46 CFR 7.35 - Sandy Hook, NJ to Cape May, NJ.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Breakwater Light “2” to Shark River Inlet South Breakwater Light “1”. (b) A line drawn from Manasquan Inlet North Breakwater Light to Manasquan Inlet South Breakwater Light. (c) A line drawn along the submerged... Light “5”; thence along the submerged Barnegat Inlet South Breakwater to shore. (d) A line drawn from...
46 CFR 7.35 - Sandy Hook, NJ to Cape May, NJ.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Breakwater Light “2” to Shark River Inlet South Breakwater Light “1”. (b) A line drawn from Manasquan Inlet North Breakwater Light to Manasquan Inlet South Breakwater Light. (c) A line drawn along the submerged... Light “5”; thence along the submerged Barnegat Inlet South Breakwater to shore. (d) A line drawn from...
46 CFR 7.35 - Sandy Hook, NJ to Cape May, NJ.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Breakwater Light “2” to Shark River Inlet South Breakwater Light “1”. (b) A line drawn from Manasquan Inlet North Breakwater Light to Manasquan Inlet South Breakwater Light. (c) A line drawn along the submerged... Light “5”; thence along the submerged Barnegat Inlet South Breakwater to shore. (d) A line drawn from...
46 CFR 7.35 - Sandy Hook, NJ to Cape May, NJ.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Breakwater Light “2” to Shark River Inlet South Breakwater Light “1”. (b) A line drawn from Manasquan Inlet North Breakwater Light to Manasquan Inlet South Breakwater Light. (c) A line drawn along the submerged... Light “5”; thence along the submerged Barnegat Inlet South Breakwater to shore. (d) A line drawn from...
15. Photo copy of drawing, June 2, 1985, SAYBROOK BREAKWATER ...
15. Photo copy of drawing, June 2, 1985, SAYBROOK BREAKWATER LIGHT, SAYBROOK, CONNECTICUT, MODERNIZATION 1985: REMOVALS. U.S. Coast Guard Civil Engineering Unit, Warwick, RI - Saybrook Breakwater Light, South tip of west end of Saybrook Breakwater, Old Saybrook, Middlesex County, CT
NASA Astrophysics Data System (ADS)
Binumol, S.; Rao, Subba; Hegde, Arkal Vittal
2017-09-01
Breakwaters are one of the most important harbour structures constructed to withstand and dissipate the dynamic energy due to the action of the waves. Due to fast growing need of the universe and advances in technology different types of breakwaters are being developed. Quarter circle breakwater is a new type of breakwater emerged from semi circular breakwater and the first model was developed in Peoples Republic of China (2006). Quarter circle breakwater with perforations posses merits of caisson as well as perforated breakwaters such as low weight, requires less materials, suited for poor soil conditions, easily transported, handled and placed at the site, aesthetically pleasing, cost effective, eco-friendly and stable. Therefore it is necessary to carry out detailed studies on hydrodynamic characteristics to investigate the suitability and applicability of various types of quarter circle breakwaters. The present study investigates the wave reflection and loss characteristics of an emerged seaside perforated quarter circle breakwater of radius 55 cm and with varying ratios of spacing to diameter of perforations, for different water depths and wave conditions. The tests were conducted in the two-dimensional monochromatic wave flume available in Marine Structures laboratory of Department of Applied Mechanics and Hydraulics of National Institute of Technology, Surathkal, Karnataka, India. The results were plotted as non-dimensional graphs and it was observed that the reflection coefficient increases with increase in wave steepness for all values of ratio of height of breakwater structure to water depth. For a constant water depth, wave reflection increases with increase in ratio of spacing to diameter of perforations. It was also found that the loss coefficient decreases with increase in wave steepness for all values of ratio of height of breakwater structure to water depth, and ratio of spacing to diameter of perforations.
Analysis of Oblique Wave Interaction with a Comb-Type Caisson Breakwater
NASA Astrophysics Data System (ADS)
Wang, Xinyu; Liu, Yong; Liang, Bingchen
2018-04-01
This study develops an analytical solution for oblique wave interaction with a comb-type caisson breakwater based on linear potential theory. The fluid domain is divided into inner and outer regions according to the geometrical shape of breakwater. By using periodic boundary condition and separation of variables, series solutions of velocity potentials in inner and outer regions are developed. Unknown expansion coefficients in series solutions are determined by matching velocity and pressure of continuous conditions on the interface between two regions. Then, hydrodynamic quantities involving reflection coefficients and wave forces acting on breakwater are estimated. Analytical solution is validated by a multi-domain boundary element method solution for the present problem. Diffusion reflection due to periodic variations in breakwater shape and corresponding surface elevations around the breakwater are analyzed. Numerical examples are also presented to examine effects of caisson parameters on total wave forces acting on caissons and total wave forces acting on side plates. Compared with a traditional vertical wall breakwater, the wave force acting on a suitably designed comb-type caisson breakwater can be significantly reduced. This study can give a better understanding of the hydrodynamic performance of comb-type caisson breakwaters.
1981-08-01
rubble- mound breakwater ......................... . ... 66 Ŗ-6 Statistics and costs for nylon-sandbag breakwater ...... ................... .... 68 2-7...64 2-16 Rubble- mound and concrete-box breakwater sections ........... .................... 65 2-17...a series of low, fixed offshore breakwaters utilizing three structural devices: rubble mound , nylon sandbags, and precast concrete boxes, as shown in
Ecological value of submerged breakwaters for habitat enhancement on a residential scale.
Scyphers, Steven B; Powers, Sean P; Heck, Kenneth L
2015-02-01
Estuarine shorelines have been degraded since humans arrived in the coastal zone. In recent history, a major cause of habitat degradation has been the armoring of shorelines with vertical walls to protect property from erosive wave energy; however, a lack of practical alternatives that maintain or enhance ecological function has limited the options of waterfront residents and coastal zone managers. We experimentally investigated the habitat value of two configurations of submerged breakwaters constructed along an eroding shoreline in northwest Mobile Bay, AL (USA). Breakwaters comprised of bagged oyster shell or Reef Ball™ concrete domes were built by a community-based restoration effort. Post-deployment monitoring found that: bagged oyster breakwaters supported much higher densities of live ribbed mussels than Reef Ball breakwaters; both breakwater configurations supported increased species richness of juvenile and smaller fishes compared to controls; and that larger fishes did not appear to be affected by breakwater presence. Our study demonstrates that ecologically degraded shorelines can be augmented with small-scale breakwaters at reasonable cost and that these complex structures can serve as habitat for filter-feeding bivalves, mobile invertebrates, and young fishes. Understanding the degree to which these structures mitigate erosive wave energy and protect uplands will require a longer time frame than our 2-year-long study.
NASA Astrophysics Data System (ADS)
Gu, Linlin; Zhang, Feng; Bao, Xiaohua; Shi, Zhenming; Ye, Guanlin; Ling, Xianzhang
2018-04-01
A large number of breakwaters have been constructed along coasts to protect humans and infrastructures from tsunamis. There is a risk that foundation soils of these structures may liquefy, or partially liquefy during the earthquake preceding a tsunami, which would greatly reduce the structures' capacity to resist the tsunami. It is necessary to consider not only the soil's liquefaction behavior due to earthquake motions but also its post-liquefaction behavior because this behavior will affect the breakwater's capacity to resist an incoming tsunami. In this study, numerical tests based on a sophisticated constitutive model and a soil-water coupled finite element method are used to predict the mechanical behavior of breakwaters and the surrounding soils. Two real breakwaters subjected to two different seismic excitations are examined through numerical simulation. The simulation results show that, earthquakes affect not only the immediate behavior of breakwaters and the surrounding soils but also their long-term settlements due to post-earthquake consolidation. A soil profile with thick clayey layers beneath liquefied soil is more vulnerable to tsunami than a soil profile with only sandy layers. Therefore, quantitatively evaluating the seismic behavior of breakwaters and surrounding soils is important for the design of breakwater structures to resist tsunamis.
Detached breakwaters: communities' preferences for sustainable coastal protection.
Saengsupavanich, Cherdvong
2013-01-30
Detached breakwaters have been implemented for coastal protection. As society evolves and community livelihood has been acknowledged as an ingredient for sustainable coastal development, the breakwaters must do more than just dissipate wave forces. Using detached breakwaters in Nakhon Si Thammarat province, Thailand as a case study, this research provides empirical proof of such a concept. Interviewing coastal communities who have lived with the breakwaters revealed numerous expectations. Since each community's requirement might be entangled with other functions and incur more costs, coastal engineers had to prioritize preferences. Seven breakwater scenarios were synthesized based on the interview results. For each scenario, the shoreline position was simulated using calibrated LITPACK software, the construction cost was estimated, and a set of illustrations was drawn in order to standardize respondents' perceptions. An analytical hierarchical process (AHP) was applied. The AHP results suggested that the preferred breakwater scenarios were those that promoted the existing ways of life. Other aspects such as construction practice, environmental, and social aspects should also be thoroughly considered. Copyright © 2012 Elsevier Ltd. All rights reserved.
Spud Point Marina Breakwater, Bodega Bay, Sonoma County, California.
1991-07-01
AD-A240 319 ~ MONITORING COMPLETED COASTAL PROJECTS PROGRAM MISCELLANEOUS PAPER CERC-91-5 0SPUD POINT MARINA BREAKWATER, BODEGA BAY SONOMA COUNTY , CALIFORNIA...SUBTITLE S. FUNDING NUMBERS Spud Point Marina Breakwater, Bodega Bay, Sonoma County , WU 22123 California 6. AUTHOR(S) Jonathan W. Lott 7. PERFORMING...of the harbor are also shown. The marina docks and shoreside facilities are oper- ated by Sonoma County . The breakwater and access channel are main
On the tsunami wave-submerged breakwater interaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filianoti, P.; Piscopo, R.
The tsunami wave loads on a submerged rigid breakwater are inertial. It is the result arising from the simple calculation method here proposed, and it is confirmed by the comparison with results obtained by other researchers. The method is based on the estimate of the speed drop of the tsunami wave passing over the breakwater. The calculation is rigorous for a sinusoidal wave interacting with a rigid submerged obstacle, in the framework of the linear wave theory. This new approach gives a useful and simple tool for estimating tsunami loads on submerged breakwaters.An unexpected novelty come out from a workedmore » example: assuming the same wave height, storm waves are more dangerous than tsunami waves, for the safety against sliding of submerged breakwaters.« less
Field Experiences with Floating Breakwaters in the Eastern United States.
1982-07-01
Island Yacht Club Ocean Avenue Cranston, RI 02905 Coweset Marina 100 Folly l.anding Warwick, RI 02886 John Dicke rson Apponiaug I la rho r ’a r ITn; 21...tire breakwater Wave suppre-ssion 20. AWNrACT r e(theu a en m s if neo and Identyf by block nutmbo) In the past 10 years, the use of floating breakwat...ers A; t’mpo r ;ll’N1 lt .1 structures has become increasingly widespread in the United St:ites ’I, In inilt’\\ pensive means for suppressing waves
Terrestrial laser scanning for geometry extraction and change monitoring of rubble mound breakwaters
NASA Astrophysics Data System (ADS)
Puente, I.; Lindenbergh, R.; González-Jorge, H.; Arias, P.
2014-05-01
Rubble mound breakwaters are coastal defense structures that protect harbors and beaches from the impacts of both littoral drift and storm waves. They occasionally break, leading to catastrophic damage to surrounding human populations and resulting in huge economic and environmental losses. Ensuring their stability is considered to be of vital importance and the major reason for setting up breakwater monitoring systems. Terrestrial laser scanning has been recognized as a monitoring technique of existing infrastructures. Its capability for measuring large amounts of accurate points in a short period of time is also well proven. In this paper we first introduce a method for the automatic extraction of face geometry of concrete cubic blocks, as typically used in breakwaters. Point clouds are segmented based on their orientation and location. Then we compare corresponding cuboids of three co-registered point clouds to estimate their transformation parameters over time. The first method is demonstrated on scan data from the Baiona breakwater (Spain) while the change detection is demonstrated on repeated scan data of concrete bricks, where the changing scenario was simulated. The application of the presented methodology has verified its effectiveness for outlining the 3D breakwater units and analyzing their changes at the millimeter level. Breakwater management activities could benefit from this initial version of the method in order to improve their productivity.
33 CFR 207.480 - Lake Huron, Mich.; Harbor of refuge, Harbor Beach; use and navigation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... at the time. (c) The use of chains in making fast to the breakwater will not be permitted. Lines must... floating property making fast to the breakwater must at once place such fenders between themselves and the... piece of floating property made fast to the breakwater, or anchored in the harbor, must keep outboard...
33 CFR 207.480 - Lake Huron, Mich.; Harbor of refuge, Harbor Beach; use and navigation.
Code of Federal Regulations, 2012 CFR
2012-07-01
... at the time. (c) The use of chains in making fast to the breakwater will not be permitted. Lines must... floating property making fast to the breakwater must at once place such fenders between themselves and the... piece of floating property made fast to the breakwater, or anchored in the harbor, must keep outboard...
33 CFR 207.480 - Lake Huron, Mich.; Harbor of refuge, Harbor Beach; use and navigation.
Code of Federal Regulations, 2013 CFR
2013-07-01
... at the time. (c) The use of chains in making fast to the breakwater will not be permitted. Lines must... floating property making fast to the breakwater must at once place such fenders between themselves and the... piece of floating property made fast to the breakwater, or anchored in the harbor, must keep outboard...
33 CFR 207.480 - Lake Huron, Mich.; Harbor of refuge, Harbor Beach; use and navigation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... at the time. (c) The use of chains in making fast to the breakwater will not be permitted. Lines must... floating property making fast to the breakwater must at once place such fenders between themselves and the... piece of floating property made fast to the breakwater, or anchored in the harbor, must keep outboard...
33 CFR 207.480 - Lake Huron, Mich.; Harbor of refuge, Harbor Beach; use and navigation.
Code of Federal Regulations, 2014 CFR
2014-07-01
... at the time. (c) The use of chains in making fast to the breakwater will not be permitted. Lines must... floating property making fast to the breakwater must at once place such fenders between themselves and the... piece of floating property made fast to the breakwater, or anchored in the harbor, must keep outboard...
Coastal Response, a system of detached breakwaters
NASA Astrophysics Data System (ADS)
García Ortiz, Isabelo; Negro Valdecantos, Vicente; Santos López, Jose; Esteban, María Dolores
2017-04-01
The coastline's sedimentary response in the form of a tombolo or semi-tombolo (salient) as a result of the construction of detached breakwaters is an aspect that should be known in the design phase so that these marine structures may be properly designed. In achieving an ecological, social and economic value, such areas must also be properly managed. All design methods in existence since Dean (1978) are mainly based on hypotheses formulated from geometric studies on existing formations. No relationship at all is established with climate and littoral dynamics typical of the location (only Suh and Darlymple (1987) and the Japanese Ministry of Construction (1986) present relationships depending on wave variables). Neither has the influence on systems with more than two breakwaters been studied. These methods are not fully adapted to the cases existing on the Spanish Mediterranean littoral. The lines of investigation as proposed by L. Bricio and V. Negro (2010) were continued with for this study. These researchers developed a method for dimensioning isolated, detached breakwaters and their semi-tombolo or tombolo associated formations using all the characteristics of the site (energy, geometric and structural), specific climate and geomorphology and littoral dynamics' characteristics. This methodology is currently acknowledged and accepted in works undertaken on the Spanish Mediterranean littoral. A linear regression was obtained in the investigation undertaken on the 18 detached breakwater systems along the whole of the 1670 km of the Spanish Mediterranean littoral using the proposals made by L. Bricio and V. Negro. The adjustment of R2 ≥ 0.90 was used for the sandy, tombolo formations behind all the detached breakwater systems between several non-dimensional monomials displaying the most representative characteristics of the site. L/H12 + (2ṡB)/G =12,15ṡ(X/Xc)+7,3231 X: Distance of breakwaters from coastline Xc: Distance from coastline where the closure depth is reached L: Wave length in average statistical regime at foot of breakwater depth H12: Significant wave height only surpassed or exceeded twelve hours a year in average statistical regime B: Length of breakwater G: Distance between breakwaters On being adapted to all cases on the Spanish littoral, this expression proves that tombolo formations are minimally affected by the existence of more than two breakwaters. However, this influence should be even further studied in future investigations requiring the said expression. Climate and structural geometry parameters are therefore related through the expression mentioned in the form of monomials on unconsolidated, moving sediment bottoms. The distance between detached structures will be established on the basis of sustainability and respect for the environment for the circulation and renewal of sheltered water.
1955-05-01
president, Taconite Contractors, Erie. Mining Company, Duluth, Minnesota The model study was conducted in the Hydraulics Division of the Waterways...CORPS OF ENGINEERS. U. S. ARMY WAVE ACTION AND BREAKWATER LOCATION TACONITE HARBOR (TWO ISLANDS) LAKE SUPERIOR, MINNESOTA ARIIIY-MRC VICKSBURG...Breakwater Location, Taconite Harbor (Two Islands), Lake Superior, Minnesota : Hydraulic Model Investigation 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c
Periodic Inspections of Hilo, Kahului, Laupahoehoe, and Nawiliwili Breakwaters, Hawaii
2011-10-01
breakwater. ...................... 99 Figure B9. Sta 26+26, harbor side, New Dolphin and walkway adjacent to breakwater; built 2005...LIDAR data were collected using a fixed wing Twin Otter aircraft outfitted with a scanning, pulsed, infrared (1064) laser ERDC/CHL TR-11-8 8...respectively. The mounted laser transmitter/receiver transmits a laser pulse, which travels to the air-water interface, where some of the energy is
Functional Design of Breakwaters for Shore Protection: Empirical Methods
1990-09-01
prepred by the Principal Investigator of the work unit, Ms. Julie Dean Rosati, Hy1. aulic Engineer, EAU, CSEB. COL Larry B. Fulton, EN, was Commander and...transmissibility, wave climate , etc.), morphologica. beach response may be either a salient or tombolo. Reef breakwaters are a type of detached breakwaters... climate chosen for design (USAED, Buffalo 1975; Pope and Dean 1986), as waves from the northwest were inappropriately weighted. Pope and Dean (1986) 26
NASA Astrophysics Data System (ADS)
Martin-Medina, Manuel; Morichon, Denis; Abadie, Stephane; Le Roy, Sylvestre; Lemoine, Anne
2017-04-01
The Tohoku tsunami, that impacted the Japanese coast in 2011, caused great damages on many offshore vertical breakwaters ranging from the erosion of the rubble mound to the partial displacement or total collapse of caissons. The breakwater failure mechanisms were function of the tsunami wave types that vary along the Japanese coast according to the bathymetry features. The Iwate coast, characterized by deep water depths and steep slopes, was mainly impacted by tsunami overflow leading in particular to the failure of the world's deepest breakwater of Kamaishi. In the shallow waters of the Sendai bay, observations showed that breakwaters protecting harbor entrances were impacted by short waves train resembling to undular bore. This work aims to investigate this latter type of tsunami wave impacts that are less reported in the literature. We chose to focus on the highly damaged offshore breakwater of Soma, located in the south part of the Sendai bay. The hydrodynamics conditions during the tsunami impact are investigated using the VARANS Thetis code (Desombre et al., 2012), which allows to simulate both the free surface flow and the flow inside the rubble mound simulated by a porous medium. The model is forced at the offshore boundaries by the Funwave Boussinesq code that describes the transformation of the tsunami waves from the source to the generation of undular bores in shallow waters. The study includes the computation of forces acting on the caissons. We discuss the relevance of describing the hydrodynamics at the short wave scale to assess breakwater stability in the course of tsunami-like undular bore impact. References Desombre, J., Morichon, D., & Mory, M. (2012). SIMULTANEOUS SURFACE AND SUBSURFACE AIR AND WATER FLOWS MODELLING IN THE SWASH ZONE. Coastal Engineering Proceedings, 1(33), 56.
Manny, Bruce A.; Schloesser, Donald W.; Brown, Charles L.; French, John R. P.
1985-01-01
The investigation reported herein indicated that breakwater construction and associated channel dredging activities by the US Army Corps of Engineers in western Lake Erie at the entrance to West Harbor (Ohio) had no detectable adverse impacts on the distributions or abundances of macrozoobenthos and fishes. Rather, increases were noted in the number of fish eggs and larvae and in the density and biomass of periphyton and macrozoobenthos on and near the breakwaters. The area also served as a nursery ground for 20 species of fishes both during and after construction and dredging activities. Colonization of the breakwaters by periphyton, primarily a green alga (Cladophora glomerata), diatoms (Gomphonema parvulum), and a bluegreen alga (Oscillatoria tenuis), and by macrozoobenthos, primarily worms (Oligochaeta), amphipods (Gammarus spp.), and midge larvae (Chironomidae), was rapid and extensive, indicating that the breakwaters provided new, favorable habitat for primary and secondary producer organisms. Marked adverse changes in water quality, especially reduced dissolved oxygen concentrations (25 mg/l), occurred around the entrance to West Harbor in 1983 following cessation of construction and dredging activities. These water quality changes, however, could not be ascribed with certainty to construction and dredging activities at West Harbor. Construction of additional breakwaters in the study area at that time by the State of Ohio served to confound determination of the responsible causal factors.
NASA Astrophysics Data System (ADS)
Shin, S.; Kim, I.; Hur, D.; Lee, W.; Kim, J.; Lee, J. L.; Lee, H. S.; Kim, H. G.
2016-12-01
The large scale decreasing of beach width in the Anmok beach had occurred due to the coastal erosion caused by the short-term events, such as unexpected high waves and storms. Hence, the city officials decided the installation of hard construction, and the first submerged breakwater, which is a structure that parallels the beach and support as a wave absorber, was constructed on this beach in September 2014. In order to deduce the correlation equation of the transmitted wave heights (TWH) after the breakwater installed, we have observed the transmitted wave height at four sites nearby the breakwater, two wave gauges were mounted on the front side of the breakwater, and the others were placed in the behind side of it. We found that the TWH using the formula suggested by Takayama et al. (1985) for the submerged breakwaters (crown elevation: D.L. (-)0.5 m, crown width: 18.5 m, bottom width: 22.8 m) was 0.501, whereas the value which was measured by the wave gauge showed 0.547. Therefore, we suggested a formula for estimating the TWH based on the field observation data. 3D numerical model (LES-WASS-3D) was employed to estimate hydrodynamic chracteristics near the submerged breakwater. The results showed that the predicted TWH agreed well with the field field observation data results. In order to consider evironmet-friendly measure, the model also simulated the wave transformation and attenuation phenomina near the area of submerged vegetation. The model was already verified in two-dimensional laboratory experiments. In this study, the numerical model is used to predict the three-dimensional wave transformation and attenucation through the underwater vegetation. The results are compared with those in the case of submerged breakwater. This research was partially supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1A2B4015419) and Korean Institute of Marine Science and Technology Promotion's Development of coastal erosion control technology through the grant to budget of the contract no. 2013023.
5. Keeper's house and light tower, view south southwest, east ...
5. Keeper's house and light tower, view south southwest, east and north sides - Rockland Breakwater Light Station, At end of granite breakwater extending south from Jameson Point, Rockland, Knox County, ME
Wave interactions with multiple semi-immersed Jarlan-type perforated breakwaters
NASA Astrophysics Data System (ADS)
Elbisy, Moussa S.
2017-06-01
This study examines wave interactions with multiple semi-immersed Jarlan-type perforated breakwaters. A numerical model based on linear wave theory and an eigenfunction expansion method has been developed to study the hydrodynamic characteristics of breakwaters. The numerical results show a good agreement with previous analytical results and experimental data for limiting cases of double partially immersed impermeable walls and double and triple Jarlan-type breakwaters. The wave transmission coefficient C T; reflection coefficient C R, and energy dissipation coefficient C E coefficients and the horizontal wave force exerted on the front and rear walls are examined. The results show that C R reaches the maximum value when B/L = 0.46 n while it is smallest when B/L=0.46 n+0.24 ( n=0, 1, 2,...). An economical triple semi-immersed Jarlan-type perforated breakwater can be designed with B/L = 0.25 and C R and C T ranging from 0.25 to 0.32 by choosing a relative draft d/h of 0.35 and a permeability parameter of the perforated front walls being 0.5 for an incident wave number kh nearly equal to 2.0. The triple semi-immersed Jarlan-type perforated breakwaters with significantly reduced C R, will enhance the structure's wave absorption ability, and lead to smaller wave forces compared with the double one. The proposed model may be used to predict the response of a structure in the preliminary design stage for practical engineering.
7. DETAIL CENTRAL PIER (SKEWBACK) WITH BREAKWATER, UPSTREAM (EAST) SIDE. ...
7. DETAIL CENTRAL PIER (SKEWBACK) WITH BREAKWATER, UPSTREAM (EAST) SIDE. NOTE FRACTURES ALONG BARREL ARCH EXTRADOS. - Roaring Creek Bridge, State Road 2005 spanning Roaring Creek in Locust Township, Slabtown, Columbia County, PA
Damage level prediction of non-reshaped berm breakwater using ANN, SVM and ANFIS models
NASA Astrophysics Data System (ADS)
Mandal, Sukomal; Rao, Subba; N., Harish; Lokesha
2012-06-01
The damage analysis of coastal structure is very important as it involves many design parameters to be considered for the better and safe design of structure. In the present study experimental data for non-reshaped berm breakwater are collected from Marine Structures Laboratory, Department of Applied Mechanics and Hydraulics, NITK, Surathkal, India. Soft computing techniques like Artificial Neural Network (ANN), Support Vector Machine (SVM) and Adaptive Neuro Fuzzy Inference system (ANFIS) models are constructed using experimental data sets to predict the damage level of non-reshaped berm breakwater. The experimental data are used to train ANN, SVM and ANFIS models and results are determined in terms of statistical measures like mean square error, root mean square error, correla-tion coefficient and scatter index. The result shows that soft computing techniques i.e., ANN, SVM and ANFIS can be efficient tools in predicting damage levels of non reshaped berm breakwater.
Physical modeling of long-wave run-up mitigation using submerged breakwaters
NASA Astrophysics Data System (ADS)
Lee, Yu-Ting; Wu, Yun-Ta; Hwung, Hwung-Hweng; Yang, Ray-Yeng
2016-04-01
Natural hazard due to tsunami inundation inland has been viewed as a crucial issue for coastal engineering community. The 2004 India Ocean tsunami and the 2011 Tohoku earthquake tsunami were caused by mega scale earthquakes that brought tremendous catastrophe in the disaster regions. It is thus of great importance to develop innovative approach to achieve the reduction and mitigation of tsunami hazards. In this study, new experiments have been carried out in a laboratory-scale to investigate the physical process of long-wave through submerged breakwaters built upon a mild slope. Solitary-wave is employed to represent the characteristic of long-wave with infinite wavelength and wave period. Our goal is twofold. First of all, through changing the positions of single breakwater and multiple breakwaters upon a mild slope, the optimal locations of breakwaters can be pointed out by means of maximum run-up reduction. Secondly, through using a state-of-the-art measuring technique Bubble Image Velocimetry, which features non-intrusive and image-based measurement, the wave kinematics in the highly aerated region due to solitary-wave shoaling, breaking and uprush can be quantitated. Therefore, the mitigation of long-wave due to the construction of submerged breakwaters built upon a mild slope can be evaluated not only for imaging run-up and run-down characteristics but also for measuring turbulent velocity fields due to breaking wave. Although we understand the most devastating tsunami hazards cannot be fully mitigated with impossibility, this study is to provide quantitated information on what kind of artificial coastal structure that can withstand which level of wave loads.
4. Keeper's house and light tower, view south southeast, west ...
4. Keeper's house and light tower, view south southeast, west side of house, north and west sides of tower - Rockland Breakwater Light Station, At end of granite breakwater extending south from Jameson Point, Rockland, Knox County, ME
View southwest, wharf A and timber breakwater, showing sawn off ...
View southwest, wharf A and timber breakwater, showing sawn off section and steel lift tower - U.S. Coast Guard Sandy Hook Station, Western Docking Structure, West of intersection of Canfield Road & Hartshorne Drive, Highlands, Monmouth County, NJ
An observation on the main factor for the high fatalities by the March 11 earthquake
NASA Astrophysics Data System (ADS)
Ishida, M.; Baba, T.; Ando, M.
2011-12-01
On 11 March 2011, Mw9.0 earthquake occurred in Tohoku district, the northeastern Japan, and caused a large tsunami which affected the greater part of the area. During 115 years prior to this event, large tsunamis have struck the Tohoku region in 1960, 1933 and 1896. Therefore, disaster mitigation efforts have been undertaken in the Tohoku region, such as the construction of incomparably strong breakwaters, the annual practice for tsunami evacuation drill, the preparation of hazard maps, etc. Despite these long-term efforts, ca. 25,000 deaths and missing persons were reported by the National Police Headquarters, Japan. In order to clarify the causes of such high number of the fatalities, we interviewed 120 tsunami survivors in 7 cities mainly in Iwate prefecture in several periods after the earthquake. Since the tsunami arrived more than 20-30 min later after the strong ground shaking stopped and highlands are within about 10 to 20 minutes on foot, residents would have been saved if people had taken an immediate action. We found several major reasons why the residents delayed their evacuation actions as follows: 1. Earthquakes that were forecast for the offshore Tohoku by the governmental committee had been much smaller than the March 11 event. Accordingly, evacuation shelters were located at the lower level than that required for the incoming tsunami; 2. The earthquake magnitude and tsunami height of the first warning issue by Japan Meteorological Agency (JMA) was significantly smaller than those of the actual events. Majority of local residents thought that breakwaters would protect them. The JMA renewed the earthquake magnitude and tsunami height step by step, but the corrected information did not reach to the local residents because of the blackout of electric power. Consequently, the residents were unable to get the renewed information through TV or radio; 3. Fifty percent of the local residents experienced the 1960 Chile tsunami that significantly smaller than the March 11 tsunami. Most of them had estimated the height and inundation area of the incoming tsunami based on their experience; 4. People had believed that breakwaters would protect the city from the tsunami. But the March 11 tsunami climbed over and destroyed most breakwaters. Focusing on the reliance of the breakwaters that delayed the evacuation of residents, we numerically simulated the tsunami height caused by the March 11 event in Kamaishi-city for three cases; 1. with breakwaters, 2. without breakwaters, 3. with partially collapsed breakwaters. Our preliminary results showed that the tsunami height does not show much difference among the above three cases during about 20 min from the beginning. Detail of the results will be shown in the poster. It is noticeable that the immoderate confidence on breakwaters delayed the timing for the local resident to evacuation, although there are other reasons that influenced their behaviors. Finally we emphasize that educating children at a young age is important and essential to understand the basic mechanism of tsunami generation even if technology could underestimate tsunami heights, the warning systems could fail, and the breakwaters were not sturdy enough.
Fowler, Ashley M.; Booth, David J.
2013-01-01
Development of infrastructure around cities is rapidly increasing the amount of artificial substrate (termed artificial reef, ‘AR’) in coastal marine habitats. However, effects of ARs on marine communities remain unknown, because it is unclear whether ARs can maintain similar communities to natural reefs. We investigated whether well-established (> 30 years old) breakwaters could consistently approximate fish assemblages on interspersed rocky reefs in a temperate estuary over 6 consecutive seasons using regular visual surveys between June 2009 (winter) and November 2010 (spring). We examined whether assemblage differences between reef types were driven by differences in juvenile recruitment, or were related to differences in older life-stages. Assemblages on both reef types were dominated by juveniles (61% of individuals) and sub-adults (34% of individuals). Seasonal fluctuations in assemblage parameters (species richness, diversity, sub-adult abundance) were similar between reef types, and levels of species diversity and assemblage composition were generally comparable. However, abundance and species richness were consistently higher (1.9-7.6 and 1.3-2.6 times, respectively) on breakwaters. These assemblage differences could not be explained by differences in juvenile recruitment, with seasonal patterns of recruitment and juvenile species found to be similar between reef types. In contrast, abundances of sub-adults were consistently higher (1.1-12 times) at breakwaters, and assemblage differences appeared to be driven by this life-stage. Our results indicate that breakwaters in temperate estuaries are capable of supporting abundant and diverse fish assemblages with similar recruitment process to natural reefs. However, breakwaters may not approximate all aspects of natural assemblage structure, with differences maintained by a single-life stage in some cases. PMID:24086634
Experimental and Numerical Investigations of Floating Breakwater Performance.
USDA-ARS?s Scientific Manuscript database
Floating breakwaters are commonly used to protect small marinas and for shoreline erosion control in coastal areas. They are efficient wave attenuation structures for relatively short waves and shallow water depths. The main objective of the current study is to investigate the hydrodynamic interacti...
14. Photo copy of historic photograph, 1972, VIEW LOOKING NORTH, ...
14. Photo copy of historic photograph, 1972, VIEW LOOKING NORTH, SHOWING ORIGINAL AWNING AT BASE OF LIGHTHOUSE. U.S. Coast Guard Civil Engineering Unit, Warwick, RI - Saybrook Breakwater Light, South tip of west end of Saybrook Breakwater, Old Saybrook, Middlesex County, CT
Prickly business: abundance of sea urchins on breakwaters and coral reefs in Dubai.
Bauman, Andrew G; Dunshea, Glenn; Feary, David A; Hoey, Andrew S
2016-04-30
Echinometra mathaei is a common echinoid on tropical reefs and where abundant plays an important role in the control of algal communities. Despite high prevalence of E. mathaei on southern Persian/Arabian Gulf reefs, their abundance and distribution is poorly known. Spatial and temporal patterns in population abundance were examined at 12 sites between breakwater and natural reef habitats in Dubai (UAE) every 3 months from 2008 to 2010. Within the breakwater habitat, densities were greatest at shallow wave-exposed sites, and reduced with both decreasing wave-exposure and increasing depth. Interestingly, E. mathaei were significantly more abundant on exposed breakwaters than natural reef sites, presumably due to differences in habitat structure and benthic cover. Population abundances differed seasonally, with peak abundances during summer (July-September) and lower abundances in winter (December-February). Seasonal fluctuations are likely the result of peak annual recruitment pulses coupled with increased fish predation from summer to winter. Copyright © 2015 Elsevier Ltd. All rights reserved.
1982-09-01
greater than the presently authorized 12-foot channel in Vermilion Harbor). It is the pur- pose of this study to determine which of the four ...963 A 94 VERMILION HARBOR, OHIO CONDITION SURVEY REPORT STUDY OF THE IMPACT OF THE OFFSHORE BREAKWATER ON A. MUNICIPAL WATER SUPPLY B. SWIMMING AREA...a result of the breakwater construction. Seven possible adverse impacts were identified and studied . These impacts DomS 143 Imna or I Moves is OSOLETE
USDA-ARS?s Scientific Manuscript database
Floating breakwaters are typically used on limited-fetch water bodies, such as lakes, reservoirs, and bays, where wavelengths are relatively short. They are also often preferred for sites with large water level changes. Common uses are to protect small marinas or for shoreline erosion control. While...
Erosion Control of Scour during Construction. Report 8. Summary Report.
1985-01-01
the breakwaters. Experiments were conducted by Hotta and Marui (1976) to investigate characteristics of the local scour; and it was found that local... Marui , N. 1976. "Local Scour and Current Around a Porous Breakwater," Proceedings, Fifteenth Conference on Coastal Engineering, Honolulu, Hawaii, Vol II
Code of Federal Regulations, 2012 CFR
2012-07-01
... in progress at the time. (e) The use of chains in making fast to the breakwater is prohibited. Lines...) Each and every vessel made fast to the breakwater, or anchored in the harbor without a line made fast...
Code of Federal Regulations, 2011 CFR
2011-07-01
... in progress at the time. (e) The use of chains in making fast to the breakwater is prohibited. Lines...) Each and every vessel made fast to the breakwater, or anchored in the harbor without a line made fast...
Code of Federal Regulations, 2013 CFR
2013-07-01
... in progress at the time. (e) The use of chains in making fast to the breakwater is prohibited. Lines...) Each and every vessel made fast to the breakwater, or anchored in the harbor without a line made fast...
Code of Federal Regulations, 2014 CFR
2014-07-01
... in progress at the time. (e) The use of chains in making fast to the breakwater is prohibited. Lines...) Each and every vessel made fast to the breakwater, or anchored in the harbor without a line made fast...
Periodic Inspections of Kahului and Laupahoehoe Breakwaters, Hawaii
1994-09-01
the sea-side of the head and trunk of the west breakwater is beginning to show a slight concentration, or cluster , of breakage and this area should...type of Survey; AERIAL Date Survey Morthing(Y) ft. Easti( gmX ) ft. ELev.(Z) ft. Relative Movement (TXZ) Cumulative Movemenit (YX2) 93/01/08 AERIAL
2006-07-01
divided into a series of orthophoto tiles and is stored in a Virginia south, state plane projection, in feet. The aerial photo tiles from VBMP for...Dyke, Aquia Landing, Kingsmill, and Yorktown. The reference mosaic, the 2002 Digital Orthophotos from the Virginia Base Mapping Program (VBMP), is
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shreffler, D.K.
1993-05-01
In 1993, the US Coast Guard proposed to construct two breakwaters and a debris boom to protect its existing pier and moored vessels inside Ediz Hook in Port Angeles Harbor, Washington. To assist the US Army Corps of Engineers -- Seattle District in determining the potential environmental impacts of the proposed breakwaters, Battelle/Marine Sciences Laboratory performed subtidal SCUBA surveys as specified in the Washington Department of Fisheries intermediate eelgrass/macroalgae habitat survey guidelines. The objectives of the subtidal surveys were to (1) quantify the shoot densities of eelgrass; (2) provide percent cover estimates for non-eelgrass macroalgae species; (3) develop a sitemore » map indicating the qualitative distribution of eelgrass/macroalgae species, substrate characterization, approximate depth contours, and the approximate location of the proposed project features; and (4) document the time and date of the surveys, turbidity/visibility, presence of invertebrate/vertebrate species, and anecdotal observations pertinent to habitat characterization of the project site. A total of 14 dives along 12 transects (T1--T12) were successfully completed between March 15 and March 17, 1993. Eelgrass was observed on all of the transects except T7 and T8 at the western debris barrier and T12 along the waterward margin of the existing T-pier. The vicinity of the proposed east breakwater had the highest eelgrass shoot densities (up to 89 shoots/m{sup 2}) observed by the divers. Macroalgae and invertebrate species diversity were also highest at the east breakwater site. The low eelgrass densities observed at the west debris barrier site (0 to 14 shoots/m{sup 2}) can be attributed mostly to the lack of suitable substrate. The existing layer of wood debris armoring the bottom at the west project site currently limits, and in the areas of heaviest deposition probably precludes, the growth of eelgrass. As was expected, no eelgrass was observed at the south breakwater site.« less
Iskander, Moheb M; Frihy, Omran E; El Ansary, Ahmed E; El Mooty, Mohamed M Abd; Nagy, Hossam M
2007-12-01
Seven breakwaters were constructed behind offshore submerged ridges to create a safe area for swimming and recreational activities west of Alexandria on the Mediterranean coast of Egypt. Morphodynamic evaluation was based on the modified Perlin and Dean numerical model (ImSedTran-2D) combined with successive shoreline and beach profile surveys conducted periodically between April 2001 and May 2005. Results reveal insignificant morphologic changes behind the detached breakwaters with slight coastline changes at the down and up-drift beaches of the examined breakwaters (+/-10 m). These changes are associated with salient accretion (20-7 0m) in the low-energy leeside of such structures. Concurrent with this sand accretion is the accumulation of a large amount of benthic algae (Sargassum) in the coastal water of the shadow area of these structures, which in turn have adverse effects on swimmers. Practical measures proposed in this study have successfully helped in mitigating such accumulation of algae in the recreation leeside of the breakwaters. The accumulation of Sargassum, together with the virtual insignificant changes in the up-drift and down-drifts of these structures, is a direct response to both coastal processes and the submerged carbonate ridges. Coastal processes encompass reversal of the directions of long-shore sand transport versus shoreline orientation, the small littoral drift rate and sand deficiency of the littoral zone. The beach response to the breakwaters together with the submerged ridges has also been confirmed by applying the ImSedTran-2D model. Results indicate that submerged ridges play a principal role in the evolution of beach morphology along the west coast of Alexandria. Although the study area is exposed to more than 70% wave exposures, the morphodynamic behavior of the beaches indicates that the submerged ridges act in a similar way as an additional natural barrier together with the artificial detached structures.
Shoreline Changes at New Mangalore Port, India in the past and over future
NASA Astrophysics Data System (ADS)
Bharathan Radhamma, R.; Deo, M. C.
2016-12-01
The New Mangalore port is one of the major ports along the west coast of India. It is of artificial type with a pair of breakwaters constructed in phases from the year 1974 to 1996. The studies indicating the impact of constructing the breakwaters on adjacent shorelines after 1996 are difficult to find. The present work is aimed in this direction. For a 10 km stretch of the coast lying on both sides of the breakwaters 35 transects were constructed and shorelines were delineated from 4 satellite imageries that were recorded over the past 36 years at around 12 years' interval. Over each transect the rate of change of shoreline was calculated using linear regression and its adequacy was checked using the error statistics of R2 and RMSE. After such satisfactory cross-check, shorelines were predicted over the 12 and 36 years in future, i. e., in the years: 2028 and 2051. The patches undergoing erosion as well as accretion were identified. It was found that the rate of shoreline shifts fluctuated from -1.69 ± 0.45 m/year to 2.56 ± 0.45 m/year and about 52.28 % of the study area underwent substantial erosion. Most of the transects located toward north of the northern breakwater saw pro-gradation while those sited at south of the southern breakwater exhibited chronic erosion. The human interventions and presence of artificial structures accelerated the changes in the shoreline and also gave rise to higher uncertainties. The paper will present full details of the methodology, results and their interpretation.
Detached Breakwaters for Shore Protection.
1986-01-01
Presque Isle , Pennsylvania 23. At Presque Isle on Lake Erie , a segmented system of over 50 de- tached breakwaters is planned...Erosion at Presque Isle , Erie , Pennsylvania ," CERC Technical Report HL-83-15, US Army Engineer Waterways Experiment Station, Vicksburg, Miss. Seelig...by Seabergh (1983) on Presque Isle Pen- insula, Erie , Pennsylvania , which is a recurved sandspit protecting Erie Har- bor. The peninsula has
Simulating three dimensional wave run-up over breakwaters covered by antifer units
NASA Astrophysics Data System (ADS)
Najafi-Jilani, A.; Niri, M. Zakiri; Naderi, Nader
2014-06-01
The paper presents the numerical analysis of wave run-up over rubble-mound breakwaters covered by antifer units using a technique integrating Computer-Aided Design (CAD) and Computational Fluid Dynamics (CFD) software. Direct application of Navier-Stokes equations within armour blocks, is used to provide a more reliable approach to simulate wave run-up over breakwaters. A well-tested Reynolds-averaged Navier-Stokes (RANS) Volume of Fluid (VOF) code (Flow-3D) was adopted for CFD computations. The computed results were compared with experimental data to check the validity of the model. Numerical results showed that the direct three dimensional (3D) simulation method can deliver accurate results for wave run-up over rubble mound breakwaters. The results showed that the placement pattern of antifer units had a great impact on values of wave run-up so that by changing the placement pattern from regular to double pyramid can reduce the wave run-up by approximately 30%. Analysis was done to investigate the influences of surface roughness, energy dissipation in the pores of the armour layer and reduced wave run-up due to inflow into the armour and stone layer.
The Abudance Of Makrozoobenthos On Different Break Water In Semarang And Demak Coastal Area
NASA Astrophysics Data System (ADS)
Kristiningsih, A.; Sugianto, D. N.; Munasik; Pribadi, R.; Suprijanto, J.
2018-02-01
The coast of Semarang and Demak has suffered some damage to its coastal areas. This damage is caused by natural factors and also human activities. There are number of mitigation methods such as hard, soft and hybrid that available for mitigation erosion. In Semarang and Demak coastal area using hard and hybrid option as their mitigation erotion. Breakwater is one of the way beach structure that often used as mitigation erosion di coastal area. Breakwater will cause sediment deposits that will become the living place of various organisms such as makrozoobenthos. The aim of this research is compare the abudance of makrozoobenthos in different type breakwater in Semarang and Demak coastal area.This research held on December 2016 - January 2017 in five different location with different breakwater type. Hard structure in Mangkang (West Semarang), Morosari (Demak district) and Tambak Lorok (North Semarang) and the hybrid engineering in Morosari 2 (Demak district) and Timbulsloko (Demak district). The method used in this study is descriptive comparative. Makrozoobenthos has been found in each station and the highest indeks is in hybrid engineering location. Polychaeta is a genus that dominates at every location because muddy sand is its main habitat.
