Science.gov

Sample records for breast tumor xenografts

  1. Patient-Derived Tumor Xenograft Models of Breast Cancer.

    PubMed

    Suarez, Christopher D; Littlepage, Laurie E

    2016-01-01

    The need for model systems that more accurately predict patient outcome has led to a renewed interest and a rapid development of orthotopic transplantation models designed to grow, expand, and study patient-derived human breast tumor tissue in mice. After implanting a human breast tumor piece into a mouse mammary fat pad and allowing the tumor to grow in vivo, the tumor tissue can be either harvested and immediately implanted into mice or can be stored as tissue pieces in liquid nitrogen for surgical implantation at a later time. Here, we describe the process of surgically implanting patient-derived breast tumor tissue into the mammary gland of nonobese diabetic-severe combined immunodeficiency (NOD-SCID) mice and harvesting tumor tissue for long-term storage in liquid nitrogen.

  2. Lapatinib in Combination With Radiation Diminishes Tumor Regrowth in HER2+ and Basal-Like/EGFR+ Breast Tumor Xenografts

    SciTech Connect

    Sambade, Maria J.; Kimple, Randall J.; Camp, J. Terese; Peters, Eldon; Livasy, Chad A.; Sartor, Carolyn I.; Shields, Janiel M.

    2010-06-01

    Purpose: To determine whether lapatinib, a dual epidermal growth factor receptor (EGFR)/HER2 kinase inhibitor, can radiosensitize EGFR+ or HER2+ breast cancer xenografts. Methods and Materials: Mice bearing xenografts of basal-like/EGFR+ SUM149 and HER2+ SUM225 breast cancer cells were treated with lapatinib and fractionated radiotherapy and tumor growth inhibition correlated with alterations in ERK1 and AKT activation by immunohistochemistry. Results: Basal-like/EGFR+ SUM149 breast cancer tumors were completely resistant to treatment with lapatinib alone but highly growth impaired with lapatinib plus radiotherapy, exhibiting an enhancement ratio average of 2.75 and a fractional tumor product ratio average of 2.20 during the study period. In contrast, HER2+ SUM225 breast cancer tumors were highly responsive to treatment with lapatinib alone and yielded a relatively lower enhancement ratio average of 1.25 during the study period with lapatinib plus radiotherapy. Durable tumor control in the HER2+ SUM225 model was more effective with the combination treatment than either lapatinib or radiotherapy alone. Immunohistochemical analyses demonstrated that radiosensitization by lapatinib correlated with ERK1/2 inhibition in the EGFR+ SUM149 model and with AKT inhibition in the HER2+ SUM225 model. Conclusion: Our data suggest that lapatinib combined with fractionated radiotherapy may be useful against EGFR+ and HER2+ breast cancers and that inhibition of downstream signaling to ERK1/2 and AKT correlates with sensitization in EGFR+ and HER2+ cells, respectively.

  3. Optimization of an indazole series of selective estrogen receptor degraders: Tumor regression in a tamoxifen-resistant breast cancer xenograft.

    PubMed

    Govek, Steven P; Nagasawa, Johnny Y; Douglas, Karensa L; Lai, Andiliy G; Kahraman, Mehmet; Bonnefous, Celine; Aparicio, Anna M; Darimont, Beatrice D; Grillot, Katherine L; Joseph, James D; Kaufman, Joshua A; Lee, Kyoung-Jin; Lu, Nhin; Moon, Michael J; Prudente, Rene Y; Sensintaffar, John; Rix, Peter J; Hager, Jeffrey H; Smith, Nicholas D

    2015-11-15

    Selective estrogen receptor degraders (SERDs) have shown promise for the treatment of ER+ breast cancer. Disclosed herein is the continued optimization of our indazole series of SERDs. Exploration of ER degradation and antagonism in vitro followed by in vivo antagonism and oral exposure culminated in the discovery of indazoles 47 and 56, which induce tumor regression in a tamoxifen-resistant breast cancer xenograft.

  4. Effect of melatonin on tumor growth and angiogenesis in xenograft model of breast cancer.

    PubMed

    Jardim-Perassi, Bruna Victorasso; Arbab, Ali S; Ferreira, Lívia Carvalho; Borin, Thaiz Ferraz; Varma, Nadimpalli R S; Iskander, A S M; Shankar, Adarsh; Ali, Meser M; de Campos Zuccari, Debora Aparecida Pires

    2014-01-01

    As neovascularization is essential for tumor growth and metastasis, controlling angiogenesis is a promising tactic in limiting cancer progression. Melatonin has been studied for their inhibitory properties on angiogenesis in cancer. We performed an in vivo study to evaluate the effects of melatonin treatment on angiogenesis in breast cancer. Cell viability was measured by MTT assay after melatonin treatment in triple-negative breast cancer cells (MDA-MB-231). After, cells were implanted in athymic nude mice and treated with melatonin or vehicle daily, administered intraperitoneally 1 hour before turning the room light off. Volume of the tumors was measured weekly with a digital caliper and at the end of treatments animals underwent single photon emission computed tomography (SPECT) with Technetium-99m tagged vascular endothelial growth factor (VEGF) C to detect in vivo angiogenesis. In addition, expression of pro-angiogenic/growth factors in the tumor extracts was evaluated by membrane antibody array and collected tumor tissues were analyzed with histochemical staining. Melatonin in vitro treatment (1 mM) decreased cell viability (p<0.05). The breast cancer xenografts nude mice treated with melatonin showed reduced tumor size and cell proliferation (Ki-67) compared to control animals after 21 days of treatment (p<0.05). Expression of VEGF receptor 2 decreased significantly in the treated animals compared to that of control when determined by immunohistochemistry (p<0.05) but the changes were not significant on SPECT (p>0.05) images. In addition, there was a decrease of micro-vessel density (Von Willebrand Factor) in melatonin treated mice (p<0.05). However, semiquantitative densitometry analysis of membrane array indicated increased expression of epidermal growth factor receptor and insulin-like growth factor 1 in treated tumors compared to vehicle treated tumors (p<0.05). In conclusion, melatonin treatment showed effectiveness in reducing tumor growth and cell

  5. Monitoring breast tumor progression by photoacoustic measurements: a xenograft mice model study

    NASA Astrophysics Data System (ADS)

    Priya, Mallika; Satish Rao, Bola Sadashiva; Chandra, Subhash; Datta, Anirbit; Nayak, Subramanya G.; Mahato, Krishna Kishore

    2015-10-01

    The current study reports the photoacoustic spectroscopy-based assessment of breast tumor progression in a nude mice xenograft model. The tumor was induced through subcutaneous injection of MCF-7 cells in female nude mice and was monitored for 20 days until the tumor volume reached 1000 mm3. The tumor tissues were extracted at three different time points (days 10, 15, and 20) after tumor inoculation and subjected to photoacoustic spectral recordings in time domain ex vivo at 281 nm pulsed laser excitations. The spectra were converted into the frequency domain using the fast Fourier transformed tools of MATLAB® algorithms and further utilized to extract seven statistical features (mean, median, area under the curve, variance and standard deviation, skewness and kurtosis) from each time point sample to assess the tumor growth with wavelet principal component analysis based logistic regression analysis performed on the data. The prediction accuracies of the analysis for day 10 versus day 15, day 15 versus day 20, and day 10 versus day 20 were found to be 92.31, 87.5, and 95.2%, respectively. Also, receiver operator characteristics area under the curve analysis for day 10 versus day 15, day 15 versus day 20, and day 10 versus day 20 were found to be 0.95, 0.85, and 0.93, respectively. The ability of photoacoustic measurements in the objective assessment of tumor progression has been clearly demonstrated, indicating its clinical potential.

  6. Mass spectrometric imaging of red fluorescent protein in breast tumor xenografts.

    PubMed

    Chughtai, Kamila; Jiang, Lu; Post, Harm; Winnard, Paul T; Greenwood, Tiffany R; Raman, Venu; Bhujwalla, Zaver M; Heeren, Ron M A; Glunde, Kristine

    2013-05-01

    Mass spectrometric imaging (MSI) in combination with electrospray mass spectrometry (ESI-MS) is a powerful technique for visualization and identification of a variety of different biomolecules directly from thin tissue sections. As commonly used tools for molecular reporting, fluorescent proteins are molecular reporter tools that have enabled the elucidation of a multitude of biological pathways and processes. To combine these two approaches, we have performed targeted MS analysis and MALDI-MSI visualization of a tandem dimer (td)Tomato red fluorescent protein, which was expressed exclusively in the hypoxic regions of a breast tumor xenograft model. For the first time, a fluorescent protein has been visualized by both optical microscopy and MALDI-MSI. Visualization of tdTomato by MALDI-MSI directly from breast tumor tissue sections will allow us to simultaneously detect and subsequently identify novel molecules present in hypoxic regions of the tumor. MS and MALDI-MSI of fluorescent proteins, as exemplified in our study, is useful for studies in which the advantages of MS and MSI will benefit from the combination with molecular approaches that use fluorescent proteins as reporters. PMID:23184411

  7. Mass Spectrometric Imaging of Red Fluorescent Protein in Breast Tumor Xenografts

    NASA Astrophysics Data System (ADS)

    Chughtai, Kamila; Jiang, Lu; Post, Harm; Winnard, Paul T.; Greenwood, Tiffany R.; Raman, Venu; Bhujwalla, Zaver M.; Heeren, Ron M. A.; Glunde, Kristine

    2013-05-01

    Mass spectrometric imaging (MSI) in combination with electrospray mass spectrometry (ESI-MS) is a powerful technique for visualization and identification of a variety of different biomolecules directly from thin tissue sections. As commonly used tools for molecular reporting, fluorescent proteins are molecular reporter tools that have enabled the elucidation of a multitude of biological pathways and processes. To combine these two approaches, we have performed targeted MS analysis and MALDI-MSI visualization of a tandem dimer (td)Tomato red fluorescent protein, which was expressed exclusively in the hypoxic regions of a breast tumor xenograft model. For the first time, a fluorescent protein has been visualized by both optical microscopy and MALDI-MSI. Visualization of tdTomato by MALDI-MSI directly from breast tumor tissue sections will allow us to simultaneously detect and subsequently identify novel molecules present in hypoxic regions of the tumor. MS and MALDI-MSI of fluorescent proteins, as exemplified in our study, is useful for studies in which the advantages of MS and MSI will benefit from the combination with molecular approaches that use fluorescent proteins as reporters.

  8. Integrated Bottom-Up and Top-Down Proteomics of Patient-Derived Breast Tumor Xenografts.

    PubMed

    Ntai, Ioanna; LeDuc, Richard D; Fellers, Ryan T; Erdmann-Gilmore, Petra; Davies, Sherri R; Rumsey, Jeanne; Early, Bryan P; Thomas, Paul M; Li, Shunqiang; Compton, Philip D; Ellis, Matthew J C; Ruggles, Kelly V; Fenyö, David; Boja, Emily S; Rodriguez, Henry; Townsend, R Reid; Kelleher, Neil L

    2016-01-01

    Bottom-up proteomics relies on the use of proteases and is the method of choice for identifying thousands of protein groups in complex samples. Top-down proteomics has been shown to be robust for direct analysis of small proteins and offers a solution to the "peptide-to-protein" inference problem inherent with bottom-up approaches. Here, we describe the first large-scale integration of genomic, bottom-up and top-down proteomic data for the comparative analysis of patient-derived mouse xenograft models of basal and luminal B human breast cancer, WHIM2 and WHIM16, respectively. Using these well-characterized xenograft models established by the National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium, we compared and contrasted the performance of bottom-up and top-down proteomics to detect cancer-specific aberrations at the peptide and proteoform levels and to measure differential expression of proteins and proteoforms. Bottom-up proteomic analysis of the tumor xenografts detected almost 10 times as many coding nucleotide polymorphisms and peptides resulting from novel splice junctions than top-down. For proteins in the range of 0-30 kDa, where quantitation was performed using both approaches, bottom-up proteomics quantified 3,519 protein groups from 49,185 peptides, while top-down proteomics quantified 982 proteoforms mapping to 358 proteins. Examples of both concordant and discordant quantitation were found in a ∼60:40 ratio, providing a unique opportunity for top-down to fill in missing information. The two techniques showed complementary performance, with bottom-up yielding eight times more identifications of 0-30 kDa proteins in xenograft proteomes, but failing to detect differences in certain posttranslational modifications (PTMs), such as phosphorylation pattern changes of alpha-endosulfine. This work illustrates the potency of a combined bottom-up and top-down proteomics approach to deepen our knowledge of cancer biology, especially when

  9. Integrated Bottom-Up and Top-Down Proteomics of Patient-Derived Breast Tumor Xenografts*

    PubMed Central

    Ntai, Ioanna; LeDuc, Richard D.; Fellers, Ryan T.; Erdmann-Gilmore, Petra; Davies, Sherri R.; Rumsey, Jeanne; Early, Bryan P.; Thomas, Paul M.; Li, Shunqiang; Compton, Philip D.; Ellis, Matthew J. C.; Ruggles, Kelly V.; Fenyö, David; Boja, Emily S.; Rodriguez, Henry; Townsend, R. Reid; Kelleher, Neil L.

    2016-01-01

    Bottom-up proteomics relies on the use of proteases and is the method of choice for identifying thousands of protein groups in complex samples. Top-down proteomics has been shown to be robust for direct analysis of small proteins and offers a solution to the “peptide-to-protein” inference problem inherent with bottom-up approaches. Here, we describe the first large-scale integration of genomic, bottom-up and top-down proteomic data for the comparative analysis of patient-derived mouse xenograft models of basal and luminal B human breast cancer, WHIM2 and WHIM16, respectively. Using these well-characterized xenograft models established by the National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium, we compared and contrasted the performance of bottom-up and top-down proteomics to detect cancer-specific aberrations at the peptide and proteoform levels and to measure differential expression of proteins and proteoforms. Bottom-up proteomic analysis of the tumor xenografts detected almost 10 times as many coding nucleotide polymorphisms and peptides resulting from novel splice junctions than top-down. For proteins in the range of 0–30 kDa, where quantitation was performed using both approaches, bottom-up proteomics quantified 3,519 protein groups from 49,185 peptides, while top-down proteomics quantified 982 proteoforms mapping to 358 proteins. Examples of both concordant and discordant quantitation were found in a ∼60:40 ratio, providing a unique opportunity for top-down to fill in missing information. The two techniques showed complementary performance, with bottom-up yielding eight times more identifications of 0–30 kDa proteins in xenograft proteomes, but failing to detect differences in certain posttranslational modifications (PTMs), such as phosphorylation pattern changes of alpha-endosulfine. This work illustrates the potency of a combined bottom-up and top-down proteomics approach to deepen our knowledge of cancer biology, especially

  10. Predictive potential of photoacoustic spectroscopy in breast tumor detection based on xenograft serum profiles

    NASA Astrophysics Data System (ADS)

    Priya, Mallika; Chandra, Subhas; Rao, Bola Sadashiva Satish; Ray, Satadru; Mahato, Krishna Kishore

    2015-02-01

    Breast cancer is the second most common cancer all over the world. Heterogeneity in breast cancer makes it a difficult task to detect with the existing serum markers at an early stage. With an aim to detect the disease early at the pre-malignant level, MCF-7 cells xenografts were developed using female nude mice and blood serum were extracted on days 0th, 10th, 15th & 20th post tumor cells injection (N=12 for each time point). Photoacoustic spectra were recorded on the serum samples at 281nm pulsed laser excitations. A total of 144 time domain spectra were recorded from 48 serum samples belonging to 4 different time points. These spectra were then converted into frequency domain (0-1250kHz) using MATLAB algorithms. Subsequently, seven features (mean, median, mode, variance, standard deviation, area under the curve & spectral residuals after 10th degree polynomial fit) were extracted from them and used for PCA. Further, using the first three Principal components (PCs) of the data, Linear Discriminate Analysis has been carried out. The performance of the analysis showed 82.64% accuracy in predicting various time points under study. Further, frequency-region wise analysis was also performed on the data and found 95 - 203.13 kHz region most suitable for the discrimination among the 4 time points. The analysis provided a clear discrimination in most of the spectral features under study suggesting that the photoacoustic technique has the potential to be a diagnostic tool for early detection of breast tumor development

  11. Anti-Tumoral Effects of Anti-Progestins in a Patient-Derived Breast Cancer Xenograft Model.

    PubMed

    Esber, Nathalie; Cherbonnier, Clément; Resche-Rigon, Michèle; Hamze, Abdallah; Alami, Mouad; Fagart, Jérôme; Loosfelt, Hugues; Lombès, Marc; Chabbert-Buffet, Nathalie

    2016-04-01

    Breast cancer is a hormone-dependent disease in which estrogen signaling targeting drugs fail in about 10 % due to resistance. Strong evidences highlighted the mitogen role of progesterone, its ligands, and the corresponding progesterone receptor (PR) isoforms in mammary carcinoma. Several PR antagonists have been synthesized; however, some of them are non-selective and led to side or toxic effects. Herein, we evaluated the anti-tumor activity of a commercially available PR modulator, ulipristal acetate (UPA), and a new selective and passive PR antagonist "APR19" in a novel preclinical approach based on patient-derived breast tumor (HBCx-34) xenografted in nude mice. As opposed to P4 that slightly reduces tumor volume, UPA and APR19 treatment for 42 days led to a significant 30 % reduction in tumor weight, accompanied by a significant 40 % retardation in tumor growth upon UPA exposure while a 1.5-fold increase in necrotic areas was observed in APR19-treated tumors. Interestingly, PR expression was upregulated by a 2.5-fold factor in UPA-treated tumors while APR19 significantly reduced expression of both PR and estrogen receptor α, indicating a potential distinct molecular mechanism among PR antagonists. Cell proliferation was clearly reduced in UPA group compared to vehicle conditions, as revealed by the significant reduction in Ki-67, Cyclin D1, and proliferating cell nuclear antigen (PCNA) expression. Likewise, an increase in activated, cleaved poly(ADP-ribose) polymerase (PARP) expression was also demonstrated upon UPA exposure. Collectively, our findings provide direct in vivo evidence for anti-progestin-mediated control of human breast cancer growth, given their anti-proliferative and pro-apoptotic activities, supporting a potential role in breast cancer therapy. PMID:26941094

  12. Combined magnetic resonance, fluorescence, and histology imaging strategy in a human breast tumor xenograft model

    PubMed Central

    Jiang, Lu; Greenwood, Tiffany R.; Amstalden van Hove, Erika R.; Chughtai, Kamila; Raman, Venu; Winnard, Paul T.; Heeren, Ron; Artemov, Dmitri; Glunde, Kristine

    2014-01-01

    Applications of molecular imaging in cancer and other diseases frequently require combining in vivo imaging modalities, such as magnetic resonance and optical imaging, with ex vivo optical, fluorescence, histology, and immunohistochemical (IHC) imaging, to investigate and relate molecular and biological processes to imaging parameters within the same region of interest. We have developed a multimodal image reconstruction and fusion framework that accurately combines in vivo magnetic resonance imaging (MRI) and magnetic resonance spectroscopic imaging (MRSI), ex vivo brightfield and fluorescence microscopic imaging, and ex vivo histology imaging. Ex vivo brightfield microscopic imaging was used as an intermediate modality to facilitate the ultimate link between ex vivo histology and in vivo MRI/MRSI. Tissue sectioning necessary for optical and histology imaging required generation of a three-dimensional (3D) reconstruction module for 2D ex vivo optical and histology imaging data. We developed an external fiducial marker based 3D reconstruction method, which was able to fuse optical brightfield and fluorescence with histology imaging data. Registration of 3D tumor shape was pursued to combine in vivo MRI/MRSI and ex vivo optical brightfield and fluorescence imaging data. This registration strategy was applied to in vivo MRI/MRSI, ex vivo optical brightfield/fluorescence, as well as histology imaging data sets obtained from human breast tumor models. 3D human breast tumor data sets were successfully reconstructed and fused with this platform. PMID:22945331

  13. Thymoquinone Inhibits Tumor Growth and Induces Apoptosis in a Breast Cancer Xenograft Mouse Model: The Role of p38 MAPK and ROS

    PubMed Central

    Woo, Chern Chiuh; Hsu, Annie; Kumar, Alan Prem; Sethi, Gautam; Tan, Kwong Huat Benny

    2013-01-01

    Due to narrow therapeutic window of cancer therapeutic agents and the development of resistance against these agents, there is a need to discover novel agents to treat breast cancer. The antitumor activities of thymoquinone (TQ), a compound isolated from Nigella sativa oil, were investigated in breast carcinoma in vitro and in vivo. Cell responses after TQ treatment were assessed by using different assays including MTT assay, annexin V-propidium iodide staining, Mitosox staining and Western blot. The antitumor effect was studied by breast tumor xenograft mouse model, and the tumor tissues were examined by histology and immunohistochemistry. The level of anti-oxidant enzymes/molecules in mouse liver tissues was measured by commercial kits. Here, we show that TQ induced p38 phosphorylation and ROS production in breast cancer cells. These inductions were found to be responsible for TQ’s anti-proliferative and pro-apoptotic effects. Moreover, TQ-induced ROS production regulated p38 phosphorylation but not vice versa. TQ treatment was found to suppress the tumor growth and this effect was further enhanced by combination with doxorubicin. TQ also inhibited the protein expression of anti-apoptotic genes, such as XIAP, survivin, Bcl-xL and Bcl-2, in breast cancer cells and breast tumor xenograft. Reduced Ki67 and increased TUNEL staining were observed in TQ-treated tumors. TQ was also found to increase the level of catalase, superoxide dismutase and glutathione in mouse liver tissues. Overall, our results demonstrated that the anti-proliferative and pro-apoptotic effects of TQ in breast cancer are mediated through p38 phosphorylation via ROS generation. PMID:24098377

  14. Mango polyphenolics suppressed tumor growth in breast cancer xenografts in mice: role of the PI3K/AKT pathway and associated microRNAs.

    PubMed

    Banerjee, Nivedita; Kim, Hyemee; Krenek, Kimberly; Talcott, Stephen T; Mertens-Talcott, Susanne U

    2015-08-01

    The cytotoxic and anti-inflammatory properties of mango polyphenolics including gallic acid and gallotannins have been demonstrated in numerous types of cancers. We hypothesized that the phosphoinositide 3-kinase (PI3K)/AKT pathway and the expression of related miRNAs are involved in the chemotherapeutic activities of mango polyphenolics in a mouse xenograft model for breast cancer. The objectives of this research were to determine the tumor-cytotoxic activities of mango polyphenolics and the underlying molecular mechanisms involving posttranscriptional targets in BT474 breast cancer cells and xenografts in mice. In vitro findings showed cytotoxic effects of mango polyphenolics in BT474 breast cancer cells within a concentration range of 2.5 to 20 mg/L gallic acid equivalents. Mango polyphenolics suppressed the expression of PI3K, AKT, hypoxia inducible factor-1α, and vascular endothelial growth factor (VEGF) mRNA, and pAKT, AKT, pPI3K (p85), VEGF and nuclear factor-kappa B protein levels. The involvement of miR-126 was verified by using antagomiR for miR-126, where mango reversed the effect of the antagomiR of miR-126. In vivo, the intake of mango polyphenolics decreased the tumor volume by 73% in BT474 xenograft-bearing mice compared with the control group. In addition, mango reduced the expression of nuclear factor-kappa B (p65), pAKT, pPI3K, mammalian target of rapamycin, hypoxia inducible factor-1α, and VEGF protein in athymic nude mice. A screening for miRNA expression changes confirmed that mango polyphenolics modulated the expression of cancer-associated miRNAs including miR-126 in the xenografted tumors. In summary, mango polyphenolics have a chemotherapeutic potential against breast cancer that at least in part is mediated through the PI3K/AKT pathway and miR-126.

  15. Inhibition of Lymphangiogenesis and Angiogenesis in Breast Tumor Xenografts and Lymph Nodes by a Peptide Derived from Transmembrane Protein 45A12

    PubMed Central

    Lee, Esak; Koskimaki, Jacob E; Pandey, Niranjan B; Popel, Aleksander S

    2013-01-01

    Angiogenesis, the formation of new blood vessels from preexisting blood vessels, is a process that supports tumor growth and metastatic dissemination. Lymphangiogenesis also facilitates metastasis by increasing dissemination through the lymphatic vessels (LVs). Even after treatment with antiangiogenic agents, breast cancer patients are vulnerable to LV-mediated metastasis. We report that a 14-amino acid peptide derived from transmembrane protein 45A shows multimodal inhibition of lymphangiogenesis and angiogenesis in breast cancer. The peptide blocks lymphangiogenic and angiogenic phenotypes of lymphatic and blood endothelial cells induced by tumor-conditioned media prepared from MDA-MB-231 breast cancer cells. The peptide delays growth of MDA-MB-231 tumor xenografts and normalizes tumor-conditioned lymph nodes (LNs). These studies demonstrate the antilymphangiogenic and antiangiogenic potential of the peptide against primary tumors and premetastatic, tumor-conditioned regional LNs. Mechanistically, the peptide blocks vascular endothelial growth factor receptors 2 and 3 (VEGFR2/3) and downstream proteins by binding to neuropilin 1/2 (NRP1/2) and inhibiting VEGFR2/3 and NRP1/2 complex formation in the presence of VEGFA/C. PMID:23441126

  16. Monitoring of tumor growth and metastasis potential in MDA-MB-435s/ tk-luc human breast cancer xenografts

    NASA Astrophysics Data System (ADS)

    Chang, Ya-Fang; Lin, Yi-Yu; Wang, Hsin-Ell; Liu, Ren-Shen; Pang, Fei; Hwang, Jeng-Jong

    2007-02-01

    Molecular imaging of reporter gene expression provides a rapid, sensitive and non-invasive monitoring of tumor behaviors. In this study, we reported the establishment of a novel animal model for longitudinal examination of tumor growth kinetics and metastatic spreading in vivo. The highly metastatic human breast carcinoma MDA-MB-435s cell line was engineered to stably express herpes simplex virus type 1 thymidine kinase (HSV-1- tk) and luciferase ( luc). Both 131I-FIAU and D-luciferin were used as reporter probes. For orthotopic tumor formation, MDA-MB-435s/ tk-luc cells were implanted into the first nipple of 6-week-old female NOD/SCID mice. For metastatic study, cells were injected via the lateral tail vein. Mice-bearing MDA-MB-435s/ tk-luc tumors were scanned for tumor growth and metastatsis using Xenogen IVIS50 system. Gamma scintigraphy and whole-body autoradiography were also applied to confirm the tumor localization. The results of bioluminescence imaging as well as histopathological finding showed that tumors could be detected in femur, spine, ovary, lungs, kidney, adrenal gland, lymph nodes and muscle at 16 weeks post i.v. injection, and correlated photons could be quantified. This MDA-MB-435s/ tk-luc human breast carcinoma-bearing mouse model combined with multimodalities of molecular imaging may facilitate studies on the molecular mechanisms of cancer invasion and metastasis.

  17. Selective small molecule Stat3 inhibitor reduces breast cancer tumor-initiating cells and improves recurrence free survival in a human-xenograft model.

    PubMed

    Dave, Bhuvanesh; Landis, Melissa D; Tweardy, David J; Chang, Jenny C; Dobrolecki, Lacey E; Wu, Meng-Fen; Zhang, Xiaomei; Westbrook, Thomas F; Hilsenbeck, Susan G; Liu, Dan; Lewis, Michael T

    2012-01-01

    Metastasis and disease relapse are hypothesized to result from tumor initiating cells (TICs). Previously, we have defined a CD44+/CD24-/low mammosphere-forming tumorigenic 493-gene signature in breast cancer. Stat3 was identified as a critical node in self-renewal based on an ongoing lentiviral shRNA screen being conducted in two breast cancer cell lines SUM159 and BT549. In corroborating work, targeting the SH2 domain of Stat3 with a novel small molecule decreased the percentage of cells expressing TIC markers (CD44+/CD24-/low and ALDH+) and mammosphere formation in p-Stat3 overexpressing human breast cancer xenografts in SCID-beige mice. Importantly, we observed a four-fold improvement in the 30-day recurrence-free survival relative to docetaxel alone with the addition of the Stat3 inhibitor in the chemoresistant tumor model. Thus, these findings provide a strong impetus for the development of selective Stat3 inhibitors in order to improve survival in patients with p-Stat3 overexpressing tumors. PMID:22879872

  18. Detection of mitomycin C-DNA adducts in human breast cancer cells grown in culture, as xenografted tumors in nude mice, and in biopsies of human breast cancer patient tumors as determined by (32)P-postlabeling.

    PubMed

    Warren, A J; Mustra, D J; Hamilton, J W

    2001-04-01

    Mitomycin C (MMC) is a DNA cross-linking agent that has been used in cancer chemotherapy for >20 years. However, little is known either qualitatively or quantitatively about the relationship between formation and repair of specific MMC-DNA adducts and specific biological outcomes. The goal of this study was to examine formation and removal of specific MMC-DNA adducts in breast cancer cells using a (32)P-postlabeling assay in relation to cytotoxicity and other biological end points. MMC-DNA adducts were measured in cultured human metastatic MDA-MB-435 cells, in the same cells xenografted as a mammary tumor in nude mice, and in metastatic tumor biopsies obtained from human breast cancer patients undergoing MMC-based therapy. MMC adducts corresponding to the CpG interstrand cross-link, the MMC-G bifunctional monoadduct, and two isomers of the MMC-G monofunctional monoadduct were detected in most samples. Despite similarities in the overall patterns of adduct formation, there were substantial differences between the cultured cells and the in vivo tumors in their adduct distribution profile, kinetics of adduct formation and removal, and relationship of specific adduct levels to cytotoxicity, suggesting that the in vivo microenvironment (e.g., degree of oxygenation, pH, activity of oxidoreductases, and other factors) of breast cancer cells may significantly modulate these parameters. PMID:11309355

  19. Hwanggeumchal sorghum Induces Cell Cycle Arrest, and Suppresses Tumor Growth and Metastasis through Jak2/STAT Pathways in Breast Cancer Xenografts

    PubMed Central

    Lim, Eun Joung; Joung, Youn Hee; Hong, Dae Young; Park, Eui U.; Park, Seung Hwa; Choi, Soo Keun; Moon, Eon-Soo; Cho, Byung Wook; Park, Kyung Do; Lee, Hak Kyo; Kim, Myong-Jo; Park, Dong-Sik; Yang, Young Mok

    2012-01-01

    Background Cancer is one of the highly virulent diseases known to humankind with a high mortality rate. Breast cancer is the most common cancer in women worldwide. Sorghum is a principal cereal food in many parts of the world, and is critical in folk medicine of Asia and Africa. In the present study, we analyzed the effects of HSE in metastatic breast cancer. Methodology/Principal Findings Preliminary studies conducted on MDA-MB 231 and MCF-7 xenograft models showed tumor growth suppression by HSE. Western blotting studies conducted both in vivo and in vitro to check the effect of HSE in Jak/STAT pathways. Anti-metastatic effects of HSE were confirmed using both MDA-MB 231 and MCF-7 metastatic animal models. These studies showed that HSE can modulate Jak/STAT pathways, and it hindered the STAT5b/IGF-1R and STAT3/VEGF pathways not only by down-regulating the expression of these signal molecules and but also by preventing their phosphorylation. The expression of angiogenic factors like VEGF, VEGF-R2 and cell cycle regulators like cyclin D, cyclin E, and pRb were found down-regulated by HSE. In addition, it also targets Brk, p53, and HIF-1α for anti-cancer effects. HSE induced G1 phase arrest and migration inhibition in MDA-MB 231 cells. The metastasis of breast cancer to the lungs also found blocked by HSE in the metastatic animal model. Conclusions/Significance Usage of HS as a dietary supplement is an inexpensive natural cancer therapy, without any side effects. We strongly recommend the use of HS as an edible therapeutic agent as it possesses tumor suppression, migration inhibition, and anti-metastatic effects on breast cancer. PMID:22792362

  20. Stromal Integrin α11β1 Affects RM11 Prostate and 4T1 Breast Xenograft Tumors Differently

    PubMed Central

    Skogstrand, Trude; Sortland, Kristina; Schmid, Marei Caroline; Reed, Rolf K.; Stuhr, Linda

    2016-01-01

    Purpose It has been implied that the collagen binding integrin α11β1 plays a role in carcinogenesis. As still relatively little is known about how the stromal integrin α11β1 affects different aspects of tumor development, we wanted to examine the direct effects on primary tumor growth, fibrosis, tumor interstitial fluid pressure (PIF) and metastasis in murine 4T1 mammary and RM11 prostate tumors, using an in vivo SCID integrin α11-deficient mouse model. Methods Tumor growth was measured using a caliper, PIF by the wick-in-needle technique, activated fibroblasts by α-SMA immunofluorescence staining and fibrosis by transmission electron microscopy and picrosirius-red staining. Metastases were evaluated using hematoxylin and eosin stained sections. Results RM11 tumor growth was significantly reduced in the SCID integrin α11-deficient (α11-KO) compared to in SCID integrin α11 wild type (WT) mice, whereas there was no similar effect in the 4T1 tumor model. The 4T1 model demonstrated an alteration in collagen fibril diameter in the integrin α11-KO mice compared to WT, which was not found in the RM11 model. There were no significant differences in the amount of activated fibroblasts, total collagen content, collagen organization or PIF in the tumors in integrin α11-deficient mice compared to WT mice. There was also no difference in lung metastases between the two groups. Conclusion Deficiency of stromal integrin α11β1 showed different effects on tumor growth and collagen fibril diameter depending on tumor type, but no effect on tumor PIF or development of lung metastasis. PMID:26990302

  1. Drug testing using a soft agar stem cell assay on patient and xenograft tumor material

    SciTech Connect

    Hanson, J.; Coombs, A.; Moore, J.L.

    1984-09-01

    Since 1981 the authors have received 50 tumor samples from 10 different sites; over half were breast or ovary. Of the 27 that were considered suitable for cloning, 11 produced colony formation and 6 of these were drug tested. One ovarian granulosa cell tumor and its xenograft (V7) were tested against several cytotoxic agents. During a period of 16 months, sensitivity to cisplatin was relatively stable but sensitivity to vinblastine was markedly changed when the original tumor cells and original cells stored in liquid nitrogen were compared with xenograft cells. Gross histology of original tumor and xenograft were similar. Chemosensitization in vivo of a breast xenograft (Hx99) to melphalan by misonidazole was investigated. Misonidazole at a total dose of 0.5 g/kg given prior to melphalan (14 mg/kg) was an effective chemosensitizer.

  2. Therapeutic Silencing of Bcl-2 by Systemically Administered siRNA Nanotherapeutics Inhibits Tumor Growth by Autophagy and Apoptosis and Enhances the Efficacy of Chemotherapy in Orthotopic Xenograft Models of ER (−) and ER (+) Breast Cancer

    PubMed Central

    Tekedereli, Ibrahim; Alpay, S Neslihan; Akar, Ugur; Yuca, Erkan; Ayugo-Rodriguez, Cristian; Han, He-Dong; Sood, Anil K; Lopez-Berestein, Gabriel; Ozpolat, Bulent

    2013-01-01

    Bcl-2 is overexpressed in about a half of human cancers and 50–70% of breast cancer patients, thereby conferring resistance to conventional therapies and making it an excellent therapeutic target. Small interfering RNA (siRNA) offers novel and powerful tools for specific gene silencing and molecularly targeted therapy. Here, we show that therapeutic silencing of Bcl-2 by systemically administered nanoliposomal (NL)-Bcl-2 siRNA (0.15 mg siRNA/kg, intravenous) twice a week leads to significant antitumor activity and suppression of growth in both estrogen receptor-negative (ER(−)) MDA-MB-231 and ER-positive (+) MCF7 breast tumors in orthotopic xenograft models (P < 0.05). A single intravenous injection of NL-Bcl-2-siRNA provided robust and persistent silencing of the target gene expression in xenograft tumors. NL-Bcl-2-siRNA treatment significantly increased the efficacy of chemotherapy when combined with doxorubicin in both MDA-MB-231 and MCF-7 animal models (P < 0.05). NL-Bcl-2-siRNA treatment-induced apoptosis and autophagic cell death, and inhibited cyclin D1, HIF1α and Src/Fak signaling in tumors. In conclusion, our data provide the first evidence that in vivo therapeutic targeting Bcl-2 by systemically administered nanoliposomal-siRNA significantly inhibits growth of both ER(−) and ER(+) breast tumors and enhances the efficacy of chemotherapy, suggesting that therapeutic silencing of Bcl-2 by siRNA is a viable approach in breast cancers. PMID:24022053

  3. Patient-Derived Tumor Xenografts Are Susceptible to Formation of Human Lymphocytic Tumors.

    PubMed

    Bondarenko, Gennadiy; Ugolkov, Andrey; Rohan, Stephen; Kulesza, Piotr; Dubrovskyi, Oleksii; Gursel, Demirkan; Mathews, Jeremy; O'Halloran, Thomas V; Wei, Jian J; Mazar, Andrew P

    2015-09-01

    Patient-derived xenograft (PDX) tumor models have emerged as a new approach to evaluate the effects of cancer drugs on patients' personalized tumor grafts enabling to select the best treatment for the cancer patient and providing a new tool for oncology drug developers. Here, we report that human tumors engrafted in immunodeficient mice are susceptible to formation of B-and T-cell PDX tumors. We xenografted human primary and metastatic tumor samples into immunodeficient mice and found that a fraction of PDX tumors generated from patients' samples of breast, colon, pancreatic, bladder and renal cancer were histologically similar to lymphocytic neoplasms. Moreover, we found that the first passage of breast and pancreatic cancer PDX tumors after initial transplantation of the tumor pieces from the same human tumor graft could grow as a lymphocytic tumor in one mouse and as an adenocarcinoma in another mouse. Whereas subcutaneous PDX tumors resembling human adenocarcinoma histology were slow growing and non-metastatic, we found that subcutaneous PDX lymphocytic tumors were fast growing and formed large metastatic lesions in mouse lymph nodes, liver, lungs, and spleen. PDX lymphocytic tumors were comprised of B-cells which were Epstein-Barr virus positive and expressed CD45 and CD20. Because B-cells are typically present in malignant solid tumors, formation of B-cell tumor may evolve in a wide range of PDX tumor models. Although PDX tumor models show great promise in the development of personalized therapy for cancer patients, our results suggest that confidence in any given PDX tumor model requires careful screening of lymphocytic markers. PMID:26476081

  4. Patient-Derived Tumor Xenografts Are Susceptible to Formation of Human Lymphocytic Tumors1

    PubMed Central

    Bondarenko, Gennadiy; Ugolkov, Andrey; Rohan, Stephen; Kulesza, Piotr; Dubrovskyi, Oleksii; Gursel, Demirkan; Mathews, Jeremy; O’Halloran, Thomas V.; Wei, Jian J.; Mazar, Andrew P.

    2015-01-01

    Patient-derived xenograft (PDX) tumor models have emerged as a new approach to evaluate the effects of cancer drugs on patients’ personalized tumor grafts enabling to select the best treatment for the cancer patient and providing a new tool for oncology drug developers. Here, we report that human tumors engrafted in immunodeficient mice are susceptible to formation of B-and T-cell PDX tumors. We xenografted human primary and metastatic tumor samples into immunodeficient mice and found that a fraction of PDX tumors generated from patients’ samples of breast, colon, pancreatic, bladder and renal cancer were histologically similar to lymphocytic neoplasms. Moreover, we found that the first passage of breast and pancreatic cancer PDX tumors after initial transplantation of the tumor pieces from the same human tumor graft could grow as a lymphocytic tumor in one mouse and as an adenocarcinoma in another mouse. Whereas subcutaneous PDX tumors resembling human adenocarcinoma histology were slow growing and non-metastatic, we found that subcutaneous PDX lymphocytic tumors were fast growing and formed large metastatic lesions in mouse lymph nodes, liver, lungs, and spleen. PDX lymphocytic tumors were comprised of B-cells which were Epstein-Barr virus positive and expressed CD45 and CD20. Because B-cells are typically present in malignant solid tumors, formation of B-cell tumor may evolve in a wide range of PDX tumor models. Although PDX tumor models show great promise in the development of personalized therapy for cancer patients, our results suggest that confidence in any given PDX tumor model requires careful screening of lymphocytic markers. PMID:26476081

  5. Patient-Derived Tumor Xenografts Are Susceptible to Formation of Human Lymphocytic Tumors.

    PubMed

    Bondarenko, Gennadiy; Ugolkov, Andrey; Rohan, Stephen; Kulesza, Piotr; Dubrovskyi, Oleksii; Gursel, Demirkan; Mathews, Jeremy; O'Halloran, Thomas V; Wei, Jian J; Mazar, Andrew P

    2015-09-01

    Patient-derived xenograft (PDX) tumor models have emerged as a new approach to evaluate the effects of cancer drugs on patients' personalized tumor grafts enabling to select the best treatment for the cancer patient and providing a new tool for oncology drug developers. Here, we report that human tumors engrafted in immunodeficient mice are susceptible to formation of B-and T-cell PDX tumors. We xenografted human primary and metastatic tumor samples into immunodeficient mice and found that a fraction of PDX tumors generated from patients' samples of breast, colon, pancreatic, bladder and renal cancer were histologically similar to lymphocytic neoplasms. Moreover, we found that the first passage of breast and pancreatic cancer PDX tumors after initial transplantation of the tumor pieces from the same human tumor graft could grow as a lymphocytic tumor in one mouse and as an adenocarcinoma in another mouse. Whereas subcutaneous PDX tumors resembling human adenocarcinoma histology were slow growing and non-metastatic, we found that subcutaneous PDX lymphocytic tumors were fast growing and formed large metastatic lesions in mouse lymph nodes, liver, lungs, and spleen. PDX lymphocytic tumors were comprised of B-cells which were Epstein-Barr virus positive and expressed CD45 and CD20. Because B-cells are typically present in malignant solid tumors, formation of B-cell tumor may evolve in a wide range of PDX tumor models. Although PDX tumor models show great promise in the development of personalized therapy for cancer patients, our results suggest that confidence in any given PDX tumor model requires careful screening of lymphocytic markers.

  6. Plasma membrane targeting by short chain sphingolipids inserted in liposomes improves anti-tumor activity of mitoxantrone in an orthotopic breast carcinoma xenograft model.

    PubMed

    Cordeiro Pedrosa, Lília R; van Tellingen, Olaf; Soullié, Thomas; Seynhaeve, Ann L; Eggermont, Alexander M M; Ten Hagen, Timo L M; Verheij, Marcel; Koning, Gerben A

    2015-08-01

    Mitoxantrone (MTO) is clinically used for treatment of various types of cancers providing an alternative for similarly active, but more toxic chemotherapeutic drugs such as anthracyclines. To further decrease its toxicity MTO was encapsulated into liposomes. Although liposomal drugs can accumulate in target tumor tissue, they still face the plasma membrane barrier for effective intracellular delivery. Aiming to improve MTO tumor cell availability, we used short chain lipids to target and modulate the tumor cell membrane, promoting MTO plasma membrane traversal. MTO was encapsulated in liposomes containing the short chain sphingolipid (SCS), C8-Glucosylceramide (C8-GluCer) or C8-Galactosylceramide (C8-GalCer) in their bilayer. These new SCS-liposomes containing MTO (SCS-MTOL) were tested in vivo for tolerability, pharmacokinetics, biodistribution, tumor drug delivery by intravital microscopy and efficacy, and compared to standard MTO liposomes (MTOL) and free MTO. Liposomal encapsulation decreased MTO toxicity and allowed administration of higher drug doses. SCS-MTOL displayed increased clearance and lower skin accumulation compared to standard MTOL. Intratumoral liposomal drug delivery was heterogeneous and rather limited in hypoxic tumor areas, yet SCS-MTOL improved intracellular drug uptake in comparison with MTOL. The increased MTO availability correlated well with the improved antitumor activity of SCS-MTOL in a MDAMB-231 breast carcinoma model. Multiple dosing of liposomal MTO strongly delayed tumor growth compared to free MTO and prolonged mouse survival, whereas among the liposomal MTO treatments, C8-GluCer-MTOL was most effective. Targeting plasma membranes with SCS improved MTO tumor availability and thereby therapeutic activity and represents a promising approach to improve MTO-based chemotherapy.

  7. Suicide HSVtk Gene Delivery by Neurotensin-Polyplex Nanoparticles via the Bloodstream and GCV Treatment Specifically Inhibit the Growth of Human MDA-MB-231 Triple Negative Breast Cancer Tumors Xenografted in Athymic Mice

    PubMed Central

    Castillo-Rodríguez, Rosa A.; Arango-Rodríguez, Martha L.; Escobedo, Lourdes; Hernandez-Baltazar, Daniel; Gompel, Anne

    2014-01-01

    The human breast adenocarcinoma cell line MDA-MB-231 has the triple-negative breast cancer (TNBC) phenotype, which is an aggressive subtype with no specific treatment. MDA-MB-231 cells express neurotensin receptor type 1 (NTSR1), which makes these cells an attractive target of therapeutic genes that are delivered by the neurotensin (NTS)-polyplex nanocarrier via the bloodstream. We addressed the relevance of this strategy for TNBC treatment using NTS-polyplex nanoparticles harboring the herpes simplex virus thymidine kinase (HSVtk) suicide gene and its complementary prodrug ganciclovir (GCV). The reporter gene encoding green fluorescent protein (GFP) was used as a control. NTS-polyplex successfully transfected both genes in cultured MDA-MB-231 cells. The transfection was demonstrated pharmacologically to be dependent on activation of NTSR1. The expression of HSVtk gene decreased cell viability by 49% (P<0.0001) and induced apoptosis in cultured MDA-MB-231 cells after complementary GCV treatment. In the MDA-MB-231 xenograft model, NTS-polyplex nanoparticles carrying either the HSVtk gene or GFP gene were injected into the tumors or via the bloodstream. Both routes of administration allowed the NTS-polyplex nanoparticles to reach and transfect tumorous cells. HSVtk expression and GCV led to apoptosis, as shown by the presence of cleaved caspase-3 and Apostain immunoreactivity, and significantly inhibited the tumor growth (55–60%) (P<0.001). At the end of the experiment, the weight of tumors transfected with the HSVtk gene was 55% less than that of control tumors (P<0.05). The intravenous transfection did not induce apoptosis in peripheral organs. Our results offer a promising gene therapy for TNBC using the NTS-polyplex nanocarrier. PMID:24824754

  8. Suicide HSVtk gene delivery by neurotensin-polyplex nanoparticles via the bloodstream and GCV Treatment specifically inhibit the growth of human MDA-MB-231 triple negative breast cancer tumors xenografted in athymic mice.

    PubMed

    Castillo-Rodríguez, Rosa A; Arango-Rodríguez, Martha L; Escobedo, Lourdes; Hernandez-Baltazar, Daniel; Gompel, Anne; Forgez, Patricia; Martínez-Fong, Daniel

    2014-01-01

    The human breast adenocarcinoma cell line MDA-MB-231 has the triple-negative breast cancer (TNBC) phenotype, which is an aggressive subtype with no specific treatment. MDA-MB-231 cells express neurotensin receptor type 1 (NTSR1), which makes these cells an attractive target of therapeutic genes that are delivered by the neurotensin (NTS)-polyplex nanocarrier via the bloodstream. We addressed the relevance of this strategy for TNBC treatment using NTS-polyplex nanoparticles harboring the herpes simplex virus thymidine kinase (HSVtk) suicide gene and its complementary prodrug ganciclovir (GCV). The reporter gene encoding green fluorescent protein (GFP) was used as a control. NTS-polyplex successfully transfected both genes in cultured MDA-MB-231 cells. The transfection was demonstrated pharmacologically to be dependent on activation of NTSR1. The expression of HSVtk gene decreased cell viability by 49% (P<0.0001) and induced apoptosis in cultured MDA-MB-231 cells after complementary GCV treatment. In the MDA-MB-231 xenograft model, NTS-polyplex nanoparticles carrying either the HSVtk gene or GFP gene were injected into the tumors or via the bloodstream. Both routes of administration allowed the NTS-polyplex nanoparticles to reach and transfect tumorous cells. HSVtk expression and GCV led to apoptosis, as shown by the presence of cleaved caspase-3 and Apostain immunoreactivity, and significantly inhibited the tumor growth (55-60%) (P<0.001). At the end of the experiment, the weight of tumors transfected with the HSVtk gene was 55% less than that of control tumors (P<0.05). The intravenous transfection did not induce apoptosis in peripheral organs. Our results offer a promising gene therapy for TNBC using the NTS-polyplex nanocarrier. PMID:24824754

  9. Suicide HSVtk gene delivery by neurotensin-polyplex nanoparticles via the bloodstream and GCV Treatment specifically inhibit the growth of human MDA-MB-231 triple negative breast cancer tumors xenografted in athymic mice.

    PubMed

    Castillo-Rodríguez, Rosa A; Arango-Rodríguez, Martha L; Escobedo, Lourdes; Hernandez-Baltazar, Daniel; Gompel, Anne; Forgez, Patricia; Martínez-Fong, Daniel

    2014-01-01

    The human breast adenocarcinoma cell line MDA-MB-231 has the triple-negative breast cancer (TNBC) phenotype, which is an aggressive subtype with no specific treatment. MDA-MB-231 cells express neurotensin receptor type 1 (NTSR1), which makes these cells an attractive target of therapeutic genes that are delivered by the neurotensin (NTS)-polyplex nanocarrier via the bloodstream. We addressed the relevance of this strategy for TNBC treatment using NTS-polyplex nanoparticles harboring the herpes simplex virus thymidine kinase (HSVtk) suicide gene and its complementary prodrug ganciclovir (GCV). The reporter gene encoding green fluorescent protein (GFP) was used as a control. NTS-polyplex successfully transfected both genes in cultured MDA-MB-231 cells. The transfection was demonstrated pharmacologically to be dependent on activation of NTSR1. The expression of HSVtk gene decreased cell viability by 49% (P<0.0001) and induced apoptosis in cultured MDA-MB-231 cells after complementary GCV treatment. In the MDA-MB-231 xenograft model, NTS-polyplex nanoparticles carrying either the HSVtk gene or GFP gene were injected into the tumors or via the bloodstream. Both routes of administration allowed the NTS-polyplex nanoparticles to reach and transfect tumorous cells. HSVtk expression and GCV led to apoptosis, as shown by the presence of cleaved caspase-3 and Apostain immunoreactivity, and significantly inhibited the tumor growth (55-60%) (P<0.001). At the end of the experiment, the weight of tumors transfected with the HSVtk gene was 55% less than that of control tumors (P<0.05). The intravenous transfection did not induce apoptosis in peripheral organs. Our results offer a promising gene therapy for TNBC using the NTS-polyplex nanocarrier.

  10. Photo activation of HPPH encapsulated in “Pocket” liposomes triggers multiple drug release and tumor cell killing in mouse breast cancer xenografts

    PubMed Central

    Sine, Jessica; Urban, Cordula; Thayer, Derek; Charron, Heather; Valim, Niksa; Tata, Darrell B; Schiff, Rachel; Blumenthal, Robert; Joshi, Amit; Puri, Anu

    2015-01-01

    We recently reported laser-triggered release of photosensitive compounds from liposomes containing dipalmitoylphosphatidylcholine (DPPC) and 1,2 bis(tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine (DC8,9PC). We hypothesized that the permeation of photoactivated compounds occurs through domains of enhanced fluidity in the liposome membrane and have thus called them “Pocket” liposomes. In this study we have encapsulated the red light activatable anticancer photodynamic therapy drug 2-(1-Hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH) (Ex/Em410/670 nm) together with calcein (Ex/Em490/517 nm) as a marker for drug release in Pocket liposomes. A mole ratio of 7.6:1 lipid:HPPH was found to be optimal, with >80% of HPPH being included in the liposomes. Exposure of liposomes with a cw-diode 660 nm laser (90 mW, 0–5 minutes) resulted in calcein release only when HPPH was included in the liposomes. Further analysis of the quenching ratios of liposome-entrapped calcein in the laser treated samples indicated that the laser-triggered release occurred via the graded mechanism. In vitro studies with MDA-MB-231-LM2 breast cancer cell line showed significant cell killing upon treatment of cell-liposome suspensions with the laser. To assess in vivo efficacy, we implanted MDA-MB-231-LM2 cells containing the luciferase gene along the mammary fat pads on the ribcage of mice. For biodistribution experiments, trace amounts of a near infrared lipid probe DiR (Ex/Em745/840 nm) were included in the liposomes. Liposomes were injected intravenously and laser treatments (90 mW, 0.9 cm diameter, for an exposure duration ranging from 5–8 minutes) were done 4 hours postinjection (only one tumor per mouse was treated, keeping the second flank tumor as control). Calcein release occurred as indicated by an increase in calcein fluorescence from laser treated tumors only. The animals were observed for up to 15 days postinjection and tumor volume and luciferase expression was measured. A

  11. Maintaining Tumor Heterogeneity in Patient-Derived Tumor Xenografts.

    PubMed

    Cassidy, John W; Caldas, Carlos; Bruna, Alejandra

    2015-08-01

    Preclinical models often fail to capture the diverse heterogeneity of human malignancies and as such lack clinical predictive power. Patient-derived tumor xenografts (PDX) have emerged as a powerful technology: capable of retaining the molecular heterogeneity of their originating sample. However, heterogeneity within a tumor is governed by both cell-autonomous (e.g., genetic and epigenetic heterogeneity) and non-cell-autonomous (e.g., stromal heterogeneity) drivers. Although PDXs can largely recapitulate the polygenomic architecture of human tumors, they do not fully account for heterogeneity in the tumor microenvironment. Hence, these models have substantial utility in basic and translational research in cancer biology; however, study of stromal or immune drivers of malignant progression may be limited. Similarly, PDX models offer the ability to conduct patient-specific in vivo and ex vivo drug screens, but stromal contributions to treatment responses may be under-represented. This review discusses the sources and consequences of intratumor heterogeneity and how these are recapitulated in the PDX model. Limitations of the current generation of PDXs are discussed and strategies to improve several aspects of the model with respect to preserving heterogeneity are proposed.

  12. The anti-Fn14 antibody BIIB036 inhibits tumor growth in xenografts and patient derived primary tumor models and enhances efficacy of chemotherapeutic agents in multiple xenograft models.

    PubMed

    Michaelson, Jennifer S; Kelly, Rebecca; Yang, Lu; Zhang, Xiamei; Wortham, Kathleen; Joseph, Ingrid B J K

    2012-07-01

    Agonistic antibodies targeting Fn14, the receptor for TWEAK, have demonstrated anti-tumor activity in xenograft models. Herein, we further explore the therapeutic potential of the humanized anti-Fn14 agonistic antibody, BIIB036, as a single agent and in combination with standard of care cancer therapeutics. Pharmacokinetic studies of BIIB036 in tumor-bearing mice revealed a half-life of approximately three days suggesting twice a week dosing would be necessary to maintain efficacy. However, in multiple xenograft models, BIIB036 treatment resulted in extended tumor growth inhibition up to 40-50 d following cessation of dosing, suggesting that frequent administration of BIIB036 may not be necessary to maintain prolonged anti-tumor activity. Subsequent xenograft studies revealed that maximal efficacy was achieved with BIIB036 dosing once every two weeks, by either intraperitoneal or subcutaneous administration. Xenograft tumors that were initially treated with BIBI036 and then re-grew up to 1000 mm³ following cessation of the first cycle of treatment remained sensitive to a second cycle of treatment. BIIB036 was also evaluated in patient derived primary colon tumor models, where efficacy compared favorably with a standard of care agent. Lastly, BIIB036 enhanced the efficacy of several standard of care chemotherapeutics, including paclitaxel in MDA-MBA-231 breast tumor xenografts, paclitaxel or carboplatin in HOP62 non-small cell lung xenografts, and 5-FU in NCI-N87 gastric xenografts, with no overlapping toxicities. These studies thus establish BIIB036 as a promising therapeutic agent with durable anti-tumor activity in human xenografts as well as patient derived primary tumor models, and enhanced activity and tolerability in combination with standard of care chemotherapeutics. Taken together, the data presented herein suggest that BIIB036 warrants evaluation in the clinic.

  13. Patient-derived xenograft models of breast cancer and their predictive power.

    PubMed

    Whittle, James R; Lewis, Michael T; Lindeman, Geoffrey J; Visvader, Jane E

    2015-02-10

    Despite advances in the treatment of patients with early and metastatic breast cancer, mortality remains high due to intrinsic or acquired resistance to therapy. Increased understanding of the genomic landscape through massively parallel sequencing has revealed somatic mutations common to specific subtypes of breast cancer, provided new prognostic and predictive markers, and highlighted potential therapeutic targets. Evaluating new targets using established cell lines is limited by the inexact correlation between responsiveness observed in cell lines versus that elicited in the patient. Patient-derived xenografts (PDXs) generated from fresh tumor specimens recapitulate the diversity of breast cancer and reflect histopathology, tumor behavior, and the metastatic properties of the original tumor. The high degree of genomic preservation evident across primary tumors and their matching PDXs over serial passaging validate them as important preclinical tools. Indeed, there is accumulating evidence that PDXs can recapitulate treatment responses of the parental tumor. The finding that tumor engraftment is an independent and poor prognostic indicator of patient outcome represents the first step towards personalized medicine. Here we review the utility of breast cancer PDX models to study the clonal evolution of tumors and to evaluate novel therapies and drug resistance.

  14. CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts

    PubMed Central

    Ginestier, Christophe; Liu, Suling; Diebel, Mark E.; Korkaya, Hasan; Luo, Ming; Brown, Marty; Wicinski, Julien; Cabaud, Olivier; Charafe-Jauffret, Emmanuelle; Birnbaum, Daniel; Guan, Jun-Lin; Dontu, Gabriela; Wicha, Max S.

    2010-01-01

    Recent evidence suggests that breast cancer and other solid tumors possess a rare population of cells capable of extensive self-renewal that contribute to metastasis and treatment resistance. We report here the development of a strategy to target these breast cancer stem cells (CSCs) through blockade of the IL-8 receptor CXCR1. CXCR1 blockade using either a CXCR1-specific blocking antibody or repertaxin, a small-molecule CXCR1 inhibitor, selectively depleted the CSC population in 2 human breast cancer cell lines in vitro. Furthermore, this was followed by the induction of massive apoptosis in the bulk tumor population via FASL/FAS signaling. The effects of CXCR1 blockade on CSC viability and on FASL production were mediated by the FAK/AKT/FOXO3A pathway. In addition, repertaxin was able to specifically target the CSC population in human breast cancer xenografts, retarding tumor growth and reducing metastasis. Our data therefore suggest that CXCR1 blockade may provide a novel means of targeting and eliminating breast CSCs. PMID:20051626

  15. Collagen density and alignment in responsive and resistant trastuzumab-treated breast cancer xenografts

    NASA Astrophysics Data System (ADS)

    Walsh, Alex J.; Cook, Rebecca S.; Lee, Jae H.; Arteaga, Carlos L.; Skala, Melissa C.

    2015-02-01

    Tumor collagen characteristics influence tumor malignancy, invasion, and metastasis. This study investigates the effects of trastuzumab (Tz) on the collagen of Tz-responsive (BT474) and Tz-resistant (HR6) breast cancer xenografts. Collagen content was assessed by in vivo second harmonic generation (SHG) imaging and histological trichrome staining of tumor sections. Collagen SHG imaging of control BT474 and HR6 tumors demonstrated increased collagen density after 14 days of treatment (p<0.05). Trichrome staining revealed decreased collagen in Tz-treated BT474 and HR6 tumors at 2, 5, and 14 days of treatment, suggesting that Tz affects the tumor microenvironment independent of epithelial cell response. Additionally, collagen alignment analysis revealed significantly less aligned collagen in the Tz-treated BT474 tumors at day 14 compared with control BT474 tumors. There was no correlation between SHG endpoints (collagen density and alignment) and trichrome staining (p>0.05), consistent with the physically distinctive nature of these measurements. There was also no correlation between tumor size and collagen endpoints (p>0.05). These results identify changes within the collagen compartment of the tumor microenvironment following Tz treatment, which are independent from the tumor cell response to Tz, and demonstrate that intravital collagen SHG imaging is capable of measuring dynamic changes in tumor microenvironment following treatment that complements trichrome staining.

  16. Strigolactone analogs act as new anti-cancer agents in inhibition of breast cancer in xenograft model

    PubMed Central

    Mayzlish-Gati, Einav; Laufer, Dana; Grivas, Christopher F; Shaknof, Julia; Sananes, Amiram; Bier, Ariel; Ben-Harosh, Shani; Belausov, Eduard; Johnson, Michael D; Artuso, Emma; Levi, Oshrat; Genin, Ola; Prandi, Cristina; Khalaila, Isam; Pines, Mark; Yarden, Ronit I; Kapulnik, Yoram; Koltai, Hinanit

    2015-01-01

    Strigolactones (SLs) are a novel class of plant hormones. Previously, we found that analogs of SLs induce growth arrest and apoptosis in breast cancer cell lines. These compounds also inhibited the growth of breast cancer stem cell enriched-mammospheres with increased potency. Furthermore, strigolactone analogs inhibited growth and survival of colon, lung, prostate, melanoma, osteosarcoma and leukemia cancer cell lines. To further examine the anti-cancer activity of SLs in vivo, we have examined their effects on growth and viability of MDA-MB-231 tumor xenografts model either alone or in combination with paclitaxel. We show that strigolactone act as new anti-cancer agents in inhibition of breast cancer in xenograft model. In addition we show that SLs affect the integrity of the microtubule network and therefore may inhibit the migratory phenotype of the highly invasive breast cancer cell lines that were examined. PMID:26192476

  17. beta 1 integrin inhibition dramatically enhances radiotherapy efficacy in human breast cancer xenografts

    SciTech Connect

    Park, Catherine C.; Park, Catherine C.; Zhang, Hui J.; Yao, Evelyn S.; Park, Chong J.; Bissell, Mina J.

    2008-06-02

    {beta}1 integrin signaling has been shown to mediate cellular resistance to apoptosis after exposure to ionizing radiation (IR). Other signaling molecules that increase resistance include Akt, which promotes cell survival downstream of {beta}1 integrin signaling. We showed previously that {beta}1 integrin inhibitory antibodies, AIIB2, enhance apoptosis and decrease growth in human breast cancer cells in 3 dimensional laminin-rich extracellular matrix (3D lrECM) cultures and in vivo. Here we asked whether AIIB2 could synergize with IR to modify Akt-mediated IR resistance. We used 3D lrECM cultures to test the optimal combination of AIIB2 with IR treatment of two breast cancer cell lines, MCF-7 and HMT3522-T4-2, as well as T4-2 myr-Akt breast cancer colonies or HMT3522-S-1, which form normal organotypic structures in 3D lrECM. Colonies were assayed for apoptosis and {beta}1 integrin/Akt signaling pathways were evaluated using western blot. In addition, mice bearing MCF-7 xenografts were used to validate the findings in 3D lrECM. We report that AIIB2 increased apoptosis optimally post-IR by down regulating Akt in breast cancer colonies in 3D lrECM. In vivo, addition of AIIB2 after IR significantly enhanced tumor growth inhibition and apoptosis compared to either treatment alone. Remarkably, the degree of tumor growth inhibition using AIIB2 plus 2 Gy radiation was similar to that of 8 Gy alone. We showed previously that AIIB2 had no discernible toxicity in mice; here, its addition allowed for a significant reduction in the IR dose that was necessary to achieve comparable growth inhibition and apoptosis in breast cancer xenografts in vivo.

  18. Development of Patient Derived Xenograft Models of Overt Spontaneous Breast Cancer Metastasis: A Cautionary Note

    PubMed Central

    Paez-Ribes, Marta; Man, Shan; Xu, Ping; Kerbel, Robert S.

    2016-01-01

    Several approaches are being evaluated to improve the historically limited value of studying transplanted primary tumors derived by injection of cells from established cell lines for predicting subsequent cancer therapy outcomes in patients and clinical trials. These approaches include use of genetically engineered mouse models (GEMMs) of spontaneous tumors, or patient tumor tissue derived xenografts (PDXs). Almost all such therapy studies utilizing such models involve treatment of established primary tumors. An alternative approach we have developed involves transplanted human tumor xenografts derived from established cell lines to treat mice with overt visceral metastases after primary tumor resection. The rationale is to mimic the more challenging circumstance of treating patients with late stage metastatic disease. These metastatic models entail prior in vivo selection of heritable, phenotypically stable variants with increased aggressiveness for spontaneous metastasis; they were derived by orthotopic injection of tumor cells followed by primary tumor resection and serial selection of distant spontaneous metastases, from which variant cell lines having a more aggressive heritable metastatic phenotype were established. We attempted to adopt this strategy for breast cancer PDXs. We studied five breast cancer PDXs, with the emphasis on two, called HCI-001 and HCI-002, both derived from triple negative breast cancer patients. However significant technical obstacles were encountered. These include the inherent slow growth rates of PDXs, the rarity of overt spontaneous metastases (detected in only 3 of 144 mice), very high rates of tumor regrowths at the primary tumor resection site, the failure of the few human PDX metastases isolated to manifest a more aggressive metastatic phenotype upon re-transplantation into new hosts, and the formation of metastases which were derived from de novo mouse thymomas arising in aged SCID mice that we used for the experiments. We

  19. Efficacy and Hemotoxicity of Stealth Doxorubicin-Loaded Magnetic Nanovectors on Breast Cancer Xenografts.

    PubMed

    Gautier, J; Allard-Vannier, E; Burlaud-Gaillard, J; Domenech, J; Chourpa, I

    2015-01-01

    In the field of oncology, research is now focused on the development of theranostic nanosystems that combine the functions of drug delivery and imaging for diagnosis/monitoring. In this context, we designed polyethylene glycol (PEG)ylated superparamagnetic iron oxide nanoparticles (SPIONs) for the delivery of doxorubicin (DOX), an antineoplastic agent. These DOX-loaded PEGylated SPIONs, or DLPS, should be useful for the delivery of DOX in vivo, as well as for magnetic drug targeting (MDT) and magnetic resonance imaging (MRI). The aim of this study was to evaluate the potential applications of DLPS in vivo as drug carrier systems for the reduction of xenograft breast tumors induced in nude mice. Prior to the animal model experiments, the main internalization pathways for the nanovectors in MDA-MB435 breast cancer cells were determined to be based on caveolae- and clathrin-mediated endocytosis. The time- and quantity-dependence of the nanoparticle uptake by the cells altered the in vitro cytotoxicity of the DLPS. The in vitro antiproliferative effect of the DLPS was dependent not only on DOX concentration, but also on the efficacy of nanoparticle internalization. Evaluation of the effect of DLPS treatment on xenograft tumors in nude mice showed that DLPS limited tumor growth in a manner comparable to that of free DOX under normal conditions of tumor growth. The application of an external magnetic field on tumors, i.e., MDT, did not improve the efficacy of the DLPS treatment. Nevertheless, the vectorization of DOX with DLPS appears to limit the hematologic side effects usually associated with DOX treatment.

