Science.gov

Sample records for breast imaging systems

  1. Breast-Dedicated Radionuclide Imaging Systems.

    PubMed

    Hsu, David F C; Freese, David L; Levin, Craig S

    2016-02-01

    Breast-dedicated radionuclide imaging systems show promise for increasing clinical sensitivity for breast cancer while minimizing patient dose and cost. We present several breast-dedicated coincidence-photon and single-photon camera designs that have been described in the literature and examine their intrinsic performance, clinical relevance, and impact. Recent tracer development is mentioned, results from recent clinical tests are summarized, and potential areas for improvement are highlighted.

  2. CYBPET: a cylindrical PET system for breast imaging

    NASA Astrophysics Data System (ADS)

    Karimian, A.; Thompson, C. J.; Sarkar, S.; Raisali, G.; Pani, R.; Davilu, H.; Sardari, D.

    2005-06-01

    We propose a Cylindrical Breast PET (CYBPET) system for breast imaging with patients in the prone position. An individual pendulous breast is covered by thin plastic to provide reduced pressure fixation and surrounded by the crystals inside the CYBPET ring. Each breast is imaged separately. The rest of the body is shielded properly to minimize the contribution of scattered photons from the other breast and the rest of the body. To compare the CYBPET with whole-body PET (WB-PET) the simulations of CYBPET and a WB-PET (GE-Advance) for a 10 mm tumor inside the breast with a lesion to background (breast) activity concentration of 6 to 1 were made. The noise effective count rate (NECR) of CYBPET is about twice that of WB-PET at activity concentrations less than 3.1 μCi/cc. The spatial resolution of CYBPET is better by 25% than the WB-PET.

  3. Digital optical tomography system for dynamic breast imaging.

    PubMed

    Flexman, Molly L; Khalil, Michael A; Al Abdi, Rabah; Kim, Hyun K; Fong, Christopher J; Desperito, Elise; Hershman, Dawn L; Barbour, Randall L; Hielscher, Andreas H

    2011-07-01

    Diffuse optical tomography has shown promising results as a tool for breast cancer screening and monitoring response to chemotherapy. Dynamic imaging of the transient response of the breast to an external stimulus, such as pressure or a respiratory maneuver, can provide additional information that can be used to detect tumors. We present a new digital continuous-wave optical tomography system designed to simultaneously image both breasts at fast frame rates and with a large number of sources and detectors. The system uses a master-slave digital signal processor-based detection architecture to achieve a dynamic range of 160 dB and a frame rate of 1.7 Hz with 32 sources, 64 detectors, and 4 wavelengths per breast. Included is a preliminary study of one healthy patient and two breast cancer patients showing the ability to identify an invasive carcinoma based on the hemodynamic response to a breath hold.

  4. Microwave Breast Imaging System Prototype with Integrated Numerical Characterization

    PubMed Central

    Haynes, Mark; Stang, John; Moghaddam, Mahta

    2012-01-01

    The increasing number of experimental microwave breast imaging systems and the need to properly model them have motivated our development of an integrated numerical characterization technique. We use Ansoft HFSS and a formalism we developed previously to numerically characterize an S-parameter- based breast imaging system and link it to an inverse scattering algorithm. We show successful reconstructions of simple test objects using synthetic and experimental data. We demonstrate the sensitivity of image reconstructions to knowledge of the background dielectric properties and show the limits of the current model. PMID:22481906

  5. Breast imaging with the SoftVue imaging system: first results

    NASA Astrophysics Data System (ADS)

    Duric, Neb; Littrup, Peter; Schmidt, Steven; Li, Cuiping; Roy, Olivier; Bey-Knight, Lisa; Janer, Roman; Kunz, Dave; Chen, Xiaoyang; Goll, Jeffrey; Wallen, Andrea; Zafar, Fouzaan; Allada, Veerendra; West, Erik; Jovanovic, Ivana; Li, Kuo; Greenway, William

    2013-03-01

    For women with dense breast tissue, who are at much higher risk for developing breast cancer, the performance of mammography is at its worst. Consequently, many early cancers go undetected when they are the most treatable. Improved cancer detection for women with dense breasts would decrease the proportion of breast cancers diagnosed at later stages, which would significantly lower the mortality rate. The emergence of whole breast ultrasound provides good performance for women with dense breast tissue, and may eliminate the current trade-off between the cost effectiveness of mammography and the imaging performance of more expensive systems such as magnetic resonance imaging. We report on the performance of SoftVue, a whole breast ultrasound imaging system, based on the principles of ultrasound tomography. SoftVue was developed by Delphinus Medical Technologies and builds on an early prototype developed at the Karmanos Cancer Institute. We present results from preliminary testing of the SoftVue system, performed both in the lab and in the clinic. These tests aimed to validate the expected improvements in image performance. Initial qualitative analyses showed major improvements in image quality, thereby validating the new imaging system design. Specifically, SoftVue's imaging performance was consistent across all breast density categories and had much better resolution and contrast. The implications of these results for clinical breast imaging are discussed and future work is described.

  6. Modeling digital breast tomosynthesis imaging systems for optimization studies

    NASA Astrophysics Data System (ADS)

    Lau, Beverly Amy

    Digital breast tomosynthesis (DBT) is a new imaging modality for breast imaging. In tomosynthesis, multiple images of the compressed breast are acquired at different angles, and the projection view images are reconstructed to yield images of slices through the breast. One of the main problems to be addressed in the development of DBT is the optimal parameter settings to obtain images ideal for detection of cancer. Since it would be unethical to irradiate women multiple times to explore potentially optimum geometries for tomosynthesis, it is ideal to use a computer simulation to generate projection images. Existing tomosynthesis models have modeled scatter and detector without accounting for oblique angles of incidence that tomosynthesis introduces. Moreover, these models frequently use geometry-specific physical factors measured from real systems, which severely limits the robustness of their algorithms for optimization. The goal of this dissertation was to design the framework for a computer simulation of tomosynthesis that would produce images that are sensitive to changes in acquisition parameters, so an optimization study would be feasible. A computer physics simulation of the tomosynthesis system was developed. The x-ray source was modeled as a polychromatic spectrum based on published spectral data, and inverse-square law was applied. Scatter was applied using a convolution method with angle-dependent scatter point spread functions (sPSFs), followed by scaling using an angle-dependent scatter-to-primary ratio (SPR). Monte Carlo simulations were used to generate sPSFs for a 5-cm breast with a 1-cm air gap. Detector effects were included through geometric propagation of the image onto layers of the detector, which were blurred using depth-dependent detector point-spread functions (PRFs). Depth-dependent PRFs were calculated every 5-microns through a 200-micron thick CsI detector using Monte Carlo simulations. Electronic noise was added as Gaussian noise as a

  7. Computerized image analysis of digitized infrared images of breasts from a scanning infrared imaging system

    NASA Astrophysics Data System (ADS)

    Head, Jonathan F.; Lipari, Charles A.; Elliot, Robert L.

    1998-10-01

    Infrared imaging of the breasts has been shown to be of value in risk assessment, detection, diagnosis and prognosis of breast cancer. However, infrared imaging has not been widely accepted for a variety of reasons, including the lack of standardization of the subjective visual analysis method. The subjective nature of the standard visual analysis makes it difficult to achieve equivalent results with different equipment and different interpreters of the infrared patterns of the breasts. Therefore, this study was undertaken to develop more objective analysis methods for infrared images of the breasts by creating objective semiquantitative and quantitative analysis of computer assisted image analysis determined mean temperatures of whole breasts and quadrants of the breasts. When using objective quantitative data on whole breasts (comparing differences in means of left and right breasts), semiquantitative data on quadrants of the breast (determining an index by summation of scores for each quadrant), or summation of quantitative data on quadrants of the breasts there was a decrease in the number of abnormal patterns (positives) in patients being screen for breast cancer and an increases in the number of abnormal patterns (true positives) in the breast cancer patients. It is hoped that the decrease in positives in women being screened for breast cancer will translate into a decrease in the false positives but larger numbers of women with longer follow-up will be needed to clarify this. Also a much larger group of breast cancer patients will need to be studied in order to see if there is a true increase in the percentage of breast cancer patients presenting with abnormal infrared images of the breast with these objective image analysis methods.

  8. Conformal ultrasound imaging system for anatomical breast inspection.

    PubMed

    Rouyer, Julien; Mensah, Serge; Franceschini, Emilie; Lasaygues, Philippe; Lefebvre, Jean-Pierre

    2012-07-01

    Ultrasound tomography has considerable potential as a means of breast cancer detection because it reduces the operator-dependency observed in echography. A half-ring transducer array was designed based on breast anatomy, to obtain reflectivity images of the ductolobular structures using tomographic reconstruction procedures. The 3-MHz transducer array comprises 1024 elements set in a 190-degree circular arc with a radius of 100 mm. The front-end electronics incorporate 32 independent parallel transmit/receive channels and a 32-to-1024 multiplexer unit. The transmit and receive circuitries have a variable sampling frequency of up to 80 MHz and 12-bit precision. Arbitrary waveforms are synthesized to improve the signal-to-noise ratio and to increase the spatial resolution when working with low-contrast objects. The setup was calibrated with academic objects and a needle hydrophone to develop the data correction tools and specify the properties of the system. The backscattering field was recorded using a restricted aperture, and tomographic acquisitions were performed with a pair of 0.08-mm-diameter steel wires, a low-contrast 2-D breast phantom, and a breast-shaped phantom containing inclusions. Data were processed with dedicated correction tools and a pulse compression technique. Objects were reconstructed using the elliptical back-projection algorithm.

  9. Augmented Reality Imaging System: 3D Viewing of a Breast Cancer

    PubMed Central

    Douglas, David B.; Boone, John M.; Petricoin, Emanuel; Liotta, Lance; Wilson, Eugene

    2016-01-01

    Objective To display images of breast cancer from a dedicated breast CT using Depth 3-Dimensional (D3D) augmented reality. Methods A case of breast cancer imaged using contrast-enhanced breast CT (Computed Tomography) was viewed with the augmented reality imaging, which uses a head display unit (HDU) and joystick control interface. Results The augmented reality system demonstrated 3D viewing of the breast mass with head position tracking, stereoscopic depth perception, focal point convergence and the use of a 3D cursor and joy-stick enabled fly through with visualization of the spiculations extending from the breast cancer. Conclusion The augmented reality system provided 3D visualization of the breast cancer with depth perception and visualization of the mass's spiculations. The augmented reality system should be further researched to determine the utility in clinical practice. PMID:27774517

  10. Ultrashort Microwave-Pumped Real-Time Thermoacoustic Breast Tumor Imaging System.

    PubMed

    Ye, Fanghao; Ji, Zhong; Ding, Wenzheng; Lou, Cunguang; Yang, Sihua; Xing, Da

    2016-03-01

    We report the design of a real-time thermoacoustic (TA) scanner dedicated to imaging deep breast tumors and investigate its imaging performance. The TA imaging system is composed of an ultrashort microwave pulse generator and a ring transducer array with 384 elements. By vertically scanning the transducer array that encircles the breast phantom, we achieve real-time, 3D thermoacoustic imaging (TAI) with an imaging speed of 16.7 frames per second. The stability of the microwave energy and its distribution in the cling-skin acoustic coupling cup are measured. The results indicate that there is a nearly uniform electromagnetic field in each XY-imaging plane. Three plastic tubes filled with salt water are imaged dynamically to evaluate the real-time performance of our system, followed by 3D imaging of an excised breast tumor embedded in a breast phantom. Finally, to demonstrate the potential for clinical applications, the excised breast of a ewe embedded with an ex vivo human breast tumor is imaged clearly with a contrast of about 1:2.8. The high imaging speed, large field of view, and 3D imaging performance of our dedicated TAI system provide the potential for clinical routine breast screening.

  11. Development and Application of a Suite of 4-D Virtual Breast Phantoms for Optimization and Evaluation of Breast Imaging Systems

    PubMed Central

    Lin, Yuan; Ikejimba, Lynda C.; Ghate, Sujata V.; Dobbins, James T.; Segars, William P.

    2014-01-01

    Mammography is currently the most widely utilized tool for detection and diagnosis of breast cancer. However, in women with dense breast tissue, tissue overlap may obscure lesions. Digital breast tomosynthesis can reduce tissue overlap. Furthermore, imaging with contrast enhancement can provide additional functional information about lesions, such as morphology and kinetics, which in turn may improve lesion identification and characterization. The performance of these imaging techniques is strongly dependent on the structural composition of the breast, which varies significantly among patients. Therefore, imaging system and imaging technique optimization should take patient variability into consideration. Furthermore, optimization of imaging techniques that employ contrast agents should include the temporally varying breast composition with respect to the contrast agent uptake kinetics. To these ends, we have developed a suite of 4-D virtual breast phantoms, which are incorporated with the kinetics of contrast agent propagation in different tissues and can realistically model normal breast parenchyma as well as benign and malignant lesions. This development presents a new approach in performing simulation studies using truly anthropomorphic models. To demonstrate the utility of the proposed 4-D phantoms, we present a simplified example study to compare the performance of 14 imaging paradigms qualitatively and quantitatively. PMID:24691118

  12. Breast density mapping based upon system calibration, x-ray techniques, and FFDM images

    NASA Astrophysics Data System (ADS)

    Chen, Biao; Smith, Andrew P.; Jing, Zhenxue; Wu, Tao

    2007-03-01

    Clinical studies have correlated a high breast density to a women's risk of breast cancer. A breast density measurement that can quantitatively depict the volume distribution and percentage of dense tissues in breasts would be very useful for risk factor assessment of breast cancer, and might be more predictive of risks than the common but subjective and coarse 4-point BIRADS scale. This paper proposes to use a neural-network mapping to compute the breast density information based upon system calibration data, x-ray techniques, and Full Field Digital Mammography (FFDM) images. The mapping consists of four modules, namely, system calibration, generator of beam quality, generator of normalized absorption, and a multi-layer feed-forward neural network. As the core of breast density mapping, the network accepts x-ray target/filter combination, normalized x-ray absorption, pixel-wise breast thickness map, and x-ray beam quality during image acquisition as input elements, and exports a pixel-wise breast density distribution and a single breast density percentage for the imaged breast. Training and testing data sets for the design and verification of the network were formulated from calibrated x-ray beam quality, imaging data with a step wedge phantom under a variety x-ray imaging techniques, and nominal breast densities of tissue equivalent materials. The network was trained using a Levenberg-Marquardt algorithm based back-propagation learning method. Various thickness and glandular density phantom studies were performed with clinical x-ray techniques. Preliminary results showed that the neural network mapping is promising in accurately computing glandular density distribution and breast density percentage.

  13. Breast Imaging Reporting and Data System Category 3 Lesions Detected on Whole-Breast Screening Ultrasound

    PubMed Central

    Nam, Sang Yu; Ko, Eun Young; Han, Boo-Kyung; Shin, Jung Hee; Hahn, Soo Yeon

    2016-01-01

    Purpose This study assessed the incidence and cancer rate of probably benign lesions detected on bilateral whole-breast screening ultrasound (US), which corresponded to US Breast Imaging Reporting and Data System (BI-RADS) category 3, and evaluated the proper management of those lesions. Methods This study was approved by the Institutional Review Board in our institution, which waived informed patient consent. We retrospectively reviewed US images of 1,666 patients who underwent bilateral whole-breast screening US as a supplemental screening test to negative screening mammography or screening US only. The incidence, clinical course, and cancer rate of screening US-detected probably benign lesions corresponding to US BI-RADS category 3 were investigated, and the size and multiplicity of screening US-detected category 3 lesions were evaluated. Results Probably benign lesions corresponding to US BI-RADS category 3 were detected in 689 of 1,666 patients (41.4%) who underwent screening US. Among them, 653 had follow-up US images for at least 24 months, and among these 653, 190 (29.1%) had multiple bilateral category 3 lesions. Moreover, 539 of 1,666 patients (32.4%) had lesions ≤1 cm in size and 114 of 1,666 (6.8%) had lesions >1 cm (median, 0.82 cm; range, 0.3–4.2 cm). Four of the 653 patients (0.6%) showed suspicious interval changes and were categorized into BI-RADS category 4. Biopsy analysis confirmed only one lesion as invasive ductal carcinoma at the 6-month follow-up; another lesion was an intraductal papilloma and the remaining two were fibroadenomas. Overall cancer rate of the screening US-detected BI-RADS category 3 lesions was 0.2%. Conclusion The incidence of category 3 lesions detected on screening US only was very high, but the cancer rate was very low. Therefore, in an average-risk population, routine screening US is preferable over short-term follow-up for BI-RADS category 3 lesions detected on whole-breast screening US. PMID:27721880

  14. An object-oriented simulator for 3D digital breast tomosynthesis imaging system.

    PubMed

    Seyyedi, Saeed; Cengiz, Kubra; Kamasak, Mustafa; Yildirim, Isa

    2013-01-01

    Digital breast tomosynthesis (DBT) is an innovative imaging modality that provides 3D reconstructed images of breast to detect the breast cancer. Projections obtained with an X-ray source moving in a limited angle interval are used to reconstruct 3D image of breast. Several reconstruction algorithms are available for DBT imaging. Filtered back projection algorithm has traditionally been used to reconstruct images from projections. Iterative reconstruction algorithms such as algebraic reconstruction technique (ART) were later developed. Recently, compressed sensing based methods have been proposed in tomosynthesis imaging problem. We have developed an object-oriented simulator for 3D digital breast tomosynthesis (DBT) imaging system using C++ programming language. The simulator is capable of implementing different iterative and compressed sensing based reconstruction methods on 3D digital tomosynthesis data sets and phantom models. A user friendly graphical user interface (GUI) helps users to select and run the desired methods on the designed phantom models or real data sets. The simulator has been tested on a phantom study that simulates breast tomosynthesis imaging problem. Results obtained with various methods including algebraic reconstruction technique (ART) and total variation regularized reconstruction techniques (ART+TV) are presented. Reconstruction results of the methods are compared both visually and quantitatively by evaluating performances of the methods using mean structural similarity (MSSIM) values.

  15. Characterization of a prototype tabletop x-ray CT breast imaging system

    NASA Astrophysics Data System (ADS)

    O'Connor, J. Michael; Glick, Stephen J.; Gong, Xing; Didier, Clay; Mah'd, Mufeed

    2007-03-01

    Planar X-ray mammography is the standard medical imaging modality for the early detection of breast cancer. Based on advancements in digital flat-panel detector technology, dedicated x-ray computed tomography (CT) mammography is a modality under investigation that offers the potential for improved breast tumor imaging. We have implemented a prototype half cone-beam CT breast imaging system that utilizes an indirect flat-panel detector. This prototype can be used to explore and evaluate the effect of varying acquisition and reconstruction parameters on image quality. This report describes our system and characterizes the performance of the system through the analysis of Modulation Transfer Function (MTF) and Noise Power Spectrum (NPS). All CT reconstructions were made using Feldkamp's filtered backprojection algorithm. The 3D MTF was determined by the analysis of the plane spread function (PlSF) derived from the surface spread function (SSF) of reconstructed 6.3mm spheres. 3D NPS characterization was performed through the analysis of a 3D volume extracted from zero-mean CT noise of air reconstructions. The effect of varying locations on MTF and the effect of different Butterworth filter cutoff frequencies on NPS are reported. Finally, we present CT images of mastectomy excised breast tissue. Breast specimen images were acquired on our CTMS using an x-ray technique similar to the one used during performance characterization. Specimen images demonstrate the inherent CT capability to reduce the masking effect of anatomical noise. Both the quantitative system characterization and the breast specimen images continue to reinforce the hope that dedicated flat-panel detector, x-ray cone-beam CT will eventually provide enhanced breast cancer detection capability.

  16. Development and assessment of a Microsoft Kinect based system for imaging the breast in three dimensions.

    PubMed

    Wheat, J S; Choppin, S; Goyal, A

    2014-06-01

    Three-dimensional surface imaging technologies have been used in the planning and evaluation of breast reconstructive and cosmetic surgery. The aim of this study was to develop a 3D surface imaging system based on the Microsoft Kinect and assess the accuracy and repeatability with which the system could image the breast. A system comprising two Kinects, calibrated to provide a complete 3D image of the mannequin was developed. Digital measurements of Euclidean and surface distances between landmarks showed acceptable agreement with manual measurements. The mean differences for Euclidean and surface distances were 1.9mm and 2.2mm, respectively. The system also demonstrated good intra- and inter-rater reliability (ICCs>0.999). The Kinect-based 3D surface imaging system offers a low-cost, readily accessible alternative to more expensive, commercially available systems, which have had limited clinical use.

  17. Automatic nipple detection on 3D images of an automated breast ultrasound system (ABUS)

    NASA Astrophysics Data System (ADS)

    Javanshir Moghaddam, Mandana; Tan, Tao; Karssemeijer, Nico; Platel, Bram

    2014-03-01

    Recent studies have demonstrated that applying Automated Breast Ultrasound in addition to mammography in women with dense breasts can lead to additional detection of small, early stage breast cancers which are occult in corresponding mammograms. In this paper, we proposed a fully automatic method for detecting the nipple location in 3D ultrasound breast images acquired from Automated Breast Ultrasound Systems. The nipple location is a valuable landmark to report the position of possible abnormalities in a breast or to guide image registration. To detect the nipple location, all images were normalized. Subsequently, features have been extracted in a multi scale approach and classification experiments were performed using a gentle boost classifier to identify the nipple location. The method was applied on a dataset of 100 patients with 294 different 3D ultrasound views from Siemens and U-systems acquisition systems. Our database is a representative sample of cases obtained in clinical practice by four medical centers. The automatic method could accurately locate the nipple in 90% of AP (Anterior-Posterior) views and in 79% of the other views.

  18. MammoSys: A content-based image retrieval system using breast density patterns.

    PubMed

    de Oliveira, Júlia E E; Machado, Alexei M C; Chavez, Guillermo C; Lopes, Ana Paula B; Deserno, Thomas M; Araújo, Arnaldo de A

    2010-09-01

    In this paper, we present a content-based image retrieval system designed to retrieve mammographies from large medical image database. The system is developed based on breast density, according to the four categories defined by the American College of Radiology, and is integrated to the database of the Image Retrieval in Medical Applications (IRMA) project, that provides images with classification ground truth. Two-dimensional principal component analysis is used in breast density texture characterization, in order to effectively represent texture and allow for dimensionality reduction. A support vector machine is used to perform the retrieval process. Average precision rates are in the range from 83% to 97% considering a data set of 5024 images. The results indicate the potential of the system as the first stage of a computer-aided diagnosis framework.

  19. The design and characterization of a digital optical breast cancer imaging system.

    PubMed

    Flexman, Molly L; Li, Yang; Bur, Andres M; Fong, Christopher J; Masciotti, James M; Al Abdi, Rabah; Barbour, Randall L; Hielscher, Andreas H

    2008-01-01

    Optical imaging has the potential to play a major role in breast cancer screening and diagnosis due to its ability to image cancer characteristics such as angiogenesis and hypoxia. A promising approach to evaluate and quantify these characteristics is to perform dynamic imaging studies in which one monitors the hemodynamic response to an external stimulus, such as a valsalva maneuver. It has been shown that the response to such stimuli shows MARKED differences between cancerous and healthy tissues. The fast imaging rates and large dynamic range of digital devices makes them ideal for this type of imaging studies. Here we present a digital optical tomography system designed specifically for dynamic breast imaging. The instrument uses laser diodes at 4 different near-infrared wavelengths with 32 sources and 128 silicon photodiode detectors.

  20. Breast Imaging Reporting and Data System (BI-RADS) breast composition descriptors: Automated measurement development for full field digital mammography

    SciTech Connect

    Fowler, E. E.; Sellers, T. A.; Lu, B.; Heine, J. J.

    2013-11-15

    Purpose: The Breast Imaging Reporting and Data System (BI-RADS) breast composition descriptors are used for standardized mammographic reporting and are assessed visually. This reporting is clinically relevant because breast composition can impact mammographic sensitivity and is a breast cancer risk factor. New techniques are presented and evaluated for generating automated BI-RADS breast composition descriptors using both raw and calibrated full field digital mammography (FFDM) image data.Methods: A matched case-control dataset with FFDM images was used to develop three automated measures for the BI-RADS breast composition descriptors. Histograms of each calibrated mammogram in the percent glandular (pg) representation were processed to create the new BR{sub pg} measure. Two previously validated measures of breast density derived from calibrated and raw mammograms were converted to the new BR{sub vc} and BR{sub vr} measures, respectively. These three measures were compared with the radiologist-reported BI-RADS compositions assessments from the patient records. The authors used two optimization strategies with differential evolution to create these measures: method-1 used breast cancer status; and method-2 matched the reported BI-RADS descriptors. Weighted kappa (κ) analysis was used to assess the agreement between the new measures and the reported measures. Each measure's association with breast cancer was evaluated with odds ratios (ORs) adjusted for body mass index, breast area, and menopausal status. ORs were estimated as per unit increase with 95% confidence intervals.Results: The three BI-RADS measures generated by method-1 had κ between 0.25–0.34. These measures were significantly associated with breast cancer status in the adjusted models: (a) OR = 1.87 (1.34, 2.59) for BR{sub pg}; (b) OR = 1.93 (1.36, 2.74) for BR{sub vc}; and (c) OR = 1.37 (1.05, 1.80) for BR{sub vr}. The measures generated by method-2 had κ between 0.42–0.45. Two of these measures

  1. Automation and Preclinical Evaluation of a Dedicated Emission Mammotomography System for Fully 3-D Molecular Breast Imaging

    DTIC Science & Technology

    2009-10-01

    volumetric shape. These MRI breast image sets can thus be used as the digital “ phantoms ” when utilizing computer models for system development and orbit...future breast phantom experiments should utilize ~700mL breast volumes as previous experiments in our lab have mainly used phantoms >1000mL in volume...sizes from this study retrospectively validate the range of shapes and sizes (250 to 1700 mL volumes) of custom shaped pendant breast phantoms

  2. Development and Testing of a Single Frequency Terahertz Imaging System for Breast Cancer Detection

    PubMed Central

    St. Peter, Benjamin; Yngvesson, Sigfrid; Siqueira, Paul; Kelly, Patrick; Khan, Ashraf; Glick, Stephen; Karellas, Andrew

    2013-01-01

    The ability to discern malignant from benign tissue in excised human breast specimens in Breast Conservation Surgery (BCS) was evaluated using single frequency terahertz radiation. Terahertz (THz) images of the specimens in reflection mode were obtained by employing a gas laser source and mechanical scanning. The images were correlated with optical histological micrographs of the same specimens, and a mean discrimination of 73% was found for five out of six samples using Receiver Operating Characteristic (ROC) analysis. The system design and characterization is discussed in detail. The initial results are encouraging but further development of the technology and clinical evaluation is needed to evaluate its feasibility in the clinical environment. PMID:25055306

  3. Real-time optoacoustic imaging of breast cancer using an interleaved two laser imaging system coregistered with ultrasound

    NASA Astrophysics Data System (ADS)

    Ermilov, Sergey A.; Fronheiser, Matthew P.; Nadvoretsky, Vyacheslav; Brecht, Hans-Peter; Su, Richard; Conjusteau, André; Mehta, Ketan; Otto, Pamela; Oraevsky, Alexander A.

    2010-02-01

    We present results from a clinical case study on imaging breast cancer using a real-time interleaved two laser optoacoustic imaging system co-registered with ultrasound. The present version of Laser Optoacoustic Ultrasonic Imaging System (LOUIS) utilizes a commercial linear ultrasonic transducer array, which has been modified to include two parallel rectangular optical bundles, to operate in both ultrasonic (US) and optoacoustic (OA) modes. In OA mode, the images from two optical wavelengths (755 nm and 1064 nm) that provide opposite contrasts for optical absorption of oxygenated vs deoxygenated blood can be displayed simultaneously at a maximum rate of 20 Hz. The real-time aspect of the system permits probe manipulations that can assist in the detection of the lesion. The results show the ability of LOUIS to co-register regions of high absorption seen in OA images with US images collected at the same location with the dual modality probe. The dual wavelength results demonstrate that LOUIS can potentially provide breast cancer diagnostics based on different intensities of OA images of the lesion obtained at 755 nm and 1064 nm. We also present new data processing based on deconvolution of the LOUIS impulse response that helps recover original optoacoustic pressure profiles. Finally, we demonstrate the image analysis tool that provides automatic detection of the tumor boundary and quantitative metrics of the optoacoustic image quality. Using a blood vessel phantom submerged in a tissue-like milky background solution we show that the image contrast is minimally affected by the phantom distance from the LOUIS probe until about 60-65 mm. We suggest using the image contrast for quantitative assessment of an OA image of a breast lesion, as a part of the breast cancer diagnostics procedure.

  4. Misclassification of Breast Imaging Reporting and Data System (BI-RADS) Mammographic Density and Implications for Breast Density Reporting Legislation.

    PubMed

    Gard, Charlotte C; Aiello Bowles, Erin J; Miglioretti, Diana L; Taplin, Stephen H; Rutter, Carolyn M

    2015-01-01

    USA states have begun legislating mammographic breast density reporting to women, requiring that women undergoing screening mammography who have dense breast tissue (Breast Imaging Reporting and Data System [BI-RADS] density c or d) receive written notification of their breast density; however, the impact that misclassification of breast density will have on this reporting remains unclear. The aim of this study was to assess reproducibility of the four-category BI-RADS density measure and examine its relationship with a continuous measure of percent density. We enrolled 19 radiologists, experienced in breast imaging, from a single integrated health care system. Radiologists interpreted 341 screening mammograms at two points in time 6 months apart. We assessed intra- and interobserver agreement in radiologists'; interpretations of BI-RADS density and explored whether agreement depended upon radiologist characteristics. We examined the relationship between BI-RADS density and percent density in a subset of 282 examinations. Intraradiologist agreement was moderate to substantial, with kappa varying across radiologists from 0.50 to 0.81 (mean = 0.69, 95% CI [0.63, 0.73]). Intraradiologist agreement was higher for radiologists with ≥10 years experience interpreting mammograms (difference in mean kappa = 0.10, 95% CI [0.01, 0.24]). Interradiologist agreement varied widely across radiologist pairs from slight to substantial, with kappa ranging from 0.02 to 0.72 (mean = 0.46, 95% CI [0.36, 0.55]). Of 145 examinations interpreted as "nondense" (BI-RADS density a or b) by the majority of radiologists, 82.8% were interpreted as "dense" (BI-RADS density c or d) by at least one radiologist. Of 187 examinations interpreted as "dense" by the majority of radiologists, 47.1% were interpreted as "nondense" by at least one radiologist. While the examinations of almost half of the women in our study were interpreted clinically as having BI-RADS density c or d, only about 10% of

  5. The electromagnetic-trait imaging computation of traveling wave method in breast tumor microwave sensor system.

    PubMed

    Tao, Zhi-Fu; Han, Zhong-Ling; Yao, Meng

    2011-01-01

    Using the difference of dielectric constant between malignant tumor tissue and normal breast tissue, breast tumor microwave sensor system (BRATUMASS) determines the detected target of imaging electromagnetic trait by analyzing the properties of target tissue back wave obtained after near-field microwave radicalization (conelrad). The key of obtained target properties relationship and reconstructed detected space is to analyze the characteristics of the whole process from microwave transmission to back wave reception. Using traveling wave method, we derive spatial transmission properties and the relationship of the relation detected points distances, and valuate the properties of each unit by statistical valuation theory. This chapter gives the experimental data analysis results.

  6. Composite modulation transfer function evaluation of a cone beam computed tomography breast imaging system

    NASA Astrophysics Data System (ADS)

    Betancourt-Benítez, Ricardo; Ning, Ruola; Liu, Shaohua

    2009-11-01

    Several factors during the scanning process, image reconstruction and geometry of an imaging system, influence the spatial resolution of a computed tomography imaging system. In this work, the spatial resolution of a state of the art flat panel detector-based cone beam computed tomography breast imaging system is evaluated. First, scattering, exposure level, voltage, voxel size, pixel size, back-projection filter, reconstruction algorithm, and number of projections are varied to evaluate their effect on spatial resolution. Second, its uniformity throughout the whole field of view is evaluated as a function of radius along the x-y plane and as a function of z at the center of rotation. The results of the study suggest that the modulation transfer function is mainly influenced by the pixel, back-projection filter, and number of projections used. The evaluation of spatial resolution throughout the field of view also suggests that this imaging system does have a 3-D quasi-isotropic spatial resolution in a cylindrical region of radius equal to 40 mm centered at the axis of rotation. Overall, this study provides a useful tool to determine the optimal parameters for the best possible use of this cone beam computed tomography breast imaging system.

  7. Design of a contrast-enhanced dual-energy tomosynthesis system for breast cancer imaging

    NASA Astrophysics Data System (ADS)

    Hörnig, M. D.; Bätz, L.; Mertelmeier, T.

    2012-03-01

    Digital breast tomosynthesis (DBT) is a three-dimensional X-ray imaging modality that has the potential to decrease the superimposition effect of breast structural noise, thereby increasing lesion conspicuity. To further improve breast cancer detection, our work has been devoted to develop a prototype for contrast-enhanced dual-energy tomosynthesis (CEDET). CEDET involves the injection of an iodinated contrast agent and measures the relative increase in uptake of contrast in the suspected breast cancer lesion. Either temporal or dual-energy subtraction techniques may be used to implement CEDET. Both 2D contrast-enhanced dual-energy mammography and 3D tomosynthesis can be applied. Here we present the design of a prototype CEDET system based on the Siemens MAMMOMAT Inspiration and employing two additional high-energy filters in addition to the standard Rh filter, the latter being used for the low-energy acquisitions. A quality factor of squared signal-difference-to-noise-ratio of iodine per pixel area and average glandular dose as a function of breast thickness is used to optimize the filter material, the filter thickness, and the tube voltage. The average glandular dose can be calculated from the entrance surface air kerma using computed conversion coefficients DgN for the used X-ray spectra. We also present the results of DQE measurements of the amorphous selenium detector involved. Finally, results of phantom tests for tomosynthesis acquisition and first clinical data in the 2D mode will be shown.

  8. Breast cancer margin detection with a single frequency terahertz imaging system

    NASA Astrophysics Data System (ADS)

    Yngvesson, Sigfrid K.; Karellas, Andrew; Glick, Stephen; Khan, Ashraf; Siqueira, Paul R.; Kelly, Patrick A.; St. Peter, Benjamin

    2016-03-01

    The ability to discern malignant from benign tissue in excised human breast specimens in Breast Conservation Surgery (BCS) was evaluated using a prototype single frequency terahertz radiation. Terahertz (THz) images of the specimens in reflection mode were obtained by employing a gas laser source and mechanical scanning. The images were correlated with optical histological micrographs of the same specimens, and a mean discrimination of 73% was found for five out of six samples using Receiver Operating Characteristic (ROC) analysis. This result is similar to what has previously been obtained using Terahertz pulsed imaging (TPI) techniques. We will discuss the specific advantages of Single frequency THz imaging (SFTI) compared with TPI for potentially allowing the development of much faster, more compact and less expensive cancer imaging systems that could be adapted for employment in the operating room. The system design and characterization of the prototype SFTI system are discussed in detail. The initial results are encouraging but further development of the technology and clinical evaluation is needed to evaluate its feasibility in the clinical environment.

  9. Classification System for Identifying Women at Risk for Altered Partial Breast Irradiation Recommendations After Breast Magnetic Resonance Imaging

    SciTech Connect

    Kowalchik, Kristin V.; Vallow, Laura A.; McDonough, Michelle; Thomas, Colleen S.; Heckman, Michael G.; Peterson, Jennifer L.; Adkisson, Cameron D.; Serago, Christopher; McLaughlin, Sarah A.

    2013-09-01

    Purpose: To study the utility of preoperative breast MRI for partial breast irradiation (PBI) patient selection, using multivariable analysis of significant risk factors to create a classification rule. Methods and Materials: Between 2002 and 2009, 712 women with newly diagnosed breast cancer underwent preoperative bilateral breast MRI at Mayo Clinic Florida. Of this cohort, 566 were retrospectively deemed eligible for PBI according to the National Surgical Adjuvant Breast and Bowel Project Protocol B-39 inclusion criteria using physical examination, mammogram, and/or ultrasound. Magnetic resonance images were then reviewed to determine their impact on patient eligibility. The patient and tumor characteristics were evaluated to determine risk factors for altered PBI eligibility after MRI and to create a classification rule. Results: Of the 566 patients initially eligible for PBI, 141 (25%) were found ineligible because of pathologically proven MRI findings. Magnetic resonance imaging detected additional ipsilateral breast cancer in 118 (21%). Of these, 62 (11%) had more extensive disease than originally noted before MRI, and 64 (11%) had multicentric disease. Contralateral breast cancer was detected in 28 (5%). Four characteristics were found to be significantly associated with PBI ineligibility after MRI on multivariable analysis: premenopausal status (P=.021), detection by palpation (P<.001), first-degree relative with a history of breast cancer (P=.033), and lobular histology (P=.002). Risk factors were assigned a score of 0-2. The risk of altered PBI eligibility from MRI based on number of risk factors was 0:18%; 1:22%; 2:42%; 3:65%. Conclusions: Preoperative bilateral breast MRI altered the PBI recommendations for 25% of women. Women who may undergo PBI should be considered for breast MRI, especially those with lobular histology or with 2 or more of the following risk factors: premenopausal, detection by palpation, and first-degree relative with a history of

  10. Contrast-enhanced ultrasound improved performance of breast imaging reporting and data system evaluation of critical breast lesions

    PubMed Central

    Luo, Jun; Chen, Ji-Dong; Chen, Qing; Yue, Lin-Xian; Zhou, Guo; Lan, Cheng; Li, Yi; Wu, Chi-Hua; Lu, Jing-Qiao

    2016-01-01

    AIM: To determine whether contrast-enhanced ultrasound (CEUS) can improve the precision of breast imaging reporting and data system (BI-RADS) categorization. METHODS: A total of 230 patients with 235 solid breast lesions classified as BI-RADS 4 on conventional ultrasound were evaluated. CEUS was performed within one week before core needle biopsy or surgical resection and a revised BI-RADS classification was assigned based on 10 CEUS imaging characteristics. Receiver operating characteristic curve analysis was then conducted to evaluate the diagnostic performance of CEUS-based BI-RADS assignment with pathological examination as reference criteria. RESULTS: The CEUS-based BI-RADS evaluation classified 116/235 (49.36%) lesions into category 3, 20 (8.51%), 13 (5.53%) and 12 (5.11%) lesions into categories 4A, 4B and 4C, respectively, and 74 (31.49%) into category 5. Selecting CEUS-based BI-RADS category 4A as an appropriate cut-off gave sensitivity and specificity values of 85.4% and 87.8%, respectively, for the diagnosis of malignant disease. The cancer-to-biopsy yield was 73.11% with CEUS-based BI-RADS 4A selected as the biopsy threshold compared with 40.85% otherwise, while the biopsy rate was only 42.13% compared with 100% otherwise. Overall, only 4.68% of invasive cancers were misdiagnosed. CONCLUSION: This pilot study suggests that evaluation of BI-RADS 4 breast lesions with CEUS results in reduced biopsy rates and increased cancer-to-biopsy yields. PMID:27358689

  11. Quantification of radiotracer uptake with a dedicated breast PET imaging system

    PubMed Central

    Raylman, Raymond R.; Smith, Mark F.; Kinahan, Paul E.; Majewski, Stan

    2008-01-01

    Tomographic breast imaging techniques can be used to quantify radiotracer uptake in breast and tumor tissue. However, physical processes common to PET imaging can confound accurate quantification. In this investigation, we assessed the effects of these phenomena and tested correction schemes for our new positron emission mammography–tomography system (PEM–PET). The PEM–PET scanner utilizes two sets of rotating planar detector heads. Each unit consists of a 4×3 array of Hamamatsu H8500 flat panel position sensitive photomultipliers coupled to a 96×72 array of 2×2×15 mm3 LYSO detector elements (pitch=2.1 mm). Image reconstruction is performed with a 3D-OSEM algorithm parallelized to run on a multiprocessor computer system. The reconstructed field-of-view is 15×15×15 cm3. Much of the testing procedures were based on NEMA-NU2∕2001 protocols. Count rate losses due to pulse pile-up, image contamination due to acceptance of random coincidences and Compton scatter, and image artifacts produced by photon attenuation were measured. It was found that the system was susceptible to count rate losses when moderate levels of radiation were present in the scanner due to the current design of the event trigger electronics. Application of corrections for Compton scattering, photon attenuation and dead time resulted in improved estimations of 18F concentration in simplified phantom studies. Results from these preliminary studies indicate that the PEM–PET scanner will be useful for the quantification of radiotracer uptake in breast tumors, possibly facilitating early assessment of cancer treatments. PMID:19070233

  12. Portable real-time optical coherence tomography system for intraoperative imaging and staging of breast cancer

    NASA Astrophysics Data System (ADS)

    Nguyen, Freddy T.; Zysk, Adam M.; Kotynek, Jan G.; Bellafiore, Frank J.; Rowland, Kendrith M.; Johnson, Patricia A.; Chaney, J. Eric; Boppart, Stephen A.

    2007-02-01

    Breast cancer continues to be one of the most widely diagnosed forms of cancer amongst women and the second leading type of cancer deaths amongst women. The recurrence rate of breast cancer is highly dependent on several factors including the complete removal of the primary tumor and the presence of cancer cells in involved lymph nodes. The metastatic spread and staging of breast cancer is also evaluated through the nodal assessment of the regional lymphatic system. A portable real-time spectral domain optical coherence tomography system is being presented as a clinical diagnostic tool in the intraoperative delineation of tumor margins as well as for real time lymph node assessment. The system employs a super luminescent diode centered at 1310 nm with a bandwidth of 92 nm. Using a spectral domain detection system, the data is acquired at a rate of 5 KHz / axial scan. The sample arm is a galvanometer scanning telecentric probe with an objective lens (f = 60 mm, confocal parameter = 1.5 mm) yielding an axial resolution of 8.3 μm and a transverse resolution of 35.0 μm. Images of tumor margins are acquired in the operating room ex vivo on freshly excised human tissue specimen. This data shows the potential of the use of OCT in defining the structural tumor margins in breast cancer. Images taken from ex-vivo samples on the bench system clearly delineate the differences between clusters of tumor cells and nearby adipose cells. In addition, the data shows the potential for OCT as a diagnostic tool in the staging of cancer metastasis through locoregional lymph node assessment.

  13. Assessment of two automated imaging systems in evaluating estrogen receptor status in breast carcinoma.

    PubMed

    Gokhale, Sumita; Rosen, Daniel; Sneige, Nour; Diaz, Leslie K; Resetkova, Erika; Sahin, Aysegul; Liu, Jinsong; Albarracin, Constance T

    2007-12-01

    Immunohistochemical staining for estrogen receptor (ER) status is widely used in the management of breast cancer. These stains have traditionally been scored manually, which results in generally good agreement among observers when the cases are strongly positive. However, significant interobserver and intraobserver differences in scoring can occur in borderline or weakly staining cases. Recently, automated systems have been proposed to provide a more sensitive and objective method of ER quantification. The ChromaVision Automated Cellular Imaging System and the Applied Imaging Ariol SL-50 quantify the color intensity of the immunoreactive product. To assess the accuracy of these 2 automated systems and to compare them to one another and to manual scoring, we performed immunostaining for ER on 64 cases of breast cancer. The percentages of positive cells were scored manually by 4 pathologists and by the 2 imaging systems. A discrepancy in scoring was defined as that which resulted in the reclassification of a case from negative to positive or vice versa. Our results showed significant agreement between the 2 automated systems. When automated scores were compared with the manual scores, only 5 of the 64 cases (7%) were discrepant. In 4 of these, the percentage of cells staining for ER was low (0% to 20%). Overall, the 2 systems were comparable, and discrepant results were most frequently seen when analyzing tumors with low levels of ER positive cells.

  14. Imaging study of a phase-sensitive breast-CT system in continuous acquisition mode

    NASA Astrophysics Data System (ADS)

    Delogu, P.; Golosio, B.; Fedon, C.; Arfelli, F.; Bellazzini, R.; Brez, A.; Brun, F.; Di Lillo, F.; Dreossi, D.; Mettivier, G.; Minuti, M.; Oliva, P.; Pichera, M.; Rigon, L.; Russo, P.; Sarno, A.; Spandre, G.; Tromba, G.; Longo, R.

    2017-01-01

    The SYRMA-CT project aims to set-up the first clinical trial of phase-contrast breast Computed Tomography with synchrotron radiation at the SYRMEP beamline of Elettra, the Italian synchrotron light source. The challenge in a dedicated breast CT is to match a high spatial resolution with a low dose level. In order to fulfil these requirements, the SYRMA-CT project uses a large area CdTe single photon counting detector (Pixirad-8), simultaneous algebraic reconstruction technique (SART) and phase retrieval pre-processing. This work investigates the imaging performances of the system in a continuous acquisition mode and with a low dose level towards the clinical application. A custom test object and a large surgical sample have been studied.

  15. A semi-automated 3-D annotation method for breast ultrasound imaging: system development and feasibility study on phantoms.

    PubMed

    Jiang, Wei-wei; Li, An-hua; Zheng, Yong-Ping

    2014-02-01

    Spatial annotation is an essential step in breast ultrasound imaging, because the follow-up diagnosis and treatment are based on this annotation. However, the current method for annotation is manual and highly dependent on the operator's experience. Moreover, important spatial information, such as the probe tilt angle, cannot be indicated in the clinical 2-D annotations. To solve these problems, we developed a semi-automated 3-D annotation method for breast ultrasound imaging. A spatial sensor was fixed on an ultrasound probe to obtain the image spatial data. Three-dimensional virtual models of breast and probe were used to annotate image locations. After the reference points were recorded, this system displayed the image annotations automatically. Compared with the conventional manual annotation method, this new annotation system has higher accuracy as indicated by the phantom test results. In addition, this new annotation method has good repeatability, with intra-class correlation coefficients of 0.907 (average variation: ≤3.45%) and 0.937 (average variation: ≤2.85%) for the intra-rater and inter-rater tests, respectively. Breast phantom experiments simulating clinical breast scanning further indicated the feasibility of this system for clinical applications. This new annotation method is expected to facilitate more accurate, intuitive and rapid breast ultrasound diagnosis.

  16. Material-specific imaging system using energy-dispersive X-ray diffraction and spatially resolved CdZnTe detectors with potential application in breast imaging

    NASA Astrophysics Data System (ADS)

    Barbes, Damien; Tabary, Joachim; Paulus, Caroline; Hazemann, Jean-Louis; Verger, Loïck

    2017-03-01

    This paper presents a coherent X-ray-scattering imaging technique using a multipixel energy-dispersive system. Without any translation, the technique produces specific 1D image from data recorded by a single CdZnTe detector pixel using subpixelation techniques. The method is described in detail, illustrated by a simulation and then experimentally validated. As the main considered application of our study is breast imaging, this validation involves 2D imaging of a phantom made of plastics mimicking breast tissues. The results obtained show that our system can specifically image the phantom using a single detector pixel. For the moment, in vivo breast imaging applications remain difficult, as the dose delivered by the system is too high, but some adjustments are considered for further work.

  17. Development of breast phantoms for use in breast imaging simulation

    NASA Astrophysics Data System (ADS)

    O'Connor, J. Michael

    Dedicated x-ray breast computed tomography (BCT) and breast tomosynthesis (BT) using a cone-beam flat-panel detector system are modalities under investigation by a number of research teams. Several teams, including the University of Massachusetts Medical School (UMMS) Tomographic Breast Imaging Lab (TBIL), have fabricated a prototype, bench-top flat-panel CT breast imaging (CTBI) system. TBIL researchers also use computer simulation software to investigate various x-ray acquisition and reconstruction parameters. I have developed a methodology to use high resolution, low noise CT reconstructions of fresh mastectomy specimens in order to create an ensemble of three-dimensional (3D) digital breast phantoms that realistically model 3D compressed and uncompressed breast anatomy. The resulting breast phantoms can then be used to simulate realistic projection data for both BCT and BT systems thereby providing a powerful evaluation and optimization mechanism for research and development of novel breast imaging systems as well as the optimization of imaging techniques for such systems.

  18. In vivo intra-operative breast tumor margin detection using a portable OCT system with a handheld surgical imaging probe

    NASA Astrophysics Data System (ADS)

    Erickson-Bhatt, Sarah J.; Nolan, Ryan; Shemonski, Nathan D.; Adie, Steven G.; Putney, Jeffrey; Darga, Donald; McCormick, Daniel T.; Cittadine, Andrew; Marjanovic, Marina; Chaney, Eric J.; Monroy, Guillermo L.; South, Fredrick; Carney, P. Scott; Cradock, Kimberly A.; Liu, Z. George; Ray, Partha S.; Boppart, Stephen A.

    2014-02-01

    Breast-conserving surgery is a frequent option for women with stage I and II breast cancer, and with radiation treatment, can be as effective as a mastectomy. However, adequate margin detection remains a challenge, and too often additional surgeries are required. Optical coherence tomography (OCT) provides a potential method for real-time, high-resolution imaging of breast tissue during surgery. Intra-operative OCT imaging of excised breast tissues has been previously demonstrated by several groups. In this study, a novel handheld surgical probe-based OCT system is introduced, which was used by the surgeon to image in vivo, within the tumor cavity, and immediately following tumor removal in order to detect the presence of any remaining cancer. Following resection, study investigators imaged the excised tissue with the same probe for comparison. We present OCT images obtained from over 15 patients during lumpectomy and mastectomy surgeries. Images were compared to post-operative histopathology for diagnosis. OCT images with micron scale resolution show areas of heterogeneity and disorganized features indicative of malignancy, compared to more uniform regions of normal tissue. Video-rate acquisition shows the inside of the tumor cavity as the surgeon sweeps the probe along the walls of the surgical cavity. This demonstrates the potential of OCT for real-time assessment of surgical tumor margins and for reducing the unacceptably high re-operation rate for breast cancer patients.

  19. Hand-held probe based optical imaging system towards breast cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Ge, Jiajia; Jayachandran, Bhavani; Regalado, Steven; Zhu, Banghe; Godavarty, Anuradha

    2007-02-01

    Near-infrared (NIR) optical imaging is an emerging noninvasive modality for breast cancer diagnosis. However, the currently available optical imaging systems towards tomography studies are limited either by instrument portability, patient comfort, or flexibility to image any given tissue volume. Herein, a hand-held based optical imaging system is developed such that it can possibly overcome some of the above limitations. The unique features of the hand-held optical probe are: (i) to perform simultaneous multiple point illumination and detection, thus decreasing the total imaging time and improving the overall signal strength; (ii) to adapt to the contour of tissue surface, thus decreasing the leakage of excitation and emission signal at contact surface; and (iii) to obtain trans-illumination measurements apart from reflectance measurements, thus improving the depth information. The increased detected signal strength as well as total interrogated tissue volume is demonstrated by simulation studies (i.e. forward model) over a 5×10×10 cc slab phantom. The appropriate number and layout of the source and detection points on the probe head is determined and the hand-held optical probe is developed. A frequency-domain ICCD (intensified charge coupled device) detection system, which allows simultaneous multiple points detection, is developed and coupled to the hand-held probe in order to perform fluorescence-enhanced optical imaging of tissue phantoms. In the future, imaging of homogenous liquid phantoms will be used for the assessment of this hand-held system, followed by extensive imaging studies on different phantoms types under various experimental conditions.

  20. Breast Biopsy System

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Charge Coupled Devices (CCDs) are high technology silicon chips that connect light directly into electronic or digital images, which can be manipulated or enhanced by computers. When Goddard Space Flight Center (GSFC) scientists realized that existing CCD technology could not meet scientific requirements for the Hubble Space Telescope Imagining Spectrograph, GSFC contracted with Scientific Imaging Technologies, Inc. (SITe) to develop an advanced CCD. SITe then applied many of the NASA-driven enhancements to the manufacture of CCDs for digital mammography. The resulting device images breast tissue more clearly and efficiently. The LORAD Stereo Guide Breast Biopsy system incorporates SITe's CCD as part of a digital camera system that is replacing surgical biopsy in many cases. Known as stereotactic needle biopsy, it is performed under local anesthesia with a needle and saves women time, pain, scarring, radiation exposure and money.

  1. Predictive model for contrast-enhanced ultrasound of the breast: Is it feasible in malignant risk assessment of breast imaging reporting and data system 4 lesions?

    PubMed Central

    Luo, Jun; Chen, Ji-Dong; Chen, Qing; Yue, Lin-Xian; Zhou, Guo; Lan, Cheng; Li, Yi; Wu, Chi-Hua; Lu, Jing-Qiao

    2016-01-01

    AIM: To build and evaluate predictive models for contrast-enhanced ultrasound (CEUS) of the breast to distinguish between benign and malignant lesions. METHODS: A total of 235 breast imaging reporting and data system (BI-RADS) 4 solid breast lesions were imaged via CEUS before core needle biopsy or surgical resection. CEUS results were analyzed on 10 enhancing patterns to evaluate diagnostic performance of three benign and three malignant CEUS models, with pathological results used as the gold standard. A logistic regression model was developed basing on the CEUS results, and then evaluated with receiver operating curve (ROC). RESULTS: Except in cases of enhanced homogeneity, the rest of the 9 enhancement appearances were statistically significant (P < 0.05). These 9 enhancement patterns were selected in the final step of the logistic regression analysis, with diagnostic sensitivity and specificity of 84.4% and 82.7%, respectively, and the area under the ROC curve of 0.911. Diagnostic sensitivity, specificity, and accuracy of the malignant vs benign CEUS models were 84.38%, 87.77%, 86.38% and 86.46%, 81.29% and 83.40%, respectively. CONCLUSION: The breast CEUS models can predict risk of malignant breast lesions more accurately, decrease false-positive biopsy, and provide accurate BI-RADS classification. PMID:27358688

  2. Relationships Between MRI Breast Imaging-Reporting and Data System (BI-RADS) Lexicon Descriptors and Breast Cancer Molecular Subtypes: Internal Enhancement is Associated with Luminal B Subtype.

    PubMed

    Grimm, Lars J; Zhang, Jing; Baker, Jay A; Soo, Mary S; Johnson, Karen S; Mazurowski, Maciej A

    2017-03-13

    The aim of this study was to determine the associations between breast MRI findings using the Breast Imaging-Reporting and Data System (BI-RADS) lexicon descriptors and breast cancer molecular subtypes. In this retrospective, IRB-approved, single institution study MRIs from 278 women with breast cancer were reviewed by one of six fellowship-trained breast imagers. Readers reported BI-RADS descriptors for breast masses (shape, margin, internal enhancement) and non-mass enhancement (distribution, internal enhancement). Pathology reports were reviewed for estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER2). Surrogates were used to categorize tumors by molecular subtype: ER/PR+, HER2- (luminal A); ER/PR+, HER2+ (luminal B); ER/PR-, HER2+ (HER2); ER/PR/HER2- (basal). A univariate logistic regression model was developed to identify associations between BI-RADS descriptors and molecular subtypes. Internal enhancement for mass and non-mass enhancement was combined for analysis. There was an association between mass shape and basal subtype (p = 0.039), which was more frequently round (17.1%) than other subtypes (range: 0-8.3%). In addition, there was an association between mass margin and HER2 subtype (p = 0.040), as HER2 cancers more frequently had a smooth margin (33.3%) than other subtypes (range: 4.2-17.1%). Finally, there was an association between internal enhancement and luminal B subtype (p = 0.003), with no cases of luminal B cancer demonstrating homogeneous internal enhancement versus a range of 10.9-23.5% for other subtypes. There are associations between breast cancer molecular subtypes and lesion appearance on MRI using the BI-RADS lexicon.

  3. SU-E-J-134: An Augmented-Reality Optical Imaging System for Accurate Breast Positioning During Radiotherapy

    SciTech Connect

    Nazareth, D; Malhotra, H; French, S; Hoffmann, K; Merrow, C

    2014-06-01

    Purpose: Breast radiotherapy, particularly electronic compensation, may involve large dose gradients and difficult patient positioning problems. We have developed a simple self-calibrating augmented-reality system, which assists in accurately and reproducibly positioning the patient, by displaying her live image from a single camera superimposed on the correct perspective projection of her 3D CT data. Our method requires only a standard digital camera capable of live-view mode, installed in the treatment suite at an approximately-known orientation and position (rotation R; translation T). Methods: A 10-sphere calibration jig was constructed and CT imaged to provide a 3D model. The (R,T) relating the camera to the CT coordinate system were determined by acquiring a photograph of the jig and optimizing an objective function, which compares the true image points to points calculated with a given candidate R and T geometry. Using this geometric information, 3D CT patient data, viewed from the camera's perspective, is plotted using a Matlab routine. This image data is superimposed onto the real-time patient image, acquired by the camera, and displayed using standard live-view software. This enables the therapists to view both the patient's current and desired positions, and guide the patient into assuming the correct position. The method was evaluated using an in-house developed bolus-like breast phantom, mounted on a supporting platform, which could be tilted at various angles to simulate treatment-like geometries. Results: Our system allowed breast phantom alignment, with an accuracy of about 0.5 cm and 1 ± 0.5 degree. Better resolution could be possible using a camera with higher-zoom capabilities. Conclusion: We have developed an augmented-reality system, which combines a perspective projection of a CT image with a patient's real-time optical image. This system has the potential to improve patient setup accuracy during breast radiotherapy, and could possibly be

  4. Transition from Paris dosimetry system to 3D image-guided planning in interstitial breast brachytherapy

    PubMed Central

    Wronczewska, Anna; Kabacińska, Renata; Makarewicz, Roman

    2015-01-01

    Purpose The purpose of this study is to evaluate our first experience with 3D image-guided breast brachytherapy and to compare dose distribution parameters between Paris dosimetry system (PDS) and image-based plans. Material and methods First 49 breast cancer patients treated with 3D high-dose-rate interstitial brachytherapy as a boost were selected for the study. Every patient underwent computed tomography, and the planning target volume (PTV) and organs at risk (OAR) were outlined. Two treatment plans were created for every patient. First, based on a Paris dosimetry system (PDS), and the second one, imaged-based plan with graphical optimization (OPT). The reference isodose in PDS implants was 85%, whereas in OPT plans the isodose was chosen to obtain proper target coverage. Dose and volume parameters (D90, D100, V90, V100), doses at OARs, total reference air kerma (TRAK), and quality assurance parameters: dose nonuniformity ratio (DNR), dose homogeneity index (DHI), and conformity index (COIN) were used for a comparison of both plans. Results The mean number of catheters was 7 but the mean for 20 first patients was 5 and almost 9 for the next 29 patients. The mean value of prescribed isodose for OPT plans was 73%. The mean D90 was 88.2% and 105.8%, the D100 was 59.8% and 75.7%, the VPTV90 was 88.6% and 98.1%, the VPTV100 was 79.9% and 98.9%, and the TRAK was 0.00375 Gym–1 and 0.00439 Gym–1 for the PDS and OPT plans, respectively. The mean DNR was 0.29 and 0.42, the DHI was 0.71 and 0.58, and the COIN was 0.68 and 0.76, respectively. Conclusions The target coverage in image-guided plans (OPT) was significantly higher than in PDS plans but the dose homogeneity was worse. Also, the value of TRAK increased because of change of prescribing isodose. The learning curve slightly affected our results. PMID:26816505

  5. Acoustic performance of mesh compression paddles for a multimodality breast imaging system.

    PubMed

    LeCarpentier, Gerald L; Goodsitt, Mitchell M; Verweij, Sacha; Li, Jie; Padilla, Frederic R; Carson, Paul L

    2014-07-01

    A system incorporating automated 3-D ultrasound and digital X-ray tomosynthesis is being developed for improved breast lesion detection and characterization. The goal of this work is to develop and test candidates for a dual-modality mesh compression paddle. A Computerized Imaging Reference Systems (Norfork, VA, USA) ultrasound phantom with tilted low-contrast cylindrical objects was used. Polyester mesh fabrics (1- and 2-mm spacing), a high-density polyethylene filament grid (Dyneema, DSM Dyneema, Stanley, NC, USA) and a solid polymethylpentene (TPX; Mitsui Plastics, Inc., White Plains, NY) paddle were compared with no overlying structures using a GE Logic 9 with M12L transducer. A viscous gel provided coupling. The phantom was scanned 10 times over 9 cm for each configuration. Image volumes were analyzed for signal strength, contrast and contrast-to-noise ratio. X-ray tests confirmed X-ray transparency for all materials. By all measures, both mesh fabrics outperformed TPX and Dyneema, and there were essentially no differences between 2-mm mesh and unobstructed configurations.

  6. Computerized Ultrasound Risk Evaluation (CURE) System: Development of Combined Transmission and Reflection Ultrasound with New Reconstruction Algorithms for Breast Imaging

    SciTech Connect

    Littrup, P J; Duric, N; Azevedo, S; Chambers, D; Candy, J V; Johnson, S; Auner, G; Rather, J; Holsapple, E T

    2001-09-07

    Our Computerized Ultrasound Risk Evaluation (CURE) system has been developed to the engineering prototype stage and generated unique data sets of both transmission and reflection ultrasound (US). This paper will help define the clinical underpinnings of the developmental process and interpret the imaging results from a similar perspective. The CURE project was designed to incorporate numerous diagnostic parameters to improve upon two major areas of early breast cancer detection. CURE may provide improved tissue characterization of breast masses and reliable detection of abnormal microcalcifications found in some breast cancers and ductal carcinoma in situ (DCIS). Current breast US is limited to mass evaluation, whereas mammography also detects and guides biopsy of malignant calcifications. Screening with CURE remains a distant goal, but improved follow-up of mammographic abnormalities may represent a feasible breakthrough. Improved tissue characterization could result in reduction of the estimated one million benign biopsies each year in the United States, costing up to several billion dollars. Most breast calcifications are benign and comprise-80% of stereotactic biopsies guided by mammography. Ultrasound has the capability of finding some groups of calcifications, but further improvements in resolution should also address tissue characterization to define the soft tissue filling of ducts by DCIS. In this manner, CURE may be able to more accurately identify the malignant calcifications associated with progression of DCIS or early cancers. Currently, high-resolution US images of the breast are performed in the reflection mode at higher frequencies, which also limits depth of penetration. Reconstruction of reflection ultrasound images relies upon acoustic impedance differences in the tissue and includes only direct backscatter of the ultrasound signal. Resolution and tissue contrast of current US continues to improve with denser transducer arrays and image

  7. Using mastectomy specimens to develop breast models for breast tomosynthesis and CT breast imaging

    NASA Astrophysics Data System (ADS)

    O'Connor, J. Michael; Das, Mini; Didier, Clay; Mah'D, Mufeed; Glick, Stephen J.

    2008-03-01

    Dedicated x-ray computed tomography (CT) of the breast using a cone-beam flat-panel detector system is a modality under investigation by a number of research teams. As previously reported, we have fabricated a prototype, bench-top flat-panel CT breast imaging (CTBI) system and developed computer simulation software to model such a system. We are developing a methodology to use high resolution, low noise CT reconstructions of fresh mastectomy specimens for generating an ensemble of 3D digital breast phantoms that realistically model 3D compressed and uncompressed breast anatomy. These breast models can be used to simulate realistic projection data for both breast tomosynthesis (BT) and CT systems thereby providing a powerful evaluation and optimization mechanism.

  8. Dedicated 3D photoacoustic breast imaging

    PubMed Central

    Kruger, Robert A.; Kuzmiak, Cherie M.; Lam, Richard B.; Reinecke, Daniel R.; Del Rio, Stephen P.; Steed, Doreen

    2013-01-01

    Purpose: To report the design and imaging methodology of a photoacoustic scanner dedicated to imaging hemoglobin distribution throughout a human breast. Methods: The authors developed a dedicated breast photoacoustic mammography (PAM) system using a spherical detector aperture based on our previous photoacoustic tomography scanner. The system uses 512 detectors with rectilinear scanning. The scan shape is a spiral pattern whose radius varies from 24 to 96 mm, thereby allowing a field of view that accommodates a wide range of breast sizes. The authors measured the contrast-to-noise ratio (CNR) using a target comprised of 1-mm dots printed on clear plastic. Each dot absorption coefficient was approximately the same as a 1-mm thickness of whole blood at 756 nm, the output wavelength of the Alexandrite laser used by this imaging system. The target was immersed in varying depths of an 8% solution of stock Liposyn II-20%, which mimics the attenuation of breast tissue (1.1 cm−1). The spatial resolution was measured using a 6 μm-diameter carbon fiber embedded in agar. The breasts of four healthy female volunteers, spanning a range of breast size from a brassiere C cup to a DD cup, were imaged using a 96-mm spiral protocol. Results: The CNR target was clearly visualized to a depth of 53 mm. Spatial resolution, which was estimated from the full width at half-maximum of a profile across the PAM image of a carbon fiber, was 0.42 mm. In the four human volunteers, the vasculature was well visualized throughout the breast tissue, including to the chest wall. Conclusions: CNR, lateral field-of-view and penetration depth of our dedicated PAM scanning system is sufficient to image breasts as large as 1335 mL, which should accommodate up to 90% of the women in the United States. PMID:24320471

  9. Targeted Drug Delivery Systems Mediated by a Novel Peptide in Breast Cancer Therapy and Imaging

    PubMed Central

    Chiu, Chien-Yu; Lin, Wei-Chuan; Yan, Shin-Long; Wang, Yi-Ping; Kuo, Yuan-Sung; Yeh, Chen-Yun; Lo, Albert; Wu, Han-Chung

    2013-01-01

    Targeted delivery of drugs to tumors represents a significant advance in cancer diagnosis and therapy. Therefore, development of novel tumor-specific ligands or pharmaceutical nanocarriers is highly desirable. In this study, we utilized phage display to identify a new targeting peptide, SP90, which specifically binds to breast cancer cells, and recognizes tumor tissues from breast cancer patients. We used confocal and electron microscopy to reveal that conjugation of SP90 with liposomes enables efficient delivery of drugs into cancer cells through endocytosis. Furthermore, in vivo fluorescent imaging demonstrated that SP90-conjugated quantum dots possess tumor-targeting properties. In tumor xenograft and orthotopic models, SP90-conjugated liposomal doxorubicin was found to improve the therapeutic index of the chemotherapeutic drug by selectively increasing its accumulation in tumors. We conclude that the targeting peptide SP90 has significant potential in improving the clinical benefits of chemotherapy in the treatment and the diagnosis of breast cancer. PMID:23776619

  10. Dedicated PET scanners for breast imaging.

    PubMed

    Freifelder, R; Karp, J S

    1997-12-01

    We have used computer simulations to compare two designs for a PET scanner dedicated to breast imaging with a whole-body PET scanner. The new designs combine high spatial resolution, high sensitivity, and good energy resolution to detect small, low-contrast masses. The detectors are position sensitive NaI(Tl) scintillators. The first design is a ring scanner surrounding the breast and the second consists of two planar detectors placed on opposite sides of the breast. We have employed standard performance measures to compare the different designs: contrast, percentage standard deviation of the background, and signal-to-noise ratios of reconstructed images. The results of the simulations show that both of the proposed designs have better lesion detectability than a whole-body scanner. The results also show that contrast is higher in the ring breast system but that the noise is lower in the planar breast system. Overall, the ring system yields images with the best signal-to-noise ratios, although the planar system offers practical advantages for imaging the breast and axilla.

  11. Dedicated PET scanners for breast imaging

    NASA Astrophysics Data System (ADS)

    Freifelder, Richard; Karp, Joel S.

    1997-12-01

    We have used computer simulations to compare two designs for a PET scanner dedicated to breast imaging with a whole-body PET scanner. The new designs combine high spatial resolution, high sensitivity, and good energy resolution to detect small, low-contrast masses. The detectors are position sensitive NaI(Tl) scintillators. The first design is a ring scanner surrounding the breast and the second consists of two planar detectors placed on opposite sides of the breast. We have employed standard performance measures to compare the different designs: contrast, percentage standard deviation of the background, and signal-to-noise ratios of reconstructed images. The results of the simulations show that both of the proposed designs have better lesion detectability than a whole-body scanner. The results also show that contrast is higher in the ring breast system but that the noise is lower in the planar breast system. Overall, the ring system yields images with the best signal-to-noise ratios, although the planar system offers practical advantages for imaging the breast and axilla.

  12. The application of surgical navigation system using optical molecular imaging technology in orthotopic breast cancer and metastasis studies

    NASA Astrophysics Data System (ADS)

    Chi, Chongwei; Zhang, Qian; Kou, Deqiang; Ye, Jinzuo; Mao, Yamin; Qiu, Jingdan; Wang, Jiandong; Yang, Xin; Du, Yang; Tian, Jie

    2014-02-01

    Currently, it has been an international focus on intraoperative precise positioning and accurate resection of tumor and metastases. The methods such as X-rays, computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET) have played an important role in preoperative accurate diagnosis. However, most of them are inapplicable for intraoperative surgery. We have proposed a surgical navigation system based on optical molecular imaging technology for intraoperative detection of tumors and metastasis. This system collects images from two CCD cameras for real-time fluorescent and color imaging. For image processing, the template matching algorithm is used for multispectral image fusion. For the application of tumor detection, the mouse breast cancer cell line 4T1-luc, which shows highly metastasis, was used for tumor model establishment and a model of matrix metalloproteinase (MMP) expressing breast cancer. The tumor-bearing nude mice were given tail vein injection of MMP 750FAST (PerkinElmer, Inc. USA) probe and imaged with both bioluminescence and fluorescence to assess in vivo binding of the probe to the tumor and metastases sites. Hematoxylin and eosin (H&E) staining was performed to confirm the presence of tumor and metastasis. As a result, one tumor can be observed visually in vivo. However liver metastasis has been detected under surgical navigation system and all were confirmed by histology. This approach helps surgeons to find orthotopic tumors and metastasis during intraoperative resection and visualize tumor borders for precise positioning. Further investigation is needed for future application in clinics.