NASA Astrophysics Data System (ADS)
Park, Sang Kil; Dodaran, Asgar Ahadpour; Han, Chong Soo; Shahmirzadi, Mohammad Ebrahim Meshkati
2014-12-01
Rubble mound breakwaters protect the coastal line against severe erosion caused by wave action. This study examined the performance of different sizes and properties (i.e. height of vertical wall and tetrapod size) of rubble mound breakwaters on reducing the overtopping discharge. The physical model used in this study was derived based on an actual rubble mound in Busan Yacht Harbor. This research attempts to fill the gap in practical knowledge on the combined effect of the armor roughness and vertical wall on wave overtopping in rubble mound breakwaters. The main governing parameters used in this study were the vertical wall height, variation of the tetrapod weights, initial water level elevation, and the volume of overtopping under constant wave properties. The experimental results showed that the roughness factor differed according to the tetrapod size. Furthermore, the overtopping discharge with no vertical wall was similar to that with relatively short vertical walls ( 1 γv = 1). Therefore, the experimental results highlight the importance of the height of the vertical wall in reducing overtopping discharge. Moreover, a large tetrapod size may allow coastal engineers to choose a shorter vertical wall to save cost, while obtaining better performance.
46 CFR 7.130 - Point Conception, CA to Point Sur, CA.
Code of Federal Regulations, 2014 CFR
2014-10-01
... LINES Pacific Coast § 7.130 Point Conception, CA to Point Sur, CA. (a) A line drawn from the... 46 Shipping 1 2014-10-01 2014-10-01 false Point Conception, CA to Point Sur, CA. 7.130 Section 7... Breakwater. (b) A line drawn from the outer end of Morro Bay Entrance East Breakwater to latitude 35°21.5′ N...
46 CFR 7.130 - Point Conception, CA to Point Sur, CA.
Code of Federal Regulations, 2011 CFR
2011-10-01
... LINES Pacific Coast § 7.130 Point Conception, CA to Point Sur, CA. (a) A line drawn from the... 46 Shipping 1 2011-10-01 2011-10-01 false Point Conception, CA to Point Sur, CA. 7.130 Section 7... Breakwater. (b) A line drawn from the outer end of Morro Bay Entrance East Breakwater to latitude 35°21.5′ N...
46 CFR 7.130 - Point Conception, CA to Point Sur, CA.
Code of Federal Regulations, 2013 CFR
2013-10-01
... LINES Pacific Coast § 7.130 Point Conception, CA to Point Sur, CA. (a) A line drawn from the... 46 Shipping 1 2013-10-01 2013-10-01 false Point Conception, CA to Point Sur, CA. 7.130 Section 7... Breakwater. (b) A line drawn from the outer end of Morro Bay Entrance East Breakwater to latitude 35°21.5′ N...
46 CFR 7.130 - Point Conception, CA to Point Sur, CA.
Code of Federal Regulations, 2012 CFR
2012-10-01
... LINES Pacific Coast § 7.130 Point Conception, CA to Point Sur, CA. (a) A line drawn from the... 46 Shipping 1 2012-10-01 2012-10-01 false Point Conception, CA to Point Sur, CA. 7.130 Section 7... Breakwater. (b) A line drawn from the outer end of Morro Bay Entrance East Breakwater to latitude 35°21.5′ N...
46 CFR 7.130 - Point Conception, CA to Point Sur, CA.
Code of Federal Regulations, 2010 CFR
2010-10-01
... LINES Pacific Coast § 7.130 Point Conception, CA to Point Sur, CA. (a) A line drawn from the... 46 Shipping 1 2010-10-01 2010-10-01 false Point Conception, CA to Point Sur, CA. 7.130 Section 7... Breakwater. (b) A line drawn from the outer end of Morro Bay Entrance East Breakwater to latitude 35°21.5′ N...
46 CFR 7.35 - Sandy Hook, NJ to Cape May, NJ.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Atlantic Coast § 7.35 Sandy Hook, NJ to Cape May, NJ. (a) A line drawn from Shark River Inlet North Breakwater Light “2” to Shark River Inlet South Breakwater Light “1”. (b) A line drawn from Manasquan Inlet... Absecon Inlet North Jetty to Atlantic City Light. (g) A line drawn from the southernmost point of Longport...
Aguilera, Moisés A; Broitman, Bernardo R; Thiel, Martin
2016-07-01
Coastal urban infrastructures are proliferating across the world, but knowledge about their emergent impacts is still limited. Here, we provide evidence that urban artificial reefs have a high potential to accumulate the diverse forms of litter originating from anthropogenic activities around cities. We test the hypothesis that the structural complexity of urban breakwaters, when compared with adjacent natural rocky intertidal habitats, is a driver of anthropogenic litter accumulation. We determined litter abundances at seven sites (cities) and estimated the structural complexity in both urban breakwaters and adjacent natural habitats from northern to central Chile, spanning a latitudinal gradient of ∼15° (18°S to 33°S). Anthropogenic litter density was significantly higher in coastal breakwaters when compared to natural habitats (∼15.1 items m(-2) on artificial reefs versus 7.4 items m(-2) in natural habitats) at all study sites, a pattern that was temporally persistent. Different litter categories were more abundant on the artificial reefs than in natural habitats, with local human population density and breakwater extension contributing to increase the probabilities of litter occurrence by ∼10%. In addition, structural complexity was about two-fold higher on artificial reefs, with anthropogenic litter density being highest at intermediate levels of structural complexity. Therefore, the spatial structure characteristic of artificial reefs seems to enhance anthropogenic litter accumulation, also leading to higher residence time and degradation potential. Our study highlights the interaction between coastal urban habitat modification by establishment of artificial reefs, and pollution. This emergent phenomenon is an important issue to be considered in future management plans and the engineering of coastal ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ashtabula Breakwater Common Tern (Sterna Hirundo) Nesting
2016-05-01
and competition by more aggressive gull species . These impacts have directly contributed to the species being listed as an Ohio endangered species ... species has been successfully accomplished both within the Great Lakes region (Karwowski et al. 1995, Riveredge Associates 2013) and in other regions...control number. 1. REPORT DATE MAY 2016 2. REPORT TYPE 3. DATES COVERED 00-00-2016 to 00-00-2016 4. TITLE AND SUBTITLE Ashtabula Breakwater Common
1988-11-01
TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP Breakwater REMR (Repair, Evaluation, Concrete armor units...Maintenance, and Rehabilitation) Jetty Rubble-mound structures 19. ABSTRACT (Continue on reverse if necessary and identify by block number) :-This...have been repaired since construction. Other construction materials that have been used include steel, dolosse, concrete cap, concrete block , and
Cost-Effective Optimization of Rubble-Mound Breakwater Cross Sections.
1986-02-01
of a Conference Held in London, London, England, p 20. Iribarren, Cavanilles R. 1938. "Una formula para el calculo de los diques de escollera," M...NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT, TASK" AREA & WORK UNIT NUMBERS US Army Engineer Waterways Experiment Station Civil Works Research...purpose as a wave barrier. A breakwater protecting a harbor entrance and mooring area from wave attack might serve q 6 to divert currents and longshore
2005-07-01
evaluate the functional, structural, and economic performance of the patented Beachsaver Reef prefabricated concrete submerged breakwater and the less...expensive prefabricated concrete structure called a Double-T sill. This demonstration project was developed through a cooperative effort of the U.S...patented Beachsaver Reef prefabricated concrete submerged breakwater and a less expensive, prefabricated concrete structure called a Double-T sill. Data
Modelling Of Anticipated Damage Ratio On Breakwaters Using Fuzzy Logic
NASA Astrophysics Data System (ADS)
Mercan, D. E.; Yagci, O.; Kabdasli, S.
2003-04-01
In breakwater design the determination of armour unit weight is especially important in terms of the structure's life. In a typical experimental breakwater stability study, different wave series composed of different wave heights; wave period and wave steepness characteristics are applied in order to investigate performance the structure. Using a classical approach, a regression equation is generated for damage ratio as a function of characteristic wave height. The parameters wave period and wave steepness are not considered. In this study, differing from the classical approach using a fuzzy logic, a relationship between damage ratio as a function of mean wave period (T_m), wave steepness (H_s/L_m) and significant wave height (H_s) was further generated. The system's inputs were mean wave period (T_m), wave steepness (H_s/L_m) and significant wave height (H_s). For fuzzification all input variables were divided into three fuzzy subsets, their membership functions were defined using method developed by Mandani (Mandani, 1974) and the rules were written. While for defuzzification the centroid method was used. In order to calibrate and test the generated models an experimental study was conducted. The experiments were performed in a wave flume (24 m long, 1.0 m wide and 1.0 m high) using 20 different irregular wave series (P-M spectrum). Throughout the study, the water depth was 0.6 m and the breakwater cross-sectional slope was 1V/2H. In the armour layer, a type of artificial armour unit known as antifer cubes were used. The results of the established fuzzy logic model and regression equation model was compared with experimental data and it was determined that the established fuzzy logic model gave a more accurate prediction of the damage ratio on this type of breakwater. References Mandani, E.H., "Application of Fuzzy Algorithms for Control of Simple Dynamic Plant", Proc. IEE, vol. 121, no. 12, December 1974.
2015-05-01
detailed walking inspection. There were five types of stone identified during the walking inspection that had sustained damage: 1. granite 2...limestone. Of the 282 damaged armor stones noted, 46 (16%) were granite , 84 (%) were dolomite, 2 (1%) were quartzite, 136 (48%) were Indiana Bedford...381 0+00 1.5 (5) Dolomite Split into 2 pieces 379 0+00 0.6 (2) Granite Split into 3 pieces 378 0+25 3.05 (10) Indiana Bedford Limestone Split
1985-11-01
report are not to be construed as an official Department of the Army position unless so designated by other authorized documents. The contents of...New York AGENDA Wednesday, 7 November 7:30 p.m. Registration 8:00 Floating Tire Breakwater (FTB) Slides and Movies Thursday, 8 November 8:30 a.m...which urethanes to use with which rubber. Some of the variables are: the -k solvent used in the bonding agent, room temperature, air moisture content
1981-05-01
Lemna minor ). Along the south edge of the wetland a narrow band of old field herbaceous species blended into the woodland and fill areas. The vegetative...of the breakwater is shown in Plate 2-6. This marina breakwater or a modified version will be required for the small boat harbor to reduce minor ...land acquisi- tion and other minor associated costs. RECOMMENDAT IONS Although steel pile protection is recommended in areas where bank erosion was
1992-09-01
85 (saturated) : 0 : 26 3. Cell Fill (crushed stone) : 110 (moist) : 0 : 32 68 ( submerged ) 4. Breakwater Armor Stone : 110 (moist) : 0 40 68... submerged ) 5. Queenston Shale bedrock : unconfined compressive strength : au = 6,000 psi 7 5. PROJECT FEATURES FOR FINAL DESIGN a. Breakwaters. The project...existing conrete pad (550 feet from the retaining wall) the structure is submerged with isolated portions of the structure observable at the lake
Aguilera, Moisés A; Broitman, Bernardo R; Thiel, Martin
2014-10-15
Strong differences have been observed between the assemblages on artificial reefs and on natural hard-bottom habitats worldwide, but little is known about the mechanisms that cause contrasting biodiversity patterns. We examined the influence of spatial attributes in relation to both biogenic and topographic microhabitats, in the distribution and composition of intertidal species on both artificial and natural reefs. We found higher small-scale spatial heterogeneity on the natural reef compared with the study breakwater. Species richness and diversity were associated with a higher availability of crevices, rock pools and mussels in natural habitats. Spatial distribution of certain grazers corresponded well with the spatial structure of microhabitats. In contrast, the lack of microhabitats on the breakwater resulted in the absence of several grazers reflected in lower species richness. Biogenic and topographic microhabitats can have interactive effects providing niche opportunities for multiple species, explaining differences in species diversity between artificial versus natural reefs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bawden, Gerald W.; Bond, Sandra; Podoski, J. H.; Kreylos, O.; Kellogg, L. H.
2012-01-01
We used ground-based Tripod LiDAR (T-LiDAR) to assess the stability of two engineered structures: a bridge spanning the San Andreas fault following the M6.0 Parkfield earthquake in Central California and a newly built coastal breakwater located at the Kaumālapa`u Harbor Lana'i, Hawaii. In the 10 weeks following the earthquake, we found that the surface under the bridge shifted 7.1 cm with an additional 2.6 cm of motion in the subsequent 13 weeks, which deflected the bridge's northern I-beam support 4.3 cm and 2.1 respectively; the bridge integrity remained intact. T-LiDAR imagery was collected after the completion of armored breakwater with 817 35-ton interlocking concrete armor units, Core-Locs®, in the summers of 2007, 2008 and 2010. We found a wide range of motion of individual Core-Locs, from a few centimeters to >110 cm along the ocean side of the breakwater, with lesser movement along the harbor side.
1985-09-01
Harbor, Ohio (August 1981-1983) Taxa* Percent Porifera (Spongil a) 0.01 Cnidaria (Hydra) 0.30 Rhabdocoela 0.35 Tricladida 0.16 Nemertinea 0.14 Nematoda...Breakwaters at West Harbor. Ohio (April 1982-September 1983) Taxa* Percent * Cnidaria (Hydra) 5.98 Rhabdocoela 0.14 Tricladida 0.37 Nemertinea 0.11 Nematoda...3 3.0 OL!GOCHAE1A 23 85 2t 2000 CHIRONOMIDAE 3 8 0 163 CNIDARIA 0 2 0 30 BRYOZDA + + + 4 4.0 OLIGOCHAETA 325 56 148 7836 CHIRONOMIDAE 26 13 21
1984-09-01
such as a jetty or shore-connected breakwater. The theory of water wave diffraction can be explained by Huygens’ principle . Each point of an ad...a slowly varying bottom, an asymptotic theory has been developed by Liu and Mei (1976) that accounts for the combined effects ot refraction and... Fundment i" rs t Second Third Fo :rth ,ri,- ATa rronlc Ha rmon i c Ha rme qic Gage s.__ ’ sc 0.33 sec 0.25 sec 0.20 sec 1* 0.n+ 6. .0 (-163) 0.12(-9) 0.01
Automatic Modelling of Rubble Mound Breakwaters from LIDAR Data
NASA Astrophysics Data System (ADS)
Bueno, M.; Díaz-Vilariño, L.; González-Jorge, H.; Martínez-Sánchez, J.; Arias, P.
2015-08-01
Rubble mound breakwaters maintenance is critical to the protection of beaches and ports. LiDAR systems provide accurate point clouds from the emerged part of the structure that can be modelled to make it more useful and easy to handle. This work introduces a methodology for the automatic modelling of breakwaters with armour units of cube shape. The algorithm is divided in three main steps: normal vector computation, plane segmentation, and cube reconstruction. Plane segmentation uses the normal orientation of the points and the edge length of the cube. Cube reconstruction uses the intersection of three perpendicular planes and the edge length. Three point clouds cropped from the main point cloud of the structure are used for the tests. The number of cubes detected is around 56 % for two of the point clouds and 32 % for the third one over the total physical cubes. Accuracy assessment is done by comparison with manually drawn cubes calculating the differences between the vertexes. It ranges between 6.4 cm and 15 cm. Computing time ranges between 578.5 s and 8018.2 s. The computing time increases with the number of cubes and the requirements of collision detection.
Numerical Modelling of Solitary Wave Experiments on Rubble Mound Breakwaters
NASA Astrophysics Data System (ADS)
Guler, H. G.; Arikawa, T.; Baykal, C.; Yalciner, A. C.
2016-12-01
Performance of a rubble mound breakwater protecting Haydarpasa Port, Turkey, has been tested under tsunami attack by physical model tests conducted at Port and Airport Research Institute (Guler et al, 2015). It is aimed to understand dynamic force of the tsunami by conducting solitary wave tests (Arikawa, 2015). In this study, the main objective is to perform numerical modelling of solitary wave tests in order to verify accuracy of the CFD model IHFOAM, developed in OpenFOAM environment (Higuera et al, 2013), by comparing results of the numerical computations with the experimental results. IHFOAM is the numerical modelling tool which is based on VARANS equations with a k-ω SST turbulence model including realistic wave generation, and active wave absorption. Experiments are performed using a Froude scale of 1/30, measuring surface elevation and flow velocity at several locations in the wave channel, and wave pressure around the crown wall of the breakwater. Solitary wave tests with wave heights of H=7.5 cm and H=10 cm are selected which represent the results of the experiments. The first test (H=7.5 cm) is the case that resulted in no damage whereas the second case (H=10 cm) resulted in total damage due to the sliding of the crown wall. After comparison of the preliminary results of numerical simulations with experimental data for both cases, it is observed that solitary wave experiments could be accurately modeled using IHFOAM focusing water surface elevations, flow velocities, and wave pressures on the crown wall of the breakwater (Figure, result of sim. at t=29.6 sec). ACKNOWLEDGEMENTSThe authors acknowledge developers of IHFOAM, further extend their acknowledgements for the partial supports from the research projects MarDiM, ASTARTE, RAPSODI, and TUBITAK 213M534. REFERENCESArikawa (2015) "Consideration of Characteristics of Pressure on Seawall by Solitary Waves Based on Hydraulic Experiments", Jour. of Japan. Soc. of Civ. Eng. Ser. B2 (Coast. Eng.), Vol 71, p I889-I894 Guler, Arikawa, Oei, Yalciner (2015) "Performance of Rubble Mound Breakwaters under Tsunami Attack, A Case Study: Haydarpasa Port, Istanbul, Turkey", Coast. Eng. 104, 43-53 Higuera, Lara, Losada (2013) "Realistic Wave Generation and Active Wave Absorption for Navier-Stokes Models, Application to OpenFOAM", Coast. Eng. 71, 102-118
[Application of uterine lower part breakwater-like suture operation in placenta previa].
Zhao, Y; Zhu, J W; Wu, D; Wang, Q H; Lu, S S; Liu, X X; Zou, L
2018-04-25
Objective: To explore the efficacy and safety of uterine lower posterior wall breakwater-like suture technique in controlling the intraoperative bleeding of placenta previa. Methods: From June 2016 to June 2017, 47 patients were diagnosed placenta previa in Union Hospital, Tongji Medical College of Huazhong University of Science and Technology. Posterior wall breakwater-like suture technique was used preferentially, as for cases with poor myometrium layer, lower anterior wall stitch suture was used at the same time. Bilateral descending branches of uterine artery ligation and Cook balloon compression of uterine lower segment was conducted when necessary. The clinic data of the 47 cases were analyzed. Results: Thirty cases (63.8, 30/47) were diagnosed placenta inccreta or percreta by ultrasound or MRI preoperatively. Senventeen cases were diagnosed as placenta accreta (36.2%, 17/47) . Thirty-four cases had the previous history of cesarean section. The average cervical canal length of 47 patients was (2.8±0.9) cm. There were 19 cases (40.4%,19/47) with 1 time posterior wall breakwater-like sutured and 16 cases (34.0%,16/47) with 2 or 3 times posterior wall breakwater-like sutured; 12 cases (25.5%,12/47) were treated with anterior wall stitch suture simultaneously.Ten cases (21.3%, 10/47) underwent uterine artery ligation, 17 cases (36.2%, 17/47) underwent COOK balloon compression on the staxis surface of lower segment. None of them had postpartum hemorrhage or performed internal iliac artery embolization. The median blood loss in the operation was 700 ml, the percentiles 25 was 500 ml, and the percentiles 75 was 1 200 ml. The blood loss ≥1 000 ml in 18 (38.3%, 18/47) patients,and the most serious one was 2 500 ml. The median blood transfusion volume (including allogenetic transfusion and autotransfusion) was 450 ml, the percentiles 25 was 228 ml, and the percentiles 75 was 675 ml. The average vaginal bleeding volume was (150±63) ml first day after operation. The mean hospitalization time was (4.7±1.0) days. The mean gestational weeks of pregnancy termination was (36.1±1.5) weeks, and the mean birth weight of newborns was (2 817±492) g. Apgar score:1-minute 7.8±1.1, 5-minute 8.9±0.8. No neonatal death, 16 cases were transferred to neonatal ICU (34.0%, 16/47) mainly for premature delivery and low birth weight. No complication was found in 6 months post-operation. Conclusions: Uterine posterior wall breakwater-like suture technique is a simple, safe and effective way in controlling intraoperative bleeding of placental previa.Lower anterior wall stitch suture could effectively stop bleeding and restore the normal uterine shape. Combined application of various methods could significantly reduce the incidence of postpartum hemorrhage and hysterectomy, and improve maternal and fetal prognosis.
Post-construction monitoring of a Core-Loc™ breakwater using tripod-based LiDAR
Podoski, Jessica H.; Bawden, Gerald W.; Bond, Sandra; Smith, Thomas D.; Foster, James
2010-01-01
The goal of the technology application described herein is to determine whether breakwater monitoring data collected using Tripod (or Terrestrial) Light Detection and Ranging (T-LiDAR) can give insight into processes such as how Core-Loc™ concrete armour units nest following construction, and in turn how settlement affects armour layer stability, concrete cap performance, and armour unit breakage. A further objective is that this information can then be incorporated into the design of future projects using concrete armour units. The results of this application of T-LiDAR, including the challenges encountered and the conclusions drawn regarding initial concrete armour unit movement will be presented in this paper.
NASA Astrophysics Data System (ADS)
Sassa, S.
2017-12-01
This presentation shows some recent research advances on tsunami-seabed-structure interaction following the 2011 Tohoku Earthquake Tsunami, Japan. It presents a concise summary and discussion of utilizing a geotechnical centrifuge and a large-scale hydro flume for the modelling of tsunami-seabed-structure interaction. I highlight here the role of tsunami-induced seepage in piping/boiling, erosion and bearing capacity decrease and failure of the rubble/seabed foundation. A comparison and discussion are made on the stability assessment for the design of tsunami-resistant structures on the basis of the results from both geo-centrifuge and large-scale hydrodynamic experiments. The concurrent processes of the instability involving the scour of the mound/sandy seabed, bearing capacity failure and flow of the foundation and the failure of caisson breakwaters under tsunami overflow and seepage coupling are made clear in this presentation. Three series of experiments were conducted under fifty gravities. The first series of experiments targeted the instability of the mounds themselves, and the second series of experiments clarified how the mound scour would affect the overall stability of the caissons. The third series of experiments examined the effect of a countermeasure on the basis of the results from the two series of experiments. The experimental results first demonstrated that the coupled overflow-seepage actions promoted the development of the mound scour significantly, and caused bearing capacity failure of the mound, resulting in the total failure of the caisson breakwater, which otherwise remained stable without the coupling effect. The velocity vectors obtained from the high-resolution image analysis illustrated the series of such concurrent scour/bearing-capacity-failure/flow processes leading to the instability of the breakwater. The stability of the breakwaters was significantly improved with decreasing hydraulic gradient underneath the caissons due to an embankment effect. These findings elucidate the crucial role of overflow/seepage coupling in tsunami-seabed-structure interaction from both geotechnical and hydrodynamic perspectives, as an interdisciplinary tsunami science, warranting an enhanced disaster resilience.
NASA Astrophysics Data System (ADS)
Fathallah, S.; Ben Amor, R.; Gueddari, M.
2009-04-01
Spatio-temporal evolution of shoreline Changes along the coast between Sousse-Monastir (Eastern of Tunisia). Safa Fathallah*, Rim Ben Amor and Moncef Gueddari Unit of Research of Geochemistry and Environmental Geology. Faculty of Science of Tunis, University of Tunis El Manar, 2092. (*) Corresponding author: safa_fathallah@yahoo.fr The coast of Sousse-Monastir in eastern of Tunisia, has undergone great changes, due to natural and anthropic factors. Increasing human use, the construction of two ports and coastal urbanization (hotels and industries) has accelerated the erosion process. The coastal defense structures (breakwaters and enrockment), built to protect the most eroded zone are efficient, but eroded zones appeared in the southern part of breakwaters. Recent and historic aerial photography was used to estimate, observe, and analyze past shoreline and bathymetric positions and trends involving shore evolution for Sousse-Monastir coast. All of the photographs were calibrated and mosaicked by Arc Map Gis 9.1, the years used are 1925, 1962, 1988, 1996, and 2001 for shoreline change analysis and 1884 and 2001 for bathymetric changes. The analyze of this photographs show that the zone located at the south of breakwater are mostly eroded with high speed process (2m/year). Another zone appears as eroded at the south part of Hamdoun River, with 1,5m/year erosion speed . Keywords: Shoreline evolution, defense structures, Sousse-Monastir coast, Tunisia.
Code of Federal Regulations, 2010 CFR
2010-07-01
... AIDS TO NAVIGATION ON ARTIFICIAL ISLANDS AND FIXED STRUCTURES General Requirements § 67.01-5..., drilling barges submerged on location, breakwater barges submerged on location, artificial islands and all...
Code of Federal Regulations, 2011 CFR
2011-07-01
... AIDS TO NAVIGATION ON ARTIFICIAL ISLANDS AND FIXED STRUCTURES General Requirements § 67.01-5..., drilling barges submerged on location, breakwater barges submerged on location, artificial islands and all...
50 CFR 86.13 - What is boating infrastructure?
Code of Federal Regulations, 2011 CFR
2011-10-01
... (CONTINUED) FINANCIAL ASSISTANCE-WILDLIFE SPORT FISH RESTORATION PROGRAM BOATING INFRASTRUCTURE GRANT (BIG...) Floating docks and fixed piers; (g) Floating and fixed breakwaters; (h) Dinghy docks (floating or fixed...
Numerical Modeling of Scour at the Head of a Vertical-Wall Breakwater in Waves
NASA Astrophysics Data System (ADS)
Baykal, C.; Balcı, H. B.; Sumer, B. M.; Fuhrman, D. R.
2017-12-01
This study presents a 3D numerical modeling study on the flow and scour at the head of a vertical-wall breakwater in regular waves. The numerical model utilized in the study is based on that given by Jacobsen (2011). The present model has been applied successfully to the scour and backfilling beneath submarine pipelines by Fuhrman et al. (2014), and around a vertical cylindrical pile mounted on a horizontal plane sediment bed by Baykal et al. (2015, 2017). The model is composed of two main modules. The first module is the hydrodynamic model where Reynolds Averaged Navier Stokes (RANS) equations are solved with a k-ω turbulence closure. The second module is the morphologic model which comprises five sub-modules, namely; bed load, suspended load, sand slide, bed evolution and 3D mesh motion. The model is constructed in open-source CFD toolbox OpenFOAM. In this study, the model is applied to experimental data sets of Sumer and Fredsoe (1997) on the scour around a vertical-wall breakwater with a circular round head. Here, it is given the preliminary results of bed evolution of Test-8 of Sumer and Fredsoe (1997) in which a vertical-wall breakwater head with a width of B=140 mm is subjected to oscillatory flow with Tw=2.0 s and maximum orbital velocity at the bed Um=22cm/s, resulting in a Keulegan-Carpenter number, KC=3.14, close to KC experienced in real-life situations (KC = O(1)). The grain size is d=0.17 mm. The Shields parameter in the test case is given as θc=0.11, larger than the critical value for the initiation of motion implying that the scour is in the live-bed regime. The computational domain used in the simulations has the following dimensions: Length, l=40B, Width, w=20B, and Height, h=2B. The total number of cells is O(105) in the simulations. The scoured bed profile computed at the end of 3 periods of oscillatory flow of Test-8 is given in the figure below. The color scale in the figure is given for the ratio of bed elevation to the width of breakwater. Early results show that bed shear stress amplifications are as high as O(10) near the structure and the scoured bed profile looks similar in shape as observed in the experiments. The simulation results will be presented with special focus on the flow structures around the structure and the time scale of the scour development.
Ashland Breakwater Light Transfer Act
Sen. Baldwin, Tammy [D-WI
2014-02-12
Senate - 12/10/2014 Placed on Senate Legislative Calendar under General Orders. Calendar No. 637. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:
33 CFR 80.1470 - Kawaihae Harbor, Hawaii, HI.
Code of Federal Regulations, 2011 CFR
2011-07-01
... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Islands § 80.1470 Kawaihae Harbor, Hawaii, HI. A line drawn from Kawaihae Light to the seaward extremity of the Kawaihae South Breakwater. ...
33 CFR 80.1470 - Kawaihae Harbor, Hawaii, HI.
Code of Federal Regulations, 2014 CFR
2014-07-01
... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Islands § 80.1470 Kawaihae Harbor, Hawaii, HI. A line drawn from Kawaihae Light to the seaward extremity of the Kawaihae South Breakwater. ...
33 CFR 80.1470 - Kawaihae Harbor, Hawaii, HI.
Code of Federal Regulations, 2013 CFR
2013-07-01
... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Islands § 80.1470 Kawaihae Harbor, Hawaii, HI. A line drawn from Kawaihae Light to the seaward extremity of the Kawaihae South Breakwater. ...
33 CFR 80.1470 - Kawaihae Harbor, Hawaii, HI.
Code of Federal Regulations, 2012 CFR
2012-07-01
... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Islands § 80.1470 Kawaihae Harbor, Hawaii, HI. A line drawn from Kawaihae Light to the seaward extremity of the Kawaihae South Breakwater. ...
50 CFR 86.13 - What is boating infrastructure?
Code of Federal Regulations, 2010 CFR
2010-10-01
..., currents, etc., that provide a temporary safe anchorage point or harbor of refuge during storms); (f) Floating docks and fixed piers; (g) Floating and fixed breakwaters; (h) Dinghy docks (floating or fixed...
Modeling the Impact of Boat Wakes on Living Shoreline Structures in Florida Intracoastal Waters
NASA Astrophysics Data System (ADS)
Herbert, D.; Astrom, E.; Bersoza, A.; Wasman, S.; Angelini, C.; Sheremet, A.
2017-12-01
Increased boating activity has driven morphological and biological changes along the coasts of estuarine environments. Large, recurrent boat wakes impede the growth of oyster reefs and salt marsh vegetation, which both serve as natural protection against erosion. A NOAA-funded experiment along a section of the Intracoastal Waterway at Guana Tolomato Matanzas National Estuarine Research Reserve (GTMNERR) near St. Augustine, Florida, studies the effectiveness of a living shorelines approach in mitigating the erosional impact of high-energy boat wakes. Living shorelines are a natural shoreline stabilization technique, where plants or organic structures are installed on the coastline. This study utilizes a combination of oyster gabions and porous breakwaters to facilitate oyster growth as well as marsh progradation. We present observations of flow and sediment transport associated with boat activity. Numerical simulations are used to evaluate the performance of the breakwaters and their effectiveness in reducing sediment resuspension and transport on the marsh surface.
Influence of a breakwater on nearby rocky intertidal community structure.
Martins, Gustavo M; Amaral, André F; Wallenstein, Francisco M; Neto, Ana I
2009-01-01
It is widely recognised that coastal-defence structures generally affect the structure of the assemblages they support, yet their impact on adjacent systems has been largely ignored. Breakwaters modify the nearby physical environment (e.g. wave action) suggesting a local impact on biological parameters. In the present study, an ACI (After-Control-Impact) design was used to test the general hypothesis that the artificial sheltering of an exposed coast has a strong effect on the structure and functioning of adjacent systems. The effects of a reduction in hydrodynamics were clear for a number of taxa and included the replacement of barnacles, limpets and frondose algae by an increasing cover of ephemeral algae. These effects were evident both at early and late successional stages. Results suggest that the artificial sheltering of naturally exposed coasts can have a strong impact promoting a shift from consumer- to producer-dominated communities, which has important ecological and energetic consequences for the ecosystem.
NASA Astrophysics Data System (ADS)
Pagnoni, Gianluca; Tinti, Stefano
2016-04-01
The eastern coast of Sicily has been hit by many historical tsunamis of local and remote origin. This zone and in particular Siracusa, as test site, was selected in the FP7 European project ASTARTE (Assessment, Strategy And Risk Reduction for Tsunamis in Europe - FP7-ENV2013 6.4-3, Grant 603839). According to the project goals, in this work oscillations modes of the Siracusa harbour were analysed with focus on the typical tsunami periods range, and on the protecting effects of breakwaters by using linear and non-linear simulation models. The city of Siracusa is located north of the homonymous gulf and has two harbours, called "Piccolo" (small) and "Grande" (grand) that are connected through a narrow channel. The harbour "Piccolo" is the object of this work. It is located at the end of a bay facing east and bordered on the south by the peninsula of Ortigia and on the north by the mainland. The basin has an area of approximately 100,000 m2 and is very shallow with an average depth of 2.5 m. It is protected by two breakwaters reducing its mouth to only 40 m width. This study was carried out using the numerical code UBO-TSUFD that solves linear and non-linear shallow-water equations on a high-resolution 2m x 2m regular grid. Resonant modes were searched by sinusoidal forcing on the open boundary with periods in a range from about 60 s to 1600 s covering the typical tsunami spectrum. The work was divided into three phases. First we studied the natural resonance frequencies, and in particular the Helmholtz resonance mode by using a linear fixed-geometry model and assuming that the connecting channel between the two Siracusa ports is closed. Second, we repeated the analysis by using a non-linear simulation model accounting for flooding and for an open connection channel. Eventually, we forced the harbour by means of synthetic signals with amplitude, period and duration of the main historical tsunamis attacking Siracusa, namely the AD 365, the 1693 and the 1908 tsunami events. In this last case our attention was also focused on quantifying the role of the existing breakwaters in mitigating the incoming tsunami.
Webster, L; Russell, M; Walsham, P; Phillips, L A; Packer, G; Hussy, I; Scurfield, J A; Dalgarno, E J; Moffat, C F
2009-06-01
Farmed, rope grown mussels (Loch Etive and Loch Ewe, both on the west coast of Scotland) and wild mussels (Straad on the west coast and Shell Bay and Aberdeen Breakwater, both on the east coast of Scotland) were collected on a monthly basis and analysed for persistent organic pollutants (POPs) with the aim of assessing the status of Scottish mussels, with respect to concentrations of POPs, and investigating site-specific and seasonal differences. Samples were analysed for polycyclic aromatic hydrocarbons (PAHs), polybrominated diphenyl ethers (PBDEs) and chlorobiphenyls (CBs). Total PAH (2- to 6-ring parent and alkylated) concentrations in mussels from three pristine sites (ref. 1: ICES Marine Chemistry Working Group Report 2008, http://www.ices.dk/reports/MHC/2007/MCWG07.pdf) (Loch Etive, Loch Ewe and Straad) were significantly lower than in mussels from sites with greater coastal influences (Aberdeen Breakwater and Shell Bay). Seasonal trends in the PAH concentrations were evident at the pristine sites, with concentrations being significantly higher for samples collected between November and March compared to those collected between April and October. The PAH data was assessed using a recently proposed traffic light system, based on the assessment criteria adopted by OSPAR for use in the 2008 Coordinated Environmental Monitoring Programme (CEMP) assessment. Concentrations were compared to Background Assessment Concentrations (BAC; blue/green transition) and Environmental Assessment Concentrations (EACs; green/red transition). All sites were classed as 'green' for the PAHs analysed, being below EACs, where available. The pristine sites were also below BACs for some PAHs and therefore would be classed as 'blue' for these PAHs. CBs and PBDEs were measured in mussels collected between 2006 and 2008 inclusive. Concentrations for CB and PBDEs were significantly higher in the Aberdeen Breakwater mussels than for all other sites. Concentrations at all sites were low with many congeners being below the detection limits for both contaminant groups. No seasonal trends were observed in the CBs or PBDE concentrations or composition at any of the five sites. The green-red transition (described by the EACpassive) was exceeded for CB118 in mussels from Aberdeen Breakwater and surprisingly at the pristine site of Loch Etive. As such both sites were classed as 'red'. All other ICES7 CBs were below EACs and therefore classed as 'blue' or 'green'.
33 CFR 110.10 - Portsmouth Harbor, New Hampshire, north of Newcastle Island.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Harbor, New Hampshire, north of Newcastle Island. From the northern most point of Goat Island to latitude... the breakwater to Goat Island and to the point of beginning. [CGD 83-1R, 48 FR 56578, Dec. 22, 1983] ...
Munari, Cristina; Corbau, Corinne; Simeoni, Umberto; Mistri, Michele
2011-08-01
The Adriatic coast of Punta Marina (Ravenna) is protected by 3-km long low crested breakwater structures (LCSs). Through a 3-years long multidisciplinar study, we assessed the impact of such defensive structures on environmental and biological condition. LCSs create pools where conditions are very different from the surrounding nearshore system. Mechanical disturbance by currents and waves varied greatly in intensity and frequency between seaward and landward sides of the structures. Sedimentary budget was positive at the landward side, but it was due to a gain on the seafloor and not on the emerged beach. The budget at seaward was negative. LCSs determine differences in benthic assemblages, alter the seasonal pattern of communities, and modify seasonal fluctuations of animal assemblages. Landward sheltered areas can be seen as "lagoonal island" surrounded by a "sea of marine habitat". Differences in ecological quality status, obtained through M-AMBI, are due to the sum of these factors. Copyright © 2011 Elsevier Ltd. All rights reserved.
Interaction of Waves and Currents.
1983-03-01
glitter due to the greater surface roughness on the current. This surface roughness has value in remote sensing, particularly when infrared observations...34Pneumatic Breakwaters to Protect Dredges," Journal of Waterways and Harbors Division, Vol. 87, No. WW2 , May 1961, pp. 67- 87. Discussion 87 (Nov.) 127
Criteria for Evaluating Coastal Flood-Protection Structures
1989-12-01
Hotta, S., and Marui , N. 1976. "Local Scour and Current Around a Porous Breakwater," Chapter 93, Proceedings, 15th Coastal Engineering Conference, 11- 17...breaking waves consistent with FEMA depth-limited breaking wave approach to design. 7. Hotta and Marui (1976) testing permeable and impermeable shore
33 CFR 80.1122 - Channel Islands Harbor, CA.
Code of Federal Regulations, 2012 CFR
2012-07-01
... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1122 Channel Islands Harbor, CA. (a) A line drawn from Channel Islands Harbor South Jetty Light 2 to Channel Islands Harbor Breakwater... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Channel Islands Harbor, CA. 80...
33 CFR 80.1122 - Channel Islands Harbor, CA.
Code of Federal Regulations, 2010 CFR
2010-07-01
... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1122 Channel Islands Harbor, CA. (a) A line drawn from Channel Islands Harbor South Jetty Light 2 to Channel Islands Harbor Breakwater... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Channel Islands Harbor, CA. 80...
33 CFR 80.1122 - Channel Islands Harbor, CA.
Code of Federal Regulations, 2014 CFR
2014-07-01
... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1122 Channel Islands Harbor, CA. (a) A line drawn from Channel Islands Harbor South Jetty Light 2 to Channel Islands Harbor Breakwater... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Channel Islands Harbor, CA. 80...
33 CFR 80.1122 - Channel Islands Harbor, CA.
Code of Federal Regulations, 2013 CFR
2013-07-01
... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1122 Channel Islands Harbor, CA. (a) A line drawn from Channel Islands Harbor South Jetty Light 2 to Channel Islands Harbor Breakwater... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Channel Islands Harbor, CA. 80...
33 CFR 80.1122 - Channel Islands Harbor, CA.
Code of Federal Regulations, 2011 CFR
2011-07-01
... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1122 Channel Islands Harbor, CA. (a) A line drawn from Channel Islands Harbor South Jetty Light 2 to Channel Islands Harbor Breakwater... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Channel Islands Harbor, CA. 80...
Condition and Performance Rating Procedures for Rubble Breakwaters and Jetties
1998-11-01
coastal community whose excellent ideas helped guide this work. Dr. Michael J. O’Connor is Director of USACERL. Chapter 1 Introduction 1 Introduction...headquarters. Concepts for the condition rating procedures were generated by the authors, the CSAG, and other members of the Corps’ coastal community . These
33 CFR 110.127b - Flaming Gorge Lake, Wyoming-Utah.
Code of Federal Regulations, 2010 CFR
2010-07-01
... launching ramp to a point beyond the floating breakwater and then westerly, as established by the... following points, excluding a 150-foot-wide fairway, extending southeasterly from the launching ramp, as... inclosed by the shore and a line connecting the following points, excluding a 100-foot-wide fairway...
46 CFR 7.30 - New York Harbor, NY.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false New York Harbor, NY. 7.30 Section 7.30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC BOUNDARY LINES Atlantic Coast § 7.30 New York Harbor, NY. A line drawn from East Rockaway Inlet Breakwater Light to Ambrose Light...
70. Photocopied August 1978. BIRDSEYE VIEW OF COMPENSATING GATES CONSTRUCTION ...
70. Photocopied August 1978. BIRDSEYE VIEW OF COMPENSATING GATES CONSTRUCTION SITE FROM THE CANADIAN CANAL, SEPTEMBER 24, 1901. THE VIEW SHOWS THE INTERNATIONAL RAILROAD BRIDGE AND THE BEGININGS OF BREAKWATER CONSTRUCTION FOR THE FIRST FOUR COMPENSATING GATES. (309) - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI
Implementing Engineering With Nature within the Corps: A Workshop
2013-09-01
Browne , University College Dublin 10:55 – 11:25 Breakwaters for the creation of...Kelsie USACE‐ERDC Banks, Cynthia USACE‐ERDC Bowers, Keith Biohabitats Bridges, Todd USACE‐ERDC Browne , Mark University College of Dublin Carter... Browne IRCSET Post‐doctoral Fellow University College Dublin School of Biology and Environmental Sciences Science Centre West Belfield Dublin
Implementation of Structures in the CMS:Part 1, Rubble Mound
2013-08-01
Lin, C. Lu, and A. T. Shak . 2011. Evaluation of Breakwaters and Sedimentation at Dana Point Harbor, CA. In Proceedings of Coastal Sediments 2011...08-13. Vicksburg, MS: US Army Engineer Research and Development Center. ERDC/CHL CHETN-IV-93 August 2013 9 Lu, C., A. T. Shak , H. Li, and L. Lin
1980-08-01
induced currents around the breakwaters. Experiments were conducted by Hotta and Marui (1976) to investigate characteristics of the local scour; and it...on Oscillatory Boundary Layer Flow," Proceedings, Eleventh Conference on Coastal Engineering, London, England, Vol I, pp 467-486. Hotta, S., and Marui
33 CFR 80.1118 - Marina Del Rey, CA.
Code of Federal Regulations, 2010 CFR
2010-07-01
... NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1118 Marina Del Rey, CA. (a) A line drawn from Marina Del Rey Breakwater South Light 1 to Marina Del Rey Light 4. (b) A line drawn from Marina Del Rey... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Marina Del Rey, CA. 80.1118...
33 CFR 80.1118 - Marina Del Rey, CA.
Code of Federal Regulations, 2012 CFR
2012-07-01
... NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1118 Marina Del Rey, CA. (a) A line drawn from Marina Del Rey Breakwater South Light 1 to Marina Del Rey Light 4. (b) A line drawn from Marina Del Rey... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Marina Del Rey, CA. 80.1118...
33 CFR 80.1118 - Marina Del Rey, CA.
Code of Federal Regulations, 2013 CFR
2013-07-01
... NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1118 Marina Del Rey, CA. (a) A line drawn from Marina Del Rey Breakwater South Light 1 to Marina Del Rey Light 4. (b) A line drawn from Marina Del Rey... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Marina Del Rey, CA. 80.1118...
33 CFR 80.1118 - Marina Del Rey, CA.
Code of Federal Regulations, 2011 CFR
2011-07-01
... NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1118 Marina Del Rey, CA. (a) A line drawn from Marina Del Rey Breakwater South Light 1 to Marina Del Rey Light 4. (b) A line drawn from Marina Del Rey... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Marina Del Rey, CA. 80.1118...
33 CFR 80.1118 - Marina Del Rey, CA.
Code of Federal Regulations, 2014 CFR
2014-07-01
... NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1118 Marina Del Rey, CA. (a) A line drawn from Marina Del Rey Breakwater South Light 1 to Marina Del Rey Light 4. (b) A line drawn from Marina Del Rey... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Marina Del Rey, CA. 80.1118...
33 CFR 110.155 - Port of New York.
Code of Federal Regulations, 2014 CFR
2014-07-01
... and Goose Island breakwater; southwest of a line bearing southeasterly from the southwest end of Goose.... On Hammond Flats north of a line bearing 260° from the head of the pier on Throgs Neck at the foot of.... North of a line bearing 259° between the north tower of the Bronx-Whitestone Bridge at Old Ferry Point...
33 CFR 110.155 - Port of New York.
Code of Federal Regulations, 2013 CFR
2013-07-01
... and Goose Island breakwater; southwest of a line bearing southeasterly from the southwest end of Goose.... On Hammond Flats north of a line bearing 260° from the head of the pier on Throgs Neck at the foot of.... North of a line bearing 259° between the north tower of the Bronx-Whitestone Bridge at Old Ferry Point...
33 CFR 110.155 - Port of New York.
Code of Federal Regulations, 2012 CFR
2012-07-01
... and Goose Island breakwater; southwest of a line bearing southeasterly from the southwest end of Goose.... On Hammond Flats north of a line bearing 260° from the head of the pier on Throgs Neck at the foot of.... North of a line bearing 259° between the north tower of the Bronx-Whitestone Bridge at Old Ferry Point...