  20. Efficacy and Hemotoxicity of Stealth Doxorubicin-Loaded Magnetic Nanovectors on Breast Cancer Xenografts.

    PubMed

    Gautier, J; Allard-Vannier, E; Burlaud-Gaillard, J; Domenech, J; Chourpa, I

    2015-01-01

    In the field of oncology, research is now focused on the development of theranostic nanosystems that combine the functions of drug delivery and imaging for diagnosis/monitoring. In this context, we designed polyethylene glycol (PEG)ylated superparamagnetic iron oxide nanoparticles (SPIONs) for the delivery of doxorubicin (DOX), an antineoplastic agent. These DOX-loaded PEGylated SPIONs, or DLPS, should be useful for the delivery of DOX in vivo, as well as for magnetic drug targeting (MDT) and magnetic resonance imaging (MRI). The aim of this study was to evaluate the potential applications of DLPS in vivo as drug carrier systems for the reduction of xenograft breast tumors induced in nude mice. Prior to the animal model experiments, the main internalization pathways for the nanovectors in MDA-MB435 breast cancer cells were determined to be based on caveolae- and clathrin-mediated endocytosis. The time- and quantity-dependence of the nanoparticle uptake by the cells altered the in vitro cytotoxicity of the DLPS. The in vitro antiproliferative effect of the DLPS was dependent not only on DOX concentration, but also on the efficacy of nanoparticle internalization. Evaluation of the effect of DLPS treatment on xenograft tumors in nude mice showed that DLPS limited tumor growth in a manner comparable to that of free DOX under normal conditions of tumor growth. The application of an external magnetic field on tumors, i.e., MDT, did not improve the efficacy of the DLPS treatment. Nevertheless, the vectorization of DOX with DLPS appears to limit the hematologic side effects usually associated with DOX treatment. PMID:26301312

  1. The in vivo performance of ferrocenyl tamoxifen lipid nanocapsules in xenografted triple negative breast cancer.

    PubMed

    Lainé, Anne-Laure; Adriaenssens, Eric; Vessières, Anne; Jaouen, Gérard; Corbet, Cyril; Desruelles, Emilie; Pigeon, Pascal; Toillon, Robert-Alain; Passirani, Catherine

    2013-09-01

    Triple-negative breast cancers (TNBC) represent the most aggressive form of breast cancers and their treatment are challenging due to the tumor heterogeneity. The high death rate and the limited systemic treatment options for TNBC necessitate the search for alternative chemotherapeutics. We previously found that FcOHTAM, an organometallic derivative of hydroxytamoxifen, showed in vitro a strong antiproliferative effect on various breast cancer cell lines, including MDA-MB-231 cells, the archetype of TNBC. In this study, we developed stealth FcOHTAM loaded lipid nanocapsules (LNCs) to further evaluate this novel drug on a TNBC xenografted model. Cell cycle analysis of MDA-MB-231 cells confirmed the preservation of the drug activity through LNCs causing a cycle arrest in phase S after 48 h exposure at the IC50 concentration (2 μm). Two intraperitoneal injections of FcOHTAM loaded LNCs (20 mg/kg) administered to luciferase-transfected MDA-MB-231 tumors bearing mice led to a marked delay in tumor growth. As a consequence, a significantly lower tumor volume was obtained at the end of the experiment with a difference of 36% at day 38 compared to the untreated group. These results represent the first evidence of an in vivo effect of FcOHTAM and ferrocenyl derivatives in general on xenografted breast tumors. PMID:23777919

  2. Hemodynamics in vasculogenic mimicry and angiogenesis of inflammatory breast cancer xenograft.

    PubMed

    Shirakawa, Kazuo; Kobayashi, Hisataka; Heike, Yuji; Kawamoto, Satomi; Brechbiel, Martin W; Kasumi, Fujio; Iwanaga, Toshihiko; Konishi, Fumio; Terada, Masaaki; Wakasugi, Hiro

    2002-01-15

    In the present study, we examined hemodynamics in vasculogenic mimicry (VM) and angiogenesis of inflammatory breast cancer (IBC) xenografts (WIBC-9), having previously reported on the unique histological features and molecular basis of these processes (K. Shirakawa et al., Cancer Res., 61: 445-451, 2001). Histologically, the WIBC-9 xenografts exhibited invasive ductal carcinoma with a hypervascular structure (angiogenesis) in the tumor margin and VM without endothelial cells, central necrosis, or fibrosis in the tumor center. Results of molecular analysis indicated that WIBC-9 had a vasculogenic phenotype, including expression of Flt-1 and Tie-2. Comparison of WIBC-9 with an established non-IBC xenograft (MC-5), using time-coursed dynamic micromagnetic resonance angiography analysis (with our newly developed intravascular macromolecular magnetic resonance imaging contrast agent), electromicroscopy, and immunohistochemistry, demonstrated blood flow and a VM-angiogenesis junction in the central area of the WIBC-9 tumor. It has previously been considered impossible to prove a connection between VM and angiogenesis using angiography, because there are no intravascular macromolecular magnetic resonance imaging contrast agents that do not exhibit significant leakage through the vascular wall. In the present study, laser-captured microdissection was performed in regions of WIBC-9 tumors that exhibited VM without endothelial cells, central necrosis, or fibrosis, revealing expression of human-Flt-1 and human-Tie2 and the absence of human-CD31, human-endothelin B receptor, and human-thrombin receptor. These facts led us to hypothesize that the VM of WIBC-9 involves hemodynamics that serve to feed WIBC-9 cells, and this in turn suggests a connection between VM and angiogenesis. PMID:11809710

  3. Generation of Prostate Cancer Patient Derived Xenograft Models from Circulating Tumor Cells.

    PubMed

    Williams, Estrelania S; Rodriguez-Bravo, Veronica; Rodriquez-Bravo, Veronica; Chippada-Venkata, Uma; De Ia Iglesia-Vicente, Janis; Gong, Yixuan; Galsky, Matthew; Oh, William; Cordon-Cardo, Carlos; Domingo-Domenech, Josep

    2015-10-20

    Patient derived xenograft (PDX) models are gaining popularity in cancer research and are used for preclinical drug evaluation, biomarker identification, biologic studies, and personalized medicine strategies. Circulating tumor cells (CTC) play a critical role in tumor metastasis and have been isolated from patients with several tumor types. Recently, CTCs have been used to generate PDX experimental models of breast and prostate cancer. This manuscript details the method for the generation of prostate cancer PDX models from CTCs developed by our group. Advantages of this method over conventional PDX models include independence from surgical sample collection and generating experimental models at various disease stages. Density gradient centrifugation followed by red blood cell lysis and flow cytometry depletion of CD45 positive mononuclear cells is used to enrich CTCs from peripheral blood samples collected from patients with metastatic disease. The CTCs are then injected into immunocompromised mice; subsequently generated xenografts can be used for functional studies or harvested for molecular characterization. The primary limitation of this method is the negative selection method used for CTC enrichment. Despite this limitation, the generation of PDX models from CTCs provides a novel experimental model to be applied to prostate cancer research.

  4. High-resolution MRI analysis of breast cancer xenograft on the chick chorioallantoic membrane.

    PubMed

    Zuo, Zhi; Syrovets, Tatiana; Genze, Felicitas; Abaei, Alireza; Ma, Genshan; Simmet, Thomas; Rasche, Volker

    2015-04-01

    The chick chorioallantoic membrane (CAM) model has been successfully used to study angiogenesis, cancer progression and its pharmacological treatment, tumor pharmacokinetics, and properties of novel nanomaterials. MRI is an attractive technique for non-invasive and longitudinal monitoring of physiological processes and tumor growth. This study proposes an age-adapted cooling regime for immobilization of the chick embryo, enabling high-resolution MRI of the embryo and the CAM tumor xenograft. 64 chick embryos were enrolled in this study. The novel immobilization and imaging protocol was optimized in 29 embryos. From d7 to d18 immobilization of the embryo up to 90 min was achieved by cooling at 4 °C pre-imaging, with cooling times adapted to age. Its application to tumor growth monitoring was evaluated in 15 embryos after xenotransplantation of human MDA-MB-231 breast cancer cells on CAM. Tumor volumes were monitored from d4 to d9 after grafting (d11 to d16 after incubation) applying a T2 -weighted multislice RARE sequence. At d9 after grafting, the tumors were collected and compared with the MRI-derived data by histology and weight measurements. Additional imaging methods comprising DWI, T2 mapping, and the bio-distribution of contrast agents were tested at d9 after grafting in 20 further embryos. With the adaptive cooling regime, motion artifacts could be completely avoided for up to 90 min scan time, enabling high-resolution in ovo imaging. Excellent anatomical details could be obtained in the embryo and tumors. Tumor volumes could be quantified over time. The results prove the feasibility of high-resolution MRI for longitudinal tumor and organ growth monitoring. The suggested method is promising for future applications such as testing tailored and/or targeted treatment strategies, longitudinal monitoring of tumor development, analysis of therapeutic efficacies of drugs, or assessment of tumor pharmacokinetics. The method provides an alternative to animal

  5. Antitumor effect of Deoxypodophyllotoxin on human breast cancer xenograft transplanted in BALB/c nude mice model.

    PubMed

    Khaled, Meyada; Belaaloui, Ghania; Jiang, Zhen-Zhou; Zhu, Xiong; Zhang, Lu-Yong

    2016-10-01

    Recently, biologically active compounds isolated from plants used in herbal medicine have been the center of interest. Deoxypodophyllotoxin (DPT), structurally closely related to the lignan podophyllotoxin, was found to be a potent antitumor and antiproliferative agent, in several tumor cells, in vitro. However, DPT has not been used clinically yet because of the lack of in vivo studies. This study is the first report demonstrating the antitumor effect of DPT on MDA-MB-231 human breast cancer xenografts in nude mice. DPT, significantly, inhibited the growth of MDA-MB-231 xenograft in BALB/c nude mice. The T/C value (the value of the relative tumor volume of treatment group compared to the control group) of groups treated with 5, 10, and 20 mg/kg of intravenous DPT-HP-β-CD was 42.87%, 34.04% and 9.63%, respectively, suggesting the positive antitumor activity of DPT. In addition, the antitumor effect of DPT-HP-β-CD (20 mg/kg) in human breast cancer MDA-MB-231 xenograft was more effective than etoposide (VP-16) (20 mg/kg) and docetaxel (20 mg/kg). These findings suggest that this drug is a promising chemotherapy candidate against human breast carcinoma. PMID:27578026

  6. Establishment of Patient-Derived Xenograft (PDX) Models of Human Breast Cancer.

    PubMed

    Zhang, Xiaomei; Lewis, Michael T

    2013-03-01

    Patient-derived xenograft (PDX) models of human breast cancer are proving useful for preclinical evaluation of experimental therapeutics. However, until recently, generation of PDX models reflecting the full spectrum of human breast cancers has been an elusive goal. We recently developed a method for establishing serially transplantable, phenotypically stable, human breast cancer xenograft models in immunocompromised mice with comparatively high efficiency (overall ∼25%). These xenografts represent the major clinically defined subtypes of breast cancer [e.g. estrogen receptor positive (ER+), HER2 positive (HER2+), and "triple negative" (TN) breast cancers]. This method, and methods being developed in other laboratories, may soon allow for conducting "animal clinical trials" once sufficient numbers of clinically relevant models are generated. Curr. Protoc. Mouse Biol. 3:21-29 © 2013 by John Wiley & Sons, Inc.

  7. Depletion of Mouse Cells from Human Tumor Xenografts Significantly Improves Downstream Analysis of Target Cells.

    PubMed

    Agorku, David J; Tomiuk, Stefan; Klingner, Kerstin; Wild, Stefan; Rüberg, Silvia; Zatrieb, Lisa; Bosio, Andreas; Schueler, Julia; Hardt, Olaf

    2016-01-01

    The use of in vitro cell line models for cancer research has been a useful tool. However, it has been shown that these models fail to reliably mimic patient tumors in different assays(1). Human tumor xenografts represent the gold standard with respect to tumor biology, drug discovery, and metastasis research (2-4). Tumor xenografts can be derived from different types of material like tumor cell lines, tumor tissue from primary patient tumors(4) or serially transplanted tumors. When propagated in vivo, xenografted tissue is infiltrated and vascularized by cells of mouse origin. Multiple factors such as the tumor entity, the origin of xenografted material, growth rate and region of transplantation influence the composition and the amount of mouse cells present in tumor xenografts. However, even when these factors are kept constant, the degree of mouse cell contamination is highly variable. Contaminating mouse cells significantly impair downstream analyses of human tumor xenografts. As mouse fibroblasts show high plating efficacies and proliferation rates, they tend to overgrow cultures of human tumor cells, especially slowly proliferating subpopulations. Mouse cell derived DNA, mRNA, and protein components can bias downstream gene expression analysis, next-generation sequencing, as well as proteome analysis (5). To overcome these limitations, we have developed a fast and easy method to isolate untouched human tumor cells from xenografted tumor tissue. This procedure is based on the comprehensive depletion of cells of mouse origin by combining automated tissue dissociation with the benchtop tissue dissociator and magnetic cell sorting. Here, we demonstrate that human target cells can be can be obtained with purities higher than 96% within less than 20 min independent of the tumor type. PMID:27501218

  8. Genetically Engineered Cancer Models, But Not Xenografts, Faithfully Predict Anticancer Drug Exposure in Melanoma Tumors

    PubMed Central

    Combest, Austin J.; Roberts, Patrick J.; Dillon, Patrick M.; Sandison, Katie; Hanna, Suzan K.; Ross, Charlene; Habibi, Sohrab; Zamboni, Beth; Müller, Markus; Brunner, Martin; Sharpless, Norman E.

    2012-01-01

    Background. Rodent studies are a vital step in the development of novel anticancer therapeutics and are used in pharmacokinetic (PK), toxicology, and efficacy studies. Traditionally, anticancer drug development has relied on xenograft implantation of human cancer cell lines in immunocompromised mice for efficacy screening of a candidate compound. The usefulness of xenograft models for efficacy testing, however, has been questioned, whereas genetically engineered mouse models (GEMMs) and orthotopic syngeneic transplants (OSTs) may offer some advantages for efficacy assessment. A critical factor influencing the predictability of rodent tumor models is drug PKs, but a comprehensive comparison of plasma and tumor PK parameters among xenograft models, OSTs, GEMMs, and human patients has not been performed. Methods. In this work, we evaluated the plasma and tumor dispositions of an antimelanoma agent, carboplatin, in patients with cutaneous melanoma compared with four different murine melanoma models (one GEMM, one human cell line xenograft, and two OSTs). Results. Using microdialysis to sample carboplatin tumor disposition, we found that OSTs and xenografts were poor predictors of drug exposure in human tumors, whereas the GEMM model exhibited PK parameters similar to those seen in human tumors. Conclusions. The tumor PKs of carboplatin in a GEMM of melanoma more closely resembles the tumor disposition in patients with melanoma than transplanted tumor models. GEMMs show promise in becoming an improved prediction model for intratumoral PKs and response in patients with solid tumors. PMID:22993143

  9. Hyaluronic acid-bound letrozole nanoparticles restore sensitivity to letrozole-resistant xenograft tumors in mice.

    PubMed

    Nair, Hareesh B; Huffman, Steven; Veerapaneni, Poornachand; Kirma, Nameer B; Binkley, Peter; Perla, Rao P; Evans, Dean B; Tekmal, Rajeshwar R

    2011-05-01

    Letrozole is a potent aromatase inhibitor and superior to other defined selective estrogen receptor modulators such as tamoxifen in treating hormone-responsive postmenopausal breast cancer patients. Patients who receive this drug may become insensitive to the effects of estrogen deprivation induced by letrozole. Letrozole has known side effects on bone metabolism due to systemic ablation of estrogen production. The purpose of this study was to examine the therapeutic efficacy of hyaluronic acid-bound letrozole nanoparticles (HA-Letr-NPs) in restoring sensitivity to letrozole-resistant (LTLT-Ca) cells. To target letrozole to LTLT-Ca cells, hyaluronic acid-bound letrozole nanoparticles were prepared by nanoprecipitation using biodegradable PLGA-PEG co-polymer. Binding specificity of HA to CD44 on the cell surface was analyzed in vitro using FITC-CD44 Ab and CD44 siRNA by flow cytometry. Effects on in vitro cytotoxicity and aromatase enzymatic activity of HA-Letr-NPs were performed in MCF-7 breast cancer cells, MCF-7 cells over-expressing aromatase (MCF-7/Aro), and LTLT-Ca cells resistant to letrozole. Preclinical efficacy of HA-Letr-NPs was examined in mice using LTLT-Ca xenograft tumors. HA-Letr-NPs were restricted to a maximum size of 100 nm. The in vitro drug release assay showed that the highest released concentration of letrozole occurred after 23 hours at 37 degrees C in phosphate-buffered saline. HA-Letr-NPs on MCF-7/Aro and LTLT-Ca cells showed an IC50 of 2 microM and 5 microM, respectively. HA-Letr-NPs were more efficacious in inhibiting tumor growth, reducing in vitro cellular and in vivo tumor aromatase enzyme activity more than the corresponding Letr-NPs or letrozole. HA-Letr-NPs restored and maintained a prolonged sensitivity and targeted delivery of letrozole in letrozole-resistant tumors in vivo. PMID:21780370

  10. Human Adipose Tissue-Derived Stromal/Stem Cells Promote Migration and Early Metastasis of Triple Negative Breast Cancer Xenografts

    PubMed Central

    Rowan, Brian G.; Gimble, Jeffrey M.; Sheng, Mei; Anbalagan, Muralidharan; Jones, Ryan K.; Frazier, Trivia P.; Asher, Majdouline; Lacayo, Eduardo A.; Friedlander, Paul L.; Kutner, Robert; Chiu, Ernest S.

    2014-01-01

    Background Fat grafting is used to restore breast defects after surgical resection of breast tumors. Supplementing fat grafts with adipose tissue-derived stromal/stem cells (ASCs) is proposed to improve the regenerative/restorative ability of the graft and retention. However, long term safety for ASC grafting in proximity of residual breast cancer cells is unknown. The objective of this study was to determine the impact of human ASCs derived from abdominal lipoaspirates of three donors, on a human breast cancer model that exhibits early metastasis. Methodology/Principal Findings Human MDA-MB-231 breast cancer cells represents “triple negative” breast cancer that exhibits early micrometastasis to multiple mouse organs [1]. Human ASCs were derived from abdominal adipose tissue from three healthy female donors. Indirect co-culture of MDA-MB-231 cells with ASCs, as well as direct co-culture demonstrated that ASCs had no effect on MDA-MB-231 growth. Indirect co-culture, and ASC conditioned medium (CM) stimulated migration of MDA-MB-231 cells. ASC/RFP cells from two donors co-injected with MDA-MB-231/GFP cells exhibited a donor effect for stimulation of primary tumor xenografts. Both ASC donors stimulated metastasis. ASC/RFP cells were viable, and integrated with MDA-MB-231/GFP cells in the tumor. Tumors from the co-injection group of one ASC donor exhibited elevated vimentin, matrix metalloproteinase-9 (MMP-9), IL-8, VEGF and microvessel density. The co-injection group exhibited visible metastases to the lung/liver and enlarged spleen not evident in mice injected with MDA-MB-231/GFP alone. Quantitation of the total area of GFP fluorescence and human chromosome 17 DNA in mouse organs, H&E stained paraffin sections and fluorescent microscopy confirmed multi-focal metastases to lung/liver/spleen in the co-injection group without evidence of ASC/RFP cells. Conclusions Human ASCs derived from abdominal lipoaspirates of two donors stimulated metastasis of MDA-MB-231

  11. A fully human CXCR4 antibody demonstrates diagnostic utility and therapeutic efficacy in solid tumor xenografts

    PubMed Central

    Azad, Babak Behnam; Chatterjee, Samit; Lesniak, Wojciech G.; Lisok, Ala; Pullambhatla, Mrudula; Bhujwalla, Zaver M.; Pomper, Martin G.; Nimmagadda, Sridhar

    2016-01-01

    For physiologically important cancer therapeutic targets, use of non-invasive imaging for therapeutic guidance and monitoring may improve outcomes for treated patients. The CXC chemokine receptor 4 (CXCR4) is overexpressed in many cancers including non-small cell lung cancer (NSCLC) and triple negative breast cancer (TNBC). CXCR4 overexpression contributes to tumor growth, progression and metastasis. There are several CXCR4-targeted therapeutic agents currently in clinical trials. Since CXCR4 is also crucial for normal biological functions, its prolonged inhibition could lead to unwanted toxicities. While CXCR4-targeted imaging agents and inhibitors have been reported and evaluated independently, there are currently no studies demonstrating CXCR4-targeted imaging for therapeutic guidance. Monoclonal antibodies (mAbs) are commonly used for cancer therapy and imaging. Here, an 89Zr-labeled human CXCR4-mAb (89Zr-CXCR4-mAb) was evaluated for detection of CXCR4 expression with positron emission tomography (PET) while its native unmodified analogue was evaluated for therapy in relevant models of NSCLC and TNBC. In vitro and in vivo evaluation of 89Zr-CXCR4-mAb showed enhanced uptake in NSCLC xenografts with a high expression of CXCR4. It also had the ability to detect lymph node metastases in an experimental model of metastatic TNBC. Treatment of high and low CXCR4 expressing NSCLC and TNBC xenografts with CXCR4-mAb demonstrated a therapeutic response correlating with the expression of CXCR4. Considering the key role of CXCR4 in normal biological functions, our results suggest that combination of 89Zr-CXCR4-mAb-PET with non-radiolabeled mAb therapy may provide a precision medicine approach for selecting patients with tumors that are likely to be responsive to this treatment. PMID:26848769

  12. A fully human CXCR4 antibody demonstrates diagnostic utility and therapeutic efficacy in solid tumor xenografts.

    PubMed

    Azad, Babak Behnam; Chatterjee, Samit; Lesniak, Wojciech G; Lisok, Ala; Pullambhatla, Mrudula; Bhujwalla, Zaver M; Pomper, Martin G; Nimmagadda, Sridhar

    2016-03-15

    For physiologically important cancer therapeutic targets, use of non-invasive imaging for therapeutic guidance and monitoring may improve outcomes for treated patients. The CXC chemokine receptor 4 (CXCR4) is overexpressed in many cancers including non-small cell lung cancer (NSCLC) and triple negative breast cancer (TNBC). CXCR4 overexpression contributes to tumor growth, progression and metastasis. There are several CXCR4-targeted therapeutic agents currently in clinical trials. Since CXCR4 is also crucial for normal biological functions, its prolonged inhibition could lead to unwanted toxicities. While CXCR4-targeted imaging agents and inhibitors have been reported and evaluated independently, there are currently no studies demonstrating CXCR4-targeted imaging for therapeutic guidance. Monoclonal antibodies (mAbs) are commonly used for cancer therapy and imaging. Here, an 89Zr-labeled human CXCR4-mAb (89Zr-CXCR4-mAb) was evaluated for detection of CXCR4 expression with positron emission tomography (PET) while its native unmodified analogue was evaluated for therapy in relevant models of NSCLC and TNBC. In vitro and in vivo evaluation of 89Zr-CXCR4-mAb showed enhanced uptake in NSCLC xenografts with a high expression of CXCR4. It also had the ability to detect lymph node metastases in an experimental model of metastatic TNBC. Treatment of high and low CXCR4 expressing NSCLC and TNBC xenografts with CXCR4-mAb demonstrated a therapeutic response correlating with the expression of CXCR4. Considering the key role of CXCR4 in normal biological functions, our results suggest that combination of 89Zr-CXCR4-mAb-PET with non-radiolabeled mAb therapy may provide a precision medicine approach for selecting patients with tumors that are likely to be responsive to this treatment.

  13. Anti-tumor effect of bevacizumab on a xenograft model of feline mammary carcinoma

    PubMed Central

    MICHISHITA, Masaki; OHTSUKA, Aya; NAKAHIRA, Rei; TAJIMA, Tsuyoshi; NAKAGAWA, Takayuki; SASAKI, Nobuo; ARAI, Toshiro; TAKAHASHI, Kimimasa

    2015-01-01

    Feline mammary carcinomas are characterized by rapid progression and metastases. Vascular endothelial growth factor (VEGF) is a key regulator of tumor angiogenesis, proliferation and metastasis. The present study aimed to investigate the effects of a single drug therapy of bevacizumab on a xenograft model of feline mammary carcinoma expressing VEGF protein. Bevacizumab treatment suppressed tumor growth by inhibiting angiogenesis and enhancing apoptosis; however, it did not affect the tumor proliferation index. Thus, bevacizumab had anti-tumor effects on a xenograft model, and this may be useful for the treatment of feline mammary carcinoma. PMID:26616000

  14. [Transformation of patient-derived tumor xenografts into lymphomas: characteristics, influence factors and precautions].

    PubMed

    Zou, Jianling; Gao, Jing; Shen, Lin

    2016-07-01

    The patient-derived tumor xenografts (PDX) model is an animal model established by directly engrafting fresh tumor tissue of patients into immunodeficiency mice after surgery or biopsy, which plays an important role in the study of tumor biology. However, the transformation of PDX into lymphoma limits the application of this model. The characters of this transformation include that epithelial tumors origin, predorminance of B-cell lymphomas, lost of architectural feature of primary tumor, absence of epithelial tumor markers, and CD45 and CD20 expression. That were characteristics of human B lymphocytes, and possible infection of Epstein-Barr virus(EBV). The biology of primary tumor, EBV infection, inflammation infiltration in primary tumors and the host immune status are the main related factors in this transformation. Therefore, selective xenograft by the detection of EBV infection and inflammation infiltration in primary tumors may be effective methods to prevent lymphomagenesis.

  15. A Biobank of Breast Cancer Explants with Preserved Intra-tumor Heterogeneity to Screen Anticancer Compounds.

    PubMed

    Bruna, Alejandra; Rueda, Oscar M; Greenwood, Wendy; Batra, Ankita Sati; Callari, Maurizio; Batra, Rajbir Nath; Pogrebniak, Katherine; Sandoval, Jose; Cassidy, John W; Tufegdzic-Vidakovic, Ana; Sammut, Stephen-John; Jones, Linda; Provenzano, Elena; Baird, Richard; Eirew, Peter; Hadfield, James; Eldridge, Matthew; McLaren-Douglas, Anne; Barthorpe, Andrew; Lightfoot, Howard; O'Connor, Mark J; Gray, Joe; Cortes, Javier; Baselga, Jose; Marangoni, Elisabetta; Welm, Alana L; Aparicio, Samuel; Serra, Violeta; Garnett, Mathew J; Caldas, Carlos

    2016-09-22

    The inter- and intra-tumor heterogeneity of breast cancer needs to be adequately captured in pre-clinical models. We have created a large collection of breast cancer patient-derived tumor xenografts (PDTXs), in which the morphological and molecular characteristics of the originating tumor are preserved through passaging in the mouse. An integrated platform combining in vivo maintenance of these PDTXs along with short-term cultures of PDTX-derived tumor cells (PDTCs) was optimized. Remarkably, the intra-tumor genomic clonal architecture present in the originating breast cancers was mostly preserved upon serial passaging in xenografts and in short-term cultured PDTCs. We assessed drug responses in PDTCs on a high-throughput platform and validated several ex vivo responses in vivo. The biobank represents a powerful resource for pre-clinical breast cancer pharmacogenomic studies (http://caldaslab.cruk.cam.ac.uk/bcape), including identification of biomarkers of response or resistance.

  16. Pharmacologic inhibition of MLK3 kinase activity blocks the in vitro migratory capacity of breast cancer cells but has no effect on breast cancer brain metastasis in a mouse xenograft model.

    PubMed

    Rhoo, Kun Hyoe; Granger, Megan; Sur, Joynita; Feng, Changyong; Gelbard, Harris A; Dewhurst, Stephen; Polesskaya, Oksana

    2014-01-01

    Brain metastasis of breast cancer is an important clinical problem, with few therapeutic options and a poor prognosis. Recent data have implicated mixed lineage kinase 3 (MLK3) in controlling the in vitro migratory capacity of breast cancer cells, as well as the metastasis of MDA-MB-231 breast cancer cells from the mammary fat pad to distant lymph nodes in a mouse xenograft model. We therefore set out to test whether MLK3 plays a role in brain metastasis of breast cancer cells. To address this question, we used a novel, brain penetrant, MLK3 inhibitor, URMC099. URMC099 efficiently inhibited the migration of breast cancer cells in an in vitro cell monolayer wounding assay, and an in vitro transwell migration assay, but had no effect on in vitro cell growth. We also tested the effect of URMC099 on tumor formation in a mouse xenograft model of breast cancer brain metastasis. This analysis showed that URMC099 had no effect on the either the frequency or size of breast cancer brain metastases. We conclude that pharmacologic inhibition of MLK3 by URMC099 can reduce the in vitro migratory capacity of breast cancer cells, but that it has no effect on either the frequency or size of breast cancer brain metastases, in a mouse xenograft model.

  17. Whole transcriptome profiling of patient-derived xenograft models as a tool to identify both tumor and stromal specific biomarkers.

    PubMed

    Bradford, James R; Wappett, Mark; Beran, Garry; Logie, Armelle; Delpuech, Oona; Brown, Henry; Boros, Joanna; Camp, Nicola J; McEwen, Robert; Mazzola, Anne Marie; D'Cruz, Celina; Barry, Simon T

    2016-04-12

    The tumor microenvironment is emerging as a key regulator of cancer growth and progression, however the exact mechanisms of interaction with the tumor are poorly understood. Whilst the majority of genomic profiling efforts thus far have focused on the tumor, here we investigate RNA-Seq as a hypothesis-free tool to generate independent tumor and stromal biomarkers, and explore tumor-stroma interactions by exploiting the human-murine compartment specificity of patient-derived xenografts (PDX).Across a pan-cancer cohort of 79 PDX models, we determine that mouse stroma can be separated into distinct clusters, each corresponding to a specific stromal cell type. This implies heterogeneous recruitment of mouse stroma to the xenograft independent of tumor type. We then generate cross-species expression networks to recapitulate a known association between tumor epithelial cells and fibroblast activation, and propose a potentially novel relationship between two hypoxia-associated genes, human MIF and mouse Ddx6. Assessment of disease subtype also reveals MMP12 as a putative stromal marker of triple-negative breast cancer. Finally, we establish that our ability to dissect recruited stroma from trans-differentiated tumor cells is crucial to identifying stem-like poor-prognosis signatures in the tumor compartment.In conclusion, RNA-Seq is a powerful, cost-effective solution to global analysis of human tumor and mouse stroma simultaneously, providing new insights into mouse stromal heterogeneity and compartment-specific disease markers that are otherwise overlooked by alternative technologies. The study represents the first comprehensive analysis of its kind across multiple PDX models, and supports adoption of the approach in pre-clinical drug efficacy studies, and compartment-specific biomarker discovery. PMID:26980748

  18. Whole transcriptome profiling of patient-derived xenograft models as a tool to identify both tumor and stromal specific biomarkers

    PubMed Central

    Bradford, James R.; Wappett, Mark; Beran, Garry; Logie, Armelle; Delpuech, Oona; Brown, Henry; Boros, Joanna; Camp, Nicola J.; McEwen, Robert; Mazzola, Anne Marie; D'Cruz, Celina; Barry, Simon T.

    2016-01-01

    The tumor microenvironment is emerging as a key regulator of cancer growth and progression, however the exact mechanisms of interaction with the tumor are poorly understood. Whilst the majority of genomic profiling efforts thus far have focused on the tumor, here we investigate RNA-Seq as a hypothesis-free tool to generate independent tumor and stromal biomarkers, and explore tumor-stroma interactions by exploiting the human-murine compartment specificity of patient-derived xenografts (PDX). Across a pan-cancer cohort of 79 PDX models, we determine that mouse stroma can be separated into distinct clusters, each corresponding to a specific stromal cell type. This implies heterogeneous recruitment of mouse stroma to the xenograft independent of tumor type. We then generate cross-species expression networks to recapitulate a known association between tumor epithelial cells and fibroblast activation, and propose a potentially novel relationship between two hypoxia-associated genes, human MIF and mouse Ddx6. Assessment of disease subtype also reveals MMP12 as a putative stromal marker of triple-negative breast cancer. Finally, we establish that our ability to dissect recruited stroma from trans-differentiated tumor cells is crucial to identifying stem-like poor-prognosis signatures in the tumor compartment. In conclusion, RNA-Seq is a powerful, cost-effective solution to global analysis of human tumor and mouse stroma simultaneously, providing new insights into mouse stromal heterogeneity and compartment-specific disease markers that are otherwise overlooked by alternative technologies. The study represents the first comprehensive analysis of its kind across multiple PDX models, and supports adoption of the approach in pre-clinical drug efficacy studies, and compartment-specific biomarker discovery. PMID:26980748

  19. Whole transcriptome profiling of patient-derived xenograft models as a tool to identify both tumor and stromal specific biomarkers.

    PubMed

    Bradford, James R; Wappett, Mark; Beran, Garry; Logie, Armelle; Delpuech, Oona; Brown, Henry; Boros, Joanna; Camp, Nicola J; McEwen, Robert; Mazzola, Anne Marie; D'Cruz, Celina; Barry, Simon T

    2016-04-12

    The tumor microenvironment is emerging as a key regulator of cancer growth and progression, however the exact mechanisms of interaction with the tumor are poorly understood. Whilst the majority of genomic profiling efforts thus far have focused on the tumor, here we investigate RNA-Seq as a hypothesis-free tool to generate independent tumor and stromal biomarkers, and explore tumor-stroma interactions by exploiting the human-murine compartment specificity of patient-derived xenografts (PDX).Across a pan-cancer cohort of 79 PDX models, we determine that mouse stroma can be separated into distinct clusters, each corresponding to a specific stromal cell type. This implies heterogeneous recruitment of mouse stroma to the xenograft independent of tumor type. We then generate cross-species expression networks to recapitulate a known association between tumor epithelial cells and fibroblast activation, and propose a potentially novel relationship between two hypoxia-associated genes, human MIF and mouse Ddx6. Assessment of disease subtype also reveals MMP12 as a putative stromal marker of triple-negative breast cancer. Finally, we establish that our ability to dissect recruited stroma from trans-differentiated tumor cells is crucial to identifying stem-like poor-prognosis signatures in the tumor compartment.In conclusion, RNA-Seq is a powerful, cost-effective solution to global analysis of human tumor and mouse stroma simultaneously, providing new insights into mouse stromal heterogeneity and compartment-specific disease markers that are otherwise overlooked by alternative technologies. The study represents the first comprehensive analysis of its kind across multiple PDX models, and supports adoption of the approach in pre-clinical drug efficacy studies, and compartment-specific biomarker discovery.

  20. Investigational drug MLN0128, a novel TORC1/2 inhibitor, demonstrates potent oral antitumor activity in human breast cancer xenograft models.

    PubMed

    Gökmen-Polar, Yesim; Liu, Yi; Toroni, Rachel A; Sanders, Kerry L; Mehta, Rutika; Badve, Sunil; Rommel, Christian; Sledge, George W

    2012-12-01

    Aberrant activation of the mammalian target of rapamycin (mTOR) signaling plays an important role in breast cancer progression and represents a potential therapeutic target for breast cancer. In this study, we report the impact of the investigational drug MLN0128, a potent and selective small molecule active-site TORC1/2 kinase inhibitor, on tumor growth and metastasis using human breast cancer xenograft models. We assessed in vitro antiproliferative activity of MLN0128 in a panel of breast cancer cell lines. We next evaluated the impact of MLN0128 on tumor growth, angiogenesis and metastasis using mammary fat pad xenograft models of a non-VEGF (ML20) and a VEGF-driven (MV165) MCF-7 sublines harboring PIK3CA mutations. MLN0128 potently inhibited cell proliferation in various breast cancer cell lines harboring PIK3CA (IC(50): 1.5-53 nM), PTEN (IC(50): 1-149 nM), KRAS, and/or BRAF mutations (IC(50): 13-162 nM), and in human endothelial cells (IC(50): 33-40 nM) in vitro. In vivo, MLN0128 decreased primary tumor growth significantly in both non-VEGF (ML20; p = 0.05) and VEGF-driven MCF-7 (MV165; p = 0.014) xenograft models. MLN0128 decreased the phosphorylation of Akt, S6, 4E-BP1, and NDRG1 in both models. In contrast, rapamycin increased Akt activity and failed to reduce the phosphorylation of 4E-BP1, PRAS40, and NDRG1. VEGF-induced lung metastasis in MV165 is inhibited by MLN0128 and rapamycin. In conclusion, MLN0128 inhibits TORC1/2-dependent signaling in preclinical models of breast cancer. MLN0128 appears to be superior in blocking mTORC1/2 signaling in contrast to rapamycin. Our findings support the clinical research of MLN0128 in patients with breast cancer and metastasis.

  1. Phyllodes tumor of the breast

    PubMed Central

    Herazo, Fernando; Gil, Monica; Echeverri, Carolina; Ángel, Gonzalo; Borrero, Mauricio; Madrid, Jorge; Jaramillo, Ricardo

    2015-01-01

    Introduction: Breast Phyllodes tumors are rare breast tumors present in less than 1% of new cases of breast cancer, usually occurring among middle-aged women (40-50 yrs). Objective: This study shows diagnostic experience, surgical management and follows up of patients with this disease during a period of ten years in a oncology referral center. Methods: Retrospectively, breast cancer registries at the institution were reviewed, identifying 77 patients with Phyllodes tumors between 2002 and 2012, who had been operated on at the Instituto de Cancerología - Clínica Las Américas, in Medellín (Colombia). Clinical and histopathological data belonging to these cases was captured and analyzed and descriptive statistics were used. Results: The follow up median was 22.5 months (IQR: 10.5-60.0), average age was 47.2 yrs (SD: 12.4), mean tumor size was 3.6 cm (SD: 4.6), 88.3% of the patients (68 cases) presented negative margins and none of them received adjuvant chemotherapy. Of the patients with Phyllodes tumors; 33.8% had benign, 31.2% had borderline and 35.0% had malignant tumor. Disease-free survival was 85.8% and overall survival was 94.5%. Discussion: Reported data in this article is in accordance with what has been reported in worldwide literature. In our cohort even the high mean size of the tumors, the risk of local relapse and metastatic disease is low than previously reported in literature. Trials with longer follow up and molecular trials in Phyllodes tumors are necessary to understand the behavior of these tumors in Hispanics population. PMID:26600624

  2. Occult breast tumor reservoir: biological properties and clinical significance.

    PubMed

    Santen, Richard J; Yue, Wei; Heitjan, Daniel F

    2013-08-01

    Small, occult, undiagnosed breast cancers are found at autopsy in up to 15.6 % of women dying from unrelated causes with an average of 7 % from eight separate studies. The mammographic detection threshold of breast tumors ranges from 0.88 to 1.66 cm in diameter based on the patient's age. Tumor growth rates, expressed as "effective doubling times," vary from 10 to >700 days. We previously reported two models, based on iterative analysis of these parameters, to describe the biologic behavior of undiagnosed, occult breast tumors. Our models facilitate interpretation of the Women's Health Initiative (WHI) and antiestrogen breast cancer prevention studies. A nude mouse xenograft model was used to validate our assumption that breast tumors grow in a log-linear fashion. We then used our previously reported occult tumor growth (OTG) and computer-simulated tumor growth models to analyze various clinical trial data. Parameters used in the OTG model included a 200-day effective doubling time, 7 % prevalence of occult tumors, and 1.16 cm detection threshold. These models had been validated by comparing predicted with observed incidence of breast cancer in eight different populations of women. Our model suggests that menopausal hormone therapy with estrogens plus a progestogen (E + P) in the WHI trial primarily promoted the growth of pre-existing, occult lesions and minimally initiated de novo tumors. We provide a potential explanation for the lack of an increase in breast cancer incidence in the subgroup of women in the WHI who had not received E + P prior to randomization. This result may have reflected a leftward skew in the distribution of occult tumor doublings and insufficient time for stimulated tumors to reach the detection threshold. Our model predicted that estrogen alone reduced the incidence of breast cancer as a result of apoptosis. Understanding of the biology of occult tumors suggests that breast cancer "prevention" with antiestrogens or aromatase

  3. RAD1901: a novel, orally bioavailable selective estrogen receptor degrader that demonstrates antitumor activity in breast cancer xenograft models

    PubMed Central

    Shomali, Maysoun; Paquin, Dotty; Lyttle, C. Richard; Hattersley, Gary

    2015-01-01

    Agents that inhibit estrogen production, such as aromatase inhibitors or those that directly block estrogen receptor (ER) activity, such as selective estrogen receptor modulators and selective estrogen receptor degraders, are routinely used in the treatment of ER-positive breast cancers. However, although initial treatment with these agents is often successful, many women eventually relapse with drug-resistant breast cancers. To overcome some of the challenges associated with current endocrine therapies and to combat the development of resistance, there is a need for more durable and more effective ER-targeted therapies. Here we describe and characterize a novel, orally bioavailable small-molecule selective estrogen receptor degrader, RAD1901, and evaluate its therapeutic potential for the treatment of breast cancer. RAD1901 selectively binds to and degrades the ER and is a potent antagonist of ER-positive breast cancer cell proliferation. Importantly, RAD1901 produced a robust and profound inhibition of tumor growth in MCF-7 xenograft models. In an intracranial MCF-7 model, RAD1901-treated animals survived longer than those treated with either control or fulvestrant, suggesting the potential benefit of RAD1901 in the treatment of ER-positive breast cancer that has metastasized to the brain. Finally, RAD1901 preserved ovariectomy-induced bone loss and prevented the uterotropic effects of E2, suggesting that it may act selectively as an agonist in bone but as an antagonist in breast and uterine tissues. RAD1901 is currently under clinical study in postmenopausal women with ER-positive advanced breast cancer. PMID:26164151

  4. Human amniotic membrane-derived epithelial stem cells display anticancer activity in BALB/c female nude mice bearing disseminated breast cancer xenografts.

    PubMed

    Kang, Nam-Hee; Yi, Bo-Rim; Lim, So Yoon; Hwang, Kyung-A; Baek, Young Seok; Kang, Kyung-Sun; Choi, Kyung-Chul

    2012-06-01

    Breast cancer is one of the most common malignant tumors and the leading cause of mortality among women. In this study, we propose a human stem cell transplantation strategy, an important method for treating various cancers, as a potential breast cancer therapy. To this end, we used human amniotic membrane-derived epithelial stem cells (hAECs) as a cell source for performing human stem cell transplantation. hAECs have multipotent differentiation abilities and possess high proliferative potential. We transplanted hAECs into female BALB/c nude mice bearing tumors originating from MDA-MB-231 breast cancer cells. Co-culturred hAECs and MDA-MB-231 cells at a ratio of 1:4 or 1:8 (tumor cells to stem cells) inhibited breast cancer cell growth by 67.29 and 67.33%, respectively. In the xenograft mouse model, tumor volumes were significantly decreased by 5-flurouracil (5-FU) treatment and two different ratios of hAECs (1:4 and 1:8) by 84.33, 73.88 and 56.89%, respectively. Treatment of nude mice with hAECs (1:4) produced remarkable antitumor effects without any side-effects (e.g., weight loss, death and bruising) compared to the mice that received only 5-FU treatment. Tumor progression was significantly reduced by hAEC treatment compared to the xenograft model. On the other hand, breast tissues (e.g., the epidermis, dermis and reticular layer) appeared to be well-maintained following treatment with hAECs. Taken together, these results provide strong evidence that hAECs can be used as a safe and effective cancer-targeting cytotherapy for treating breast cancer.

  5. Deficiency of caspase 3 in tumor xenograft impairs therapeutic effect of measles virus Edmoston strain.

    PubMed

    Wang, Biao; Yan, Xu; Guo, Qingguo; Li, Yan; Zhang, Haiyan; Xie, Ji Sheng; Meng, Xin

    2015-06-30

    The oncolytic measles virus Edmonston (MV-Edm) strain shows considerable oncolytic activity against a variety of human tumors. In this study, we report MV-Edm is able to trigger apoptosis pathways in infected tumor cells and elucidate the roles of cellular apoptosis in the whole oncolytic process. We also show that activated caspase 3, a key executioner of apoptosis, plays key roles in the oncolytic virotherapy. Activated caspase 3 can accelerate viral replication in cervical cancer cells and enhance the killing effects of the virus. Deficiency of caspase 3 either in tumor cells or in tumor xenograft significantly desensitized tumor to oncolysis with MV-Edm. In the infected cells, caspase 3 regulates interferon α release, which can inhibit viral replication in neighboring tumor cells. We propose that caspase-3 activation enhances the oncolytic effects of MV-Edm, thus inhibiting tumor growth in mice.

  6. Amplexicaule A exerts anti-tumor effects by inducing apoptosis in human breast cancer.

    PubMed

    Xiang, Meixian; Su, Hanwen; Shu, Guangwen; Wan, Dingrong; He, Feng; Loaec, Morgann; Ding, Yali; Li, Jun; Dovat, Sinisa; Yang, Gaungzhong; Song, Chunhua

    2016-04-01

    Chemotherapy is the main treatment for patients with breast cancer metastases, but natural alternatives have been receiving attention for their potential as novel anti-tumor reagents. Amplexicaule A (APA) is a flavonoid glucoside isolated from rhizomes of Polygonum amplexicaule D. Don var. sinense Forb (PADF). We found that APA has anti-tumor effects in a breast cancer xenograft mouse model and induces apoptosis in breast cancer cell lines. APA increased levels of cleaved caspase-3,-8,-9 and PARP, which resulted from suppression of MCL-1 and BCL-2 expression in the cells. APA also inactivated the Akt/mTOR pathway in breast cancer cells. Thus, APA exerts a strong anti-tumor effect on breast cancer cells, most likely through induction of apoptosis. Our study is the first to identify this novel anti-tumor compound and provides a new strategy for isolation and separation of single compounds from herbs. PMID:26943775

  7. Amplexicaule A exerts anti-tumor effects by inducing apoptosis in human breast cancer

    PubMed Central

    Shu, Guangwen; Wan, Dingrong; He, Feng; Loaec, Morgann; Ding, Yali; Li, Jun; Dovat, Sinisa; Yang, Gaungzhong; Song, Chunhua

    2016-01-01

    Chemotherapy is the main treatment for patients with breast cancer metastases, but natural alternatives have been receiving attention for their potential as novel anti-tumor reagents. Amplexicaule A (APA) is a flavonoid glucoside isolated from rhizomes of Polygonum amplexicaule D. Don var. sinense Forb (PADF). We found that APA has anti-tumor effects in a breast cancer xenograft mouse model and induces apoptosis in breast cancer cell lines. APA increased levels of cleaved caspase-3,-8,-9 and PARP, which resulted from suppression of MCL-1 and BCL-2 expression in the cells. APA also inactivated the Akt/mTOR pathway in breast cancer cells. Thus, APA exerts a strong anti-tumor effect on breast cancer cells, most likely through induction of apoptosis. Our study is the first to identify this novel anti-tumor compound and provides a new strategy for isolation and separation of single compounds from herbs. PMID:26943775

  8. Phyllodes Tumor of the Breast

    SciTech Connect

    Belkacemi, Yazid Bousquet, Guilhem; Marsiglia, Hugo; Ray-Coquard, Isabelle; Magne, Nicolas; Malard, Yann; Lacroix, Magalie; Gutierrez, Cristina; Senkus, Elzbieta; Christie, David; Drumea, Karen; Lagneau, Edouard; Kadish, Sidney P.; Scandolaro, Luciano; Azria, David; Ozsahin, Mahmut

    2008-02-01

    Purpose: To better identify prognostic factors for local control and survival, as well as the role of different therapeutic options, for phyllodes tumors, a rare fibroepithelial neoplasm of the breast. Methods and Materials: Data from 443 women treated between 1971 and 2003 were collected from the Rare Cancer Network. The median age was 40 years (range, 12-87 years). Tumors were benign in 284 cases (64%), borderline in 80 cases (18%), and malignant in 79 cases (18%). Surgery consisted of breast-conserving surgery (BCS) in 377 cases (85%) and total mastectomy (TM) in 66 cases (15%). Thirty-nine patients (9%) received adjuvant radiotherapy (RT). Results: After a median follow-up of 106 months, local recurrence (LR) and distant metastases rates were 19% and 3.4%, respectively. In the malignant and borderline group (n = 159), RT significantly decreased LR (p = 0.02), and TM had better results than BCS (p = 0.0019). Multivariate analysis revealed benign histology, negative margins, and no residual disease (no RD) after initial treatment and RT delivery as independent favorable prognostic factors for local control; benign histology and low number of mitosis for disease-free survival; and pathologic tumor size tumor necrosis for overall survival. In the malignant and borderline subgroup multivariate analysis TM was the only favorable independent prognostic factor for disease-free survival. Conclusions: This study showed that phyllodes tumor patients with no RD after treatment have better local control. Benign tumors have a good prognosis after surgery alone. In borderline and malignant tumors, TM had better results than BCS. Thus, in these forms adjuvant RT should be considered according to histologic criteria.

  9. Bioluminescence imaging of invasive intracranial xenografts: implications for translational research and targeted therapeutics of brain tumors.

    PubMed

    Dinca, Eduard B; Voicu, Ramona V; Ciurea, Alexandru V

    2010-10-01

    Despite decades of study, the etiology of brain cancer remains elusive. However, extensive molecular characterization of primary brain tumors has been accomplished, outlining recurrent features that are proving useful for devising targeted therapies. There are far too few patients available for comparing the efficacy of therapeutic combinations, especially when variations in dosing, frequency, and sequencing are taken into account. Consequently, there is a substantial need for increasing preclinical testing throughput using clinically relevant models. We review luminescent optical imaging for its potential in facilitating in vivo assessment of intracranial tumor growth and response to therapy in rodent orthotopic xenograft models of primary brain malignancies. We review the rationale behind the need of an in vivo model, why orthotopic tumor models displaying an invasive phenotype may be a superior choice when compared to flank-implanted tumors, and what advantages may be drawn from the use of modified cells, suitable for sequential monitoring by in vivo optical imaging. Studies show that luminescent signal correlates highly both with tumor burden and Kaplan-Meier survival curves of rodents bearing intracranial xenografts. We conclude that bioluminescent imaging is a highly sensitive technique for assessment of tumor burden, response to therapy, tumor recurrence, and behavior to salvage therapy, making it a superior option for longitudinal monitoring in intracranial rodent models of primary brain tumors.

  10. Antitumor activity of [Pt(O,O'-acac)(γ-acac)(DMS)] in mouse xenograft model of breast cancer.

    PubMed

    Muscella, A; Vetrugno, C; Migoni, D; Biagioni, F; Fanizzi, F P; Fornai, F; De Pascali, S A; Marsigliante, S

    2014-01-01

    The higher and selective cytotoxicity of [Pt(O,O'-acac)(γ-acac)(DMS)] toward cancer cell in both immortalized cell lines and in breast cancer cells in primary cultures, stimulated a pre-clinical study so as to evaluate its therapeutic potential in vivo. The efficacy of [Pt(O,O'-acac)(γ-acac)(DMS)] was assessed using a xenograft model of breast cancer developed by injection of MCF-7 cells in the flank of BALB/c nude mice. Treatment of solid tumor-bearing mice with [Pt(O,O'-acac)(γ-acac)(DMS)] induced up to 50% reduction of tumor mass compared with an average 10% inhibition recorded in cisplatin-treated animals. Thus, chemotherapy with [Pt(O,O'-acac)(γ-acac)(DMS)] was much more effective than cisplatin. We also demonstrated enhanced in vivo pharmacokinetics, biodistribution and tolerability of [Pt(O,O'-acac)(γ-acac)(DMS)] when compared with cisplatin administered in Wistar rats. Pharmacokinetics studies with [Pt(O,O'-acac)(γ-acac)(DMS)] revealed prolonged Pt persistence in systemic blood circulation and decreased nefrotoxicity and hepatotoxicity, major target sites of cisplatin toxicity. Overall, [Pt(O,O'-acac)(γ-acac)(DMS)] turned out to be extremely promising in terms of greater in vivo anticancer activity, reduced nephrotoxicity and acute toxicity compared with cisplatin. PMID:24457958

  11. Antitumor activity of [Pt(O,O'-acac)(γ-acac)(DMS)] in mouse xenograft model of breast cancer

    PubMed Central

    Muscella, A; Vetrugno, C; Migoni, D; Biagioni, F; Fanizzi, F P; Fornai, F; De Pascali, S A; Marsigliante, S

    2014-01-01

    The higher and selective cytotoxicity of [Pt(O,O′-acac)(γ-acac)(DMS)] toward cancer cell in both immortalized cell lines and in breast cancer cells in primary cultures, stimulated a pre-clinical study so as to evaluate its therapeutic potential in vivo. The efficacy of [Pt(O,O′-acac)(γ-acac)(DMS)] was assessed using a xenograft model of breast cancer developed by injection of MCF-7 cells in the flank of BALB/c nude mice. Treatment of solid tumor-bearing mice with [Pt(O,O′-acac)(γ-acac)(DMS)] induced up to 50% reduction of tumor mass compared with an average 10% inhibition recorded in cisplatin-treated animals. Thus, chemotherapy with [Pt(O,O′-acac)(γ-acac)(DMS)] was much more effective than cisplatin. We also demonstrated enhanced in vivo pharmacokinetics, biodistribution and tolerability of [Pt(O,O′-acac)(γ-acac)(DMS)] when compared with cisplatin administered in Wistar rats. Pharmacokinetics studies with [Pt(O,O′-acac)(γ-acac)(DMS)] revealed prolonged Pt persistence in systemic blood circulation and decreased nefrotoxicity and hepatotoxicity, major target sites of cisplatin toxicity. Overall, [Pt(O,O′-acac)(γ-acac)(DMS)] turned out to be extremely promising in terms of greater in vivo anticancer activity, reduced nephrotoxicity and acute toxicity compared with cisplatin. PMID:24457958

  12. Pharmacokinetic-pharmacodynamic modeling of the antitumor effect of TM208 and EGFR-TKI resistance in human breast cancer xenograft mice

    PubMed Central

    Ji, Xi-wei; Ji, Shuang-min; Li, Run-tao; Wu, Ke-hua; Zhu, Xiao; Lu, Wei; Zhou, Tian-yan

    2016-01-01

    Aim: The novel anticancer compound TM208 is an EGFR tyrosine kinase inhibitor (EGFR-TKI). Since the development of resistance to EGFR-TKIs is a major challenge in their clinical usage, we investigated the profiles of resistance following continuous treatment with TM208 in human breast cancer xenograft mice, and identified the relationship between the tumor pEGFR levels and tumor growth inhibition. Methods: Female BALB/c nude mice were implanted with human breast cancer MCF-7 cells, and the xenograft mice received TM208 (50 or 150 mg·kg−1·d−1, ig) or vehicle for 18 d. The pharmacokinetics (PK) and pharmacodynamics (PD) of TM208 were evaluated. Results: The PK properties of TM208 were described by a one-compartment model with first-order absorption kinetics. Our study showed the inhibitory effects of TM208 on tumor pEGFR levels gradually reached a maximum effect, after which it became weaker over time, which was characterized by a combined tolerance/indirect response PD model with an estimated EC50 (55.9 μg/L), as well as three parameters ('a' of 27.2%, 'b' of 2730%, 'c' of 0.58 h−1) denoting the maximum, extent and rate of resistance, respectively. The relationship between the tumor pEGFR levels and tumor growth inhibition was characterized by a combined logistic tumor growth/transit compartment model with estimated parameters associated with tumor growth characteristics kng (0.282 day−1), drug potency kTM208 (0.0499 cm3/day) and the kinetics of tumor cell death k1 (0.141 day−1), which provided insight into drug mechanisms and behaviors. Conclusion: The proposed PK/PD model provides a better understanding of the pharmacological properties of TM208 in the treatment of breast cancer. Furthermore, simulation based on a tolerance model allows prediction of the occurrence of resistance. PMID:27133303

  13. Eradication of large colon tumor xenografts by targeted delivery of maytansinoids.

    PubMed Central

    Liu, C; Tadayoni, B M; Bourret, L A; Mattocks, K M; Derr, S M; Widdison, W C; Kedersha, N L; Ariniello, P D; Goldmacher, V S; Lambert, J M; Blättler, W A; Chari, R V

    1996-01-01

    The maytansinoid drug DM1 is 100- to 1000-fold more cytotoxic than anticancer drugs that are currently in clinical use. The immunoconjugate C242-DM1 was prepared by conjugating DM1 to the monoclonal antibody C242, which recognizes a mucin-type glycoprotein expressed to various extents by human colorectal cancers. C242-DM1 was found to be highly cytotoxic toward cultured colon cancer cells in an antigen-specific manner and showed remarkable antitumor efficacy in vivo. C242-DM1 cured mice bearing subcutaneous COLO 205 human colon tumor xenografts (tumor size at time of treatment 65-130 mm3), at doses that showed very little toxicity and were well below the maximum tolerated dose. C242-DM1 could even effect complete regressions or cures in animals with large (260- to 500-mm3) COLO 205 tumor xenografts. Further, C242-DM1 induced complete regressions of subcutaneous LoVo and HT-29 colon tumor xenografts that express the target antigen in a heterogeneous manner. C242-DM1 represents a new generation of immunoconjugates that may yet fulfill the promise of effective cancer therapy through antibody targeting of cytotoxic agents. Images Fig. 3 PMID:8710920

  14. Berberine inhibits human tongue squamous carcinoma cancer tumor growth in a murine xenograft model.

    PubMed

    Ho, Yung-Tsuan; Yang, Jai-Sing; Lu, Chi-Cheng; Chiang, Jo-Hua; Li, Tsai-Chung; Lin, Jen-Jyh; Lai, Kuang-Chi; Liao, Ching-Lung; Lin, Jaung-Geng; Chung, Jing-Gung

    2009-09-01

    Our primary studies showed that berberine induced apoptosis in human tongue cancer SCC-4 cells in vitro. But there is no report to show berberine inhibited SCC-4 cancer cells in vivo on a murine xenograft animal model. SCC-4 tumor cells were implanted into mice and groups of mice were treated with vehicle, berberine (10mg/kg of body weight) and doxorubicin (4mg/kg of body weight). The tested agents were injected once per four days intraperitoneally (i.p.), with treatment starting 4 weeks prior to cells inoculation. Treatment with 4mg/kg of doxorubicin or with 10mg/kg of berberine resulted in a reduction in tumor incidence. Tumor size in xenograft mice treated with 10mg/kg berberine was significantly smaller than that in the control group. Our findings indicated that berbeirne inhibits tumor growth in a xenograft animal model. Therefore, berberine may represent a tongue cancer preventive agent and can be used in clinic. PMID:19303753

  15. Additive effects of ulinastatin and docetaxel on growth of breast cancer xenograft in nude mice and expression of PGE2, IL-10, and IL-2 in primary breast cancer cells.

    PubMed

    Zhong, Biao; Shen, Hongyan; Sun, Xin; Wang, Hong; Zhang, Yonghua; Sun, Zhijun

    2012-05-01

    Ulinastatin is a broad-spectrum enzyme inhibitor extracted from urine. Previous data from our group suggested that ulinastatin could significantly inhibit proliferation of human breast MDA-MB-231 cells, growth of tumor xenograft in nude mice, and expression of interleukin (IL)-6 and IL-8. In the present study, we investigated whether there is an additive effect of ulinastatin and docetaxel on growth of breast cancer xenografts in nude mice and its possible mechanisms. Nude mice and primary human breast cancer cells were treated with phosphate buffered saline (PBS), ulinastatin, docetaxel, or ulinastatin plus docetaxel, respectively. Their effects on xenograft growth; expressions of cyclooxygenase-2 (COX2), prostaglandin E2 receptor 2 (EP2), IL-10, and IL-2; and secretion of prostaglandin E2 (PGE2) were examined using variety of methods, including semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR), Western blot, enzyme-linked immunosorbent (ELISA) assay, and immunohistochemistry SP method. The treatment with ulinastatin, docetaxel, or ulinastatin plus docetaxel could significantly (1) inhibit COX2 and IL-10 expression in primary tumor cells at both mRNA and protein levels, (2) reduce PGE2 secretion in culture supernatant (p<0.05), (3) inhibit COX2, EP2, and IL-10 protein levels in primary xenograft of nude mice, and (4) increase IL-2 expression (p<0.05) in primary xenografts of nude mice. In addition, ulinastatin and docetaxel had additive effects. We suggest that ulinastatin had similar effects of docetaxel and can enhance docetaxel's anticancer effects possibly by inhibiting COX2 expression, reducing PGE2 and EP2 expression and their binding, upregulating IL-2, and downregulating IL-10.

  16. Development and characterization of a tamoxifen-resistant breast carcinoma xenograft.

    PubMed

    Naundorf, H; Becker, M; Lykkesfeldt, A E; Elbe, B; Neumann, C; Büttner, B; Fichtner, I

    2000-06-01

    A human tamoxifen-resistant mammary carcinoma, MaCa 3366/TAM, originating from a sensitive parental xenograft 3366 was successfully established by treatment of tumour-bearing nude mice with 1-50 mg kg(-1) tamoxifen for 3 years during routine passaging. Both tumours did not differ significantly in OR- and PR-positivity, however, when compared with the sensitive tumour line, the mean OR content of the TAM-resistant subline is slightly lower. An OR-upregulation following withdrawal of oestradiol treatment was observed in the parental tumours but not in the resistant xenografts. Following long-term treatment with tamoxifen, the histological pattern of the breast carcinoma changed. The more differentiated structures being apparent after treatment with 17beta-oestradiol in the original 3366 tumour were not induced in the resistant line. Tamoxifen failed to induce a tumour growth inhibition in comparison to the tamoxifen-sensitive line. The pure anti-oestrogen, ICI 182 780, revealed cross-resistance. Sequence analysis of the hormone-binding domain of the OR of both lines showed no differences, suggesting that either mutations in other regions of the OR are involved in the TAM-resistance phenotype or that mechanisms outside of this protein induced this phenotype. Oestrogen and anti-oestrogen regulate pS2 and cathepsin D expression in 3366 tumours as in the human breast cancer cell line MCF-7. The resistant 3366/TAM tumours have lost this regulation. The established breast cancer xenografts 3366 and 3366/TAM offer the possibility of investigating mechanisms of anti-oestrogen resistance in an in vivo situation. They can be used to test novel approaches to prevent, or to overcome, this resistance in a clinically related manner. PMID:10839300

  17. Effects of menopausal hormonal therapy on occult breast tumors.

    PubMed

    Santen, Richard J; Song, Yan; Yue, Wei; Wang, Ji-Ping; Heitjan, Daniel F

    2013-09-01

    TSEC. Xenograft studies with the BZA/CEE combination show that it blocks the growth of occult, hormone dependent tumors in nude mice. These pre-clinical data suggest that the BZA/CEE TSEC combination may prevent the growth of occult breast tumors in women. Based on the beneficial effects of this TSEC combination on symptoms and fracture prevention in menopausal women, the combination of BZA/CEE might be used as a means both to treat menopausal symptoms and to prevent breast cancer. This article is part of a Special Issue entitled 'CSR 2013'.

  18. Autoradiography-based, three-dimensional calculation of dose rate for murine, human-tumor xenografts.

    PubMed

    Koral, K F; Kwok, C S; Yang, F E; Brown, R S; Sisson, J C; Wahl, R L

    1993-11-01

    A Fast Fourier Transform method for calculating the three-dimensional dose rate distribution for murine, human-tumor xenografts is outlined. The required input includes evenly-spaced activity slices which span the tumor. Numerical values in these slices are determined by quantitative 125I autoradiography. For the absorbed dose-rate calculation, we assume the activity from both 131I- and 90Y-labeled radiopharmaceuticals would be distributed as is measured with the 125I label. Two example cases are presented: an ovarian-carcinoma xenograft with an IgG 2ak monoclonal antibody and a neuroblastoma xenograft with meta-iodobenzylguanidine (MIBG). Considering all the volume elements in a tumor, we show, by comparison of histograms and also relative standard deviations, that the measured 125I activity and the calculated 131I dose-rate distributions, are similarly non-uniform and that they are more non-uniform than the calculated 90Y dose-rate distribution. However, the maximum-to-minimum ratio, another measure of non-uniformity, decreases by roughly an order of magnitude from one distribution to the next in the order given above. PMID:8298569

  19. Influence of the Implantation Site on the Sensitivity of Patient Pancreatic Tumor Xenografts to Apo2L/TRAIL Therapy

    PubMed Central

    Sharma, R; Buitrago, S; Pitoniak, R; Gibbs, JF; Curtin, L; Seshadri, M; Repasky, EA; Hylander, BL

    2015-01-01

    Objectives We have previously demonstrated activity of Apo2L/TRAIL against patient pancreatic tumor xenografts. Here, we have examined the influence of the tumor implantation site on therapeutic response of orthotopic tumors and their metastases to Apo2L/TRAIL. Methods Sensitivity of six patient pancreatic tumor xenografts to Apo2L/TRAIL was determined in a subcutaneous model. To compare the response of orthotopic tumors, cells from subcutaneous xenografts were injected into the pancreas. Tumor growth was confirmed by histological examination of selected mice and then treatment was started. When all control mice developed externally palpable tumors, the experiment was terminated and pancreatic weights compared between control and treated groups. Magnetic resonance imaging was used to quantitate the response of orthotopic and metastatic tumors. Results The sensitivity to Apo2L/TRAIL observed in subcutaneous tumors was maintained in orthotopic tumors. Metastatic spread was observed with orthotopic tumor implantation. In an orthotopic model of a sensitive tumor, primary and metastatic tumor burden was significantly reduced and median survival significantly extended by Apo2L/TRAIL therapy. Conclusions Our data provide evidence that the site of tumor engraftment does not alter the inherent sensitivity of patient xenografts to Apo2L/TRAIL and these results highlight the potential of Apo2/TRAIL therapy against primary and metastatic pancreatic cancer. PMID:24518511

  20. Nanosuspension delivery of paclitaxel to xenograft mice can alter drug disposition and anti-tumor activity

    NASA Astrophysics Data System (ADS)

    Chiang, Po-Chang; Gould, Stephen; Nannini, Michelle; Qin, Ann; Deng, Yuzhong; Arrazate, Alfonso; Kam, Kimberly R.; Ran, Yingqing; Wong, Harvey

    2014-04-01

    Paclitaxel is a common chemotherapeutic agent that is effective against various cancers. The poor aqueous solubility of paclitaxel necessitates a large percentage of Cremophor EL:ethanol (USP) in its commercial formulation which leads to hypersensitivity reactions in patients. We evaluate the use of a crystalline nanosuspension versus the USP formulation to deliver paclitaxel to tumor-bearing xenograft mice. Anti-tumor efficacy was assessed following intravenous administration of three 20 mg/kg doses of paclitaxel. Paclitaxel pharmacokinetics and tissue distribution were evaluated, and differences were observed between the two formulations. Plasma clearance and tissue to plasma ratio of mice that were dosed with the nanosuspension are approximately 33- and 11-fold higher compared to those of mice that were given the USP formulation. Despite a higher tumor to plasma ratio for the nanosuspension treatment group, absolute paclitaxel tumor exposure was higher for the USP group. Accordingly, a higher anti-tumor effect was observed in the xenograft mice that were dosed with the USP formulation (90% versus 42% tumor growth inhibition). This reduction in activity of nanoparticle formulation appeared to result from a slower than anticipated dissolution in vivo. This study illustrates a need for careful consideration of both dose and systemic solubility prior utilizing nanosuspension as a mode of intravenous delivery.

  1. Orthotopic xenografts of RCC retain histological, immunophenotypic and genetic features of tumors in patients

    PubMed Central

    Grisanzio, Chiara; Seeley, Apryle; Chang, Michelle; Collins, Michael; Di Napoli, Arianna; Cheng, Su-Chun; Percy, Andrew; Beroukhim, Rameen; Signoretti, Sabina

    2013-01-01

    Renal cell carcinoma (RCC) is an aggressive malignancy with limited responsiveness to existing treatments. In vivo models of human cancer, including RCC, are critical for developing more effective therapies. Unfortunately, current RCC models do not accurately represent relevant properties of the human disease. The goal of this study was to develop clinically relevant animal models of RCC for preclinical investigations. We transplanted intact human tumor tissue fragments orthotopically in immunodeficient mice. The xenografts were validated by comparing the morphologic, phenotypic, and genetic characteristics of the kidney tumor tissues before and after implantation. Twenty kidney tumors were transplanted into mice. Successful tumor growth was detected in 19 cases (95%). The histopathologic and immunophenotypic features of the xenografts and those of the original tumors largely overlapped in all the cases. Evaluation of genetic alterations in a subset of 10 cases demonstrated that the grafts largely retained the genetic features of the pre-implantation RCC tissues. Indeed, primary tumors and corresponding grafts displayed identical VHL mutations. Moreover, an identical pattern of DNA copy amplification or loss was observed in 6 of 10 cases (60%). In summary, orthotopic engrafting of RCC tissue fragments can be successfully used to generate animal models that closely resemble RCC in patients. These models will be invaluable for in vivo preclinical drug testing, and for deeper understanding of kidney carcinogenesis. PMID:21710693

  2. Interstitial Fluid Pressure and Vascularity of Intradermal and Intramuscular Human Tumor Xenografts

    SciTech Connect

    Gulliksrud, Kristine; Galappathi, Kanthi; Rofstad, Einar K.

    2011-05-01

    Purpose: High interstitial fluid pressure (IFP) in tumors has been shown to be associated with poor prognosis. Mechanisms underlying the intertumor heterogeneity in IFP were investigated in this study. Methods and Materials: A-07 melanoma xenografts were transplanted intradermally or intramuscularly in BALB/c nu/nu mice. IFP was measured in the center of the tumors with a Millar catheter. Tumor blood perfusion and extracellular volume fraction were assessed by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). The necrotic fraction, vascular density, and vessel diameters of the tumors were determined by image analysis of histological preparations. Results: Significant intertumor heterogeneity in IFP, blood perfusion, and microvascular morphology was observed whether the tumors were transplanted intradermally or intramuscularly. High IFP was mainly a consequence of high resistance to blood flow caused by low vessel diameters in either transplantation site. IFP decreased with increasing blood perfusion in intradermal tumors and increased with increasing blood perfusion in intramuscular tumors, mainly because the morphology of the tumor microvasculature differed systematically between the two tumor models. Conclusion: The potential of DCE-MRI as a noninvasive method for assessing the IFP of tumors may be limited because any relationship between IFP and blood perfusion may differ with the tumor growth site.

  3. Investigating Mechanisms of Alkalinization for Reducing Primary Breast Tumor Invasion

    PubMed Central

    Robey, Ian F.; Nesbit, Lance A.