  13. X-Ray Phase Imaging For Breast Cancer Detection

    DTIC Science & Technology

    2009-09-01

    In the coming year we will conduct phase imaging experiments with custom-made breast phantoms . Especially we will incorporate the measured source...electron densities of the phantoms . 15. SUBJECT TERMS Phase-contrast x-ray imaging, Breast imaging, Phase retrieval 16. SECURITY CLASSIFICATION OF: 17...Develop the phase retrieval algorithms for future phase imaging with breast phantoms ; (B). Design and build the system hardware for future phase

  14. Breast positioning system for full field digital mammography and digital breast tomosynthesis system

    NASA Astrophysics Data System (ADS)

    Varjonen, Mari; Pamilo, Martti; Hokka, Pirjo; Hokkanen, Riina; Strömmer, Pekka

    2007-03-01

    This paper will present a new breast positioning system for amorphous selenium (a-Se) based full field digital mammography (FFDM) system, which is also a platform of tomosynthesis prototype. Clinical images demonstrate that this method is capable extending the breast away from the chest wall, and maximizing the breast volume. Breast positioning system consists of two transparent moving sheets that apply traction of the breast controlled by motor. Sheets are under and above the compressed breast. Breast positioning sheets pull the breast into the imaging area during the compression. Digital mammography system is based on amorphous selenium flat panel detector (FPD) technology where the overall thickness of the selenium structure is 200 μm, and the pixel size on this detector is 85 μm. Preliminary results will be presented. Clinical study showed increment of the breast volume imaged, and it brought up to 1.0 cm - 2.0 cm more breast tissue. New breast position system also holds a promise of slight decrement of compression force used in the examination. Maximizing the exposured breast tissue is complicated, but important aspect in the breast cancer detection and diagnosis. Increasing the field of view with an additional volume of breast tissue imaged is a key point in digital mammography and digital breast tomosynthesis (DBT).

  15. Development of a combined multifrequency MRI-DOT system for human breast imaging using a priori information

    NASA Astrophysics Data System (ADS)

    Thayer, David; Liu, Ning; Unlu, Burcin; Chen, Jeon-Hor; Su, Min-Ying; Nalcioglu, Orhan; Gulsen, Gultekin

    2010-02-01

    Breast cancer is a significant cause of mortality and morbidity among women with early diagnosis being vital to successful treatment. Diffuse Optical Tomography (DOT) is an emerging medical imaging modality that provides information that is complementary to current screening modalities such as MRI and mammography, and may improve the specificity in determining cancer malignancy. Using high-resolution anatomic images as a priori information improves the accuracy of DOT. Measurements are presented characterizing the performance of our system. Preliminary data is also shown illustrating the use of a priori MRI data in phantom studies.ä

  16. Sentinel lymph node detection in breast cancer patients using surgical navigation system based on fluorescence molecular imaging technology

    NASA Astrophysics Data System (ADS)

    Chi, Chongwei; Kou, Deqiang; Ye, Jinzuo; Mao, Yamin; Qiu, Jingdan; Wang, Jiandong; Yang, Xin; Tian, Jie

    2015-03-01

    Introduction: Precision and personalization treatments are expected to be effective methods for early stage cancer studies. Breast cancer is a major threat to women's health and sentinel lymph node biopsy (SLNB) is an effective method to realize precision and personalized treatment for axillary lymph node (ALN) negative patients. In this study, we developed a surgical navigation system (SNS) based on optical molecular imaging technology for the precise detection of the sentinel lymph node (SLN) in breast cancer patients. This approach helps surgeons in precise positioning during surgery. Methods: The SNS was mainly based on the technology of optical molecular imaging. A novel optical path has been designed in our hardware system and a feature-matching algorithm has been devised to achieve rapid fluorescence and color image registration fusion. Ten in vivo studies of SLN detection in rabbits using indocyanine green (ICG) and blue dye were executed for system evaluation and 8 breast cancer patients accepted the combination method for therapy. Results: The detection rate of the combination method was 100% and an average of 2.6 SLNs was found in all patients. Our results showed that the method of using SNS to detect SLN has the potential to promote its application. Conclusion: The advantage of this system is the real-time tracing of lymph flow in a one-step procedure. The results demonstrated the feasibility of the system for providing accurate location and reliable treatment for surgeons. Our approach delivers valuable information and facilitates more detailed exploration for image-guided surgery research.

  17. Characterisation of noise and sharpness of images from four digital breast tomosynthesis systems for simulation of images for virtual clinical trials

    NASA Astrophysics Data System (ADS)

    Mackenzie, Alistair; Marshall, Nicholas W.; Hadjipanteli, Andria; Dance, David R.; Bosmans, Hilde; Young, Kenneth C.

    2017-03-01

    In-depth evaluation of the noise and sharpness characteristics of FujiFilm Innovality, GE SenoClaire, Hologic Selenia Dimensions and Siemens Inspiration digital breast tomosynthesis (DBT) systems was performed with the intention of improving image simulation for virtual clinical trials. Noise power spectra (NPS) and modulation transfer function curves (MTF) were measured for planar modes and for the first and central projections for DBT modes. In DBT mode, the x-ray beam was blocked for the projections before the central projection in order to remove the influence of lag and ghosting from the previous images. A quadratic fit between the NPS and linearised pixel value gave the noise coefficients for planar and DBT imaging modes. The spatial frequencies corresponding to an MTF of 0.5 (MTF0.5) were calculated from the MTF measurements made on the breast support and at 40 mm above the breast support. This was done for the first and the central projections. The percentage of signal carried over from the first projection to subsequent images (lag) was measured using a slit. The noise associated with lag was also evaluated. The DBT modes typically had lower electronic noise coefficients but higher structural noise coefficients compared to the respective planar mode MTF0.5 measured 40 mm above the table was between 6% and 47% lower for continuous scanning systems compared to 1% lower for step and shoot systems. For wide angle DBT, the MTF0.5 of the first projection was 18% (FujiFilm) and 28% (Siemens) lower than for the central projection. Lag in the second projection was 2.2%, 0.3%, 0.8% for the FujiFilm, GE and Hologic systems respectively. In all cases, the noise associated with lag was negligible. Current modelling frameworks for virtual clinical trials of breast DBT systems need to be adapted to account for signals from lag and variations in the MTF at wide angles.

  18. Characterisation of noise and sharpness of images from four digital breast tomosynthesis systems for simulation of images for virtual clinical trials.

    PubMed

    Mackenzie, Alistair; Marshall, Nicholas W; Hadjipanteli, Andria; Dance, David R; Bosmans, Hilde; Young, Kenneth C

    2017-03-21

    In-depth evaluation of the noise and sharpness characteristics of FujiFilm Innovality, GE SenoClaire, Hologic Selenia Dimensions and Siemens Inspiration digital breast tomosynthesis (DBT) systems was performed with the intention of improving image simulation for virtual clinical trials. Noise power spectra (NPS) and modulation transfer function curves (MTF) were measured for planar modes and for the first and central projections for DBT modes. In DBT mode, the x-ray beam was blocked for the projections before the central projection in order to remove the influence of lag and ghosting from the previous images. A quadratic fit between the NPS and linearised pixel value gave the noise coefficients for planar and DBT imaging modes. The spatial frequencies corresponding to an MTF of 0.5 (MTF0.5) were calculated from the MTF measurements made on the breast support and at 40 mm above the breast support. This was done for the first and the central projections. The percentage of signal carried over from the first projection to subsequent images (lag) was measured using a slit. The noise associated with lag was also evaluated. The DBT modes typically had lower electronic noise coefficients but higher structural noise coefficients compared to the respective planar mode MTF0.5 measured 40 mm above the table was between 6% and 47% lower for continuous scanning systems compared to 1% lower for step and shoot systems. For wide angle DBT, the MTF0.5 of the first projection was 18% (FujiFilm) and 28% (Siemens) lower than for the central projection. Lag in the second projection was 2.2%, 0.3%, 0.8% for the FujiFilm, GE and Hologic systems respectively. In all cases, the noise associated with lag was negligible. Current modelling frameworks for virtual clinical trials of breast DBT systems need to be adapted to account for signals from lag and variations in the MTF at wide angles.

  19. A Quantitative Diffuse Reflectance Imaging (QDRI) System for Comprehensive Surveillance of the Morphological Landscape in Breast Tumor Margins

    PubMed Central

    Nichols, Brandon S.; Schindler, Christine E.; Brown, Jonathon Q.; Wilke, Lee G.; Mulvey, Christine S.; Krieger, Marlee S.; Gallagher, Jennifer; Geradts, Joseph; Greenup, Rachel A.; Von Windheim, Jesko A.; Ramanujam, Nirmala

    2015-01-01

    In an ongoing effort to address the clear clinical unmet needs surrounding breast conserving surgery (BCS), our group has developed a next-generation multiplexed optical-fiber-based tool to assess breast tumor margin status during initial surgeries. Specifically detailed in this work is the performance and clinical validation of a research-grade intra-operative tool for margin assessment based on diffuse optical spectroscopy. Previous work published by our group has illustrated the proof-of-concept generations of this device; here we incorporate a highly optimized quantitative diffuse reflectance imaging (QDRI) system utilizing a wide-field (imaging area = 17cm2) 49-channel multiplexed fiber optic probe, a custom raster-scanning imaging platform, a custom dual-channel white LED source, and an astronomy grade imaging CCD and spectrograph. The system signal to noise ratio (SNR) was found to be greater than 40dB for all channels. Optical property estimation error was found to be less than 10%, on average, over a wide range of absorption (μa = 0–8.9cm-1) and scattering (μs’ = 7.0–9.7cm-1) coefficients. Very low inter-channel and CCD crosstalk was observed (2% max) when used on turbid media (including breast tissue). A raster-scanning mechanism was developed to achieve sub-pixel resolution and was found to be optimally performed at an upsample factor of 8, affording 0.75mm spatially resolved diffuse reflectance images (λ = 450–600nm) of an entire margin (area = 17cm2) in 13.8 minutes (1.23cm2/min). Moreover, controlled pressure application at the probe-tissue interface afforded by the imaging platform reduces repeated scan variability, providing <1% variation across repeated scans of clinical specimens. We demonstrate the clinical utility of this device through a pilot 20-patient study of high-resolution optical parameter maps of the ratio of the β-carotene concentration to the reduced scattering coefficient. An empirical cumulative distribution function (e

  20. TU-A-17A-02: In Memoriam of Ben Galkin: Virtual Tools for Validation of X-Ray Breast Imaging Systems

    SciTech Connect

    Myers, K; Bakic, P; Abbey, C; Kupinski, M; Mertelmeier, T

    2014-06-15

    This symposium will explore simulation methods for the preclinical evaluation of novel 3D and 4D x-ray breast imaging systems – the subject of AAPM taskgroup TG234. Given the complex design of modern imaging systems, simulations offer significant advantages over long and costly clinical studies in terms of reproducibility, reduced radiation exposures, a known reference standard, and the capability for studying patient and disease subpopulations through appropriate choice of simulation parameters. Our focus will be on testing the realism of software anthropomorphic phantoms and virtual clinical trials tools developed for the optimization and validation of breast imaging systems. The symposium will review the stateof- the-science, as well as the advantages and limitations of various approaches to testing realism of phantoms and simulated breast images. Approaches based upon the visual assessment of synthetic breast images by expert observers will be contrasted with approaches based upon comparing statistical properties between synthetic and clinical images. The role of observer models in the assessment of realism will be considered. Finally, an industry perspective will be presented, summarizing the role and importance of virtual tools and simulation methods in product development. The challenges and conditions that must be satisfied in order for computational modeling and simulation to play a significantly increased role in the design and evaluation of novel breast imaging systems will be addressed. Learning Objectives: Review the state-of-the science in testing realism of software anthropomorphic phantoms and virtual clinical trials tools; Compare approaches based upon the visual assessment by expert observers vs. the analysis of statistical properties of synthetic images; Discuss the role of observer models in the assessment of realism; Summarize the industry perspective to virtual methods for breast imaging.

  1. Basic setup for breast conductivity imaging using magnetic resonance electrical impedance tomography

    NASA Astrophysics Data System (ADS)

    Lee, Byung Il; Oh, Suk Hoon; Kim, Tae-Seong; Woo, Eung Je; Lee, Soo Yeol; Kwon, Ohin; Seo, Jin Keun

    2006-01-01

    We present a new medical imaging technique for breast imaging, breast MREIT, in which magnetic resonance electrical impedance tomography (MREIT) is utilized to get high-resolution conductivity and current density images of the breast. In this work, we introduce the basic imaging setup of the breast MREIT technique with an investigation of four different imaging configurations of current-injection electrode positions and pathways through computer simulation studies. Utilizing the preliminary findings of a best breast MREIT configuration, additional numerical simulation studies have been carried out to validate breast MREIT at different levels of SNR. Finally, we have performed an experimental validation with a breast phantom on a 3.0 T MREIT system. The presented results strongly suggest that breast MREIT with careful imaging setups could be a potential imaging technique for human breast which may lead to early detection of breast cancer via improved differentiation of cancerous tissues in high-resolution conductivity images.

  2. Multispectral breast imaging using a ten-wavelength, 64x64 source/detector channels silicon photodiode-based diffuse optical tomography system

    SciTech Connect

    Li Changqing; Zhao Hongzhi; Anderson, Bonnie; Jiang Huabei

    2006-03-15

    We describe a compact diffuse optical tomography system specifically designed for breast imaging. The system consists of 64 silicon photodiode detectors, 64 excitation points, and 10 diode lasers in the near-infrared region, allowing multispectral, three-dimensional optical imaging of breast tissue. We also detail the system performance and optimization through a calibration procedure. The system is evaluated using tissue-like phantom experiments and an in vivo clinic experiment. Quantitative two-dimensional (2D) and three-dimensional (3D) images of absorption and reduced scattering coefficients are obtained from these experiments. The ten-wavelength spectra of the extracted reduced scattering coefficient enable quantitative morphological images to be reconstructed with this system. From the in vivo clinic experiment, functional images including deoxyhemoglobin, oxyhemoglobin, and water concentration are recovered and tumors are detected with correct size and position compared with the mammography.

  3. Effect on biopsy technique of the breast imaging reporting and data system (BI-RADS) for nonpalpable mammographic abnormalities

    PubMed Central

    Ball, Chad G.; Butchart, Michael; MacFarlane, John K.

    2002-01-01

    Objective To determine if the breast imaging reporting and data system (BI-RADS) defines a group of patients with mammographic abnormalities in whom stereotactic core needle biopsy (SCNB) is appropriate. Design A blinded retrospective validation sample. Setting A university-affiliated hospital. Patients One hundred and nine consecutive patients who underwent fine-wire localization breast biopsy (FWLB) between Jan. 1, 1994, and June 1, 1999, with a known final pathological diagnosis. Intervention Blinded mammographic review and classification using the BI-RADS; review of corresponding pathological findings from FWLBs. Outcome measures Correlation of pathological findings with each BI-RADS category and analysis of the predictive value of clinical and radiologic features. Results BI-RADS findings were as follows: 0 malignant lesions in 10 category 3 cases, 18 malignant lesions (3 in situ, 15 invasive) in 68 category 4 cases and 24 malignant lesions (8 in situ and 16 invasive) in 31 category 5 cases. There was 1 malignant lesion in 22 category 4 cases in women younger than 50 years. Conclusions SCNB should be applied to BI-RADS categories 3 and 4 (< 50 yr of age). FWLB should be reserved for category 4 (> 50 yr of age) and category 5 cases. This algorithm will reduce the morbidity and cost of breast biopsies in patients with nonpalpable mammographic abnormalities. PMID:12174979

  4. Mean glandular dose coefficients (D(g)N) for x-ray spectra used in contemporary breast imaging systems.

    PubMed

    Nosratieh, Anita; Hernandez, Andrew; Shen, Sam Z; Yaffe, Martin J; Seibert, J Anthony; Boone, John M

    2015-09-21

    To develop tables of normalized glandular dose coefficients D(g)N for a range of anode-filter combinations and tube voltages used in contemporary breast imaging systems. Previously published mono-energetic D(g)N values were used with various spectra to mathematically compute D(g)N coefficients. The tungsten anode spectra from TASMICS were used; molybdenum and rhodium anode-spectra were generated using MCNPX Monte Carlo code. The spectra were filtered with various thicknesses of Al, Rh, Mo or Cu. An initial half value layer (HVL) calculation was made using the anode and filter material. A range of the HVL values was produced with the addition of small thicknesses of polymethyl methacrylate (PMMA) as a surrogate for the breast compression paddle, to produce a range of HVL values at each tube voltage. Using a spectral weighting method, D(g)N coefficients for the generated spectra were calculated for breast glandular densities of 0%, 12.5%, 25%, 37.5%, 50% and 100% for a range of compressed breast thicknesses from 3 to 8 cm. Eleven tables of normalized glandular dose (D(g)N) coefficients were produced for the following anode/filter combinations: W + 50 μm Ag, W + 500 μm Al, W + 700 μm Al, W + 200 μm Cu, W + 300 μm Cu, W + 50 μm Rh, Mo + 400 μm Cu, Mo + 30 μm Mo, Mo + 25 μm Rh, Rh + 400 μm Cu and Rh + 25 μm Rh. Where possible, these results were compared to previously published D(g)N values and were found to be on average less than 2% different than previously reported values.Over 200 pages of D(g)N coefficients were computed for modeled x-ray system spectra that are used in a number of new breast imaging applications. The reported values were found to be in excellent agreement when compared to published values.

  5. Mean Glandular dose coefficients (DgN) for x-ray spectra used in contemporary breast imaging systems

    PubMed Central

    Nosratieh, Anita; Hernandez, Andrew; Shen, Sam Z.; Yaffe, Martin J.; Seibert, J. Anthony; Boone, John M.

    2015-01-01

    Purpose To develop tables of normalized glandular dose coefficients DgN for a range of anode–filter combinations and tube voltages used in contemporary breast imaging systems. Methods Previously published mono-energetic DgN values were used with various spectra to mathematically compute DgN coefficients. The tungsten anode spectra from TASMICS were used; Molybdenum and Rhodium anode-spectra were generated using MCNPx Monte Carlo code. The spectra were filtered with various thicknesses of Al, Rh, Mo or Cu. An initial HVL calculation was made using the anode and filter material. A range of the HVL values was produced with the addition of small thicknesses of polymethyl methacrylate (PMMA) as a surrogate for the breast compression paddle, to produce a range of HVL values at each tube voltage. Using a spectral weighting method, DgN coefficients for the generated spectra were calculated for breast glandular densities of 0%, 12.5%, 25%, 37.5%, 50% and 100% for a range of compressed breast thicknesses from 3 to 8 cm. Results Eleven tables of normalized glandular dose (DgN) coefficients were produced for the following anode/filter combinations: W + 50 μm Ag, W + 500 μm Al, W + 700 μm Al, W + 200 μm Cu, W + 300 μm Cu, W + 50 μm Rh, Mo + 400 μm Cu, Mo + 30 μm Mo, Mo + 25 μm Rh, Rh + 400 μm Cu and Rh + 25 μm Rh. Where possible, these results were compared to previously published DgN values and were found to be on average less than 2% different than previously reported values. Conclusion Over 200-pages of DgN coefficients were computed for modeled x-ray system spectra that are used in a number of new breast imaging applications. The reported values were found to be in excellent agreement when compared to published values. PMID:26348995

  6. Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array

    PubMed Central

    Toi, M.; Asao, Y.; Matsumoto, Y.; Sekiguchi, H.; Yoshikawa, A.; Takada, M.; Kataoka, M.; Endo, T.; Kawaguchi-Sakita, N.; Kawashima, M.; Fakhrejahani, E.; Kanao, S.; Yamaga, I.; Nakayama, Y.; Tokiwa, M.; Torii, M.; Yagi, T.; Sakurai, T.; Togashi, K.; Shiina, T.

    2017-01-01

    Noninvasive measurement of the distribution and oxygenation state of hemoglobin (Hb) inside the tissue is strongly required to analyze the tumor-associated vasculatures. We developed a photoacoustic imaging (PAI) system with a hemispherical-shaped detector array (HDA). Here, we show that PAI system with HDA revealed finer vasculature, more detailed blood-vessel branching structures, and more detailed morphological vessel characteristics compared with MRI by the use of breast shape deformation of MRI to PAI and their fused image. Morphologically abnormal peritumoral blood vessel features, including centripetal photoacoustic signals and disruption or narrowing of vessel signals, were observed and intratumoral signals were detected by PAI in breast cancer tissues as a result of the clinical study of 22 malignant cases. Interestingly, it was also possible to analyze anticancer treatment-driven changes in vascular morphological features and function, such as improvement of intratumoral blood perfusion and relevant changes in intravascular hemoglobin saturation of oxygen. This clinical study indicated that PAI appears to be a promising tool for noninvasive analysis of human blood vessels and may contribute to improve cancer diagnosis. PMID:28169313

  7. Minimal elastographic modeling of breast cancer for model based tumor detection in a digital image elasto tomography (DIET) system

    NASA Astrophysics Data System (ADS)

    Lotz, Thomas F.; Muller, Natalie; Hann, Christopher E.; Chase, J. Geoffrey

    2011-03-01

    Digital Image Elasto Tomography (DIET) is a non-invasive breast cancer screening technology that images the surface motion of a breast under harmonic mechanical actuation. A new approach capturing the dynamics and characteristics of tumor behavior is presented. A simple mechanical model of the breast is used to identify a transfer function relating the input harmonic actuation to the output surface displacements using imaging data of a silicone phantom. Areas of higher stiffness cause significant changes of damping and resonant frequencies as seen in the resulting Bode plots. A case study on a healthy and tumor silicone breast phantom shows the potential for this model-based method to clearly distinguish cancerous and healthy tissue as well as correctly predicting the tumor position.

  8. Volume and tissue composition preserving deformation of breast CT images to simulate breast compression in mammographic imaging

    NASA Astrophysics Data System (ADS)

    Han, Tao; Chen, Lingyun; Lai, Chao-Jen; Liu, Xinming; Shen, Youtao; Zhong, Yuncheng; Ge, Shuaiping; Yi, Ying; Wang, Tianpeng; Shaw, Chris C.

    2009-02-01

    Images of mastectomy breast specimens have been acquired with a bench top experimental Cone beam CT (CBCT) system. The resulting images have been segmented to model an uncompressed breast for simulation of various CBCT techniques. To further simulate conventional or tomosynthesis mammographic imaging for comparison with the CBCT technique, a deformation technique was developed to convert the CT data for an uncompressed breast to a compressed breast without altering the breast volume or regional breast density. With this technique, 3D breast deformation is separated into two 2D deformations in coronal and axial views. To preserve the total breast volume and regional tissue composition, each 2D deformation step was achieved by altering the square pixels into rectangular ones with the pixel areas unchanged and resampling with the original square pixels using bilinear interpolation. The compression was modeled by first stretching the breast in the superior-inferior direction in the coronal view. The image data were first deformed by distorting the voxels with a uniform distortion ratio. These deformed data were then deformed again using distortion ratios varying with the breast thickness and re-sampled. The deformation procedures were applied in the axial view to stretch the breast in the chest wall to nipple direction while shrinking it in the mediolateral to lateral direction re-sampled and converted into data for uniform cubic voxels. Threshold segmentation was applied to the final deformed image data to obtain the 3D compressed breast model. Our results show that the original segmented CBCT image data were successfully converted into those for a compressed breast with the same volume and regional density preserved. Using this compressed breast model, conventional and tomosynthesis mammograms were simulated for comparison with CBCT.

  9. Recent Advances in Microwave Imaging for Breast Cancer Detection

    PubMed Central

    Kwon, Sollip

    2016-01-01

    Breast cancer is a disease that occurs most often in female cancer patients. Early detection can significantly reduce the mortality rate. Microwave breast imaging, which is noninvasive and harmless to human, offers a promising alternative method to mammography. This paper presents a review of recent advances in microwave imaging for breast cancer detection. We conclude by introducing new research on a microwave imaging system with time-domain measurement that achieves short measurement time and low system cost. In the time-domain measurement system, scan time would take less than 1 sec, and it does not require very expensive equipment such as VNA. PMID:28096808

  10. Computer-based image analysis in breast pathology

    PubMed Central

    Gandomkar, Ziba; Brennan, Patrick C.; Mello-Thoms, Claudia

    2016-01-01

    Whole slide imaging (WSI) has the potential to be utilized in telepathology, teleconsultation, quality assurance, clinical education, and digital image analysis to aid pathologists. In this paper, the potential added benefits of computer-assisted image analysis in breast pathology are reviewed and discussed. One of the major advantages of WSI systems is the possibility of doing computer-based image analysis on the digital slides. The purpose of computer-assisted analysis of breast virtual slides can be (i) segmentation of desired regions or objects such as diagnostically relevant areas, epithelial nuclei, lymphocyte cells, tubules, and mitotic figures, (ii) classification of breast slides based on breast cancer (BCa) grades, the invasive potential of tumors, or cancer subtypes, (iii) prognosis of BCa, or (iv) immunohistochemical quantification. While encouraging results have been achieved in this area, further progress is still required to make computer-based image analysis of breast virtual slides acceptable for clinical practice. PMID:28066683

  11. High-Resolution Large-Field-of-View Ultrasound Breast Imager

    DTIC Science & Technology

    2014-08-01

    Ultrasound Breast Imager PRINCIPAL INVESTIGATOR: Patrick LaRiviere CONTRACTING...May 2014 4. TITLE AND SUBTITLE High-Resolution Large-Field-of-View Ultrasound Breast Imager 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-11...work, we sought to construct and test the first practical full-field transmission ultrasound breast imaging system. The system will ultimately have a

  12. MO-DE-210-06: Development of a Supercompounded 3D Volumetric Ultrasound Image Guidance System for Prone Accelerated Partial Breast Irradiation (APBI)

    SciTech Connect

    Chiu, T; Hrycushko, B; Zhao, B; Jiang, S; Gu, X

    2015-06-15

    Purpose: For early-stage breast cancer, accelerated partial breast irradiation (APBI) is a cost-effective breast-conserving treatment. Irradiation in a prone position can mitigate respiratory induced breast movement and achieve maximal sparing of heart and lung tissues. However, accurate dose delivery is challenging due to breast deformation and lumpectomy cavity shrinkage. We propose a 3D volumetric ultrasound (US) image guidance system for accurate prone APBI Methods: The designed system, set beneath the prone breast board, consists of a water container, an US scanner, and a two-layer breast immobilization cup. The outer layer of the breast cup forms the inner wall of water container while the inner layer is attached to patient breast directly to immobilization. The US transducer scans is attached to the outer-layer of breast cup at the dent of water container. Rotational US scans in a transverse plane are achieved by simultaneously rotating water container and transducer, and multiple transverse scanning forms a 3D scan. A supercompounding-technique-based volumetric US reconstruction algorithm is developed for 3D image reconstruction. The performance of the designed system is evaluated with two custom-made gelatin phantoms containing several cylindrical inserts filled in with water (11% reflection coefficient between materials). One phantom is designed for positioning evaluation while the other is for scaling assessment. Results: In the positioning evaluation phantom, the central distances between the inserts are 15, 20, 30 and 40 mm. The distances on reconstructed images differ by −0.19, −0.65, −0.11 and −1.67 mm, respectively. In the scaling evaluation phantom, inserts are 12.7, 19.05, 25.40 and 31.75 mm in diameter. Measured inserts’ sizes on images differed by 0.23, 0.19, −0.1 and 0.22 mm, respectively. Conclusion: The phantom evaluation results show that the developed 3D volumetric US system can accurately localize target position and determine

  13. Breast cancer imaging by microwave-induced thermoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Xu, Minghua; Ku, Geng; Jin, Xing; Wang, Lihong V.; Fornage, Bruno D.; Hunt, Kelly K.

    2005-04-01

    We report a preliminary study of breast cancer imaging by microwave-induced thermoacoustic tomography. In this study, we built a prototype of breast cancer imager based on a circular scan mode. A 3-GHz 0.3~0.5-μs microwave is used as the excitation energy source. A 2.25-MHz ultrasound transducer scans the thermoacoustic signals. All the measured data is transferred to a personal computer for imaging based on our proposed back-projection reconstruction algorithms. We quantified the line spread function of the imaging system. It shows the spatial resolution of our experimental system reaches 0.5 mm. After phantom experiments demonstrated the principle of this technique, we moved the imaging system to the University of Texas MD Anderson Cancer Center to image the excised breast cancer specimens. After the surgery performed by the physicians at the Cancer Center, the excised breast specimen was placed in a plastic cylindrical container with a diameter of 10 cm; and it was then imaged by three imaging modalities: radiograph, ultrasound and thermoacoustic imaging. Four excised breast specimens have been tested. The tumor regions have been clearly located. This preliminary study demonstrated the potential of microwave-induced thermoacoustic tomography for applications in breast cancer imaging.

  14. Computerized detection of breast cancer on automated breast ultrasound imaging of women with dense breasts

    SciTech Connect

    Drukker, Karen Sennett, Charlene A.; Giger, Maryellen L.

    2014-01-15

    Purpose: Develop a computer-aided detection method and investigate its feasibility for detection of breast cancer in automated 3D ultrasound images of women with dense breasts. Methods: The HIPAA compliant study involved a dataset of volumetric ultrasound image data, “views,” acquired with an automated U-Systems Somo•V{sup ®} ABUS system for 185 asymptomatic women with dense breasts (BI-RADS Composition/Density 3 or 4). For each patient, three whole-breast views (3D image volumes) per breast were acquired. A total of 52 patients had breast cancer (61 cancers), diagnosed through any follow-up at most 365 days after the original screening mammogram. Thirty-one of these patients (32 cancers) had a screening-mammogram with a clinically assigned BI-RADS Assessment Category 1 or 2, i.e., were mammographically negative. All software used for analysis was developed in-house and involved 3 steps: (1) detection of initial tumor candidates, (2) characterization of candidates, and (3) elimination of false-positive candidates. Performance was assessed by calculating the cancer detection sensitivity as a function of the number of “marks” (detections) per view. Results: At a single mark per view, i.e., six marks per patient, the median detection sensitivity by cancer was 50.0% (16/32) ± 6% for patients with a screening mammogram-assigned BI-RADS category 1 or 2—similar to radiologists’ performance sensitivity (49.9%) for this dataset from a prior reader study—and 45.9% (28/61) ± 4% for all patients. Conclusions: Promising detection sensitivity was obtained for the computer on a 3D ultrasound dataset of women with dense breasts at a rate of false-positive detections that may be acceptable for clinical implementation.

  15. Observer-model optimization of X-ray system in photon-counting breast imaging

    NASA Astrophysics Data System (ADS)

    Cederström, Björn; Fredenberg, Erik; Lundqvist, Mats; Ericson, Tove; Åslund, Magnus

    2011-08-01

    An ideal-observer model is applied to optimize the design of an X-ray tube intended for use in a multi-slit scanning photon-counting mammography system. The design is such that the anode and the heel effect are reversed and the projected focal spot is smallest at the chest wall. Using linear systems theory, detectability and dose efficiency for a 0.1-mm disk are calculated for different focal spot sizes and anode angles. It is shown that the image acquisition time can be reduced by about 25% with spatial resolution and dose efficiency improved near the chest wall and worsened further away. The image quality is significantly more homogeneous than for the conventional anode orientation, both with respect to noise and detectability of a small object. With the tube rotated 90∘, dose efficiency can be improved by 20% for a fixed image acquisition time.

  16. MR imaging of the breast for the detection, diagnosis, and staging of breast cancer.

    PubMed

    Orel, S G; Schnall, M D

    2001-07-01

    With the introduction of contrast agents, advances in surface coil technology, and development of new imaging protocols, contrast agent-enhanced magnetic resonance (MR) imaging has emerged as a promising modality for detection, diagnosis, and staging of breast cancer. The reported sensitivity of MR imaging for the visualization of invasive cancer has approached 100%. There are many examples in the literature of MR imaging--demonstrated mammographically, sonographically, and clinically occult breast cancer. Often, breast cancer detected on MR images has resulted in a change in patient care. Despite these results, there are many unresolved issues, including no defined standard technique for contrast-enhanced breast MR imaging, no standard interpretation criteria for evaluating such studies, no consensus on what constitutes clinically important enhancement, and no clearly defined clinical indications for the use of MR imaging. Furthermore, this technology remains costly, and issues of cost-effectiveness and cost competition from percutaneous biopsy have yet to be fully addressed. These factors along with the lack of commercially available MR imaging--guided localization and biopsy systems have slowed the transfer of this imaging technology from research centers to clinical breast imaging practices. Technical requirements, potential clinical applications, and potential pitfalls and limitations of contrast-enhanced MR imaging as a method to help detect, diagnose, and stage breast cancer will be described.

  17. Quantitative analysis of breast echotexture patterns in automated breast ultrasound images

    SciTech Connect

    Chang, Ruey-Feng; Hou, Yu-Ling; Lo, Chung-Ming; Huang, Chiun-Sheng; Chen, Jeon-Hor; Kim, Won Hwa; Chang, Jung Min; Bae, Min Sun; Moon, Woo Kyung

    2015-08-15

    Purpose: Breast tissue composition is considered to be associated with breast cancer risk. This study aimed to develop a computer-aided classification (CAC) system to automatically classify echotexture patterns as heterogeneous or homogeneous using automated breast ultrasound (ABUS) images. Methods: A CAC system was proposed that can recognize breast echotexture patterns in ABUS images. For each case, the echotexture pattern was assessed by two expert radiologists and classified as heterogeneous or homogeneous. After neutrosophic image transformation and fuzzy c-mean clusterings, the lower and upper boundaries of the fibroglandular tissues were defined. Then, the number of hypoechoic regions and histogram features were extracted from the fibroglandular tissues, and the support vector machine model with the leave-one-out cross-validation method was utilized as the classifier. The authors’ database included a total of 208 ABUS images of the breasts of 104 females. Results: The accuracies of the proposed system for the classification of heterogeneous and homogeneous echotexture patterns were 93.48% (43/46) and 92.59% (150/162), respectively, with an overall Az (area under the receiver operating characteristic curve) of 0.9786. The agreement between the radiologists and the proposed system was almost perfect, with a kappa value of 0.814. Conclusions: The use of ABUS and the proposed method can provide quantitative information on the echotexture patterns of the breast and can be used to evaluate whether breast echotexture patterns are associated with breast cancer risk in the future.

  18. Automated quality assessment in three-dimensional breast ultrasound images.

    PubMed

    Schwaab, Julia; Diez, Yago; Oliver, Arnau; Martí, Robert; van Zelst, Jan; Gubern-Mérida, Albert; Mourri, Ahmed Bensouda; Gregori, Johannes; Günther, Matthias

    2016-04-01

    Automated three-dimensional breast ultrasound (ABUS) is a valuable adjunct to x-ray mammography for breast cancer screening of women with dense breasts. High image quality is essential for proper diagnostics and computer-aided detection. We propose an automated image quality assessment system for ABUS images that detects artifacts at the time of acquisition. Therefore, we study three aspects that can corrupt ABUS images: the nipple position relative to the rest of the breast, the shadow caused by the nipple, and the shape of the breast contour on the image. Image processing and machine learning algorithms are combined to detect these artifacts based on 368 clinical ABUS images that have been rated manually by two experienced clinicians. At a specificity of 0.99, 55% of the images that were rated as low quality are detected by the proposed algorithms. The areas under the ROC curves of the single classifiers are 0.99 for the nipple position, 0.84 for the nipple shadow, and 0.89 for the breast contour shape. The proposed algorithms work fast and reliably, which makes them adequate for online evaluation of image quality during acquisition. The presented concept may be extended to further image modalities and quality aspects.

  19. A review of biomechanically informed breast image registration

    NASA Astrophysics Data System (ADS)

    Hipwell, John H.; Vavourakis, Vasileios; Han, Lianghao; Mertzanidou, Thomy; Eiben, Björn; Hawkes, David J.

    2016-01-01

    Breast radiology encompasses the full range of imaging modalities from routine imaging via x-ray mammography, magnetic resonance imaging and ultrasound (both two- and three-dimensional), to more recent technologies such as digital breast tomosynthesis, and dedicated breast imaging systems for positron emission mammography and ultrasound tomography. In addition new and experimental modalities, such as Photoacoustics, Near Infrared Spectroscopy and Electrical Impedance Tomography etc, are emerging. The breast is a highly deformable structure however, and this greatly complicates visual comparison of imaging modalities for the purposes of breast screening, cancer diagnosis (including image guided biopsy), tumour staging, treatment monitoring, surgical planning and simulation of the effects of surgery and wound healing etc. Due primarily to the challenges posed by these gross, non-rigid deformations, development of automated methods which enable registration, and hence fusion, of information within and across breast imaging modalities, and between the images and the physical space of the breast during interventions, remains an active research field which has yet to translate suitable methods into clinical practice. This review describes current research in the field of breast biomechanical modelling and identifies relevant publications where the resulting models have been incorporated into breast image registration and simulation algorithms. Despite these developments there remain a number of issues that limit clinical application of biomechanical modelling. These include the accuracy of constitutive modelling, implementation of representative boundary conditions, failure to meet clinically acceptable levels of computational cost, challenges associated with automating patient-specific model generation (i.e. robust image segmentation and mesh generation) and the complexity of applying biomechanical modelling methods in routine clinical practice.

  20. Aerospace technology transfer to breast cancer imaging

    NASA Astrophysics Data System (ADS)

    Winfield, Daniel L.

    In the United States in 1996, an estimated 44,560 women died of breast cancer, and 184,300 new cases were diagnosed. Advances in space technology are now making significant improvements in the imaging technologies used in managing this important foe. The first of these spinoffs, a digital spot mammography system used to perform stereotactic fine-needle breast biopsy, uses a backside-thinned CCD developed originally for the Space Telescope Imaging Spectrometer. This paper describes several successful biomedical applications which have resulted from collaborative technology transfer programs between the National Aeronautics and Space Administration (NASA), the National Cancer Institute (NCI), and the U. S. Dept. of Health and Human Services Office on Women's Health (OWH). These programs have accelerated the introduction of direct digital mammography by two years. In follow-on work, RTI is now assisting the HHS Office on Women's Health to identify additional opportunities for transfer of aerospace, defense, and intelligence technologies to image-guided detection, diagnosis, and treatment of breast cancer. The technology identification and evaluation effort culminated in a May 1997 workshop, and the formative technology development partnerships are discussed.

  1. Aerospace technology transfer to breast cancer imaging.

    PubMed

    Winfield, D L

    1997-01-01

    In the United States in 1996, an estimated 44,560 women died of breast cancer, and 184,300 new cases were diagnosed. Advances in space technology are now making significant improvements in the imaging technologies used in managing this important foe. The first of these spinoffs, a digital spot mammography system used to perform stereotactic fine-needle breast biopsy, uses a backside-thinned CCD developed originally for the Space Telescope Imaging Spectrometer. This paper describes several successful biomedical applications which have resulted from collaborative technology transfer programs between the National Aeronautics and Space Administration (NASA), the National Cancer Institute (NCI), and the U.S. Dept. of Health and Human Services Office on Women's Health (OWH). These programs have accelerated the introduction of direct digital mammography by two years. In follow-on work, RTI is now assisting the HHS Office on Women's Health to identify additional opportunities for transfer of aerospace, defense, and intelligence technologies to image-guided detection, diagnosis, and treatment of breast cancer. The technology identification and evaluation effort culminated in a May 1997 workshop, and the formative technology development partnerships are discussed.

  2. An ultrasound tomography system with polyvinyl alcohol (PVA) moldings for coupling: in vivo results for 3-D pulse-echo imaging of the female breast.

    PubMed

    Koch, Andreas; Stiller, Florian; Lerch, Reinhard; Ermert, Helmut

    2015-02-01

    Full-angle spatial compounding (FASC) is a concept for pulse-echo imaging using an ultrasound tomography (UST) system. With FASC, resolution is increased and speckles are suppressed by averaging pulse-echo data from 360°. In vivo investigations have already shown a great potential for 2-D FASC in the female breast as well as for finger-joint imaging. However, providing a small number of images of parallel cross-sectional planes with enhanced image quality is not sufficient for diagnosis. Therefore, volume data (3-D) is needed. For this purpose, we further developed our UST add-on system to automatically rotate a motorized array (3-D probe) around the object of investigation. Full integration of external motor and ultrasound electronics control in a custom-made program allows acquisition of 3-D pulse-echo RF datasets within 10 min. In case of breast cancer imaging, this concept also enables imaging of near-thorax tissue regions which cannot be achieved by 2-D FASC. Furthermore, moldings made of polyvinyl alcohol hydrogel (PVA-H) have been developed as a new acoustic coupling concept. It has a great potential to replace the water bath technique in UST, which is a critical concept with respect to clinical investigations. In this contribution, we present in vivo results for 3-D FASC applied to imaging a female breast which has been placed in a PVA-H molding during data acquisition. An algorithm is described to compensate time-of-flight and consider refraction at the water-PVA-H molding and molding-tissue interfaces. Therefore, the mean speed of sound (SOS) for the breast tissue is estimated with an image-based method. Our results show that the PVA-H molding concept is applicable and feasible and delivers good results. 3-D FASC is superior to 2-D FASC and provides 3-D volume data at increased image quality.

  3. Generation of anatomically realistic numerical phantoms for optoacoustic breast imaging

    NASA Astrophysics Data System (ADS)

    Lou, Yang; Mitsuhashi, Kenji; Appleton, Catherine M.; Oraevsky, Alexander; Anastasio, Mark A.

    2016-03-01

    Because optoacoustic tomography (OAT) can provide functional information based on hemoglobin contrast, it is a promising imaging modality for breast cancer diagnosis. Developing an effective OAT breast imaging system requires balancing multiple design constraints, which can be expensive and time-consuming. Therefore, computer- simulation studies are often conducted to facilitate this task. However, most existing computer-simulation studies of OAT breast imaging employ simple phantoms such as spheres or cylinders that over-simplify the complex anatomical structures in breasts, thus limiting the value of these studies in guiding real-world system design. In this work, we propose a method to generate realistic numerical breast phantoms for OAT research based on clinical magnetic resonance imaging (MRI) data. The phantoms include a skin layer that defines breast-air boundary, major vessel branches that affect light absorption in the breast, and fatty tissue and fibroglandular tissue whose acoustical heterogeneity perturbs acoustic wave propagation. By assigning realistic optical and acoustic parameters to different tissue types, we establish both optic and acoustic breast phantoms, which will be exported into standard data formats for cross-platform usage.

  4. Quantitative Clinical Evaluation of a Simultaneous PETI MRI Breast Imaging System

    SciTech Connect

    Schlyer D. J.; Schlyer, D.J.

    2013-04-03

    A prototype simultaneous PET-MRI breast scanner has been developed for conducting clinical studies with the goal of obtaining high resolution anatomical and functional information in the same scan which can lead to faster and better diagnosis, reduction of unwanted biopsies, and better patient care.

  5. Optical imaging for breast cancer prescreening

    PubMed Central

    Godavarty, Anuradha; Rodriguez, Suset; Jung, Young-Jin; Gonzalez, Stephanie

    2015-01-01

    Breast cancer prescreening is carried out prior to the gold standard screening using X-ray mammography and/or ultrasound. Prescreening is typically carried out using clinical breast examination (CBE) or self-breast examinations (SBEs). Since CBE and SBE have high false-positive rates, there is a need for a low-cost, noninvasive, non-radiative, and portable imaging modality that can be used as a prescreening tool to complement CBE/SBE. This review focuses on the various hand-held optical imaging devices that have been developed and applied toward early-stage breast cancer detection or as a prescreening tool via phantom, in vivo, and breast cancer imaging studies. Apart from the various optical devices developed by different research groups, a wide-field fiber-free near-infrared optical scanner has been developed for transillumination-based breast imaging in our Optical Imaging Laboratory. Preliminary in vivo studies on normal breast tissues, with absorption-contrasted targets placed in the intramammary fold, detected targets as deep as 8.8 cm. Future work involves in vivo imaging studies on breast cancer subjects and comparison with the gold standard X-ray mammography approach. PMID:26229503

  6. Anisotropic imaging performance in breast tomosynthesis.

    PubMed

    Badano, Aldo; Kyprianou, Iacovos S; Jennings, Robert J; Sempau, Josep

    2007-11-01

    We describe the anisotropy in imaging performance caused by oblique x-ray incidence in indirect detectors for breast tomosynthesis based on columnar scintillator screens. We use MANTIS, a freely available combined x-ray, electron, and optical Monte Carlo transport package which models the indirect detection processes in columnar screens, interaction by interaction. The code has been previously validated against published optical distributions. In this article, initial validation results are provided concerning the blur for particular designs of phosphor screens for which some details with respect to the columnar geometry are available from scanning electron microscopy. The polyenergetic x-ray spectrum utilized comes from a database of experimental data for three different anode/filter/kVp combinations: Mo/Mo at 28 kVp, Rh/Rh at 28 kVp, and W/Al at 42 kVp. The x-ray spectra were then filtered with breast tissue (3, 4, and 6 cm thickness), compression paddle, and support base, according to the oblique paths determined by the incidence angle. The composition of the breast tissue was 50%/50% adipose/glandular tissue mass ratio. Results are reported on the pulse-height statistics of the light output and on spatial blur, expressed as the response of the detector to a pencil beam with a certain incidence angle. Results suggest that the response is nonsymmetrical and that the resolution properties of a tomosynthesis system vary significantly with the angle of x-ray incidence. In contrast, it is found that the noise due to the variability in the number of light photons detected per primary x-ray interaction changes only a few percent. The anisotropy in the response is not less in screens with absorptive backings while the noise introduced by variations in the depth-dependent light output and optical transport is larger. The results suggest that anisotropic imaging performance across the detector area can be incorporated into reconstruction algorithms for improving the image

  7. Neoadjuvant Systemic Therapy in Breast Cancer: Association of Contrast-enhanced MR Imaging Findings, Diffusion-weighted Imaging Findings, and Tumor Subtype with Tumor Response.

    PubMed

    Santamaría, Gorane; Bargalló, Xavier; Fernández, Pedro Luis; Farrús, Blanca; Caparrós, Xavier; Velasco, Martin

    2016-11-22

    Purpose To investigate the performance of tumor subtype and various magnetic resonance (MR) imaging parameters in the assessment of tumor response to neoadjuvant systemic therapy (NST) in patients with breast cancer and to outline a model of pathologic response, considering pathologic complete response (pCR) as the complete absence of any residual invasive cancer or ductal carcinoma in situ (DCIS). Materials and Methods This was an institutional review board-approved retrospective study, with waiver of the need to obtain informed consent. From November 2009 to December 2014, 111 patients with histopathologically confirmed invasive breast cancer who were undergoing NST were included (mean age, 54 years; range, 27-84 years). Breast MR imaging was performed before and after treatment. Presence of late enhancement was assessed. Apparent diffusion coefficients (ADCs) were obtained by using two different methods. ADC ratio (mean posttreatment ADC/mean pretreatment ADC) was calculated. pCR was defined as absence of any residual invasive cancer or DCIS. Multivariate regression analysis and receiver operating characteristic analysis were performed. Results According to their immunohistochemical (IHC) profile, tumors were classified as human epidermal growth factor receptor 2 (HER2) positive (n = 51), estrogen receptor (ER) positive/HER2 negative (n = 40), and triple negative (n = 20). pCR was achieved in 19% (21 of 111) of cases; 86% of them were triple-negative or HER2-positive subtypes. Absence of late enhancement at posttreatment MR imaging was significantly associated with pCR (area under the curve [AUC], 0.85). Mean ADC ratio significantly increased when pCR was achieved (P < .001). A κ value of 0.479 was found for late enhancement (P < .001), and the intraclass correlation coefficient for ADCs was 0.788 (P < .001). Good correlation of ADCs obtained with the single-value method and those obtained with the mean-value methods was observed. The model combining the IHC

  8. Causes of breast lumps (image)

    MedlinePlus

    ... breast lumps are benign (non-cancerous), as in fibroadenoma, a condition that mostly affects women under age ... with the menstrual cycle, whereas a lump from fibroadenoma does not. While most breast lumps are benign, ...

  9. Automation and Preclinical Evaluation of a Dedicated Emission Mammotomography System for Fully 3-D Molecular Breast Imaging

    DTIC Science & Technology

    2007-10-01

    using a large two headed gamma camera, in order to look for drainage into the lymph node. If drainage appears, the node is marked and the woman has the...lymphoscintigraphy) prior to lymph node surgery. The technologist injects a radionuclide directly into the breast tumor and then images the patient... lymph node removed with gamma-probe guided surgery to help prevent further spreading of the cancer. I am scheduled to observe in the operation room

  10. High-frequency ultrasound imaging for breast cancer biopsy guidance

    PubMed Central

    Cummins, Thomas; Yoon, Changhan; Choi, Hojong; Eliahoo, Payam; Kim, Hyung Ham; Yamashita, Mary W.; Hovanessian-Larsen, Linda J.; Lang, Julie E.; Sener, Stephen F.; Vallone, John; Martin, Sue E.; Kirk Shung, K.

    2015-01-01

    Abstract. Image-guided core needle biopsy is the current gold standard for breast cancer diagnosis. Microcalcifications, an important radiographic finding on mammography suggestive of early breast cancer such as ductal carcinoma in situ, are usually biopsied under stereotactic guidance. This procedure, however, is uncomfortable for patients and requires the use of ionizing radiation. It would be preferable to biopsy microcalcifications under ultrasound guidance since it is a faster procedure, more comfortable for the patient, and requires no radiation. However, microcalcifications cannot reliably be detected with the current standard ultrasound imaging systems. This study is motivated by the clinical need for real-time high-resolution ultrasound imaging of microcalcifications, so that biopsies can be accurately performed under ultrasound guidance. We have investigated how high-frequency ultrasound imaging can enable visualization of microstructures in ex vivo breast tissue biopsy samples. We generated B-mode images of breast tissue and applied the Nakagami filtering technique to help refine image output so that microcalcifications could be better assessed during ultrasound-guided core biopsies. We describe the preliminary clinical results of high-frequency ultrasound imaging of ex vivo breast biopsy tissue with microcalcifications and without Nakagami filtering and the correlation of these images with the pathology examination by hematoxylin and eosin stain and whole slide digital scanning. PMID:26693167

  11. Breast imaging with SoftVue: initial clinical evaluation

    NASA Astrophysics Data System (ADS)

    Duric, Neb; Littrup, Peter; Li, Cuiping; Roy, Olivier; Schmidt, Steven; Cheng, Xiaoyang; Seamans, John; Wallen, Andrea; Bey-Knight, Lisa

    2014-03-01

    We describe the clinical performance of SoftVue, a breast imaging device based on the principles of ultrasound tomography. Participants were enrolled in an IRB-approved study at Wayne State University, Detroit, MI. The main research findings indicate that SoftVue is able to image the whole uncompressed breast up to cup size H. Masses can be imaged in even the densest breasts with the ability to discern margins and mass shapes. Additionally, it is demonstrated that multi-focal disease can also be imaged. The system was also tested in its research mode for additional imaging capabilities. These tests demonstrated the potential for generating tissue stiffness information for the entire breast using through-transmission data. This research capability differentiates SoftVue from the other whole breast systems on the market. It is also shown that MRI-like images can be generated using alternative processing of the echo data. Ongoing research is focused on validating and quantifying these findings in a larger sample of study participants and quantifying SoftVue's ability to differentiate benign masses from cancer.

  12. Magnetic Resonance Imaging of Polymeric Drug Delivery Systems in Breast Cancer Solid Tumors

    DTIC Science & Technology

    2006-07-01

    events in situ and can be valuable tools for early detection and diagnosis of the diseases where macrophages are involved. The use of MR contrast...Et Al. Nephrotoxic Nephritis And Obstructive Nephropathy : Evaluation With MR Imaging Enhanced With Ultrasmall Superparamagnetic Iron Oxide

  13. Multispectral image segmentation of breast pathology

    NASA Astrophysics Data System (ADS)

    Hornak, Joseph P.; Blaakman, Andre; Rubens, Deborah; Totterman, Saara

    1991-06-01

    The signal intensity in a magnetic resonance image is not only a function of imaging parameters but also of several intrinsic tissue properties. Therefore, unlike other medical imaging modalities, magnetic resonance imaging (MRI) allows the imaging scientist to locate pathology using multispectral image segmentation. Multispectral image segmentation works best when orthogonal spectral regions are employed. In MRI, possible spectral regions are spin density (rho) , spin-lattice relaxation time T1, spin-spin relaxation time T2, and texture for each nucleus type and chemical shift. This study examines the ability of multispectral image segmentation to locate breast pathology using the total hydrogen T1, T2, and (rho) . The preliminary results indicate that our technique can locate cysts and fibroadenoma breast lesions with a minimum number of false-positives and false-negatives. Results, T1, T2, and (rho) algorithms, and segmentation techniques are presented.

  14. Multimodality imaging and state-of-art GPU technology in discriminating benign from malignant breast lesions on real time decision support system

    NASA Astrophysics Data System (ADS)

    Kostopoulos, S.; Sidiropoulos, K.; Glotsos, D.; Dimitropoulos, N.; Kalatzis, I.; Asvestas, P.; Cavouras, D.

    2014-03-01

    The aim of this study was to design a pattern recognition system for assisting the diagnosis of breast lesions, using image information from Ultrasound (US) and Digital Mammography (DM) imaging modalities. State-of-art computer technology was employed based on commercial Graphics Processing Unit (GPU) cards and parallel programming. An experienced radiologist outlined breast lesions on both US and DM images from 59 patients employing a custom designed computer software application. Textural features were extracted from each lesion and were used to design the pattern recognition system. Several classifiers were tested for highest performance in discriminating benign from malignant lesions. Classifiers were also combined into ensemble schemes for further improvement of the system's classification accuracy. Following the pattern recognition system optimization, the final system was designed employing the Probabilistic Neural Network classifier (PNN) on the GPU card (GeForce 580GTX) using CUDA programming framework and C++ programming language. The use of such state-of-art technology renders the system capable of redesigning itself on site once additional verified US and DM data are collected. Mixture of US and DM features optimized performance with over 90% accuracy in correctly classifying the lesions.

  15. SU-E-J-160: Comparing the Setup Accuracy of Non-Ionizing Patient Localization Systems with CBCT to Reduce Imaging Dose in Prone Breast Treatments

    SciTech Connect

    Chung, E; Yamamoto, T; Mayadev, J; Dieterich, S

    2014-06-01

    Purpose: CBCT is the current gold standard to verify prone breast patient setup. We investigated in a phantom if non-ionizing localization systems can replace ionizing localization systems for prone breast treatments. Methods: An anthropomorphic phantom was positioned on a prone breast board. Electromagnetic transponders were attached on the left chest surface. The CT images of the phantom were imported to the treatment planning system. The isocenter was set to the center of the transponders. The positions of the isocenter and transponders transferred to the transponder tracking system. The posterior phantom surface was contoured and exported to the optical surface tracking system. A CBCT was taken for the initial setup alignment on the treatment machine. Using the electromagnetic and optical localization systems, the deviation of the phantom setup from the original CT images was measured. This was compared with the difference between the original CT and kV-CBCT images. Results: For the electromagnetic localization system, the phantom position deviated from the original CT in 1.5 mm, 0.0 mm and 0.5 mm in the anterior-posterior (AP), superior-inferior (SI) and left-right (LR) directions. For the optical localization system, the phantom position deviated from the original CT in 2.0 mm, −2.0 mm and 0.1 mm in the AP, SI and LR directions. For the CBCT, the phantom position deviated from the original CT in 4.0 mm, 1.0 mm and −1.0 mm in the AP, SI and LR directions. The measured values from the non-ionizing localization systems differed from those with the CBCT less than 3.0 mm in all directions. Conclusions: This phantom study showed the feasibility of using a combination of non-ionizing localization systems to achieve a similar setup accuracy as CBCT for prone breast patients. This could potentially eliminate imaging dose. As a next step, we are expanding this study to actual patients. This work has been in part supported by Departmental Research Award RODEPT1-JS

  16. How I report breast magnetic resonance imaging studies for breast cancer staging and screening.

    PubMed

    Vinnicombe, Sarah

    2016-07-25

    Magnetic resonance imaging (MRI) of the breast is the most sensitive imaging technique for the diagnosis and local staging of primary breast cancer and yet, despite the fact that it has been in use for 20 years, there is little evidence that its widespread uncritical adoption has had a positive impact on patient-related outcomes.This has been attributed previously to the low specificity that might be expected with such a sensitive modality, but with modern techniques and protocols, the specificity and positive predictive value for malignancy can exceed that of breast ultrasound and mammography. A more likely explanation is that historically, clinicians have acted on MRI findings and altered surgical plans without prior histological confirmation. Furthermore, modern adjuvant therapy for breast cancer has improved so much that it has become a very tall order to show a an improvement in outcomes such as local recurrence rates.In order to obtain clinically useful information, it is necessary to understand the strengths and weaknesses of the technique and the physiological processes reflected in breast MRI. An appropriate indication for the scan, proper patient preparation and good scan technique, with rigorous quality assurance, are all essential prerequisites for a diagnostically relevant study.The use of recognised descriptors from a standardised lexicon is helpful, since assessment can then dictate subsequent recommendations for management, as in the American College of Radiology BI-RADS (Breast Imaging Reporting and Data System) lexicon (Morris et al., ACR BI-RADS® Atlas, Breast Imaging Reporting and Data System, 2013). It also enables audit of the service. However, perhaps the most critical factor in the generation of a meaningful report is for the reporting radiologist to have a thorough understanding of the clinical question and of the findings that will influence management. This has never been more important than at present, when we are in the throes of a

  17. Combined SPECT/CT and PET/CT for breast imaging

    NASA Astrophysics Data System (ADS)

    Russo, Paolo; Larobina, Michele; Di Lillo, Francesca; Del Vecchio, Silvana; Mettivier, Giovanni

    2016-02-01

    In the field of nuclear medicine imaging, breast imaging for cancer diagnosis is still mainly based on 2D imaging techniques. Three-dimensional tomographic imaging with whole-body PET or SPECT scanners, when used for imaging the breast, has performance limits in terms of spatial resolution and sensitivity, which can be overcome only with a dedicated instrumentation. However, only few hybrid imaging systems for PET/CT or SPECT/CT dedicated to the breast have been developed in the last decade, providing complementary functional and anatomical information on normal breast tissue and lesions. These systems are still under development and clinical trials on just few patients have been reported; no commercial dedicated breast PET/CT or SPECT/CT is available. This paper reviews combined dedicated breast PET/CT and SPECT/CT scanners described in the recent literature, with focus on their technological aspects.

  18. Laser optoacoustic imaging of breast cancer in vivo

    NASA Astrophysics Data System (ADS)

    Oraevsky, Alexander A.; Karabutov, Alexander A.; Solomatin, Sergey V.; Savateeva, Elena V.; Andreev, Valeri A.; Gatalica, Zoran; Singh, Harbans; Fleming, R. Declan

    2001-06-01

    A clinical prototype of the laser optoacoustic imaging system (LOIS) was employed for breast cancer detection and localization in patients with confirmed breast cancer and scheduled for radical mastectomy. The prototype LOIS used a single optical fiber for delivery of laser pulses, an arc shaped 32-element PVDF transducer array for ultrawide-band piezoelectric detection of optoacoustic signals and a single-channel data acquisition card for signal processing. The resonance ultrasound frequency of the 110 micrometers PVDF film was outside detectable range of ultrasound. Spatial resolution of the transducer array was slightly better than 1mm in radial direction and slightly worse than 1 mm in lateral direction. The system was optimized for contrast and sensitivity. Data acquisition, signal conditioning and image processing were significantly improved and optimized resulting in reduced image frame rate of 2 seconds employing 700 MHz Aphlon processor. The computer code for digital signal processing employed band-pass hyper-Gaussian filtering and denoising. An automatic recognition of the optoacoustic signal detected from the irradiated surface was implemented in order to visualize the breast surface and improve the accuracy of tumor localization. Radial back- projection algorithm was employed adopting combination of integration along spherical wavefronts and integration along planar wavefronts (as in Radon transform) for image reconstruction. The system performance was evaluated initially in breast tissue-like phantoms with embedded blood vessels. Clinical studies in breast cancer patients scheduled for surgical mastectomy were performed and compared with x-ray radiography, ultrasound and pathology reports.

  19. Breast density measurement: 3D cone beam computed tomography (CBCT) images versus 2D digital mammograms

    NASA Astrophysics Data System (ADS)

    Han, Tao; Lai, Chao-Jen; Chen, Lingyun; Liu, Xinming; Shen, Youtao; Zhong, Yuncheng; Ge, Shuaiping; Yi, Ying; Wang, Tianpeng; Yang, Wei T.; Shaw, Chris C.

    2009-02-01

    Breast density has been recognized as one of the major risk factors for breast cancer. However, breast density is currently estimated using mammograms which are intrinsically 2D in nature and cannot accurately represent the real breast anatomy. In this study, a novel technique for measuring breast density based on the segmentation of 3D cone beam CT (CBCT) images was developed and the results were compared to those obtained from 2D digital mammograms. 16 mastectomy breast specimens were imaged with a bench top flat-panel based CBCT system. The reconstructed 3D CT images were corrected for the cupping artifacts and then filtered to reduce the noise level, followed by using threshold-based segmentation to separate the dense tissue from the adipose tissue. For each breast specimen, volumes of the dense tissue structures and the entire breast were computed and used to calculate the volumetric breast density. BI-RADS categories were derived from the measured breast densities and compared with those estimated from conventional digital mammograms. The results show that in 10 of 16 cases the BI-RADS categories derived from the CBCT images were lower than those derived from the mammograms by one category. Thus, breasts considered as dense in mammographic examinations may not be considered as dense with the CBCT images. This result indicates that the relation between breast cancer risk and true (volumetric) breast density needs to be further investigated.

  20. The FLARE™ Intraoperative Near-Infrared Fluorescence Imaging System: A First-in-Human Clinical Trial in Perforator Flap Breast Reconstruction

    PubMed Central

    Lee, Bernard T.; Hutteman, Merlijn; Gioux, Sylvain; Stockdale, Alan; Lin, Samuel J.; Ngo, Long H.; Frangioni, John V.

    2010-01-01

    Background The ability to determine flap perfusion in reconstructive surgery is still primarily based on clinical examination. In this study, we demonstrate the use of an intraoperative, near infrared (NIR) fluorescence imaging system for evaluation of perforator location and flap perfusion. Methods Indocyanine green (ICG) was injected intravenously in six breast cancer patients undergoing a deep inferior epigastric perforator (DIEP) flap breast reconstruction after mastectomy. Three dose levels of ICG were assessed using the Fluorescence-Assisted Resection and Exploration (FLARE™) imaging system. This system uses light emitting diodes (LED) for fluorescence excitation; different from current commercially available systems. In this pilot study, the operating surgeons were blinded to the imaging results. Results Use of the FLARE™ system was successful in all six study subjects with no complications or sequelae. Among the three dose levels, 4 mg per injection resulted in the highest observed contrast-to-background ratio (CBR), signal-to-background ratio, and signal-to-noise ratio. However, due to small sample size, we did not have sufficient power to detect statistical significance for these pairwise comparisons at the multiple-comparison adjusted type-I error of 0.017. Six mg per injection provided a similar CBR, but also a higher residual background signal. Conclusions Based on this pilot study, we conclude that NIR assessment of perforator flap breast reconstruction is feasible with an LED based system, and that a dose of 4 mg of ICG per injection yields the best observed CBR compared to a dose of 2 or 6 mg for assessment of flap perfusion. PMID:21042103

  1. New Approaches in SPECT Breast Imaging

    DTIC Science & Technology

    2005-07-01

    the use of their breast and torso phantoms. The software package, "SPECTER", developed by Tim Turkington, was used to analyze and display the phantom...breast images. The software package, "SPECT-MAP", developed by James Bowsher, was used for reconstructions. VI. REFERENCES [1] Tornai MP, Bowsher JE...based software . and standard errors of the mean. No attenuation or scatter corrections were taken into account in For a given statistical ensemble of

  2. Dosimetry in x-ray-based breast imaging

    NASA Astrophysics Data System (ADS)

    Dance, David R.; Sechopoulos, Ioannis

    2016-10-01

    The estimation of the mean glandular dose to the breast (MGD) for x-ray based imaging modalities forms an essential part of quality control and is needed for risk estimation and for system design and optimisation. This review considers the development of methods for estimating the MGD for mammography, digital breast tomosynthesis (DBT) and dedicated breast CT (DBCT). Almost all of the methodology used employs Monte Carlo calculated conversion factors to relate the measurable quantity, generally the incident air kerma, to the MGD. After a review of the size and composition of the female breast, the various mathematical models used are discussed, with particular emphasis on models for mammography. These range from simple geometrical shapes, to the more recent complex models based on patient DBCT examinations. The possibility of patient-specific dose estimates is considered as well as special diagnostic views and the effect of breast implants. Calculations using the complex models show that the MGD for mammography is overestimated by about 30% when the simple models are used. The design and uses of breast-simulating test phantoms for measuring incident air kerma are outlined and comparisons made between patient and phantom-based dose estimates. The most widely used national and international dosimetry protocols for mammography are based on different simple geometrical models of the breast, and harmonisation of these protocols using more complex breast models is desirable.

  3. Review of optical breast imaging and spectroscopy

    NASA Astrophysics Data System (ADS)

    Grosenick, Dirk; Rinneberg, Herbert; Cubeddu, Rinaldo; Taroni, Paola

    2016-09-01

    Diffuse optical imaging and spectroscopy of the female breast is an area of active research. We review the present status of this field and discuss the broad range of methodologies and applications. Starting with a brief overview on breast physiology, the remodeling of vasculature and extracellular matrix caused by solid tumors is highlighted that is relevant for contrast in optical imaging. Then, the various instrumental techniques and the related methods of data analysis and image generation are described and compared including multimodality instrumentation, fluorescence mammography, broadband spectroscopy, and diffuse correlation spectroscopy. We review the clinical results on functional properties of malignant and benign breast lesions compared to host tissue and discuss the various methods to improve contrast between healthy and diseased tissue, such as enhanced spectroscopic information, dynamic variations of functional properties, pharmacokinetics of extrinsic contrast agents, including the enhanced permeability and retention effect. We discuss research on monitoring neoadjuvant chemotherapy and on breast cancer risk assessment as potential clinical applications of optical breast imaging and spectroscopy. Moreover, we consider new experimental approaches, such as photoacoustic imaging and long-wavelength tissue spectroscopy.

  4. Breast cancer in systemic lupus.

    PubMed

    Bernatsky, S; Ramsey-Goldman, R; Petri, M; Urowitz, M B; Gladman, D D; Fortin, P F; Ginzler, E; Romero-Diaz, J; Peschken, C; Jacobsen, S; Hanly, J G; Gordon, C; Nived, O; Yelin, E H; Isenberg, D; Rahman, A; Bae, S-C; Joseph, L; Witte, T; Ruiz-Irastorza, G; Aranow, C; Kamen, D; Sturfeldt, G; Foulkes, W D; Hansen, J E; St Pierre, Y; Raymer, P Chrétien; Tessier-Cloutier, B; Clarke, A E

    2017-03-01

    Objective There is a decreased breast cancer risk in systemic lupus erythematosus (SLE) versus the general population. We assessed a large sample of SLE patients, evaluating demographic and clinical characteristics and breast cancer risk. Methods We performed case-cohort analyses within a multi-center international SLE sample. We calculated the breast cancer hazard ratio (HR) in female SLE patients, relative to demographics, reproductive history, family history of breast cancer, and time-dependent measures of anti-dsDNA positivity, cumulative disease activity, and drugs, adjusted for SLE duration. Results There were 86 SLE breast cancers and 4498 female SLE cancer-free controls. Patients were followed on average for 7.6 years. Versus controls, SLE breast cancer cases tended to be white and older. Breast cancer cases were similar to controls regarding anti-dsDNA positivity, disease activity, and most drug exposures over time. In univariate and multivariate models, the principal factor associated with breast cancers was older age at cohort entry. Conclusions There was little evidence that breast cancer risk in this SLE sample was strongly driven by any of the clinical factors that we studied. Further search for factors that determine the lower risk of breast cancer in SLE may be warranted.