Investigation of Breakwater Stability at Presque Isle Peninsula Erie, Pennsylvania
1989-05-01
PRESQUE ISLE PENINSULA AD-A208 528 ERIE , PENNSYLVANIA by Peter J. Grace...STABILITY AT PRESQUE ISLE PENINSULA, ERIE . PENNSYLVANIA PART I: INTRODUCTION The Prototype 1. Harbor facilities at Erie , Pennsylvania , are protected...at Presque Isle Beaches, Erie , Pennsylvania ," Technical Report HL-83-15, US Army Engineer Waterways Experiment Station, Vicksburg, MS. Stevens, J.
Geological Character and Mineral Resources of South Central Lake Erie.
1982-10-01
Presque Isle Peninsula, Erie , Pennsylvania , being conducted by the U.S. Army Engineer District...the Pennsylvania shoreline. Because of its position and morphology, Presque Isle acts as a natural offshore breakwater for Erie Harbor, blocking the...Research Center, Fort Belvoir, Va. (in preparation, 1982). U.S. ARMY ENGINEER DISTRICT, BUFFALO, " Presque Isle Peninsula, Erie , Pennsylvania ,"
33 CFR 80.505 - Cape Henlopen, DE to Cape Charles, VA.
Code of Federal Regulations, 2010 CFR
2010-07-01
... to Cape Charles, VA. (a) A line drawn from the seaward extremity of Indian River Inlet North Jetty to Indian River Inlet South Jetty Light. (b) A line drawn from Ocean City Inlet Light 6, 225° true across Ocean City Inlet to the submerged south breakwater. (c) A line drawn from Assateague Beach Tower Light...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-03
... reach. The County has nourished the project area dune toes on several occasions and has planted native dune vegetation at several locations. Due to the narrow beach profile, much of this effort has been... nourishment and dune restoration through filling activities, groins, segmented submerged breakwaters, upland...
Earth observation photo taken by JPL with the Shuttle Imaging Radar-A
NASA Technical Reports Server (NTRS)
1981-01-01
Earth observation photo taken by the Jet Propulsion Laboratory (JPL) with the Shuttle Imaging Radar-A (SIR-A). This image shows the Los Angeles basin. The area's freeways are visible as dark lines. The Los Angles harbor breakwater off Long Beach is seen as a bright line. Vessels in the harbor show as bright points.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-07
... Federal holidays. We have an agreement with the Department of Transportation to use the Docket Management... Approach Channel to extend approximately 3.5 nautical miles beyond the Los Angeles breakwater. Deepening of the Los Angeles Approach Channel to a project depth of 81 feet. A slight shift of the Long Beach...
1985-08-01
extensive renovation , as shown in Fig- ure 3. Total rehabilitation usually costs one-tenth to one-fourth as much as replacement with a new structure. 29...presented by Dr. Manuel da Silva, Ministerior Da Industria E Energia , Portugal. Dr. da Silva discussed the Sines breakwater failures of 1978 and 1979
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false St. Lawrence River, Cape Vincent Harbor, N.Y.; use, administration, and navigation of the harbor and U.S. breakwater. 207.610 Section 207... NAVIGATION REGULATIONS § 207.610 St. Lawrence River, Cape Vincent Harbor, N.Y.; use, administration, and...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-11
... brief comments up to 6,000 characters, without prior registration, using the eComment system at http... docks, and add 1,330 feet of breakwater. The completed development would have 18 docks (16 boat docks, 1 swim dock, and 1 fishing dock) with 240 boat slips and 156 personal watercraft lifts; boat fueling...
46 CFR 7.45 - Cape Henlopen, DE to Cape Charles, VA.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Inlet Lighted Gong Buoy “1”); thence to Indian River Inlet South Jetty Light. (b) A line drawn from... Buoy “5”); thence to the easternmost extremity of the south breakwater. (c) A line drawn from... from the southernmost extremity of Cedar Island to latitude 37°34.7′ N. longitude 75°36.0′ W...
33 CFR 165.1152 - San Pedro Bay, California-Regulated navigation area.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Navigation Area (RNA) consists of the water area enclosed by the Los Angeles-Long Beach breakwater and a line... 118°10.80′ W (2) The San Pedro Bay RNA consists of the following named sub-areas, defined by lines... 12 knots through the water within the RNA. (2) A vessel navigating within the RNA, shall have its...
33 CFR 165.1152 - San Pedro Bay, California-Regulated navigation area.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Navigation Area (RNA) consists of the water area enclosed by the Los Angeles-Long Beach breakwater and a line... 118°10.80′ W (2) The San Pedro Bay RNA consists of the following named sub-areas, defined by lines... 12 knots through the water within the RNA. (2) A vessel navigating within the RNA, shall have its...
33 CFR 165.1152 - San Pedro Bay, California-Regulated navigation area.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Navigation Area (RNA) consists of the water area enclosed by the Los Angeles-Long Beach breakwater and a line... 118°10.80′ W (2) The San Pedro Bay RNA consists of the following named sub-areas, defined by lines... 12 knots through the water within the RNA. (2) A vessel navigating within the RNA, shall have its...
33 CFR 165.1152 - San Pedro Bay, California-Regulated navigation area.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Navigation Area (RNA) consists of the water area enclosed by the Los Angeles-Long Beach breakwater and a line... 118°10.80′ W (2) The San Pedro Bay RNA consists of the following named sub-areas, defined by lines... 12 knots through the water within the RNA. (2) A vessel navigating within the RNA, shall have its...
33 CFR 165.1152 - San Pedro Bay, California-Regulated navigation area.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Navigation Area (RNA) consists of the water area enclosed by the Los Angeles-Long Beach breakwater and a line... 118°10.80′ W (2) The San Pedro Bay RNA consists of the following named sub-areas, defined by lines... 12 knots through the water within the RNA. (2) A vessel navigating within the RNA, shall have its...
33 CFR 100.106 - Freeport Grand Prix, Long Beach, NY.
Code of Federal Regulations, 2011 CFR
2011-07-01
... of Long Island to the south of Long Beach, New York. The regulated area is one and one quarter (11/4) miles south of Long Beach and three and one quarter (31/4) miles north of the northern boundary of... quarter miles southwest of Jones Inlet breakwater at coordinates 40-33-42 North; 073-35-43 West. (2...
33 CFR 100.106 - Freeport Grand Prix, Long Beach, NY.
Code of Federal Regulations, 2010 CFR
2010-07-01
... of Long Island to the south of Long Beach, New York. The regulated area is one and one quarter (11/4) miles south of Long Beach and three and one quarter (31/4) miles north of the northern boundary of... quarter miles southwest of Jones Inlet breakwater at coordinates 40-33-42 North; 073-35-43 West. (2...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goreau, T.J.; Hilbertz, W.
Electrolysis of seawater is used to precipitate limestone on top of underwater steel structures to create growing artificial reefs to enhance coral growth, restore coral reef habitat, provide shelter for fish, shellfish, and other marine organisms, generate white sand for beach replenishment, and protect shore lines from wave erosion. Films and slides will be shown of existing structures in Jamaica, Panama, and the Maldives, and projects being developed in these and other locations will be evaluated. The method is unique because it creates the only artificial reef structures that generate the natural limestone substrate from which corals and coral reefsmore » are composed, speeding the settlement and growth of calcareous organisms, and attracting the full range of other reef organisms. The structures are self-repairing and grow stronger with age. Power sources utilized include batteries, battery chargers, photovoltaic panels, and windmills. The cost of seawalls and breakwaters produced by this method is less than one tenth that of conventional technology. Because the technology is readily scaled up to build breakwaters and artificial islands able to keep pace with rising sea level it is capable of playing an important role in protecting low lying coastal areas from the effects of global climate change.« less
On the pressure field of nonlinear standing water waves
NASA Technical Reports Server (NTRS)
Schwartz, L. W.
1980-01-01
The pressure field produced by two dimensional nonlinear time and space periodic standing waves was calculated as a series expansion in the wave height. The high order series was summed by the use of Pade approximants. Calculations included the pressure variation at great depth, which was considered to be a likely cause of microseismic activity, and the pressure distribution on a vertical barrier or breakwater.
78 FR 26508 - Safety Zone; Fireworks Event in Captain of the Port New York Zone
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-07
...(4.2). position 40[deg]44'24'' N, 073[deg]58'00'' W (NAD 1983), approximately 785 yards south of...'' W (NAD 1983), approximately 500 yards northeast of Glen Cove Breakwater Light 5 (LLNR 27065). This... approximate Zone, 33 CFR 165.160(3.8). position 41[deg]30'01.2'' N, 073[deg]59'42.5'' W (NAD 1983...
Littoral Hydrodynamics and Sediment Transport Around a Semi-Permeable Breakwater
2015-09-18
Australasian Coasts & Ports Conference 2015 15 - 18 September 2015, Auckland , New Zealand Li, H et al. Littoral Hydrodynamics and Sediment...Coasts and Ports 2015, Auckland , New Zealand, 15-18 September, 2015, 7 pp. Littoral Hydrodynamics and Sediment Transport Around a Semi...Conference 2015 15 - 18 September 2015, Auckland , New Zealand Li, H et al. Littoral Hydrodynamics and Sediment Transport 2 The bathymetric and side
1988-02-01
57 Summary--"Comments from Dr. Hans Burcharth" ............81 "Strength of Armour Blocks...335 APPENDICES........................................................ 387 A--"Strength of Concrete Armour Units for Breakwaters"’ --Delft...STAT!STICS DESIGN WAVE CLIMATE PRELIMINARY DESIGN CALCULATION OF ARMOUR STABILIY ETC MODEL TESTS OF PRELIMINARY DESIGN FINAL DESIGN Figure 1. Ideal
Engineering With Nature Geographic Project Mapping Tool (EWN ProMap)
2015-07-01
EWN ProMap database provides numerous case studies for infrastructure projects such as breakwaters, river engineering dikes, and seawalls that have...the EWN Project Mapping Tool (EWN ProMap) is to assist users in their search for case study information that can be valuable for developing EWN ideas...Essential elements of EWN include: (1) using science and engineering to produce operational efficiencies supporting sustainable delivery of
NASA Astrophysics Data System (ADS)
Perdana, T. A.; Suprijanto, J.; Pribadi, R.; Collet, C. R.; Bailly, D.
2018-03-01
Ecosystem resilience is the capacity of ecosystems to tolerate disorders without collapsing into different circumstances qualitatively controlled by a different set of processes. A robust ecosystem is one that can withstand shocks and rebuild itself when necessary. This study aims to identify the value of use-based economy and non-use value of current economy; calculating the total economic value of mangrove resources; and provide suggestions and recommendations based on observations in Timbulsloko, Sayung, Demak. The method used is economic valuation with total economic value technique. The sampling technique used non-probability and purposive sampling method. The results showed that the direct use value of mangroves was utilized by fisherman, fish pond farmers, branjang catchers, oystercatchers, trap makers, shop owner, grilled fish makers and shrimp chip makers. Indirect use value was derived from function as the breakwater, beach belt and hybrid engineering. Existing value was not less than 10 % of the direct use value. The total economic value was Rp. 6,361,430,639/year or about Rp. 202,335,580.1/ha/year. It is need to improve the community awareness to mangrove ecosystem and to the role of breakwater in order to reduce risk disaster and to develop an ecotourism in the area.
Effects of Breakwater Construction of Tedious Creek Small Craft Harbor and Estuary, Maryland
2006-09-01
an area that provides excellent access to many productive fishing grounds in Chesapeake Bay. Tedious Creek Harbor provides anchorage to over 100...vessels involved in commercial and/or recreational fishing . The orientation of Tedious Creek allows the transmission of storm waves that, at times...entering the estuary. Due to the orientation of Tedious Creek to Fishing Bay, storm waves from the northeast, east, and southeast entered the
1980-01-01
land- marks are the San Pedro Breakwater and Angels Gate Lighthouse, the Termial Island Schoolhouse, and the Municipal Fish Market. Descriptions of...MILES, Chairman Navigation and Ocean Development Commission I, Marty Mercado , Secretary of the Navigation and Ocean Development Commission, do hereby...officials who have authority or responsibility in this area. STAN1&’.~LIMCara NAVIGATION AND OCEAN DEVELOPMENT COIISSION I, Marty Mercado , Secretary
Beach Erosional Hot Spots: Types, Causes, and Solutions
2001-09-01
Pope, and McClung (1999) showed that variable erosion rates along a beach nourishment project on Presque Isle , Pennsylvania (Lake Erie ) were related to...and McClung, J. K. (1999). “Coastal response to a detached breakwater system: Presque Isle , Erie , PA, U.S.A,” Proc. Coastal Sediments ’99, ASCE...borrow pits located too close to shore at Grand Isle , LA. The resultant cuspate shoreline was subsequently predicted by refraction analysis
Plymouth Colony, Massachusetts, USA
1990-03-04
Site of the original Plymouth Colony in Massachusetts (42.0N, 70.5), This detailed photo is rich in early American history. Plymouth Rock, the Pilgrims first stepping stone on North America and site of Plymouth Colony is located just behind the natural breakwater on the south shore of Plymouth Bay seen in the middle of the photo. The through canal to the south is part of the Intercoastal Canal system. Cape Cod is just south of the canal.
Sabine-Neches Waterway, Sabine Pass Jetty System: Past and Future Performance
2010-04-01
island systems of the Mississippi River delta plain: historical change and future prediction. Journal of Coastal Research 13(3):628–655. McBride, R. A...armored breakwaters and revetments. Coastal and Hydraulics Engineering Technical Note, ERDC/CHL CHETN-III-64 ( revised ). Vicksburg, MS: U.S. Army...Systems, National Research Council, National Academy Press, Washington, D.C. Nelson, H. F., and E. E. Bray. 1970. Stratigraphy and history of the
Development of High Precision Tsunami Runup Calculation Method Coupled with Structure Analysis
NASA Astrophysics Data System (ADS)
Arikawa, Taro; Seki, Katsumi; Chida, Yu; Takagawa, Tomohiro; Shimosako, Kenichiro
2017-04-01
The 2011 Great East Japan Earthquake (GEJE) has shown that tsunami disasters are not limited to inundation damage in a specified region, but may destroy a wide area, causing a major disaster. Evaluating standing land structures and damage to them requires highly precise evaluation of three-dimensional fluid motion - an expensive process. Our research goals were thus to develop a coupling STOC-CADMAS (Arikawa and Tomita, 2016) coupling with the structure analysis (Arikawa et. al., 2009) to efficiently calculate all stages from tsunami source to runup including the deformation of structures and to verify their applicability. We also investigated the stability of breakwaters at Kamaishi Bay. Fig. 1 shows the whole of this calculation system. The STOC-ML simulator approximates pressure by hydrostatic pressure and calculates the wave profiles based on an equation of continuity, thereby lowering calculation cost, primarily calculating from a e epi center to the shallow region. As a simulator, STOC-IC solves pressure based on a Poisson equation to account for a shallower, more complex topography, but reduces computation cost slightly to calculate the area near a port by setting the water surface based on an equation of continuity. CS3D also solves a Navier-Stokes equation and sets the water surface by VOF to deal with the runup area, with its complex surfaces of overflows and bores. STR solves the structure analysis including the geo analysis based on the Biot's formula. By coupling these, it efficiently calculates the tsunami profile from the propagation to the inundation. The numerical results compared with the physical experiments done by Arikawa et. al.,2012. It was good agreement with the experimental ones. Finally, the system applied to the local situation at Kamaishi bay. The almost breakwaters were washed away, whose situation was similar to the damage at Kamaishi bay. REFERENCES T. Arikawa and T. Tomita (2016): "Development of High Precision Tsunami Runup Calculation Method Based on a Hierarchical Simulation", Journal of Disaster ResearchVol.11 No.4 T. Arikawa, K. Hamaguchi, K. Kitagawa, T. Suzuki (2009): "Development of Numerical Wave Tank Coupled with Structure Analysis Based on FEM", Journal of J.S.C.E., Ser. B2 (Coastal Engineering) Vol. 65, No. 1 T. Arikawa et. al.(2012) "Failure Mechanism of Kamaishi Breakwaters due to the Great East Japan Earthquake Tsunami", 33rd International Conference on Coastal Engineering, No.1191
Floating Breakwaters: State-of-the-Art Literature Review.
1981-10-01
transmission Mooring loads 20. / . 20. STR ACT (Continue on reverse ide If necessary and Identify by block number) A multitude of conceptual models of...are designed by finding the ultimate lateral resistance of the pile-soil system and increasing the lateral mooring load , Ft, by a fac- tor of safety...Fs, to determine the design lateral load on the pile. The ultimate lateral resistance of the anchor pile is reached when either the passive strength of
Potential Regional Sediment Management (RSM) Projects in the Haleiwa Region, Oahu, Hawaii
2014-05-01
relic stream channels on wave -induced flow patterns. Wave breaking and energy dissipation over the reefs result in return currents (from nearshore to...long), (c) a stub breakwater (80 ft long), and (d) a wave absorber (140 ft long). The non-federal sponsor for the harbor is the State of Hawaii...Coastal Inlets Research Program (CIRP) Coastal Modeling System (CMS) numerical models CMS- Wave and CMS- Flow (Sanchez et al. 2011) were implemented to
Point Judith, Rhode Island, Breakwater Risk Assessment
2015-08-01
output stations. Beach zones considered included the sandy beach to the west side of the HoR, which had significant dune features and was fronting...time dependency for crest height and wave parameters is assumed, hc = total damaged crest height of structure from toe , Lp is the local wave length...computed using linear wave theory and Tp, h is the toe depth, hc’ = total undamaged crest height of structure from toe , At = area of structure enclosed
Earthshots: Satellite images of environmental change – Dubai, United Arab Emirates
Adamson, Thomas
2016-01-01
In the first image of this series, desert fills much of the image. As Dubai expands, roads, buildings, and irrigated fields spread out over the desert. But the most prominent project in Dubai, and an impressive engineering feat, is the artificial islands built off its coast. The islands were built from sand dredged from the sea floor. Rock breakwaters protect them from erosion. These Landsat images show the rapid and impressive development of these islands.
2011-08-01
instrumentation researchers such as Eugene Woodman, Francis Hanes, L.H. Daniels, and Leo F. Ingram developed instru- ments ranging from high-speed cameras to...dredging involved computer modeling of various prob- lems, and CERC helped in the development of technologies such as breakwater designs, CORE- LOC ...of hydraulic engineering and modeling, bridge scour analysis, development of the CORE- LOC Concrete Armoring and Samoa Stone products for coastal
100. Photocopied August 1978. COMPENSATING GATES, VIEW LOOKING SOUTHWEST, JULY ...
100. Photocopied August 1978. COMPENSATING GATES, VIEW LOOKING SOUTHWEST, JULY 8, 1916. COMPLETED GATES 13-16 ARE AT THE LEFT. THE PIERS OF GATES 9-12 ARE ON THE RIGHT. SUPER-STRUCTURE ERECTION ON THESE PIERS HAD NOT YET BEGUN. JUST ABOVE THE COFFER DAM, THE BREAKWATER INSTALLED TO PROTECT THE CONSTRUCTION SITE FROM THE RIVER CURRENT CAN BE SEEN. (684) - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI
Holocene morphogenesis of Alexander the Great's isthmus at Tyre in Lebanon
Marriner, Nick; Morhange, Christophe; Meulé, Samuel
2007-01-01
In 332 B.C., Alexander the Great constructed an ≈1,000-m-long causeway to seize the offshore island of Tyre. The logistics behind this engineering feat have long troubled archaeologists. Using the Holocene sedimentary record, we demonstrate that Alexander's engineers cleverly exploited a shallow proto-tombolo, or sublittoral sand spit, to breach the offshore city's defensive impregnability. We elucidate a three-phase geomorphological model for the spit's evolution. Settled since the Bronze Age, the area's geological record manifests a long history of natural and anthropogenic forcings. (i) Leeward of the island breakwater, the maximum flooding surface (e.g., drowning of the subaerial land surfaces by seawater) is dated ≈8000 B.P. Fine-grained sediments and brackish and marine-lagoonal faunas translate shallow, low-energy water bodies at this time. Shelter was afforded by Tyre's elongated sandstone reefs, which acted as a 6-km natural breakwater. (ii) By 6000 B.P., sea-level rise had reduced the dimensions of the island from 6 to 4 km. The leeward wave shadow generated by this island, allied with high sediment supply after 3000 B.P., culminated in a natural wave-dominated proto-tombolo within 1–2 m of mean sea level by the time of Alexander the Great (4th century B.C.). (iii) After 332 B.C., construction of Alexander's causeway entrained a complete anthropogenic metamorphosis of the Tyrian coastal system. PMID:17517668
Holocene morphogenesis of Alexander the Great's isthmus at Tyre in Lebanon.
Marriner, Nick; Morhange, Christophe; Meulé, Samuel
2007-05-29
In 332 B.C., Alexander the Great constructed an approximately 1,000-m-long causeway to seize the offshore island of Tyre. The logistics behind this engineering feat have long troubled archaeologists. Using the Holocene sedimentary record, we demonstrate that Alexander's engineers cleverly exploited a shallow proto-tombolo, or sublittoral sand spit, to breach the offshore city's defensive impregnability. We elucidate a three-phase geomorphological model for the spit's evolution. Settled since the Bronze Age, the area's geological record manifests a long history of natural and anthropogenic forcings. (i) Leeward of the island breakwater, the maximum flooding surface (e.g., drowning of the subaerial land surfaces by seawater) is dated approximately 8000 B.P. Fine-grained sediments and brackish and marine-lagoonal faunas translate shallow, low-energy water bodies at this time. Shelter was afforded by Tyre's elongated sandstone reefs, which acted as a 6-km natural breakwater. (ii) By 6000 B.P., sea-level rise had reduced the dimensions of the island from 6 to 4 km. The leeward wave shadow generated by this island, allied with high sediment supply after 3000 B.P., culminated in a natural wave-dominated proto-tombolo within 1-2 m of mean sea level by the time of Alexander the Great (4th century B.C.). (iii) After 332 B.C., construction of Alexander's causeway entrained a complete anthropogenic metamorphosis of the Tyrian coastal system.
Converting old shore protection structures into softer defence
NASA Astrophysics Data System (ADS)
Pranzini, Enzo
2010-05-01
Beach erosion has been affecting several developed countries since the middle of 19th century, which led to the construction of many different protection structures. These frequently proved to be ineffective locally, while being negative for downdrift coastal segments. In addition, such defence structures modified the coastal morphology, often transforming a sandy beach into a rocky coast. Softer shore protection projects have been developed in the past years, mostly accompanied by beach nourishment that uses quarried material or shelf sediments. This proved to be efficient in defending the beach, without negative fallouts on unprotected sectors. These techniques can be easily applied to beaches where no "archeaostructures" had been realized before. On the other hand, difficulties arise when such "old style" structures are to be replaced with softer techniques, since traditional hard defences usually cause such changes to beach profile that innovative ones become "too soft". Due to profile deepening in front of reflective structures, wave shoaling is reduced and energy dissipation concentrated in a narrow beach band. Restoring a milder profile needs a large amount of sediments and fine sands are not stable under those conditions. The new challenge for coastal engineers, coastal geomorphologists and coastal planners is managing the transition from old archaeostructures to new soft shore protection techniques. This process requires years of progressive adaptation - an unsuitable timing for politicians who demand fast results to be sold during the next elections. In Italy, along the Tuscany coast, where more than two kilometres of breakwaters protect each kilometre of coast, such a process has been initiated after a long phase of stakeholder participation in order to overcome public scepticism towards "invisible" defences. Detached breakwaters were lowered below sea level at Follonica and Marina di Pisa, while the number of groins is to be reduced at Marina di Massa in the near future. At Follonica, no beach nourishment has so far been realised along with such works, whereas at Marina di Pisa a gravel beach has been created for absorbing the higher energy that overpasses the lowered structure. At Marina di Massa submerged structures (groins and detached breakwaters) will be realized to counterbalance the demolition of the emerged groins. Beach evolution is being presently monitored in all these sites. This will help evaluate the efficiency of projects, providing data and results that will be useful when beach profile becomes milder and height/number of defences may need to be further reduced. Preliminary results at Follonica suggest that some beaches were overprotected, and redimensioning of structures did not result in beach erosion, since decrease in protection was accompanied by reduction in negative side-effects of the original defence, such as piling up. In Marina di Pisa, where detached breakwaters were lowered and a gravel beach realized, there was an increase in water quality and users got the possibility of using a new beach suitable for recreational activity, without any reduction in coastal protection. Project execution at Marina di Massa has just started a few months ago and monitoring results are not yet significative - however, 3D physical model experiments, carried out to optimize the design, have been encouraging. These and further results will guide additional projects to be realized in other parts of Tuscany, as well as in other Italian coastal segments presently undergoing the negative effects of past widespread archaeostructure construction.
1981-11-01
STONE). &7 LAB 07 AORD LAB APRL 1978 LAB * 107/78.6118 PRESQUE ISLE PROJECT UNK ORD LAB CLEVELAND WEST BREAKWATER JU. LAB 103/78.6240 .R..ABILITATION...NOTES IS. KEY WORDS (Continue on revere side if neeemvr and identify by block number) beach erosion diked disposal areas shore erosion Lake Erie ...House Document No. 229, 83rd Congress, "Appendix VIII, Ohio Shoreline of Lake Erie Between Vermilion and Sheffield Lake Village, Beach Erosion Control
2014-08-01
major taxonomic group and counted. The algae from each sample was captured on a preweighed paper filter and dried in an oven at 60-65° C for 24-48...Restoration Initiative managed by the Great Lakes National Program Office. BACKGROUND Engineering With Nature Approach. Engineering With Nature (EWN) is a ...person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number
Kaumalapau Harbor, Hawaii, Breakwater Repair
2012-05-01
agricultural economy to an economy based on tourism . Primary use of the harbor changed from the export of pineapple to the import of fuel and goods to...unit. The pulse-velocity measurement apparatus consists of a transmitter and receiver connected to electronic circuitry that generates a pulse sent...performance indices include a ME of -0.43 ft, RMSE of 0.66 ft and SI ERDC/CHL TR-12-7 86 of 0.24. In other words , the Maui SWAN model will perform as good
Comparison of a Physical and Numerical Mobile-Bed Model of Beach and T-Head Groin Interaction
2011-05-01
Hydraulic Centre’s Large Area Basin (LAB), utilizing a set of moveable wave generators capable of providing long-crested waves to match a variety...was conducted manually from a bridge as shown in Figure 4. The location of the transect (Profile 2) is shown in Figure 2. Planform morphology was...4. Physical model oblique view showing profile measurement location and bridge . 2617 The T-head groins and the shore-normal breakwater trunk at the
2005-11-25
fact, Koutandos et al. (2004) even now have had to limit their work only to the x–z plane while using a similar approach. In this paper, therefore, we...breakwater Koutandos et al. (2004) have presented data pertaining to transmission coefficients for waves passing a fixed, infinitely long, floating...4. Values of A and B for determining α. Fig. 5. Wave height comparison with data presented in Koutandos et al. (2004). Fig. 6. Wave transmission past
1988-11-01
is located in southern Alaska on Orca Inlet at the south- eastern approach of Prince William Sound , 145 air miles east-southeast from Anchorage. The...Anacortes Harbor, Washington 113. Anacortes is located on Fidalgo Island on the east side of Puget Sound . The project includes a 2,850-ft-long channel... Puget Sound in northern Washington. The project includes three waterways maintained by dredging, a small-boat basin protected by two rubble-mound
1990-10-01
able sealing material that has promising characteristics for coastal engineer- ing applications. Microfine Cement, a company which markets ultrafine...cement, claims the product can penetrate fine sand and is strong and durable with a 4- to 5-hr set tine. Fifty percent of Microfine Cement’s...sealant. The casing can be pierced at any selected point by firing an explosive-impelled projectile from a device lowered into the casing. d. Tubes A
Interviewing insights regarding the fatalities inflicted by the 2011 Great East Japan Earthquake
NASA Astrophysics Data System (ADS)
Ando, M.; Ishida, M.; Hayashi, Y.; Mizuki, C.; Nishikawa, Y.; Tu, Y.
2013-09-01
One hundred fifty survivors of the 11 March 2011 Great East Japan Earthquake (Tohoku-oki earthquake) (Mw = 9.0) were interviewed to study the causes of deaths from the associated tsunami in coastal areas of Tohoku. The first official tsunami warning underestimated the height of the tsunami and 40% of the interviewees did not obtain this warning due to immediate blackouts and a lack of communication after the earthquake. Many chose to remain in dangerous locations based on the underestimated warning and their experiences with previous smaller tsunamis and/or due to misunderstanding the mitigating effects of nearby breakwaters in blocking incoming tsunamis. Some delayed their evacuation to perform family safety checks, and in many situations, the people affected misunderstood the risks involved in tsunamis. In this area, three large tsunamis have struck in the 115 yr preceding the 2011 tsunami. These tsunamis remained in the collective memory of communities, and numerous measures against future tsunami damage, such as breakwaters and tsunami evacuation drills, had been implemented. Despite these preparedness efforts, approximately 18 500 deaths and cases of missing persons occurred. The death rate with the age of 65 and above was particularly high, four times higher than that with other age groups. These interviews indicate that deaths resulted from a variety of reasons, but if residents had taken immediate action after the major ground motion stopped, most residents might have been saved. Education about the science behind earthquakes and tsunamis could help save more lives in the future.
1989-09-01
Rehabilitation of Rubble-Mound Structure Toes. The first objective of this work unit was to gain an iinderstanding of the toe stability problems experi- enced ...6.75-FT WAVE FLUMES 12.0- 11.0 - Be10.0- z 0 8.0 0 n- 7.0- _U Z 0 0 6.0 --- (0cc 5.0- h 0 0 LADo cc 4.0 0 . 0 -3 -P - -2 - - 01.0-0.0- - 0_0 co 2.0
A review of oscillating water columns.
Heath, T V
2012-01-28
This paper considers the history of oscillating water column (OWC) systems from whistling buoys to grid-connected power generation systems. The power conversion from the wave resource through to electricity via pneumatic and shaft power is discussed in general terms and with specific reference to Voith Hydro Wavegen's land installed marine energy transformer (LIMPET) plant on the Scottish island of Islay and OWC breakwater systems. A report on the progress of other OWC systems and power take-off units under commercial development is given, and the particular challenges faced by OWC developers reviewed.
National Waterways Study Overview of the Transportation Industry.
1981-08-01
Guard. The Corps has provided and maintained most of the channels, basins , dams, locks, breakwaters and jetties used as part of the navigation system...Producing Areas L 6AAX UXA*A 4. "T410~g IC.4 PIMMGCMU P’A M e.~ " .4 24 6mg -,41 )a%2," .4-. ifew All BasinIz2 ,1 Uinta "A’ SOURCE: A Technological...governments through such organizations as the river basin commissions established in accordance with Title II of the Water Resources Planning Act of 1965
NASA Astrophysics Data System (ADS)
Zviely, Dov; Kit, Eliezer; Rosen, Baruch; Galili, Ehud; Klein, Micha
2009-04-01
Several researchers have investigated morphological changes on the south-eastern Mediterranean coast during the late Holocene. However, very few of these studies include quantitative data covering the last 200 years. In this study, topographical maps, nautical charts and aerial photographs are used to estimate the shoreline migrations and beach-nearshore sand balance over the last 200 years in Haifa Bay, Israel, the northernmost final depositional sink of the Nile littoral cell. The findings reflect two main periods. During the first period, between 1799 and 1928, human intervention along the bay's coast was negligible, a significant coastal expansion of ˜50 to 150 m (averages of 0.4-1.2 m/year) was measured, and sand accumulation was estimated at ˜70,000 m3 annually in the beach-nearshore area. A dramatic change in the sedimentological pattern was observed during the second period, between 1928 and 2006, following the completion of Haifa Port's main breakwater (1929-1933). During this period, most of the bay's coast was in a steady state, with seasonal fluctuations of less than about ±20 m, and slight erosion of ˜7,000 m3 annually. These findings are consistent with previous studies which conclude that from approximately 4,000 years ago until the construction of Haifa Port, sea level remained relatively stable, and a continuous accumulation of Nile-derived sand dried up the Zevulun Plain and shifted the Haifa Bay shoreline westwards to its present location. This long-term trend ceased after completion of the Haifa Port main breakwater.
1990-06-01
pioneer bioengineering work has been conducted by Hollis H. Allen at WES in Corps reservoirs and on Corps projects on coastal shorelines, and by...several test locations to determine stability, growth of plants, effectiveness as a temporary breakwater, longevity , and ability to withstand ice and...Sampling to Characterize Size Demography and Density of Freshwater Mussel Communities." Bulletin of the American Malacological Union, Inc, 6: 49-54. J-40
What caused a large number of fatalities in the Tohoku earthquake?
NASA Astrophysics Data System (ADS)
Ando, M.; Ishida, M.; Nishikawa, Y.; Mizuki, C.; Hayashi, Y.
2012-04-01
The Mw9.0 earthquake caused 20,000 deaths and missing persons in northeastern Japan. 115 years prior to this event, there were three historical tsunamis that struck the region, one of which is a "tsunami earthquake" resulted with a death toll of 22,000. Since then, numerous breakwaters were constructed along the entire northeastern coasts and tsunami evacuation drills were carried out and hazard maps were distributed to local residents on numerous communities. However, despite the constructions and preparedness efforts, the March 11 Tohoku earthquake caused numerous fatalities. The strong shaking lasted three minutes or longer, thus all residents recognized that this is the strongest and longest earthquake that they had been ever experienced in their lives. The tsunami inundated an enormous area at about 560km2 over 35 cities along the coast of northeast Japan. To find out the reasons behind the high number of fatalities due to the March 11 tsunami, we interviewed 150 tsunami survivors at public evacuation shelters in 7 cities mainly in Iwate prefecture in mid-April and early June 2011. Interviews were done for about 30min or longer focused on their evacuation behaviors and those that they had observed. On the basis of the interviews, we found that residents' decisions not to evacuate immediately were partly due to or influenced by earthquake science results. Below are some of the factors that affected residents' decisions. 1. Earthquake hazard assessments turned out to be incorrect. Expected earthquake magnitudes and resultant hazards in northeastern Japan assessed and publicized by the government were significantly smaller than the actual Tohoku earthquake. 2. Many residents did not receive accurate tsunami warnings. The first tsunami warning were too small compared with the actual tsunami heights. 3. The previous frequent warnings with overestimated tsunami height influenced the behavior of the residents. 4. Many local residents above 55 years old experienced the 1960 Chile tsunami, which was significantly smaller than that of the 11 March tsunami. This sense of "knowing" put their lives at high risk. 5. Some local residents believed that with the presence of a breakwater, only slight flooding would occur. 6. Many people did not understand why tsunami is created under the sea. Therefore, relation of earthquake and tsunami is not quite linked to many people. These interviews made it clear that many deaths resulted because current technology and earthquake science underestimated tsunami heights, warning systems failed, and breakwaters were not strong or high enough. However, even if these problems occur in future earthquakes, better knowledge regarding earthquakes and tsunami hazards could save more lives. In an elementary school when children have fresh brain, it is necessary for them to learn the basic mechanism of tsunami generation.
Public perception of risk and its consequences: the case of a natural fibrous mineral deposit.
Major, G; Vardy, G F
1989-01-01
A public authority building a breakwater and other harbour facilities at a small seaport (population 3000) had short-term requirements for 261,000 tonnes of rock and ultimately for 1,000,000 tonnes. A suitable quarry was found about 11 km from the port but unfortunately the rock was found to be contaminated to a small extent with a fibrous mineral identified with the analytical transmission electron microscope as a non-commercial type of fine amphibole with many long fibres. Quarrying only was intended and there were no plans to crush the rock, but the projected work soon brought complaints from local residents, who expressed fears concerning risks to health from what soon became known as 'the asbestos mine'. These complaints posed a dilemma for both the construction and health authorities; they were forcefully expressed, and residents were supported by local newspapers, municipal authorities and regional politicians. The Land and Environment Court ordered (by consent) that the construction authority 'take all reasonable measures to ensure that no loose asbestos material and no rock with any asbestos material exposed on the surface (is) removed from the site'. Personal monitoring of quarry workmen by the membrane filter method and ambient air monitoring near residents' homes with analysis by electron microscope showed that only insignificant concentrations of airborne fibres were present. The breakwater was ultimately completed after much delay and extra expense. Other and greater risks to health and safety, such as the transport of liquid chlorine through the centre of the town to the fish processing plant and the storage, distribution and transport of petroleum products from the nearby regional facilities, were not perceived as such by the residents.
The Geomorphic System and the Effects of Human Interference at Gold Coast Beach in Tainan, Taiwan
NASA Astrophysics Data System (ADS)
Lin, Tsung-Yi
2017-04-01
The Gold Coast beach in Tainan, Taiwan, located between Anping harbor and Ur-Jen river mouth, is the subject of this study, which characterizes the beach's geomorphic system through the analysis of information such as sediment grain size, mineral composition, and periodic measurements of morphological changes of the beach. Based upon such characterizations, further analysis is conducted on the effects that human activities of the last 15 years have upon the geomorphic changes within the Gold Coast beach. The study shows that the median grain size of the Gold Coast beach's sediment is medium sand. The mineral composition includes mainly slate fragments and quartz grains, with small amounts of feldspar, sandstone and shell fragments. Based on a comprehensive study of the longshore distribution of beach sediment size and mineral composition of southwestern coast of Taiwan, as well as, the long-term, monitored data of waves, tides, and currents in this region, we conclude that the main process responsible for the sand accumulation at Gold Coast beach is the prevailing longshore sand transport from south to north. The southern breakwater of Anping harbor plays a role in intercepting the longshore transport sand and helps form the beach. Since the Ur-Jen river flows through a mudstone region, the suspended sediment plume during the flood season does not provide much sediment source to the sandy beach. A monthly beach profile survey project conducted between the years 1999 to 2000 revealed that the beach elevation and width had experienced an obvious seasonal change. The beach widened during the winter, but narrowed in the summer due to typhoon wave erosion. When the subaerial beach was eroded, a submerged longshore bar that was oriented almost parallel to the shoreline had formed at a distance about 400-600 meter away. With this observation, we can conclude that beach morphology is also influenced by various seasonal wave actions that affect onshore and offshore sand transport. An astonishing morphologic change at Gold Coast was observed as a 1500-meter reach of sandy beach at the southern end, near the Ur-Jen river mouth, disappeared in just a few years after the year 2005. The beach was not recovered the way it used to be in the winter season. The main reason for this geomorphic change could be the construction of a series of detached breakwaters on the coastal reach that is at the south side of Ur-Jen river mouth. Salients formed behind the detached breakwaters, which could have interrupted the south-to-north longshore sand transport. The Gold Coast became a sand-starved beach recently in the past 10 years, despite efforts of the government to construct more groins in this erosion area. Keywords: beach system, beach sediment, beach morphology, geomorphic processes, geomorphic change
NASA Astrophysics Data System (ADS)
El-Asmar, Hesham M.; Taha, Maysa M. N.; El-Sorogy, Abdelbaset S.
2016-12-01
Due to the absence of a national strategic plan for coastal management, the Nile Delta coast is no longer described as a fully dissipative, divergent, low-gradient beach face composed of fine to very fine sand. Instead, new patterns have emerged depending on rock type, geomorphology of the coast, direction of the shoreline in relation to waves and current, and the implemented defense measures. This study attempts to record the morphodynamic changes which occurred due to human intervention. Landsat satellite images acquired for the periods of time of 1973, 1984, 1989, 2003, and 2015 are used together with geomorphologic observations in order to monitor the changes along the coastal strip between Ras El-Bar and Damietta Harbor. This study reveals two beach segments; one of which lies to the east, it is protected with detached breakwater system, and shows average shoreline accretions of +4.73 myr-1, +5.0 myr-1, and +0.89myr-1 during the periods of 1984-1998, 1998-2003, and 2003-2015 respectively. This segment still has the geomorphologic imprints of the dissipative beach, wave divergence, low-gradient beach face, fine grained sand and spilling breakers. The second is to the west, between the detached breakwaters and the eastern jetty of the Damietta Harbor. It is an erosional segment with shoreline retreat of -7.43 myr-1, -10.90 myr-1, and -3.11myr-1 for the same periods. This segment shows intermediate "d" beach or intermediate-reflective, wave convergence, rip currents, with the characteristic steep sloped and cuspate beach face, cliffy, reworked sediments of coarse grained sands, mud clasts, discoidal gravels, shelly beach, and plunging breakings. The presence of convergent waves along this segment confirms the concept of an emergence of a new wave pattern of reversed eddy which enhances the steepness of the beach face, accelerates erosion, and increases the possibility of drowning of swimmers at Ras El-Bar resort. Under such circumstances the plunge step approaches the shore and its shell content forced by wave to accumulate forming the shelly beach. To secure the coastal strip against erosion and sea level changes the detached breakwaters should be extended to reach the eastern jetty of the Damietta Harbor. The protection of this segment is a matter of interest for investment projects related to industries and trading along the Damietta Harbor as well as the touristic investments at Ras El-Bar, as one of the important tourist destinations in Egypt. Millions of pounds spent by beach visitors and investment annually provide significant input to local and regional economy. Hazards associated with the morphodynamic effects on recreational beaches can influence the suitably of any given stretch of coast as a recreational resource, and thus impact tourist money spent in addition to the safety and well-being of beach visitors.
Crew Earth Observations (CEO) taken during Expedition Six
2003-03-05
ISS006-E-35516 (5 March 2003) --- This photo of Palm Island Resort was taken by an Expedition 6 crewmember onboard the International Space Station (ISS). This man-made structure in the shape of a palm tree, just 1 mile off the coast from Dubai, United Arab Emirates, is scheduled to be complete by 2006. It will have 17 huge fronds surrounded by a crescent-shaped breakwater. This island is being built from 2.8 billion cubic feet of land dredged from the approach channel to the emirates Jebel Ali port, which is being deepened to 17 meters (56 feet). Sediments in the water from dredging activity can be seen near the port.
On the profile evolution of three artificial pebble beaches at Marina di Pisa, Italy
NASA Astrophysics Data System (ADS)
Bertoni, Duccio; Sarti, Giovanni
2011-07-01
In this paper, the profiles of three artificial coarse-grained beaches located at Marina di Pisa (Tuscany, Italy) were monitored from April 2008 to May 2009 in order to define the response of the beaches to major storms that occurred during the study. Two beaches are similar, the third differs in length and in the level of protection, being less than half the length of the others and devoid of an offshore submerged breakwater. The work was achieved by means of accurate topographic surveys intended to reconstruct the beach profile from the backshore up to the foreshore-upper shoreface transition (step). The surveys were performed with an RTK-GPS instrument, which provided extremely precise recording of the beach. The most significant features of the beaches were tracked during each survey; in particular, the landward foot of the storm berm, the crest of the storm berm, the coastline, and the step crest were monitored. Five cross-shore transects were traced on each beach. Along these transects, any meaningful slope change was recorded to obtain accurate sections of the beach. The field datasets were processed with AutoCAD software to compare the beach profile evolution during the year-long research. The results showed a comparable evolution of the twin beaches: the resulting storm berm retreat of about 15 to 19 m is a remarkable feature considering the coarse grain size and the offshore protection. Due to the absence of the breakwater, the third beach was characterized by even higher values of recession (over 20 m), and showed hints of wave reflection-related processes after the huge, steep storm berm had been formed and grown after the high energy events. These processes were not as evident on the twin beaches. These results underline the different response of three similar protection schemes, and the importance that frequent monitoring of the beach morphology holds when it comes to coastal management issues.
Schnick, Rosalie A.; Morton, John M.; Mochalski, Jeffrey C.; Beall, Jonathan T.
1982-01-01
Extensive information is provided on techniques that can reduce or eliminate the negative impact of man's activities (particularly those related to navigation) on large river systems, with special reference to the Upper Mississippi River. These techniques should help resource managers who are concerned with such river systems to establish sound environmental programs. Discussion of each technique or group of techniques include (1) situation to be mitigated or enhanced; (2) description of technique; (3) impacts on the environment; (4) costs; and (5) evaluation for use on the Upper Mississippi River Systems. The techniques are divided into four primary categories: Bank Stabilization Techniques, Dredging and Disposal of Dredged Material, Fishery Management Techniques, and Wildlife Management Techniques. Because techniques have been grouped by function, rather than by structure, some structures are discussed in several contexts. For example, gabions are discussed for use in revetments, river training structures, and breakwaters. The measures covered under Bank Stabilization Techniques include the use of riprap revetments, other revetments, bulkheads, river training structures, breakwater structures, chemical soil stabilizers, erosion-control mattings, and filter fabrics; the planting of vegetation; the creation of islands; the creation of berms or enrichment of beaches; and the control of water level and boat traffic. The discussions of Dredging and the Disposal of Dredged Material consider dredges, dredging methods, and disposal of dredged material. The following subjects are considered under Fishery Management Techniques: fish attractors; spawning structures; nursery ponds, coves, and marshes; fish screens and barriers; fish passage; water control structures; management of water levels and flows; wing dam modification; side channel modification; aeration techniques; control of nuisance aquatic plants; and manipulated of fish populations. Wildlife Management Techniques include treatments of artificial nest structures, island creation or development, marsh creation or development, greentree reservoirs and mast management, vegetation control, water level control, and revegetation.