    2013-01-01

    The extracellular pH (pHe) of many solid tumors is acidic as a result of glycolytic metabolism and poor perfusion. Acidity promotes invasion and enhances metastatic potential. Tumor acidity can be buffered by systemic administration of an alkaline agent such as sodium bicarbonate. Tumor-bearing mice maintained on sodium bicarbonate drinking water exhibit fewer metastases and survive longer than untreated controls. We predict this effect is due to inhibition of tumor invasion. Reducing tumor invasion should result in fewer circulating tumor cells (CTCs). We report that bicarbonate-treated MDA-MB-231 tumor-bearing mice exhibited significantly lower numbers of CTCs than untreated mice (P < 0.01). Tumor pHe buffering may reduce optimal conditions for enzymes involved in tumor invasion such as cathepsins and matrix metalloproteases (MMPs). To address this, we tested the effect of transient alkalinization on cathepsin and MMP activity using enzyme activatable fluorescence agents in mice bearing MDA-MB-231 mammary xenografts. Transient alkalinization significantly reduced the fluorescent signal of protease-specific activatable agents in vivo (P ≤ 0.003). Alkalinization, however, did not affect expression of carbonic anhydrase IX (CAIX). The findings suggest a possible mechanism in a live model system for breast cancer where systemic alkalinization slows the rate of invasion. PMID:23936808

  4. Restriction of dietary protein decreases mTORC1 in tumors and somatic tissues of a tumor-bearing mouse xenograft model

    PubMed Central

    Cummings, Nicole E.; Rastelli, Antonella L.; Gao, Feng; Cava, Edda; Bertozzi, Beatrice; Spelta, Francesco; Pili, Roberto

    2015-01-01

    Reduced dietary protein intake and intermittent fasting (IF) are both linked to healthy longevity in rodents, and are effective in inhibiting cancer growth. The molecular mechanisms underlying the beneficial effects of chronic protein restriction (PR) and IF are unclear, but may be mediated in part by a down-regulation of the IGF/mTOR pathway. In this study we compared the effects of PR and IF on tumor growth in a xenograft mouse model of breast cancer. We also investigated the effects of PR and IF on the mechanistic Target Of Rapamycin (mTOR) pathway, inhibition of which extends lifespan in model organisms including mice. The mTOR protein kinase is found in two distinct complexes, of which mTOR complex 1 (mTORC1) is responsive to acute treatment with amino acids in cell culture and in vivo. We found that both PR and IF inhibit tumor growth and mTORC1 phosphorylation in tumor xenografts. In somatic tissues, we found that PR, but not IF, selectively inhibits the activity of the amino acid sensitive mTORC1, while the activity of the second mTOR complex, mTORC2, was relatively unaffected by PR. In contrast, IF resulted in increased S6 phosphorylation in multiple metabolic tissues. Our work represents the first finding that PR may reduce mTORC1 activity in tumors and multiple somatic tissues, and suggest that PR may represent a highly translatable option for the treatment not only of cancer, but also other age-related diseases. PMID:26378060

  5. Restriction of dietary protein decreases mTORC1 in tumors and somatic tissues of a tumor-bearing mouse xenograft model.

    PubMed

    Lamming, Dudley W; Cummings, Nicole E; Rastelli, Antonella L; Gao, Feng; Cava, Edda; Bertozzi, Beatrice; Spelta, Francesco; Pili, Roberto; Fontana, Luigi

    2015-10-13

    Reduced dietary protein intake and intermittent fasting (IF) are both linked to healthy longevity in rodents, and are effective in inhibiting cancer growth. The molecular mechanisms underlying the beneficial effects of chronic protein restriction (PR) and IF are unclear, but may be mediated in part by a down-regulation of the IGF/mTOR pathway. In this study we compared the effects of PR and IF on tumor growth in a xenograft mouse model of breast cancer. We also investigated the effects of PR and IF on the mechanistic Target Of Rapamycin (mTOR) pathway, inhibition of which extends lifespan in model organisms including mice. The mTOR protein kinase is found in two distinct complexes, of which mTOR complex 1 (mTORC1) is responsive to acute treatment with amino acids in cell culture and in vivo. We found that both PR and IF inhibit tumor growth and mTORC1 phosphorylation in tumor xenografts. In somatic tissues, we found that PR, but not IF, selectively inhibits the activity of the amino acid sensitive mTORC1, while the activity of the second mTOR complex, mTORC2, was relatively unaffected by PR. In contrast, IF resulted in increased S6 phosphorylation in multiple metabolic tissues. Our work represents the first finding that PR may reduce mTORC1 activity in tumors and multiple somatic tissues, and suggest that PR may represent a highly translatable option for the treatment not only of cancer, but also other age-related diseases. PMID:26378060

  6. Transcriptomic alterations in human prostate cancer cell LNCaP tumor xenograft modulated by dietary phenethyl isothiocyanate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Temporal growth of tumor xenografts in mice on a control diet was compared to mice supplemented daily with 3 µmol/g of the cancer preventive compound phenethyl isothiocyanate. Phenethyl isothiocyanate decreased the rate of tumor growth. The effects of phenethyl isothiocyanate on tumor growth were ex...

  7. Prognostic and functional importance of the engraftment-associated genes in the patient-derived xenograft models of triple-negative breast cancers.

    PubMed

    Moon, Hyeong-Gon; Oh, Keunhee; Lee, Jiwoo; Lee, Minju; Kim, Ju-Yeon; Yoo, Tae-Kyung; Seo, Myung Won; Park, Ae Kyung; Ryu, Han Suk; Jung, Eun-Jung; Kim, Namshin; Jeong, Seongmun; Han, Wonshik; Lee, Dong-Sup; Noh, Dong-Young

    2015-11-01

    We aimed to identify the factors affecting the successful tumor engraftment in breast cancer patient-derived xenograft (PDX) models. Further, we investigated the prognostic significance and the functional importance of the PDX engraftment-related genes in triple-negative breast cancers (TNBC). The clinico-pathologic features of 81 breast cancer patients whose tissues were used for PDX transplantation were analyzed to identify the factors affecting the PDX engraftment. A gene signature associated with the PDX engraftment was discovered and its clinical importance was tested in a publicly available dataset and in vitro assays. Nineteen out of 81 (23.4 %) transplanted tumors were successfully engrafted into the PDX models. The engraftment rate was highest in TNBC when compared to other subtypes (p = 0.001) and in recurrent or chemotherapy-resistant tumors compared to newly diagnosed primary tumors (p = 0.024). PDX tumors originated from the TNBC cases showed more rapid tumor growth in mice. Gene expression profiling showed that down-regulation of genes involved in the tumor-immune interaction was significantly associated with the successful PDX engraftment. The engraftment gene signature was associated with worse survival outcome when tested in publicly available mRNA datasets of TNBC cases. Among the engraftment-related genes, PHLDA2, TKT, and P4HA2 showed high expression in triple-negative breast cancer cell lines, and siRNA-based gene silencing resulted in reduced cell invasion and proliferation in vitro. Our results show that the PDX engraftment may reflect the aggressive phenotype in breast cancer. Genes associated with the PDX engraftment may provide a novel prognostic biomarker and therapeutic targets in TNBC.

  8. Tumor Repression of VCaP Xenografts by a Pyrrole-Imidazole Polyamide

    PubMed Central

    Hargrove, Amanda E.; Martinez, Thomas F.; Hare, Alissa A.; Kurmis, Alexis A.; Phillips, John W.; Sud, Sudha; Pienta, Kenneth J; Dervan, Peter B.

    2015-01-01

    Pyrrole-imidazole (Py-Im) polyamides are high affinity DNA-binding small molecules that can inhibit protein-DNA interactions. In VCaP cells, a human prostate cancer cell line overexpressing both AR and the TMPRSS2-ERG gene fusion, an androgen response element (ARE)-targeted Py-Im polyamide significantly downregulates AR driven gene expression. Polyamide exposure to VCaP cells reduced proliferation without causing DNA damage. Py-Im polyamide treatment also reduced tumor growth in a VCaP mouse xenograft model. In addition to the effects on AR regulated transcription, RNA-seq analysis revealed inhibition of topoisomerase-DNA binding as a potential mechanism that contributes to the antitumor effects of polyamides in cell culture and in xenografts. These studies support the therapeutic potential of Py-Im polyamides to target multiple aspects of transcriptional regulation in prostate cancers without genotoxic stress. PMID:26571387

  9. Comprehensive Quantitative Analysis of Ovarian and Breast Cancer Tumor Peptidomes

    SciTech Connect

    Xu, Zhe; Wu, Chaochao; Xie, Fang; Slysz, Gordon W.; Tolic, Nikola; Monroe, Matthew E.; Petyuk, Vladislav A.; Payne, Samuel H.; Fujimoto, Grant M.; Moore, Ronald J.; Fillmore, Thomas L.; Schepmoes, Athena A.; Levine, Douglas; Townsend, Reid; Davies, Sherri; Li, Shunqiang; Ellis, Matthew; Boja, Emily; Rivers, Robert; Rodriguez, Henry; Rodland, Karin D.; Liu, Tao; Smith, Richard D.

    2015-01-02

    Aberrant degradation of proteins is associated with many pathological states, including cancers. Mass spectrometric analysis of tumor peptidomes, the intracellular and intercellular products of protein degradation, has the potential to provide biological insights on proteolytic processing in cancer. However, attempts to use the information on these smaller protein degradation products from tumors for biomarker discovery and cancer biology studies have been fairly limited to date, largely due to the lack of effective approaches for robust peptidomics identification and quantification, and the prevalence of confounding factors and biases associated with sample handling and processing. Herein, we have developed an effective and robust analytical platform for comprehensive analyses of tissue peptidomes, which is suitable for high throughput quantitative studies. The reproducibility and coverage of the platform, as well as the suitability of clinical ovarian tumor and patient-derived breast tumor xenograft samples with post-excision delay of up to 60 min before freezing for peptidomics analysis, have been demonstrated. Moreover, our data also show that the peptidomics profiles can effectively separate breast cancer subtypes, reflecting tumor-associated protease activities. Peptidomics complements results obtainable from conventional bottom-up proteomics, and provides insights not readily obtainable from such approaches.

  10. Patient-derived xenograft (PDX) tumors increase growth rate with time

    PubMed Central

    Pearson, Alexander T.; Finkel, Kelsey A.; Warner, Kristy A.; Nör, Felipe; Tice, David; Martins, Manoela D.; Jackson, Trachette L.; Nör, Jacques E.

    2016-01-01

    Patient-derived xenograft (PDX) models are frequently used for translational cancer research, and are assumed to behave consistently as the tumor ages. However, growth rate constancy as a function of time is unclear. Notably, variable PDX growth rates over time might have implications for the interpretation of translational studies. We characterized four PDX models through several in vivo passages from primary human head and neck squamous cell carcinoma and salivary gland adenoid cystic carcinoma. We developed a mathematical approach to merge growth data from different passages into a single measure of relative tumor volume normalized to study initiation size. We analyzed log-relative tumor volume increase with linear mixed effect models. Two oral pathologists analyzed the PDX tissues to determine if histopathological feature changes occurred over in vivo passages. Tumor growth rate increased over time. This was determined by repeated measures linear regression statistical analysis in four different PDX models. A quadratic statistical model for the temporal effect predicted the log-relative tumor volume significantly better than a linear time effect model. We found a significant correlation between passage number and histopathological features of higher tumor grade. Our mathematical treatment of PDX data allows statistical analysis of tumor growth data over long periods of time, including over multiple passages. Non-linear tumor growth in our regression models revealed the exponential growth rate increased over time. The dynamic tumor growth rates correlated with quantifiable histopathological changes that related to passage number in multiple types of cancer. PMID:26783960

  11. Patient-derived xenograft (PDX) tumors increase growth rate with time.

    PubMed

    Pearson, Alexander T; Finkel, Kelsey A; Warner, Kristy A; Nör, Felipe; Tice, David; Martins, Manoela D; Jackson, Trachette L; Nör, Jacques E

    2016-02-16

    Patient-derived xenograft (PDX) models are frequently used for translational cancer research, and are assumed to behave consistently as the tumor ages. However, growth rate constancy as a function of time is unclear. Notably, variable PDX growth rates over time might have implications for the interpretation of translational studies. We characterized four PDX models through several in vivo passages from primary human head and neck squamous cell carcinoma and salivary gland adenoid cystic carcinoma. We developed a mathematical approach to merge growth data from different passages into a single measure of relative tumor volume normalized to study initiation size. We analyzed log-relative tumor volume increase with linear mixed effect models. Two oral pathologists analyzed the PDX tissues to determine if histopathological feature changes occurred over in vivo passages. Tumor growth rate increased over time. This was determined by repeated measures linear regression statistical analysis in four different PDX models. A quadratic statistical model for the temporal effect predicted the log-relative tumor volume significantly better than a linear time effect model. We found a significant correlation between passage number and histopathological features of higher tumor grade. Our mathematical treatment of PDX data allows statistical analysis of tumor growth data over long periods of time, including over multiple passages. Non-linear tumor growth in our regression models revealed the exponential growth rate increased over time. The dynamic tumor growth rates correlated with quantifiable histopathological changes that related to passage number in multiple types of cancer.

  12. Small-sample inference for incomplete longitudinal data with truncation and censoring in tumor xenograft models.

    PubMed

    Tan, Ming; Fang, Hong-Bin; Tian, Guo-Liang; Houghton, Peter J

    2002-09-01

    In cancer drug development, demonstrating activity in xenograft models, where mice are grafted with human cancer cells, is an important step in bringing a promising compound to humans. A key outcome variable is the tumor volume measured in a given period of time for groups of mice given different doses of a single or combination anticancer regimen. However, a mouse may die before the end of a study or may be sacrificed when its tumor volume quadruples, and its tumor may be suppressed for some time and then grow back. Thus, incomplete repeated measurements arise. The incompleteness or missingness is also caused by drastic tumor shrinkage (<0.01 cm3) or random truncation. Because of the small sample sizes in these models, asymptotic inferences are usually not appropriate. We propose two parametric test procedures based on the EM algorithm and the Bayesian method to compare treatment effects among different groups while accounting for informative censoring. A real xenograft study on a new antitumor agent, temozolomide, combined with irinotecan is analyzed using the proposed methods.

  13. Targeting Tumor Vasculature Endothelial Cells and Tumor Cells for Immunotherapy of Human Melanoma in a Mouse Xenograft Model

    NASA Astrophysics Data System (ADS)

    Hu, Zhiwei; Sun, Ying; Garen, Alan

    1999-07-01

    An immunotherapy treatment for cancer that targets both the tumor vasculature and tumor cells has shown promising results in a severe combined immunodeficient mouse xenograft model of human melanoma. The treatment involves systemic delivery of an immunoconjugate molecule composed of a tumor-targeting domain conjugated to the Fc effector domain of human IgG1. The effector domain induces a cytolytic immune response against the targeted cells by natural killer cells and complement. Two types of targeting domains were used. One targeting domain is a human single-chain Fv molecule that binds to a chondroitin sulfate proteoglycan expressed on the surface of most human melanoma cells. Another targeting domain is factor VII (fVII), a zymogen that binds with high specificity and affinity to the transmembrane receptor tissue factor (TF) to initiate the blood coagulation cascade. TF is expressed by endothelial cells lining the tumor vasculature but not the normal vasculature, and also by many types of tumor cells including melanoma. Because the binding of a fVII immunoconjugate to TF might cause disseminated intravascular coagulation, the active site of fVII was mutated to inhibit coagulation without affecting the affinity for TF. The immunoconjugates were encoded as secreted molecules in a replication-defective adenovirus vector, which was injected into the tail vein of severe combined immunodeficient mice. The results demonstrate that a mutated fVII immunoconjugate, administered separately or together with a single-chain Fv immunoconjugate that binds to the tumor cells, can inhibit the growth or cause regression of an established human tumor xenograft. This procedure could be effective in treating a broad spectrum of human solid tumors that express TF on vascular endothelial cells and tumor cells.

  14. Dynamics of genomic clones in breast cancer patient xenografts at single cell resolution

    PubMed Central

    Eirew, Peter; Steif, Adi; Khattra, Jaswinder; Ha, Gavin; Yap, Damian; Farahani, Hossein; Gelmon, Karen; Chia, Stephen; Mar, Colin; Wan, Adrian; Laks, Emma; Biele, Justina; Shumansky, Karey; Rosner, Jamie; McPherson, Andrew; Nielsen, Cydney; Roth, Andrew J. L.; Lefebvre, Calvin; Bashashati, Ali; de Souza, Camila; Siu, Celia; Aniba, Radhouane; Brimhall, Jazmine; Oloumi, Arusha; Osako, Tomo; Bruna, Alejandra; Sandoval, Jose; Algara, Teresa; Greenwood, Wendy; Leung, Kaston; Cheng, Hongwei; Xue, Hui; Wang, Yuzhuo; Lin, Dong; Mungall, Andrew J.; Moore, Richard; Zhao, Yongjun; Lorette, Julie; Nguyen, Long; Huntsman, David; Eaves, Connie J.; Hansen, Carl; Marra, Marco A.; Caldas, Carlos; Shah, Sohrab P.; Aparicio, Samuel

    2016-01-01

    Human cancers, including breast cancers, are comprised of clones differing in mutation content. Clones evolve dynamically in space and time following principles of Darwinian evolution1,2, underpinning important emergent features such as drug resistance and metastasis3–7. Human breast cancer xenoengraftment is used as a means of capturing and studying tumour biology, and breast tumour xenografts are generally assumed to be reasonable models of the originating tumours8–10. However the consequences and reproducibility of engraftment and propagation on the genomic clonal architecture of tumours has not been systematically examined at single cell resolution. Here we show by both deep genome and single cell sequencing methods, the clonal dynamics of initial engraftment and subsequent serial propagation of primary and metastatic human breast cancers in immunodeficient mice. In all 15 cases examined, clonal selection on engraftment was observed in both primary and metastatic breast tumours, varying in degree from extreme selective engraftment of minor (<5% of starting population) clones to moderate, polyclonal engraftment. Furthermore, ongoing clonal dynamics during serial passaging is a feature of tumours experiencing modest initial selection. Through single cell sequencing, we show that major mutation clusters estimated from tumour population sequencing relate predictably to the most abundant clonal genotypes, even in clonally complex and rapidly evolving cases. Finally, we show that similar clonal expansion patterns can emerge in independent grafts of the same starting tumour population, indicating that genomic aberrations can be reproducible determinants of evolutionary trajectories. Our results show that measurement of genomically defined clonal population dynamics will be highly informative for functional studies utilizing patient-derived breast cancer xenoengraftment. PMID:25470049

  15. Intraductal delivery of adenoviruses targets pancreatic tumors in transgenic Ela-myc mice and orthotopic xenografts.

    PubMed

    José, Anabel; Sobrevals, Luciano; Miguel Camacho-Sánchez, Juan; Huch, Meritxell; Andreu, Núria; Ayuso, Eduard; Navarro, Pilar; Alemany, Ramon; Fillat, Cristina

    2013-01-01

    Gene-based anticancer therapies delivered by adenoviruses are limited by the poor viral distribution into the tumor. In the current work we have explored the feasibility of targeting pancreatic tumors through a loco-regional route. We have taken advantage of the ductal network in the pancreas to retrogradelly inject adenoviruses through the common bile duct in two different mouse models of pancreatic carcinogenesis: The transgenic Ela-myc mice that develop mixed neoplasms displaying both acinar-like and duct-like neoplastic cells affecting the whole pancreas; and mice bearing PANC-1 and BxPC-3 orthotopic xenografts that constitute a model of localized human neoplastic tumors. We studied tumor targeting and the anticancer effects of newly thymidine kinase-engineered adenoviruses both in vitro and in vivo, and conducted comparative studies between intraductal or intravenous administration. Our data indicate that the intraductal delivery of adenovirus efficiently targets pancreatic tumors in the two mouse models. The in vivo application of AduPARTKT plus ganciclovir (GCV) treatment induced tumor regression in Ela-myc mice. Moreover, the intraductal injection of ICOVIR15-TKT oncolytic adenoviruses significantly improved mean survival of mice bearing PANC-1 and BxPC-3 pancreatic xenografts from 30 to 52 days and from 20 to 68 days respectively (p less than 0.0001) when combined with GCV. Of notice, both AduPARTKT and ICOVIR15-TKT antitumoral responses were stronger by ductal viral application than intravenously, in line with the 38-fold increase in pancreas transduction observed upon ductal administration. In summary our data show that cytotoxic adenoviruses retrogradelly injected to the pancreas can be a feasible approach to treat localized pancreatic tumors.

  16. Intraductal Delivery of Adenoviruses Targets Pancreatic Tumors in Transgenic Ela-myc Mice and Orthotopic Xenografts

    PubMed Central

    José, Anabel; Sobrevals, Luciano; Camacho-Sánchez, Juan Miguel; Huch, Meritxell; Andreu, Núria; Ayuso, Eduard; Navarro, Pilar; Alemany, Ramon; Fillat, Cristina

    2013-01-01

    Gene-based anticancer therapies delivered by adenoviruses are limited by the poor viral distribution into the tumor. In the current work we have explored the feasibility of targeting pancreatic tumors through a loco-regional route. We have taken advantage of the ductal network in the pancreas to retrogradelly inject adenoviruses through the common bile duct in two different mouse models of pancreatic carcinogenesis: The transgenic Ela-myc mice that develop mixed neoplasms displaying both acinar-like and duct-like neoplastic cells affecting the whole pancreas; and mice bearing PANC-1 and BxPC-3 orthotopic xenografts that constitute a model of localized human neoplastic tumors. We studied tumor targeting and the anticancer effects of newly thymidine kinase-engineered adenoviruses both in vitro and in vivo, and conducted comparative studies between intraductal or intravenous administration. Our data indicate that the intraductal delivery of adenovirus efficiently targets pancreatic tumors in the two mouse models. The in vivo application of AduPARTKT plus ganciclovir (GCV) treatment induced tumor regression in Ela-myc mice. Moreover, the intraductal injection of ICOVIR15-TKT oncolytic adenoviruses significantly improved mean survival of mice bearing PANC-1 and BxPC-3 pancreatic xenografts from 30 to 52 days and from 20 to 68 days respectively (p<0.0001) when combined with GCV. Of notice, both AduPARTKT and ICOVIR15-TKT antitumoral responses were stronger by ductal viral application than intravenously, in line with the 38-fold increase in pancreas transduction observed upon ductal administration. In summary our data show that cytotoxic adenoviruses retrogradelly injected to the pancreas can be a feasible approach to treat localized pancreatic tumors. PMID:23328228

  17. Loquat (Eriobotrya japonica) leaf extract inhibits the growth of MDA-MB-231 tumors in nude mouse xenografts and invasion of MDA-MB-231 cells

    PubMed Central

    You, Mi-Kyoung; Kim, Min-Sook; Jeong, Kyu-Shik; Kim, Eun; Kim, Yong-Jae

    2016-01-01

    BACKGROUND/OBJECTIVES The present study was conducted to examine the inhibitory effect of loquat leaves on MDA-MB-231 cell proliferation and invasion. MATERIALS/METHODS Female athymic nude mice were given a subcutaneous (s.c.) inoculation of MDA-MB-231 cells and randomly grouped to receive a s.c. injection of either 500 mg/kg ethanol, water extract or vehicle five times a week. Tumor growth, mitotic rate and necrosis were examined. MDA-MB-231 cells were cultured with DMSO or with various concentrations of loquat water or ethanol extract. Proliferation, adhesion, migration, invasion and matrix metalloproteinase (MMP) activity were examined. RESULTS Tumor growth of xenograft nude mouse was significantly reduced by loquat extracts. The results of mitotic examination revealed that loquat extracts reduced tumor cell division. Both ethanol and water extracts significantly inhibited MDA-MB-231 cell proliferation. The protein expression of ErbB3 was significantly down-regulated by loquat leaf extracts. Loquat leaf extracts increased apoptosis of MDA-MB-231 cells following 24 hour incubation and the ethanol extract was more potent in inducing apoptosis than the water extract. Furthermore, loquat extracts inhibited adhesion, migration and invasion of MDA-MB-231 cells. MMP activity was significantly inhibited by loquat extracts. CONCLUSION Our results show that extracts of loquat inhibit the growth of tumor in MDA-MB-231 xenograft nude mice and the invasion of human breast cancer cells, indicating the inhibition of tumor cell proliferation and invasion. PMID:27087896

  18. Ovarian carcinoma patient derived xenografts reproduce their tumor of origin and preserve an oligoclonal structure

    PubMed Central

    Colombo, Pierre-Emmanuel; du Manoir, Stanislas; Orsetti, Béatrice; Bras-Gonçalves, Rui; Lambros, Mario B.; MacKay, Alan; Nguyen, Tien-Tuan; Boissiére, Florence; Pourquier, Didier; Bibeau, Frédéric; Reis-Filho, Jorge S.; Theillet, Charles

    2015-01-01

    Advanced Epithelial Ovarian Cancer (EOC) patients frequently relapse by 24 months and develop resistant disease. Research on EOC therapies relies on cancer cell lines established decades ago making Patient Derived Xenografts (PDX) attractive models, because they are faithful representations of the original tumor. We established 35 ovarian cancer PDXs resulting from the original graft of 77 EOC samples onto immuno-compromised mice. PDXs covered the diversity of EOC histotypes and graft take was correlated with early patient death. Fourteen PDXs were characterized at the genetic and histological levels. PDXs reproduced phenotypic features of the ovarian tumors of origin and conserved the principal characteristics of the original copy number change (CNC) profiles over several passages. However, CNC fluctuations in specific subregions comparing the original tumor and the PDXs indicated the oligoclonal nature of the original tumors. Detailed analysis by CGH, FISH and exome sequencing of one case, for which several tumor nodules were sampled and grafted, revealed that PDXs globally maintained an oligoclonal structure. No overgrowth of a particular subclone present in the original tumor was observed in the PDXs. This suggested that xenotransplantation of ovarian tumors and growth as PDX preserved at least in part the clonal diversity of the original tumor. We believe our data reinforce the potential of PDX as exquisite tools in pre-clinical assays. PMID:26334103

  19. Growth of LAPC4 prostate cancer xenograft tumor is insensitive to 5α-reductase inhibitor dutasteride.

    PubMed

    Garcia, Raquel Ramos; Masoodi, Khalid Z; Pascal, Laura E; Nelson, Joel B; Wang, Zhou

    2014-01-01

    Intermittent androgen deprivation therapy (IADT) allows prostate cancer patients a break from the side-effects of continuous androgen deprivation therapy (ADT). Although clinical studies suggest that IADT can significantly improve patient quality of life over ADT, it has not been demonstrated to improve patient survival. Recently, increased survival has been demonstrated when 5α-reductase inhibitors have been used during the off-cycle of IADT in animal xenograft tumor models LNCaP and LuCaP35. In the current study, the sensitivity of LAPC4 xenograft tumor regrowth to the 5ARI dutasteride was determined. Tumor regrowth and gene expression changes in LAPC4 tumors were compared to the previously determined response of LNCaP and LuCaP35 xenograft tumors to 5ARI treatment during the off-cycle of IADT, LAPC4, LNCaP and LuCaP35 tumors were sensitive to androgen manipulation. However, in contrast to LNCaP and LuCaP35, dutasteride treatment during testosterone-stimulated prostate regrowth did not affect tumor regrowth or the expression of androgen responsive genes. Tumor response to dutasteride during the off-cycle of IADT is variable in xenograft prostate tumor models. Future studies will be required to elucidate the mechanisms contributing to the dutasteride resistance observed in the LAPC4 model during the off-cycle. PMID:25374909

  20. Scanning Acoustic Microscopy-A Novel Noninvasive Method to Determine Tumor Interstitial Fluid Pressure in a Xenograft Tumor Model.

    PubMed

    Hofmann, Matthias; Pflanzer, Ralph; Habib, Anowarul; Shelke, Amit; Bereiter-Hahn, Jürgen; Bernd, August; Kaufmann, Roland; Sader, Robert; Kippenberger, Stefan

    2016-06-01

    Elevated tumor interstitial fluid pressure (TIFP) is a prominent feature of solid tumors and hampers the transmigration of therapeutic macromolecules, for example, large monoclonal antibodies, from tumor-supplying vessels into the tumor interstitium. TIFP values of up to 40 mm Hg have been measured in experimental solid tumors using two conventional invasive techniques: the wick-in-needle and the micropuncture technique. We propose a novel noninvasive method of determining TIFP via ultrasonic investigation with scanning acoustic microscopy at 30-MHz frequency. In our experimental setup, we observed for the impedance fluctuations in the outer tumor hull of A431-vulva carcinoma-derived tumor xenograft mice. The gain dependence of signal strength was quantified, and the relaxation of tissue was calibrated with simultaneous hydrostatic pressure measurements. Signal patterns from the acoustical images were translated into TIFP curves, and a putative saturation effect was found for tumor pressures larger than 3 mm Hg. This is the first noninvasive approach to determine TIFP values in tumors. This technique can provide a potentially promising noninvasive assessment of TIFP and, therefore, can be used to determine the TIFP before treatment approach as well to measure therapeutic efficacy highlighted by lowered TFP values. PMID:27267834

  1. Mass spectrometry images acylcarnitines, phosphatidylcholines, and sphingomyelin in MDA-MB-231 breast tumor models.

    PubMed

    Chughtai, Kamila; Jiang, Lu; Greenwood, Tiffany R; Glunde, Kristine; Heeren, Ron M A

    2013-02-01

    The lipid compositions of different breast tumor microenvironments are largely unknown due to limitations in lipid imaging techniques. Imaging lipid distributions would enhance our understanding of processes occurring inside growing tumors, such as cancer cell proliferation, invasion, and metastasis. Recent developments in MALDI mass spectrometry imaging (MSI) enable rapid and specific detection of lipids directly from thin tissue sections. In this study, we performed multimodal imaging of acylcarnitines, phosphatidylcholines (PC), a lysophosphatidylcholine (LPC), and a sphingomyelin (SM) from different microenvironments of breast tumor xenograft models, which carried tdTomato red fluorescent protein as a hypoxia-response element-driven reporter gene. The MSI molecular lipid images revealed spatially heterogeneous lipid distributions within tumor tissue. Four of the most-abundant lipid species, namely PC(16:0/16:0), PC(16:0/18:1), PC(18:1/18:1), and PC(18:0/18:1), were localized in viable tumor regions, whereas LPC(16:0/0:0) was detected in necrotic tumor regions. We identified a heterogeneous distribution of palmitoylcarnitine, stearoylcarnitine, PC(16:0/22:1), and SM(d18:1/16:0) sodium adduct, which colocalized primarily with hypoxic tumor regions. For the first time, we have applied a multimodal imaging approach that has combined optical imaging and MALDI-MSI with ion mobility separation to spatially localize and structurally identify acylcarnitines and a variety of lipid species present in breast tumor xenograft models. PMID:22930811

  2. Dual mTOR inhibitor MLN0128 suppresses Merkel cell carcinoma (MCC) xenograft tumor growth.

    PubMed

    Kannan, Aarthi; Lin, Zhenyu; Shao, Qiang; Zhao, Stephanie; Fang, Bin; Moreno, Mauricio A; Vural, Emre; Stack, Brendan C; Suen, James Y; Kannan, Krishnaswamy; Gao, Ling

    2016-02-01

    Merkel cell carcinoma (MCC) is an aggressive neuroendocrine skin cancer. Pathologic activation of PI3K/mTOR pathway and elevated expression of c-Myc are frequently detected in MCC. Yet, there is no targeted therapy presently available for this lethal disease. Recently, MLN0128, a second-generation dual TORC1/2 inhibitor is shown to have therapeutic efficacy in preclinical studies. MLN0128 is currently in clinical trials as a potential therapy for advanced cancers. Here we characterize the therapeutic efficacy of MLN0128 in the preclinical setting of MCC and delineate downstream targets of mTORC1/2 in MCC cellular systems. MLN0128 significantly attenuates xenograft MCC tumor growth independent of Merkel cell polyomavirus. Moreover, MLN0128 markedly diminishes MCC cell proliferation and induces apoptosis. Further investigations indicate that senescence does not contribute to MLN0128-mediated repression of xenograft MCC tumor growth. Finally, we also observe robust antitumor effects of MLN0128 when administered as a dual therapy with JQ1, a bromodomain protein BRD4 inhibitor. These results suggest dual blockade of PI3K/mTOR pathway and c-Myc axis is effective in the control of MCC tumor growth. Our results demonstrate that MLN0128 is potent as monotherapy or as a member of combination therapy with JQ1 for advanced MCC. PMID:26536665

  3. Tumor dynamics in response to antiangiogenic therapy with oral metronomic topotecan and pazopanib in neuroblastoma xenografts.

    PubMed

    Kumar, Sushil; Mokhtari, Reza Bayat; Oliveira, Indhira Dias; Islam, Syed; Toledo, Silvia Regina Caminada; Yeger, Herman; Baruchel, Sylvain

    2013-08-01

    Metronomic chemotherapy, combined with targeted antiangiogenic drugs, has demonstrated significant anticancer efficacy in various studies. Though, tumors do acquire resistance. Here, we have investigated the effect of prolonged therapy with oral metronomic topotecan and pazopanib on tumor behavior in a neuroblastoma mouse xenograft model. SK-N-BE(2) xenograft-bearing mice were treated with either of the following regimens (daily, orally): vehicle (control), 150 mg/kg pazopanib, 1.0 mg/kg topotecan, and combination of topotecan and pazopanib. Planned durations of treatment for each regimen were 28, 56, and 80 days or until the end point, after which animals were sacrificed. We found that only combination-treated animals survived until 80 days. Combination halted tumor growth for up to 50 days, after which gradual growth was observed. Unlike single agents, all three durations of combination significantly lowered microvessel densities compared to the control. However, the tumors treated with the combination for 56 and 80 days had higher pericyte coverage compared to control and those treated for 28 days. The proliferative and mitotic indices of combination-treated tumors were higher after 28 days of treatment and comparable after 56 days and 80 days of treatment compared to control. Immunohistochemistry, Western blot, and real-time polymerase chain reaction revealed that combination treatment increased the hypoxia and angiogenic expression. Immunohistochemistry for Glut-1 and hexokinase II expression revealed a metabolic switch toward elevated glycolysis in the combination-treated tumors. We conclude that prolonged combination therapy with metronomic topotecan and pazopanib demonstrates sustained antiangiogenic activity but also incurs resistance potentially mediated by elevated glycolysis.

  4. Upregulation of Mucin4 in ER-positive/HER2-Overexpressing Breast Cancer Xenografts with Acquired Resistance to Endocrine and HER2-Targeted Therapies

    PubMed Central

    Chen, Albert C.; Migliaccio, Ilenia; Rimawi, Mothaffar; Lopez-Tarruella, Sara; Creighton, Chad J.; Massarweh, Suleiman; Huang, Catherine; Wang, Yen-Chao; Batra, Surinder K.; Gutierrez, M. Carolina; Osborne, C. Kent; Schiff, Rachel

    2012-01-01

    Background We studied resistance to endocrine and HER2-targeted therapies using a xenograft model of estrogen receptor positive (ER)/HER2-overexpressing breast cancer. Here, we report a novel phenotype of drug resistance in this model. Methods MCF7/HER2-18 xenografts were treated with endocrine therapy alone or in combination with lapatinib and trastuzumab (LT) to inhibit HER2. Archival tumor tissues were stained with hematoxylin & eosin and mucicarmine. RNA extracted from tumors at early time points and late after acquired resistance were analyzed for mucin4 (MUC4) expression by microarray and quantitative reverse transcriptase-PCR. Protein expression of the MUC4, ER and HER2 signaling pathways was measured by immunohistochemistry and Western blotting. Results The combination of the potent anti-HER2 regimen LT with either tamoxifen (Tam+LT) or estrogen deprivation (ED+LT) can cause complete eradication of ER-positive/HER2-overexpressing tumors in mice. Tumors developing resistance to this combination, as well as those acquiring resistance to endocrine therapy alone, exhibited a distinct histological and molecular phenotype—a striking increase in mucin-filled vacuoles and upregulation of several mucins including MUC4. At the onset of resistance, MUC4 mRNA and protein were increased. These tumors also showed upregulation and reactivation of HER2 signaling, while losing ER protein and the estrogen-regulated gene, progesterone receptor. Conclusions Mucins are upregulated in a preclinical model of ER-positive/HER2-overexpressing breast cancer as resistance develops to the combination of endocrine and anti-HER2 therapy. These mucin-rich tumors reactivate the HER2 pathway and shift their molecular phenotype to become more ER-negative/HER2-positive. PMID:22644656

  5. Molecular characterization of patient-derived human pancreatic tumor xenograft models for preclinical and translational development of cancer therapeutics.

    PubMed

    Mattie, Mike; Christensen, Ashley; Chang, Mi Sook; Yeh, William; Said, Suzanne; Shostak, Yuriy; Capo, Linnette; Verlinsky, Alla; An, Zili; Joseph, Ingrid; Zhang, Yi; Kumar-Ganesan, Sathish; Morrison, Karen; Stover, David; Challita-Eid, Pia

    2013-10-01

    Preclinical evaluation of novel cancer agents requires models that accurately reflect the biology and molecular characteristics of human tumors. Molecular profiles of eight pancreatic ductal adenocarcinoma patient tumors were compared to corresponding passages of xenografts obtained by grafting tumor fragments into immunocompromised mice. Molecular characterization was performed by copy number analysis, gene expression and microRNA microarrays, mutation analysis, short tandem repeat (STR) profiling, and immunohistochemistry. Xenografts were found to be highly representative of their respective tumors, with a high degree of genetic stability observed by STR profiling and mutation analysis. Copy number variation (CNV) profiles of early and late xenograft passages were similar, with recurrent losses on chromosomes 1p, 3p, 4q, 6, 8p, 9, 10, 11q, 12p, 15q, 17, 18, 20p, and 21 and gains on 1q, 5p, 8q, 11q, 12q, 13q, 19q, and 20q. Pearson correlations of gene expression profiles of tumors and xenograft passages were above 0.88 for all models. Gene expression patterns between early and late passage xenografts were highly stable for each individual model. Changes observed in xenograft passages largely corresponded to human stromal compartment genes and inflammatory processes. While some differences exist between the primary tumors and corresponding xenografts, the molecular profiles remain stable after extensive passaging. Evidence for stability in molecular characteristics after several rounds of passaging lends confidence to clinical relevance and allows for expansion of models to generate the requisite number of animals required for cohorts used in drug screening and development studies.

  6. CXCL12-γ in primary tumors drives breast cancer metastasis.

    PubMed

    Ray, P; Stacer, A C; Fenner, J; Cavnar, S P; Meguiar, K; Brown, M; Luker, K E; Luker, G D

    2015-04-16

    Compelling evidence shows that chemokine C-X-C motif chemokine ligand 12 (CXCL12) drives metastasis in multiple malignancies. Similar to other key cytokines in cancer, CXCL12 exists as several isoforms with distinct biophysical properties that may alter signaling and functional outputs. However, effects of CXCL12 isoforms in cancer remain unknown. CXCL12-α, -β and -γ showed cell-type-specific differences in activating signaling through G protein-dependent pathways in cell-based assays, while CXCL12-γ had greatest effects on recruitment of the adapter protein β-arrestin 2. CXCL12-β and -γ also stimulated endothelial tube formation to a greater extent than CXCL12-α. To investigate the effects of CXCL12 isoforms on tumor growth and metastasis, we used a mouse xenograft model of metastatic human breast cancer combining CXCR4+ breast cancer cells and mammary fibroblasts secreting an isoform of CXCL12. Altough all CXCL12 isoforms produced comparable growth of mammary tumors, CXCL12-γ significantly increased metastasis to bone marrow and other sites. Breast cancer cells originating from tumors with CXCL12-γ fibroblasts upregulated RANKL (receptor activator of nuclear factor-κB ligand), contributing to bone marrow tropism of metastatic cancer cells. CXCL12-γ was expressed in metastatic tissues in mice, and we also detected CXCL12-γ in malignant pleural effusions from patients with breast cancer. In our mouse model, mammary fibroblasts disseminated to sites of breast cancer metastases, providing another mechanism to increase levels of CXCL12 in metastatic environments. These studies identify CXCL12-γ as a potent pro-metastatic molecule with important implications for cancer biology and effective therapeutic targeting of CXCL12 pathways.

  7. CXCL12-γ in Primary Tumors Drives Breast Cancer Metastasis

    PubMed Central

    Ray, Paramita; Stacer, Amanda C.; Fenner, Joseph; Cavnar, Stephen P.; Meguiar, Kaille; Brown, Martha; Luker, Kathryn E.; Luker, Gary D.

    2014-01-01

    Compelling evidence shows that chemokine CXCL12 drives metastasis in multiple malignancies. Similar to other key cytokines in cancer, CXCL12 exists as several isoforms with distinct biophysical properties that may alter signaling and functional outputs. However, effects of CXCL12 isoforms in cancer remain unknown. CXCL12-α, β, and γ showed cell-type specific differences in activating signaling through G protein-dependent pathways in cell-based assays, while CXCL12-γ had greatest effects on recruitment of the adapter protein β-arrestin 2. CXCL12-β and γ also stimulated endothelial tube formation to a greater extent than CXCL12-α. To investigate effects of CXCL12 isoforms on tumor growth and metastasis, we used a mouse xenograft model of metastatic human breast cancer combining CXCR4+ breast cancer cells and mammary fibroblasts secreting an isoform of CXCL12. While all CXCL12 isoforms produced comparable growth of mammary tumors, CXCL12-γ significantly increased metastasis to bone marrow and other sites. Breast cancer cells originating from tumors with CXCL12-γ fibroblasts upregulated RANKL, contributing to bone marrow tropism of metastatic cancer cells. CXCL12-γ was expressed in metastatic tissues in mice, and we also detected CXCL12-γ in malignant pleural effusions from patients with breast cancer. In our mouse model, mammary fibroblasts disseminated to sites of breast cancer metastases, providing another mechanism to increase levels of CXCL12 in metastatic environments. These studies identify CXCL12-γ as a potent pro-metastatic molecule with important implications for cancer biology and effective therapeutic targeting of CXCL12 pathways. PMID:24909174

  8. HDAC inhibition does not induce estrogen receptor in human triple-negative breast cancer cell lines and patient-derived xenografts.

    PubMed

    de Cremoux, Patricia; Dalvai, Mathieu; N'Doye, Olivia; Moutahir, Fatima; Rolland, Gaëlle; Chouchane-Mlik, Olfa; Assayag, Franck; Lehmann-Che, Jacqueline; Kraus-Berthie, Laurence; Nicolas, André; Lockhart, Brian Paul; Marangoni, Elisabetta; de Thé, Hugues; Depil, Stéphane; Bystricky, Kerstin; Decaudin, Didier

    2015-01-01

    Several publications have suggested that histone deacetylase inhibitors (HDACis) could reverse the repression of estrogen receptor alpha (ERα) in triple-negative breast cancer (TNBC) cell lines, leading to the induction of a functional protein. Using different HDACis, vorinostat, panobinostat, and abexinostat, we therefore investigated this hypothesis in various human TNBC cell lines and patient-derived xenografts (PDXs). We used three human TNBC cell lines and three PDXs. We analyzed the in vitro toxicity of the compounds, their effects on the hormone receptors and hormone-related genes and protein expression both in vitro and in vivo models. We then explored intra-tumor histone H3 acetylation under abexinostat in xenograft models. Despite major cytotoxicity of all tested HDAC inhibitors and repression of deactylation-dependent CCND1 gene, neither ERα nor ERβ, ESR1 or ESR2 genes respectively, were re-expressed in vitro. In vivo, after administration of abexinostat for three consecutive days, we did not observe any induction of ESR1 or ESR1-related genes and ERα protein expression by RT-qPCR and immunohistochemical methods in PDXs. This observation was concomitant to the fact that in vivo administration of abexinostat increased intra-tumor histone H3 acetylation. These observations do not allow us to confirm previous studies which suggested that HDACis are able to convert ER-negative (ER-) tumors to ER-positive (ER+) tumors, and that a combination of HDAC inhibitors and hormone therapy could be proposed in the management of TNBC patients.

  9. Potentiation of platinum antitumor effects in human lung tumor xenografts by the angiogenesis inhibitor squalamine: effects on tumor neovascularization.

    PubMed

    Schiller, J H; Bittner, G

    1999-12-01

    Squalamine is a novel anti-angiogenic aminosterol that is postulated to inhibit neovascularization by selectively inhibiting the sodium-hydrogen antiporter exchanger. To determine how to most effectively use this agent in patients with cancer, we examined the antitumor effects of squalamine with or without cytotoxic agents in human lung cancer xenografts and correlated these observations with the degree of tumor neovascularization. No direct cytotoxic effects of squalamine against tumor cells were observed in vitro with or without cisplatin. Squalamine was effective in inhibiting the establishment of H460 human tumors in BALBc nude mice but was ineffective in inhibiting the growth of H460, CALU-6, or NL20T-A human tumor xenografts when administered i.p. to mice bearing established tumors. However, when combined with cisplatin or carboplatin, squalamine increased tumor growth delay by > or =1.5-fold in the three human lung carcinoma cell lines compared with cisplatin or carboplatin alone. No enhancement of antitumor activity was observed when squalamine was combined with paclitaxel, vinorelbine, gemcitabine, or docetaxel. Repeated cycles of squalamine plus cisplatin administration delayed H460 tumor growth >8.6-fold. Squalamine plus cisplatin reduced CD31 vessel formation by 25% compared with controls, squalamine alone, or cisplatin alone; however, no inhibition in CD31 vessel formation was observed when squalamine was combined with vinorelbine. These data demonstrate that the combination of squalamine and a platinum analog has significant preclinical antitumor activity against human lung cancer that is related to the anti-angiogenic effects of squalamine. PMID:10632372

  10. H2 relaxin overexpression increases in vivo prostate xenograft tumor growth and angiogenesis.

    PubMed

    Silvertown, Josh D; Ng, Jonathan; Sato, Takeya; Summerlee, Alastair J; Medin, Jeffrey A

    2006-01-01

    Our study reports a preliminary investigation into the role of human H2 relaxin in prostate tumor growth. A luciferase-expressing human prostate cancer cell line, PC-3, was generated and termed PC3-Luc. PC3-Luc cells were transduced with lentiviral vectors engineering the expression of either enhanced green fluorescent protein (eGFP) or both H2 relaxin and eGFP in a bicistronic format. These transduced cells were termed PC3-Luc-eGFP and PC3-Luc-H2/eGFP, respectively. To gauge effects, PC3-Luc-H2/eGFP and PC3-Luc-eGFP cells were injected into NOD/SCID mice and monitored over 6 weeks. PC-3 tumor xenografts overexpressing H2 relaxin exhibited greater tumor volumes compared to control tumors. Circulating H2 relaxin levels in sera increased with the relative size of the tumor, with moderately elevated H2 relaxin levels in mice bearing PC3-Luc-H2/eGFP tumors compared to PC3-Luc-eGFP tumors. Zymographic analysis demonstrated that proMMP-9 enzyme activity was significantly downregulated in H2 relaxin-overexpressing tumors. An advanced angiogenic phenotype was observed in H2 relaxin-overexpressing tumors indicated by greater intratumoral vascularization by immunohistochemical staining of endothelial cells with anti-mouse CD31. Moreover, PC3-Luc-H2/eGFP tumors exhibited increased VEGF transcript by reverse-transcription PCR, compared to basal levels in control animals. Taken together, our study provides the first account of a potential role of H2 relaxin in prostate tumor development.

  11. Development of a Patient-Derived Xenograft Model Using Brain Tumor Stem Cell Systems to Study Cancer.

    PubMed

    Chokshi, Chirayu; Dhillon, Manvir; McFarlane, Nicole; Venugopal, Chitra; Singh, Sheila K

    2016-01-01

    Patient-derived xenograft (PDX) models provide an excellent platform to understand cancer initiation and development in vivo. In the context of brain tumor initiating cells (BTICs), PDX models allow for characterization of tumor formation, growth, and recurrence, in a clinically relevant in vivo system. Here, we detail procedures to harvest, culture, characterize, and orthotopically inject human BTICs derived from patient samples.

  12. Patient-derived xenograft models for pancreatic adenocarcinoma demonstrate retention of tumor morphology through incorporation of murine stromal elements.

    PubMed

    Delitto, Daniel; Pham, Kien; Vlada, Adrian C; Sarosi, George A; Thomas, Ryan M; Behrns, Kevin E; Liu, Chen; Hughes, Steven J; Wallet, Shannon M; Trevino, Jose G

    2015-05-01

    Direct implantation of viable surgical specimens provides a representative preclinical platform in pancreatic adenocarcinoma. Patient-derived xenografts consistently demonstrate retained tumor morphology and genetic stability. However, the evolution of the tumor microenvironment over time remains poorly characterized in these models. This work specifically addresses the recruitment and incorporation of murine stromal elements into expanding patient-derived pancreatic adenocarcinoma xenografts, establishing the integration of murine cells into networks of invading cancer cells. In addition, we provide methods and observations in the establishment and maintenance of a patient-derived pancreatic adenocarcinoma xenograft model. A total of 25 histologically confirmed pancreatic adenocarcinoma specimens were implanted subcutaneously into nonobese diabetic severe combined immunodeficiency mice. Patient demographics, staging, pathological analysis, and outcomes were analyzed. After successful engraftment of tumors, histological and immunofluorescence analyses were performed on explanted tumors. Pancreatic adenocarcinoma specimens were successfully engrafted in 15 (60%) of 25 attempts. Successful engraftment does not appear to correlate with clinicopathologic factors or patient survival. Tumor morphology is conserved through multiple passages, and tumors retain metastatic potential. Interestingly, despite morphological similarity between passages, human stromal elements do not appear to expand with invading cancer cells. Rather, desmoplastic murine stroma dominates the xenograft microenvironment after the initial implantation. Recruitment of stromal elements in this manner to support and maintain tumor growth represents a novel avenue for investigation into tumor-stromal interactions.

  13. Evaluation of 6-([18F] fluoroacetamido)-1-hexanoic-anilide (18F-FAHA) as imaging probe in tumor xenograft mice model

    NASA Astrophysics Data System (ADS)

    Li, Fiona; Cho, Sung Ju; Yu, Lihai; Hudson, Robert H. E.; Luyt, Leonard G.; Pin, Christopher L.; Kovacs, Michael S.; Koropatnick, James; Lee, Ting-Yim

    2016-03-01

    Alteration in genetic expression is as important as gene mutation in cancer development and proliferation. Epigenetic changes affect gene expression without altering the DNA sequence. Histone deacetylase (HDAC), an enzyme facilitating histone remodelling, can lead to silencing of tumor suppressor genes making HDAC inhibitors viable anticancer drugs against tumors with increased activity of the enzyme. In this study we evaluated 18F-fluroacetamido-1-hexanoicanilide (18F-FAHA), an artificial HDAC substrate, as imaging probe of HDAC activity of human tumor xenografts in immunocompromised host mice. Human breast and melanoma cell lines, MDA-MB-468 and MDA-MB-435 respectively, known to overexpress HDAC activity were xenografted into immunocompromised mice and HDAC activity was imaged using 18F-FAHA. The melanoma group was treated with saline, SAHA (suberoylanilide hydroxamic acid, an approved anticancer HDAC inhibitor) in DMSO, or DMSO as positive control. Tracer kinetic modelling and SUV were used to estimate HDAC activity from dynamic PET data. Both breast tumor and melanoma group showed great variability in binding rate constant (BRC) of 18F-FAHA suggesting highly variable inter- and intra-tumoral HDAC activity. For the SAHA treated melanoma group, HDAC activity, as monitored by BRC of 18F-FAHA, decreased more than the two (positive and negative) control groups but not tumor growth. Our preliminary study showed that noninvasive PET imaging with 18F-FAHA has the potential to identify patients for whom treatment with HDAC inhibitors are appropriate, to assess the effectiveness of that treatment as an early marker of target reduction, and also eliminate the need for invasive tissue biopsy to individualize treatment.

  14. Whole Exome Sequencing of Rapid Autopsy Tumors and Xenograft Models Reveals Possible Driver Mutations Underlying Tumor Progression.

    PubMed

    Xie, Tao; Musteanu, Monica; Lopez-Casas, Pedro P; Shields, David J; Olson, Peter; Rejto, Paul A; Hidalgo, Manuel

    2015-01-01

    Pancreatic Ductal Adenocarcinoma (PDAC) is a highly lethal malignancy due to its propensity to invade and rapidly metastasize and remains very difficult to manage clinically. One major hindrance towards a better understanding of PDAC is the lack of molecular data sets and models representative of end stage disease. Moreover, it remains unclear how molecularly similar patient-derived xenograft (PDX) models are to the primary tumor from which they were derived. To identify potential molecular drivers in metastatic pancreatic cancer progression, we obtained matched primary tumor, metastases and normal (peripheral blood) samples under a rapid autopsy program and performed whole exome sequencing (WES) on tumor as well as normal samples. PDX models were also generated, sequenced and compared to tumors. Across the matched data sets generated for three patients, there were on average approximately 160 single-nucleotide mutations in each sample. The majority of mutations in each patient were shared among the primary and metastatic samples and, importantly, were largely retained in the xenograft models. Based on the mutation prevalence in the primary and metastatic sites, we proposed possible clonal evolution patterns marked by functional mutations affecting cancer genes such as KRAS, TP53 and SMAD4 that may play an important role in tumor initiation, progression and metastasis. These results add to our understanding of pancreatic tumor biology, and demonstrate that PDX models derived from advanced or end-stage likely closely approximate the genetics of the disease in the clinic and thus represent a biologically and clinically relevant pre-clinical platform that may enable the development of effective targeted therapies for PDAC.

  15. Imaging Tumor Variation in Response to Photodynamic Therapy in Pancreatic Cancer Xenograft Models

    SciTech Connect

    Samkoe, Kimberley S.; Chen, Alina; Rizvi, Imran; O'Hara, Julia A.; Hoopes, P. Jack; Pereira, Stephen P.; Hasan, Tayyaba; Pogue, Brian W.

    2010-01-15

    Purpose: A treatment monitoring study investigated the differential effects of orthotopic pancreatic cancer models in response to interstitial photodynamic therapy (PDT), and the validity of using magnetic resonance imaging as a surrogate measure of response was assessed. Methods and Materials: Different orthotopic pancreatic cancer xenograft models (AsPC-1 and Panc-1) were used to represent the range of pathophysiology observed in human beings. Identical dose escalation studies (10, 20, and 40J/cm) using interstitial verteporfin PDT were performed, and magnetic resonance imaging with T2-weighted and T1-weighted contrast were used to monitor the total tumor volume and the vascular perfusion volume, respectively. Results: There was a significant amount of necrosis in the slower-growing Panc-1 tumor using high light dose, although complete necrosis was not observed. Lower doses were required for the same level of tumor kill in the faster-growing AsPC-1 cell line. Conclusions: The tumor growth rate and vascular pattern of the tumor affect the optimal PDT treatment regimen, with faster-growing tumors being relatively easier to treat. This highlights the fact that therapy in human beings shows a heterogeneous range of outcomes, and suggests a need for careful individualized treatment outcomes assessment in clinical work.

  16. A Biobank of Breast Cancer Explants with Preserved Intra-tumor Heterogeneity to Screen Anticancer Compounds.

    PubMed

    Bruna, Alejandra; Rueda, Oscar M; Greenwood, Wendy; Batra, Ankita Sati; Callari, Maurizio; Batra, Rajbir Nath; Pogrebniak, Katherine; Sandoval, Jose; Cassidy, John W; Tufegdzic-Vidakovic, Ana; Sammut, Stephen-John; Jones, Linda; Provenzano, Elena; Baird, Richard; Eirew, Peter; Hadfield, James; Eldridge, Matthew; McLaren-Douglas, Anne; Barthorpe, Andrew; Lightfoot, Howard; O'Connor, Mark J; Gray, Joe; Cortes, Javier; Baselga, Jose; Marangoni, Elisabetta; Welm, Alana L; Aparicio, Samuel; Serra, Violeta; Garnett, Mathew J; Caldas, Carlos

    2016-09-22

    The inter- and intra-tumor heterogeneity of breast cancer needs to be adequately captured in pre-clinical models. We have created a large collection of breast cancer patient-derived tumor xenografts (PDTXs), in which the morphological and molecular characteristics of the originating tumor are preserved through passaging in the mouse. An integrated platform combining in vivo maintenance of these PDTXs along with short-term cultures of PDTX-derived tumor cells (PDTCs) was optimized. Remarkably, the intra-tumor genomic clonal architecture present in the originating breast cancers was mostly preserved upon serial passaging in xenografts and in short-term cultured PDTCs. We assessed drug responses in PDTCs on a high-throughput platform and validated several ex vivo responses in vivo. The biobank represents a powerful resource for pre-clinical breast cancer pharmacogenomic studies (http://caldaslab.cruk.cam.ac.uk/bcape), including identification of biomarkers of response or resistance. PMID:27641504

  17. CysLT(1)R antagonists inhibit tumor growth in a xenograft model of colon cancer.

    PubMed

    Savari, Sayeh; Liu, Minghui; Zhang, Yuan; Sime, Wondossen; Sjölander, Anita

    2013-01-01

    The expression of the inflammatory G-protein coupled receptor CysLT1R has been shown to be upregulated in colon cancer patients and associated with poor prognosis. The present study investigated the correlation between CysLT1R and colon cancer development in vivo using CysLT1R antagonists (ZM198,615 or Montelukast) and the nude mouse xenograft model. Two drug administration regimens were established. The first regimen was established to investigate the importance of CysLT1R in tumor initiation. Nude mice were inoculated with 50 µM CysLT1R antagonist-pretreated HCT-116 colon cancer cells and received continued treatment (5 mg/kg/day, intraperitoneally). The second regimen aimed to address the role of CysLT1R in tumor progression. Nude mice were inoculated with non-pretreated HCT-116 cells and did not receive CysLT1R antagonist treatment until recordable tumor appearance. Both regimens resulted in significantly reduced tumor size, attributed to changes in proliferation and apoptosis as determined by reduced Ki-67 levels and increased levels of p21(WAF/Cip1) (P<0.01), cleaved caspase 3, and the caspase-cleaved product of cytokeratin 18. Decreased levels of VEGF (P<0.01) and reduced vessel size (P<0.05) were also observed, the latter only in the ZM198,615-pretreatment group. Furthermore, we performed a series of in vitro studies using the colon cancer cell line HCT-116 and CysLT1R antagonists. In addition to significant reductions in cell proliferation, adhesion and colony formation, we observed induction of cell cycle arrest and apoptosis in a dose-dependent manner. The ability of Montelukast to inhibit growth of human colon cancer xenograft was further validated by using two additional colon cancer cell lines, SW-480 and HT-29. Our results demonstrate that CysLT1R antagonists inhibit growth of colon cancer xenografts primarily by reducing proliferation and inducing apoptosis of the tumor cells.

  18. The future of patient-derived tumor xenografts in cancer treatment.

    PubMed

    Sia, Daniela; Moeini, Agrin; Labgaa, Ismail; Villanueva, Augusto

    2015-01-01

    Over the last decades, major technological advancements have led to a better understanding of the molecular drivers of human malignancies. Nonetheless, this progress only marginally impacted the cancer therapeutic approach, probably due to the limited ability of experimental models to predict efficacy in clinical trials. In an effort to offset this limitation, there has been an increasing interest in the development of patient-derived xenograft (PDX) models where human tumors are xenotransplanted into immunocompromised mice. Considering their high resemblance to human tumors and their stability, PDX models are becoming the preferred translational tools in preclinical studies. Nonetheless, several limitations hamper a wider use of PDX models and tarnish the concept that they might represent the missing piece in the personalized medicine puzzle.

  19. Desferrioxamine enhances AIDS-associated Kaposi's sarcoma tumor development in a xenograft model.

    PubMed

    Simonart, Thierry; Boelaert, Johan R; Andrei, Graciela; van den Oord, Joost J; Degraef, Chantale; Hermans, Philippe; Noel, Jean-Christophe; Van Vooren, Jean-Paul; Heenen, Michel; De Clercq, Erik; Snoeck, Robert

    2002-07-10

    Iron is suspected to be involved in the induction and/or progression of various human tumors. More particularly, we have previously shown that iron may be involved in the pathogenesis of Kaposi's sarcoma (KS). We have also shown that the iron chelator desferrioxamine (DFO) has a potent anti-KS activity in vitro, suggesting that it may represent a potential therapeutic approach for the treatment of KS. The present study was designed to investigate the effect of DFO on the growth of human KS xenografts in immunodeficient mice. Unexpectedly, we found that mice treated with DFO (400 mg/kg, 3 times weekly) (n = 30) exhibited a marked enhancement of tumor growth compared with control mice (n = 33) (230 +/- 134 mm(2) versus 143 +/- 70 mm p < 0.01). No enhancement of tumor growth was seen in mice treated with iron-saturated DFO. At least 2 findings suggest that this paradoxic pro-KS activity occurred independently of mice iron stores. First, treatment with DFO had only a marginal effect on ferritin and hematocrit levels. Second, induction of effective iron depletion by an iron-poor diet (6.7 mg iron/kg diet) (n = 23) did not have a deleterious effect on the growth of the KS xenografts. The lesions obtained from the DFO-treated animals exhibited a significantly decreased apoptotic index (p < 0.05), indicating that some antiapoptotic mechanism induced by DFO may be operating in vivo to favour tumor growth. In conclusion, our data show that DFO has a stimulatory effect on KS growth in immunodeficient mice, suggesting that this drug is not indicated in patients with KS.

  20. A Giant Phyllodes Tumor of the Breast

    PubMed Central

    Schillebeeckx, Charlotte; Verbeeck, Guy; Daenen, Geert; Servaes, Dirk; Bronckaers, Marc

    2016-01-01

    Phyllodes tumors of the breast are rare, accounting for less than 1% of the breast tumors. They are mostly seen in women between 45 and 49 years old. These are fast growing tumors with a large spectrum of behavior (from benign to metastatic) and can resemble fibroadenomas. Correct diagnosis mostly through core needle biopsy is important to decide whether a surgical excision has to be done. Here we report a case of a 57-year-old woman with a fast growing, ulcerated tumor in the left breast. Core needle biopsy suggested a malignant phyllodes tumor with heterologous liposarcomatous differentiation. Treatment with total mastectomy and adjuvant radiotherapy followed. Primary treatment is always surgery, whether radiotherapy or chemotherapy has to follow remains uncertain. There is a high-recurrence rate, especially when the surgical margins are narrow. PMID:27746880

  1. New mouse xenograft model modulated by tumor-associated fibroblasts for human multi-drug resistance in cancer

    PubMed Central

    MA, YAN; LIN, ZHIQIANG; FALLON, JOHN K.; ZHAO, QIANG; LIU, DAN; WANG, YONGJUN; LIU, FENG

    2015-01-01

    We developed an MDR tumor model that is modulated by tumor-associated fibroblasts. Studies on proliferation of tumor cell lines including paclitaxel-sensitive and resistant cell lines were performed. The expressions of P-gp and α-smooth muscle actin (α-SMA) antigen were evaluated by immunohistochemistry and western blot analysis. Quantitative P-gp analyses of different cell lines were accomplished by nanoUPLC-MS/MS. Tumor cell colony formation assay and established xenograft model was used to investigate the relationship between P-gp expression, fibroblast levels and tumorigenesis. The mouse xenograft model was developed after co-inoculation with MDR tumor cells and NIH/3T3 fibroblast cells. There was no correlation between tumorigenesis in vivo and the growth rate of cells in vitro. The proliferation among different cell lines had no significant differences, but the P-gp expression and tumor growth in the xenograft model were fairly different. P-gp determination and α-SMA immunofluorescence staining clarified the relationship between P-gp expression, fibroblast levels and tumorigenesis. It was more difficult for tumor cells with higher P-gp levels to recruit fibroblasts in vivo, resulting in lower tumorigenesis due to the lack of structural and chemical support during tumor progression. In the established paclitaxel-resistant mouse xenograft model, no obvious antitumor effect was observed after Taxol treatment, but a significant decrease in tumor size for the group treated with gemcitabine sensitive to the model. The results show that the added fibroblasts do not disturb the applicability of the model in MDR. Therefore, this mouse xenograft MDR model could serve as an effective tool for MDR research. PMID:26352907

  2. Genomic landscapes of breast fibroepithelial tumors.

    PubMed

    Tan, Jing; Ong, Choon Kiat; Lim, Weng Khong; Ng, Cedric Chuan Young; Thike, Aye Aye; Ng, Ley Moy; Rajasegaran, Vikneswari; Myint, Swe Swe; Nagarajan, Sanjanaa; Thangaraju, Saranya; Dey, Sucharita; Nasir, Nur Diyana Md; Wijaya, Giovani Claresta; Lim, Jing Quan; Huang, Dachuan; Li, Zhimei; Wong, Bernice Huimin; Chan, Jason Yong Sheng; McPherson, John R; Cutcutache, Ioana; Poore, Gregory; Tay, Su Ting; Tan, Wai Jin; Putti, Thomas Choudary; Ahmad, Buhari Shaik; Iau, Philip; Chan, Ching Wan; Tang, Anthony P H; Yong, Wei Sean; Madhukumar, Preetha; Ho, Gay Hui; Tan, Veronique Kiak Mien; Wong, Chow Yin; Hartman, Mikael; Ong, Kong Wee; Tan, Benita K T; Rozen, Steven G; Tan, Patrick; Tan, Puay Hoon; Teh, Bin Tean

    2015-11-01

    Breast fibroepithelial tumors comprise a heterogeneous spectrum of pathological entities, from benign fibroadenomas to malignant phyllodes tumors. Although MED12 mutations have been frequently found in fibroadenomas and phyllodes tumors, the landscapes of genetic alterations across the fibroepithelial tumor spectrum remain unclear. Here, by performing exome sequencing of 22 phyllodes tumors followed by targeted sequencing of 100 breast fibroepithelial tumors, we observed three distinct somatic mutation patterns. First, we frequently observed MED12 and RARA mutations in both fibroadenomas and phyllodes tumors, emphasizing the importance of these mutations in fibroepithelial tumorigenesis. Second, phyllodes tumors exhibited mutations in FLNA, SETD2 and KMT2D, suggesting a role in driving phyllodes tumor development. Third, borderline and malignant phyllodes tumors harbored additional mutations in cancer-associated genes. RARA mutations exhibited clustering in the portion of the gene encoding the ligand-binding domain, functionally suppressed RARA-mediated transcriptional activation and enhanced RARA interactions with transcriptional co-repressors. This study provides insights into the molecular pathogenesis of breast fibroepithelial tumors, with potential clinical implications. PMID:26437033

  3. Targeting mutant p53 protein and the tumor vasculature: an effective combination therapy for advanced breast tumors

    PubMed Central

    Liang, Yayun; Besch-Williford, Cynthia; Benakanakere, Indira; Thorpe, Philip E.

    2010-01-01

    Breast cancer progression depends upon the elaboration of a vasculature sufficient for the nourishment of the developing tumor. Breast tumor cells frequently contain a mutant form of p53 (mtp53), a protein which promotes their survival. The aim of this study was to determine whether combination therapy targeting mtp53 and anionic phospholipids (AP) on tumor blood vessels might be an effective therapeutic strategy for suppressing advanced breast cancer. We examined the therapeutic effects, singly, or in combination, of p53 reactivation and induction of massive apoptosis (PRIMA-1), which reactivates mtp53 and induces tumor cell apoptosis, and 2aG4, a monoclonal antibody that disrupts tumor vasculature by targeting AP on the surface of tumor endothelial cells and causes antibody-dependent destruction of tumor blood vessels, leading to ischemia and tumor cell death. Xenografts from two tumor cell lines containing mtp53, BT-474 and HCC-1428, were grown in nude mice to provide models of advanced breast tumors. After treatment with PRIMA-1 and/or 2aG4, regressing tumors were analyzed for vascular endothelial growth factor (VEGF) expression, blood vessel loss, and apoptotic markers. Individual drug treatment led to partial suppression of breast cancer progression. In contrast, combined treatment with PRIMA-1 and 2aG4 was extremely effective in suppressing tumor growth in both models and completely eradicated approximately 30% of tumors in the BT-474 model. Importantly, no toxic effects were observed in any treatment group. Mechanistic studies determined that PRIMA-1 reactivated mtp53 and also exposed AP on the surface of tumor cells as determined by enhanced 2aG4 binding. Combination treatment led to significant induction of tumor cell apoptosis, loss of VEGF expression, as well as destruction of tumor blood vessels. Furthermore, combination treatment severely disrupted tumor blood vessel perfusion in both tumor models. The observed in vitro PRIMA-1-induced exposure of

  4. KIT Signaling Promotes Growth of Colon Xenograft Tumors in Mice and is Upregulated in a Subset of Human Colon Cancers

    PubMed Central

    Chen, Evan C.; Karl, Taylor A.; Kalisky, Tomer; Gupta, Santosh K.; O’Brien, Catherine A.; Longacre, Teri A.; van de Rijn, Matt; Quake, Stephen R.; Clarke, Michael F.; Rothenberg, Michael E.

    2015-01-01

    Background & Aims Receptor tyrosine kinase (RTK) inhibitors have advanced colon cancer treatment. We investigated the role of the RTK KIT in development of human colon cancer. Methods An array of 137 patient-derived colon tumors and their associated xenografts were analyzed by immunohistochemistry to measure levels of KIT and its ligand KITLG. KIT and/or KITLG was stably knocked down by expression of small hairpin RNAs from lentiviral vectors in DLD1, HT29, LS174T, and COLO320 colon cancer cell lines, and in UM-COLON#8 and POP77 xenografts; cells transduced with only vector were used as controls. Cells were analyzed by real-time quantitative reverse transcription PCR, single-cell gene expression analysis, flow cytometry, and immunohistochemical, immunoblot, and functional assays. Xenograft tumors were grown from control and KIT-knockdown DLD1 and UM-COLON#8 cells in immunocompromised mice and compared. Some mice were given the RTK inhibitor imatinib following injection of cancer cells; tumor growth was measured based on bioluminescence. We assessed tumorigenicity using limiting dilution analysis. Results KIT and KITLG were expressed heterogeneously by a subset of human colon tumors. Knockdown of KIT decreased proliferation of colon cancer cell lines and growth of xenograft tumors in mice, compared with control cells. KIT knockdown cells had increased expression of enterocyte markers, decreased expression of cycling genes, and, unexpectedly, increased expression of LGR5-associated genes. No activating mutations in KIT were detected in DLD1, POP77, or UM-COLON#8 cell lines. However, KITLG-knockdown DLD1 cells formed smaller xenograft tumors than control cells. Gene expression analysis of single CD44+ cells indicated that KIT may promote growth via KITLG autocrine and/or paracrine signaling. Imatinib inhibited growth of KIT+ colon cancer organoids in culture and growth of xenograft tumors in mice. Cancer cells with endogenous KIT expression were more tumorigenic in

  5. Patient-derived xenograft mouse models of pseudomyxoma peritonei recapitulate the human inflammatory tumor microenvironment.