  5. Imaging features of complex sclerosing lesions of the breast

    PubMed Central

    2014-01-01

    Purpose: The purpose of this study was to evaluate the imaging features of complex sclerosing lesions of the breast and to assess the rate of upgrade to breast cancer. Methods: From March 2008 to May 2012, seven lesions were confirmed as complex sclerosing lesions by ultrasonography-guided core needle biopsy. Final results by either surgical excision or follow-up imaging studies were reviewed to assess the rate of upgrade to breast cancer. Two radiologists retrospectively analyzed the imaging findings according to the Breast Imaging Reporting and Data System classification. Results: Five lesions underwent subsequent surgical excision and two of them revealed ductal carcinoma in situ (n=1) and invasive ductal carcinoma (n=1). Our study showed a breast cancer upgrade rate of 28.6% (2 of 7 lesions). Two lesions were stable on imaging follow-up beyond 1 year. The mammographic features included masses (n=4, 57.1%), architectural distortion (n=2, 28.6%), and focal asymmetry (n=1, 14.3%). Common B-mode ultrasonographic features were irregular shape (n=6, 85.7%), spiculated margin (n=5, 71.4 %), and hypoechogenicity (n=7, 100%). The final assessment categories were category 4 (n=6, 85.7%) and category 5 (n=1, 14.3%). Conclusion: The complex sclerosing lesions were commonly mass-like on mammography and showed the suspicious ultrasonographic features of category 4. Due to a high underestimation rate, all complex sclerosing lesions by core needle biopsy should be excised. PMID:24936496

  6. Three-dimensional digital breast histopathology imaging

    NASA Astrophysics Data System (ADS)

    Clarke, G. M.; Peressotti, C.; Mawdsley, G. E.; Eidt, S.; Ge, M.; Morgan, T.; Zubovits, J. T.; Yaffe, M. J.

    2005-04-01

    We have developed a digital histology imaging system that has the potential to improve the accuracy of surgical margin assessment in the treatment of breast cancer by providing finer sampling and 3D visualization. The system is capable of producing a 3D representation of histopathology from an entire lumpectomy specimen. We acquire digital photomicrographs of a stack of large (120 x 170 mm) histology slides cut serially through the entire specimen. The images are then registered and displayed in 2D and 3D. This approach dramatically improves sampling and can improve visualization of tissue structures compared to current, small-format histology. The system consists of a brightfield microscope, adapted with a freeze-frame digital video camera and a large, motorized translation stage. The image of each slide is acquired as a mosaic of adjacent tiles, each tile representing one field-of-view of the microscope, and the mosaic is assembled into a seamless composite image. The assembly is done by a program developed to build image sets at six different levels within a multiresolution pyramid. A database-linked viewing program has been created to efficiently register and display the animated stack of images, which occupies about 80 GB of disk space per lumpectomy at full resolution, on a high-resolution (3840 x 2400 pixels) colour monitor. The scanning or tiling approach to digitization is inherently susceptible to two artefacts which disrupt the composite image, and which impose more stringent requirements on system performance. Although non-uniform illumination across any one isolated tile may not be discernible, the eye readily detects this non-uniformity when the entire assembly of tiles is viewed. The pattern is caused by deficiencies in optical alignment, spectrum of the light source, or camera corrections. The imaging task requires that features as small as 3.2 &mum in extent be seamlessly preserved. However, inadequate accuracy in positioning of the translation

  7. TU-EF-207-00: Advances in Breast Imaging

    SciTech Connect

    2015-06-15

    Breast imaging technology is advancing on several fronts. In digital mammography, the major technological trend has been on optimization of approaches for performing combined mammography and tomosynthesis using the same system. In parallel, photon-counting slot-scan mammography is now in clinical use and more efforts are directed towards further development of this approach for spectral imaging. Spectral imaging refers to simultaneous acquisition of two or more energy-windowed images. Depending on the detector and associated electronics, there are a number of ways this can be accomplished. Spectral mammography using photon-counting detectors can suppress electronic noise and importantly, it enables decomposition of the image into various material compositions of interest facilitating quantitative imaging. Spectral imaging can be particularly important in intravenously injected contrast mammography and eventually tomosynthesis. The various approaches and applications of spectral mammography are discussed. Digital breast tomosynthesis relies on the mechanical movement of the x-ray tube to acquire a number of projections in a predefined arc, typically from 9 to 25 projections over a scan angle of +/−7.5 to 25 degrees depending on the particular system. The mechanical x-ray tube motion requires relatively long acquisition time, typically between 3.7 to 25 seconds depending on the system. Moreover, mechanical scanning may have an effect on the spatial resolution due to internal x-ray filament or external mechanical vibrations. New x-ray source arrays have been developed and they are aimed at replacing the scanned x-ray tube for improved acquisition time and potentially for higher spatial resolution. The potential advantages and challenges of this approach are described. Combination of digital mammography and tomosynthesis in a single system places increased demands on certain functional aspects of the detector and overall performance, particularly in the tomosynthesis

  8. Opto-acoustic breast imaging with co-registered ultrasound

    NASA Astrophysics Data System (ADS)

    Zalev, Jason; Clingman, Bryan; Herzog, Don; Miller, Tom; Stavros, A. Thomas; Oraevsky, Alexander; Kist, Kenneth; Dornbluth, N. Carol; Otto, Pamela

    2014-03-01

    We present results from a recent study involving the ImagioTM breast imaging system, which produces fused real-time two-dimensional color-coded opto-acoustic (OA) images that are co-registered and temporally inter- leaved with real-time gray scale ultrasound using a specialized duplex handheld probe. The use of dual optical wavelengths provides functional blood map images of breast tissue and tumors displayed with high contrast based on total hemoglobin and oxygen saturation of the blood. This provides functional diagnostic information pertaining to tumor metabolism. OA also shows morphologic information about tumor neo-vascularity that is complementary to the morphological information obtained with conventional gray scale ultrasound. This fusion technology conveniently enables real-time analysis of the functional opto-acoustic features of lesions detected by readers familiar with anatomical gray scale ultrasound. We demonstrate co-registered opto-acoustic and ultrasonic images of malignant and benign tumors from a recent clinical study that provide new insight into the function of tumors in-vivo. Results from the Feasibility Study show preliminary evidence that the technology may have the capability to improve characterization of benign and malignant breast masses over conventional diagnostic breast ultrasound alone and to improve overall accuracy of breast mass diagnosis. In particular, OA improved speci city over that of conventional diagnostic ultrasound, which could potentially reduce the number of negative biopsies performed without missing cancers.

  9. Magnetic Resonance Imaging Features of Adenosis in the Breast

    PubMed Central

    Gity, Masoumeh; Arabkheradmand, Ali; Shakiba, Madjid; Khademi, Yassaman; Bijan, Bijan; Sadaghiani, Mohammad Salehi; Jalali, Amir Hossein

    2015-01-01

    Purpose Adenosis lesions of the breast, including sclerosing adenosis and adenosis tumors, are a group of benign proliferative disorders that may mimic the features of malignancy on imaging. In this study, we aim to describe the features of breast adenosis lesions with suspicious or borderline findings on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Methods In our database, we identified 49 pathologically proven breast adenosis lesions for which the final assessment of the breast MRI report was classified as either category 4 (n=45) or category 5 (n=4), according to the Breast Imaging Reporting and Data System (BI-RADS) published by the American College of Radiology (ACR). The lesions had a final diagnosis of either pure adenosis (n=33, 67.3%) or mixed adenosis associated with other benign pathologies (n=16, 32.7%). Results Of the 49 adenosis lesions detected on DCE-MRI, 32 (65.3%) appeared as enhancing masses, 16 (32.7%) as nonmass enhancements, and one (2.1%) as a tiny enhancing focus. Analysis of the enhancing masses based on the ACR BI-RADS lexicon revealed that among the mass descriptors, the most common features were irregular shape in 12 (37.5%), noncircumscribed margin in 20 (62.5%), heterogeneous internal pattern in 16 (50.0%), rapid initial enhancement in 32 (100.0%), and wash-out delayed en-hancement pattern in 21 (65.6%). Of the 16 nonmass enhancing lesions, the most common descriptors included focal distribution in seven (43.8%), segmental distribution in six (37.5%), clumped internal pattern in nine (56.3%), rapid initial enhancement in 16 (100.0%), and wash-out delayed enhancement pattern in eight (50.0%). Conclusion Adenosis lesions of the breast may appear suspicious on breast MRI. Awareness of these suspi-cious-appearing features would be helpful in obviating unnecessary breast biopsies. PMID:26155296

  10. Three-dimensional imaging of breast calcifications

    NASA Astrophysics Data System (ADS)

    Maidment, Andrew D. A.; Albert, Michael; Conant, Emily F.

    1998-03-01

    Approximately 50 percent of breast cancers are detected on the basis of calcifications alone. Regrettably, the presence of such calcifications is non-specific; only 30 percent of biopsies based on suspicious calcifications are malignant. We have investigated three methods (LVR) for 3D imaging and analysis of microcalcifications. Our aim is to increase specificity by more accurately distinguishing between calcifications indicative of benign and malignant breast lesions. We have demonstrated that 3D imaging of calcifications is possible using an LVR technique that includes semi-automated segmentation, correlation, and reconstruction of the calcifications. A clinical study of he LVR method is ongoing in which 2D film and digital images are compared to 3D images. The images are evaluated using a rating of 1 to 5, where 1 equals definitely benign, 5 equals definitely malignant, and a score of 3 or higher requires biopsy. To date, 3 radiologists have evaluated the images of 44 patients for which biopsy results were available. The use of 2D and 3D digital images resulted in doubling the diagnostic accuracy from 36 percent to 77 percent. Comparison to other techniques is ongoing. Additionally, a high resolution CT scanner for breast tissue specimens is under construction for comparison of the reconstructed images to a 'gold standard'.

  11. Ultrasonic imaging techniques for breast cancer detection.

    SciTech Connect

    Goulding, N. R.; Marquez, J. D.; Prewett, E. M.; Claytor, T. N.; Nadler, B. R.; Huang, L.

    2006-01-01

    Improving the resolution and specificity of current ultrasonic imaging technology can enhance its relevance to detection of early-stage breast cancers. Ultrasonic evaluation of breast lesions is desirable because it is quick, inexpensive, and does not expose the patient to potentially harmful ionizing radiation. Improved image quality and resolution enables earlier detection and more accurate diagnoses of tumors, thus reducing the number of biopsies performed, increasing treatment options, and lowering mortality, morbidity, and remission percentages. In this work, a novel ultrasonic imaging reconstruction method that exploits straight-ray migration is described. This technique, commonly used in seismic imaging, accounts for scattering more accurately than standard ultrasonic approaches, thus providing superior image resolution. A breast phantom with various inclusions is imaged using a pulse-echo approach. The data are processed using the ultrasonic migration method and results are compared to standard linear ultrasound and to x-ray computed tomography (CT) scans. For an ultrasonic frequency of 2.25 MHz, imaged inclusions and features of approximately 1mm are resolved, although better resolution is expected with minor modifications. Refinement of this application using other imaging techniques such as time-reversal mirrors (TRM), synthetic aperture focusing technique (SAFT), decomposition of the time reversal operator (DORT), and factorization methods is also briefly discussed.

  12. Opto-acoustic image fusion technology for diagnostic breast imaging in a feasibility study

    NASA Astrophysics Data System (ADS)

    Zalev, Jason; Clingman, Bryan; Herzog, Don; Miller, Tom; Ulissey, Michael; Stavros, A. T.; Oraevsky, Alexander; Lavin, Philip; Kist, Kenneth; Dornbluth, N. C.; Otto, Pamela

    2015-03-01

    Functional opto-acoustic (OA) imaging was fused with gray-scale ultrasound acquired using a specialized duplex handheld probe. Feasibility Study findings indicated the potential to more accurately characterize breast masses for cancer than conventional diagnostic ultrasound (CDU). The Feasibility Study included OA imagery of 74 breast masses that were collected using the investigational Imagio® breast imaging system. Superior specificity and equal sensitivity to CDU was demonstrated, suggesting that OA fusion imaging may potentially obviate the need for negative biopsies without missing cancers in a certain percentage of breast masses. Preliminary results from a 100 subject Pilot Study are also discussed. A larger Pivotal Study (n=2,097 subjects) is underway to confirm the Feasibility Study and Pilot Study findings.

  13. The FLARE™ Intraoperative Near-Infrared Fluorescence Imaging System: A First-in-Human Clinical Trial in Breast Cancer Sentinel Lymph Node Mapping

    PubMed Central

    Troyan, Susan L.; Kianzad, Vida; Gibbs-Strauss, Summer L.; Gioux, Sylvain; Matsui, Aya; Oketokoun, Rafiou; Ngo, Long; Khamene, Ali; Azar, Fred; Frangioni, John V.

    2009-01-01

    Background Invisible NIR fluorescent light can provide high sensitivity, high-resolution, and real-time image-guidance during oncologic surgery, but imaging systems that are presently available do not display this invisible light in the context of surgical anatomy. The FLARE™ imaging system overcomes this major obstacle. Methods Color video was acquired simultaneously, and in real-time, along with two independent channels of NIR fluorescence. Grayscale NIR fluorescence images were converted to visible “pseudo-colors” and overlaid onto the color video image. Yorkshire pigs weighing 35 kg (n = 5) were used for final pre-clinical validation of the imaging system. A 6-patient pilot study was conducted in women undergoing sentinel lymph node (SLN) mapping for breast cancer. Subjects received 99mTc-sulfur colloid lymphoscintigraphy. In addition, 12.5 µg of indocyanine green (ICG) diluted in human serum albumin (HSA) was used as an NIR fluorescent lymphatic tracer. Results The FLARE™ system permitted facile positioning in the operating room. NIR light did not change the look of the surgical field. Simultaneous pan-lymphatic and SLN mapping was demonstrated in swine using clinically available NIR fluorophores and the dual NIR capabilities of the system. In the pilot clinical trial, a total of 9 SLNs were identified by 99mTc-lymphoscintigraphy and 9 SLNs were identified by NIR fluorescence, although results differed in two patients. No adverse events were encountered. Conclusions We describe the successful clinical translation of a new NIR fluorescence imaging system for image-guided oncologic surgery. PMID:19582506

  14. Computer-aided detection system for clustered microcalcifications in digital breast tomosynthesis using joint information from volumetric and planar projection images

    NASA Astrophysics Data System (ADS)

    Samala, Ravi K.; Chan, Heang-Ping; Lu, Yao; Hadjiiski, Lubomir M.; Wei, Jun; Helvie, Mark A.

    2015-11-01

    We propose a novel approach for the detection of microcalcification clusters (MCs) using joint information from digital breast tomosynthesis (DBT) volume and planar projection (PPJ) image. A data set of 307 DBT views was collected with IRB approval using a prototype DBT system. The system acquires 21 projection views (PVs) from a wide tomographic angle of 60° (60°-21PV) at about twice the dose of a digital mammography (DM) system, which allows us the flexibility of simulating other DBT acquisition geometries using a subset of the PVs. In this study, we simulated a 30° DBT geometry using the central 11 PVs (30°-11PV). The narrower tomographic angle is closer to DBT geometries commercially available or under development and the dose is matched approximately to that of a DM. We developed a new joint-CAD system for detection of clustered microcalcifications. The DBT volume was reconstructed with a multiscale bilateral filtering regularized method and a PPJ image was generated from the reconstructed volume. Task-specific detection strategies were designed to combine information from the DBT volume and the PPJ image. The data set was divided into a training set (127 views with MCs) and an independent test set (104 views with MCs and 76 views without MCs). The joint-CAD system outperformed the individual CAD systems for DBT volume or PPJ image alone; the differences in the test performances were statistically significant (p  <  0.05) using JAFROC analysis.

  15. Third-harmonic generation imaging of breast tissue biopsies.

    PubMed

    Lee, Woowon; Kabir, Mohammad M; Emmadi, Rajyasree; Toussaint, Kimani C

    2016-11-01

    We demonstrate for the first time the imaging of unstained breast tissue biopsies using third-harmonic generation (THG) microscopy. As a label-free imaging technique, THG microscopy is compared to phase contrast and polarized light microscopy which are standard imaging methods for breast tissues. A simple feature detection algorithm is applied to detect tumour-associated lymphocyte rich regions in unstained breast biopsy tissue and compared with corresponding regions identified by a pathologist from bright-field images of hematoxylin and eosin stained breast tissue. Our results suggest that THG imaging holds potential as a complementary technique for analysing breast tissue biopsies.

  16. Efficient iterative image reconstruction algorithm for dedicated breast CT

    NASA Astrophysics Data System (ADS)

    Antropova, Natalia; Sanchez, Adrian; Reiser, Ingrid S.; Sidky, Emil Y.; Boone, John; Pan, Xiaochuan

    2016-03-01

    Dedicated breast computed tomography (bCT) is currently being studied as a potential screening method for breast cancer. The X-ray exposure is set low to achieve an average glandular dose comparable to that of mammography, yielding projection data that contains high levels of noise. Iterative image reconstruction (IIR) algorithms may be well-suited for the system since they potentially reduce the effects of noise in the reconstructed images. However, IIR outcomes can be difficult to control since the algorithm parameters do not directly correspond to the image properties. Also, IIR algorithms are computationally demanding and have optimal parameter settings that depend on the size and shape of the breast and positioning of the patient. In this work, we design an efficient IIR algorithm with meaningful parameter specifications and that can be used on a large, diverse sample of bCT cases. The flexibility and efficiency of this method comes from having the final image produced by a linear combination of two separately reconstructed images - one containing gray level information and the other with enhanced high frequency components. Both of the images result from few iterations of separate IIR algorithms. The proposed algorithm depends on two parameters both of which have a well-defined impact on image quality. The algorithm is applied to numerous bCT cases from a dedicated bCT prototype system developed at University of California, Davis.

  17. Objective breast tissue image classification using Quantitative Transmission ultrasound tomography

    PubMed Central

    Malik, Bilal; Klock, John; Wiskin, James; Lenox, Mark

    2016-01-01

    Quantitative Transmission Ultrasound (QT) is a powerful and emerging imaging paradigm which has the potential to perform true three-dimensional image reconstruction of biological tissue. Breast imaging is an important application of QT and allows non-invasive, non-ionizing imaging of whole breasts in vivo. Here, we report the first demonstration of breast tissue image classification in QT imaging. We systematically assess the ability of the QT images’ features to differentiate between normal breast tissue types. The three QT features were used in Support Vector Machines (SVM) classifiers, and classification of breast tissue as either skin, fat, glands, ducts or connective tissue was demonstrated with an overall accuracy of greater than 90%. Finally, the classifier was validated on whole breast image volumes to provide a color-coded breast tissue volume. This study serves as a first step towards a computer-aided detection/diagnosis platform for QT. PMID:27934955

  18. Objective breast tissue image classification using Quantitative Transmission ultrasound tomography

    NASA Astrophysics Data System (ADS)

    Malik, Bilal; Klock, John; Wiskin, James; Lenox, Mark

    2016-12-01

    Quantitative Transmission Ultrasound (QT) is a powerful and emerging imaging paradigm which has the potential to perform true three-dimensional image reconstruction of biological tissue. Breast imaging is an important application of QT and allows non-invasive, non-ionizing imaging of whole breasts in vivo. Here, we report the first demonstration of breast tissue image classification in QT imaging. We systematically assess the ability of the QT images’ features to differentiate between normal breast tissue types. The three QT features were used in Support Vector Machines (SVM) classifiers, and classification of breast tissue as either skin, fat, glands, ducts or connective tissue was demonstrated with an overall accuracy of greater than 90%. Finally, the classifier was validated on whole breast image volumes to provide a color-coded breast tissue volume. This study serves as a first step towards a computer-aided detection/diagnosis platform for QT.

  19. Combined photoacoustic and ultrasound imaging of human breast in vivo in the mammographic geometry

    NASA Astrophysics Data System (ADS)

    Xie, Zhixing; Lee, Won-Mean; Hooi, Fong Ming; Fowlkes, J. Brian; Pinsky, Renee W.; Mueller, Dean; Wang, Xueding; Carson, Paul L.

    2013-03-01

    This photoacoustic volume imaging (PAVI) system is designed to study breast cancer detection and diagnosis in the mammographic geometry in combination with automated 3D ultrasound (AUS). The good penetration of near-infrared (NIR) light and high receiving sensitivity of a broad bandwidth, 572 element, 2D PVDF array at a low center-frequency of 1MHz were utilized with 20 channel simultaneous acquisition. The feasibility of this system in imaging optically absorbing objects in deep breast tissues was assessed first through experiments on ex vivo whole breasts. The blood filled pseudo lesions were imaged at depths up to 49 mm in the specimens. In vivo imaging of human breasts has been conducted. 3D PAVI image stacks of human breasts were coregistered and compared with 3D ultrasound image stacks of the same breasts. Using the designed system, PAVI shows satisfactory imaging depth and sensitivity for coverage of the entire breast when imaged from both sides with mild compression in the mammographic geometry. With its unique soft tissue contrast and excellent sensitivity to the tissue hemodynamic properties of fractional blood volume and blood oxygenation, PAVI, as a complement to 3D ultrasound and digital tomosynthesis mammography, might well contribute to detection, diagnosis and prognosis for breast cancer.

  20. A review of breast tomosynthesis. Part I. The image acquisition process

    SciTech Connect

    Sechopoulos, Ioannis

    2013-01-15

    Mammography is a very well-established imaging modality for the early detection and diagnosis of breast cancer. However, since the introduction of digital imaging to the realm of radiology, more advanced, and especially tomographic imaging methods have been made possible. One of these methods, breast tomosynthesis, has finally been introduced to the clinic for routine everyday use, with potential to in the future replace mammography for screening for breast cancer. In this two part paper, the extensive research performed during the development of breast tomosynthesis is reviewed, with a focus on the research addressing the medical physics aspects of this imaging modality. This first paper will review the research performed on the issues relevant to the image acquisition process, including system design, optimization of geometry and technique, x-ray scatter, and radiation dose. The companion to this paper will review all other aspects of breast tomosynthesis imaging, including the reconstruction process.

  1. Breast Tissue Characterization with Photon-counting Spectral CT Imaging: A Postmortem Breast Study

    PubMed Central

    Ding, Huanjun; Klopfer, Michael J.; Ducote, Justin L.; Masaki, Fumitaro

    2014-01-01

    Purpose To investigate the feasibility of breast tissue characterization in terms of water, lipid, and protein contents with a spectral computed tomographic (CT) system based on a cadmium zinc telluride (CZT) photon-counting detector by using postmortem breasts. Materials and Methods Nineteen pairs of postmortem breasts were imaged with a CZT-based photon-counting spectral CT system with beam energy of 100 kVp. The mean glandular dose was estimated to be in the range of 1.8–2.2 mGy. The images were corrected for pulse pile-up and other artifacts by using spectral distortion corrections. Dual-energy decomposition was then applied to characterize each breast into water, lipid, and protein contents. The precision of the three-compartment characterization was evaluated by comparing the composition of right and left breasts, where the standard error of the estimations was determined. The results of dual-energy decomposition were compared by using averaged root mean square to chemical analysis, which was used as the reference standard. Results The standard errors of the estimations of the right-left correlations obtained from spectral CT were 7.4%, 6.7%, and 3.2% for water, lipid, and protein contents, respectively. Compared with the reference standard, the average root mean square error in breast tissue composition was 2.8%. Conclusion Spectral CT can be used to accurately quantify the water, lipid, and protein contents in breast tissue in a laboratory study by using postmortem specimens. © RSNA, 2014 PMID:24814180

  2. Polyvinyl chloride plastisol breast phantoms for ultrasound imaging.

    PubMed

    de Carvalho, Isabela Miller; De Matheo, Lucas Lobianco; Costa Júnior, José Francisco Silva; Borba, Cecília de Melo; von Krüger, Marco Antonio; Infantosi, Antonio Fernando Catelli; Pereira, Wagner Coelho de Albuquerque

    2016-08-01

    Ultrasonic phantoms are objects that mimic some features of biological tissues, allowing the study of their interactions with ultrasound (US). In the diagnostic-imaging field, breast phantoms are an important tool for testing performance and optimizing US systems, as well as for training medical professionals. This paper describes the design and manufacture of breast lesions by using polyvinyl chloride plastisol (PVCP) as the base material. Among the materials available for this study, PVCP was shown to be stable, durable, and easy to handle. Furthermore, it is a nontoxic, nonpolluting, and low-cost material. The breast's glandular tissue (image background) was simulated by adding graphite powder with a concentration of 1% to the base material. Mixing PVCP and graphite powder in differing concentrations allows one to simulate lesions with different echogenicity patterns (anechoic, hypoechoic, and hyperechoic). From this mixture, phantom materials were obtained with speed of sound varying from 1379.3 to 1397.9ms(-1) and an attenuation coefficient having values between 0.29 and 0.94dBcm(-1) for a frequency of 1MHz at 24°C. A single layer of carnauba wax was added to the lesion surface in order to evaluate its applicability for imaging. The images of the phantoms were acquired using commercial ultrasound equipment; a specialist rated the images, elaborating diagnoses representative of both benign and malignant lesions. The results indicated that it was possible to easily create a phantom by using low-cost materials, readily available in the market and stable at room temperature, as the basis of ultrasonic phantoms that reproduce the image characteristics of fatty breast tissue and typical lesions of the breast.

  3. A TSVD analysis of microwave inverse scattering for breast imaging.

    PubMed

    Shea, Jacob D; Van Veen, Barry D; Hagness, Susan C

    2012-04-01

    A variety of methods have been applied to the inverse scattering problem for breast imaging at microwave frequencies. While many techniques have been leveraged toward a microwave imaging solution, they are all fundamentally dependent on the quality of the scattering data. Evaluating and optimizing the information contained in the data are, therefore, instrumental in understanding and achieving optimal performance from any particular imaging method. In this paper, a method of analysis is employed for the evaluation of the information contained in simulated scattering data from a known dielectric profile. The method estimates optimal imaging performance by mapping the data through the inverse of the scattering system. The inverse is computed by truncated singular-value decomposition of a system of scattering equations. The equations are made linear by use of the exact total fields in the imaging volume, which are available in the computational domain. The analysis is applied to anatomically realistic numerical breast phantoms. The utility of the method is demonstrated for a given imaging system through the analysis of various considerations in system design and problem formulation. The method offers an avenue for decoupling the problem of data selection from the problem of image formation from that data.

  4. Imaging System

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The 1100C Virtual Window is based on technology developed under NASA Small Business Innovation (SBIR) contracts to Ames Research Center. For example, under one contract Dimension Technologies, Inc. developed a large autostereoscopic display for scientific visualization applications. The Virtual Window employs an innovative illumination system to deliver the depth and color of true 3D imaging. Its applications include surgery and Magnetic Resonance Imaging scans, viewing for teleoperated robots, training, and in aviation cockpit displays.

  5. Combined Optical and X-ray Tomosynthesis Breast Imaging1

    PubMed Central

    Selb, Juliette; Carp, Stefan A.; Boverman, Gregory; Miller, Eric L.; Brooks, Dana H.; Moore, Richard H.; Kopans, Daniel B.; Boas, David A.

    2011-01-01

    Purpose: To explore the optical and physiologic properties of normal and lesion-bearing breasts by using a combined optical and digital breast tomosynthesis (DBT) imaging system. Materials and Methods: Institutional review board approval and patient informed consent were obtained for this HIPAA-compliant study. Combined optical and tomosynthesis imaging analysis was performed in 189 breasts from 125 subjects (mean age, 56 years ± 13 [standard deviation]), including 138 breasts with negative findings and 51 breasts with lesions. Three-dimensional (3D) maps of total hemoglobin concentration (HbT), oxygen saturation (So2), and tissue reduced scattering coefficients were interpreted by using the coregistered DBT images. Paired and unpaired t tests were performed between various tissue types to identify significant differences. Results: The estimated average bulk HbT from 138 normal breasts was 19.2 μmol/L. The corresponding mean So2 was 0.73, within the range of values in the literature. A linear correlation (R = 0.57, P < .0001) was found between HbT and the fibroglandular volume fraction derived from the 3D DBT scans. Optical reconstructions of normal breasts revealed structures corresponding to chest-wall muscle, fibroglandular, and adipose tissues in the HbT, So2, and scattering images. In 26 malignant tumors of 0.6–2.5 cm in size, HbT was significantly greater than that in the fibroglandular tissue of the same breast (P = .0062). Solid benign lesions (n = 17) and cysts (n = 8) had significantly lower HbT contrast than did the malignant lesions (P = .025 and P = .0033, respectively). Conclusion: The optical and DBT images were structurally consistent. The malignant tumors and benign lesions demonstrated different HbT and scattering contrasts, which can potentially be exploited to reduce the false-positive rate of conventional mammography and unnecessary biopsies. © RSNA, 2010 Supplemental material: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol

  6. Breast cancer screening with imaging: recommendations from the Society of Breast Imaging and the ACR on the use of mammography, breast MRI, breast ultrasound, and other technologies for the detection of clinically occult breast cancer.

    PubMed

    Lee, Carol H; Dershaw, D David; Kopans, Daniel; Evans, Phil; Monsees, Barbara; Monticciolo, Debra; Brenner, R James; Bassett, Lawrence; Berg, Wendie; Feig, Stephen; Hendrick, Edward; Mendelson, Ellen; D'Orsi, Carl; Sickles, Edward; Burhenne, Linda Warren

    2010-01-01

    Screening for breast cancer with mammography has been shown to decrease mortality from breast cancer, and mammography is the mainstay of screening for clinically occult disease. Mammography, however, has well-recognized limitations, and recently, other imaging including ultrasound and magnetic resonance imaging have been used as adjunctive screening tools, mainly for women who may be at increased risk for the development of breast cancer. The Society of Breast Imaging and the Breast Imaging Commission of the ACR are issuing these recommendations to provide guidance to patients and clinicians on the use of imaging to screen for breast cancer. Wherever possible, the recommendations are based on available evidence. Where evidence is lacking, the recommendations are based on consensus opinions of the fellows and executive committee of the Society of Breast Imaging and the members of the Breast Imaging Commission of the ACR.

  7. Development of anatomically and dielectrically accurate breast phantoms for microwave imaging applications

    NASA Astrophysics Data System (ADS)

    O'Halloran, M.; Lohfeld, S.; Ruvio, G.; Browne, J.; Krewer, F.; Ribeiro, C. O.; Inacio Pita, V. C.; Conceicao, R. C.; Jones, E.; Glavin, M.

    2014-05-01

    Breast cancer is one of the most common cancers in women. In the United States alone, it accounts for 31% of new cancer cases, and is second only to lung cancer as the leading cause of deaths in American women. More than 184,000 new cases of breast cancer are diagnosed each year resulting in approximately 41,000 deaths. Early detection and intervention is one of the most significant factors in improving the survival rates and quality of life experienced by breast cancer sufferers, since this is the time when treatment is most effective. One of the most promising breast imaging modalities is microwave imaging. The physical basis of active microwave imaging is the dielectric contrast between normal and malignant breast tissue that exists at microwave frequencies. The dielectric contrast is mainly due to the increased water content present in the cancerous tissue. Microwave imaging is non-ionizing, does not require breast compression, is less invasive than X-ray mammography, and is potentially low cost. While several prototype microwave breast imaging systems are currently in various stages of development, the design and fabrication of anatomically and dielectrically representative breast phantoms to evaluate these systems is often problematic. While some existing phantoms are composed of dielectrically representative materials, they rarely accurately represent the shape and size of a typical breast. Conversely, several phantoms have been developed to accurately model the shape of the human breast, but have inappropriate dielectric properties. This study will brie y review existing phantoms before describing the development of a more accurate and practical breast phantom for the evaluation of microwave breast imaging systems.

  8. Photoacoustic image patterns of breast carcinoma and comparisons with Magnetic Resonance Imaging and vascular stained histopathology

    NASA Astrophysics Data System (ADS)

    Heijblom, M.; Piras, D.; Brinkhuis, M.; van Hespen, J. C. G.; van den Engh, F. M.; van der Schaaf, M.; Klaase, J. M.; van Leeuwen, T. G.; Steenbergen, W.; Manohar, S.

    2015-07-01

    Photoacoustic (optoacoustic) imaging can visualize vasculature deep in tissue using the high contrast of hemoglobin to light, with the high-resolution possible with ultrasound detection. Since angiogenesis, one of the hallmarks of cancer, leads to increased vascularity, photoacoustics holds promise in imaging breast cancer as shown in proof-of-principle studies. Here for the first time, we investigate if there are specific photoacoustic appearances of breast malignancies which can be related to the tumor vascularity, using an upgraded research imaging system, the Twente Photoacoustic Mammoscope. In addition to comparisons with x-ray and ultrasound images, in subsets of cases the photoacoustic images were compared with MR images, and with vascular staining in histopathology. We were able to identify lesions in suspect breasts at the expected locations in 28 of 29 cases. We discovered generally three types of photoacoustic appearances reminiscent of contrast enhancement types reported in MR imaging of breast malignancies, and first insights were gained into the relationship with tumor vascularity.

  9. Photoacoustic image patterns of breast carcinoma and comparisons with Magnetic Resonance Imaging and vascular stained histopathology.

    PubMed

    Heijblom, M; Piras, D; Brinkhuis, M; van Hespen, J C G; van den Engh, F M; van der Schaaf, M; Klaase, J M; van Leeuwen, T G; Steenbergen, W; Manohar, S

    2015-07-10

    Photoacoustic (optoacoustic) imaging can visualize vasculature deep in tissue using the high contrast of hemoglobin to light, with the high-resolution possible with ultrasound detection. Since angiogenesis, one of the hallmarks of cancer, leads to increased vascularity, photoacoustics holds promise in imaging breast cancer as shown in proof-of-principle studies. Here for the first time, we investigate if there are specific photoacoustic appearances of breast malignancies which can be related to the tumor vascularity, using an upgraded research imaging system, the Twente Photoacoustic Mammoscope. In addition to comparisons with x-ray and ultrasound images, in subsets of cases the photoacoustic images were compared with MR images, and with vascular staining in histopathology. We were able to identify lesions in suspect breasts at the expected locations in 28 of 29 cases. We discovered generally three types of photoacoustic appearances reminiscent of contrast enhancement types reported in MR imaging of breast malignancies, and first insights were gained into the relationship with tumor vascularity.

  10. Photoacoustic image patterns of breast carcinoma and comparisons with Magnetic Resonance Imaging and vascular stained histopathology

    PubMed Central

    Heijblom, M.; Piras, D.; Brinkhuis, M.; van Hespen, J. C. G.; van den Engh, F. M.; van der Schaaf, M.; Klaase, J. M.; van Leeuwen, T. G.; Steenbergen, W.; Manohar, S.

    2015-01-01

    Photoacoustic (optoacoustic) imaging can visualize vasculature deep in tissue using the high contrast of hemoglobin to light, with the high-resolution possible with ultrasound detection. Since angiogenesis, one of the hallmarks of cancer, leads to increased vascularity, photoacoustics holds promise in imaging breast cancer as shown in proof-of-principle studies. Here for the first time, we investigate if there are specific photoacoustic appearances of breast malignancies which can be related to the tumor vascularity, using an upgraded research imaging system, the Twente Photoacoustic Mammoscope. In addition to comparisons with x-ray and ultrasound images, in subsets of cases the photoacoustic images were compared with MR images, and with vascular staining in histopathology. We were able to identify lesions in suspect breasts at the expected locations in 28 of 29 cases. We discovered generally three types of photoacoustic appearances reminiscent of contrast enhancement types reported in MR imaging of breast malignancies, and first insights were gained into the relationship with tumor vascularity. PMID:26159440

  11. Hypofractionated Image Guided Radiation Therapy in Treating Patients With Stage IV Breast Cancer

    ClinicalTrials.gov

    2016-06-24

    Central Nervous System Metastases; Invasive Ductal Breast Carcinoma; Invasive Ductal Breast Carcinoma With Predominant Intraductal Component; Invasive Lobular Breast Carcinoma; Invasive Lobular Breast Carcinoma With Predominant in Situ Component; Liver Metastases; Lobular Breast Carcinoma in Situ; Lung Metastases; Male Breast Cancer; Medullary Ductal Breast Carcinoma With Lymphocytic Infiltrate; Mucinous Ductal Breast Carcinoma; Papillary Ductal Breast Carcinoma; Recurrent Breast Cancer; Stage IV Breast Cancer; Tubular Ductal Breast Carcinoma; Tumors Metastatic to Brain

  12. Molecular Imaging of Biomarkers in Breast Cancer

    PubMed Central

    Ulaner, Gary A.; Riedl, Chris C.; Dickler, Maura N.; Jhaveri, Komal; Pandit-Taskar, Neeta; Weber, Wolfgang

    2016-01-01

    The success of breast cancer therapy is ultimately defined by clinical endpoints such as survival. It is valuable to have biomarkers that can predict the most efficacious therapies or measure response to therapy early in the course of treatment. Molecular imaging has a promising role in complementing and overcoming some of the limitations of traditional biomarkers by providing the ability to perform noninvasive, repeatable whole-body assessments. The potential advantages of imaging biomarkers are obvious and initial clinical studies have been promising, but proof of clinical utility still requires prospective multicenter clinical trials. PMID:26834103

  13. Lobular breast cancer series: imaging.

    PubMed

    Johnson, Karen; Sarma, Deba; Hwang, E Shelley

    2015-07-11

    The limitations of mammography in the detection and evaluation of invasive lobular carcinoma (ILC) have long been recognized, presenting real clinical challenges in treatment planning for these tumors. However, advances in mammography, ultrasound, and magnetic resonance imaging present opportunities to improve the diagnosis and preoperative assessment of ILC. The evidence supporting the performance of each imaging modality will be reviewed, specifically as it relates to the pathology of ILC and its subtypes. Further, we will discuss emerging technologies that may be employed to enhance the detection rate and ultimately result in more effective screening and staging of ILC.

  14. Tactile imaging of palpable breast cancer

    NASA Astrophysics Data System (ADS)

    Srikanchana, Rujirutana; Wang, Yue J.; Freedman, Matthew T.; Nguyen, Charles C.

    2002-05-01

    This paper presents the development of a prototype Tactile Mapping Device (TMD) system comprised mainly of a tactile sensor array probe (TSAP), a 3-D camera, and a force/torque sensor, which can provide the means to produce tactile maps of the breast lumps during a breast palpation. Focusing on the key tactile topology features for breast palpation such as spatial location, size/shape of the detected lesion, and the force levels used to demonstrate the palpable abnormalities, these maps can record the results of clinical breast examination with a set of pressure distribution profiles and force sensor measurements due to detected lesion. By combining the knowledge of vision based, neural networks and tactile sensing technology; the TMD is integrated for the investigation of soft tissue interaction with tactile/force sensor, where the hard inclusion (breast cancer) can be characterized through neural network learning capability, instead of using simplified complex biomechanics model with many heuristic assumptions. These maps will serve as an objective documentation of palpable lesions for future comparative examinations. Preliminary results of simulated experiments and limited pre-clinical evaluations of the TMD prototype have tested this hypothesis and provided solid promising data showing the feasibility of the TMD in real clinical applications.

  15. Kilovoltage cone-beam CT imaging dose during breast radiotherapy: A dose comparison between a left and right breast setup

    SciTech Connect

    Quinn, Alexandra; Holloway, Lois; Begg, Jarrad; Nelson, Vinod; Metcalfe, Peter

    2014-07-01

    The purpose of this study was to investigate the delivered dose from a kilovoltage cone-beam computed tomography (kV-CBCT) acquired in breast treatment position for a left and right breast setup. The dose was measured with thermoluminescent dosimeters positioned within a female anthropomorphic phantom at organ locations. Imaging was performed on an Elekta Synergy XVI system with the phantom setup on a breast board. The image protocol involved 120 kVp, 140 mAs, and a 270° arc rotation clockwise 0° to 270° for the left breast setup and 270° to 180° for the right breast setup (maximum arc rotations possible). The dose delivered to the left breast, right breast, and heart was 5.1 mGy, 3.9 mGy, and 4.0 mGy for the left breast setup kV-CBCT, and 6.4 mGy, 6.0 mGy, and 4.8 mGy for the right breast setup kV-CBCT, respectively. The rotation arc of the kV-CBCT influenced the dose delivered, with the right breast setup kV-CBCT found to deliver a dose of up to 4 mGy or 105% higher to the treated breast′s surface in comparison with the left breast setup. This is attributed to the kV-CBCT source being more proximal to the anterior of the phantom for a right breast setup, whereas the source is more proximal to the posterior of the patient for a left-side scan.

  16. Molecular Imaging in Breast Cancer – Potential Future Aspects

    PubMed Central

    Pinker, Katja; Bogner, Wolfgang; Gruber, Stephan; Brader, Peter; Trattnig, Siegfried; Karanikas, Georgios; Helbich, Thomas H.

    2011-01-01

    Summary Molecular imaging aims to visualize and quantify biological, physiological, and pathological processes at cellular and molecular levels. Recently, molecular imaging has been introduced into breast cancer imaging. In this review, we will present a survey of the molecular imaging techniques that are either clinically available or are being introduced into clinical imaging. We will discuss nuclear imaging and multiparametric magnetic resonance imaging as well as the combined application of molecular imaging in the assessment of breast lesions. In addition, we will briefly discuss other evolving molecular imaging techniques, such as phosphorus magnetic resonance spectroscopic imaging and sodium imaging. PMID:21673821

  17. Issues to consider before implementing digital breast tomosynthesis into a breast imaging practice.

    PubMed

    Hardesty, Lara A

    2015-03-01

    OBJECTIVE. The purpose of this article is to discuss issues surrounding the implementation of digital breast tomosynthesis (DBT) into a clinical breast imaging practice and assist radiologists, technologists, and administrators who are considering the addition of this new technology to their practices. CONCLUSION. When appropriate attention is given to image acquisition, interpretation, storage, technologist and radiologist training, patient selection, billing, radiation dose, and marketing, implementation of DBT into a breast imaging practice can be successful.

  18. Three Dimensional Reconstruction Algorithm for Imaging Pathophysiological Signals Within Breast Tissue Using Near Infrared Light

    DTIC Science & Technology

    2006-07-01

    NIR (b and c) images of the tissue simulating phantom are shown, with the MRI image in (a) being used to define the exterior and interior boundaries... simulations and experiments. A combined NIR- MRI imaging system has been used [3, 4] in a case study to estimate the properties of healthy breast...approximately 4 min. The MR exam is controlled sepa- rately, operated in parallel, and a full volume breast MRI is of similar duration. A FORTRAN, or MATLAB

  19. TH-A-18A-01: Innovation in Clinical Breast Imaging

    SciTech Connect

    Liu, B; Yang, K; Yaffe, M; Chen, J

    2014-06-15

    Several novel modalities have been or are on the verge of being introduced into the breast imaging clinic. These include tomosynthesis imaging, dedicated breast CT, contrast-enhanced digital mammography, and automated breast ultrasound, all of which are covered in this course. Tomosynthesis and dedicated breast CT address the problem of tissue superimposition that limits mammography screening performance, by improved or full resolution of the 3D breast morphology. Contrast-enhanced digital mammography provides functional information that allows for visualization of tumor angiogenesis. 3D breast ultrasound has high sensitivity for tumor detection in dense breasts, but the imaging exam was traditionally performed by radiologists. In automated breast ultrasound, the scan is performed in an automated fashion, making for a more practical imaging tool, that is now used as an adjunct to digital mammography in breast cancer screening. This course will provide medical physicists with an in-depth understanding of the imaging physics of each of these four novel imaging techniques, as well as the rationale and implementation of QC procedures. Further, basic clinical applications and work flow issues will be discussed. Learning Objectives: To be able to describe the underlying physical and physiological principles of each imaging technique, and to understand the corresponding imaging acquisition process. To be able to describe the critical system components and their performance requirements. To understand the rationale and implementation of quality control procedures, as well as regulatory requirements for systems with FDA approval. To learn about clinical applications and understand risks and benefits/strength and weakness of each modality in terms of clinical breast imaging.

  20. Three-dimensional photoacoustic imaging of breast tissue phantoms

    NASA Astrophysics Data System (ADS)

    Manohar, Srirang; Kharine, Alexei; Steenbergen, Wiendelt; van Leeuwen, Ton G.

    2004-07-01

    A laboratory prototype of a time-resolved photoacoustic mammograph, based on a parallel plate geometry is presented. Light is delivered from a Q-switched Nd:YAG laser using fiber-optic bundles which can be mechanically scanned across the surface of a phantom. The ultrasound signals produced by the photoacoustic effect are measured in a transmission mode, using a large-area ultrasound detector matrix. Signals from the matrix are acquired using fast digitizers. Various performance studies of the system are presented. A breast phantom of dimensions (150x120x60)mm was created based on poly(vinyl alcohol) (PVA) gel, which can be imparted with the average optical scattering properties of breast tissue by a simple process of freezing and thawing of an aqueous poly(vinyl alcohol) solution. The acoustic properties are also found to match those of breast tissue. Such a photoacoustic breast phantom was embedded with several tumour-simulating inhomogeneities. These inserts were also based on poly(vinyl alcohol) gels, appropriately dyed at the time of formation, to possess various optical absorption coefficients, between 2 and 7 times that of the background. Using the signals collected from regions-of-interest (ROI) in the volume of the phantom, three-dimensional images were obtained using a modified delay-and-sum beamforming algorithm. The results indicate that photoacoustics, as embodied in this instrument, has a potential for detecting tumours in the breast.

  1. Automated System for Early Breast Cancer Detection in Mammograms

    NASA Technical Reports Server (NTRS)

    Bankman, Isaac N.; Kim, Dong W.; Christens-Barry, William A.; Weinberg, Irving N.; Gatewood, Olga B.; Brody, William R.

    1993-01-01

    The increasing demand on mammographic screening for early breast cancer detection, and the subtlety of early breast cancer signs on mammograms, suggest an automated image processing system that can serve as a diagnostic aid in radiology clinics. We present a fully automated algorithm for detecting clusters of microcalcifications that are the most common signs of early, potentially curable breast cancer. By using the contour map of the mammogram, the algorithm circumvents some of the difficulties encountered with standard image processing methods. The clinical implementation of an automated instrument based on this algorithm is also discussed.

  2. High resolution PET breast imager with improved detection efficiency

    DOEpatents

    Majewski, Stanislaw

    2010-06-08

    A highly efficient PET breast imager for detecting lesions in the entire breast including those located close to the patient's chest wall. The breast imager includes a ring of imaging modules surrounding the imaged breast. Each imaging module includes a slant imaging light guide inserted between a gamma radiation sensor and a photodetector. The slant light guide permits the gamma radiation sensors to be placed in close proximity to the skin of the chest wall thereby extending the sensitive region of the imager to the base of the breast. Several types of photodetectors are proposed for use in the detector modules, with compact silicon photomultipliers as the preferred choice, due to its high compactness. The geometry of the detector heads and the arrangement of the detector ring significantly reduce dead regions thereby improving detection efficiency for lesions located close to the chest wall.

  3. X-ray System for Early Diagnosis of Breast Cancer

    SciTech Connect

    Ando, M.; Maksimenko, A.; Sugiyama, H.; Hyodo, K.; Ichihara, S.; Endo, T.; Moriyama, N.; Yuasa, T.; Hashimoto, E.; Li, G.

    2007-03-30

    Increasing rate of breast cancer in Japan is enormous in these years. Nevertheless only 2-3 % of female may receive mammography. In order to improve this number for early detection of breast cancer we have started development of a refraction-based visualization of breast cancer. This system comprises two types of imaging: one is for a regular annual or biyearly check of the breast cancer. This is a 2-D mode x-ray dark-field imaging where a Laue transmission type of angle analyzer with thickness of 2.124 mm is used for the FOV of 90 mm x 90 mm that can provide the spatial resolution better than 50 microns; the other a 3-D reconstruction for further detailed check to specify type and location of breast cancer.

  4. Correlation of breast image alignment using biomechanical modelling

    NASA Astrophysics Data System (ADS)

    Lee, Angela; Rajagopal, Vijay; Bier, Peter; Nielsen, Poul M. F.; Nash, Martyn P.

    2009-02-01

    Breast cancer is one of the most common causes of cancer death among women around the world. Researchers have found that a combination of imaging modalities (such as x-ray mammography, magnetic resonance, and ultrasound) leads to more effective diagnosis and management of breast cancers because each imaging modality displays different information about the breast tissues. In order to aid clinicians in interpreting the breast images from different modalities, we have developed a computational framework for generating individual-specific, 3D, finite element (FE) models of the breast. Medical images are embedded into this model, which is subsequently used to simulate the large deformations that the breasts undergo during different imaging procedures, thus warping the medical images to the deformed views of the breast in the different modalities. In this way, medical images of the breast taken in different geometric configurations (compression, gravity, etc.) can be aligned according to physically feasible transformations. In order to analyse the accuracy of the biomechanical model predictions, squared normalised cross correlation (NCC2) was used to provide both local and global comparisons of the model-warped images with clinical images of the breast subject to different gravity loaded states. The local comparison results were helpful in indicating the areas for improvement in the biomechanical model. To improve the modelling accuracy, we will need to investigate the incorporation of breast tissue heterogeneity into the model and altering the boundary conditions for the breast model. A biomechanical image registration tool of this kind will help radiologists to provide more reliable diagnosis and localisation of breast cancer.

  5. Fast 3-d tomographic microwave imaging for breast cancer detection.

    PubMed

    Grzegorczyk, Tomasz M; Meaney, Paul M; Kaufman, Peter A; diFlorio-Alexander, Roberta M; Paulsen, Keith D

    2012-08-01

    Microwave breast imaging (using electromagnetic waves of frequencies around 1 GHz) has mostly remained at the research level for the past decade, gaining little clinical acceptance. The major hurdles limiting patient use are both at the hardware level (challenges in collecting accurate and noncorrupted data) and software level (often plagued by unrealistic reconstruction times in the tens of hours). In this paper we report improvements that address both issues. First, the hardware is able to measure signals down to levels compatible with sub-centimeter image resolution while keeping an exam time under 2 min. Second, the software overcomes the enormous time burden and produces similarly accurate images in less than 20 min. The combination of the new hardware and software allows us to produce and report here the first clinical 3-D microwave tomographic images of the breast. Two clinical examples are selected out of 400+ exams conducted at the Dartmouth Hitchcock Medical Center (Lebanon, NH). The first example demonstrates the potential usefulness of our system for breast cancer screening while the second example focuses on therapy monitoring.

  6. Assessment of the systemic distribution of a bioconjugated anti-Her2 magnetic nanoparticle in a breast cancer model by means of magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Huerta-Núñez, L. F. E.; Villanueva-Lopez, G. Cleva; Morales-Guadarrama, A.; Soto, S.; López, J.; Silva, J. G.; Perez-Vielma, N.; Sacristán, E.; Gudiño-Zayas, Marco E.; González, C. A.

    2016-09-01

    The aim of this study was to determine the systemic distribution of magnetic nanoparticles of 100 nm diameter (MNPs) coupled to a specific monoclonal antibody anti-Her2 in an experimental breast cancer (BC) model. The study was performed in two groups of Sprague-Dawley rats: control ( n = 6) and BC chemically induced ( n = 3). Bioconjugated "anti-Her2-MNPs" were intravenously administered, and magnetic resonance imaging (MRI) monitored its systemic distribution at seven times after administration. Non-heme iron presence associated with the location of the bioconjugated anti-Her2-MNPs in splenic, hepatic, cardiac and tumor tissues was detected by Perl's Prussian blue (PPB) stain. Optical density measurements were used to semiquantitatively determine the iron presence in tissues on the basis of a grayscale values integration of T1 and T2 MRI sequence images. The results indicated a delayed systemic distribution of MNPs in cancer compared to healthy conditions with a maximum concentration of MNPs in cancer tissue at 24 h post-infusion.

  7. Computer-Aided Assessment of Tumor Grade for Breast Cancer in Ultrasound Images

    PubMed Central

    2015-01-01

    This study involved developing a computer-aided diagnosis (CAD) system for discriminating the grades of breast cancer tumors in ultrasound (US) images. Histological tumor grades of breast cancer lesions are standard prognostic indicators. Tumor grade information enables physicians to determine appropriate treatments for their patients. US imaging is a noninvasive approach to breast cancer examination. In this study, 148 3-dimensional US images of malignant breast tumors were obtained. Textural, morphological, ellipsoid fitting, and posterior acoustic features were quantified to characterize the tumor masses. A support vector machine was developed to classify breast tumor grades as either low or high. The proposed CAD system achieved an accuracy of 85.14% (126/148), a sensitivity of 79.31% (23/29), a specificity of 86.55% (103/119), and an AZ of 0.7940. PMID:25810750

  8. Communication between breast cancer patients and their physicians about breast-related body image issues.

    PubMed

    Cohen, Mallory; Anderson, Rebecca C; Jensik, Kathleen; Xiang, Qun; Pruszynski, Jessica; Walker, Alonzo P

    2012-01-01

    Breast cancer patients encounter body image changes throughout their diagnosis, treatment, and recovery from breast cancer. No prospective studies were identified investigating communication between physicians and breast cancer patients related to body image. This qualitative pilot study determines (1) how breast cancer patients prefer their physicians communicate regarding body image changes and (2) how comfortable physicians are in discussing body image issues with their patients. Data were collected from patients over 12 weeks through the breast evaluation questionnaire (BEQ), a valid and reliable instrument, and a qualitative questionnaire. Ten physicians completed a qualitative questionnaire. The data were analyzed using frequency analysis. Nearly 70% of the patients reported there was more the physician could do to improve patient comfort in discussing breast-related body image concerns. Honesty, openness, and directness were important to the patients. Thirty-three percent of the patients answered that their physicians should be honest, open, and direct while discussing these issues. On a five-point Likert scale (1 = very uncomfortable and 5 = very comfortable), the physicians most frequently answered a 4 when asked how comfortable they are speaking about breast-related body image issues; however, only four out of 10 always address the topic themselves during the patient's visit. These data suggest that patients want honesty, openness, and directness from their physicians during the discussion of breast-related body image issues. The physicians report they are comfortable speaking about breast-related body image issues; yet, they do not directly initiate the topic.

  9. Image to physical space registration of supine breast MRI for image guided breast surgery

    NASA Astrophysics Data System (ADS)

    Conley, Rebekah H.; Meszoely, Ingrid M.; Pheiffer, Thomas S.; Weis, Jared A.; Yankeelov, Thomas E.; Miga, Michael I.

    2014-03-01

    Breast conservation therapy (BCT) is a desirable option for many women diagnosed with early stage breast cancer and involves a lumpectomy followed by radiotherapy. However, approximately 50% of eligible women will elect for mastectomy over BCT despite equal survival benefit (provided margins of excised tissue are cancer free) due to uncertainty in outcome with regards to complete excision of cancerous cells, risk of local recurrence, and cosmesis. Determining surgical margins intraoperatively is difficult and achieving negative margins is not as robust as it needs to be, resulting in high re-operation rates and often mastectomy. Magnetic resonance images (MRI) can provide detailed information about tumor margin extents, however diagnostic images are acquired in a fundamentally different patient presentation than that used in surgery. Therefore, the high quality diagnostic MRIs taken in the prone position with pendant breast are not optimal for use in surgical planning/guidance due to the drastic shape change between preoperative images and the common supine surgical position. This work proposes to investigate the value of supine MRI in an effort to localize tumors intraoperatively using image-guidance. Mock intraoperative setups (realistic patient positioning in non-sterile environment) and preoperative imaging data were collected from a patient scheduled for a lumpectomy. The mock intraoperative data included a tracked laser range scan of the patient's breast surface, tracked center points of MR visible fiducials on the patient's breast, and tracked B-mode ultrasound and strain images. The preoperative data included a supine MRI with visible fiducial markers. Fiducial markers localized in the MRI were rigidly registered to their mock intraoperative counterparts using an optically tracked stylus. The root mean square (RMS) fiducial registration error using the tracked markers was 3.4mm. Following registration, the average closest point distance between the MR

  10. TU-CD-207-09: Analysis of the 3-D Shape of Patients’ Breast for Breast Imaging and Surgery Planning

    SciTech Connect

    Agasthya, G; Sechopoulos, I

    2015-06-15

    Purpose: Develop a method to accurately capture the 3-D shape of patients’ external breast surface before and during breast compression for mammography/tomosynthesis. Methods: During this IRB-approved, HIPAA-compliant study, 50 women were recruited to undergo 3-D breast surface imaging during breast compression and imaging for the cranio-caudal (CC) view on a digital mammography/breast tomosynthesis system. Digital projectors and cameras mounted on tripods were used to acquire 3-D surface images of the breast, in three conditions: (a) positioned on the support paddle before compression, (b) during compression by the compression paddle and (c) the anterior-posterior view with the breast in its natural, unsupported position. The breast was compressed to standard full compression with the compression paddle and a tomosynthesis image was acquired simultaneously with the 3-D surface. The 3-D surface curvature and deformation with respect to the uncompressed surface was analyzed using contours. The 3-D surfaces were voxelized to capture breast shape in a format that can be manipulated for further analysis. Results: A protocol was developed to accurately capture the 3-D shape of patients’ breast before and during compression for mammography. Using a pair of 3-D scanners, the 50 patient breasts were scanned in three conditions, resulting in accurate representations of the breast surfaces. The surfaces were post processed, analyzed using contours and voxelized, with 1 mm{sup 3} voxels, converting the breast shape into a format that can be easily modified as required. Conclusion: Accurate characterization of the breast curvature and shape for the generation of 3-D models is possible. These models can be used for various applications such as improving breast dosimetry, accurate scatter estimation, conducting virtual clinical trials and validating compression algorithms. Ioannis Sechopoulos is consultant for Fuji Medical Systems USA.

  11. Surface driven biomechanical breast image registration

    NASA Astrophysics Data System (ADS)

    Eiben, Björn; Vavourakis, Vasileios; Hipwell, John H.; Kabus, Sven; Lorenz, Cristian; Buelow, Thomas; Williams, Norman R.; Keshtgar, M.; Hawkes, David J.

    2016-03-01

    Biomechanical modelling enables large deformation simulations of breast tissues under different loading conditions to be performed. Such simulations can be utilised to transform prone Magnetic Resonance (MR) images into a different patient position, such as upright or supine. We present a novel integration of biomechanical modelling with a surface registration algorithm which optimises the unknown material parameters of a biomechanical model and performs a subsequent regularised surface alignment. This allows deformations induced by effects other than gravity, such as those due to contact of the breast and MR coil, to be reversed. Correction displacements are applied to the biomechanical model enabling transformation of the original pre-surgical images to the corresponding target position. The algorithm is evaluated for the prone-to-supine case using prone MR images and the skin outline of supine Computed Tomography (CT) scans for three patients. A mean target registration error (TRE) of 10:9 mm for internal structures is achieved. For the prone-to-upright scenario, an optical 3D surface scan of one patient is used as a registration target and the nipple distances after alignment between the transformed MRI and the surface are 10:1 mm and 6:3 mm respectively.

  12. Contour classification in thermographic images for detection of breast cancer

    NASA Astrophysics Data System (ADS)

    Okuniewski, Rafał; Nowak, Robert M.; Cichosz, Paweł; Jagodziński, Dariusz; Matysiewicz, Mateusz; Neumann, Łukasz; Oleszkiewicz, Witold

    2016-09-01

    Thermographic images of breast taken by the Braster device are uploaded into web application which uses different classification algorithms to automatically decide whether a patient should be more thoroughly examined. This article presents the approach to the task of classifying contours visible on thermographic images of breast taken by the Braster device in order to make the decision about the existence of cancerous tumors in breast. It presents the results of the researches conducted on the different classification algorithms.

  13. Digital Images of Breast Biopsies using a Silicon Strip Detector

    SciTech Connect

    Montano, Luis M.; Diaz, Claudia C.; Leyva, Antonio; Cabal, Fatima

    2006-09-08

    In our study we have used a silicon strip detector to obtain digital images of some breast tissues with micro calcifications. Some of those images will be shown and we will discuss the perspectives of using this technique as an improvement of breast cancer diagnostics.

  14. Optoacoustic imaging of gold nanoparticles targeted to breast cancer cells

    NASA Astrophysics Data System (ADS)

    Eghtedari, Mohammad; Motamedi, Massoud; Popov, Vsevolod L.; Kotov, Nicholas A.; Oraevsky, Alexander A.

    2004-07-01

    Optoacoustic Tomography (OAT) is a rapidly growing technology that enables noninvasive deep imaging of biological tissues based on their light absorption. In OAT, the interaction of a pulsed laser with tissue increases the temperature of the absorbing components in a confined volume of tissue. Rapid perturbation of the temperature (<1°C) deep within tissue produces weak acoustic waves that easily travel to the surface of the tissue with minor attenuation. Abnormal angiogenesis in a malignant tumor, that increases its blood content, makes a native contrast for optoacoustic imaging; however, the application of OAT for early detection of malignant tumors requires the enhancement of optoacoustic signals originated from tumor by using an exogenous contrast agent. Due to their strong absorption, we have used gold nanoparticles (NP) as a contrast agent. 40nm spherical gold nanoparticles were attached to monoclonal antibody to target cell surface of breast cancer cells. The targeted cancer cells were implanted at depth of 5-6cm within a gelatinous object that optically resembles human breast. Experimental sensitivity measurements along with theoretical analysis showed that our optoacoustic imaging system is capable of detecting a phantom breast tumor with the volume of 0.15ml, which is composed of 25 million NP-targeted cancer cells, at a depth of 5 centimeters in vitro.

  15. Combined photoacoustic and acoustic imaging of human breast specimens in the mammographic geometry.

    PubMed

    Xie, Zhixing; Hooi, Fong Ming; Fowlkes, J Brian; Pinsky, Renee W; Wang, Xueding; Carson, Paul L

    2013-11-01

    A photoacoustic volume imaging (PAVI) system was designed to study breast cancer detection and diagnosis in the mammographic geometry in combination with automated 3-D ultrasound (AUS). The goal of the work described here was to validate the design and evaluate its performance in human breast tissues for non-invasive imaging of deeply positioned structures covering such geometry. The good penetration of near-infrared light and high receiving sensitivity of a broad-bandwidth, 572-element, 2-D polyvinylidene fluoride (PVDF) array at a low center frequency of 1 MHz were used with 20 channel simultaneous acquisition. Pseudo-lesions filled with dilute blood were imaged in three human breast specimens at various depths up to 49 mm. With near-infrared light illumination and 256-sample averaging, the extrapolated maximum depth in imaging a 2.4-mm blood-rich lesion with a 3-dB contrast-to-noise ratio in a compressed breast was 54 mm. Three-dimensional photoacoustic volume image stacks of the breasts were co-registered with 3-D ultrasound image stacks, suggesting for the first time that PAVI, based on the intrinsic tissue contrast, can visualize tissue interfaces other than those with blood, including the inner skin surface and connective tissue sheets. With the designed system, PAVI revealed satisfactory imaging depth and sensitivity for coverage of the entire breast when imaged from both sides in the mammographic geometry with mild compression.

  16. Initial Characterization of a Dedicated Breast PET/CT Scanner During Human Imaging

    PubMed Central

    Bowen, Spencer L.; Wu, Yibao; Chaudhari, Abhijit J.; Fu, Lin; Packard, Nathan J.; Burkett, George W.; Yang, Kai; Lindfors, Karen K.; Shelton, David K.; Hagge, Rosalie; Borowsky, Alexander D.; Martinez, Steve R.; Qi, Jinyi; Boone, John M.; Cherry, Simon R.; Badawi, Ramsey D.

    2010-01-01

    We have constructed a dedicated breast PET/CT scanner capable of high-resolution functional and anatomic imaging. Here, we present an initial characterization of scanner performance during patient imaging. Methods The system consisted of a lutetium oxyorthosilicate–based dual–planar head PET camera (crystal size, 3 × 3 × 20 mm) and 768-slice cone-beam CT. The position of the PET heads (separation and height) could be adjusted for varying breast dimensions. For scanning, the patient lay prone on a specialized bed and inserted a single pendent breast through an aperture in the table top. Compression of the breast as used in mammography is not required. PET and CT systems rotate in the coronal plane underneath the patient sequentially to collect fully tomographic datasets. PET images were reconstructed with the fully 3-dimensional maximum a posteriori method, and CT images were reconstructed with the Feldkamp algorithm, then spatially registered and fused for display. Phantom scans were obtained to assess the registration accuracy between PET and CT images and the influence of PET electronics and activity on CT image quality. We imaged 4 women with mammographic findings highly suggestive of breast cancer (breast imaging reporting and data system, category 5) in an ongoing clinical trial. Patients were injected with 18F-FDG and imaged for 12.5 min per breast. From patient data, noise-equivalent counting rates and the singles-to-trues ratio (a surrogate for the randoms fraction) were calculated. Results The average registration error between PET and CT images was 0.18 mm. PET electronics and activity did not significantly affect CT image quality. For the patient trial, biopsy-confirmed cancers were visualized on dedicated breast PET/CT on all patient scans, including the detection of ductal carcinoma in situ in 1 case. The singles-to-trues ratio was found to be inversely correlated with breast volume in the field of view, suggesting that larger breasts trend

  17. Image guidance of breast cancer surgery using 3-D ultrasound images and augmented reality visualization.

    PubMed

    Sato, Y; Nakamoto, M; Tamaki, Y; Sasama, T; Sakita, I; Nakajima, Y; Monden, M; Tamura, S

    1998-10-01

    This paper describes augmented reality visualization for the guidance of breast-conservative cancer surgery using ultrasonic images acquired in the operating room just before surgical resection. By combining an optical three-dimensional (3-D) position sensor, the position and orientation of each ultrasonic cross section are precisely measured to reconstruct geometrically accurate 3-D tumor models from the acquired ultrasonic images. Similarly, the 3-D position and orientation of a video camera are obtained to integrate video and ultrasonic images in a geometrically accurate manner. Superimposing the 3-D tumor models onto live video images of the patient's breast enables the surgeon to perceive the exact 3-D position of the tumor, including irregular cancer invasions which cannot be perceived by touch, as if it were visible through the breast skin. Using the resultant visualization, the surgeon can determine the region for surgical resection in a more objective and accurate manner, thereby minimizing the risk of a relapse and maximizing breast conservation. The system was shown to be effective in experiments using phantom and clinical data.

  18. Characterizing anatomical variability in breast CT images

    PubMed Central

    Metheany, Kathrine G.; Abbey, Craig K.; Packard, Nathan; Boone, John M.

    2008-01-01

    Previous work [Burgess , Med. Phys. 28, 419–437 (2001)] has shown that anatomical noise in projection mammography results in a power spectrum well modeled over a range of frequencies by a power law, and the exponent (β) of this power law plays a critical role in determining the size at which a growing lesion reaches the threshold for detection. In this study, the authors evaluated the power-law model for breast computed tomography (bCT) images, which can be thought of as thin sections through a three-dimensional (3D) volume. Under the assumption of a 3D power law describing the distribution of attenuation coefficients in the breast parenchyma, the authors derived the relationship between the power-law exponents of bCT and projection images and found it to be βsection=βproj−1. They evaluated this relationship on clinical images by comparing bCT images from a set of 43 patients to Burgess’ findings in mammography. They were able to make a direct comparison for 6 of these patients who had both a bCT exam and a digitized film-screen mammogram. They also evaluated segmented bCT images to investigate the extent to which the bCT power-law exponent can be explained by a binary model of attenuation coefficients based on the different attenuation of glandular and adipose tissue. The power-law model was found to be a good fit for bCT data over frequencies from 0.07to0.45cyc∕mm, where anatomical variability dominates the spectrum. The average exponent for bCT images was 1.86. This value is close to the theoretical prediction using Burgess’ published data for projection mammography and for the limited set of mammography data available from the authors’ patient sample. Exponents from the segmented bCT images (average value: 2.06) were systematically slightly higher than bCT images, with substantial correlation between the two (r=0.84). PMID:18975714

  19. Noninvasive Surface Imaging of Breast Cancer in Humans using a Hand-held Optical Imager.

    PubMed

    Erickson-Bhatt, Sarah J; Roman, Manuela; Gonzalez, Jean; Nunez, Annie; Kiszonas, Richard; Lopez-Penalver, Cristina; Godavarty, Anuradha

    2015-12-01

    X-ray mammography, the current gold standard for breast cancer detection, has a 20% false-negative rate (cancer is undetected) and increases in younger women with denser breast tissue. Diffuse optical imaging (DOI) is a safe (nonionizing), and relatively inexpensive method for noninvasive imaging of breast cancer in human subjects (including dense breast tissues) by providing physiological information (e.g. oxy- and deoxy- hemoglobin concentration). At the Optical Imaging Laboratory, a hand-held optical imager has been developed which employs a breast contourable probe head to perform simultaneous illumination and detection of large surfaces towards near real-time imaging of human breast cancer. Gen-1 and gen-2 versions of the handheld optical imager have been developed and previously demonstrated imaging in tissue phantoms and healthy human subjects. Herein, the hand-held optical imagers are applied towards in vivo imaging of breast cancer subjects in an attempt to determine the ability of the imager to detect breast tumors. Five female human subjects (ages 51-74) diagnosed with breast cancer were imaged with the gen-1 optical imager prior to surgical intervention. One of the subjects was also imaged with the gen-2 optical imager. Both imagers use 785 nm laser diode sources and ICCD camera detectors to generate 2D surfaces maps of total hemoglobin absorption. The subjects lay in supine position and images were collected at various locations on both the ipsilateral (tumor-containing) and contralateral (non-tumor containing) breasts. The optical images (2D surface maps of optical absorption due to total hemoglobin concentration) show regions of higher intensity at the tumor location, which is indicative of increased vasculature and higher blood content due to the presence of the tumor. Additionally, a preliminary result indicates the potential to image lymphatic spread. This study demonstrates the potential of the hand-held optical devices to noninvasively image

  20. A Dataset for Breast Cancer Histopathological Image Classification.

    PubMed

    Spanhol, Fabio A; Oliveira, Luiz S; Petitjean, Caroline; Heutte, Laurent

    2016-07-01

    Today, medical image analysis papers require solid experiments to prove the usefulness of proposed methods. However, experiments are often performed on data selected by the researchers, which may come from different institutions, scanners, and populations. Different evaluation measures may be used, making it difficult to compare the methods. In this paper, we introduce a dataset of 7909 breast cancer histopathology images acquired on 82 patients, which is now publicly available from http://web.inf.ufpr.br/vri/breast-cancer-database. The dataset includes both benign and malignant images. The task associated with this dataset is the automated classification of these images in two classes, which would be a valuable computer-aided diagnosis tool for the clinician. In order to assess the difficulty of this task, we show some preliminary results obtained with state-of-the-art image classification systems. The accuracy ranges from 80% to 85%, showing room for improvement is left. By providing this dataset and a standardized evaluation protocol to the scientific community, we hope to gather researchers in both the medical and the machine learning field to advance toward this clinical application.