Environmental policy in the north-eastern sector of the Black sea coast
NASA Astrophysics Data System (ADS)
Kosyan, Ruben; Godin, Evgenii; Kosyan, Alisa
2015-04-01
Active economic development of the Black Sea East coastal zone has started in the beginning of 20-th century. Those days the pebble taken from beaches was used for construction of buildings, rail and motor roads. Active consumption of pebble from the beaches and river banks had caused a sharp increase of sea shores abrasion and washout rate, number of landslides had also increased. Contemporary Caucasian shores of Black Sea are being developed under increasing man-caused load. Favorable natural conditions, their variety and uniqueness determine the exceptional role of these shores as very important recreational zone of Russian South. Waste urbanized areas, agricultural territories and National Parks are located in immediate neighborhood with the sea. Important industrial facilities and federal and international communi- cations, including major seaports are located in the shore zone. At present time major gas and oil transportation facilities are commissioned and being constructed in the area. Due to the change of geopolitical situation the Russian shoreline had significantly reduced in comparison with Soviet period, especially in most developed regions. Large resort complexes in Georgia, Crimea and Baltic area were lost. Russia had also lost many major seaports that, under conditions of structural change of economy and export growth, had caused the necessity of building new industrial facilities in the Black Sea coastal zone, and, consequently, had stimulated active human invasion into natural coastal processes. At the time being, a major part (three hundred nine kilometers) of Black Sea coast within Russian sector is subject to abrasion and landslide processes. Abrasion process and beaches wash-out, landslides cause destruction of industrial and transport facilities, living and public buildings, resort complexes and valuable agricultural areas. In this light, the challenge of estimation of effective methods of shores protection against wave-induced erosion becomes crucial. For a long period of time the coast protective activity was concentrated on elimination of localized zones of washout, without consideration of lithodynamic system in which the protected area is located, that led to disturbance of sediments flows, and, consequently, to acceleration of abrasion on the related parts of the shore. Main technical solutions regarding coast protection constructions for creation of artificial beaches, are borrowed from the experience of coast protection (construction of bunas, breakwaters and wave walls) at Caucasus and Crimean shores of the Black Sea. Application of bunas and breakwaters is formally divided by the steepness of the underwater slope equal to 0.03. However, this division did not and does not have any physical grounds and is not confirmed by materials of study of surf zone's hydro- and lithodynamics. Types of constructions and their composition in the coastal protective complexes were assigned subjectively. Because of general deficit of the sediments, the free beaches with big length were difficult to create. It was neces- sary to build the sediment retaining constructions like bunas, on the landslide sections - underwater breakwaters. Thus, the beaches in the coast protective complexes were having a primary role, and the constructions - secondary.
The Damage To The Armour Layer Due To Extreme Waves
NASA Astrophysics Data System (ADS)
Oztunali Ozbahceci, Berguzar; Ergin, Aysen; Takayama, Tomotsuka
2010-05-01
The sea waves are not regular but random and chaotic. In order to understand this randomness, it is common to make individual wave analysis in time domain or spectral analysis in frequency domain. Characteristic wave heights like Hmax, H%2,H1-10, H1-3, Hmean are obtained through individual wave analysis in time domain. These characteristic wave heights are important because they are used in the design of different type of coastal structures. It is common to use significant wave height, H1-3,for the design of rubble mound structures. Therefore, only spectrally derived or zero-crossing significant wave height is usually reported for the rubble mound breakwaters without any information on larger waves. However, even the values of H1-3are similar; some train of irregular waves may exhibit a large fluctuation of instantaneous wave energy, while another train may not show such a fluctuation (Goda, 1998). Moreover, freak or rogue wave, simply defined as the wave exceeding at least twice the significant wave height may also occur. Those larger waves were called as extreme waves in this study and the effect of extreme waves on the damage to the armour layer of rubble mound breakwaters was investigated by means of hydraulic model experiment. Rock armored rubble mound breakwater model with 1:1.5 slope was constructed in the wave channel of Hydraulics Laboratory of the Disaster Prevention Research Institute of Kyoto University, Japan. The model was consisted of a permeable core layer, a filter and armour layer with two stones thicknesses. Size of stones were same for both of the slopes as Dn50(armour)=0.034m, Dn50(filter)=0.021m and Dn50(core)=0.0148m for armour, filter and core layers, respectively. Time series which are approximately equal to 1000 waves, with similar significant wave height but different extreme wave height cases were generated. In order to generate necessary time series in the wave channel, they were firstly computed by numerically. For the numerical computation of wave time series, Deterministic Spectral Amplitude (DSA) model with FFT algorithm was used. It is possible to get thousands of time series which have different wave statistics in DSA model by setting up the target spectrum and using random numbers for phase angles (Tuah et.al. 1982). Multi-reflection in the wave channel was minimized by the absorption mode of wave generator. Incident wave energy spectrum was obtained by using the separation method introduced by Goda and Suzuki (1976). Three wave gauges in front of the model were used for the separation. Individual wave heights were determined by zero-up crossing method after obtaining incident wave train. After each test, damage of the breakwater was calculated. Van der Meer's (1988) definition of damage level, S, was used in the calculations as: S= Ae/Dn502 (1) where; Ae= Eroded area, Dn50: nominal diameter of armour stone In order to get eroded area, the profile of armour layer was measured by laser equipment through nine lines along the section. Results of the experiments indicate that the higher the extreme waves are, the more destructive the wave train is, even the data is scattered. The damage was also calculated by using Van der Meer's formulae (1988) and compared with the experimental results. The comparison shows that the damages are more than the expected results in the cases where at least one wave height in the train is higher than the twice of H1-3. In fact, the damage results calculated by Van der Meer's formulae form the lower boundary for the higher extreme wave cases. It is also found that the damage is highly correlated to the ratios of characteristic waves like H1-10/H1-3 or H1-20/H1-3. Therefore, the parameter αextreme covering the effect of all extreme waves is proposed. References Goda, Y. and Suzuki, Y. (1976) .' Estimation of Incident and Reflected Waves in Random wave experiments.' Proc. 15th. Int. Conf. Coastal Engg., Hawai,1976, pp.828-845. Goda Y. (1998), 'An Overview of Coastal Engineering With Emphasis On Random Wave Approach', Coastal Engineering Journal, vol.40, No:1, pp. 1-21, World Scientific Pub. and JSCE Tuah, H, Hudspeth, RT (1982).'Comparisons of Numerical Random Sea Simulations,' Jour. Waterway, Port, Coastal and Ocean Engineering, Vol. 108, pp 569-584. Van der Meer, J.W,(1988). Rock Slopes and gravel beaches under wave attack. Ph.D thesis, Netherland.
Beach nourishment alternative assessment to constrain cross-shore and longshore sediment transport
Karasu, Servet; Work, Paul A.; Uzlu, Ergun; Kankal, Murat; Yuksek, Omer
2016-01-01
A combined field and laboratory investigation was conducted to assess five options for creation of a recreational beach on a steep, armored shoreline on the eastern Black Sea coast. All designs incorporated a beach nourishment project placed between two existing, shore-normal, rubble-mound groins. Alternatives included the placement of a nearshore berm, longshore extensions added to the existing groins, and shore-parallel breakwaters. Several alternatives are reviewed for quantifying the performance of each design, including assessment of the change in shoreline position and project volume retained between the groins. Dimensionless benefits and benefit-cost ratios are quantified, and recommendations made on how to select the best outcome from a benefit-to-cost standpoint when options including hard structures are incorporated into a beach nourishment project design.
Insights from interviews regarding high fatality rate caused by the 2011 Tohoku-Oki earthquake
NASA Astrophysics Data System (ADS)
Ando, M.; Ishida, M.
2012-12-01
The 11 March 2011 Tohoku-Oki earthquake (Mw9.0) caused approximately 19,000 casualties including missing persons along the entire coast of the Tohoku region. Three historical tsunamis occurred in the past 115 years preceding this tsunami. Since these tsunamis, numerous countermeasures against future tsunamis such as breakwaters, early tsunami warning systems and tsunami evacuation drills were implemented. Despite the preparedness, a number of deaths and missing persons occurred. Although this death rate is approximately 4 % of the population in severely inundated areas; 96 % safely evacuated or managed to survive the tsunami. To understand why some people evacuated immediately while others delayed; survivors were interviewed in the northern part of the Tohoku region. Our interviews revealed that many residents obtained no appropriate warnings and many chose to remain in dangerous locations partly because they obtained the wrong idea of the risks. In addition, our interviews also indicated that the resultant high casualties were due to current technology malfunction, underestimated earthquake size and tsunami heights, and failure of warning systems. Furthermore, the existing breakwaters provided the local community a false sense of security. The advanced technology did not work properly, especially at the time of the severe disaster. If residents had taken an immediate action after the major shaking stopped, most local residents might have survived considering that safer highlands are within 5 to 20 minute walking distance from the interviewed areas. However, the elderly and physically disabled people would still be in a much more difficult situation to walk such distance into safety. Nevertheless, even if these problems occur in future earthquakes, better knowledge regarding earthquakes and tsunami hazards could save more lives. People must take immediate action without waiting for official warning or help. To avoid similar high tsunami death ratios in the future, residents including young children should be taught the basic mechanism of tsunami generation. Such basic knowledge can lead local residents to evacuate sooner, enabling more people to survive a tsunami even if warning systems or other technology would fail to function.
High Resolution Tsunami Modeling and Assessment of Harbor Resilience; Case Study in Istanbul
NASA Astrophysics Data System (ADS)
Cevdet Yalciner, Ahmet; Aytore, Betul; Gokhan Guler, Hasan; Kanoglu, Utku; Duzgun, Sebnem; Zaytsev, Andrey; Arikawa, Taro; Tomita, Takashi; Ozer Sozdinler, Ceren; Necmioglu, Ocal; Meral Ozel, Nurcan
2014-05-01
Ports and harbors are the major vulnerable coastal structures under tsunami attack. Resilient harbors against tsunami impacts are essential for proper, efficient and successful rescue operations and reduction of the loss of life and property by tsunami disasters. There are several critical coastal structures as such in the Marmara Sea. Haydarpasa and Yenikapi ports are located in the Marmara Sea coast of Istanbul. These two ports are selected as the sites of numerical experiments to test their resilience under tsunami impact. Cargo, container and ro-ro handlings, and short/long distance passenger transfers are the common services in both ports. Haydarpasa port has two breakwaters with the length of three kilometers in total. Yenikapi port has one kilometer long breakwater. The accurate resilience analysis needs high resolution tsunami modeling and careful assessment of the site. Therefore, building data with accurate coordinates of their foot prints and elevations are obtained. The high resolution bathymetry and topography database with less than 5m grid size is developed for modeling. The metadata of the several types of structures and infrastructure of the ports and environs are processed. Different resistances for the structures/buildings/infrastructures are controlled by assigning different friction coefficients in a friction matrix. Two different tsunami conditions - high expected and moderate expected - are selected for numerical modeling. The hybrid tsunami simulation and visualization codes NAMI DANCE, STOC-CADMAS System are utilized to solve all necessary tsunami parameters and obtain the spatial and temporal distributions of flow depth, current velocity, inundation distance and maximum water level in the study domain. Finally, the computed critical values of tsunami parameters are evaluated and structural performance of the port components are discussed in regard to a better resilience. ACKNOWLEDGEMENTS: Support by EU 603839 ASTARTE Project, UDAP-Ç-12-14 of AFAD, 108Y227 and 113M556 of TUBITAK, RAPSODI (CONCERT_Dis-021) of CONCERT-Japan Joint Call, Earthquake and Tsunami Disaster Mitigation in The Marmara Region and Disaster Education in Turkey Japan-Turkey Joint Research Project by SATREPS, 2011K140210 of DPT, Istanbul Metropolitan Municipality are acknowledged.
Archaeogeophysical Studies in Ancient Tios, Zonguldak-Caycuma-Filyos, Turkey
NASA Astrophysics Data System (ADS)
Ahmet Yuksel, Fethi; Hoskan, Nihan; Sumer Atasoy, Yusuf
2010-05-01
Ancient Tios is located in the Filyos township of the Caycuma District of Zonguldak on the western Black Sea region, Turkey. The ancient city was probably founded by Milesians in the 7th cent. B.C. The region was inhabited through the centuries by Persians, Romans, Genoese and all the way to the Ottoman times. About the archaeological history of the city , we have relatively limited knowledge both in ancient records and in contemporary archaeological research. In the Roman period coastal defensive walls, acquaduct, theatre, defensive tower and the port with its breakwater are the only visible remains of the city. The acropolis of the ancient city is located immediately to the east of the present Filyos township on a hill. The original architectural form of the defensive wall located in the acropolis will be revealed after research to its foundation completed. A partially destroyed stone building is another remaining ruin in the acropolis .The Roman period theatre of Tios is located in the north of the road leading into Filyos. Built on a sloping land, local stones were used in its construction. Mostly ruined its original stones have been used later in other buildings. Only a few of the arches of the aquaduct, located to the north of the theatre, are still standing. There are the remains of another structure which could have been a defensive tower located in 200 meters to the west of the theatre. GPR measurements display the exact location of any sub-surface structures. To the west of the acropolis and within the ancient port, there are the under water remains of a breakwater. The local sandstones, quarries were studied archaeogeologically as they provided the main building materials. Since there has been no archaeological research done on the site until the 2006 season, archaeogeopysical data are reveal additional information about ancient Tios. Surface survey and georadar, magnetic and geoelectric studies have been done and after that, excavations were started. Trenches were opened in potentially promising locations since 2006. Wall remains and pottery sherds were revealed providing better evidence for the dating of the foundation of the city. Key words: Tios, Archaeogeophysic, GPR, Geoelectric, Magnetic.
Fresh-water discharge salinity relations in the tidal Delaware River
Keighton, Walter B.
1966-01-01
Sustained flows of fresh water greater than 3,500, 4,400, and 5,300 cubic feet per second into the Delaware River estuary at Trenton, NJ assure low salinity at League Island, Eddystone, and Marcus Hook, respectively. When the discharge at Trenton is less than these critical values, salinity is very sensitive to change in discharge, so that a relatively small decrease in fresh-water discharge results in a relatively great increase in salinity. Comparison of the discharge-salinity relations observed for the 14-year period August 1949-December 1963 with relations proposed by other workers but based on other time periods indicate that such relations change with time and that salinity is affected not only by discharge but also by dredging; construction of breakwater, dikes, and tidal barriers; changing sea level; tidal elevation; tidal range; and wind intensity and direction.
2014-02-06
2013 image of Adler and the newly created Olympic Coastal Cluster. This false color satellite image reveals a largely agricultural area that was transformed into the Coastal Olympic Cluster with the nearby Olympic Village and Rail Station with transport to the Mountain Cluster. A spanking new breakwater structure was installed to create a harbor for cruise ships. The airport also received an expansion to handle the increased traffic. Caption and image provided by Tim Assal, US Geological Survey – Fort Collins Science Center Credit: NASA/Landsat NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
The effectiveness of coral reefs for coastal hazard risk reduction and adaptation
Ferrario, Filippo; Beck, Michael W.; Storlazzi, Curt D.; Micheli, Fiorenza; Shepard, Christine C.; Airoldi, Laura
2014-01-01
The world’s coastal zones are experiencing rapid development and an increase in storms and flooding. These hazards put coastal communities at heightened risk, which may increase with habitat loss. Here we analyse globally the role and cost effectiveness of coral reefs in risk reduction. Meta-analyses reveal that coral reefs provide substantial protection against natural hazards by reducing wave energy by an average of 97%. Reef crests alone dissipate most of this energy (86%). There are 100 million or more people who may receive risk reduction benefits from reefs or bear hazard mitigation and adaptation costs if reefs are degraded. We show that coral reefs can provide comparable wave attenuation benefits to artificial defences such as breakwaters, and reef defences can be enhanced cost effectively. Reefs face growing threats yet there is opportunity to guide adaptation and hazard mitigation investments towards reef restoration to strengthen this first line of coastal defence. PMID:24825660
The effectiveness of coral reefs for coastal hazard risk reduction and adaptation.
Ferrario, Filippo; Beck, Michael W; Storlazzi, Curt D; Micheli, Fiorenza; Shepard, Christine C; Airoldi, Laura
2014-05-13
The world's coastal zones are experiencing rapid development and an increase in storms and flooding. These hazards put coastal communities at heightened risk, which may increase with habitat loss. Here we analyse globally the role and cost effectiveness of coral reefs in risk reduction. Meta-analyses reveal that coral reefs provide substantial protection against natural hazards by reducing wave energy by an average of 97%. Reef crests alone dissipate most of this energy (86%). There are 100 million or more people who may receive risk reduction benefits from reefs or bear hazard mitigation and adaptation costs if reefs are degraded. We show that coral reefs can provide comparable wave attenuation benefits to artificial defences such as breakwaters, and reef defences can be enhanced cost effectively. Reefs face growing threats yet there is opportunity to guide adaptation and hazard mitigation investments towards reef restoration to strengthen this first line of coastal defence.
The effectiveness of coral reefs for coastal hazard risk reduction and adaptation
Ferrario, Filippo; Beck, Michael W.; Storlazzi, Curt D.; Micheli, Fiorenza; Shepard, Christine C.; Airoldi, Laura
2014-01-01
The world’s coastal zones are experiencing rapid development and an increase in storms and flooding. These hazards put coastal communities at heightened risk, which may increase with habitat loss. Here we analyse globally the role and cost effectiveness of coral reefs in risk reduction. Meta-analyses reveal that coral reefs provide substantial protection against natural hazards by reducing wave energy by an average of 97%. Reef crests alone dissipate most of this energy (86%). There are 100 million or more people who may receive risk reduction benefits from reefs or bear hazard mitigation and adaptation costs if reefs are degraded. We show that coral reefs can provide comparable wave attenuation benefits to artificial defences such as breakwaters, and reef defences can be enhanced cost effectively. Reefs face growing threats yet there is opportunity to guide adaptation and hazard mitigation investments towards reef restoration to strengthen this first line of coastal defence.
Geoarchaeology and geomorphology of Phoenicus ancient harbor, NW coast of Egypt
NASA Astrophysics Data System (ADS)
Moustafa, Samah; Torab, Magdy
2016-04-01
Phoenicus Greek harbor located in SE coastline of Ras El Hekma area, west of Alexandria city for about 220 km. It is shaped as triangle with its headland extending into the Mediterranean Sea for about 15 km. It is occupied by sedimentary rocks belonging to the Tertiary and Quaternary Eras, the western coastline consists of Pleistocene, Separated polygons of limestone sheets and fossil lime stone, where there are coastal platforms, fluvial forms and solution holes. The location and description of Phoenicus ancient harbor were mentioned by some late writers (Fourtau,1893) & (Muller,1901), some geoarchaeological indicators were discovered by the authors such as fish tanks, well, remains of breakwater and wine press. The present work is mainly devoted to define the geomorphological and geoarchaelological indicators of Phoenicus Greek harbor site, based on detailed geomorphological and geoarchaelogical surveying, sampling, dating and mapping as well as satellite image interpretation and GIS techniques.
Earth Observations taken by the Expedition 39 Crew
2014-05-09
ISS039-E-019482 (9 May 2014) --- One of the Expedition 39 crew members aboard the Earth-orbiting International Space Station used a 400mm lens to take this photograph of Venice Lagoon, Italy on May 9, 2014. A narrow barrier island protects the Lagoon of Venice from storm waves in the northern Adriatic Sea, and breakwaters protect inlets to the lagoon. Red tiles of the roofs of the edifices on the island of Venice contrast with the grays of the mainland sister city of Mestre. The cities are joined by a prominent causeway. Another causeway joins the island to the airport (top right). Small bright agricultural fields of well drained soils (top left) contrast with the darker vegetation of back bay swamps where fishing is a popular pastime. Dense urban populations on its shores and heavy use by craft of all kinds result in turbid water in the northern half of the lagoon.
DualSPHysics: A numerical tool to simulate real breakwaters
NASA Astrophysics Data System (ADS)
Zhang, Feng; Crespo, Alejandro; Altomare, Corrado; Domínguez, José; Marzeddu, Andrea; Shang, Shao-ping; Gómez-Gesteira, Moncho
2018-02-01
The open-source code DualSPHysics is used in this work to compute the wave run-up in an existing dike in the Chinese coast using realistic dimensions, bathymetry and wave conditions. The GPU computing power of the DualSPHysics allows simulating real-engineering problems that involve complex geometries with a high resolution in a reasonable computational time. The code is first validated by comparing the numerical free-surface elevation, the wave orbital velocities and the time series of the run-up with physical data in a wave flume. Those experiments include a smooth dike and an armored dike with two layers of cubic blocks. After validation, the code is applied to a real case to obtain the wave run-up under different incident wave conditions. In order to simulate the real open sea, the spurious reflections from the wavemaker are removed by using an active wave absorption technique.
The numerical model of the sediment distribution pattern at Lampulo National fisheries port
NASA Astrophysics Data System (ADS)
Irham, M.; Setiawan, I.
2018-01-01
The spatial distribution of sediment pattern was studied at Lampulo Fisheries Port, Krueng Aceh estuarial area, Banda Aceh. The research was conducted using the numerical model of wave-induced currents at shallow water area. The study aims to understand how waves and currents react to the pattern of sediment distribution around the beach structure in that region. The study demonstrated that the port pool area had no sedimentation and erosion occurred because the port was protected by the jetty as the breakwater to defend the incoming waves toward the pool. The protected pool created a weak current circulation to distribute the sediments. On the other hand, the sediments were heavily distributed along the beach due to the existence of longshore currents near the shoreline (outside the port pool area). Meanwhile, at the estuarial area, the incoming fresh water flow responded to the coastal shallow water currents, generating Eddy-like flow at the mouth of the river.
Espinosa, Free; Rivera-Ingraham, Georgina A
2016-08-15
Intertidal species are more vulnerable to anthropogenic disturbances than others inhabiting subtidal and offshore habitats. Coastal development frequently results in trace-metal pollution. For endangered species such as Patella ferruginea it can be a high risk that leads local populations to extinction. Three localities were surveyed, one within a natural and unpolluted area and the other two within the harbor of Ceuta (Strait of Gibraltar), on breakwaters outside and inside. The specimens collected inside the harbor reached 3-fold higher Hg content than for those incoming from the natural area. PERMANOVA test indicated that metal composition of the specimens from inside the harbor was different from the rest. In addition, evidence of cell damage was detected in the specimens from the harbor area. This highlights the urgency of undertaking a physiological evaluation of some of the most vulnerable populations, establishing eco-physiological protocols for monitoring and managing populations settled on artificial substrata. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pao, C.K.
1975-05-01
An assessment of wave energy as a source of electrical power in the United Kingdom is reported. British Hovercraft Corporation has conducted some tank tests for Wavepower Limited, studying various simple float systems. It aims to develop a wave-power device that is simple, cheap, made up of small mass- produced units, can be installed in sections, and can be easily maintained. A chain of floats, hinged together, with waves traveling down the chain, was investigated. Pumps on the hinges absorb power from the relative rotation of adjacent floats. A wave-power device could also serve as an effective breakwater. Direct generationmore » of electricity is a feasible application of wave power. The system is compared with a rocking boom concept. Wave energy could be used in conjunction with thermal stations to provide sufficient capacity when wave power is low. Wave power has a high availability when compared with wind power. (MCW)« less
Skylab/EREP application to ecological, geological and oceanographic investigations of Delaware Bay
NASA Technical Reports Server (NTRS)
Klemas, V. (Principal Investigator)
1974-01-01
The author has identified the following significant results. NASA's ERTS-1 satellite and Skylab-EREP have both provided imagery suitable for investigating coastal vegetation, land use, current circulation, water turbidity, waste disposal, and sea state. Based on high contrast targets, such as piers and breakwaters, the ERTS-1 MSS seems to have a resolution of 70-100 meters, Skylab's S190A about 30-70 meters, and its S190B about 10-30 meters. Important coastal land use details can be more readily mapped using Skylab's imagery. On the other hand, the regular eighteen day cycle of ERTS-1 allows observation of important man-made and natural changes, and facilitates collection of ground truth. The Skylab/EREP multispectral scanner offers 13 spectral bands as compared to 4 bands on ERTS-1. However, EREP scanner tapes require special filtering to remove several types of noise and their conical line scan pattern must be linearized before small targets can be identified based on spatial features.
An innovative early warning system for floods and operational risks in harbours
NASA Astrophysics Data System (ADS)
Smets, Steven; Bolle, Annelies; Mollaert, Justine; Buitrago, Saul; Gruwez, Vincent
2016-04-01
Early Warning Systems (EWS) are nowadays becoming fairly standard in river flood forecasting or in large scale hydrometeorological predictions. For complex coastal morphodynamic problems or in the vicinity of complex coastal structures, such as harbours, EWS are much less used because they are both technically and computationally still very challenging. To advance beyond the state-of-the-art, the EU FP7 project Risc-KIT (www.risc-kit.eu) is developing prototype EWS which address specifically these topics. This paper describes the prototype EWS which IMDC has developed for the case study site of the harbour of Zeebrugge. The harbour of Zeebrugge is the largest industrial seaport on the coast of Belgium, extending more than 3 km into the sea. Two long breakwaters provide shelter for the inner quays and docks for regular conditions and frequent storms. Extreme storms surges and waves can however still enter the harbour and create risks for the harbour operations and infrastructure. The prediction of the effects of storm surges and waves inside harbours are typically very complex and challenging, due to the need of different types of numerical models for representing all different physical processes. In general, waves inside harbours are a combination of locally wind generated waves and offshore wave penetration at the port entrance. During extreme conditions, the waves could overtop the quays and breakwaters and flood the port facilities. Outside a prediction environment, the conditions inside the harbour could be assessed by superimposing processes. The assessment can be carried out by using a combination of a spectral wave model (i.e. SWAN) for the wind generated waves and a Boussinesq type wave model (i.e. Mike 21 BW) for the wave penetration from offshore. Finally, a 2D hydrodynamic model (i.e. TELEMAC) can be used to simulate the overland flooding inside the port facilities. To reproduce these processes in an EWS environment, an additional challenge is to cope with the limitations of the calculation engines. This is especially true with the Boussinesq model. A model train is proposed that integrates processed based modelling, for wind generated waves, with an intelligent simplification of the Boussinesq model for the wave penetration effects. These wave conditions together with the extreme water levels (including storm surge) can then be used to simulate the overtopping/overflow behaviour for the quays. Finally, the hydrodynamic model TELEMAC is run for the inundation forecast inside the port facilities. The complete model train was integrated into the Deltares Delft FEWS software to showcase the potential for real time operations.
Comparison of Laboratory Experimental Data to XBeach Numerical Model Output
NASA Astrophysics Data System (ADS)
Demirci, Ebru; Baykal, Cuneyt; Guler, Isikhan; Sogut, Erdinc
2016-04-01
Coastal zones are living and constantly changing environments where both the natural events and the human-interaction results come into picture regarding to the shoreline behavior. Both the nature of the coastal zone and the human activities shape together the resultants of the interaction with oceans and coasts. Natural extreme events may result in the need of human interference, such as building coastal structures in order to prevent from disasters or any man-made structure throughout a coastline may affect the hydrodynamics and morphology in the nearshore. In order to understand and cope with this cycle of cause and effect relationship, the numerical models developed. XBeach is an open-source, 2DH, depth average numerical model including the hydrodynamic processes of short wave transformation (refraction, shoaling and breaking), long wave (infragravity wave) transformation (generation, propagation and dissipation), wave-induced setup and unsteady currents, as well as overwash and inundation and morphodynamic processes of bed load and suspended sediment transport, dune face avalanching, bed update and breaching (Roelvink et al., 2010). Together with XBeach numerical model, it is possible to both verify and visualize the resultant external effects to the initial shorelines in coastal zones. Recently, Baykal et al. (2015) modelled the long term morphology changes with XBeach near Kızılırmak river mouth consisting of one I-shaped and one Y-shaped groins. In order to investigate the nature of the shoreline and near shore hydrodynamic conditions and morphology, the five laboratory experiments are conducted in the Largescale Sediment Transport Facility at the U.S. Army Engineer Research and Development Center in order to be used to improve longshore sand transport relationships under the combined influence of waves and currents and the enhancement of predictive numerical models of beach morphology evolution. The first series of the experiments were aimed at generating data sets for testing and validation of sediment transport relationships for sand transport in the presence of waves and currents. In these series, there is no structure in the basin. The second and third series of experiments were designed to generate data sets for development of tombolos in the lee of detached 4m-long rubble mound breakwater that is 4 m from the initial shoreline. The fourth series of experiments are conducted to investigate tombolo development in the lee of a 4m-long T-head groin with the head section in the same location of the second and the third tests. The fifth series of experiments are used to investigate tombolo development in the lee of a 3-m-long rubble-mound breakwater positioned 1.5 m offshore of the initial shoreline. In this study, the data collected from the above mentioned five experiments are used to compare the results of the experimental data with XBeach numerical model results, both for the "no-structure" and "with-structure" cases regarding to sediment transport relationships in the presence of only waves and currents as well as the shoreline changes together with the detached breakwater and the T-groin. The main purpose is to investigate the similarities and differences between the laboratory experimental data behavior with XBeach numerical model outputs for these five cases. References: Baykal, C., Sogut, E., Ergin, A., Guler, I., Ozyurt, G.T., Guler, G., and Dogan, G.G. (2015). Modelling Long Term Morphological Changes with XBeach: Case Study of Kızılırmak River Mouth, Turkey, European Geosciences Union, General Assembly 2015, Vienna, Austria, 12-17 April 2015. Gravens, M.B. and Wang, P. (2007). "Data report: Laboratory testing of longshore sand transport by waves and currents; morphology change behind headland structures." Technical Report, ERDC/CHL TR-07-8, Coastal and Hydraulics Laboratory, US Army Engineer Research and Development Center, Vicksburg, MS. Roelvink, D., Reniers, A., van Dongeren, A., van Thiel de Vries, J., Lescinski, J. and McCall, R., (2010). XBeach Model Description and Manual. Unesco-IHE Institute for Water Education, Deltares and Delft University of Technology. Report June, 21 2010 version 6.
Possibilities of the particle finite element method for fluid-soil-structure interaction problems
NASA Astrophysics Data System (ADS)
Oñate, Eugenio; Celigueta, Miguel Angel; Idelsohn, Sergio R.; Salazar, Fernando; Suárez, Benjamín
2011-09-01
We present some developments in the particle finite element method (PFEM) for analysis of complex coupled problems in mechanics involving fluid-soil-structure interaction (FSSI). The PFEM uses an updated Lagrangian description to model the motion of nodes (particles) in both the fluid and the solid domains (the later including soil/rock and structures). A mesh connects the particles (nodes) defining the discretized domain where the governing equations for each of the constituent materials are solved as in the standard FEM. The stabilization for dealing with an incompressibility continuum is introduced via the finite calculus method. An incremental iterative scheme for the solution of the non linear transient coupled FSSI problem is described. The procedure to model frictional contact conditions and material erosion at fluid-solid and solid-solid interfaces is described. We present several examples of application of the PFEM to solve FSSI problems such as the motion of rocks by water streams, the erosion of a river bed adjacent to a bridge foundation, the stability of breakwaters and constructions sea waves and the study of landslides.
2000-11-20
ISS01-E-5025 (November 2000) --- This nadir view of Alexandria, Egypt, was provided by a digital still camera image down linked from the International Space Station to flight controllers in Houston. Alexandria (Al Iskandariya) occupies a T-shaped peninsula and strip of land separating the Mediterranean from Lake Mariout. According to NASA scientists studying the Expedition One photo collection, the town was originally built upon a mole (stone breakwater) called Heptastadium, which joined the island of Pharos to the mainland. Since then, the scientists say, sedimentary deposits have added considerably to the width of the mole. Since 1905, when the citys 370 thousand inhabitants lived in an area of about four square kilometers between the two harbors, the city (population 4 million) has grown beyond its medieval walls and now occupies an area of about 300 square kilometers. The Mahmudiya Canal, connecting Alexandria with the Nile, runs to the south of the city and, by a series of locks, enters the harbor of the principal port of Egypt (note ships). The reddish and ochre polygons west of Lake Mariout are salt-evaporation, chemical-storage, and water-treatment ponds within the coastal lagoon.
Sediment Transport Model In Sayung District, Demak
NASA Astrophysics Data System (ADS)
Ismanto, Aris; Zainuri, Muhammad; Hutabarat, Sahala; Nugroho Sugianto, Denny; Widada, Sugeng; Wirasatriya, Anindya
2017-02-01
Demak has 34,1 km coastline and located in 6043‧26″ - 7009‧43″ South Latitude and 110027‧58″ - 110048‧47″ East Longitude. In the last few years rapid shoreline and erosion has threatened Demak coastal area. No less than 3000 villages on Java suffer similar problems. Hard structures such as dykes and breakwaters is one of the method that is commonly used to solve this problem. However, this method may fail to provide adequate protection to the environment and become counterproductive. One of the alternative to solve the problem is using hybrid engineering concept. This study aims is to assess the distribution model of the sediment on the application of technology as a hybrid structure for the mitigationand rehabilitation of coastal areas in Demak. This research using quantitative method, including field surveys and mathematical modeling methods. The model show that the sedimention is quite big in highest flood condition and must have the right structure for the hybrid engineering. This study is expected to answer the question of the erosion problem in the District Sayung, Demak.
NASA Astrophysics Data System (ADS)
Jinchai, Phinai; Chittaladakorn, Suwatana
This research has its objective to develop the decision support system on GIS to be used in the coastal erosion protection management. The developed model in this research is called Decision Support System for Coastal Protection Layout Design (DSS4CPD). It has created both for systematic protection and solution measures to the problem by using Genetic Algorithm (GA) and Multicriteria Analysis (MCA) for finding the coastal structure layout optimal solution. In this research, three types of coastal structures were used as structure alternatives for the layout, which are seawall, breakwater, and groin. The coastal area in Nakornsrithammaraj, Thailand was used as the case study. The studied result has found the appropriate position of coastal structures considering the suitable rock size relied on the wave energy, and the appropriate coastal structure position based on the wave breaking line. Using GA and MCA in DSS4CPD, it found the best layout in this project. This DSS4CPD will be used by the authorized decision makers to find the most suitable erosion problem solution.
Motamedi, Shervin; Hashim, Roslan; Zakaria, Rozainah; Song, Ki-Il; Sofawi, Bakrin
2014-01-01
Wave energy and storm surges threaten coastal ecology and nearshore infrastructures. Although coastal structures are conventionally constructed to dampen the wave energy, they introduce tremendous damage to the ecology of the coast. To minimize environmental impact, ecofriendly coastal protection schemes should be introduced. In this paper, we discuss an example of an innovative mangrove rehabilitation attempt to restore the endangered mangroves on Carey Island, Malaysia. A submerged detached breakwater system was constructed to dampen the energy of wave and trap the sediments behind the structure. Further, a large number of mangrove seedlings were planted using different techniques. Further, we assess the possibility of success for a future mangrove rehabilitation project at the site in the context of sedimentology, bathymetry, and hydrogeochemistry. The assessment showed an increase in the amount of silt and clay, and the seabed was noticeably elevated. The nutrient concentration, the pH value, and the salinity index demonstrate that the site is conducive in establishing mangrove seedlings. As a result, we conclude that the site is now ready for attempts to rehabilitate the lost mangrove forest. PMID:25097894
NASA Astrophysics Data System (ADS)
Wahyudi, S. I.; Adi, H. P.
2018-04-01
Many areas of the northern coastal in Central Java, Indonesia, have been suffering from damage. One of the areas is Jepara, which has been experiencing this kind of damage for 7.6 kilometres from total 72 kilometres long beach. All damages are mostly caused by coastal erosion, sedimentation, environment and tidal flooding. Several efforts have been done, such as replanting mangroves, building revetment and groins, but it still could not mitigated the coastal damage. The purposes of this study are to map the coastal damages, to analyze handling priority and to determine coastal protection model. The method used are by identifying and plotting the coastal damage on the map, assessing score of each variable, and determining the handling priority and suitable coastal protection model. There are five levels of coastal damage used in this study, namely as light damage, medium, heavy, very heavy, and extremely heavy. Based on the priority assessment of coastal damage, it needs to be followed up by designing in detail and implementing through soft structure for example mangrove, sand nourishes and hard structure, such as breakwater, groins and revetment.
Waves propagating over a two-layer porous barrier on a seabed
NASA Astrophysics Data System (ADS)
Lin, Qiang; Meng, Qing-rui; Lu, Dong-qiang
2018-05-01
A research of wave propagation over a two-layer porous barrier, each layer of which is with different values of porosity and friction, is conducted with a theoretical model in the frame of linear potential flow theory. The model is more appropriate when the seabed consists of two different properties, such as rocks and breakwaters. It is assumed that the fluid is inviscid and incompressible and the motion is irrotational. The wave numbers in the porous region are complex ones, which are related to the decaying and propagating behaviors of wave modes. With the aid of the eigenfunction expansions, a new inner product of the eigenfunctions in the two-layer porous region is proposed to simplify the calculation. The eigenfunctions, under this new definition, possess the orthogonality from which the expansion coefficients can be easily deduced. Selecting the optimum truncation of the series, we derive a closed system of simultaneous linear equations for the same number of the unknown reflection and transmission coefficients. The effects of several physical parameters, including the porosity, friction, width, and depth of the porous barrier, on the dispersion relation, reflection and transmission coefficients are discussed in detail through the graphical representations of the solutions. It is concluded that these parameters have certain impacts on the reflection and transmission energy.
Resilience from coastal protection.
Ewing, Lesley C
2015-10-28
Coastal areas are important residential, commercial and industrial areas; but coastal hazards can pose significant threats to these areas. Shoreline/coastal protection elements, both built structures such as breakwaters, seawalls and revetments, as well as natural features such as beaches, reefs and wetlands, are regular features of a coastal community and are important for community safety and development. These protection structures provide a range of resilience to coastal communities. During and after disasters, they help to minimize damages and support recovery; during non-disaster times, the values from shoreline elements shift from the narrow focus on protection. Most coastal communities have limited land and resources and few can dedicate scarce resources solely for protection. Values from shore protection can and should expand to include environmental, economic and social/cultural values. This paper discusses the key aspects of shoreline protection that influence effective community resilience and protection from disasters. This paper also presents ways that the economic, environmental and social/cultural values of shore protection can be evaluated and quantified. It presents the Coastal Community Hazard Protection Resilience (CCHPR) Index for evaluating the resilience capacity to coastal communities from various protection schemes and demonstrates the use of this Index for an urban beach in San Francisco, CA, USA. © 2015 The Author(s).
NASA Astrophysics Data System (ADS)
Lapham, Gary; McHugh, John
When waves on the ocean surface interact with a solid object, the result is often a complex pattern of spray. The solid object may be a coastal barrier such as a breakwater, or a ship or drilling rig. Another spray-related case is the presence of large industrial tanks of liquid, and often dangerous liquids, that exist around the world. Tens of thousands of such tanks are rapidly becoming obsolete. Recent experience has shown that when such tanks burst, the resulting spray may shoot several hundreds of meters from the tank. These tanks often have a wall or dam (barrier) surrounding them in an attempt to contain any leakage, catastrophic or otherwise. When the tank bursts it is akin to the dam-break problem. A wall of water rushes forth and impinges on the barrier creating spray. Previous experiments (McHugh and Watt, 1998) considered the related configuration of a solitary wave impinging on a vertical wall. The present experiments more closely model the bursting tank case, and treat the effect of the distance between the tank and barrier. Results show that there is a sweet spot where height and horizontal distance of spray droplets are maximized. This ideal distance between tank and barrier is constant when scaled by the initial tank depth.
2013-10-14
ISS037-E-011470 (14 Oct. 2013) --- Man-made archipelagos near Dubai, United Arab Emirates, are featured in this image photographed by an Expedition 37 crew member on the International Space Station, flying at approximately 220 miles above Earth. The municipality of Dubai is the largest city of the Persian Gulf emirate of the same name, and has built a global reputation for large-scale developments and architectural works. Among the most visible of these developments -- particularly from the perspective of astronauts onboard the space station -- are three man-made archipelagos. The two Palm Islands -- Palm Jumeirah (right) and Palm Jebel Ali (out of frame further to the right) -- appear as stylized palm trees when viewed from above. The World Islands (center frame) evoke a rough map of the world from an air- or space-borne perspective. The Palm Jumeirah project began in 2001 and required more than 50 million cubic meters of dredged sand to raise the islands above the Persian Gulf sea level. Construction of the Palm Jumeirah islands was completed in 2006; for several years now they have been developed for residential and commercial housing and infrastructure. Creation of the World Islands was begun in 2003 and completed in 2008, using 320 million cubic meters of sand and 37 million tons of rock for the surrounding 27 kilometer-long protective breakwater.
Earth Observation taken by the Expedition 25 crew
2010-11-06
ISS025-E-013054 (7 Nov. 2010) --- Man-made archipelagos near Dubai, United Arab Emirates, are featured in this image photographed by an Expedition 25 crew member on the International Space Station, flying at 220 miles above Earth. The municipality of Dubai is the largest city of the Persian Gulf emirate of the same name, and has built a global reputation for large-scale developments and architectural works. Among the most visible of these developments -- particularly from the perspective of astronauts onboard the ISS -- are three man-made archipelagos. The two Palm Islands -- Palm Jumeirah to the left of center, and Palm Jebel Ali, just to the right of center, appear as stylized palm trees when viewed from above. The World Islands (near left edge) evoke a rough map of the world from an air- or space-borne perspective. The Palm Jumeirah project began in 2001 and required more than 50 million cubic meters of dredged sand to raise the islands above the Persian Gulf sea level. Construction of the Palm Jumeirah islands was completed in 2006; they are now being developed for residential and commercial housing and infrastructure. Creation of the World Islands was begun in 2003 and completed in 2008, using 320 million cubic meters of sand and 37 million tons of rock for the surrounding 27 kilometer-long protective breakwater.
Earth Observations taken by the Expedition 39 Crew
2014-04-13
ISS039-E-011515 (13 April 2014) --- Man-made archipelagos near Dubai, United Arab Emirates, are featured in this image photographed by an Expedition 39 crew member on the International Space Station, flying at 220 miles above Earth. The municipality of Dubai is the largest city of the Persian Gulf emirate of the same name, and has built a global reputation for large-scale developments and architectural works. Among the most visible of these developments -- particularly from the perspective of astronauts onboard the ISS -- are three man-made archipelagos. The two Palm Islands -- Palm Jumeirah to the left of center, and Palm Jebel Ali, just to the right of center, appear as stylized palm trees when viewed from above. The World Islands (near left edge) evoke a rough map of the world from an air- or space-borne perspective. The Palm Jumeirah project began in 2001 and required more than 50 million cubic meters of dredged sand to raise the islands above the Persian Gulf sea level. Construction of the Palm Jumeirah islands was completed in 2006; they are now being developed for residential and commercial housing and infrastructure. Creation of the World Islands was begun in 2003 and completed in 2008, using 320 million cubic meters of sand and 37 million tons of rock for the surrounding 27 kilometer-long protective breakwater.
Anthropogenic Impacts on Coastal Processes at Guadiaro River Mouth (Cádiz, Spain)
NASA Astrophysics Data System (ADS)
Diez, J. Javier
2014-05-01
The mouth of Guadiaro river (Cadiz, south of Spain) opens to the Alboran basin of the Mediterranean Sea, between the Spanish and North African coasts, next to the Strait of Gibraltar, where the Spanish coastal orientation is NNE-SSW, so that the stretch is mainly affected by eastern ("Levantes") wind and wave action. The river sources are in Grazalema Sierra (Cádiz), western Penibetic ridge, and although the Spanish Mediterranean facade is climatically dry and supports a very irregular rainfall regime, rains in that "Sierra" are among the highest and homogeneous in Spain throughout the year, much more than in the rest of the ridge. Maybe that is why the Guadiaro estuary has remained functional until preset years while all other river mouths estuaries were filled to become deltas along the eighteenth century (Diez, 1996). As most of Spanish rivers, the Guadiaro had suffered a major regulatory process and an upstream transfer has been recently implemented from its basin to the Atlantic through Guadalete river basin, therefore the mouth flow is becoming reduced, especially in its peaks. The closure of its mouth, favoured by the reduced flow of the river in a low tide basin sea, has been studied several times in the last decades (Muñoz et al, 2010), mainly because the spit closing it grows in the NNE direction when alongshore transport occurs mainly, and almost permanently, in the opposite direction. This paper is mainly based on most of those documents, whose researches have used numerical models such as SMC and MIKE 21, obtaining relevant results on the refraction but not diffraction. Two successive main structural actions that can have modified coastal processes were introduced in the environment of the mouth: a couple of jetties (1973), one of which was soon removed (1975), and the marina and harbour of Sotogrande (whose breakwater was built in 1986 and extended 1n 1994)). The influence of these elements is not well reflected in the numerical models. In this paper the comparative evolution of the mouth from the Little Ice Age is analyzed and it also studies the most detailed recent changes and the works carried out on the beach embedded in the north of the jetty, now sheltered by the breakwater of the port of Sotogrande. This beach has suffered significant erosion and changes since the construction of this marina and harbour. The study of this beach can also induce new elements to understand the dynamical processes in the mouth and its littoral surroundings. The results of this study show the process of beach erosion and its relation to changes in the mouth, and are fundamental for the shore protection design along the whole coastal stretch. References Diez, JJ. 1996 Guía Física de España: VI Las Costas. Alianza Editorial 712 pp. Madrid Muñoz, JJ et al, 2010, Reversal in longshore sediment transport without variations in wave power direction. Journal of Coastal Research, 26(4), 780-786. West Palm Beach (Florida), ISSN 0749-0208.