    PubMed

    Kuracha, Murali R; Thomas, Peter; Loggie, Brian W; Govindarajan, Venkatesh

    2016-04-01

    Pseudomyxoma peritonei (PMP) is a neoplastic syndrome characterized by peritoneal tumor implants with copious mucinous ascites. The standard of care for PMP patients is aggressive cytoreductive surgery performed in conjunction with heated intraperitoneal chemotherapy. Not all patients are candidates for these procedures and a majority of the patients will have recurrent disease. In addition to secreted mucin, inflammation and fibrosis are central to PMP pathogenesis but the molecular processes that regulate tumor-stromal interactions within the peritoneal tumor microenvironment remain largely unknown. This knowledge is critical not only to elucidate PMP pathobiology but also to identify novel targets for therapy. Here, we report the generation of patient-derived xenograft (PDX) mouse models for PMP and assess the ability of these models to replicate the inflammatory peritoneal microenvironment of human PMP patients. PDX mouse models of low- and high-grade PMP were generated and were of a similar histopathology as human PMP. Cytokines previously shown to be elevated in human PMP were also elevated in PDX ascites. Significant differences in IL-6 and IL-8/KC/MIP2 were seen between human and PDX ascites. Interestingly, these cytokines were mostly secreted by mouse-derived, tumor-associated stromal cells rather than by human-derived PMP tumor cells. Our data suggest that the PMP PDX mouse models are especially suited to the study of tumor-stromal interactions that regulate the peritoneal inflammatory environment in PMP as the tumor and stromal cells in these mouse models are of human and murine origins, respectively. These mouse models are therefore, likely to be useful in vivo surrogates for testing and developing novel therapeutic treatment interventions for PMP.

  6. Transforming growth factor-beta can suppress tumorigenesis through effects on the putative cancer stem or early progenitor cell and committed progeny in a breast cancer xenograft model.

    PubMed

    Tang, Binwu; Yoo, Naomi; Vu, Mary; Mamura, Mizuko; Nam, Jeong-Seok; Ooshima, Akira; Du, Zhijun; Desprez, Pierre-Yves; Anver, Miriam R; Michalowska, Aleksandra M; Shih, Joanna; Parks, W Tony; Wakefield, Lalage M

    2007-09-15

    The transforming growth factor-beta (TGF-beta) pathway has tumor-suppressor activity in many epithelial tissues. Because TGF-beta is a potent inhibitor of epithelial cell proliferation, it has been widely assumed that this property underlies the tumor-suppressor effect. Here, we have used a xenograft model of breast cancer to show that endogenous TGF-beta has the potential to suppress tumorigenesis through a novel mechanism, involving effects at two distinct levels in the hierarchy of cellular progeny that make up the epithelial component of the tumor. First, TGF-beta reduces the size of the putative cancer stem or early progenitor cell population, and second it promotes differentiation of a more committed, but highly proliferative, progenitor cell population to an intrinsically less proliferative state. We further show that reduced expression of the type II TGF-beta receptor correlates with loss of luminal differentiation in a clinical breast cancer cohort, suggesting that this mechanism may be clinically relevant. At a molecular level, the induction of differentiation by TGF-beta involves down-regulation of Id1, and forced overexpression of Id1 can promote tumorigenesis despite persistence of the antiproliferative effect of TGF-beta. These data suggest new roles for the TGF-beta pathway in regulating tumor cell dynamics that are independent of direct effects on proliferation.

  7. Mitochondrially targeted wild-type p53 induces apoptosis in a solid human tumor xenograft model

    PubMed Central

    Palacios, Gustavo; Crawford, Howard C.; Vaseva, Angelina; Moll, Ute M.

    2013-01-01

    Classic but also novel roles of p53 are becoming increasingly well characterized. We previously showed that ex vivo retroviral transfer of mitochondrially targeted wild type p53 (mitop53) in the Eμ-myc mouse lymphoma model efficiently induces tumor cell killing in vivo. In an effort to further explore the therapeutic potential of mitop53 for its pro-apoptotic effect in solid tumors, we generated replication-deficient recombinant human Adenovirus type 5 vectors. We show here that adenoviral delivery of mitop53 by intratumoral injection into HCT116 human colon carcinoma xenograft tumors in nude mice is surprisingly effective, resulting in tumor cell death of comparable potency to conventional p53. These apoptotic effects in vivo were confirmed by Ad5-mitop53 mediated cell death of HCT116 cells in culture. Together, these data provide encouragement to further explore the potential for novel mitop53 proteins in cancer therapy to execute the shortest known circuitry of p53 death signaling. PMID:18719383

  8. Therapeutic effect against human xenograft tumors in nude mice by the third generation microtubule stabilizing epothilones.

    PubMed

    Chou, Ting-Chao; Zhang, Xiuguo; Zhong, Zi-Yang; Li, Yong; Feng, Li; Eng, Sara; Myles, David R; Johnson, Robert; Wu, Nian; Yin, Ye Ingrid; Wilson, Rebecca M; Danishefsky, Samuel J

    2008-09-01

    The epothilones represent a promising class of natural product-based antitumor drug candidates. Although these compounds operate through a microtubule stabilization mechanism similar to that of taxol, the epothilones offer a major potential therapeutic advantage in that they retain their activity against multidrug-resistant cell lines. We have been systematically synthesizing and evaluating synthetic epothilone congeners that are not accessible through modification of the natural product itself. We report herein the results of biological investigations directed at two epothilone congeners: iso-fludelone and iso-dehydelone. Iso-fludelone, in particular, exhibits a number of properties that render it an excellent candidate for preclinical development, including biological stability, excellent solubility in water, and remarkable potency relative to other epothilones. In nude mouse xenograft settings, iso-fludelone was able to achieve therapeutic cures against a number of human cancer cell lines, including mammarian-MX-1, ovarian-SK-OV-3, and the fast-growing, refractory, subcutaneous neuroblastoma-SK-NAS. Strong therapeutic effect was observed against drug-resistant lung-A549/taxol and mammary-MCF-7/Adr xenografts. In addition, iso-fludelone was shown to exhibit a significant therapeutic effect against an intracranially implanted SK-NAS tumor. PMID:18755900

  9. Unusual prolongation of radiation-induced G2 arrest in tumor xenografts derived from HeLa cells.

    PubMed

    Kaida, Atsushi; Miura, Masahiko

    2015-10-01

    The effect of ionizing radiation on cell cycle kinetics in solid tumors remains largely unknown because of technical limitations and these tumors' complicated structures. In this study, we analyzed intratumoral cell cycle kinetics after X-irradiation of tumor xenografts derived from HeLa cells expressing the fluorescent ubiquitination-based cell cycle indicator (Fucci), a novel system to visualize cell cycle kinetics in vivo. Cell cycle kinetics after X-irradiation was examined by using tumor sections and in vivo real-time imaging system in tumor xenografts derived from HeLa cells expressing Fucci. We found that G2 arrest was remarkably prolonged, up to 5 days after 10-Gy irradiation, in contrast to monolayer cultures where G2 arrest returned within 24 h. Cells isolated from tumors 5 days after irradiation exhibited a higher surviving fraction than those isolated immediately or one day after irradiation. In this study, we clearly demonstrated unusual post-irradiation cell cycle kinetics in tumor xenografts derived from HeLa-Fucci cells. Our findings imply that prolonged G2 arrest occurring in tumor microenvironments following irradiation may function as a radioresistance mechanism.

  10. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response.

    PubMed

    Gao, Hui; Korn, Joshua M; Ferretti, Stéphane; Monahan, John E; Wang, Youzhen; Singh, Mallika; Zhang, Chao; Schnell, Christian; Yang, Guizhi; Zhang, Yun; Balbin, O Alejandro; Barbe, Stéphanie; Cai, Hongbo; Casey, Fergal; Chatterjee, Susmita; Chiang, Derek Y; Chuai, Shannon; Cogan, Shawn M; Collins, Scott D; Dammassa, Ernesta; Ebel, Nicolas; Embry, Millicent; Green, John; Kauffmann, Audrey; Kowal, Colleen; Leary, Rebecca J; Lehar, Joseph; Liang, Ying; Loo, Alice; Lorenzana, Edward; Robert McDonald, E; McLaughlin, Margaret E; Merkin, Jason; Meyer, Ronald; Naylor, Tara L; Patawaran, Montesa; Reddy, Anupama; Röelli, Claudia; Ruddy, David A; Salangsang, Fernando; Santacroce, Francesca; Singh, Angad P; Tang, Yan; Tinetto, Walter; Tobler, Sonja; Velazquez, Roberto; Venkatesan, Kavitha; Von Arx, Fabian; Wang, Hui Qin; Wang, Zongyao; Wiesmann, Marion; Wyss, Daniel; Xu, Fiona; Bitter, Hans; Atadja, Peter; Lees, Emma; Hofmann, Francesco; Li, En; Keen, Nicholas; Cozens, Robert; Jensen, Michael Rugaard; Pryer, Nancy K; Williams, Juliet A; Sellers, William R

    2015-11-01

    Profiling candidate therapeutics with limited cancer models during preclinical development hinders predictions of clinical efficacy and identifying factors that underlie heterogeneous patient responses for patient-selection strategies. We established ∼1,000 patient-derived tumor xenograft models (PDXs) with a diverse set of driver mutations. With these PDXs, we performed in vivo compound screens using a 1 × 1 × 1 experimental design (PDX clinical trial or PCT) to assess the population responses to 62 treatments across six indications. We demonstrate both the reproducibility and the clinical translatability of this approach by identifying associations between a genotype and drug response, and established mechanisms of resistance. In addition, our results suggest that PCTs may represent a more accurate approach than cell line models for assessing the clinical potential of some therapeutic modalities. We therefore propose that this experimental paradigm could potentially improve preclinical evaluation of treatment modalities and enhance our ability to predict clinical trial responses.

  11. Epithelial derived CTGF promotes breast tumor progression via inducing EMT and collagen I fibers deposition

    PubMed Central

    Zhao, Zhen; Sheng, Jianting; Wang, Jiang; Liu, Jiyong; Cui, Kemi; Chang, Jenny; Zhao, Hong; Wong, Stephen

    2015-01-01

    Interactions among tumor cells, stromal cells, and extracellular matrix compositions are mediated through cytokines during tumor progression. Our analysis of 132 known cytokines and growth factors in published clinical breast cohorts and our 84 patient-derived xenograft models revealed that the elevated connective tissue growth factor (CTGF) in tumor epithelial cells significantly correlated with poor clinical prognosis and outcomes. CTGF was able to induce tumor cell epithelial-mesenchymal transition (EMT), and promote stroma deposition of collagen I fibers to stimulate tumor growth and metastasis. This process was mediated through CTGF-tumor necrosis factor receptor I (TNFR1)-IκB autocrine signaling. Drug treatments targeting CTGF, TNFR1, and IκB signaling each prohibited the EMT and tumor progression. PMID:26318291

  12. Intratumoral delivery of paclitaxel using a thermosensitive hydrogel in human tumor xenografts.

    PubMed

    Kim, Jung Ho; Lee, Joo-Ho; Kim, Kwang-Suck; Na, Kun; Song, Soo-Chang; Lee, Jaehwi; Kuh, Hyo-Jeong

    2013-01-01

    Poly(organophosphazene), a novel thermosensitive hydrogel, is an injectable drug delivery system (DDS) that transforms from sol to gel at body temperature. Paclitaxel (PTX) is a mitotic inhibitor used in the treatment of various solid tumors. Due to its poor solubility in water and efflux systems in the gastrointestinal tract, PTX is a good candidate for local DDS. Here, we evaluated the penetration kinetics of PTX released from the PTX-poly(organophosphazene) hydrogel mixture in multicellular layers (MCLs) of human cancer cells. We also investigated the tumor pharmacokinetics of PTX (60 mg/kg) when administered as an intratumoral injection using poly(organophosphazene) in mice with human tumor xenografts. When PTX was formulated at 0.6 % w/w into a 10 % w/w hydrogel, the in vitro and in vivo release were found to be 40 and 90 % of the dose, respectively, in a sustained manner over 4 weeks. Exposure of MCLs to PTX-hydrogel showed time-dependent drug penetration and accumulation. In mice, the hydrogel mass was well retained over 6 weeks, and the PTX concentration in the tumor tissue was maximal at 14 days, which rapidly decreased and coincided with rebound tumor growth after 14 days of suppression. These data indicate that PTX-hydrogel should be intratumorally injected every 14 days, or drug release duration should be prolonged in order to achieve a long-term antitumor effect. Overall, poly(organophosphazene) represents a novel thermosensitive DDS for intratumoral delivery of PTX, which can accommodate a large dose of the drug in addition to reducing its systemic exposure by restricting biodistribution to tumor tissue alone. PMID:23371803

  13. Establishment and characterization of 7 novel hepatocellular carcinoma cell lines from patient-derived tumor xenografts.

    PubMed

    Xin, Hong; Wang, Ke; Hu, Gang; Xie, Fubo; Ouyang, Kedong; Tang, Xuzhen; Wang, Minjun; Wen, Danyi; Zhu, Yizhun; Qin, Xiaoran

    2014-01-01

    Hepatocellular carcinoma (HCC) is a common cancer with poor prognosis worldwide and the molecular mechanism is not well understood. This study aimed to establish a collection of human HCC cell lines from patient-derived xenograft (PDX) models. From the 20 surgical HCC sample collections, 7 tumors were successfully developed in immunodeficient mice and further established 7 novel HCC cell lines (LIXC002, LIXC003, LIXC004, LIXC006, LIXC011, LIXC012 and CPL0903) by primary culture. The characterization of cell lines was defined by morphology, growth kinetics, cell cycle, chromosome analysis, short tandem repeat (STR) analysis, molecular profile, and tumorigenicity. Additionally, response to clinical chemotherapeutics was validated both in vitro and in vivo. STR analysis indicated that all cell lines were unique cells different from known cell lines and free of contamination by bacteria or mycoplasma. The other findings were quite heterogeneous between individual lines. Chromosome aberration could be found in all cell lines. Alpha-fetoprotein was overexpressed only in 3 out of 7 cell lines. 4 cell lines expressed high level of vimentin. Ki67 was strongly stained in all cell lines. mRNA level of retinoic acid induced protein 3 (RAI3) was decreased in all cell lines. The 7 novel cell lines showed variable sensitivity to 8 tested compounds. LIXC011 and CPL0903 possessed multiple drug resistance property. Sorafenib inhibited xenograft tumor growth of LIXC006, but not of LIXC012. Our results indicated that the 7 novel cell lines with low passage maintaining their clinical and pathological characters could be good tools for further exploring the molecular mechanism of HCC and anti-cancer drug screening.

  14. A Sensitive IHC Method for Monitoring Autophagy-Specific Markers in Human Tumor Xenografts.

    PubMed

    He, Helen; Yang, Yu; Xiang, Zhongmin; Yu, Lunyin; Chouitar, Jouhara; Yu, Jie; D'Amore, Natalie Roy; Li, Ping; Li, Zhi; Bowman, Douglas; Theisen, Matthew; Brownell, James E; Tirrell, Stephen

    2016-01-01

    Objective. Use of tyramide signal amplification (TSA) to detect autophagy biomarkers in formalin fixed and paraffin embedded (FFPE) xenograft tissue. Materials and Methods. Autophagy marker regulation was studied in xenograft tissues using Amp HQ IHC and standard IHC methods. Results. The data demonstrate the feasibility of using high sensitivity TSA IHC assays to measure low abundant autophagy markers in FFPE xenograft tissue. PMID:27247826

  15. A Sensitive IHC Method for Monitoring Autophagy-Specific Markers in Human Tumor Xenografts

    PubMed Central

    He, Helen; Yang, Yu; Xiang, Zhongmin; Yu, Lunyin; Chouitar, Jouhara; Yu, Jie; D'Amore, Natalie Roy; Li, Ping; Li, Zhi; Bowman, Douglas; Theisen, Matthew; Brownell, James E.; Tirrell, Stephen

    2016-01-01

    Objective. Use of tyramide signal amplification (TSA) to detect autophagy biomarkers in formalin fixed and paraffin embedded (FFPE) xenograft tissue. Materials and Methods. Autophagy marker regulation was studied in xenograft tissues using Amp HQ IHC and standard IHC methods. Results. The data demonstrate the feasibility of using high sensitivity TSA IHC assays to measure low abundant autophagy markers in FFPE xenograft tissue. PMID:27247826

  16. Near-Infrared Fluorescence Imaging of Carbonic Anhydrase IX in Athymic Mice Bearing HT-29 Tumor Xenografts

    PubMed Central

    2016-01-01

    Near-infrared fluorescence (NIRF) imaging technology is a highly sensitive imaging modality and has been widely used in noninvasively studying the status of receptor expression in small animal models, with an appropriate NIRF probe targeting a specific receptor. In this report, Cy5.5-conjugated anti-CAIX monoclonal antibody (Mab-Cy5.5) was evaluated in athymic mice bearing HT-29 tumor xenografts in order to investigate the effect of conjugate on tumor targeting efficacy. In vitro binding studies showed that Mab-Cy5.5 could specifically bind to the cells which expressed CAIX. Results from in vivo imaging showed that HT-29 tumor xenografts can be clearly visualized at 48 h after injection of Mab-Cy5.5, and in the blocking experiment, free anti-CAIX antibody effectively blocked the concentration of Mab-Cy5.5 in the tumors. Western blotting and immunohistochemistry analysis of HT-29 tumor xenografts verified the expression of CAIX in HT-29 tumors. Mab-Cy5.5 could specifically bind to the tumors which expressed CAIX. These results suggested that Mab-Cy5.5 was suitable for CAIX expression imaging in the preclinical research. PMID:27652266

  17. Near-Infrared Fluorescence Imaging of Carbonic Anhydrase IX in Athymic Mice Bearing HT-29 Tumor Xenografts.

    PubMed

    Li, Jianbo; Bao, Baoliang; Liu, Lei; Wang, Xuemei

    2016-01-01

    Near-infrared fluorescence (NIRF) imaging technology is a highly sensitive imaging modality and has been widely used in noninvasively studying the status of receptor expression in small animal models, with an appropriate NIRF probe targeting a specific receptor. In this report, Cy5.5-conjugated anti-CAIX monoclonal antibody (Mab-Cy5.5) was evaluated in athymic mice bearing HT-29 tumor xenografts in order to investigate the effect of conjugate on tumor targeting efficacy. In vitro binding studies showed that Mab-Cy5.5 could specifically bind to the cells which expressed CAIX. Results from in vivo imaging showed that HT-29 tumor xenografts can be clearly visualized at 48 h after injection of Mab-Cy5.5, and in the blocking experiment, free anti-CAIX antibody effectively blocked the concentration of Mab-Cy5.5 in the tumors. Western blotting and immunohistochemistry analysis of HT-29 tumor xenografts verified the expression of CAIX in HT-29 tumors. Mab-Cy5.5 could specifically bind to the tumors which expressed CAIX. These results suggested that Mab-Cy5.5 was suitable for CAIX expression imaging in the preclinical research. PMID:27652266

  18. Near-Infrared Fluorescence Imaging of Carbonic Anhydrase IX in Athymic Mice Bearing HT-29 Tumor Xenografts

    PubMed Central

    2016-01-01

    Near-infrared fluorescence (NIRF) imaging technology is a highly sensitive imaging modality and has been widely used in noninvasively studying the status of receptor expression in small animal models, with an appropriate NIRF probe targeting a specific receptor. In this report, Cy5.5-conjugated anti-CAIX monoclonal antibody (Mab-Cy5.5) was evaluated in athymic mice bearing HT-29 tumor xenografts in order to investigate the effect of conjugate on tumor targeting efficacy. In vitro binding studies showed that Mab-Cy5.5 could specifically bind to the cells which expressed CAIX. Results from in vivo imaging showed that HT-29 tumor xenografts can be clearly visualized at 48 h after injection of Mab-Cy5.5, and in the blocking experiment, free anti-CAIX antibody effectively blocked the concentration of Mab-Cy5.5 in the tumors. Western blotting and immunohistochemistry analysis of HT-29 tumor xenografts verified the expression of CAIX in HT-29 tumors. Mab-Cy5.5 could specifically bind to the tumors which expressed CAIX. These results suggested that Mab-Cy5.5 was suitable for CAIX expression imaging in the preclinical research.

  19. Effects of Tetrahydrocurcumin on Tumor Growth and Cellular Signaling in Cervical Cancer Xenografts in Nude Mice

    PubMed Central

    Yoysungnoen, Bhornprom; Bhattarakosol, Parvapan; Changtam, Chatchawan; Patumraj, Suthiluk

    2016-01-01

    Tetrahydrocurcumin (THC) is a stable metabolite of curcumin (CUR) in physiological systems. The mechanism underlying the anticancer effect of THC is not completely understood. In the present study, we investigated the effects of THC on tumor growth and cellular signaling in cervical cancer xenografts in nude mice. Cervical cancer cells (CaSki) were subcutaneously injected in nude mice to establish tumors. One month after the injection, mice were orally administered vehicle or 100, 300, and 500 mg/kg of THC daily for 30 consecutive days. Relative tumor volume (RTV) was measured every 3-4 days. COX-2, EGFR, p-ERK1&2, p-AKT, and Ki-67 expressions were measured by immunohistochemistry whereas cell apoptosis was detected by TUNELS method. THC treatments at the doses of 100, 300, and 500 mg/kg statistically retarded the RTV by 70.40%, 76.41%, and 77.93%, respectively. The CaSki + vehicle group also showed significantly increased COX-2, EGFR, p-ERK1&2, and p-AKT; however they were attenuated by all treatments with THC. Ki-67 overexpression and a decreasing of cell apoptosis were found in CaSki + vehicle group, but these findings were reversed after the THC treatments. PMID:26881213

  20. Phyllodes Tumor in a Lactating Breast.

    PubMed

    Murthy, Sudha S; Raju, K V V N; Nair, Haripreetha G

    2016-01-01

    Phyllodes tumor is attributed to a small fraction of primary tumors of the breast. Such tumors occur rarely in pregnancy and lactation. We report a case of a 25-year-old lactating mother presenting with a lump in the left breast. Core needle biopsy was opined as phyllodes tumor with lactational changes, and subsequent wide local excision confirmed the diagnosis of benign phyllodes tumor with lactational changes. The characteristic gross and microscopic findings of a well-circumscribed lesion with leaf-like fibroepithelial growth pattern and typical nonuniform or diffuse stromal proliferation with periductal accentuation even in the absence of mitotic figures can help clinch the diagnosis. Benign phyllodes is known for its recurrence and requires wide excision and close follow-up. It is vital to identify these lesions even on limited biopsies as therapeutic options differ. This case is presented for its rarity and the diagnostic challenge it poses in limited biopsy. PMID:27081326

  1. Phyllodes Tumor in a Lactating Breast

    PubMed Central

    Murthy, Sudha S.; Raju, K. V. V. N.; Nair, Haripreetha G.

    2016-01-01

    Phyllodes tumor is attributed to a small fraction of primary tumors of the breast. Such tumors occur rarely in pregnancy and lactation. We report a case of a 25-year-old lactating mother presenting with a lump in the left breast. Core needle biopsy was opined as phyllodes tumor with lactational changes, and subsequent wide local excision confirmed the diagnosis of benign phyllodes tumor with lactational changes. The characteristic gross and microscopic findings of a well-circumscribed lesion with leaf-like fibroepithelial growth pattern and typical nonuniform or diffuse stromal proliferation with periductal accentuation even in the absence of mitotic figures can help clinch the diagnosis. Benign phyllodes is known for its recurrence and requires wide excision and close follow-up. It is vital to identify these lesions even on limited biopsies as therapeutic options differ. This case is presented for its rarity and the diagnostic challenge it poses in limited biopsy. PMID:27081326

  2. Computer assisted biopsy of breast tumors.

    PubMed

    Arambula Cosio, Fernando; Lira Berra, Eric; Hevia Montiel, Nidiyare; Garcia Segundo, Cresencio; Garduno, Edgar; Alvarado Gonzalez, Montserrat; Quispe Siccha, Rosa Ma; Reyes Ramirez, Bartolome; Hazan Lasri, Eric

    2010-01-01

    In this paper we report our preliminary results of the development of a computer assisted system for breast biopsy. The system is based on tracked ultrasound images of the breast. A three dimensional ultrasound volume is constructed from a set of tracked B-scan images acquired with a calibrated probe. The system has been designed to assist a radiologist during breast biopsy, and also as a training system for radiology residents. A semiautomatic classification algorithm was implemented to assist the user with the annotation of the tumor on an ultrasound volume. We report the development of the system prototype, tested on a physical phantom of a breast with a tumor, made of polivinil alcohol. PMID:21097108

  3. Fractionated Therapy of HER2-Expressing Breast and Ovarian Cancer Xenografts in Mice with Targeted Alpha Emitting 227Th-DOTA-p-benzyl-trastuzumab

    PubMed Central

    Heyerdahl, Helen; Abbas, Nasir; Brevik, Ellen Mengshoel; Mollatt, Camilla; Dahle, Jostein

    2012-01-01

    Background The aim of this study was to investigate therapeutic efficacy and normal tissue toxicity of single dosage and fractionated targeted alpha therapy (TAT) in mice with HER2-expressing breast and ovarian cancer xenografts using the low dose rate radioimmunoconjugate 227Th-DOTA-p-benzyl-trastuzumab. Methodology/Principal Findings Nude mice carrying HER2-overexpressing subcutaneous SKOV-3 or SKBR-3 xenografts were treated with 1000 kBq/kg 227Th-trastuzumab as single injection or four injections of 250 kBq/kg with intervals of 4–5 days, 2 weeks, or 4 weeks. Control animals were treated with normal saline or unlabeled trastuzumab. In SKOV-3 xenografts tumor growth to 10-fold size was delayed (p<0.01) and survival with tumor diameter less than 16 mm was prolonged (p<0.05) in all TAT groups compared to the control groups. No statistically significant differences were seen among the treated groups. In SKBR-3 xenografts tumor growth to 10-fold size was delayed in the single injection and 4–5 days interval groups (p<0.001) and all except the 4 weeks interval TAT group showed improved survival to the control groups (p<0.05). Toxicity was assessed by blood cell counts, clinical chemistry measurements and body weight. Transient reduction in white blood cells was seen for the single injection and 4–5 days interval groups (p<0.05). No significant changes were seen in red blood cells, platelets or clinical chemistry parameters. Survival without life threatening loss of body weight was significantly prolonged in 4 weeks interval group compared to single injection group (p<0.05) for SKOV-3 animals and in 2 weeks interval group compared with the 4–5 days interval groups (p<0.05) for SKBR-3 animals. Conclusions/Significance The same concentration of radioactivity split into several fractions may improve toxicity of 227Th-radioimmunotherapy while the therapeutic effect is maintained. Thus, it might be possible to increase the cumulative absorbed radiation dose to tumor

  4. Evaluating treatment response using DW-MRI and DCE-MRI in trastuzumab responsive and resistant HER2-overexpressing human breast cancer xenografts

    PubMed Central

    Whisenant, Jennifer G.; Sorace, Anna G.; McIntyre, J. Oliver; Kang, Hakmook; Sánchez, Violeta; Loveless, Mary E.; Yankeelov, Thomas E.

    2014-01-01

    We report longitudinal diffusion-weighted magnetic resonance imaging (DW-MRI) and dynamic contrast enhanced (DCE)-MRI (7 T) studies designed to identify functional changes, prior to volume changes, in trastuzumab-sensitive and resistant HER2 + breast cancer xenografts. Athymic mice (N = 33) were subcutaneously implanted with trastuzumab-sensitive (BT474) or trastuzumab-resistant (HR6) breast cancer cells. Tumor-bearing animals were distributed into four groups: BT474 treated and control, HR6 treated and control. DW- and DCE-MRI were conducted at baseline, day 1, and day 4; trastuzumab (10 mg/kg) or saline was administered at baseline and day 3. Animals were sacrificed on day 4 and tumors resected for histology. Voxel-based DW- and DCE-MRI analyses were performed to generate parametric maps of ADC, Ktrans, and ve. On day 1, no differences in tumor size were observed between any of the groups. On day 4, significant differences in tumor size were observed between treated vs. control BT474, treated BT474 vs. treated HR6, and treated vs. control HR6 (P < .0001). On day 1, ve was significantly higher in the BT474 treated group compared to BT474 control (P = .002) and HR6 treated (P = .004). On day 4, ve and Ktrans were significantly higher in the treated BT474 tumors compared to BT474 controls (P = .0007, P = .02, respectively). A significant decrease in Ki67 staining reinforced response in the BT474 treated group compared to BT474 controls (P = .02). This work demonstrated that quantitative MRI biomarkers have the sensitivity to differentiate treatment response in HER2 + tumors prior to changes in tumor size. PMID:25500087

  5. Bridging tumor genomics to patient outcomes through an integrated patient-derived xenograft platform.

    PubMed

    Gandara, David R; Mack, Philip C; Bult, Carol; Li, Tianhong; Lara, Primo N; Riess, Jonathan W; Astrow, Stephanie H; Gandour-Edwards, Regina; Cooke, David T; Yoneda, Ken Y; Moore, Elizabeth H; Pan, Chong-Xian; Burich, Rebekah A; David, Elizabeth A; Keck, James G; Airhart, Susan; Goodwin, Neal; de Vere White, Ralph W; Liu, Edison T

    2015-05-01

    New approaches to optimization of cancer drug development in the laboratory and the clinic will be required to fully achieve the goal of individualized, precision cancer therapy. Improved preclinical models that more closely reflect the now recognized genomic complexity of human cancers are needed. Here we describe a collaborative research project that integrates core resources of The Jackson Laboratory Basic Science Cancer Center with genomics and clinical research facilities at the UC Davis Comprehensive Cancer Center to establish a clinically and genomically annotated patient-derived xenograft (PDX) platform designed to enhance new drug development and strategies for targeted therapies. Advanced stage non-small-cell lung cancer (NSCLC) was selected for initial studies because of emergence of a number of "druggable" molecular targets, and recent recognition of substantial inter- and intrapatient tumor heterogeneity. Additionally, clonal evolution after targeted therapy interventions make this tumor type ideal for investigation of this platform. Using the immunodeficient NOD scid gamma mouse, > 200 NSCLC tumor biopsies have been xenotransplanted. During the annotation process, patient tumors and subsequent PDXs are compared at multiple levels, including histomorphology, clinically applicable molecular biomarkers, global gene expression patterns, gene copy number variations, and DNA/chromosomal alterations. NSCLC PDXs are grouped into panels of interest according to oncogene subtype and/or histologic subtype. Multiregimen drug testing, paired with next-generation sequencing before and after therapy and timed tumor pharmacodynamics enables determination of efficacy, signaling pathway alterations, and mechanisms of sensitivity-resistance in individual models. This approach should facilitate derivation of new therapeutic strategies and the transition to individualized therapy.

  6. Preclinical evaluation of new radioligand of cholecystokinin/gastrin receptors in endocrine tumors xenograft nude mice

    NASA Astrophysics Data System (ADS)

    Brillouet, S.; Caselles, O.; Dierickx, L. O.; Mestre, B.; Nalis, J.; Picard, C.; Favre, G.; Poirot, M.; Silvente-Poirot, S.; Courbon, F.

    2007-02-01

    The cholecystokinin(CCK)/gastrin 2 receptors (R-CCK2) are overexpressed in 90% of medullary thyroid cancers (MTC) and in 60% of small cell lung cancers but not or poorly in corresponding healthy tissues. They represent a relevant target for the diagnosis and internal targeted radiotherapy of these tumors. Although previous studies have demonstrated the feasibility of radiolabeled CCK/gastrin to target CCK-2 receptor-expressing tissues in animals and patients, some problems remained unsolved to identify an optimum candidate for in vivo targeting of R-CCK2-expressing tumors. By a rational approach and " in silico" drug design, we synthesized a new CCK-derivative with high affinity for the R-CCK2. The aim of this study was to achieve the radiolabeling of a new radioligand, to assess its efficacy using a published CCK radioligand ( 111In-DTPA-CCK8) as a control for the R-CCK2 targeting. This new CCK-derivative was radiolabeled with 111In. Nude mice, bearing the human MTC TT tumors and NIH-3T3 cell line expressing a tumorigenic mutant of the R-CCK2, were injected with this radiolabeled peptide. In vivo planar scintigraphies were acquired. Thereafter, biodistribution studies (%ID/g tissue) were done. The conditions of radiolabelling were optimized to obtain a radiochemical purity >90%. Scintigraphic images of xenograft mice showed significant tumor uptake with a target to nontarget ratio higher than two. These results were confirmed by the biodistribution studies which showed as expected a significant activity in the spleen, the liver and the kidneys. Therefore, this new radiolabeled compound is a promised new candidate for molecular imaging and internal radiotherapy for R-CCK2 tumor targeting.

  7. Changes in Vascularization of Human Breast Cancer Xenografts Responding to Antiestrogen Therapy1

    PubMed Central

    Kristensen, Claus A; Hamberg, Leena M; Hunter, George J; Roberge, Sylvie; Kierstead, Diane; Wolf, Gerald L; Jain, Rakesh K

    1999-01-01

    Abstract To elucidate the previously suggested vascular effect(s) of antiestrogen therapy, we studied the effect of estrogen withdrawal and tamoxifen on 1) vascular resistance, 2) glucose and oxygen consumption, and 3) vascular density in a perfused breast cancer line (ZR75-1). Furthermore, we examined ZR75-1 tumors by functional CT-scanning (fCT) to determine changes in parameters related to tumor capillary transfer constants and vascular volume fraction in response to antiestrogenic manipulations. The vascular resistance decreased significantly from 42.7 to 20.8 mmHg x min x g x ml-1 (P< .03) on day 9 after estrogen withdrawal, but not after 9 days of tamoxifen treatment. The estrogen-depleted tumors were significantly smaller than controls on day 9. There was no difference in nutrient consumption or vascular density in any of the experimental groups compared to controls. fCT showed an increase (P < .03) in vascular volume fraction during tumor growth, and this parameter was significantly lower after estrogen withdrawal when compared to controls (P < .05). Vascular resistance correlated with tumor size (R = 0.7, P < .0001), indicating that vascular resistance increases during tumor growth. The changes in vascular parameters after estrogen withdrawal indicate a vascular remodeling effect. This inhibition of vascular development by hormone deprivation may have important implications for future planning of multimodal treatment regimens. PMID:10935499

  8. IMP1 suppresses breast tumor growth and metastasis through the regulation of its target mRNAs

    PubMed Central

    Liu, Xin; Huang, Wenhe; Chen, Shaoying; Zhou, Yanchun; Li, Deling; Singer, Robert H.; Gu, Wei

    2016-01-01

    We have previously reported the ability of IMP1 in inhibiting proliferation and invasiveness of breast carcinoma cells in vitro. In the current study, we utilized a mouse xenograft model to further investigate the function of IMP1 in breast tumor progression and its underlying mechanism. We demonstrated that IMP1 expression significantly suppressed the growth of MDA231 cell-derived xenograft tumors and subsequent lung metastasis. Microarray analyses and differential gene expression identified handful mRNAs, many of which were involved in breast tumor-growth and metastasis. Further studies revealed that these mRNAs were directly interacted with the KH34 domain of IMP1 and this interaction post-transcriptionally regulated their corresponding protein expression. Either deletion of the KH34 domain of IMP1 or alteration of the expression of IMP1-bound mRNAs affected cell proliferation and tumor growth, producing the same phenotypes as IMP1 knockdown. Correlation of increased IMP1 expression with the reduced levels of its bound mRNAs, such as PTGS2, GDF15 and IGF-2 transcripts, was also observed in human breast tumors. Our studies provide insights into a molecular mechanism that the positive function of IMP1 to inhibit breast tumor growth and metastasis could be through the regulation of its target mRNAs. PMID:26910917

  9. High Interstitial Fluid Pressure Is Associated with Tumor-Line Specific Vascular Abnormalities in Human Melanoma Xenografts

    PubMed Central

    Simonsen, Trude G.; Gaustad, Jon-Vidar; Leinaas, Marit N.; Rofstad, Einar K.

    2012-01-01

    Purpose Interstitial fluid pressure (IFP) is highly elevated in many solid tumors. High IFP has been associated with low radiocurability and high metastatic frequency in human melanoma xenografts and with poor survival after radiation therapy in cervical cancer patients. Abnormalities in tumor vascular networks have been identified as an important cause of elevated tumor IFP. The aim of this study was to investigate the relationship between tumor IFP and the functional and morphological properties of tumor vascular networks. Materials and Methods A-07-GFP and R-18-GFP human melanomas growing in dorsal window chambers in BALB/c nu/nu mice were used as preclinical tumor models. Functional and morphological parameters of the vascular network were assessed from first-pass imaging movies and vascular maps recorded after intravenous bolus injection of 155-kDa tetramethylrhodamine isothiocyanate-labeled dextran. IFP was measured in the center of the tumors using a Millar catheter. Angiogenic profiles of A-07-GFP and R-18-GFP cells were obtained with a quantitative PCR array. Results High IFP was associated with low growth rate and low vascular density in A-07-GFP tumors, and with high growth rate and high vascular density in R-18-GFP tumors. A-07-GFP tumors showed chaotic and highly disorganized vascular networks, while R-18-GFP tumors showed more organized vascular networks with supplying arterioles in the tumor center and draining venules in the tumor periphery. Furthermore, A-07-GFP and R-18-GFP cells differed substantially in angiogenic profiles. A-07-GFP tumors with high IFP showed high geometric resistance to blood flow due to high vessel tortuosity. R-18-GFP tumors with high IFP showed high geometric resistance to blood flow due to a large number of narrow tumor capillaries. Conclusions High IFP in A-07-GFP and R-18-GFP human melanoma xenografts was primarily a consequence of high blood flow resistance caused by tumor-line specific vascular abnormalities. PMID

  10. Irradiation combined with SU5416: Microvascular changes and growth delay in a human xenograft glioblastoma tumor line

    SciTech Connect

    Schuuring, Janneke; Bussink, Johan . E-mail: J.Bussink@rther.umcn.nl; Bernsen, Hans; Peeters, Wenny; Kogel, Albert J. van der

    2005-02-01

    Purpose: The combination of irradiation and the antiangiogenic compound SU5416 was tested and compared with irradiation alone in a human glioblastoma tumor line xenografted in nude mice. The aim of this study was to monitor microenvironmental changes and growth delay. Methods and materials: A human glioblastoma xenograft tumor line was implanted in nude mice. Irradiations consisted of 10 Gy or 20 Gy with and without SU5416. Several microenvironmental parameters (tumor cell hypoxia, tumor blood perfusion, vascular volume, and microvascular density) were analyzed after imunohistochemical staining. Tumor growth delay was monitored for up to 200 days after treatment. Results: SU5416, when combined with irradiation, has an additive effect over treatment with irradiation alone. Analysis of the tumor microenvironment showed a decreased vascular density during treatment with SU5416. In tumors regrowing after reaching only a partial remission, vascular characteristics normalized shortly after cessation of SU5416. However, in tumors regrowing after reaching a complete remission, permanent microenvironmental changes and an increase of tumor necrosis with a subsequent slower tumor regrowth was found. Conclusions: Permanent vascular changes were seen after combined treatment resulting in complete remission. Antiangiogenic treatment with SU5416 when combined with irradiation has an additive effect over treatment with irradiation or antiangiogenic treatment alone.

  11. Genomic characterization of a large panel of patient-derived hepatocellular carcinoma xenograft tumor models for preclinical development.

    PubMed

    Gu, Qingyang; Zhang, Bin; Sun, Hongye; Xu, Qiang; Tan, Yexiong; Wang, Guan; Luo, Qin; Xu, Weiguo; Yang, Shuqun; Li, Jian; Fu, Jing; Chen, Lei; Yuan, Shengxian; Liang, Guibai; Ji, Qunsheng; Chen, Shu-Hui; Chan, Chi-Chung; Zhou, Weiping; Xu, Xiaowei; Wang, Hongyang; Fang, Douglas D

    2015-08-21

    Lack of clinically relevant tumor models dramatically hampers development of effective therapies for hepatocellular carcinoma (HCC). Establishment of patient-derived xenograft (PDX) models that faithfully recapitulate the genetic and phenotypic features of HCC becomes important. In this study, we first established a cohort of 65 stable PDX models of HCC from corresponding Chinese patients. Then we showed that the histology and gene expression patterns of PDX models were highly consistent between xenografts and case-matched original tumors. Genetic alterations, including mutations and DNA copy number alterations (CNAs), of the xenografts correlated well with the published data of HCC patient specimens. Furthermore, differential responses to sorafenib, the standard-of-care agent, in randomly chosen xenografts were unveiled. Finally, in the models expressing high levels of FGFR1 gene according to the genomic data, FGFR1 inhibitor lenvatinib showed greater efficacy than sorafenib. Taken together, our data indicate that PDX models resemble histopathological and genomic characteristics of clinical HCC tumors, as well as recapitulate the differential responses of HCC patients to the standard-of-care treatment. Overall, this large collection of PDX models becomes a clinically relevant platform for drug screening, biomarker discovery and translational research in preclinical setting.

  12. Genomic characterization of a large panel of patient-derived hepatocellular carcinoma xenograft tumor models for preclinical development

    PubMed Central

    Sun, Hongye; Xu, Qiang; Tan, Yexiong; Wang, Guan; Luo, Qin; Xu, Weiguo; Yang, Shuqun; Li, Jian; Fu, Jing; Chen, Lei; Yuan, Shengxian; Liang, Guibai; Ji, Qunsheng; Chen, Shu-Hui; Chan, Chi-Chung; Zhou, Weiping; Xu, Xiaowei; Wang, Hongyang; Fang, Douglas D.

    2015-01-01

    Lack of clinically relevant tumor models dramatically hampers development of effective therapies for hepatocellular carcinoma (HCC). Establishment of patient-derived xenograft (PDX) models that faithfully recapitulate the genetic and phenotypic features of HCC becomes important. In this study, we first established a cohort of 65 stable PDX models of HCC from corresponding Chinese patients. Then we showed that the histology and gene expression patterns of PDX models were highly consistent between xenografts and case-matched original tumors. Genetic alterations, including mutations and DNA copy number alterations (CNAs), of the xenografts correlated well with the published data of HCC patient specimens. Furthermore, differential responses to sorafenib, the standard-of-care agent, in randomly chosen xenografts were unveiled. Finally, in the models expressing high levels of FGFR1 gene according to the genomic data, FGFR1 inhibitor lenvatinib showed greater efficacy than sorafenib. Taken together, our data indicate that PDX models resemble histopathological and genomic characteristics of clinical HCC tumors, as well as recapitulate the differential responses of HCC patients to the standard-of-care treatment. Overall, this large collection of PDX models becomes a clinically relevant platform for drug screening, biomarker discovery and translational research in preclinical setting. PMID:26062443

  13. Supersonic Shear Wave Elastography of Response to Anti-cancer Therapy in a Xenograft Tumor Model.

    PubMed

    Chamming's, Foucauld; Le-Frère-Belda, Marie-Aude; Latorre-Ossa, Heldmuth; Fitoussi, Victor; Redheuil, Alban; Assayag, Franck; Pidial, Laetitia; Gennisson, Jean-Luc; Tanter, Mickael; Cuénod, Charles-André; Fournier, Laure S

    2016-04-01

    Our objective was to determine if supersonic shear wave elastography (SSWE) can detect changes in stiffness of a breast cancer model under therapy. A human invasive carcinoma was implanted in 22 mice. Eleven were treated with an anti-angiogenic therapy and 11 with glucose for 24 d. Tumor volume and stiffness were assessed during 2 wk before treatment and 0, 7, 12, 20 and 24 d after the start of therapy using SSWE. Pathology was assessed after 12 and 24 d of treatment. We found that response to therapy was associated with early softening of treated tumors only, resulting in a significant difference from non-treated tumors after 12 d of treatment (p = 0.03). On pathology, large areas of necrosis were observed at 12 d in treated tumors. Although treatment was still effective, treated tumors subsequently stiffened during a second phase of the treatment (days 12-24), with a small amount of necrosis observed on pathology on day 24. In conclusion, SSWE was able to measure changes in the stiffness of tumors in response to anti-cancer treatment. However, stiffness changes associated with good response to treatment may change over time, and increased stiffness may also reflect therapy efficacy. PMID:26746382

  14. Overexpression of iron regulatory protein 1 suppresses growth of tumor xenografts.

    PubMed

    Chen, Guohua; Fillebeen, Carine; Wang, Jian; Pantopoulos, Kostas

    2007-04-01

    Iron is essential for proliferation of normal and neoplastic cells. Cellular iron uptake, utilization and storage are regulated by transcriptional and post-transcriptional mechanisms. We hypothesized that the disruption of iron homeostasis may modulate the growth properties of cancer cells. To address this, we employed H1299 lung cancer cells engineered for tetracycline-inducible overexpression of the post-transcriptional regulator iron regulatory protein 1 (IRP1). The induction of IRP1 (wild-type or the constitutive IRP1(C437S) mutant) did not affect the proliferation of the cells in culture, and only modestly reduced their efficiency to form colonies in soft agar. However, IRP1 dramatically impaired the capacity of the cells to form solid tumor xenografts in nude mice. Tumors derived from IRP1-transfectants were <20% in size compared to those from parent cells. IRP1 coordinately controls the expression of transferrin receptor 1 (TfR1) and ferritin by binding to iron-responsive elements (IREs) within their mRNAs. Biochemical analysis revealed high expression of epitope-tagged IRP1 in tumor tissue, which was associated with a profound increase in IRE-binding activity. As expected, this response misregulated iron metabolism by increasing TfR1 levels. Surprisingly, IRP1 failed to suppress ferritin expression and did not affect the levels of the iron transporter ferroportin. Our results show that the overexpression of IRP1 is associated with an apparent tumor suppressor phenotype and provide a direct regulatory link between the IRE/IRP system and cancer.

  15. Potent anti-cancer effects of citrus peel flavonoids in human prostate xenograft tumors.

    PubMed

    Lai, Ching-Shu; Li, Shiming; Miyauchi, Yutaka; Suzawa, Michiko; Ho, Chi-Tang; Pan, Min-Hsiung

    2013-06-01

    Prostate cancer is one of the most prevalent malignancies and is the second leading cause of cancer-related deaths in men. Fruit and vegetable consumption is a novel, non-toxic therapeutic approach that can be used to prevent and treat prostate cancer. Citrus peels and their extracts have been reported to have potent pharmacological activities and health benefits due to the abundance of flavonoids in citrus fruits, particularly in the peels. Our previous studies demonstrated that oral administration of Gold Lotion (GL), an extract of multiple varieties of citrus peels containing abundant flavonoids, including a large percentage of polymethoxyflavones (PMFs), effectively suppressed azoxymethane (AOM)-induced colonic tumorigenesis. However, the efficacy of GL against prostate cancer has not yet been investigated. Here, we explored the anti-tumor effects of GL using a human prostate tumor xenograft mouse model. Our data demonstrated that treatment with GL by both intraperitoneal (i.p.) injection and oral administration dramatically reduced both the weights (57%-100% inhibition) and volumes (78%-94% inhibition) of the tumors without any observed toxicity. These inhibitory effects were accompanied by mechanistic down-regulation of the protein levels of inflammatory enzymes (inducible nitric oxide synthase, iNOS and cyclooxygenase-2, COX-2), metastasis (matrix metallopeptidase-2, MMP-2 and MMP-9), angiogenesis (vascular endothelial growth factor, VEGF), and proliferative molecules, as well as by the induction of apoptosis in prostate tumors. Our findings suggest that GL is an effective anti-cancer agent that may potentially serve as a novel therapeutic option for prostate cancer treatment.

  16. Patient-Derived Gastric Carcinoma Xenograft Mouse Models Faithfully Represent Human Tumor Molecular Diversity.

    PubMed

    Zhang, Tianwei; Zhang, Lin; Fan, Shuqiong; Zhang, Meizhuo; Fu, Haihua; Liu, Yuanjie; Yin, Xiaolu; Chen, Hao; Xie, Liang; Zhang, Jingchuan; Gavine, Paul R; Gu, Yi; Ni, Xingzhi; Su, Xinying

    2015-01-01

    Patient-derived cancer xenografts (PDCX) generally represent more reliable models of human disease in which to evaluate a potential drugs preclinical efficacy. However to date, only a few patient-derived gastric cancer xenograft (PDGCX) models have been reported. In this study, we aimed to establish additional PDGCX models and to evaluate whether these models accurately reflected the histological and genetic diversities of the corresponding patient tumors. By engrafting fresh patient gastric cancer (GC) tissues into immune-compromised mice (SCID and/or nude mice), thirty two PDGCX models were established. Histological features were assessed by a qualified pathologist based on H&E staining. Genomic comparison was performed for several biomarkers including ERBB1, ERBB2, ERBB3, FGFR2, MET and PTEN. These biomarkers were profiled to assess gene copy number by fluorescent in situ hybridization (FISH) and/or protein expression by immunohistochemistry (IHC). All 32 PDGCX models retained the histological features of the corresponding human tumors. Furthermore, among the 32 models, 78% (25/32) highly expressed ERBB1 (EGFR), 22% (7/32) were ERBB2 (HER2) positive, 78% (25/32) showed ERBB3 (HER3) high expression, 66% (21/32) lost PTEN expression, 3% (1/32) harbored FGFR2 amplification, 41% (13/32) were positive for MET expression and 16% (5/32) were MET gene amplified. Between the PDGCX models and their parental tumors, a high degree of similarity was observed for FGFR2 and MET gene amplification, and also for ERBB2 status (agreement rate = 94~100%; kappa value = 0.81~1). Protein expression of PTEN and MET also showed moderate agreement (agreement rate = 78%; kappa value = 0.46~0.56), while ERBB1 and ERBB3 expression showed slight agreement (agreement rate = 59~75%; kappa value = 0.18~0.19). ERBB2 positivity, FGFR2 or MET gene amplification was all maintained until passage 12 in mice. The stability of the molecular profiles observed across subsequent passages within the

  17. Multi-modal and multi-wavelength imaging in xenografts bearing human tumor cells

    NASA Astrophysics Data System (ADS)

    Kwon, Sunkuk; Ke, Shi; Wang, Wei; Cameron, Arlin G.; Sevick Muraca, Eva M.

    2007-02-01

    Dynamic multi-wavelength fluorescence imaging was accomplished using a liquid crystal tunable filter (LCTF). Since several different emission wavelengths can be selected by tuning the LCTF, two wavelength dynamic fluorescence imaging was conducted in mice bearing human melanoma M21 and M21L after injection of a mixture of (i) RGD peptide conjugated with a near-infrared (NIR) dye that targeted integrin αvβ3 and (ii) non-specific dye, Cy5.5. Dynamic multi-wavelength imaging with LCTF can differentiate the uptake of the two different fluorescent contrast agents between tumor and normal tissue ROIs in the M21 and M21L xenograft models. Although the LCTF attenuated fluorescence signals by a factor of two when compared to holographic and bandpass filter sets used previously, Tumor to background ratio (TBR) from NIR fluorescence images with a bandpass and holographic filter were not statistically different from those acquired with the LCTF. Therefore, the benefit of spectral information as well as dynamic multi-wavelength may outweigh the impact of the lower transmission efficiencies, and could enable in vivo small animal imaging.

  18. Proscillaridin A is cytotoxic for glioblastoma cell lines and controls tumor xenograft growth in vivo

    PubMed Central

    Tchoghandjian, Aurélie; Carré, Manon; Colin, Carole; Jiglaire, Carine Jiguet; Mercurio, Sandy; Beclin, Christophe; Figarella-Branger, Dominique

    2014-01-01

    Glioblastoma is the most frequent primary brain tumor in adults. Because of molecular and cellular heterogeneity, high proliferation rate and significant invasive ability, prognosis of patients is poor. Recent therapeutic advances increased median overall survival but tumor recurrence remains inevitable. In this context, we used a high throughput screening approach to bring out novel compounds with anti-proliferative and anti-migratory properties for glioblastoma treatment. Screening of the Prestwick chemical library® of 1120 molecules identified proscillaridin A, a cardiac glycoside inhibitor of the Na+/K+ ATPase pump, with most significant effects on glioblastoma cell lines. In vitro effects of proscillaridin A were evaluated on GBM6 and GBM9 stem-like cell lines and on U87-MG and U251-MG cell lines. We showed that proscillaridin A displayed cytotoxic properties, triggered cell death, induced G2/M phase blockade in all the glioblastoma cell lines and impaired GBM stem self-renewal capacity even at low concentrations. Heterotopic and orthotopic xenotransplantations were used to confirm in vivo anticancer effects of proscillaridin A that both controls xenograft growth and improves mice survival. Altogether, results suggest that proscillaridin A is a promising candidate as cancer therapies in glioblastoma. This sustains previous reports showing that cardiac glycosides act as anticancer drugs in other cancers. PMID:25400117

  19. Proscillaridin A is cytotoxic for glioblastoma cell lines and controls tumor xenograft growth in vivo.

    PubMed

    Denicolaï, Emilie; Baeza-Kallee, Nathalie; Tchoghandjian, Aurélie; Carré, Manon; Colin, Carole; Jiglaire, Carine Jiguet; Mercurio, Sandy; Beclin, Christophe; Figarella-Branger, Dominique

    2014-11-15

    Glioblastoma is the most frequent primary brain tumor in adults. Because of molecular and cellular heterogeneity, high proliferation rate and significant invasive ability, prognosis of patients is poor. Recent therapeutic advances increased median overall survival but tumor recurrence remains inevitable. In this context, we used a high throughput screening approach to bring out novel compounds with anti-proliferative and anti-migratory properties for glioblastoma treatment. Screening of the Prestwick chemical library® of 1120 molecules identified proscillaridin A, a cardiac glycoside inhibitor of the Na(+)/K(+) ATPase pump, with most significant effects on glioblastoma cell lines. In vitro effects of proscillaridin A were evaluated on GBM6 and GBM9 stem-like cell lines and on U87-MG and U251-MG cell lines. We showed that proscillaridin A displayed cytotoxic properties, triggered cell death, induced G2/M phase blockade in all the glioblastoma cell lines and impaired GBM stem self-renewal capacity even at low concentrations. Heterotopic and orthotopic xenotransplantations were used to confirm in vivo anticancer effects of proscillaridin A that both controls xenograft growth and improves mice survival. Altogether, results suggest that proscillaridin A is a promising candidate as cancer therapies in glioblastoma. This sustains previous reports showing that cardiac glycosides act as anticancer drugs in other cancers. PMID:25400117

  20. King cobra (Ophiophagus hannah) venom L-amino acid oxidase induces apoptosis in PC-3 cells and suppresses PC-3 solid tumor growth in a tumor xenograft mouse model.

    PubMed

    Lee, Mui Li; Fung, Shin Yee; Chung, Ivy; Pailoor, Jayalakshmi; Cheah, Swee Hung; Tan, Nget Hong

    2014-01-01

    King cobra (Ophiophagus hannah) venom L-amino acid oxidase (OH-LAAO), a heat stable enzyme, has been shown to exhibit very potent anti-proliferative activity against human breast and lung tumorigenic cells but not in their non-tumorigenic counterparts. We further examine its in vitro and in vivo anti-tumor activity in a human prostate adenocarcinoma (PC-3) model. OH-LAAO demonstrated potent cytotoxicity against PC-3 cells with IC50 of 0.05 µg/mL after 72 h incubation in vitro. It induced apoptosis as evidenced with an increase in caspase-3/7 cleavages and an increase in annexin V-stained cells. To examine its in vivo anti-tumor activity, we treated PC-3 tumor xenograft implanted subcutaneously in immunodeficient NU/NU (nude) mice with 1 µg/g OH-LAAO given intraperitoneally (i.p.). After 8 weeks of treatment, OH-LAAO treated PC-3 tumors were markedly inhibited, when compared to the control group (P <0.05). TUNEL staining analysis on the tumor sections showed a significantly increase of apoptotic cells in the LAAO-treated animals. Histological examinations of the vital organs in these two groups showed no significant differences with normal tissues, indicating no obvious tissue damage. The treatment also did not cause any significant changes on the body weight of the mice during the duration of the study. These observations suggest that OH-LAAO cytotoxic effects may be specific to tumor xenografts and less to normal organs. Given its potent anti-tumor activities shown in vitro as well as in vivo, the king cobra venom LAAO can potentially be developed to treat prostate cancer and other solid tumors. PMID:24782648

  1. King cobra (Ophiophagus hannah) venom L-amino acid oxidase induces apoptosis in PC-3 cells and suppresses PC-3 solid tumor growth in a tumor xenograft mouse model.

    PubMed

    Lee, Mui Li; Fung, Shin Yee; Chung, Ivy; Pailoor, Jayalakshmi; Cheah, Swee Hung; Tan, Nget Hong

    2014-01-01

    King cobra (Ophiophagus hannah) venom L-amino acid oxidase (OH-LAAO), a heat stable enzyme, has been shown to exhibit very potent anti-proliferative activity against human breast and lung tumorigenic cells but not in their non-tumorigenic counterparts. We further examine its in vitro and in vivo anti-tumor activity in a human prostate adenocarcinoma (PC-3) model. OH-LAAO demonstrated potent cytotoxicity against PC-3 cells with IC50 of 0.05 µg/mL after 72 h incubation in vitro. It induced apoptosis as evidenced with an increase in caspase-3/7 cleavages and an increase in annexin V-stained cells. To examine its in vivo anti-tumor activity, we treated PC-3 tumor xenograft implanted subcutaneously in immunodeficient NU/NU (nude) mice with 1 µg/g OH-LAAO given intraperitoneally (i.p.). After 8 weeks of treatment, OH-LAAO treated PC-3 tumors were markedly inhibited, when compared to the control group (P <0.05). TUNEL staining analysis on the tumor sections showed a significantly increase of apoptotic cells in the LAAO-treated animals. Histological examinations of the vital organs in these two groups showed no significant differences with normal tissues, indicating no obvious tissue damage. The treatment also did not cause any significant changes on the body weight of the mice during the duration of the study. These observations suggest that OH-LAAO cytotoxic effects may be specific to tumor xenografts and less to normal organs. Given its potent anti-tumor activities shown in vitro as well as in vivo, the king cobra venom LAAO can potentially be developed to treat prostate cancer and other solid tumors.

  2. The Growth of SGC-7901 Tumor Xenografts Was Suppressed by Chinese Bayberry Anthocyanin Extract through Upregulating KLF6 Gene Expression

    PubMed Central

    Wang, Yue; Zhang, Xia-nan; Xie, Wen-hua; Zheng, Yi-xiong; Cao, Jin-ping; Cao, Pei-rang; Chen, Qing-jun; Li, Xian; Sun, Chong-de

    2016-01-01

    To investigate the antitumor effect of anthocyanins extracted from Chinese bayberry fruit (Myrica rubra Sieb. et Zucc.), a nude mouse tumor xenograft model was established. Treatments with C3G (cyanidin-3-glucoside, an anthocyanin) significantly suppressed the growth of SGC-7901 tumor xenografts in a dose-dependent manner. Immunohistochemical staining showed a significant increase in p21 expression, indicating that the cell cycle of tumor xenografts was inhibited. qPCR screening showed that C3G treatment up-regulated the expression of the KLF6 gene, which is an important tumor suppressor gene inactivated in many human cancers. Western blot showed that C3G treatments markedly increased KLF6 and p21 protein levels, inhibited CDK4 and Cyclin D1 expression, but did not notably change the expression of p53. These results indicated that KLF6 up-regulates p21 in a p53-independent manner and significantly reduces tumor proliferation. This study provides important information for the possible mechanism of C3G-induced antitumor activity against gastric adenocarcinoma in vivo. PMID:27690088

  3. Comprehensive molecular portraits of human breast tumors

    PubMed Central

    2012-01-01

    Summary We analyzed primary breast cancers by genomic DNA copy number arrays, DNA methylation, exome sequencing, mRNA arrays, microRNA sequencing and reverse phase protein arrays. Our ability to integrate information across platforms provided key insights into previously-defined gene expression subtypes and demonstrated the existence of four main breast cancer classes when combining data from five platforms, each of which shows significant molecular heterogeneity. Somatic mutations in only three genes (TP53, PIK3CA and GATA3) occurred at > 10% incidence across all breast cancers; however, there were numerous subtype-associated and novel gene mutations including the enrichment of specific mutations in GATA3, PIK3CA and MAP3K1 with the Luminal A subtype. We identified two novel protein expression-defined subgroups, possibly contributed by stromal/microenvironmental elements, and integrated analyses identified specific signaling pathways dominant in each molecular subtype including a HER2/p-HER2/HER1/p-HER1 signature within the HER2-Enriched expression subtype. Comparison of Basal-like breast tumors with high-grade Serous Ovarian tumors showed many molecular commonalities, suggesting a related etiology and similar therapeutic opportunities. The biologic finding of the four main breast cancer subtypes caused by different subsets of genetic and epigenetic abnormalities raises the hypothesis that much of the clinically observable plasticity and heterogeneity occurs within, and not across, these major biologic subtypes of breast cancer. PMID:23000897

  4. Eribulin mesylate reduces tumor microenvironment abnormality by vascular remodeling in preclinical human breast cancer models

    PubMed Central

    Funahashi, Yasuhiro; Okamoto, Kiyoshi; Adachi, Yusuke; Semba, Taro; Uesugi, Mai; Ozawa, Yoichi; Tohyama, Osamu; Uehara, Taisuke; Kimura, Takayuki; Watanabe, Hideki; Asano, Makoto; Kawano, Satoshi; Tizon, Xavier; McCracken, Paul J; Matsui, Junji; Aoshima, Ken; Nomoto, Kenichi; Oda, Yoshiya

    2014-01-01

    Eribulin mesylate is a synthetic macrocyclic ketone analog of the marine sponge natural product halichondrin B and an inhibitor of microtubule dynamics. Some tubulin-binding drugs are known to have antivascular (antiangiogenesis or vascular-disrupting) activities that can target abnormal tumor vessels. Using dynamic contrast-enhanced MRI analyses, here we show that eribulin induces remodeling of tumor vasculature through a novel antivascular activity in MX-1 and MDA-MB-231 human breast cancer xenograft models. Vascular remodeling associated with improved perfusion was shown by Hoechst 33342 staining and by increased microvessel density together with decreased mean vascular areas and fewer branched vessels in tumor tissues, as determined by immunohistochemical staining for endothelial marker CD31. Quantitative RT-PCR analysis of normal host cells in the stroma of xenograft tumors showed that eribulin altered the expression of mouse (host) genes in angiogenesis signaling pathways controlling endothelial cell–pericyte interactions, and in the epithelial–mesenchymal transition pathway in the context of the tumor microenvironment. Eribulin also decreased hypoxia-associated protein expression of mouse (host) vascular endothelial growth factor by ELISA and human CA9 by immunohistochemical analysis. Prior treatment with eribulin enhanced the anti-tumor activity of capecitabine in the MDA-MB-231 xenograft model. These findings suggest that eribulin-induced remodeling of abnormal tumor vasculature leads to a more functional microenvironment that may reduce the aggressiveness of tumors due to elimination of inner tumor hypoxia. Because abnormal tumor microenvironments enhance both drug resistance and metastasis, the apparent ability of eribulin to reverse these aggressive characteristics may contribute to its clinical benefits. PMID:25060424

  5. In vivo cell cycle profiling in xenograft tumors by quantitative intravital microscopy

    PubMed Central

    Chittajallu, Deepak R; Florian, Stefan; Kohler, Rainer H; Iwamoto, Yoshiko; Orth, James D; Weissleder, Ralph; Danuser, Gaudenz; Mitchison, Timothy J

    2015-01-01

    Quantification of cell-cycle state at a single-cell level is essential to understand fundamental three-dimensional biological processes such as tissue development and cancer. Analysis of 3D in vivo images, however, is very challenging. Today’s best practice, manual annotation of select image events, generates arbitrarily sampled data distributions, unsuitable for reliable mechanistic inferences. Here, we present an integrated workflow for quantitative in vivo cell-cycle profiling. It combines image analysis and machine learning methods for automated 3D segmentation and cell-cycle state identification of individual cell-nuclei with widely varying morphologies embedded in complex tumor environments. We applied our workflow to quantify cell-cycle effects of three antimitotic cancer drugs over 8 days in HT-1080 fibrosarcoma xenografts in living mice using a dataset of 38,000 cells and compared the induced phenotypes. In contrast to 2D culture, observed mitotic arrest was relatively low, suggesting involvement of additional mechanisms in their antitumor effect in vivo. PMID:25867850

  6. Aspirin blocks growth of breast tumor cells and tumor-initiating cells and induces reprogramming factors of mesenchymal to epithelial transition.

    PubMed

    Maity, Gargi; De, Archana; Das, Amlan; Banerjee, Snigdha; Sarkar, Sandipto; Banerjee, Sushanta K

    2015-07-01

    Acetylsalicylic acid (ASA), also known as aspirin, a classic, nonsteroidal, anti-inflammatory drug (NSAID), is widely used to relieve minor aches and pains and to reduce fever. Epidemiological studies and other experimental studies suggest that ASA use reduces the risk of different cancers including breast cancer (BC) and may be used as a chemopreventive agent against BC and other cancers. These studies have raised the tempting possibility that ASA could serve as a preventive medicine for BC. However, lack of in-depth knowledge of the mechanism of action of ASA reshapes the debate of risk and benefit of using ASA in prevention of BC. Our studies, using in vitro and in vivo tumor xenograft models, show a strong beneficial effect of ASA in the prevention of breast carcinogenesis. We find that ASA not only prevents breast tumor cell growth in vitro and tumor growth in nude mice xenograft model through the induction of apoptosis, but also significantly reduces the self-renewal capacity and growth of breast tumor-initiating cells (BTICs)/breast cancer stem cells (BCSCs) and delays the formation of a palpable tumor. Moreover, ASA regulates other pathophysiological events in breast carcinogenesis, such as reprogramming the mesenchymal to epithelial transition (MET) and delaying in vitro migration in BC cells. The tumor growth-inhibitory and reprogramming roles of ASA could be mediated through inhibition of TGF-β/SMAD4 signaling pathway that is associated with growth, motility, invasion, and metastasis in advanced BCs. Collectively, ASA has a therapeutic or preventive potential by attacking possible target such as TGF-β in breast carcinogenesis. PMID:25867761

  7. Circulating Tumor Cells in Breast Cancer Patients.

    PubMed

    Hall, Carolyn; Valad, Lily; Lucci, Anthony

    2016-01-01

    Breast cancer is the most commonly diagnosed cancer among women, resulting in an estimated 40,000 deaths in 2014.1 Metastasis, a complex, multi-step process, remains the primary cause of death for these patients. Although the mechanisms involved in metastasis have not been fully elucidated, considerable evidence suggests that metastatic spread is mediated by rare cells within the heterogeneous primary tumor that acquire the ability to invade into the bloodstream. In the bloodstream, they can travel to distant sites, sometimes remaining undetected and in a quiescent state for an extended period of time before they establish distant metastases in the bone, lung, liver, or brain. These occult micrometastatic cells (circulating tumor cells, CTCs) are rare, yet their prognostic significance has been demonstrated in both metastatic and non-metastatic breast cancer patients. Because repeated tumor tissue collection is typically not feasible and peripheral blood draws are minimally invasive, serial CTC enumeration might provide "real-time liquid biopsy" snapshots that could be used to identify early-stage breast cancer patients with micrometastatic disease who are at risk for disease progression and monitor treatment response in patients with advanced disease. In addition, characterizing CTCs might aid in the development of novel, personalized therapies aimed at eliminating micrometastases. This review describes current CTC isolation, detection, and characterization strategies in operable breast cancer. PMID:27481009

  8. FL118, a novel camptothecin analogue, overcomes irinotecan and topotecan resistance in human tumor xenograft models

    PubMed Central

    Ling, Xiang; Liu, Xiaojun; Zhong, Kai; Smith, Nicholas; Prey, Joshua; Li, Fengzhi

    2015-01-01

    Irinotecan and topotecan are the only camptothecin analogues approved by the FDA for cancer treatment. However, inherent and/or acquired irinotecan and topotecan resistance is a challenging issue in clinical practice. In this report, we showed that FL118, a novel camptothecin analogue, effectively obliterated human xenograft tumors that acquire irinotecan and topotecan resistance. Consistent with this finding, Pharmacokinetics studies indicated that FL118 rapidly clears from circulation, while effectively accumulating in tumors with a long elimination half-life. Consistent with our previous studies on irinotecan, FL118 exhibited ≥25 fold more effectiveness than topotecan at inhibiting cancer cell growth and colony formation; we further showed that although topotecan can inhibit the expression of survivin, Mcl-1, XIAP or cIAP2, its effectiveness is about 10-100 fold weaker than FL118. Lastly, in contrast to both SN-38 (active metabolite of irinotecan) and topotecan are substrates of the efflux pump proteins P-gp/MDR1 and ABCG2/BCRP, FL118 is not a substrate of P-gp and ABCG2. Consistently, sildenafil, a multiple efflux pump inhibitor, sensitized SN-38 much more than these of the ABCG2-selective inhibitor KO143 in growth inhibition of SW620 and HCT-8 cells. In contrast, both inhibitors showed no effect on FL118 efficacy. Given that both P-gp and ABCG2 express in SW620 and HCT-8 cells and FL118 is not a substrate for P-gp and ABCG2, this suggests that FL118 appears to bypass multiple efflux pump protein-induced resistance, which may contribute to FL118 overcoming irinotecan and topotecan resistance in vivo. These new findings provide renewed perspectives for further development of FL118 for clinical applications. PMID:26692923

  9. Pancratistatin selectively targets cancer cell mitochondria and reduces growth of human colon tumor xenografts.

    PubMed

    Griffin, Carly; Karnik, Aditya; McNulty, James; Pandey, Siyaram

    2011-01-01

    The naturally occurring Amaryllidaceae alkaloid pancratistatin exhibits potent apoptotic activity against a large panel of cancer cells lines and has an insignificant effect on noncancerous cell lines, although with an elusive cellular target. Many current chemotherapeutics induce apoptosis via genotoxic mechanisms and thus have low selectivity. The observed selectivity of pancratistatin for cancer cells promoted us to consider the hypothesis that this alkaloid targets cancer cell mitochondria rather than DNA or its replicative machinery. In this study, we report that pancratistatin decreased mitochondrial membrane potential and induced apoptotic nuclear morphology in p53-mutant (HT-29) and wild-type p53 (HCT116) colorectal carcinoma cell lines, but not in noncancerous colon fibroblast (CCD-18Co) cells. Interestingly, pancratistatin was found to be ineffective against mtDNA-depleted (ρ(0)) cancer cells. Moreover, pancratistatin induced cell death in a manner independent of Bax and caspase activation, and did not alter β-tubulin polymerization rate nor cause double-stranded DNA breaks. For the first time we report the efficacy of pancratistatin in vivo against human colorectal adenocarcinoma xenografts. Intratumor administration of pancratistatin (3 mg/kg) caused significant reduction in the growth of subcutaneous HT-29 tumors in Nu/Nu mice (n = 6), with no apparent toxicity to the liver or kidneys as indicated by histopathologic analysis and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling. Altogether, this work suggests that pancratistatin may be a novel mitochondria-targeting compound that selectively induces apoptosis in cancer cells and significantly reduces tumor growth. PMID:21220492

  10. Xanthatin, a novel potent inhibitor of VEGFR2 signaling, inhibits angiogenesis and tumor growth in breast cancer cells

    PubMed Central

    Yu, Yao; Yu, Jing; Pei, Chong Gang; Li, Yun Yan; Tu, Ping; Gao, Gui Ping; Shao, Yi

    2015-01-01

    Anti-angiogenesis targeting vascular endothelial growth factor receptor 2 (VEGFR2) has emerged as an important tool for cancer treatment. In this study, we described a novel VEGFR2 inhibitor, xanthatin, which inhibits tumor angiogenesis and growth. The biochemical profiles of xanthatin were investigated using kinase assay, migration assay, tube formation, Matrigel plug assay, western blot, immunofluorescence and human tumor xenograft model. Xanthatin significantly inhibited growth, migration and tube formation of human umbilical vascular endothelial cell as well as inhibited vascular endothelial growth factor (VEGF)-stimulated angiogenesis. In addition, it inhibited VEGF-induced phosphorylation of VEGFR2 and its downstream signaling regulator. Moreover, xanthatin directly inhibit proliferation of breast cancer cells MDA-MB-231. Oral administration of xanthatin could markedly inhibit human tumor xenograft growth and decreased microvessel densities (MVD) in tumor sections. Taken together, these preclinical evaluations suggest that xanthatin inhibits angiogenesis and may be a promising anticancer drug candidate. PMID:26617743

  11. Sodium Selenite Radiosensitizes Hormone-Refractory Prostate Cancer Xenograft Tumors but Not Intestinal Crypt Cells In Vivo

    SciTech Connect

    Tian Junqiang; Ning Shouchen; Knox, Susan J.

