination, without any pretreatment, of elemental content, especially for metallic element such as titanium, in a sunscreen using laser-induced breakdown spectroscopy (LIBS). The used configuration corresponds to that of indirect ablation of a thin film of cream applied on the surface of a pure aluminum target. We especially focused, in this work, on the case of high concentration of TiO2 nanoparticle in cream. Such choice was justified first by the fact that such concentration level is usually found in commercial sunscreens. On the other hand, titanium presents a large number of lines, neutral as well as singly ionized, in the spectral range from the near UV to the near IR. It provides therefore an ideal case to study line selection method to manage the effect of self-absorption, which becomes unavoidable at high concentration level, and to optimize measurement precision. Through such study, we try to deduce a quantifiable and generalizable line selection method for high performance LIBS measurements. More specifically, calibration curves were first established using 6 laboratory-prepared samples. The quadratic term of the curves was then studied as a function of the intensity of the used lines and their type (neutral or ion, resonant or non-resonant). The prediction performance of the lines was assessed with 2 validation samples with

  17. Non-adiabatic effects in thermochemistry, spectroscopy and kinetics: the general importance of all three Born-Oppenheimer breakdown corrections.

    PubMed

    Reimers, Jeffrey R; McKemmish, Laura K; McKen