NASA Astrophysics Data System (ADS)
Kadioglu, Selma; Kagan Kadioglu, Yusuf
2016-04-01
Ordu-Giresun (OGU) is a newly-constructed airport, the first sea-filled airport in Turkey and in Europe, and the second airport in the world after Osaca-Japan. The airport is between Gulyalı district in Ordu city and Piraziz district in Giresun city in Black Sea -Turkey. A protection breakwater has been constructed by filling a rock approximately 7.435-m long and with an average height of 5.5 m. Then, the Black Sea has been filled until 1 m over the sea level, approximately the area is 1.770.000 m2 wide and includes a runway, aprons and taxiway covered by breakwater. The runway has a 1-m thickness, 3-km length and 45-m width, PCN84 strength, and stone mastic asphalt surface. The aprons has a 240 x 110 m length and PCN110 strength, the taxiway is 250 x 24 m wide. The airport was started to be constructed in July 2011 and it began to serve on 22th May 2015. The aim of this study was to determine the depth of the rock-filled layer and the amount of sinking of the bathymetry which has been determined before filling processing. In addition, before bathymetry determination, unconsolidated sediments had been removed from the bottom of the sea. There were four drilling points to control the sinking of the bathymetry. Therefore, six suitable Ground Penetrating Radar (GPR) profiles were measured, crossing these points with runway and aprons, using 250-MHz and 100-MHz shielded antennas. Starting points of the profiles were in the middle of the runway to merge between depth and thickness changing of the filled layer and bathymetry along the profiles. Surface topography changing was measured spaced 1 m apart with 1 cm sensitivity on each profile. At the same time, similarly the topography changing, bathymetry coordinates was re-arranged along the each profile. Topography corrections were applied to the processed radargrams and then the bottom boundary lines of the rock-filled layer were determined. The maximum height was 3.5 m according to the sea level, which was on the middle point of the runway, representing zero depth of the radargrams of the profiles. To determine the amount of the sinking of the rock filled layer, the first sea level were lined at 3.5 m in depth on the right side depth axes of the radargrams. The second, bathymetry changing lines were placed on the interested radargrams. Finally, differences between the bottom boundary lines of the filled layer and bathymetry lines were compared. The results showed that GPR method could be applied successfully to determine the depth of the rock filled layer in Black Sea and the small amount of the sinking of the bathymetry. Acknowledgement This project has been supported by Cengiz - Içtaş Joint Venture-Turkey. This study is a contribution to the EU funded COST action TU1208 "Civil Engineering Applications of Ground Penetrating Radar" (www.GPRadar.eu, www.cost.eu).
NASA Astrophysics Data System (ADS)
Perry, C. T.; Morgan, K. M.
2017-01-01
Sea-surface temperature (SST) warming events, which are projected to increase in frequency and intensity with climate change, represent major threats to coral reefs. How these events impact reef carbonate budgets, and thus the capacity of reefs to sustain vertical growth under rising sea levels, remains poorly quantified. Here we quantify the magnitude of changes that followed the ENSO-induced SST warming that affected the Indian Ocean region in mid-2016. Resultant coral bleaching caused an average 75% reduction in coral cover (present mean 6.2%). Most critically we report major declines in shallow fore-reef carbonate budgets, these shifting from strongly net positive (mean 5.92 G, where G = kg CaCO3 m-2 yr-1) to strongly net negative (mean -2.96 G). These changes have driven major reductions in reef growth potential, which have declined from an average 4.2 to -0.4 mm yr-1. Thus these shallow fore-reef habitats are now in a phase of net erosion. Based on past bleaching recovery trajectories, and predicted increases in bleaching frequency, we predict a prolonged period of suppressed budget and reef growth states. This will limit reef capacity to track IPCC projections of sea-level rise, thus limiting the natural breakwater capacity of these reefs and threatening reef island stability.
NASA Astrophysics Data System (ADS)
Zokagoa, Jean-Marie; Soulaïmani, Azzeddine
2012-06-01
This article presents a reduced-order model (ROM) of the shallow water equations (SWEs) for use in sensitivity analyses and Monte-Carlo type applications. Since, in the real world, some of the physical parameters and initial conditions embedded in free-surface flow problems are difficult to calibrate accurately in practice, the results from numerical hydraulic models are almost always corrupted with uncertainties. The main objective of this work is to derive a ROM that ensures appreciable accuracy and a considerable acceleration in the calculations so that it can be used as a surrogate model for stochastic and sensitivity analyses in real free-surface flow problems. The ROM is derived using the proper orthogonal decomposition (POD) method coupled with Galerkin projections of the SWEs, which are discretised through a finite-volume method. The main difficulty of deriving an efficient ROM is the treatment of the nonlinearities involved in SWEs. Suitable approximations that provide rapid online computations of the nonlinear terms are proposed. The proposed ROM is applied to the simulation of hypothetical flood flows in the Bordeaux breakwater, a portion of the 'Rivière des Prairies' located near Laval (a suburb of Montreal, Quebec). A series of sensitivity analyses are performed by varying the Manning roughness coefficient and the inflow discharge. The results are satisfactorily compared to those obtained by the full-order finite volume model.
A short history of tsunami research and countermeasures in Japan.
Shuto, Nobuo; Fujima, Koji
2009-01-01
The tsunami science and engineering began in Japan, the country the most frequently hit by local and distant tsunamis. The gate to the tsunami science was opened in 1896 by a giant local tsunami of the highest run-up height of 38 m that claimed 22,000 lives. The crucial key was a tide record to conclude that this tsunami was generated by a "tsunami earthquake". In 1933, the same area was hit again by another giant tsunami. A total system of tsunami disaster mitigation including 10 "hard" and "soft" countermeasures was proposed. Relocation of dwelling houses to high ground was the major countermeasures. The tsunami forecasting began in 1941. In 1960, the Chilean Tsunami damaged the whole Japanese Pacific coast. The height of this tsunami was 5-6 m at most. The countermeasures were the construction of structures including the tsunami breakwater which was the first one in the world. Since the late 1970s, tsunami numerical simulation was developed in Japan and refined to become the UNESCO standard scheme that was transformed to 22 different countries. In 1983, photos and videos of a tsunami in the Japan Sea revealed many faces of tsunami such as soliton fission and edge bores. The 1993 tsunami devastated a town protected by seawalls 4.5 m high. This experience introduced again the idea of comprehensive countermeasures, consisted of defense structure, tsunami-resistant town development and evacuation based on warning.
Perry, C T; Morgan, K M
2017-01-13
Sea-surface temperature (SST) warming events, which are projected to increase in frequency and intensity with climate change, represent major threats to coral reefs. How these events impact reef carbonate budgets, and thus the capacity of reefs to sustain vertical growth under rising sea levels, remains poorly quantified. Here we quantify the magnitude of changes that followed the ENSO-induced SST warming that affected the Indian Ocean region in mid-2016. Resultant coral bleaching caused an average 75% reduction in coral cover (present mean 6.2%). Most critically we report major declines in shallow fore-reef carbonate budgets, these shifting from strongly net positive (mean 5.92 G, where G = kg CaCO 3 m -2 yr -1 ) to strongly net negative (mean -2.96 G). These changes have driven major reductions in reef growth potential, which have declined from an average 4.2 to -0.4 mm yr -1 . Thus these shallow fore-reef habitats are now in a phase of net erosion. Based on past bleaching recovery trajectories, and predicted increases in bleaching frequency, we predict a prolonged period of suppressed budget and reef growth states. This will limit reef capacity to track IPCC projections of sea-level rise, thus limiting the natural breakwater capacity of these reefs and threatening reef island stability.
Modeling of coastal water contamination in Fortaleza (Northeastern Brazil).
Pereira, S P; Rosman, P C C; Alvarez, C; Schetini, C A F; Souza, R O; Vieira, R H S F
2015-01-01
An important tool in environmental management projects and studies due to the complexity of environmental systems, environmental modeling makes it possible to integrate many variables and processes, thereby providing a dynamic view of systems. In this study the bacteriological quality of the coastal waters of Fortaleza (a state capital in Northeastern Brazil) was modeled considering multiple contamination sources. Using the software SisBaHiA, the dispersion of thermotolerant coliforms and Escherichia coli from three sources of contamination (local rivers, storm drains and submarine outfall) was analyzed. The models took into account variations in bacterial decay due to solar radiation and other environmental factors. Fecal pollution discharged from rivers and storm drains is transported westward by coastal currents, contaminating strips of beach water to the left of each storm drain or river. Exception to this condition only occurs on beaches protected by the breakwater of the harbor, where counterclockwise vortexes reverse this behavior. The results of the models were consistent with field measurements taken during the dry and the rainy season. Our results show that the submarine outfall plume was over 2 km from the nearest beach. The storm drains and the Maceió stream are the main factors responsible for the poor water quality on the waterfront of Fortaleza. The depollution of these sources would generate considerable social, health and economic gains for the region.
Towards high fidelity numerical wave tanks for modelling coastal and ocean engineering processes
NASA Astrophysics Data System (ADS)
Cozzuto, G.; Dimakopoulos, A.; de Lataillade, T.; Kees, C. E.
2017-12-01
With the increasing availability of computational resources, the engineering and research community is gradually moving towards using high fidelity Comutational Fluid Mechanics (CFD) models to perform numerical tests for improving the understanding of physical processes pertaining to wave propapagation and interaction with the coastal environment and morphology, either physical or man-made. It is therefore important to be able to reproduce in these models the conditions that drive these processes. So far, in CFD models the norm is to use regular (linear or nonlinear) waves for performing numerical tests, however, only random waves exist in nature. In this work, we will initially present the verification and validation of numerical wave tanks based on Proteus, an open-soruce computational toolkit based on finite element analysis, with respect to the generation, propagation and absorption of random sea states comprising of long non-repeating wave sequences. Statistical and spectral processing of results demonstrate that the methodologies employed (including relaxation zone methods and moving wave paddles) are capable of producing results of similar quality to the wave tanks used in laboratories (Figure 1). Subsequently cases studies of modelling complex process relevant to coastal defences and floating structures such as sliding and overturning of composite breakwaters, heave and roll response of floating caissons are presented. Figure 1: Wave spectra in the numerical wave tank (coloured symbols), compared against the JONSWAP distribution
Perry, C. T.; Morgan, K. M.
2017-01-01
Sea-surface temperature (SST) warming events, which are projected to increase in frequency and intensity with climate change, represent major threats to coral reefs. How these events impact reef carbonate budgets, and thus the capacity of reefs to sustain vertical growth under rising sea levels, remains poorly quantified. Here we quantify the magnitude of changes that followed the ENSO-induced SST warming that affected the Indian Ocean region in mid-2016. Resultant coral bleaching caused an average 75% reduction in coral cover (present mean 6.2%). Most critically we report major declines in shallow fore-reef carbonate budgets, these shifting from strongly net positive (mean 5.92 G, where G = kg CaCO3 m−2 yr−1) to strongly net negative (mean −2.96 G). These changes have driven major reductions in reef growth potential, which have declined from an average 4.2 to −0.4 mm yr−1. Thus these shallow fore-reef habitats are now in a phase of net erosion. Based on past bleaching recovery trajectories, and predicted increases in bleaching frequency, we predict a prolonged period of suppressed budget and reef growth states. This will limit reef capacity to track IPCC projections of sea-level rise, thus limiting the natural breakwater capacity of these reefs and threatening reef island stability. PMID:28084450
A short history of tsunami research and countermeasures in Japan
Shuto, Nobuo; Fujima, Koji
2009-01-01
The tsunami science and engineering began in Japan, the country the most frequently hit by local and distant tsunamis. The gate to the tsunami science was opened in 1896 by a giant local tsunami of the highest run-up height of 38 m that claimed 22,000 lives. The crucial key was a tide record to conclude that this tsunami was generated by a “tsunami earthquake”. In 1933, the same area was hit again by another giant tsunami. A total system of tsunami disaster mitigation including 10 “hard” and “soft” countermeasures was proposed. Relocation of dwelling houses to high ground was the major countermeasures. The tsunami forecasting began in 1941. In 1960, the Chilean Tsunami damaged the whole Japanese Pacific coast. The height of this tsunami was 5–6 m at most. The countermeasures were the construction of structures including the tsunami breakwater which was the first one in the world. Since the late 1970s, tsunami numerical simulation was developed in Japan and refined to become the UNESCO standard scheme that was transformed to 22 different countries. In 1983, photos and videos of a tsunami in the Japan Sea revealed many faces of tsunami such as soliton fission and edge bores. The 1993 tsunami devastated a town protected by seawalls 4.5 m high. This experience introduced again the idea of comprehensive countermeasures, consisted of defense structure, tsunami-resistant town development and evacuation based on warning. PMID:19838008
Drivers of coastal shoreline change: case study of hon dat coast, Kien Giang, Vietnam.
Nguyen, Hai-Hoa; McAlpine, Clive; Pullar, David; Leisz, Stephen Joseph; Galina, Gramotnev
2015-05-01
Coastal shorelines are naturally dynamic, shifting in response to coastal geomorphological processes. Globally, land use change associated with coastal urban development and growing human population pressures is accelerating coastal shoreline change. In southern Vietnam, coastal erosion currently is posing considerable risks to shoreline land use and coastal inhabitants. The aim of this paper is to quantify historical shoreline changes along the Hon Dat coast between 1995 and 2009, and to document the relationships between coastal mangrove composition, width and density, and rates of shoreline change. The generalized linear mixed-effects models were used to quantify the major biophysical and land-use factors influencing shoreline change rates. Most significant drivers of the rates of change are cutting of mangroves, the dominant mangrove genus, changes in adjacent shoreline land use, changes of shoreline land cover, and width of fringing mangroves. We suggest that a possible and inexpensive strategy for robust mangrove shoreline defense is direct mangrove planting to promote mangrove density with the presence of breakwater structures. In the shorter term, construction of coastal barriers such as fence-structured melaleuca poles in combination with mangrove restoration schemes could help retain coastal sediments and increase the elevation of the accretion zone, thereby helping to stabilize eroding fringe shorelines. It also is recommended that implementation of a system of payments for mangrove ecosystem services and the stronger regulation of mangrove cutting and unsustainable land-use change to strengthen the effectiveness of mangrove conservation programs and coastal land-use management.
Ge, Zhongfu; Whitman, Richard L.; Nevers, Meredith B.; Phanikumar, Mantha S.; Byappanahalli, Muruleedhara N.
2012-01-01
Numerical simulations of the transport and fate of Escherichia coli were conducted at Chicago’s 63rd Street Beach, an embayed beach that had the highest mean E. coli concentration among 23 similar Lake Michigan beaches during summer months of 2000-2005, in order to find the cause for the high bacterial contamination. The numerical model was based on the transport of E. coli by current circulation patterns in the embayment driven by longshore main currents and the loss of E. coli in the water column, taking settling as well as bacterial dark- and solar-related decay into account. Two E. coli loading scenarios were considered: one from the open boundary north of the embayment and the other from the shallow water near the beachfront. Simulations showed that the embayed beach behaves as a sink for E. coli in that it generally receives E. coli more efficiently than it releases them. This is a result of the significantly different hydrodynamic forcing factors between the inside of the embayment and the main coastal flow outside. The settled E. coli inside the embayment can be a potential source of contamination during subsequent sediment resuspension events, suggesting that deposition-resuspension cycles of E. coli have resulted in excessive bacterial contamination of beach water. A further hypothetical case with a breakwater shortened to half its original length, which was anticipated to enhance the current circulation in the embayment, showed a reduction in E. coli concentrations of nearly 20%.
Ge, Zhongfu; Whitman, Richard L.; Nevers, Meredith B.; Phanikumar, Mantha S.; Byappanahalli, Muruleedhara N.
2012-01-01
Numerical simulations of the transport and fate of Escherichia coli were conducted at Chicago's 63rd Street Beach, an embayed beach that had the highest mean E. coli concentration among 23 similar Lake Michigan beaches during summer months of 2000-2005, in order to find the cause for the high bacterial contamination. The numerical model was based on the transport of E. coli by current circulation patterns in the embayment driven by longshore main currents and the loss of E. coli in the water column, taking settling as well as bacterial dark- and solar-related decay into account. Two E. coli loading scenarios were considered: one from the open boundary north of the embayment and the other from the shallow water near the beachfront. Simulations showed that the embayed beach behaves as a sink for E. coli in that it generally receives E. coli more efficiently than it releases them. This is a result of the significantly different hydrodynamic forcing factors between the inside of the embayment and the main coastal flow outside. The settled E. coli inside the embayment can be a potential source of contamination during subsequent sediment resuspension events, suggesting that deposition-resuspension cycles of E. coli have resulted in excessive bacterial contamination of beach water. A further hypothetical case with a breakwater shortened to half its original length, which was anticipated to enhance the current circulation in the embayment, showed a reduction in E. coli concentrations of nearly 20%.
Numerical simulation of multi-directional random wave transformation in a yacht port
NASA Astrophysics Data System (ADS)
Ji, Qiaoling; Dong, Sheng; Zhao, Xizeng; Zhang, Guowei
2012-09-01
This paper extends a prediction model for multi-directional random wave transformation based on an energy balance equation by Mase with the consideration of wave shoaling, refraction, diffraction, reflection and breaking. This numerical model is improved by 1) introducing Wen's frequency spectrum and Mitsuyasu's directional function, which are more suitable to the coastal area of China; 2) considering energy dissipation caused by bottom friction, which ensures more accurate results for large-scale and shallow water areas; 3) taking into account a non-linear dispersion relation. Predictions using the extended wave model are carried out to study the feasibility of constructing the Ai Hua yacht port in Qingdao, China, with a comparison between two port layouts in design. Wave fields inside the port for different incident wave directions, water levels and return periods are simulated, and then two kinds of parameters are calculated to evaluate the wave conditions for the two layouts. Analyses show that Layout I is better than Layout II. Calculation results also show that the harbor will be calm for different wave directions under the design water level. On the contrary, the wave conditions do not wholly meet the requirements of a yacht port for ship berthing under the extreme water level. For safety consideration, the elevation of the breakwater might need to be properly increased to prevent wave overtopping under such water level. The extended numerical simulation model may provide an effective approach to computing wave heights in a harbor.
Population structure of Cladophora-borne Escherichia coli in nearshore water of Lake Michigan.
Byappanahalli, Muruleedhara N; Whitman, Richard L; Shively, Dawn A; Ferguson, John; Ishii, Satoshi; Sadowsky, Michael J
2007-08-01
We previously reported that the macrophytic green alga Cladophora harbors high densities (up to 10(6) colony-forming units/g dry weight) of the fecal indicator bacteria, Escherichia coli and enterococci, in shoreline waters of Lake Michigan. However, the population structure and genetic relatedness of Cladophora-borne indicator bacteria remain poorly understood. In this study, 835 E. coli isolates were collected from Cladophora tufts (mats) growing on rocks from a breakwater located within the Indiana Dunes National Lakeshore in northwest Indiana. The horizontal fluorophore enhanced rep-PCR (HFERP) DNA fingerprinting technique was used to determine the genetic relatedness of the isolates to each other and to those in a library of E. coli DNA fingerprints. While the E. coli isolates from Cladophora showed a high degree of genetic relatedness (92% similarity), in most cases, however, the isolates were genetically distinct. The Shannon diversity index for the population was very high (5.39). Both spatial and temporal influences contributed to the genetic diversity. There was a strong association of isolate genotypes by location (79% and 80% for lake- and ditch-side samplings, respectively), and isolates collected from 2002 were distinctly different from those obtained in 2003. Cladophora-borne E. coli isolates represented a unique group, which was distinct from other E. coli isolates in the DNA fingerprint library tested. Taken together, these results indicate that E. coli strains associated with Cladophora may be a recurring source of indicator bacteria to the nearshore beach.
NASA Astrophysics Data System (ADS)
Danladi, Iliya Bauchi; Kore, Basiru Mohammed; Gül, Murat
2017-10-01
Coastal areas are important regions in the world as they host huge population, diverse ecosystems and natural resources. However, owing to their settings, elevations and proximities to the sea, climate change (global warming) and human activities are threatening issues. Herein, we report the coastline changes and possible future threats related to sea level rise owing to global warming and human activities in the coastal region of Nigeria. Google earth images, Digital Elevation Model (DEM) and geological maps were used. Using google earth images, coastal changes for the past 43 years, 3 years prior to and after the construction of breakwaters along Goshen Beach Estate (Lekki) were examined. Additionally, coastline changes along Lekki Phase I from 2013 to 2016 were evaluated. The DEM map was used to delineate 0-2 m, 2-5 m and 5-10 m asl which correspond to undifferentiated sands and gravels to clays on the geological map. The results of the google earth images revealed remarkable erosion along both Lekki and Lekki Phase I, with the destruction of a lagoon in Lekki Phase I. Based on the result of the DEM map and geology, elevations of 0-2 m, 2-5 m and 5-10 m asl were interpreted as highly risky, moderately risky and risky respectively. Considering factors threatening coastal regions, the erosion and destruction of the lagoon along the Nigerian coast may be ascribed to sea level rise as a result of global warming and intense human activities respectively.
NASA Astrophysics Data System (ADS)
Farías, Cristian; Galván, Boris; Miller, Stephen A.
2017-09-01
Earthquake triggering of hydrothermal and volcanic systems is ubiquitous, but the underlying processes driving these systems are not well-understood. We numerically investigate the influence of seismic wave interaction with volcanic systems simulated as a trapped, high-pressure fluid reservoir connected to a fluid-filled fault system in a 2-D poroelastic medium. Different orientations and earthquake magnitudes are studied to quantify dynamic and static stress, and pore pressure changes induced by a seismic event. Results show that although the response of the system is mainly dominated by characteristics of the radiated seismic waves, local structures can also play an important role on the system dynamics. The fluid reservoir affects the seismic wave front, distorts the static overpressure pattern induced by the earthquake, and concentrates the kinetic energy of the incoming wave on its boundaries. The static volumetric stress pattern inside the fault system is also affected by the local structures. Our results show that local faults play an important role in earthquake-volcanic systems dynamics by concentrating kinetic energy inside and acting as wave-guides that have a breakwater-like behavior. This generates sudden changes in pore pressure, volumetric expansion, and stress gradients. Local structures also influence the regional Coulomb yield function. Our results show that local structures affect the dynamics of volcanic and hydrothermal systems, and should be taken into account when investigating triggering of these systems from nearby or distant earthquakes.
NASA Astrophysics Data System (ADS)
Mas, E.; Takagi, H.; Adriano, B.; Hayashi, S.; Koshimura, S.
2014-12-01
The 2011 Great East Japan earthquake and tsunami reminded that nature can exceed structural countermeasures like seawalls, breakwaters or tsunami gates. In such situations it is a challenging task for people to find nearby haven. This event, as many others before, confirmed the importance of early evacuation, tsunami awareness and the need for developing much more resilient communities with effective evacuation plans. To support reconstruction activities and efforts on developing resilient communities in areas at risk, tsunami evacuation simulation can be applied to tsunami mitigation and evacuation planning. In this study, using the compiled information related to the evacuation behavior at Yuriage in Natori during the 2011 tsunami, we simulated the evacuation process and explored the reasons for the large number of fatalities in the area. It was found that residents did evacuate to nearby shelter areas, however after the tsunami warning was increased some evacuees decided to conduct a second step evacuation to a far inland shelter. Simulation results show the consequences of such decision and the outcomes when a second evacuation would not have been performed. The actual reported number of fatalities in the event and the results from simulation are compared to verify the model. The case study shows the contribution of tsunami evacuation models as tools to be applied for the analysis of evacuees' decisions and the related outcomes. In addition, future evacuation plans and activities for reconstruction process and urban planning can be supported by the results provided from this kind of tsunami evacuation models.
From grey to green: Efficacy of eco-engineering solutions for nature-based coastal defence.
Morris, Rebecca L; Konlechner, Teresa M; Ghisalberti, Marco; Swearer, Stephen E
2018-05-01
Climate change is increasing the threat of erosion and flooding along coastlines globally. Engineering solutions (e.g. seawalls and breakwaters) in response to protecting coastal communities and associated infrastructure are increasingly becoming economically and ecologically unsustainable. This has led to recommendations to create or restore natural habitats, such as sand dunes, saltmarsh, mangroves, seagrass and kelp beds, and coral and shellfish reefs, to provide coastal protection in place of (or to complement) artificial structures. Coastal managers are frequently faced with the problem of an eroding coastline, which requires a decision on what mitigation options are most appropriate to implement. A barrier to uptake of nature-based coastal defence is stringent evaluation of the effectiveness in comparison to artificial protection structures. Here, we assess the current evidence for the efficacy of nature-based vs. artificial coastal protection and discuss future research needs. Future projects should evaluate habitats created or restored for coastal defence for cost-effectiveness in comparison to an artificial structure under the same environmental conditions. Cost-benefit analyses should take into consideration all ecosystem services provided by nature-based or artificial structures in addition to coastal protection. Interdisciplinary research among scientists, coastal managers and engineers is required to facilitate the experimental trials needed to test the value of these shoreline protection schemes, in order to support their use as alternatives to artificial structures. This research needs to happen now as our rapidly changing climate requires new and innovative solutions to reduce the vulnerability of coastal communities to an increasingly uncertain future. © 2018 John Wiley & Sons Ltd.
Digital Elevation Model from Non-Metric Camera in Uas Compared with LIDAR Technology
NASA Astrophysics Data System (ADS)
Dayamit, O. M.; Pedro, M. F.; Ernesto, R. R.; Fernando, B. L.
2015-08-01
Digital Elevation Model (DEM) data as a representation of surface topography is highly demanded for use in spatial analysis and modelling. Aimed to that issue many methods of acquisition data and process it are developed, from traditional surveying until modern technology like LIDAR. On the other hands, in a past four year the development of Unamend Aerial System (UAS) aimed to Geomatic bring us the possibility to acquire data about surface by non-metric digital camera on board in a short time with good quality for some analysis. Data collectors have attracted tremendous attention on UAS due to possibility of the determination of volume changes over time, monitoring of the breakwaters, hydrological modelling including flood simulation, drainage networks, among others whose support in DEM for proper analysis. The DEM quality is considered as a combination of DEM accuracy and DEM suitability so; this paper is aimed to analyse the quality of the DEM from non-metric digital camera on UAS compared with a DEM from LIDAR corresponding to same geographic space covering 4 km2 in Artemisa province, Cuba. This area is in a frame of urban planning whose need to know the topographic characteristics in order to analyse hydrology behaviour and decide the best place for make roads, building and so on. Base on LIDAR technology is still more accurate method, it offer us a pattern for test DEM from non-metric digital camera on UAS, whose are much more flexible and bring a solution for many applications whose needs DEM of detail.
Population structure of Cladophora-borne Escherichia coli in nearshore water of Lake Michigan
Byappanahalli, M.N.; Whitman, R.L.; Shively, D.A.; Ferguson, J.; Ishii, S.; Sadowsky, M.J.
2007-01-01
We previously reported that the macrophytic green alga Cladophora harbors high densities (up to 106 colony-forming units/g dry weight) of the fecal indicator bacteria,Escherichia coli and enterococci, in shoreline waters of Lake Michigan. However, the population structure and genetic relatedness of Cladophora-borne indicator bacteria remain poorly understood. In this study, 835 E. coli isolates were collected fromCladophora tufts (mats) growing on rocks from a breakwater located within the Indiana Dunes National Lakeshore in northwest Indiana. The horizontal fluorophore enhanced rep-PCR (HFERP) DNA fingerprinting technique was used to determine the genetic relatedness of the isolates to each other and to those in a library of E. coli DNA fingerprints. While the E. coli isolates from Cladophora showed a high degree of genetic relatedness (⩾92% similarity), in most cases, however, the isolates were genetically distinct. The Shannon diversity index for the population was very high (5.39). Both spatial and temporal influences contributed to the genetic diversity. There was a strong association of isolate genotypes by location (79% and 80% for lake- and ditch-side samplings, respectively), and isolates collected from 2002 were distinctly different from those obtained in 2003. Cladophora-borne E. coli isolates represented a unique group, which was distinct from other E. coli isolates in the DNA fingerprint library tested. Taken together, these results indicate that E. coli strains associated with Cladophora may be a recurring source of indicator bacteria to the nearshore beach.
Survival of prokaryotes in a polluted waste dump during remediation by alkaline hydrolysis.
Nielsen, Marie Bank; Kjeldsen, Kasper Urup; Lever, Mark Alexander; Ingvorsen, Kjeld
2014-04-01
A combination of culture-dependent and culture-independent techniques was used to characterize bacterial and archaeal communities in a highly polluted waste dump and to assess the effect of remediation by alkaline hydrolysis on these communities. This waste dump (Breakwater 42), located in Denmark, contains approximately 100 different toxic compounds including large amounts of organophosphorous pesticides such as parathions. The alkaline hydrolysis (12 months at pH >12) decimated bacterial and archaeal abundances, as estimated by 16S rRNA gene-based qPCR, from 2.1 × 10(4) and 2.9 × 10(3) gene copies per gram wet soil respectively to below the detection limit of the qPCR assay. Clone libraries constructed from PCR-amplified 16S rRNA gene fragments showed a significant reduction in bacterial diversity as a result of the alkaline hydrolysis, with preferential survival of Betaproteobacteria, which increased in relative abundance from 0 to 48 %. Many of the bacterial clone sequences and the 27 isolates were related to known xenobiotic degraders. An archaeal clone library from a non-hydrolyzed sample showed the presence of three main clusters, two representing methanogens and one representing marine aerobic ammonia oxidizers. Isolation of alkalitolerant bacterial pure cultures from the hydrolyzed soil confirmed that although alkaline hydrolysis severely reduces microbial community diversity and size certain bacteria survive a prolonged alkaline hydrolysis process. Some of the isolates from the hydrolyzed soil were capable of growing at high pH (pH 10.0) in synthetic media indicating that they could become active in in situ biodegradation upon hydrolysis.
NASA Astrophysics Data System (ADS)
Sakamoto, Shingo X.; Sasa, Shuji; Sawayama, Shuhei; Tsujimoto, Ryo; Terauchi, Genki; Yagi, Hiroshi; Komatsu, Teruhisa
2012-10-01
Seaweed beds are very important for abalones and sea urchins as a habitat. In Sanriku Coast, these animals are target species of coastal fisheries. The huge tsunami hit Sanriku Coast facing Pacific Ocean on 11 March 2011. It is needed for fishermen to know present situation of seaweed beds and understand damages of the huge tsunami on natural environments to recover coastal fisheries. We selected Shizugawa Bay as a study site because abalone catch of Shizugawa Bay occupied the first position in Sanriku Coast. To evaluate impact of tsunami on seaweed beds, we compared high spatial resolution satellite image of Shizugawa Bay before the tsunami with that after the tsunami by remote sensing with ground surveys to know impact of the tsunami on seaweed beds. We used two multi-band imageries of commercial high-resolution satellite, Geoeye-1, which were taken on 4 November 2009 before the tsunami and on 22 February 2012 after the tsunami. Although divers observed the tsunami damaged a very small part of Eisenia bicyclis distributions on rock substrates at the bay head, it was not observed clearly by satellite image analysis. On the other hand, we found increase in seaweed beds after the tsunami from the image analysis. The tsunami broke concrete breakwaters, entrained a large amount of rocks and pebble from land to the sea, and disseminated them in the bay. Thus, hard substrates suitable for attachment of seaweeds were increased. Ground surveys revealed that seaweeds consisting of E. bicyclis, Sargassum and Laminaria species grew on these hard substrates on the sandy bottom.
A 3D unstructured grid nearshore hydrodynamic model based on the vortex force formalism
NASA Astrophysics Data System (ADS)
Zheng, Peng; Li, Ming; van der A, Dominic A.; van der Zanden, Joep; Wolf, Judith; Chen, Xueen; Wang, Caixia
2017-08-01
A new three-dimensional nearshore hydrodynamic model system is developed based on the unstructured-grid version of the third generation spectral wave model SWAN (Un-SWAN) coupled with the three-dimensional ocean circulation model FVCOM to enable the full representation of the wave-current interaction in the nearshore region. A new wave-current coupling scheme is developed by adopting the vortex-force (VF) scheme to represent the wave-current interaction. The GLS turbulence model is also modified to better reproduce wave-breaking enhanced turbulence, together with a roller transport model to account for the effect of surface wave roller. This new model system is validated first against a theoretical case of obliquely incident waves on a planar beach, and then applied to three test cases: a laboratory scale experiment of normal waves on a beach with a fixed breaker bar, a field experiment of oblique incident waves on a natural, sandy barred beach (Duck'94 experiment), and a laboratory study of normal-incident waves propagating around a shore-parallel breakwater. Overall, the model predictions agree well with the available measurements in these tests, illustrating the robustness and efficiency of the present model for very different spatial scales and hydrodynamic conditions. Sensitivity tests indicate the importance of roller effects and wave energy dissipation on the mean flow (undertow) profile over the depth. These tests further suggest to adopt a spatially varying value for roller effects across the beach. In addition, the parameter values in the GLS turbulence model should be spatially inhomogeneous, which leads to better prediction of the turbulent kinetic energy and an improved prediction of the undertow velocity profile.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tom, Nathan M.; Madhi, Farshad; Yeung, Ronald W.
The aim of this paper is to maximize the power-to-load ratio of the Berkeley Wedge: a one-degree-of-freedom, asymmetrical, energy-capturing, floating breakwater of high performance that is relatively free of viscosity effects. Linear hydrodynamic theory was used to calculate bounds on the expected time-averaged power (TAP) and corresponding surge restraining force, pitch restraining torque, and power take-off (PTO) control force when assuming that the heave motion of the wave energy converter remains sinusoidal. This particular device was documented to be an almost-perfect absorber if one-degree-of-freedom motion is maintained. The success of such or similar future wave energy converter technologies would requiremore » the development of control strategies that can adapt device performance to maximize energy generation in operational conditions while mitigating hydrodynamic loads in extreme waves to reduce the structural mass and overall cost. This paper formulates the optimal control problem to incorporate metrics that provide a measure of the surge restraining force, pitch restraining torque, and PTO control force. The optimizer must now handle an objective function with competing terms in an attempt to maximize power capture while minimizing structural and actuator loads. A penalty weight is placed on the surge restraining force, pitch restraining torque, and PTO actuation force, thereby allowing the control focus to be placed either on power absorption or load mitigation. Thus, in achieving these goals, a per-unit gain in TAP would not lead to a greater per-unit demand in structural strength, hence yielding a favorable benefit-to-cost ratio. Demonstrative results in the form of TAP, reactive TAP, and the amplitudes of the surge restraining force, pitch restraining torque, and PTO control force are shown for the Berkeley Wedge example.« less
On the design of a prototype model of the floating wave power device ``Mighty Whale``
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hotta, H.; Washio, Y.; Yokozawa, H.
1996-12-31
The Mighty Whale is a floating wave power device to convert the wave energy to other convenient energy for the conservation of the sea, and to create the calm sea area such as a floating breakwater. JAMSTEC (Japan Marine Science and Technology Center) has been promoting the R and D on this Mighty Whale since 1986. Already, the authors have finished fundamental development by theoretical, numerical and experimental study on the basic Mighty Whale. By 1996, they will finish designing the prototype model of the Mighty Whale, will start to construct it, and will carry out the open sea testmore » between 1998 and 1999 at the coastal sea of Japan. The dimensions of the Mighty Whale are 50m in length, 30m in breadth and it has 3 air chambers, 3 units of the air turbines and generators of 50 kW rated power. It will be moored by mooring chains and anchors at the site of about 35m water depth. The mechanism to absorb the wave energy is of the OWC (Oscillating Water Column) type with the Wells Turbine. Its efficiency to absorb the wave energy is about 40--50% on average in regular waves, and it can make in the lee zone the height of incident waves about one half under 8 sec of the significant wave period. Because of such behavior, and from the view point of sustainable development at the coastal zone, the authors recognize the Mighty Whale can be a convenient and beneficial structure for the coastal development. In this paper, they introduce this design, and discuss the utilization of the Mighty Whale for the coastal development.« less
Airoldi, Laura; Bulleri, Fabio
2011-01-01
Coastal landscapes are being transformed as a consequence of the increasing demand for infrastructures to sustain residential, commercial and tourist activities. Thus, intertidal and shallow marine habitats are largely being replaced by a variety of artificial substrata (e.g. breakwaters, seawalls, jetties). Understanding the ecological functioning of these artificial habitats is key to planning their design and management, in order to minimise their impacts and to improve their potential to contribute to marine biodiversity and ecosystem functioning. Nonetheless, little effort has been made to assess the role of human disturbances in shaping the structure of assemblages on marine artificial infrastructures. We tested the hypothesis that some negative impacts associated with the expansion of opportunistic and invasive species on urban infrastructures can be related to the severe human disturbances that are typical of these environments, such as those from maintenance and renovation works. Maintenance caused a marked decrease in the cover of dominant space occupiers, such as mussels and oysters, and a significant enhancement of opportunistic and invasive forms, such as biofilm and macroalgae. These effects were particularly pronounced on sheltered substrata compared to exposed substrata. Experimental application of the disturbance in winter reduced the magnitude of the impacts compared to application in spring or summer. We use these results to identify possible management strategies to inform the improvement of the ecological value of artificial marine infrastructures. We demonstrate that some of the impacts of globally expanding marine urban infrastructures, such as those related to the spread of opportunistic, and invasive species could be mitigated through ecologically-driven planning and management of long-term maintenance of these structures. Impact mitigation is a possible outcome of policies that consider the ecological features of built infrastructures and the fundamental value of controlling biodiversity in marine urban systems.
Earth Observations taken by the Expedition 22 Crew
2010-01-13
ISS022-E-024940 (13 Jan. 2010) --- Man-made archipelagos near Dubai, United Arab Emirates are featured in this image photographed by an Expedition 22 crew member on the International Space Station. The municipality of Dubai is the largest city of the Persian Gulf emirate of the same name, and has built a global reputation for large-scale developments and architectural works. Among the most visible of these developments ? particularly from the perspective of astronauts onboard the ISS ? are three man-made archipelagos. The two Palm Islands (Palm Jumeirah and Palm Jebel Ali) appear as stylized palm trees when viewed from above. The World Islands evoke a rough map of the world from an air- or space-borne perspective. Palm Jumeirah and the World Islands are highlighted in this view. Palm Jumeirah (lower left) was begun in 2001 and required more than 50 million cubic meters of dredged sand to raise the islands above the Persian Gulf sea level. Construction of the Palm Jumeirah islands was completed in 2006; they are now being developed for residential and commercial housing and infrastructure. Creation of the 300 World Islands (upper right) was begun in 2003 and completed in 2008, using 320 million cubic meters of sand and 37 million tons of rock for the surrounding 27 kilometer-long protective breakwater. Also visible at the lower edge of the image is another notable built structure ? the Burj Tower (white rectangle at lower right and inset image). The Burj Tower ? or Burj Khalifa ? stands 800 meters high, and is currently the world?s tallest structure. The photograph captures enough detail to make out the tapering outline of the building as well as its dark needle-like shadow pointing towards the northeast.
Changes in the shoreline at Paradip Port, India in response to climate change
NASA Astrophysics Data System (ADS)
Gopikrishna, B.; Deo, M. C.
2018-02-01
One of the popular methods to predict shoreline shifts into the future involves use of a shoreline evolution model driven by the historical wave climate. It is however understood by now that historical wave conditions might substantially change in future in response to climate change induced by the global warming. The future shoreline changes as well as sediment transport therefore need to be determined with the help of future projections of wave climate. In this work this is done at the port of Paradip situated along the east coast of India. The high resolution wind resulting from a climate modelling experiment called: CORDEX, South Asia, was used to simulate waves over two time-slices of 25 years each in past and future. The wave simulations were carried out with the help of a numerical wave model. Thereafter, rates of longshore sediment transport as well as shoreline shifts were determined over past and future using a numerical shoreline model. It was found that at Paradip Port the net littoral drift per metre width of cross-shore might go up by 37% and so also the net accumulated drift over the entire cross-shore width by 71%. This could be caused by an increase in the mean significant wave height of around 32% and also by changes in the frequency and direction of waves. The intensification of waves in turn might result from an increase in the mean wind speed of around 19%. Similarly, the horizontal extent of the beach accretion and erosion at the port's southern breakwater might go up by 4 m and 8 m, respectively, from the current level in another 25 years. This study should be useful in framing future port management strategies.
An updated Holocene sea-level curve for the Delaware coast
Nikitina, D.L.; Pizzuto, J.E.; Schwimmer, R.A.; Ramsey, K.W.
2000-01-01
We present an updated Holocene sea-level curve for the Delaware coast based on new calibrations of 16 previously published radiocarbon dates (Kraft, 1976; Belknap and Kraft, 1977) and 22 new radiocarbon dates of basal peat deposits. A review of published and unpublished 137Cs and 210Pb analyses, and tide gauge data provide the basis for evaluating shorter-term (102 yr) sea-level trends. Paleosea-level elevations for the new basal peat samples were determined from the present vertical zonation of marsh plants relative to mean high water along the Delaware coast and the composition of plant fossils and foraminifera. Current trends in tidal range along the Delaware coast were used to reduce elevations from different locations to a common vertical datum of mean high water at Breakwater Harbor, Delaware. The updated curve is similar to Belknap and Kraft's [J. Sediment. Petrol., 47 (1977) 610-629] original sea-level curve from 12,000 to about 2000 yr BP. The updated curve documents a rate of sea-level rise of 0.9 mm/yr from 1250 yr BP to present (based on 11 dates), in good agreement with other recent sea-level curves from the northern and central U.S. Atlantic coast, while the previous curve documents rates of about 1.3 mm/yr (based on 4 dates). The precision of both estimates, however, is very low, so the significance of these differences is uncertain. A review of 210Pb and 137Cs analyses from salt marshes of Delaware indicates average marsh accretion rates of 3 mm/yr for the last 100 yr, in good agreement with shorter-term estimates of sea-level rise from tide gauge records. ?? 2000 Elsevier Science B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tom, Nathan M.; Madhi, Farshad; Yeung, Ronald W.
2016-06-24
The aim of this paper is to maximize the power-to-load ratio of the Berkeley Wedge: a one-degree-of-freedom, asymmetrical, energy-capturing, floating breakwater of high performance that is relatively free of viscosity effects. Linear hydrodynamic theory was used to calculate bounds on the expected time-averaged power (TAP) and corresponding surge restraining force, pitch restraining torque, and power take-off (PTO) control force when assuming that the heave motion of the wave energy converter remains sinusoidal. This particular device was documented to be an almost-perfect absorber if one-degree-of-freedom motion is maintained. The success of such or similar future wave energy converter technologies would requiremore » the development of control strategies that can adapt device performance to maximize energy generation in operational conditions while mitigating hydrodynamic loads in extreme waves to reduce the structural mass and overall cost. This paper formulates the optimal control problem to incorporate metrics that provide a measure of the surge restraining force, pitch restraining torque, and PTO control force. The optimizer must now handle an objective function with competing terms in an attempt to maximize power capture while minimizing structural and actuator loads. A penalty weight is placed on the surge restraining force, pitch restraining torque, and PTO actuation force, thereby allowing the control focus to be placed either on power absorption or load mitigation. Thus, in achieving these goals, a per-unit gain in TAP would not lead to a greater per-unit demand in structural strength, hence yielding a favorable benefit-to-cost ratio. Demonstrative results in the form of TAP, reactive TAP, and the amplitudes of the surge restraining force, pitch restraining torque, and PTO control force are shown for the Berkeley Wedge example.« less
Geomorphic factors related to the persistence of subsurface oil from the Exxon Valdez oil spill
Nixon, Zachary; Michel, Jacqueline; Hayes, Miles O.; Irvine, Gail V.; Short, Jeffrey
2013-01-01
Oil from the 1989 Exxon Valdez oil spill has persisted along shorelines of Prince William Sound, Alaska, for more than two decades as both surface and subsurface oil residues. To better understand the distribution of persistent subsurface oil and assess the potential need for further restoration, a thorough and quantitative understanding of the geomorphic factors controlling the presence or absence of subsurface oil is required. Data on oiling and geomorphic features were collected at 198 sites in Prince William Sound to identify and quantify the relationships among these geomorphic factors and the presence and absence of persistent subsurface oil. Geomorphic factors associated with the presence of subsurface oil were initial oil exposure, substrate permeability, topographic slope, low exposure to waves, armoring on gravel beaches, tombolos, natural breakwaters, and rubble accumulations. Geomorphic factors associated with the absence of subsurface oil were impermeable bedrock; platforms with thin sediment veneer; fine-grained, well-sorted gravel beaches with no armor; and low-permeability, raised bay-bottom beaches. Relationships were found between the geomorphic and physical site characteristics and the likelihood of encountering persistent subsurface oiling at those sites. There is quantitative evidence of more complex interactions between the overall wave energy incident at a site and the presence of fine-scale geomorphic features that may have provided smaller, local wave energy sheltering of oil. Similarly, these data provide evidence for interactions between the shoreline slope and the presence of angular rubble, with decreased likelihood for encountering subsurface oil at steeply sloped sites except at high-angle sheltered rubble shoreline locations. These results reinforce the idea that the interactions of beach permeability, stability, and site-specific wave exposure are key drivers for subsurface oil persistence in exposed and intermittently exposed mixed gravel beach and rocky shoreline environments.