    2010-09-01

    Purpose: We have previously shown that sodium selenite (SSE) increases radiation-induced cell killing of human prostate carcinoma cells in vitro. In this study we further evaluated the in vivo radiosensitizing effect of SSE in prostate cancer xenograft tumors and normal radiosensitive intestinal crypt cells. Methods and Materials: Immunodeficient (SCID) mice with hormone-independent LAPC-4 (HI-LAPC-4) and PC-3 xenograft tumors (approximately 200 mm{sup 3}) were divided into four groups: control (untreated), radiation therapy (XRT, local irradiation), SSE (2 mg/kg, intraperitoneally, 3 times/week), and XRT plus SSE. The XRT was given at the beginning of the regimen as a single dose of 5 Gy for HI-LAPC-4 tumors and a single dose of 7 Gy followed by a fractional dose of 3 Gy/d for 5 days for PC-3 tumors. The tumor volume was measured 3 times per week. The radiosensitizing effect of SSE on normal intestinal epithelial cells was assessed by use of a crypt cell microcolony assay. Results: In the efficacy study, SSE alone significantly inhibited the tumor growth in HI-LAPC-4 tumors but not PC-3 tumors. Sodium selenite significantly enhanced the XRT-induced tumor growth inhibition in both HI-LAPC-4 and PC-3 tumors. In the toxicity study, SSE did not affect the intestinal crypt cell survival either alone or in combination with XRT. Conclusions: Sodium selenite significantly enhances the effect of radiation on well-established hormone-independent prostate tumors and does not sensitize the intestinal epithelial cells to radiation. These results suggest that SSE may increase the therapeutic index of XRT for the treatment of prostate cancer.

  12. Effects of all-trans retinoic acid and interferon alpha in peripheral neuroectodermal tumor cell cultures and xenografts.

    PubMed

    Rosolen, A; Favaretto, G; Masarotto, G; Cavazzana, A; Zanesco, L; Frascella, E

    1998-11-01

    Peripheral neuroectodermal tumors (PNET) have an unsatisfactory outcome when treated with standard approaches. Among novel treatments, the use of biological response modifiers has rarely been reported in this group of malignancies. We have previously demonstrated that both all-trans retinoic acid (ATRA) and interferon á (IFNá) can inhibit proliferation of human PNET cells and that ATRA can up-regulate IFNá receptor expression in vitro. In this study we evaluated the anti-tumor effects of ATRA and IFNá in PNET cells in vitro and in a human PNET xenograft model, using CHP100 cells. A synergistic inhibitory effect of ATRA and IFNá was observed on CHP100 cells in vitro. On the contrary, a significant inhibition of tumor growth was observed in mice treated with ATRA alone, whereas neither IFNá nor the combination of ATRA and IFNá, reached a statistically significant anti-tumor effect. Histologic examination of tumors revealed the presence of necrosis upon treatment with IFNá, whereas almost no necrosis, but a more differentiated morphology, confirmed by electron microscopy analysis, was associated with the ATRA containing treatments. Taken together these data show an in vitro and in vivo anti-tumor activity of ATRA in human PNET cells, although no synergism of ATRA and IFNá was observed in our xenograft model.

  13. RGD-conjugated PLA-PLL nanoparticles targeting to Bacp-37 breast cancer xenografts in vivo.

    PubMed

    Liu, Peifeng; Qi, Xuelian; Sun, Ying; Wang, Hongzhi; Li, Yaogang; Duan, Yourong

    2011-12-01

    Targeted delivery carriers are receiving considerable attention, the development of a more precise targeted delivery carrier is critical for the advancement of cancer chemotherapy. In this study, we evaluated the effects of RGD-conjugated poly (lactic acid-co-lysine)-(Arginine-Glycine-Aspartic) nanoparticles (PLA-PLL-RGD NPs) on targeted delivery to Bacp-37 breast cancer bearing mice. PLA-PLL-RGD NPs were prepared by using the emulsion-solvent evaporation method. A subsequent MTT assay indicated that the NPs were non-toxic and had good biocompatibility. In vitro, the results of Confocal Laser Scanning Microscope (CLSM) and FAC Scan flow cytometry (FACS) indicated that the PLA-PLL-RGD NPs can bind more significantly to human umbilical vein endothelial cells, compared to PLA-PLL NPs. In vivo, the results of target imaging and biodistribution showed that PLA-PLL-RGD can significantly target to tumor of Bacp-37 breast cancer bearing mice. These results demonstrated that PLA-PLL-RGD NPs can effectively enhance targeted efficiency in vivo, and have the potential to be used as targeted delivery carrier.

  14. Activation of PI3K/Akt/mTOR signaling in the tumor stroma drives endocrine therapy-dependent breast tumor regression

    PubMed Central

    Polo, María Laura; Riggio, Marina; May, María; Rodríguez, María Jimena; Perrone, María Cecilia; Stallings-Mann, Melody; Kaen, Diego; Frost, Marlene; Goetz, Matthew; Boughey, Judy; Lanari, Claudia; Radisky, Derek; Novaro, Virginia

    2015-01-01

    Improved efficacy of neoadjuvant endocrine-targeting therapies in luminal breast carcinomas could be achieved with optimal use of pathway targeting agents. In a mouse model of ductal breast carcinoma we identify a tumor regressive stromal reaction that is induced by neoadjuvant endocrine therapy. This reparative reaction is characterized by tumor neovascularization accompanied by infiltration of immune cells and carcinoma-associated fibroblasts that stain for phosphorylated ribosomal protein S6 (pS6), downstream the PI3K/Akt/mTOR pathway. While tumor variants with higher PI3K/Akt/mTOR activity respond well to a combination of endocrine and PI3K/Akt/mTOR inhibitors, tumor variants with lower PI3K/Akt/mTOR activity respond more poorly to the combination therapy than to the endocrine therapy alone, associated with inhibition of stromal pS6 and the reparative reaction. In human breast cancer xenografts we confirm that such differential sensitivity to therapy is primarily determined by the level of PI3K/Akt/mTOR in tumor cells. We further show that the clinical response of breast cancer patients undergoing neoadjuvant endocrine therapy is associated with the reparative stromal reaction. We conclude that tumor level and localization of pS6 are associated with therapeutic response in breast cancer and represent biomarkers to distinguish which tumors will benefit from the incorporation of PI3K/Akt/mTOR inhibitors with neoadjuvant endocrine therapy. PMID:26098779

  15. PEG-liposomal oxaliplatin potentialization of antitumor efficiency in a nude mouse tumor-xenograft model of colorectal carcinoma.

    PubMed

    Yang, Chuang; Liu, Hai-Zhong; Lu, Wei-Dong; Fu, Zhong-Xue

    2011-06-01

    The non-selectivity of chemotherapeutics between normal tissue and pathological sites poses a challenge for the treatment strategy for advanced colorectal carcinoma. To obtain sufficient antitumor activity, optimization of the therapeutic regimen is of great importance. We investigated PEG-liposomal oxaliplatin potentialization of antitumor efficiency in a nude mouse tumor-xenograft model of colorectal carcinoma. A tumor-bearing nude mouse model, intravenous injections of (Dio)-labeled PEG-liposomes via tail vein and fluorescence imaging with in vivo imaging system were employed. Mice were treated with free L-oHP, PEG-liposomal L-oHP via the tail vein, followed by analysis of the accumulation of L-oHP in tumor tissues by high-performance liquid chromatography (HPLC), observation of the tumor volume and the survival rate. Apoptosis and proliferation of tumors were detected by TUNEL assay and immunohistochemistry. The mRNA and protein levels of Bcl-2, Bax, caspase-3 (P17) and Ki-67 were determined by RT-PCR and Western blotting. Fluorescence imaging with in vivo imaging showed PEG-liposome targeting in tumor tissues. After intravenous injections of PEG-liposomal oxaliplatin, tumor tissue maximum accumulation of L-oHP was 9.37 ± 0.79 µg/g at 24 h; The tumor volume was significantly suppressed, and mice showed longer survival, compared with the free oxaliplatin group. Apoptosis increased, but proliferation decreased in tumor tissues. The mRNA expression of Bcl-2 and Ki-67 was down-regulated, while Bax and caspase-3 expression was up-regulated. Protein expression of Bcl-2 was down-regulated, while Bax and P17 expression was up-regulated. The results indicate that PEG-liposomal oxaliplatin can improve antitumor efficiency in a nude mouse tumor-xenograft model of colorectal carcinoma.

  16. Intratumoral spread of wild-type adenovirus is limited after local injection of human xenograft tumors: virus persists and spreads systemically at late time points.

    PubMed

    Sauthoff, Harald; Hu, Jing; Maca, Cielo; Goldman, Michael; Heitner, Sheila; Yee, Herman; Pipiya, Teona; Rom, William N; Hay, John G

    2003-03-20

    Oncolytic replicating adenoviruses are a promising new modality for the treatment of cancer. Despite the assumed biologic advantage of continued viral replication and spread from infected to uninfected cancer cells, early clinical trials demonstrate that the efficacy of current vectors is limited. In xenograft tumor models using immune-incompetent mice, wild-type adenovirus is also rarely able to eradicate established tumors. This suggests that innate immune mechanisms may clear the virus or that barriers within the tumor prevent viral spread. The aim of this study was to evaluate the kinetics of viral distribution and spread after intratumoral injection of virus in a human tumor xenograft model. After intratumoral injection of wild-type virus, high levels of titratable virus persisted within the xenograft tumors for at least 8 weeks. Virus distribution within the tumors as determined by immunohistochemistry was patchy, and virus-infected cells appeared to be flanked by tumor necrosis and connective tissue. The close proximity of virus-infected cells to the tumor-supporting structure, which is of murine origin, was clearly demonstrated using a DNA probe that specifically hybridizes to the B1 murine DNA repeat. Importantly, although virus was cleared from the circulation 6 hr after intratumoral injection, after 4 weeks systemic spread of virus was detected. In addition, vessels of infected tumors were surrounded by necrosis and an advancing rim of virus-infected tumor cells, suggesting reinfection of the xenograft tumor through the vasculature. These data suggest that human adenoviral spread within tumor xenografts is impaired by murine tumor-supporting structures. In addition, there is evidence for continued viral replication within the tumor, with subsequent systemic dissemination and reinfection of tumors via the tumor vasculature. Despite the limitations of immune-incompetent models, an understanding of the interactions between the virus and the tumor

  17. Localization of human colorectal tumor xenografts in the nude mouse with the use of radiolabeled monoclonal antibody

    SciTech Connect

    Zalcberg, J.R.; Thompson, C.H.; Lichtenstein, M.; Andrews, J.; McKenzie, I.F.

    1983-10-01

    For the evaluation of the clinical usefulness of monoclonal antibodies as diagnostic or therapeutic reagents, tumor localization must be clearly demonstrated in an experimental model. In this report, nude mice carrying two human tumor xenografts--a colon carcinoma (Colo 205) and a melanoma (Colo 239)--were given ip injections of radiolabeled monoclonal antibodies. Monoclonal antibody 250-30.6, which reacted specifically with the colon carcinoma but not with the melanoma, was labeled with 125I, while a second monoclonal antibody of similar immunoglobulin subclass, but unreactive with either cell type, was labeled with 131I. Both antibodies were injected simultaneously, and either the mice were scanned with a gamma camera or their tissues were removed and the localization of radiolabeled antibody was calculated with the use of localization index (LI)--the ratio of the tissue to blood distribution for each isotope. The studies showed that specific localization had occurred, there being a colon tumor LI of 6 at 2 days. Tumors of 150-300 mg (mean diameter, 6 mm) and with an LI as low as 1.5 could be successfully imaged after computer-assisted background subtraction. This study demonstrated that relatively small human tumor xenografts in the nude mouse can be specifically detected with the use of paired monoclonal antibodies, each labeled with a different isotope.

  18. [Salivary gland-like tumors of the breast].

    PubMed

    Otterbach, F; Schmid, K W

    2006-09-01

    A subset of rare benign and malignant breast tumors with and without myoepithelial differentiation are morphologically and histogenetically similar to salivary gland tumors, but may differ in incidence and clinical behavior. The clinicopathological, immunohistochemical, molecular and prognostic features of ten salivary gland-like tumor entities of the breast are discussed and compared with their respective counterparts in the salivary glands.

  19. Activated FXR Inhibits Leptin Signaling and Counteracts Tumor-promoting Activities of Cancer-Associated Fibroblasts in Breast Malignancy.

    PubMed

    Giordano, Cinzia; Barone, Ines; Vircillo, Valentina; Panza, Salvatore; Malivindi, Rocco; Gelsomino, Luca; Pellegrino, Michele; Rago, Vittoria; Mauro, Loredana; Lanzino, Marilena; Panno, Maria Luisa; Bonofiglio, Daniela; Catalano, Stefania; Andò, Sebastiano

    2016-02-22

    Cancer-associated fibroblasts (CAFs), the principal components of the tumor stroma, play a central role in cancer development and progression. As an important regulator of the crosstalk between breast cancer cells and CAFs, the cytokine leptin has been associated to breast carcinogenesis. The nuclear Farnesoid X Receptor-(FXR) seems to exert an oncosuppressive role in different tumors, including breast cancer. Herein, we demonstrated, for the first time, that the synthetic FXR agonist GW4064, inhibiting leptin signaling, affects the tumor-promoting activities of CAFs in breast malignancy. GW4064 inhibited growth, motility and invasiveness induced by leptin as well as by CAF-conditioned media in different breast cancer cell lines. These effects rely on the ability of activated FXR to increase the expression of the suppressor of the cytokine signaling 3 (SOCS3) leading to inhibition of leptin-activated signaling and downregulation of leptin-target genes. In vivo xenograft studies, using MCF-7 cells alone or co-injected with CAFs, showed that GW4064 administration markedly reduced tumor growth. Interestingly, GW4064-treated tumors exhibited decreased levels of leptin-regulated proteins along with a strong staining intensity for SOCS3. Thus, FXR ligands might represent an emerging potential anti-cancer therapy able to block the tumor supportive role of activated fibroblasts within the breast microenvironment.

  20. Activated FXR Inhibits Leptin Signaling and Counteracts Tumor-promoting Activities of Cancer-Associated Fibroblasts in Breast Malignancy

    PubMed Central

    Giordano, Cinzia; Barone, Ines; Vircillo, Valentina; Panza, Salvatore; Malivindi, Rocco; Gelsomino, Luca; Pellegrino, Michele; Rago, Vittoria; Mauro, Loredana; Lanzino, Marilena; Panno, Maria Luisa; Bonofiglio, Daniela; Catalano, Stefania; Andò, Sebastiano

    2016-01-01

    Cancer-associated fibroblasts (CAFs), the principal components of the tumor stroma, play a central role in cancer development and progression. As an important regulator of the crosstalk between breast cancer cells and CAFs, the cytokine leptin has been associated to breast carcinogenesis. The nuclear Farnesoid X Receptor-(FXR) seems to exert an oncosuppressive role in different tumors, including breast cancer. Herein, we demonstrated, for the first time, that the synthetic FXR agonist GW4064, inhibiting leptin signaling, affects the tumor-promoting activities of CAFs in breast malignancy. GW4064 inhibited growth, motility and invasiveness induced by leptin as well as by CAF-conditioned media in different breast cancer cell lines. These effects rely on the ability of activated FXR to increase the expression of the suppressor of the cytokine signaling 3 (SOCS3) leading to inhibition of leptin-activated signaling and downregulation of leptin-target genes. In vivo xenograft studies, using MCF-7 cells alone or co-injected with CAFs, showed that GW4064 administration markedly reduced tumor growth. Interestingly, GW4064-treated tumors exhibited decreased levels of leptin-regulated proteins along with a strong staining intensity for SOCS3. Thus, FXR ligands might represent an emerging potential anti-cancer therapy able to block the tumor supportive role of activated fibroblasts within the breast microenvironment. PMID:26899873

  1. Comparative analyses of gene copy number and mRNA expression in GBM tumors and GBM xenografts

    SciTech Connect

    Hodgson, J. Graeme; Yeh, Ru-Fang; Ray, Amrita; Wang, Nicholas J.; Smirnov, Ivan; Yu, Mamie; Hariono, Sujatmi; Silber, Joachim; Feiler, Heidi S.; Gray, Joe W.; Spellman, Paul T.; Vandenberg, Scott R.; Berger, Mitchel S.; James, C. David

    2009-04-03

    Development of model systems that recapitulate the molecular heterogeneity observed among glioblastoma multiforme (GBM) tumors will expedite the testing of targeted molecular therapeutic strategies for GBM treatment. In this study, we profiled DNA copy number and mRNA expression in 21 independent GBM tumor lines maintained as subcutaneous xenografts (GBMX), and compared GBMX molecular signatures to those observed in GBM clinical specimens derived from the Cancer Genome Atlas (TCGA). The predominant copy number signature in both tumor groups was defined by chromosome-7 gain/chromosome-10 loss, a poor-prognosis genetic signature. We also observed, at frequencies similar to that detected in TCGA GBM tumors, genomic amplification and overexpression of known GBM oncogenes, such as EGFR, MDM2, CDK6, and MYCN, and novel genes, including NUP107, SLC35E3, MMP1, MMP13, and DDX1. The transcriptional signature of GBMX tumors, which was stable over multiple subcutaneous passages, was defined by overexpression of genes involved in M phase, DNA replication, and chromosome organization (MRC) and was highly similar to the poor-prognosis mitosis and cell-cycle module (MCM) in GBM. Assessment of gene expression in TCGA-derived GBMs revealed overexpression of MRC cancer genes AURKB, BIRC5, CCNB1, CCNB2, CDC2, CDK2, and FOXM1, which form a transcriptional network important for G2/M progression and/or checkpoint activation. Our study supports propagation of GBM tumors as subcutaneous xenografts as a useful approach for sustaining key molecular characteristics of patient tumors, and highlights therapeutic opportunities conferred by this GBMX tumor panel for testing targeted therapeutic strategies for GBM treatment.

  2. Gene mutations in primary tumors and corresponding patient-derived xenografts derived from non-small cell lung cancer

    PubMed Central

    Peng, Shaohua; Cao, Mengru; Li, Hongyu; Hu, Jing; Huang, Xiao; Liu, Wei; Zhang, Hui; Wu, Shuhong; Pataer, Apar; Heymach, John V.; Eterovic, Agda Karina; Zhang, Qingxiu; Shaw, Kenna R.; Chen, Ken; Futreal, Andrew; Wang, Michael; Hofstetter, Wayne; Mehran, Reza; Rice, David; Roth, Jack A.; Sepesi, Boris; Swisher, Stephen G.; Vaporciyan, Ara; Walsh, Garrett L.; Johnson, Faye M.; Fang, Bingliang

    2014-01-01

    Molecular annotated patient-derived xenograft (PDX) models are useful for the preclinical investigation of anticancer drugs and individualized anticancer therapy. We established 23 PDXs from 88 surgical specimens of lung cancer patients and determined gene mutations in these PDXs and their paired primary tumors by ultradeep exome sequencing on 202 cancer-related genes. The numbers of primary tumors with deleterious mutations in TP53, KRAS, PI3KCA, ALK, STK11, and EGFR were 43.5%, 21.7%, 17.4%, 17.4%, 13.0%, and 8.7%, respectively. Other genes with deleterious mutations in ≥3 (13.0%) primary tumors were MLL3, SETD2, ATM, ARID1A, CRIPAK, HGF, BAI3, EP300, KDR, PDGRRA and RUNX1. Of 315 mutations detected in the primary tumors, 293 (93%) were also detected in their corresponding PDXs, indicating that PDXs have the capacity to recapitulate the mutations in primary tumors. Nevertheless, a substantial number of mutations had higher allele frequencies in the PDXs than in the primary tumors, or were not detectable in the primary tumor, suggesting the possibility of tumor cell enrichment in PDXs or heterogeneity in the primary tumors. The molecularly annotated PDXs generated from this study could be useful for future translational studies. PMID:25444907

  3. Gene mutations in primary tumors and corresponding patient-derived xenografts derived from non-small cell lung cancer.

    PubMed

    Hao, Chuncheng; Wang, Li; Peng, Shaohua; Cao, Mengru; Li, Hongyu; Hu, Jing; Huang, Xiao; Liu, Wei; Zhang, Hui; Wu, Shuhong; Pataer, Apar; Heymach, John V; Eterovic, Agda Karina; Zhang, Qingxiu; Shaw, Kenna R; Chen, Ken; Futreal, Andrew; Wang, Michael; Hofstetter, Wayne; Mehran, Reza; Rice, David; Roth, Jack A; Sepesi, Boris; Swisher, Stephen G; Vaporciyan, Ara; Walsh, Garrett L; Johnson, Faye M; Fang, Bingliang

    2015-02-01

    Molecular annotated patient-derived xenograft (PDX) models are useful for the preclinical investigation of anticancer drugs and individualized anticancer therapy. We established 23 PDXs from 88 surgical specimens of lung cancer patients and determined gene mutations in these PDXs and their paired primary tumors by ultradeep exome sequencing on 202 cancer-related genes. The numbers of primary tumors with deleterious mutations in TP53, KRAS, PI3KCA, ALK, STK11, and EGFR were 43.5%, 21.7%, 17.4%, 17.4%, 13.0%, and 8.7%, respectively. Other genes with deleterious mutations in ≥3 (13.0%) primary tumors were MLL3, SETD2, ATM, ARID1A, CRIPAK, HGF, BAI3, EP300, KDR, PDGRRA and RUNX1. Of 315 mutations detected in the primary tumors, 293 (93%) were also detected in their corresponding PDXs, indicating that PDXs have the capacity to recapitulate the mutations in primary tumors. Nevertheless, a substantial number of mutations had higher allele frequencies in the PDXs than in the primary tumors, or were not detectable in the primary tumor, suggesting the possibility of tumor cell enrichment in PDXs or heterogeneity in the primary tumors. The molecularly annotated PDXs generated from this study could be useful for future translational studies.

  4. Smad6 determines BMP-regulated invasive behaviour of breast cancer cells in a zebrafish xenograft model

    PubMed Central

    de Boeck, Miriam; Cui, Chao; Mulder, Aat A; Jost, Carolina R; Ikeno, Souichi; ten Dijke, Peter

    2016-01-01

    The transforming growth factor-β (TGF-β) family is known to play critical roles in cancer progression. While the dual role of TGF-β is well described, the function of bone morphogenetic proteins (BMPs) is unclear. In this study, we established the involvement of Smad6, a BMP-specific inhibitory Smad, in breast cancer cell invasion. We show that stable overexpression of Smad6 in breast cancer MCF10A M2 cells inhibits BMP signalling, thereby mitigating BMP6-induced suppression of mesenchymal marker expression. Using a zebrafish xenograft model, we demonstrate that overexpression of Smad6 potentiates invasion of MCF10A M2 cells and enhances the aggressiveness of breast cancer MDA-MB-231 cells in vivo, whereas a reversed phenotype is observed after Smad6 knockdown. Interestingly, BMP6 pre-treatment of MDA-MB-231 cells induced cluster formation at the invasive site in the zebrafish. BMP6 also stimulated cluster formation of MDA-MB-231 cells co-cultured on Human Microvascular Endothelial Cells (HMEC)-1 in vitro. Electron microscopy illustrated an induction of cell-cell contact by BMP6. The clinical relevance of our findings is highlighted by a correlation of high Smad6 expression with poor distant metastasis free survival in ER-negative cancer patients. Collectively, our data strongly indicates the involvement of Smad6 and BMP signalling in breast cancer cell invasion in vivo. PMID:27113436

  5. Detecting Vascular-Targeting Effects of the Hypoxic Cytotoxin Tirapazamine in Tumor Xenografts Using Magnetic Resonance Imaging

    SciTech Connect

    Bains, Lauren J.; Baker, Jennifer; Kyle, Alastair H.; Minchinton, Andrew I.; Reinsberg, Stefan A.

    2009-07-01

    Purpose: To determine whether vascular-targeting effects can be detected in vivo using magnetic resonance imaging (MRI). Methods and Materials: MR images of HCT-116 xenograft-bearing mice were acquired at 7 Tesla before and 24 hours after intraperitoneal injections of tirapazamine. Quantitative dynamic contrast-enhanced MRI analyses were performed to evaluate changes in tumor perfusion using two biomarkers: the volume transfer constant (K{sup trans}) and the initial area under the concentration-time curve (IAUC). We used novel implanted fiducial markers to obtain cryosections that corresponded to MR image planes from excised tumors; quantitative immunohistochemical mapping of tumor vasculature, perfusion, and necrosis enabled correlative analysis between these and MR images. Results: Conventional histological analysis showed lower vascular perfusion or greater amounts of necrosis in the central regions of five of eight tirapazamine-treated tumors, with three treated tumors showing no vascular dysfunction response. MRI data reflected this result, and a striking decrease in both K{sup trans} and IAUC values was seen with the responsive tumors. Retrospective evaluation of pretreatment MRI parameters revealed that those tumors that did not respond to the vascular-targeting effects of tirapazamine had significantly higher pretreatment K{sup trans} and IAUC values. Conclusions: MRI-derived parameter maps showed good agreement with histological tumor mapping. MRI was found to be an effective tool for noninvasively monitoring and predicting tirapazamine-mediated central vascular dysfunction.

  6. The perivascular niche regulates breast tumor dormancy

    PubMed Central

    Peinado, Héctor; Mori, Hidetoshi; Matei, Irina R.; Evason, Kimberley J.; Brazier, Hélène; Almeida, Dena; Koller, Antonius; Hajjar, Katherine A.; Stainier, Didier Y.R.; Chen, Emily I.; Lyden, David

    2013-01-01

    In a significant fraction of breast cancer patients, distant metastases emerge after years or even decades of latency. How disseminated tumor cells (DTCs) are kept dormant, and what ‘wakes them up’, are fundamental problems in tumor biology. To address these questions, we utilized metastasis assays in mice to show that dormant DTCs reside upon microvasculature of lung, bone marrow and brain. We then engineered organotypic microvascular niches to determine whether endothelial cells directly influence breast cancer cell (BCC) growth. These models demonstrated that endothelial-derived thrombospondin-1 induces sustained BCC quiescence. This suppressive cue was lost in sprouting neovasculature; time-lapse analysis showed that sprouting vessels not only permit, but accelerate BCC outgrowth. We confirmed this surprising result in dormancy models and in zebrafish, and identified active TGF-β1 and periostin as tumor-promoting, endothelial tip cell-derived factors. Our work reveals that stable microvasculature constitutes a ‘dormant niche,’ whereas sprouting neovasculature sparks micrometastatic outgrowth. PMID:23728425

  7. Sunitinib (SUTENT, SU11248) suppresses tumor growth and induces apoptosis in xenograft models of human hepatocellular carcinoma.

    PubMed

    Huynh, H; Ngo, V C; Choo, S P; Poon, D; Koong, H N; Thng, C H; Toh, H C; Zheng, L; Ong, L C; Jin, Y; Song, I C; Chang, A P C; Ong, H S; Chung, A Y F; Chow, P K H; Soo, K C

    2009-09-01

    Hepatocellular carcinoma (HCC) is the fifth most common and third deadliest primary neoplasm. Since HCC is a particularly vascular solid tumor, we determined the antitumor and antiangiogenic activities of sunitinib malate, a potent inhibitor of two receptors involved in angiogenesis - vascular endothelial growth factor receptor (VEGFR) and platelet-derived growth factor receptor (PDGFR). In the present study, we reported that treatment of HepG2 and SK-Hep-1 cells with sunitinib led to growth inhibition and apoptosis in a dose-dependent fashion. Sunitinib inhibited phosphorylation of VEGFR-2 at Tyr951 and PDGFR-beta at Tyr1021 both in vitro and in vivo. Sunitinib also suppressed tumor growth of five patient-derived xenografts. Sunitinib-induced tumor growth inhibition was associated with increased apoptosis, reduced microvessel density and inhibition of cell proliferation. This study provides a strong rationale for further clinical investigation of sunitinib in patients with hepatocellular carcinoma.

  8. Comparison of 18F-FES, 18F-FDG, and 18F-FMISO PET Imaging Probes for Early Prediction and Monitoring of Response to Endocrine Therapy in a Mouse Xenograft Model of ER-Positive Breast Cancer

    PubMed Central

    Yang, ZhongYi; Zhang, JianPing; Zhang, YongPing; Luo, JianMin; Zhang, YingJian

    2016-01-01

    Background There is an increasing need to characterize biological processes for early prediction and monitoring of response to endocrine therapy in breast cancer using multiple positron emission tomography (PET) imaging probes. However, use of more than two PET tracers in a single clinical trial is quite challenging. In this study we carried out a longitudinal investigation of 18F-FES, 18F-FDG, and 18F-FMISO PET imaging probes for early prediction and monitoring of response to endocrine therapy in a mouse xenograft model of estrogen receptor (ER)-positive breast cancer. Method ER+ human breast cancer ZR-75-1 models were established in female mice that were then randomly assigned to a treatment (fulvestrant, 5.0 mg/week for 21 days) or vehicle group. Micro-PET/CT imaging with 18F-FES, 18F-FDG, and 18F-FMISO was performed on days 0, 3, 14, and 21 after treatment. The uptake value (percentage injected dose per gram, %ID/g) for each probe in tumor (T) tissue and contralateral muscle (M) was measured for quantitative analysis and T/M calculation. Tumor volume was measured to record tumor growth at each time point. Tumor tissues were sampled for immunohistochemical staining of ER expression. Correlations for tumor volume and ERα levels with uptake data for the probe were tested. Results Uptake data for 18F-FES in ZR-75-1 tumor tissues corresponded well with tumor response to endocrine therapy, but not for 18F-FDG and 18F-FMISO, according to longitudinal micro-PET/CT imaging and quantitative correlation analysis. There was a significant positive correlation between 18F-FES uptake and ER levels (%ID/gmax r2 = 0.76, P< 0.05; T/M r2 = 0.82, P<0.05). Notably, 18F-FES uptake on day 3 was significantly correlated with the day 21/baseline tumor volume ratio (%ID/gmax r2 = 0.74, P < 0.05; T/M r2 = 0.78, P < 0.05). Conclusions Comparison of 18F-FES, 18F-FDG, and 18F-FMISO probes revealed that 18F-FES PET/CT molecular imaging can provide a precise early prediction of tumor

  9. TSU-68 (SU6668) inhibits local tumor growth and liver metastasis of human colon cancer xenografts via anti-angiogenesis.

    PubMed

    Yorozuya, Kyoko; Kubota, Tetsuro; Watanabe, Masahiko; Hasegawa, Hirotoshi; Ozawa, Soji; Kitajima, Masaki; Chikahisa, Lumi Muramatsu; Yamada, Yuji

    2005-09-01

    A number of receptor tyrosine kinases (RTKs) are involved in angiogenesis. TSU-68 (SU-6668) was developed as an inhibitor of RTKs involved in VEGF, bFGF and PDGF signaling, which then inhibits endothelial cell proliferation. We investigated the antitumor effects of TSU-68 against human colon cancer xenografts in male SCID mice and its anti-angiogenic activity using a dorsal air-sac (DAS) assay. TSU-68 was administered orally at a dose of 200 mg/kg twice daily. Mice bearing human colon carcinoma, HT-29, or WiDr xenografts were treated for 16 days. To determine the effect on hepatic metastasis, cell suspensions of HT-29 or WAV-I were injected into the spleen of mice on day 0, and mice treated for 28 days starting from day 1. For the DAS assay, HT-29, WiDr or WAV-I cells suspended in PBS at 2 x 10(7) cells/Millipore chamber were implanted subcutaneously into SCID mice, which were then treated from day 0 to 5, On day 6, the anti-angiogenic effects were assessed. Results indicated that TSU-68 significantly inhibited the growth of subcutaneous tumors. In the hepatic metastasis model, liver weights of the TSU-68-treated group were significantly reduced, compared to those of control mice. In the DAS assay, the angiogenic indices of the treated groups were significantly decreased for HT-29, WiDr and WAV-I tumors, with T/C ratios of 13.4, 50 and 35.3%, respectively. As TSU-68 significantly inhibited tumor growth and liver metastasis formation of human colon cancer xenografts, probably through anti-angiogenic activity, this agent may be useful for the treatment of colon cancer.

  10. Inhibition of Xenograft Tumor Growth by Gold Nanoparticle-DNA Oligonucleotide Conjugates-Assisted Delivery of BAX mRNA

    PubMed Central

    Won, Miae; Park, Mira; Bae, Jeehyeon; Lee, Kangseok

    2013-01-01

    Use of non-biological agents for mRNA delivery into living systems in order to induce heterologous expression of functional proteins may provide more advantages than the use of DNA and/or biological vectors for delivery. However, the low efficiency of mRNA delivery into live animals, using non-biological systems, has hampered the use of mRNA as a therapeutic molecule. Here, we show that gold nanoparticle-DNA oligonucleotide (AuNP-DNA) conjugates can serve as universal vehicles for more efficient delivery of mRNA into human cells, as well as into xenograft tumors generated in mice. Injections of BAX mRNA loaded on AuNP-DNA conjugates into xenograft tumors resulted in highly efficient mRNA delivery. The delivered mRNA directed the efficient production of biologically functional BAX protein, a pro-apoptotic factor, consequently inhibiting tumor growth. These results demonstrate that mRNA delivery by AuNP-DNA conjugates can serve as a new platform for the development of safe and efficient gene therapy. PMID:24073264

  11. The impact of bone morphogenetic protein 4 (BMP4) on breast cancer metastasis in a mouse xenograft model.

    PubMed

    Ampuja, M; Alarmo, E L; Owens, P; Havunen, R; Gorska, A E; Moses, H L; Kallioniemi, A

    2016-06-01

    Bone morphogenetic protein 4 (BMP4) is a key regulator of cell proliferation and differentiation. In breast cancer cells, BMP4 has been shown to reduce proliferation in vitro and interestingly, in some cases, also to induce migration and invasion. Here we investigated whether BMP4 influences breast cancer metastasis formation by using a xenograft mouse model. MDA-MB-231 breast cancer cells were injected intracardially into mice and metastasis formation was monitored using bioluminescence imaging. Mice treated with BMP4 developed metastases slightly earlier as compared to control animals but the overall number of metastases was similar in both groups (13 in the BMP4 group vs. 12 in controls). In BMP4-treated mice, bone metastases were more common (10 vs. 7) but adrenal gland metastases were less frequent (1 vs. 5) than in controls. Immunostaining revealed no differences in signaling activation, proliferation rate, blood vessel formation, EMT markers or the number of cancer-associated fibroblasts between the treatment groups. In conclusion, BMP4 caused a trend towards accelerated metastasis formation, especially in bone. More work is needed to uncover the long-term effects of BMP4 and the clinical relevance of these findings.

  12. The impact of bone morphogenetic protein 4 (BMP4) on breast cancer metastasis in a mouse xenograft model.

    PubMed

    Ampuja, M; Alarmo, E L; Owens, P; Havunen, R; Gorska, A E; Moses, H L; Kallioniemi, A

    2016-06-01

    Bone morphogenetic protein 4 (BMP4) is a key regulator of cell proliferation and differentiation. In breast cancer cells, BMP4 has been shown to reduce proliferation in vitro and interestingly, in some cases, also to induce migration and invasion. Here we investigated whether BMP4 influences breast cancer metastasis formation by using a xenograft mouse model. MDA-MB-231 breast cancer cells were injected intracardially into mice and metastasis formation was monitored using bioluminescence imaging. Mice treated with BMP4 developed metastases slightly earlier as compared to control animals but the overall number of metastases was similar in both groups (13 in the BMP4 group vs. 12 in controls). In BMP4-treated mice, bone metastases were more common (10 vs. 7) but adrenal gland metastases were less frequent (1 vs. 5) than in controls. Immunostaining revealed no differences in signaling activation, proliferation rate, blood vessel formation, EMT markers or the number of cancer-associated fibroblasts between the treatment groups. In conclusion, BMP4 caused a trend towards accelerated metastasis formation, especially in bone. More work is needed to uncover the long-term effects of BMP4 and the clinical relevance of these findings. PMID:26970275

  13. Primary extraskeletal Ewing's sarcoma/primitive neuroectodermal tumor of breast

    PubMed Central

    Srivastava, Smita; Arora, Jyoti; Parakh, Anushri; Goel, Ruchika Kumar

    2016-01-01

    Extraskeletal Ewing's sarcoma (EES) is a rare soft tissue tumor that is morphologically indistinguishable from skeletal ES. We report a case of a 25-year-old female with recurrent EES/primitive neuroectodermal tumor of right breast with imaging findings on mammogram, ultrasound, magnetic resonance imaging breast, and positron emission tomography–computed tomography. PMID:27413270

  14. An integrated genomic approach identifies persistent tumor suppressive effects of transforming growth factor-β in human breast cancer

    PubMed Central

    2014-01-01

    Introduction Transforming growth factor-βs (TGF-βs) play a dual role in breast cancer, with context-dependent tumor-suppressive or pro-oncogenic effects. TGF-β antagonists are showing promise in early-phase clinical oncology trials to neutralize the pro-oncogenic effects. However, there is currently no way to determine whether the tumor-suppressive effects of TGF-β are still active in human breast tumors at the time of surgery and treatment, a situation that could lead to adverse therapeutic responses. Methods Using a breast cancer progression model that exemplifies the dual role of TGF-β, promoter-wide chromatin immunoprecipitation and transcriptomic approaches were applied to identify a core set of TGF-β-regulated genes that specifically reflect only the tumor-suppressor arm of the pathway. The clinical significance of this signature and the underlying biology were investigated using bioinformatic analyses in clinical breast cancer datasets, and knockdown validation approaches in tumor xenografts. Results TGF-β-driven tumor suppression was highly dependent on Smad3, and Smad3 target genes that were specifically enriched for involvement in tumor suppression were identified. Patterns of Smad3 binding reflected the preexisting active chromatin landscape, and target genes were frequently regulated in opposite directions in vitro and in vivo, highlighting the strong contextuality of TGF-β action. An in vivo-weighted TGF-β/Smad3 tumor-suppressor signature was associated with good outcome in estrogen receptor-positive breast cancer cohorts. TGF-β/Smad3 effects on cell proliferation, differentiation and ephrin signaling contributed to the observed tumor suppression. Conclusions Tumor-suppressive effects of TGF-β persist in some breast cancer patients at the time of surgery and affect clinical outcome. Carefully tailored in vitro/in vivo genomic approaches can identify such patients for exclusion from treatment with TGF-β antagonists. PMID:24890385

  15. Interstitial laser photocoagulation of breast tumors

    NASA Astrophysics Data System (ADS)

    Pickard, David C. O.; Bown, Stephen G.; Briggs, Gavin M.; Hall-Craggs, Margret A.

    2001-10-01

    Interstitial Laser Photocoagulation (ILP) is a method of destroying lesions in the center of solid organs without the need for open surgery. Under image guidance, up to four needles are inserted percutaneously into the tumor through which thin optic fibers are passed into the target lesion. Low power laser light from a semiconductor laser is delivered to gently coagulate the tissue. This dead tissue is subsequently resorbed by the body's normal healing processes. Follow up is achieved with ultrasound imaging. One study is described for assessing ILP for benign fibroadenomas. Fibroadenomas were treated to assess how laser treated breast tissue healed in the long term and we have shown that the necrosed tissue is resorbed without complications over a period of months. Nevertheless, by following treated fibroadenomas (up to 35mm diameter) with ultrasound measurement at 3, 6 and 12 months, in 14 patients, only one lesion was still detectable 12 months after ILP. In appropriate cases, ILP could be an attractive option, as it leaves no scars and should not change the shape or size of the breast. If the present studies are successful, the plan is for a multi-center trial of minimally invasive, thermal ablation of breast cancers.

  16. Ovarian Tumor Attachment, Invasion, and Vascularization Reflect Unique Microenvironments in the Peritoneum: Insights from Xenograft and Mathematical Models

    PubMed Central

    Steinkamp, Mara P.; Winner, Kimberly Kanigel; Davies, Suzy; Muller, Carolyn; Zhang, Yong; Hoffman, Robert M.; Shirinifard, Abbas; Moses, Melanie; Jiang, Yi; Wilson, Bridget S.

    2013-01-01

    Ovarian cancer relapse is often characterized by metastatic spread throughout the peritoneal cavity with tumors attached to multiple organs. In this study, interaction of ovarian cancer cells with the peritoneal tumor microenvironment was evaluated in a xenograft model based on intraperitoneal injection of fluorescent SKOV3.ip1 ovarian cancer cells. Intra-vital microscopy of mixed GFP-red fluorescent protein (RFP) cell populations injected into the peritoneum demonstrated that cancer cells aggregate and attach as mixed spheroids, emphasizing the importance of homotypic adhesion in tumor formation. Electron microscopy provided high resolution structural information about local attachment sites. Experimental measurements from the mouse model were used to build a three-dimensional cellular Potts ovarian tumor model (OvTM) that examines ovarian cancer cell attachment, chemotaxis, growth, and vascularization. OvTM simulations provide insight into the relative influence of cancer cell–cell adhesion, oxygen availability, and local architecture on tumor growth and morphology. Notably, tumors on the mesentery, omentum, or spleen readily invade the “open” architecture, while tumors attached to the gut encounter barriers that restrict invasion and instead rapidly expand into the peritoneal space. Simulations suggest that rapid neovascularization of SKOV3.ip1 tumors is triggered by constitutive release of angiogenic factors in the absence of hypoxia. This research highlights the importance of cellular adhesion and tumor microenvironment in the seeding of secondary ovarian tumors on diverse organs within the peritoneal cavity. Results of the OvTM simulations indicate that invasion is strongly influenced by features underlying the mesothelial lining at different sites, but is also affected by local production of chemotactic factors. The integrated in vivo mouse model and computer simulations provide a unique platform for evaluating targeted therapies for ovarian cancer

  17. Basal Tumor Cell Isolation and Patient-Derived Xenograft Engraftment Identify High-Risk Clinical Bladder Cancers

    PubMed Central

    Skowron, K. B.; Pitroda, S. P.; Namm, J. P.; Balogun, O.; Beckett, M. A.; Zenner, M. L.; Fayanju, O.; Huang, X.; Fernandez, C.; Zheng, W.; Qiao, G.; Chin, R.; Kron, S. J.; Khodarev, N. N.; Posner, M. C.; Steinberg, G. D.; Weichselbaum, R. R.

    2016-01-01

    Strategies to identify tumors at highest risk for treatment failure are currently under investigation for patients with bladder cancer. We demonstrate that flow cytometric detection of poorly differentiated basal tumor cells (BTCs), as defined by the co-expression of CD90, CD44 and CD49f, directly from patients with early stage tumors (T1-T2 and N0) and patient-derived xenograft (PDX) engraftment in locally advanced tumors (T3-T4 or N+) predict poor prognosis in patients with bladder cancer. Comparative transcriptomic analysis of bladder tumor cells isolated from PDXs indicates unique patterns of gene expression during bladder tumor cell differentiation. We found cell division cycle 25C (CDC25C) overexpression in poorly differentiated BTCs and determined that CDC25C expression predicts adverse survival independent of standard clinical and pathologic features in bladder cancer patients. Taken together, our findings support the utility of BTCs and bladder cancer PDX models in the discovery of novel molecular targets and predictive biomarkers for personalizing oncology care for patients. PMID:27775025

  18. Correlation between tumor engraftment in patient-derived xenograft models and clinical outcomes in colorectal cancer patients.

    PubMed

    Oh, Bo Young; Lee, Woo Yong; Jung, Sungwon; Hong, Hye Kyung; Nam, Do-Hyun; Park, Yoon Ah; Huh, Jung Wook; Yun, Seong Hyeon; Kim, Hee Cheol; Chun, Ho-Kyung; Cho, Yong Beom

    2015-06-30

    Despite numerous studies involving patient-derived xenograft (PDX) models, few studies have investigated the relationship between the ability of the tumor to engraft (tumorigenicity) and the clinical features of colorectal cancer (CRC). The aim of this study was to determine whether tumorigenicity correlates with clinical outcomes of CRC patients. We included 241 CRC patients who underwent radical surgery from 2010 to 2013. PDX models were established by implanting tumor fragments obtained from these patients into the subcutaneous layer of immunodeficient mice. Xenografts were successfully established from 62.2%. Successful engraftment was associated with advanced stage (p < 0.001) and moderate/poor differentiation (p = 0.029). Three-year disease-free survival (DFS) rates were lower for patients with tumorigenicity (p = 0.011). In stage III patients, tumorigenicity was an independent predictor of poor DFS (p = 0.034). In addition, mutation of TP53 was most frequently detected in stage III patients with tumorigenicity. Two models of stage IV disease without KRAS mutations showed high sensitivity to EGFR-targeted agents, while none of the models with KRAS mutations showed high sensitivity. In conclusion, PDX models may provide an effective preclinical tool for predicting cancer progression and could be used to further genomic and pharmacologic research on personalized treatments.

  19. Metallofullerene-based Nanoplatform for Brain Tumor Brachytherapy and Longitudinal Imaging in a Murine Orthotopic Xenograft Model

    PubMed Central

    Shultz, Michael D.; Wilson, John D.; Fuller, Christine E.; Zhang, Jianyuan; Dorn, Harry C.

    2011-01-01

    Purpose: To demonstrate in an orthotopic xenograft brain tumor model that a functionalized metallofullerene (f-Gd3N@C80) can enable longitudinal tumor imaging and, when radiolabeled with lutetium 177 (177Lu) and tetraazacyclododecane tetraacetic acid (DOTA) (177Lu-DOTA-f-Gd3N@C80), provide an anchor to deliver effective brachytherapy. Materials and Methods: All experiments involving the use of mice were carried out in accordance with protocols approved by the institutional animal care and use committee. Human glioblastoma U87MG cells were implanted by using stereotactic procedures into the brains of 37 female athymic nude-Foxn1nu mice and allowed to develop into a tumor for 8 days. T1- and T2-weighted magnetic resonance (MR) imaging was performed in five mice. Biodistribution studies were performed in 12 mice at four time points over 7 days to evaluate gadolinium content. Survival studies involved 20 mice that received infusion of a nanoplatform by means of convection-enhanced delivery (CED) 8 days after tumor implantation. Mice in survival studies were divided into two groups: one comprised untreated mice that received f-Gd3N@C80 alone and the other comprised mice treated with brachytherapy that received 1.11 MBq of 177Lu-DOTA-f-Gd3N@C80. Survival data were evaluated by using Kaplan-Meier statistical methods. Results: MR imaging showed extended tumor retention (25.6% ± 1.2 of the infused dose at 52 days, confirmed with biodistribution studies) of the f-Gd3N@C80 nanoplatform, which enabled longitudinal imaging. Successful coupling of 177Lu to the f-Gd3N@C80 surface was achieved by using a bifunctional macrocyclic chelator. The extended tumor retention allowed for effective brachytherapy, as indicated by extended survival time (>2.5 times that of the untreated group) and histologic signs of radiation-induced tumor damage. Conclusion: The authors have developed a multimodal nanoplatform and have demonstrated longitudinal tumor imaging, prolonged intratumoral probe

  20. Pharmacokinetically Guided Everolimus in Patients With Breast Cancer, Pancreatic Neuroendocrine Tumors, or Kidney Cancer

    ClinicalTrials.gov

    2016-01-12

    Estrogen Receptor-positive Breast Cancer; Gastrinoma; Glucagonoma; HER2-negative Breast Cancer; Insulinoma; Mucositis; Oral Complications; Pancreatic Polypeptide Tumor; Progesterone Receptor-positive Breast Cancer; Recurrent Breast Cancer; Recurrent Islet Cell Carcinoma; Recurrent Renal Cell Cancer; Somatostatinoma; Stage III Renal Cell Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Breast Cancer; Stage IV Renal Cell Cancer

  1. Inhibition of 4E-BP1 Sensitizes U87 Glioblastoma Xenograft Tumors to Irradiation by Decreasing Hypoxia Tolerance

    SciTech Connect

    Dubois, Ludwig; Magagnin, Michael G.; Cleven, Arjen H.G.; Weppler, Sherry A.; Grenacher, Beat; Landuyt, Willy; Lieuwes, Natasja; Lambin, Philippe; Gorr, Thomas A.; Koritzinsky, Marianne

    2009-03-15

    Purpose: Eukaryotic initiation factor 4E (eIF4E) is an essential rate-limiting factor for cap-dependent translation in eukaryotic cells. Elevated eIF4E activity is common in many human tumors and is associated with disease progression. The growth-promoting effects of eIF4E are in turn negatively regulated by 4E-BP1. However, although 4E-BP1 harbors anti-growth activity, its expression is paradoxically elevated in some tumors. The aim of this study was to investigate the functional role of 4E-BP1 in the context of solid tumors. Methods and Materials: In vitro and in vivo growth properties, hypoxia tolerance, and response to radiation were assessed for HeLa and U87 cells, after stable expression of shRNA specific for 4E-BP1. Results: We found that loss of 4E-BP1 expression did not significantly alter in vitro growth but did accelerate the growth of U87 tumor xenografts, consistent with the growth-promoting function of deregulated eIF4E. However, cells lacking 4E-BP1 were significantly more sensitive to hypoxia-induced cell death in vitro. Furthermore, 4E-BP1 knockdown cells produced tumors more sensitive to radiation because of a reduction in the viable fraction of radioresistant hypoxic cells. Decreased hypoxia tolerance in the 4E-BP1 knockdown tumors was evident by increased cleaved caspase-3 levels and was associated with a reduction in adenosine triphosphate (ATP). Conclusions: Our results suggest that although tumors often demonstrate increases in cap-dependent translation, regulation of this activity is required to facilitate energy conservation, hypoxia tolerance, and tumor radioresistance. Furthermore, we suggest that targeting translational control may be an effective way to target hypoxic cells and radioresistance in metabolically hyperactive tumors.

  2. 5α-reductase inhibition suppresses testosterone-induced initial regrowth of regressed xenograft prostate tumors in animal models.

    PubMed

    Masoodi, Khalid Z; Ramos Garcia, Raquel; Pascal, Laura E; Wang, Yujuan; Ma, Hei M; O'Malley, Katherine; Eisermann, Kurtis; Shevrin, Daniel H; Nguyen, Holly M; Vessella, Robert L; Nelson, Joel B; Parikh, Rahul A; Wang, Zhou

    2013-07-01

    Androgen deprivation therapy (ADT) is the standard treatment for patients with prostate-specific antigen progression after treatment for localized prostate cancer. An alternative to continuous ADT is intermittent ADT (IADT), which allows recovery of testosterone during off-cycles to stimulate regrowth and differentiation of the regressed prostate tumor. IADT offers patients a reduction in side effects associated with ADT, improved quality of life, and reduced cost with no difference in overall survival. Our previous studies showed that IADT coupled with 5α-reductase inhibitor (5ARI), which blocks testosterone conversion to DHT could prolong survival of animals bearing androgen-sensitive prostate tumors when off-cycle duration was fixed. To further investigate this clinically relevant observation, we measured the time course of testosterone-induced regrowth of regressed LuCaP35 and LNCaP xenograft tumors in the presence or absence of a 5ARI. 5α-Reductase inhibitors suppressed the initial regrowth of regressed prostate tumors. However, tumors resumed growth and were no longer responsive to 5α-reductase inhibition several days after testosterone replacement. This finding was substantiated by bromodeoxyuridine and Ki67 staining of LuCaP35 tumors, which showed inhibition of prostate tumor cell proliferation by 5ARI on day 2, but not day 14, after testosterone replacement. 5α-Reductase inhibitors also suppressed testosterone-stimulated proliferation of LNCaP cells precultured in androgen-free media, suggesting that blocking testosterone conversion to DHT can inhibit prostate tumor cell proliferation via an intracrine mechanism. These results suggest that short off-cycle coupled with 5α-reductase inhibition could maximize suppression of prostate tumor growth and, thus, improve potential survival benefit achieved in combination with IADT. PMID:23671262

  3. Benign mixed tumors (pleomorphic adenomas) of the breast.

    PubMed

    Moran, C A; Suster, S; Carter, D

    1990-10-01

    Six cases of benign mixed tumors of the female breast are described. The tumors were found in three settings: (a) as a de-novo lesion arising from breast parenchyma, (b) as single or multiple nodules arising in a background of benign proliferative epithelial elements, and (c) in association with breast carcinoma. The tumors ranged from 1 to 4 cm in diameter, and were histologically characterized by the admixture in various proportions of benign glandular epithelial and myoepithelial elements and cartilaginous or myxoid components. Immunohistochemical staining supported this interpretation. One of the cases was remarkable for the presence of abundant tyrosine-like crystals, a feature described in benign mixed tumors of salivary glands. None of the tumors has recurred during a follow-up period of 1-7 years. Mixed tumors of the breast are considered to be similar to their dermal and salivary gland counterparts.

  4. Suppression of colorectal cancer subcutaneous xenograft and experimental lung metastasis using nanoparticle-mediated drug delivery to tumor neovasculature.

    PubMed

    Wang, Chao; Zhao, Mei; Liu, Ya-Rong; Luan, Xin; Guan, Ying-Yun; Lu, Qin; Yu, De-Hong; Bai, Fan; Chen, Hong-Zhuan; Fang, Chao

    2014-01-01

    Antiangiogenic therapy is a validated approach for colorectal cancer (CRC) treatment. However, diverse adverse effects inevitably appear due to the off-target effect of the approved antiangiogenic inhibitors on the physiological functions and homeostasis. This study was to investigate a new tumor vessel targeting nanoparticulate drug delivery system, F56 peptide conjugated nanoparticles loading vincristine (F56-VCR-NP), for the effective treatment of CRC subcutaneous xenograft and experimental lung metastasis model. The controlled release behavior and in vivo pharmacokinetic profile of F56-VCR-NP were characterized. The tumor vessel targeting and antiangiogenic activity of F56-VCR-NP was evaluated in human umbilical vein endothelial cells (HUVEC, a classical cell model mimicking tumor vascular EC), subcutaneous human HCT-15 xenograft in immunodeficient nude mice, and experimental CT-26 lung metastasis model in immunocompetent mice. The therapeutic efficacy (animal survival and toxicity) was further investigated in the model of CT-26 lung metastasis in mice. F56-VCR-NP could achieve 30-day controlled drug release in PBS (pH 7.4) and exhibited favorable long-circulating feature in vivo. F56-VCR-NP could accurately target the CRC neovasculature and elicit nanoparticle internalization in the tumor vascular EC, where the antiangiogenic VCR-induced dramatic EC apoptosis and necrosis of CRC tissue. F56-VCR-NP significantly prolonged the mouse survival with no obvious toxicity (weight loss and anepithymia) in the CT-26 lung metastasis mice model, and this pronounced antitumor effect was closely related with the decreased microvessel density in the metastases. The present nanoparticle-based targeted antiangiogenic therapy may provide a new promising approach for the therapy of CRC and lung metastasis, which deserves further translational research.

  5. miR-21 induces myofibroblast differentiation and promotes the malignant progression of breast phyllodes tumors.

    PubMed

    Gong, Chang; Nie, Yan; Qu, Shaohua; Liao, Jian-You; Cui, Xiuying; Yao, Herui; Zeng, Yunjie; Su, Fengxi; Song, Erwei; Liu, Qiang

    2014-08-15

    Phyllodes tumors of breast, even histologically diagnosed as benign, can recur locally and have metastatic potential. Histologic markers only have limited value in predicting the clinical behavior of phyllodes tumors. It remains unknown what drives the malignant progression of phyllodes tumors. We found that the expression of myofibroblast markers, α-smooth muscle actin (α-SMA), fibroblast activation protein (FAP), and stromal cell-derived factor-1 (SDF-1), is progressively increased in the malignant progression of phyllodes tumors. Microarray showed that miR-21 was one of the most significantly upregulated microRNAs in malignant phyllodes tumors compared with benign phyllodes tumors. In addition, increased miR-21 expression was primarily localized to α-SMA-positive myofibroblasts. More importantly, α-SMA and miR-21 are independent predictors of recurrence and metastasis, with their predictive value of recurrence better than histologic grading. Furthermore, miR-21 mimics promoted, whereas miR-21 antisense oligos inhibited, the expression of α-SMA, FAP, and SDF-1, as well as the proliferation and invasion of primary stromal cells of phyllodes tumors. The ability of miR-21 to induce myofibroblast differentiation was mediated by its regulation on Smad7 and PTEN, which regulate the migration and proliferation, respectively. In breast phyllodes tumor xenografts, miR-21 accelerated tumor growth, induced myofibroblast differentiation, and promoted metastasis. This study suggests an important role of myofibroblast differentiation in the malignant progression of phyllodes tumors that is driven by increased miR-21.

  6. Thermal detection of a prevascular tumor embedded in breast tissue.

    PubMed

    Agyingi, Ephraim; Wiandt, Tamas; Maggelakis, Sophia A

    2015-10-01

    This paper presents a mathematical model of heat transfer in a prevascular breast tumor. The model uses the steady state temperature of the breast at the skin surface to determine whether there is an underlying tumor and if so, verifies whether the tumor is growing or dormant. The model is governed by the Pennes equations and we present numerical simulations for versions of the model in two and three dimensions.

  7. Inhibition of signaling between human CXCR4 and zebrafish ligands by the small molecule IT1t impairs the formation of triple-negative breast cancer early metastases in a zebrafish xenograft model

    PubMed Central

    Tulotta, Claudia; Stefanescu, Cristina; Beletkaia, Elena; Bussmann, Jeroen; Tarbashevich, Katsiaryna; Schmidt, Thomas; Snaar-Jagalska, B. Ewa

    2016-01-01

    ABSTRACT Triple-negative breast cancer (TNBC) is a highly aggressive and recurrent type of breast carcinoma that is associated with poor patient prognosis. Because of the limited efficacy of current treatments, new therapeutic strategies need to be developed. The CXCR4-CXCL12 chemokine signaling axis guides cell migration in physiological and pathological processes, including breast cancer metastasis. Although targeted therapies to inhibit the CXCR4-CXCL12 axis are under clinical experimentation, still no effective therapeutic approaches have been established to block CXCR4 in TNBC. To unravel the role of the CXCR4-CXCL12 axis in the formation of TNBC early metastases, we used the zebrafish xenograft model. Importantly, we demonstrate that cross-communication between the zebrafish and human ligands and receptors takes place and human tumor cells expressing CXCR4 initiate early metastatic events by sensing zebrafish cognate ligands at the metastatic site. Taking advantage of the conserved intercommunication between human tumor cells and the zebrafish host, we blocked TNBC early metastatic events by chemical and genetic inhibition of CXCR4 signaling. We used IT1t, a potent CXCR4 antagonist, and show for the first time its promising anti-tumor effects. In conclusion, we confirm the validity of the zebrafish as a xenotransplantation model and propose a pharmacological approach to target CXCR4 in TNBC. PMID:26744352

  8. Quantitation of Murine Stroma and Selective Purification of the Human Tumor Component of Patient-Derived Xenografts for Genomic Analysis

    PubMed Central

    Schneeberger, Valentina E.; Allaj, Viola; Gardner, Eric E.; Rudin, Charles M.

    2016-01-01

    Patient-derived xenograft (PDX) mouse models are increasingly used for preclinical therapeutic testing of human cancer. A limitation in molecular and genetic characterization of PDX tumors is the presence of integral murine stroma. This is particularly problematic for genomic sequencing of PDX models. Rapid and dependable approaches for quantitating stromal content and purifying the malignant human component of these tumors are needed. We used a recently developed technique exploiting species-specific polymerase chain reaction (PCR) amplicon length (ssPAL) differences to define the fractional composition of murine and human DNA, which was proportional to the fractional composition of cells in a series of lung cancer PDX lines. We compared four methods of human cancer cell isolation: fluorescence-activated cell sorting (FACS), an immunomagnetic mouse cell depletion (MCD) approach, and two distinct EpCAM-based immunomagnetic positive selection methods. We further analyzed DNA extracted from the resulting enriched human cancer cells by targeted sequencing using a clinically validated multi-gene panel. Stromal content varied widely among tumors of similar histology, but appeared stable over multiple serial tumor passages of an individual model. FACS and MCD were superior to either positive selection approach, especially in cases of high stromal content, and consistently allowed high quality human-specific genomic profiling. ssPAL is a dependable approach to quantitation of murine stromal content, and MCD is a simple, efficient, and high yield approach to human cancer cell isolation for genomic analysis of PDX tumors. PMID:27611664

  9. Quantitation of Murine Stroma and Selective Purification of the Human Tumor Component of Patient-Derived Xenografts for Genomic Analysis.

    PubMed

    Schneeberger, Valentina E; Allaj, Viola; Gardner, Eric E; Poirier, J T; Rudin, Charles M

    2016-01-01

    Patient-derived xenograft (PDX) mouse models are increasingly used for preclinical therapeutic testing of human cancer. A limitation in molecular and genetic characterization of PDX tumors is the presence of integral murine stroma. This is particularly problematic for genomic sequencing of PDX models. Rapid and dependable approaches for quantitating stromal content and purifying the malignant human component of these tumors are needed. We used a recently developed technique exploiting species-specific polymerase chain reaction (PCR) amplicon length (ssPAL) differences to define the fractional composition of murine and human DNA, which was proportional to the fractional composition of cells in a series of lung cancer PDX lines. We compared four methods of human cancer cell isolation: fluorescence-activated cell sorting (FACS), an immunomagnetic mouse cell depletion (MCD) approach, and two distinct EpCAM-based immunomagnetic positive selection methods. We further analyzed DNA extracted from the resulting enriched human cancer cells by targeted sequencing using a clinically validated multi-gene panel. Stromal content varied widely among tumors of similar histology, but appeared stable over multiple serial tumor passages of an individual model. FACS and MCD were superior to either positive selection approach, especially in cases of high stromal content, and consistently allowed high quality human-specific genomic profiling. ssPAL is a dependable approach to quantitation of murine stromal content, and MCD is a simple, efficient, and high yield approach to human cancer cell isolation for genomic analysis of PDX tumors. PMID:27611664

  10. MicroRNA-544 down-regulates both Bcl6 and Stat3 to inhibit tumor growth of human triple negative breast cancer.

    PubMed

    Zhu, Zhengzhi; Wang, Shengying; Zhu, Jinhai; Yang, Qifeng; Dong, Huiming; Huang, Jiankang

    2016-10-01

    Triple negative breast cancer lacking estrogen receptor (ER), progesterone receptor and Her2 account for account for the majority of the breast cancer deaths, due to the lack of specific gene targeted therapy. Our current study aimed to investigate the role of miR-544 in triple negative breast cancer. Endogenous levels of miR-544 were significantly lower in breast cancer cell lines than in human breast non-tumorigenic and mammary epithelial cell lines. We found that miR-544 directly targeted the 3'-untranslated region (UTR) on both Bcl6 and Stat3 mRNAs, and overexpression of miR-544 in triple negative breast cancer cells significantly down-regulated expressions of Bcl6 and Stat3, which in turn severely inhibited cancer cell proliferation, migration and invasion in vitro. Employing a mouse xenograft model to examine the in vivo function of miR-544, we found that expression of miR-544 significantly repressed the growth of xenograft tumors. Our current study reported miR-544 as a tumor-suppressor microRNA particularly in triple negative breast cancer. Our data supported the role of miR-544 as a potential biomarker in developing gene targeted therapies in the clinical treatment of triple negative breast cancer.

  11. Pretargeted immuno-PET of CEA-expressing intraperitoneal human colonic tumor xenografts: a new sensitive detection method

    PubMed Central

    2012-01-01

    Background In this study, pretargeted immuno-positron-emission tomography [PET] with a bispecific monoclonal anti-carcinoembryonic antigen [CEA] (CEACAM5) × anti-hapten antibody (bispecific monoclonal antibody [bsmAb]) and a small (1.5 kD) peptide labeled with 68Ga was compared to fludeoxyglucose [18F-FDG]-PET for detecting intraperitoneal [i.p.] CEA-expressing human colonic tumor xenografts in nude mice. Methods Two groups of female BALB/c nude mice were inoculated with LS174T human colonic tumor cells i.p. One group received 5 MBq 18F-FDG, and the other received intravenous injections of the bsmAb, followed 16 h later with 5 MBq of 68Ga-labeled peptide. One hour after the radiolabeled peptide or FDG was given, micro-PET/computed tomography images were acquired. Thereafter, the uptake of the 68Ga or 18F in dissected tissue was determined. Results Within 1 h, high uptake of the 68Ga-labeled peptide in the tumor lesions (23.4 ± 7.2% ID/g) and low background activity levels were observed (e.g., tumor-to-intestine ratio, 58 ± 22). This resulted in a clear visualization of all intra-abdominal tumor lesions ≥ 10 μL and even some tumors as small as 5 μL (2 mm diameter). 18F-FDG efficiently localized in the tumors (8.7 ± 3.1% ID/g) but also showed physiological uptake in various normal tissues (e.g., tumor-to-intestine ratio, 3.9 ± 1.1). Conclusions Pretargeted immuno-PET with bsmAb and a 68Ga-labeled peptide could be a very sensitive imaging method for imaging colonic cancer, disclosing occult lesions. PMID:22284761

  12. Inhibition of Pediatric Glioblastoma Tumor Growth by the Anti-Cancer Agent OKN-007 in Orthotopic Mouse Xenografts

    PubMed Central

    Coutinho de Souza, Patricia; Mallory, Samantha; Smith, Nataliya; Saunders, Debra; Li, Xiao-Nan; McNall-Knapp, Rene Y.; Fung, Kar-Ming; Towner, Rheal A.