  1. High-Resolution Speckle-Free Ultrasound Imaging System - A Potential Solution for Detecting Missed Breast Cancer

    DTIC Science & Technology

    2005-10-01

    piezo-electric material from the detector array. In this area there is no energy added to the pixel cells from ultrasound detection. Figure 8 shows a... Sickles , "Mammographic features of 300 consecutive nonpalpable breast cancers," AJR, vol. 146, p. 661, 1986. 3. F. M. Hall, J. M. Storella, D. Z...353, 1988. 4. S. D. Frankel, E. A. Sickle , B. N. Curpen, R. A. Sollitto, S. H. Ominsky, and H. B. Galvin, "Initial versus subsequent screening

  2. Imaging Breast Density: Established and Emerging Modalities1

    PubMed Central

    Chen, Jeon-Hor; Gulsen, Gultekin; Su, Min-Ying

    2015-01-01

    Mammographic density has been proven as an independent risk factor for breast cancer. Women with dense breast tissue visible on a mammogram have a much higher cancer risk than women with little density. A great research effort has been devoted to incorporate breast density into risk prediction models to better estimate each individual’s cancer risk. In recent years, the passage of breast density notification legislation in many states in USA requires that every mammography report should provide information regarding the patient’s breast density. Accurate definition and measurement of breast density are thus important, which may allow all the potential clinical applications of breast density to be implemented. Because the two-dimensional mammography-based measurement is subject to tissue overlapping and thus not able to provide volumetric information, there is an urgent need to develop reliable quantitative measurements of breast density. Various new imaging technologies are being developed. Among these new modalities, volumetric mammographic density methods and three-dimensional magnetic resonance imaging are the most well studied. Besides, emerging modalities, including different x-ray–based, optical imaging, and ultrasound-based methods, have also been investigated. All these modalities may either overcome some fundamental problems related to mammographic density or provide additional density and/or compositional information. The present review article aimed to summarize the current established and emerging imaging techniques for the measurement of breast density and the evidence of the clinical use of these density methods from the literature. PMID:26692524

  3. Molecular Imaging of Breast Cancer: Role of RGD Peptides.

    PubMed

    Chakravarty, Rubel; Chakraborty, Sudipta; Dash, Ashutosh

    2015-01-01

    Breast cancer is the leading cause of cancer deaths among women of all ages worldwide. With advances in molecular imaging procedures, it has been possible to detect breast cancer in its early stage, determine the extent of the disease to administer appropriate therapeutic protocol and also monitor the effects of treatment. By accurately characterizing the tumor properties and biological processes involved, molecular imaging can play a crucial role in minimizing the morbidity and mortality associated with breast cancer. The integrin αvβ3 plays an important role in breast cancer angiogenesis and is expressed on tumor endothelial cells as well as on some tumor cells. It is a receptor for the extracellular matrix proteins with the exposed arginine-glycine-aspartic acid (RGD) tripeptide sequence and therefore RGD peptides can preferentially bind to integrin αvβ3. In this context, targeting tumor vasculature or tumor cells by RGD-based probes is a promising strategy for molecular imaging of breast cancer. Using RGD-based probes, several preclinical studies have employed different imaging modalities such as positron emission tomography (PET), single photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), ultrasound and optical imaging for visualization of integrin αvβ3 expression in breast cancer models. Limited clinical trials using (18)F-labeled RGD peptides have also been initiated for non-invasive detection and staging of breast cancer. Herein, we provide a comprehensive overview of the latest advances in molecular imaging of breast cancer using RGD peptide-based probes and discuss the challenges and opportunities for advancement of the field. The reported strategies for molecular imaging of breast cancer using RGD peptide-based probes holds promise for making clinically translatable advances that can positively impact the overall diagnostic and therapeutic processes and result in improved quality of life for breast cancer patients.

  4. Terahertz Imaging of Three-Dimensional Dehydrated Breast Cancer Tumors

    NASA Astrophysics Data System (ADS)

    Bowman, Tyler; Wu, Yuhao; Gauch, John; Campbell, Lucas K.; El-Shenawee, Magda

    2017-03-01

    This work presents the application of terahertz imaging to three-dimensional formalin-fixed, paraffin-embedded human breast cancer tumors. The results demonstrate the capability of terahertz for in-depth scanning to produce cross section images without the need to slice the tumor. Samples of tumors excised from women diagnosed with infiltrating ductal carcinoma and lobular carcinoma are investigated using a pulsed terahertz time domain imaging system. A time of flight estimation is used to obtain vertical and horizontal cross section images of tumor tissues embedded in paraffin block. Strong agreement is shown comparing the terahertz images obtained by electronically scanning the tumor in-depth in comparison with histopathology images. The detection of cancer tissue inside the block is found to be accurate to depths over 1 mm. Image processing techniques are applied to provide improved contrast and automation of the obtained terahertz images. In particular, unsharp masking and edge detection methods are found to be most effective for three-dimensional block imaging.

  5. Characterization of the homogeneous tissue mixture approximation in breast imaging dosimetry

    SciTech Connect

    Sechopoulos, Ioannis; Bliznakova, Kristina; Qin Xulei; Fei Baowei; Feng, Steve Si Jia

    2012-08-15

    Purpose: To compare the estimate of normalized glandular dose in mammography and breast CT imaging obtained using the actual glandular tissue distribution in the breast to that obtained using the homogeneous tissue mixture approximation. Methods: Twenty volumetric images of patient breasts were acquired with a dedicated breast CT prototype system and the voxels in the breast CT images were automatically classified into skin, adipose, and glandular tissue. The breasts in the classified images underwent simulated mechanical compression to mimic the conditions present during mammographic acquisition. The compressed thickness for each breast was set to that achieved during each patient's last screening cranio-caudal (CC) acquisition. The volumetric glandular density of each breast was computed using both the compressed and uncompressed classified images, and additional images were created in which all voxels representing adipose and glandular tissue were replaced by a homogeneous mixture of these two tissues in a proportion corresponding to each breast's volumetric glandular density. All four breast images (compressed and uncompressed; heterogeneous and homogeneous tissue) were input into Monte Carlo simulations to estimate the normalized glandular dose during mammography (compressed breasts) and dedicated breast CT (uncompressed breasts). For the mammography simulations the x-ray spectra used was that used during each patient's last screening CC acquisition. For the breast CT simulations, two x-ray spectra were used, corresponding to the x-ray spectra with the lowest and highest energies currently being used in dedicated breast CT prototype systems under clinical investigation. The resulting normalized glandular dose for the heterogeneous and homogeneous versions of each breast for each modality was compared. Results: For mammography, the normalized glandular dose based on the homogeneous tissue approximation was, on average, 27% higher than that estimated using the

  6. A high-resolution photon-counting breast CT system with tensor-framelet based iterative image reconstruction for radiation dose reduction

    PubMed Central

    Ding, Huanjun; Gao, Hao; Zhao, Bo; Cho, Hyo-Min; Molloi, Sabee

    2016-01-01

    Both computer simulations and experimental phantom studies were carried out to investigate the radiation dose reduction with tensor framelet based iterative image reconstruction (TFIR) for a dedicated high-resolution spectral breast computed tomography (CT) based on a silicon strip photon-counting detector. The simulation was performed with a 10 cm-diameter water phantom including three contrast materials (polyethylene, 8 mg/ml iodine and B-100 bone-equivalent plastic). In the experimental study, the data were acquired with a 1.3 cm-diameter polymethylmethacrylate (PMMA) phantom containing iodine in three concentrations (8, 16 and 32 mg/ml) at various radiation doses (1.2, 2.4 and 3.6 mGy) and then CT images were reconstructed using filtered-back-projection (FBP) technique and TFIR technique, respectively. The image quality between these two techniques was evaluated by the quantitative analysis on contrast-to-noise ratio (CNR) and spatial resolution that was evaluated using the tasked-based modulation transfer function (MTF). Both simulation and experimental results indicated that the task-based MTF obtained from TFIR reconstruction with one-third of the radiation dose was comparable to that from FBP reconstruction for low contrast target. For high contrast target, TFIR was substantially superior to FBP reconstruction in term of spatial resolution. In addition, TFIR was able to achieve a factor of 1.6 to 1.8 increase in CNR depending on the target contrast level. This study demonstrates that TFIR can reduce the required radiation dose by a factor of two-third for a CT image reconstruction compared to FBP technique. It achieves much better CNR and spatial resolution for high contrast target in addition to retaining similar spatial resolution for low contrast target. This TFIR technique has been implemented with a graphic processing unit (GPU) system and it takes approximately 10 seconds to reconstruct a single-slice CT image, which can be potentially used in a

  7. Spectral imaging of breast fibroadenoma using second-harmonic generation

    NASA Astrophysics Data System (ADS)

    Zheng, Liqin; Wang, Yuhua

    2014-09-01

    Fibroadenoma (FA), typically composed of stroma and epithelial cells, is a very common benign breast disease. Women with FA are associated with an increased risk of future breast cancer. The objective of this study was to demonstrate the potential of multiphoton laser scanning microscopy (MPLSM) for characterizing the morphology of collagen in the human breast fibroadenomas. In the study, high-contrast SHG images of human normal breast tissues and fibroadenoma tissues were obtained for comparison. The morphology of collagen was different between normal breast tissue and fibroadenoma. This study shows that MPLSM has the ability to distinguish fibroadenoma tissues from the normal breast tissues based on the noninvasive SHG imaging. With the advent of the clinical portability of miniature MPLSM, we believe that the technique has great potential to be used in vivo studies and for monitoring the treatment responses of fibroadenomas in clinical.

  8. Advances in Optical Spectroscopy and Imaging of Breast Lesions

    SciTech Connect

    Demos, S; Vogel, A J; Gandjbakhche, A H

    2006-01-03

    A review is presented of recent advances in optical imaging and spectroscopy and the use of light for addressing breast cancer issues. Spectroscopic techniques offer the means to characterize tissue components and obtain functional information in real time. Three-dimensional optical imaging of the breast using various illumination and signal collection schemes in combination with image reconstruction algorithms may provide a new tool for cancer detection and monitoring of treatment.

  9. Image Based Biomarker of Breast Cancer Risk: Analysis of Risk Disparity Among Minority Populations

    DTIC Science & Technology

    2014-03-01

    Simulation of Microcalcification Clusters in Software Breast Phantoms , as well as a Computer Demo of the Software Pipeline for Breast Imaging Simulation...Breast Phantom Simulation and Analysis Software Pipeline for Breast Anatomy and Imaging Simulation The pipeline connects anatomy and imaging... Phantoms 3D clusters of microcalcifications, extracted from reconstructed clinical images, are inserted at randomly selected positions out of a set

  10. Automated Spot Mammography for Improved Imaging of Dense Breasts

    DTIC Science & Technology

    2004-10-01

    Develop breast phantoms ................................................... 20 G) Task 7: Explore possible advantages of using stereo-spot mammo...performed an experiment in which we took full-field and stereo spot collimated images of a custom-made stereoscopic breast phantom (CIRS, Inc...didn’t receive a modular breast phantom from the manufacturer that came even close to meeting our design specifications until very late in the project

  11. Ultrashort microwave pulsed thermoacoustic imaging for tumor localization over whole breast

    NASA Astrophysics Data System (ADS)

    Ji, Zhong; Fu, Yong; Lou, Cunguang

    2014-09-01

    Microwave-induced thermoacoustic imaging (TAI) has attracted considerable interest as a promising imaging modality. Previous studies show that TAI has great potential for use in breast tumor detection with high contrast and high spatial resolution, nevertheless it requires high energy density and possesses small field of view (FOV). In this paper, a ultrashort microwave pulse (USMP) TAI system was employed for quality imaging with much less energy density required , and simultaneously, large enough FOV was obtained to cover the whole breast. The experimental results clearly demonstrate that the new USMP TAI system can be used for three-dimensional (3-D) localization of deep breast tumors with low microwave radiation dose over the whole breast.

  12. Balancing dose and image registration accuracy for cone beam tomosynthesis (CBTS) for breast patient setup

    SciTech Connect

    Winey, B. A.; Zygmanski, P.; Cormack, R. A.; Lyatskaya, Y.

    2010-08-15

    Purpose: To balance dose reduction and image registration accuracy in breast setup imaging. In particular, the authors demonstrate the relationship between scan angle and dose delivery for cone beam tomosynthesis (CBTS) when employed for setup verification of breast cancer patients with surgical clips. Methods: The dose measurements were performed in a female torso phantom for varying scan angles of CBTS. Setup accuracy was measured using three registration methods: Clip centroid localization accuracy and the accuracy of two semiautomatic registration algorithms. The dose to the organs outside of the ipsilateral breast and registration accuracy information were compared to determine the optimal scan angle for CBTS for breast patient setup verification. Isocenter positions at the center of the patient and at the breast-chest wall interface were considered. Results: Image registration accuracy was within 1 mm for the CBTS scan angles {theta} above 20 deg. for some scenarios and as large as 80 deg. for the worst case, depending on the imaged breast and registration algorithm. Registration accuracy was highest based on clip centroid localization. For left and right breast imaging with the isocenter at the chest wall, the dose to the contralateral side of the patient was very low (<0.5 cGy) for all scan angles considered. For central isocenter location, the optimal scan angles were 30 deg. - 50 deg. for the left breast imaging and 40 deg. - 50 deg. for the right breast imaging, with the difference due to the geometric asymmetry of the current clinical imaging system. Conclusions: The optimal scan angles for CBTS imaging were found to be between 10 deg. and 50 deg., depending on the isocenter location and ipsilateral breast. Use of the isocenter at the breast-chest wall locations always resulted in greater accuracy of image registration (<1 mm) at smaller angles (10 deg. - 20 deg.) and at lower doses (<0.1 cGy) to the contralateral organs. For chest wall isocenters

  13. Dual-Band Miniaturized Patch Antennas for Microwave Breast Imaging

    PubMed Central

    Al-Joumayly, Mudar A.; Aguilar, Suzette M.; Behdad, Nader; Hagness, Susan C.

    2010-01-01

    We present a miniaturized, dual-band patch antenna array element that is designed for use in a 3-D microwave tomography system for breast imaging. Dual-band operation is achieved by manipulating the fundamental resonant mode of the patch antenna and one of its higher-order modes. Miniaturization and tuning of the resonant frequencies are achieved by loading the antenna with non-radiating slots at strategic locations along the patch. This results in a compact, dual-band antenna with symmetric radiation patterns and similar radiation characteristics at both bands of operation. The performance of the antenna in a biocompatible immersion medium is verified experimentally. PMID:21866218

  14. Women’s experiences and preferences regarding breast imaging after completing breast cancer treatment

    PubMed Central

    Brandzel, Susan; Rosenberg, Dori E; Johnson, Dianne; Bush, Mary; Kerlikowske, Karla; Onega, Tracy; Henderson, Louise; Nekhlyudov, Larissa; DeMartini, Wendy; Wernli, Karen J

    2017-01-01

    Background After treatment for breast cancer, most women receive an annual surveillance mammography to look for subsequent breast cancers. Supplemental breast MRI is sometimes used in addition to mammography despite the lack of clinical evidence for it. Breast imaging after cancer treatment is an emotionally charged experience, an important part of survivorship care, and a topic about which limited patient information exists. We assessed women’s experiences and preferences about breast cancer surveillance imaging with the goal of determining where gaps in care and knowledge could be filled. Participants and methods We conducted six focus groups with a convenience sample of 41 women in California, North Carolina, and New Hampshire (USA). Participants were aged 38–75 years, had experienced stage 0–III breast cancer within the previous 5 years, and had completed initial treatment. We used inductive thematic analysis to identify key themes from verbatim transcripts. Results Women reported various types and frequencies of surveillance imaging and a range of surveillance imaging experiences and preferences. Many women experienced discomfort during breast imaging and anxiety related to the examination, primarily because they feared subsequent cancer detection. Women reported trust in their providers and relied on providers for imaging decision-making. However, women wanted more information about the treatment surveillance transition to improve their care. Conclusion There is significant opportunity in breast cancer survivorship care to improve women’s understanding about breast cancer surveillance imaging and to provide enhanced support to them at the time their initial treatment ends and at the time of surveillance imaging examinations. PMID:28203064

  15. Flat-panel detector-based cone beam volume CT breast imaging: detector evaluation

    NASA Astrophysics Data System (ADS)

    Yu, Yong; Conover, David L.; Ning, Ruola

    2003-06-01

    Preliminary evaluation of large-area flat panel detectors (FPDs) indicates that FPDs have some potential advantages over film-screen and CCD-based imagers: compactness, high resolution, high frame rate, large dynamic range, small image lag (<1%), and excellent linearity (~1%). A real time large-area flat panel detector (FPD) Varian PaxScan 2520 was evaluated for cone-beam volume breast imaging (CBVCTBI) in terms of dynamic range, linearity, image lag, and spatial as well as low contrast resolution. In addition, specially made breast phantoms were imaged with our prototyped CBVCTBI system to provide real outcomes to evaluate the detector under full imaging system conditions including the x-ray source, gantry geometry, x-ray technique selection, data acquisition system and reconstruction algorithms. We have concentrated on the low kVp range (30 to 80 kVp) in the context of the breast-imaging task. For ~288 images/scan the exposure required was ~2.5mR/projection. This is equivalent to that of a conventional mammography screening exam. The results indicate that the FPD-based CBVCTBI system can achieve sufficient high- and low-contrast resolution for diagnostic CBVCT breast imaging with a clinically acceptable exposure level. The advantages of the new FPD make it a promising candidate for CBVCTBI.

  16. A 3D Level Set Method for Microwave Breast Imaging

    PubMed Central

    Colgan, Timothy J.; Hagness, Susan C.; Van Veen, Barry D.

    2015-01-01

    Objective Conventional inverse-scattering algorithms for microwave breast imaging result in moderate resolution images with blurred boundaries between tissues. Recent 2D numerical microwave imaging studies demonstrate that the use of a level set method preserves dielectric boundaries, resulting in a more accurate, higher resolution reconstruction of the dielectric properties distribution. Previously proposed level set algorithms are computationally expensive and thus impractical in 3D. In this paper we present a computationally tractable 3D microwave imaging algorithm based on level sets. Methods We reduce the computational cost of the level set method using a Jacobian matrix, rather than an adjoint method, to calculate Frechet derivatives. We demonstrate the feasibility of 3D imaging using simulated array measurements from 3D numerical breast phantoms. We evaluate performance by comparing full 3D reconstructions to those from a conventional microwave imaging technique. We also quantitatively assess the efficacy of our algorithm in evaluating breast density. Results Our reconstructions of 3D numerical breast phantoms improve upon those of a conventional microwave imaging technique. The density estimates from our level set algorithm are more accurate than those of conventional microwave imaging, and the accuracy is greater than that reported for mammographic density estimation. Conclusion Our level set method leads to a feasible level of computational complexity for full 3D imaging, and reconstructs the heterogeneous dielectric properties distribution of the breast more accurately than conventional microwave imaging methods. Significance 3D microwave breast imaging using a level set method is a promising low-cost, non-ionizing alternative to current breast imaging techniques. PMID:26011863

  17. Imaging dose in breast radiotherapy: does breast size affect the dose to the organs at risk and the risk of secondary cancer to the contralateral breast?

    SciTech Connect

    Batumalai, Vikneswary; Quinn, Alexandra; Jameson, Michael; Delaney, Geoff; Holloway, Lois

    2015-03-15

    Correct target positioning is crucial for accurate dose delivery in breast radiotherapy resulting in utilisation of daily imaging. However, the radiation dose from daily imaging is associated with increased probability of secondary induced cancer. The aim of this study was to quantify doses associated with three imaging modalities and investigate the correlation of dose and varying breast size in breast radiotherapy. Planning computed tomography (CT) data sets of 30 breast cancer patients were utilised to simulate the dose received by various organs from a megavoltage computed tomography (MV-CT), megavoltage electronic portal image (MV-EPI) and megavoltage cone-beam computed tomography (MV-CBCT). The mean dose to organs adjacent to the target volume (contralateral breast, lungs, spinal cord and heart) were analysed. Pearson correlation analysis was performed to determine the relationship between imaging dose and primary breast volume and the lifetime attributable risk (LAR) of induced secondary cancer was calculated for the contralateral breast. The highest contralateral breast mean dose was from the MV-CBCT (1.79 Gy), followed by MV-EPI (0.22 Gy) and MV-CT (0.11 Gy). A similar trend was found for all organs at risk (OAR) analysed. The primary breast volume inversely correlated with the contralateral breast dose for all three imaging modalities. As the primary breast volume increases, the likelihood of a patient developing a radiation-induced secondary cancer to the contralateral breast decreases. MV-CBCT showed a stronger relationship between breast size and LAR of developing a radiation-induced contralateral breast cancer in comparison with the MV-CT and MV-EPI. For breast patients, imaging dose to OAR depends on imaging modality and treated breast size. When considering the use of imaging during breast radiotherapy, the patient's breast size and contralateral breast dose should be taken into account.

  18. Breast cancer detection in rotational thermography images using texture features

    NASA Astrophysics Data System (ADS)

    Francis, Sheeja V.; Sasikala, M.; Bhavani Bharathi, G.; Jaipurkar, Sandeep D.

    2014-11-01

    Breast cancer is a major cause of mortality in young women in the developing countries. Early diagnosis is the key to improve survival rate in cancer patients. Breast thermography is a diagnostic procedure that non-invasively images the infrared emissions from breast surface to aid in the early detection of breast cancer. Due to limitations in imaging protocol, abnormality detection by conventional breast thermography, is often a challenging task. Rotational thermography is a novel technique developed in order to overcome the limitations of conventional breast thermography. This paper evaluates this technique's potential for automatic detection of breast abnormality, from the perspective of cold challenge. Texture features are extracted in the spatial domain, from rotational thermogram series, prior to and post the application of cold challenge. These features are fed to a support vector machine for automatic classification of normal and malignant breasts, resulting in a classification accuracy of 83.3%. Feature reduction has been performed by principal component analysis. As a novel attempt, the ability of this technique to locate the abnormality has been studied. The results of the study indicate that rotational thermography holds great potential as a screening tool for breast cancer detection.

  19. Design considerations for ultrasound detectors in photoacoustic breast imaging

    NASA Astrophysics Data System (ADS)

    Xia, Wenfeng; Piras, Daniele; Singh, Mithun K. A.; van Hespen, Johan C. G.; van Veldhoven, Spiridon; Prins, Christian; van Leeuwen, Ton G.; Steenbergen, Wiendelft; Manohar, Srirang

    2013-03-01

    The ultrasound detector is the heart of a photoacoustic imaging system. In photoacoustic imaging of the breast there is a requirement to detect tumors located a few centimeters deep in tissue, where the light is heavily attenuated. Thus a sensitive ultrasound transducer is of crucial importance. As the frequency content of photoacoustic waves are inversely proportional to the dimensions of the absorbing structures, and in tissue can range from hundreds of kHz to tens of MHz, a broadband ultrasound transducer is required centered on an optimum frequency. A single element piezoelectric transducer structurally consists of the active piezoelectric material, front- and back-matching layers and a backing layer. To have both high sensitivity and broad bandwidth, the materials, their acoustic characteristics and their dimensions should be carefully chosen. In this paper, we present design considerations of an ultrasound transducer for imaging the breast such as the detector sensitivity and frequency response, which guides the selection of active material, matching layers and their geometries. We iterate between simulation of detector performance and experimental characterization of functional models to arrive at an optimized implementation. For computer simulation, we use 1D KLM and 3D finite-element based models. The optimized detector has a large-aperture possessing a center frequency of 1 MHz with fractional bandwidth of more than 80%. The measured minimum detectable pressure is 0.5 Pa, which is two orders of magnitude lower than the detector used in the Twente photoacoustic mammoscope.

  20. Breast Density Analysis with Automated Whole-Breast Ultrasound: Comparison with 3-D Magnetic Resonance Imaging.

    PubMed

    Chen, Jeon-Hor; Lee, Yan-Wei; Chan, Si-Wa; Yeh, Dah-Cherng; Chang, Ruey-Feng

    2016-05-01

    In this study, a semi-automatic breast segmentation method was proposed on the basis of the rib shadow to extract breast regions from 3-D automated whole-breast ultrasound (ABUS) images. The density results were correlated with breast density values acquired with 3-D magnetic resonance imaging (MRI). MRI images of 46 breasts were collected from 23 women without a history of breast disease. Each subject also underwent ABUS. We used Otsu's thresholding method on ABUS images to obtain local rib shadow information, which was combined with the global rib shadow information (extracted from all slice projections) and integrated with the anatomy's breast tissue structure to determine the chest wall line. The fuzzy C-means classifier was used to extract the fibroglandular tissues from the acquired images. Whole-breast volume (WBV) and breast percentage density (BPD) were calculated in both modalities. Linear regression was used to compute the correlation of density results between the two modalities. The consistency of density measurement was also analyzed on the basis of intra- and inter-operator variation. There was a high correlation of density results between MRI and ABUS (R(2) = 0.798 for WBV, R(2) = 0.825 for PBD). The mean WBV from ABUS images was slightly smaller than the mean WBV from MR images (MRI: 342.24 ± 128.08 cm(3), ABUS: 325.47 ± 136.16 cm(3), p < 0.05). In addition, the BPD calculated from MR images was smaller than the BPD from ABUS images (MRI: 24.71 ± 15.16%, ABUS: 28.90 ± 17.73%, p < 0.05). The intra-operator and inter-operator variant analysis results indicated that there was no statistically significant difference in breast density measurement variation between the two modalities. Our results revealed a high correlation in WBV and BPD between MRI and ABUS. Our study suggests that ABUS provides breast density information useful in the assessment of breast health.

  1. In vivo breast sound-speed imaging with ultrasound tomography

    SciTech Connect

    Huang, Lianjie; Li, Cuiping; Duric, Neb; Littrup, Peter

    2009-01-01

    We discuss a bent-ray ultrasound tomography algorithm with total-variation (TV) regularization. We have applied this algorithm to 61 in vivo breast datasets collected with our in-house clinical prototype for imaging sound-speed distributions in the breast. Our analysis showed that TV regularization could preserve sharper lesion edges than the classic Tikhonov regularization. Furthermore, the image quality of our TV bent-ray sound-speed tomograms was superior to that of the straight-ray counterparts for all types of breasts within BI-RADS density categories 1-4. For all four breast types from fatty to dense, the improvements for average sharpness (in the unit of (m{center_dot} s) {sup -1}) of lesion edges in our TV bent-ray tomograms are between 2.1 to 3.4 fold compared to the straight ray tomograms. Reconstructed sound-speed tomograms illustrated that our algorithm could successfully image fatty and glandular tissues within the breast. We calculated the mean sound-speed values for fatty tissue and breast parenchyma as 1422 {+-} 9 mls (mean{+-} SD) and1487 {+-} 21 mls, respectively. Based on 32 lesions in a cohort of 61 patients, we also found that the mean sound-speed for malignant breast lesions (1548{+-}17 mls) was higher, on average, than that of benign ones (1513{+-}27 mls) (one-sided pbreast density (, and therefore, breast cancer risk), as well as detect and help differentiate breast lesions. Finally, our sound-speed tomograms may also be a useful tool to monitor clinical response of breast cancer patients to neo-adjuvant chemotherapy.

  2. Patterns of nonmasslike enhancement at screening breast MR imaging of high-risk premenopausal women.

    PubMed

    Giess, Catherine S; Raza, Sughra; Birdwell, Robyn L

    2013-01-01

    Current U.S. recommendations for breast cancer screening of women with at least a 20%-25% lifetime risk of developing breast cancer include contrast material-enhanced magnetic resonance (MR) imaging of the breasts. The cancer detection rate in high-risk women undergoing screening MR imaging is approximately 10 times higher than that in normal-risk women undergoing screening mammography. Many of these high-risk women commence MR imaging screening while they are premenopausal, when the breasts are most influenced by cyclical hormonal changes. Healthy premenopausal breast tissue enhances in a cyclical and variable manner. This enhancement is described as background enhancement. Typically, enhancement of normal breast tissue occurs in a symmetric and diffuse pattern, and there is little diagnostic difficulty in classifying it as normal background parenchymal enhancement. However, sometimes the pattern is more focal, asymmetric, or regional. It may then be described as nonmasslike enhancement, an observation associated with both benign and malignant breast pathologic conditions. A review of the morphologic features and internal enhancement patterns in normal but nondiffuse background enhancement and abnormal nonmasslike enhancement in high-risk premenopausal women can help improve interpretive specificity and decrease false-positive interpretations. MR imaging pitfalls and interpretation strategies for localized background enhancement and pathologic nonmasslike enhancement in this high-risk population are highlighted. In evaluating nonmasslike enhancement, the use of the Breast Imaging Reporting and Data System (BI-RADS) lexicon to perform careful analysis of morphologic features, along with an understanding of the role and limitations of kinetic information, will help balance early breast cancer detection against false-positive interpretation.

  3. X-ray tube-based diffraction enhanced imaging prototype images of full-thickness breast specimens: reader study evaluation

    NASA Astrophysics Data System (ADS)

    Faulconer, L. S.; Parham, C.; Connor, D. J.; Koomen, M.; Kuzmiak, C.; Pavic, D.; Livasy, C. A.; Kim, E.; Zeng, D.; Cole, E. B.; Zhong, Z.; Pisano, E. D.

    2009-02-01

    Conventional mammographic image contrast is derived from x-ray absorption, resulting in breast structure visualization due to density gradients that attenuate radiation without distinction between transmitted and scattered or refracted x-rays. This leads to image blurring and contrast reduction, hindering the early detection of small or otherwise occult cancers. Diffraction enhanced imaging (DEI) allows for dramatically increased contrast with decreased radiation dose compared to conventional mammographic imaging due to monochromatic x-rays, its unique refraction-based contrast mechanism and excellent scatter rejection. However, a lingering drawback to the clinical translation of DEI has been the requirement for synchrotron radiation. Our laboratory developed a DEI prototype (DEI-PR) utilizing a readily available Tungsten xray tube source and traditional DEI crystal optics, providing soft tissue images at 60keV. To demonstrate the clinical utility of our DEI-PR, we acquired images of full-thickness human breast tissue specimens on synchrotron-based DEI, DEI-PR and digital mammography systems. A reader study was designed to allow unbiased assessment of system performance when analyzing three systems with dissimilar imaging parameters and requiring analysis of images unfamiliar to radiologists. A panel of expert radiologists evaluated lesion feature visibility and histopathology correlation after receiving training on the interpretation of refraction contrast mammographic images. Preliminary data analysis suggests that our DEI system performed roughly equivalently with the traditional DEI system, demonstrating a significant step toward clinical translation of this modality for breast cancer applications.

  4. Double difference tomography for breast ultrasound sound speed imaging

    NASA Astrophysics Data System (ADS)

    Li, Cuiping; Duric, Neb; Rama, Olsi; Burger, Angelika; Polin, Lisa; Nechiporchik, Nicole

    2011-03-01

    Breast ultrasound tomography is a rapidly developing imaging modality that has the potential to impact breast cancer screening and diagnosis. Double difference (DD) tomography utilizes more accurate differential time-of-flight (ToF) data to reconstruct the sound speed structure of the breast. It can produce more precise and better resolution sound speed images than standard tomography that uses absolute ToF data. We apply DD tomography to phantom data and excised mouse mammary glands data. DD tomograms demonstrate sharper sound speed contrast than the standard tomograms.

  5. Multiparametric and Multimodality Functional Radiological Imaging for Breast Cancer Diagnosis and Early Treatment Response Assessment

    PubMed Central

    Wolff, Antonio C.; Macura, Katarzyna J.; Stearns, Vered; Ouwerkerk, Ronald; El Khouli, Riham; Bluemke, David A.; Wahl, Richard

    2015-01-01

    Breast cancer is the second leading cause of cancer death among US women, and the chance of a woman developing breast cancer sometime during her lifetime is one in eight. Early detection and diagnosis to allow appropriate locoregional and systemic treatment are key to improve the odds of surviving its diagnosis. Emerging data also suggest that different breast cancer subtypes (phenotypes) may respond differently to available adjuvant therapies. There is a growing understanding that not all patients benefit equally from systemic therapies, and therapeutic approaches are being increasingly personalized based on predictive biomarkers of clinical benefit. Optimal use of established and novel radiological imaging methods, such as magnetic resonance imaging and positron emission tomography, which have different biophysical mechanisms can simultaneously identify key functional parameters. These methods provide unique multiparametric radiological signatures of breast cancer, that will improve the accuracy of early diagnosis, help select appropriate therapies for early stage disease, and allow early assessment of therapeutic benefit. PMID:26063885

  6. Multiparametric and Multimodality Functional Radiological Imaging for Breast Cancer Diagnosis and Early Treatment Response Assessment.

    PubMed

    Jacobs, Michael A; Wolff, Antonio C; Macura, Katarzyna J; Stearns, Vered; Ouwerkerk, Ronald; El Khouli, Riham; Bluemke, David A; Wahl, Richard

    2015-05-01

    Breast cancer is the second leading cause of cancer death among US women, and the chance of a woman developing breast cancer sometime during her lifetime is one in eight. Early detection and diagnosis to allow appropriate locoregional and systemic treatment are key to improve the odds of surviving its diagnosis. Emerging data also suggest that different breast cancer subtypes (phenotypes) may respond differently to available adjuvant therapies. There is a growing understanding that not all patients benefit equally from systemic therapies, and therapeutic approaches are being increasingly personalized based on predictive biomarkers of clinical benefit. Optimal use of established and novel radiological imaging methods, such as magnetic resonance imaging and positron emission tomography, which have different biophysical mechanisms can simultaneously identify key functional parameters. These methods provide unique multiparametric radiological signatures of breast cancer, that will improve the accuracy of early diagnosis, help select appropriate therapies for early stage disease, and allow early assessment of therapeutic benefit.

  7. Microwave imaging for breast cancer detection: advances in three--dimensional image reconstruction.

    PubMed

    Golnabi, Amir H; Meaney, Paul M; Epstein, Neil R; Paulsen, Keith D

    2011-01-01

    Microwave imaging is based on the electrical property (permittivity and conductivity) differences in materials. Microwave imaging for biomedical applications is particularly interesting, mainly due to the fact that available range of dielectric properties for different tissues can provide important functional information about their health. Under the assumption that a 3D scattering problem can be reasonably represented as a simplified 2D model, one can take advantage of the simplicity and lower computational cost of 2D models to characterize such 3D phenomenon. Nonetheless, by eliminating excessive model simplifications, 3D microwave imaging provides potentially more valuable information over 2D techniques, and as a result, more accurate dielectric property maps may be obtained. In this paper, we present some advances we have made in three-dimensional image reconstruction, and show the results from a 3D breast phantom experiment using our clinical microwave imaging system at Dartmouth Hitchcock Medical Center (DHMC), NH.

  8. Body Image in Younger Breast Cancer Survivors: A Systematic Review

    PubMed Central

    Paterson, Carly; Lengacher, Cecile A.; Donovan, Kristine A.; Kip, Kevin E.; Tofthagen, Cindy S.

    2015-01-01

    Background Body image is a complex issue with the potential to impact many aspects of cancer survivorship, particularly for the younger breast cancer survivor. Objective The purpose of this review is to synthesize the current state of the science for body image in younger women with breast cancer. Intervention/Methods Combinations of the terms “body image,” “sexuality intervention,” “women,” “younger women,” and “breast cancer” were searched in the PubMed, PsycInfo, CINAHL, Web of Knowledge and Science Direct databases through January 2014. Inclusion criteria for this review were: 1) original research; 2) published in English from the year 2000 forward; 3) measuring body image as an outcome variable; and 4) results included reporting of age-related outcomes. Results Thirty-six articles met the inclusion criteria. The majority of studies were cross-sectional, with extensive variation in body image assessment tools. Age and treatment type had a significant impact on body image, and poorer body image was related to physical and psychological distress, sex and intimacy, and the partnered relationship among younger women. Only one intervention study found a significant improvement in body image post-intervention. Conclusions Findings suggest body image is a complex post-treatment concern for breast cancer survivors, particularly younger women. The findings of this review are limited by the high level of variation in the methods for assessing body image. Implications for Practice Further research of interventions to address body image concerns following treatment for breast cancer is warranted. Improvement of body image may improve the quality of life of younger breast cancer survivors. PMID:25881807

  9. Automated Segmentation of Nuclei in Breast Cancer Histopathology Images.

    PubMed

    Paramanandam, Maqlin; O'Byrne, Michael; Ghosh, Bidisha; Mammen, Joy John; Manipadam, Marie Therese; Thamburaj, Robinson; Pakrashi, Vikram

    2016-01-01

    The process of Nuclei detection in high-grade breast cancer images is quite challenging in the case of image processing techniques due to certain heterogeneous characteristics of cancer nuclei such as enlarged and irregularly shaped nuclei, highly coarse chromatin marginalized to the nuclei periphery and visible nucleoli. Recent reviews state that existing techniques show appreciable segmentation accuracy on breast histopathology images whose nuclei are dispersed and regular in texture and shape; however, typical cancer nuclei are often clustered and have irregular texture and shape properties. This paper proposes a novel segmentation algorithm for detecting individual nuclei from Hematoxylin and Eosin (H&E) stained breast histopathology images. This detection framework estimates a nuclei saliency map using tensor voting followed by boundary extraction of the nuclei on the saliency map using a Loopy Back Propagation (LBP) algorithm on a Markov Random Field (MRF). The method was tested on both whole-slide images and frames of breast cancer histopathology images. Experimental results demonstrate high segmentation performance with efficient precision, recall and dice-coefficient rates, upon testing high-grade breast cancer images containing several thousand nuclei. In addition to the optimal performance on the highly complex images presented in this paper, this method also gave appreciable results in comparison with two recently published methods-Wienert et al. (2012) and Veta et al. (2013), which were tested using their own datasets.

  10. Automated Segmentation of Nuclei in Breast Cancer Histopathology Images

    PubMed Central

    Paramanandam, Maqlin; O’Byrne, Michael; Ghosh, Bidisha; Mammen, Joy John; Manipadam, Marie Therese; Thamburaj, Robinson; Pakrashi, Vikram

    2016-01-01

    The process of Nuclei detection in high-grade breast cancer images is quite challenging in the case of image processing techniques due to certain heterogeneous characteristics of cancer nuclei such as enlarged and irregularly shaped nuclei, highly coarse chromatin marginalized to the nuclei periphery and visible nucleoli. Recent reviews state that existing techniques show appreciable segmentation accuracy on breast histopathology images whose nuclei are dispersed and regular in texture and shape; however, typical cancer nuclei are often clustered and have irregular texture and shape properties. This paper proposes a novel segmentation algorithm for detecting individual nuclei from Hematoxylin and Eosin (H&E) stained breast histopathology images. This detection framework estimates a nuclei saliency map using tensor voting followed by boundary extraction of the nuclei on the saliency map using a Loopy Back Propagation (LBP) algorithm on a Markov Random Field (MRF). The method was tested on both whole-slide images and frames of breast cancer histopathology images. Experimental results demonstrate high segmentation performance with efficient precision, recall and dice-coefficient rates, upon testing high-grade breast cancer images containing several thousand nuclei. In addition to the optimal performance on the highly complex images presented in this paper, this method also gave appreciable results in comparison with two recently published methods—Wienert et al. (2012) and Veta et al. (2013), which were tested using their own datasets. PMID:27649496

  11. Tight-frame based iterative image reconstruction for spectral breast CT

    PubMed Central

    Zhao, Bo; Gao, Hao; Ding, Huanjun; Molloi, Sabee

    2013-01-01

    Purpose: To investigate tight-frame based iterative reconstruction (TFIR) technique for spectral breast computed tomography (CT) using fewer projections while achieving greater image quality. Methods: The experimental data were acquired with a fan-beam breast CT system based on a cadmium zinc telluride photon-counting detector. The images were reconstructed with a varying number of projections using the TFIR and filtered backprojection (FBP) techniques. The image quality between these two techniques was evaluated. The image's spatial resolution was evaluated using a high-resolution phantom, and the contrast to noise ratio (CNR) was evaluated using a postmortem breast sample. The postmortem breast samples were decomposed into water, lipid, and protein contents based on images reconstructed from TFIR with 204 projections and FBP with 614 projections. The volumetric fractions of water, lipid, and protein from the image-based measurements in both TFIR and FBP were compared to the chemical analysis. Results: The spatial resolution and CNR were comparable for the images reconstructed by TFIR with 204 projections and FBP with 614 projections. Both reconstruction techniques provided accurate quantification of water, lipid, and protein composition of the breast tissue when compared with data from the reference standard chemical analysis. Conclusions: Accurate breast tissue decomposition can be done with three fold fewer projection images by the TFIR technique without any reduction in image spatial resolution and CNR. This can result in a two-third reduction of the patient dose in a multislit and multislice spiral CT system in addition to the reduced scanning time in this system. PMID:23464320

  12. Effects of Reduced Compression in Digital Breast Tomosynthesis on Pain, Anxiety, and Image Quality

    PubMed Central

    Abdullah Suhaimi, Siti Aishah; Mohamed, Afifah; Ahmad, Mahadir; Chelliah, Kanaga Kumari

    2015-01-01

    Background Most women are reluctant to undergo breast cancer screenings due to the pain and anxiety they experience. Sectional three-dimensional (3-D) breasttomosynthesis was introduced to improve cancer detection, but breast compression is still used for the acquisition of images. This study was conducted to investigate the effects of reduced compression force on pain, anxiety and image quality in digital breast tomosynthesis (DBT). Methods A total of 130 women underwent screening mammography using convenience sampling with standard and reduced compression force at the breast clinic. A validated questionnaire of 20 items on the state anxiety level and a 4-point verbal rating scale on the pain level were conducted after the mammography. Craniocaudal (CC) and mediolateral oblique (MLO) projections were performed with standard compression, but only the CC view was performed with reduced compression. Two independent radiologists evaluated the images using image criteria scores (ICS) and the Breast Imaging-Reporting and Data System (BI-RADS). Results Standard compression exhibited significantly increased scores for pain and anxiety levels compared with reduced compression (P < 0.001). Both radiologists scored the standard and reduced compression images as equal, with scores of 87.5% and 92.5% for ICS and BI-RADS scoring, respectively. Conclusions Reduced compression force in DBT reduces anxiety and pain levels without compromising image quality. PMID:28223884

  13. Optimizing and Evaluating an Integrated SPECT-CmT System Dedicated to Improved 3-D Breast Cancer Imaging

    DTIC Science & Technology

    2010-05-01

    measured using radiochromic film, calibrated using thermoluminescent detectors and an ion chamber. The dose absorbed during a scan is initially measured...Optimize tradeoffs between absorbed dose and image quality for the CmT subsystem Task 1(a) Embed thermoluminescent dosimeters or available MOSFET... thermoluminescent detectors (TLDs) were used in the experiments but, after consultation with experts in the field of radiation dosimetry, it was decided

  14. Simulation of mammograms and tomosynthesis imaging with cone beam breast CT images

    NASA Astrophysics Data System (ADS)

    Han, Tao; Shaw, Chris C.; Chen, Lingyun; Lai, Chao-jen; Liu, Xinming; Wang, Tianpeng

    2008-03-01

    The use of mammography techniques for the screening and diagnosis of breast cancers has been limited by the overlapping of cancer symptoms with normal tissue structures. To overcome this problem, two methods have been developed and actively investigated recently: digital tomosynthesis mammography and cone beam breast CT. Comparison study with these three techniques will be helpful to understand their difference and further might be supervise the direction of breast imaging. This paper describes and discusses about a technique using a general-purpose PC cluster to develop a parallel computer simulation model to simulate mammograms and tomosynthesis imaging with cone beam CT images of a mastectomy breast specimen. The breast model used in simulating mammography and tomosynthesis was developed by re-scaling the CT numbers of cone beam CT images from 80kVp to 20 kev. The compression of breast was simulated by deformation of the breast model. Re-projection software with parallel computation was developed and used to compute projection images of this simulated compressed breast for a stationary detector and a linearly shifted x-ray source. The resulting images were then used to reconstruct tomosynthesis mammograms using shift-and-add algorithms. It was found that MCs in cone beam CT images were not visible in regular mammograms but faintly visible in tomosynthesis images. The scatter signal and noise property needs to be simulated and incorporated in the future.

  15. Breast image pre-processing for mammographic tissue segmentation.

    PubMed

    He, Wenda; Hogg, Peter; Juette, Arne; Denton, Erika R E; Zwiggelaar, Reyer

    2015-12-01

    During mammographic image acquisition, a compression paddle is used to even the breast thickness in order to obtain optimal image quality. Clinical observation has indicated that some mammograms may exhibit abrupt intensity change and low visibility of tissue structures in the breast peripheral areas. Such appearance discrepancies can affect image interpretation and may not be desirable for computer aided mammography, leading to incorrect diagnosis and/or detection which can have a negative impact on sensitivity and specificity of screening mammography. This paper describes a novel mammographic image pre-processing method to improve image quality for analysis. An image selection process is incorporated to better target problematic images. The processed images show improved mammographic appearances not only in the breast periphery but also across the mammograms. Mammographic segmentation and risk/density classification were performed to facilitate a quantitative and qualitative evaluation. When using the processed images, the results indicated more anatomically correct segmentation in tissue specific areas, and subsequently better classification accuracies were achieved. Visual assessments were conducted in a clinical environment to determine the quality of the processed images and the resultant segmentation. The developed method has shown promising results. It is expected to be useful in early breast cancer detection, risk-stratified screening, and aiding radiologists in the process of decision making prior to surgery and/or treatment.

  16. Inverse scattering and refraction corrected reflection for breast cancer imaging

    NASA Astrophysics Data System (ADS)

    Wiskin, J.; Borup, D.; Johnson, S.; Berggren, M.; Robinson, D.; Smith, J.; Chen, J.; Parisky, Y.; Klock, John

    2010-03-01

    Reflection ultrasound (US) has been utilized as an adjunct imaging modality for over 30 years. TechniScan, Inc. has developed unique, transmission and concomitant reflection algorithms which are used to reconstruct images from data gathered during a tomographic breast scanning process called Warm Bath Ultrasound (WBU™). The transmission algorithm yields high resolution, 3D, attenuation and speed of sound (SOS) images. The reflection algorithm is based on canonical ray tracing utilizing refraction correction via the SOS and attenuation reconstructions. The refraction correction reflection algorithm allows 360 degree compounding resulting in the reflection image. The requisite data are collected when scanning the entire breast in a 33° C water bath, on average in 8 minutes. This presentation explains how the data are collected and processed by the 3D transmission and reflection imaging mode algorithms. The processing is carried out using two NVIDIA® Tesla™ GPU processors, accessing data on a 4-TeraByte RAID. The WBU™ images are displayed in a DICOM viewer that allows registration of all three modalities. Several representative cases are presented to demonstrate potential diagnostic capability including: a cyst, fibroadenoma, and a carcinoma. WBU™ images (SOS, attenuation, and reflection modalities) are shown along with their respective mammograms and standard ultrasound images. In addition, anatomical studies are shown comparing WBU™ images and MRI images of a cadaver breast. This innovative technology is designed to provide additional tools in the armamentarium for diagnosis of breast disease.

  17. Novelty detection for breast cancer image classification

    NASA Astrophysics Data System (ADS)

    Cichosz, Pawel; Jagodziński, Dariusz; Matysiewicz, Mateusz; Neumann, Łukasz; Nowak, Robert M.; Okuniewski, Rafał; Oleszkiewicz, Witold

    2016-09-01

    Using classification learning algorithms for medical applications may require not only refined model creation techniques and careful unbiased model evaluation, but also detecting the risk of misclassification at the time of model application. This is addressed by novelty detection, which identifies instances for which the training set is not sufficiently representative and for which it may be safer to restrain from classification and request a human expert diagnosis. The paper investigates two techniques for isolated instance identification, based on clustering and one-class support vector machines, which represent two different approaches to multidimensional outlier detection. The prediction quality for isolated instances in breast cancer image data is evaluated using the random forest algorithm and found to be substantially inferior to the prediction quality for non-isolated instances. Each of the two techniques is then used to create a novelty detection model which can be combined with a classification model and used at the time of prediction to detect instances for which the latter cannot be reliably applied. Novelty detection is demonstrated to improve random forest prediction quality and argued to deserve further investigation in medical applications.

  18. Medical Imaging System

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The MD Image System, a true-color image processing system that serves as a diagnostic aid and tool for storage and distribution of images, was developed by Medical Image Management Systems, Huntsville, AL, as a "spinoff from a spinoff." The original spinoff, Geostar 8800, developed by Crystal Image Technologies, Huntsville, incorporates advanced UNIX versions of ELAS (developed by NASA's Earth Resources Laboratory for analysis of Landsat images) for general purpose image processing. The MD Image System is an application of this technology to a medical system that aids in the diagnosis of cancer, and can accept, store and analyze images from other sources such as Magnetic Resonance Imaging.

  19. Diffuse optical imaging of the breast using structured-light

    NASA Astrophysics Data System (ADS)

    Kwong, Jessica; Nouizi, Farouk; Cho, Jaedu; Zheng, Jie; Li, Yifan; Chen, Jeon-hor; Su, Min-Ying; Gulsen, Gultekin

    2015-03-01

    Diffuse optical imaging with structured-light illumination and detection can provide rapid, wide-field anatomical and functional imaging of the breast with an application for breast cancer screening. Our aims for this study were to test the feasibility of structured-light, test our pattern set, and develop and optimize our image reconstruction algorithm. For our phantom studies, we created an agar phantom with dimensions similar to a compressed breast. A cubic inclusion of 30mm by 30mm by 25mm with twice the amount of absorption contrast than the background was placed at the center. Near-infrared light of eleven patterns including a full illumination and single stripes was illuminated onto the breast phantom and detected with a CCD camera, with integration of the signals according to the patterns performed post-data acquisition, with a total of 121 measurements. These measurements were then used in our reconstruction algorithm that iteratively minimized the difference between the collected data and the estimation from our FEM-based forward model of photon diffusion to calculate the absorption values. Reconstructions of the 3D absorption maps detect an inclusion at the center and indicate that our selected set of patterns may be sufficient for structured-light imaging. We are currently improving our instrumentation and testing with additional phantom studies, while also performing simulations of numerical breast phantoms created from MR images to test structured-light's ability to image complex and realistic breast tissue composition. We hope to use this technique as optical method to image molecular markers, such as hemoglobin, water and lipid, within the breast.

  20. Characterization of human breast cancer tissues by infrared imaging.

    PubMed

    Verdonck, M; Denayer, A; Delvaux, B; Garaud, S; De Wind, R; Desmedt, C; Sotiriou, C; Willard-Gallo, K; Goormaghtigh, E

    2016-01-21

    Fourier Transform InfraRed (FTIR) spectroscopy coupled to microscopy (IR imaging) has shown unique advantages in detecting morphological and molecular pathologic alterations in biological tissues. The aim of this study was to evaluate the potential of IR imaging as a diagnostic tool to identify characteristics of breast epithelial cells and the stroma. In this study a total of 19 breast tissue samples were obtained from 13 patients. For 6 of the patients, we also obtained Non-Adjacent Non-Tumor tissue samples. Infrared images were recorded on the main cell/tissue types identified in all breast tissue samples. Unsupervised Principal Component Analyses and supervised Partial Least Square Discriminant Analyses (PLS-DA) were used to discriminate spectra. Leave-one-out cross-validation was used to evaluate the performance of PLS-DA models. Our results show that IR imaging coupled with PLS-DA can efficiently identify the main cell types present in FFPE breast tissue sections, i.e. epithelial cells, lymphocytes, connective tissue, vascular tissue and erythrocytes. A second PLS-DA model could distinguish normal and tumor breast epithelial cells in the breast tissue sections. A patient-specific model reached particularly high sensitivity, specificity and MCC rates. Finally, we showed that the stroma located close or at distance from the tumor exhibits distinct spectral characteristics. In conclusion FTIR imaging combined with computational algorithms could be an accurate, rapid and objective tool to identify/quantify breast epithelial cells and differentiate tumor from normal breast tissue as well as normal from tumor-associated stroma, paving the way to the establishment of a potential complementary tool to ensure safe tumor margins.

  1. Feasibility demonstration of frequency domain terahertz imaging in breast cancer margin determination.

    PubMed

    Yngvesson, Sigfrid K; St Peter, Benjamin; Siqueira, Paul; Kelly, Patrick; Glick, Stephen; Karellas, Andrew; Khan, Ashraf

    2012-02-09

    In breast conservation surgery, surgeons attempt to remove malignant tissue along with a surrounding margin of healthy tissue. Subsequent pathological analysis determines if those margins are clear of malignant tissue, a process that typically requires at least one day. Only then can it be determined whether a follow-up surgery is necessary. This possibility of re-excision is undesirable in terms of reducing patient morbidity, emotional stress and healthcare. It has been shown that terahertz (THz) images of breast specimens can accurately differentiate between breast carcinoma, normal fibroglandular tissue, and adipose tissue. That study employed the Time-Domain Spectroscopy (TDS) technique. We are instead developing a new technique, Frequency-Domain Terahertz Imaging (FDTI). In this joint project between UMass/Amherst and UMass Medical School/Worcester (UMMS), we are investigating the feasibility of the FDTI technique for THz reflection imaging of breast cancer margins. Our system, which produces mechanically scanned images of size 2cm × 2cm, uses a THz gas laser. The system is calibrated with mixtures of water and ethanol and reflection coefficients as low as 1% have been measured. Images from phantoms and specimens cut from breast cancer lumpectomies at UMMS will be presented. Finally, there will be a discussion of a possible transition of this FDTI setup to a compact and inexpensive CMOS THz camera for use in the operating room.

  2. Symmetric Biomechanically Guided Prone-to-Supine Breast Image Registration.

    PubMed

    Eiben, Björn; Vavourakis, Vasileios; Hipwell, John H; Kabus, Sven; Buelow, Thomas; Lorenz, Cristian; Mertzanidou, Thomy; Reis, Sara; Williams, Norman R; Keshtgar, Mohammed; Hawkes, David J

    2016-01-01

    Prone-to-supine breast image registration has potential application in the fields of surgical and radiotherapy planning, image guided interventions, and multi-modal cancer diagnosis, staging, and therapy response prediction. However, breast image registration of three dimensional images acquired in different patient positions is a challenging problem, due to large deformations induced to the soft breast tissue caused by the change in gravity loading. We present a symmetric, biomechanical simulation based registration framework which aligns the images in a central, virtually unloaded configuration. The breast tissue is modelled as a neo-Hookean material and gravity is considered as the main source of deformation in the original images. In addition to gravity, our framework successively applies image derived forces directly into the unloading simulation in place of a subsequent image registration step. This results in a biomechanically constrained deformation. Using a finite difference scheme avoids an explicit meshing step and enables simulations to be performed directly in the image space. The explicit time integration scheme allows the motion at the interface between chest and breast to be constrained along the chest wall. The feasibility and accuracy of the approach presented here was assessed by measuring the target registration error (TRE) using a numerical phantom with known ground truth deformations, nine clinical prone MRI and supine CT image pairs, one clinical prone-supine CT image pair and four prone-supine MRI image pairs. The registration reduced the mean TRE for the numerical phantom experiment from initially 19.3 to 0.9 mm and the combined mean TRE for all fourteen clinical data sets from 69.7 to 5.6 mm.

  3. Multifunctional Nanocomposites for Breast Cancer Imaging and Therapy

    DTIC Science & Technology

    2008-07-01

    and of PbS QD-G6-PAMAM in water. Task 7. Carry out optical imaging experiments using Intralipid -10% suspension in water as the breast tissue...imaging applications was tested in an imaging experiment. A suspension of Intralipid -10% in water, and a slab of chicken breast tissue were used as the...distribution I(x, y, ti) formed by the convolution of the transmitted light pulse with the gate pulse centered on the gate position. The Intralipid -10

  4. Imaging in evaluation of response to neoadjuvant breast cancer treatment

    PubMed Central

    Ollivier, L; Balu-Maestro, C; Leclère, J

    2005-01-01

    The role of imaging for patients treated with neoadjuvant therapy for breast cancer is not only to evaluate the therapeutic response in terms of tumour shrinkage, but also to predict the histological response to chemotherapy, which is correlated to survival. Surgery and histopathological analysis after neoadjuvant therapy allow for an objective assessment of the accuracy of imaging techniques in evaluating response. The aim of this study is to compare the value of the different conventional and functional imaging techniques for determining response to neoadjuvant chemotherapy in breast cancer treatment. PMID:16154816

  5. Automated segmentation of breast lesions in ultrasound images.

    PubMed

    Liu, Xu; Huo, Zhimin; Zhang, Jiwu

    2005-01-01

    Breast cancer is one of the leading causes of death in women. As a convenient and safe diagnosis method, ultrasound is most commonly used second to mammography for early detection and diagnosis of breast cancer. Here we proposed an automatic method to segment lesions in ultrasound images. The images are first filtered with anisotropic diffusion algorithm to remove speckle noise. The edge is enhanced to emphasize the lesion regions. Normalized cut is a graph theoretic that admits combination of different features for image segmentation, and has been successfully used in object parsing and grouping. In this paper we combine normalized cut with region merging method for the segmentation. The merging criteria are derived from the empirical rules used by radiologists when they interpret breast images. In the performance evaluation, we compared the computer-detected lesion boundaries with manually delineated borders. The experimental results show that the algorithm has efficient and robust performance for different kinds of lesions.

  6. Breast imaging technology: Recent advances in imaging endogenous or transferred gene expression utilizing radionuclide technologies in living subjects - applications to breast cancer

    PubMed Central

    Berger, Frank; Sam Gambhir, Sanjiv

    2001-01-01

    A variety of imaging technologies is being investigated as tools for studying gene expression in living subjects. Two technologies that use radiolabeled isotopes are single photon emission computed tomography (SPECT) and positron emission tomography (PET). A relatively high sensitivity, a full quantitative tomographic capability, and the ability to extend small animal imaging assays directly into human applications characterize radionuclide approaches. Various radiolabeled probes (tracers) can be synthesized to target specific molecules present in breast cancer cells. These include antibodies or ligands to target cell surface receptors, substrates for intracellular enzymes, antisense oligodeoxynucleotide probes for targeting mRNA, probes for targeting intracellular receptors, and probes for genes transferred into the cell. We briefly discuss each of these imaging approaches and focus in detail on imaging reporter genes. In a PET reporter gene system for in vivo reporter gene imaging, the protein products of the reporter genes sequester positron emitting reporter probes. PET subsequently measures the PET reporter gene dependent sequestration of the PET reporter probe in living animals. We describe and review reporter gene approaches using the herpes simplex type 1 virus thymidine kinase and the dopamine type 2 receptor genes. Application of the reporter gene approach to animal models for breast cancer is discussed. Prospects for future applications of the transgene imaging technology in human gene therapy are also discussed. Both SPECT and PET provide unique opportunities to study animal models of breast cancer with direct application to human imaging. Continued development of new technology, probes and assays should help in the better understanding of basic breast cancer biology and in the improved management of breast cancer patients. PMID:11250742

  7. Advances in molecular imaging for breast cancer detection and characterization

    PubMed Central

    2012-01-01

    Advances in our ability to assay molecular processes, including gene expression, protein expression, and molecular and cellular biochemistry, have fueled advances in our understanding of breast cancer biology and have led to the identification of new treatments for patients with breast cancer. The ability to measure biologic processes without perturbing them in vivo allows the opportunity to better characterize tumor biology and to assess how biologic and cytotoxic therapies alter critical pathways of tumor response and resistance. By accurately characterizing tumor properties and biologic processes, molecular imaging plays an increasing role in breast cancer science, clinical care in diagnosis and staging, assessment of therapeutic targets, and evaluation of responses to therapies. This review describes the current role and potential of molecular imaging modalities for detection and characterization of breast cancer and focuses primarily on radionuclide-based methods. PMID:22423895

  8. Percutaneous image-guided ablation of breast tumors: an overview.

    PubMed

    Sag, Alan A; Maybody, Majid; Comstock, Christopher; Solomon, Stephen B

    2014-06-01

    Percutaneous non-surgical image-guided ablation is emerging as an adjunct or alternative to surgery in the management of benign and malignant breast tumors. This review covers the current state of the literature regarding percutaneous image-guided ablation modalities, clinical factors regarding patient selection, and future directions for research.

  9. Comparison of full-scan and half-scan for cone beam breast CT imaging

    NASA Astrophysics Data System (ADS)

    Chen, Lingyun; Shaw, Chris C.; Lai, Chao-jen; Altunbas, Mustafa C.; Wang, Tianpeng; Tu, Shu-ju; Liu, Xinming

    2006-03-01

    The half-scan cone beam technique, requiring a scan for 180° plus detector width only, can help achieve both shorter scan time as well as higher exposure in each individual projection image. This purpose of this paper is to investigate whether half-scan cone beam CT technique can provide acceptable images for clinical application. The half-scan cone beam reconstruction algorithm uses modified Parker's weighting function and reconstructs from slightly more than half of the projection views for full-scan, giving out promising results. A rotation phantom, stationary gantry bench top system was built to conduct experiments to evaluate half-scan cone beam breast CT technique. A post-mastectomy breast specimen, a stack of lunch meat slices embedded with various sizes of calcifications and a polycarbonate phantom inserted with glandular and adipose tissue equivalents are imaged and reconstructed for comparison study. A subset of full-scan projection images of a mastectomy specimen were extracted and used as the half-scan projection data for reconstruction. The results show half-scan reconstruction algorithm for cone beam breast CT images does not significantly degrade image quality when compared with the images of same or even half the radiation dose level. Our results are encouraging, emphasizing the potential advantages in the use of half-scan technique for cone beam breast imaging.

  10. Optimization of image quality in breast tomosynthesis using lumpectomy and mastectomy specimens

    NASA Astrophysics Data System (ADS)

    Timberg, Pontus; Ruschin, Mark; Båth, Magnus; Hemdal, Bengt; Andersson, Ingvar; Svahn, Tony; Mattsson, Sören; Tingberg, Anders

    2007-03-01

    The purpose of this study was to determine how image quality in breast tomosynthesis (BT) is affected when acquisition modes are varied, using human breast specimens containing malignant tumors and/or microcalcifications. Images of thirty-one breast lumpectomy and mastectomy specimens were acquired on a BT prototype based on a Mammomat Novation (Siemens) full-field digital mammography system. BT image acquisitions of the same specimens were performed varying the number of projections, angular range, and detector signal collection mode (binned and nonbinned in the scan direction). An enhanced filtered back projection reconstruction method was applied with constant settings of spectral and slice thickness filters. The quality of these images was evaluated via relative visual grading analysis (VGA) human observer performance experiments using image quality criteria. Results from the relative VGA study indicate that image quality increases with number of projections and angular range. A binned detector collecting mode results in less noise, but reduced resolution of structures. Human breast specimens seem to be suitable for comparing image sets in BT with image quality criteria.

  11. Online advertising by three commercial breast imaging services: message takeout and effectiveness.

    PubMed

    Johnson, Rebecca; Jalleh, Geoffrey; Pratt, Iain S; Donovan, Robert J; Lin, Chad; Saunders, Christobel; Slevin, Terry

    2013-10-01

    Mammography is widely acknowledged to be the most cost-effective technique for population screening for breast cancer. Recently in Australia, imaging modalities other than mammography, including thermography, electrical impedance, and computerised breast imaging, have been increasingly promoted as alternative methods of breast cancer screening. This study assessed the impact of three commercial breast imaging companies' promotional material upon consumers' beliefs about the effectiveness of the companies' technology in detecting breast cancer, and consumers' intentions to seek more information or consider having their breasts imaged by these modalities. Results showed 90% of respondents agreed that the companies' promotional material promoted the message that the advertised breast imaging method was effective in detecting breast cancer, and 80% agreed that the material promoted the message that the imaging method was equally or more effective than a mammogram. These findings have implications for women's preference for and uptake of alternative breast imaging services over mammography.

  12. Monte Carlo simulation for the estimation of the glandular breast dose for a digital breast tomosynthesis system.

    PubMed

    Rodrigues, Leonardo; Magalhaes, Luis Alexandre Goncalves; Braz, Delson

    2015-12-01

    Digital breast tomosynthesis (DBT) is a screening and diagnostic modality that acquires images of the breast at multiple angles during a short scan. The Selenia Dimensions (Hologic, Bedford, Mass) DBT system can perform both full-field digital mammography and DBT. The system acquires 15 projections over a 15° angular range (from -7.5° to +7.5°). An important factor in determining the optimal imaging technique for breast tomosynthesis is the radiation dose. In breast imaging, the radiation dose of concern is that deposited in the glandular tissue of the breast because this is the tissue that has a risk of developing cancer. The concept of the normalised mean glandular dose (DgN) has been introduced as the metric for the dose in breast imaging. The DgN is difficult to measure. The Monte Carlo techniques offer an alternative method for a realistic estimation of the radiation dose. The purpose of this work was to use the Monte Carlo code MCNPX technique to generate monoenergetic glandular dose data for estimating the breast tissue dose in tomosynthesis for arbitrary spectra as well as to observe the deposited radiation dose by projection on the glandular portion of the breast in a Selenia Dimensions DBT system. A Monte Carlo simulation of the system was developed to compute the DgN in a craniocaudal view. Monoenergetic X-ray beams from 10 to 49 keV in 1-keV increments were used. The simulation utilised the assumption of a homogeneous breast composition and three compositions (0 % glandular, 50 % glandular and 100 % glandular). The glandular and adipose tissue compositions were specified according ICRU Report 44. A skin layer of 4 mm was assumed to encapsulate the breast on all surfaces. The breast size was varied using the chest wall-to-nipple distance (CND) and compressed breast thickness (t). In this work, the authors assumed a CND of 5 cm and the thicknesses ranged from 2 to 8 cm, in steps of 2 cm. The fractional energy absorption increases (up to 44.35 % between

  13. Temporal change analysis for improved tumor detection in dedicated CT breast imaging using affine and free-form deformation

    NASA Astrophysics Data System (ADS)

    Dey, Joyoni; O'Connor, J. Michael; Chen, Yu; Glick, Stephen J.

    2008-03-01

    Preliminary evidence has suggested that computerized tomographic (CT) imaging of the breast using a cone-beam, flat-panel detector system dedicated solely to breast imaging has potential for improving detection and diagnosis of early-stage breast cancer. Hypothetically, a powerful mechanism for assisting in early stage breast cancer detection from annual screening breast CT studies would be to examine temporal changes in the breast from year-to-year. We hypothesize that 3D image registration could be used to automatically register breast CT volumes scanned at different times (e.g., yearly screening exams). This would allow radiologists to quickly visualize small changes in the breast that have developed during the period since the last screening CT scan, and use this information to improve the diagnostic accuracy of early-stage breast cancer detection. To test our hypothesis, fresh mastectomy specimens were imaged with a flat-panel CT system at different time points, after moving the specimen to emulate the re-positioning motion of the breast between yearly screening exams. Synthetic tumors were then digitally inserted into the second CT scan at a clinically realistic location (to emulate tumor growth from year-to-year). An affine and a spline-based 3D image registration algorithm was implemented and applied to the CT reconstructions of the specimens acquired at different times. Subtraction of registered image volumes was then performed to better analyze temporal change. Results from this study suggests that temporal change analysis in 3D breast CT can potentially be a powerful tool in improving the visualization of small lesion growth.

  14. Multi-Band Miniaturized Patch Antennas for a Compact, Shielded Microwave Breast Imaging Array.

    PubMed

    Aguilar, Suzette M; Al-Joumayly, Mudar A; Burfeindt, Matthew J; Behdad, Nader; Hagness, Susan C

    2013-12-18

    We present a comprehensive study of a class of multi-band miniaturized patch antennas designed for use in a 3D enclosed sensor array for microwave breast imaging. Miniaturization and multi-band operation are achieved by loading the antenna with non-radiating slots at strategic locations along the patch. This results in symmetric radiation patterns and similar radiation characteristics at all frequencies of operation. Prototypes were fabricated and tested in a biocompatible immersion medium. Excellent agreement was obtained between simulations and measurements. The trade-off between miniaturization and radiation efficiency within this class of patch antennas is explored via a numerical analysis of the effects of the location and number of slots, as well as the thickness and permittivity of the dielectric substrate, on the resonant frequencies and gain. Additionally, we compare 3D quantitative microwave breast imaging performance achieved with two different enclosed arrays of slot-loaded miniaturized patch antennas. Simulated array measurements were obtained for a 3D anatomically realistic numerical breast phantom. The reconstructed breast images generated from miniaturized patch array data suggest that, for the realistic noise power levels assumed in this study, the variations in gain observed across this class of multi-band patch antennas do not significantly impact the overall image quality. We conclude that these miniaturized antennas are promising candidates as compact array elements for shielded, multi-frequency microwave breast imaging systems.