NASA Astrophysics Data System (ADS)
Franz, Guilherme; Delpey, Matthias T.; Brito, David; Pinto, Lígia; Leitão, Paulo; Neves, Ramiro
2017-09-01
Coastal defence structures are often constructed to prevent beach erosion. However, poorly designed structures may cause serious erosion problems in the downdrift direction. Morphological models are useful tools to predict such impacts and assess the efficiency of defence structures for different scenarios. Nevertheless, morphological modelling is still a topic under intense research effort. The processes simulated by a morphological model depend on model complexity. For instance, undertow currents are neglected in coastal area models (2DH), which is a limitation for simulating the evolution of beach profiles for long periods. Model limitations are generally overcome by predefining invariant equilibrium profiles that are allowed to shift offshore or onshore. A more flexible approach is described in this paper, which can be generalised to 3-D models. The present work is based on the coupling of the MOHID modelling system and the SWAN wave model. The impacts of different designs of detached breakwaters and groynes were simulated in a schematic beach configuration following a 2DH approach. The results of bathymetry evolution are in agreement with the patterns found in the literature for several existing structures. The model was also tested in a 3-D test case to simulate the formation of sandbars by undertow currents. The findings of this work confirmed the applicability of the MOHID modelling system to study sediment transport and morphological changes in coastal zones under the combined action of waves and currents. The same modelling methodology was applied to a coastal zone (Costa da Caparica) located at the mouth of a mesotidal estuary (Tagus Estuary, Portugal) to evaluate the hydrodynamics and sediment transport both in calm water conditions and during events of highly energetic waves. The MOHID code is available in the GitHub repository.
Response to the 2011 Great East Japan Earthquake and Tsunami disaster.
Koshimura, Shunichi; Shuto, Nobuo
2015-10-28
We revisited the lessons of the 2011 Great East Japan Earthquake Tsunami disaster specifically on the response and impact, and discussed the paradigm shift of Japan's tsunami disaster management policies and the perspectives for reconstruction. Revisiting the modern histories of Tohoku tsunami disasters and pre-2011 tsunami countermeasures, we clarified how Japan's coastal communities have prepared for tsunamis. The discussion mainly focuses on structural measures such as seawalls and breakwaters and non-structural measures of hazard map and evacuation. The responses to the 2011 event are discussed specifically on the tsunami warning system and efforts to identify the tsunami impacts. The nation-wide post-tsunami survey results shed light on the mechanisms of structural destruction, tsunami loads and structural vulnerability to inform structural rehabilitation measures and land-use planning. Remarkable paradigm shifts in designing coastal protection and disaster mitigation measures were introduced, leading with a new concept of potential tsunami levels: Prevention (Level 1) and Mitigation (Level 2) levels according to the level of 'protection'. The seawall is designed with reference to Level 1 tsunami scenario, while comprehensive disaster management measures should refer to Level 2 tsunami for protection of human lives and reducing potential losses and damage. Throughout the case study in Sendai city, the proposed reconstruction plan was evaluated from the tsunami engineering point of view to discuss how the post 2011 paradigm was implemented in coastal communities for future disaster mitigation. The analysis revealed that Sendai city's multiple protection measures for Level 2 tsunami will contribute to a substantial reduction of the tsunami inundation zone and potential losses, combined with an effective tsunami evacuation plan. © 2015 The Author(s).
Spatial variability of coastal wetland resilience to sea-level rise using Bayesian inference
NASA Astrophysics Data System (ADS)
Hardy, T.; Wu, W.
2017-12-01
The coastal wetlands in the Northern Gulf of Mexico (NGOM) account for 40% of coastal wetland area in the United States and provide various ecosystem services to the region and broader areas. Increasing rates of relative sea-level rise (RSLR), and reduced sediment input have increased coastal wetland loss in the NGOM, accounting for 80% of coastal wetland loss in the nation. Traditional models for predicting the impact of RSLR on coastal wetlands in the NGOM have focused on coastal erosion driven by geophysical variables only, and/or at small spatial extents. Here we developed a model in Bayesian inference to make probabilistic prediction of wetland loss in the entire NGOM as a function of vegetation productivity and geophysical attributes. We also studied how restoration efforts help maintain the area of coastal wetlands. Vegetation productivity contributes organic matter to wetland sedimentation and was approximated using the remotely sensed normalized difference moisture index (NDMI). The geophysical variables include RSLR, tidal range, river discharge, coastal slope, and wave height. We found a significantly positive relation between wetland loss and RSLR, which varied significantly at different river discharge regimes. There also existed a significantly negative relation between wetland loss and NDMI, indicating that in-situ vegetation productivity contributed to wetland resilience to RSLR. This relation did not vary significantly between river discharge regimes. The spatial relation revealed three areas of high RSLR but relatively low wetland loss; these areas were associated with wetland restoration projects in coastal Louisiana. Two projects were breakwater projects, where hard materials were placed off-shore to reduce wave action and promote sedimentation. And one project was a vegetation planting project used to promote sedimentation and wetland stabilization. We further developed an interactive web tool that allows stakeholders to develop similar wetland restoration and management plans tailored specifically to the biologic and geophysical conditions at their target sites.
NASA Astrophysics Data System (ADS)
Sedrati, Mouncef; Morales González, Juan Antonio
2017-04-01
Several studies on barred beaches in settings with mesotidal to macrotidal regimes have focused on cross-shore and alongshore bar mobility. Whereas the general link between hydrodynamics, sediment transport and the response of the intertidal bars and shoreline evolution has been recognized in the literature, the role of coastal defense structures (Breakwaters, groins, seawalls) on bar-trough systems morphodynamics have received more much less attention and the field-based experimental studies of these environments are rare. The main aim of this paper is to highlight the contrasting behavior of a natural and protected barred beach under several hydrodynamics conditions. This paper presents detailed hydrodynamic and morphological data from a field experiment spanning 10 days undertaken in Matalascañas beach, a mesotidal protected vs natural barred beach in the Southern Spanish coast. This mesotidal beach experienced intense erosion in the recent past and therefore it has been partially protected by groins (protection of sea-front touristic residences). During the fieldwork, an intertidal bars in the protected and non-protected areas highlighted contrasting morphological behaviour. The non-protected barred beach shows a less pronounced bar-trough system than the protected zone. Under low energy conditions (significant wave height < 0,6m), onshore bar migration rate in the protected area was more important than the non-protected area. This migration was associated with an onshore sediment transport, resulting from the erosion of the bar's seaward slope. In the same moment, a clear longshore bar migration was observed in the non-protected zone with the absence of this process in the protected zone. During few energetic tides (Significant wave height > 1m), the protected and non-protected zones show a flattening bars processes. The findings of the present study suggest that cross-shore vs longshore bar mobility may even be mitigated by the presence of the groins, which favour onshore than longshore bar migration.
Ng, K; Phillips, M R; Borges, P; Thomas, T; August, P; Calado, H; Veloso-Gomes, F
2014-05-15
Traditional hard engineering structures and recently emerging soft engineering alternatives have been employed to protect vulnerable coastlines. Despite negative publicity, they have ensured community survival where socio-economic benefits outweigh adverse impacts. This is especially true for Small Islands (SI) where increasing sea levels and storm intensities threaten already limited land availability. This paper presents coastal vulnerability in São Miguel Island (the Azores SI archipelago) and considers SI issues with regard to coastal land loss. Regional wave statistics using 1998 to 2011 wind record showed: periods ranging from 7 to 13s (circa 83%); wave heights between 1 and 3m (circa 60%); and increasing trends in westerly (p=0.473), easterly (p=0.632) and southeasterly (p=0.932) waves. Sea level analyses between 1978 and 2007 indicated a statistically significant rising trend (2.5 ± 0.4 mm yr(-1); p=0.000), while between 1996 and 2007 it was 3.3 ± 1.5 mm yr(-1) (p=0.025), agreeing with other global sea level studies. Based on 2001 and 2008 population data and using zonal statistics, circa 60% of the Island's population was found to reside within 1 km of the sea and the percentage of total population was linearly correlated with distance from the shoreline (r(2)=99%). Three case studies show hard coastal engineering solutions preserved Azorean coastal lifestyle and had little or no observed negative impacts on their environs. Although hard engineering is likely to remain a valuable and feasible coastal protection option, an inventory of São Miguel's population distribution, surf breaks, bathymetry and coastal erosion rates showed the potential of using multifunctional artificial reefs as a soft engineering solution. These offshore submerged breakwaters offer coastal protection while providing additional benefits such as surfing amenity and beach widening. Consequently, findings of this work can inform other SI communities. Copyright © 2014 Elsevier B.V. All rights reserved.
A geological perspective on the degradation and conservation of western Atlantic coral reefs
Kuffner, Ilsa B.; Toth, Lauren T.
2016-01-01
Continuing coral-reef degradation in the western Atlantic is resulting in loss of ecological and geologic functions of reefs. With the goal of assisting resource managers and stewards of reefs in setting and measuring progress toward realistic goals for coral-reef conservation and restoration, we examined reef degradation in this region from a geological perspective. The importance of ecosystem services provided by coral reefs—as breakwaters that dissipate wave energy and protect shorelines and as providers of habitat for innumerable species—cannot be overstated. However, the few coral species responsible for reef building in the western Atlantic during the last approximately 1.5 million years are not thriving in the 21st century. These species are highly sensitive to abrupt temperature extremes, prone to disease infection, and have low sexual reproductive potential. Their vulnerability and the low functional redundancy of branching corals have led to the low resilience of western Atlantic reef ecosystems. The decrease in live coral cover over the last 50 years highlights the need for study of relict (senescent) reefs, which, from the perspective of coastline protection and habitat structure, may be just as important to conserve as the living coral veneer. Research is needed to characterize the geological processes of bioerosion, reef cementation, and sediment transport as they relate to modern-day changes in reef elevation. For example, although parrotfish remove nuisance macroalgae, possibly promoting coral recruitment, they will not save Atlantic reefs from geological degradation. In fact, these fish are quickly nibbling away significant quantities of Holocene reef framework. The question of how different biota covering dead reefs affect framework resistance to biological and physical erosion needs to be addressed. Monitoring and managing reefs with respect to physical resilience, in addition to ecological resilience, could optimize the expenditure of resources in conserving Atlantic reefs and the services they provide.
The Effectiveness, Costs and Coastal Protection Benefits of Natural and Nature-Based Defences.
Narayan, Siddharth; Beck, Michael W; Reguero, Borja G; Losada, Iñigo J; van Wesenbeeck, Bregje; Pontee, Nigel; Sanchirico, James N; Ingram, Jane Carter; Lange, Glenn-Marie; Burks-Copes, Kelly A
2016-01-01
There is great interest in the restoration and conservation of coastal habitats for protection from flooding and erosion. This is evidenced by the growing number of analyses and reviews of the effectiveness of habitats as natural defences and increasing funding world-wide for nature-based defences-i.e. restoration projects aimed at coastal protection; yet, there is no synthetic information on what kinds of projects are effective and cost effective for this purpose. This paper addresses two issues critical for designing restoration projects for coastal protection: (i) a synthesis of the costs and benefits of projects designed for coastal protection (nature-based defences) and (ii) analyses of the effectiveness of coastal habitats (natural defences) in reducing wave heights and the biophysical parameters that influence this effectiveness. We (i) analyse data from sixty-nine field measurements in coastal habitats globally and examine measures of effectiveness of mangroves, salt-marshes, coral reefs and seagrass/kelp beds for wave height reduction; (ii) synthesise the costs and coastal protection benefits of fifty-two nature-based defence projects and; (iii) estimate the benefits of each restoration project by combining information on restoration costs with data from nearby field measurements. The analyses of field measurements show that coastal habitats have significant potential for reducing wave heights that varies by habitat and site. In general, coral reefs and salt-marshes have the highest overall potential. Habitat effectiveness is influenced by: a) the ratios of wave height-to-water depth and habitat width-to-wavelength in coral reefs; and b) the ratio of vegetation height-to-water depth in salt-marshes. The comparison of costs of nature-based defence projects and engineering structures show that salt-marshes and mangroves can be two to five times cheaper than a submerged breakwater for wave heights up to half a metre and, within their limits, become more cost effective at greater depths. Nature-based defence projects also report benefits ranging from reductions in storm damage to reductions in coastal structure costs.
NASA Astrophysics Data System (ADS)
Stillitano, Francesca; Mugelli, Alessandro; Cerbai, Elisabetta; Vanucci, Silvana
2007-10-01
The release of cadmium into many coastal areas represents a threat to ecosystems and human health; cadmium is carcinogenic in mammals and in both marine invertebrates and vertebrates. The use of molluscs to assess the ecologic risk associated with contaminants is strongly recommended on account of their ecological role and on their highly conserved control and regulatory pathways that are often homologous to vertebrate systems. We previously identified a midkine family protein in the limpet Patella caerulea; the midkine is a recently discovered cytokines family with unequivocal informative value on repairing injury and neoplastic processes in mammals. Here we report on midkine ( mdk) and α-tubulin ( α-tub) gene expression patterns in P. caerulea exposed to cadmium. Limpets, collected on two occasions from a breakwater at a marina (Tyrrhenian Sea) were exposed to sublethal cadmium concentrations (0.5 and 1 mg l -1 Cd) over a 10-day exposure period. RNA was extracted from the viscera of unexposed and exposed specimens. Real time TaqMan RT-PCR was performed to measure the relative mdk and α-tub gene expression levels. A remarkable mdk over-expression was observed in all exposed animals with respect to unexposed ones; mdk over-expression was significantly higher in both treatments when compared with un-treatment (mean expression levels: 23- and 38-fold, for 0.5 and 1 mg l -1 Cd treatment, respectively; ANOVA, for both P < 0.01). The study also indicates that the mdk up-regulation was significantly Cd-concentration dependent ( P < 0.05). A significant up-regulation of the constitutive α-tub gene was also observed in 1 mg l -1 Cd-treated animals (mean expression level: 4-fold; ANOVA, P < 0.05). In conclusion, these data provide the first evidence paving the way for the use of the midkine as a promising new biomarker of effect in the environment risk assessment policy.
Effect of harbor modifications on the tsunami vulnerability of Crescent City, California
NASA Astrophysics Data System (ADS)
Dengler, L.; Uslu, B.
2008-12-01
Crescent City, California has experienced more damaging tsunami events in historic times than any other location on the West Coast of the United States. Thirty-one tsunamis have been observed at Crescent City since a tide gauge was established in 1933, including eleven events with maximum peak to trough wave range exceeding one meter and four that caused damage. The most damaging event occurred in 1964 as a result of the great Alaska earthquake. The ensuing tsunami flooded 29 city blocks and killed 11 in the Crescent City area. As a result of the 1964 tsunami and redevelopment projects, the Crescent City harbor was significantly modified in the early 1970s. A 200 x 300 meter small boat basin was carved into the preexisting shore line, a 123 meter dog leg extension was added to the central breakwater and significant deepening occurred on the eastern side of the harbor. In 2006, a Mw 8.3 earthquake in the Kuril Islands generated a moderate Pacific-wide tsunami. The only location with significant damage was the Crescent City harbor where strong currents damaged docks and boats, causing an estimated 9.2 million (US dollars) in damages. Strong currents estimated by the Harbor Master at 12 knots were observed near the entrance to the small boat basin. Past earthquakes from the northwestern Pacific including the 1933 M 8.3 Sanriku Japan earthquake may have produced similar amplitudes at Crescent City to the 2006 event but caused no damage. We have obtained the pre-modification harbor bathymetry and use the MOST model to compare tsunami water heights and current velocities for the 1933 and 2006 sources using modern and pre- modification bathymetry. We also examine model the 1964 inundation using the actual bathymetry and compare the results to numerical simulations that have only used the modern data.
NASA Astrophysics Data System (ADS)
Anfuso, G.; Pranzini, E.; Vitale, G.
2011-06-01
Occupation of the coast has significantly increased in recent decades, mostly due to a greater demand for recreation and tourism. Today, erosion threatens many human-made structures and activities, requiring an integrated approach for the understanding of coastal dynamics and identification of alternatives to associated problems. This study investigates a 64 km-long coastal physiographic unit in the northern microtidal littoral of Tuscany (Italy). Vertical aerial photographs and direct field surveys were used to retrieve changes in shoreline position over 1938-1997 and 1997-2005 time intervals. Significant beach accretion was observed during the first period updrift of Carrara (84 m) and Viareggio (280 m) harbours and at Marina di Pietrasanta (100 m), whereas severe erosion occurred downcoast of Carrara harbour (- 130 m, at Marina dei Ronchi) and on the northern side of Arno river mouth (- 400 m). Similar trends were observed between 1997 and 2005; beach slope between the 1997 shoreline position and the closure depth correlated well with the distribution of erosion/accretion patterns from the 1938-1997 period (slopes were lower in eroded areas than at sites under accretion). Longshore distribution of erosion/accretion patterns was controlled by coastal compartmentalisation. Three of the main littoral cells were mostly formed by natural limits (i.e., Punta Bianca promontory, Marina di Pietrasanta, the Arno river mouth and the port of Livorno). Several sub-cells were created within these cells due to the introduction of human-made structures (such as Carrara and Viareggio harbours), which formed artificial fixed limits that allowed the transport of sediments (exclusively fines) in one direction only. Results will help improve the understanding of coastal processes and manage littoral sediment transport in a sustainable manner. This will reduce the need for structural interventions, such as breakwaters and groynes, which in the past decades prevented coastal retreat at local scale but shifted erosion downdrift, leading to degradation of the investigated area and requiring continuous maintenance.
NASA Astrophysics Data System (ADS)
Bertoni, Duccio; Sarti, Giovanni; Benelli, Giuliano; Pozzebon, Alessandro; Raguseo, Gianluca
2010-07-01
In this paper, Radio Frequency Identification technology has been applied to track both underwater and subaerial displacement of pebbles along an artificial coarse beach at Marina di Pisa, Italy. Several preliminary laboratory tests have been performed to adapt the RFID technique for underwater use, which has been the primary impediment to this promising approach to the study of coarse sediment transport and movement. Tests showed the reliability of low frequencies for this kind of work, since they enable good signal transmission and reception through water. Passive ABS plastic transponders were inserted into about 100 pebbles and released onto the beach in March, 2009. A CORE-125 reader was chosen as the operating antenna to continuously transmit low frequency (125 kHz) signals. An acoustic signal toned whenever a pebble was detected while the unambiguous identification code of the pebble is shown immediately on the screen of a laptop connected to the reader. The positions of the pebbles were recorded with a total station. After two months (May, 2009), 74 marked pebbles were retrieved, 77% of the total. The positions of the retrieved pebbles were also recorded with the total station, thus allowing calculation of the coarse sediment transport tendency. About 60% of the recovered pebbles (44 out of 74) were found on the upper shoreface. The analysis of the marked pebble trajectories revealed a divergent transport movement in the northernmost sector of the beach. This movement was probably triggered by an irregularity of the submerged breakwater fronting the shoreline. The southern sector is characterised by chaotic pathways related to the formation and evolution of beach cusps. This outcome highlights and confirms the importance of a complete definition of the beach system, with no separation between the underwater and the subaerial portion of the shore when it comes to sediment transport and movement. This successful application of RFID technology to the underwater environment provides a chance to broaden understanding of a topic in need of further study.
A comparative study of diffraction of shallow-water waves by high-level IGN and GN equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, B.B.; Ertekin, R.C.; College of Shipbuilding Engineering, Harbin Engineering University, 150001 Harbin
2015-02-15
This work is on the nonlinear diffraction analysis of shallow-water waves, impinging on submerged obstacles, by two related theories, namely the classical Green–Naghdi (GN) equations and the Irrotational Green–Naghdi (IGN) equations, both sets of equations being at high levels and derived for incompressible and inviscid flows. Recently, the high-level Green–Naghdi equations have been applied to some wave transformation problems. The high-level IGN equations have also been used in the last decade to study certain wave propagation problems. However, past works on these theories used different numerical methods to solve these nonlinear and unsteady sets of differential equations and at differentmore » levels. Moreover, different physical problems have been solved in the past. Therefore, it has not been possible to understand the differences produced by these two sets of theories and their range of applicability so far. We are thus motivated to make a direct comparison of the results produced by these theories by use of the same numerical method to solve physically the same wave diffraction problems. We focus on comparing these two theories by using similar codes; only the equations used are different but other parts of the codes, such as the wave-maker, damping zone, discretion method, matrix solver, etc., are exactly the same. This way, we eliminate many potential sources of differences that could be produced by the solution of different equations. The physical problems include the presence of various submerged obstacles that can be used for example as breakwaters or to represent the continental shelf. A numerical wave tank is created by placing a wavemaker on one end and a wave absorbing beach on the other. The nonlinear and unsteady sets of differential equations are solved by the finite-difference method. The results are compared with different equations as well as with the available experimental data.« less
A geological perspective on the degradation and conservation of western Atlantic coral reefs.
Kuffner, Ilsa B; Toth, Lauren T
2016-08-01
Continuing coral-reef degradation in the western Atlantic is resulting in loss of ecological and geologic functions of reefs. With the goal of assisting resource managers and stewards of reefs in setting and measuring progress toward realistic goals for coral-reef conservation and restoration, we examined reef degradation in this region from a geological perspective. The importance of ecosystem services provided by coral reefs-as breakwaters that dissipate wave energy and protect shorelines and as providers of habitat for innumerable species-cannot be overstated. However, the few coral species responsible for reef building in the western Atlantic during the last approximately 1.5 million years are not thriving in the 21st century. These species are highly sensitive to abrupt temperature extremes, prone to disease infection, and have low sexual reproductive potential. Their vulnerability and the low functional redundancy of branching corals have led to the low resilience of western Atlantic reef ecosystems. The decrease in live coral cover over the last 50 years highlights the need for study of relict (senescent) reefs, which, from the perspective of coastline protection and habitat structure, may be just as important to conserve as the living coral veneer. Research is needed to characterize the geological processes of bioerosion, reef cementation, and sediment transport as they relate to modern-day changes in reef elevation. For example, although parrotfish remove nuisance macroalgae, possibly promoting coral recruitment, they will not save Atlantic reefs from geological degradation. In fact, these fish are quickly nibbling away significant quantities of Holocene reef framework. The question of how different biota covering dead reefs affect framework resistance to biological and physical erosion needs to be addressed. Monitoring and managing reefs with respect to physical resilience, in addition to ecological resilience, could optimize the expenditure of resources in conserving Atlantic reefs and the services they provide. © 2016 The Authors. Conservation Biology published by Wiley Periodicals, Inc., on behalf of Society for Conservation Biology.
Design for navigation improvements at Nome Harbor, Alaska: Coastal model investigation. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bottin, R.R.; Acuff, H.F.
1998-09-01
A 1:90-scale (undistorted) three dimensional coastal hydraulic model was used to investigate the design of proposed navigation improvements at Nome Harbor, Alaska, with respect to wave, current, and shoaling conditions at the site. The model reproduced about 3,350 m (11,000 ft) of the Alaskan shoreline, the existing harbor and lower reaches of the Snake River, and sufficient offshore bathymetry in the Norton Sound to permit generation of the required experimental waves. The model was used to determine the impacts of a new entrance channel on wave-induced current patterns and magnitudes, sediment transport patterns, and wave conditions in the new channelmore » and harbor area, as well as to optimize the lengths and alignments of new breakwaters and causeway extensions. A 24.4-m-long (9O-ft-long) unidirectional, spectral wave generator, and automated data acquisition and control system, and a crushed coal tracer material were utilized in model operation. It was concluded from study results that: (a) existing conditions are characterized by rough and turbulent wave conditions in the existing entrance. Very confused wave patterns were observed in the entrance due to wave energy reflected off the vertical walls lining the entrance. Wave heights in excess of 1.5 m (5 ft) were obtained in the entrance for typical storm conditions; and wave heights of almost 3.7 m (12 ft) were obtained in the entrance for 5O-year storm wave conditions with extreme high-water level 4 m (+13 ft); (b) wave conditions along the vertical-faced causeway docks were excessive for existing conditions. Wave heights in excess of 3.7 and 2.7 m (12 and 9 ft) were obtained along the outer and inner docks, respectively, for typical storm conditions; and wave heights of almost 7 and 5.8 m (23 and 19 ft) were recorded along these docks, respectively, for 5-year storm wave conditions with extreme high-water levels.« less
A comparative study of diffraction of shallow-water waves by high-level IGN and GN equations
NASA Astrophysics Data System (ADS)
Zhao, B. B.; Ertekin, R. C.; Duan, W. Y.
2015-02-01
This work is on the nonlinear diffraction analysis of shallow-water waves, impinging on submerged obstacles, by two related theories, namely the classical Green-Naghdi (GN) equations and the Irrotational Green-Naghdi (IGN) equations, both sets of equations being at high levels and derived for incompressible and inviscid flows. Recently, the high-level Green-Naghdi equations have been applied to some wave transformation problems. The high-level IGN equations have also been used in the last decade to study certain wave propagation problems. However, past works on these theories used different numerical methods to solve these nonlinear and unsteady sets of differential equations and at different levels. Moreover, different physical problems have been solved in the past. Therefore, it has not been possible to understand the differences produced by these two sets of theories and their range of applicability so far. We are thus motivated to make a direct comparison of the results produced by these theories by use of the same numerical method to solve physically the same wave diffraction problems. We focus on comparing these two theories by using similar codes; only the equations used are different but other parts of the codes, such as the wave-maker, damping zone, discretion method, matrix solver, etc., are exactly the same. This way, we eliminate many potential sources of differences that could be produced by the solution of different equations. The physical problems include the presence of various submerged obstacles that can be used for example as breakwaters or to represent the continental shelf. A numerical wave tank is created by placing a wavemaker on one end and a wave absorbing beach on the other. The nonlinear and unsteady sets of differential equations are solved by the finite-difference method. The results are compared with different equations as well as with the available experimental data.
Recent Extreme Marine Events at Southern Coast of Black Sea
NASA Astrophysics Data System (ADS)
Ozyurt Tarakcioglu, Gulizar; Cevdet Yalciner, Ahmet; Kirezci, Cagil; Baykal, Cuneyt; Gokhan Guler, Hasan; Erol, Onur; Zaytsev, Andrey; Kurkin, Andrey
2015-04-01
The utilization at the coastal areas of Black Sea basin has increased in the recent years with the projects such as large commercial ports, international transportation hubs, gas and petrol pipelines, touristic and recreational infrastructures both along surrounding shoreline. Although Black Sea is a closed basin, extreme storms and storm surges have also been observed with an increasing frequency in the recent years. Among those events, February 1999, March 2013 and September 2014 storms impacted Southern coast of Black sea have clearly shown that the increasing economic value at the coastal areas caused the increasing cost of damages and loss of property by natural hazards. The storm occurred on February 19-20, 1999 is one of the most destructive storm in the last decades. The 1999 event (1999 Southern Black sea storm) caused destruction at all harbors and coastal protection structures along the Black Sea coast of Turkey. The complete damage of the breakwater of Giresun Harbor and damage on the harbor structures and cargo handling equipment were the major impacts of the 1999 Southern Black sea storm. Similar coastal impact have also been observed during the September 24, 2014 storm at 500m East of Giresun harbor. Although there are considerable number of destructive storms observed at southern coast of Black sea recently, data on these events are limited and vastly scattered. In this study the list of recent extreme marine events at South coast of the Black sea compiled and related data such as wind speed, wave height, period, and type of damages are cataloged. Particular attention is focused on the 1999 and 2014 storm events. The meteorological and morphological characteristics which may be considered as the reasons of the generation and coastal amplification of these storms are discussed. ACKNOWLEDGEMENTS: This study is partly supported by Turkish Russian Joint Research Grant Program by TUBITAK (Turkey) and RFBR (Russia), and TUBITAK 213M534 Research Project.
Airoldi, Laura; Bulleri, Fabio
2011-01-01
Background Coastal landscapes are being transformed as a consequence of the increasing demand for infrastructures to sustain residential, commercial and tourist activities. Thus, intertidal and shallow marine habitats are largely being replaced by a variety of artificial substrata (e.g. breakwaters, seawalls, jetties). Understanding the ecological functioning of these artificial habitats is key to planning their design and management, in order to minimise their impacts and to improve their potential to contribute to marine biodiversity and ecosystem functioning. Nonetheless, little effort has been made to assess the role of human disturbances in shaping the structure of assemblages on marine artificial infrastructures. We tested the hypothesis that some negative impacts associated with the expansion of opportunistic and invasive species on urban infrastructures can be related to the severe human disturbances that are typical of these environments, such as those from maintenance and renovation works. Methodology/Principal Findings Maintenance caused a marked decrease in the cover of dominant space occupiers, such as mussels and oysters, and a significant enhancement of opportunistic and invasive forms, such as biofilm and macroalgae. These effects were particularly pronounced on sheltered substrata compared to exposed substrata. Experimental application of the disturbance in winter reduced the magnitude of the impacts compared to application in spring or summer. We use these results to identify possible management strategies to inform the improvement of the ecological value of artificial marine infrastructures. Conclusions/Significance We demonstrate that some of the impacts of globally expanding marine urban infrastructures, such as those related to the spread of opportunistic, and invasive species could be mitigated through ecologically-driven planning and management of long-term maintenance of these structures. Impact mitigation is a possible outcome of policies that consider the ecological features of built infrastructures and the fundamental value of controlling biodiversity in marine urban systems. PMID:21826224
Wave-induced current considering wave-tide interaction in Haeundae
NASA Astrophysics Data System (ADS)
Lim, Hak Soo
2017-04-01
The Haeundae, located at the south eastern end of the Korean Peninsula, is a famous beach, which has an approximately 1.6 km long and 70 m wide coastline. The beach has been repeatedly eroded by the swell waves caused by typhoons in summer and high waves originating in the East Sea in winter. The Korean government conducted beach restoration projects including beach nourishment (620,000 m3) and construction of two submerged breakwaters near both ends of the beach. To prevent the beach erosion and to support the beach restoration project, the Korean government initiated a R&D project, the development of coastal erosion control technology since 2013. As a part of the project, we have been measuring waves and currents at a water depth of 22 m, 1.8 km away from the beach using an acoustic wave and current meter (AWAC) continuously for more than three years; we have also measured waves and currents intensively near the surf-zone in summer and winter. In this study, a numerical simulation using a wave and current coupled model (ROMS-SWAN) was conducted for determining the wave-induced current considering seasonal swell waves (Hs : 2.5 m, Tp: 12 s) and for better understanding of the coastal process near the surf-zone in Haeundae. By comparing the measured and simulated results, we found that cross-shore current during summer is mainly caused by the eddy produced by the wave-induced current near the beach, which in turn, is generated by the strong waves coming from the SSW and S directions. During other seasons, longshore wave-induced current is produced by the swell waves coming from the E and ESE directions. The longshore current heading west toward Dong-Back Island, west end of the beach, during all the seasons and eddy current toward Mipo-Port, east end of the beach, in summer which is well matched with the observed residual current. The wave-induced current with long-term measurement data is incorporated in simulation of sediment transport modeling for developing coastal erosion control system in Haeundae.
Effect of climate change on morphology around a port
NASA Astrophysics Data System (ADS)
Bharathan Radhamma, R.; Deo, M. C.
2017-12-01
It is well known that with the construction of a port and harbour structure the natural shoreline gets interrupted and this disturbs the surrounding coastal morphology. Added to this concern is another one of recent origin, namely, the likely impact of climate change induced by global warming. The present work addresses this issue by describing a case study at New Mangalore Port situated along the west coast of India. The harbour was formed by constructing two breakwaters along either side of the port since the year 1975. We have first determined the rate of change of the shoreline surrounding the port using historic satellite imageries over a period of 36 years. Thereafter a numerical shoreline change model: LITPACK was used to do the same and it was forced by waves simulated over a period of past 36 years varying from 1979 to 2016 and future 36 years ranging from 2016 to 2052. The wave simulation was done with the help of numerical wave model: Mike21-SW which was driven by the wind from a regional climate model called CORDEX. This climate model was earlier run for a moderate global warming pathway called: RCP-4.5. The analysis of satellite imageries indicated that in the past the shoreline change varied from -1.69 m/year to 2.56 m/year with an uncertainty of ± 0.35 m/year and approximately half of the coastal stretch faced extensive erosion. It was found that the wind and waves at this region would intensify in future and also raise the probability of occurrence of high waves. As per the numerical shoreline modelling this would give rise to a much enhanced rate of erosion, namely -2.87 m/year to -3.62 m/year. This would call for a modified shoreline management strategy around the port area. The study highlights the importance of considering potential changes in wind and wave forcing because of the climate change in evaluating future rates of shoreline changes around a port and harbour structure.
Bertasi, Fabio; Colangelo, Marina Antonia; Colosio, Francesco; Gregorio, Gianni; Abbiati, Marco; Ceccherelli, Victor Ugo
2009-05-01
Sandy shores on the West coast of the North Adriatic Sea are extensively protected by different types of defence structures to prevent coastal erosion. Coastal defence schemes modify the hydrodynamic regime, the sediment structure and composition thus affecting the benthic assemblages. This study examines the effectiveness in detecting changes in soft bottom assemblages caused by coastal defence structures by using different levels of taxonomic resolution, polychaetes and/or bivalves as surrogates and different data transformations. A synoptic analyses of three datasets of subtidal benthic macrofauna used in studies aimed at assessing the impact of breakwaters along the North Adriatic coast has been done. Analyses of similarities and correlations between distance matrices were done using matrices with different levels of taxonomic resolution, and with polychaetes or bivalves data alone. Lentidium mediterraneum was the most abundant species in all datasets. Its abundance was not consistently related to the presence of defence structures. Moreover, distribution patterns of L. mediterraneum were masking the structure of the whole macrofaunal assemblages. Removal of L. mediterraneum from the datasets allowed the detection of changes in benthic assemblages due to coastal defences. Analyses on different levels of taxonomic resolution showed that the level of family maintained sufficient information to detect the impacts of coastal defence structures on benthic assemblages. Moreover, the outcomes depended on the transformation used. Patterns of distribution of bivalves, used as surrogates, showed low correlations with the patterns of the total macrofaunal species assemblages. Patterns of polychaetes, if identified to the species or genus level showed higher correlations with the whole dataset. However, the identification of polychaetes to species and genus level is as costly as the identification of all macrobenthic taxa at family level. This study provided additional evidences that taxonomic sufficiency is a useful tool in environmental monitoring, also in investigations on the impacts of coastal defence structures on subtidal macrofauna. The use of coarser taxonomic level, being time-efficient, would allow improving sampling designs of monitoring programs by increasing replication in space and time and by allowing long term monitoring studies.
The Effectiveness, Costs and Coastal Protection Benefits of Natural and Nature-Based Defences
Narayan, Siddharth; Beck, Michael W.; Reguero, Borja G.; Losada, Iñigo J.; van Wesenbeeck, Bregje; Pontee, Nigel; Sanchirico, James N.; Ingram, Jane Carter; Lange, Glenn-Marie; Burks-Copes, Kelly A.
2016-01-01
There is great interest in the restoration and conservation of coastal habitats for protection from flooding and erosion. This is evidenced by the growing number of analyses and reviews of the effectiveness of habitats as natural defences and increasing funding world-wide for nature-based defences–i.e. restoration projects aimed at coastal protection; yet, there is no synthetic information on what kinds of projects are effective and cost effective for this purpose. This paper addresses two issues critical for designing restoration projects for coastal protection: (i) a synthesis of the costs and benefits of projects designed for coastal protection (nature-based defences) and (ii) analyses of the effectiveness of coastal habitats (natural defences) in reducing wave heights and the biophysical parameters that influence this effectiveness. We (i) analyse data from sixty-nine field measurements in coastal habitats globally and examine measures of effectiveness of mangroves, salt-marshes, coral reefs and seagrass/kelp beds for wave height reduction; (ii) synthesise the costs and coastal protection benefits of fifty-two nature-based defence projects and; (iii) estimate the benefits of each restoration project by combining information on restoration costs with data from nearby field measurements. The analyses of field measurements show that coastal habitats have significant potential for reducing wave heights that varies by habitat and site. In general, coral reefs and salt-marshes have the highest overall potential. Habitat effectiveness is influenced by: a) the ratios of wave height-to-water depth and habitat width-to-wavelength in coral reefs; and b) the ratio of vegetation height-to-water depth in salt-marshes. The comparison of costs of nature-based defence projects and engineering structures show that salt-marshes and mangroves can be two to five times cheaper than a submerged breakwater for wave heights up to half a metre and, within their limits, become more cost effective at greater depths. Nature-based defence projects also report benefits ranging from reductions in storm damage to reductions in coastal structure costs. PMID:27135247
A numerical retroaction model relates rocky coast erosion to percolation theory
NASA Astrophysics Data System (ADS)
Sapoval, B.; Baldassarri, A.
2011-12-01
Rocky coasts are estimated to represent 75% of the world's shorelines [1]. We discuss various situations where the formation of rocky coast morphology could be attributed to the retroaction of the coast morphology on the erosive power of the see. In the case of rocky coasts, erosion can spontaneously create irregular seashores. But, in turn, the geometrical irregularity participates to the damping of sea-waves, decreasing the average wave amplitude and erosive power. There may then exist a mutual self-stabilization of the waves amplitude together with the irregular morphology of the coast. A simple model of such stabilization is discussed. It leads, through a complex avalanche dynamics of the earth-sea interface, to the spontaneous appearance of an irregular sea-shore. The final coast morphology is found to depend on the morphology/damping coupling of the coast and on the possible existence of built-in correlations within the coast lithologic properties. In the limit case where the morphology/damping coupling is weak and when the earth lithology distribution exhibit only short range correlations, the process spontaneously build fractal morphologies with a dimension close to 4/3 [2]. This dimension refers to the dimension of the accessible perimeter in percolation theory. However, even rugged but non-fractal sea-coasts morphology may emerge for strong damping or during the erosion process. When the distributions of the lithologies exhibit long range correlations, a variety of complex morphologies are obtained which mimics observed coastline complexity, well beyond simple fractality. This approach, which links erosion of rocky coasts to percolation theory, provide a natural frame to explain the frequent field observation that the statistics of erosion events follow power law behavior. In a somewhat different perspective, the design of breakwaters is suggested to be improved by using global irregular geometry with features sizes of the order of the wave-length of the sea oscillations. [1] R. A. Davis, Jr, D. M. Fitzgerald, Beaches and Coasts,(Blackwell, Oxford 2004). [2] B. Sapoval, A. Baldassarri, A. Gabrielli, Self-stabilized Fractality of Sea-coasts through Erosion, Phys. Rev. Lett. 93, 098501 (2004).
Retro-action model for the erosion of rocky coasts
NASA Astrophysics Data System (ADS)
Sapoval, B.; Baldassarri, A.
2009-12-01
Rocky coasts are estimated to represent 75% of the world’s shorelines [1]. We discuss various situations where the formation of rocky coast morphology could be attributed to the retro-action of the coast morphology on the erosive power of the see. In the case of rocky coasts, erosion can spontaneously create irregular seashores. But, in turn, the geometrical irregularity participates to the damping of sea-waves, decreasing the average wave amplitude and erosive power. There may then exist a mutual self-stabilization of the waves amplitude together with the irregular morphology of the coast. A simple model of such stabilization is discussed. It leads, through a complex dynamics of the earth-sea interface, to the spontaneous appearance of an irregular sea-shore. The final coast morphology is found to depend on the morphology/damping coupling of the coast and on the possible existence of built-in correlations within the coast lithologic properties. This is illustrated in the figure. In the limit case where the morphology/damping coupling is weak and when the earth lithology distribution exhibit only short range correlations, the process spontaneously build fractal morphologies with a dimension close to 4/3 [2]. It is shown that this dimension refers to the dimension of the so-called accessible perimeter in gradient percolation. However, even rugged but non-fractal sea-coasts morphology may emerge for strong damping or during the erosion process. When the distributions of the lithologies exhibit long range correlations, a variety of complex morphologies are obtained which mimics observed coastline complexity, well beyond simple fractality. On a somewhat different perspective, the design of breakwaters is suggested to be improved by using global irregular geometry with features sizes of the order of the wave-length of the sea oscillations. [1] R. A. Davis, Jr, D. M. Fitzgerald, Beaches and Coasts,(Blackwell, Oxford 2004). [2] B. Sapoval, A. Baldassarri, A. Gabrielli, Self-stabilized Fractality of Sea-coasts through Erosion, Phys. Rev. Lett. 93, 098501 (2004). Time evolution of the coastline morphology starting with a flat sea-shore. Left and right columns correspond respectively to weak and strong coupling. Top to bottom: suc- cessive morphologies with the final morphologies at the bottom.
Effects of Harbor Modification on Crescent City, California's Tsunami Vulnerability
NASA Astrophysics Data System (ADS)
Dengler, Lori; Uslu, Burak
2011-06-01
More damaging tsunamis have impacted Crescent City, California in historic times than any other location on the West Coast of the USA. Crescent City's harbor has undergone significant modification since the early 20th century, including construction of several breakwaters, dredging, and a 200 × 300 m2 small boat basin. In 2006, a M w 8.3 earthquake in the Kuril Islands generated a moderate Pacific-wide tsunami. Crescent City recorded the highest amplitudes of any tide gauge in the Pacific and was the only location to experience structural damage. Strong currents damaged docks and boats within the small boat basin, causing more than US 20 million in damage and replacement costs. We examine how modifications to Crescent City's harbor may have affected its vulnerability to moderate tsunamis such as the 2006 event. A bathymetric grid of the basin was constructed based on US Army Corps of Engineers soundings in 1964 and 1965 before the construction of the small boat basin. The method of splitting tsunamis was used to estimate tsunami water heights and current velocities at several locations in the harbor using both the 1964-1965 grid and the 2006 bathymetric grid for the 2006 Kuril event and a similar-sized source along the Sanriku coast of Japan. Model velocity outputs are compared for the two different bathymetries at the tide gauge location and at six additional computational sites in the harbor. The largest difference between the two grids is at the small boat basin entrance, where the 2006 bathymetry produces currents over three times the strength of the currents produced by the 1965 bathymetry. Peak currents from a Sanriku event are comparable to those produced by the 2006 event, and within the boat basin may have been higher. The modifications of the harbor, and in particular the addition of the small boat basin, appear to have contributed to the high current velocities and resulting damage in 2006 and help to explain why the 1933 M w 8.4-8.7 Sanriku tsunami caused no damage at Crescent City.
Erosion problems in Alexandroupolis coastline, North-Eastern Greece
NASA Astrophysics Data System (ADS)
Xeidakis, G. S.; Delimani, P.; Skias, S.
2007-12-01
This paper deals with the coastal erosion processes and the related problems around the city of Alexandroupolis, NE Aegean Sea, N. Greece. The area is very fast developing, as the city is an important port and a summer resort center in SE Balkans, and will become soon a transportation and energy center, as well. The coastline under study exhibits an east west orientation and has a length of more than 50 km. The spatial distribution and the characteristics of the changes in the shoreline were studied by comparing old and new air photographs and topographic maps, as well as through repeated series of field observations and local measurements regarding the erosion process. From these studies it was concluded that the greater stretch of the western part of the coast, under consideration, is of moderate to high relief, with a considerable participation of coastal cliffs. It consists of conglomerates of varying granulometry and consistency and is under moderate to severe erosion process. The erosion phenomena in the western part of the coast may be attributed, primarily, to strong S, SW winds, blowing in the area and to trapping of sediments by Alexandroupolis’ port breakwaters; the port stops or/and diverts the sediments to the open sea; and to the east to west longshore sea current, prevailing in the area. The eastern stretch of the coast is a plain area, formed by sandy silty sediments; being a part of the river Evros’ Delta, it is under deposition and accretes seawards. The majority of the coasts under consideration are classified as coasts of high wave energy potential. Hard structures, as shore protection measures, have been constructed in some places, but they were proved, in rather short time-period, ineffective and suffered extensive failures. Thus, it is argued that for a long-term cost-effective tackling of the various erosion problems on any stretch, priority must be given to soft engineering measures; although, certain hard measures, carefully selected and locally implemented, can contribute to forming a rational combination of protection/mitigation measures. Besides, the development pressures in the coastal zone have to be confronted, in a sustainable way, through new integrated coast management regulations.