    2015-01-01

    Pediatric glioblastomas (pGBM), although rare, are one of the leading causes of cancer-related deaths in children, with tumors essentially refractory to existing treatments. Here, we describe the use of conventional and advanced in vivo magnetic resonance imaging (MRI) techniques to assess a novel orthotopic xenograft pGBM mouse (IC-3752GBM patient-derived culture) model, and to monitor the effects of the anti-cancer agent OKN-007 as an inhibitor of pGBM tumor growth. Immunohistochemistry support data is also presented for cell proliferation and tumor growth signaling. OKN-007 was found to significantly decrease tumor volumes (p<0.05) and increase animal survival (p<0.05) in all OKN-007-treated mice compared to untreated animals. In a responsive cohort of treated animals, OKN-007 was able to significantly decrease tumor volumes (p<0.0001), increase survival (p<0.001), and increase diffusion (p<0.01) and perfusion rates (p<0.05). OKN-007 also significantly reduced lipid tumor metabolism in responsive animals [(Lip1.3 and Lip0.9)-to-creatine ratio (p<0.05)], as well as significantly decrease tumor cell proliferation (p<0.05) and microvessel density (p<0.05). Furthermore, in relationship to the PDGFRα pathway, OKN-007 was able to significantly decrease SULF2 (p<0.05) and PDGFR-α (platelet-derived growth factor receptor-α) (p<0.05) immunoexpression, and significantly increase decorin expression (p<0.05) in responsive mice. This study indicates that OKN-007 may be an effective anti-cancer agent for some patients with pGBMs by inhibiting cell proliferation and angiogenesis, possibly via the PDGFRα pathway, and could be considered as an additional therapy for pediatric brain tumor patients. PMID:26248280

  13. Clinical and cytopathological aspects in phyllodes tumors of the breast.

    PubMed

    Pătraşcu, Anca; Popescu, Carmen Florina; Pleşea, I E; Bădulescu, Adriana; Tănase, Florentina; Mateescu, Garofiţa

    2009-01-01

    The frequency of mesenchymal breast tumors is very low, being represented mostly by tumors with biphasic proliferation (phyllodes tumors) and less by other types of non-epithelial tumors. From clinical point of view, phyllodes tumors (PT) can mimic a breast carcinoma. Therefore, the preoperative diagnosis by cytological examination on material obtained by fine needle aspiration (FNA) is very important for adequate treatment of these tumors. In current study, we assessed clinical aspects of 79 phyllodes tumors regarding patient's age and localization of the tumors. In 17 out of 79 cases, it has been performed FNA within the tumors with further cytological examination on the smears obtained. The median age of the patients was 46.07-year-old, being progressively higher with grade of the tumors with significant values between benign and borderline tumors (p=0.04954) and between benign and malignant ones (p=0.02890). The distinguish on the smears of stromal fragments and naked stromal nuclei with variable grade of atypia regarding the tumoral type, in detriment of epithelial elements have been conclusive for fibroepithelial lesion as cytopathological diagnosis. The preoperative differentiation between a breast phyllodes tumor and a breast carcinoma is extremely important for avoiding of a useless radical surgery for the patient. If the fine needle aspiration was correctly performed, the accuracy of the cytodiagnosis has been 82% in current study. PMID:19942954

  14. Sunitinib significantly suppresses the proliferation, migration, apoptosis resistance, tumor angiogenesis and growth of triple-negative breast cancers but increases breast cancer stem cells

    PubMed Central

    2014-01-01

    The majority of triple-negative breast cancers (TNBCs) are basal-like breast cancers. However there is no reported study on anti-tumor effects of sunitinib in xenografts of basal-like TNBC (MDA-MB-468) cells. In the present study, MDA-MB-231, MDA-MB-468, MCF-7 cells were cultured using RPMI 1640 media with 10% FBS. Vascular endothelia growth factor (VEGF) protein levels were detected using ELISA (R & D Systams). MDA-MB-468 cells were exposed to sunitinib for 18 hours for measuring proliferation (3H-thymidine incorporation), migration (BD Invasion Chamber), and apoptosis (ApopTag and ApoScreen Anuexin V Kit). The effect of sunitinib on Notch-1 expression was determined by Western blot in cultured MDA-MB-468 cells. 106 MDA-MB-468 cells were inoculated into the left fourth mammary gland fat pad in athymic nude-foxn1 mice. When the tumor volume reached 100 mm3, sunitinib was given by gavage at 80 mg/kg/2 days for 4 weeks. Tumor angiogenesis was determined by CD31 immunohistochemistry. Breast cancer stem cells (CSCs) isolated from the tumors were determined by flow cytometry analysis using CD44+/CD24- or low. ELISA indicated that VEGF was much more highly expressed in MDA-MB-468 cells than MDA-MB-231 and MCF-7 cells. Sunitinib significantly inhibited the proliferation, invasion, and apoptosis resistance in cultured basal like breast cancer cells. Sunitinib significantly increased the expression of Notch-1 protein in cultured MDA-MB-468 or MDA-MB-231 cells. The xenograft models showed that oral sunitinib significantly reduced the tumor volume of TNBCs in association with the inhibition of tumor angiogeneisis, but increased breast CSCs. These findings support the hypothesis that the possibility should be considered of sunitinib increasing breast CSCs though it inhibits TNBC tumor angiogenesis and growth/progression, and that effects of sunitinib on Notch expression and hypoxia may increase breast cancer stem cells. This work provides the groundwork for an innovative

  15. Sunitinib significantly suppresses the proliferation, migration, apoptosis resistance, tumor angiogenesis and growth of triple-negative breast cancers but increases breast cancer stem cells.

    PubMed

    Chinchar, Edmund; Makey, Kristina L; Gibson, John; Chen, Fang; Cole, Shelby A; Megason, Gail C; Vijayakumar, Srinivassan; Miele, Lucio; Gu, Jian-Wei

    2014-01-01

    The majority of triple-negative breast cancers (TNBCs) are basal-like breast cancers. However there is no reported study on anti-tumor effects of sunitinib in xenografts of basal-like TNBC (MDA-MB-468) cells. In the present study, MDA-MB-231, MDA-MB-468, MCF-7 cells were cultured using RPMI 1640 media with 10% FBS. Vascular endothelia growth factor (VEGF) protein levels were detected using ELISA (R & D Systams). MDA-MB-468 cells were exposed to sunitinib for 18 hours for measuring proliferation (3H-thymidine incorporation), migration (BD Invasion Chamber), and apoptosis (ApopTag and ApoScreen Anuexin V Kit). The effect of sunitinib on Notch-1 expression was determined by Western blot in cultured MDA-MB-468 cells. 10(6) MDA-MB-468 cells were inoculated into the left fourth mammary gland fat pad in athymic nude-foxn1 mice. When the tumor volume reached 100 mm(3), sunitinib was given by gavage at 80 mg/kg/2 days for 4 weeks. Tumor angiogenesis was determined by CD31 immunohistochemistry. Breast cancer stem cells (CSCs) isolated from the tumors were determined by flow cytometry analysis using CD44(+)/CD24(-) or low. ELISA indicated that VEGF was much more highly expressed in MDA-MB-468 cells than MDA-MB-231 and MCF-7 cells. Sunitinib significantly inhibited the proliferation, invasion, and apoptosis resistance in cultured basal like breast cancer cells. Sunitinib significantly increased the expression of Notch-1 protein in cultured MDA-MB-468 or MDA-MB-231 cells. The xenograft models showed that oral sunitinib significantly reduced the tumor volume of TNBCs in association with the inhibition of tumor angiogeneisis, but increased breast CSCs. These findings support the hypothesis that the possibility should be considered of sunitinib increasing breast CSCs though it inhibits TNBC tumor angiogenesis and growth/progression, and that effects of sunitinib on Notch expression and hypoxia may increase breast cancer stem cells. This work provides the groundwork for an

  16. GGNBP2 acts as a tumor suppressor by inhibiting estrogen receptor α activity in breast cancer cells.

    PubMed

    Lan, Zi-Jian; Hu, YunHui; Zhang, Sheng; Li, Xian; Zhou, Huaxin; Ding, Jixiang; Klinge, Carolyn M; Radde, Brandie N; Cooney, Austin J; Zhang, Jin; Lei, Zhenmin

    2016-07-01

    Gametogenetin-binding protein 2 (GGNBP2) is encoded in human chromosome 17q12-q23, a region known as a breast and ovarian cancer susceptibility locus. GGNBP2, also referred to ZFP403, has a single C2H2 zinc finger and a consensus LxxLL nuclear receptor-binding motif. Here, we demonstrate that GGNBP2 expression is reduced in primary human breast tumors and in breast cancer cell lines, including T47D, MCF-7, LCC9, LY2, and MDA-MB-231 compared with normal, immortalized estrogen receptor α (ERα) negative MCF-10A and MCF10F breast epithelial cells. Overexpression of GGNBP2 inhibits the proliferation of T47D and MCF-7 ERα positive breast cancer cells without affecting MCF-10A and MCF10F. Stable GGNBP2 overexpression in T47D cells inhibits 17β-estradiol (E2)-stimulated proliferation as well as migration, invasion, anchorage-independent growth in vitro, and xenograft tumor growth in mice. We further demonstrate that GGNBP2 protein physically interacts with ERα, inhibits E2-induced activation of estrogen response element-driven reporter activity, and attenuates ER target gene expression in T47D cells. In summary, our in vitro and in vivo findings suggest that GGNBP2 is a novel breast cancer tumor suppressor functioning as a nuclear receptor corepressor to inhibit ERα activity and tumorigenesis. PMID:27357812

  17. Physiologically based pharmacokinetic and pharmacodynamic modeling of an antagonist (SM-406/AT-406) of multiple inhibitor of apoptosis proteins (IAPs) in a mouse xenograft model of human breast cancer.

    PubMed

    Zhang, Tao; Li, Yanyan; Zou, Peng; Yu, Jing-yu; McEachern, Donna; Wang, Shaomeng; Sun, Duxin

    2013-09-01

    The inhibitors of apoptosis proteins (IAPs) are a class of key apoptosis regulators overexpressed or dysregulated in cancer. SM-406/AT-406 is a potent and selective small molecule mimetic of Smac that antagonizes the inhibitor of apoptosis proteins (IAPs). A physiologically based pharmacokinetic and pharmacodynamic (PBPK-PD) model was developed to predict the tissue concentration-time profiles of SM-406, the related onco-protein levels in tumor, and the tumor growth inhibition in a mouse model bearing human breast cancer xenograft. In the whole body physiologically based pharmacokinetic (PBPK) model for pharmacokinetics characterization, a well stirred (perfusion rate-limited) model was used to describe SM-406 pharmacokinetics in the lung, heart, kidney, intestine, liver and spleen, and a diffusion rate-limited (permeability limited) model was used for tumor. Pharmacodynamic (PD) models were developed to correlate the SM-406 concentration in tumor to the cIAP1 degradation, pro-caspase 8 decrease, CL-PARP accumulation and tumor growth inhibition. The PBPK-PD model well described the experimental pharmacokinetic data, the pharmacodynamic biomarker responses and tumor growth. This model may be helpful to predict tumor and plasma SM-406 concentrations in the clinic.

  18. Irradiation-Dependent Effects on Tumor Perfusion and Endogenous and Exogenous Hypoxia Markers in an A549 Xenograft Model

    SciTech Connect

    Fokas, Emmanouil; Haenze, Joerg; Kamlah, Florentine; Eul, Bastian G.; Lang, Nico; Keil, Boris; Heverhagen, Johannes T.; Engenhart-Cabillic, Rita; An Hanxiang; Rose, Frank

    2010-08-01

    Purpose: Hypoxia is a major determinant of tumor radiosensitivity, and microenvironmental changes in response to ionizing radiation (IR) are often heterogenous. We analyzed IR-dependent changes in hypoxia and perfusion in A549 human lung adenocarcinoma xenografts. Materials and Methods: Immunohistological analysis of two exogenously added chemical hypoxic markers, pimonidazole and CCI-103F, and of the endogenous marker Glut-1 was performed time dependently after IR. Tumor vessels and apoptosis were analyzed using CD31 and caspase-3 antibodies. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and fluorescent beads (Hoechst 33342) were used to monitor vascular perfusion. Results: CCI-103F signals measuring the fraction of hypoxic areas after IR were significantly decreased by approximately 50% when compared with pimonidazole signals, representing the fraction of hypoxic areas from the same tumors before IR. Interestingly, Glut-1 signals were significantly decreased at early time point (6.5 h) after IR returning to the initial levels at 30.5 h. Vascular density showed no difference between irradiated and control groups, whereas apoptosis was significantly induced at 10.5 h post-IR. DCE-MRI indicated increased perfusion 1 h post-IR. Conclusions: The discrepancy between the hypoxic fractions of CCI-103F and Glut-1 forces us to consider the possibility that both markers reflect different metabolic alterations of tumor microenvironment. The reliability of endogenous markers such as Glut-1 to measure reoxygenation in irradiated tumors needs further consideration. Monitoring tumor microvascular response to IR by DCE-MRI and measuring tumor volume alterations should be encouraged.

  19. Filamentous, mixed micelles of triblock copolymers enhance tumor localization of indocyanine green in a murine xenograft model

    PubMed Central

    Kim, Tae Hee; Mount, Christopher W; Dulken, Benjamin W; Ramos, Jenelyn; Fu, Caroline J; Khant, Htet A; Chiu, Wah; Gombotz, Wayne R; Pun, Suzie H

    2012-01-01

    Polymeric micelles formed by the self-assembly of amphiphilic block copolymers can be used to encapsulate hydrophobic drugs for tumor-delivery applications. Filamentous carriers with high aspect ratios offer potential advantages over spherical carriers, including prolonged circulation times. In this work, mixed micelles comprised of poly (ethylene oxide)-poly-[(R)-3-hydroxybutyrate]-poly (ethylene oxide) (PEO-PHB-PEO) and Pluronic F-127 (PF-127) were used to encapsulate a near-infrared fluorophore. The micelle formulations were assessed for tumor accumulation after tail vein injection to xenograft tumor-bearing mice by non-invasive optical imaging. The mixed micelle formulation that facilitated the highest tumor accumulation was shown by cryo-electron microscopy to be filamentous in structure compared to spherical structures of pure PF-127 micelles. In addition, increased dye loading efficiency and dye stability was attained in this mixed micelle formulation compared to pure PEO-PHB-PEO micelles. Therefore, the optimized PEO-PHB-PEO/PF-127 mixed micelle formulation offers advantages for cancer delivery over micelles formed from the individual copolymer components. PMID:22118658

  20. Filamentous, mixed micelles of triblock copolymers enhance tumor localization of indocyanine green in a murine xenograft model.

    PubMed

    Kim, Tae Hee; Mount, Christopher W; Dulken, Benjamin W; Ramos, Jenelyn; Fu, Caroline J; Khant, Htet A; Chiu, Wah; Gombotz, Wayne R; Pun, Suzie H

    2012-01-01

    Polymeric micelles formed by the self-assembly of amphiphilic block copolymers can be used to encapsulate hydrophobic drugs for tumor-delivery applications. Filamentous carriers with high aspect ratios offer potential advantages over spherical carriers, including prolonged circulation times. In this work, mixed micelles composed of poly(ethylene oxide)-poly[(R)-3-hydroxybutyrate]-poly(ethylene oxide) (PEO-PHB-PEO) and Pluronic F-127 (PF-127) were used to encapsulate a near-infrared fluorophore. The micelle formulations were assessed for tumor accumulation after tail vein injection to xenograft tumor-bearing mice by noninvasive optical imaging. The mixed micelle formulation that facilitated the highest tumor accumulation was shown by cryo-electron microscopy to be filamentous in structure compared to spherical structures of pure PF-127 micelles. In addition, increased dye loading efficiency and dye stability were attained in this mixed micelle formulation compared to pure PEO-PHB-PEO micelles. Therefore, the optimized PEO-PHB-PEO/PF-127 mixed micelle formulation offers advantages for cancer delivery over micelles formed from the individual copolymer components.

  1. Huge malignant phyllodes breast tumor: a real entity in a new era of early breast cancer.

    PubMed

    Testori, Alberto; Meroni, Stefano; Errico, Valentina; Travaglini, Roberto; Voulaz, Emanuele; Alloisio, Marco

    2015-01-01

    Phyllodes tumor is an extremely rare tumor of the breast. It occurs in females in the third and fourth decades. The difficulty in distinguishing between phyllodes tumors and benign fibroadenoma may lead to misdiagnosis. Lymph node involvement is rarely described in phyllodes tumors; for this reason, sentinel node biopsy may be warranted. We present a case of a 33-year-old woman affected by huge tumor of the right breast with ulceration in the skin with a rapid tumor growth and with omolateral axillary metastasis. PMID:25880837

  2. Combination of anti-angiogenic therapies reduces osteolysis and tumor burden in experimental breast cancer bone metastasis.

    PubMed

    Bachelier, Richard; Confavreux, Cyrille B; Peyruchaud, Olivier; Croset, Martine; Goehrig, Delphine; van der Pluijm, Gabri; Clézardin, Philippe

    2014-09-15

    The clinical efficacy of anti-angiogenic monotherapies in metastatic breast cancer is less than originally anticipated, and it is not clear what the response of bone metastasis to anti-angiogenic therapies is. Here, we examined the impact of neutralizing tumor-derived vascular endothelial growth factor (VEGF) in animal models of subcutaneous tumor growth and bone metastasis formation. Silencing of VEGF expression (Sh-VEGF) in osteotropic human MDA-MB-231/B02 breast cancer cells led to a substantial growth inhibition of subcutaneous Sh-VEGF B02 tumor xenografts, as a result of reduced angiogenesis, when compared to that observed with animals bearing mock-transfected (Sc-VEGF) B02 tumors. However, there was scant evidence that either the silencing of tumor-derived VEGF or the use of a VEGF-neutralizing antibody (bevacizumab) affected B02 breast cancer bone metastasis progression in animals. We also examined the effect of vatalanib (a VEGF receptor tyrosine kinase inhibitor) in this mouse model of bone metastasis. However, vatalanib failed to inhibit bone metastasis caused by B02 breast cancer cells. In sharp contrast, vatalanib in combination with bevacizumab reduced not only bone destruction but also skeletal tumor growth in animals bearing breast cancer bone metastases, when compared with either agent alone. Thus, our study highlights the importance of targeting both the tumor compartment and the host tissue (i.e., skeleton) to efficiently block the development of bone metastasis. We believe this is a crucially important observation as the clinical benefit of anti-angiogenic monotherapies in metastatic breast cancer is relatively modest. PMID:24615579

  3. Correlation between radiosensitivity, percentage hypoxic cells and pO2 measurements in one rodent and two human tumor xenografts.

    PubMed

    Thomas, C D; Chavaudra, N; Martin, L; Guichard, M

    1994-07-01

    Computerized pO2 histography has been used to measure the intratumor pO2 in patients for the past few years, and there is now evidence that these tumors contain hypoxic cells. One of the major questions that remains to be answered is the relevance of such data to radiosensitivity. The present study looks for a correlation between intratumor pO2, the percentage of hypoxic cells in the tumor and the radiosensitization induced by carbogen and/or the oxygen carrier, perflubron emulsion. Two human tumor xenografts (HRT18, Na11+) and one rodent tumor (EMT6) were used. The radiosensitivity (clonogenic assay) and the oxygen tension (computerized pO2 histography) were measured. All experiments were performed under similar conditions. Carbogen increased tumor radiosensitivity; sensitization was greatest when 4 ml/kg perflubron emulsion was used in conjunction with carbogen. The pO2 distribution was shifted to higher pO2 values in the tumors whatever the treatment; the shift was greater for perflubron emulsion plus carbogen. The low pO2 values (< 0.4 kPa) were lost for the HRT18 cells. A correlation (EMT6, HRT18) or a link (Na11+) between the radiosensitization and the oxygen tension measurements was found for values below 1.07 or 1.33 kPa. A trend between the percentage of hypoxic cells and pO2 measurements was found taking into account pO2 measurements comprised between 0.27 and 0.67 kPa. PMID:8016297

  4. Complete Regression of Xenograft Tumors upon Targeted Delivery of Paclitaxel via Π-Π Stacking Stabilized Polymeric Micelles

    PubMed Central

    Shi, Yang; van der Meel, Roy; Theek, Benjamin; Blenke, Erik Oude; Pieters, Ebel H.E.; Fens, Marcel H.A.M.; Ehling, Josef; Schiffelers, Raymond M.; Storm, Gert; van Nostrum, Cornelus F.; Lammers, Twan; Hennink, Wim E.

    2015-01-01

    Treatment of cancer patients with taxane-based chemotherapeutics, such as paclitaxel (PTX), is complicated by their narrow therapeutic index. Polymeric micelles are attractive nanocarriers for tumor-targeted delivery of PTX, as they can be tailored to encapsulate large amounts of hydrophobic drugs and achieve prolonged circulation kinetics. As a result, PTX deposition in tumors is increased while drug exposure to healthy tissues is reduced. However, many PTX-loaded micelle formulations suffer from low stability and fast drug release in the circulation, limiting their suitability for systemic drug targeting. To overcome these limitations, we have developed paclitaxel (PTX)-loaded micelles which are stable without chemical crosslinking and covalent drug attachment. These micelles are characterized by excellent loading capacity and strong drug retention, attributed to π-π stacking interaction between PTX and the aromatic groups of the polymer chains in the micellar core. The micelles are based on methoxy poly(ethylene glycol)-b-(N-(2-benzoyloxypropyl) methacrylamide) (mPEG-b-p(HPMAm-Bz)) block copolymers, which improved the pharmacokinetics and the biodistribution of PTX, and substantially increased PTX tumor accumulation (by more than 2000%; as compared to Taxol® or control micellar formulations). Improved biodistribution and tumor accumulation were confirmed by hybrid μCT-FMT imaging using near-infrared labeled micelles and payload. The PTX-loaded micelles were well tolerated at different doses while they induced complete tumor regression in two different xenograft models (i.e. A431 and MDA-MB-468). Our findings consequently indicate that π-π stacking-stabilized polymeric micelles are promising carriers to improve the delivery of highly hydrophobic drugs to tumors and to increase their therapeutic index. PMID:25831471

  5. Human brain tumor xenografts in nude mice as a chemotherapy model.

    PubMed

    Houchens, D P; Ovejera, A A; Riblet, S M; Slagel, D E

    1983-06-01

    Two human brain tumors which were previously established in nude mice were used to determine antitumor efficacy of various therapeutic agents. These tumors were a medulloblastoma (TE-671) and a glioma (U-251) with mass doubling times of 3.5 and 5.5 days respectively as subcutaneous implants in nude mice. Intracranial (i.c.) tumor challenge was accomplished by inoculating tissue culture-grown cells of either tumor into the right cerebral hemisphere to a depth of 3 mm. Median survival time (MST) in untreated mice with 10(5) i.c. injected TE-671 cells was approximately 30 days and 53 days in the U-251 tumor. With 2 X 10(5) U-251 tumor cells the MST was 27-31 days. Groups of mice which had been inoculated with tumor were treated with various doses and schedules of antineoplastic compounds by the i.p. route. The TE-671 tumor responded to AZQ treatment with an increase in life span (ILS) of 37% compared to untreated controls and an ILS of 30% with CCNU treatment. BCNU and PCNU were ineffective. With the U-251 tumor BCNU produced an ILS of greater than 60%, with 75% cures, greater than 112% ILS with PCNU and 49% ILS with CCNU. Neither tumor responded to procarbazine, PALA, dianhydrogalactitol, D-O-norleucine or dibromodulcitol. The U-251 tumor was treated on various schedules and doses with BCNU and found to respond well on late as well as early treatment. A new drug (rapamycin) being investigated by the NCI was found to be very effective against the U-251 tumor. This model system should prove valuable in assessing the effects of various chemotherapeutic modalities against brain tumors.

  6. Bilateral desmoid tumor of the breast: case seriesand literature review

    PubMed Central

    Wongmaneerung, Phanchaporn; Somwangprasert, Areewan; Watcharachan, Kirati; Ditsatham, Chagkrit

    2016-01-01

    Background Desmoid tumor of the breast is very rare and locally aggressive but has no distant metastasis. Bilateral lesions are extremely rare, found in only 4% of patients. Two cases of bilateral desmoid tumor of the breast are reported. The clinical presentation, diagnosis, imaging, treatment, and follow-up outcomes of recurrence as well as a brief literature review are provided. Case reports Case 1 is a 31-year-old woman who presented with nipple retraction. An ultrasound revealed BIRAD V in both breasts. She underwent a bilateral excisional biopsy under ultrasound mark with the pathology result of extra-abdominal desmoid tumor in both breasts. The patient had a bilateral mastectomy with silicone implantation due to the involved margins by excision. She remained tumor free after 7-year follow-up. Case 2 is a 28-year-old woman who presented with a lump on her right breast that she had discovered ~2 months earlier. An ultrasound showed a spiculated mass in the right breast and some circumscribed hypoechoic masses in both breasts. A bilateral breast excision was done. The pathology result was an extra-abdominal desmoid tumor. She had recurrence on both sides and underwent a mastectomy and silicone implantation. The tumor has not recurred after 1-year follow-up. Conclusion Imaging cannot distinguish between benign breast lesions and malignancy. Pathology results are helpful in making a definitive diagnosis. Given that the desmoid tumor is locally aggressive, a local excision with clear margins is recommended. Chemotherapy and hormonal treatment are controversial. PMID:27578999

  7. Molecular Pathology of Patient Tumors, Patient-Derived Xenografts, and Cancer Cell Lines.

    PubMed

    Guo, Sheng; Qian, Wubin; Cai, Jie; Zhang, Likun; Wery, Jean-Pierre; Li, Qi-Xiang

    2016-08-15

    The Cancer Genome Atlas (TCGA) project has generated abundant genomic data for human cancers of various histopathology types and enabled exploring cancer molecular pathology per big data approach. We developed a new algorithm based on most differentially expressed genes (DEG) per pairwise comparisons to calculate correlation coefficients to be used to quantify similarity within and between cancer types. We systematically compared TCGA cancers, demonstrating high correlation within types and low correlation between types, thus establishing molecular specificity of cancer types and an alternative diagnostic method largely equivalent to histopathology. Different coefficients for different cancers in study may reveal that the degree of the within-type homogeneity varies by cancer types. We also performed the same calculation using the TCGA-derived DEGs on patient-derived xenografts (PDX) of different histopathology types corresponding to the TCGA types, as well as on cancer cell lines. We, for the first time, demonstrated highly similar patterns for within- and between-type correlation between PDXs and patient samples in a systematic study, confirming the high relevance of PDXs as surrogate experimental models for human diseases. In contrast, cancer cell lines have drastically reduced expression similarity to both PDXs and patient samples. The studies also revealed high similarity between some types, for example, LUSC and HNSCC, but low similarity between certain subtypes, for example, LUAD and LUSC. Our newly developed algorithm seems to be a practical diagnostic method to classify and reclassify a disease, either human or xenograft, with better accuracy than traditional histopathology. Cancer Res; 76(16); 4619-26. ©2016 AACR. PMID:27325646

  8. Extremely rare borderline phyllodes tumor in the male breast: a case report.

    PubMed

    Kim, Jung Gyu; Kim, Shin Young; Jung, Hae Yoen; Lee, Deuk Young; Lee, Jong Eun

    2015-01-01

    Phyllodes tumor of the male breast is an extremely rare disease, and far fewer cases of borderline phyllodes tumors than benign or malignant tumors in the male breast have been reported. We report a case of borderline phyllodes tumor in the male breast with imaging findings of the tumor and pathologic correlation. PMID:26316459

  9. Xenograft and genetically engineered mouse model systems of osteosarcoma and Ewing's sarcoma: tumor models for cancer drug discovery

    PubMed Central

    Sampson, Valerie B; Kamara, Davida F; Kolb, E Anders

    2014-01-01

    Introduction There are > 75 histological types of solid tumors that are classified into two major groups: bone and soft-tissue sarcomas. These diseases are more prevalent in children, and pediatric sarcomas tend to be highly aggressive and rapidly progressive. Sarcomas in adults may follow a more indolent course, but aggressive tumors are also common. Sarcomas that are metastatic at diagnosis, or recurrent following therapy, remain refractory to current treatment options with dismal overall survival rates. A major focus of clinical trials, for patients with sarcoma, is to identify novel and more effective therapeutic strategies targeted to genomic or proteomic aberrations specific to the malignant cells. Critical to the understanding of the potential for targeted therapies are models of disease that are representative of clinical disease and predictive of relevant clinical responses. Areas covered In this article, the authors discuss the use of mouse xenograft models and genetically engineered mice in cancer drug discovery. The authors provide a special focus on models for the two most common bone sarcomas: osteosarcoma (OS) and Ewing's sarcoma (ES). Expert opinion Predicting whether a new anticancer agent will have a positive therapeutic index in patients with OS and ES remains a challenge. The use of mouse sarcoma models for understanding the mechanisms involved in the response of tumors to new treatments is an important step in the process of drug discovery and the development of clinically relevant therapeutic strategies for these diseases. PMID:23844615

  10. Nerve Fibers in Breast Cancer Tissues Indicate Aggressive Tumor Progression

    PubMed Central

    Huang, Di; Su, Shicheng; Cui, Xiuying; Shen, Ximing; Zeng, Yunjie; Wu, Wei; Chen, Jianing; Chen, Fei; He, Chonghua; Liu, Jiang; Huang, Wei; Liu, Qiang; Su, Fengxi; Song, Erwei; Ouyang, Nengtai

    2014-01-01

    Abstract Emerging evidence has indicated nerve fibers as a marker in the progression of various types of cancers, such as pancreatic cancer and prostate cancer. However, whether nerve fibers are associated with breast cancer progression remains unclear. In this study, we evaluated the presence of nerve fibers in 352 breast cancer specimens and 83 benign breast tissue specimens including 43 cases of cystic fibrosis and 40 cases of fibroadenoma from 2 independent breast tumor center using immunohistochemical staining for specific peripheral nerve fiber markers. In all, nerve fibers were present in 130 out of 352 breast cancer tissue specimens, while none were detected in normal breast tissue specimens. Among 352 cases, we defined 239 cases from Sun Yat-Sen Memorial Hospital, Guangzhou, China, as the training set, and 113 cases from the First Affiliated Hospital of Shantou University, Guangdong, China, as the validation set. The thickness of tumor-involving nerve fibers is significantly correlated with poor differentiation, lymph node metastasis, high clinical staging, and triple negative subtype in breast cancer. More importantly, Cox multifactor analysis indicates that the thickness of tumor-involving nerve fibers is a previously unappreciated independent prognostic factors associated with shorter disease-free survival of breast cancer patients. Our findings are further validated by online Oncomine database. In conclusion, our results show that nerve fiber involvement in breast cancer is associated with progression of the malignancy and warrant further studies in the future. PMID:25501061

  11. Recurrent angio-fibroma of breast masquerading as phyllodes tumor.

    PubMed

    Chaurasia, Jai K; Alam, Feroz; Shadan, Mariam; Naim, Mohammed

    2015-01-01

    A young Indian female presented with a recurring tumor in the right breast masquerading as phyllodes tumor. Patient had history of five times excision and recurrences of the tumor, diagnosed as fibrous phyllodes of the breast. Presently, a well-circumscribed tumor of about 10 cm size, comprising of benign fibrous-angiomatous tissue with evidence of foci of pyogenic vasculitis was observed. Immuno-histochemical markers for the myo-epithelial and epithelial elements excluded the possibility of fibrous phyllodes, inflammatory myofibroblastic tumor, desmoid fibromatosis, and metaplastic carcinoma. The present findings were diagnostic of an inflammatory angio-fibroma of the right breast, not reported in the earlier literature. The observations indicated that the female breast may be susceptible to spontaneous productive and common-antibiotic-resistant focal septic vascular inflammation giving rise to angio-fibromatous proliferation producing a well-defined tumor mass in the breast, distinguishable from the other breast lesions by the connective tissue stains and immuno-histochemical markers. PMID:26458623

  12. Standardized orthotopic xenografts in zebrafish reveal glioma cell-line-specific characteristics and tumor cell heterogeneity

    PubMed Central

    Welker, Alessandra M.; Jaros, Brian D.; Puduvalli, Vinay K.; Imitola, Jaime; Kaur, Balveen; Beattie, Christine E.

    2016-01-01

    ABSTRACT Glioblastoma (GBM) is a deadly brain cancer, for which few effective drug treatments are available. Several studies have used zebrafish models to study GBM, but a standardized approach to modeling GBM in zebrafish was lacking to date, preventing comparison of data across studies. Here, we describe a new, standardized orthotopic xenotransplant model of GBM in zebrafish. Dose-response survival assays were used to define the optimal number of cells for tumor formation. Techniques to measure tumor burden and cell spread within the brain over real time were optimized using mouse neural stem cells as control transplants. Applying this standardized approach, we transplanted two patient-derived GBM cell lines, serum-grown adherent cells and neurospheres, into the midbrain region of embryonic zebrafish and analyzed transplanted larvae over time. Progressive brain tumor growth and premature larval death were observed using both cell lines; however, fewer transplanted neurosphere cells were needed for tumor growth and lethality. Tumors were heterogeneous, containing both cells expressing stem cell markers and cells expressing markers of differentiation. A small proportion of transplanted neurosphere cells expressed glial fibrillary acidic protein (GFAP) or vimentin, markers of more differentiated cells, but this number increased significantly during tumor growth, indicating that these cells undergo differentiation in vivo. By contrast, most serum-grown adherent cells expressed GFAP and vimentin at the earliest times examined post-transplant. Both cell types produced brain tumors that contained Sox2+ cells, indicative of tumor stem cells. Transplanted larvae were treated with currently used GBM therapeutics, temozolomide or bortezomib, and this resulted in a reduction in tumor volume in vivo and an increase in survival. The standardized model reported here facilitates robust and reproducible analysis of glioblastoma tumor cells in real time and provides a platform for

  13. Coexistence of malignant phyllodes tumor and her2-positive locally advanced breast cancer in distinct breasts: A case report

    PubMed Central

    Sato, Tomoi; Muto, Ichiro; Sakai, Takeshi

    2016-01-01

    Introduction Phyllodes tumor of the breast is a rare biphasic neoplasm, accounting for less than 1% of all breast tumors. Coexistence of phyllodes tumor and breast cancer in distinct breasts is extremely rare. Case presentation A 47-year-old Japanese woman presented with bilateral breast lumps. A HER2-positive, unresectable invasive carcinoma in the right breast and fibroadenoma in the left were diagnosed via core needle biopsy. During chemotherapy with anti-HER2 therapy, the breast cancer shrank quickly, while the left breast lump suddenly enlarged. Under a diagnosis of malignant neoplasm of the breast, left mastectomy was performed. Malignant phyllodes tumor was diagnosed by postoperative histological examination and recurred in multiple areas as early as 2 months after surgery. Discussion Only 10 cases of coexisting phyllodes tumor and breast cancer in distinct breasts have been reported in the English literature. Phyllodes tumor associated with breast cancer in distinct breasts tends to be malignant. This is the first case of phyllodes tumor rapidly enlarging during anti-HER2 chemotherapy for locally advanced HER2-positive breast cancer. Conclusion Even during effective treatment of advanced or recurrent breast cancer, attention should also be paid to the contralateral breast for the possible association of a second malignancy such as phyllodes tumor. PMID:26773878

  14. Lymphatic endothelial cells support tumor growth in breast cancer

    PubMed Central

    Lee, Esak; Pandey, Niranjan B.; Popel, Aleksander S.

    2014-01-01

    Tumor lymphatic vessels (LV) serve as a conduit of tumor cell dissemination, due to their leaky nature and secretion of tumor-recruiting factors. Though lymphatic endothelial cells (LEC) lining the LV express distinct factors (also called lymphangiocrine factors), these factors and their roles in the tumor microenvironment are not well understood. Here we employ LEC, microvascular endothelial cells (MEC), and human umbilical vein endothelial cells (HUVEC) cultured in triple-negative MDA-MB-231 tumor-conditioned media (TCM) to determine the factors that may be secreted by various EC in the MDA-MB-231 breast tumor. These factors will serve as endothelium derived signaling molecules in the tumor microenvironment. We co-injected these EC with MDA-MB-231 breast cancer cells into animals and showed that LEC support tumor growth, HUVEC have no significant effect on tumor growth, whereas MEC suppress it. Focusing on LEC-mediated tumor growth, we discovered that TCM-treated LEC (‘tumor-educated LEC') secrete high amounts of EGF and PDGF-BB, compared to normal LEC. LEC-secreted EGF promotes tumor cell proliferation. LEC-secreted PDGF-BB induces pericyte infiltration and angiogenesis. These lymphangiocrine factors may support tumor growth in the tumor microenvironment. This study shows that LV serve a novel role in the tumor microenvironment apart from their classical role as conduits of metastasis. PMID:25068296

  15. Establishment and characterization of a canine xenograft model of inflammatory mammary carcinoma.

    PubMed

    Camacho, L; Peña, L; González Gil, A; Cáceres, S; Díez, L; Illera, J C

    2013-12-01

    Canine inflammatory mammary cancer (IMC) and human inflammatory breast cancer (IBC) are the most aggressive form of mammary/breast cancer. Both species naturally develop it, sharing epidemiological, clinical and histological characteristics. Thus, IMC has been suggested as a model to study the human disease. We have developed the first IMC xenograft model in SCID mice. Xenografts reproduced the histological features from the primary tumor, were highly aggressive and showed dermal tumor emboli, distinctive hallmarks of IMC/IBC. This model was hormone receptors positive and HER2 negative. Our findings showed that estrogens and androgens are locally produced in tissues. Factors related to tumor vascularization showed positive expression and xenografts with the highest expression of all analyzed vascular factors had the highest rate of tumor proliferation. The role of steroid hormones and the angio/lymphangiogenic properties found in this model, provide additional knowledge for future interventions in the diagnosis, treatment and prevention of the disease.

  16. Blockade of the ERK pathway enhances the therapeutic efficacy of the histone deacetylase inhibitor MS-275 in human tumor xenograft models

    SciTech Connect

    Sakamoto, Toshiaki; Ozaki, Kei-ichi; Fujio, Kohsuke; Kajikawa, Shu-hei; Uesato, Shin-ichi; Watanabe, Kazushi; Tanimura, Susumu; Koji, Takehiko; Kohno, Michiaki

    2013-04-19

    Highlights: •Blockade of the ERK pathway enhances the anticancer efficacy of HDAC inhibitors. •MEK inhibitors sensitize human tumor xenografts to HDAC inhibitor cytotoxicity. •Such the enhanced efficacy is achieved by a transient blockade of the ERK pathway. •This drug combination provides a promising therapeutic strategy for cancer patients. -- Abstract: The ERK pathway is up-regulated in various human cancers and represents a prime target for mechanism-based approaches to cancer treatment. Specific blockade of the ERK pathway alone induces mostly cytostatic rather than pro-apoptotic effects, however, resulting in a limited therapeutic efficacy of the ERK kinase (MEK) inhibitors. We previously showed that MEK inhibitors markedly enhance the ability of histone deacetylase (HDAC) inhibitors to induce apoptosis in tumor cells with constitutive ERK pathway activation in vitro. To evaluate the therapeutic efficacy of such drug combinations, we administered the MEK inhibitor PD184352 or AZD6244 together with the HDAC inhibitor MS-275 in nude mice harboring HT-29 or H1650 xenografts. Co-administration of the MEK inhibitor markedly sensitized the human xenografts to MS-275 cytotoxicity. A dose of MS-275 that alone showed only moderate cytotoxicity thus suppressed the growth of tumor xenografts almost completely as well as induced a marked reduction in tumor cellularity when administered with PD184352 or AZD6244. The combination of the two types of inhibitor also induced marked oxidative stress, which appeared to result in DNA damage and massive cell death, specifically in the tumor xenografts. The enhanced therapeutic efficacy of the drug combination was achieved by a relatively transient blockade of the ERK pathway. Administration of both MEK and HDAC inhibitors represents a promising chemotherapeutic strategy with improved safety for cancer patients.

  17. IR-780 Dye as a Sonosensitizer for Sonodynamic Therapy of Breast Tumor

    PubMed Central

    Li, Yekuo; Zhou, Qunfang; Deng, Zhiting; Pan, Min; Liu, Xin; Wu, Junru; Yan, Fei; Zheng, Hairong

    2016-01-01

    Sonodynamic therapy (SDT) has become a new modality for cancer therapy through activating certain chemical sensitizers by ultrasound (US). Discovery and development of novel sonosensitizers are attracting extensive attentions. Here, we introduce IR-780 iodide, a lipophilic heptamethine dye with a peak optical absorption of 780 nm wavelength, which can function as SDT agents for breast cancer treatment. The in vitro cellular uptake, cell viability, and the generation levels of reactive oxygen species (ROS) were examined by using 4T1 breast cancer cells incubated with various concentrations of IR-780 followed by US irradiation. Our results showed a dose- and time-dependent cellular uptake of IR-780 iodide in 4T1 cancer cells. Significant lower viabilities and more necrotic/apoptotic cells were found when these cancer cells were treated with IR-780 iodide with US irradiation. Further analyzing the generation of ROS demonstrated significant increase of 1O2 level and H2O2, but not ⋅OH in the SDT-treated cells. The in vivo anti-tumor efficacy of SDT with IR-780 revealed significant tumor growth inhibition of xenografts of 4T1 cancer cells; it was further confirmed by histological analysis and TUNEL staining. Our results strongly suggest that SDT combined with IR-780 may provide a promising strategy for tumor treatment with minimal side effects. PMID:27174006

  18. Dynamic Quantitative T1 Mapping in Orthotopic Brain Tumor Xenografts1

    PubMed Central

    Herrmann, Kelsey; Erokwu, Bernadette O.; Johansen, Mette L.; Basilion, James P.; Gulani, Vikas; Griswold, Mark A.; Flask, Chris A.; Brady-Kalnay, Susann M.

    2016-01-01

    Human brain tumors such as glioblastomas are typically detected using conventional, nonquantitative magnetic resonance imaging (MRI) techniques, such as T2-weighted and contrast enhanced T1-weighted MRI. In this manuscript, we tested whether dynamic quantitative T1 mapping by MRI can localize orthotopic glioma tumors in an objective manner. Quantitative T1 mapping was performed by MRI over multiple time points using the conventional contrast agent Optimark. We compared signal differences to determine the gadolinium concentration in tissues over time. The T1 parametric maps made it easy to identify the regions of contrast enhancement and thus tumor location. Doubling the typical human dose of contrast agent resulted in a clearer demarcation of these tumors. Therefore, T1 mapping of brain tumors is gadolinium dose dependent and improves detection of tumors by MRI. The use of T1 maps provides a quantitative means to evaluate tumor detection by gadolinium-based contrast agents over time. This dynamic quantitative T1 mapping technique will also enable future quantitative evaluation of various targeted MRI contrast agents. PMID:27084431

  19. Development of a Patient-Derived Xenograft (PDX) of Breast Cancer Bone Metastasis in a Zebrafish Model

    PubMed Central

    Mercatali, Laura; La Manna, Federico; Groenewoud, Arwin; Casadei, Roberto; Recine, Federica; Miserocchi, Giacomo; Pieri, Federica; Liverani, Chiara; Bongiovanni, Alberto; Spadazzi, Chiara; de Vita, Alessandro; van der Pluijm, Gabri; Giorgini, Andrea; Biagini, Roberto; Amadori, Dino; Ibrahim, Toni; Snaar-Jagalska, Ewa

    2016-01-01

    Bone metastasis is a complex process that needs to be better understood in order to help clinicians prevent and treat it. Xenografts using patient-derived material (PDX) rather than cancer cell lines are a novel approach that guarantees more clinically realistic results. A primary culture of bone metastasis derived from a 67-year-old patient with breast cancer was cultured and then injected into zebrafish (ZF) embryos to study its metastatic potential. In vivo behavior and results of gene expression analyses of the primary culture were compared with those of cancer cell lines with different metastatic potential (MCF7 and MDA-MB-231). The MCF7 cell line, which has the same hormonal receptor status as the bone metastasis primary culture, did not survive in the in vivo model. Conversely, MDA-MB-231 disseminated and colonized different parts of the ZF, including caudal hematopoietic tissues (CHT), revealing a migratory phenotype. Primary culture cells disseminated and in later stages extravasated from the vessels, engrafting into ZF tissues and reaching the CHT. Primary cell behavior reflected the clinical course of the patient’s medical history. Our results underline the potential for using PDX models in bone metastasis research and outline new methods for the clinical application of this in vivo model. PMID:27556456

  20. Development of a Patient-Derived Xenograft (PDX) of Breast Cancer Bone Metastasis in a Zebrafish Model.

    PubMed

    Mercatali, Laura; La Manna, Federico; Groenewoud, Arwin; Casadei, Roberto; Recine, Federica; Miserocchi, Giacomo; Pieri, Federica; Liverani, Chiara; Bongiovanni, Alberto; Spadazzi, Chiara; de Vita, Alessandro; van der Pluijm, Gabri; Giorgini, Andrea; Biagini, Roberto; Amadori, Dino; Ibrahim, Toni; Snaar-Jagalska, Ewa

    2016-08-22

    Bone metastasis is a complex process that needs to be better understood in order to help clinicians prevent and treat it. Xenografts using patient-derived material (PDX) rather than cancer cell lines are a novel approach that guarantees more clinically realistic results. A primary culture of bone metastasis derived from a 67-year-old patient with breast cancer was cultured and then injected into zebrafish (ZF) embryos to study its metastatic potential. In vivo behavior and results of gene expression analyses of the primary culture were compared with those of cancer cell lines with different metastatic potential (MCF7 and MDA-MB-231). The MCF7 cell line, which has the same hormonal receptor status as the bone metastasis primary culture, did not survive in the in vivo model. Conversely, MDA-MB-231 disseminated and colonized different parts of the ZF, including caudal hematopoietic tissues (CHT), revealing a migratory phenotype. Primary culture cells disseminated and in later stages extravasated from the vessels, engrafting into ZF tissues and reaching the CHT. Primary cell behavior reflected the clinical course of the patient's medical history. Our results underline the potential for using PDX models in bone metastasis research and outline new methods for the clinical application of this in vivo model.

  1. Carbon nanotube lipid drug approach for targeted delivery of a chemotherapy drug in a human breast cancer xenograft animal model.

    PubMed

    Shao, Wei; Paul, Arghya; Zhao, Bin; Lee, Crystal; Rodes, Laetitia; Prakash, Satya

    2013-12-01

    Carbon nanotube (CNT) possesses excellent properties as a drug carrier. To overcome the challenge of drug functionalization with CNT, we have developed a lipid-drug approach for efficient drug loading onto CNT, in which a long chain lipid molecule is conjugated to the drug molecule so that the lipid-drug can be loaded directly onto CNT through binding of the lipid 'tail' in the drug molecule to CNT surfaces via hydrophobic interactions. In a proof-of-concept study, drug paclitaxel (PTX) was conjugated with a non-toxic lipid molecule docosanol for functionalization with CNT. Folic acid was also conjugated to CNT for targeted drug delivery. High level of drug loading onto SWNT could be achieved by lipid-drug approach. Conjugation of FA to SWNT-lipid-PTX led to an increase in cell penetration capacity, and the targeted SWNT-lipid-PTX showed much improved drug efficacy in vitro in comparison to free drug Taxol and non-targeted SWNT-lipid-PTX at 48 h (78.5% vs. 31.6% and 59.1% in cytotoxicity respectively, p < 0.01). In vivo analysis using a human breast cancer xenograft mice model also confirmed the improved drug efficacy. The targeted SWNT-lipid-PTX was found non-toxic as evaluated by biochemical analysis using blood samples, and by histological analysis of major organs.

  2. Pathophysiological effects of human TNF-alpha-producing tumor xenografts in immunosuppressed mice.

    PubMed

    Nagy, T; Jánossy, T; Vizler, C; Bohus, K; Joó, F; Végh, P; Duda, E

    1999-10-01

    Groups of CBA mice immunosuppressed with anti-thymocyte serum (ATS) treatment were xeno-transplanted with either HeLa human cervical carcinoma cells or genetically modified cells expressing the human tumor necrosis factor-alpha (TNF) gene (All cells). Both cell lines were highly resistant to the cytotoxic effects of TNF. If 3 x 10(6) tumor cells were inoculated s.c. into female mice, HeLa cells grew progressively into large tumors and killed 74% of the recipients, while TNF-expressing All cells caused fatal tumor growth only in 22% of the mice. 3 x 10(6) or 1.5 x 10(7). All cells produced progressive tumor growth and lethality in all male recipients. In sera of all the A11-cell-transplanted mice, biologically active TNF was detected shortly (4.5 h) after tumor inoculation (6 39 U/ml), decreasing to below detection level in the circulation by day 3. In recipients of 15 million A11 cells, circulating TNF reappeared and reached high levels (12-1000 U/ml) 3 to 7 weeks later, when the animals bore large tumors (14-23 mm). Generally, such mice became cachectic, severely anemic, hypothermic, and soon died. On account of calcium mobilization from bones, their serum Ca levels were high. Electron microscopy revealed severe liver damage, but there were no signs of chronic arthritis. These results suggest that ATS-treated mice xenotransplanted with TNF-gene-transfected A11 human tumor cells provide a new model for studying the pathophysiological and anti-tumor effects of TNF. PMID:10549587

  3. Optically measured microvascular blood flow contrast of malignant breast tumors.

    PubMed

    Choe, Regine; Putt, Mary E; Carlile, Peter M; Durduran, Turgut; Giammarco, Joseph M; Busch, David R; Jung, Ki Won; Czerniecki, Brian J; Tchou, Julia; Feldman, Michael D; Mies, Carolyn; Rosen, Mark A; Schnall, Mitchell D; DeMichele, Angela; Yodh, Arjun G

    2014-01-01

    Microvascular blood flow contrast is an important hemodynamic and metabolic parameter with potential to enhance in vivo breast cancer detection and therapy monitoring. Here we report on non-invasive line-scan measurements of malignant breast tumors with a hand-held optical probe in the remission geometry. The probe employs diffuse correlation spectroscopy (DCS), a near-infrared optical method that quantifies deep tissue microvascular blood flow. Tumor-to-normal perfusion ratios are derived from thirty-two human subjects. Mean (95% confidence interval) tumor-to-normal ratio using surrounding normal tissue was 2.25 (1.92-2.63); tumor-to-normal ratio using normal tissues at the corresponding tumor location in the contralateral breast was 2.27 (1.94-2.66), and using normal tissue in the contralateral breast was 2.27 (1.90-2.70). Thus, the mean tumor-to-normal ratios were significantly different from unity irrespective of the normal tissue chosen, implying that tumors have significantly higher blood flow than normal tissues. Therefore, the study demonstrates existence of breast cancer contrast in blood flow measured by DCS. The new, optically accessible cancer contrast holds potential for cancer detection and therapy monitoring applications, and it is likely to be especially useful when combined with diffuse optical spectroscopy/tomography. PMID:24967878

  4. Malignant solitary fibrous tumor of breast: a rare case report.

    PubMed

    Yang, Lian-He; Dai, Shun-Dong; Li, Qing-Chang; Xu, Hong-Tao; Jiang, Gui-Yang; Zhang, Yong; Wang, Liang; Fan, Chui-Feng; Wang, En-Hua

    2014-01-01

    Solitary fibrous tumor (SFT) is rare mesenchymal neoplasm that has been originally and most often documented in the pleura. Recently, the ubiquitous nature of the SFT has been recognized with reports of involvement of numerous sites all over the body such as: upper respiratory tract, somatic tissue, mediastinum, head, and neck. Less than 10 cases SFT of breast have been reported. Herein, we presented a 52-year-old Asian female with SFT of breast, this tumor showed predominant malignant features. To our knowledge, SFT of breast with such malignant evidence is extremely rare.

  5. The role of semaphorin 4D in tumor development and angiogenesis in human breast cancer

    PubMed Central

    Jiang, Hongchao; Chen, Ceshi; Sun, Qiangming; Wu, Jing; Qiu, Lijuan; Gao, Change; Liu, Weiqing; Yang, Jun; Jun, Nie; Dong, Jian

    2016-01-01

    Background Semaphorin 4D (Sema4D) is highly expressed in certain types of tumors and functions in the regulation of tumor angiogenesis and growth. However, it is still not clear regarding the roles of Sema4D in breast cancer. This study was designed to explore the effects of Sema4D on proliferation, cell cycle progression, apoptosis, invasion, migration, tumor growth, and angiogenesis in breast cancer. Materials and methods The expression level of Sema4D was investigated in MCF10A, 184A1, HCC1937, MDA-MB-468, MDA-MB-231, Hs578T, BT474, MCF-7, and T47D breast cancer cell lines by Western blotting analysis. Sema4D downregulation or overexpression was established by infection with lentiviruses-encoding Sema4D short hairpin RNA (shRNA) or Sema4D. To evaluate the effects of Sema4D on cell proliferation, cell cycle progression, apoptosis, invasion, and migration of MDA-MB-231 and MDA-MB-468 cells, methods including MTT assay, flow cytometry, wound healing assay, and transwell experiments were applied. BALB/c nude mice were injected with MDA-MB-231 cells, which were respectively infected with lentiviruses-encoding Sema4D, Sema4D shRNA, and GFP, followed by tumor angiogenesis assay. Results Sema4D was expressed at higher levels in breast cancer cell lines compared with the normal human breast epithelial cell lines, especially in MDA-MB-231 and MDA-MB-468 cells. Cell proliferation ability was remarkably inhibited in Sema4D downregulated condition, whereas the proportions of cells in the G0/G1 phase and apoptosis increased in MDA-MB-231 and MDA-MB-468 cells. In addition, the invasion and migration abilities of these cells were obviously reduced. Xenograft growth as well as angiogenesis was inhibited when infected with lentiviruses-encoding Sema4D shRNA in vivo. Conclusion Downregulation of Sema4D had notable influence on cell proliferation ability, invasion, migration, and apoptosis of both MDA-MB-231 and MDA-MB-468 cells. Furthermore, infection with lentiviruses

  6. Prediction of drug distribution in subcutaneous xenografts of human tumor cell lines and healthy tissues in mouse: application of the tissue composition-based model to antineoplastic drugs.

    PubMed

    Poulin, Patrick; Chen, Yung-Hsiang; Ding, Xiao; Gould, Stephen E; Hop, Cornelis Eca; Messick, Kirsten; Oeh, Jason; Liederer, Bianca M

    2015-04-01

    Advanced tissue composition-based models can predict the tissue-plasma partition coefficient (Kp ) values of drugs under in vivo conditions on the basis of in vitro and physiological input data. These models, however, focus on healthy tissues and do not incorporate data from tumors. The objective of this study was to apply a tissue composition-based model to six marketed antineoplastic drugs (docetaxel, DOC; doxorubicin, DOX; gemcitabine, GEM; methotrexate, MTX; topotecan, TOP; and fluorouracil, 5-FU) to predict their Kp values in three human tumor xenografts (HCT-116, H2122, and PC3) as well as in healthy tissues (brain, muscle, lung, and liver) under steady-state in vivo conditions in female NCR nude mice. The mechanisms considered in the tissue/tumor composition-based model are the binding to lipids and to plasma proteins, but the transporter effect was also investigated. The method consisted of analyzing tissue composition, performing the pharmacokinetics studies in mice, and calculating the corresponding in vivo Kp values. Analyses of tumor composition indicated that the tumor xenografts contained no or low amounts of common transporters by contrast to lipids. The predicted Kp values were within twofold and threefold of the measured values in 77% and 93% of cases, respectively. However, predictions for brain for each drug, for liver for MTX, and for each tumor xenograft for GEM were disparate from the observed values, and, therefore, not well served by the model. Overall, this study is the first step toward the mechanism-based prediction of Kp values of small molecules in healthy and tumor tissues in mouse when no transporter and permeation limitation effect is evident. This approach will be useful in selecting compounds based on their abilities to penetrate human cancer xenografts with a physiologically based pharmacokinetic (PBPK) model, thereby increasing therapeutic index for chemotherapy in oncology study.

  7. Selective gene-expression profiling of migratory tumor cells in vivo predicts clinical outcome in breast cancer patients

    PubMed Central

    2012-01-01

    Introduction Metastasis of breast cancer is the main cause of death in patients. Previous genome-wide studies have identified gene-expression patterns correlated with cancer patient outcome. However, these were derived mostly from whole tissue without respect to cell heterogeneity. In reality, only a small subpopulation of invasive cells inside the primary tumor is responsible for escaping and initiating dissemination and metastasis. When whole tissue is used for molecular profiling, the expression pattern of these cells is masked by the majority of the noninvasive tumor cells. Therefore, little information is available about the crucial early steps of the metastatic cascade: migration, invasion, and entry of tumor cells into the systemic circulation. Methods In the past, we developed an in vivo invasion assay that can capture specifically the highly motile tumor cells in the act of migrating inside living tumors. Here, we used this assay in orthotopic xenografts of human MDA-MB-231 breast cancer cells to isolate selectively the migratory cell subpopulation of the primary tumor for gene-expression profiling. In this way, we derived a gene signature specific to breast cancer migration and invasion, which we call the Human Invasion Signature (HIS). Results Unsupervised analysis of the HIS shows that the most significant upregulated gene networks in the migratory breast tumor cells include genes regulating embryonic and tissue development, cellular movement, and DNA replication and repair. We confirmed that genes involved in these functions are upregulated in the migratory tumor cells with independent biological repeats. We also demonstrate that specific genes are functionally required for in vivo invasion and hematogenous dissemination in MDA-MB-231, as well as in patient-derived breast tumors. Finally, we used statistical analysis to show that the signature can significantly predict risk of breast cancer metastasis in large patient cohorts, independent of well

  8. Improved Treatment of MT-3 Breast Cancer and Brain Metastases in a Mouse Xenograft by LRP-Targeted Oxaliplatin Liposomes.

    PubMed

    Orthmann, Andrea; Peiker, Lisa; Fichtner, Iduna; Hoffmann, Annika; Hilger, Ralf Axel; Zeisig, Reiner

    2016-01-01

    The anti-cancer drug oxaliplatin (OxP) has rarely been used to treat breast carcinoma, as it cannot cross the BBB to treat the frequently subsequent brain metastases. Here, we encapsulated OxP in liposomes prepared to reduce side effects and to simultaneously treat primary tumor and brain metastasis. The angiopep LRP-receptor ligand was bound to the vesicular surface for targeting. Targeted and non-targeted OxP liposomes were tested in vitro (binding, uptake, and transcytosis) and in vivo. Liposomes contained 0.65 mg OxP/mL, their mean diameter was 165 nm, and they released 50% of OxP within 8 days at 4 degrees C and within 22 h at 36 degrees C. MDCK cells were used for uptake and transcytosis quantification. Compared to non-targeted liposomes, targeted liposomes showed 12-fold greater uptake, and 2.25-fold higher transcytosis. In vivo efficacy was tested using human MT-3 breast cancer cells transplanted subcutaneously and intracerebrally into female nude mice, and tumor growth inhibition was measured. OxP was injected (6 mg OxP/kg) four times. The best results were obtained with targeted liposomes (T/C: 21% for subcutaneous and 50% for intracerebral). OxP liposomes with a fluid membrane all inhibited MT-3 tumors significantly better than free OxP, with no significant difference between targeted and non-targeted liposomes. The therapeutic effect was accompanied with strong leukopenia and mild thrombocytopenia with all formulations. The newly developed OxP liposomes significantly improved the treatment of subcutaneously and intracerebrally growing breast cancer, but the targeted angiopep-equipped liposomes showed no superior effect in vivo.

  9. Longitudinal evaluation of the metabolic response of a tumor xenograft model to single fraction radiation therapy using magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Tessier, A. G.; Yahya, A.; Larocque, M. P.; Fallone, B. G.; Syme, A.

    2014-09-01

    Proton magnetic resonance spectroscopy (MRS) was used to evaluate the metabolic profile of human glioblastoma multiform brain tumors grown as xenografts in nude mice before, and at multiple time points after single fraction radiation therapy. Tumors were grown over the thigh in 16 mice in this study, of which 5 served as untreated controls and 11 had their tumors treated to 800 cGy with 200 kVp x-rays. Spectra were acquired within 24 h pre-treatment, and then at 3, 7 and 14 d post-treatment using a 9.4 T animal magnetic resonance (MR) system. For the untreated control tumors, spectra (1-2 per mouse) were acquired at different stages of tumor growth. Spectra were obtained with the PRESS pulse sequence using a 3  ×  3 × 3 mm3 voxel. Analysis was performed with the LCModel software platform. Six metabolites were profiled for this analysis: alanine (Ala), myo-inositol (Ins), taurine (Tau), creatine and phosphocreatine (Cr + PCr), glutamine and glutamate (Glu + Gln), and total choline (glycerophosphocholine + phosphocholine) (GPC + PCh). For the treated cohort, most metabolite/water concentration ratios were found to decrease in the short term at 3 and 7 d post-treatment, followed by an increase at 14 d post-treatment toward pre-treatment values. The lowest concentrations were observed at 7 d post-treatment, with magnitudes (relative to pre-treatment concentration ratios) of: 0.42  ±  24.6% (Ala), 0.43  ±  15.3% (Ins), 0.68  ±  27.9% (Tau), 0.52  ±  14.6% (GPC+PCh), 0.49  ±  21.0% (Cr + PCr) and 0.78  ±  24.5% (Glu + Gln). Control animals did not demonstrate any significant correlation between tumor volume and metabolite concentration, indicating that the observed kinetics were the result of the therapeutic intervention. We have demonstrated the feasibility of using MRS to follow multiple metabolic markers over time for the purpose of evaluating therapeutic response of tumors to radiation therapy. This study provides

  10. Experimental radioimmunotherapy of a xenografted human colonic tumor (GW-39) producing carcinoembryonic antigen

    SciTech Connect

    Goldenberg, D.M.; Gaffar, S.A.; Bennett, S.J.; Beach, J.L.

    1981-11-01

    Experiments were undertaken to evaluate the antitumor effects of 131I-labeled goat antibody immunoglobulin G prepared against carcinoembryonic antigen in hamsters bearing the carcinoembryonic antigen-producing GW-39 human colonic carcinoma. At a single injection of 1 mCi 131I and higher, a marked growth inhibition of GW-39 tumors, as well as a considerable increase in the survival time of the tumor-bearing hamsters, could be achieved. At a dose of 1 mCi, the radioactive affinity-purified antibody appeared to be superior to radioactive normal goat immunoglobulin G in influencing tumor growth and survival time, but no significant difference could be seen at the higher dose of 2 mCi given. Radiobiological calculations indicated that the tumors received, at up to 20 days after therapy, 1325 rads for the specific antibody and only 411 rads for the normal immunoglobulin G preparation. These findings encourage the further evaluation of antibodies to tumor markers for isotopic cancer therapy.

  11. Distinct tumor protein p53 mutants in breast cancer subgroups.

    PubMed

    Dumay, Anne; Feugeas, Jean-Paul; Wittmer, Evelyne; Lehmann-Che, Jacqueline; Bertheau, Philippe; Espié, Marc; Plassa, Louis-François; Cottu, Paul; Marty, Michel; André, Fabrice; Sotiriou, Christos; Pusztai, Lajos; de Thé, Hugues

    2013-03-01

    Tumor protein p53 (TP53) is mutated in approximately 30% of breast cancers, but this frequency fluctuates widely between subclasses. We investigated the p53 mutation status in 572 breast tumors, classified into luminal, basal and molecular apocrine subgroups. As expected, the lowest mutation frequency was observed in luminal (26%), and the highest in basal (88%) tumors. Luminal tumors showed significantly higher frequency of substitutions (82 vs. 65%), notably A/T to G/C transitions (31 vs. 15%), whereas molecular apocrine and basal tumors presented much higher frequencies of complex mutations (deletions/insertions) (36 and 33%, respectively, vs. 18%). Accordingly, missense mutations were significantly more frequent in luminal tumors (75 vs. 54%), whereas basal tumors displayed significantly increased rates of TP53 truncations (43 vs. 25%), resulting in loss of function and/or expression. Interestingly, as basal tumors, molecular apocrine tumors presented with a high rate of complex mutations, but paradoxically, these were not associated with increased frequency of p53 truncation. As in luminal tumors, this could reflect a selective pressure for p53 gain of function, possibly through P63/P73 inactivation. Collectively, these observations point not only to different mechanisms of TP53 alterations, but also to different functional consequences in the different breast cancer subtypes.

  12. Modeling Breast Tumor Development with a Humanized Mouse Model.

    PubMed

    Arendt, Lisa M

    2016-01-01

    The tumor microenvironment plays a critical role in breast cancer growth and progression to metastasis. Here, we describe a method to examine stromal-epithelial interactions during tumor formation and progression utilizing human-derived mammary epithelial cells and breast stromal cells. This method outlines the isolation of each cell type from reduction mammoplasty tissue, the culture and genetic modification of both epithelial and stromal cells using lentiviral technology, and the method of humanizing and implantation of transformed epithelial cells into the cleared mammary fat pads of immunocompromised mice. This model system may be a useful tool to dissect signaling interactions that contribute to invasive tumor behavior and therapeutic resistance. PMID:27581027

  13. Mutational analysis of multiple tumor suppressor 1 (MTS1) gene in human primary breast tumors and established breast tumor cell lines

    SciTech Connect

    Xu, L.; Sgroi, D.; Sterner, C.

    1994-09-01

    A putative tumor suppressor gene on the short arm of human chromosome 9 has been identified recently and named as multiple tumor suppressor 1 (MTS1). MTS1 is identical to the previously identified cyclin-dependent kinase-4 inhibitor gene p16, a cell cycle regulatory protein. Frequent homozygous deletions of MTS1 gene has been documented recently in cell lines derived from different types of tumors including breast tumors, suggesting that MTS1 is a tumor suppressor gene that is probably involved in a variety of human tumors. To determine the frequency of MTS1 mutations in primary breast tumors, we screened 39 primary breast tumors (16 lobular carcinoma and 23 ductal carcinoma) and 5 established breast tumor cell lines by utilizing single stranded conformational polymorphism (SSCP) analysis. SSCP analysis was carried out for all 3 exons of the MTS1 gene utilizing primers in the flanking intronic sequences. Two of the five breast cancer tumor cell lines analyzed exhibited deletion of the entire MTS1 gene. However, only one of the thirty-nine primary breast tumors revealed a potential SSCP variation in exon 2 of the MTS1 gene which is currently characterized by sequencing. SSCP analysis also revealed two intragenic polymorphisms, one in exon 2 and one in the 3{prime} untranslated region, that could be used to assay allelic loss directly at the MTS1 locus. These results suggest that the mutation of the MTS1 gene may not be a critical genetic change in the formation of primary breast cancer, and the deletions observed in breast tumor cell lines may be due to product of cell growth in vitro.

  14. Phyllodes tumor of the breast metastasizing to the vulva.

    PubMed

    Ajenifuja, Olusegun Kayode; Kolomeyevskaya, Nonna; Habib, Fadi; Odunsi, Adekunle; Lele, Shashikant

    2015-01-01

    Phyllodes tumors of the breast are rare breast tumors that resemble fibroadenoma. They are composed of two types of tissues: stromal and glandular tissues. Unlike fibroadenoma, they are commonly found in the third decade of life and they tend to grow more rapidly. Depending on the relative components of the cells and mitotic activity, they are classified into benign, borderline, and malignant. They are usually present as a lump in the breast. Phyllodes tumors are usually managed by wide excision. The excision should be wide enough to ensure a tumor-free margin. Recurrence rate is very high and most recurrences are usually local. Metastasis to the vulva has not been reported. PMID:25960902

  15. Enhanced inhibition of prostate cancer xenograft tumor growth by combining quercetin and green tea.

    PubMed

    Wang, Piwen; Vadgama, Jaydutt V; Said, Jonathan W; Magyar, Clara E; Doan, Ngan; Heber, David; Henning, Susanne M

    2014-01-01

    The chemopreventive activity of green tea (GT) is limited by the low bioavailability and extensive methylation of GT polyphenols (GTPs) in vivo. We determined whether a methylation inhibitor quercetin (Q) will enhance the chemoprevention of prostate cancer in vivo. Androgen-sensitive LAPC-4 prostate cancer cells were injected subcutaneously into severe combined immunodeficiency (SCID) mice one week before the intervention. The concentration of GTPs in brewed tea administered as drinking water was 0.07% and Q was supplemented in diet at 0.2% or 0.4%. After 6-weeks of intervention tumor growth was inhibited by 3% (0.2% Q), 15% (0.4% Q), 21% (GT), 28% (GT+0.2% Q) and 45% (GT+0.4% Q) compared to control. The concentration of non-methylated GTPs was significantly increased in tumor tissue with GT+0.4% Q treatment compared to GT alone, and was associated with a decreased protein expression of catechol-O-methyltransferase and multidrug resistance-associated protein (MRP)-1. The combination treatment was also associated with a significant increase in the inhibition of proliferation, androgen receptor and phosphatidylinositol 3-kinase/Akt signaling, and stimulation of apoptosis. The combined effect of GT+0.4% Q on tumor inhibition was further confirmed in another experiment where the intervention started prior to tumor inoculation. These results provide a novel regimen by combining GT and Q to improve chemoprevention in a non-toxic manner and warrant future studies in humans.