  15. Multi-Band Miniaturized Patch Antennas for a Compact, Shielded Microwave Breast Imaging Array

    PubMed Central

    Aguilar, Suzette M.; Al-Joumayly, Mudar A.; Burfeindt, Matthew J.; Behdad, Nader; Hagness, Susan C.

    2014-01-01

    We present a comprehensive study of a class of multi-band miniaturized patch antennas designed for use in a 3D enclosed sensor array for microwave breast imaging. Miniaturization and multi-band operation are achieved by loading the antenna with non-radiating slots at strategic locations along the patch. This results in symmetric radiation patterns and similar radiation characteristics at all frequencies of operation. Prototypes were fabricated and tested in a biocompatible immersion medium. Excellent agreement was obtained between simulations and measurements. The trade-off between miniaturization and radiation efficiency within this class of patch antennas is explored via a numerical analysis of the effects of the location and number of slots, as well as the thickness and permittivity of the dielectric substrate, on the resonant frequencies and gain. Additionally, we compare 3D quantitative microwave breast imaging performance achieved with two different enclosed arrays of slot-loaded miniaturized patch antennas. Simulated array measurements were obtained for a 3D anatomically realistic numerical breast phantom. The reconstructed breast images generated from miniaturized patch array data suggest that, for the realistic noise power levels assumed in this study, the variations in gain observed across this class of multi-band patch antennas do not significantly impact the overall image quality. We conclude that these miniaturized antennas are promising candidates as compact array elements for shielded, multi-frequency microwave breast imaging systems. PMID:25392561

  16. Effect of rotating partial illumination on image reconstruction for optoacoustic breast tomography

    NASA Astrophysics Data System (ADS)

    Lou, Yang; Nadvoretskiy, Vyacheslav; Wang, Kun; Emilov, Sergey; Oraevsky, Alexander; Anastasio, Mark A.

    2015-03-01

    Optoacoustic tomography (OAT) is a promising imaging modality for human breast cancer imaging, with higher resolution and deeper penetration compared to other optical imaging modalities such as diffuse optical tomography or optical coherence tomography. It yields a resolution of 1 mm at depth up to 2 cm. But there is an inherent conflict between the limitations imposed on laser power and the need to adequately penetrate a substantial portion of the breast. To achieve sufficient penetration at every view angle, instead of illuminating the whole breast all at once, sometimes illumination is focused onto a small region of the breast and rotated along with the transducer array to cover the entire object. This paper evaluates the effect of this rotating partial illumination design on OAT image reconstruction. The optical process is simulated by conducting Monte Carlo simulations on a numerical phantom mimicking a real breast, with various specially designed illumination schemes. The acoustic process is simulated by incorporating the transducer's spatial impulse response. Iterative reconstruction is applied to estimate the OAT image. We conclude that rotating partial illumination introduces inconsistency into the system equation, and the degree of inconsistency determines the reconstruction quality.

  17. Experimental and Other Breast Imaging Methods

    MedlinePlus

    ... on the idea that breast cancer cells conduct electricity differently from normal cells. The test passes a ... Life Events College Relay For Life Donate a Car Ways to Give Memorial Giving Planned Giving Leadership ...

  18. Classification of breast masses by ultrasonic Nakagami imaging: a feasibility study.

    PubMed

    Tsui, Po-Hsiang; Yeh, Chih-Kuang; Chang, Chien-Cheng; Liao, Yin-Yin

    2008-11-07

    Ultrasound is an important clinical tool in noninvasive diagnoses of breast cancer. The Nakagami statistical parameter estimated from the ultrasonic backscattered envelope has been demonstrated to be useful in complementing conventional B-mode scans when classifying breast masses. However, the shadowing effect caused by certain high-attenuation tumors in the B-mode image makes the tumor contour unclear, and thus it is more difficult to choose an appropriate region of interest from which to collect tumor data for estimating the Nakagami parameter. This study explored the feasibility of using the Nakagami parametric image to overcome the shadowing effect for visualizing the properties of breast masses. Experiments were performed on a breast-mimicking phantom and on some typical clinical cases for cysts, fat and tumors (fibroadenoma) (n = 18) in order to explore the performance of the Nakagami image under ideal and practical conditions. The experimental results showed that the Nakagami image pixels (i.e. the local Nakagami parameter) in the cyst, tumor and fat are 0.21 +/- 0.01, 0.65 +/- 0.05 and 0.98 +/- 0.07, respectively, for six independent phantom measurements, and 0.14 +/- 0.03, 0.67 +/- 0.11 and 0.89 +/- 0.08, respectively, for clinical experiments. This suggests that the Nakagami image is able to classify various breast masses (p < 0.005) although the clinical results from tumors of different cases have a larger variance that may be caused by the complexity of real breast tissues. In particular, unlike the B-mode image, the Nakagami image is not subject to significant shadowing effects, making it useful to complement the B-mode image to describe the tumor contour for identifying the tumor-related region when the shadowing effect is stronger or a low system gain is used.

  19. Classification of breast masses by ultrasonic Nakagami imaging: a feasibility study

    NASA Astrophysics Data System (ADS)

    Tsui, Po-Hsiang; Yeh, Chih-Kuang; Chang, Chien-Cheng; Liao, Yin-Yin

    2008-11-01

    Ultrasound is an important clinical tool in noninvasive diagnoses of breast cancer. The Nakagami statistical parameter estimated from the ultrasonic backscattered envelope has been demonstrated to be useful in complementing conventional B-mode scans when classifying breast masses. However, the shadowing effect caused by certain high-attenuation tumors in the B-mode image makes the tumor contour unclear, and thus it is more difficult to choose an appropriate region of interest from which to collect tumor data for estimating the Nakagami parameter. This study explored the feasibility of using the Nakagami parametric image to overcome the shadowing effect for visualizing the properties of breast masses. Experiments were performed on a breast-mimicking phantom and on some typical clinical cases for cysts, fat and tumors (fibroadenoma) (n = 18) in order to explore the performance of the Nakagami image under ideal and practical conditions. The experimental results showed that the Nakagami image pixels (i.e. the local Nakagami parameter) in the cyst, tumor and fat are 0.21 ± 0.01, 0.65 ± 0.05 and 0.98 ± 0.07, respectively, for six independent phantom measurements, and 0.14 ± 0.03, 0.67 ± 0.11 and 0.89 ± 0.08, respectively, for clinical experiments. This suggests that the Nakagami image is able to classify various breast masses (p < 0.005) although the clinical results from tumors of different cases have a larger variance that may be caused by the complexity of real breast tissues. In particular, unlike the B-mode image, the Nakagami image is not subject to significant shadowing effects, making it useful to complement the B-mode image to describe the tumor contour for identifying the tumor-related region when the shadowing effect is stronger or a low system gain is used.

  20. A Novel Method Based on Learning Automata for Automatic Lesion Detection in Breast Magnetic Resonance Imaging

    PubMed Central

    Salehi, Leila; Azmi, Reza

    2014-01-01

    Breast cancer continues to be a significant public health problem in the world. Early detection is the key for improving breast cancer prognosis. In this way, magnetic resonance imaging (MRI) is emerging as a powerful tool for the detection of breast cancer. Breast MRI presently has two major challenges. First, its specificity is relatively poor, and it detects many false positives (FPs). Second, the method involves acquiring several high-resolution image volumes before, during, and after the injection of a contrast agent. The large volume of data makes the task of interpretation by the radiologist both complex and time-consuming. These challenges have led to the development of the computer-aided detection systems to improve the efficiency and accuracy of the interpretation process. Detection of suspicious regions of interests (ROIs) is a critical preprocessing step in dynamic contrast-enhanced (DCE)-MRI data evaluation. In this regard, this paper introduces a new automatic method to detect the suspicious ROIs for breast DCE-MRI based on region growing. The results indicate that the proposed method is thoroughly able to identify suspicious regions (accuracy of 75.39 ± 3.37 on PIDER breast MRI dataset). Furthermore, the FP per image in this method is averagely 7.92, which shows considerable improvement comparing to other methods like ROI hunter. PMID:25298929

  1. Image guided near-infrared spectroscopy of breast tissue in vivo using boundary element method.

    PubMed

    Srinivasan, Subhadra; Carpenter, Colin M; Ghadyani, Hamid R; Taka, Senate J; Kaufman, Peter A; Diflorio-Alexander, Roberta M; Wells, Wendy A; Pogue, Brian W; Paulsen, Keith D

    2010-01-01

    We demonstrate quantitative functional imaging using image-guided near-infrared spectroscopy (IG-NIRS) implemented with the boundary element method (BEM) for reconstructing 3-D optical property estimates in breast tissue in vivo. A multimodality MRI-NIR system was used to collect measurements of light reflectance from breast tissue. The BEM was used to model light propagation in 3-D based only on surface discretization in order to reconstruct quantitative values of total hemoglobin (HbT), oxygen saturation, water, and scatter. The technique was validated in experimental measurements from heterogeneous breast-shaped phantoms with known values and applied to a total of seven subjects comprising six healthy individuals and one participant with cancer imaged at two time points during neoadjuvant chemotherapy. Using experimental measurements from a heterogeneous breast phantom, BEM for IG-NIRS produced accurate values for HbT in the inclusion with a <3% error. Healthy breast tissues showed higher HbT and water in fibroglandular tissue than in adipose tissue. In a subject with cancer, the tumor showed higher HbT compared to the background. HbT in the tumor was reduced by 9 μM during treatment. We conclude that 3-D MRI-NIRS with BEM provides quantitative and functional characterization of breast tissue in vivo through measurement of hemoglobin content. The method provides potentially complementary information to DCE-MRI for tumor characterization.

  2. Image guided near-infrared spectroscopy of breast tissue in vivo using boundary element method

    NASA Astrophysics Data System (ADS)

    Srinivasan, Subhadra; Carpenter, Colin M.; Ghadyani, Hamid R.; Taka, Senate J.; Kaufman, Peter A.; Diflorio-Alexander, Roberta M.; Wells, Wendy A.; Pogue, Brian W.; Paulsen, Keith D.

    2010-11-01

    We demonstrate quantitative functional imaging using image-guided near-infrared spectroscopy (IG-NIRS) implemented with the boundary element method (BEM) for reconstructing 3-D optical property estimates in breast tissue in vivo. A multimodality MRI-NIR system was used to collect measurements of light reflectance from breast tissue. The BEM was used to model light propagation in 3-D based only on surface discretization in order to reconstruct quantitative values of total hemoglobin (HbT), oxygen saturation, water, and scatter. The technique was validated in experimental measurements from heterogeneous breast-shaped phantoms with known values and applied to a total of seven subjects comprising six healthy individuals and one participant with cancer imaged at two time points during neoadjuvant chemotherapy. Using experimental measurements from a heterogeneous breast phantom, BEM for IG-NIRS produced accurate values for HbT in the inclusion with a <3% error. Healthy breast tissues showed higher HbT and water in fibroglandular tissue than in adipose tissue. In a subject with cancer, the tumor showed higher HbT compared to the background. HbT in the tumor was reduced by 9 μM during treatment. We conclude that 3-D MRI-NIRS with BEM provides quantitative and functional characterization of breast tissue in vivo through measurement of hemoglobin content. The method provides potentially complementary information to DCE-MRI for tumor characterization.

  3. Brca1/p53 deficient mouse breast tumor hemodynamics during hyperoxic respiratory challenge monitored by a novel wide-field functional imaging (WiFI) system

    NASA Astrophysics Data System (ADS)

    Moy, Austin; Kim, Jae G.; Lee, Eva Y. H. P.; Tromberg, Bruce; Cerussi, Albert; Choi, Bernard

    2009-02-01

    Current imaging modalities allow precise visualization of tumors but do not enable quantitative characterization of the tumor metabolic state. Such quantitative information would enhance our understanding of tumor progression and response to treatment, and to our overall understanding of tumor biology. To address this problem, we have developed a wide-field functional imaging (WiFI) instrument which combines two optical imaging modalities, spatially modulated imaging (MI) and laser speckle imaging (LSI). Our current WiFI imaging protocol consists of multispectral imaging in the near infrared (650-980 nm) spectrum, over a wide (7 cm × 5 cm) field of view. Using MI, the spatially-resolved reflectance of sinusoidal patterns projected onto the tissue is assessed, and optical properties of the tissue are estimated using a Monte Carlo model. From the spatial maps of local absorption and reduced scattering coefficients, tissue composition information is extracted in the form of oxy-, deoxy-, and total hemoglobin concentrations, and percentage of lipid and water. Using LSI, the reflectance of a 785 nm laser speckle pattern on the tissue is acquired and analyzed to compute maps of blood perfusion in the tissue. Tissue metabolism state is estimated from the values of blood perfusion, volume and oxygenation state. We currently are employing the WiFI instrument to study tumor development in a BRCA1/p53 deficient mice breast tumor model. The animals are monitored with WiFI during hyperoxic respiratory challenge. At present, four tumors have been measured with WiFI, and preliminary data suggest that tumor metabolic changes during hyperoxic respiratory challenge can be determined.

  4. Methods for mitigating the effect of noise, interference, and model error on microwave breast imaging

    NASA Astrophysics Data System (ADS)

    Burfeindt, Matthew J.

    Microwave inverse scattering shows promise for meeting important clinical needs in breast imaging that arise due to drawbacks in traditional imaging technologies. The dielectric contrast between different breast tissue types, the 3-D nature of various inverse scattering algorithms, as well as microwave technology's relative safety and low cost motivate a microwave-based approach. However, challenges remain for this type of imaging technique, as it requires solving a linear system that is ill-posed and underdetermined, thus making it sensitive to noise, interference, and mismatch between the assumed and actual properties of the propagation environment. In this document, we report a series of studies performed with the goal of mitigating the effect of these types of signal errors on the imaging results. We conduct a numerical feasibility study to demonstrate the efficacy of microwave breast imaging using an enclosed array of miniaturized, multi-band patch antennas designed to account for the ill-posed nature of the imaging problem. We then conduct several experimental studies with an array prototype, wherein we characterize the sensitivity of the array to model error as well as create experimental reconstructions of both geometrically-simple objects and an MRI-derived 3-D-printed breast phantom. Lastly, we incorporate a beamforming-enhancement into the imaging algorithm with the goal of making it less sensitive to signal error.

  5. Fluorescence goggle for intraoperative breast cancer imaging

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Bauer, Adam Q.; Akers, Walter; Sudlow, Gail; Liang, Kexian; Charanya, Tauseef; Mondal, Suman; Culver, Joseph P.; Achilefu, Samuel

    2012-03-01

    We have developed a fluorescence goggle device for intraoperative oncologic imaging. With our system design, the surgeon can directly visualize the fluorescence information from the eyepieces in real time without any additional monitor, which can improve one's coordination and surgical accuracy. In conjunction with targeting fluorescent dyes, the goggle device can successfully detect tumor margins and small nodules that are not obvious to naked eye. This can potentially decrease the incidence of incomplete resection.

  6. Image Processing and Computer Aided Diagnosis in Computed Tomography of the Breast

    DTIC Science & Technology

    2007-03-01

    proposed by Hebert and Leahy 5. 2.2 Test Images Images were acquired with a Siemens prototype digital mammography system ( Mammomat Novation DR; Siemens ...of an anthropomorphic breast phantom acquired on Siemens prototype FFDM system (a) with and (b) without an anti-scatter grid; (b) the MAP algorithm...cancer detection," Proc. SPIE (2005). 11. R. Hebert, T. Leahy, "A generalized EM algorithm for 3-D Bayesian reconstruction from Poisson data using

  7. TU-EF-207-01: Introductory Remarks on Recent Advances in Breast Imaging

    SciTech Connect

    Karellas, A.

    2015-06-15

    Breast imaging technology is advancing on several fronts. In digital mammography, the major technological trend has been on optimization of approaches for performing combined mammography and tomosynthesis using the same system. In parallel, photon-counting slot-scan mammography is now in clinical use and more efforts are directed towards further development of this approach for spectral imaging. Spectral imaging refers to simultaneous acquisition of two or more energy-windowed images. Depending on the detector and associated electronics, there are a number of ways this can be accomplished. Spectral mammography using photon-counting detectors can suppress electronic noise and importantly, it enables decomposition of the image into various material compositions of interest facilitating quantitative imaging. Spectral imaging can be particularly important in intravenously injected contrast mammography and eventually tomosynthesis. The various approaches and applications of spectral mammography are discussed. Digital breast tomosynthesis relies on the mechanical movement of the x-ray tube to acquire a number of projections in a predefined arc, typically from 9 to 25 projections over a scan angle of +/−7.5 to 25 degrees depending on the particular system. The mechanical x-ray tube motion requires relatively long acquisition time, typically between 3.7 to 25 seconds depending on the system. Moreover, mechanical scanning may have an effect on the spatial resolution due to internal x-ray filament or external mechanical vibrations. New x-ray source arrays have been developed and they are aimed at replacing the scanned x-ray tube for improved acquisition time and potentially for higher spatial resolution. The potential advantages and challenges of this approach are described. Combination of digital mammography and tomosynthesis in a single system places increased demands on certain functional aspects of the detector and overall performance, particularly in the tomosynthesis

  8. Identification of breast contour for nipple segmentation in breast magnetic resonance images

    SciTech Connect

    Gwo, Chih-Ying; Gwo, Allen; Wei, Chia-Hung; Huang, Pai Jung

    2014-02-15

    Purpose: The purpose of this study is to develop a method to simulate the breast contour and segment the nipple in breast magnetic resonance images. Methods: This study first identifies the chest wall and removes the chest part from the breast MR images. Subsequently, the cleavage and its motion artifacts are removed, distinguishing the separate breasts, where the edge points are sampled for curve fitting. Next, a region growing method is applied to find the potential nipple region. Finally, the potential nipple region above the simulated curve can be removed in order to retain the original smooth contour. Results: The simulation methods can achieve the least root mean square error (RMSE) for certain cases. The proposed YBnd and (Dmin+Dmax)/2 methods are significant due toP = 0.000. The breast contour curve detected by the two proposed methods is closer than that determined by the edge detection method. The (Dmin+Dmax)/2 method can achieve the lowest RMSE of 1.1029 on average, while the edge detection method results in the highest RMSE of 6.5655. This is only slighter better than the comparison methods, which implies that the performance of these methods depends upon the conditions of the cases themselves. Under this method, the maximal Dice coefficient is 0.881, and the centroid difference is 0.36 pixels. Conclusions: The contributions of this study are twofold. First, a method was proposed to identify and segment the nipple in breast MR images. Second, a curve-fitting method was used to simulate the breast contour, allowing the breast to retain its original smooth shape.

  9. Optical Imaging of Mammaglobin Expression in Breast Cancer

    DTIC Science & Technology

    2005-05-01

    MMG or its putative receptors for early detection of breast cancer. 15. SUBJECT TERMS Optical imaging; optical contrast agents; radiopharmaceuticals ...primer. 5 2 nd Annual Meeting of the Society for Nuclear Medicine , Toronto, Canada (June 20, 2005) 3. S. Achilefu: Harnessing the power of light to...Applications of optical molecular imaging in biology and medicine . Molecular Imaging Workshop, San Jose, CA (January 23, 2005) 6. S. Achilefu: Molecular

  10. Adhesion systems in normal breast and in invasive breast carcinoma.

    PubMed Central

    Glukhova, M.; Koteliansky, V.; Sastre, X.; Thiery, J. P.

    1995-01-01

    To analyze the role of various elements of the adhesion system in the organization of the normal mammary gland and in breast carcinoma, we have studied simultaneously the expression of integrins, E- and P-cadherins, and cytoplasmic constituents of adherens junctions. In the normal gland, E-cadherin and alpha-catenin are present in luminal epithelial and myoepithelial cells, whereas integrins are more abundant in acinar epithelial and in myoepithelial cells. We demonstrate here that, in addition, myoepithelial cells express much more vinculin and alpha-actinin than luminal epithelial cells, whereas talin and focal adhesion kinase (pp125FAK) are restricted to the basal cell layer. In invasive carcinoma, E-cadherin is usually present although often in reduced amount; different integrin subunits are expressed either by a fraction or by all of the cells or are absent. However, the cytoplasmic components of adherens junctions, such as alpha-catenin, vinculin, alpha-actinin, talin, and pp125FAK, are expressed at low levels or cannot be detected in the carcinoma cells. Our data suggest that 1), in the normal mammary gland, the myoepithelial cells, being particularly rich in integrins and cytoplasmic components of the adherens junctions, play an important role in the maintenance of tissue integrity; 2), in invasive carcinoma, cell aggregates may be maintained due to varying levels of expression of E-cadherin and/or integrins; and 3), interaction of the transmembrane adhesion molecules with the cytoskeleton in carcinoma may be impaired as revealed by reduced levels of expression of alpha-catenin, vinculin, alpha-actinin, talin, and pp125FAK. Importantly, carcinoma cells, when exposed to stroma during invasion, do not acquire the adhesion apparatus characteristic of normal cells in contact with the extracellular matrix. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:7887451

  11. Stereotactic Image-Guided Navigation During Breast Reconstruction in Patients With Breast Cancer

    ClinicalTrials.gov

    2017-04-12

    Ductal Breast Carcinoma in Situ; Lobular Breast Carcinoma in Situ; Recurrent Breast Cancer; Stage IA Breast Cancer; Stage IB Breast Cancer; Stage II Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Breast Cancer

  12. Hard X-ray Microscopic Imaging Of Human Breast Tissues

    NASA Astrophysics Data System (ADS)

    Park, Sung H.; Kim, Hong T.; Kim, Jong K.; Jheon, Sang H.; Youn, Hwa S.

    2007-01-01

    X-ray microscopy with synchrotron radiation will be a useful tool for innovation of x-ray imaging in clinical and laboratory settings. It helps us observe detailed internal structure of material samples non-invasively in air. And, it also has the potential to solve some tough problems of conventional breast imaging if it could evaluate various conditions of breast tissue effectively. A new hard x-ray microscope with a spatial resolution better than 100 nm was installed at Pohang Light Source, a third generation synchrotron radiation facility in Pohang, Korea. The x-ray energy was set at 6.95 keV, and the x-ray beam was monochromatized by W/B4C monochromator. Condenser and objective zone plates were used as x-ray lenses. Zernike phase plate next to condenser zone plate was introduced for improved contrast imaging. The image of a sample was magnified 30 times by objective zone plate and 20 times by microscope objective, respectively. After additional 10 times digital magnification, the total magnifying power was up to 6000 times in the end. Phase contrast synchrotron images of 10-μm-thick female breast tissue of the normal, fibroadenoma, fibrocystic change and carcinoma cases were obtained. By phase contrast imaging, hard x-rays enable us to observe many structures of breast tissue without sample preparations such as staining or fixation.

  13. Estimation of T2* Relaxation Time of Breast Cancer: Correlation with Clinical, Imaging and Pathological Features

    PubMed Central

    Seo, Mirinae; Jahng, Geon-Ho; Sohn, Yu-Mee; Rhee, Sun Jung; Oh, Jang-Hoon; Won, Kyu-Yeoun

    2017-01-01

    Objective The purpose of this study was to estimate the T2* relaxation time in breast cancer, and to evaluate the association between the T2* value with clinical-imaging-pathological features of breast cancer. Materials and Methods Between January 2011 and July 2013, 107 consecutive women with 107 breast cancers underwent multi-echo T2*-weighted imaging on a 3T clinical magnetic resonance imaging system. The Student's t test and one-way analysis of variance were used to compare the T2* values of cancer for different groups, based on the clinical-imaging-pathological features. In addition, multiple linear regression analysis was performed to find independent predictive factors associated with the T2* values. Results Of the 107 breast cancers, 92 were invasive and 15 were ductal carcinoma in situ (DCIS). The mean T2* value of invasive cancers was significantly longer than that of DCIS (p = 0.029). Signal intensity on T2-weighted imaging (T2WI) and histologic grade of invasive breast cancers showed significant correlation with T2* relaxation time in univariate and multivariate analysis. Breast cancer groups with higher signal intensity on T2WI showed longer T2* relaxation time (p = 0.005). Cancer groups with higher histologic grade showed longer T2* relaxation time (p = 0.017). Conclusion The T2* value is significantly longer in invasive cancer than in DCIS. In invasive cancers, T2* relaxation time is significantly longer in higher histologic grades and high signal intensity on T2WI. Based on these preliminary data, quantitative T2* mapping has the potential to be useful in the characterization of breast cancer. PMID:28096732

  14. Breast Tomosynthesis

    MedlinePlus

    ... mammography, that uses a low-dose x-ray system and computer reconstructions to create three-dimensional images of the ... Breast tomosynthesis uses a low-dose x-ray system, electronics and a computer to convert x-ray images of the breast ...

  15. Primary osteosarcoma of the breast: pathological and imaging findings.

    PubMed

    Conde, Délio Marques; Morais, Larissa Cunha; Pacheco, Cristiane Fagundes; Ferreira, Rogério Bizinoto; Sousa-e-Silva, Érika Pereira de; Nunes, Aline Regina; Pinto, Sebastião Alves; Fonseca, Paulo Sérgio Peres

    2015-01-01

    Primary osteosarcoma of the breast (POB) is an extremely rare and aggressive tumor. Differential diagnosis of POB includes osteosarcoma of the chest wall and metaplastic breast carcinoma. Imaging tests that exclude the existence of a direct connection between the tumor and chest wall, as well as histopathological and immunohistochemical studies that rule out the presence of an epithelial component are required for the diagnosis of POB. We report a case of a 69-year old woman with POB. Imaging and pathological findings are presented. Therapeutic approach is discussed in the light of current knowledge, including potential complications.

  16. Clinical benefits of combined diagnostic three-dimensional digital breast tomosynthesis and ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Varjonen, Mari; Pamilo, Martti; Raulisto, Leena

    2005-04-01

    Our goal is to evaluate diagnostic digital breast tomosynthesis and ultrasound imaging clinical value in detecting and diagnosing early stage breast cancers. Determine if fusion imaging would decrease the number of biopsies and reduce further patient workup otherwise required to establish a definitive diagnosis. This paper presents the clinical results based on the study conducted at Helsinki University Central Hospital. Presentation demonstrates clinical dual modality images and results. Tomosynthesis of amorphous selenium based full field digital mammography system will be also presented. Forty asymptomatic women enrolled in the study based on prior identification of suspicious findings on screening mammograms where the possibility of breast cancer could not be excluded. Abnormal screening mammogram findings included tumor-like densities, parenchymal asymmetries and architectural distortions. Eight women were operated and 32 were not referred for surgery. Those cases, which were operated, three lesions represented ductal carcinoma in situ, two ductal carcinomas, one atypical ductal hyperplasia, one fibroadenoma and one radial scar. The 32 not operated cases revealed to be benign or superimposition of normal parenchymal breast tissue. The cases were returned to biennial screening. Ultrasound did not show clearly any lesions, but using tomosynthesis and ultrasound together we were able to analyze and locate the lesions exactly. Special tomosynthesis improves overall lesion detection and analysis. The value of tomosynthesis and ultrasound fusion imaging will be to provide additional clinical information in order to improve decision making accuracy to either confirm or exclude a suspected abnormality and in particular detect small breast cancers.

  17. Combining support vector machine with genetic algorithm to classify ultrasound breast tumor images.

    PubMed

    Wu, Wen-Jie; Lin, Shih-Wei; Moon, Woo Kyung

    2012-12-01

    To promote the classification accuracy and decrease the time of extracting features and finding (near) optimal classification model of an ultrasound breast tumor image computer-aided diagnosis system, we propose an approach which simultaneously combines feature selection and parameter setting in this study. In our approach ultrasound breast tumors were segmented automatically by a level set method. The auto-covariance texture features and morphologic features were first extracted following the use of a genetic algorithm to detect significant features and determine the near-optimal parameters for the support vector machine (SVM) to identify the tumor as benign or malignant. The proposed CAD system can differentiate benign from malignant breast tumors with high accuracy and short feature extraction time. According to the experimental results, the accuracy of the proposed CAD system for classifying breast tumors is 95.24% and the computing time of the proposed system for calculating features of all breast tumor images is only 8% of that of a system without feature selection. Furthermore, the time of finding (near) optimal classification model is significantly than that of grid search. It is therefore clinically useful in reducing the number of biopsies of benign lesions and offers a second reading to assist inexperienced physicians in avoiding misdiagnosis.

  18. From Bombs to Breast Cancer Imaging: Los Alamos National Laboratory

    SciTech Connect

    Martineau, Rebecca M

    2012-07-26

    . Currently, there is fierce debate surrounding the age at which breast cancer screening should begin, and once begun, how often it should occur. The American Cancer Society recommends yearly mammograms starting at age 40. On the other hand, the U.S. Preventive Services Task Force recommends against routine so early. Rather, the Task Force recommends biennial mammography screening for women aged 50 to 74 years. The ten-year discrepancy in the onset of screening results from recent data suggesting that the frequent use of X-ray radiation during screenings could potentially increase the likelihood of developing cancer. This danger is increased by the low sensitivity and accuracy of mammograms, which sometimes require multiple screenings to yield results. Furthermore, mammograms are often not only inaccurate, but average appalling misdiagnoses rates: about 80% false positives and 15% false negatives. These misdiagnoses lead to unwarranted biopsies at an estimated health care cost of $2 billion per year, while at the same time, resulting in excessive cases of undetected cancer. As such, the National Cancer Institute recommends more studies on the advantages of types and frequency of screenings, as well as alternative screening options. The UST technology developed at LANL could be an alternative option to greatly improve the specificity and sensitivity of breast cancer screening without using ionizing radiation. LANL is developing high-resolution ultrasound tomography algorithms and a clinical ultrasound tomography scanner to conduct patient studies at the UNM Hospital. During UST scanning, the patient lies face-down while her breast, immersed in a tank of warm water, is scanned by phased-transducer arrays. UST uses recorded ultrasound signals to reconstruct a high-resolution three-dimensional image of the breast, showing the spatial distribution of mechanical properties within the breast. Breast cancers are detected by higher values of mechanical properties compared to

  19. Medical imaging and computers in the diagnosis of breast cancer

    NASA Astrophysics Data System (ADS)

    Giger, Maryellen L.

    2014-09-01

    Computer-aided diagnosis (CAD) and quantitative image analysis (QIA) methods (i.e., computerized methods of analyzing digital breast images: mammograms, ultrasound, and magnetic resonance images) can yield novel image-based tumor and parenchyma characteristics (i.e., signatures that may ultimately contribute to the design of patient-specific breast cancer management plans). The role of QIA/CAD has been expanding beyond screening programs towards applications in risk assessment, diagnosis, prognosis, and response to therapy as well as in data mining to discover relationships of image-based lesion characteristics with genomics and other phenotypes; thus, as they apply to disease states. These various computer-based applications are demonstrated through research examples from the Giger Lab.

  20. Breast imaging with ultrasound tomography: a comparative study with MRI

    NASA Astrophysics Data System (ADS)

    Ranger, Bryan; Littrup, Peter; Duric, Neb; Li, Cuiping; Schmidt, Steven; Lupinacci, Jessica; Myc, Lukasz; Szczepanski, Amy; Rama, Olsi; Bey-Knight, Lisa

    2010-03-01

    The purpose of this study was to investigate the performance of an ultrasound tomography (UST) prototype relative to magnetic resonance (MR) for imaging overall breast anatomy and accentuating tumors relative to background tissue. The study was HIPAA compliant, approved by the Institutional Review Board, and performed after obtaining the requisite informed consent. Twenty-three patients were imaged with MR and the UST prototype. T1 weighted images with fat saturation, with and without gadolinium enhancement, were used to examine anatomical structures and tumors, while T2 weighted images were used to identify cysts. The UST scans generated sound speed, attenuation, and reflection images. A qualitative visual comparison of the MRI and UST images was then used to identify anatomical similarities. A more focused approach that involved a comparison of reported masses, lesion volumes, and breast density was used to quantify the findings from the visual assessment. Our acoustic tomography prototype imaged distributions of fibrous stroma, parenchyma, fatty tissues, and lesions in patterns similar to those seen in the MR images. The range of thresholds required to establish tumor volume equivalency between MRI and UST suggested that a universal threshold for isolating masses relative to background tissue is feasible with UST. UST has demonstrated the ability to visualize and characterize breast tissues in a manner comparable to MRI. Thresholding techniques accentuate masses relative to background anatomy, which may prove clinically useful for early cancer detection.

  1. Simulation study comparing high-purity germanium and cadmium zinc telluride detectors for breast imaging

    NASA Astrophysics Data System (ADS)

    Campbell, D. L.; Peterson, T. E.

    2014-11-01

    We conducted simulations to compare the potential imaging performance for breast cancer detection with High-Purity Germanium (HPGe) and Cadmium Zinc Telluride (CZT) systems with 1% and 3.8% energy resolution at 140 keV, respectively. Using the Monte Carlo N-Particle (MCNP5) simulation package, we modelled both 5 mm-thick CZT and 10 mm-thick HPGe detectors with the same parallel-hole collimator for the imaging of a breast/torso phantom. Simulated energy spectra were generated, and planar images were created for various energy windows around the 140 keV photopeak. Relative sensitivity and scatter and the torso fractions were calculated along with tumour contrast and signal-to-noise ratios (SNR). Simulations showed that utilizing a ±1.25% energy window with an HPGe system better suppressed torso background and small-angle scattered photons than a comparable CZT system using a -5%/+10% energy window. Both systems provided statistically similar contrast and SNR, with HPGe providing higher relative sensitivity. Lowering the counts of HPGe images to match CZT count density still yielded equivalent contrast between HPGe and CZT. Thus, an HPGe system may provide equivalent breast imaging capability at lower injected radioactivity levels when acquiring for equal imaging time.

  2. Simulation study comparing high-purity germanium and cadmium zinc telluride detectors for breast imaging.

    PubMed

    Campbell, D L; Peterson, T E

    2014-11-21

    We conducted simulations to compare the potential imaging performance for breast cancer detection with High-Purity Germanium (HPGe) and Cadmium Zinc Telluride (CZT) systems with 1% and 3.8% energy resolution at 140 keV, respectively. Using the Monte Carlo N-Particle (MCNP5) simulation package, we modelled both 5 mm-thick CZT and 10 mm-thick HPGe detectors with the same parallel-hole collimator for the imaging of a breast/torso phantom. Simulated energy spectra were generated, and planar images were created for various energy windows around the 140 keV photopeak. Relative sensitivity and scatter and the torso fractions were calculated along with tumour contrast and signal-to-noise ratios (SNR). Simulations showed that utilizing a ±1.25% energy window with an HPGe system better suppressed torso background and small-angle scattered photons than a comparable CZT system using a -5%/+10% energy window. Both systems provided statistically similar contrast and SNR, with HPGe providing higher relative sensitivity. Lowering the counts of HPGe images to match CZT count density still yielded equivalent contrast between HPGe and CZT. Thus, an HPGe system may provide equivalent breast imaging capability at lower injected radioactivity levels when acquiring for equal imaging time.

  3. Simulation study comparing high-purity germanium and cadmium zinc telluride detectors for breast imaging

    PubMed Central

    Campbell, DL; Peterson, TE

    2014-01-01

    We conducted simulations to compare the potential imaging performance for breast cancer detection with High-Purity Germanium (HPGe) and Cadmium Zinc Telluride (CZT) systems with 1% and 3.8% energy resolution at 140 keV, respectively. Using the Monte Carlo N-Particle (MCNP5) simulation package, we modelled both 5 mm-thick CZT and 10 mm-thick HPGe detectors with the same parallel-hole collimator for the imaging of a breast/torso phantom. Simulated energy spectra were generated, and planar images were created for various energy windows around the 140-keV photopeak. Relative sensitivity and scatter and the torso fractions were calculated along with tumour contrast and signal-to-noise ratios (SNR). Simulations showed that utilizing a ±1.25% energy window with an HPGe system better suppressed torso background and small-angle scattered photons than a comparable CZT system using a −5%/+10% energy window. Both systems provided statistically similar contrast and SNR, with HPGe providing higher relative sensitivity. Lowering the counts of HPGe images to match CZT count density still yielded equivalent contrast between HPGe and CZT. Thus, an HPGe system may provide equivalent breast imaging capability at lower injected radioactivity levels when acquiring for equal imaging time. PMID:25360792

  4. Reproducing 2D breast mammography images with 3D printed phantoms

    NASA Astrophysics Data System (ADS)

    Clark, Matthew; Ghammraoui, Bahaa; Badal, Andreu

    2016-03-01

    Mammography is currently the standard imaging modality used to screen women for breast abnormalities and, as a result, it is a tool of great importance for the early detection of breast cancer. Physical phantoms are commonly used as surrogates of breast tissue to evaluate some aspects of the performance of mammography systems. However, most phantoms do not reproduce the anatomic heterogeneity of real breasts. New fabrication technologies, such as 3D printing, have created the opportunity to build more complex, anatomically realistic breast phantoms that could potentially assist in the evaluation of mammography systems. The primary objective of this work is to present a simple, easily reproducible methodology to design and print 3D objects that replicate the attenuation profile observed in real 2D mammograms. The secondary objective is to evaluate the capabilities and limitations of the competing 3D printing technologies, and characterize the x-ray properties of the different materials they use. Printable phantoms can be created using the open-source code introduced in this work, which processes a raw mammography image to estimate the amount of x-ray attenuation at each pixel, and outputs a triangle mesh object that encodes the observed attenuation map. The conversion from the observed pixel gray value to a column of printed material with equivalent attenuation requires certain assumptions and knowledge of multiple imaging system parameters, such as x-ray energy spectrum, source-to-object distance, compressed breast thickness, and average breast material attenuation. A detailed description of the new software, a characterization of the printed materials using x-ray spectroscopy, and an evaluation of the realism of the sample printed phantoms are presented.

  5. The Efficiency of Diffusion Weighted MRI and MR Spectroscopy On Breast MR Imaging

    PubMed Central

    Altay, Canan; Balcı, Pınar

    2014-01-01

    The main purpose of breast magnetic resonance imaging (MRI) in radiologically routine is to establish an imaging protocol that will create high quality images with a short period of time. Fort this purpose, an imaging protocol should include a conventional breast MRI and contrast enhanced sequences. Proton MR spectroscopy (MRS) and diffusion weighted imaging (DWI) are important MR techniques for evaluation to complicated breast lesions. In this article, we will evaluate that technical properties of the MRS and DWI as additional MR imaging.

  6. A prospective pilot clinical trial evaluating the utility of a dynamic near-infrared imaging device for characterizing suspicious breast lesions

    PubMed Central

    Xu, Ronald X; Young, Donn C; Mao, Jimmy J; Povoski, Stephen P

    2007-01-01

    Introduction Characterizing and differentiating between malignant tumors, benign tumors, and normal breast tissue is increasingly important in the patient presenting with breast problems. Near-infrared diffuse optical imaging and spectroscopy is capable of measuring multiple physiologic parameters of biological tissue systems and may have clinical applications for assessing the development and progression of neoplastic processes, including breast cancer. The currently available application of near-infrared imaging technology for the breast, however, is compromised by low spatial resolution, tissue heterogeneity, and interpatient variation. Materials and methods We tested a dynamic near-infrared imaging schema for the characterization of suspicious breast lesions identified on diagnostic clinical ultrasound. A portable handheld near-infrared tissue imaging device (P-Scan; ViOptix Inc., Fremont, CA, USA) was utilized. An external mechanical compression force was applied to breast tissue. The tissue oxygen saturation and hemoglobin concentration were recorded simultaneously by the handheld near-infrared imaging device. Twelve categories of dynamic tissue parameters were derived based on real-time measurements of the tissue hemoglobin concentration and the oxygen saturation. Results Fifty suspicious breast lesions were evaluated in 48 patients. Statistical analyses were carried out on 36 out of 50 datasets that satisfied our inclusion criteria. Suspicious breast lesions identified on diagnostic clinical ultrasound had lower oxygenation and higher hemoglobin concentration than the surrounding normal breast tissue. Furthermore, histopathologic-proven malignant breast tumors had a lower differential hemoglobin contrast (that is, the difference of hemoglobin concentration variability between the suspicious breast lesion and the normal breast parenchyma located remotely elsewhere within the ipsilateral breast) as compared with histopathologic-proven benign breast lesions

  7. Imaging Bone Metastases in Breast Cancer: Staging and Response Assessment.

    PubMed

    Cook, Gary J R; Azad, Gurdip K; Goh, Vicky

    2016-02-01

    Bone metastases are common in patients with advanced breast cancer. Given the significant associated morbidity, the introduction of new, effective systemic therapies, and the improvement in survival time, early detection and response assessment of skeletal metastases have become even more important. Although planar bone scanning has recognized limitations, in particular, poor specificity in staging and response assessment, it continues to be the main method in current clinical practice for staging of the skeleton in patients at risk of bone metastases. However, the accuracy of bone scanning can be improved with the addition of SPECT/CT. There have been reported improvements in sensitivity and specificity for staging of the skeleton with either bone-specific PET/CT tracers, such as (18)F-NaF, or tumor-specific tracers, such as (18)F-FDG, although these methods are less widely available and more costly. There is a paucity of data on the use of (18)F-NaF PET/CT for response assessment in breast cancer, but there is increasing evidence that (18)F-FDG PET/CT may improve on current methods in this regard. At the same time, interest and experience in using whole-body morphologic MRI augmented with diffusion-weighted imaging for both staging and response assessment in the skeleton have been increasing. However, data on comparisons of these methods with PET methods to determine the best technique for current clinical practice or for clinical trials are insufficient. There are early data supporting the use (18)F-FDG PET/MRI to assess malignant disease in the skeleton, with the possibility of taking advantage of the synergies offered by combining morphologic, physiologic, and metabolic imaging.

  8. Journal club: molecular breast imaging at reduced radiation dose for supplemental screening in mammographically dense breasts.

    PubMed

    Rhodes, Deborah J; Hruska, Carrie B; Conners, Amy Lynn; Tortorelli, Cindy L; Maxwell, Robert W; Jones, Katie N; Toledano, Alicia Y; O'Connor, Michael K

    2015-02-01

    OBJECTIVE. The purpose of this study was to assess the diagnostic performance of supplemental screening molecular breast imaging (MBI) in women with mammographically dense breasts after system modifications to permit radiation dose reduction. SUBJECTS AND METHODS. A total of 1651 asymptomatic women with mammographically dense breasts on prior mammography underwent screening mammography and adjunct MBI performed with 300-MBq (99m)Tc-sestamibi and a direct-conversion (cadmium zinc telluride) gamma camera, both interpreted independently. The cancer detection rate, sensitivity, specificity, and positive predictive value of biopsies performed (PPV3) were determined. RESULTS. In 1585 participants with a complete reference standard, 21 were diagnosed with cancer: two detected by mammography only, 14 by MBI only, three by both modalities, and two by neither. Of 14 participants with cancers detected only by MBI, 11 had invasive disease (median size, 0.9 cm; range, 0.5-4.1 cm). Nine of 11 (82%) were node negative, and two had bilateral cancers. With the addition of MBI to mammography, the overall cancer detection rate (per 1000 screened) increased from 3.2 to 12.0 (p < 0.001) (supplemental yield 8.8). The invasive cancer detection rate increased from 1.9 to 8.8 (p < 0.001) (supplemental yield 6.9), a relative increase of 363%, while the change in DCIS detection was not statistically significant (from 1.3 to 3.2, p =0.250). For mammography alone, sensitivity was 24%; specificity, 89%; and PPV3, 25%. For the combination, sensitivity was 91% (p < 0.001); specificity, 83% (p < 0.001); and PPV3, 28% (p = 0.70). The recall rate increased from 11.0% with mammography alone to 17.6% (p < 0.001) for the combination; the biopsy rate increased from 1.3% for mammography alone to 4.2% (p < 0.001). CONCLUSION. When added to screening mammography, MBI performed using a radiopharmaceutical activity acceptable for screening (effective dose 2.4 mSv) yielded a supplemental cancer detection rate

  9. A multi-image approach to CADx of breast cancer with integration into PACS

    NASA Astrophysics Data System (ADS)

    Elter, Matthias; Wittenberg, Thomas; Schulz-Wendtland, Rüdiger; Deserno, Thomas M.

    2009-02-01

    While screening mammography is accepted as the most adequate technique for the early detection of breast cancer, its low positive predictive value leads to many breast biopsies performed on benign lesions. Therefore, we have previously developed a knowledge-based system for computer-aided diagnosis (CADx) of mammographic lesions. It supports the radiologist in the discrimination of benign and malignant lesions. So far, our approach operates on the lesion level and employs the paradigm of content-based image retrieval (CBIR). Similar lesions with known diagnosis are retrieved automatically from a library of references. However, radiologists base their diagnostic decisions on additional resources, such as related mammographic projections, other modalities (e.g. ultrasound, MRI), and clinical data. Nonetheless, most CADx systems disregard the relation between the craniocaudal (CC) and mediolateral-oblique (MLO) views of conventional mammography. Therefore, we extend our approach to the full case level: (i) Multi-frame features are developed that jointly describe a lesion in different views of mammography. Taking into account the geometric relation between different images, these features can also be extracted from multi-modal data; (ii) the CADx system architecture is extended appropriately; (iii) the CADx system is integrated into the radiology information system (RIS) and the picture archiving and communication system (PACS). Here, the framework for image retrieval in medical applications (IRMA) is used to support access to the patient's health care record. Of particular interest is the application of the proposed CADx system to digital breast tomosynthesis (DBT), which has the potential to succeed digital mammography as the standard technique for breast cancer screening. The proposed system is a natural extension of CADx approaches that integrate only two modalities. However, we are still collecting a large enough database of breast lesions with images from

  10. Simulated lesion, human observer performance comparison between thin-section dedicated breast CT images versus computed thick-section simulated projection images of the breast.

    PubMed

    Chen, L; Boone, J M; Abbey, C K; Hargreaves, J; Bateni, C; Lindfors, K K; Yang, K; Nosratieh, A; Hernandez, A; Gazi, P

    2015-04-21

    The objective of this study was to compare the lesion detection performance of human observers between thin-section computed tomography images of the breast, with thick-section (>40 mm) simulated projection images of the breast. Three radiologists and six physicists each executed a two alterative force choice (2AFC) study involving simulated spherical lesions placed mathematically into breast images produced on a prototype dedicated breast CT scanner. The breast image data sets from 88 patients were used to create 352 pairs of image data. Spherical lesions with diameters of 1, 2, 3, 5, and 11 mm were simulated and adaptively positioned into 3D breast CT image data sets; the native thin section (0.33 mm) images were averaged to produce images with different slice thicknesses; average section thicknesses of 0.33, 0.71, 1.5 and 2.9 mm were representative of breast CT; the average 43 mm slice thickness served to simulate simulated projection images of the breast.The percent correct of the human observer's responses were evaluated in the 2AFC experiments. Radiologists lesion detection performance was significantly (p < 0.05) better in the case of thin-section images, compared to thick section images similar to mammography, for all but the 1 mm lesion diameter lesions. For example, the average of three radiologist's performance for 3 mm diameter lesions was 92% correct for thin section breast CT images while it was 67% for the simulated projection images. A gradual reduction in observer performance was observed as the section thickness increased beyond about 1 mm. While a performance difference based on breast density was seen in both breast CT and the projection image results, the average radiologist performance using breast CT images in dense breasts outperformed the performance using simulated projection images in fatty breasts for all lesion diameters except 11 mm. The average radiologist performance outperformed that of the average physicist observer, however trends

  11. Simulated lesion, human observer performance comparison between thin-section dedicated breast CT images versus computed thick-section simulated projection images of the breast

    NASA Astrophysics Data System (ADS)

    Chen, L.; Boone, J. M.; Abbey, C. K.; Hargreaves, J.; Bateni, C.; Lindfors, K. K.; Yang, K.; Nosratieh, A.; Hernandez, A.; Gazi, P.

    2015-04-01

    The objective of this study was to compare the lesion detection performance of human observers between thin-section computed tomography images of the breast, with thick-section (>40 mm) simulated projection images of the breast. Three radiologists and six physicists each executed a two alterative force choice (2AFC) study involving simulated spherical lesions placed mathematically into breast images produced on a prototype dedicated breast CT scanner. The breast image data sets from 88 patients were used to create 352 pairs of image data. Spherical lesions with diameters of 1, 2, 3, 5, and 11 mm were simulated and adaptively positioned into 3D breast CT image data sets; the native thin section (0.33 mm) images were averaged to produce images with different slice thicknesses; average section thicknesses of 0.33, 0.71, 1.5 and 2.9 mm were representative of breast CT; the average 43 mm slice thickness served to simulate simulated projection images of the breast. The percent correct of the human observer’s responses were evaluated in the 2AFC experiments. Radiologists lesion detection performance was significantly (p < 0.05) better in the case of thin-section images, compared to thick section images similar to mammography, for all but the 1 mm lesion diameter lesions. For example, the average of three radiologist’s performance for 3 mm diameter lesions was 92% correct for thin section breast CT images while it was 67% for the simulated projection images. A gradual reduction in observer performance was observed as the section thickness increased beyond about 1 mm. While a performance difference based on breast density was seen in both breast CT and the projection image results, the average radiologist performance using breast CT images in dense breasts outperformed the performance using simulated projection images in fatty breasts for all lesion diameters except 11 mm. The average radiologist performance outperformed that of the average physicist

  12. MRI-Derived 3-D-Printed Breast Phantom for Microwave Breast Imaging Validation

    PubMed Central

    Burfeindt, Matthew J.; Colgan, Timothy J.; Mays, R. Owen; Shea, Jacob D.; Behdad, Nader; Van Veen, Barry D.; Hagness, Susan C.

    2014-01-01

    We propose a 3-D-printed breast phantom for use in preclinical experimental microwave imaging studies. The phantom is derived from an MRI of a human subject; thus, it is anthropomorphic, and its interior is very similar to an actual distribution of fibroglandular tissues. Adipose tissue in the breast is represented by the solid plastic (printed) regions of the phantom, while fibroglandular tissue is represented by liquid-filled voids in the plastic. The liquid is chosen to provide a biologically relevant dielectric contrast with the printed plastic. Such a phantom enables validation of microwave imaging techniques. We describe the procedure for generating the 3-D-printed breast phantom and present the measured dielectric properties of the 3-D-printed plastic over the frequency range 0.5–3.5 GHz. We also provide an example of a suitable liquid for filling the fibroglandular voids in the plastic. PMID:25132808

  13. MRI-Derived 3-D-Printed Breast Phantom for Microwave Breast Imaging Validation.

    PubMed

    Burfeindt, Matthew J; Colgan, Timothy J; Mays, R Owen; Shea, Jacob D; Behdad, Nader; Van Veen, Barry D; Hagness, Susan C

    2012-01-01

    We propose a 3-D-printed breast phantom for use in preclinical experimental microwave imaging studies. The phantom is derived from an MRI of a human subject; thus, it is anthropomorphic, and its interior is very similar to an actual distribution of fibroglandular tissues. Adipose tissue in the breast is represented by the solid plastic (printed) regions of the phantom, while fibroglandular tissue is represented by liquid-filled voids in the plastic. The liquid is chosen to provide a biologically relevant dielectric contrast with the printed plastic. Such a phantom enables validation of microwave imaging techniques. We describe the procedure for generating the 3-D-printed breast phantom and present the measured dielectric properties of the 3-D-printed plastic over the frequency range 0.5-3.5 GHz. We also provide an example of a suitable liquid for filling the fibroglandular voids in the plastic.

  14. Improving PET imaging for breast cancer using Virtual Pinhole PET half ring insert

    PubMed Central

    Mathews, Aswin John; Komarov, Sergey; Wu, Heyu; O’Sullivan, Joseph A.; Tai, Yuan-Chuan

    2013-01-01

    A PET insert with detector having smaller crystals and placed near a region of interest in a conventional PET scanner can improve image resolution locally due to the Virtual-Pinhole PET (VP-PET) effect. This improvement is from the higher spatial sampling of the imaging area near the detector. We have built a prototype half-ring PET insert for head-and-neck cancer imaging applications. In this paper, we extend the use of the insert to breast imaging and show that such a system provides high resolution images of breast and axillary lymph nodes while maintaining the full imaging field of view capability of a clinical PET scanner. We characterize the resolution and contrast recovery for tumors across the imaging field of view. First, we model the system using Monte Carlo methods to determine its theoretical limit of improvement. Simulations were conducted with hot spherical tumors embedded in background activity at tumor-to-background contrast ranging from 3:1 to 12:1. Tumors are arranged in a Derenzo-like pattern with their diameters ranging from 2 to 12 mm. Experimental studies were performed using a chest phantom with cylindrical breast attachment. Tumors of different sizes arranged in a Derenzo-like pattern with tumor-to- background ratio of 6:1 are inserted into the breast phantom. Imaging capability of mediastinum and axillary lymph nodes is explored. Both Monte Carlo simulations and experiment show clear improvement in image resolution and contrast recovery with VP-PET half ring insert. The degree of improvement in resolution and contrast recovery depends on location of the tumor. The full field of view imaging capability is shown to be maintained. Minor artifacts are introduced in certain regions. PMID:23999026

  15. Example-based segmentation for breast mass images

    NASA Astrophysics Data System (ADS)

    Huang, Qingying; Xu, Songhua; Luo, Xiaonan

    2013-03-01

    A new example-based mass segmentation algorithm is proposed for breast mass images. The training examples used in the new algorithm are prepared by three medical imaging professionals who manually outlined mass contours of 45 sample breast mass images. These manually segmented mass images are then partitioned into small regular grid cells, which are used as reference samples by the algorithm. Each time when the algorithm is applied to segment a previously unseen breast mass image, it first detects grid cell regions in the image that likely overlap with the underlying mass region. Upon identifying such candidate regions, the algorithm then locates the exact mass contour through an example based segmentation procedure where the algorithm retrieves, transfers, and re-applies the human expert knowledge regarding mass segmentation as encoded in the reference samples. The key advantage of our approach lies in its adaptability in tailoring to the skills and preferences of multiple experts through simply switching to a different corpus of human segmentation samples. To explore the effectiveness of the new approach, we comparatively evaluated the accuracy of the algorithm for mass segmentation against segmentation results both manually produced by several medical imaging professionals and automatically by a state-of-the-art level set based method. The comparison results demonstrate that the new algorithm achieves a higher accuracy than the level set based peer method with statistical significance.2

  16. Medical imaging systems

    DOEpatents

    Frangioni, John V

    2013-06-25

    A medical imaging system provides simultaneous rendering of visible light and diagnostic or functional images. The system may be portable, and may include adapters for connecting various light sources and cameras in open surgical environments or laparascopic or endoscopic environments. A user interface provides control over the functionality of the integrated imaging system. In one embodiment, the system provides a tool for surgical pathology.

  17. Heterogeneous Breast Phantom Development for Microwave Imaging Using Regression Models

    PubMed Central

    Hahn, Camerin; Noghanian, Sima

    2012-01-01

    As new algorithms for microwave imaging emerge, it is important to have standard accurate benchmarking tests. Currently, most researchers use homogeneous phantoms for testing new algorithms. These simple structures lack the heterogeneity of the dielectric properties of human tissue and are inadequate for testing these algorithms for medical imaging. To adequately test breast microwave imaging algorithms, the phantom has to resemble different breast tissues physically and in terms of dielectric properties. We propose a systematic approach in designing phantoms that not only have dielectric properties close to breast tissues but also can be easily shaped to realistic physical models. The approach is based on regression model to match phantom's dielectric properties with the breast tissue dielectric properties found in Lazebnik et al. (2007). However, the methodology proposed here can be used to create phantoms for any tissue type as long as ex vivo, in vitro, or in vivo tissue dielectric properties are measured and available. Therefore, using this method, accurate benchmarking phantoms for testing emerging microwave imaging algorithms can be developed. PMID:22550473

  18. EPR Assembly of Microgel for FRET Imaging of Breast Cancer

    DTIC Science & Technology

    2008-04-01

    AD_________________ Award Number: W81XWH-05-1-0342 TITLE: EPR Assembly of Microgel for FRET...4. TITLE AND SUBTITLE EPR Assembly of Microgel for FRET Imaging of Breast Cancer 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-05-1-0342 5c

  19. Image-detected 'probably benign' breast lesions: a significant reason for referral from primary care.

    PubMed

    Brennan, M E; Houssami, N

    2006-10-01

    In Australia, and many health care provider systems, primary care physicians are the first to see women with breast symptoms and are responsible for making decisions on whether to investigate and when to refer to specialist teams. We present an audit of new patient referrals from primary care triaged to a 'low-risk' (low likelihood of cancer) clinic on the basis of benign findings. The most common reason for referral was 'breast lump' (38%) followed by 'image-detected' abnormality (26%.) We have identified that (outside of population screening services) many women are being referred from primary care to specialist clinics for management of screen-detected lesions considered benign on imaging. Further research is needed to identify the reasons for such referrals and to develop appropriate educational strategies and clinical policy, both for the primary care and the specialist breast practitioner.

  20. Quantitative phase imaging of Breast cancer cell based on SLIM

    NASA Astrophysics Data System (ADS)

    Wu, Huaqin; Li, Zhifang; Li, Hui; Wu, Shulian

    2016-02-01

    We illustrated a novel optical microscopy technique to observe cell dynamics via spatial light interference microscopy (SLIM). SLIM combines Zemike's phase contrast microscopy and Gabor's holography. When the light passes through the transparent specimens, it could render high contrast intensity and record the phase information from the object. We reconstructed the Breast cancer cell phase image by SLIM and the reconstruction algorithm. Our investigation showed that SLIM has the ability to achieve the quantitative phase imaging (QPI).

  1. EPR Assembly of Microgel for FRET Imaging of Breast Cancer

    DTIC Science & Technology

    2006-04-01

    W81XWH-05-1-0342 TITLE: EPR Assembly for Microgel for FRET Imaging of Breast Cancer PRINCIPAL INVESTIGATOR: Stanley Stein, Ph.D...Annual 3. DATES COVERED (From - To) 1 Apr 05 – 31 Mar 06 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER EPR Assembly of Microgel for FRET Imaging...administered. This second conjugate will chemoselectively interact with the first conjugate to form insoluble microgels only in tumors. Alternating

  2. Harmonic Motion Microwave Doppler Imaging method for breast tumor detection.

    PubMed

    Top, Can Barıs; Tafreshi, Azadeh Kamali; Gençer, Nevzat G

    2014-01-01

    Harmonic Motion Microwave Doppler Imaging (HMMDI) method is recently proposed as a non-invasive hybrid breast imaging technique for tumor detection. The acquired data depend on acoustic, elastic and electromagnetic properties of the tissue. The potential of the method is analyzed with simulation studies and phantom experiments. In this paper, the results of these studies are summarized. It is shown that HMMDI method has a potential to detect malignancies inside fibro-glandular tissue.

  3. Automated breast imaging-reporting and data system (BI-RADS) category 3 follow-up application: improving patient care and compliance

    NASA Astrophysics Data System (ADS)

    Kandula, Praveena; Cook, T. S.; Boonn, W. W.; Kim, W.

    2011-03-01

    With the current emphasis on healthcare reform and cost effectiveness, methods to increase healthcare efficiency while improving outcomes are paramount. With reference to breast cancer, delay in diagnosis can cause significant morbidity and mortality, as well as increased long term health care costs. Assessment with short interval mammographic follow-up of BI-RADS category 3 lesions has been shown to increase detection of a small number of breast cancers at an early stage. Because of the importance of timely follow-up for these patients, we propose a novel computer application that identifies patients due for short-term mammographic follow-up, thus reducing costly hours spent by personnel, reducing human error, and improving patient compliance. Our web-based application mines radiology reports and scheduling information to generate lists of patients due for short-term mammographic follow-up of BI-RADS category 3 results. The results can be placed in a worklist that can be used by a staff member to contact patients to schedule follow-up appointments. Additional analytic features of the application can identify referral characteristics that may serve as potential sources for improvement of patient follow-up. We believe that an automated system can be designed to improve patient care and compliance with follow-up of BI-RADS category 3 results.

  4. Evaluation of flat panel detector cone beam CT breast imaging with different sizes of breast phantoms

    NASA Astrophysics Data System (ADS)

    Ning, Ruola; Conover, David; Lu, Xianghua; Zhang, Yan; Yu, Yong; Schiffhauer, Linda; Cullinan, Jeanne

    2005-04-01

    The sensitivity to detect small breast cancers and the specificity of conventional mammography (CM) remain limited owing to an overlap in the appearances of lesions and surrounding structure. We propose to address the limitations accompanying CM using flat panel detector (FPD)-based cone beam CT breast imaging (CBCTBI). The purpose of the study is to determine optimal x-ray operation ranges for different sizes of normal breasts and corresponding glandular dose levels. The current CBCT prototype consists of a modified GE HighSpeed Advantage CT gantry, an x-ray tube, a Varian PaxScan 4030CB FPD, a CT table and a PC. Two uncompressed breast phantoms, with the diameters of 10.8 and 13.8 cm, consist of three inserts: a layer of silicone jell simulating a background structure, a lucite plate on which five simulated carcinomas are mounted, and a plate on which six calcifications are attached. With a single scan, 300 projections were acquired for all phantom scans. The optimal x-ray techniques for different phantom sizes were determined. The total mean glandular doses for different size phantoms were measured using a CT pencil ionization chamber. With the optimal x-ray techniques that result in the maximal dose efficiency for the different tissue thickness, the image quality with two different phantoms was evaluated. The results demonstrate that the CBCTBI can detect a few millimeter-size simulated carcinoma and ~ 0.2 mm calcification with clinically acceptable mean glandular doses for different size breasts.

  5. An infrared image based methodology for breast lesions screening

    NASA Astrophysics Data System (ADS)

    Morais, K. C. C.; Vargas, J. V. C.; Reisemberger, G. G.; Freitas, F. N. P.; Oliari, S. H.; Brioschi, M. L.; Louveira, M. H.; Spautz, C.; Dias, F. G.; Gasperin, P.; Budel, V. M.; Cordeiro, R. A. G.; Schittini, A. P. P.; Neto, C. D.

    2016-05-01

    The objective of this paper is to evaluate the potential of utilizing a structured methodology for breast lesions screening, based on infrared imaging temperature measurements of a healthy control group to establish expected normality ranges, and of breast cancer patients, previously diagnosed through biopsies of the affected regions. An analysis of the systematic error of the infrared camera skin temperature measurements was conducted in several different regions of the body, by direct comparison to high precision thermistor temperature measurements, showing that infrared camera temperatures are consistently around 2 °C above the thermistor temperatures. Therefore, a method of conjugated gradients is proposed to eliminate the infrared camera direct temperature measurement imprecision, by calculating the temperature difference between two points to cancel out the error. The method takes into account the human body approximate bilateral symmetry, and compares measured dimensionless temperature difference values (Δ θ bar) between two symmetric regions of the patient's breast, that takes into account the breast region, the surrounding ambient and the individual core temperatures, and doing so, the results interpretation for different individuals become simple and non subjective. The range of normal whole breast average dimensionless temperature differences for 101 healthy individuals was determined, and admitting that the breasts temperatures exhibit a unimodal normal distribution, the healthy normal range for each region was considered to be the dimensionless temperature difference plus/minus twice the standard deviation of the measurements, Δ θ bar ‾ + 2σ Δ θ bar ‾ , in order to represent 95% of the population. Forty-seven patients with previously diagnosed breast cancer through biopsies were examined with the method, which was capable of detecting breast abnormalities in 45 cases (96%). Therefore, the conjugated gradients method was considered effective

  6. Comparative Study of Breast Normal and Cancer Cells Using Coherent Anti-Stokes Raman Scattering Microspectroscopy Imaging

    NASA Astrophysics Data System (ADS)

    Lee, Jang Hyuk; Cho, Eun Hee; Shin, Sang-Mo; Oh, Myoung-kyu; Ko, Do-Kyeong

    2012-08-01

    A coherent anti-Stokes Raman scattering (CARS) microspectroscopy imaging system was developed using a femtosecond laser and a photonic crystal fiber (PCF). We separated resonant and non-resonant CARS signals in the time domain by the chirp of the PCF, and applied this system to compare live human breast normal and cancer cells. The CARS image and spectrum at C-H stretch vibration in lipid droplets could subsequently be used to differentiate cancer cells from normal cells, thereby confirming the potential of the CARS microspectroscopy imaging system as a diagnostic tool that allows the high-sensitivity, high-resolution, and fast detection of breast cancer.

  7. Ultrasound Imaging System Video

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In this video, astronaut Peggy Whitson uses the Human Research Facility (HRF) Ultrasound Imaging System in the Destiny Laboratory of the International Space Station (ISS) to image her own heart. The Ultrasound Imaging System provides three-dimension image enlargement of the heart and other organs, muscles, and blood vessels. It is capable of high resolution imaging in a wide range of applications, both research and diagnostic, such as Echocardiography (ultrasound of the heart), abdominal, vascular, gynecological, muscle, tendon, and transcranial ultrasound.

  8. Digital breast tomosynthesis: Dose and image quality assessment.

    PubMed

    Maldera, A; De Marco, P; Colombo, P E; Origgi, D; Torresin, A

    2017-01-01

    The aim of this work was to evaluate how different acquisition geometries and reconstruction parameters affect the performance of four digital breast tomosynthesis (DBT) systems (Senographe Essential - GE, Mammomat Inspiration - Siemens, Selenia Dimensions - Hologic and Amulet Innovality - Fujifilm) on the basis of a physical characterization. Average Glandular Dose (AGD) and image quality parameters such as in-plane/in-depth resolution, signal difference to noise ratio (SDNR) and artefact spread function (ASF) were examined. Measured AGD values resulted below EUREF limits for 2D imaging. A large variability was recorded among the investigated systems: the mean dose ratio DBT/2D ranged between 1.1 and 1.9. In-plane resolution was in the range: 2.2mm(-1)-3.8mm(-1) in chest wall-nipple direction. A worse resolution was found for all devices in tube travel direction. In-depth resolution improved with increasing scan angle but was also affected by the choice of reconstruction and post-processing algorithms. The highest z-resolution was provided by Siemens (50°, FWHM=2.3mm) followed by GE (25°, FWHM=2.8mm), while the Fujifilm HR showed the lowest one, despite its wide scan angle (40°, FWHM=4.1mm). The ASF was dependent on scan angle: smaller range systems showed wider ASF curves; however a clear relationship was not found between scan angle and ASF, due to the different post processing and reconstruction algorithms. SDNR analysis, performed on Fujifilm system, demonstrated that pixel binning improves detectability for a fixed dose/projection. In conclusion, we provide a performance comparison among four DBT systems under a clinical acquisition mode.

  9. Towards breast tomography with synchrotron radiation at Elettra: first images

    NASA Astrophysics Data System (ADS)

    Longo, R.; Arfelli, F.; Bellazzini, R.; Bottigli, U.; Brez, A.; Brun, F.; Brunetti, A.; Delogu, P.; Di Lillo, F.; Dreossi, D.; Fanti, V.; Fedon, C.; Golosio, B.; Lanconelli, N.; Mettivier, G.; Minuti, M.; Oliva, P.; Pinchera, M.; Rigon, L.; Russo, P.; Sarno, A.; Spandre, G.; Tromba, G.; Zanconati, F.

    2016-02-01

    The aim of the SYRMA-CT collaboration is to set-up the first clinical trial of phase-contrast breast CT with synchrotron radiation (SR). In order to combine high image quality and low delivered dose a number of innovative elements are merged: a CdTe single photon counting detector, state-of-the-art CT reconstruction and phase retrieval algorithms. To facilitate an accurate exam optimization, a Monte Carlo model was developed for dose calculation using GEANT4. In this study, high isotropic spatial resolution (120 μm)3 CT scans of objects with dimensions and attenuation similar to a human breast were acquired, delivering mean glandular doses in the range of those delivered in clinical breast CT (5-25 mGy). Due to the spatial coherence of the SR beam and the long distance between sample and detector, the images contain, not only absorption, but also phase information from the samples. The application of a phase-retrieval procedure increases the contrast-to-noise ratio of the tomographic images, while the contrast remains almost constant. After applying the simultaneous algebraic reconstruction technique to low-dose phase-retrieved data sets (about 5 mGy) with a reduced number of projections, the spatial resolution was found to be equal to filtered back projection utilizing a four fold higher dose, while the contrast-to-noise ratio was reduced by 30%. These first results indicate the feasibility of clinical breast CT with SR.