Cladophora (Chlorophyta) spp. Harbor Human Bacterial Pathogens in Nearshore Water of Lake Michigan†
Ishii, Satoshi; Yan, Tao; Shively, Dawn A.; Byappanahalli, Muruleedhara N.; Whitman, Richard L.; Sadowsky, Michael J.
2006-01-01
Cladophora glomerata, a macrophytic green alga, is commonly found in the Great Lakes, and significant accumulations occur along shorelines during the summer months. Recently, Cladophora has been shown to harbor high densities of the fecal indicator bacteria Escherichia coli and enterococci. Cladophora may also harbor human pathogens; however, until now, no studies to address this question have been performed. In the present study, we determined whether attached Cladophora, obtained from the Lake Michigan and Burns Ditch (Little Calumet River, Indiana) sides of a breakwater during the summers of 2004 and 2005, harbored the bacterial pathogens Shiga toxin-producing Escherichia coli (STEC), Salmonella, Shigella, and Campylobacter. The presence of potential pathogens and numbers of organisms were determined by using cultural methods and by using conventional PCR, most-probable-number PCR (MPN-PCR), and quantitative PCR (QPCR) performed with genus- and toxin-specific primers and probes. While Shigella and STEC were detected in 100% and 25%, respectively, of the algal samples obtained near Burns Ditch in 2004, the same pathogens were not detected in samples collected in 2005. MPN-PCR and QPCR allowed enumeration of Salmonella in 40 to 80% of the ditch- and lakeside samples, respectively, and the densities were up to 1.6 × 103 cells per g Cladophora. Similarly, these PCR methods allowed enumeration of up to 5.4 × 102 Campylobacter cells/g Cladophora in 60 to 100% of lake- and ditchside samples. The Campylobacter densities were significantly higher (P < 0.05) in the lakeside Cladophora samples than in the ditchside Cladophora samples. DNA fingerprint analyses indicated that genotypically identical Salmonella isolates were associated with geographically and temporally distinct Cladophora samples. However, Campylobacter isolates were genetically diverse. Since animal hosts are thought to be the primary habitat for Campylobacter and Salmonella species, our results suggest that Cladophora is a likely secondary habitat for pathogenic bacteria in Lake Michigan and that the association of these bacteria with Cladophora warrants additional studies to assess the potential health impact on beach users. PMID:16820442
Cladophora (Chlorophyta) spp. harbor human bacterial pathogens in nearshore water of Lake Michigan.
Ishii, Satoshi; Yan, Tao; Shively, Dawn A; Byappanahalli, Muruleedhara N; Whitman, Richard L; Sadowsky, Michael J
2006-07-01
Cladophora glomerata, a macrophytic green alga, is commonly found in the Great Lakes, and significant accumulations occur along shorelines during the summer months. Recently, Cladophora has been shown to harbor high densities of the fecal indicator bacteria Escherichia coli and enterococci. Cladophora may also harbor human pathogens; however, until now, no studies to address this question have been performed. In the present study, we determined whether attached Cladophora, obtained from the Lake Michigan and Burns Ditch (Little Calumet River, Indiana) sides of a breakwater during the summers of 2004 and 2005, harbored the bacterial pathogens Shiga toxin-producing Escherichia coli (STEC), Salmonella, Shigella, and Campylobacter. The presence of potential pathogens and numbers of organisms were determined by using cultural methods and by using conventional PCR, most-probable-number PCR (MPN-PCR), and quantitative PCR (QPCR) performed with genus- and toxin-specific primers and probes. While Shigella and STEC were detected in 100% and 25%, respectively, of the algal samples obtained near Burns Ditch in 2004, the same pathogens were not detected in samples collected in 2005. MPN-PCR and QPCR allowed enumeration of Salmonella in 40 to 80% of the ditch- and lakeside samples, respectively, and the densities were up to 1.6 x 10(3) cells per g Cladophora. Similarly, these PCR methods allowed enumeration of up to 5.4 x 10(2) Campylobacter cells/g Cladophora in 60 to 100% of lake- and ditchside samples. The Campylobacter densities were significantly higher (P < 0.05) in the lakeside Cladophora samples than in the ditchside Cladophora samples. DNA fingerprint analyses indicated that genotypically identical Salmonella isolates were associated with geographically and temporally distinct Cladophora samples. However, Campylobacter isolates were genetically diverse. Since animal hosts are thought to be the primary habitat for Campylobacter and Salmonella species, our results suggest that Cladophora is a likely secondary habitat for pathogenic bacteria in Lake Michigan and that the association of these bacteria with Cladophora warrants additional studies to assess the potential health impact on beach users.
Hurricane Sandy: Caught in the eye of the storm and a city's adaptation response
NASA Astrophysics Data System (ADS)
Orton, P. M.; Horton, R. M.; Blumberg, A. F.; Rosenzweig, C.; Solecki, W.; Bader, D.
2015-12-01
The NOAA RISA program has funded the seven-institution Consortium for Climate Risk in the Urban Northeast (CCRUN) for the past five years to serve stakeholder needs in assessing and managing risks from climate variability and change. When Hurricane Sandy struck, we were in an ideal position, making flood forecasts and communicating NOAA forecasts to the public with dozens of media placements, translating the poorly understood flood forecasts into human dimensions. In 2013 and 2015, by request of New York City (NYC), we worked through the NYC Panel on Climate Change to deliver updated climate risk assessment reports, to be used in the post-Sandy rebuilding and resiliency efforts. These utilized innovative methodologies for probabilistic local and regional sea level change projections, and contrasted methods of dynamic versus (the more common) static flood mapping. We participated in a federal-academic partnership that developed a Sea Level Tool for Sandy Recovery that integrates CCRUN sea level rise projections with policy-relevant FEMA flood maps, and now several updated flood maps and coastal flood mapping tools (NOAA, FEMA, and USACE) incorporate our projections. For the adaptation response, we helped develop NYC's $20 billion flood adaptation plan, and we were on a winning team under the Housing and Urban Development Rebuild By Design (RBD) competition, a few of the many opportunities that arose with negligible additional funding and which CCRUN funds supported. Our work at times disrupted standard lines of thinking, but NYC showed an openness to altering course. In one case we showed that an NYC plan of wetland restoration in Jamaica Bay would provide no reduction in flooding unless deep-dredged channels circumventing them were shallowed or narrowed. In another, the lead author's RBD team challenged the notion at one location that levees were the solution to accelerating sea level rise, developing a plan to use ecological breakwaters and layered components of physical and social resilience. CCRUN has succeeded in winning another five years of RISA funding, and this will enable us to continue our climate risk and adaptation work for the entire Urban Northeast.
On Establishing Big Data Wave Breakwaters with Analytics (Invited)
NASA Astrophysics Data System (ADS)
Riedel, M.
2013-12-01
The Research Data Alliance Big Data Analytics (RDA-BDA) Interest Group seeks to develop community based recommendations on feasible data analytics approaches to address scientific community needs of utilizing large quantities of data. RDA-BDA seeks to analyze different scientific domain applications and their potential use of various big data analytics techniques. A systematic classification of feasible combinations of analysis algorithms, analytical tools, data and resource characteristics and scientific queries will be covered in these recommendations. These combinations are complex since a wide variety of different data analysis algorithms exist (e.g. specific algorithms using GPUs of analyzing brain images) that need to work together with multiple analytical tools reaching from simple (iterative) map-reduce methods (e.g. with Apache Hadoop or Twister) to sophisticated higher level frameworks that leverage machine learning algorithms (e.g. Apache Mahout). These computational analysis techniques are often augmented with visual analytics techniques (e.g. computational steering on large-scale high performance computing platforms) to put the human judgement into the analysis loop or new approaches with databases that are designed to support new forms of unstructured or semi-structured data as opposed to the rather tradtional structural databases (e.g. relational databases). More recently, data analysis and underpinned analytics frameworks also have to consider energy footprints of underlying resources. To sum up, the aim of this talk is to provide pieces of information to understand big data analytics in the context of science and engineering using the aforementioned classification as the lighthouse and as the frame of reference for a systematic approach. This talk will provide insights about big data analytics methods in context of science within varios communities and offers different views of how approaches of correlation and causality offer complementary methods to advance in science and engineering today. The RDA Big Data Analytics Group seeks to understand what approaches are not only technically feasible, but also scientifically feasible. The lighthouse Goal of the RDA Big Data Analytics Group is a classification of clever combinations of various Technologies and scientific applications in order to provide clear recommendations to the scientific community what approaches are technicalla and scientifically feasible.
NASA Astrophysics Data System (ADS)
Archetti, Renata; Vacchi, Matteo; Carniel, Sandro; Benetazzo, Alvise
2013-04-01
Measuring the location of the shoreline and monitoring foreshore changes through time represent a fundamental task for correct coastal management at many sites around the world. Several authors demonstrated video systems to be an essential tool for increasing the amount of data available for coastline management. These systems typically sample at least once per hour and can provide long-term datasets showing variations over days, events, months, seasons and years. In the past few years, due to the wide diffusion of video cameras at relatively low price, the use of video cameras and of video images analysis for environmental control has increased significantly. Even if video monitoring systems were often used in the research field they are most often applied with practical purposes including: i) identification and quantification of shoreline erosion, ii) assessment of coastal protection structure and/or beach nourishment performance, and iii) basic input to engineering design in the coastal zone iv) support for integrated numerical model validation Here we present the guidelines for the creation of a new video monitoring network in the proximity of the Jesolo beach (NW of the Adriatic Sea, Italy), Within this 10 km-long tourist district several engineering structures have been built in recent years, with the aim of solving urgent local erosion problems; as a result, almost all types of protection structures are present at this site: groynes, detached breakwaters.The area investigated experienced severe problems of coastal erosion in the past decades, inclusding a major one in the last November 2012. The activity is planned within the framework of the RITMARE project, that is also including other monitoring and scientific activities (bathymetry survey, waves and currents measurements, hydrodynamics and morphodynamic modeling). This contribution focuses on best practices to be adopted in the creation of the video monitoring system, and briefly describes the architectural design of the network, the creation of a database of images, the information extracted by the videomonitoring and its integration with other data.
Integrated Modeling for the Assessment of Ecological Impacts of Sea Level Rise
NASA Astrophysics Data System (ADS)
Hagen, S. C.; Lewis, G.; Bartel, R.; Batten, B.; Huang, W.; Morris, J.; Slinn, D. N.; Sparks, J.; Walters, L.; Wang, D.; Weishampel, J.; Yeh, G.
2010-12-01
Sea level rise (SLR) has the potential to affect a variety of coastal habitats with a myriad of deleterious ecological effects and to overwhelm human settlements along the coast. SLR should be given serious consideration when more than half of the U.S. population lives within 50 miles of the coast. SLR effects will be felt along coastal beaches and in estuarine waters, with consequences to barrier islands, submerged aquatic vegetation beds, sand and mud flats, oyster reefs, and tidal and freshwater wetlands. Managers of these coastal resources must be aware of potential consequences of SLR and adjust their plans accordingly to protect and preserve the resources under their care. The Gulf Coast provides critical habitats for a majority of the commercially important species in the Gulf of Mexico, which depend on inshore waters for either permanent residence or nursery area. The ecosystem services provided by these coastal habitats are at risk from rising sea level. Our team will assess the risk to coasts and coastal habitats from SLR in a 5-year project. We will apply existing models of circulation and transport from the watershed to the sea. The ultimate prediction will be of sediment loadings to the estuary as a result of overland flow, shoreline and barrier island erosion, and salinity transport, all of which will be used to model the evolution of intertidal marshes (MEM II). Over the five-year course of our research we will be simulating hydrodynamics and transport for all three NERRS reserves, including: Apalachicola, Weeks Bay and Grand Bay. The project will result in products whereby managers will be able to assess marshes, oyster reefs, submerged aquatic vegetation, predict wetland stability and indentify restoration locations for marsh and oyster habitats. In addition, we will produce Decision Support tools that will enable managers to predict future coastal erosion rates for management-specified shorelines. Project outcomes will enable the management community to prioritize risk management strategies, reformulate set back requirements, improve guidelines for construction of breakwaters and other coastal infrastructure, and assess water resources impacts and protection needs.
Are mangroves as tough as a seawall? Flow-vegetation interaction in a living shoreline restoration
NASA Astrophysics Data System (ADS)
Kibler, K. M.; Kitsikoudis, V.; Spiering, D. W.
2017-12-01
This study aims to assess the impact of an established living shoreline restoration on near-shore hydraulics, shoreline slope, and sediment texture and organic matter content. We collected data from three 100 m shoreline sites within an estuarine lagoon in Canaveral National Seashore: one restored; one that had been stabilized by a seawall; and one in a reference condition stabilized by mature mangrove vegetation. The living shoreline site was restored five years prior with a breakwater of oyster shell bags, emergent marsh grasses (Spartina alterniflora), and mangroves (Rhizophora mangle and Avicennia germinans). We sampled water depth and incoming velocity profiles of the full water column at 2 Hz using a 2 MHz Acoustic Doppler Current Profiler (ADCP, Nortek), stationed down-looking, approximately 10 m offshore. A 2 - 3 cm velocity profile above the bed was sampled on the shoreline at 100 Hz, using a Nortek Vectrino profiler. In restored and reference sites, the onshore probe was placed within vegetation. We surveyed vegetation upstream of the probe for species and diameter at water level. Windspeed and direction were collected 2 m above the water surface. Shorelines were surveyed in transects using GPS survey equipment. Five sediment cores were collected to 20 cm depth from both onshore and offshore of each site. Individual cores were processed for loss on ignition before being pooled by site for analysis of grain size distribution. While incoming velocity profiles were similar between sites, hydraulic conditions onshore within the vegetated sites deviated from the seawall site, which was devoid of vegetation. Offshore to onshore gradients in shear stress, mean velocity, and turbulent kinetic energy differed widely between sites, despite similar wind and tidal conditions. Sediment grain sizes were finer and contained more organic matter in the restored and reference sites than in the seawall site. Profiles of the restored and seawall sites were similar, though the reference site had a more complex bathymetry. Variable hydraulic patterns observed at restored and reference sites may attribute to differences in dominant vegetation-water interactions. Interactions at the reference site were characterized by flow between mangrove prop roots while the restored site consisted mainly of Spartina leaves.
Monitoring Coastal Processes at Local and Regional Geographic Scales with UAS
NASA Astrophysics Data System (ADS)
Starek, M. J.; Bridges, D.; Prouty, D.; Berryhill, J.; Williams, D.; Jeffress, G.
2014-12-01
Unmanned Aerial Systems (UAS) provide a powerful tool for coastal mapping due to attractive features such as low cost data acquisition, flexibility in data capture and resolution, rapid response, and autonomous flight. We investigate two different scales of UAS platforms for monitoring coastal processes along the central Texas Gulf coast. Firstly, the eBee is a small-scale UAS weighing ~0.7 kg designed for localized mapping. The imaging payload consists of a hand held RGB digital camera and NIR digital camera, both with 16.1 megapixel resolutions. The system can map up to 10 square kilometers on a single flight and is capable of acquiring imagery down to 1.5 cm ground sample distance. The eBee is configured with a GPS receiver, altitude sensor, gyroscope and a radio transmitter enabling autonomous flight. The system has a certificate of authorization (COA) from the FAA to fly over the Ward Island campus of Texas A&M University-Corpus Christi (TAMUCC). The campus has an engineered beach, called University Beach, located along Corpus Christi Bay. A set of groins and detached breakwaters were built in an effort to protect the beach from erosive wave action. The eBee is being applied to periodically survey the beach (Figure 1A). Through Structure from Motion (SfM) techniques, eBee-derived image sequences are post-processed to extract 3D topography and measure volumetric change. Additionally, when water clarity suffices, this approach enables the extraction of shallow-water bathymetry. Results on the utilization of the eBee to monitor beach morphodynamics will be presented including a comparison of derived estimates to RTK GPS and airborne lidar. Secondly, the RS-16 UAS has a 4 m wingspan and 11 kg sensor payload. The system is remotely piloted and has a flight endurance of 12 to 16 hours making it suitable for regional scale coastal mapping. The imaging payload consists of a multispectral sensor suite measuring in the visible, thermal IR, and ultraviolet ranges of the spectrum. The RS-16 is being used to conduct surveys along the shoreline of North Padre Island, which is a high wind energy and wave-dominated barrier island system (Figure 1B). Results on the utilization of the RS-16 to study alongshore variability in shoreline dynamics and surf zone processes, such as wave runup, will be presented.
Mud deposit formation on the open coast of the larger Patos Lagoon-Cassino Beach system
NASA Astrophysics Data System (ADS)
Vinzon, S. B.; Winterwerp, J. C.; Nogueira, R.; de Boer, G. J.
2009-03-01
This paper proposes an explanation of the mud deposits on the inner Shelf of Cassino Beach, South Brazil, by using computational modeling. These mud deposits are mainly formed by sediments delivered from Patos Lagoon, a coastal lagoon connected to the Shelf, next to Cassino Beach. The deposits are characterized by (soft) mud layers of about 1 m thick and are found between the -5 and -20 isobaths. Two hydrodynamic models of the larger Patos Lagoon-Cassino Beach system were calibrated against water elevation measured for a 5 months period, and against currents and salinity measured for a week period. The circulation patterns and water exchange through the mouth were analyzed as a function of local and remote wind effects, and river discharges. The remote wind effect mainly governs the quantity of water exchange with the Lagoon through its effect on mean sea level as a result of Ekman dynamics, while river discharges are important for the salinity of the exchanged water masses. Local winds augment the export-import rates by set-up and set-down within the Lagoon, but their effects are much smaller than those of the remote wind. Currents patterns on the inner Shelf during water outflow revealed a recirculation zone south of the Lagoon, induced by the local geometry and bathymetry of the system. This recirculation zone coincides with observed locations of mud deposition. Water, hence suspended sediment export occurs when remote and local winds are from the N-E, which explains why fine sediment deposits are mainly found south of the Lagoon's breakwater. A sensitivity analysis with the numerical model quantified the contribution of the various mechanisms driving the transport and fate of the fine suspended sediments, i.e. the effects of remote and local wind, of the astronomical tide, of river discharge and fresh-salt water-induced density currents, and of earth rotation. It is concluded that gravitational circulation and earth rotation affects the further dispersion of the deposits largely, whereas the remote wind effect has the largest influence on the amount of sediment released from the Lagoon. It is noted that this paper analyzes the initial deposition patterns induced by current effects only. However, in reality, these deposits are further redistributed over the Shelf by wave effects—these are subject of a next study on the sediment dynamics of the larger Patos Lagoon-Cassino Beach system.
Tsunami Induced Resonance in Enclosed Basins; Case Study of Haydarpasa Port In Istanbul
NASA Astrophysics Data System (ADS)
Kian, Rozita; Cevdet Yalciner, Ahmet; Zaytsev, Andrey; Aytore, Betul
2015-04-01
Coincidence of the frequency of forcing mechanisms and the natural frequency of free oscillations in the harbors or basins leads to formation of resonance oscillations and additional amplifications in the basins. This phenomenon becomes much more critical when it is caused by a tsunamis. In the cases of tsunami induced basin resonances, the wave amplifications may occur with more and unexpected damages. The harbor resilience against the marine hazards is important for the performance and success of recovery operations. Classifying the tsunami effects on the ports and harbors and on their functions is the main concern of this study. There are two types of impacts; direct impacts including structural damages due to strong currents, high water elevation and indirect ones because of basin resonance expose to seiche oscillations. The sea of Marmara has experienced numerous (more than 30) tsunamis in history where a highly populated metropolitan city Istanbul is located at North coast of Maramara sea. There are numerous ports and harbors located at Istanbul Coast. Haydarpasa port (41.0033 N, 29.0139 E) in Istanbul coast near Marmara sea, as a case study is selected to test its resilience under tsunami attack by numerical experiments. There are two breakwaters in Haydarpasa port with total length of three kilometers and the shape of basins are regular. Applying numerical model (NAMI DANCE) which solves nonlinear form of shallow water equations, the resonance oscillations in Haydarpasa Port is investigated by following the method given in Yalciner and Pelinovsky, (2006). In the applications, high resolution bathymetry and topography are used and an initial impulse is inputted to the study domain in the simulations. The computed time histories of water surface fluctuations at different locations inside the harbor are analyzed by using Fast Fourier Transform technique. The frequencies where the peaks of spectrum curves indicates the amplification of waves in the respective gauge location. Therefore these frequencies are the natural frequencies of the Haydarpasa port. The peak points in the spectrum curves are selected as the the resonance frequencies of the Haydarpasa port. Furthermore the coincidence of these frequencies with the frequency of waves of extreme events are discussed and consequent amplification in the Harbor and their effects on harbor operations are discussed.
Coastal flooding hazard assessment on potentially vulnerable coastal sectors at Varna regional coast
NASA Astrophysics Data System (ADS)
Eftimova, Petya; Valchev, Nikolay; Andreeva, Nataliya
2017-04-01
Storm induced flooding is one of the most significant threats that the coastal communities face. In the light of the climate change it is expected to gain even more importance. Therefore, the adequate assessment of this hazard could increase the capability of mitigation of environmental, social, and economic impacts. The study was accomplished in the frames of the Coastal Risk Assessment Framework (CRAF) developed within the FP7 RISC-KIT Project (Resilience-Increasing Strategies for Coasts - toolkit). The hazard assessment was applied on three potentially vulnerable coastal sectors located at the regional coast of Varna, Bulgarian Black Sea coast. The potential "hotspot" candidates were selected during the initial phase of CRAF which evaluated the coastal risks at regional level. The area of interest comprises different coastal types - from natural beaches and rocky cliffs to man modified environments presented by coastal and port defense structures such as the Varna Port breakwater, groynes, jetties and beaches formed by the presence of coastal structures. The assessment of coastal flooding was done using combination of models -XBeach model and LISFLOOD inundation model applied consecutively. The XBeach model was employed to calculate the hazard intensities at the coast up to the berm crest, while LISFLOOD model was used to calculate the intensity and extent of flooding in the hinterland. At the first stage, 75 extreme storm events were simulated using XBeach model run in "non-hydrostatic" mode to obtain series of flood depth, depth-velocity and overtopping discharges at the predefined coastal cross-shore transects. Extreme value analysis was applied to the calculated hazard parameters series in order to determine their probability distribution functions. This is so called response approach, which is focused on the onshore impact rather than on the deep water boundary conditions. It allows calculation of the hazard extremes probability distribution induced by a variety of combinations of waves and surges. The considered return periods were 20, 50 and 100 years. Subsequently, the overtopping volumes corresponding to preferred return periods were fed into LISFLOOD model to calculate the intensity and extent of the hinterland flooding. For the beaches with fast-rising slopes backed by cliffs a combination of XBeach and LISFLOOD output was applied in order to properly map the flood depth and depth-velocity spatial distribution.
NASA Astrophysics Data System (ADS)
Alcántara-Carrió, Javier; Sasaki, Dalton Kei; Mahiques, Michel Michaelovitch de; Taborda, Rui; de Souza, Luiz Antonio Pereira
2017-10-01
The São Sebastião Channel (SSC), which separates São Sebastião Island from the continent, is a deep elongated strait on the inner shelf of the São Paulo Bight (SE Brazil). The aim of this study is to explain why it is presently sediment starved, instead of forming a tombolo. Wave data were obtained from both a WW3 model database and buoy records, and wave propagation patterns from the SWAN numerical model. Grain size trend analysis of 579 surficial sediment samples from the strait and the surrounding region served to estimate the residual transport directions. Bedload sediment transport was computed considering in situ currents and bottom sediment grain size. Moreover, six seismic profiles and one gravity core were obtained in the strait in order to evaluate the hickness of the sedimentary deposits. The geometry of the SSC (X/B=0.3, where B is the breakwater or island diameter and X is its cross-shore distance to the mainland) predicts that a tombolo should be formed, and wave patterns confirm that it is a zone sheltered from both S and NE waves. Previous studies have shown that the hydrodynamics of the SSC is controlled by wind-driven currents, which are more intense in the eastern and central sectors of the strait. The western sector is currently covered by sandy mud, whereas very coarse to fine sand prevails in the deeper eastern sector. Sediment patterns show a trend to deposition of fine sediment in the western sector of the SSC and two main depocentres located at the northern limit of the study area and at the southern mouth of the strait. Sandy mud in the western sector forms a 40-m-thick deposit close to the outer limit of Araçá Bay, whereas the remainder of the SSC is covered by a very thin layer of sandy sediments. Dominance of mud in the depositional western sector suggests low availability of sand in the area. Therefore, despite the geometry and wave patterns of the SSC favouring the formation of a tombolo, the dominance of wind-driven currents and the low availability of sand determine that such a sedimentary feature cannot be formed, resulting in a deep strait.
Cladophora (Chlorophyta) spp. harbor human bacterial pathogens in nearshore water of Lake Michigan
Ishii, S.; Yan, T.; Shively, D.A.; Byappanahalli, M.N.; Whitman, R.L.; Sadowsky, M.J.
2006-01-01
Cladophora glomerata, a macrophytic green alga, is commonly found in the Great Lakes, and significant accumulations occur along shorelines during the summer months. Recently, Cladophora has been shown to harbor high densities of the fecal indicator bacteria Escherichia coli and enterococci. Cladophora may also harbor human pathogens; however, until now, no studies to address this question have been performed. In the present study, we determined whether attachedCladophora, obtained from the Lake Michigan and Burns Ditch (Little Calumet River, Indiana) sides of a breakwater during the summers of 2004 and 2005, harbored the bacterial pathogens Shiga toxin-producing Escherichia coli (STEC),Salmonella, Shigella, and Campylobacter. The presence of potential pathogens and numbers of organisms were determined by using cultural methods and by using conventional PCR, most-probable-number PCR (MPN-PCR), and quantitative PCR (QPCR) performed with genus- and toxin-specific primers and probes. WhileShigella and STEC were detected in 100% and 25%, respectively, of the algal samples obtained near Burns Ditch in 2004, the same pathogens were not detected in samples collected in 2005. MPN-PCR and QPCR allowed enumeration of Salmonella in 40 to 80% of the ditch- and lakeside samples, respectively, and the densities were up to 1.6 × 103 cells per g Cladophora. Similarly, these PCR methods allowed enumeration of up to 5.4 × 102 Campylobacter cells/gCladophora in 60 to 100% of lake- and ditchside samples. The Campylobacterdensities were significantly higher (P < 0.05) in the lakeside Cladophora samples than in the ditchside Cladophora samples. DNA fingerprint analyses indicated that genotypically identical Salmonella isolates were associated with geographically and temporally distinct Cladophora samples. However, Campylobacter isolates were genetically diverse. Since animal hosts are thought to be the primary habitat forCampylobacter and Salmonella species, our results suggest that Cladophora is a likely secondary habitat for pathogenic bacteria in Lake Michigan and that the association of these bacteria with Cladophora warrants additional studies to assess the potential health impact on beach users.
NASA Astrophysics Data System (ADS)
Stiros, Stathis; Saltogianni, Vasso
2017-04-01
Tectonically active terrains are characterized by seismic transient ground motions (shaking) and by permanent ground motions in the vicinity of activated faults, with both effects occasionally leaving their signature on human constructions and the landscape. Especially in coastal areas marked by small tidal ranges and normal water salinity, as is the case with most parts of the Eastern Mediterranean, even small-amplitude tectonic motions can be derived from observations on coastal constructions, mainly harbors, but also on spring chambers in nearly arid environments, sewers, etc. Such observations, if coupled with well-dated observations of destructions and repairs and of changes in the occupation style of ancient sites can permit precious information conveyed from archaeology to tectonics/seismology and vice versa. A transect with harbor remains from Rhodes to the Gulf of Corinth and then till the Ionian Islands provides some excellent examples. The military harbor of Rhodes, in an area of long term uplift, a coded report of which seems to be provided by ancient poet Pindar, was subject to seismic subsidence and destruction, but with major international support, it was repaired, till renewed uplift brought it several meters above the water. In the Corinth area, the Kenchreai harbor was abruptly submerged during a major repair of a temple, as revealed by precious stained glass panels, ready to use but abandoned in shallow water beneath ruins, while radiometric dating of the uplift in the western Lechaion harbor, constrains its excavation in swampy environment not in Roman times, but to the period of flourishing of Corinth in circa 600BC and the colonization of Italy. Farther west, the sea-level mark of the harbor of Aigeira, at Mavra Litharia (Derveni/Akrata) indicates 4m uplift since the Roman period, at least partly seismic, correlating with an exposed reef and the abandonment of the repairs of the theatre of Aigeira. Seismic land uplift explains the demise of this ancient town since approximately AD200 as a result of loss of the only significant harbor along the southern coast of the Gulf of Corinth. Farther west, in the south part of the Greek mainland, rising of the level of the dock shortly after its construction may imply response to seismic land subsidence, while at the nearby harbor of Palairos, remains of a submerged breakwater, offset by several meters, testify to strike slip faulting with seismic offset amplified by liquefaction.
Comprehensive Prediction of Large-height Swell-like Waves in East Coast of Korea
NASA Astrophysics Data System (ADS)
Kwon, S. J.; Lee, C.; Ahn, S. J.; Kim, H. K.
2014-12-01
There have been growing interests in the large-height swell-like wave (LSW) in the east coast of Korea because such big waves have caused human victims as well as damages to facilities such as breakwaters in the coast. The LSW was found to be generated due to an atmospherically great valley in the north area of the East Sea and then propagate long distance to the east coast of Korea in prominently southwest direction (Oh et al., 2010).In this study, we will perform two methods, real-time data based and numerical-model based predictions in order to predict the LSW in the east coast of Korea. First, the real-time data based prediction method uses information which is collected by the directional wave gauge installed near Sokcho. Using the wave model SWAN (Booij et al., 1999) and the wave ray method (Munk and Arthur, 1952), we will estimate wave data in open sea from the real-time data and predict the travel time of LSW from the measurement site (near Sokcho) to several target points in the east coast of Korea. Second, the numerical-model based method uses three different numerical models; WW3 in deep water, SWAN in shallow water, and CADMAS-SURF for wave run-up (CDIT). The surface winds from the 72 hours prediction system of NCEP (National Centers for Environmental Prediction) GFS (Global Forecast System) will be inputted in finer grids after interpolating these in certain domains of WW3 and SWAN models. The significant wave heights and peak wave directions predicted by the two methods will be compared to the measured data of LSW at several target points near the coasts. Further, the prediction method will be improved using more measurement sites which will be installed in the future. ReferencesBooij, N., Ris, R.C., and Holthuijsen, L.H. (1999). A third-generation wave model for coastal regions 1. Model description and validation. J. of Geophysical Research, 103(C4), 7649-7666.Munk, W.H. and Arthur, R.S. (1952). Gravity Waves. 13. Wave Intensity along a Refracted Ray. National Bureau of Standards Circular 521, Washington D.C., 95-108.Oh, S.-H., Jeong, W.-M., Lee, D.Y. and Kim, S.I. (2010). Analysis of the reason for occurrence of large-height swell-like waves in the east coast of Korea. J. of Korean Society of Coastal and Ocean Engineers, 22(2), 101-111 (in Korean).
Medium-term shoreline evolution of the mediterranean coast of Andalusia (SW Spain)
NASA Astrophysics Data System (ADS)
Liguori, Vincenzo; Manno, Giorgio; Messina, Enrica; Anfuso, Giorgio; Suffo, Miguel
2015-04-01
Coastal environment is a dynamic system in which numerous natural processes are continuously actuating and interacting among them. As a result, geomorphologic, physical and biological characteristics of coastal environments are constantly changing. Such dynamic balance is nowadays seriously threatened by the strong and increasing anthropic pressure that favors erosion processes, and the associated loss of environmental, ecologic and economic aspects. Sandy beaches are the most vulnerable environments in coastal areas. The aim of this work was to reconstruct the historical evolution of the Mediterranean coastline of Andalusia, Spain. The investigated area is about 500 km in length and includes the provinces of Cadiz, Malaga, Granada and Almeria. It is essentially composed by cliffed sectors with sand and gravel pocket beaches constituting independent morphological cells of different dimensions. This study was based on the analysis of aerial photos and satellite images covering a period of 55 years, between 1956 and 2011. Aerial photos were scanned and geo-referenced in order to solve scale and distortion problems. The shoreline was considered and mapped through the identification of the wet / dry sand limit which coincides with the line of maximum run-up; this indicator - representing the shoreline at the moment of the photo - is the most easily identifiable and representative one in microtidal coastal environments. Since shoreline position is linked to beach profile characteristics and to waves, tide and wind conditions at the moment of the photo, such parameters were taken into account in the calculation of shoreline position and changes. Specifically, retreat/accretion changes were reconstructed applying the DSAS method (Digital Shoreline Analysis System) proposed by the US Geological Survey. Significant beach accretion was observed at Playa La Mamola (Granada), with +1 m/y, because the construction of five breakwaters, and at Playa El Cantal (Almeria) and close to Garrucha harbor, with values of +2 m/y. Erosion rates ranged from -0.4 m/y (at Playa Casarones, Rubite) and -0.7 m/y (at Playa Castillos de Baños, Granada) to c. -2 m/y (at Punta de los Hornicos, Almeria). The analysis of coastline evolution revealed as the distribution of erosion areas is strictly related to the incorrect design of coastal structures and their negative effects on downdrift areas. Obtained results clearly evidenced as, in order to evaluate the efficiency of emplaced coastal defense structures, a continuous coastal evolution monitoring plan should be implemented. Keywords: coast, shoreline, coastal erosion, rate-of-change, aerial photographs.
Sediment transport in the area of the Sopot pier
NASA Astrophysics Data System (ADS)
Przyborska, Anna; Jakacki, Jaromir; Andrzejewski, Jan
2017-04-01
Coastal sediment transport is a natural process that appears when energy of waves is sufficient for moving solid particles from the bottom. Sediment transport rate depends on the median diameter of local sand and it is compatible with the direction of wave propagation. Also it is natural, that any protruded from the beach construction disturbs continuity of beach transport caused by waves. The Sopot pier has been built over 100 years ago and it is the longest wooden pier on the Baltic Sea coast, it is about half kilometre long. The pier is located at the end of the Monte Casino street and it is one of the biggest attractions of the city as well as in the country. In the past and now we have observed the disturbed sediment transport in the area of the Sopot pier. But during recent years, this process has gained greater momentum. The beach at the Sopot pier has been growing by several meters. All indicates that the cause of the observed phenomenon is the marina. The marina structure which is in some distance from the shore, has been acting as a powerful, emerged breakwater boundary. As a tool the sediment transport model was implemented for Sopot pier area. The implemented numerical forecasting sediment transport model in the area of the Sopot pier reflects well the deposit growth rate for the archived data from 2010 to 2015. On the basis of differences in bathymetry data provided by the Maritime office and the analysis the model results the average deposits in accumulation in the pear area was determined to be about 16,000 m3 / year for the assumed area of analysis, the model have shown similar result. The analysis suggests that strong winds generating significant waves as well as meaningful sediment transport dominate in the autumn and winter. You cannot, however, rule out strong waves in summer. Under moderate waves the sediment transport is insignificant. The most intense movement of the sediment is observed in the vicinity of the shoreline, it disappears with distance from the shoreline. Numerical sediment transport model DHI MIKE also shows that the Sopot marina generates a 'shadow' of waves. The shadow causes a disturbance in the continuity of natural sediment transport along the beach, the consequence of which is the creation of the sand shapes at the bottom in the form of convexity of coastline known as a spit. The model results also shows that 80% of the accumulated sand near the pier come from local beaches south-east of the pier. The remaining 20% was transported from the north-west. The direction of sediment transport corresponds to the directions of local waves
Effects of waves on water dispersion in a semi-enclosed estuarine bay
NASA Astrophysics Data System (ADS)
Delpey, M. T.; Ardhuin, F.; Otheguy, P.
2012-04-01
The bay of Saint Jean de Luz - Ciboure is a touristic destination located in the south west of France on the Basque coast. This small bay is 1.5km wide for 1km long. It is semi-enclosed by breakwaters, so that the area is mostly protected from waves except in its eastern part, where wave breaking is regularly observed over a shallow rock shelf. In the rest of the area the currents are generally weak. The bay receives fresh water inflows from two rivers. During intense raining events, the rivers can introduce pollutants in the bay. The input of pollutants combined with the low level dynamic of the area can affect the water quality for several days. To study such a phenomenon, mechanisms of water dispersion in the bay are investigated. The present paper focuses on the effects of waves on bay dynamics. Several field experiments were conducted in the area, combining wave and current measurements from a set of ADCP and ADV, lagrangian difter experiments in the surfzone, salinity and temperature profile measurements. An analysis of this set of various data is provided. It reveals that the bay combines remarkable density stratification due to fresh water inflows and occasionally intense wave-induced currents in the surfzone. These currents have a strong influence on river plume dynamics when the sea state is energetic. Moreover, modifications of hydrodynamics in the bay passes are found to be remarkably correlated with sea state evolutions. This result suggests a significant impact of waves on the bay flushing. To further analyse these phenomena, a three dimensional numerical model of bay hydrodynamics is developed. The model aims at reproducing fresh water inflows combined with wind-, tide- and wave-induced currents and mixing. The model of the bay is implemented using the code MOHID , which has been modified to allow the three dimensional representation of wave-current interactions proposed by Ardhuin et al. [2008b] . The circulation is forced by the wave field modelled with the code WAVEWATCHIII . A first confrontation between model results and in situ observations is provided, showing a reasonable agreement. ----------------------------------------------------------- 1 Braunschweig, F., Chamble, P., Fernandes, L., Pina, P., Neves, R., The object-oriented design of the integrated modelling system MOHID, Computational Methods in Water Resources International Conference (North Carolina, USA: Chapel Hill). 2 Ardhuin, F., Rascle, N., Belibassakis, K. A., 2008b. Explicit wave-averaged primitive equations using a generalized Lagrangian mean. Ocean Modelling 20, 35-60. 3 Tolman, H. L., 2009. User manual and system documentation of WAVEWATCHIIITM version3.14. Tech. Rep. 276, NOAA/NWS/NCEP/MMAB.
Integrated protecting plan for beach erosion. A case study in Plaka beach, E. Crete, Greece
NASA Astrophysics Data System (ADS)
Petrakis, Stelios; Alexandrakis, George; Kozyrakis, George; Hatziyanni, Eleni; Kampanis, Nikolaos
2015-04-01
Coastal zones are among the most active areas on Earth, being subjected to extreme wind / wave conditions, thus vulnerable to erosion. In Greece and Crete in particular, beach zones are extremely important for the welfare of the inhabitants, since, apart for the important biological and archaeological value of the beach zones, the socio-economic value is critical since a great number of human activities are concentrated in such areas (touristic facilities, fishing harbors etc.). The present study investigates the erosional procedures observed in Plaka beach, E. Crete, Greece, a highly touristic developed area with great archaeological interest and proposes a cost-effective solution. The factors taken into consideration for the proposed solution in reducing the erosion of the beach were the study of the climatological, geological and geomorphological regime of the area, the recent (~70 years) shifting of the coastline through the study of topographic maps, aerial photographs and satellite images, the creation of detailed bathymetric and seabed classification maps of the area and finally, a risk analysis in terms of erosional phenomena. On the basis of the above, it is concluded that the area under investigation is subjected to an erosional rate of about 1 m/10 years and the total land-loss for the past 70 years is about 4600 m2. Through the simulation of the wave regime we studied 3 possible scenarios, the "do-nothing" scenario, the construction of a detached submerged breakwater at the depth of 3 meters and, finally, the armoring of the existing beach-wall through the placement of appropriate size and material boulders, forming an artificial slope for the reducing of the wave breaking energy and a small scale nourishment plan. As a result, through the modeling of the above, the most appropriate and cost-effective solution was found to be the third, armoring of the existing coastal wall and nourishment of the beach periodically, thus the further undermining of the beach will be reduced and part of the beach can be replaced, and providing aesthetic and economic value to the beach in order to maintain the coastal protection programme. Acknowledgements This work was performed in the framework of the PEFYKA project within the KRIPIS Αction of the GSRT. The project is funded by Greece and the European Regional Development Fund of the European Union under the NSRF and the O.P. Competitiveness and Entrepreneurship. It has also been supported by the "Estimation of the vunlerability of coastal areas to climatic change and sea level rise. Pilot study in Crete isl. Programme for the promotion of the exchange and scientific cooperation between Greece and Germany" programme IKYDA2013.
Contribution to the study of the Ria de Aveiro inlet morphodynamics =
NASA Astrophysics Data System (ADS)
Plecha, Sandra Marta Nobre
Over the years it was observed at the Ria de Aveiro lagoon inlet, near the head of the north breakwater, a depth increase that might threaten the stability of this structure. A trend of accretion in the navigation channel of this lagoon is observed, endangering the navigation in this region. In order to understand the origin of these and other trends observed, the knowledge of the sediment transport in the study area is imperative. The main aim of this work is understanding the dominant physical processes in the sediment transport of sediment at the Ria de Aveiro lagoon inlet and adjacent area, improving knowledge of this region morphodynamics. The methodology followed in this study consisted in the analyzes of the topohydrographic surveys performed by the Administration of the Aveiro Harbor, and in the numerical simulations results performed with the morphodynamic modeling system MORSYS2D. The analysis of the surveys was performed by studying the temporal evolution of the bathymetry. The numerical analysis was based on the implementation of the model at the study area, sensitivity analysis of the formulations used to compute the sediment transport to the variation of input parameters (e.g. depth, sediment size, tidal currents) and analysis of the sediment fluxes and bathymetric changes predicted. The simulations considered as sediment transport forcing the tidal currents only and the coupled forcing of tides and waves. Considering the wave effect as sediment transport forcing, both monochromatic waves and a wave regime were simulated. The results revealed that the observed residual sediment transport patterns are generated due to the channel configuration. Inside the lagoon the fluxes are mainly induced by the tidal currents action, restricting the action of waves to the inlet and adjacent coast. In the navigation channel the residual sediment fluxes predicted are directed offshore with values between 7 and 40 m3/day generating accretions of approximately 10 m3/day for the shallower region and 35 m3/day for the region between the tidal gauge and the triangulo das mares. At the inlet, the residual fluxes are approximately 30 m3/day inducing trends of erosion of approximately 20 m3/day. At the North side of the nearshore accretion is predicted, while at the South side is predicted erosion, at the rates of 250 and 1500 m3/day, respectively. It was also concluded that the waves with higher contribution to the residual sediment uxes are those with heights between 4 and 5 m. However, the storm waves with heights bigger than 5 m, despite their 10% of frequency of occurrence are responsible for 25% of the observed sediment transport.
NASA Astrophysics Data System (ADS)
Ludeno, Giovanni; Natale, Antonio; Soldovieri, Francesco; Vicinanza, Diego; Serafino, Francesco
2014-05-01
The observation of nearshore waves and the knowledge of the sea state parameters can play a crucial role for the safety of harbors and ocean engineering. In the last two decades, different algorithms for the estimation of sea state parameters, surface currents and bathymetry from X-band radar data have been developed and validated [1, 2]. The retrieval of ocean wave parameters such as significant height, period, direction and wavelength of the dominant wave is based on the spectral analysis of data sequences collected by nautical X-band radars [3]. In particular, the reconstruction of the wave motion is carried out through the inversion procedure explained in [1-3], which exploits the dispersion relationship to define a band pass filter used to separate the energy associated with the ocean waves from the background noise. It is worth to note that the shape of such a band pass filter depends upon the value of both the surface currents and bathymetry; in our reconstruction algorithm these parameters are estimated through the (Normalized Scalar Product) procedure [1], which outperforms other existing methods (e.g., the Least Squares) [4]. From the reconstructed wave elevation sequences we can get the directional spectrum that provides useful information (i.e., wavelength, period, direction and amplitude) relevant to the main waves contributing to the wave motion. Of course, in coastal zones a number of diffraction and reflection phenomena can be observed, due to sea-waves impinging obstacles as jetties, breakwaters and boats. In the present paper we want to show the capability to detect reflected and diffracted sea-waves offered by the processing of X-band radar data. Further details relevant to the obtained results will be provided in the full paper and at the conference time. References [1] F. Serafino, C. Lugni, F. Soldovieri, "A novel strategy for the surface current determination from marine X-Band radar data", IEEE Geosci. and Remote Sensing Letters, vol. 7, no.2, pp. 231-235, April 2010. [2] Senet, C. M., Seemann, J., Flampouris, S., and Ziemer, F. (2008). Determination of bathymetric and current maps by the method DiSC based on the analysis of nautical X-Band radar image sequences of the sea surface (November 2007). IEEE Trans. on Geoscience and Remote Sensing, 46(8), 2267-2279. [3] F. Ziemer, and W. Rosenthal, "Directional spectra from shipboard navigation radar during LEWEX". Directional Ocean Wave Spectra: Measuring, Modeling, Predicting, and Applying, 1991 R. C. Beal, Ed., The Johns Hopkins University Press, pp. 125-127. [4] Weimin Huang ; Gill, E.," Surface Current Measurement Under Low Sea State Using Dual Polarized X-Band Nautical Radar", Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of, vol. 5, no.6, page 186-1873, 2012.