  16. Increased expression of CYP4Z1 promotes tumor angiogenesis and growth in human breast cancer

    SciTech Connect

    Yu, Wei; Chai, Hongyan; Li, Ying; Zhao, Haixia; Xie, Xianfei; Zheng, Hao; Wang, Chenlong; Wang, Xue; Yang, Guifang; Cai, Xiaojun; Falck, John R.; Yang, Jing

    2012-10-01

    Cytochrome P450 (CYP) 4Z1, a novel CYP4 family member, is over-expressed in human mammary carcinoma and associated with high-grade tumors and poor prognosis. However, the precise role of CYP4Z1 in tumor progression is unknown. Here, we demonstrate that CYP4Z1 overexpression promotes tumor angiogenesis and growth in breast cancer. Stable expression of CYP4Z1 in T47D and BT-474 human breast cancer cells significantly increased mRNA expression and production of vascular endothelial growth factor (VEGF)-A, and decreased mRNA levels and secretion of tissue inhibitor of metalloproteinase-2 (TIMP-2), without affecting cell proliferation and anchorage-independent cell growth in vitro. Notably, the conditioned medium from CYP4Z1-expressing cells enhanced proliferation, migration and tube formation of human umbilical vein endothelial cells, and promoted angiogenesis in the zebrafish embryo and chorioallantoic membrane of the chick embryo. In addition, there were lower levels of myristic acid and lauric acid, and higher contents of 20-hydroxyeicosatetraenoic acid (20-HETE) in CYP4Z1-expressing T47D cells compared with vector control. CYP4Z1 overexpression significantly increased tumor weight and microvessel density by 2.6-fold and 1.9-fold in human tumor xenograft models, respectively. Moreover, CYP4Z1 transfection increased the phosphorylation of ERK1/2 and PI3K/Akt, while PI3K or ERK inhibitors and siRNA silencing reversed CYP4Z1-mediated changes in VEGF-A and TIMP-2 expression. Conversely, HET0016, an inhibitor of the CYP4 family, potently inhibited the tumor-induced angiogenesis with associated changes in the intracellular levels of myristic acid, lauric acid and 20-HETE. Collectively, these data suggest that increased CYP4Z1 expression promotes tumor angiogenesis and growth in breast cancer partly via PI3K/Akt and ERK1/2 activation. -- Highlights: ► CYP4Z1 overexpression promotes human breast cancer growth and angiogenesis. ► The pro-angiogenic effects of CYP4Z1 have

  17. Evaluating dynamic contrast-enhanced and photoacoustic CT to assess intra-tumor heterogeneity in xenograft mouse models

    NASA Astrophysics Data System (ADS)

    Stantz, Keith M.; Liu, Bo; Cao, Minsong; Reinecke, Dan; Dzemidzic, Mario; Liang, Yun; Kruger, Robert

    2006-03-01

    Purpose: To evaluate photoacoustic CT spectroscopy (PCT-S) and dynamic contrast-enhanced CT (DCE-CT) ability to measure parameters - oxygen saturation and vascular physiology - associated with the intra-tumor oxygenation status. Material and Methods: Breast (VEGF165 enhance MCF-7) and ovarian (SKOV3x) cancer cells were implanted into the fat pads and flanks of immune deficient mice and allowed to grow to a diameter of 8-15 mm. CT was used to determine physiological parameters by acquiring a sequence of scans over a 10 minute period after an i.v. injection of a radio-opaque contrast agent (Isovue). These time-dependent contrast-enhanced curves were fit to a two-compartmental model determining tumor perfusion, fractional plasma volume, permeability-surface area produce, and fractional interstitial volume on a voxel-by-voxel basis. After which, the tumors were imaged using photoacoustic CT (Optosonics, Inc., Indianapolis, IN 46202). The near infrared spectra (700-910 nm) within the vasculature was fit to linear combination of measured oxy- and deoxy-hemoglobin blood samples to obtain oxygen saturation levels (SaO II). Results: The PCT-S scanner was first calibrated using different samples of oxygenated blood, from which a statistical error ranging from 2.5-6.5% was measured and a plot of the hemoglobin dissociation curve was consistent with empirical formula. In vivo determination of tumor vasculature SaO II levels were measurably tracked, and spatially correlated to the periphery of the tumor. Tumor depend variations in SaO II - 0.32 (ovarian) and 0.60 (breast) - and in vascular physiology - perfusion, 1.03 and 0.063 mL/min/mL, and fractional plasma volume, 0.20 and 0.07 - were observed. Conclusion: Combined, PCT-S and CED-CT has the potential to measure intra-tumor levels of tumor oxygen saturation and vascular physiology, key parameters associated with hypoxia.

  18. Molecular Markers for Breast Cancer: Prediction on Tumor Behavior

    PubMed Central

    Banin Hirata, Bruna Karina; Oda, Julie Massayo Maeda; Losi Guembarovski, Roberta; Ariza, Carolina Batista; de Oliveira, Carlos Eduardo Coral; Watanabe, Maria Angelica Ehara

    2014-01-01

    Breast cancer is one of the most common cancers with greater than 1,300,000 cases and 450,000 deaths each year worldwide. The development of breast cancer involves a progression through intermediate stages until the invasive carcinoma and finally into metastatic disease. Given the variability in clinical progression, the identification of markers that could predict the tumor behavior is particularly important in breast cancer. The determination of tumor markers is a useful tool for clinical management in cancer patients, assisting in diagnostic, staging, evaluation of therapeutic response, detection of recurrence and metastasis, and development of new treatment modalities. In this context, this review aims to discuss the main tumor markers in breast carcinogenesis. The most well-established breast molecular markers with prognostic and/or therapeutic value like hormone receptors, HER-2 oncogene, Ki-67, and p53 proteins, and the genes for hereditary breast cancer will be presented. Furthermore, this review shows the new molecular targets in breast cancer: CXCR4, caveolin, miRNA, and FOXP3, as promising candidates for future development of effective and targeted therapies, also with lower toxicity. PMID:24591761

  19. Alignment of sources and detectors on breast surface for noncontact diffuse correlation tomography of breast tumors

    PubMed Central

    Huang, Chong; Lin, Yu; He, Lian; Irwin, Daniel; Szabunio, Margaret M.; Yu, Guoqiang

    2016-01-01

    Noncontact diffuse correlation tomography (ncDCT) is an emerging technology for 3D imaging of deep tissue blood flow distribution without distorting hemodynamic properties. To adapt the ncDCT for imaging in vivo breast tumors, we designed a motorized ncDCT probe to scan over the breast surface. A computer-aided design (CAD)-based approach was proposed to create solid volume mesh from arbitrary breast surface obtained by a commercial 3D camera. The sources and detectors of ncDCT were aligned on the breast surface through ray tracing to mimic the ncDCT scanning with CAD software. The generated breast volume mesh along with the boundary data of ncDCT at the aligned source and detector pairs were used for finite-element-method-based flow image reconstruction. We evaluated the accuracy of source alignments on mannequin and human breasts; largest alignment errors were less than 10% in both tangential and radial directions of scanning. The impact of alignment errors (assigned 10%) on the tumor reconstruction was estimated using computer simulations. The deviations of simulated tumor location and blood flow contrast resulted from the alignment errors were 0.77 mm (less than the node distance of 1 mm) and 1%, respectively, which result in minor impact on flow image reconstruction. Finally, a case study on a human breast tumor was conducted and a tumor-to-normal flow contrast was reconstructed, demonstrating the feasibility of ncDCT in clinical application. PMID:26479823

  20. Working formulation of neuroendocrine tumors of the skin and breast.

    PubMed

    Asioli, Sofia; Foschini, Maria Pia; Masetti, Riccardo; Eusebi, Vincenzo

    2014-06-01

    In the skin and breast, endocrine tumors are composed of a heterogeneous mixture of endocrine and exocrine cells. The definition of "pure" endocrine carcinomas is a matter for debate, and as a consequence, there is lack of uniform diagnostic criteria. There are no significant clinical differences in either overall or disease-free survival between matched neoplasms with endocrine and without endocrine differentiation nor between the degree of endocrine differentiation and tumor size, stage, or prevalence of vascular invasion for both sites (skin and breast). Here, endocrine tumors of the skin and breast are grouped respectively into three categories that include most of the neuroendocrine tumors of the skin and breast as seen in routine practice. It was felt that the number of different types of neuroendocrine tumors is so conspicuous that it is impossible to organize them in an orderly classification. It has been proposed therefore, for practical diagnostic routine purposes, to arrange these neoplasms into a working formulation. The latter includes heterogeneous lesions respectively of the skin and breast within the same group that have clinical features in common. PMID:24729037

  1. Multi-wavelength photoacoustic imaging of inducible tyrosinase reporter gene expression in xenograft tumors

    PubMed Central

    Paproski, Robert J.; Heinmiller, Andrew; Wachowicz, Keith; Zemp, Roger J.

    2014-01-01

    Photoacoustic imaging is an emerging hybrid imaging technology capable of breaking through resolution limits of pure optical imaging technologies imposed by optical-scattering to provide fine-resolution optical contrast information in deep tissues. We demonstrate the ability of multi-wavelength photoacoustic imaging to estimate relative gene expression distributions using an inducible expression system and co-register images with hemoglobin oxygen saturation estimates and micro-ultrasound data. Tyrosinase, the rate-limiting enzyme in melanin production, is used as a reporter gene owing to its strong optical absorption and enzymatic amplification mechanism. Tetracycline-inducible melanin expression is turned on via doxycycline treatment in vivo. Serial multi-wavelength imaging reveals very low estimated melanin expression in tumors prior to doxycycline treatment or in tumors with no tyrosinase gene present, but strong signals after melanin induction in tumors tagged with the tyrosinase reporter. The combination of new inducible reporters and high-resolution photoacoustic and micro-ultrasound technology is poised to bring a new dimension to the study of gene expression in vivo. PMID:24936769

  2. Setting up a wide panel of patient-derived tumor xenografts of non-small cell lung cancer by improving the preanalytical steps.

    PubMed

    Ilie, Marius; Nunes, Manoel; Blot, Lydia; Hofman, Véronique; Long-Mira, Elodie; Butori, Catherine; Selva, Eric; Merino-Trigo, Ana; Vénissac, Nicolas; Mouroux, Jérôme; Vrignaud, Patricia; Hofman, Paul

    2015-02-01

    With the ongoing need to improve therapy for non-small cell lung cancer (NSCLC) there has been increasing interest in developing reliable preclinical models to test novel therapeutics. Patient-derived tumor xenografts (PDX) are considered to be interesting candidates. However, the establishment of such model systems requires highly specialized research facilities and introduces logistic challenges. We aimed to establish an extensive well-characterized panel of NSCLC xenograft models in the context of a long-distance research network after careful control of the preanalytical steps. One hundred fresh surgically resected NSCLC specimens were shipped in survival medium at room temperature from a hospital-integrated biobank to animal facilities. Within 24 h post-surgery, tumor fragments were subcutaneously xenografted into immunodeficient mice. PDX characterization was performed by histopathological, immunohistochemical, aCGH and next-generation sequencing approaches. For this model system, the tumor take rate was 35%, with higher rates for squamous carcinoma (60%) than for adenocarcinoma (13%). Patients for whom PDX tumors were obtained had a significantly shorter disease-free survival (DFS) compared to patients for whom no PDX tumors (P = 0.039) were obtained. We established a large panel of PDX NSCLC models with a high frequency of mutations (29%) in EGFR, KRAS, NRAS, MEK1, BRAF, PTEN, and PI3KCA genes and with gene amplification (20%) of c-MET and FGFR1. This new patient-derived NSCLC xenograft collection, established regardless of the considerable time required and the distance between the clinic and the animal facilities, recapitulated the histopathology and molecular diversity of NSCLC and provides stable and reliable preclinical models for human lung cancer research.

  3. Microdistribution of specific rat monoclonal antibodies to mouse tissues and human tumor xenografts

    SciTech Connect

    Kennel, S.J.; Falcioni, R.; Wesley, J.W. )

    1991-03-01

    Detailed evaluations of the microdistribution of 125I-labeled monoclonal antibodies (MoAbs) to normal tissue antigens were conducted in BALB/c mice. MoAb 273-34A, which binds to a target molecule on the lumenal surface of lung endothelial cells, localizes quickly and efficiently throughout the lung vasculature. MoAb 133-13A, which binds to an antigen on macrophage-like cells expressed in nearly equal amounts in lung, liver, and spleen, localizes most efficiently to spleen and less well to liver and lung. The microdistribution of MoAb 133-13A in liver and spleen is consistent with the antigen distribution in these organs, but in the lung a more diffuse microdistribution is observed, indicating poor access of MoAb to the antigen-positive alveolar macrophages. These findings are consistent with the hypothesis that tight endothelium (lung) represents a significant barrier to extravasation of MoAb into tissue while fenestrated (spleen) and sinusoidal (liver) endothelium are more easily penetrated. In human tumor bearing nu/nu mice, the microdistribution of MoAb to the beta 4 and alpha 6 subunits of integrin was studied. These MoAbs do not cross-react with murine integrins and thus are tumor-specific in the nu/nu mouse model. Localization of 125I-labeled MoAb 450-11A, which reacts with an intercellular domain of beta 4 integrin, is very weak and diffuse. All MoAbs to extracellular domains localize well to the tumor. Microdistribution of these MoAbs in the 3 different tumors is nonuniform with heavy distribution near the blood vessels, whereas antigen distribution as determined by immunoperoxidase shows a much more uniform pattern throughout the tumors. In experiments with 125I-labeled MoAb 439-9B F(ab')2, the nonuniform pattern of distribution was not changed. Gross and microdistribution of different doses of 125I-labeled MoAb 439-9B were studied.

  4. Rare Malignant Tumors of the Breast

    PubMed Central

    Miller, Trevor; Albarracin, Constance; Carkaci, Selin; Whitman, Gary J; Adrada, Beatriz E

    2015-01-01

    While the more common forms of breast cancer are well understood and recognized, there are many important rare malignancies that are less appreciated. Many of these cancers have imaging findings that, when understood, help to formulate a more educated differential diagnosis. In this article, the clinical features, imaging, and pathologic findings of rare breast malignancies will be discussed. PMID:26664775

  5. Established breast cancer stem cell markers do not correlate with in vivo tumorigenicity of tumor-initiating cells.

    PubMed

    Lehmann, Christian; Jobs, Gabriele; Thomas, Markus; Burtscher, Helmut; Kubbies, Manfred

    2012-12-01

    The tumor-initiating capacity of primary human breast cancer cells is maintained in vitro by culturing these cells as spheres/aggregates. Inoculation of small cell numbers derived from these non-adherent cultures leads to rapid xenograft tumor formation in mice. Accordingly, injection of more differentiated monolayer cells derived from spheres results in significantly decelerated tumor growth. For our study, two breast cancer cell lines were generated from primary tumors and cultured as mammospheres or as their adherent counterparts. We examined the in vivo tumorigenicity of these cells by injecting serial dilutions into immunodeficient mice. Inoculation of 106 cells per mouse led to rapid tumor formation, irrespective of cell line or culture conditions. However, after injection of only 103 cells, solely sphere cells were highly tumorigenic. In vitro, we investigated differentiation markers, established breast CSC markers and conducted mRNA profiling. Cytokeratin 5 and 18 were increased in both monolayer cell types, indicating a more differentiated phenotype. All cell lines were CD24(-)/CD44(+) and did not express CD133, CD326 or E-cadherin. ALDH1 activity was not detectable in any cell line. A verapamil‑sensitive Hoechst side population was present in sphere cells, but there was no correlation with tumorigenicity in vivo. mRNA profiling did not reveal upregulation of relevant transcription factors. In vitro cell cycle kinetics and in vivo tumor doubling times displayed no difference between sphere and monolayer cultures. Our data indicate that intrinsic genetic and functional markers investigated are not indicative of the in vivo tumori-genicity of putative breast tumor-initiating cells.

  6. Tumor-associated macrophages: unwitting accomplices in breast cancer malignancy

    PubMed Central

    Williams, Carly Bess; Yeh, Elizabeth S; Soloff, Adam C

    2016-01-01

    Deleterious inflammation is a primary feature of breast cancer. Accumulating evidence demonstrates that macrophages, the most abundant leukocyte population in mammary tumors, have a critical role at each stage of cancer progression. Such tumor-associated macrophages facilitate neoplastic transformation, tumor immune evasion and the subsequent metastatic cascade. Herein, we discuss the dynamic process whereby molecular and cellular features of the tumor microenvironment act to license tissue-repair mechanisms of macrophages, fostering angiogenesis, metastasis and the support of cancer stem cells. We illustrate how tumors induce, then exploit trophic macrophages to subvert innate and adaptive immune responses capable of destroying malignant cells. Finally, we discuss compelling evidence from murine models of cancer and early clinical trials in support of macrophage-targeted intervention strategies with the potential to dramatically reduce breast cancer morbidity and mortality. PMID:26998515

  7. Preliminary observations of breast tumor collagen using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Lewis, Robert A.; Rogers, Keith D.; Hall, Christopher J.; Towns-Andrews, Elizabeth; Slawson, Susan; Evans, Andrew; Pinder, Sarah E.; Ellis, Ian O.; Boggis, Caroline R. M.; Hufton, Alan P.; Dance, David R.

    1999-10-01

    The most frequently occurring cancer in women is that of the breast where it accounts for almost 20% of all cancer deaths. The U.K. has the world's highest mortality rate from breast cancer with an increasing incidence of 25000 per annum. Characterizing the complex physiological and tissue changes that form the natural history of breast cancer is clearly important for understanding associated biological mechanisms and for diagnosis. We report the initial findings of a diffraction study of breast tissue collagen that we believe may be due to tumor genesis. Small angle, synchrotron X-ray scattering has enabled us to examine `core cut' biopsy specimens and characterize their collagen architecture. We present data that demonstrates possible structural differences between tumor and normal tissue. We discuss the implications of these findings in the context of using molecular structure characteristics as new and novel markers of disease progression.

  8. Antitumor effect of antitissue factor antibody‐MMAE conjugate in human pancreatic tumor xenografts

    PubMed Central

    Koga, Yoshikatsu; Manabe, Shino; Aihara, Yoshiyuki; Sato, Ryuta; Tsumura, Ryo; Iwafuji, Hikaru; Furuya, Fumiaki; Fuchigami, Hirobumi; Fujiwara, Yuki; Hisada, Yohei; Yamamoto, Yoshiyuki; Yasunaga, Masahiro

    2015-01-01

    Tissue factor (TF) triggers the extrinsic blood coagulation cascade and is highly expressed in various types of cancer. In this study, we investigated the antitumor effect of an antibody–drug conjugate (ADC) consisting of an anti‐TF monoclonal antibody and monomethyl auristatin E (MMAE). MMAE was conjugated to an anti‐human TF or anti‐mouse TF antibody using a valine‐citrulline linker that could be potentially hydrolyzed by cathepsin B in the acidic environment of the lysosome. The cytotoxic and antitumor effects of the ADCs against four pancreatic cancer cell lines were analyzed. Both the ADC with the anti‐human TF antibody and that with the anti‐mouse TF antibody were stable under physiological conditions. The anti‐human ADC was internalized in TF‐expressing human tumor cell lines, followed by effective MMAE release. The half maximal inhibitory concentration (IC50) of MMAE was approximately 1 nM for all of the cell lines used. Meanwhile, the IC50 of anti‐human ADC was 1.15 nM in the cell lines showing high TF expression, while exceeding 100 nM in the cells showing low TF expression levels. Anti‐human ADC with passive and active targeting ability exerted significant suppression of tumor growth as compared to that observed in the saline group (p < 0.01). Also significant tumor growth suppressions were seen at the anti‐mouse ADC and control ADC groups compared to the saline group (p < 0.01) due to EPR effect. Because various clinical human cancers express highly amount of TF, this new anti‐TF ADC may deserve a clinical evaluation. PMID:25704403

  9. Magnetic resonance image-guided photodynamic therapy of xenograft pancreas tumors with verteporfin

    NASA Astrophysics Data System (ADS)

    Samkoe, Kimberley S.; Chen, Alina; Rizvi, Imran; O'Hara, Julia A.; Hoopes, P. Jack; Hasan, Tayyaba; Pogue, Brian W.

    2009-02-01

    Pancreatic cancer generally has very poor prognosis, with less than 4% survival at 5 years after diagnosis. This dismal survival rate is in part due to the aggressive nature of the adenocarcinoma, leading to a late-stage at diagnosis and exhibits resistance to most therapies. Photodynamic therapy (PDT) is a model cellular and vascular therapy agent, which uses light activation of the delivered drug to photosensitize the local cellular millieu. We suggest that interstitial verteporfin (benzoporphyrin derivative monoacid ring A) PDT has the potential to be an adjuvant therapy to the commonly used Gemcitabine chemotherapy. In the current study, an orthotopic pancreatic cancer model (Panc-1) has undergone interstitial verteporfin PDT (40 J/cm with verteporfin and 40 J/cm without verteporfin). Prior to PDT, magnetic resonance (MR) imaging was used to determine the location and size of the tumor within the pancreas, allowing accurate placement of the diffusing fiber. The success of therapy was monitored in vivo by assessing the total tumor and vascular perfusion volumes 24 hours pre- and 48 hours post-PDT. Total tumor and vascular perfusion volumes were determined using T2 weighted (T2W) and Gd-DTPA difference T1 weighted (T1W) turbo spin echo (TSE) MR imaging sequences, respectively. The validity of the in vivo imaging for therapeutic response was confirmed by ex vivo fluorescence and histological staining of frozen tissue sections. The ex vivo DiOC7(3) fluorescence analysis correlates well with the information provided from the MR images, indicating that MR imaging will be a successful surrogate marker for interstitial PDT.

  10. Effects of green-synthesized silver nanoparticles on lung cancer cells in vitro and grown as xenograft tumors in vivo

    PubMed Central

    He, Yan; Du, Zhiyun; Ma, Shijing; Liu, Yue; Li, Dongli; Huang, Huarong; Jiang, Sen; Cheng, Shupeng; Wu, Wenjing; Zhang, Kun; Zheng, Xi

    2016-01-01

    Silver nanoparticles (AgNPs) have now been recognized as promising therapeutic molecules and are extending their use in cancer diagnosis and therapy. This study demonstrates for the first time the antitumor activity of green-synthesized AgNPs against lung cancer in vitro and in vivo. Cytotoxicity effect was explored on human lung cancer H1299 cells in vitro by MTT and trypan blue assays. Apoptosis was measured by morphological assessment, and nuclear factor-κB (NF-κB) transcriptional activity was determined by a luciferase reporter gene assay. The expressions of phosphorylated stat3, bcl-2, survivin, and caspase-3 were examined by Western blot analysis. AgNPs showed dose-dependent cytotoxicity and stimulation of apoptosis in H1299 cells. The effects on H1299 cells correlated well with the inhibition of NF-κB activity, a decrease in bcl-2, and an increase in caspase-3 and survivin expression. AgNPs significantly suppressed the H1299 tumor growth in a xenograft severe combined immunodeficient (SCID) mouse model. The results demonstrate the anticancer activities of AgNPs, suggesting that they may act as potential beneficial molecules in lung cancer chemoprevention and chemotherapy, especially for early-stage intervention. PMID:27217750

  11. Selective In Vivo Targeting of Human Liver Tumors by Optimized AAV3 Vectors in a Murine Xenograft Model

    PubMed Central

    Wang, Yuan; Zhang, Yuanhui; Ejjigani, Anila; Yin, Zifei; Lu, Yuan; Wang, Lina; Wang, Meng; Li, Jun; Hu, Zhongbo; Aslanidi, George V.; Zhong, Li; Gao, Guangping

    2014-01-01

    Abstract Current challenges for recombinant adeno-associated virus (rAAV) vector–based cancer treatment include the low efficiency and the lack of specificity in vivo. rAAV serotype 3 (rAAV3) vectors have previously been shown to be ineffective in normal mouse tissues following systemic administration. In the present study, we report that rAAV3 vectors can efficiently target and transduce various human liver cancer cells in vivo. Elimination of specific surface-exposed serine and threonine residues on rAAV3 capsids results in further augmentation in the transduction efficiency of these vectors, without any change in the viral tropism and cellular receptor interactions. In addition, we have identified a potential chemotherapy drug, shikonin, as a multifunctional compound to inhibit liver tumor growth as well as to significantly enhance the efficacy of rAAV vector-based gene therapy in vivo. Furthermore, we also document that suppression of tumorigenesis in a human liver cancer xenograft model can be achieved through systemic administration of the optimized rAAV3 vectors carrying a therapeutic gene, and shikonin at a dose that does not lead to liver damage. Our research provides a novel means to achieve not only targeted delivery but also the potential for gene therapy of human liver cancer. PMID:25296041

  12. Selective in vivo targeting of human liver tumors by optimized AAV3 vectors in a murine xenograft model.

    PubMed

    Ling, Chen; Wang, Yuan; Zhang, Yuanhui; Ejjigani, Anila; Yin, Zifei; Lu, Yuan; Wang, Lina; Wang, Meng; Li, Jun; Hu, Zhongbo; Aslanidi, George V; Zhong, Li; Gao, Guangping; Srivastava, Arun; Ling, Changquan

    2014-12-01

    Current challenges for recombinant adeno-associated virus (rAAV) vector-based cancer treatment include the low efficiency and the lack of specificity in vivo. rAAV serotype 3 (rAAV3) vectors have previously been shown to be ineffective in normal mouse tissues following systemic administration. In the present study, we report that rAAV3 vectors can efficiently target and transduce various human liver cancer cells in vivo. Elimination of specific surface-exposed serine and threonine residues on rAAV3 capsids results in further augmentation in the transduction efficiency of these vectors, without any change in the viral tropism and cellular receptor interactions. In addition, we have identified a potential chemotherapy drug, shikonin, as a multifunctional compound to inhibit liver tumor growth as well as to significantly enhance the efficacy of rAAV vector-based gene therapy in vivo. Furthermore, we also document that suppression of tumorigenesis in a human liver cancer xenograft model can be achieved through systemic administration of the optimized rAAV3 vectors carrying a therapeutic gene, and shikonin at a dose that does not lead to liver damage. Our research provides a novel means to achieve not only targeted delivery but also the potential for gene therapy of human liver cancer.

  13. A HLA-A2-restricted CTL epitope induces anti-tumor effects against human lung cancer in mouse xenograft model

    PubMed Central

    Chen, I-Hua; Liu, Hsin-Yu; Lin, Chen-Yuan; Chiang, I-Ping; Roffler, Steve; Chen, Hsin-Wei; Liu, Shih-Jen

    2016-01-01

    Cancer immunotherapy is attractive for antigen-specific T cell-mediated anti-tumor therapy, especially in induction of cytotoxic T lymphocytes. In this report, we evaluated human CTL epitope-induced anti-tumor effects in human lung cancer xenograft models. The tumor associated antigen L6 (TAL6) is highly expressed in human lung cancer cell lines and tumor specimens as compared to normal lung tissues. TAL6 derived peptides strongly inhibited tumor growth, cancer metastasis and prolonged survival time in HLA-A2 transgenic mice immunized with a formulation of T-helper (Th) peptide, synthetic CpG ODN, and adjuvant Montanide ISA-51 (ISA-51). Adoptive transfer of peptide-induced CTL cells from HLA-A2 transgenic mice into human tumor xenograft SCID mice significantly inhibited tumor growth. Furthermore, combination of CTL-peptide immunotherapy and gemcitabine additively improved the therapeutic effects. This pre-clinical evaluation model provides a useful platform to develop efficient immunotherapeutic drugs to treat lung cancer and demonstrates a promising strategy with benefit of antitumor immune responses worthy of further development in clinical trials. PMID:26621839

  14. A HLA-A2-restricted CTL epitope induces anti-tumor effects against human lung cancer in mouse xenograft model.

    PubMed

    Sher, Yuh-Pyng; Lin, Su-I; Chen, I-Hua; Liu, Hsin-Yu; Lin, Chen-Yuan; Chiang, I-Ping; Roffler, Steve; Chen, Hsin-Wei; Liu, Shih-Jen

    2016-01-01

    Cancer immunotherapy is attractive for antigen-specific T cell-mediated anti-tumor therapy, especially in induction of cytotoxic T lymphocytes. In this report, we evaluated human CTL epitope-induced anti-tumor effects in human lung cancer xenograft models. The tumor associated antigen L6 (TAL6) is highly expressed in human lung cancer cell lines and tumor specimens as compared to normal lung tissues. TAL6 derived peptides strongly inhibited tumor growth, cancer metastasis and prolonged survival time in HLA-A2 transgenic mice immunized with a formulation of T-helper (Th) peptide, synthetic CpG ODN, and adjuvant Montanide ISA-51 (ISA-51). Adoptive transfer of peptide-induced CTL cells from HLA-A2 transgenic mice into human tumor xenograft SCID mice significantly inhibited tumor growth. Furthermore, combination of CTL-peptide immunotherapy and gemcitabine additively improved the therapeutic effects. This pre-clinical evaluation model provides a useful platform to develop efficient immunotherapeutic drugs to treat lung cancer and demonstrates a promising strategy with benefit of antitumor immune responses worthy of further development in clinical trials. PMID:26621839

  15. Racial variation in breast tumor promoter methylation in the Carolina Breast Cancer Study

    PubMed Central

    Conway, Kathleen; Edmiston, Sharon N.; Tse, Chiu-Kit; Bryant, Christopher; Kuan, Pei Fen; Hair, Brionna Y.; Parrish, Eloise A.; May, Ryan; Swift-Scanlan, Theresa

    2015-01-01

    Background African American (AA) women are diagnosed with more advanced breast cancers and have worse survival than white women, but a comprehensive understanding of the basis for this disparity remains unclear. Analysis of DNA methylation, an epigenetic mechanism that can regulate gene expression, could help to explain racial differences in breast tumor clinical biology and outcomes. Methods DNA methylation was evaluated at 1287 CpGs in the promoters of cancer-related genes in 517 breast tumors of AA (n=216) or non-AA (n=301) cases in the Carolina Breast Cancer Study. Results Multivariable linear regression analysis of all tumors, controlling for age, menopausal status, stage, intrinsic subtype, and multiple comparisons (FDR), identified 7 CpG probes that showed significant (adjusted p<0.05) differential methylation between AAs and non-AAs. Stratified analyses detected an additional 4 CpG probes differing by race within hormone receptor-negative (HR−) tumors. Genes differentially methylated by race included DSC2, KCNK4, GSTM1, AXL, DNAJC15, HBII-52, TUSC3 and TES; the methylation state of several of these genes may be associated with worse survival in AAs. TCGA breast tumor data confirmed the differential methylation by race and negative correlations with expression for most of these genes. Several loci also showed racial differences in methylation in peripheral blood leukocytes (PBLs) from CBCS cases, indicating that these variations were not necessarily tumor-specific. Conclusions Racial differences in the methylation of cancer-related genes are detectable in both tumors and PBLs from breast cancer cases. Impact Epigenetic variation could contribute to differences in breast tumor development and outcomes between AAs and non-AAs. PMID:25809865

  16. Rosemary (Rosmarinus officinalis) extract modulates CHOP/GADD153 to promote androgen receptor degradation and decreases xenograft tumor growth.

    PubMed

    Petiwala, Sakina M; Berhe, Saba; Li, Gongbo; Puthenveetil, Angela G; Rahman, Ozair; Nonn, Larisa; Johnson, Jeremy J

    2014-01-01

    The Mediterranean diet has long been attributed to preventing or delaying the onset of cardiovascular disease, diabetes and various solid organ cancers. In this particular study, a rosemary extract standardized to carnosic acid was evaluated for its potential in disrupting the endoplasmic reticulum machinery to decrease the viability of prostate cancer cells and promote degradation of the androgen receptor. Two human prostate cancer cell lines, 22Rv1 and LNCaP, and prostate epithelial cells procured from two different patients undergoing radical prostatectomy were treated with standardized rosemary extract and evaluated by flow cytometry, MTT, BrdU, Western blot and fluorescent microscopy. A significant modulation of endoplasmic reticulum stress proteins was observed in cancer cells while normal prostate epithelial cells did not undergo endoplasmic reticulum stress. This biphasic response suggests that standardized rosemary extract may preferentially target cancer cells as opposed to "normal" cells. Furthermore, we observed standardized rosemary extract to decrease androgen receptor expression that appears to be regulated by the expression of CHOP/GADD153. Using a xenograft tumor model we observed standardized rosemary extract when given orally to significantly suppress tumor growth by 46% compared to mice not receiving standardized rosemary extract. In the last several years regulatory governing bodies (e.g. European Union) have approved standardized rosemary extracts as food preservatives. These results are especially significant as it is becoming more likely that individuals will be receiving standardized rosemary extracts that are a part of a natural preservative system in various food preparations. Taken a step further, it is possible that the potential benefits that are often associated with a "Mediterranean Diet" in the future may begin to extend beyond the Mediterranean diet as more of the population is consuming standardized rosemary extracts.

  17. Tumor-to-tumor metastasis: an unusual case of breast cancer metastatic to a solitary fibrous tumor.

    PubMed

    Velez-Cubian, Frank O; Gabordi, Robert C; Smith, Prudence V; Toloza, Eric M

    2016-06-01

    Solitary fibrous tumor (SFT) is a rare mesenchymal neoplasm that most commonly involves the visceral or parietal pleura, but that has also been described arising from virtually all organs. This neoplasm exhibits rich vascularity, a characteristic it shares with renal cell carcinoma, making these tumors especially suitable for harboring metastases. We present a case of a 64-year-old woman with history of right breast cancer treated six years previously and who presents with a left pulmonary SFT containing metastatic invasive ductal breast carcinoma as well as a synchronous contralateral primary adenocarcinoma of the lung. The literature on tumor-to-tumor metastasis is then reviewed.

  18. Tumor-to-tumor metastasis: an unusual case of breast cancer metastatic to a solitary fibrous tumor.

    PubMed

    Velez-Cubian, Frank O; Gabordi, Robert C; Smith, Prudence V; Toloza, Eric M

    2016-06-01

    Solitary fibrous tumor (SFT) is a rare mesenchymal neoplasm that most commonly involves the visceral or parietal pleura, but that has also been described arising from virtually all organs. This neoplasm exhibits rich vascularity, a characteristic it shares with renal cell carcinoma, making these tumors especially suitable for harboring metastases. We present a case of a 64-year-old woman with history of right breast cancer treated six years previously and who presents with a left pulmonary SFT containing metastatic invasive ductal breast carcinoma as well as a synchronous contralateral primary adenocarcinoma of the lung. The literature on tumor-to-tumor metastasis is then reviewed. PMID:27293861

  19. Tumor-to-tumor metastasis: an unusual case of breast cancer metastatic to a solitary fibrous tumor

    PubMed Central

    Velez-Cubian, Frank O.; Gabordi, Robert C.; Smith, Prudence V.

    2016-01-01

    Solitary fibrous tumor (SFT) is a rare mesenchymal neoplasm that most commonly involves the visceral or parietal pleura, but that has also been described arising from virtually all organs. This neoplasm exhibits rich vascularity, a characteristic it shares with renal cell carcinoma, making these tumors especially suitable for harboring metastases. We present a case of a 64-year-old woman with history of right breast cancer treated six years previously and who presents with a left pulmonary SFT containing metastatic invasive ductal breast carcinoma as well as a synchronous contralateral primary adenocarcinoma of the lung. The literature on tumor-to-tumor metastasis is then reviewed. PMID:27293861

  20. Optical assessment of tumor resection margins in the breast.

    PubMed

    Brown, J Quincy; Bydlon, Torre M; Richards, Lisa M; Yu, Bing; Kennedy, Stephanie A; Geradts, Joseph; Wilke, Lee G; Junker, Marlee; Gallagher, Jennifer; Barry, William; Ramanujam, Nimmi

    2010-03-01

    Breast conserving surgery, in which the breast tumor and surrounding normal tissue are removed, is the primary mode of treatment for invasive and in situ carcinomas of the breast, conditions that affect nearly 200,000 women annually. Of these nearly 200,000 patients who undergo this surgical procedure, between 20-70% of them may undergo additional surgeries to remove tumor that was left behind in the first surgery, due to the lack of intra-operative tools which can detect whether the boundaries of the excised specimens are free from residual cancer. Optical techniques have many attractive attributes which may make them useful tools for intra-operative assessment of breast tumor resection margins. In this manuscript, we discuss clinical design criteria for intra-operative breast tumor margin assessment, and review optical techniques appied to this problem. In addition, we report on the development and clinical testing of quantitative diffuse reflectance imaging (Q-DRI) as a potential solution to this clinical need. Q-DRI is a spectral imaging tool which has been applied to 56 resection margins in 48 patients at Duke University Medical Center. Clear sources of contrast between cancerous and cancer-free resection margins were identified with the device, and resulted in an overall accuracy of 75% in detecting positive margins.

  1. Optical assessment of tumor resection margins in the breast

    PubMed Central

    Brown, J. Quincy; Bydlon, Torre M.; Richards, Lisa M.; Yu, Bing; Kennedy, Stephanie A.; Geradts, Joseph; Wilke, Lee G.; Junker, Marlee; Gallagher, Jennifer; Barry, William; Ramanujam, Nimmi

    2011-01-01

    Breast conserving surgery, in which the breast tumor and surrounding normal tissue are removed, is the primary mode of treatment for invasive and in situ carcinomas of the breast, conditions that affect nearly 200,000 women annually. Of these nearly 200,000 patients who undergo this surgical procedure, between 20–70% of them may undergo additional surgeries to remove tumor that was left behind in the first surgery, due to the lack of intra-operative tools which can detect whether the boundaries of the excised specimens are free from residual cancer. Optical techniques have many attractive attributes which may make them useful tools for intra-operative assessment of breast tumor resection margins. In this manuscript, we discuss clinical design criteria for intra-operative breast tumor margin assessment, and review optical techniques appied to this problem. In addition, we report on the development and clinical testing of quantitative diffuse reflectance imaging (Q-DRI) as a potential solution to this clinical need. Q-DRI is a spectral imaging tool which has been applied to 56 resection margins in 48 patients at Duke University Medical Center. Clear sources of contrast between cancerous and cancer-free resection margins were identified with the device, and resulted in an overall accuracy of 75% in detecting positive margins. PMID:21544237

  2. Intrinsic breast tumor subtypes, race, and long-term survival in the Carolina Breast Cancer Study

    PubMed Central

    O’Brien, Katie M.; Cole, Stephen R.; Tse, Chiu-Kit; Perou, Charles M.; Carey, Lisa A.; Foulkes, William D.; Dressler, Lynn G.; Geradts, Joseph; Millikan, Robert C.

    2010-01-01

    Purpose Previous research identified differences in breast cancer-specific mortality across four "intrinsic" tumor subtypes: luminal A, luminal B, basal-like, and human epidermal growth factor receptor 2 positive/estrogen receptor negative (HER2+/ER−). Experimental Design We used immunohistochemical markers to subtype 1149 invasive breast cancer patients (518 African American, 631 white) in the Carolina Breast Cancer Study, a population-based study of women diagnosed with breast cancer. Vital status was determined through 2006 using the National Death Index, with median follow-up of 9 years. Results Cancer subtypes luminal A, luminal B, basal-like and HER2+/ER- were distributed as 64%, 11%, 11% and 5% for whites, and 48%, 8%, 22% and 7% for African Americans, respectively. Breast cancer mortality was higher for patients with HER2+/ER- and basal-like breast cancer compared to luminal A and B. African Americans had higher breast-cancer specific mortality than whites, but the effect of race was statistically significant only among women with luminal A breast cancer. However, when compared to the luminal A subtype within racial categories, mortality for patients with basal-like breast cancer was higher among whites (HR=2.0, 95% CI: 1.2, 3.4) than African Americans (HR=1.5, 95% CI: 1.0, 2.4), with the strongest effect seen in postmenopausal white women (HR=3.9, 95% CI: 1.5, 10.0). Conclusions Our results confirm the association of basal-like breast cancer with poor prognosis, and suggest that basal-like breast cancer is not an inherently more aggressive disease in African American women compared to whites. Additional analyses are needed in populations with known treatment profiles to understand the role of tumor subtypes and race in breast cancer mortality, and in particular our finding that among women with luminal A breast cancer, African Americans have higher mortality than whites. PMID:21169259

  3. Near-infrared fluorescence imaging of mammalian cells and xenograft tumors with SNAP-tag.

    PubMed

    Gong, Haibiao; Kovar, Joy L; Baker, Brenda; Zhang, Aihua; Cheung, Lael; Draney, Daniel R; Corrêa, Ivan R; Xu, Ming-Qun; Olive, D Michael

    2012-01-01

    Fluorescence in the near-infrared (NIR) spectral region is suitable for in vivo imaging due to its reduced background and high penetration capability compared to visible fluorescence. SNAP(f) is a fast-labeling variant of SNAP-tag that reacts with a fluorescent dye-conjugated benzylguanine (BG) substrate, leading to covalent attachment of the fluorescent dye to the SNAP(f). This property makes SNAP(f) a valuable tool for fluorescence imaging. The NIR fluorescent substrate BG-800, a conjugate between BG and IRDye 800CW, was synthesized and characterized in this study. HEK293, MDA-MB-231 and SK-OV-3 cells stably expressing SNAP(f)-Beta-2 adrenergic receptor (SNAP(f)-ADRβ2) fusion protein were created. The ADRβ2 portion of the protein directs the localization of the protein to the cell membrane. The expression of SNAP(f)-ADRβ2 in the stable cell lines was confirmed by the reaction between BG-800 substrate and cell lysates. Microscopic examination confirmed that SNAP(f)-ADRβ2 was localized on the cell membrane. The signal intensity of the labeled cells was dependent on the BG-800 concentration. In vivo imaging study showed that BG-800 could be used to visualize xenograph tumors expressing SNAP(f)-ADRβ2. However, the background signal was relatively high, which may be a reflection of non-specific accumulation of BG-800 in the skin. To address the background issue, quenched substrates that only fluoresce upon reaction with SNAP-tag were synthesized and characterized. Although the fluorescence was successfully quenched, in vivo imaging with the quenched substrate CBG-800-PEG-QC1 failed to visualize the SNAP(f)-ADRβ2 expressing tumor, possibly due to the reduced reaction rate. Further improvement is needed to apply this system for in vivo imaging. PMID:22479502

  4. Combined therapeutic effects of vinblastine and Astragalus saponins in human colon cancer cells and tumor xenograft via inhibition of tumor growth and proangiogenic factors.

    PubMed

    Auyeung, Kathy K W; Law, P C; Ko, Joshua K S

    2014-01-01

    Our previous study had demonstrated that Astragalus saponins (AST) could reduce the side effects of orthodox chemotherapeutic drugs, while concurrently promote antitumor activity. In the present study, we attempted to investigate the potential synergistic anticarcinogenic effects of AST and a vinca alkaloid vinblastine (VBL). Reduced expression of key proangiogenic and metastatic factors including VEGF, bFGF, metalloproteinase (MMP)-2, and MMP-9 was detected in VBL-treated colon cancer cells, with further downregulation by combined VBL/AST treatment. Subsequently, VBL or AST decreased LoVo cell invasiveness, with further reduction when the drugs were cotreated. Significant growth inhibition and cell cycle arrest at G2/M phase were achieved by either drug treatment with apparent synergistic effects. VBL-induced apoptosis was confirmed but found to be unrelated to induction of the novel apoptotic protein NSAID-activated gene 1. In vivo study in tumor xenograft indicates that combined VBL/AST treatment resulted in sustained regression of tumor growth, with attenuation of the neutropenic and anemic effects of VBL. In addition, downregulation of proangiogenic and proliferative factors was also visualized, with boosting effect by combined drug treatment. These findings have provided evidence that AST combined with adjuvant chemotherapeutics like VBL could alleviate cancer development through diversified modes of action, including the regulation of angiogenesis.

  5. Dealcoholized Korean Rice Wine (Makgeolli) Exerts Potent Anti-Tumor Effect in AGS Human Gastric Adenocarcinoma Cells and Tumor Xenograft Mice.

    PubMed

    Shin, Eun Ju; Kim, Sung Hee; Kim, Jae Ho; Ha, Jaeho; Hwang, Jin-Taek

    2015-09-01

    Makgeolli is a traditional wine in Korea and has been traditionally believed to exhibit health benefits. However, the inhibitory effect of dealcoholized makgeolli (MK) on cancer has never been investigated scientifically. In this study, MK exhibited an anti-angiogenic effect by inhibiting tube formation in human umbilical vein endothelial cells, without cytotoxicity. Treatment with MK reduced the proliferation of AGS human gastric adenocarcinoma cells in a dose-dependent manner and increased the sub-G1 population. Next, we evaluated whether MK could induce apoptosis in AGS cells by using the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay or Annexin V method. Treatment with MK at 500 and 1,000 μg/ml increased the number of TUNEL-positive AGS cells. Under the same conditions, MK-treated (500 and 1,000 μg/ml) cells showed significant induction of early or late apoptosis, compared with untreated cells (no induction). In addition, MK also induced phosphatase and tensin homolog (PTEN) expression in AGS cells. However, p53 expression in AGS cells was not changed by MK treatment. Furthermore, MK at 500 mg/kg·d reduced the tumor size and volume in AGS tumor xenografts. Taken together, MK may be useful for the prevention of cancer cell growth.

  6. Tungsten targets the tumor microenvironment to enhance breast cancer metastasis.

    PubMed

    Bolt, Alicia M; Sabourin, Valérie; Molina, Manuel Flores; Police, Alice M; Negro Silva, Luis Fernando; Plourde, Dany; Lemaire, Maryse; Ursini-Siegel, Josie; Mann, Koren K

    2015-01-01

    The number of individuals exposed to high levels of tungsten is increasing, yet there is limited knowledge of the potential human health risks. Recently, a cohort of breast cancer patients was left with tungsten in their breasts following testing of a tungsten-based shield during intraoperative radiotherapy. While monitoring tungsten levels in the blood and urine of these patients, we utilized the 66Cl4 cell model, in vitro and in mice to study the effects of tungsten exposure on mammary tumor growth and metastasis. We still detect tungsten in the urine of patients' years after surgery (mean urinary tungsten concentration at least 20 months post-surgery = 1.76 ng/ml), even in those who have opted for mastectomy, indicating that tungsten does not remain in the breast. In addition, standard chelation therapy was ineffective at mobilizing tungsten. In the mouse model, tungsten slightly delayed primary tumor growth, but significantly enhanced lung metastasis. In vitro, tungsten did not enhance 66Cl4 proliferation or invasion, suggesting that tungsten was not directly acting on 66Cl4 primary tumor cells to enhance invasion. In contrast, tungsten changed the tumor microenvironment, enhancing parameters known to be important for cell invasion and metastasis including activated fibroblasts, matrix metalloproteinases, and myeloid-derived suppressor cells. We show, for the first time, that tungsten enhances metastasis in an animal model of breast cancer by targeting the microenvironment. Importantly, all these tumor microenvironmental changes are associated with a poor prognosis in humans. PMID:25324207

  7. Tungsten Targets the Tumor Microenvironment to Enhance Breast Cancer Metastasis

    PubMed Central

    Bolt, Alicia M.; Sabourin, Valérie; Molina, Manuel Flores; Police, Alice M.; Negro Silva, Luis Fernando; Plourde, Dany; Lemaire, Maryse; Ursini-Siegel, Josie; Mann, Koren K.

    2015-01-01

    The number of individuals exposed to high levels of tungsten is increasing, yet there is limited knowledge of the potential human health risks. Recently, a cohort of breast cancer patients was left with tungsten in their breasts following testing of a tungsten-based shield during intraoperative radiotherapy. While monitoring tungsten levels in the blood and urine of these patients, we utilized the 66Cl4 cell model, in vitro and in mice to study the effects of tungsten exposure on mammary tumor growth and metastasis. We still detect tungsten in the urine of patients’ years after surgery (mean urinary tungsten concentration at least 20 months post-surgery = 1.76 ng/ml), even in those who have opted for mastectomy, indicating that tungsten does not remain in the breast. In addition, standard chelation therapy was ineffective at mobilizing tungsten. In the mouse model, tungsten slightly delayed primary tumor growth, but significantly enhanced lung metastasis. In vitro, tungsten did not enhance 66Cl4 proliferation or invasion, suggesting that tungsten was not directly acting on 66Cl4 primary tumor cells to enhance invasion. In contrast, tungsten changed the tumor microenvironment, enhancing parameters known to be important for cell invasion and metastasis including activated fibroblasts, matrix metalloproteinases, and myeloid-derived suppressor cells. We show, for the first time, that tungsten enhances metastasis in an animal model of breast cancer by targeting the microenvironment. Importantly, all these tumor microenvironmental changes are associated with a poor prognosis in humans. PMID:25324207

  8. Noncontact diffuse correlation tomography of human breast tumor

    PubMed Central

    He, Lian; Lin, Yu; Huang, Chong; Irwin, Daniel; Szabunio, Margaret M.; Yu, Guoqiang

    2015-01-01

    Abstract. Our first step to adapt our recently developed noncontact diffuse correlation tomography (ncDCT) system for three-dimensional (3-D) imaging of blood flow distribution in human breast tumors is reported. A commercial 3-D camera was used to obtain breast surface geometry, which was then converted to a solid volume mesh. An ncDCT probe scanned over a region of interest on the mesh surface and the measured boundary data were combined with a finite element framework for 3-D image reconstruction of blood flow distribution. This technique was tested in computer simulations and in vivo human breasts with low-grade carcinoma. Results from computer simulations suggest that relatively high accuracy can be achieved when the entire tumor is within the sensitive region of diffuse light. Image reconstruction with a priori knowledge of the tumor volume and location can significantly improve the accuracy in recovery of tumor blood flow contrasts. In vivo imaging results from two breast carcinomas show higher average blood flow contrasts (5.9- and 10.9-fold) in the tumor regions compared to the surrounding tissues, which are comparable with previous findings using diffuse correlation spectroscopy. The ncDCT system has the potential to image blood flow distributions in soft and vulnerable tissues without distorting tissue hemodynamics. PMID:26259706

  9. Tungsten targets the tumor microenvironment to enhance breast cancer metastasis.

    PubMed

    Bolt, Alicia M; Sabourin, Valérie; Molina, Manuel Flores; Police, Alice M; Negro Silva, Luis Fernando; Plourde, Dany; Lemaire, Maryse; Ursini-Siegel, Josie; Mann, Koren K

    2015-01-01

    The number of individuals exposed to high levels of tungsten is increasing, yet there is limited knowledge of the potential human health risks. Recently, a cohort of breast cancer patients was left with tungsten in their breasts following testing of a tungsten-based shield during intraoperative radiotherapy. While monitoring tungsten levels in the blood and urine of these patients, we utilized the 66Cl4 cell model, in vitro and in mice to study the effects of tungsten exposure on mammary tumor growth and metastasis. We still detect tungsten in the urine of patients' years after surgery (mean urinary tungsten concentration at least 20 months post-surgery = 1.76 ng/ml), even in those who have opted for mastectomy, indicating that tungsten does not remain in the breast. In addition, standard chelation therapy was ineffective at mobilizing tungsten. In the mouse model, tungsten slightly delayed primary tumor growth, but significantly enhanced lung metastasis. In vitro, tungsten did not enhance 66Cl4 proliferation or invasion, suggesting that tungsten was not directly acting on 66Cl4 primary tumor cells to enhance invasion. In contrast, tungsten changed the tumor microenvironment, enhancing parameters known to be important for cell invasion and metastasis including activated fibroblasts, matrix metalloproteinases, and myeloid-derived suppressor cells. We show, for the first time, that tungsten enhances metastasis in an animal model of breast cancer by targeting the microenvironment. Importantly, all these tumor microenvironmental changes are associated with a poor prognosis in humans.

  10. Bufalin Inhibits HCT116 Colon Cancer Cells and Its Orthotopic Xenograft Tumor in Mice Model through Genes Related to Apoptotic and PTEN/AKT Pathways

    PubMed Central

    Wang, Jie; Chen, Chao; Wang, Shiying; Zhang, Yong; Yin, Peihao; Gao, Zhongxiang; Xu, Jie; Feng, Dianxu; Zuo, Qinsong; Zhao, Ronghua; Chen, Teng

    2015-01-01

    Aims. To investigate the anticolorectal cancer (CRC) effects of Bufalin, a bioactive polyhydroxysteroid from Venenum Bufonis, using HCT116 human CRC cell and an established orthotopic xenograft model in mice, and to explore the mechanisms of action. Material and Methods. Cultured HCT116 cells or BALB/c mice with orthotopic tumor were treated by Bufalin (positive control: 5-FU). Cell proliferation, apoptosis, and cycling were determined by MTT, Annexin V/PI staining, and flow cytometry, respectively. In mice, tumor inhibition rate and animal survival were calculated. The expressions of PTEN/phosphate-PTEN, AKT/phosphate-AKT, Bad, Bcl-xl, Bax, or Caspase-3 in cells and/or tumors were determined by Western blot or immunohistochemical staining. Results. Bufalin significantly inhibited cell proliferation and induced cell apoptosis and cycle arrest in a dose/time-dependent manner. In the animal model, Bufalin treatment resulted in significant inhibition of tumor growth and prolonged survival. In the Bufalin-treated cultured cells and/or xenograft tumors, the expressions of PTEN, Bad, Bax, and Caspase-3 were significantly increased, while p-AKT and Bcl-xL significantly decreased. Conclusions. Our results indicate that Bufalin inhibit cell proliferation and orthotopic tumor growth by inducing cell apoptosis through the intrinsic apoptotic pathway, which is of pivotal significance in the identification of an anticancer drug that may synergize with Bufalin. PMID:26770191

  11. In vivo imaging of xenograft tumors using an epidermal growth factor receptor-specific affibody molecule labeled with a near-infrared fluorophore.

    PubMed

    Gong, Haibiao; Kovar, Joy; Little, Garrick; Chen, Huaxian; Olive, David Michael

    2010-02-01

    Overexpression of epidermal growth factor receptor (EGFR) is associated with many types of cancers. It is of great interest to noninvasively image the EGFR expression in vivo. In this study, we labeled an EGFR-specific Affibody molecule (Eaff) with a near-infrared (NIR) dye IRDye800CW maleimide and tested the binding of this labeled molecule (Eaff800) in cell culture and xenograft mouse tumor models. Unlike EGF, Eaff did not activate the EGFR signaling pathway. Results showed that Eaff800 was bound and taken up specifically by EGFR-overexpressing A431 cells. When Eaff800 was intravenously injected into nude mice bearing A431 xenograft tumors, the tumor could be identified 1 hour after injection and it became most prominent after 1 day. Images of dissected tissue sections demonstrated that the accumulation of Eaff800 was highest in the liver, followed by the tumor and kidney. Moreover, in combination with a human EGFR type 2 (HER2)-specific probe Haff682, Eaff800 could be used to distinguish between EGFR- and HER2-overexpressing tumors. Interestingly, the organ distribution pattern and the clearance rate of Eaff800 were different from those of Haff682. In conclusion, Eaff molecule labeled with a NIR fluorophore is a promising molecular imaging agent for EGFR-overexpressing tumors. PMID:20126472

  12. MDA-7/IL-24 functions as a tumor suppressor gene in vivo in transgenic mouse models of breast cancer.

    PubMed

    Menezes, Mitchell E; Shen, Xue-Ning; Das, Swadesh K; Emdad, Luni; Guo, Chunqing; Yuan, Fang; Li, You-Jun; Archer, Michael C; Zacksenhaus, Eldad; Windle, Jolene J; Subler, Mark A; Ben-David, Yaacov; Sarkar, Devanand; Wang, Xiang-Yang; Fisher, Paul B

    2015-11-10

    Melanoma differentiation associated gene-7/Interleukin-24 (MDA-7/IL-24) is a novel member of the IL-10 gene family that selectively induces apoptosis and toxic autophagy in a broad spectrum of human cancers, including breast cancer, without harming normal cells or tissues. The ability to investigate the critical events underlying cancer initiation and progression, as well as the capacity to test the efficacy of novel therapeutics, has been significantly advanced by the development of genetically engineered mice (GEMs) that accurately recapitulate specific human cancers. We utilized three transgenic mouse models to better comprehend the in vivo role of MDA-7/IL-24 in breast cancer. Using the MMTV-PyMT spontaneous mammary tumor model, we confirmed that exogenously introducing MDA-7/IL-24 using a Cancer Terminator Virus caused a reduction in tumor burden and also produced an antitumor "bystander" effect. Next we performed xenograft studies in a newly created MMTV-MDA-7 transgenic model that over-expresses MDA-7/IL-24 in the mammary glands during pregnancy and lactation, and found that MDA-7/IL-24 overexpression delayed tumor growth following orthotopic injection of a murine PDX tumor cell line (mPDX) derived from a tumor formed in an MMTV-PyMT mouse. We also crossed the MMTV-MDA-7 line to MMTV-Erbb2 transgenic mice and found that MDA-7/IL-24 overexpression delayed the onset of mammary tumor development in this model of spontaneous mammary tumorigenesis as well. Finally, we assessed the role of MDA-7/IL-24 in immune regulation, which can potentially contribute to tumor suppression in vivo. Our findings provide further direct in vivo evidence for the role of MDA-7/IL-24 in tumor suppression in breast cancer in immune-competent transgenic mice. PMID:26474456

  13. MDA-7/IL-24 functions as a tumor suppressor gene in vivo in transgenic mouse models of breast cancer

    PubMed Central

    Menezes, Mitchell E.; Shen, Xue-Ning; Das, Swadesh K.; Emdad, Luni; Guo, Chunqing; Yuan, Fang; Li, You-Jun; Archer, Michael C.; Zacksenhaus, Eldad; Windle, Jolene J.; Subler, Mark A.; Ben-David, Yaacov; Sarkar, Devanand; Wang, Xiang-Yang; Fisher, Paul B.

    2015-01-01

    Melanoma differentiation associated gene-7/Interleukin-24 (MDA-7/IL-24) is a novel member of the IL-10 gene family that selectively induces apoptosis and toxic autophagy in a broad spectrum of human cancers, including breast cancer, without harming normal cells or tissues. The ability to investigate the critical events underlying cancer initiation and progression, as well as the capacity to test the efficacy of novel therapeutics, has been significantly advanced by the development of genetically engineered mice (GEMs) that accurately recapitulate specific human cancers. We utilized three transgenic mouse models to better comprehend the in vivo role of MDA-7/IL-24 in breast cancer. Using the MMTV-PyMT spontaneous mammary tumor model, we confirmed that exogenously introducing MDA-7/IL-24 using a Cancer Terminator Virus caused a reduction in tumor burden and also produced an antitumor “bystander” effect. Next we performed xenograft studies in a newly created MMTV-MDA-7 transgenic model that over-expresses MDA-7/IL-24 in the mammary glands during pregnancy and lactation, and found that MDA-7/IL-24 overexpression delayed tumor growth following orthotopic injection of a murine PDX tumor cell line (mPDX) derived from a tumor formed in an MMTV-PyMT mouse. We also crossed the MMTV-MDA-7 line to MMTV-Erbb2 transgenic mice and found that MDA-7/IL-24 overexpression delayed the onset of mammary tumor development in this model of spontaneous mammary tumorigenesis as well. Finally, we assessed the role of MDA-7/IL-24 in immune regulation, which can potentially contribute to tumor suppression in vivo. Our findings provide further direct in vivo evidence for the role of MDA-7/IL-24 in tumor suppression in breast cancer in immune-competent transgenic mice. PMID:26474456

  14. New targeted therapies for breast cancer: A focus on tumor microenvironmental signals and chemoresistant breast cancers

    PubMed Central

    Kamdje, Armel Hervé Nwabo; Etet, Paul Faustin Seke; Vecchio, Lorella; Tagne, Richard Simo; Amvene, Jeremie Mbo; Muller, Jean-Marc; Krampera, Mauro; Lukong, Kiven Erique

    2014-01-01

    Breast cancer is the most frequent female malignancy worldwide. Current strategies in breast cancer therapy, including classical chemotherapy, hormone therapy, and targeted therapies, are usually associated with chemoresistance and serious adverse effects. Advances in our understanding of changes affecting the interactome in advanced and chemoresistant breast tumors have provided novel therapeutic targets, including, cyclin dependent kinases, mammalian target of rapamycin, Notch, Wnt and Shh. Inhibitors of these molecules recently entered clinical trials in mono- and combination therapy in metastatic and chemo-resistant breast cancers. Anticancer epigenetic drugs, mainly histone deacetylase inhibitors and DNA methyltransferase inhibitors, also entered clinical trials. Because of the complexity and heterogeneity of breast cancer, the future in therapy lies in the application of individualized tailored regimens. Emerging therapeutic targets and the implications for personalized-based therapy development in breast cancer are herein discussed. PMID:25516852

  15. Multicolor Fluorescent Intravital Live Microscopy (FILM) for Surgical Tumor Resection in a Mouse Xenograft Model

    PubMed Central

    Thurber, Greg M.; Figueiredo, Jose L.; Weissleder, Ralph

    2009-01-01

    Background Complete surgical resection of neoplasia remains one of the most efficient tumor therapies. However, malignant cell clusters are often left behind during surgery due to the inability to visualize and differentiate them against host tissue. Here we establish the feasibility of multicolor fluorescent intravital live microscopy (FILM) where multiple cellular and/or unique tissue compartments are stained simultaneously and imaged in real time. Methodology/Principal Findings Theoretical simulations of imaging probe localization were carried out for three agents with specificity for cancer cells, stromal host response, or vascular perfusion. This transport analysis gave insight into the probe pharmacokinetics and tissue distribution, facilitating the experimental design and allowing predictions to be made about the localization of the probes in other animal models and in the clinic. The imaging probes were administered systemically at optimal time points based on the simulations, and the multicolor FILM images obtained in vivo were then compared to conventional pathological sections. Our data show the feasibility of real time in vivo pathology at cellular resolution and molecular specificity with excellent agreement between intravital and traditional in vitro immunohistochemistry. Conclusions/Significance Multicolor FILM is an accurate method for identifying malignant tissue and cells in vivo. The imaging probes distributed in a manner similar to predictions based on transport principles, and these models can be used to design future probes and experiments. FILM can provide critical real time feedback and should be a useful tool for more effective and complete cancer resection. PMID:19956597

  16. Race-associated biological differences among Luminal A breast tumors.

    PubMed

    D'Arcy, Monica; Fleming, Jodie; Robinson, Whitney R; Kirk, Erin L; Perou, Charles M; Troester, Melissa A

    2015-07-01

    African-American (AA) women have higher breast cancer-specific mortality rates. A higher prevalence of the worse outcome Basal-like breast cancer subtype contributes to this, but AA women also have higher mortality even within the more favorable outcome Luminal A breast cancers. These differences may reflect treatment or health care access issues, inherent biological differences, or both. To identify potential biological differences by race among Luminal A breast cancers, gene expression data from 108 CAU and 57 AA breast tumors were analyzed. Race-associated genes were evaluated for associations with survival. Finally, expression of race- and survival-associated genes was evaluated in normal tissue of AA and CAU women. Six genes (ACOX2, MUC1, CRYBB2, PSPH, SQLE, TYMS) were differentially expressed by race among Luminal A breast cancers and were associated with survival (HR <0.8, HR >1.25). For all six genes, tumors in AA had higher expression of poor prognosis genes (CRYBB2, PSPH, SQLE, TYMS) and lower expression of good prognosis genes (ACOX2, MUC1). A score based on all six genes predicted survival in a large independent dataset (HR = 1.9 top vs. bottom quartile, 95% CI: 1.4-2.5). For four genes, normal tissue of AA and CAU women showed similar expression (ACOX2, MUC1, SQLE, TYMS); however, the poor outcome-associated genes CRYBB2 and PSPH were more highly expressed in AA versus CAU women's normal tissue. This analysis identified gene expression differences that may contribute to mortality disparities and suggests that among Luminal A breast tumors there are biological differences between AA and CAU patients. Some of these differences (CRYBB2 and PSPH) may exist from the earliest stages of tumor development, or may even precede malignancy. PMID:26109344

  17. Tumor growth affects the metabonomic phenotypes of multiple mouse non-involved organs in an A549 lung cancer xenograft model

    PubMed Central

    Xu, Shan; Tian, Yuan; Hu, Yili; Zhang, Nijia; Hu, Sheng; Song, Dandan; Wu, Zhengshun; Wang, Yulan; Cui, Yanfang; Tang, Huiru

    2016-01-01

    The effects of tumorigenesis and tumor growth on the non-involved organs remain poorly understood although many research efforts have already been made for understanding the metabolic phenotypes of various tumors. To better the situation, we systematically analyzed the metabolic phenotypes of multiple non-involved mouse organ tissues (heart, liver, spleen, lung and kidney) in an A549 lung cancer xenograft model at two different tumor-growth stages using the NMR-based metabonomics approaches. We found that tumor growth caused significant metabonomic changes in multiple non-involved organ tissues involving numerous metabolic pathways, including glycolysis, TCA cycle and metabolisms of amino acids, fatty acids, choline and nucleic acids. Amongst these, the common effects are enhanced glycolysis and nucleoside/nucleotide metabolisms. These findings provided essential biochemistry information about the effects of tumor growth on the non-involved organs. PMID:27329570

  18. Desmoid tumor occurring after reconstruction mammaplasty for breast carcinoma.

    PubMed

    Dale, P S; Wardlaw, J C; Wootton, D G; Resnick, J I; Giuliano, A E

    1995-11-01

    We present a case of desmoid tumor associated with prior alloplastic breast reconstruction. Wide local excision that includes chest wall resection, if necessary, is the primary treatment of choice. Patients with extensive nonresectable or recurrent disease may benefit from radiation therapy. Systemic therapy is a possibility in certain cases, but its toxicity generally precludes its use with this nonmetastatic tumor. Although this is the fourth reported case of desmoid tumor arising after implantation of a silicone prosthesis, we cannot claim a causal relationship. Careful follow-up consisting of yearly physical and mammagraphic examinations may facilitate early diagnosis and treatment of locally aggressive desmoid tumors but is not warranted, except in the context of routine screening for breast carcinoma. PMID:8579271

  19. Dynamic contrast enhanced fluorescent molecular imaging of vascular disruption induced by combretastatin-A4P in tumor xenografts.

    PubMed

    Liu, Li; Su, Xing; Mason, Ralph P

    2014-08-01

    Dynamic contrast enhanced (DyCE) fluorescence imaging was recently demonstrated for identifying the organs in mice based on principal component analysis (PCA) of contrast kinetics following infusion of indocyanine green (ICG). It occurred to us that this approach could be used to evaluate acute effects of vascular disrupting agents (VDAs), since these cause massive vascular shutdown. As proof of principle, we have examined the action of combretastatin-A4P (CA4P) on MCF7 human breast tumors growing in nude mice. Tumors were implanted in the thigh and allowed to grow to about 7 mm diameter. Indocyanine green (ICG; 50 microl 260 microM) was administered as a bolus by tail vein injection to anesthetized mice. The fluorescence time course was acquired over 200 s using a sensitive charge-coupled device (CCD) camera system. CA4P was then administered IP (120 mg/kg in 100 microl saline) and DyCE repeated following administration of fresh ICG two and 24 hours later. At 2 hours the developed fluorescence intensity was much reduced in the tumors indicating vascular impairment, which was confirmed histologically. After 24 hours there was considerable recovery. Good reproducibility was found for control mice and normal organs. We believe the method shows promise for developing VDAs by evaluating and optimizing therapeutic drug doses and combinations.

  20. Plumbagin inhibits breast tumor bone metastasis and osteolysis by modulating the tumor-bone microenvironment.

    PubMed

    Li, Z; Xiao, J; Wu, X; Li, W; Yang, Z; Xie, J; Xu, L; Cai, X; Lin, Z; Guo, W; Luo, J; Liu, M

    2012-09-01

    Bone metastasis is a common and serious consequence of breast cancer. Bidirectional interaction between tumor cells and the bone marrow microenvironment drives a so-called 'vicious cycle' that promotes tumor cell malignancy and stimulates osteolysis. Targeting these interactions and pathways in the tumor-bone microenvironment has been an encouraging strategy for bone metastasis therapy. In the present study, we examined the effects of plumbagin on breast cancer bone metastasis. Our data indicated that plumbagin inhibited cancer cell migration and invasion, suppressed the expression of osteoclast-activating factors, altered the cancer cell induced RANKL/OPG ratio in osteoblasts, and blocked both cancer cell- and RANKL-stimulated osteoclastogenesis. In mouse model of bone metastasis, we further demonstrated that plumbagin significantly repressed breast cancer cell metastasis and osteolysis, inhibited cancer cell induced-osteoclastogenesis and the secretion of osteoclast-activating factors in vivo. At the molecular level, we found that plumbagin abrogated RANKL-induced NF-κB and MAPK pathways by blocking RANK association with TRAF6 in osteoclastogenesis, and by inhibiting the expression of osteoclast-activating factors through the suppression of NF-κB activity in breast cancer cells. Taken together, our data demonstrate that plumbagin inhibits breast tumor bone metastasis and osteolysis by modulating the tumor-bone microenvironment and that plumbagin may serve as a novel agent in the treatment of tumor bone metastasis.