  10. Towards breast tomography with synchrotron radiation at Elettra: first images.

    PubMed

    Longo, R; Arfelli, F; Bellazzini, R; Bottigli, U; Brez, A; Brun, F; Brunetti, A; Delogu, P; Di Lillo, F; Dreossi, D; Fanti, V; Fedon, C; Golosio, B; Lanconelli, N; Mettivier, G; Minuti, M; Oliva, P; Pinchera, M; Rigon, L; Russo, P; Sarno, A; Spandre, G; Tromba, G; Zanconati, F

    2016-02-21

    The aim of the SYRMA-CT collaboration is to set-up the first clinical trial of phase-contrast breast CT with synchrotron radiation (SR). In order to combine high image quality and low delivered dose a number of innovative elements are merged: a CdTe single photon counting detector, state-of-the-art CT reconstruction and phase retrieval algorithms. To facilitate an accurate exam optimization, a Monte Carlo model was developed for dose calculation using GEANT4. In this study, high isotropic spatial resolution (120 μm)(3) CT scans of objects with dimensions and attenuation similar to a human breast were acquired, delivering mean glandular doses in the range of those delivered in clinical breast CT (5-25 mGy). Due to the spatial coherence of the SR beam and the long distance between sample and detector, the images contain, not only absorption, but also phase information from the samples. The application of a phase-retrieval procedure increases the contrast-to-noise ratio of the tomographic images, while the contrast remains almost constant. After applying the simultaneous algebraic reconstruction technique to low-dose phase-retrieved data sets (about 5 mGy) with a reduced number of projections, the spatial resolution was found to be equal to filtered back projection utilizing a four fold higher dose, while the contrast-to-noise ratio was reduced by 30%. These first results indicate the feasibility of clinical breast CT with SR.

  11. Infrared microspectroscopic imaging of benign breast tumor tissue sections

    NASA Astrophysics Data System (ADS)

    Fabian, H.; Lasch, P.; Boese, M.; Haensch, W.

    2003-12-01

    We have applied infrared microspectroscopic imaging for the examination of benign breast tumor tissue sections. The IR spectra of the sections were obtained by classical point microscopy with a movable stage and via a microscope equipped with a focal plane array detector. The infrared microscopic data were analysed using functional group mapping techniques and cluster analysis. The output values of the two procedures were reassembled into infrared images of the tissues, and were compared with standard staining images of the corresponding tissue region. The comparative examination of identical tissue sections by the two IR approaches enabled us to assess potential problems associated with tissue microheterogeneity. It was found that in case of fibroadenoma, a benign lesion located in breast ducts, point microscopy with a spot size of ˜30 μm is a useful practical approach which minimizes the possibility of 'contamination' of the spectra because of spectral averaging of all tissue components present in the corresponding microareas. A comparison of the spectra of the benign breast tumor with those of a malignant ductal carcinoma in situ revealed that IR microspectroscopy has the potential to differentiate between these two breast tumor types.

  12. Cone-beam CT breast imaging with a flat panel detector: a simulation study

    NASA Astrophysics Data System (ADS)

    Chen, Lingyun; Shaw, Chris C.; Tu, Shu-Ju; Altunbas, Mustafa C.; Wang, Tianpeng; Lai, Chao-Jen; Liu, Xinming; Kappadath, S. C.

    2005-04-01

    This paper investigates the feasibility of using a flat panel based cone-beam computer tomography (CT) system for 3-D breast imaging with computer simulation and imaging experiments. In our simulation study, 3-D phantoms were analytically modeled to simulate a breast loosely compressed into cylindrical shape with embedded soft tissue masses and calcifications. Attenuation coefficients were estimated to represent various types of breast tissue, soft tissue masses and calcifications to generate realistic image signal and contrast. Projection images were computed to incorporate x-ray attenuation, geometric magnification, x-ray detection, detector blurring, image pixelization and digitization. Based on the two-views mammography comparable dose level on the central axis of the phantom (also the rotation axis), x-ray kVp/filtration, transmittance through the phantom, detected quantum efficiency (DQE), exposure level, and imaging geometry, the photon fluence was estimated and used to estimate the phantom noise level on a pixel-by-pixel basis. This estimated noise level was then used with the random number generator to produce and add a fluctuation component to the noiseless transmitted image signal. The noise carrying projection images were then convolved with a Gaussian-like kernel, computed from measured 1-D line spread function (LSF) to simulated detector blurring. Additional 2-D Gaussian-like kernel is designed to suppress the noise fluctuation that inherently originates from projection images so that the reconstructed image detectability of low contrast masses phantom can be improved. Image reconstruction was performed using the Feldkamp algorithm. All simulations were performed on a 24 PC (2.4 GHz Dual-Xeon CPU) cluster with MPI parallel programming. With 600 mrads mean glandular dose (MGD) at the phantom center, soft tissue masses as small as 1 mm in diameter can be detected in a 10 cm diameter 50% glandular 50% adipose or fatter breast tissue, and 2 mm or larger

  13. Automated analysis of image mammogram for breast cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Nurhasanah, Sampurno, Joko; Faryuni, Irfana Diah; Ivansyah, Okto

    2016-03-01

    Medical imaging help doctors in diagnosing and detecting diseases that attack the inside of the body without surgery. Mammogram image is a medical image of the inner breast imaging. Diagnosis of breast cancer needs to be done in detail and as soon as possible for determination of next medical treatment. The aim of this work is to increase the objectivity of clinical diagnostic by using fractal analysis. This study applies fractal method based on 2D Fourier analysis to determine the density of normal and abnormal and applying the segmentation technique based on K-Means clustering algorithm to image abnormal for determine the boundary of the organ and calculate the area of organ segmentation results. The results show fractal method based on 2D Fourier analysis can be used to distinguish between the normal and abnormal breast and segmentation techniques with K-Means Clustering algorithm is able to generate the boundaries of normal and abnormal tissue organs, so area of the abnormal tissue can be determined.

  14. Iodine contrast cone beam CT imaging of breast cancer

    NASA Astrophysics Data System (ADS)

    Partain, Larry; Prionas, Stavros; Seppi, Edward; Virshup, Gary; Roos, Gerhard; Sutherland, Robert; Boone, John

    2007-03-01

    An iodine contrast agent, in conjunction with an X-ray cone beam CT imaging system, was used to clearly image three, biopsy verified, cancer lesions in two patients. The lesions were approximately in the 10 mm to 6 mm diameter range. Additional regions were also enhanced with approximate dimensions down to 1 mm or less in diameter. A flat panel detector, with 194 μm pixels in 2 x 2 binning mode, was used to obtain 500 projection images at 30 fps with an 80 kVp X-ray system operating at 112 mAs, for an 8-9 mGy dose - equivalent to two view mammography for these women. The patients were positioned prone, while the gantry rotated in the horizontal plane around the uncompressed, pendant breasts. This gantry rotated 360 degrees during the patient's 16.6 sec breath hold. A volume of 100 cc of 320 mg/ml iodine-contrast was power injected at 4 cc/sec, via catheter into the arm vein of the patient. The resulting 512 x 512 x 300 cone beam CT data set of Feldkamp reconstructed ~(0.3 mm) 3 voxels were analyzed. An interval of voxel contrast values, characteristic of the regions with iodine contrast enhancement, were used with surface rendering to clearly identify up to a total of 13 highlighted volumes. This included the three largest lesions, that were previously biopsied and confirmed to be malignant. The other ten highlighted regions, of smaller diameters, are likely areas of increased contrast trapping unrelated to cancer angiogenesis. However the technique itself is capable of resolving lesions that small.

  15. Innovative biomagnetic imaging sensors for breast cancer: A model-based study

    SciTech Connect

    Deng, Y.; Golkowski, M.

    2012-04-01

    Breast cancer is a serious potential health problem for all women and is the second leading cause of cancer deaths in the United States. The current screening procedures and imaging techniques, including x-ray mammography, clinical biopsy, ultrasound imaging, and magnetic resonance imaging, provide only 73% accuracy in detecting breast cancer. This gives the impetus to explore alternate techniques for imaging the breast and detecting early stage tumors. Among the complementary methods, the noninvasive biomagnetic breast imaging is attractive and promising, because both ionizing radiation and breast compressions that the prevalent x-ray mammography suffers from are avoided. It furthermore offers very high contrast because of the significant electromagnetic properties' differences between the cancerous, benign, and normal breast tissues. In this paper, a hybrid and accurate modeling tool for biomagnetic breast imaging is developed, which couples the electromagnetic and ultrasonic energies, and initial validations between the model predication and experimental findings are conducted.

  16. Breast cancer imaging and tomography using a hand-held optical imager

    NASA Astrophysics Data System (ADS)

    Erickson, Sarah J.; Roman, Manuela; Gonzalez, Jean; Kiszonas, Richard; Lopez-Penalver, Cristina; Godavarty, Anuradha

    2012-03-01

    Hand-held optical imaging devices are currently developed by several research groups as a noninvasive and non-ionizing method towards clinical imaging of breast cancer. The devices developed to date are typically utilized towards spectroscopic imaging via reflectance-based measurements. Additionally, a couple of devices have been used to perform 3D tomography with the addition of a second modality (e.g. ultrasound). A hand-held optical device that is unique in its ability to perform rapid 2D imaging and 3D tomography (without the use of a second modality) has been developed in our Optical Imaging laboratory. Herein, diffuse optical imaging studies are performed in breast cancer subjects. For these studies, the subject lay in a recliner chair and both breast tissues were imaged with the hand-held optical device which uses 785 nm laser source and an intensified CCD camera-based detector. Preliminary results demonstrate the ability to image invasive ductal carcinoma and lymphatic spread, as compared to the patient's medical records (e.g. xray, ultrasound, MRI). Multiple imaging studies with a subject undergoing chemotherapy demonstrated the potential to monitor response to treatment. Currently, studies are carried out to tomographically determine the 3D location of the tumor(s) in breast cancer subjects using the hand-held optical device.

  17. Breast image feature learning with adaptive deconvolutional networks

    NASA Astrophysics Data System (ADS)

    Jamieson, Andrew R.; Drukker, Karen; Giger, Maryellen L.

    2012-03-01

    Feature extraction is a critical component of medical image analysis. Many computer-aided diagnosis approaches employ hand-designed, heuristic lesion extracted features. An alternative approach is to learn features directly from images. In this preliminary study, we explored the use of Adaptive Deconvolutional Networks (ADN) for learning high-level features in diagnostic breast mass lesion images with potential application to computer-aided diagnosis (CADx) and content-based image retrieval (CBIR). ADNs (Zeiler, et. al., 2011), are recently-proposed unsupervised, generative hierarchical models that decompose images via convolution sparse coding and max pooling. We trained the ADNs to learn multiple layers of representation for two breast image data sets on two different modalities (739 full field digital mammography (FFDM) and 2393 ultrasound images). Feature map calculations were accelerated by use of GPUs. Following Zeiler et. al., we applied the Spatial Pyramid Matching (SPM) kernel (Lazebnik, et. al., 2006) on the inferred feature maps and combined this with a linear support vector machine (SVM) classifier for the task of binary classification between cancer and non-cancer breast mass lesions. Non-linear, local structure preserving dimension reduction, Elastic Embedding (Carreira-Perpiñán, 2010), was then used to visualize the SPM kernel output in 2D and qualitatively inspect image relationships learned. Performance was found to be competitive with current CADx schemes that use human-designed features, e.g., achieving a 0.632+ bootstrap AUC (by case) of 0.83 [0.78, 0.89] for an ultrasound image set (1125 cases).

  18. In vivo quantitative imaging of normal and cancerous breast tissue using broadband diffuse optical tomography

    PubMed Central

    Wang, Jia; Jiang, Shudong; Li, Zhongze; diFlorio-Alexander, Roberta M.; Barth, Richard J.; Kaufman, Peter A.; Pogue, Brian W.; Paulsen, Keith D.

    2010-01-01

    Purpose: A NIR tomography system that combines frequency domain (FD) and continuous wave (CW) measurements was used to image normal and malignant breast tissues. Methods: FD acquisitions were confined to wavelengths less than 850 nm because of detector limitations, whereas light from longer wavelengths (up to 948 nm) was measured in CW mode with CCD-coupled spectrometer detection. The two data sets were combined and processed in a single spectrally constrained reconstruction to map concentrations of hemoglobin, water, and lipid, as well as scattering parameters in the breast. Results: Chromophore concentrations were imaged in the breasts of nine asymptomatic volunteers to evaluate their intrasubject and intersubject variability. Normal subject data showed physiologically expected trends. Images from three cancer patients indicate that the added CW data is critical to recovering the expected increases in water and decreases in lipid content within malignancies. Contrasts of 1.5 to twofold in hemoglobin and water values were found in cancers. Conclusions:In vivo breast imaging with instrumentation that combines FD and CW NIR data acquisition in a single spectral reconstruction produces more accurate hemoglobin, water, and lipid results relative to FD data alone. PMID:20831079

  19. Method and application for imaging breast cancer using a contrast agent

    NASA Astrophysics Data System (ADS)

    Huang, Ping; Intes, Xavier; Nioka, Shoko; Kitai, Toshiyuki; Chance, Britton

    2002-04-01

    Diffuse Optical Tomography (DOT) in the Near Infrared Spectral window (NIR) offers new possibilities for medical imaging. And using DOT, Indocyanine green (ICG) is found to be a useful blood pooling contrast agent for optical tumor detection. Here we introduce our efforts on study of breast cancer image reconstruction using ICG as a contrast agent. To improve the signal-to-noise ratio, we developed an effective method to analyze and process the raw data acquired from a CWS (Continuous Wave Spectroscopy) system. Differential absorption images of breast cancers are reconstructed by using ART (Algebraic Reconstruction Technique) which uses the diffusion equation within the Rytov approximation. The experiment device is a combination of sixteen light sources (tungsten bulb) and sixteen light detectors (silicon photodiodes). These sources and detectors are located on a circular holder where the human breasts are placed, each other at equal distance (11 angle apart). It takes a few seconds to acquire data since one source is on, while all the detectors simultaneously detect the photons. So an image includes 16*16 data points. Results from clinical trial in Japan and China show that there is a high concentration of ICG in the location of a cancer, suggesting high blood volume pooling and the usefulness of ICG detecting optically breast cancers.

  20. Real-time 3D surface-image-guided beam setup in radiotherapy of breast cancer

    SciTech Connect

    Djajaputra, David; Li Shidong

    2005-01-01

    We describe an approach for external beam radiotherapy of breast cancer that utilizes the three-dimensional (3D) surface information of the breast. The surface data of the breast are obtained from a 3D optical camera that is rigidly mounted on the ceiling of the treatment vault. This 3D camera utilizes light in the visible range therefore it introduces no ionization radiation to the patient. In addition to the surface topographical information of the treated area, the camera also captures gray-scale information that is overlaid on the 3D surface image. This allows us to visualize the skin markers and automatically determine the isocenter position and the beam angles in the breast tangential fields. The field sizes and shapes of the tangential, supraclavicular, and internal mammary gland fields can all be determined according to the 3D surface image of the target. A least-squares method is first introduced for the tangential-field setup that is useful for compensation of the target shape changes. The entire process of capturing the 3D surface data and subsequent calculation of beam parameters typically requires less than 1 min. Our tests on phantom experiments and patient images have achieved the accuracy of 1 mm in shift and 0.5 deg. in rotation. Importantly, the target shape and position changes in each treatment session can both be corrected through this real-time image-guided system.

  1. Coherent optical imaging and guided interventions in breast cancer: translating technology into clinical applications

    NASA Astrophysics Data System (ADS)

    Boppart, Stephen A.; Nguyen, Freddy T.; Zysk, Adam M.; Chaney, Eric J.; Kotynek, Jan G.; Oliphant, Uretz J.; Bellafiore, Frank J.; Rowland, Kendrith M.; Johnson, Patricia A.

    2008-04-01

    Breast cancer continues to be one of the most widely diagnosed forms of cancer in women and the second leading type of cancer deaths for women. The metastatic spread and staging of breast cancer is typically evaluated through the nodal assessment of the regional lymphatic system, and often this is performed during the surgical resection of the tumor mass. The recurrence rate of breast cancer is highly dependent on several factors including the complete removal of the primary tumor during surgery, and the presence of cancer cells in involved lymph nodes. Hence, developing means to more accurately resect tumor cells, along with the tumor mass, and ensure negative surgical margins, offers the potential to impact outcomes of breast cancer. The use of diffuse optical tomography has been applied for screening optical mammography applications as an alternative to standard x-ray mammography. The use of coherence ranging and coherent optical imaging in breast tissue has also found numerous applications, including intra-operative assessment of tumor margin status during lumpectomy procedures, assessment of lymph node changes for staging metastatic spread, and for guiding needle-biopsy procedures. The development, pre-clinical testing, and translation of techniques such as low-coherence interferometry (LCI) and optical coherence tomography (OCT) into clinical applications in breast cancer is demonstrated in these feasibility studies.

  2. 21 CFR 866.5170 - Breast milk immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... milk immunological test system. (a) Identification. A breast milk immunological test system is a device that consists of the reagents used to measure by immunochemical techniques the breast milk proteins. (b... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breast milk immunological test system....

  3. 21 CFR 866.5170 - Breast milk immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... milk immunological test system. (a) Identification. A breast milk immunological test system is a device that consists of the reagents used to measure by immunochemical techniques the breast milk proteins. (b... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Breast milk immunological test system....

  4. 21 CFR 866.5170 - Breast milk immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... milk immunological test system. (a) Identification. A breast milk immunological test system is a device that consists of the reagents used to measure by immunochemical techniques the breast milk proteins. (b... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Breast milk immunological test system....

  5. 21 CFR 866.5170 - Breast milk immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... milk immunological test system. (a) Identification. A breast milk immunological test system is a device that consists of the reagents used to measure by immunochemical techniques the breast milk proteins. (b... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Breast milk immunological test system....

  6. 21 CFR 866.5170 - Breast milk immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... milk immunological test system. (a) Identification. A breast milk immunological test system is a device that consists of the reagents used to measure by immunochemical techniques the breast milk proteins. (b... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Breast milk immunological test system....

  7. Objective breast symmetry evaluation using 3-D surface imaging.

    PubMed

    Eder, Maximilian; Waldenfels, Fee V; Swobodnik, Alexandra; Klöppel, Markus; Pape, Ann-Kathrin; Schuster, Tibor; Raith, Stefan; Kitzler, Elena; Papadopulos, Nikolaos A; Machens, Hans-Günther; Kovacs, Laszlo

    2012-04-01

    This study develops an objective breast symmetry evaluation using 3-D surface imaging (Konica-Minolta V910(®) scanner) by superimposing the mirrored left breast over the right and objectively determining the mean 3-D contour difference between the 2 breast surfaces. 3 observers analyzed the evaluation protocol precision using 2 dummy models (n = 60), 10 test subjects (n = 300), clinically tested it on 30 patients (n = 900) and compared it to established 2-D measurements on 23 breast reconstructive patients using the BCCT.core software (n = 690). Mean 3-D evaluation precision, expressed as the coefficient of variation (VC), was 3.54 ± 0.18 for all human subjects without significant intra- and inter-observer differences (p > 0.05). The 3-D breast symmetry evaluation is observer independent, significantly more precise (p < 0.001) than the BCCT.core software (VC = 6.92 ± 0.88) and may play a part in an objective surgical outcome analysis after incorporation into clinical practice.

  8. Quantitative Microwave Imaging of Realistic Numerical Breast Phantoms Using an Enclosed Array of Multiband, Miniaturized Patch Antennas

    PubMed Central

    Burfeindt, Matthew J.; Behdad, Nader; Van Veen, Barry D.; Hagness, Susan C.

    2014-01-01

    We present a 3-D microwave breast imaging study in which we reconstruct the dielectric profiles of MRI-derived numerical breast phantoms from simulated array measurements using an enclosed array of multiband, miniaturized patch antennas. The array is designed to overcome challenges relating to the ill-posed nature of the inverse scattering system. We use a multifrequency formulation of the distorted Born iterative method to image four normal-tissue breast phantoms, each corresponding to a different density class. The reconstructed fibroglandular distributions are very faithful to the true distributions in location and basic shape. These results establish the feasibility of using an enclosed array of miniaturized, multiband patch antennas for quantitative microwave breast imaging. PMID:25419189

  9. Quantitative Microwave Imaging of Realistic Numerical Breast Phantoms Using an Enclosed Array of Multiband, Miniaturized Patch Antennas.

    PubMed

    Burfeindt, Matthew J; Behdad, Nader; Van Veen, Barry D; Hagness, Susan C

    2012-01-01

    We present a 3-D microwave breast imaging study in which we reconstruct the dielectric profiles of MRI-derived numerical breast phantoms from simulated array measurements using an enclosed array of multiband, miniaturized patch antennas. The array is designed to overcome challenges relating to the ill-posed nature of the inverse scattering system. We use a multifrequency formulation of the distorted Born iterative method to image four normal-tissue breast phantoms, each corresponding to a different density class. The reconstructed fibroglandular distributions are very faithful to the true distributions in location and basic shape. These results establish the feasibility of using an enclosed array of miniaturized, multiband patch antennas for quantitative microwave breast imaging.

  10. Aerial Image Systems

    NASA Astrophysics Data System (ADS)

    Clapp, Robert E.

    1987-09-01

    Aerial images produce the best stereoscopic images of the viewed world. Despite the fact that every optic in existence produces an aerial image, few persons are aware of their existence and possible uses. Constant reference to the eye and other optical systems have produced a psychosis of design that only considers "focal planes" in the design and analysis of optical systems. All objects in the field of view of the optical device are imaged by the device as an aerial image. Use of aerial images in vision and visual display systems can provide a true stereoscopic representation of the viewed world. This paper discusses aerial image systems - their applications and designs and presents designs and design concepts that utilize aerial images to obtain superior visual displays, particularly with application to visual simulation.

  11. Contrast enhancement in dense breast images using the modulation transfer function.

    PubMed

    Nunes, Fátima L S; Schiabel, Homero; Benatti, Rodrigo H

    2002-12-01

    This work proposes a method aimed at enhancing the contrast in dense breast images in mammography. It includes a new preprocessing technique, which uses information on the modulation transfer function (MTF) of the mammographic system in the whole radiation field. The method is applied to improve the efficiency of a computer-aided diagnosis (CAD) scheme. Seventy-five regions of interest (ROIs) from dense mammograms were acquired in two pieces of equipment (a CGR Senographe 500t and a Philips Mammodiagnost) and were digitized in a Lumiscan 50 laser scanner. A computational procedure determines the effective focal spot size in each region of interest from the measured focal spot in the center for a given mammographic equipment. Using computational simulation the MTF is then calculated for each field region. A procedure that enlarges the high-frequency portion of this function is applied and a convolution between the resulting new function and the original image is performed. Both original and enhanced images were submitted to a processing procedure for detecting clustered microcalcifications in order to compare the performance for dense breast images. ROIs were divided into four groups, two for each piece of equipment-one with clustered microcalcifications and another without microcalcifications. Our results show that in about 10% of the enhanced images more signals were detected when compared to the results for the original dense breast images. This is important because the usual processing techniques used in CAD schemes present poor results when applied to dense breast images. Since the MTF method is a well-recognized tool in the evaluation of radiographic systems, this new technique could be used to associate quality assurance procedures with the processing schemes employed in CAD for mammography.

  12. MRI-aided tissues interface characterization: An accurate signal propagation time calculation method for UWB breast tumor imaging

    NASA Astrophysics Data System (ADS)

    Wang, Liang; Xiao, Xia; Kikkawa, Takamaro

    2016-12-01

    Radar-based ultrawideband (UWB) microwave imaging is expected to be a safe, low-cost tool for breast cancer detection. However, since radar wave travels at different speeds in different tissues, propagation time is hard to be estimated in heterogeneous breast. Wrongly estimated propagation time leads to error of tumor location in resulting image, aka imaging error. In this paper, we develop a magnetic resonance imaging-aided (MRI-aided) propagation time calculation technique which is independent from radar imaging system but can help decrease the imaging error. The technique can eliminate the influence of the rough interface between fat layer and gland layer in breast and get relative accurate thicknesses of two layers. The propagation time in each layer is calculated and summed. The summed propagation time is used in Confocal imaging algorithm to increase the accuracy of resulting image. 25 patients' breast models with glands of varying size are classified into four categories for imaging simulation tests. Imaging accuracy in terms of tumor location along x-direction has been improved for 21 among 25 cases, as a result, overall around 50% improvement compared to conventional UWB imaging.

  13. Molecular imaging of breast cancer: present and future directions

    PubMed Central

    Alcantara, David; Leal, Manuel Pernia; García-Bocanegra, Irene; García-Martín, Maria L.

    2014-01-01

    Medical imaging technologies have undergone explosive growth over the past few decades and now play a central role in clinical oncology. But the truly transformative power of imaging in the clinical management of cancer patients lies ahead. Today, imaging is at a crossroads, with molecularly targeted imaging agents expected to broadly expand the capabilities of conventional anatomical imaging methods. Molecular imaging will allow clinicians to not only see where a tumor is located in the body, but also to visualize the expression and activity of specific molecules (e.g., proteases and protein kinases) and biological processes (e.g., apoptosis, angiogenesis, and metastasis) that influence tumor behavior and/or response to therapy. Breast cancer, the most common cancer among women and a research area where our group is actively involved, is a very heterogeneous disease with diverse patterns of development and response to treatment. Hence, molecular imaging is expected to have a major impact on this type of cancer, leading to important improvements in diagnosis, individualized treatment, and drug development, as well as our understanding of how breast cancer arises. PMID:25566530

  14. Molecular Imaging of Breast Cancer: Present and future directions

    NASA Astrophysics Data System (ADS)

    Alcantara, David; Pernia Leal, Manuel; Garcia, Irene; Garcia-Martin, Maria Luisa

    2014-12-01

    Medical imaging technologies have undergone explosive growth over the past few decades and now play a central role in clinical oncology. But the truly transformative power of imaging in the clinical management of cancer patients lies ahead. Today, imaging is at a crossroads, with molecularly targeted imaging agents expected to broadly expand the capabilities of conventional anatomical imaging methods. Molecular imaging will allow clinicians to not only see where a tumour is located in the body, but also to visualize the expression and activity of specific molecules (e.g. proteases and protein kinases) and biological processes (e.g. apoptosis, angiogenesis, and metastasis) that influence tumour behavior and/or response to therapy. Breast cancer, the most common cancer among women and a research area where our group is actively involved, is a very heterogeneous disease with diverse patterns of development and response to treatment. Hence, molecular imaging is expected to have a major impact on this type of cancer, leading to important improvements in diagnosis, individualized treatment, and drug development, as well as our understanding of how breast cancer arises.

  15. Initial study of breast tissue retraction toward image guided breast surgery

    NASA Astrophysics Data System (ADS)

    Shannon, Michael J.; Meszoely, Ingrid M.; Ondrake, Janet E.; Pheiffer, Thomas S.; Simpson, Amber L.; Sun, Kay; Miga, Michael I.

    2012-02-01

    Image-guided surgery may reduce the re-excision rate in breast-conserving tumor-resection surgery, but image guidance is difficult since the breast undergoes significant deformation during the procedure. In addition, any imaging performed preoperatively is usually conducted in a very different presentation to that in surgery. Biomechanical models combined with low-cost ultrasound imaging and laser range scanning may provide an inexpensive way to provide intraoperative guidance information while also compensating for soft tissue deformations that occur during breast-conserving surgery. One major cause of deformation occurs after an incision into the tissue is made and the skin flap is pulled back with the use of retractors. Since the next step in the surgery would be to start building a surgical plane around the tumor to remove cancerous tissue, in an image-guidance environment, it would be necessary to have a model that corrects for the deformation caused by the surgeon to properly guide the application of resection tools. In this preliminary study, two anthropomorphic breast phantoms were made, and retractions were performed on both with improvised retractors. One phantom underwent a deeper retraction that the other. A laser range scanner (LRS) was used to monitor phantom tissue change before and after retraction. The surface data acquired with the LRS and retractors were then used to drive the solution of a finite element model. The results indicate an encouraging level of agreement between model predictions and data. The surface target error for the phantom with the deep retraction was 2.2 +/- 1.2 mm (n=47 targets) with the average deformation of the surface targets at 4.2 +/- 1.6mm. For the phantom with the shallow retraction, the surface target error was 2.1 +/- 1.0 mm (n=70 targets) with the average deformation of the surface targets at 4.0 +/- 2.0 mm.

  16. A Prototype System for Measuring Microwave Frequency Reflections from the Breast

    PubMed Central

    Bourqui, J.; Sill, J. M.; Fear, E. C.

    2012-01-01

    Microwave imaging of the breast is of interest for monitoring breast health, and approaches to active microwave imaging include tomography and radar-based methods. While the literature contains a growing body of work related to microwave breast imaging, there are only a few prototype systems that have been used to collect data from humans. In this paper, a prototype system for monostatic radar-based imaging that has been used in an initial study measuring reflections from volunteers is discussed. The performance of the system is explored by examining the mechanical positioning of sensor, as well as microwave measurement sensitivity. To gain insight into the measurement of reflected signals, simulations and measurements of a simple phantom are compared and discussed in relation to system sensitivity. Finally, a successful scan of a volunteer is described. PMID:22611372

  17. Diagnosis of breast cancer biopsies using quantitative phase imaging

    NASA Astrophysics Data System (ADS)

    Majeed, Hassaan; Kandel, Mikhail E.; Han, Kevin; Luo, Zelun; Macias, Virgilia; Tangella, Krishnarao; Balla, Andre; Popescu, Gabriel

    2015-03-01

    The standard practice in the histopathology of breast cancers is to examine a hematoxylin and eosin (H&E) stained tissue biopsy under a microscope. The pathologist looks at certain morphological features, visible under the stain, to diagnose whether a tumor is benign or malignant. This determination is made based on qualitative inspection making it subject to investigator bias. Furthermore, since this method requires a microscopic examination by the pathologist it suffers from low throughput. A quantitative, label-free and high throughput method for detection of these morphological features from images of tissue biopsies is, hence, highly desirable as it would assist the pathologist in making a quicker and more accurate diagnosis of cancers. We present here preliminary results showing the potential of using quantitative phase imaging for breast cancer screening and help with differential diagnosis. We generated optical path length maps of unstained breast tissue biopsies using Spatial Light Interference Microscopy (SLIM). As a first step towards diagnosis based on quantitative phase imaging, we carried out a qualitative evaluation of the imaging resolution and contrast of our label-free phase images. These images were shown to two pathologists who marked the tumors present in tissue as either benign or malignant. This diagnosis was then compared against the diagnosis of the two pathologists on H&E stained tissue images and the number of agreements were counted. In our experiment, the agreement between SLIM and H&E based diagnosis was measured to be 88%. Our preliminary results demonstrate the potential and promise of SLIM for a push in the future towards quantitative, label-free and high throughput diagnosis.

  18. Spectrographic imaging system

    DOEpatents

    Morris, Michael D.; Treado, Patrick J.

    1991-01-01

    An imaging system for providing spectrographically resolved images. The system incorporates a one-dimensional spatial encoding mask which enables an image to be projected onto a two-dimensional image detector after spectral dispersion of the image. The dimension of the image which is lost due to spectral dispersion on the two-dimensional detector is recovered through employing a reverse transform based on presenting a multiplicity of different spatial encoding patterns to the image. The system is especially adapted for detecting Raman scattering of monochromatic light transmitted through or reflected from physical samples. Preferably, spatial encoding is achieved through the use of Hadamard mask which selectively transmits or blocks portions of the image from the sample being evaluated.

  19. Multi Spectral Imaging System

    NASA Technical Reports Server (NTRS)

    Spiering, Bruce A. (Inventor)

    1999-01-01

    An optical imaging system provides automatic co-registration of a plurality of multi spectral images of an object which are generated by a plurality of video cameras or other optical detectors. The imaging system includes a modular assembly of beam splitters, lens tubes, camera lenses and wavelength selective filters which facilitate easy reconfiguration and adjustment of the system for various applications. A primary lens assembly generates a real image of an object to be imaged on a reticle which is positioned at a fixed length from a beam splitter assembly. The beam splitter assembly separates a collimated image beam received from the reticle into multiple image beams, each of which is projected onto a corresponding one of a plurality of video cameras. The lens tubes which connect the beam splitter assembly to the cameras are adjustable in length to provide automatic co-registration of the images generated by each camera.

  20. Automatic Detection and Classification of Breast Tumors in Ultrasonic Images Using Texture and Morphological Features

    PubMed Central

    Su, Yanni; Wang, Yuanyuan; Jiao, Jing; Guo, Yi

    2011-01-01

    Due to severe presence of speckle noise, poor image contrast and irregular lesion shape, it is challenging to build a fully automatic detection and classification system for breast ultrasonic images. In this paper, a novel and effective computer-aided method including generation of a region of interest (ROI), segmentation and classification of breast tumor is proposed without any manual intervention. By incorporating local features of texture and position, a ROI is firstly detected using a self-organizing map neural network. Then a modified Normalized Cut approach considering the weighted neighborhood gray values is proposed to partition the ROI into clusters and get the initial boundary. In addition, a regional-fitting active contour model is used to adjust the few inaccurate initial boundaries for the final segmentation. Finally, three textures and five morphologic features are extracted from each breast tumor; whereby a highly efficient Affinity Propagation clustering is used to fulfill the malignancy and benign classification for an existing database without any training process. The proposed system is validated by 132 cases (67 benignancies and 65 malignancies) with its performance compared to traditional methods such as level set segmentation, artificial neural network classifiers, and so forth. Experiment results show that the proposed system, which needs no training procedure or manual interference, performs best in detection and classification of ultrasonic breast tumors, while having the lowest computation complexity. PMID:21892371

  1. Integrated Molecular Imaging and Therapy for Breast Cancer

    DTIC Science & Technology

    2008-08-01

    nanoshells [8-9] and nanotubes [10-11] have been shown in the past to be quite applicable for cancer imaging and therapy. Subcellular nanostructures...micro- surgery and cell repair machineries. While nanoshells have been targeted to the surface receptor of cancer cells in the past [4], in this...universally expressed in cells and nanoshells have targeted more breast cancer relevant Her2 surface receptor. We have taken this a step further by showing

  2. Integrated Molecular Imaging and Therapy for Breast Cancer

    DTIC Science & Technology

    2007-08-01

    nanoshells [8-9] and nanotubes [10-11] have been shown in the past to be quite applicable for cancer imaging and therapy. Subcellular nanostructures...micro- surgery and cell repair machineries. While nanoshells have been targeted to the surface receptor of cancer cells in the past [4], in this...universally expressed in cells and nanoshells have targeted more breast cancer relevant Her2 surface receptor. We have taken this a step further by showing

  3. Online gamma-camera imaging of 103Pd seeds (OGIPS) for permanent breast seed implantation

    NASA Astrophysics Data System (ADS)

    Ravi, Ananth; Caldwell, Curtis B.; Keller, Brian M.; Reznik, Alla; Pignol, Jean-Philippe

    2007-09-01

    Permanent brachytherapy seed implantation is being investigated as a mode of accelerated partial breast irradiation for early stage breast cancer patients. Currently, the seeds are poorly visualized during the procedure making it difficult to perform a real-time correction of the implantation if required. The objective was to determine if a customized gamma-camera can accurately localize the seeds during implantation. Monte Carlo simulations of a CZT based gamma-camera were used to assess whether images of suitable quality could be derived by detecting the 21 keV photons emitted from 74 MBq 103Pd brachytherapy seeds. A hexagonal parallel hole collimator with a hole length of 38 mm, hole diameter of 1.2 mm and 0.2 mm septa, was modeled. The design of the gamma-camera was evaluated on a realistic model of the breast and three layers of the seed distribution (55 seeds) based on a pre-implantation CT treatment plan. The Monte Carlo simulations showed that the gamma-camera was able to localize the seeds with a maximum error of 2.0 mm, using only two views and 20 s of imaging. A gamma-camera can potentially be used as an intra-procedural image guidance system for quality assurance for permanent breast seed implantation.

  4. Quantitative breast tissue characterization using grating-based x-ray phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    Willner, M.; Herzen, J.; Grandl, S.; Auweter, S.; Mayr, D.; Hipp, A.; Chabior, M.; Sarapata, A.; Achterhold, K.; Zanette, I.; Weitkamp, T.; Sztrókay, A.; Hellerhoff, K.; Reiser, M.; Pfeiffer, F.

    2014-04-01

    X-ray phase-contrast imaging has received growing interest in recent years due to its high capability in visualizing soft tissue. Breast imaging became the focus of particular attention as it is considered the most promising candidate for a first clinical application of this contrast modality. In this study, we investigate quantitative breast tissue characterization using grating-based phase-contrast computed tomography (CT) at conventional polychromatic x-ray sources. Different breast specimens have been scanned at a laboratory phase-contrast imaging setup and were correlated to histopathology. Ascertained tumor types include phylloides tumor, fibroadenoma and infiltrating lobular carcinoma. Identified tissue types comprising adipose, fibroglandular and tumor tissue have been analyzed in terms of phase-contrast Hounsfield units and are compared to high-quality, high-resolution data obtained with monochromatic synchrotron radiation, as well as calculated values based on tabulated tissue properties. The results give a good impression of the method’s prospects and limitations for potential tumor detection and the associated demands on such a phase-contrast breast CT system. Furthermore, the evaluated quantitative tissue values serve as a reference for simulations and the design of dedicated phantoms for phase-contrast mammography.

  5. WE-FG-207A-05: Dedicated Breast CT as a Diagnostic Imaging Tool: Physics and Clinical Feasibility.

    PubMed

    Karellas, A

    2016-06-01

    Mammography-based screening has been a valuable imaging tool for the early detection of non-palpable lesions and has contributed to significant reduction in breast cancer associated mortality. However, the breast imaging community recognizes that mammography is not ideal, and in particular is inferior for women with dense breasts. Also, the 2-D projection of a 3-D organ results in tissue superposition contributing to false-positives. The sensitivity of mammography is breast-density dependent. Its sensitivity, especially in dense breasts, is low due to overlapping tissue and the fact that normal breast tissue, benign lesions and breast cancers all have similar "densities", making lesion detection more difficult. We ideally need 3-D imaging for imaging the 3-D breast. MRI is 3-D, whole breast ultrasound is 3-D, digital breast tomosynthesis is called 3-D but is really "pseudo 3-D" due to poor resolution along the depth-direction. Also, and importantly, we need to be able to administer intravenous contrast agents for optimal imaging, similar to other organ systems in the body. Dedicated breast CT allows for 3-D imaging of the uncompressed breast. In current designs, the patient is positioned prone on the table and the breast is pendant through an aperture and the scan takes approximately 10 seconds [O'Connell et al., AJR 195: 496-509, 2010]. Almost on the heels of the invention of CT itself, work began on the development of dedicated breast CT. These early breast CT systems were used in clinical trials and the results from comparative performance evaluation of breast CT and mammography for 1625 subjects were reported in 1980 [Chang et al., Cancer 46: 939-46, 1980]. However, the technological limitations at that time stymied clinical translation for decades. Subsequent to the landmark article in 2001 [Boone et al., Radiology 221: 657-67, 2001] that demonstrated the potential feasibility in terms of radiation dose, multiple research groups are actively investigating

  6. Dual energy subtraction method for breast calcification imaging

    NASA Astrophysics Data System (ADS)

    Koukou, Vaia; Martini, Niki; Fountos, George; Michail, Christos; Sotiropoulou, Panagiota; Bakas, Athanasios; Kalyvas, Nektarios; Kandarakis, Ioannis; Speller, Robert; Nikiforidis, George

    2017-03-01

    The aim of this work was to present an experimental dual energy (DE) method for the visualization of microcalcifications (μCs). A modified radiographic X-ray tube combined with a high resolution complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) X-ray detector was used. A 40/70 kV spectral combination was filtered with 100 μm cadmium (Cd) and 1000 μm copper (Cu) for the low/high-energy combination. Homogenous and inhomogeneous breast phantoms and two calcification phantoms were constructed with various calcification thicknesses, ranging from 16 to 152 μm . Contrast-to-noise ratio (CNR) was calculated from the DE subtracted images for various entrance surface doses. A calcification thickness of 152 μm was visible, with mean glandular doses (MGD) in the acceptable levels (below 3 mGy). Additional post-processing on the DE images of the inhomogeneous breast phantom resulted in a minimum visible calcification thickness of 93 μm (MGD=1.62 mGy). The proposed DE method could potentially improve calcification visibility in DE breast calcification imaging.

  7. Thermoacoustic imaging over large field of view for three-dimensional breast tumor localization: A phantom study

    SciTech Connect

    Fu, Yong; Ji, Zhong; Ding, Wenzheng; Ye, Fanghao; Lou, Cunguang

    2014-11-01

    Purpose: Previous studies demonstrated that thermoacoustic imaging (TAI) has great potential for breast tumor detection. However, large field of view (FOV) imaging remains a long-standing challenge for three-dimensional (3D) breast tumor localization. Here, the authors propose a practical TAI system for noninvasive 3D localization of breast tumors with large FOV through the use of ultrashort microwave pulse (USMP). Methods: A USMP generator was employed for TAI. The energy density required for quality imaging and the corresponding microwave-to-acoustic conversion efficiency were compared with that of conventional TAI. The microwave energy distribution, imaging depth, resolution, and 3D imaging capabilities were then investigated. Finally, a breast phantom embedded with a laboratory-grown tumor was imaged to evaluate the FOV performance of the USMP TAI system, under a simulated clinical situation. Results: A radiation energy density equivalent to just 1.6%–2.2% of that for conventional submicrosecond microwave TAI was sufficient to obtain a thermoacoustic signal with the required signal-to-noise ratio. This result clearly demonstrated a significantly higher microwave-to-acoustic conversion efficiency of USMP TAI compared to that of conventional TAI. The USMP TAI system achieved 61 mm imaging depth and 12 × 12 cm{sup 2} microwave radiation area. The volumetric image of a copper target measured at depth of 4–6 cm matched well with the actual shape and the resolution reaches 230 μm. The TAI of the breast phantom was precisely localized to an accuracy of 0.1 cm over an 8 × 8 cm{sup 2} FOV. Conclusions: The experimental results demonstrated that the USMP TAI system offered significant potential for noninvasive clinical detection and 3D localization of deep breast tumors, with low microwave radiation dose and high spatial resolution over a sufficiently large FOV.

  8. Energy dispersive photon counting detectors for breast imaging

    NASA Astrophysics Data System (ADS)

    Barber, William C.; Wessel, Jan C.; Malakhov, Nail; Wawrzyniak, Gregor; Hartsough, Neal E.; Gandhi, Thulasidharan; Nygard, Einar; Iwanczyk, Jan S.

    2013-09-01

    We report on our efforts toward the development of silicon (Si) strip detectors for energy-resolved clinical breast imaging. Typically, x-ray integrating detectors based on scintillating cesium iodide CsI(Tl) or amorphous selenium (a- Se) are used in most commercial systems. Recently, mammography instrumentation has been introduced based on photon counting silicon Si strip detectors. Mammography requires high flux from the x-ray generator, therefore, in order to achieve energy resolved single photon counting, a high output count rate (OCR) for the detector must be achieved at the required spatial resolution and across the required dynamic range for the application. The required performance in terms of the OCR, spatial resolution, and dynamic range must be obtained with sufficient field of view (FOV) for the application thus requiring the tiling of pixel arrays and scanning techniques. Room temperature semiconductors, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel, provided that the sensors are designed for rapid signal formation across the x-ray energy ranges of the application at the required energy and spatial resolutions. We present our methods and results from the optimization of prototype detectors based on Si strip structures. We describe the detector optimization and the development of ASIC readout electronics that provide the required spatial resolution, low noise, high count rate capabilities and minimal power consumption.

  9. Ultrasonic Imaging System

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C. (Inventor); Moerk, Steven (Inventor)

    1999-01-01

    An imaging system is described which can be used to either passively search for sources of ultrasonics or as an active phase imaging system. which can image fires. gas leaks, or air temperature gradients. This system uses an array of ultrasonic receivers coupled to an ultrasound collector or lens to provide an electronic image of the ultrasound intensity in a selected angular region of space. A system is described which includes a video camera to provide a visual reference to a region being examined for ultrasonic signals.

  10. Computer-aided prognosis on breast cancer with hematoxylin and eosin histopathology images: A review.

    PubMed

    Chen, Jia-Mei; Li, Yan; Xu, Jun; Gong, Lei; Wang, Lin-Wei; Liu, Wen-Lou; Liu, Juan

    2017-03-01

    With the advance of digital pathology, image analysis has begun to show its advantages in information analysis of hematoxylin and eosin histopathology images. Generally, histological features in hematoxylin and eosin images are measured to evaluate tumor grade and prognosis for breast cancer. This review summarized recent works in image analysis of hematoxylin and eosin histopathology images for breast cancer prognosis. First, prognostic factors for breast cancer based on hematoxylin and eosin histopathology images were summarized. Then, usual procedures of image analysis for breast cancer prognosis were systematically reviewed, including image acquisition, image preprocessing, image detection and segmentation, and feature extraction. Finally, the prognostic value of image features and image feature-based prognostic models was evaluated. Moreover, we discussed the issues of current analysis, and some directions for future research.

  11. Registration of parametric dynamic F-18-FDG PET/CT breast images with parametric dynamic Gd-DTPA breast images

    NASA Astrophysics Data System (ADS)

    Magri, Alphonso; Krol, Andrzej; Lipson, Edward; Mandel, James; McGraw, Wendy; Lee, Wei; Tillapaugh-Fay, Gwen; Feiglin, David

    2009-02-01

    This study was undertaken to register 3D parametric breast images derived from Gd-DTPA MR and F-18-FDG PET/CT dynamic image series. Nonlinear curve fitting (Levenburg-Marquardt algorithm) based on realistic two-compartment models was performed voxel-by-voxel separately for MR (Brix) and PET (Patlak). PET dynamic series consists of 50 frames of 1-minute duration. Each consecutive PET image was nonrigidly registered to the first frame using a finite element method and fiducial skin markers. The 12 post-contrast MR images were nonrigidly registered to the precontrast frame using a free-form deformation (FFD) method. Parametric MR images were registered to parametric PET images via CT using FFD because the first PET time frame was acquired immediately after the CT image on a PET/CT scanner and is considered registered to the CT image. We conclude that nonrigid registration of PET and MR parametric images using CT data acquired during PET/CT scan and the FFD method resulted in their improved spatial coregistration. The success of this procedure was limited due to relatively large target registration error, TRE = 15.1+/-7.7 mm, as compared to spatial resolution of PET (6-7 mm), and swirling image artifacts created in MR parametric images by the FFD. Further refinement of nonrigid registration of PET and MR parametric images is necessary to enhance visualization and integration of complex diagnostic information provided by both modalities that will lead to improved diagnostic performance.

  12. Imaging of common breast implants and implant-related complications: A pictorial essay.

    PubMed

    Shah, Amisha T; Jankharia, Bijal B

    2016-01-01

    The number of women undergoing breast implant procedures is increasing exponentially. It is, therefore, imperative for a radiologist to be familiar with the normal and abnormal imaging appearances of common breast implants. Diagnostic imaging studies such as mammography, ultrasonography, and magnetic resonance imaging are used to evaluate implant integrity, detect abnormalities of the implant and its surrounding capsule, and detect breast conditions unrelated to implants. Magnetic resonance imaging of silicone breast implants, with its high sensitivity and specificity for detecting implant rupture, is the most reliable modality to asses implant integrity. Whichever imaging modality is used, the overall aim of imaging breast implants is to provide the pertinent information about implant integrity, detect implant failures, and to detect breast conditions unrelated to the implants, such as cancer.

  13. An imaging evaluation of the simultaneously integrated boost breast radiotherapy technique

    SciTech Connect

    Turley, Jessica; Claridge Mackonis, Elizabeth

    2015-09-15

    To evaluate in-field megavoltage (MV) imaging of simultaneously integrated boost (SIB) breast fields to determine its feasibility in treatment verification for the SIB breast radiotherapy technique, and to assess whether the current-imaging protocol and treatment margins are sufficient. For nine patients undergoing SIB breast radiotherapy, in-field MV images of the SIB fields were acquired on days that regular treatment verification imaging was performed. The in-field images were matched offline according to the scar wire on digitally reconstructed radiographs. The offline image correction results were then applied to a margin recipe formula to calculate safe margins that account for random and systematic uncertainties in the position of the boost volume when an offline correction protocol has been applied. After offline assessment of the acquired images, 96% were within the tolerance set in the current department-imaging protocol. Retrospectively performing the maximum position deviations on the Eclipse™ treatment planning system demonstrated that the clinical target volume (CTV) boost received a minimum dose difference of 0.4% and a maximum dose difference of 1.4% less than planned. Furthermore, applying our results to the Van Herk margin formula to ensure that 90% of patients receive 95% of the prescribed dose, the calculated CTV margins were comparable to the current departmental procedure used. Based on the in-field boost images acquired and the feasible application of these results to the margin formula the current CTV-planning target volume margins used are appropriate for the accurate treatment of the SIB boost volume without additional imaging.

  14. An imaging evaluation of the simultaneously integrated boost breast radiotherapy technique

    PubMed Central

    Turley, Jessica; Claridge Mackonis, Elizabeth

    2015-01-01

    Introduction To evaluate in-field megavoltage (MV) imaging of simultaneously integrated boost (SIB) breast fields to determine its feasibility in treatment verification for the SIB breast radiotherapy technique, and to assess whether the current-imaging protocol and treatment margins are sufficient. Methods For nine patients undergoing SIB breast radiotherapy, in-field MV images of the SIB fields were acquired on days that regular treatment verification imaging was performed. The in-field images were matched offline according to the scar wire on digitally reconstructed radiographs. The offline image correction results were then applied to a margin recipe formula to calculate safe margins that account for random and systematic uncertainties in the position of the boost volume when an offline correction protocol has been applied. Results After offline assessment of the acquired images, 96% were within the tolerance set in the current department-imaging protocol. Retrospectively performing the maximum position deviations on the Eclipse™ treatment planning system demonstrated that the clinical target volume (CTV) boost received a minimum dose difference of 0.4% and a maximum dose difference of 1.4% less than planned. Furthermore, applying our results to the Van Herk margin formula to ensure that 90% of patients receive 95% of the prescribed dose, the calculated CTV margins were comparable to the current departmental procedure used. Conclusion Based on the in-field boost images acquired and the feasible application of these results to the margin formula the current CTV-planning target volume margins used are appropriate for the accurate treatment of the SIB boost volume without additional imaging. PMID:26451242

  15. TU-AB-204-04: Advances in CBCT for Breast Imaging

    SciTech Connect

    Boone, J.

    2015-06-15

    This symposium highlights advanced cone-beam CT (CBCT) technologies in four areas of emerging application in diagnostic imaging and image-guided interventions. Each area includes research that extends the spatial, temporal, and/or contrast resolution characteristics of CBCT beyond conventional limits through advances in scanner technology, acquisition protocols, and 3D image reconstruction techniques. Dr. G. Chen (University of Wisconsin) will present on the topic: Advances in C-arm CBCT for Brain Perfusion Imaging. Stroke is a leading cause of death and disability, and a fraction of people having an acute ischemic stroke are suitable candidates for endovascular therapy. Critical factors that affect both the likelihood of successful revascularization and good clinical outcome are: 1) the time between stroke onset and revascularization; and 2) the ability to distinguish patients who have a small volume of irreversibly injured brain (ischemic core) and a large volume of ischemic but salvageable brain (penumbra) from patients with a large ischemic core and little or no penumbra. Therefore, “time is brain” in the care of the stroke patients. C-arm CBCT systems widely available in angiography suites have the potential to generate non-contrast-enhanced CBCT images to exclude the presence of hemorrhage, time-resolved CBCT angiography to evaluate the site of occlusion and collaterals, and CBCT perfusion parametric images to assess the extent of the ischemic core and penumbra, thereby fulfilling the imaging requirements of a “one-stop-shop” in the angiography suite to reduce the time between onset and revascularization therapy. The challenges and opportunities to advance CBCT technology to fully enable the one-stop-shop C-arm CBCT platform for brain imaging will be discussed. Dr. R. Fahrig (Stanford University) will present on the topic: Advances in C-arm CBCT for Cardiac Interventions. With the goal of providing functional information during cardiac interventions

  16. Optical Computed Tomography for Imaging the Breast: First Look

    DTIC Science & Technology

    2000-07-01

    imaging through scattering walls using an ultrafast optical Kerr gate. Science; 253: 769-771, 1991 14. van der Mark MB, Hooft GW, Wachters AJH, de Vries UH...Pei Ho, Arthur E. T . Chiou, Editors, Proceedings of SPIE Vol. 4082 (2000) a 0277-786X/00/$15.00 1.2 Next-generation optical breast-imaging devices In...had developed different scanning configurations. van de Mark reported on use of continuous wave (CW) laser diodes at multi- wavelengths (679nm, 779nm

  17. Multipurpose Hyperspectral Imaging System

    NASA Technical Reports Server (NTRS)

    Mao, Chengye; Smith, David; Lanoue, Mark A.; Poole, Gavin H.; Heitschmidt, Jerry; Martinez, Luis; Windham, William A.; Lawrence, Kurt C.; Park, Bosoon

    2005-01-01

    A hyperspectral imaging system of high spectral and spatial resolution that incorporates several innovative features has been developed to incorporate a focal plane scanner (U.S. Patent 6,166,373). This feature enables the system to be used for both airborne/spaceborne and laboratory hyperspectral imaging with or without relative movement of the imaging system, and it can be used to scan a target of any size as long as the target can be imaged at the focal plane; for example, automated inspection of food items and identification of single-celled organisms. The spectral resolution of this system is greater than that of prior terrestrial multispectral imaging systems. Moreover, unlike prior high-spectral resolution airborne and spaceborne hyperspectral imaging systems, this system does not rely on relative movement of the target and the imaging system to sweep an imaging line across a scene. This compact system (see figure) consists of a front objective mounted at a translation stage with a motorized actuator, and a line-slit imaging spectrograph mounted within a rotary assembly with a rear adaptor to a charged-coupled-device (CCD) camera. Push-broom scanning is carried out by the motorized actuator which can be controlled either manually by an operator or automatically by a computer to drive the line-slit across an image at a focal plane of the front objective. To reduce the cost, the system has been designed to integrate as many as possible off-the-shelf components including the CCD camera and spectrograph. The system has achieved high spectral and spatial resolutions by using a high-quality CCD camera, spectrograph, and front objective lens. Fixtures for attachment of the system to a microscope (U.S. Patent 6,495,818 B1) make it possible to acquire multispectral images of single cells and other microscopic objects.

  18. A Partnership Training Program in Breast Cancer Research Using Molecular Imaging Techniques

    DTIC Science & Technology

    2007-07-01

    51nipple, Phyllodes Tumor , and tubular carcinoma.3 52Breast cancer is grouped into stages which 53indicate the invasiveness of the disease. There 54are...enhances the tumor MR image contrast but is also an excellent probe for optical imaging. We have established three breast cancer tumor models...magnetic resonance imaging (MRI), and optical imaging techniques for better imaging of tumors . In vivo molecular imaging, which utilizes these two

  19. Datamining Approach for Automation of Diagnosis of Breast Cancer in Immunohistochemically Stained Tissue Microarray Images

    PubMed Central

    Prasad, Keerthana; Zimmermann, Bernhard; Prabhu, Gopalakrishna; Pai, Muktha

    2010-01-01

    Cancer of the breast is the second most common human neoplasm, accounting for approximately one quarter of all cancers in females after cervical carcinoma. Estrogen receptor (ER), Progesteron receptor and human epidermal growth factor receptor (HER-2/neu) expressions play an important role in diagnosis and prognosis of breast carcinoma. Tissue microarray (TMA) technique is a high throughput technique which provides a standardized set of images which are uniformly stained, facilitating effective automation of the evaluation of the specimen images. TMA technique is widely used to evaluate hormone expression for diagnosis of breast cancer. If one considers the time taken for each of the steps in the tissue microarray process workflow, it can be observed that the maximum amount of time is taken by the analysis step. Hence, automated analysis will significantly reduce the overall time required to complete the study. Many tools are available for automated digital acquisition of images of the spots from the microarray slide. Each of these images needs to be evaluated by a pathologist to assign a score based on the staining intensity to represent the hormone expression, to classify them into negative or positive cases. Our work aims to develop a system for automated evaluation of sets of images generated through tissue microarray technique, representing the ER expression images and HER-2/neu expression images. Our study is based on the Tissue Microarray Database portal of Stanford university at http://tma.stanford.edu/cgi-bin/cx?n=her1, which has made huge number of images available to researchers. We used 171 images corresponding to ER expression and 214 images corresponding to HER-2/neu expression of breast carcinoma. Out of the 171 images corresponding to ER expression, 104 were negative and 67 were representing positive cases. Out of the 214 images corresponding to HER-2/neu expression, 112 were negative and 102 were representing positive cases. Our method has 92

  20. Datamining approach for automation of diagnosis of breast cancer in immunohistochemically stained tissue microarray images.

    PubMed

    Prasad, Keerthana; Zimmermann, Bernhard; Prabhu, Gopalakrishna; Pai, Muktha

    2010-05-28

    Cancer of the breast is the second most common human neoplasm, accounting for approximately one quarter of all cancers in females after cervical carcinoma. Estrogen receptor (ER), Progesteron receptor and human epidermal growth factor receptor (HER-2/neu) expressions play an important role in diagnosis and prognosis of breast carcinoma. Tissue microarray (TMA) technique is a high throughput technique which provides a standardized set of images which are uniformly stained, facilitating effective automation of the evaluation of the specimen images. TMA technique is widely used to evaluate hormone expression for diagnosis of breast cancer. If one considers the time taken for each of the steps in the tissue microarray process workflow, it can be observed that the maximum amount of time is taken by the analysis step. Hence, automated analysis will significantly reduce the overall time required to complete the study. Many tools are available for automated digital acquisition of images of the spots from the microarray slide. Each of these images needs to be evaluated by a pathologist to assign a score based on the staining intensity to represent the hormone expression, to classify them into negative or positive cases. Our work aims to develop a system for automated evaluation of sets of images generated through tissue microarray technique, representing the ER expression images and HER-2/neu expression images. Our study is based on the Tissue Microarray Database portal of Stanford university at http://tma.stanford.edu/cgi-bin/cx?n=her1, which has made huge number of images available to researchers. We used 171 images corresponding to ER expression and 214 images corresponding to HER-2/neu expression of breast carcinoma. Out of the 171 images corresponding to ER expression, 104 were negative and 67 were representing positive cases. Out of the 214 images corresponding to HER-2/neu expression, 112 were negative and 102 were representing positive cases. Our method has 92

  1. Breast Histopathological Image Retrieval Based on Latent Dirichlet Allocation.

    PubMed

    Ma, Yibing; Jiang, Zhiguo; Zhang, Haopeng; Xie, Fengying; Zheng, Yushan; Shi, Huaqiang; Zhao, Yu

    2016-09-20

    In the field of pathology, whole slide image (WSI) has become the major carrier of visual and diagnostic information. Content based image retrieval among WSIs can aid the diagnosis of an unknown pathological image by finding its similar regions in WSIs with diagnostic information. However, the huge size and complex content of WSI pose several challenges for retrieval. In this paper, we propose an unsupervised, accurate and fast retrieval method for breast histopathological image. Specifically, the method presents local statistical feature of nuclei for morphology and distribution of nuclei, and employs Gabor feature to describe texture information. Latent Dirichlet Allocation model is utilized for high-level semantic mining. Locality- Sensitive Hashing is used to speed up the search. Experiments on a WSI database with over 8000 images from 15 types of breast histopathology demonstrate that our method achieves about 0.9 retrieval precision as well as promising efficiency. Based on the proposed framework, we are developing a search engine for an online digital slide browsing and retrieval platform, which can be applied in computer-aided diagnosis, pathology education, WSI archiving and management.

  2. Segmenting breast cancerous regions in thermal images using fuzzy active contours.

    PubMed

    Ghayoumi Zadeh, Hossein; Haddadnia, Javad; Rahmani Seryasat, Omid; Mostafavi Isfahani, Sayed Mohammad

    2016-01-01

    0.0381 mm respectively. Furthermore, the sensitivity in recognizing the thermal pattern in breast tissue masses is 85 % and its accuracy is 91.98 %.A thermal imaging system has been proposed that is able to recognize abnormal breast tissue masses. This system utilizes fuzzy active contours to extract the abnormal regions automatically.

  3. Segmenting breast cancerous regions in thermal images using fuzzy active contours

    PubMed Central

    Ghayoumi Zadeh, Hossein; Haddadnia, Javad; Rahmani Seryasat, Omid; Mostafavi Isfahani, Sayed Mohammad

    2016-01-01

    0.0381 mm respectively. Furthermore, the sensitivity in recognizing the thermal pattern in breast tissue masses is 85 % and its accuracy is 91.98 %.A thermal imaging system has been proposed that is able to recognize abnormal breast tissue masses. This system utilizes fuzzy active contours to extract the abnormal regions automatically. PMID:28096784

  4. Spectral and temporal near-infrared imaging of ex vivo cancerous and normal human breast tissues.

    PubMed

    Alrubaiee, M; Gayen, S K; Alfano, R R; Koutcher, J A

    2005-10-01

    Cancerous and normal ex vivo human breast tissues were investigated using spectroscopic and time-sliced two-dimensional (2-D) transillumination imaging methods in order to demonstrate the importance and potential of spectral and temporal measurements in breast cancer detection and diagnosis. The experimental arrangement for time-sliced optical imaging used 120 fs, 1 kHz repetition-rate, 800 nm light pulses from a Ti:sapphire laser system for sample illumination, and a 80 ps resolution ultrafast gated intensified camera system for recording 2-D time-sliced images. The spectroscopic imaging arrangement used 1225-1300 nm tunable output of a Cr: forsterite laser for sample illumination, a Fourier space gate to discriminate against multiple-scattered light, and a near-infrared area camera to record 2-D images. Images recorded with earlier temporal slices of transmitted light highlighted tumors, while those recorded with later slices accentuated normal tissues. When light was tuned closer to the 1203 nm absorption resonance of adipose tissues, a marked enhancement in contrast between the images of adipose and fibrous tissues was observed. A similar wavelength-dependent difference between normal and cancerous tissues was observed. These results correlate well with pathology and nuclear magnetic resonance based analyses of the samples.

  5. Image Processing System

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Mallinckrodt Institute of Radiology (MIR) is using a digital image processing system which employs NASA-developed technology. MIR's computer system is the largest radiology system in the world. It is used in diagnostic imaging. Blood vessels are injected with x-ray dye, and the images which are produced indicate whether arteries are hardened or blocked. A computer program developed by Jet Propulsion Laboratory known as Mini-VICAR/IBIS was supplied to MIR by COSMIC. The program provides the basis for developing the computer imaging routines for data processing, contrast enhancement and picture display.

  6. Overview of adjuvant systemic therapy in early stage breast cancer.

    PubMed

    Newman, Lisa A; Singletary, S Eva

    2007-04-01

    The benefits of adjuvant systemic therapy in reducing risk of distant relapse from breast cancer have been recognized for several decades. The intent of adjuvant therapy is to eliminate the occult micrometastatic breast cancer burden before it progresses into clinically apparent disease. Successful delivery of effective adjuvant systemic therapy as a complement to surgical management of breast cancer has contributed to the steady declines in breast cancer mortality observed internationally over the past 2 decades. Ongoing clinical and translational research in breast cancer seeks to improve the efficacy of systemic agents for use in the conventional postoperative (adjuvant) setting.

  7. Development and Feasibility Testing of Image-Guided Minimally Invasive Tissue for Diagnosis Treatment of Benign and Malignant Breast Disease

    NASA Technical Reports Server (NTRS)

    Jeffrey, Stefanie S.

    1999-01-01

    Dr. Robert Mah and Dr. Stefanie Jeffrey worked on the development of the NASA Smart Probe in its application as a device to measure and interpret physiologic and image-based parameters of breast tissue. To date the following has been achieved: 1 . Choice of candidate sensors to be tested in breast tissue. 2. Preliminary designs for probe tip, specifically use of different tip shapes, cutting edges, and sensor configuration. 3. Design of sonographic guidance system. 4. Design of data extraction and analysis tool using scanned information of images of the breast tissue to provide a higher dimension of information for breast tissue characterization and interpretation. 5. Initial ex-vivo (fruit and tofu) and in-vivo (rodent) testing to confirm unique substance and tissue characterization by the Smart Probe software.

  8. Reasons Women at Elevated Risk of Breast Cancer Refuse Breast MR Imaging Screening: ACRIN 66661

    PubMed Central

    Blume, Jeffrey D.; Adams, Amanda M.; Jong, Roberta A.; Barr, Richard G.; Lehrer, Daniel E.; Pisano, Etta D.; Evans, W. Phil; Mahoney, Mary C.; Hovanessian Larsen, Linda; Gabrielli, Glenna J.; Mendelson, Ellen B.

    2009-01-01

    Purpose: To determine reasons for nonparticipation in a trial of supplemental screening with magnetic resonance (MR) imaging after mammography and ultrasonography (US). Materials and Methods: Women(n = 2809) at elevated risk of breast cancer were enrolled in the American College of Radiology Imaging Network 6666 US Screening Protocol at 21 institutions. Fourteen institutions met technical and experience requirements for this institutional review board–approved, HIPAA-compliant substudy of supplemental screening with MR imaging. Those women who had completed 0-, 12-, and 24-month screenings with mammography combined with US were considered for a single contrast material–enhanced MR examination within 8 weeks after completing the 24-month mammography-US screening. A total of 1593 women had complete MR substudy registration data: 378 of them were ineligible for the study, and 1215 had analyzable data. Reasons for nonparticipation were determined. Demographic data were compared between study participants and nonparticipants. Results: Of 1215 women with analyzable data, 703 (57.9%), with a mean age of 54.8 years, were enrolled in the MR substudy and 512 (42.1%) declined participation. Women with a 25% or greater lifetime risk of breast cancer were more likely to participate (odds ratio, 1.53; 95% confidence interval: 1.10, 2.12). Of 512 nonparticipants, 130 (25.4%) refused owing to claustrophobia; 93 (18.2%), owing to time constraints; 62 (12.1%), owing to financial concerns; 47 (9.2%), because their physician would not provide a referral and/or did not believe MR imaging was indicated; 40 (7.8%), because they were not interested; 39 (7.6%), because they were medically intolerant to MR imaging; 29 (5.7%), because they did not want to undergo intravenous injection; 27 (5.3%), owing to additional biopsy or other procedures that might be required subsequently; 21 (4.1%), owing to MR imaging scheduling constraints; 11 (2.2%), because of the travel required; seven (1

  9. Stacked Sparse Autoencoder (SSAE) for Nuclei Detection on Breast Cancer Histopathology Images.

    PubMed

    Xu, Jun; Xiang, Lei; Liu, Qingshan; Gilmore, Hannah; Wu, Jianzhong; Tang, Jinghai; Madabhushi, Anant

    2016-01-01

    Automated nuclear detection is a critical step for a number of computer assisted pathology related image analysis algorithms such as for automated grading of breast cancer tissue specimens. The Nottingham Histologic Score system is highly correlated with the shape and appearance of breast cancer nuclei in histopathological images. However, automated nucleus detection is complicated by 1) the large number of nuclei and the size of high resolution digitized pathology images, and 2) the variability in size, shape, appearance, and texture of the individual nuclei. Recently there has been interest in the application of "Deep Learning" strategies for classification and analysis of big image data. Histopathology, given its size and complexity, represents an excellent use case for application of deep learning strategies. In this paper, a Stacked Sparse Autoencoder (SSAE), an instance of a deep learning strategy, is presented for efficient nuclei detection on high-resolution histopathological images of breast cancer. The SSAE learns high-level features from just pixel intensities alone in order to identify distinguishing features of nuclei. A sliding window operation is applied to each image in order to represent image patches via high-level features obtained via the auto-encoder, which are then subsequently fed to a classifier which categorizes each image patch as nuclear or non-nuclear. Across a cohort of 500 histopathological images (2200 × 2200) and approximately 3500 manually segmented individual nuclei serving as the groundtruth, SSAE was shown to have an improved F-measure 84.49% and an average area under Precision-Recall curve (AveP) 78.83%. The SSAE approach also out-performed nine other state of the art nuclear detection strategies.