3-D Perspective View, Miquelon and Saint Pierre Islands
NASA Technical Reports Server (NTRS)
2000-01-01
This image shows Miquelon and Saint Pierre Islands, located south of Newfoundland, Canada. These islands, along with five smaller islands, are a self-governing territory of France. North is in the top right corner of the image. The island of Miquelon, in the background, is divided by a thin barrier beach into Petite Miquelon on the left, and Grande Miquelon on the right. Saint Pierre Island is seen in the foreground. The maximum elevation of this land is 240 meters (787 feet). The land mass of the islands is about 242square kilometers (94 square miles) or 1.5 times the size of Washington, DC.This three-dimensional perspective view is one of several still photographs taken from a simulated flyover of the islands. It shows how elevation data collected by the Shuttle Radar Topography Mission (SRTM) can be used to enhance other satellite images. Color and natural shading are provided by a Landsat 7 image taken on September 7, 1999. The Landsat image was draped over the SRTM data. Terrain perspective and shading are from SRTM. The vertical scale has been increased six times to make it easier to see the small features. This also makes the sea cliffs around the edges of the islands look larger. In this view the capital city of Saint Pierre is seen as the bright area in the foreground of the island. The thin bright line seen in the water is a breakwater that offers some walled protection for the coastal city.Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11,2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise,Washington, DC.Size: 34 km (21 miles) by 44 km (27 miles) Location: 46.8 degrees north latitude, 56.3 degrees west longitude Orientation: Looking west Original Data Resolution: 30 meters (about 33 yards) per pixel Date Acquired: February 12, 2000NASA Astrophysics Data System (ADS)
Aytore, Betul; Yalciner, Ahmet Cevdet; Zaytsev, Andrey; Cankaya, Zeynep Ceren; Suzen, Mehmet Lütfi
2016-08-01
Turkey is highly prone to earthquakes because of active fault zones in the region. The Marmara region located at the western extension of the North Anatolian Fault Zone (NAFZ) is one of the most tectonically active zones in Turkey. Numerous catastrophic events such as earthquakes or earthquake/landslide-induced tsunamis have occurred in the Marmara Sea basin. According to studies on the past tsunami records, the Marmara coasts have been hit by 35 different tsunami events in the last 2000 years. The recent occurrences of catastrophic tsunamis in the world's oceans have also raised awareness about tsunamis that might take place around the Marmara coasts. Similarly, comprehensive studies on tsunamis, such as preparation of tsunami databases, tsunami hazard analysis and assessments, risk evaluations for the potential tsunami-prone regions, and establishing warning systems have accelerated. However, a complete tsunami inundation analysis in high resolution will provide a better understanding of the effects of tsunamis on a specific critical structure located in the Marmara Sea. Ports are one of those critical structures that are susceptible to marine disasters. Resilience of ports and harbors against tsunamis are essential for proper, efficient, and successful rescue operations to reduce loss of life and property. Considering this, high-resolution simulations have been carried out in the Marmara Sea by focusing on Haydarpaşa Port of the megacity Istanbul. In the first stage of simulations, the most critical tsunami sources possibly effective for Haydarpaşa Port were inputted, and the computed tsunami parameters at the port were compared to determine the most critical tsunami scenario. In the second stage of simulations, the nested domains from 90 m gird size to 10 m grid size (in the port region) were used, and the most critical tsunami scenario was modeled. In the third stage of simulations, the topography of the port and its regions were used in the two nested domains in 3-m and 1-m resolutions and the water elevations computed from the previous simulations were inputted from the border of the large domain. A tsunami numerical code, NAMI DANCE, was used in the simulations. The tsunami parameters in the highest resolution were computed in and around the port. The effect of the data resolution on the computed results has been presented. The performance of the port structures and possible effects of tsunami on port operations have been discussed. Since the harbor protection structures have not been designed to withstand tsunamis, the breakwaters' stability becomes one of the major concerns for less agitation and inundation under tsunami in Haydarpaşa Port for resilience. The flow depth, momentum fluxes, and current pattern are the other concerns that cause unexpected circulations and uncontrolled movements of objects on land and vessels in the sea.
Hazard Assessment and Early Warning of Tsunamis: Lessons from the 2011 Tohoku earthquake
NASA Astrophysics Data System (ADS)
Satake, K.
2012-12-01
The March 11, 2011 Tohoku earthquake (M 9.0) was the largest earthquake in Japanese history, and was the best recorded subduction-zone earthquakes in the world. In particular, various offshore geophysical observations revealed large horizontal and vertical seafloor movements, and the tsunami was recorded on high-quality, high-sampling gauges. Analysis of such tsunami waveforms shows a temporal and spatial slip distribution during the 2011 Tohoku earthquake. The fault rupture started near the hypocenter and propagated into both deep and shallow parts of the plate interface. Very large, ~25 m, slip off Miyagi on the deep part of plate interface corresponds to an interplate earthquake of M 8.8, the location and size similar to 869 Jogan earthquake model, and was responsible for the large tsunami inundation in Sendai and Ishinomaki plains. Huge slip, more than 50 m, occurred on the shallow part near the trench axis ~3 min after the earthquake origin time. This delayed shallow rupture (M 8.8) was similar to the 1896 "tsunami earthquake," and was responsible for the large tsunami on the northern Sanriku coast, measured at ~100 km north of the largest slip. Thus the Tohoku earthquake can be decomposed into an interplate earthquake and the triggered "tsunami earthquake." The Japan Meteorological Agency issued tsunami warning 3 minutes after the earthquake, and saved many lives. However, their initial estimation of tsunami height was underestimated, because the earthquake magnitude was initially estimated as M 7.9, hence the computed tsunami heights were lower. The JMA attempts to improve the tsunami warning system, including technical developments to estimate the earthquake size in a few minutes by using various and redundant information, to deploy and utilize the offshore tsunami observations, and to issue a warning based on the worst case scenario if a possibility of giant earthquake exists. Predicting a trigger of another large earthquake would still be a challenge. Tsunami hazard assessments or long-term forecast of earthquakes have not considered such a triggering or simultaneous occurrence of different types of earthquakes. The large tsunami at the Fukushima nuclear power station was due to the combination of the deep and shallow slip. Disaster prevention for low-frequency but large-scale hazard must be considered. The Japanese government established a general policy to for two levels: L1 and L2. The L2 tsunamis are the largest possible tsunamis with low frequency of occurrence, but cause devastating disaster once they occur. For such events, saving people's lives is the first priority and soft measures such as tsunami hazard maps, evacuation facilities or disaster education will be prepared. The L1 tsunamis are expected to occur more frequently, typically once in a few decades, for which hard countermeasures such as breakwater must be prepared to protect lives and properties of residents as well as economic and industrial activities.
NASA Astrophysics Data System (ADS)
Hongo, Chuki; Kurihara, Haruko; Golbuu, Yimnang
2018-03-01
Tropical cyclones (TCs) and sea level rise (SLR) cause major problems including beach erosion, saltwater intrusion into groundwater, and damage to infrastructure in coastal areas. The magnitude and extent of damage is predicted to increase as a consequence of future climate change and local factors. Upward reef growth has attracted attention for its role as a natural breakwater, reducing the risks of natural disasters to coastal communities. However, projections of change in the risk to coastal reefs under conditions of intensified TCs and SLR are poorly quantified. In this study we projected the wave height and water level on Melekeok reef in the Palau Islands by 2100, based on wave simulations under intensified TCs (significant wave height at the outer ocean: SWHo = 8.7-11.0 m; significant wave period at the outer ocean: SWPo = 13-15 s) and SLR (0.24-0.98 m). To understand effects of upward reef growth on the reduction of the wave height and water level, the simulation was conducted for two reef condition scenarios: a degraded reef and a healthy reef. Moreover, analyses of reef growth based on a drilled core provided an assessment of the coral community and rate of reef production necessary to reduce the risk from TCs and SLR on the coastal areas. According to our calculations under intensified TCs and SLR by 2100, significant wave heights at the reef flat (SWHr) will increase from 1.05-1.24 m at present to 2.14 m if reefs are degraded. Similarly, by 2100 the water level at the shoreline (WLs) will increase from 0.86-2.10 m at present to 1.19-3.45 m if reefs are degraded. These predicted changes will probably cause beach erosion, saltwater intrusion into groundwater, and damage to infrastructure, because the coastal village is located at ˜ 3 m above the present mean sea level. These findings imply that even if the SWHr is decreased by only 0.1 m by upward reef growth, it will probably reduce the risks of costal damages. Our results showed that a healthy reef will reduce a maximum of 0.44 m of the SWHr. According to analysis of drilled core, corymbose Acropora corals will be key to reducing the risks, and 2.6-5.8 kg CaCO3 m-2 yr-1, equivalent to > 8 % of coral cover, will be required to keep a healthy reef by 2100. This study highlights that the maintaining reef growth (as a function of coral cover) in the future is effective in reducing the risk of coastal damage arising from wave action. Although the present study focuses on Melekeok fringing reef, many coral reefs are in the same situation under conditions of intensified TCs and SLR, and therefore the results of this study are applicable to other reefs. These researches are critical in guiding policy development directed at disaster prevention for small island nations and for developing and developed countries.
NASA Astrophysics Data System (ADS)
Pagnoni, Gianluca; Tinti, Stefano
2015-04-01
The coast of the eastern Sicily is exposed to tsunamis that can be generated by local earthquakes (e.g. the 1169, 1693, 1908 events) and by earthquakes located in distant seismic zones (see the 365 AD tsunamigenic quake in Western Hellenic Arc). Tsunamis can also be generated by landslides possibly triggered by earthquakes. The Hyblean-Malta steep escarpment running offshore at a small angle with the coast is an ideal place for submarine mass failure occurrences with tsunamigenic effects. The entire eastern coast of Sicily from Messina in the north to Siracusa in the south is under the threat of tsunamis. In the frame of the FP7 European project ASTARTE (Assessment, Strategy And Risk Reduction for Tsunamis in Europe - FP7-ENV2013 6.4-3, Grant 603839), the segment of coast from Augusta to Siracusa was selected to undertake specific and detailed studies of tsunami hazard, vulnerability and damage to test existing methods and develop innovative approaches. The scope of the present work regards vulnerability and damage analyses. We chose to adopt two methods, known in the literature and briefly denoted as PTVA-3 and SCHEMA, that are based on two very different approaches, the former more qualitative and the latter more quantitative. The method PTVA-3 determines the vulnerability and damageability of a building by weighting and ranking a number of attributes covering the structural features of the edifice and the relevant characteristics of the surrounding environment such as the position with respect to the coast, the existence of defensive elements (e.g. walls, breakwaters, vegetation) and also the proximity to potential sources of floating objects that can feed damaging debris flows. On the other hand, the SCHEMA method uses a classification of building and a damage matrix that were derived from experimental fragility and damage curves first established after the Sumatra 2004 tsunami and later refined and adapted to the building stock of the Mediterranean region. The aim of this work is to compare the vulnerability and damage analyses carried out by means of the PTVA-3 and the SCHEMA methods on the same data set, that is the urban and port areas of Siracusa and Augusta in order to highlight similarities and discrepancies. In this preliminary analysis the coastal inundation was not derived from tsunami simulations, but was assumed to be constant along the coast (bathtub hypothesis) and was taken to be 5 m and 10 m respectively for Siracusa and Augusta. The main outcome of the compared analysis is that the two methods do not provide completely overlapping vulnerability and damage maps, though they use equivalent 5-degree scales. In general the PTVA-3 method tends to overestimate the damage, although there are several counterexamples where PTVA-3 foresees less damage than SCHEMA. The differences we found in the assessment opens the question of how to treat uncertainties in the vulnerability and damage analyses, which is a problem often overlooked, but of crucial importance for the application and for civil authorities.
Case study of small harbor excitation under storm and tsunami conditions
NASA Astrophysics Data System (ADS)
Synolakis, Costas; Maravelakis, Nikos; Kalligeris, Nikos; Skanavis, Vassilios; Kanoglu, Utku; Yalciner, Ahmet; Lynett, Pat
2016-04-01
Simultaneous nearshore and interior-to-ports wave and current measurements for small ports are not common, and few, if any, benchmarking cases at sufficient resolution exist to help validate numerical model of intermediate waves, or even long waves. The wave conditions inside the old Venetian harbor of Chania, Greece and offshore were measured and studied from 2012 to 2015. The construction of this harbor began in the 14th century, and since then, its layout has been modified to adapt to different social and to economic conditions. It is divided into a western and an eastern basin. The eastern basin is used by recreational vessels and fishing boats throughout the year. The western basin has an exposed entrance to the north, and it is essentially functional half of the year, because of the severe overtopping and flooding that occur during the northern winter storms. Our work is motivated by the necessity to protect the monument from severe winter storm conditions and allow safe mooring and all other recreational activities that take place in the exposed western basin. Two earlier studies had proposed the construction of a low crested breakwater near the harbor entrance. The first design has been partially constructed, while the second never materialized. The main disadvantage of both studies was the lack of any wave field measurements. At the same time, second order or complimentary phenomena such as harbor resonance had not been considered. To address the lack of field data, the offshore wave climate has been monitored since October 2012 using an AWAC 600kHz instrument, deployed at 23m depth. The response of the western and eastern basins of the harbor was measured with a TWR-2050 (deployed at 5.5m depth) and an RBRDuet T.D./wave (deployed at 2m depth) pressure gauges respectively. Significant wave heights ranging up to 5.8 m with significant periods of up to 10 sec were measured. The harbor pressure gauges are now being re-deployed in other locations to collect enough information to infer the resonant modes of the basins excited during storm conditions. The deployment position of the pressure gauges is based on numerical modeling results. We have employed the fully nonlinear Boussinesq module of COULWAVE using a high resolution (2m cell size) relief model and an idealized TMA directional wave spectrum. The wave field and low frequency energy distribution in the basin are captured by both numerical modeling and field measurements. The field measurements agree well with the numerical modeling analysis, providing insight as to the causes of severe disturbance and useful information that should be considered for an effective solution to the protection of the harbor. Our measurements appear the first ever nearshore measurements of waves and currents for a 2+ year period duration in Greece. The work is also being used for validation tsunami inundation models for civil defense applications in Crete. * This work was supported by the project ASTARTE, Grant no 603839 7th FP (ENV.213.6.4.3) to the Technical University of Crete and to the Middle East Technical University.
Coastal evolution and littoral cells distribution in Northern Tuscany (Italy)
NASA Astrophysics Data System (ADS)
Anfuso, Giorgio; Pranzini, Enzo; Vitale, Giovanni
2010-05-01
This paper deals with a 64-km-long coastal physiographic unit located in the northern littoral of Tuscany (Italy). The investigated area recorded important erosion problems in last century due to the reduction in sediment input from rivers and to the feeding effect of ports and shore protection structures. Vertical aerial photographs and direct field surveys (with RTK-GPS and total station) were used for the reconstruction of coastline changes at medium-long temporal scales. The littoral is a microtidal environment and most frequent and severe storms approach from the 245° direction, with maximum one year recurrence Hs values between 3.5 and 4.0 m, less frequent and severe storms approach from the 180° and 200° directions. Concerning coastal evolution for the 1938-2005 period, important accretion was recorded updrift of two harbours (300 at Viareggio and 100 m at Carrara port in a convergence area (100 m at Marina di Pietrasanta), whereas severe erosion occurred downcoast of Carrara harbour (-130 m at Marina dei Ronchi) and at the northern (unprotected) side of the Arno River mouth (with maximum values of 400 m). Locally breakwaters and groins were implemented to solve erosion problems but the structures only - and not always - solved problems at local scale shifting erosion downdrift. Coastal compartmentalisation controlled the longshore distribution of erosion/accretion patterns and it was strongly forced by natural and human structures and coastal orientation in relation to wave approaching fronts. Three main littoral cells were formed by four natural limits: i) Punta Bianca Promontory, which works as a fixed absolute limit; ii) Marina di Pietrasanta, a convergent, free limit; iii) the Arno River Mouth, a divergent limit; and, iv) Livorno harbour, which works as an absolute fixed southern limit. In it is important to highlight that human structures interfere with natural sediment transport within major cells creating small sub-cells. This way, the general natural trend determined by coastal compartmentalisation is only slightly affected by human structures which give rise to erosion/accretion areas within most important cells. In detail, the most important structures are Carrara and Viareggio ports which constitute artificial, fixed limits which allow little transport in a given direction, depending on their protrusion and wave characteristics. They allow periodic, almost unidirectional, transport that, according to field observations, takes place along narrow zones parallel to the shoreline, extending to a variable depth (6-10 m), depending on wave conditions and bottom morphology. Furthermore, bypassing of limits takes place locally as a consequence of bed load sand transport onto longshore bars and only fine sediments bypass the structures. In detail, Carrara port only permits transport in one predominant direction (southward) and Viareggio port probably records a bi-directional transport, even if prevails the northward directed one. Last, obtained results are useful to improve the understanding of coastal processes to manage littoral sediment transport in a sustainable manner and to minimise needs for structural interventions. For this is sufficient to identify independent cells and partially dependent sub-cells for shoreline management units, if not adverse impacts will be inevitability transmitted to the downdrift unit.
X-Band wave radar system for monitoring and risk management of the coastal infrastructures
NASA Astrophysics Data System (ADS)
Ludeno, Giovanni; Soldovieri, Francesco; Serafino, Francesco
2017-04-01
The presence of the infrastructures in coastal region entails an increase of the sea level and the shift of the sediment on the bottom with a continuous change of the coastline. In order to preserve the coastline, it has been necessary to resort the use of applications coastal engineering, as the construction of the breakwaters for preventing the coastal erosion. In this frame, the knowledge of the sea state parameters, as wavelength, period and significant wave height and of surface current and bathymetry can be used for the harbor operations and to prevent environmental disasters. In the last years, the study of the coastal phenomena and monitoring of the sea waves impact on the coastal infrastructures through the analysis of images acquired by marine X-band radars is of great interest [1-3]. The possibility to observe the sea surface from radar images is due to the fact that the X-band electromagnetic waves interact with the sea capillary waves (Bragg resonance), which ride on the gravity waves. However, the image acquired by a X-band radar is not the direct representation of the sea state, but it represents the sea surface as seen by the radar. Accordingly, to estimate the sea state parameters as, direction, wavelength, period of dominant waves, the significant wave height as well as the bathymetry and surface current, through a time stack of radar data are required advanced data processing procedures. In particular, in the coastal areas due to the non-uniformity of sea surface current and bathymetry fields is necessary a local analysis of the sea state parameters. In order to analyze the data acquired in coastal area an inversion procedure defined "Local Method" is adopted, which is based on the spatial partitioning of the investigated area in partially overlapping sub-areas. In addition, the analysis of the sea spectrum of each sub-area allows us to retrieve the local sea state parameters. In particular, this local analysis allows us to detect the reflected waves from the coastal infrastructures, e.g. from the harbor jetties. In fact, the reflected waves may significantly complicate the harbour activities (e.g., berthing operations), as they interfere with the oncoming waves thus creating a confused sea [2]. References [1] G. Ludeno, C. Brandini, C. Lugni, D. Arturi, A. Natale, F. Soldovieri, B. Gozzini, F. Serafino, "Remocean System for the Detection of the Reflected Waves from the Costa Concordia Ship Wreck", IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol.7, no.3, pp.3011-3018, July 2014. [2] G. Ludeno, F. Reale, F. Dentale, E. Pugliese Carratelli, A. Natale, F. Soldovieri, F. Serafino "An X-Band Radar System for Bathymetry and Wave Field Analysis in Harbor Area", Sensors, Vol.15, no.1, pp. 1691-1707, January 2015. [3] F. Raffa, G. Ludeno, B. Patti, F. Soldovieri, S. Mazzola, and F. Serafino, "X-band wave radar for coastal upwelling detection off the southern coast of Sicily.", Journal of Atmospheric and Oceanic Technology, January 2017, Vol. 34, No. 1, Published online on 22 Dec 2016.
50 Years of coastal erosion analysis: A new methodological approach.
NASA Astrophysics Data System (ADS)
Prieto Campos, Antonio; Diaz Cuevas, Pilar; Ojeda zujar, Jose; Guisado-Pintado, Emilia
2017-04-01
Coasts over the world have been subjected to increased anthropogenic pressures which combined with natural hazards impacts (storm events, rising sea-levels) have led to strong erosion problems with negative impacts on the economy and the safety of coastal communities. The Andalusian coast (South Spain) is a renowned global tourist destination. In the past decades a deep transformation in the economic model led to significant land use changes: strong regulation of rivers, urbanisation and occupation of dunes, among others. As a result irreversible transformations on the coastline, from the aggressive urbanisation undertaken, are now to be faced by local authorities and suffered by locals and visitors. Moreover, the expected impacts derived from the climate change aggravated by anthropic activities emphasises the need for tools that facilitates decision making for a sustainable coastal management. In this contribution a homogeneous (only a proxy and one photointerpreter) methodology is proposed for the calculation of coastal erosion rates of exposed beaches in Andalusia (640 km) through the use of detailed series (1:2500) of open source orthophotographies for the period (1956-1977-2001-2011). The outstanding combination of the traditional software DSAS (Digital Shoreline Analysis System) with a spatial database (PostgreSQL) which integrates the resulting erosion rates with related coastal thematic information (geomorphology, presence of engineering infrastructures, dunes and ecosystems) enhances the capacity of analysis and exploitation. Further, the homogeneity of the method used allows the comparison of the results among years in a highly diverse coast, with both Mediterranean and Atlantic façades. The novelty development and integration of a PostgreSQL/Postgis database facilitates the exploitation of the results by the user (for instance by relating calculated rates with other thematic information as geomorphology of the coast or the presence of a dune field on that transect). While the proxy, the most recommended in the research literature, defined as the upper limit of the beach active profile (backshore/foredune, cliff or infrastructure limit if exists) guarantees the exclusion of uncertainties linked to either, tides regime (very important in the Atlantic sector) and any seasonal variations of the beach profile. Spatially, results show a predominance of sectors under erosion (52% -312km - for global period 1956-2011 and 42% -249 km- for most recent period of time 1977-2011), corresponding to mean retreats of 28 m and 20 m for each period respectively. Paradoxically, when incorporating the accumulative rates (positive and negative) for each period, accretional areas appear to be greater than erosional ones, as the methodology simplifies calculations and thus consider coastal erosion as two-dimensional (distances between proxies) whereas it is a three-dimensional process. Greater erosion occurs along the Mediterranean coast as well as progressive reduction of eroded and accreted sectors on behalf of an induced increment of stable sectors driven by the presence of coastal infrastructures (promenades, seawalls, and breakwater) which prevent the shoreline from migrating inland. The usability of the methodology and its integration on a web-based viewer undoubtedly offers a new opportunity of data exploitation, as combines natural and anthropogenic factors involved in coastal erosion/accretion in a simple but effective way.
NASA Astrophysics Data System (ADS)
Azzellino, Arianna; Contestabile, Pasquale; Lanfredi, Caterina; Vicinanza, Diego
2010-05-01
The exploitation of renewable energy resources is fast becoming a key objective in many countries. Countries with coastlines have particularly valuable renewable energy resources in the form of tides, currents, waves and offshore wind. Due to the visual impact of siting large numbers of energy generating devices (eg. wind turbines) in terrestrial landscapes, considerable attention is now being directed towards coastal waters. Due to their environmental sensitivity, the selection of the most adequate location for these systems is a critical factor. Multi-criteria analysis allows to consider a wide variety of key characteristics (e.g. water depth, distance to shore, distance to the electric grid in land, geology, environmental impact) that may be converted into a numerical index of suitability for different WEC devices to different locations. So identifying the best alternative between an offshore or a onshore device may be specifically treated as a multicriteria problem. Special enphasisi should be given in the multicriteria analysis to the environmental impact issues. The wave energy prospective in the Italian seas is relatively low if compared to the other European countries faced to the ocean. Based on the wave climate, the Alghero site, (NW Sardinia, Italy) is one of the most interesting sites for the wave energy perspective (about 10 kW/m). Alghero site is characterized by a high level of marine biodiversity. In 2002 the area northern to Alghero harbour (Capo Caccia-Isola Piana) was established a Marine Protected Area (MPA). It could be discussed for this site how to choose between the onshore/offshore WEC alternative. An offshore device like Wave Dragon (http://www.wavedragon.net/) installed at -65m depth (width=300m and length=170 m) may approximately produce about 3.6 GWh/y with a total cost of about 9,000,000 €. On the other hand, an onshore device like SSG (http://waveenergy.no/), employed as crown wall for a vertical breakwater to enlarge the present harbour protection, and installed at -10m depth (length=300 m) may produce about 2.7 GWh/y with a total costs of about 12,000,000 €, where only the 50% of the amount are the costs of the SSG device. Obviously the environmental impact of the two solutions is quite different. Aim of this study is to provide a multicriteria decision support framework to evaluate the best WEC typology and location in the perspective of the environmental cost-benefit analysis. The general environmental aspects generated by wave power projects will be described. Colonisation patterns and biofouling will be discussed with particular reference to changes of the seabed and alterations due to new substrates. In addition, impacts for fish, fishery and marine mammals will be also considered. We suggest that wave power projects should be evaluated also on the basis of their environmental impacts in the perspective of the Strategic Environmental Assessment (SEA) analysis, as implemented by the European Commission (SEA Directive 2001/42/EC). The early incorporation of the environmental aspects involved in the evaluation of wave power projects will give the opportunity for early mitigations or design modifications, most likely making wave projects more acceptable in the long run and more suitable for the marine environment.
Waller, Roger M.; Stanley, Kirk W.
1966-01-01
The March 27, 1964, earthquake shook the Homer area for about 3 minutes. Land effects consisted of a 2- to 6-foot subsidence of the mainland and Homer Spit, one earthflow at the mouth of a canyon, several landslides on the Homer escarpment and along the sea bluffs, and minor fissuring of the ground, principally at the edges of bluffs and on Homer Spit. Hydrologic effects consisted of at least one and possibly two submarine landslides at the end of the spit, seiche waves in Kachemak Bay, ice breakage on Beluga Lake, sanding of wells, and a temporary loss of water in some wells. Seismic damage to the community was light in comparison with that of other communities closer to the epicenter. One submarine landslide, however, took out most of the harbor breakwater. The greatest damage was due to the subsidence of the spit, both tectonically (2–3 ft) and by differential compaction or lateral spreading (an additional 1–4 ft). Higher tides now flood much of the spit. The harbor and dock had to be replaced, and buildings on the end of the spit had to be elevated. Protection works for other buildings and the highway were needed. These works included application of fill to raise the highway and parts of the spit above high tides. Reconstruction costs and disaster loans totaled about $2½ million, but this amount includes added improvement costs over preexisting values. Homer Spit in particular and the Homer area in general rank as areas where precautions must be taken in selecting building sites. The hazards of landslides, earthflows, compaction and submarine slumping—all of which might be triggered by an earthquake—should be considered in site selection. In plan, Homer Spit resembles a scimitar with its curving blade pointed seaward. It is about 4 miles long and as much as 1,500 feet wide. The spit is composed largely of gravel intermixed with some sand. After the earthquake and the resulting tectonic subsidence and compaction, much of the spit was below high-tide levels and consequently flooded periodically. The entire beach face has retreated. Much of the material eroded from the beach has been redeposited to form a new storm or frontal berm, locally migrating around buildings and covering roads. Beach recession of 10–15 feet is probably the overall average; maximum recession 1 year after the earthquake was 56 feet along one limited section of the distal end of the spit. Subsidence of the mainland has caused accelerated erosion of the beaches and headlands that have been—and are—source areas for the material deposited on Homer Spit. The resulting increased supply of gravel and sand probably will cause the spit to widen gradually on the Cook Inlet side. Similarly, the new frontal berm will probably grow to a height sufficient to prevent overtopping by all but the larger storm swashes. The nature of shore processes on the spit has not been materially altered by subsidence, but the rates of erosion and deposition have been accelerated. The lasting effect of subsidence (excluding flooding) will be enlargement of the beach on the Cook Inlet side and gradual wasting of the beach on the bay side of the spit.
A Powerful Method of Measuring Sea Wave Spectra and their Direction
NASA Astrophysics Data System (ADS)
Blasi, Christoph; Mai, Stephan; Wilhelmi, Jens; Zenz, Theodor; Barjenbruch, Ulrich
2014-05-01
Besides the need of precise measurements of water levels of the sea, there is an increasing demand for assessing waves in height and direction for different purposes like sea-wave modelling and coastal engineering. The design of coastal structures such as piles, breakwaters, and offshore structures like wind farms must take account of the direction of the impacting waves. To date, records of wave directions are scarce. The reason for this might be the high costs of purchasing and operating such measuring devices. These are usually buoys, which require regular maintenance. Against this background, the German Federal Institute of Hydrology (BfG) developed a low-cost directional sea-wave monitoring system that is based on commercially available liquid-level radar sensors. These sensors have the advantage that they have no contact to the fluid, i.e. the corrosive sea water. The newly developed device was tested on two sites. One is the tide gauge 'Borkum Südstrand' that is located in the southern North Sea off the island of Borkum. The other one is the 'Research Platform FINO1' approximately 45 km north of the island of Borkum. The main focus of these tests is the comparison of the data measured by the radar-based system with those of a conventional Directional Wave Rider Buoy. The general conditions at the testing sites are good for the tests. At the tide gauge 'Borkum Südstrand' waves propagate in different directions, strongly influenced by the morphological conditions like shallow waters of the Wadden Seas and the coast of the island of Borkum. Whereas on the open sea, at the site FINO1, the full physical conditions of the sea state, like heavy storms etc. play an important role. To determine and measure the direction of waves, the device has to be able to assess the wave movements in two dimensions. Therefore, an array of several radar sensors is required. Radar sensors are widely used and well established in measuring water levels, e.g. in tanks and basins. They operate by emitting a chain of electromagnetic pulses at a frequency of 26 GHz twice per second and, in turn, detect the backscatter information from the water surface. As the travelling time of each pulse is proportional to the distance between water surface and sensor, the height of the water surface can be easily calculated. To obtain the directional information of the sea state, all four radar sensors in the array have to collect simultaneously the wave profiles at fixed points. The Wave Rider Buoy works in a completely different way. Here, the wave height is calculated by the double integration of the measured vertical acceleration. By correlating the three-dimensional motion data, which are gained from gravity-stabilized vertical and horizontal accelerometers, the directional wave spectrum can be derived. Data of both devices were collected and analysed. During the hurricane Xaver, extreme water levels and heavy sea hit the North Sea coast on 5 and 6 December 2013. The radar array at the testing site FINO1 measured wave heights in the order of 15.5 meters. Furthermore, it was possible to detect significant wave heights, the mean wave direction, and the spread of the sea state. For the first time the accuracy of the wave height distribution could be determined as well.
Thompson, Ryan F.
2014-01-01
Shoreline erosion rates along Lake Sharpe, a Missouri River reservoir, near the community of Lower Brule, South Dakota, were studied previously during 2011–12 by the U.S. Geological Survey, the Lower Brule Sioux Tribe, and Oglala Lakota College. The rapid shoreline retreat has caused many detrimental effects along the shoreline of Lake Sharpe, including losses of cultural sites, recreation access points, wildlife habitat, irrigated cropland, and landmass. The Lower Brule Sioux Tribe is considering options to reduce or stop erosion. One such option for consideration is the placement of discontinuous rock breakwater structures in shallow water to reduce wave action at shore. Information on the depth of water and stability characteristics of bottom material in nearshore areas of Lake Sharpe is needed by the Lower Brule Sioux Tribe to develop structural mitigation alternatives. To help address this need, a bathymetric survey of nearshore areas of Lake Sharpe near Lower Brule, South Dakota, was completed in 2013 by the U.S. Geological Survey in cooperation with the Lower Brule Sioux Tribe.HYPACK® hydrographic survey software was used to plan data collection transects for a 7-mile reach of Lake Sharpe shoreline near Lower Brule, South Dakota. Regular data collection transects and oblique transects were planned to allow for quality-assurance/quality-control comparisons.Two methods of data collection were used in the bathymetric survey: (1) measurement from a boat using bathymetric instrumentation where water was more than 2 feet deep, and (2) wading using Real-Time Kinematic Global Navigation Satellite System equipment on shore and where water was shallower than 2 feet deep. A dual frequency, 24- or 200-kilohertz narrow beam, depth transducer was used in conjunction with a Teledyne Odom CV100 dual frequency echosounder for boat-based data collection. In water too shallow for boat navigation, the elevation and nature of the reservoir bottom were mapped using Real-Time Kinematic Global Navigation Satellite System equipment.Once the data collection effort was completed, data editing was performed in HYPACK® to remove erroneous data points and to apply water-surface elevations. Maps were developed separately for water depth and bottom elevation for the study area. Lines of equal water depth for 2, 3, 3.5, 4, and 5 feet from the water surface to the lake bottom were mapped in nearshore areas of Lake Sharpe. Overall, water depths stay shallow for quite a distance from shore. In the 288 transects that crossed a 2 foot depth line, this depth occurred an average of 88 feet from shore. Similarly, in the 317 transects that crossed a 3 foot depth line, this did not occur until an average of 343 feet from shore. Elevation contours of the lake bottom were mapped primarily for elevations ranging from 1,419 to 1,416 feet above North American Vertical Datum of 1988.Horizontal errors of the Real-Time Kinematic Global Navigation Satellite System equipment for the study area are essentially inconsequential because water depth and bottom elevation were determined to change relatively slowly. The estimated vertical error associated with the Real-Time Kinematic Global Navigation Satellite System equipment for the study area ranges from 0.6 to 0.9 inch. This vertical error is small relative to the accuracy of the bathymetric data.Accuracy assessments of the data collected for this study were computed according to the National Standard for Spatial Data Accuracy. The maps showing the lines of equal water depth and elevation contours of the lake bottom are able to support a 1-foot contour interval at National Standards for Spatial Data Accuracy vertical accuracy standards, which require a vertical root mean squared error of 0.30 foot or better and a fundamental vertical accuracy calculated at the 95-percent confidence level of 0.60 foot or better.
Yehle, Lynn A.
1974-01-01
A program to study the engineering geology of most of the larger Alaska coastal communities and to evaluate their earthquake and other geologic hazards was started following the 1964 Alaska earthquake; this report about Sitka and vicinity is a product of that program. Field-study methods were of a reconnaissance nature, and thus the interpretations in the report are subject to revision as further information becomes available. This report can provide broad geologic guidelines for planners and engineers during preparation of land-use plans. The use of this information should lead to minimizing future loss of life and property due to geologic hazards, especially during very large earthquakes. Landscape of Sitka and surrounding area is characterized by numerous islands and a narrow strip of gently rolling ground adjacent to rugged mountains; steep valleys and some fiords cut sharply into the mountains. A few valley floors are wide and flat and grade into moderate-sized deltas. Glaciers throughout southeastern Alaska and elsewhere became vastly enlarged during the Pleistocene Epoch. The Sitka area presumably was covered by ice several times; glaciers deeply eroded some valleys and removed fractured bedrock along some faults. The last major deglaciation occurred sometime before 10,000 years ago. Crustal rebound believed to be related to glacial melting caused land emergence at Sitka of at least 35 feet (10.7 m) relative to present sea level. Bedrock at Sitka and vicinity is composed mostly of bedded, hard, dense graywacke and some argillite. Beds strike predominantly northwest and are vertical or steeply dipping. Locally, bedded rocks are cut by dikes of fine-grained igneous rock. Host bedrock is of Jurassic and Cretaceous age. Eight types of surficial deposits of Quaternary age were recognized. Below altitudes of 3S feet (10.7 m), the dominant deposits are those of modern and elevated shores and deltas; at higher altitudes, widespread muskeg overlies a mantle of volcanic ash which commonly overlies glacial drift. Alluvial deposits are minor. Man-emplaced embankment fill, chiefly sandy gravel, covers many muskeg and former offshore areas; quarried blocks of graywacke are placed to form breakwaters and to edge large areas of embankment fill and modified ground. The geologic structure of the area is known only in general outlines. Most bedded Mesozoic rocks probably are part of broad northwest-trending complexes of anticlines and synclines. Intrusion of large bodies of plutonic igneous rocks occurred in Tertiary and Cretaceous time. Extensive faulting is suggested by the numerous linear to gently curving patterns of some fiords, lakes, and valleys, and by a group of Holocene volcanoes and cinder cones. Two major northwest-striking fault zones are most prominent: (1) the apparently inactive Chichagof-Sitka fault, about 2.5 miles (4.0 km) northeast of Sitka, and {2) part of the active 800-mile- (1,200-km) long Fairweather-Queen Charlotte Islands fault system, lying about 30 miles (48 km) southwest of the city. Many earthquakes have been reported as felt at Sitka since 1832, when good records were first maintained; several shocks were very strong, but none of them caused severe damage. The closest major earthquake (magnitude about 7.3) causing some damage to the city occurred July 30, 1972, and had an epicenter about 30 miles (48 km) to the southwest. Movement along the Fairweather-Queen Charlotte Islands fault system apparently caused most of the earthquakes felt at Sitka. The probability of destructive earthquakes at Sitka is unknown. The tectonics of the region and the seismic record suggest that sometime in the future an earthquake of a magnitude of about 8 and related to the Fairweather-Queen Charlotte Islands fault system probably will occur in or near the area. Effects from some nearby major earthquakes could cause substantial damage at Sitka. Eight possible effects are as follows: 1. Sudden dis
California State Waters Map Series--Hueneme Canyon and vicinity, California
Johnson, Samuel Y.; Dartnell, Peter; Cochrane, Guy R.; Golden, Nadine E.; Phillips, Eleyne L.; Ritchie, Andrew C.; Kvitek, Rikk G.; Greene, H. Gary; Krigsman, Lisa M.; Endris, Charles A.; Clahan, Kevin B.; Sliter, Ray W.; Wong, Florence L.; Yoklavich, Mary M.; Normark, William R.
2012-01-01
In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California's State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. The Hueneme Canyon and vicinity map area lies within the eastern Santa Barbara Channel region of the Southern California Bight. The area is part of the Western Transverse Ranges geologic province, which is north of the California Continental Borderland. Significant clockwise rotation - at least 90° - since the early Miocene has been proposed for the Western Transverse Ranges, and the region is presently undergoing north-south shortening. This geologically complex region forms a major biogeographic transition zone, separating the cold-temperate Oregonian province north of Point Conception from the warm-temperate California province to the south. The map area, which is offshore of the Oxnard plain and west of and along the trend of the south flank of the Santa Monica Mountains, lies at the east end of the Santa Barbara littoral cell, characterized by west-to-east littoral transport of sediment derived mainly from coastal watersheds. The Hueneme Canyon and vicinity map area in California's State Waters is characterized by two major physiographic features: (1) the nearshore continental shelf, and (2) the Hueneme and Mugu Submarine Canyon system, which, in the map area, includes Hueneme Canyon and parts of three smaller, unnamed headless canyons incised into the shelf southeast of Hueneme Canyon. The shelf is underlain by tens of meters of interbedded upper Quaternary shelf, estuarine, and fluvial deposits that formed as sea level fluctuated in the last several hundred thousand years. Hueneme Canyon extends about 15 km offshore from its canyon head near the dredged navigation channel of the Port of Hueneme. The canyon is relatively deep (about 150 m at the California's State Waters limit) and steep (canyon flanks as steep as 25° to 30°). Historically, Hueneme Canyon functioned as the eastern termination of the Santa Barbara littoral cell by trapping all eastward littoral drift, not only feeding the large Hueneme submarine fan but acting as the major conduit of sediment to the deep Santa Monica Basin; however, recent dredging programs needed to maintain Channel Islands Harbor and the Port of Hueneme have moved the nearshore sediment trapped by jetties and breakwaters to an area southeast of the Hueneme Canyon head. Seafloor habitats in the broad Santa Barbara Channel region consist of significant amounts of soft sediment and isolated areas of rocky habitat that support kelp-forest communities nearshore and rocky-reef communities in deep water. The potential marine benthic habitat types mapped in the Hueneme Canyon and vicinity map area are related directly to the geomorphology and sedimentary processes that are the result of its Quaternary geologic history. The two basic megahabitats in the map area are Shelf (continental shelf) and Flank (continental slope). The flat seafloor of the continental shelf in the Hueneme Canyon and vicinity map area is dynamic, as indicated by mobile sand sheets and coarser grained scour depressions. The active Hueneme Canyon provides considerable relief to the continental shelf in the map area, and its irregular morphology of eroded walls, landslide scarps, and deposits and gullies provide promising habitat for groundfish, crabs, shrimp, and other marine benthic organisms. Most invertebrates observed in the map area during camera ground-truth field operations are found on the edge of Hueneme Canyon, which may be an important area of recruitment and retention to other invertebrates and fishes. The smaller, more subtle, nonactive headless canyons located primarily on the continental slope also offer relief that provides habitat for groundfish and other organisms.
California State Waters Map Series: offshore of Santa Barbara, California
Johnson, Samuel Y.; Dartnell, Peter; Cochrane, Guy R.; Golden, Nadine E.; Phillips, Eleyne L.; Ritchie, Andrew C.; Greene, H. Gary; Krigsman, Lisa M.; Kvitek, Rikk G.; Dieter, Bryan E.; Endris, Charles A.; Seitz, Gordon G.; Sliter, Ray W.; Erdey, Mercedes D.; Gutierrez, Carlos I.; Wong, Florence L.; Yoklavich, Mary M.; Draut, Amy E.; Hart, Patrick E.; Conrad, James E.; Cochran, Susan A.; Johnson, Samuel Y.; Cochran, Susan A.
2013-01-01
In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. The Offshore of Santa Barbara map area lies within the central Santa Barbara Channel region of the Southern California Bight. This geologically complex region forms a major biogeographic transition zone, separating the cold-temperate Oregonian province north of Point Conception from the warm-temperate California province to the south. The map area is in the southern part of the Western Transverse Ranges geologic province, which is north of the California Continental Borderland. Significant clockwise rotation—at least 90°—since the early Miocene has been proposed for the Western Transverse Ranges province, and geodetic studies indicate that the region is presently undergoing north-south shortening. Uplift rates (as much as 2.2 mm/yr) that are based on studies of onland marine terraces provide further evidence of significant shortening. The city of Santa Barbara, the main coastal population center in the map area, is part of a contiguous urban area that extends from Carpinteria to Goleta. This urban area was developed on the coalescing alluvial surfaces, uplifted marine terraces, and low hills that lie south of the east-west-trending Santa Ynez Mountains. Several beaches line the actively utilized Santa Barbara coastal zone, including Arroyo Burro Beach Park, Leadbetter Beach, East Beach, and “Butterfly Beach.” There are ongoing coastal erosion problems associated with both development and natural processes; between 1933–1934 and 1998, cliff erosion in the map area occurred at rates of about 0.1 to 1 m/yr, the largest amount (63 m) occurring at Arroyo Burro in the western part of the map area. In addition, development of the Santa Barbara Harbor, which began in 1928, lead to shoaling west of the harbor as the initial breakwater trapped sand, as well as to coastal erosion east of the harbor. Since 1959, annual harbor dredging has mitigated at least some of the downcoast erosion problems. The Offshore of Santa Barbara map area lies in the central part of the Santa Barbara littoral cell, which is characterized by littoral drift to the east-southeast. Drift rates have been estimated to be about 400,000 tons/yr at Santa Barbara Harbor. Sediment supply to the western and central parts of the littoral cell, including the map area, is largely from relatively small transverse coastal watersheds. Within the map area, these coastal watersheds include (from east to west) San Ysidro Creek, Oak Creek, Montecito Creek, Sycamore Creek, Mission Creek, Arroyo Burro, and Atascadero Creek. The Ventura and Santa Clara Rivers, the mouths of which are about 40 to 50 km southeast of Santa Barbara, are much larger sediment sources. Still farther east, eastward-moving sediment in the littoral cell is trapped by Hueneme and Mugu Canyons and then transported to the deep-water Santa Monica Basin. The offshore part of the map area consists of a relatively flat and shallow continental shelf, which dips gently seaward (about 0.4° to 0.8°) so that water depths at the 3-nautical-mile limit of California’s State Waters are about 45 m in the east and about 75 m in the west. This part of the Santa Barbara Channel is relatively well protected from large Pacific swells from the north and northwest by Point Conception and from the south and southwest by offshore islands and banks. The shelf is underlain by variable amounts of upper Quaternary shelf, estuarine, and fluvial sediments deposited as sea level fluctuated in the late Pleistocene. Seafloor habitats in the broad Santa Barbara Channel region consist of significant amounts of soft sediment and isolated areas of rocky habitat that support kelp-forest communities nearshore and rocky-reef communities in deep water. The potential marine benthic habitat types mapped in the Offshore of Santa Barbara map area are directly related to its Quaternary geologic history, geomorphology, and active sedimentary processes. These potential habitats, which lie within the Shelf (continental shelf) megahabitat, range from soft, unconsolidated sediment to hard sedimentary bedrock. This heterogeneous seafloor provides promising habitat for rockfish, groundfish, crabs, shrimp, and other marine benthic organisms.