  10. Stacked Sparse Autoencoder (SSAE) for Nuclei Detection on Breast Cancer Histopathology Images

    PubMed Central

    Xu, Jun; Xiang, Lei; Liu, Qingshan; Gilmore, Hannah; Wu, Jianzhong; Tang, Jinghai; Madabhushi, Anant

    2016-01-01

    Automated nuclear detection is a critical step for a number of computer assisted pathology related image analysis algorithms such as for automated grading of breast cancer tissue specimens. The Nottingham Histologic Score system is highly correlated with the shape and appearance of breast cancer nuclei in histopathological images. However, automated nucleus detection is complicated by (1) the large number of nuclei and the size of high resolution digitized pathology images, and (2) the variability in size, shape, appearance, and texture of the individual nuclei. Recently there has been interest in the application of “Deep Learning” strategies for classification and analysis of big image data. Histopathology, given its size and complexity, represents an excellent use case for application of deep learning strategies. In this paper, a Stacked Sparse Autoencoder (SSAE), an instance of a deep learning strategy, is presented for efficient nuclei detection on high-resolution histopathological images of breast cancer. The SSAE learns high-level features from just pixel intensities alone in order to identify distinguishing features of nuclei. A sliding window operation is applied to each image in order to represent image patches via high-level features obtained via the auto-encoder, which are then subsequently fed to a classifier which categorizes each image patch as nuclear or non-nuclear. Across a cohort of 500 histopathological images (2200 × 2200) and approximately 3500 manually segmented individual nuclei serving as the groundtruth, SSAE was shown to have an improved F-measure 84.49% and an average area under Precision-Recall curve (AveP) 78.83%. The SSAE approach also out-performed 9 other state of the art nuclear detection strategies. PMID:26208307

  11. Development of Ultrasound Tomography for Breast Imaging: Technical Assessment

    SciTech Connect

    Duric, N; Littrup, P; Babkin, A; Chambers, D; Azevedo, S; Arkady, K; Pevzner, R; Tokarev, M; Holsapple, E

    2004-09-30

    Ultrasound imaging is widely used in medicine because of its benign characteristics and real-time capabilities. Physics theory suggests that the application of tomographic techniques may allow ultrasound imaging to reach its full potential as a diagnostic tool allowing it to compete with other tomographic modalities such as X-ray CT and MRI. This paper describes the construction and use of a prototype tomographic scanner and reports on the feasibility of implementing tomographic theory in practice and the potential of US tomography in diagnostic imaging. Data were collected with the prototype by scanning two types of phantoms and a cadaveric breast. A specialized suite of algorithms was developed and utilized to construct images of reflectivity and sound speed from the phantom data. The basic results can be summarized as follows: (1) A fast, clinically relevant US tomography scanner can be built using existing technology. (2) The spatial resolution, deduced from images of reflectivity, is 0.4 mm. The demonstrated 10 cm depth-of-field is superior to that of conventional ultrasound and the image contrast is improved through the reduction of speckle noise and overall lowering of the noise floor. (3) Images of acoustic properties such as sound speed suggest that it is possible to measure variations in the sound speed of 5 m/s. An apparent correlation with X-ray attenuation suggests that the sound speed can be used to discriminate between various types of soft tissue. (4) Ultrasound tomography has the potential to improve diagnostic imaging in relation to breast cancer detection.

  12. 3.0 Tesla vs 1.5 Tesla breast magnetic resonance imaging in newly diagnosed breast cancer patients

    PubMed Central

    Butler, Reni S; Chen, Christine; Vashi, Reena; Hooley, Regina J; Philpotts, Liane E

    2013-01-01

    AIM: To compare 3.0 Tesla (T) vs 1.5T magnetic resonance (MR) imaging systems in newly diagnosed breast cancer patients. METHODS: Upon Institutional Review Board approval, a Health Insurance Portability and Accountability Act-compliant retrospective review of 147 consecutive 3.0T MR examinations and 98 consecutive 1.5T MR examinations in patients with newly diagnosed breast cancer between 7/2009 and 5/2010 was performed. Eleven patients who underwent neoadjuvant chemotherapy in the 3.0T group were excluded. Mammographically occult suspicious lesions (BIRADS Code 4 and 5) additional to the index cancer in the ipsilateral and contralateral breast were identified. Lesion characteristics and pathologic diagnoses were recorded, and results achieved with both systems compared. Statistical significance was analyzed using Fisher’s exact test. RESULTS: In the 3.0T group, 206 suspicious lesions were identified in 55% (75/136) of patients and 96% (198/206) of these lesions were biopsied. In the 1.5T group, 98 suspicious lesions were identified in 53% (52/98) of patients and 90% (88/98) of these lesions were biopsied. Biopsy results yielded additional malignancies in 24% of patients in the 3.0T group vs 14% of patients in the 1.5T group (33/136 vs 14/98, P = 0.07). Average size and histology of the additional cancers was comparable. Of patients who had a suspicious MR imaging study, additional cancers were found in 44% of patients in the 3.0T group vs 27% in the 1.5T group (33/75 vs 14/52, P = 0.06), yielding a higher positive predictive value (PPV) for biopsies performed with the 3.0T system. CONCLUSION: 3.0T MR imaging detected more additional malignancies in patients with newly diagnosed breast cancer and yielded a higher PPV for biopsies performed with the 3.0T system. PMID:24003354

  13. Anatomy of the lactating human breast redefined with ultrasound imaging

    PubMed Central

    Ramsay, DT; Kent, JC; Hartmann, RA; Hartman, PE

    2005-01-01

    The aim of this study was to use ultrasound imaging to re-investigate the anatomy of the lactating breast. The breasts of 21 fully lactating women (1–6 months post partum) were scanned using an ACUSON XP10 (5–10 MHz linear array probe). The number of main ducts was measured, ductal morphology was determined, and the distribution of glandular and adipose tissue was recorded. Milk ducts appeared as hypoechoic tubular structures with echogenic walls that often contained echoes. Ducts were easily compressed and did not display typical sinuses. All ducts branched within the areolar radius, the first branch occurring 8.0 ± 5.5 mm from the nipple. Duct diameter was 1.9 ± 0.6 mm, 2.0 ± 90.7 mm and the number of main ducts was 9.6 ± 2.9, 9.2 ± 2.9, for left and right breast, respectively. Milk ducts are superficial, easily compressible and echoes within the duct represent fat globules in breastmilk. The low number and size of the ducts, the rapid branching under the areola and the absence of sinuses suggest that ducts transport breastmilk, rather than store it. The distribution of adipose and glandular tissue showed wide variation between women but not between breasts within women. The proportion of glandular and fat tissue and the number and size of ducts were not related to milk production. This study highlights inconsistencies in anatomical literature that impact on breast physiology, breastfeeding management and ultrasound assessment. PMID:15960763

  14. Medical imaging systems

    SciTech Connect

    Frangioni, John V

    2012-07-24

    A medical imaging system provides simultaneous rendering of visible light and fluorescent images. The system may employ dyes in a small-molecule form that remains in a subject's blood stream for several minutes, allowing real-time imaging of the subject's circulatory system superimposed upon a conventional, visible light image of the subject. The system may also employ dyes or other fluorescent substances associated with antibodies, antibody fragments, or ligands that accumulate within a region of diagnostic significance. In one embodiment, the system provides an excitation light source to excite the fluorescent substance and a visible light source for general illumination within the same optical guide that is used to capture images. In another embodiment, the system is configured for use in open surgical procedures by providing an operating area that is closed to ambient light. More broadly, the systems described herein may be used in imaging applications where a visible light image may be usefully supplemented by an image formed from fluorescent emissions from a fluorescent substance that marks areas of functional interest.

  15. Beamforming-Enhanced Inverse Scattering for Microwave Breast Imaging.

    PubMed

    Burfeindt, Matthew J; Shea, Jacob D; Van Veen, Barry D; Hagness, Susan C

    2014-10-01

    We present a focal-beamforming-enhanced formulation of the distorted Born iterative method (DBIM) for microwave breast imaging. Incorporating beamforming into the imaging algorithm has the potential to mitigate the effect of noise on the image reconstruction. We apply the focal-beamforming-enhanced DBIM algorithm to simulated array measurements from two MRI-derived, anatomically realistic numerical breast phantoms and compare its performance to that of the DBIM formulated with two non-focal schemes. The first scheme simply averages scattered field data from reciprocal antenna pairs while the second scheme discards reciprocal pairs. Images of the dielectric properties are reconstructed for signal-to-noise ratios (SNR) ranging from 35 dB down to 0 dB. We show that, for low SNR, the focal beamforming algorithm creates reconstructions that are of higher fidelity with respect to the exact dielectric profiles of the phantoms as compared to reconstructions created using the non-focal schemes. At high SNR, the focal and non-focal reconstructions are of comparable quality.

  16. Beamforming-Enhanced Inverse Scattering for Microwave Breast Imaging

    PubMed Central

    Burfeindt, Matthew J.; Shea, Jacob D.; Van Veen, Barry D.; Hagness, Susan C.

    2015-01-01

    We present a focal-beamforming-enhanced formulation of the distorted Born iterative method (DBIM) for microwave breast imaging. Incorporating beamforming into the imaging algorithm has the potential to mitigate the effect of noise on the image reconstruction. We apply the focal-beamforming-enhanced DBIM algorithm to simulated array measurements from two MRI-derived, anatomically realistic numerical breast phantoms and compare its performance to that of the DBIM formulated with two non-focal schemes. The first scheme simply averages scattered field data from reciprocal antenna pairs while the second scheme discards reciprocal pairs. Images of the dielectric properties are reconstructed for signal-to-noise ratios (SNR) ranging from 35 dB down to 0 dB. We show that, for low SNR, the focal beamforming algorithm creates reconstructions that are of higher fidelity with respect to the exact dielectric profiles of the phantoms as compared to reconstructions created using the non-focal schemes. At high SNR, the focal and non-focal reconstructions are of comparable quality. PMID:26663930

  17. A milestone-based approach to breast imaging instruction for residents.

    PubMed

    Harvey, Jennifer A; Nicholson, Brandi T; Rochman, Carrie M; Peppard, Heather R; Pease, Clinton S; DeMartini, Nicholas A

    2014-06-01

    Residency is historically an apprenticeship, learning through observation and instruction with varying degrees of structure. Since July 2013, the Next Accreditation System (NAS) of the ACGME has required the use of progressive milestones for each radiology residency rotation. The authors describe how a breast imaging curriculum can be structured to comply with the NAS. The breast imaging rotations move from basic recognition and management of suspicious findings, through the detection of more subtle findings and learning of biopsy skills, and finally to the synthesis and management of more advanced findings. Likewise, patient communication moves from sharing imaging findings to the more challenging situation of breaking the bad news of a cancer diagnosis. This progression of skills mirrors the objectives of levels 1 to 4 of the NAS. Learning objectives have been adapted to form very specific milestones for each rotation, which results in a shared responsibility between residents and faculty members. Using clear expectations may improve the uniformity of teaching, resident satisfaction, and facilitate performance review for residents who are struggling. Didactic lectures, case-based conferences, teaching file cases, and assigned readings provide different approaches to education, allowing variation in learning styles. Performance on the breast imaging section on the ACR Diagnostic Radiology In-Training examination at our institution has risen from below the 50th percentile to around the 80th percentile beginning in 2011.

  18. Fourier domain image fusion for differential X-ray phase-contrast breast imaging.

    PubMed

    Coello, Eduardo; Sperl, Jonathan I; Bequé, Dirk; Benz, Tobias; Scherer, Kai; Herzen, Julia; Sztrókay-Gaul, Anikó; Hellerhoff, Karin; Pfeiffer, Franz; Cozzini, Cristina; Grandl, Susanne

    2017-04-01

    X-Ray Phase-Contrast (XPC) imaging is a novel technology with a great potential for applications in clinical practice, with breast imaging being of special interest. This work introduces an intuitive methodology to combine and visualize relevant diagnostic features, present in the X-ray attenuation, phase shift and scattering information retrieved in XPC imaging, using a Fourier domain fusion algorithm. The method allows to present complementary information from the three acquired signals in one single image, minimizing the noise component and maintaining visual similarity to a conventional X-ray image, but with noticeable enhancement in diagnostic features, details and resolution. Radiologists experienced in mammography applied the image fusion method to XPC measurements of mastectomy samples and evaluated the feature content of each input and the fused image. This assessment validated that the combination of all the relevant diagnostic features, contained in the XPC images, was present in the fused image as well.

  19. Time-domain microwave breast cancer detection: extensive system testing with phantoms.

    PubMed

    Porter, Emily; Santorelli, Adam; Coates, Mark; Popovic, Milica

    2013-04-01

    Early detection of breast cancer is known to be a key factor in the successful treatment of the disease. Here, we present a detection technique complementary to the currently used modalities (primarily mammography, ultrasound and magnetic resonance imaging). Our time-domain breast cancer detection system transmits microwave-range pulses into the breast and records the scattering off of the breast in order to detect malignancies. This method is made possible by an intrinsic contrast in the dielectric parameters, specifically the relative permittivity and conductivity, of the healthy and malignant breast tissues over the microwave frequency range. The long-term goal of our work is to develop a system that can be used periodically to monitor for unusual changes in breast tissues; for instance, healthy breasts would be scanned, and follow-up scans at regular intervals would detect any small changes in breast tissue composition that could indicate the presence of a malignant growth. At that point, the patient would be referred to see a doctor for further investigation of the abnormal results. Such a system would compare each new scan with previous ones to determine the level of tissue changes, and would be used by patients at home. We report feasibility and performance tests for our initial system, conducted with breast phantoms made up of tissue-mimicking materials (unique skin, fat, gland and tumor mixtures). We initiated the system testing with simple homogeneous phantoms, consisting solely of adipose tissue. Then, we extended our tests to cases of increasing complexity by adding a skin layer and varying percentages of glandular structures and tumor sizes. In order to optimize the experimental system, we performed tests with multiple antenna arrangements, tumor sizes and locations. This work shows that there are specific antenna arrangements that are advantageous for tumor detection and demonstrates the capabilities of our time-domain microwave breast tumor detection

  20. Magnetic resonance guided optical spectroscopy imaging of human breast cancer using a combined frequency domain and continuous wave approach

    NASA Astrophysics Data System (ADS)

    Mastanduno, Michael A.; Davis, Scott C.; Jiang, Shudong; diFlorio-Alexander, Roberta; Pogue, Brian W.; Paulsen, Keith D.

    2012-03-01

    Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is used to image high-risk patients for breast cancer because of its higher sensitivity to tumors (approaching 100%) than traditional x-ray mammography. We focus on Near Infrared Spectroscopy (NIRS) as an emerging functional and molecular imaging technique that non-invasively quantifies optical properties of total hemoglobin, oxygen saturation, water content, scattering, and lipid concentration to increase the relatively low specificity of DCE-MRI. Our optical imaging system combines six frequency domain wavelengths, measured using PMT detectors with three continuous wave wavelengths measured using CCD/spectrometers. We present methods on combining the synergistic attributes of DCE-MR and NIRS for in-vivo imaging of breast cancer in three dimensions using a custom optical MR breast coil and diffusion based light modeling software, NIRFAST. We present results from phantom studies, healthy subjects, and breast cancer patients. Preliminary results show contrast recovery within 10% in phantoms and spatial resolution less than 5mm. Images from healthy subjects were recovered with properties similar to literature values and previous studies. Patient images have shown elevated total hemoglobin values and water fraction, agreeing with histology and previous results. The additional information gained from NIRS may improve the ability to distinguish between malignant and benign lesions during MR imaging. These dual modality instruments will provide complex anatomical and molecular prognostic information, and may decrease the number of biopsies, thereby improving patient care.

  1. Automated planning of breast radiotherapy using cone beam CT imaging

    SciTech Connect

    Amit, Guy; Purdie, Thomas G.

    2015-02-15

    Purpose: Develop and clinically validate a methodology for using cone beam computed tomography (CBCT) imaging in an automated treatment planning framework for breast IMRT. Methods: A technique for intensity correction of CBCT images was developed and evaluated. The technique is based on histogram matching of CBCT image sets, using information from “similar” planning CT image sets from a database of paired CBCT and CT image sets (n = 38). Automated treatment plans were generated for a testing subset (n = 15) on the planning CT and the corrected CBCT. The plans generated on the corrected CBCT were compared to the CT-based plans in terms of beam parameters, dosimetric indices, and dose distributions. Results: The corrected CBCT images showed considerable similarity to their corresponding planning CTs (average mutual information 1.0±0.1, average sum of absolute differences 185 ± 38). The automated CBCT-based plans were clinically acceptable, as well as equivalent to the CT-based plans with average gantry angle difference of 0.99°±1.1°, target volume overlap index (Dice) of 0.89±0.04 although with slightly higher maximum target doses (4482±90 vs 4560±84, P < 0.05). Gamma index analysis (3%, 3 mm) showed that the CBCT-based plans had the same dose distribution as plans calculated with the same beams on the registered planning CTs (average gamma index 0.12±0.04, gamma <1 in 99.4%±0.3%). Conclusions: The proposed method demonstrates the potential for a clinically feasible and efficient online adaptive breast IMRT planning method based on CBCT imaging, integrating automation.

  2. Association between power law coefficients of the anatomical noise power spectrum and lesion detectability in breast imaging modalities

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Abbey, Craig K.; Boone, John M.

    2013-03-01

    Previous research has demonstrated that a parameter extracted from a power function fit to the anatomical noise power spectrum, β, may be predictive of breast mass lesion detectability in x-ray based medical images of the breast. In this investigation, the value of β was compared with a number of other more widely used parameters, in order to determine the relationship between β and these other parameters. This study made use of breast CT data sets, acquired on two breast CT systems developed in our laboratory. A total of 185 breast data sets in 183 women were used, and only the unaffected breast was used (where no lesion was suspected). The anatomical noise power spectrum computed from two-dimensional region of interests (ROIs), was fit to a power function (NPS(f) = α f-β), and the exponent parameter (β) was determined using log/log linear regression. Breast density for each of the volume data sets was characterized in previous work. The breast CT data sets analyzed in this study were part of a previous study which evaluated the receiver operating characteristic (ROC) curve performance using simulated spherical lesions and a pre-whitened matched filter computer observer. This ROC information was used to compute the detectability index as well as the sensitivity at 95% specificity. The fractal dimension was computed from the same ROIs which were used for the assessment of β. The value of β was compared to breast density, detectability index, sensitivity, and fractal dimension, and the slope of these relationships was investigated to assess statistical significance from zero slope. A statistically significant non-zero slope was considered to be a positive association in this investigation. All comparisons between β and breast density, detectability index, sensitivity at 95% specificity, and fractal dimension demonstrated statistically significant association with p < 0.001 in all cases. The value of β was also found to be associated with patient age and

  3. Sensitivity of imaging for multifocal-multicentric breast carcinoma

    PubMed Central

    Bozzini, Anna; Renne, Giuseppe; Meneghetti, Lorenza; Bandi, Giuseppe; Santos, Gabriela; Vento, Anna Rita; Menna, Simona; Andrighetto, Stefania; Viale, Giuseppe; Cassano, Enrico; Bellomi, Massimo

    2008-01-01

    Background This retrospective study aims to determine: 1) the sensitivity of preoperative mammography (Mx) and ultrasound (US), and re-reviewed Mx to detect multifocal multicentric breast carcinoma (MMBC), defined by pathology on surgical specimens, and 2) to analyze the characteristics of both detected and undetected foci on Mx and US. Methods Three experienced breast radiologists re-reviewed, independently, digital mammography of 97 women with MMBC pathologically diagnosed on surgical specimens. The radiologists were informed of all neoplastic foci, and blinded to the original mammograms and US reports. With regards to Mx, they considered the breast density, number of foci, the Mx characteristics of the lesions and their BI-RADS classification. For US, they considered size of the lesions, BI-RADS classification and US pattern and lesion characteristics. According to the histological size, the lesions were classified as: index cancer, 2nd lesion, 3rd lesion, and 4th lesion. Any pathologically identified malignant foci not previously described in the original imaging reports, were defined as undetected or missed lesions. Sensitivity was calculated for Mx, US and re-reviewed Mx for detecting the presence of the index cancer as well as additional satellite lesions. Results Pathological examination revealed 13 multifocal and 84 multicentric cancers with a total of 303 malignant foci (282 invasive and 21 non invasive). Original Mx and US reports had an overall sensitivity of 45.5% and 52.9%, respectively. Mx detected 83/97 index cancers with a sensitivity of 85.6%. The number of lesions undetected by original Mx was 165/303. The Mx pattern of breasts with undetected lesions were: fatty in 3 (1.8%); scattered fibroglandular density in 40 (24.3%), heterogeneously dense in 91 (55.1%) and dense in 31 (18.8%) cases. In breasts with an almost entirely fatty pattern, Mx sensitivity was 100%, while in fibroglandular or dense pattern it was reduced to 45.5%. Re-reviewed Mx

  4. Spaceborne electronic imaging systems

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Criteria and recommended practices for the design of the spaceborne elements of electronic imaging systems are presented. A spaceborne electronic imaging system is defined as a device that collects energy in some portion of the electromagnetic spectrum with detector(s) whose direct output is an electrical signal that can be processed (using direct transmission or delayed transmission after recording) to form a pictorial image. This definition encompasses both image tube systems and scanning point-detector systems. The intent was to collect the design experience and recommended practice of the several systems possessing the common denominator of acquiring images from space electronically and to maintain the system viewpoint rather than pursuing specialization in devices. The devices may be markedly different physically, but each was designed to provide a particular type of image within particular limitations. Performance parameters which determine the type of system selected for a given mission and which influence the design include: Sensitivity, Resolution, Dynamic range, Spectral response, Frame rate/bandwidth, Optics compatibility, Image motion, Radiation resistance, Size, Weight, Power, and Reliability.

  5. Surface scanning through a cylindrical tank of coupling fluid for clinical microwave breast imaging exams

    SciTech Connect

    Pallone, Matthew J.; Meaney, Paul M.; Paulsen, Keith D.

    2012-06-15

    Purpose: Microwave tomographic image quality can be improved significantly with prior knowledge of the breast surface geometry. The authors have developed a novel laser scanning system capable of accurately recovering surface renderings of breast-shaped phantoms immersed within a cylindrical tank of coupling fluid which resides completely external to the tank (and the aqueous environment) and overcomes the challenges associated with the optical distortions caused by refraction from the air, tank wall, and liquid bath interfaces. Methods: The scanner utilizes two laser line generators and a small CCD camera mounted concentrically on a rotating gantry about the microwave imaging tank. Various calibration methods were considered for optimizing the accuracy of the scanner in the presence of the optical distortions including traditional ray tracing and image registration approaches. In this paper, the authors describe the construction and operation of the laser scanner, compare the efficacy of several calibration methods-including analytical ray tracing and piecewise linear, polynomial, locally weighted mean, and thin-plate-spline (TPS) image registrations-and report outcomes from preliminary phantom experiments. Results: The results show that errors in calibrating camera angles and position prevented analytical ray tracing from achieving submillimeter accuracy in the surface renderings obtained from our scanner configuration. Conversely, calibration by image registration reliably attained mean surface errors of less than 0.5 mm depending on the geometric complexity of the object scanned. While each of the image registration approaches outperformed the ray tracing strategy, the authors found global polynomial methods produced the best compromise between average surface error and scanner robustness. Conclusions: The laser scanning system provides a fast and accurate method of three dimensional surface capture in the aqueous environment commonly found in microwave breast

  6. Surface scanning through a cylindrical tank of coupling fluid for clinical microwave breast imaging exams

    PubMed Central

    Pallone, Matthew J.; Meaney, Paul M.; Paulsen, Keith D.

    2012-01-01

    Purpose: Microwave tomographic image quality can be improved significantly with prior knowledge of the breast surface geometry. The authors have developed a novel laser scanning system capable of accurately recovering surface renderings of breast-shaped phantoms immersed within a cylindrical tank of coupling fluid which resides completely external to the tank (and the aqueous environment) and overcomes the challenges associated with the optical distortions caused by refraction from the air, tank wall, and liquid bath interfaces. Methods: The scanner utilizes two laser line generators and a small CCD camera mounted concentrically on a rotating gantry about the microwave imaging tank. Various calibration methods were considered for optimizing the accuracy of the scanner in the presence of the optical distortions including traditional ray tracing and image registration approaches. In this paper, the authors describe the construction and operation of the laser scanner, compare the efficacy of several calibration methods—including analytical ray tracing and piecewise linear, polynomial, locally weighted mean, and thin-plate-spline (TPS) image registrations—and report outcomes from preliminary phantom experiments. Results: The results show that errors in calibrating camera angles and position prevented analytical ray tracing from achieving submillimeter accuracy in the surface renderings obtained from our scanner configuration. Conversely, calibration by image registration reliably attained mean surface errors of less than 0.5 mm depending on the geometric complexity of the object scanned. While each of the image registration approaches outperformed the ray tracing strategy, the authors found global polynomial methods produced the best compromise between average surface error and scanner robustness. Conclusions: The laser scanning system provides a fast and accurate method of three dimensional surface capture in the aqueous environment commonly found in microwave

  7. Nuclear medicine imaging system

    DOEpatents

    Bennett, G.W.; Brill, A.B.; Bizais, Y.J.C.; Rowe, R.W.; Zubal, I.G.

    1983-03-11

    It is an object of this invention to provide a nuclear imaging system having the versatility to do positron annihilation studies, rotating single or opposed camera gamma emission studies, and orthogonal gamma emission studies. It is a further object of this invention to provide an imaging system having the capability for orthogonal dual multipinhole tomography. It is another object of this invention to provide a nuclear imaging system in which all available energy data, as well as patient physiological data, are acquired simultaneously in list mode.

  8. Imaging the lymphatic system.

    PubMed

    Munn, Lance L; Padera, Timothy P

    2014-11-01

    Visualization of the lymphatic system is clinically necessary during diagnosis or treatment of many conditions and diseases; it is used for identifying and monitoring lymphedema, for detecting metastatic lesions during cancer staging and for locating lymphatic structures so they can be spared during surgical procedures. Imaging lymphatic anatomy and function also plays an important role in experimental studies of lymphatic development and function, where spatial resolution and accessibility are better. Here, we review technologies for visualizing and imaging the lymphatic system for clinical applications. We then describe the use of lymphatic imaging in experimental systems as well as some of the emerging technologies for improving these methodologies.

  9. Multisensor Image Analysis System

    DTIC Science & Technology

    1993-04-15

    AD-A263 679 II Uli! 91 Multisensor Image Analysis System Final Report Authors. Dr. G. M. Flachs Dr. Michael Giles Dr. Jay Jordan Dr. Eric...or decision, unless so designated by other documentation. 93-09739 *>ft s n~. now illlllM3lMVf Multisensor Image Analysis System Final...Multisensor Image Analysis System 3. REPORT TYPE AND DATES COVERED FINAL: LQj&tt-Z JZOfVL 5. FUNDING NUMBERS 93 > 6. AUTHOR(S) Drs. Gerald

  10. Quantitative luminescence imaging system

    DOEpatents

    Erwin, D.N.; Kiel, J.L.; Batishko, C.R.; Stahl, K.A.

    1990-08-14

    The QLIS images and quantifies low-level chemiluminescent reactions in an electromagnetic field. It is capable of real time nonperturbing measurement and simultaneous recording of many biochemical and chemical reactions such as luminescent immunoassays or enzyme assays. The system comprises image transfer optics, a low-light level digitizing camera with image intensifying microchannel plates, an image process or, and a control computer. The image transfer optics may be a fiber image guide with a bend, or a microscope, to take the light outside of the RF field. Output of the camera is transformed into a localized rate of cumulative digitalized data or enhanced video display or hard-copy images. The system may be used as a luminescent microdosimetry device for radiofrequency or microwave radiation, as a thermal dosimeter, or in the dosimetry of ultra-sound (sonoluminescence) or ionizing radiation. It provides a near-real-time system capable of measuring the extremely low light levels from luminescent reactions in electromagnetic fields in the areas of chemiluminescence assays and thermal microdosimetry, and is capable of near-real-time imaging of the sample to allow spatial distribution analysis of the reaction. It can be used to instrument three distinctly different irradiation configurations, comprising (1) RF waveguide irradiation of a small Petri-dish-shaped sample cell, (2) RF irradiation of samples in a microscope for the microscopic imaging and measurement, and (3) RF irradiation of small to human body-sized samples in an anechoic chamber. 22 figs.

  11. Quantitative luminescence imaging system

    DOEpatents

    Erwin, David N.; Kiel, Johnathan L.; Batishko, Charles R.; Stahl, Kurt A.

    1990-01-01

    The QLIS images and quantifies low-level chemiluminescent reactions in an electromagnetic field. It is capable of real time nonperturbing measurement and simultaneous recording of many biochemical and chemical reactions such as luminescent immunoassays or enzyme assays. The system comprises image transfer optics, a low-light level digitizing camera with image intensifying microchannel plates, an image process or, and a control computer. The image transfer optics may be a fiber image guide with a bend, or a microscope, to take the light outside of the RF field. Output of the camera is transformed into a localized rate of cumulative digitalized data or enhanced video display or hard-copy images. The system may be used as a luminescent microdosimetry device for radiofrequency or microwave radiation, as a thermal dosimeter, or in the dosimetry of ultra-sound (sonoluminescence) or ionizing radiation. It provides a near-real-time system capable of measuring the extremely low light levels from luminescent reactions in electromagnetic fields in the areas of chemiluminescence assays and thermal microdosimetry, and is capable of near-real-time imaging of the sample to allow spatial distribution analysis of the reaction. It can be used to instrument three distinctly different irradiation configurations, comprising (1) RF waveguide irradiation of a small Petri-dish-shaped sample cell, (2) RF irradiation of samples in a microscope for the microscopie imaging and measurement, and (3) RF irradiation of small to human body-sized samples in an anechoic chamber.

  12. Real-Time Intraoperative Detection of Breast Cancer using Near-infrared Fluorescence Imaging and Methylene Blue

    PubMed Central

    Tummers, Quirijn R.J.G.; Verbeek, Floris P.R.; Schaafsma, Boudewijn E.; Boonstra, Martin C.; van der Vorst, Joost R.; Liefers, Gerrit-Jan; van de Velde, Cornelis J.H.; Frangioni, John V.; Vahrmeijer, Alexander L.

    2014-01-01

    Background Despite recent developments in preoperative breast cancer imaging, intraoperative localization of tumor tissue can be challenging, resulting in tumor-positive resection margins during breast-conserving surgery. Based on certain physicochemical similarities between Technetium(99mTc)-sestamibi (MIBI), a SPECT radiodiagnostic with a sensitivity of 83–90% to detect breast cancer preoperatively, and the near-infrared (NIR) fluorophore Methylene Blue (MB), we hypothesized that MB might detect breast cancer intraoperatively using NIR fluorescence imaging. Methods Twenty-four patients with breast cancer, planned for surgical resection, were included. Patients were divided in 2 administration groups, which differed with respect to the timing of MB administration. N = 12 patients per group were administered 1.0 mg/kg MB intravenously either immediately or 3 h before surgery. The mini-FLARE imaging system was used to identify the NIR fluorescent signal during surgery and on post-resected specimens transferred to the pathology department. Results were confirmed by NIR fluorescence microscopy. Results 20/24 (83%) of breast tumors (carcinoma in N=21 and ductal carcinoma in situ in N=3) were identified in the resected specimen using NIR fluorescence imaging. Patients with non-detectable tumors were significantly older. No significant relation to receptor status or tumor grade was seen. Overall tumor-to-background ratio (TBR) was 2.4 ± 0.8. There was no significant difference between TBR and background signal between administration groups. In 2/4 patients with positive resection margins, breast cancer tissue identified in the wound bed during surgery would have changed surgical management. Histology confirmed the concordance of fluorescence signal and tumor tissue. Conclusions This feasibility study demonstrated an overall breast cancer identification rate using MB of 83%, with real-time intraoperative guidance having the potential to alter patient management. PMID

  13. Evaluation of x-ray diffraction enhanced imaging in the diagnosis of breast cancer.

    PubMed

    Liu, Chenglin; Yan, Xiaohui; Zhang, Xinyi; Yang, Wentao; Peng, Weijun; Shi, Daren; Zhu, Peiping; Huang, Wanxia; Yuan, Qingxi

    2007-01-21

    The significance of the x-ray diffraction enhanced imaging (DEI) technique in the diagnosis of breast cancer and its feasibility in clinical medical imaging are evaluated. Different massive specimens including normal breast tissues, benign breast tumour tissues and malignant breast tumour tissues are imaged with the DEI method. The images are recorded respectively by CCD or x-ray film at different positions of the rocking curve and processed with a pixel-by-pixel algorithm. The characteristics of the DEI images about the normal and diseased tissues are compared. The rocking curves of a double-crystal diffractometer with various tissues are also studied. The differences in DEI images and their rocking curves are evaluated for early diagnosis of breast cancers.

  14. Measurement of pressure-displacement kinetics of hemoglobin in normal breast tissue with near-infrared spectral imaging

    PubMed Central

    Jiang, Shudong; Pogue, Brian W.; Laughney, Ashley M.; Kogel, Christine A.; Paulsen, Keith D.

    2009-01-01

    Applying localized external displacement to the breast surface can change the interstitial fluid pressure such that regional transient microvascular changes occur in oxygenation and vascular volume. Imaging these dynamic responses over time, while different pressures are applied, could provide selective temporal contrast for cancer relative to the surrounding normal breast. In order to investigate this possibility in normal breast tissue, a near-infrared spectral tomography system was developed that can simultaneously acquire data at three wavelengths with a 15 s time resolution per scan. The system was tested first with heterogeneous blood phantoms. Changes in regional blood concentrations were found to be linearly related to recovered mean hemoglobin concentration (HbT) values (R2 = 0.9). In a series of volunteer breast imaging exams, data from 17 asymptomatic subjects were acquired under increasing and decreasing breast compression. Calculations show that a 10 mm displacement applied to the breast results in surface pressures in the range of 0–55 kPa depending on breast density. The recovered human data indicate that HbT was reduced under compression and the normalized change was significantly correlated to the applied pressure with a p value of 0.005. The maximum HbT decreases in breast tissue were associated with body mass index (BMI), which is a surrogate indicator of breast density. No statistically valid correlations were found between the applied pressure and the changes in tissue oxygen saturation (StO2) or water percentage (H2O) across the range of BMI values studied. PMID:19340100

  15. Measurement of pressure-displacement kinetics of hemoglobin in normal breast tissue with near-infrared spectral imaging

    SciTech Connect

    Jiang, Shudong; Pogue, Brian W.; Laughney, Ashley M.; Kogel, Christine A.; Paulsen, Keith D

    2009-04-01

    Applying localized external displacement to the breast surface can change the interstitial fluid pressure such that regional transient microvascular changes occur in oxygenation and vascular volume. Imaging these dynamic responses over time, while different pressures are applied, could provide selective temporal contrast for cancer relative to the surrounding normal breast. In order to investigate this possibility in normal breast tissue, a near-infrared spectral tomography system was developed that can simultaneously acquire data at three wavelengths with a 15 s time resolution per scan. The system was tested first with heterogeneous blood phantoms. Changes in regional blood concentrations were found to be linearly related to recovered mean hemoglobin concentration (HbT) values (R{sup 2}=0.9). In a series of volunteer breast imaging exams, data from 17 asymptomatic subjects were acquired under increasing and decreasing breast compression. Calculations show that a 10 mm displacement applied to the breast results in surface pressures in the range of 0-55 kPa depending on breast density. The recovered human data indicate that HbT was reduced under compression and the normalized change was significantly correlated to the applied pressure with a p value of 0.005. The maximum HbT decreases in breast tissue were associated with body mass index (BMI), which is a surrogate indicator of breast density. No statistically valid correlations were found between the applied pressure and the changes in tissue oxygen saturation (StO2) or water percentage (H2O) across the range of BMI values studied.

  16. Breast Imaging in the Era of Big Data: Structured Reporting and Data Mining

    PubMed Central

    Margolies, Laurie R.; Pandey, Gaurav; Horowitz, Eliot R.; Mendelson, David S.

    2016-01-01

    OBJECTIVE The purpose of this article is to describe structured reporting and the development of large databases for use in data mining in breast imaging. CONCLUSION The results of millions of breast imaging examinations are reported with structured tools based on the BI-RADS lexicon. Much of these data are stored in accessible media. Robust computing power creates great opportunity for data scientists and breast imagers to collaborate to improve breast cancer detection and optimize screening algorithms. Data mining can create knowledge, but the questions asked and their complexity require extremely powerful and agile databases. New data technologies can facilitate outcomes research and precision medicine. PMID:26587797

  17. Measurements of system sharpness for two digital breast tomosynthesis systems

    NASA Astrophysics Data System (ADS)

    Marshall, N. W.; Bosmans, H.

    2012-11-01

    The aim of this work was to propose system sharpness parameters for digital breast tomosynthesis (DBT) systems that include the influence of focus size and focus motion for use in quality assurance protocols. X-ray focus size was measured using a multiple pinhole test object, while detector presampling modulation transfer function (MTF) was measured from projection images of a 10 cm × 10 cm, 1 mm thick steel edge, for the Siemens Inspiration and Hologic Selenia Dimensions DBT systems. The height of the edge above the table was then varied from 1 to 78 mm. The MTF expected from theory for the projection images was calculated from the measured detector MTF, focus size MTF and focus motion MTF and was compared against measured curves. Two methods were used to measure the in-plane MTF in the DBT volume: a tungsten wire of diameter 25 µm and an Al edge 0.2 mm thick, both imaged with a 15 mm thick poly(methyl methacrylate) (PMMA) plate. The in-depth point spread function (PSF) was measured using an angled tungsten wire. The full 3D MTF was estimated with a 0.5 mm diameter aluminium bead held in a 45 mm thick PMMA phantom, with the bead 15 and 65 mm above the table. Inspiration DBT projection images are saved at native detector resolution (85 µm), while the Dimensions re-bins projections to 140 µm pixels (2 × 2 binning); both systems used 2 × 2 binning of projection data before reconstruction. The 50% point for the MTF (MTF0.50) measured in the DBT projection images for the tube-travel direction fell as a function of height above the table from 3.60 to 0.90 mm-1 for the Inspiration system and from 2.50 to 1.20 mm-1 for the Dimensions unit. The maximum deviation of measured MTF0.50 from the calculated value was 13%. MTF0.50 measured in-plane (tube-travel direction) fell as a function of height above the table from 1.66 to 0.97 mm-1 for the Inspiration system and from 2.21 to 1.31 mm-1 for the Dimensions system. The full-width half-maximum for the in-depth PSF was 3

  18. Measurements of system sharpness for two digital breast tomosynthesis systems.

    PubMed

    Marshall, N W; Bosmans, H

    2012-11-21

    The aim of this work was to propose system sharpness parameters for digital breast tomosynthesis (DBT) systems that include the influence of focus size and focus motion for use in quality assurance protocols. X-ray focus size was measured using a multiple pinhole test object, while detector presampling modulation transfer function (MTF) was measured from projection images of a 10 cm × 10 cm, 1 mm thick steel edge, for the Siemens Inspiration and Hologic Selenia Dimensions DBT systems. The height of the edge above the table was then varied from 1 to 78 mm. The MTF expected from theory for the projection images was calculated from the measured detector MTF, focus size MTF and focus motion MTF and was compared against measured curves. Two methods were used to measure the in-plane MTF in the DBT volume: a tungsten wire of diameter 25 µm and an Al edge 0.2 mm thick, both imaged with a 15 mm thick poly(methyl methacrylate) (PMMA) plate. The in-depth point spread function (PSF) was measured using an angled tungsten wire. The full 3D MTF was estimated with a 0.5 mm diameter aluminium bead held in a 45 mm thick PMMA phantom, with the bead 15 and 65 mm above the table. Inspiration DBT projection images are saved at native detector resolution (85 µm), while the Dimensions re-bins projections to 140 µm pixels (2 × 2 binning); both systems used 2 × 2 binning of projection data before reconstruction. The 50% point for the MTF (MTF(0.50)) measured in the DBT projection images for the tube-travel direction fell as a function of height above the table from 3.60 to 0.90 mm(-1) for the Inspiration system and from 2.50 to 1.20 mm(-1) for the Dimensions unit. The maximum deviation of measured MTF(0.50) from the calculated value was 13%. MTF(0.50) measured in-plane (tube-travel direction) fell as a function of height above the table from 1.66 to 0.97 mm(-1) for the Inspiration system and from 2.21 to 1.31 mm(-1) for the Dimensions system. The full-width half-maximum for the in

  19. High-resolution breast tomography at high energy: a feasibility study of phase contrast imaging on a whole breast

    NASA Astrophysics Data System (ADS)

    Sztrókay, A.; Diemoz, P. C.; Schlossbauer, T.; Brun, E.; Bamberg, F.; Mayr, D.; Reiser, M. F.; Bravin, A.; Coan, P.

    2012-05-01

    Previous studies on phase contrast imaging (PCI) mammography have demonstrated an enhancement of breast morphology and cancerous tissue visualization compared to conventional imaging. We show here the first results of the PCI analyser-based imaging (ABI) in computed tomography (CT) mode on whole and large (>12 cm) tumour-bearing breast tissues. We demonstrate in this work the capability of the technique of working at high x-ray energies and producing high-contrast images of large and complex specimens. One entire breast of an 80-year-old woman with invasive ductal cancer was imaged using ABI-CT with monochromatic 70 keV x-rays and an area detector of 92×92 µm2 pixel size. Sagittal slices were reconstructed from the acquired data, and compared to corresponding histological sections. Comparison with conventional absorption-based CT was also performed. Five blinded radiologists quantitatively evaluated the visual aspects of the ABI-CT images with respect to sharpness, soft tissue contrast, tissue boundaries and the discrimination of different structures/tissues. ABI-CT excellently depicted the entire 3D architecture of the breast volume by providing high-resolution and high-contrast images of the normal and cancerous breast tissues. These results are an important step in the evolution of PCI-CT towards its clinical implementation.

  20. Measuring shape complexity of breast lesions on ultrasound images

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Zhang, Su; Chen, Yazhu; Li, Wenying; Chen, Yaqing

    2008-03-01

    The shapes of malignant breast tumors are more complex than the benign lesions due to their nature of infiltration into surrounding tissues. We investigated the efficacy of shape features and presented a method using polygon shape complexity to improve the discrimination of benign and malignant breast lesions on ultrasound. First, 63 lesions (32 benign and 31 malignant) were segmented by K-way normalized cut with the priori rules on the ultrasound images. Then, the shape measures were computed from the automatically extracted lesion contours. A polygon shape complexity measure (SCM) was introduced to characterize the complexity of breast lesion contour, which was calculated from the polygonal model of lesion contour. Three new statistical parameters were derived from the local integral invariant signatures to quantify the local property of the lesion contour. Receiver operating characteristic (ROC) analysis was carried on to evaluate the performance of each individual shape feature. SCM outperformed the other shape measures, the area under ROC curve (AUC) of SCM was 0.91, and the sensitivity of SCM could reach 0.97 with the specificity 0.66. The measures of shape feature and margin feature were combined in a linear discriminant classifier. The resubstitution and leave-one-out AUC of the linear discriminant classifier were 0.94 and 0.92, respectively. The distinguishing ability of SCM showed that it could be a useful index for the clinical diagnosis and computer-aided diagnosis to reduce the number of unnecessary biopsies.

  1. Detecting breast cancer using microwave imaging and stochastic optimization.

    PubMed

    Jeremic, Aleksandar; Khoshrowshahli, Elham

    2015-01-01

    Breast cancer detection is one of the most important problems in health care as it is second most frequent cancer according to WHO. Breast cancer is among cancers which are most probably curable, only if it is diagnosed at early stages. To this purpose it has been recently proposed that microwave imaging could be used as a cheaper and safer alternative to the commonly used combination of mammography. From a physical standpoint breast cancer can be modelled as a scatterer with a significantly (tenfold) larger conductivity than a healthy tissue. In our previous work we proposed a maximum likelihood based method for detection of cancer which estimates the unknown parameters by minimizing the residual error vector assuming that the error can be modelled as a multivariate (multiple antennas) random variable. In this paper we utilize stochastic optimization technique and evaluate its applicability to the detection of cancer using numerical models. Although these models have significant limitations they are potentially useful as they provide insight in required levels of noise in order to achieve desirable detection rates.

  2. Breast Cancer: Comparative Effectiveness of Positron Emission Mammography and MR Imaging in Presurgical Planning for the Ipsilateral Breast1

    PubMed Central

    Madsen, Kathleen S.; Schilling, Kathy; Tartar, Marie; Pisano, Etta D.; Larsen, Linda Hovanessian; Narayanan, Deepa; Ozonoff, Al; Miller, Joel P.; Kalinyak, Judith E.

    2011-01-01

    Purpose: To determine the performance of positron emission mammography (PEM), as compared with magnetic resonance (MR) imaging, including the effect on surgical management, in ipsilateral breasts with cancer. Materials and Methods: Four hundred seventy-two women with newly diagnosed breast cancer who were offered breast-conserving surgery consented from September 2006 to November 2008 to participate in a multicenter institutional review board–approved, HIPAA-compliant protocol. Participants underwent contrast material–enhanced MR imaging and fluorine 18 fluorodeoxyglucose PEM in randomized order; resultant images were interpreted independently. Added biopsies and changes in surgical procedure for the ipsilateral breast were correlated with histopathologic findings. Performance characteristics were compared by using the McNemar test and generalized estimating equations. Results: Three hundred eighty-eight women (median age, 58 years; age range, 26–93 years; median estimated tumor size, 1.5 cm) completed the study. Additional cancers were found in 82 (21%) women (82 ipsilateral breasts; median tumor size, 0.7 cm). Twenty-eight (34%) of the 82 breasts were identified with both PEM and MR imaging; 21 (26%) breasts, with MR imaging only; 14 (17%) breasts, with PEM only; and seven (8.5%) breasts, with mammography and ultrasonography. Twelve (15%) cases of additional cancer were missed at all imaging examinations. Integration of PEM and MR imaging increased cancer detection—to 61 (74%) of 82 breasts versus 49 (60%) of 82 breasts identified with MR imaging alone (P < .001). Of 306 breasts without additional cancer, 279 (91.2%) were correctly assessed with PEM compared with 264 (86.3%) that were correctly assessed with MR imaging (P = .03). The positive predictive value of biopsy prompted by PEM findings (47 [66%] of 71 cases) was higher than that of biopsy prompted by MR findings (61 [53%] of 116 cases) (P = .016). Of 116 additional cancers, 61 (53%) were depicted

  3. Thermoacoustic CT scanner for breast imaging: design considerations

    NASA Astrophysics Data System (ADS)

    Kruger, Robert A.; Kiser, William L., Jr.; Miller, Kathy D.; Reynolds, Handel E.; Reinecke, Daniel R.; Kruger, Gabe A.; Hofacker, Peter J.; Eisenhart, R. L.

    2000-04-01

    We have previously developed instrumentation for performing thermoacoustic computed tomography (TCT) of the human breast using 434 MHz radio waves. Recently, we have modified our original TCT scanner design in a number of important ways. We have increased the number of ultrasound detectors and decreased their size, and we have replaced our single RF wave- guide with a phased array of eight wave-guides. These modifications have led to increased spatial resolution, increased imaging field of view, and decreased scan time. Here we report the design considerations that led to these improvements.

  4. Radiation imaging system

    DOEpatents

    Immel, David M.; Bobbit, III, John T.; Plummer, Jean R.; Folsom, Matthew D.; Serrato, Michael G.

    2016-03-22

    A radiation imaging system includes a casing and a camera disposed inside the casing. A first field of view through the casing exposes the camera to light from outside of the casing. An image plate is disposed inside the casing, and a second field of view through the casing to the image plate exposes the image plate to high-energy particles produced by a radioisotope outside of the casing. An optical reflector that is substantially transparent to the high-energy particles produced by the radioisotope is disposed with respect to the camera and the image plate to reflect light to the camera and to allow the high-energy particles produced by the radioisotope to pass through the optical reflector to the image plate.

  5. Radiation imaging system

    DOEpatents

    Bobbitt, III, John T.; Immel, David M.; Folsom, Matthew D.; Plummer, Jean R.; Serrato, Michael G.

    2016-06-28

    A radiation imaging system includes a casing and a camera disposed inside the casing. A first field of view through the casing exposes the camera to light from outside of the casing. An image plate is disposed inside the casing, and a second field of view through the casing to the image plate exposes the image plate to high-energy particles produced by a radioisotope outside of the casing. An optical reflector that is substantially transparent to the high-energy particles produced by the radioisotope is disposed with respect to the camera and the image plate to reflect light to the camera and to allow the high-energy particles produced by the radioisotope to pass through the optical reflector to the image plate.

  6. Optimization of Tomosynthesis Imaging for Improved Mass and Microcalcification Detection in the Breast

    DTIC Science & Technology

    2009-04-01

    research is to obtain systematic understandings of the effects of various physical factors that are important in breast tomosynthesis imaging and to...15. SUBJECT TERMS tomosynthesis, iterative algorithms, convergence, scanning configuration, physical factors 16. SECURITY CLASSIFICATION OF...from tomosynthesis data. In addition, various physical factors in breast tomosynthesis can affect the resulting image quality, and the issue of patient

  7. Evaluation of clip localization for different kilovoltage imaging modalities as applied to partial breast irradiation setup

    SciTech Connect

    Buehler, Andreas; Ng, Sook-Kien; Lyatskaya, Yulia; Stsepankou, Dzmitry; Hesser, Jurgen; Zygmanski, Piotr

    2009-03-15

    Surgical clip localization and image quality were evaluated for different types of kilovoltage cone beam imaging modalities as applied to partial breast irradiation (PBI) setup. These modalities included (i) clinically available radiographs and cone beam CT (CB-CT) and (ii) various alternative modalities based on partial/sparse/truncated CB-CT. An anthropomorphic torso-breast phantom with surgical clips was used for the imaging studies. The torso phantom had artificial lungs, and the attached breast phantom was a mammographic phantom with realistic shape and tissue inhomogeneities. Three types of clips of variable size were used in two orthogonal orientations to assess their in-/cross-plane characteristics for image-guided setup of the torso-breast phantom in supine position. All studies were performed with the Varian on-board imaging (OBI, Varian) system. CT reconstructions were calculated with the standard Feldkamp-Davis-Kress algorithm. First, the radiographs were studied for a wide range of viewing angles to characterize image quality for various types of body anatomy in the foreground/background of the clips. Next, image reconstruction quality was evaluated for partial/sparse/truncated CB-CT. Since these modalities led to reconstructions with strong artifacts due to insufficient input data, a knowledge-based CT reconstruction method was also tested. In this method, the input data to the reconstruction algorithm were modified by combining complementary data sets selected from the treatment and reference projections. Different partial/sparse/truncated CB-CT scan types were studied depending on the total arc angle, angular increment between the consequent views (CT projections), orientation of the arc center with respect to the imaged breast and chest wall, and imaging field size. The central angles of the viewing arcs were either tangential or orthogonal to the chest wall. Several offset positions of the phantom with respect to the reference position were

  8. Clinical Evaluation of a 3-D Automatic Annotation Method for Breast Ultrasound Imaging.

    PubMed

    Jiang, Wei-Wei; Li, Cheng; Li, An-Hua; Zheng, Yong-Ping

    2016-04-01

    The routine clinical breast ultrasound annotation method is limited by the time it consumes, inconsistency, inaccuracy and incomplete notation. A novel 3-D automatic annotation method for breast ultrasound imaging has been developed that uses a spatial sensor to track and record conventional B-mode scanning so as to provide more objective annotation. The aim of the study described here was to test the feasibility of the automatic annotation method in clinical breast ultrasound scanning. An ultrasound scanning procedure using the new method was established. The new method and the conventional manual annotation method were compared in 46 breast cancer patients (49 ± 12 y). The time used for scanning a patient was recorded and compared for the two methods. Intra-observer and inter-observer experiments were performed, and intra-class correlation coefficients (ICCs) were calculated to analyze system reproducibility. The results revealed that the new annotation method had an average scanning time 36 s (42.9%) less than that of the conventional method. There were high correlations between the results of the two annotation methods (r = 0.933, p < 0.0001 for distance; r = 0.995, p < 0.0001 for radial angle). Intra-observer and inter-observer reproducibility was excellent, with all ICCs > 0.92. The results indicated that the 3-D automatic annotation method is reliable for clinical breast ultrasound scanning and can greatly reduce scanning time. Although large-scale clinical studies are still needed, this work verified that the new annotation method has potential to be a valuable tool in breast ultrasound examination.

  9. Iterative reconstruction using a Monte Carlo based system transfer matrix for dedicated breast positron emission tomography

    SciTech Connect

    Saha, Krishnendu; Straus, Kenneth J.; Glick, Stephen J.; Chen, Yu.

    2014-08-28

    To maximize sensitivity, it is desirable that ring Positron Emission Tomography (PET) systems dedicated for imaging the breast have a small bore. Unfortunately, due to parallax error this causes substantial degradation in spatial resolution for objects near the periphery of the breast. In this work, a framework for computing and incorporating an accurate system matrix into iterative reconstruction is presented in an effort to reduce spatial resolution degradation towards the periphery of the breast. The GATE Monte Carlo Simulation software was utilized to accurately model the system matrix for a breast PET system. A strategy for increasing the count statistics in the system matrix computation and for reducing the system element storage space was used by calculating only a subset of matrix elements and then estimating the rest of the elements by using the geometric symmetry of the cylindrical scanner. To implement this strategy, polar voxel basis functions were used to represent the object, resulting in a block-circulant system matrix. Simulation studies using a breast PET scanner model with ring geometry demonstrated improved contrast at 45% reduced noise level and 1.5 to 3 times resolution performance improvement when compared to MLEM reconstruction using a simple line-integral model. The GATE based system matrix reconstruction technique promises to improve resolution and noise performance and reduce image distortion at FOV periphery compared to line-integral based system matrix reconstruction.

  10. Microwave Radar Imaging of Heterogeneous Breast Tissue Integrating A Priori Information

    PubMed Central

    Kelly, Thomas N.; Sarafianou, Mantalena; Craddock, Ian J.

    2014-01-01

    Conventional radar-based image reconstruction techniques fail when they are applied to heterogeneous breast tissue, since the underlying in-breast relative permittivity is unknown or assumed to be constant. This results in a systematic error during the process of image formation. A recent trend in microwave biomedical imaging is to extract the relative permittivity from the object under test to improve the image reconstruction quality and thereby to enhance the diagnostic assessment. In this paper, we present a novel radar-based methodology for microwave breast cancer detection in heterogeneous breast tissue integrating a 3D map of relative permittivity as a priori information. This leads to a novel image reconstruction formulation where the delay-and-sum focusing takes place in time rather than range domain. Results are shown for a heterogeneous dense (class-4) and a scattered fibroglandular (class-2) numerical breast phantom using Bristol's 31-element array configuration. PMID:25435861

  11. Differentiating cancerous from normal breast tissue by redox imaging

    NASA Astrophysics Data System (ADS)

    Xu, He N.; Tchou, Julia; Feng, Min; Zhao, Huaqing; Li, Lin Z.

    2015-02-01

    Abnormal metabolism can be a hallmark of cancer occurring early before detectable histological changes and may serve as an early detection biomarker. The current gold standard to establish breast cancer (BC) diagnosis is histological examination of biopsy. Previously we have found that pre-cancer and cancer tissues in animal models displayed abnormal mitochondrial redox state. Our technique of quantitatively measuring the mitochondrial redox state has the potential to be implemented as an early detection tool for cancer and may provide prognostic value. We therefore in this present study, investigated the feasibility of quantifying the redox state of tumor samples from 16 BC patients. Tumor tissue aliquots were collected from both normal and cancerous tissue from the affected cancer-bearing breasts of 16 female patients (5 TNBC, 9 ER+, 2 ER+/Her2+) shortly after surgical resection. All specimens were snap-frozen with liquid nitrogen on site and scanned later with the Chance redox scanner, i.e., the 3D cryogenic NADH/oxidized flavoprotein (Fp) fluorescence imager. Our preliminary results showed that both NADH and Fp (including FAD, i.e., flavin adenine dinucleotide) signals in the cancerous tissues roughly tripled to quadrupled those in the normal tissues (p<0.05) and the redox ratio Fp/(NADH+Fp) was about 27% higher in the cancerous tissues than in the normal ones (p<0.05). Our findings suggest that the redox state could differentiate between cancer and non-cancer breast tissues in human patients and this novel redox scanning procedure may assist in tissue diagnosis in freshly procured biopsy samples prior to tissue fixation. We are in the process of evaluating the prognostic value of the redox imaging indices for BC.

  12. Fibroadenoma of the axillary accessory breast: diagnostic value of dynamic magnetic resonance imaging.

    PubMed

    Sawa, Munehisa; Kawai, Nobuyuki; Sato, Morio; Takeuchi, Taizo; Tamaki, Takeshi; Oura, Shoji

    2010-10-01

    Accessory breast is synonymous with polymastia or supernumerary breast tissue. An accessory breast without a nipple or areola is rare. We report a case of fibroadenoma of an accessory breast with no nipple or areola in a 41-year-old woman who presented with a right axillary mass associated with five small nodules in the normally situated breast. Magnetic resonance imaging (MRI) showed the accessory breast surrounding the tumor. We ignored the presence of the component surrounding the mass and made a preoperative diagnosis of an axillary mass of possible metastases from multiple breast cancers or breast cancer of unknown origin associated with multiple breast fibroadenomas. From a retrospective view, based on the histological results, MRI and dynamic MRI demonstrated a tiny component of breast-like tissue surrounding the axillary mass and an enhancement pattern typical of fibroadenoma for the axillary mass. For the later diagnosis of the axillary mass, the interpretation of whether the component of breast tissue surrounding the axillary mass was present is crucial. If the component exists, a tumor that originated from the accessory breast should be foremost in the differential diagnosis. Dynamic MRI appears to contribute to the diagnosis of fibroadenoma of an accessory breast before biopsy or surgical resection.

  13. Location of triple-negative breast cancers: comparison with estrogen receptor-positive breast cancers on MR imaging.

    PubMed

    Kim, Won Hwa; Han, Wonshik; Chang, Jung Min; Cho, Nariya; Park, In Ae; Moon, Woo Kyung

    2015-01-01

    There has been a major need to better understand the biological characteristics of triple-negative breast cancers. Compared with estrogen receptor (ER)-positive cancers, several magnetic resonance (MR) imaging findings have been reported as characteristic findings. However, information regarding their location has not been described. Our study was to compare the location of triple-negative breast cancers with that of ER-positive breast cancers using magnetic resonance (MR) imaging. The locations of 1102 primary breast cancers (256 triple-negative and 846 ER-positive) in 1090 women (mean, 52.1 years) were reviewed using three-dimensional (3D) coordinates. The x-axis measurement was recorded as the transverse distance from the posterior nipple line; y-axis measurement as the anteroposterior distance from the chest wall; z-axis measurement as the superoinferior distance from the posterior nipple line. The association between breast cancer subtype and tumor location was evaluated using multiple linear regression analysis. Triple-negative breast cancers were significantly closer to the chest wall than ER-positive breast cancers in absolute (1.8 cm vs. 2.3 cm, P < .0001) and normalized (0.21 vs. 0.25, P < .0001) y-axis distances. The x- and z-axes distances were not significantly different between triple-negative and ER-positive breast cancers. Multiple linear regression analysis revealed that age, mammographic density, axillary nodal status, and triple-negative subtype were significantly associated with absolute and normalized distances from the chest wall (all P < .05). Our results show that triple-negative breast cancers have a tendency toward a posterior or prepectoral location compared with ER-positive breast cancers.

  14. Image-Based Biomarker of Breast Cancer Risk: Analysis of Risk Disparity Among Minority Populations

    DTIC Science & Technology

    2011-03-01

    with standard DICOM format of medical images, and to write a Matlab code for extracting and processing metadata from images. We utilized SQL query...breast images. The integrated image analytics consist of an initial image quality (IQ) test, in which a query/testing is performed in the DICOM header

  15. Cell type classifiers for breast cancer microscopic images based on fractal dimension texture analysis of image color layers.

    PubMed

    Jitaree, Sirinapa; Phinyomark, Angkoon; Boonyaphiphat, Pleumjit; Phukpattaranont, Pornchai

    2015-01-01

    Having a classifier of cell types in a breast cancer microscopic image (BCMI), obtained with immunohistochemical staining, is required as part of a computer-aided system that counts the cancer cells in such BCMI. Such quantitation by cell counting is very useful in supporting decisions and planning of the medical treatment of breast cancer. This study proposes and evaluates features based on texture analysis by fractal dimension (FD), for the classification of histological structures in a BCMI into either cancer cells or non-cancer cells. The cancer cells include positive cells (PC) and negative cells (NC), while the normal cells comprise stromal cells (SC) and lymphocyte cells (LC). The FD feature values were calculated with the box-counting method from binarized images, obtained by automatic thresholding with Otsu's method of the grayscale images for various color channels. A total of 12 color channels from four color spaces (RGB, CIE-L*a*b*, HSV, and YCbCr) were investigated, and the FD feature values from them were used with decision tree classifiers. The BCMI data consisted of 1,400, 1,200, and 800 images with pixel resolutions 128 × 128, 192 × 192, and 256 × 256, respectively. The best cross-validated classification accuracy was 93.87%, for distinguishing between cancer and non-cancer cells, obtained using the Cr color channel with window size 256. The results indicate that the proposed algorithm, based on fractal dimension features extracted from a color channel, performs well in the automatic classification of the histology in a BCMI. This might support accurate automatic cell counting in a computer-assisted system for breast cancer diagnosis.

  16. Dual Energy Method for Breast Imaging: A Simulation Study.

    PubMed

    Koukou, V; Martini, N; Michail, C; Sotiropoulou, P; Fountzoula, C; Kalyvas, N; Kandarakis, I; Nikiforidis, G; Fountos, G

    2015-01-01

    Dual energy methods can suppress the contrast between adipose and glandular tissues in the breast and therefore enhance the visibility of calcifications. In this study, a dual energy method based on analytical modeling was developed for the detection of minimum microcalcification thickness. To this aim, a modified radiographic X-ray unit was considered, in order to overcome the limited kVp range of mammographic units used in previous DE studies, combined with a high resolution CMOS sensor (pixel size of 22.5 μm) for improved resolution. Various filter materials were examined based on their K-absorption edge. Hydroxyapatite (HAp) was used to simulate microcalcifications. The contrast to noise ratio (CNR tc ) of the subtracted images was calculated for both monoenergetic and polyenergetic X-ray beams. The optimum monoenergetic pair was 23/58 keV for the low and high energy, respectively, resulting in a minimum detectable microcalcification thickness of 100 μm. In the polyenergetic X-ray study, the optimal spectral combination was 40/70 kVp filtered with 100 μm cadmium and 1000 μm copper, respectively. In this case, the minimum detectable microcalcification thickness was 150 μm. The proposed dual energy method provides improved microcalcification detectability in breast imaging with mean glandular dose values within acceptable levels.

  17. Breast cancer targeting novel microRNA-nanoparticles for imaging

    NASA Astrophysics Data System (ADS)

    Natarajan, Arutselvan; Venugopal, Senthil K.; DeNardo, Sally J.; Zern, Mark A.

    2009-02-01

    MicroRNAs (miRNAs) are one of the most prevalent small (~22 nucleotide) regulatory RNA classes in animals. These miRNAs constitute nearly one percent of genes in the human genome, making miRNA genes one of the more abundant types of regulatory molecules. MiRNAs have been shown to play important roles in cell development, apoptosis, and other fundamental biological processes. MiRNAs exert their influence through complementary base-pairing with specific target mRNAs, leading to degradation or translational repression of the targeted mRNA. We have identified and tested a novel microRNA (miR-491) and demonstrated increased apoptosis in hepatocellular carcinoma cells (HepG2) and in human breast cancer cells (HBT3477) in vitro. We prepared a novel cancer targeting assembly of gold nanoparticles (GNP) with Quantum dots, miR-491, and MAb-ChL6 coupled through streptavidin/biotin for effective transfection, and to induce apoptosis in specific cancer cells for imaging and targeted therapy. The targeting and apoptosis inducing ability was tested by confocal and electron microscopy. The MAb-GNP-miR491-Qdot construct effectively transfected into the HBT3477 cells and induced apoptosis the confirmation of these results would suggest a new class of molecules for the imaging and therapy of breast cancer.

  18. Molecular subtypes and imaging phenotypes of breast cancer

    PubMed Central

    2016-01-01

    During the last 15 years, traditional breast cancer classifications based on histopathology have been reorganized into the luminal A, luminal B, human epidermal growth factor receptor 2 (HER2), and basal-like subtypes based on gene expression profiling. Each molecular subtype has shown varying risk for progression, response to treatment, and survival outcomes. Research linking the imaging phenotype with the molecular subtype has revealed that non-calcified, relatively circumscribed masses with posterior acoustic enhancement are common in the basal-like subtype, spiculated masses with a poorly circumscribed margin and posterior acoustic shadowing in the luminal subtype, and pleomorphic calcifications in the HER2-enriched subtype. Understanding the clinical implications of the molecular subtypes and imaging phenotypes could help radiologists guide precision medicine, tailoring medical treatment to patients and their tumor characteristics. PMID:27599892

  19. Multiplexed ion beam imaging of human breast tumors.

    PubMed

    Angelo, Michael; Bendall, Sean C; Finck, Rachel; Hale, Matthew B; Hitzman, Chuck; Borowsky, Alexander D; Levenson, Richard M; Lowe, John B; Liu, Scot D; Zhao, Shuchun; Natkunam, Yasodha; Nolan, Garry P

    2014-04-01

    Immunohistochemistry (IHC) is a tool for visualizing protein expression that is employed as part of the diagnostic workup for the majority of solid tissue malignancies. Existing IHC methods use antibodies tagged with fluorophores or enzyme reporters that generate colored pigments. Because these reporters exhibit spectral and spatial overlap when used simultaneously, multiplexed IHC is not routinely used in clinical settings. We have developed a method that uses secondary ion mass spectrometry to image antibodies tagged with isotopically pure elemental metal reporters. Multiplexed ion beam imaging (MIBI) is capable of analyzing up to 100 targets simultaneously over a five-log dynamic range. Here, we used MIBI to analyze formalin-fixed, paraffin-embedded human breast tumor tissue sections stained with ten labels simultaneously. The resulting data suggest that MIBI can provide new insights into disease pathogenesis that will be valuable for basic research, drug discovery and clinical diagnostics.

  20. Surface impedance based microwave imaging method for breast cancer screening: contrast-enhanced scenario.

    PubMed

    Güren, Onan; Çayören, Mehmet; Ergene, Lale Tükenmez; Akduman, Ibrahim

    2014-10-07

    A new microwave imaging method that uses microwave contrast agents is presented for the detection and localization of breast tumours. The method is based on the reconstruction of breast surface impedance through a measured scattered field. The surface impedance modelling allows for representing the electrical properties of the breasts in terms of impedance boundary conditions, which enable us to map the inner structure of the breasts into surface impedance functions. Later a simple quantitative method is proposed to screen breasts against malignant tumours where the detection procedure is based on weighted cross correlations among impedance functions. Numerical results demonstrate that the method is capable of detecting small malignancies and provides reasonable localization.

  1. Automatic tissue segmentation of breast biopsies imaged by QPI

    NASA Astrophysics Data System (ADS)

    Majeed, Hassaan; Nguyen, Tan; Kandel, Mikhail; Marcias, Virgilia; Do, Minh; Tangella, Krishnarao; Balla, Andre; Popescu, Gabriel

    2016-03-01

    The current tissue evaluation method for breast cancer would greatly benefit from higher throughput and less inter-observer variation. Since quantitative phase imaging (QPI) measures physical parameters of tissue, it can be used to find quantitative markers, eliminating observer subjectivity. Furthermore, since the pixel values in QPI remain the same regardless of the instrument used, classifiers can be built to segment various tissue components without need for color calibration. In this work we use a texton-based approach to segment QPI images of breast tissue into various tissue components (epithelium, stroma or lumen). A tissue microarray comprising of 900 unstained cores from 400 different patients was imaged using Spatial Light Interference Microscopy. The training data were generated by manually segmenting the images for 36 cores and labelling each pixel (epithelium, stroma or lumen.). For each pixel in the data, a response vector was generated by the Leung-Malik (LM) filter bank and these responses were clustered using the k-means algorithm to find the centers (called textons). A random forest classifier was then trained to find the relationship between a pixel's label and the histogram of these textons in that pixel's neighborhood. The segmentation was carried out on the validation set by calculating the texton histogram in a pixel's neighborhood and generating a label based on the model learnt during training. Segmentation of the tissue into various components is an important step toward efficiently computing parameters that are markers of disease. Automated segmentation, followed by diagnosis, can improve the accuracy and speed of analysis leading to better health outcomes.

  2. Cardiac Imaging System

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Although not available to all patients with narrowed arteries, balloon angioplasty has expanded dramatically since its introduction with an estimated further growth to 562,000 procedures in the U.S. alone by 1992. Growth has fueled demand for higher quality imaging systems that allow the cardiologist to be more accurate and increase the chances of a successful procedure. A major advance is the Digital Cardiac Imaging (DCI) System designed by Philips Medical Systems International, Best, The Netherlands and marketed in the U.S. by Philips Medical Systems North America Company. The key benefit is significantly improved real-time imaging and the ability to employ image enhancement techniques to bring out added details. Using a cordless control unit, the cardiologist can manipulate images to make immediate assessment, compare live x-ray and roadmap images by placing them side-by-side on monitor screens, or compare pre-procedure and post procedure conditions. The Philips DCI improves the cardiologist's precision by expanding the information available to him.

  3. Task-based strategy for optimized contrast enhanced breast imaging: Analysis of six imaging techniques for mammography and tomosynthesis

    SciTech Connect

    Ikejimba, Lynda C.; Kiarashi, Nooshin; Ghate, Sujata V.; Samei, Ehsan; Lo, Joseph Y.

    2014-06-15

    Purpose: The use of contrast agents in breast imaging has the capability of enhancing nodule detectability and providing physiological information. Accordingly, there has been a growing trend toward using iodine as a contrast medium in digital mammography (DM) and digital breast tomosynthesis (DBT). Widespread use raises concerns about the best way to use iodine in DM and DBT, and thus a comparison is necessary to evaluate typical iodine-enhanced imaging methods. This study used a task-based observer model to determine the optimal imaging approach by analyzing six imaging paradigms in terms of their ability to resolve iodine at a given dose: unsubtracted mammography and tomosynthesis, temporal subtraction mammography and tomosynthesis, and dual energy subtraction mammography and tomosynthesis. Methods: Imaging performance was characterized using a detectability index d{sup ′}, derived from the system task transfer function (TTF), an imaging task, iodine signal difference, and the noise power spectrum (NPS). The task modeled a 10 mm diameter lesion containing iodine concentrations between 2.1 mg/cc and 8.6 mg/cc. TTF was obtained using an edge phantom, and the NPS was measured over several exposure levels, energies, and target-filter combinations. Using a structured CIRS phantom, d{sup ′} was generated as a function of dose and iodine concentration. Results: For all iodine concentrations and dose, temporal subtraction techniques for mammography and tomosynthesis yielded the highest d{sup ′}, while dual energy techniques for both modalities demonstrated the next best performance. Unsubtracted imaging resulted in the lowest d{sup ′} values for both modalities, with unsubtracted mammography performing the worst out of all six paradigms. Conclusions: At any dose, temporal subtraction imaging provides the greatest detectability, with temporally subtracted DBT performing the highest. The authors attribute the successful performance to excellent cancellation of

  4. Task-based strategy for optimized contrast enhanced breast imaging: Analysis of six imaging techniques for mammography and tomosynthesis

    PubMed Central

    Ikejimba, Lynda C.; Kiarashi, Nooshin; Ghate, Sujata V.; Samei, Ehsan; Lo, Joseph Y.

    2014-01-01

    Purpose: The use of contrast agents in breast imaging has the capability of enhancing nodule detectability and providing physiological information. Accordingly, there has been a growing trend toward using iodine as a contrast medium in digital mammography (DM) and digital breast tomosynthesis (DBT). Widespread use raises concerns about the best way to use iodine in DM and DBT, and thus a comparison is necessary to evaluate typical iodine-enhanced imaging methods. This study used a task-based observer model to determine the optimal imaging approach by analyzing six imaging paradigms in terms of their ability to resolve iodine at a given dose: unsubtracted mammography and tomosynthesis, temporal subtraction mammography and tomosynthesis, and dual energy subtraction mammography and tomosynthesis. Methods: Imaging performance was characterized using a detectability index d′, derived from the system task transfer function (TTF), an imaging task, iodine signal difference, and the noise power spectrum (NPS). The task modeled a 10 mm diameter lesion containing iodine concentrations between 2.1 mg/cc and 8.6 mg/cc. TTF was obtained using an edge phantom, and the NPS was measured over several exposure levels, energies, and target-filter combinations. Using a structured CIRS phantom, d′ was generated as a function of dose and iodine concentration. Results: For all iodine concentrations and dose, temporal subtraction techniques for mammography and tomosynthesis yielded the highest d′, while dual energy techniques for both modalities demonstrated the next best performance. Unsubtracted imaging resulted in the lowest d′ values for both modalities, with unsubtracted mammography performing the worst out of all six paradigms. Conclusions: At any dose, temporal subtraction imaging provides the greatest detectability, with temporally subtracted DBT performing the highest. The authors attribute the successful performance to excellent cancellation of inplane structures and

  5. Calibrating the imaging and therapy performance of magneto-fluorescent gold nanoshells for breast cancer

    NASA Astrophysics Data System (ADS)

    Dowell, Adam; Chen, Wenxue; Biswal, Nrusingh; Ayala-Orozco, Ciceron; Giuliano, Mario; Schiff, Rachel; Halas, Naomi J.; Joshi, Amit

    2012-03-01

    Gold nanoshells with NIR plasmon resonance can be modified to simultaneously enhance conjugated NIR fluorescence dyes and T2 contrast of embedded iron-oxide nanoparticles, and molecularly targeted to breast and other cancers. We calibrated the theranostic performance of magneto-fluorescent nanoshells, and contrasted the performance of molecularly targeted and untargeted nanoshells for breast cancer therapy, employing MCF-7L and their HER2 overexpressing derivative MCF-7/HER2-18 breast cancer cells as in vitro model systems. Silica core gold nanoshells with plasmon resonance on ~810 nm were doped with NIR dye ICG and ~10 nm iron-oxide nanoparticles in a ~20 nm epilayer of silica. A subset of nanoshells was conjugated to antibodies targeting HER2. Cell viability with varying laser power levels in presence and absence of bare and HER2-targeted nanoshells was assessed by calcein and propidium iodide staining. For MCF-7L cells, increasing power resulted in increased cell death (F=5.63, p=0.0018), and bare nanoshells caused more cell death than HER2-targeted nanoshells or laser treatment alone (F=30.13, p<0.001). For MCF-7/HER2-18 cells, death was greater with HER2-targeted nanoshells and was independent of laser power. This study demonstrates the capability of magneto-fluorescent nanocomplexes for imaging and therapy of breast cancer cells, and the advantages of targeting receptors unique to cancer cells.

  6. Review: Receptor Targeted Nuclear Imaging of Breast Cancer.

    PubMed

    Dalm, Simone U; Verzijlbergen, John Fred; De Jong, Marion

    2017-01-26

    Receptor targeted nuclear imaging directed against molecular markers overexpressed on breast cancer (BC) cells offers a sensitive and specific method for BC imaging. Currently, a few targets such as estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), somatostatin receptor (SSTR), and the gastrin releasing peptide receptor (GRPR) are being investigated for this purpose. Expression of these targets is BC subtype dependent and information that can be gained from lesion visualization is dependent on the target; ER-targeting radiotracers, e.g., can be used to monitor response to anti-estrogen treatment. Here we give an overview of the studies currently under investigation for receptor targeted nuclear imaging of BC. Main findings of imaging studies are summarized and (potential) purposes of lesion visualization by targeting these molecular markers are discussed. Since BC is a very heterogeneous disease and molecular target expression can vary per subtype, but also during disease progression or under influence of treatment, radiotracers for selected imaging purposes should be chosen carefully.

  7. Task-based optimization of image reconstruction in breast CT

    NASA Astrophysics Data System (ADS)

    Sanchez, Adrian A.; Sidky, Emil Y.; Pan, Xiaochuan

    2014-03-01

    We demonstrate a task-based assessment of image quality in dedicated breast CT in order to optimize the number of projection views acquired. The methodology we employ is based on the Hotelling Observer (HO) and its associated metrics. We consider two tasks: the Rayleigh task of discerning between two resolvable objects and a single larger object, and the signal detection task of classifying an image as belonging to either a signalpresent or signal-absent hypothesis. HO SNR values are computed for 50, 100, 200, 500, and 1000 projection view images, with the total imaging radiation dose held constant. We use the conventional fan-beam FBP algorithm and investigate the effect of varying the width of a Hanning window used in the reconstruction, since this affects both the noise properties of the image and the under-sampling artifacts which can arise in the case of sparse-view acquisitions. Our results demonstrate that fewer projection views should be used in order to increase HO performance, which in this case constitutes an upper-bound on human observer performance. However, the impact on HO SNR of using fewer projection views, each with a higher dose, is not as significant as the impact of employing regularization in the FBP reconstruction through a Hanning filter.

  8. Review: Receptor Targeted Nuclear Imaging of Breast Cancer

    PubMed Central

    Dalm, Simone U.; Verzijlbergen, John Fred; De Jong, Marion

    2017-01-01

    Receptor targeted nuclear imaging directed against molecular markers overexpressed on breast cancer (BC) cells offers a sensitive and specific method for BC imaging. Currently, a few targets such as estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), somatostatin receptor (SSTR), and the gastrin releasing peptide receptor (GRPR) are being investigated for this purpose. Expression of these targets is BC subtype dependent and information that can be gained from lesion visualization is dependent on the target; ER-targeting radiotracers, e.g., can be used to monitor response to anti-estrogen treatment. Here we give an overview of the studies currently under investigation for receptor targeted nuclear imaging of BC. Main findings of imaging studies are summarized and (potential) purposes of lesion visualization by targeting these molecular markers are discussed. Since BC is a very heterogeneous disease and molecular target expression can vary per subtype, but also during disease progression or under influence of treatment, radiotracers for selected imaging purposes should be chosen carefully. PMID:28134770

  9. Advanced imaging system

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This document describes the Advanced Imaging System CCD based camera. The AIS1 camera system was developed at Photometric Ltd. in Tucson, Arizona as part of a Phase 2 SBIR contract No. NAS5-30171 from the NASA/Goddard Space Flight Center in Greenbelt, Maryland. The camera project was undertaken as a part of the Space Telescope Imaging Spectrograph (STIS) project. This document is intended to serve as a complete manual for the use and maintenance of the camera system. All the different parts of the camera hardware and software are discussed and complete schematics and source code listings are provided.

  10. Added value of semi-quantitative breast-specific gamma imaging in the work-up of suspicious breast lesions compared to mammography, ultrasound and 3-T MRI

    PubMed Central

    Seymer, A; Keinrath, P; Holzmannhofer, J; Pirich, C; Hergan, K; Meissnitzer, M W

    2015-01-01

    Objective: To prospectively analyse the diagnostic value of semi-quantitative breast-specific gamma imaging (BSGI) in the work-up of suspicious breast lesions compared with that of mammography (MG), breast ultrasound and MRI of the breast. Methods: Within a 15-month period, 67 patients with 92 breast lesions rated as Category IV or V according to the breast imaging reporting and data system detected with MG and/or ultrasound were included into the study. After the injection of 740–1110 MBq of Technetium-99m (99mTc) SestaMIBI intravenously, scintigrams were obtained in two projections comparable to MG. The BSGI was analysed visually and semi-quantitatively by calculating a relative uptake factor (X). With the exception of two patients with cardiac pacemakers, all patients underwent 3-T breast MRI. Biopsy results were obtained as the reference standard in all patients. Sensitivity, specificity, positive- and negative-predictive values, accuracy and area under the curve were calculated for each modality. Results: Among the 92 lesions, 67 (72.8%) were malignant. 60 of the 67 cancers of any size were detected by BSGI with an overall sensitivity of 90%, only exceeded by ultrasound with a sensitivity of 99%. The sensitivity of BSGI for lesions <1 cm declined significantly to 60%. Overall specificity of ultrasound was only 20%. Specificity, accuracy and positive-predictive value were the highest for BSGI (56%, 80% and 85%, respectively). X was significantly higher for malignant lesions (mean, 4.27) and differed significantly between ductal types (mean, 4.53) and the other histopathological entities (mean, 3.12). Conclusion: Semi-quantitative BSGI with calculation of the relative uptake factor (X) can help to characterize breast lesions. BSGI negativity may obviate the need for biopsy of breast lesions >1 cm with low or intermediate prevalence for malignancy. Advances in knowledge: Compared with morphological imaging modalities, specificity, positive

  11. Scorpion image segmentation system

    NASA Astrophysics Data System (ADS)

    Joseph, E.; Aibinu, A. M.; Sadiq, B. A.; Bello Salau, H.; Salami, M. J. E.

    2013-12-01

    Death as a result of scorpion sting has been a major public health problem in developing countries. Despite the high rate of death as a result of scorpion sting, little report exists in literature of intelligent device and system for automatic detection of scorpion. This paper proposed a digital image processing approach based on the floresencing characteristics of Scorpion under Ultra-violet (UV) light for automatic detection and identification of scorpion. The acquired UV-based images undergo pre-processing to equalize uneven illumination and colour space channel separation. The extracted channels are then segmented into two non-overlapping classes. It has been observed that simple thresholding of the green channel of the acquired RGB UV-based image is sufficient for segmenting Scorpion from other background components in the acquired image. Two approaches to image segmentation have also been proposed in this work, namely, the simple average segmentation technique and K-means image segmentation. The proposed algorithm has been tested on over 40 UV scorpion images obtained from different part of the world and results obtained show an average accuracy of 97.7% in correctly classifying the pixel into two non-overlapping clusters. The proposed 1system will eliminate the problem associated with some of the existing manual approaches presently in use for scorpion detection.

  12. Three-dimensional linear system analysis for breast tomosynthesis.

    PubMed

    Zhao, Bo; Zhao, Wei

    2008-12-01

    The optimization of digital breast tomosynthesis (DBT) geometry and reconstruction is crucial for the clinical translation of this exciting new imaging technique. In the present work, the authors developed a three-dimensional (3D) cascaded linear system model for DBT to investigate the effects of detector performance, imaging geometry, and image reconstruction algorithm on the reconstructed image quality. The characteristics of a prototype DBT system equipped with an amorphous selenium flat-panel detector and filtered backprojection reconstruction were used as an example in the implementation of the linear system model. The propagation of signal and noise in the frequency domain was divided into six cascaded stages incorporating the detector performance, imaging geometry, and reconstruction filters. The reconstructed tomosynthesis imaging quality was characterized by spatial frequency dependent presampling modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE) in 3D. The results showed that both MTF and NPS were affected by the angular range of the tomosynthesis scan and the reconstruction filters. For image planes parallel to the detector (in-plane), MTF at low frequencies was improved with increase in angular range. The shape of the NPS was affected by the reconstruction filters. Noise aliasing in 3D could be introduced by insufficient voxel sampling, especially in the z (slice-thickness) direction where the sampling distance (slice thickness) could be more than ten times that for in-plane images. Aliasing increases the noise at high frequencies, which causes degradation in DQE. Application of a reconstruction filter that limits the frequency components beyond the Nyquist frequency in the z direction, referred to as the slice thickness filter, eliminates noise aliasing and improves 3D DQE. The focal spot blur, which arises from continuous tube travel during tomosynthesis acquisition, could degrade DQE significantly

  13. Phase-contrast enhanced mammography: A new diagnostic tool for breast imaging

    NASA Astrophysics Data System (ADS)

    Wang, Zhentian; Thuering, Thomas; David, Christian; Roessl, Ewald; Trippel, Mafalda; Kubik-Huch, Rahel A.; Singer, Gad; Hohl, Michael K.; Hauser, Nik; Stampanoni, Marco

    2012-07-01

    Phase contrast and scattering-based X-ray imaging can potentially revolutionize the radiological approach to breast imaging by providing additional and complementary information to conventional, absorption-based methods. We investigated native, non-fixed whole breast samples using a grating interferometer with an X-ray tube-based configuration. Our approach simultaneously recorded absorption, differential phase contrast and small-angle scattering signals. The results show that this novel technique - combined with a dedicated image fusion algorithm - has the potential to deliver enhanced breast imaging with complementary information for an improved diagnostic process.

  14. Phase-contrast enhanced mammography: A new diagnostic tool for breast imaging

    SciTech Connect

    Wang Zhentian; Thuering, Thomas; David, Christian; Roessl, Ewald; Trippel, Mafalda; Kubik-Huch, Rahel A.; Singer, Gad; Hohl, Michael K.; Hauser, Nik; Stampanoni, Marco

    2012-07-31

    Phase contrast and scattering-based X-ray imaging can potentially revolutionize the radiological approach to breast imaging by providing additional and complementary information to conventional, absorption-based methods. We investigated native, non-fixed whole breast samples using a grating interferometer with an X-ray tube-based configuration. Our approach simultaneously recorded absorption, differential phase contrast and small-angle scattering signals. The results show that this novel technique - combined with a dedicated image fusion algorithm - has the potential to deliver enhanced breast imaging with complementary information for an improved diagnostic process.

  15. Mammographic quantitative image analysis and biologic image composition for breast lesion characterization and classification

    SciTech Connect

    Drukker, Karen Giger, Maryellen L.; Li, Hui; Duewer, Fred; Malkov, Serghei; Joe, Bonnie; Kerlikowske, Karla; Shepherd, John A.; Flowers, Chris I.; Drukteinis, Jennifer S.

    2014-03-15

    Purpose: To investigate whether biologic image composition of mammographic lesions can improve upon existing mammographic quantitative image analysis (QIA) in estimating the probability of malignancy. Methods: The study population consisted of 45 breast lesions imaged with dual-energy mammography prior to breast biopsy with final diagnosis resulting in 10 invasive ductal carcinomas, 5 ductal carcinomain situ, 11 fibroadenomas, and 19 other benign diagnoses. Analysis was threefold: (1) The raw low-energy mammographic images were analyzed with an established in-house QIA method, “QIA alone,” (2) the three-compartment breast (3CB) composition measure—derived from the dual-energy mammography—of water, lipid, and protein thickness were assessed, “3CB alone”, and (3) information from QIA and 3CB was combined, “QIA + 3CB.” Analysis was initiated from radiologist-indicated lesion centers and was otherwise fully automated. Steps of the QIA and 3CB methods were lesion segmentation, characterization, and subsequent classification for malignancy in leave-one-case-out cross-validation. Performance assessment included box plots, Bland–Altman plots, and Receiver Operating Characteristic (ROC) analysis. Results: The area under the ROC curve (AUC) for distinguishing between benign and malignant lesions (invasive and DCIS) was 0.81 (standard error 0.07) for the “QIA alone” method, 0.72 (0.07) for “3CB alone” method, and 0.86 (0.04) for “QIA+3CB” combined. The difference in AUC was 0.043 between “QIA + 3CB” and “QIA alone” but failed to reach statistical significance (95% confidence interval [–0.17 to + 0.26]). Conclusions: In this pilot study analyzing the new 3CB imaging modality, knowledge of the composition of breast lesions and their periphery appeared additive in combination with existing mammographic QIA methods for the distinction between different benign and malignant lesion types.

  16. Fibromatosis associated with silicone breast implant: ultrasonography and MR imaging findings.

    PubMed

    Shim, Hyun Seok; Kim, Seon-Jeong; Kim, Ok Hwa; Jung, Hyun Kyung; Kim, Suk Jung; Kim, Woogyeong; Kim, Woon Won

    2014-01-01

    Desmoid type fibromatosis is an uncommon benign disease entity of which its etiology is currently unknown. It constitutes 0.3% of all solid neoplasms, but it is rarely seen in the breast and even more scarcely reported to develop in association with breast implant. We present ultrasonography and magnetic resonance imaging findings of a 29-year-old female patient with fibromatosis after breast implant surgery. Knowledge of imaging findings of breast fibromatosis associated with implant will be helpful for accurate diagnosis and appropriate management.

  17. A minimum spanning forest based classification method for dedicated breast CT images

    SciTech Connect

    Pike, Robert; Sechopoulos, Ioannis; Fei, Baowei

    2015-11-15

    Purpose: To develop and test an automated algorithm to classify different types of tissue in dedicated breast CT images. Methods: Images of a single breast of five different patients were acquired with a dedicated breast CT clinical prototype. The breast CT images were processed by a multiscale bilateral filter to reduce noise while keeping edge information and were corrected to overcome cupping artifacts. As skin and glandular tissue have similar CT values on breast CT images, morphologic processing is used to identify the skin based on its position information. A support vector machine (SVM) is trained and the resulting model used to create a pixelwise classification map of fat and glandular tissue. By combining the results of the skin mask with the SVM results, the breast tissue is classified as skin, fat, and glandular tissue. This map is then used to identify markers for a minimum spanning forest that is grown to segment the image using spatial and intensity information. To evaluate the authors’ classification method, they use DICE overlap ratios to compare the results of the automated classification to those obtained by manual segmentation on five patient images. Results: Comparison between the automatic and the manual segmentation shows that the minimum spanning forest based classification method was able to successfully classify dedicated breast CT image with average DICE ratios of 96.9%, 89.8%, and 89.5% for fat, glandular, and skin tissue, respectively. Conclusions: A 2D minimum spanning forest based classification method was proposed and evaluated for classifying the fat, skin, and glandular tissue in dedicated breast CT images. The classification method can be used for dense breast tissue quantification, radiation dose assessment, and other applications in breast imaging.

  18. Tracking the mammary architectural features and detecting breast cancer with magnetic resonance diffusion tensor imaging.

    PubMed

    Nissan, Noam; Furman-Haran, Edna; Feinberg-Shapiro, Myra; Grobgeld, Dov; Eyal, Erez; Zehavi, Tania; Degani, Hadassa

    2014-12-15

    Breast cancer is the most common cause of cancer among women worldwide. Early detection of breast cancer has a critical role in improving the quality of life and survival of breast cancer patients. In this paper a new approach for the detection of breast cancer is described, based on tracking the mammary architectural elements using diffusion tensor imaging (DTI). The paper focuses on the scanning protocols and image processing algorithms and software that were designed to fit the diffusion properties of the mammary fibroglandular tissue and its changes during malignant transformation. The final output yields pixel by pixel vector maps that track the architecture of the entire mammary ductal glandular trees and parametric maps of the diffusion tensor coefficients and anisotropy indices. The efficiency of the method to detect breast cancer was tested by scanning women volunteers including 68 patients with breast cancer confirmed by histopathology findings. Regions with cancer cells exhibited a marked reduction in the diffusion coefficients and in the maximal anisotropy index as compared to the normal breast tissue, providing an intrinsic contrast for delineating the boundaries of malignant growth. Overall, the sensitivity of the DTI parameters to detect breast cancer was found to be high, particularly in dense breasts, and comparable to the current standard breast MRI method that requires injection of a contrast agent. Thus, this method offers a completely non-invasive, safe and sensitive tool for breast cancer detection.

  19. Tracking the Mammary Architectural Features and Detecting Breast Cancer with Magnetic Resonance Diffusion Tensor Imaging

    PubMed Central

    Nissan, Noam; Furman-Haran, Edna; Feinberg-Shapiro, Myra; Grobgeld, Dov; Eyal, Erez; Zehavi, Tania; Degani, Hadassa

    2014-01-01

    Breast cancer is the most common cause of cancer among women worldwide. Early detection of breast cancer has a critical role in improving the quality of life and survival of breast cancer patients. In this paper a new approach for the detection of breast cancer is described, based on tracking the mammary architectural elements using diffusion tensor imaging (DTI). The paper focuses on the scanning protocols and image processing algorithms and software that were designed to fit the diffusion properties of the mammary fibroglandular tissue and its changes during malignant transformation. The final output yields pixel by pixel vector maps that track the architecture of the entire mammary ductal glandular trees and parametric maps of the diffusion tensor coefficients and anisotropy indices. The efficiency of the method to detect breast cancer was tested by scanning women volunteers including 68 patients with breast cancer confirmed by histopathology findings. Regions with cancer cells exhibited a marked reduction in the diffusion coefficients and in the maximal anisotropy index as compared to the normal breast tissue, providing an intrinsic contrast for delineating the boundaries of malignant growth. Overall, the sensitivity of the DTI parameters to detect breast cancer was found to be high, particularly in dense breasts, and comparable to the current standard breast MRI method that requires injection of a contrast agent. Thus, this method offers a completely non-invasive, safe and sensitive tool for breast cancer detection. PMID:25549209

  20. Petrographic image logging system

    SciTech Connect

    Payne, C.J.; Ulrich, M.R.; Maxwell, G.B. ); Adams, J.P. )

    1991-03-01

    The Petrographic Image Logging System (PILS) is a logging system data base for Macintosh computers that allows the merging of traditional wire-line, core, and mud log data with petrographic images. The system is flexible; it allows the user to record, manipulate, and display almost any type of character, graphic, and image information. Character and graphic data are linked and entry in either mode automatically generates the alternate mode. Character/graphic data may include such items as ROP, wire-line log data, interpreted lithologies, ditch cutting lith-percentages, porosity grade and type, grain size, core/DST information, and sample descriptions. Image data may include petrographic and SEM images of cuttings, core, and thin sections. All data are tied to depth. Data are entered quickly and easily in an interactive manner with a mouse, keyboard, and digitizing tablet or may be imported and immediately autoplotted from a variety of environments via modem, network, or removable disk. Color log displays, including petrographic images, are easily available on CRT or as hardcopy. The system consists of a petrographic microscope, video camera, Macintosh computer, video framegrabber and digitizing tablet. Hardcopy is scaleable and can be generated by a variety of color printing devices. The software is written in Supertalk, a color superset of the standard Apple Hypercard programming language, hypertalk. This system is being tested by Mobil in the lab and at the well site. Implementation has provided near 'real-time' core and cuttings images from drilling wells to the geologist back at the office.

  1. Extended hidden Markov model for optimized segmentation of breast thermography images

    NASA Astrophysics Data System (ADS)

    Mahmoudzadeh, E.; Montazeri, M. A.; Zekri, M.; Sadri, S.

    2015-09-01

    Breast cancer is the most commonly diagnosed form of cancer in women. Thermography has been shown to provide an efficient screening modality for detecting breast cancer as it is able to detect small tumors and hence can lead to earlier diagnosis. This paper presents a novel extended hidden Markov model (EHMM), for optimized segmentation of breast thermogram for more effective image interpretation and easier analysis of Infrared (IR) thermal patterns. Competitive advantage of EHMM method refers to handling random sampling of the breast IR images with re-estimation of the model parameters. The performance of the algorithm is illustrated by applying EHMM segmentation method on the images of IUT_OPTIC database and compared with previously related methods. Simulation results indicate the remarkable capabilities of the proposed approach. It is worth noting that the presented algorithm is able to map semi hot regions into distinct areas and extract the regions of breast thermal images significantly, while the execution time is reduced.

  2. Data mining with decision trees for diagnosis of breast tumor in medical ultrasonic images.

    PubMed

    Kuo, W J; Chang, R F; Chen, D R; Lee, C C

    2001-03-01

    To increase the ability of ultrasonographic (US) technology for the differential diagnosis of solid breast tumors, we describe a novel computer-aided diagnosis (CADx) system using data mining with decision tree for classification of breast tumor to increase the levels of diagnostic confidence and to provide the immediate second opinion for physicians. Cooperating with the texture information extracted from the region of interest (ROI) image, a decision tree model generated from the training data in a top-down, general-to-specific direction with 24 co-variance texture features is used to classify the tumors as benign or malignant. In the experiments, accuracy rates for a experienced physician and the proposed CADx are 86.67% (78/90) and 95.50% (86/90), respectively.

  3. Early Detection of Breast Cancer via Multi-plane Correlation Breast Imaging

    DTIC Science & Technology

    2008-04-01

    phantom ,” Proc. SPIE 6142, 61425A 2006. 6T. Wu, R. H. Moore, and D. B. Kopans, “Voting strategy for artifact reduction in digital breast tomosynthesis...values can be lower for digital systems than screen-film systems.4 A recent 5study by Gennaro et al. on phantoms concluded that this 3385 Med. Phys. 34...specific display function used in this study was the DICOM GSDF which has been recommended by the TG18 committee and is used as the de facto standard for

  4. Discrete scintillator coupled mercuric iodide photodetector arrays for breast imaging

    SciTech Connect

    Tornai, M.P.; Levin, C.S.; Hoffman, E.J.

    1996-12-31

    Multi-element (4x4) imaging arrays with high resolution collimators, size matched to discrete CsI(Tl) scintillator arrays and mercuric iodide photodetector arrays (HgI{sub 2} PDA) are under development as prototypes for larger 16 x 16 element arrays. The compact nature of the arrays allows detector positioning in proximity to the breast to eliminate activity not in the line-of-sight of the collimator, thus reducing image background. Short collimators, size matched to {le}1.5 x 1.5 mm{sup 2} scintillators show a factor of 2 and 3.4 improvement in spatial resolution and efficiency, respectively, compared to high resolution collimated gamma cameras for the anticipated compressed breast geometries. Monte Carlo simulations, confirmed by measurements, demonstrated that scintillator length played a greater role in efficiency and photofraction for 140 keV gammas than cross sectional area, which affects intrinsic spatial resolution. Simulations also demonstrated that an increase in the ratio of scintillator area to length corresponds to an improvement in light collection. Electronic noise was below 40 e{sup -} RMS indicating that detector resolution was not noise limited. The high quantum efficiency and spectral match of prototype unity gain HgI{sub 2} PDAs coupled to 1 x 1 x 2.5 mm{sup 3} and 2 x 2 x 4 mm{sup 3} CsI(Tl) scintillators demonstrated energy resolutions of 9.4% and 8.8% FWHM at 140 keV, respectively, without the spectral tailing observed in standard high-Z, compound semi-conductor detectors. Line spread function measurements matched the scintillator size and pitch, and small, complex phantoms were easily imaged.

  5. Determination of Mean Temperatures of Normal Whole Breast and Breast Quadrants by Infrared Imaging and Image Analysis

    DTIC Science & Technology

    2007-11-02

    Now with the advent of uncooled staring array digital infrared imaging systems (Prism 2000; Bioyear Croup, Houston, TX) and image analysis , numerical...patients. These results are consistent with our previous results with both objective image analysis and subjective visual analysis (15% of screened

  6. Whole slide imaging diagnostic concordance with light microscopy for breast needle biopsies.

    PubMed

    Campbell, W Scott; Hinrichs, Steven H; Lele, Subodh M; Baker, John J; Lazenby, Audrey J; Talmon, Geoffrey A; Smith, Lynette M; West, William W

    2014-08-01

    This study investigated the diagnostic accuracy of whole slide imaging (WSI) in breast needle biopsy diagnosis in comparison with standard light microscopy (LM). The study examined the effects of image capture magnification and computer monitor quality on diagnostic concordance of WSI and LM. Four pathologists rendered diagnoses using WSI to examine 85 breast biopsies (92 parts; 786 slides) consisting of benign and malignant cases. Each WSI case was evaluated using images captured at either ×20 or ×40 magnifications and viewed using a Digital Imaging and Communication in Medicine (DICOM) grade, color-calibrated monitor or a standard, desktop liquid-crystal display (LCD) monitor. For each combination, the WSI result was compared with the original, LM diagnosis. The overall concordance rate observed between WSI and LM was 97.1% (95% confidence intervals [CI]: 94.3%-98.5%). After a washout period, all cases were reviewed a second time by each pathologist after using LM, and the second LM diagnosis was compared with the WSI diagnosis rendered by the same pathologist. Intraobserver concordance between WSI and LM was 95.4% (95% CI: 92.2%-97.4%). The second LM diagnoses were also compared with the original LM diagnoses, and the observed interobserver LM concordance rate was 97.3% (95% CI: 93.1%-99.0%). The study data demonstrated that breast needle biopsy diagnoses rendered by WSI were equivalent to diagnoses rendered by LM. No diagnostic differences were detected between the underlying viewing system parameters of monitor quality and image capture resolution. The results of this study demonstrated that WSI can be effectively used in subspecialty diagnostic cases where a minimum amount of tissue is available.

  7. Label-Free Raman Imaging to Monitor Breast Tumor Signatures.

    PubMed

    Manciu, Felicia S; Ciubuc, John D; Parra, Karla; Manciu, Marian; Bennet, Kevin E; Valenzuela, Paloma; Sundin, Emma M; Durrer, William G; Reza, Luis; Francia, Giulio

    2016-07-04

    Although not yet ready for clinical application, methods based on Raman spectroscopy have shown significant potential in identifying, characterizing, and discriminating between noncancerous and cancerous specimens. Real-time and accurate medical diagnosis achievable through this vibrational optical method largely benefits from improvements in current technological and software capabilities. Not only is the acquisition of spectral information now possible in milliseconds and analysis of hundreds of thousands of data points achieved in minutes, but Raman spectroscopy also allows simultaneous detection and monitoring of several biological components. Besides demonstrating a significant Raman signature distinction between nontumorigenic (MCF-10A) and tumorigenic (MCF-7) breast epithelial cells, our study demonstrates that Raman can be used as a label-free method to evaluate epidermal growth factor activity in tumor cells. Comparative Raman profiles and images of specimens in the presence or absence of epidermal growth factor show important differences in regions attributed to lipid, protein, and nucleic acid vibrations. The occurrence, which is dependent on the presence of epidermal growth factor, of new Raman features associated with the appearance of phosphothreonine and phosphoserine residues reflects a signal transduction from the membrane to the nucleus, with concomitant modification of DNA/RNA structural characteristics. Parallel Western blotting analysis reveals an epidermal growth factor induction of phosphorylated Akt protein, corroborating the Raman results. The analysis presented in this work is an important step toward Raman-based evaluation of biological activity of epidermal growth factor receptors on the surfaces of breast cancer cells. With the ultimate future goal of clinically implementing Raman-guided techniques for the diagnosis of breast tumors (e.g., with regard to specific receptor activity), the current results just lay the foundation for

  8. Modified Bi-Rads Scoring of Breast Imaging Findings Improves Clinical Judgment.

    PubMed

    Silberman, Howard; Sheth, Pulin A; Parisky, Yuri R; Hovanessian-Larsen, Linda J; Sheth, Sindu; Tripathy, Debasish

    2015-01-01

    In contrast with the reporting requirements currently mandated under the Federal Mammography Quality Standards Act (MQSA), we propose a modification of the Breast Imaging Reporting and Data System (Bi-Rads) in which a concluding assessment category is assigned, not to the examination as a whole, but to every potentially malignant abnormality observed. This modification improves communication between the radiologist and the attending clinician, thereby facilitating clinical judgment leading to appropriate management. In patients with breast cancer eligible for breast conserving therapy, application of this modification brings to attention the necessity for such patients to undergo pretreatment biopsies of all secondary, synchronous ipsilateral lesions scored Bi-Rads 3-5. All contralateral secondary lesions scored Bi-Rads 3-5 also require pretreatment biopsies. The application of this modification of the MSQA demonstrates the necessity to alter current recommendations ("short-interval follow-up") for secondary, synchronous Bi-Rads 3 ("probably benign") image-detected abnormalities prior to treatment of the index malignancy.

  9. Multidimensional visualization for the immune system state presentation in breast cancer patients

    NASA Astrophysics Data System (ADS)

    Stakheyeva, M.; Eidenzon, D.; Cherdyntseva, N.; Slonimskaya, E.; Cherdyntsev, E.

    2015-11-01

    The immune system is a complex organization system possessing its hierarchical structure of morphological and functional elements united into an integral unity. Therefore the immune system state should be characterized as an integral unity. The use of the NovoSpark Visualisation approach (Canada) to multidimensional data visualization provides the visual image representing the immune system state as an integral unity. This uniform visual characteristic is formed by values of individual immunological parameters in every person. The curves appropriating the immune system states in breast cancer patients with and without cancer progression (hematogenous metastases) during a 3-year follow-up are located in disjoint areas of the multidimensional data space. The obtained data suggest that the immune system greatly influences the course and outcome of breast cancer. In prospect this approach can be useful for a breast cancer outcome prognosis.

  10. Four dimensional optoacoustic imaging of perfusion in preclinical breast tumor model in vivo (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Deán-Ben, Xosé Luís.; Ermolayev, Vladimir; Mandal, Subhamoy; Ntziachristos, Vasilis; Razansky, Daniel

    2016-03-01

    Imaging plays an increasingly important role in clinical management and preclinical studies of cancer. Application of optical molecular imaging technologies, in combination with highly specific contrast agent approaches, eminently contributed to understanding of functional and histological properties of tumors and anticancer therapies. Yet, optical imaging exhibits deterioration in spatial resolution and other performance metrics due to light scattering in deep living tissues. High resolution molecular imaging at the whole-organ or whole-body scale may therefore bring additional understanding of vascular networks, blood perfusion and microenvironment gradients of malignancies. In this work, we constructed a volumetric multispectral optoacoustic tomography (vMSOT) scanner for cancer imaging in preclinical models and explored its capacity for real-time 3D intravital imaging of whole breast cancer allografts in mice. Intrinsic tissue properties, such as blood oxygenation gradients, along with the distribution of externally administered liposomes carrying clinically-approved indocyanine green dye (lipo-ICG) were visualized in order to study vascularization, probe penetration and extravasation kinetics in different regions of interest within solid tumors. The use of v-MSOT along with the application of volumetric image analysis and perfusion tracking tools for studies of pathophysiological processes within microenvironment gradients of solid tumors demonstrated superior volumetric imaging system performance with sustained competitive resolution and imaging depth suitable for investigations in preclinical cancer models.

  11. IMAGES: An interactive image processing system

    NASA Technical Reports Server (NTRS)

    Jensen, J. R.

    1981-01-01

    The IMAGES interactive image processing system was created specifically for undergraduate remote sensing education in geography. The system is interactive, relatively inexpensive to operate, almost hardware independent, and responsive to numerous users at one time in a time-sharing mode. Most important, it provides a medium whereby theoretical remote sensing principles discussed in lecture may be reinforced in laboratory as students perform computer-assisted image processing. In addition to its use in academic and short course environments, the system has also been used extensively to conduct basic image processing research. The flow of information through the system is discussed including an overview of the programs.

  12. Ultrasound-guided photoacoustic imaging for the selective detection of EGFR-expressing breast cancer and lymph node metastases

    PubMed Central

    Zhang, Meihua; Kim, Hoe Suk; Jin, Tiefeng; Yi, Ann; Moon, Woo Kyung

    2016-01-01

    We assessed the use of ultrasound (US)-guided photoacoustic imaging (PAI) and anti-EGFR antibody-conjugated gold nanorods (anti-EGFR-GNs) to non-invasively detect EGFR-expressing primary tumor masses and regional lymph node (LN) metastases in breast tumor mice generated by injecting MCF-7 (EGFR-negative) or MDA-MB-231 (EGFR-positive) human breast cells using a preclinical Vevo 2100 LAZR Imaging system. Anti-EGFR-GNs provided a significant enhancement in the PA signal in MDA-MB-231 tumor and the axillary LN metastases relative to MCF-7 tumor and non-LN metastases. We demonstrated that US-guided PAI using anti-EGFR-GNs is highly sensitive for the selective visualization of EGFR-expressing breast primary tumors as well as LN micrometastases. PMID:27231631

  13. Desmoid Tumor of the Chest Wall Mimicking Recurrent Breast Cancer: Multimodality Imaging Findings

    PubMed Central

    Choi, Kyeong A; An, Yeong Yi

    2016-01-01

    Desmoid tumor of breast is a rare benign, locally aggressive tumor with a high recurrence rate. It has been associated with scar from previous breast surgery or trauma. Especially in breast cancer patients with previous operation history, it may simulate recurrent breast cancer clinically and radiologically. We presented multimodality imaging findings (ultrasound, computed tomography, magnetic resonance imaging and positron emission tomography/computed tomography) of chest wall desmoid tumor mimicking recurrent breast cancer in a 38-year-old patient with a history of left modified mastectomy. The desmoid tumor is a rare benign tumor that should be considered in the differential diagnosis of malignant local tumor recurrence after breast cancer operation. Biopsy was required for accurate diagnosis and wide local excision was its appropriate surgical management. PMID:27895871

  14. A combining method for tumors detection from near-infrared breast imaging.

    PubMed

    Wang, Zhicheng; Liu, Jian; Tian, Jinwen; Xie, Zeping

    2005-01-01

    This paper introduces the new qualitative and quantitative methods, which can diagnose breast tumors. Qualitative methods include blood vessel display inside and outside of pathological changes part of breast, display of equivalent pixel curves at the part of pathological changes and display of breast tumor image edge. Accordingly, three feature extraction operators are proposed, i.e. the combination operators of anisotropic gradient and smoothing operator, an improved Sobel operator and an edge sharpening operator. Furthermore, quantitative diagnose approaches are discussed based on blood and oxygen contents according to abundant clinical data and pathological mechanism of breast tumors. The results of clinic show that the methods of combining qualitative and quantitative diagnose are effective for breast tumor images, especially for early and potential breast cancer.

  15. Cosmetic outcome 1-5 years after breast conservative surgery, irradiation and systemic therapy.

    PubMed

    Kelemen, Gyöngyi; Varga, Zoltán; Lázár, György; Thurzó, László; Kahán, Zsuzsanna

    2012-04-01

    The late side-effects of the local therapy of early breast cancer depend on many patient- and therapy-related parameters. We aimed at investigating the factors that influence the cosmetic and functional outcomes among our breast cancer patients after breast-conserving surgery and conformal radiotherapy, with or without adjuvant systemic therapy. A study was made of the association of the cosmetic outcome after a median follow-up time of 2.4 years and the clinical data on 198 patients extracted from a prospectively compiled database. Breast tenderness occurred more frequently among patients ≤50 years old (p < 0.05). Long-term side effects were related to radiotherapy-related factors the most, while no effect of the systemic therapy could be detected. The risk of hyperpigmentation, breast edema and breast fibrosis increased by 18%, 23% and 7%, respectively for every 100 cm(3) increase in the irradiated breast volume, while that of breast edema and breast fibrosis increased by 21% and 12%, respectively for every 10 cm(3) increase in the boost volume. Patients who received a photon boost were significantly more likely to develop breast edema and fibrosis than those who received electrons (p < 0.005). Dose inhomogeneity was related to the volume of the irradiated breast (p = 0.037). Dyspigmentation developed more often among patients older than 50 years, while smoking favoured both dyspigmentation and teleangiectasia. Breast edema was related to dyspigmentation (p = 0.003), fibrosis (p < 0.001) and breast asymmetry (p = 0.032), whereas none of these abnormalities were associated with teleangiectasia. Body image changes were more frequent at a younger age (p < 0.005), while the need to change clothing habits occurred more often at an older age (p < 0.05). Radiotherapy-related parameters appear to exert the greatest effect on the overall cosmetic outcome after breast-conserving surgery and postoperative radiotherapy.

  16. Comparing contrast-enhanced color flow imaging and pathological measures of breast lesion vascularity.

    PubMed

    Forsberg, Flemming; Kuruvilla, Babita; Pascua, Mark B; Chaudhari, Manisha H; Merton, Daniel A; Palazzo, Juan P; Goldberg, Barry B

    2008-09-01

    This study was conducted to compare quantifiable measures of vascularity obtained from contrast-enhanced color flow images of breast lesions to pathologic vascularity measurements. Nineteen patients with solid breast masses received Levovist Injection (10 mL at 300 mg/mL; Berlex Laboratories, Montville, NJ, USA). Color flow images of the mass pre and post contrast were obtained using an HDI 3000 scanner (Philips Medical Systems, Bothell, WA, USA) optimized for clinical scanning on an individual basis. After surgical removal, specimens were sectioned in the same planes as the ultrasound images and stained with an endothelial cell marker (CD31). Microvessel area (MVA) and intratumoral microvessel density (MVD) were determined for vessels 10-19 microm, 20-29 microm, 30-39 microm, 40-49 microm and > or =50 microm in diameter using a microscope and image processing software. From the ultrasound images, the number of color pixels before and after contrast administration relative to the total area of the breast mass was calculated as a first-order measure of fractional tumor vascularity. Vascularity measures were compared using reverse stepwise multiple linear regression analysis. In total, 58 pathology slides (with 8,106 frames) and 185 ultrasound images were analyzed. There was a significant increase in flow visualization pre to post Levovist injection (p = 0.001), but no differences were found between the 11 benign and the eight malignant lesions (p > 0.35). Ultrasound vascularity measurements post contrast correlated significantly with pathology (0.15 < or = r2 < or = 0.46; p < 0.03). The 30-39 microm vessel range contributed most significantly to the MVD relationship (p < 0.001), whereas the MVA was mainly influenced by vessels 20-29 microm (p < 0.004). Precontrast ultrasound only correlated with pathology for relative MVA (r2 = 0.16; p = 0.01). In conclusion, contrast-enhanced color flow imaging provides a noninvasive measure of breast tumor neovascularity

  17. Label-free imaging of human breast tissues using coherent anti-Stokes Raman scattering microscopy

    NASA Astrophysics Data System (ADS)

    Yang, Yaliang; Gao, Liang; Wang, Zhiyong; Thrall, Michael J.; Luo, Pengfei; Wong, Kelvin K.; Wong, Stephen T.

    2011-03-01

    Breast cancer is a common disease in women. Current imaging and diagnostic methods for breast cancer confront several limitations, like time-consuming, invasive and with a high cost. Alternative strategies are in high demand to alleviate patients' trauma and lower medical expenses. Coherent anti-Stokes Raman scattering (CARS) imaging technique offers many advantages, including label-free, sub-wavelength spatial resolution and video-rate imaging speed. Therefore, it has been demonstrated as a powerful tool for various biomedical applications. In this study, we present a label-free fast imaging method to identify breast cancer and its subtypes using CARS microscopy. Human breast tissues, including normal, benign and invasive carcinomas, were imaged ex vivo using a custom-built CARS microscope. Compared with results from corresponding hematoxylin and eosin (H&E) stains, the CARS technique has demonstrated its capability in identifying morphological features in a similar way as in H&E stain. These features can be used to distinguish breast cancer from normal and benign tissues, and further separate cancer subtypes from each other. Our pilot study suggests that CARS microscopy could be used as a routine examination tool to characterize breast cancer ex vivo. Moreover, its label-free and fast imaging properties render this technique as a promising approach for in vivo and real-time imaging and diagnosis of breast cancer.

  18. Digital Image Processing Technique for Breast Cancer Detection

    NASA Astrophysics Data System (ADS)

    Guzmán-Cabrera, R.; Guzmán-Sepúlveda, J. R.; Torres-Cisneros, M.; May-Arrioja, D. A.; Ruiz-Pinales, J.; Ibarra-Manzano, O. G.; Aviña-Cervantes, G.; Parada, A. González

    2013-09-01

    Breast cancer is the most common cause of death in women and the second leading cause of cancer deaths worldwide. Primary prevention in the early stages of the disease becomes complex as the causes remain almost unknown. However, some typical signatures of this disease, such as masses and microcalcifications appearing on mammograms, can be used to improve early diagnostic techniques, which is critical for women’s quality of life. X-ray mammography is the main test used for screening and early diagnosis, and its analysis and processing are the keys to improving breast cancer prognosis. As masses and benign glandular tissue typically appear with low contrast and often very blurred, several computer-aided diagnosis schemes have been developed to support radiologists and internists in their diagnosis. In this article, an approach is proposed to effectively analyze digital mammograms based on texture segmentation for the detection of early stage tumors. The proposed algorithm was tested over several images taken from the digital database for screening mammography for cancer research and diagnosis, and it was found to be absolutely suitable to distinguish masses and microcalcifications from the background tissue using morphological operators and then extract them through machine learning techniques and a clustering algorithm for intensity-based segmentation.

  19. Statistical iterative reconstruction to improve image quality for digital breast tomosynthesis

    PubMed Central

    Xu, Shiyu; Lu, Jianping; Zhou, Otto; Chen, Ying

    2015-01-01

    Purpose: Digital breast tomosynthesis (DBT) is a novel modality with the potential to improve early detection of breast cancer by providing three-dimensional (3D) imaging with a low radiation dose. 3D image reconstruction presents some challenges: cone-beam and flat-panel geometry, and highly incomplete sampling. A promising means to overcome these challenges is statistical iterative reconstruction (IR), since it provides the flexibility of accurate physics modeling and a general description of system geometry. The authors’ goal was to develop techniques for applying statistical IR to tomosynthesis imaging data. Methods: These techniques include the following: a physics model with a local voxel-pair based prior with flexible parameters to fine-tune image quality; a precomputed parameter λ in the prior, to remove data dependence and to achieve a uniform resolution property; an effective ray-driven technique to compute the forward and backprojection; and an oversampled, ray-driven method to perform high resolution reconstruction with a practical region-of-interest technique. To assess the performance of these techniques, the authors acquired phantom data on the stationary DBT prototype system. To solve the estimation problem, the authors proposed an optimization-transfer based algorithm framework that potentially allows fewer iterations to achieve an acceptably converged reconstruction. Results: IR improved the detectability of low-contrast and small microcalcifications, reduced cross-plane artifacts, improved spatial resolution, and lowered noise in reconstructed images. Conclusions: Although the computational load remains a significant challenge for practical development, the superior image quality provided by statistical IR, combined with advancing computational techniques, may bring benefits to screening, diagnostics, and intraoperative imaging in clinical applications. PMID:26328987

  20. Flame Imaging System

    NASA Technical Reports Server (NTRS)

    Barnes, Heidi L. (Inventor); Smith, Harvey S. (Inventor)

    1998-01-01

    A system for imaging a flame and the background scene is discussed. The flame imaging system consists of two charge-coupled-device (CCD) cameras. One camera uses a 800 nm long pass filter which during overcast conditions blocks sufficient background light so the hydrogen flame is brighter than the background light, and the second CCD camera uses a 1100 nm long pass filter, which blocks the solar background in full sunshine conditions such that the hydrogen flame is brighter than the solar background. Two electronic viewfinders convert the signal from the cameras into a visible image. The operator can select the appropriate filtered camera to use depending on the current light conditions. In addition, a narrow band pass filtered InGaAs sensor at 1360 nm triggers an audible alarm and a flashing LED if the sensor detects a flame, providing additional flame detection so the operator does not overlook a small flame.

  1. Chemically Modified Bacteriophage as a Streamlined Approach to Noninvasive Breast Cancer Imaging

    DTIC Science & Technology

    2013-12-01

    Tessier, T. E.; Bryant, H. C.; Huber, D. L.; Larson, R. S.; Flynn, E. R. Detection of breast cancer cells using targeted magnetic nanoparticles and ultra...sensitive magnetic field sensors. Breast Cancer Res. 2011, 13, R108. (29) Wang, M.; Thanou, M. Targeting Nanoparticles to Cancer . Pharmacol. Res...Streamlined Approach to Noninvasive Breast Cancer Imaging PRINCIPAL INVESTIGATOR: Michelle E. Farkas, Ph.D. CONTRACTING ORGANIZATION

  2. 2-D multi-frequency imaging of a tumor inclusion in homogeneous breast phantom using harmonic motion doppler imaging method.

    PubMed

    Kamali Tafreshi, Azadeh; Top, Can; Gencer, Nevzat

    2017-02-02

    Harmonic Motion Microwave Doppler Imaging (HMMDI) is a novel imaging modality to image the coupled electrical and mechanical properties of body tissues. In this paper, we used two experimental systems with different receiver configurations to obtain HMMDI images from tissue mimicking phantoms at multiple vibration frequencies between 15 Hz and 35 Hz. In the first system, we used a spectrum analyzer to obtain the Doppler data in frequency domain, while in the second one, we used a homodyne receiver that was designed to acquire time domain data. The developed phantoms mimic elastic and dielectric properties of breast fat tissue, and include a 14 mm × 9 mm cylindrical inclusion representing tumor. A focused ultrasound probe was mechanically scanned in two lateral dimensions to generate HMMDI images of the phantoms. The inclusions were resolved inside the fat phantom using both experimental setups. Image resolution increased with increasing vibration frequency. The sensitivity of the designed receiver was higher compared to the spectrum analyzer measurements. The results also showed that time domain data acquisition should be used to fully exploit the potential of the HMMDI method.

  3. Advanced imaging communication system

    NASA Technical Reports Server (NTRS)

    Hilbert, E. E.; Rice, R. F.

    1977-01-01

    Key elements of system are imaging and nonimaging sensors, data compressor/decompressor, interleaved Reed-Solomon block coder, convolutional-encoded/Viterbi-decoded telemetry channel, and Reed-Solomon decoding. Data compression provides efficient representation of sensor data, and channel coding improves reliability of data transmission.

  4. MR Imaging and Gene Therapy of Breast Cancer

    DTIC Science & Technology

    1999-07-01

    gene therapy induced cellular and vascular changes in breast cancer. The P.I. has attended several courses including Virology, Cancer Biology, Molecular Biology and Molecular Biology of Cancer during the initial year of the funding period. She has also learned the protocol of encoding genes into adenovirus. A research assistant has been recruited and is currently undergoing training. They are now working on examination of tissues for various morphological and cellular characteristics. For search of appropriate recombinant viral systems that are expected to cause direct

  5. MO-A-BRD-06: In Vivo Cherenkov Video Imaging to Verify Whole Breast Irradiation Treatment

    SciTech Connect

    Zhang, R; Glaser, A; Jarvis, L; Gladstone, D; Andreozzi, J; Hitchcock, W; Pogue, B

    2014-06-15

    Purpose: To show in vivo video imaging of Cherenkov emission (Cherenkoscopy) can be acquired in the clinical treatment room without affecting the normal process of external beam radiation therapy (EBRT). Applications of Cherenkoscopy, such as patient positioning, movement tracking, treatment monitoring and superficial dose estimation, were examined. Methods: In a phase 1 clinical trial, including 12 patients undergoing post-lumpectomy whole breast irradiation, Cherenkov emission was imaged with a time-gated ICCD camera synchronized to the radiation pulses, during 10 fractions of the treatment. Images from different treatment days were compared by calculating the 2-D correlations corresponding to the averaged image. An edge detection algorithm was utilized to highlight biological features, such as the blood vessels. Superficial dose deposited at the sampling depth were derived from the Eclipse treatment planning system (TPS) and compared with the Cherenkov images. Skin reactions were graded weekly according to the Common Toxicity Criteria and digital photographs were obtained for comparison. Results: Real time (fps = 4.8) imaging of Cherenkov emission was feasible and feasibility tests indicated that it could be improved to video rate (fps = 30) with system improvements. Dynamic field changes due to fast MLC motion were imaged in real time. The average 2-D correlation was about 0.99, suggesting the stability of this imaging technique and repeatability of patient positioning was outstanding. Edge enhanced images of blood vessels were observed, and could serve as unique biological markers for patient positioning and movement tracking (breathing). Small discrepancies exists between the Cherenkov images and the superficial dose predicted from the TPS but the former agreed better with actual skin reactions than did the latter. Conclusion: Real time Cherenkoscopy imaging during EBRT is a novel imaging tool that could be utilized for patient positioning, movement tracking

  6. Initial Experience with a Cone-beam Breast Computed Tomography-guided Biopsy System

    PubMed Central

    Seifert, Posy J; Morgan, Renee C; Conover, David L; Arieno, Andrea L

    2017-01-01

    Objective: To evaluate our initial experience with a cone-beam breast computed tomography (BCT)-guided breast biopsy system for lesion retrieval in phantom studies for use with a cone-beam BCT imaging system. Materials and Methods: Under the Institutional Review Board approval, a phantom biopsy study was performed using a dedicated BCT-guided biopsy system. Fifteen biopsies were performed on each of the small, medium, and large anthropomorphic breast phantoms with both BCT and stereotactic guidance for comparison. Each set of the 45 phantoms contained masses and calcification clusters of varying sizes. Data included mass/calcium retrieval rate and dose and length of procedure time for phantom studies. Results: Phantom mass and calcium retrieval rate were 100% for BCT and stereotactic biopsy. BCT dose for small and medium breast phantoms was found to be equivalent to or less than the corresponding stereotactic approach. Stereotactic-guided biopsy dose was 34.2 and 62.5 mGy for small and medium breast phantoms, respectively. BCT-guided biopsy dose was 15.4 and 30.0 mGy for small and medium breast phantoms, respectively. Both computed tomography biopsy and stereotactic biopsy study time ranged from 10 to 20 min. Conclusion: Initial experience with a BCT-guided biopsy system has shown to be comparable to stereotactic biopsy in phantom studies with equivalent or decreased dose. PMID:28217404

  7. Dual-energy contrast-enhanced breast tomosynthesis: optimization of beam quality for dose and image quality.

    PubMed

    Samei, Ehsan; Saunders, Robert S

    2011-10-07

    Dual-energy contrast-enhanced breast tomosynthesis is a promising technique to obtain three-dimensional functional information from the breast with high resolution and speed. To optimize this new method, this study searched for the beam quality that maximized image quality in terms of mass detection performance. A digital tomosynthesis system was modeled using a fast ray-tracing algorithm, which created simulated projection images by tracking photons through a voxelized anatomical breast phantom containing iodinated lesions. The single-energy images were combined into dual-energy images through a weighted log subtraction process. The weighting factor was optimized to minimize anatomical noise, while the dose distribution was chosen to minimize quantum noise. The dual-energy images were analyzed for the signal difference to noise ratio (SdNR) of iodinated masses. The fast ray-tracing explored 523 776 dual-energy combinations to identify which yields optimum mass SdNR. The ray-tracing results were verified using a Monte Carlo model for a breast tomosynthesis system with a selenium-based flat-panel detector. The projection images from our voxelized breast phantom were obtained at a constant total glandular dose. The projections were combined using weighted log subtraction and reconstructed using commercial reconstruction software. The lesion SdNR was measured in the central reconstructed slice. The SdNR performance varied markedly across the kVp and filtration space. Ray-tracing results indicated that the mass SdNR was maximized with a high-energy tungsten beam at 49 kVp with 92.5 µm of copper filtration and a low-energy tungsten beam at 49 kVp with 95 µm of tin filtration. This result was consistent with Monte Carlo findings. This mammographic technique led to a mass SdNR of 0.92 ± 0.03 in the projections and 3.68 ± 0.19 in the reconstructed slices. These values were markedly higher than those for non-optimized techniques. Our findings indicate that dual

  8. Does Breast Magnetic Resonance Imaging Combined With Conventional Imaging Modalities Decrease the Rates of Surgical Margin Involvement and Reoperation?

    PubMed Central

    Lai, Hung-Wen; Chen, Chih-Jung; Lin, Ying-Jen; Chen, Shu-Ling; Wu, Hwa-Koon; Wu, Yu-Ting; Kuo, Shou-Jen; Chen, Shou-Tung; Chen, Dar-Ren

    2016-01-01

    Abstract The objective of this study was to assess whether preoperative breast magnetic resonance imaging (MRI) combined with conventional breast imaging techniques decreases the rates of margin involvement and reexcision. Data on patients who underwent surgery for primary operable breast cancer were obtained from the Changhua Christian Hospital (CCH) breast cancer database. The rate of surgical margin involvement and the rate of reoperation were compared between patients who underwent conventional breast imaging modalities (Group A: mammography and sonography) and those who received breast MRI in addition to conventional imaging (Group B: mammography, sonography, and MRI). A total of 1468 patients were enrolled in this study. Among the 733 patients in Group A, 377 (51.4%) received breast-conserving surgery (BCS) and 356 (48.6%) received mastectomy. Among the 735 patients in Group B, 348 (47.3%) received BCS and 387 (52.7%) received mastectomy. There were no significant differences in operative method between patients who received conventional imaging alone and those that received MRI and conventional imaging (P = 0.13). The rate of detection of pathological multifocal/multicentric breast cancer was markedly higher in patients who received preoperative MRI than in those who underwent conventional imaging alone (14.3% vs 8.6%, P < 0.01). The overall rate of surgical margin involvement was significantly lower in patients who received MRI (5.0%) than in those who received conventional imaging alone (9.0%) (P < 0.01). However, a significant reduction in rate of surgical margin positivity was only observed in patients who received BCS (Group A, 14.6%; Group B, 6.6%, P < 0.01). The overall BCS reoperation rates were 11.7% in the conventional imaging group and 3.2% in the combined MRI group (P < 0.01). There were no significant differences in rate of residual cancer in specimens obtained during reoperation between the 2 preoperative imaging groups

  9. Breast tumor detection using UWB circular-SAR tomographic microwave imaging.

    PubMed

    Oloumi, Daniel; Boulanger, Pierre; Kordzadeh, Atefeh; Rambabu, Karumudi

    2015-01-01

    This paper describes the possibility of detecting tumors in human breast using ultra-wideband (UWB) circular synthetic aperture radar (CSAR). CSAR is a subset of SAR which is a radar imaging technique using a circular data acquisition pattern. Tomographic image reconstruction is done using a time domain global back projection technique adapted to CSAR. Experiments are conducted on a breast phantoms made of pork fat emulating normal and cancerous conditions. Preliminary experimental results show that microwave imaging of a breast phantom using UWB-CSAR is a simple and low-cost method, efficiently capable of detecting the presence of tumors.

  10. An interactive method based on the live wire for segmentation of the breast in mammography images.

    PubMed

    Zewei, Zhang; Tianyue, Wang; Li, Guo; Tingting, Wang; Lu, Xu

    2014-01-01

    In order to improve accuracy of computer-aided diagnosis of breast lumps, the authors introduce an improved interactive segmentation method based on Live Wire. This paper presents the Gabor filters and FCM clustering algorithm is introduced to the Live Wire cost function definition. According to the image FCM analysis for image edge enhancement, we eliminate the interference of weak edge and access external features clear segmentation results of breast lumps through improving Live Wire on two cases of breast segmentation data. Compared with the traditional method of image segmentation, experimental results show that the method achieves more accurate segmentation of breast lumps and provides more accurate objective basis on quantitative and qualitative analysis of breast lumps.

  11. Imaging in breast cancer: Single-photon computed tomography and positron-emission tomography

    PubMed Central

    Bénard, François; Turcotte, Éric

    2005-01-01

    Although mammography remains a key imaging method for the early detection and screening of breast cancer, the overall accuracy of this test remains low. Several radiopharmaceuticals have been proposed as adjunct imaging methods to characterize breast masses by single-photon-emission computed tomography (SPECT) and positron-emission tomography (PET). Useful in characterizing indeterminate palpable masses and in the detection of axillary metastases, these techniques are insufficiently sensitive to detect subcentimetric tumor deposits. Their role in staging nodal involvement of the axillary areas therefore currently remains limited. Several enzymes and receptors have been targeted for imaging breast cancers with PET. [18F]Fluorodeoxyglucose is particularly useful in the detection and staging of recurrent breast cancer and in assessing the response to chemotherapy. Several other ligands targeting proliferative activity, protein synthesis, and hormone and cell-membrane receptors may complement this approach by providing unique information about biological characteristics of breast cancer across primary and metastatic tumor sites. PMID:15987467

  12. Automated 3D ultrasound image segmentation to aid breast cancer image interpretation.

    PubMed

    Gu, Peng; Lee, Won-Mean; Roubidoux, Marilyn A; Yuan, Jie; Wang, Xueding; Carson, Paul L

    2016-02-01

    Segmentation of an ultrasound image into functional tissues is of great importance to clinical diagnosis of breast cancer. However, many studies are found to segment only the mass of interest and not all major tissues. Differences and inconsistencies in ultrasound interpretation call for an automated segmentation method to make results operator-independent. Furthermore, manual segmentation of entire three-dimensional (3D) ultrasound volumes is time-consuming, resource-intensive, and clinically impractical. Here, we propose an automated algorithm to segment 3D ultrasound volumes into three major tissue types: cyst/mass, fatty tissue, and fibro-glandular tissue. To test its efficacy and consistency, the proposed automated method was employed on a database of 21 cases of whole breast ultrasound. Experimental results show that our proposed method not only distinguishes fat and non-fat tissues correctly, but performs well in classifying cyst/mass. Comparison of density assessment between the automated method and manual segmentation demonstrates good consistency with an accuracy of 85.7%. Quantitative comparison of corresponding tissue volumes, which uses overlap ratio, gives an average similarity of 74.54%, consistent with values seen in MRI brain segmentations. Thus, our proposed method exhibits great potential as an automated approach to segment 3D whole breast ultrasound volumes into functionally distinct tissues that may help to correct ultrasound speed of sound aberrations and assist in density based prognosis of breast cancer.

  13. Automated 3D Ultrasound Image Segmentation to Aid Breast Cancer Image Interpretation

    PubMed Central

    Gu, Peng; Lee, Won-Mean; Roubidoux, Marilyn A.; Yuan, Jie; Wang, Xueding; Carson, Paul L.

    2015-01-01

    Segmentation of an ultrasound image into functional tissues is of great importance to clinical diagnosis of breast cancer. However, many studies are found to segment only the mass of interest and not all major tissues. Differences and inconsistencies in ultrasound interpretation call for an automated segmentation method to make results operator-independent. Furthermore, manual segmentation of entire three-dimensional (3D) ultrasound volumes is time-consuming, resource-intensive, and clinically impractical. Here, we propose an automated algorithm to segment 3D ultrasound volumes into three major tissue types: cyst/mass, fatty tissue, and fibro-glandular tissue. To test its efficacy and consistency, the proposed automated method was employed on a database of 21 cases of whole breast ultrasound. Experimental results show that our proposed method not only distinguishes fat and non-fat tissues correctly, but performs well in classifying cyst/mass. Comparison of density assessment between the automated method and manual segmentation demonstrates good consistency with an accuracy of 85.7%. Quantitative comparison of corresponding tissue volumes, which uses overlap ratio, gives an average similarity of 74.54%, consistent with values seen in MRI brain segmentations. Thus, our proposed method exhibits great potential as an automated approach to segment 3D whole breast ultrasound volumes into functionally distinct tissues that may help to correct ultrasound speed of sound aberrations and assist in density based prognosis of breast cancer. PMID:26547117

  14. Nuclear imaging of the breast: translating achievements in instrumentation into clinical use.

    PubMed

    Hruska, Carrie B; O'Connor, Michael K

    2013-05-01

    Approaches to imaging the breast with nuclear medicine and∕or molecular imaging methods have been under investigation since the late 1980s when a technique called scintimammography was first introduced. This review charts the progress of nuclear imaging of the breast over the last 20 years, covering the development of newer techniques such as breast specific gamma imaging, molecular breast imaging, and positron emission mammography. Key issues critical to the adoption of these technologies in the clinical environment are discussed, including the current status of clinical studies, the efforts at reducing the radiation dose from procedures associated with these technologies, and the relevant radiopharmaceuticals that are available or under development. The necessary steps required to move these technologies from bench to bedside are also discussed.

  15. Nuclear imaging of the breast: Translating achievements in instrumentation into clinical use

    PubMed Central

    Hruska, Carrie B.; O'Connor, Michael K.

    2013-01-01

    Approaches to imaging the breast with nuclear medicine and/or molecular imaging methods have been under investigation since the late 1980s when a technique called scintimammography was first introduced. This review charts the progress of nuclear imaging of the breast over the last 20 years, covering the development of newer techniques such as breast specific gamma imaging, molecular breast imaging, and positron emission mammography. Key issues critical to the adoption of these technologies in the clinical environment are discussed, including the current status of clinical studies, the efforts at reducing the radiation dose from procedures associated with these technologies, and the relevant radiopharmaceuticals that are available or under development. The necessary steps required to move these technologies from bench to bedside are also discussed. PMID:23635248

  16. Breast ultrasound image segmentation: an optimization approach based on super-pixels and high-level descriptors

    NASA Astrophysics Data System (ADS)

    Massich, Joan; Lemaître, Guillaume; Martí, Joan; Mériaudeau, Fabrice

    2015-04-01

    Breast cancer is the second most common cancer and the leading cause of cancer death among women. Medical imaging has become an indispensable tool for its diagnosis and follow up. During the last decade, the medical community has promoted to incorporate Ultra-Sound (US) screening as part of the standard routine. The main reason for using US imaging is its capability to differentiate benign from malignant masses, when compared to other imaging techniques. The increasing usage of US imaging encourages the development of Computer Aided Diagnosis (CAD) systems applied to Breast Ultra-Sound (BUS) images. However accurate delineations of the lesions and structures of the breast are essential for CAD systems in order to extract information needed to perform diagnosis. This article proposes a highly modular and flexible framework for segmenting lesions and tissues present in BUS images. The proposal takes advantage of optimization strategies using super-pixels and high-level descriptors, which are analogous to the visual cues used by radiologists. Qualitative and quantitative results are provided stating a performance within the range of the state-of-the-art.

  17. Application of image processing techniques for contrast enhancement in dense breast digital mammograms

    NASA Astrophysics Data System (ADS)

    Nunes, Fatima d. L. d. S.; Schiabel, Homero; Benatti, Rodrigo H.

    1999-05-01

    Dense breasts, that usually are characteristic of women less than 40 years old, difficult many times early detection of breast cancer. In this work we present the application of some image processing techniques intended to enhance the contrast in dense breast images, regarding the detection of clustered microcalcifications. The procedure was, firstly, determining in the literature the main techniques used for mammographic images contrast enhancement. The results indicate that, in general: (1) as expected, the overall performance of the CAD scheme for clusters detection decreased when applied exclusively to dense breast images, compared to the application to a set of images without this characteristic; (2) most of the techniques for contrast enhancement used successfully in generic mammography images databases are not able to enhance structures of athirst in databases formed only by dense breasts images, due to the very poor contrast between microcalcifications, for example, and other tissues. These features should stress, therefore, the need of developing a methodology specifically for this type of images in order to provide better conditions to the detection of breast suspicious structures in these group of women.

  18. An audit of pain/discomfort experienced during image-guided breast biopsy procedures.

    PubMed

    Satchithananda, Keshthra; Fernando, Rashika Anne-Marie; Ralleigh, Gita; Evans, David Rohan; Wasan, Rema Kaur; Bose, Shamistha; Donaldson, N; Michell, Michael J

    2005-01-01

    A prospective audit of 221 breast biopsies was carried out to assess the pain/discomfort experienced during image-guided breast biopsies. The only significant factor in pain scores was the size of the needle used. Fine-needle aspiration cytology using a 21-gauge needle was found to cause the most discomfort.

  19. Automated Area Beam Equalization Mammography for Improved Imaging of Dense Breasts

    DTIC Science & Technology

    2005-08-01

    glandular dose of the whole breast can be calculated from the sum of all pixilated igD , within an ROI in the mammogram weighted by the fraction of...and mask and creates a weighted average glandular dose igD , image. An ROI around the breast region can be drawn manually. The total sum within

  20. Terahertz transmission vs reflection imaging and model-based characterization for excised breast carcinomas.

    PubMed

    Bowman, Tyler; El-Shenawee, Magda; Campbell, Lucas K

    2016-09-01

    This work presents experimental and analytical comparison of terahertz transmission and reflection imaging modes for assessing breast carcinoma in excised paraffin-embedded human breast tissue. Modeling for both transmission and reflection imaging is developed. The refractive index and absorption coefficient of the tissue samples are obtained. The reflection measurements taken at the system's fixed oblique angle of 30° are shown to be a hybridization of TE and TM mod