  1. HIF1-alpha functions as a tumor promoter in cancer associated fibroblasts, and as a tumor suppressor in breast cancer cells

    PubMed Central

    Chiavarina, Barbara; Whitaker-Menezes, Diana; Migneco, Gemma; Martinez-Outschoorn, Ubaldo E; Pavlides, Stephanos; Howell, Anthony; Tanowitz, Herbert B; Casimiro, Mathew C; Wang, Chenguang; Pestell, Richard G; Grieshaber, Philip; Caro, Jaime

    2010-01-01

    Our recent studies have mechanistically implicated a loss of stromal Cav-1 expression and HIF1α-activation in driving the cancer-associated fibroblast phenotype, through the paracrine production of nutrients via autophagy and aerobic glycolysis. However, it remains unknown if HIF1α-activation is sufficient to confer the cancer-associated fibroblast phenotype. To test this hypothesis directly, we stably-expressed activated HIF1α in fibroblasts and then examined their ability to promote tumor growth using a xenograft model employing human breast cancer cells (MDA-MB-231). Fibroblasts harboring activated HIF1α showed a dramatic reduction in Cav-1 levels and a shift towards aerobic glycolysis, as evidenced by a loss of mitochondrial activity, and an increase in lactate production. Activated HIF1α also induced BNIP3 and BNIP3L expression, markers for the autophagic destruction of mitochondria. Most importantly, fibroblasts expressing activated HIF1α increased tumor mass by ∼2-fold and tumor volume by ∼3-fold, without a significant increase in tumor angiogenesis. In this context, HIF1α also induced an increase in the lymph node metastasis of cancer cells. Similar results were obtained by driving NFκB activation in fibroblasts, another inducer of autophagy. Thus, activated HIF1α is sufficient to functionally confer the cancer-associated fibroblast phenotype. It is also known that HIF1α expression is required for the induction of autophagy in cancer cells. As such, we next directly expressed activated HIF1α in MDA-MB-231 cells and assessed its effect on tumor growth via xenograft analysis. Surprisingly, activated HIF1α in cancer cells dramatically suppressed tumor growth, resulting in a 2-fold reduction in tumor mass and a three-fold reduction in tumor volume. We conclude that HIF1α activation in different cell types can either promote or repress tumorigenesis. Based on these studies, we suggest that autophagy in cancer-associated fibroblasts promotes

  2. Efficacy of Tumor-Targeting Salmonella A1-R on a Melanoma Patient-Derived Orthotopic Xenograft (PDOX) Nude-Mouse Model

    PubMed Central

    Yamamoto, Mako; Zhao, Ming; Hiroshima, Yukihiko; Zhang, Yong; Shurell, Elizabeth; Eilber, Fritz C.; Bouvet, Michael; Noda, Makoto; Hoffman, Robert M.

    2016-01-01

    Tumor-targeting Salmonella enterica serovar Typhimurium A1-R (Salmonella A1-R) had strong efficacy on a melanoma patient-derived orthotopic xenograft (PDOX) nude-mouse model. GFP-expressing Salmonella A1-R highly and selectively colonized the PDOX melanoma and significantly suppressed tumor growth (p = 0.021). The combination of Salmonella A1-R and cisplatinum (CDDP), both at low-dose, also significantly suppressed the growth of the melanoma PDOX (P = 0.001). Salmonella A1-R has future clinical potential for combination chemotherapy with CDDP of melanoma, a highly-recalcitrant cancer. PMID:27500926

  3. Breast tumor angiogenesis analysis using 3D power Doppler ultrasound

    NASA Astrophysics Data System (ADS)

    Chang, Ruey-Feng; Huang, Sheng-Fang; Lee, Yu-Hau; Chen, Dar-Ren; Moon, Woo Kyung

    2006-03-01

    Angiogenesis is the process that correlates to tumor growth, invasion, and metastasis. Breast cancer angiogenesis has been the most extensively studied and now serves as a paradigm for understanding the biology of angiogenesis and its effects on tumor outcome and patient prognosis. Most studies on characterization of angiogenesis focus on pixel/voxel counts more than morphological analysis. Nevertheless, in cancer, the blood flow is greatly affected by the morphological changes, such as the number of vessels, branching pattern, length, and diameter. This paper presents a computer-aided diagnostic (CAD) system that can quantify vascular morphology using 3-D power Doppler ultrasound (US) on breast tumors. We propose a scheme to extract the morphological information from angiography and to relate them to tumor diagnosis outcome. At first, a 3-D thinning algorithm helps narrow down the vessels into their skeletons. The measurements of vascular morphology significantly rely on the traversing of the vascular trees produced from skeletons. Our study of 3-D assessment of vascular morphological features regards vessel count, length, bifurcation, and diameter of vessels. Investigations into 221 solid breast tumors including 110 benign and 111 malignant cases, the p values using the Student's t-test for all features are less than 0.05 indicating that the proposed features are deemed statistically significant. Our scheme focuses on the vascular architecture without involving the technique of tumor segmentation. The results show that the proposed method is feasible, and have a good agreement with the diagnosis of the pathologists.

  4. Intraoperative Evaluation of Breast Tumor Margins with Optical Coherence Tomography

    PubMed Central

    Nguyen, Freddy T.; Zysk, Adam M.; Chaney, Eric J.; Kotynek, Jan G.; Oliphant, Uretz J.; Bellafiore, Frank J.; Rowland, Kendrith M.; Johnson, Patricia A.; Boppart, Stephen A.

    2009-01-01

    As breast cancer screening rates increase, smaller and more numerous lesions are being identified earlier, leading to more breast-conserving surgical procedures. Achieving a clean surgical margin represents a technical challenge with important clinical implications. Optical coherence tomography (OCT) is introduced as an intraoperative high-resolution imaging technique that assesses surgical breast tumor margins by providing real-time microscopic images up to 2 mm beneath the tissue surface. In a study of 37 patients split between training and study groups, OCT images covering 1 cm2 regions were acquired from surgical margins of lumpectomy specimens, registered with ink, and correlated with corresponding histological sections. A 17 patient training set used to establish standard imaging protocols and OCT evaluation criteria demonstrated that areas of higher scattering tissue with a heterogeneous pattern were indicative of tumor cells and tumor tissue, in contrast to lower scattering adipocytes found in normal breast tissue. The remaining 20 patients were enrolled into the feasibility study. Of these lumpectomy specimens, 11 were identified with a positive or close surgical margin and 9 were identified with a negative margin under OCT. Based on histological findings, 9 true positives, 9 true negatives, 2 false positives, and 0 false negatives were found, yielding a sensitivity of 100% and specificity of 82%. These results demonstrate the potential of OCT as a real-time method for intraoperative margin assessment in breast conserving surgeries. PMID:19910294

  5. Treatment of a human breast cancer xenograft with an adenovirus vector containing an interferon gene results in rapid regression due to viral oncolysis and gene therapy.

    PubMed Central

    Zhang, J F; Hu, C; Geng, Y; Selm, J; Klein, S B; Orazi, A; Taylor, M W

    1996-01-01

    Treatment of a human breast cancer cell line (MDA-MB-435) in nude mice with a recombinant adenovirus containing the human interferon (IFN) consensus gene, IFN-con1 (ad5/IFN), resulted in tumor regression in 100% of the animals. Tumor regression occurred when virus was injected either within 24 hr of tumor cell implantation or with established tumors. However, regression of the tumor was also observed in controls in which either the wild-type virus or a recombinant virus containing the luciferase gene was used, although tumor growth was not completely suppressed. Tumor regression was accompanied by a decrease in p53 expression. Two other tumors, the human myelogenous leukemic cell line K562 and the hamster melanoma tumor RPMI 1846, also responded to treatment but only with ad5/IFN. In the case of K562 tumors, there was complete regression of the tumor, and tumors derived from RPMI 1846 showed partial regression. We propose that the complete regression of the breast cancer with the recombinant virus ad5/IFN was the result of two events: viral oncolysis in which tumor cells are being selectively lysed by the replication-competent virus and the enhanced effect of expression of the IFN-con1 gene. K562 and RPMI 1846 tumors regressed only as a result of IFN gene therapy. This was confirmed by in vitro analysis. Our results indicate that a combination of viral oncolysis with a virus of low pathogenicity, itself resistant to the effects of IFN and IFN gene therapy, might be a fruitful approach to the treatment of a variety of different tumors, in particular breast cancers. PMID:8633100

  6. Electric Field Analysis of Breast Tumor Cells

    PubMed Central

    Sree, V. Gowri; Udayakumar, K.; Sundararajan, R.

    2011-01-01

    An attractive alternative treatment for malignant tumors that are refractive to conventional therapies, such as surgery, radiation, and chemotherapy, is electrical-pulse-mediated drug delivery. Electric field distribution of tissue/tumor is important for effective treatment of tissues. This paper deals with the electric field distribution study of a tissue model using MAXWELL 3D Simulator. Our results indicate that tumor tissue had lower electric field strength compared to normal cells, which makes them susceptible to electrical-pulse-mediated drug delivery. This difference could be due to the altered properties of tumor cells compared to normal cells, and our results corroborate this. PMID:22295214

  7. Mitochondrial oxidative stress in cancer-associated fibroblasts drives lactate production, promoting breast cancer tumor growth

    PubMed Central

    Balliet, Renee M; Capparelli, Claudia; Guido, Carmela; Pestell, Timothy G; Martinez-Outschoorn, Ubaldo E; Lin, Zhao; Whitaker-Menezes, Diana; Chiavarina, Barbara; Pestell, Richard G; Howell, Anthony

    2011-01-01

    Increasing chronological age is the most significant risk factor for cancer. Recently, we proposed a new paradigm for understanding the role of the aging and the tumor microenvironment in cancer onset. In this model, cancer cells induce oxidative stress in adjacent stromal fibroblasts. This, in turn, causes several changes in the phenotype of the fibroblast including mitochondrial dysfunction, hydrogen peroxide production and aerobic glycolysis, resulting in high levels of L-lactate production. L-lactate is then transferred from these glycolytic fibroblasts to adjacent epithelial cancer cells and used as “fuel” for oxidative mitochondrial metabolism. Here, we created a new pre-clinical model system to directly test this hypothesis experimentally. To synthetically generate glycolytic fibroblasts, we genetically-induced mitochondrial dysfunction by knocking down TFAM using an sh-RNA approach. TFAM is mitochondrial transcription factor A, which is important in functionally maintaining the mitochondrial respiratory chain. Interestingly, TFAM-deficient fibroblasts showed evidence of mitochondrial dysfunction and oxidative stress, with the loss of certain mitochondrial respiratory chain components, and the over-production of hydrogen peroxide and L-lactate. Thus, TFAM-deficient fibroblasts underwent metabolic reprogramming towards aerobic glycolysis. Most importantly, TFAM-deficient fibroblasts significantly promoted tumor growth, as assayed using a human breast cancer (MDA-MB-231) xenograft model. These increases in glycolytic fibroblast driven tumor growth were independent of tumor angiogenesis. Mechanistically, TFAM-deficient fibroblasts increased the mitochondrial activity of adjacent epithelial cancer cells in a co-culture system, as seen using MitoTracker. Finally, TFAM-deficient fibroblasts also showed a loss of caveolin-1 (Cav-1), a known breast cancer stromal biomarker. Loss of stromal fibroblast Cav-1 is associated with early tumor recurrence, metastasis

  8. BRAF kinase inhibitor exerts anti-tumor activity against breast cancer cells via inhibition of FGFR2.

    PubMed

    Zhang, Zong Xin; Jin, Wen Jun; Yang, Sheng; Ji, Cun Li

    2016-01-01

    Most anti-angiogenic therapies currently being evaluated in clinical trials targetvascular endothelial growth factor (VEGF) pathway; however, the tumor vasculature can acquire resistance to VEGF-targeted therapy by shifting to other angiogenesis mechanisms. Therefore, other potential therapeutic agents that block non-VEGF angiogenic pathways need to be evaluated. Here we identified BRAF kinase inhibitor, vemurafenibas an agent with potential anti-angiogenic and anti-breast cancer activities. Vemurafenib demonstrated inhibition of endothelial cell proliferation, migration, and tube formation in response to basic fibroblast growth factor (bFGF). In ex vivo and in vivo angiogenesis assays, vemurafenib suppressed bFGF-induced microvessel sprouting of rat aortic rings and angiogenesis in vivo. To understand the underlying molecular basis, we examined the effects of vemurafenib on different molecular components in treated endothelial cell, and found that vemurafenib suppressed bFGF-triggered activation of FGFR2 and protein kinase B (AKT). Moreover, vemurafenib directly inhibited proliferation and blocked the oncogenic signaling pathways in breast cancer cell. In vivo, using xenograft models of breast cancer cells MDA-MB-231, vemurafenib showed growth-inhibitory activity associated with inhibition of tumor angiogenesis. Taken together, our results indicate that vemurafenib targets the FGFR2-mediated AKT signaling pathway in endothelial cells, leading to the suppression of tumor growth and angiogenesis.

  9. BRAF kinase inhibitor exerts anti-tumor activity against breast cancer cells via inhibition of FGFR2

    PubMed Central

    Zhang, Zong Xin; Jin, Wen Jun; Yang, Sheng; Ji, Cun Li

    2016-01-01

    Most anti-angiogenic therapies currently being evaluated in clinical trials targetvascular endothelial growth factor (VEGF) pathway; however, the tumor vasculature can acquire resistance to VEGF-targeted therapy by shifting to other angiogenesis mechanisms. Therefore, other potential therapeutic agents that block non-VEGF angiogenic pathways need to be evaluated. Here we identified BRAF kinase inhibitor, vemurafenibas an agent with potential anti-angiogenic and anti-breast cancer activities. Vemurafenib demonstrated inhibition of endothelial cell proliferation, migration, and tube formation in response to basic fibroblast growth factor (bFGF). In ex vivo and in vivo angiogenesis assays, vemurafenib suppressed bFGF-induced microvessel sprouting of rat aortic rings and angiogenesis in vivo. To understand the underlying molecular basis, we examined the effects of vemurafenib on different molecular components in treated endothelial cell, and found that vemurafenib suppressed bFGF-triggered activation of FGFR2 and protein kinase B (AKT). Moreover, vemurafenib directly inhibited proliferation and blocked the oncogenic signaling pathways in breast cancer cell. In vivo, using xenograft models of breast cancer cells MDA-MB-231, vemurafenib showed growth-inhibitory activity associated with inhibition of tumor angiogenesis. Taken together, our results indicate that vemurafenib targets the FGFR2-mediated AKT signaling pathway in endothelial cells, leading to the suppression of tumor growth and angiogenesis. PMID:27293997

  10. Metformin impairs Rho GTPase signaling to induce apoptosis in neuroblastoma cells and inhibits growth of tumors in the xenograft mouse model of neuroblastoma

    PubMed Central

    Kumar, Ambrish; Al-Sammarraie, Nadia; DiPette, Donald J.; Singh, Ugra S.

    2014-01-01

    Metformin has been shown to inhibit tumor growth in xenograft rodent models of adult cancers, and various human clinical trials are in progress. However, the precise molecular mechanisms of metformin action are largely unknown. In the present study we examined the anti-tumor activity of metformin against neuroblastoma, and determined the underlying signaling mechanisms. Using human neuroblastoma xenograft mice, we demonstrated that oral administration of metformin (100 and 250 mg/kg body weight) significantly inhibited the growth of tumors. The interference of metformin in spheroid formation further confirmed the anti-tumor activity of metformin. In tumors, the activation of Rac1 (GTP-Rac1) and Cdc42 (GTP-Cdc42) was increased while RhoA activation (GTP-RhoA) was decreased by metformin. It also induced phosphorylation of JNK and inhibited the phosphorylation of ERK1/2 without affecting p38 MAP Kinase. Infection of cells by adenoviruses expressing dominant negative Rac1 (Rac1-N17), Cdc42 (Cdc42-N17) or constitutively active RhoA (RhoA-V14), or incubation of cells with pharmacological inhibitors of Rac1 (NSC23766) or Cdc42 (ML141) significantly protected neuroblastoma cells from metformin-induced apoptosis. Additionally, inhibition of JNK activity along with Rac1 or Cdc42 attenuated cytotoxic effects of metformin. These studies demonstrated that metformin impairs Rho GTPases signaling to induce apoptosis via JNK pathway. PMID:25365944

  11. Metformin impairs Rho GTPase signaling to induce apoptosis in neuroblastoma cells and inhibits growth of tumors in the xenograft mouse model of neuroblastoma.

    PubMed

    Kumar, Ambrish; Al-Sammarraie, Nadia; DiPette, Donald J; Singh, Ugra S

    2014-11-30

    Metformin has been shown to inhibit tumor growth in xenograft rodent models of adult cancers, and various human clinical trials are in progress. However, the precise molecular mechanisms of metformin action are largely unknown. In the present study we examined the anti-tumor activity of metformin against neuroblastoma, and determined the underlying signaling mechanisms. Using human neuroblastoma xenograft mice, we demonstrated that oral administration of metformin (100 and 250 mg/kg body weight) significantly inhibited the growth of tumors. The interference of metformin in spheroid formation further confirmed the anti-tumor activity of metformin. In tumors, the activation of Rac1 (GTP-Rac1) and Cdc42 (GTP-Cdc42) was increased while RhoA activation (GTP-RhoA) was decreased by metformin. It also induced phosphorylation of JNK and inhibited the phosphorylation of ERK1/2 without affecting p38 MAP Kinase. Infection of cells by adenoviruses expressing dominant negative Rac1 (Rac1-N17), Cdc42 (Cdc42-N17) or constitutively active RhoA (RhoA-V14), or incubation of cells with pharmacological inhibitors of Rac1 (NSC23766) or Cdc42 (ML141) significantly protected neuroblastoma cells from metformin-induced apoptosis. Additionally, inhibition of JNK activity along with Rac1 or Cdc42 attenuated cytotoxic effects of metformin. These studies demonstrated that metformin impairs Rho GTPases signaling to induce apoptosis via JNK pathway.

  12. Percutaneous Image-Guided Ablation of Breast Tumors: An Overview

    PubMed Central

    Sag, Alan A.; Maybody, Majid; Comstock, Christopher; Solomon, Stephen B.

    2014-01-01

    Percutaneous non-surgical image-guided ablation is emerging as an adjunct or alternative to surgery in the management of benign and malignant breast tumors. This review covers the current state of the literature regarding percutaneous image-guided ablation modalities, clinical factors regarding patient selection, and future directions for research. PMID:25049447

  13. Inhibition of Tumor Growth and Angiogenesis by a Lysophosphatidic Acid Antagonist in a Engineered Three-dimensional Lung Cancer Xenograft Model

    PubMed Central

    Xu, Xiaoyu; Prestwich, Glenn D

    2009-01-01

    BACKGROUND We developed an engineered three-dimensional (3-D) tumor xenograft model of non-small cell lung cancer (NSCLC) in nude mice, and used this model to evaluate a dual-activity inhibitor of lysophosphatidic acid (LPA) biosynthesis and receptor activation. METHODS First, BrP-LPA, a pan-antagonist for four LPA receptors and inhibitor of the lyosphospholipase D activity of autotaxin, was examined for inhibition of cell migration and cell invasion by human NSCLC A549 cells. Second, A549 cells were encapsulated in 3-D in three semi-synthetic ECMs based on chemically-modified glycosaminoglycans, and injected subcutaneously in nude mice. Tumor volume and vascularity were deteremined as a function of sECM composition. Third, engineered NSCLC xenografts were formed from A549 cells in either Extracel-HP or Matrigel, and mice were treated with four intraperitoneal injections of 3 mg/kg of BrP-LPA. RESULTS First, BrP-LPA inhibited cell migration and invasiveness of A549 cells in vitro. Second, tumor growth and microvessel formation for 3-D encapsulated A549 cells in vivo in nude mice increased in the order: buffer only < Extracel < Extracel-HP < Extracel-HP containing growth factors plus laminin. Third, tumor volumes increased rapidly in both Matrigel and Extracel-HP encapsulated A549 cells, and tumor growth was markedly inhibited by BrP-LPA treatment. Finally, tumor vascularization was dramatically reduced in the A549 tumors treated with BrP-LPA. CONCLUSIONS Engineered A549 lung tumors can be created by 3-D encapsulation in an ECM substitute with user controlled composition. The engineered tumors regress and lose vascularity in response to a dual activity inhibitor of the LPA signaling pathway. PMID:20143443

  14. Probe-Based Confocal Laser Endomicroscopy for Imaging TRAIL-Expressing Mesenchymal Stem Cells to Monitor Colon Xenograft Tumors In Vivo

    PubMed Central

    Zhang, Zhen; Li, Ming; Chen, Feixue; Li, Lixiang; Liu, Jun; Li, Zhen; Ji, Rui; Zuo, Xiuli; Li, Yanqing

    2016-01-01

    Introduction Mesenchymal stem cells (MSCs) can serve as vehicles for therapeutic genes. However, little is known about MSC behavior in vivo. Here, we demonstrated that probe-based confocal laser endomicroscopy (pCLE) can be used to track MSCs in vivo and individually monitor tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) gene expression within carcinomas. Methods Isolated BALB/c nu/nu mice MSCs (MSCs) were characterized and engineered to co-express the TRAIL and enhanced green fluorescent protein (EGFP) genes. The number of MSCs co-expressing EGFP and TRAIL (TRAIL-MSCs) at tumor sites was quantified with pCLE in vivo, while their presence was confirmed using immunofluorescence (IF) and quantitative polymerase chain reaction (qPCR). The therapeutic effects of TRAIL-MSCs were evaluated by measuring the volumes and weights of subcutaneous HT29-derived xenograft tumors. Results Intravital imaging of the subcutaneous xenograft tumors revealed that BALB/c mice treated with TRAIL-MSCs exhibited specific cellular signals, whereas no specific signals were observed in the control mice. The findings from the pCLE images were consistent with the IF and qPCR results. Conclusion The pCLE results indicated that endomicroscopy could effectively quantify injected MSCs that homed to subcutaneous xenograft tumor sites in vivo and correlated well with the therapeutic effects of the TRAIL gene. By applying pCLE for the in vivo monitoring of cellular trafficking, stem cell-based anticancer gene therapeutic approaches might be feasible and attractive options for individualized clinical treatments. PMID:27617958

  15. Targeting RPL39 and MLF2 reduces tumor initiation and metastasis in breast cancer by inhibiting nitric oxide synthase signaling

    PubMed Central

    Dave, Bhuvanesh; Granados-Principal, Sergio; Zhu, Rui; Benz, Stephen; Rabizadeh, Shahrooz; Soon-Shiong, Patrick; Yu, Ke-Da; Shao, Zhimin; Li, Xiaoxian; Gilcrease, Michael; Lai, Zhao; Chen, Yidong; Huang, Tim H.-M.; Shen, Haifa; Liu, Xuewu; Ferrari, Mauro; Zhan, Ming; Wong, Stephen T. C.; Kumaraswami, Muthiah; Mittal, Vivek; Chen, Xi; Gross, Steven S.; Chang, Jenny C.

    2014-01-01

    We previously described a gene signature for breast cancer stem cells (BCSCs) derived from patient biopsies. Selective shRNA knockdown identified ribosomal protein L39 (RPL39) and myeloid leukemia factor 2 (MLF2) as the top candidates that affect BCSC self-renewal. Knockdown of RPL39 and MLF2 by specific siRNA nanoparticles in patient-derived and human cancer xenografts reduced tumor volume and lung metastases with a concomitant decrease in BCSCs. RNA deep sequencing identified damaging mutations in both genes. These mutations were confirmed in patient lung metastases (n = 53) and were statistically associated with shorter median time to pulmonary metastasis. Both genes affect the nitric oxide synthase pathway and are altered by hypoxia. These findings support that extensive tumor heterogeneity exists within primary cancers; distinct subpopulations associated with stem-like properties have increased metastatic potential. PMID:24876273

  16. Assessment of breast tumor size in electrical impedance scanning

    NASA Astrophysics Data System (ADS)

    Kim, Sungwhan

    2012-02-01

    Electrical impedance scanning (EIS) is a newly introduced imaging technique for early breast cancer detection. In EIS, we apply a sinusoidal voltage between a hand-held electrode and a scanning probe placed on the breast skin to make current travel through the breast. We measure induced currents (Neumann data) through the scanning probe. In this paper, we investigate the frequency-dependent behavior of the induced complex potential and show how the frequency differential of the current measurement on the scanning probe reflects the contrast in complex conductivity values between surrounding and cancerous tissues. Furthermore, we develop the formula for breast tumor size using the frequency differential of the current measurement and provide its feasibility.

  17. Low penetrance breast cancer susceptibility loci are associated with specific breast tumor subtypes: findings from the Breast Cancer Association Consortium

    PubMed Central

    Broeks, Annegien; Schmidt, Marjanka K.; Sherman, Mark E.; Couch, Fergus J.; Hopper, John L.; Dite, Gillian S.; Apicella, Carmel; Smith, Letitia D.; Hammet, Fleur; Southey, Melissa C.; Van ’t Veer, Laura J.; de Groot, Renate; Smit, Vincent T.H.B.M.; Fasching, Peter A.; Beckmann, Matthias W.; Jud, Sebastian; Ekici, Arif B.; Hartmann, Arndt; Hein, Alexander; Schulz-Wendtland, Ruediger; Burwinkel, Barbara; Marme, Frederik; Schneeweiss, Andreas; Sinn, Hans-Peter; Sohn, Christof; Tchatchou, Sandrine; Bojesen, Stig E.; Nordestgaard, Børge G.; Flyger, Henrik; Ørsted, David D.; Kaur-Knudsen, Diljit; Milne, Roger L.; Pérez, Jose I. Arias; Zamora, Pilar; Rodríguez, Primitiva Menéndez; Benítez, Javier; Brauch, Hiltrud; Justenhoven, Christina; Ko, Yon-Dschun; Hamann, Ute; Fischer, Hans-Peter; Brüning, Thomas; Pesch, Beate; Chang-Claude, Jenny; Wang-Gohrke, Shan; Bremer, Michael; Karstens, Johann H.; Hillemanns, Peter; Dörk, Thilo; Nevanlinna, Heli A.; Heikkinen, Tuomas; Heikkilä, Päivi; Blomqvist, Carl; Aittomäki, Kristiina; Aaltonen, Kirsimari; Lindblom, Annika; Margolin, Sara; Mannermaa, Arto; Kosma, Veli-Matti; Kauppinen, Jaana M.; Kataja, Vesa; Auvinen, Päivi; Eskelinen, Matti; Soini, Ylermi; Chenevix-Trench, Georgia; Spurdle, Amanda B.; Beesley, Jonathan; Chen, Xiaoqing; Holland, Helene; Lambrechts, Diether; Claes, Bart; Vandorpe, Thijs; Neven, Patrick; Wildiers, Hans; Flesch-Janys, Dieter; Hein, Rebecca; Löning, Thomas; Kosel, Matthew; Fredericksen, Zachary S.; Wang, Xianshu; Giles, Graham G.; Baglietto, Laura; Severi, Gianluca; McLean, Catriona; Haiman, Christopher A.; Henderson, Brian E.; Le Marchand, Loic; Kolonel, Laurence N.; Grenaker Alnæs, Grethe; Kristensen, Vessela; Børresen-Dale, Anne-Lise; Hunter, David J.; Hankinson, Susan E.; Andrulis, Irene L.; Marie Mulligan, Anna; O'Malley, Frances P.; Devilee, Peter; Huijts, Petra E.A.; Tollenaar, Rob A.E.M.; Van Asperen, Christi J.; Seynaeve, Caroline S.; Chanock, Stephen J.; Lissowska, Jolanta; Brinton, Louise; Peplonska, Beata; Figueroa, Jonine; Yang, Xiaohong R.; Hooning, Maartje J.; Hollestelle, Antoinette; Oldenburg, Rogier A.; Jager, Agnes; Kriege, Mieke; Ozturk, Bahar; van Leenders, Geert J.L.H.; Hall, Per; Czene, Kamila; Humphreys, Keith; Liu, Jianjun; Cox, Angela; Connley, Daniel; Cramp, Helen E.; Cross, Simon S.; Balasubramanian, Sabapathy P.; Reed, Malcolm W.R.; Dunning, Alison M.; Easton, Douglas F.; Humphreys, Manjeet K.; Caldas, Carlos; Blows, Fiona; Driver, Kristy; Provenzano, Elena; Lubinski, Jan; Jakubowska, Anna; Huzarski, Tomasz; Byrski, Tomasz; Cybulski, Cezary; Gorski, Bohdan; Gronwald, Jacek; Brennan, Paul; Sangrajrang, Suleeporn; Gaborieau, Valerie; Shen, Chen-Yang; Hsiung, Chia-Ni; Yu, Jyh-Cherng; Chen, Shou-Tung; Hsu, Giu-Cheng; Hou, Ming-Feng; Huang, Chiun-Sheng; Anton-Culver, Hoda; Ziogas, Argyrios; Pharoah, Paul D.P.; Garcia-Closas, Montserrat

    2011-01-01

    Breast cancers demonstrate substantial biological, clinical and etiological heterogeneity. We investigated breast cancer risk associations of eight susceptibility loci identified in GWAS and two putative susceptibility loci in candidate genes in relation to specific breast tumor subtypes. Subtypes were defined by five markers (ER, PR, HER2, CK5/6, EGFR) and other pathological and clinical features. Analyses included up to 30 040 invasive breast cancer cases and 53 692 controls from 31 studies within the Breast Cancer Association Consortium. We confirmed previous reports of stronger associations with ER+ than ER− tumors for six of the eight loci identified in GWAS: rs2981582 (10q26) (P-heterogeneity = 6.1 × 10−18), rs3803662 (16q12) (P = 3.7 × 10−5), rs13281615 (8q24) (P = 0.002), rs13387042 (2q35) (P = 0.006), rs4973768 (3p24) (P = 0.003) and rs6504950 (17q23) (P = 0.002). The two candidate loci, CASP8 (rs1045485, rs17468277) and TGFB1 (rs1982073), were most strongly related with the risk of PR negative tumors (P = 5.1 × 10−6 and P = 4.1 × 10−4, respectively), as previously suggested. Four of the eight loci identified in GWAS were associated with triple negative tumors (P ≤ 0.016): rs3803662 (16q12), rs889312 (5q11), rs3817198 (11p15) and rs13387042 (2q35); however, only two of them (16q12 and 2q35) were associated with tumors with the core basal phenotype (P ≤ 0.002). These analyses are consistent with different biological origins of breast cancers, and indicate that tumor stratification might help in the identification and characterization of novel risk factors for breast cancer subtypes. This may eventually result in further improvements in prevention, early detection and treatment. PMID:21596841

  18. Cyclin D1 cooperates with p21 to regulate TGFβ-mediated breast cancer cell migration and tumor local invasion

    PubMed Central

    2013-01-01

    Introduction Deregulation of the cell cycle machinery is often found in human cancers. Modulations in the cell cycle regulator function and expression result not only in proliferative advantages, but also lead to tumor progression and invasiveness of the cancer. In particular, cyclin D1 and p21 are often over-expressed in human cancers, correlating with high tumor grade, poor prognosis and increased metastasis. This prompted us to investigate the role of the cyclin D1/p21 signaling axis downstream of transforming growth factor beta (TGFβ) in breast cancer progression. Methods Cyclins mRNA and protein expressions were assessed by quantitative real-time PCR and Western blot in triple negative breast cancer cell lines. Co-localization and interaction between cyclin D1 and p21 were performed by immunocytochemistry and co-immunoprecipitation, respectively. Cell migration was assessed by wound healing and quantitative time-lapse imaging assays. In addition, the effects of cyclin D1 on cellular structure and actin organization were examined by staining with F-actin marker phalloidin and mesenchymal intermediate filament vimentin. Finally, a mammary fat pad xenograft mouse model was used to assess mammary tumor growth and local invasion. Results We found TGFβ to specifically up-regulate the expression of cyclin D1 in triple negative breast cancer cells. Induction of cyclin D1 is also required for TGFβ-mediated cell migration. Suppression of cyclin D1 expression not only resulted in a rounded and epithelial-like phenotype, but also prevented TGFβ-induced vimentin and F-actin co-localization at the cell edge as well as invadopodia formation. Furthermore, TGFβ promoted the nuclear co-localization and physical interaction between cyclin D1 and p21. The co-expression of cyclin D1 and p21 proteins are required for the initial steps of tumor development, as double knockdown of these two molecules prevented primary tumor formation in a Xenograft mouse model. Moreover, the in

  19. CIB1 depletion impairs cell survival and tumor growth in triple-negative breast cancer

    PubMed Central

    Black, Justin L.; Harrell, J. Chuck; Leisner, Tina M.; Fellmeth, Melissa J.; George, Samuel D.; Reinhold, Dominik; Baker, Nicole M.; Jones, Corbin D.; Der, Channing J.; Perou, Charles M.

    2015-01-01

    Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype with generally poor prognosis and no available targeted therapies, highlighting a critical unmet need to identify and characterize novel therapeutic targets. We previously demonstrated that CIB1 is necessary for cancer cell survival and proliferation via regulation of two oncogenic signaling pathways, RAF–MEK–ERK and PI3K–AKT. Because these pathways are often upregulated in TNBC, we hypothesized that CIB1 may play a broader role in TNBC cell survival and tumor growth. Methods utilized include inducible RNAi depletion of CIB1 in vitro and in vivo, immunoblotting, clonogenic assay, flow cytometry, RNA-sequencing, bioinformatics analysis, and Kaplan–Meier survival analysis. CIB1 depletion resulted in significant cell death in 8 of 11 TNBC cell lines tested. Analysis of components related to PI3K–AKT and RAF–MEK–ERK signaling revealed that elevated AKT activation status and low PTEN expression were key predictors of sensitivity to CIB1 depletion. Furthermore, CIB1 knockdown caused dramatic shrinkage of MDA-MB-468 xenograft tumors in vivo. RNA sequence analysis also showed that CIB1 depletion in TNBC cells activates gene programs associated with decreased proliferation and increased cell death. CIB1 expression levels per se did not predict TNBC susceptibility to CIB1 depletion, and CIB1 mRNA expression levels did not associate with TNBC patient survival. Our data are consistent with the emerging theory of non-oncogene addiction, where a large subset of TNBCs depend on CIB1 for cell survival and tumor growth, independent of CIB1 expression levels. Our data establish CIB1 as a novel therapeutic target for TNBC. PMID:26105795

  20. CDDO-Me Redirects Activation of Breast Tumor Associated Macrophages

    PubMed Central

    Ball, Michael S.; Shipman, Emilie P.; Kim, Hyunjung; Liby, Karen T.; Pioli, Patricia A.

    2016-01-01

    Tumor-associated macrophages can account for up to 50% of the tumor mass in breast cancer patients and high TAM density is associated with poor clinical prognosis. Because TAMs enhance tumor growth, development, and metastatic potential, redirection of TAM activation may have significant therapeutic benefit. Our studies in primary human macrophages and murine breast TAMs suggest that the synthetic oleanane triterpenoid CDDO-methyl ester (CDDO-Me) reprograms the activation profile of TAMs from tumor-promoting to tumor-inhibiting. We show that CDDO-Me treatment inhibits expression of IL-10 and VEGF in stimulated human M2 macrophages and TAMs but increases expression of TNF-α and IL-6. Surface expression of CD206 and CD163, which are characteristic of M2 activation, is significantly attenuated by CDDO-Me. In contrast, CDDO-Me up-regulates surface expression of HLA-DR and CD80, which are markers of M1 activation, and importantly potentiates macrophage activation of autologous T cells but inhibits endothelial cell vascularization. These results show for the first time that CDDO-Me redirects activation of M2 macrophages and TAMs from immune-suppressive to immune-stimulatory, and implicate a role for CDDO-Me as an immunotherapeutic in the treatment of breast and potentially other types of cancer. PMID:26918785

  1. Breast Tumor Heterogeneity: Source of Fitness, Hurdle for Therapy.

    PubMed

    Koren, Shany; Bentires-Alj, Mohamed

    2015-11-19

    Tumor heterogeneity impinges on prognosis, response to therapy, and metastasis. As such, heterogeneity is one of the most important and clinically relevant areas of cancer research. Breast cancer displays frequent intra- and inter-tumor heterogeneity as the result of genetic and non-genetic alterations that often enhance the vigor of cancer cells. In-depth characterization and understanding of the origin of this phenotypic and molecular diversity is paramount to improving diagnosis, the definition of prognostic and predictive biomarkers, and the design of therapeutic strategies. Here, we summarize current knowledge about sources of breast cancer heterogeneity, its consequences, and possible counter-measures. We discuss especially the impact on tumor heterogeneity of the differentiation state of the cell-of-origin, cancer cell plasticity, the microenvironment, and genetic evolution. Factors that enhance cancer cell vigor are clearly detrimental for patients. PMID:26590713

  2. Mesenchymal tumors and tumor-like lesions of the breast: a contemporary approach review.

    PubMed

    Stolnicu, Simona; Moldovan, Cosmin; Podoleanu, Cristian; Georgescu, Rares

    2015-01-01

    The classification of the breast tumors has been revised and recently published in 2012 in the WHO blue book. Contrary to the epithelial tumors in the breast, mesenchymal tumors are rare and the classification for benign and malignant tumors is based on the same criteria in both categories, since no other specific diagnostic criteria, which would have an impact on prognosis, exist to date. The present review deals with minor changes mirroring the recent developments in the benign mesenchymal tumors (new additions are nodular fasciitis and atypical vascular lesions, while the haemangiopericytoma is removed) focusing especially on criteria to diagnose sarcomas, which represent a wide spectrum including very difficult lesions. The majority of sarcomas of the breast arise as a component of a malignant phyllodes tumor, while the pure forms are very rare. When a pure primary sarcoma of the breast is diagnosed, pathologists are encouraged to categorize the lesion according to the type of differentiation and to provide to the clinicians all the important prognostic parameters for the best treatment choice. PMID:25533916

  3. Selective inhibition of EZH2 by ZLD1039 blocks H3K27methylation and leads to potent anti-tumor activity in breast cancer

    PubMed Central

    Song, Xuejiao; Gao, Tiantao; Wang, Ningyu; Feng, Qiang; You, Xinyu; Ye, Tinghong; Lei, Qian; Zhu, Yongxia; Xiong, Menghua; Xia, Yong; Yang, Fangfang; Shi, Yaojie; Wei, Yuquan; Zhang, Lidan; Yu, Luoting

    2016-01-01

    Enhancer of zeste homolog 2 (EZH2) is a candidate oncogenic driver due to its prevalent overexpression and aberrant repression of tumor suppressor genes in diverse cancers. Therefore, blocking EZH2 enzyme activity may present a valid therapeutic strategy for the treatment of cancers with EZH2 overexpression including breast cancers. Here, we described ZLD1039 a potent, highly selective, and orally bioavailable small molecule inhibitor of EZH2, which inhibited breast tumor growth and metastasis. ZLD1039 considerably inhibited EZH2 methyltransferase activity with nanomolar potency, decreased global histone-3 lysine-27 (H3K27) methylation, and reactivated silenced tumor suppressors connected to increased survival of patients with breast cancer. Comparable to conditional silencing of EZH2, its inhibition by ZLD1039 decreased cell proliferation, cell cycle arrest, and induced apoptosis. Comparably, treatment of xenograft-bearing mice with ZLD1039 led to tumor growth regression and metastasis inhibition. These data confirmed the dependency of breast cancer progression on EZH2 activity and the usefulness of ZLD1039 as a promising treatment for breast cancer. PMID:26868841

  4. Anti-angiogenic therapy for normalization of tumor vasculature: A potential effect of Buyang Huanwu decoction on nude mice bearing human hepatocellular carcinoma xenografts with high metastatic potential

    PubMed Central

    MIN, LIANG; LING, WEI; HUA, RONG; QI, HONG; CHEN, SHENXU; WANG, HAIQIAO; TANG, LUMEN; SHANGGUAN, WENJI

    2016-01-01

    The present study aimed to investigate the effect of Buyang Huanwu decoction (BYHWD) on tumor growth, metastasis and angiogenesis in nude mice bearing human hepatocellular carcinoma (HCC) HCCLM3 xenografts. A total of 96 nude mice bearing HCCLM3 xenografts were randomly divided into four groups: BYHWD group (LB), Yi-qi decoction group (LY), Huo-xue decoction group (LH) and model group (LM). Each of these groups was divided into three subgroups (n=8), which were observed on days 21, 25, 38 following treatment, respectively. The tumor weights, volumes and pulmonary metastases were recorded. The expression of CD105 and the microvessel density (MVD) were assessed, and the expression levels of vascular endothelial growth factor (VEGF), hypoxia-inducible factor 1α (HIF-1α), and regulator of G protein signaling 5 (RGS-5) were analyzed using immunohistochemical staining. Compared with the LM group, no significant decrease in tumor weight or volume were observed in the herbal medicine treatment groups, the number of the metastases in the lungs decreased, whereas the expression levels of RGS-5 and HIF-1α decreased in the LB group on day 35. However, the expression levels of VEGF increased in the LB group on days 28 and 35 post-treatment. The results of the present study suggested that BYHWD may inhibit angiogenesis and metastasis by affecting the expression levels of VEGF, RGS-5 and HIF-1α, and suggested that BYHWD may contribute to the tumor microenvironment and vasculature normalization in HCC. PMID:26846752

  5. Tenfibgen Ligand Nanoencapsulation Delivers Bi-Functional Anti-CK2 RNAi Oligomer to Key Sites for Prostate Cancer Targeting Using Human Xenograft Tumors in Mice

    PubMed Central

    Trembley, Janeen H.; Unger, Gretchen M.; Korman, Vicci L.; Abedin, Md. Joynal; Nacusi, Lucas P.; Vogel, Rachel I.; Slaton, Joel W.; Kren, Betsy T.; Ahmed, Khalil

    2014-01-01

    Protected and specific delivery of nucleic acids to malignant cells remains a highly desirable approach for cancer therapy. Here we present data on the physical and chemical characteristics, mechanism of action, and pilot therapeutic efficacy of a tenfibgen (TBG)-shell nanocapsule technology for tumor-directed delivery of single stranded DNA/RNA chimeric oligomers targeting CK2αα' to xenograft tumors in mice. The sub-50 nm size TBG nanocapsule (s50-TBG) is a slightly negatively charged, uniform particle of 15 - 20 nm size which confers protection to the nucleic acid cargo. The DNA/RNA chimeric oligomer (RNAi-CK2) functions to decrease CK2αα' expression levels via both siRNA and antisense mechanisms. Systemic delivery of s50-TBG-RNAi-CK2 specifically targets malignant cells, including tumor cells in bone, and at low doses reduces size and CK2-related signals in orthotopic primary and metastatic xenograft prostate cancer tumors. In conclusion, the s50-TBG nanoencapsulation technology together with the chimeric oligomer targeting CK2αα' offer significant promise for systemic treatment of prostate malignancy. PMID:25333839

  6. Mucocele-like tumors of the breast.

    PubMed

    Rosen, P P

    1986-07-01

    Ruptured cysts of the breast containing mucinous material may discharge secretions and epithelium into the surrounding tissues. This is a benign, little-known condition analogous to mucocele of the minor salivary glands. The age at diagnosis of six women with mucocele-like lesions (MLL) of the breast averaged 40 years (range, 25-61) and all but one were premenopausal. The lesion caused a mass in five cases. In one it was an incidental finding, and this patient had a separate unrelated nonmucinous intraductal carcinoma treated by mastectomy. One woman was treated by simple mastectomy. Four patients were treated by excision. All have remained well with follow-up of 6-88 months. The histological appearance of MLL of the breast simulates colloid carcinoma and should be considered in the differential diagnosis of such lesions. This is particularly important in young, premenopausal women, among whom colloid carcinoma is very uncommon. The contents of mammary MLL may be difficult to distinguish from colloid carcinoma in an aspiration biopsy.

  7. Uncommon breast tumor attenuation artifact on radionuclide ventriculography.

    PubMed

    Metrard, Gilles; Girault, Sylvie; Capitain, Olivier; Jeanguillaume, Christian; Rakotonirina, Hervé; Berthelot, Cécile; Le Jeune, Jean-Jacques; Morel, Olivier

    2008-04-01

    A 39-year-old woman with locally advanced left breast cancer (T4 N0 M0) underwent equilibrium radionuclide ventriculography for baseline assessment of left ventricular function before neoadjuvant chemotherapy. The left ventricular ejection fraction was 76% at 75 beats per minute, without localized wall motion abnormality. In the best septal left anterior oblique projection, a large photopenic "halo" surrounded the cardiac chambers, mimicking a pericardial effusion. In fact, this aspect resulted from an attenuation artifact by a large left breast tumor, as demonstrated by FDG-PET/CT imaging. PMID:18356673

  8. NCX-4040, a nitric oxide-releasing aspirin, sensitizes drug-resistant human ovarian xenograft tumors to cisplatin by depletion of cellular thiols

    PubMed Central

    Bratasz, Anna; Selvendiran, Karuppaiyah; Wasowicz, Tomasz; Bobko, Andrey; Khramtsov, Valery V; Ignarro, Louis J; Kuppusamy, Periannan

    2008-01-01

    Background Ovarian carcinoma is the leading cause of mortality among gynecological cancers in the world. The high mortality rate is associated with lack of early diagnosis and development of drug resistance. The antitumor efficacy and mechanism of NCX-4040, a nitric oxide-releasing aspirin derivative, against ovarian cancer is studied. Methods NCX-4040, alone or in combination with cisplatin (cis-diamminedichloroplatinum, cDDP), was studied in cisplatin-sensitive (A2780 WT) and cisplatin-resistant (A2780 cDDP) cell lines as well as xenograft tumors grown in nude mice. Electron paramagnetic resonance (EPR) was used for measurements of nitric oxide and redox state. Immunoblotting analysis of A2780 cDDP tumor xenografts from mice was used for mechanistic studies. Results Cells treated with NCX-4040 (25 μM) showed a significant reduction of cell viability (A2780 WT, 34.9 ± 8.7%; A2780 cDDP, 41.7 ± 7.6%; p < 0.05). Further, NCX-4040 significantly enhanced the sensitivity of A2780 cDDP cells (cisplatin alone, 80.6 ± 11.8% versus NCX-4040+cisplatin, 26.4 ± 7.6%; p < 0.01) and xenograft tumors (cisplatin alone, 74.0 ± 4.4% versus NCX-4040+cisplatin, 56.4 ± 7.8%; p < 0.05), to cisplatin treatment. EPR imaging of tissue redox and thiol measurements showed a 5.5-fold reduction (p < 0.01) of glutathione in NCX-4040-treated A2780 cDDP tumors when compared to untreated controls. Immunoblotting analysis of A2780 cDDP tumor xenografts from mice treated with NCX-4040 and cisplatin revealed significant downregulation of pEGFR (Tyr845 and Tyr992) and pSTAT3 (Tyr705 and Ser727) expression. Conclusion The results suggested that NCX-4040 could resensitize drug-resistant ovarian cancer cells to cisplatin possibly by depletion of cellular thiols. Thus NCX-4040 appears to be a potential therapeutic agent for the treatment of human ovarian carcinoma and cisplatin-resistant malignancies. PMID:18302761

  9. Infrared Spectra of Human Breast Tumor Tissue and Experimental Animal Tumors

    NASA Astrophysics Data System (ADS)

    Tolstorozhev, G. B.; Belkov, M. V.; Skornyakov, I. V.; Pekhnyo, V. I.; Kozachkova, A. N.; Tsarik, H. V.; Kutsenko, I. P.; Sharykina, N. I.; Butra, V. A.

    2015-01-01

    We have used Fourier transform IR spectroscopy methods to conduct comparative studies of human breast tumors and sarcoma 180 tumor grafted into mice. The IR spectral parameters used to identify tumor tissue in mice with the sarcoma 180 strain proved to be identical to the parameters for human breast tissue in cancer. In the presence of a malignant tumor in humans, the most intense C=O vibrational bands in the protein molecules are observed in the interval 1710-1680 cm-1. For a benign tumor, in the IR spectra of breast tissue the intense bands are located in the interval 1670-1650 cm-1. We spectroscopically monitored the diagnosis and the chemotherapy process using the model of sarcoma 180 in mice. As the therapeutic drugs, we used synthesized coordination compounds based on palladium complexes with diphosphonic acid derivatives. We demonstrate the promising potential of palladium complexes with zoledronic acid as an effective cytostatic. In therapy using a palladium complex with zoledronic acid, the effect of tumor growth inhibition is accompanied by a change in its spectral characteristics. The parameters of the IR spectra for tumor tissue after treatment are close to those of the IR spectra for healthy tissue.

  10. Enhanced antitumor activity of anti-epidermal growth factor receptor monoclonal antibody IMC-C225 in combination with irinotecan (CPT-11) against human colorectal tumor xenografts.

    PubMed

    Prewett, Marie C; Hooper, Andrea T; Bassi, Rajiv; Ellis, Lee M; Waksal, Harlan W; Hicklin, Daniel J

    2002-05-01

    Colon carcinomas frequently express the epidermal growth factor receptor (EGFR), and this expression correlates with more aggressive disease and poor prognosis. Previous studies have shown that EGFR blockade by monoclonal antibody IMC-C225 can inhibit the growth of human colon carcinoma tumor cells in vitro and xenografts of these tumors in athymic mice. In this report, we have studied the in vivo activity of IMC-C225 combined with the topoisomerase I inhibitor irinotecan (CPT-11) using two models of human colorectal carcinoma in nude mice. IMC-C225 was tested at a dose of 1 or 0.5 mg administered q3d. CPT-11 was administered at a dose of 100 mg/kg/week or a maximum tolerated dose of 150 mg/kg/week. Treatment with the combination of IMC-C225 (1 and 0.5 mg) and CPT-11 (100 mg/kg) significantly inhibited the growth of established DLD-1 and HT-29 tumors compared with either CPT-11 or IMC-C225 monotherapy (P < 0.05). Combination therapy with IMC-C225 (1 mg) and the MTD of CPT-11 (150 mg/kg) resulted in a regression rate of 100 and 60% of established DLD-1 and HT-29 tumors, respectively. In a refractory tumor model, combined treatment with IMC-C225 and CPT-11 significantly inhibited the growth of CPT-11 refractory DLD-1 and HT-29 tumors, whereas either agent alone did not control tumor growth. Histological examination of treated tumors showed extensive tumor necrosis, decreased tumor cell proliferation, increased tumor cell apoptosis, and a marked decrease in tumor vasculature. These results suggest that EGFR blockade by IMC-C225 combined with topoisomerase I inhibitors may be an effective therapy against chemorefractory colorectal carcinoma tumors.

  11. MALDI-mass spectrometric imaging revealing hypoxia-driven lipids and proteins in a breast tumor model

    SciTech Connect

    Lu, Jiang; Chughtai, Kamila; Purvine, Samuel O.; Bhujwalla, Zaver M.; Raman, Venu; Pasa-Tolic, Ljiljana; Heeren, Ronald M.; Glunde, Kristine

    2015-06-16

    Hypoxic areas are a common feature of rapidly growing malignant tumors and their metastases, and are typically spatially heterogeneous. Hypoxia has a strong impact on tumor cell biology and contributes to tumor progression in multiple ways. To date, only a few molecular key players in tumor hypoxia, such as for example hypoxia-inducible factor-1 (HIF-1), have been discovered. The distribution of biomolecules is frequently heterogeneous in the tumor volume, and may be driven by hypoxia and HIF-1α. Understanding the spatially heterogeneous hypoxic response of tumors is critical. Mass spectrometric imaging (MSI) provides a unique way of imaging biomolecular distributions in tissue sections with high spectral and spatial resolution. In this paper, breast tumor xenografts grown from MDA-MB-231-HRE-tdTomato cells, with a red fluorescent tdTomato protein construct under the control of a hypoxia response element (HRE)-containing promoter driven by HIF-1α, were used to detect the spatial distribution of hypoxic regions. We elucidated the 3D spatial relationship between hypoxic regions and the localization of small molecules, metabolites, lipids, and proteins by using principal component analysis – linear discriminant analysis (PCA-LDA) on 3D rendered MSI volume data from MDA-MB-231-HRE-tdTomato breast tumor xenografts. In this study we identified hypoxia-regulated proteins active in several distinct pathways such as glucose metabolism, regulation of actin cytoskeleton, protein folding, translation/ribosome, splicesome, the PI3K-Akt signaling pathway, hemoglobin chaperone, protein processing in endoplasmic reticulum, detoxification of reactive oxygen species, aurora B signaling/apoptotic execution phase, the RAS signaling pathway, the FAS signaling pathway/caspase cascade in apoptosis and telomere stress induced senescence. In parallel we also identified co-localization of hypoxic regions and various lipid species such as PC(16:0/18:1), PC(16:0/18:2), PC(18:0/18:1), PC

  12. Giant breast tumors: Surgical management of phyllodes tumors, potential for reconstructive surgery and a review of literature

    PubMed Central

    Liang, Margaret I; Ramaswamy, Bhuvaneswari; Patterson, Cynthia C; McKelvey, Michael T; Gordillo, Gayle; Nuovo, Gerard J; Carson, William E

    2008-01-01

    Background Phyllodes tumors are biphasic fibroepithelial neoplasms of the breast. While the surgical management of these relatively uncommon tumors has been addressed in the literature, few reports have commented on the surgical approach to tumors greater than ten centimeters in diameter – the giant phyllodes tumor. Case presentation We report two cases of giant breast tumors and discuss the techniques utilized for pre-operative diagnosis, tumor removal, and breast reconstruction. A review of the literature on the surgical management of phyllodes tumors was performed. Conclusion Management of the giant phyllodes tumor presents the surgeon with unique challenges. The majority of these tumors can be managed by simple mastectomy. Axillary lymph node metastasis is rare, and dissection should be limited to patients with pathologic evidence of tumor in the lymph nodes. PMID:19014438

  13. Targeting Tumor Cells with Anti-CD44 Antibody Triggers Macrophage-Mediated Immune Modulatory Effects in a Cancer Xenograft Model

    PubMed Central

    Maisel, Daniela; Birzele, Fabian; Voss, Edgar; Nopora, Adam; Bader, Sabine; Friess, Thomas; Goller, Bernhard; Laifenfeld, Daphna; Weigand, Stefan; Runza, Valeria

    2016-01-01

    CD44, a transmembrane receptor reported to be involved in various cellular functions, is overexpressed in several cancer types and supposed to be involved in the initiation, progression and prognosis of these cancers. Since the sequence of events following the blockage of the CD44-HA interaction has not yet been studied in detail, we profiled xenograft tumors by RNA Sequencing to elucidate the mode of action of the anti-CD44 antibody RG7356. Analysis of tumor and host gene-expression profiles led us to the hypothesis that treatment with RG7356 antibody leads to an activation of the immune system. Using cytokine measurements we further show that this activation involves the secretion of chemo-attractants necessary for the recruitment of immune cells (i.e. macrophages) to the tumor site. We finally provide evidence for antibody-dependent cellular phagocytosis (ADCP) of the malignant cells by macrophages. PMID:27463372

  14. 31P and 1H MRS of DB-1 Melanoma Xenografts: Lonidamine Selectively Decreases Tumor Intracellular pH and Energy Status and Sensitizes Tumors to Melphalan

    PubMed Central

    Nath, Kavindra; Nelson, David S.; Ho, Andrew; Lee, Seung-Cheol; Darpolor, Moses M.; Pickup, Stephen; Zhou, Rong; Heitjan, Daniel F.; Leeper, Dennis B.; Glickson, Jerry D.

    2012-01-01

    In vivo 31P MRS demonstrates that human melanoma xenografts in immunosuppressed mice treated with lonidamine (LND, 100 mg/kg, i.p.) exhibit a decrease in intracellular pH (pHi) from 6.90 ± 0.05 to 6.33 ± 0.10 (p < 0.001), a slight decrease in extracellular pH (pHe) from 7.00 ± 0.04 to 6.80 ± 0.07 (p > 0.05), and a monotonic decline in bioenergetics (NTP/Pi) by 66.8 ± 5.7% (p < 0.001) relative to the baseline level. Both bioenergetics and pHi decreases were sustained for at least 3 hr following LND treatment. Liver exhibited a transient intracellular acidification by 0.2 ± 0.1 pH units (p > 0.05) at 20 min post-LND with no significant change in pHe and a small transient decrease in bioenergetics, 32.9 ± 10.6 % (p > 0.05), at 40 min post-LND. No changes in pHi or ATP/Pi were detected in the brain (pHi, bioenergetics; p > 0.1) or skeletal muscle (pHi, pHe, bioenergetics; p > 0.1) for at least 120 min post-LND. Steady-state tumor lactate monitored by 1H MRS with a selective multiquantum pulse sequence with Hadamard localization increased ~3-fold (p = 0.009). Treatment with LND increased systemic melanoma response to melphalan (LPAM; 7.5 mg/kg, i.v.) producing a growth delay of 19.9 ± 2.0 d (tumor doubling time = 6.15 ± 0.31d, log10 cell-kill = 0.975 ± 0.110, cell-kill = 89.4 ± 2.2%) compared to LND alone of 1.1 ± 0.1 d and LPAM alone of 4.0 ± 0.0 d. The study demonstrates that the effects of LND on tumor pHi and bioenergetics may sensitize melanoma to pH-dependent therapeutics such as chemotherapy with alkylating agents or hyperthermia. PMID:22745015

  15. Artesunate suppresses tumor growth and induces apoptosis through the modulation of multiple oncogenic cascades in a chronic myeloid leukemia xenograft mouse model

    PubMed Central

    Kim, Chulwon; Lee, Jong Hyun; Kim, Sung-Hoon; Sethi, Gautam; Ahn, Kwang Seok

    2015-01-01

    Artesunate (ART), a semi-synthetic derivative of artemisinin, is one of the most commonly used anti-malarial drugs. Also, ART possesses anticancer potential albeit through incompletely understood molecular mechanism(s). Here, the effect of ART on various protein kinases, associated gene products, cellular response, and apoptosis was investigated. The in vivo effect of ART on the growth of human CML xenograft tumors in athymic nu/nu mice was also examined. In our preliminary experiments, we first observed that phosphorylation of p38, ERK, CREB, Chk-2, STAT5, and RSK proteins were suppressed upon ART exposure. Interestingly, ART induced the expression of SOCS-1 protein and depletion of SOCS-1 using siRNA abrogated the STAT5 inhibitory effect of the drug. Also various dephosphorylations caused by ART led to the suppression of various survival gene products and induced apoptosis through caspase-3 activation. Moreover, ART also substantially potentiated the apoptosis induced by chemotherapeutic agents. Finally, when administered intraperitoneally, ART inhibited p38, ERK, STAT5, and CREB activation in tumor tissues and the growth of human CML xenograft tumors in mice without exhibiting any significant adverse effects. Overall, our results suggest that ART exerts its anti-proliferative and pro-apoptotic effects through suppression of multiple signaling cascades in CML both in vitro and in vivo. PMID:25738364

  16. A Novel Eg5 Inhibitor (LY2523355) Causes Mitotic Arrest and Apoptosis in Cancer Cells and Shows Potent Antitumor Activity in Xenograft Tumor Models.

    PubMed

    Ye, Xiang S; Fan, Li; Van Horn, Robert D; Nakai, Ryuichiro; Ohta, Yoshihisa; Akinaga, Shiro; Murakata, Chikara; Yamashita, Yoshinori; Yin, Tinggui; Credille, Kelly M; Donoho, Gregory P; Merzoug, Farhana F; Li, Heng; Aggarwal, Amit; Blanchard, Kerry; Westin, Eric H

    2015-11-01

    Intervention of cancer cell mitosis by antitubulin drugs is among the most effective cancer chemotherapies. However, antitubulin drugs have dose-limiting side effects due to important functions of microtubules in resting normal cells and are often rendered ineffective by rapid emergence of resistance. Antimitotic agents with different mechanisms of action and improved safety profiles are needed as new treatment options. Mitosis-specific kinesin Eg5 represents an attractive anticancer target for discovering such new antimitotic agents, because Eg5 is essential only in mitotic progression and has no roles in resting, nondividing cells. Here, we show that a novel selective Eg5 inhibitor, LY2523355, has broad target-mediated anticancer activity in vitro and in vivo. LY2523355 arrests cancer cells at mitosis and causes rapid cell death that requires sustained spindle-assembly checkpoint (SAC) activation with a required threshold concentration. In vivo efficacy of LY2523355 is highly dose/schedule-dependent, achieving complete remission in a number of xenograft tumor models, including patient-derived xenograft (PDX) tumor models. We further establish that histone-H3 phosphorylation of tumor and proliferating skin cells is a promising pharmacodynamic biomarker for in vivo anticancer activity of LY2523355. PMID:26304237

  17. Tumor-specific targeting by Bavituximab, a phosphatidylserine-targeting monoclonal antibody with vascular targeting and immune modulating properties, in lung cancer xenografts.

    PubMed

    Gerber, David E; Hao, Guiyang; Watkins, Linda; Stafford, Jason H; Anderson, Jon; Holbein, Blair; Öz, Orhan K; Mathews, Dana; Thorpe, Philip E; Hassan, Gedaa; Kumar, Amit; Brekken, Rolf A; Sun, Xiankai

    2015-01-01

    Bavituximab is a chimeric monoclonal antibody with immune modulating and tumor-associated vascular disrupting properties demonstrated in models of non-small cell lung cancer (NSCLC). The molecular target of Bavituximab, phosphatidylserine (PS), is exposed on the outer leaflet of the membrane bi-layer of malignant vascular endothelial cells and tumor cells to a greater extent than on normal tissues. We evaluated the tumor-targeting properties of Bavituximab for imaging of NSCLC xenografts when radiolabeled with (111)In through conjugation with a bifunctional chelating agent, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA). In vitro binding of (111)In-DOTA-Bavituximab to PS was determined by enzyme-linked immunosorbent assay (ELISA). Biodistribution of (111)In-DOTA-Bavituximab was conducted in normal rats, which provided data for dosimetry calculation. Single-photon emission computed tomography/computed tomography (SPECT/CT) imaging was performed in athymic nude rats bearing A549 NSCLC xenografts. At the molar conjugation ratio of 0.54 DOTA per Bavituximab, the PS binding affinity of (111)In-DOTA-Bavituximab was comparable to that of unmodified Bavituximab. Based on the quantitative SPECT/CT imaging data analysis, (111)In-DOTA-Bavituximab demonstrated tumor-specific uptake as measured by the tumor-tomuscle ratio, which peaked at 5.2 at 72 hr post-injection. In contrast, the control antibody only presented a contrast of 1.2 at the same time point.These findings may underlie the diagnostic efficacy and relative low rates of systemic vascular and immune-related toxicities of this immunoconjugate. Future applications of (111)In-DOTA-bavituximab may include prediction of efficacy, indication of tumor immunologic status, or characterization of radiographic findings. PMID:26550540

  18. Mesenchymal Stem Cells Develop Tumor Tropism but Do Not Accelerate Breast Cancer Tumorigenesis in a Somatic Mouse Breast Cancer Model

    PubMed Central

    Usha, Lydia; Rao, Geetha; Christopherson II, Kent; Xu, Xiulong

    2013-01-01

    The role of mesenchymal stem cells (MSCs) on breast cancer progression, growth and tumorigenesis remains controversial or unknown. In the present study, we investigated the role of MSCs on breast tumor induction and growth in a clinically relevant somatic breast cancer model. We first conducted in vitro studies and found that conditioned media (CM) of RCAS-Neu and RCAS-PyMT breast cancer cell lines and tumor cells themselves dramatically increased the proliferation and motility of MSCs and induced morphological changes of MSCs and differentiation into fibroblast-like cells. In contrast, the CM of MSCs inhibited the proliferation of two breast cancer cell lines by arresting the cell cycle at the G0/G1 phase. In vivo studies revealed that fluorescence dye-labeled MSCs migrated into tumor tissues. Unexpectedly, single or multiple intravenous injections of MSCs did not affect the latency of breast cancer in TVA- transgenic mice induced by intraductal injection of the RCAS vector encoding polyoma middle-T antigen (PyMT) or Neu oncogenes. Moreover, MSCs had no effect on RCAS-Neu tumor growth in a syngeneic ectopic breast cancer model. While our studies consistently demonstrated the ability of breast cancer cells to profoundly induce MSCs migration, differentiation, and proliferation, the anti-proliferative effect of MSCs on breast tumor cells observed in vitro could not be translated into an antitumor activity in vivo, probably reflecting the antagonizing or complex effects of MSCs on tumor environment and tumor cells themselves. PMID:24069135

  19. Accuracy of lesion boundary tracking in navigated breast tumor excision

    NASA Astrophysics Data System (ADS)

    Heffernan, Emily; Ungi, Tamas; Vaughan, Thomas; Pezeshki, Padina; Lasso, Andras; Gauvin, Gabrielle; Rudan, John; Engel, C. Jay; Morin, Evelyn; Fichtinger, Gabor

    2016-03-01

    PURPOSE: An electromagnetic navigation system for tumor excision in breast conserving surgery has recently been developed. Preoperatively, a hooked needle is positioned in the tumor and the tumor boundaries are defined in the needle coordinate system. The needle is tracked electromagnetically throughout the procedure to localize the tumor. However, the needle may move and the tissue may deform, leading to errors in maintaining a correct excision boundary. It is imperative to quantify these errors so the surgeon can choose an appropriate resection margin. METHODS: A commercial breast biopsy phantom with several inclusions was used. Location and shape of a lesion before and after mechanical deformation were determined using 3D ultrasound volumes. Tumor location and shape were estimated from initial contours and tracking data. The difference in estimated and actual location and shape of the lesion after deformation was quantified using the Hausdorff distance. Data collection and analysis were done using our 3D Slicer software application and PLUS toolkit. RESULTS: The deformation of the breast resulted in 3.72 mm (STD 0.67 mm) average boundary displacement for an isoelastic lesion and 3.88 mm (STD 0.43 mm) for a hyperelastic lesion. The difference between the actual and estimated tracked tumor boundary was 0.88 mm (STD 0.20 mm) for the isoelastic and 1.78 mm (STD 0.18 mm) for the hyperelastic lesion. CONCLUSION: The average lesion boundary tracking error was below 2mm, which is clinically acceptable. We suspect that stiffness of the phantom tissue affected the error measurements. Results will be validated in patient studies.

  20. Sulforaphene inhibits triple negative breast cancer through activating tumor suppressor Egr1.

    PubMed

    Yang, Ming; Teng, Wendi; Qu, Yue; Wang, Haiyong; Yuan, Qipeng

    2016-07-01

    Sulforaphene (SFE, 4-methylsufinyl-3-butenyl isothiocyanate) is a member of isothiocyanates, which is derived from radish seeds. It has shown that multiple isothiocyanates, such as sulforaphane, can effectively inhibit cancer cell proliferation in vitro and in vivo. However, it is still largely unknown if SFE could impact breast cancer. In this study, we investigated the anticancer effects of SFE on triple negative breast cancer (TNBC) via a series of in vitro and in vivo assays. We found that SFE can significantly inhibit cell proliferation in multiple TNBC cell lines through inducing G2/M phase arrest as well as cell apoptosis. Nude mice xenograft assays support the anti-TNBC role of SFE in vivo. Interestingly, SFE can repress expression of cyclinB1, Cdc2, and phosphorylated Cdc2, and, then, induced G2/M phase arrest of TNBC cells. To identify SFE target genes, we detected genome-wide gene expression changes through gene expression profiling and observed 27 upregulated and 18 downregulated genes in MDA-MB-453 cells treated with SFE. Among these genes, Egr1 was successfully validated as a consistently activated gene after SFE treatment in TNBC MDA-MB-453 and MDA-MB-436 cells. Egr1 overexpression inhibited proliferation of TNBC cells. However, Egr1 knockdown using siRNAs significantly promoted TNBC cell growth, indicating the tumor suppressor nature of Egr1. In sum, we for the first time found that SFE might be a potential anti-TNBC natural compound and its antiproliferation effects might be mediated by tumor suppressor Egr1. PMID:27377973

  1. [Mammaglobin in peripheral blood and tumor in breast cancer patients].

    PubMed

    Bozhenko, V K; Kharchenko, N V; Vaskevich, E F; Kudinova, E A; Oorzhak, A V; Rozhkova, N I; Trotsenko, I D

    2016-05-01

    Currently, no molecular biological markers do exist for early diagnosis of breast cancer. One of the possible candidates for the marker of early breast cancer is mammaglobin (MGB1) or SCGB2A2 (secretoglobin, family 2A, member 2), characterized by the maximal expression level in early breast cancer. Using the RT-PCR method MGB1 mRNA expression was examined in 57 tumor tissue samples and 57 samples of morphologically non-malignant tissue (MNT) of breast cancer (BC) patients. Specificity and sensitivity of the MGB1 mRNA assay in peripheral blood of BC patients was evaluated by nested PCR. 169 blood samples (from 95 BC patients, 22 from patients with benign breast tumors, 28 from patients with tumors of other localizations, and 24 samples from healthy donors) have been analyzed. MGB1 expression was significantly higher in BC tissue samples compared to MNT (p=0.0019). The maximal expression level was in the samples T1 (p=0.013), stage I BC (p=0.037), GI (p=0.0019). The MGB1 expression positively correlated with expression of estrogen (p = 0,034) and progesterone (p=0.0004) receptors. Sensitivity and specificity of the MGB1 mRNA assay in peripheral blood were 60.6% and 92.3%, respectively. Expression of MGB1 was higher in BC than MNT and it decreased during BC progression. The sensitivity and specificity of the MGB1 mRNA assay may be used as an additional diagnostic method. PMID:27563000

  2. [Mammaglobin in peripheral blood and tumor in breast cancer patients].

    PubMed

    Bozhenko, V K; Kharchenko, N V; Vaskevich, E F; Kudinova, E A; Oorzhak, A V; Rozhkova, N I; Trotsenko, I D

    2016-05-01

    Currently, no molecular biological markers do exist for early diagnosis of breast cancer. One of the possible candidates for the marker of early breast cancer is mammaglobin (MGB1) or SCGB2A2 (secretoglobin, family 2A, member 2), characterized by the maximal expression level in early breast cancer. Using the RT-PCR method MGB1 mRNA expression was examined in 57 tumor tissue samples and 57 samples of morphologically non-malignant tissue (MNT) of breast cancer (BC) patients. Specificity and sensitivity of the MGB1 mRNA assay in peripheral blood of BC patients was evaluated by nested PCR. 169 blood samples (from 95 BC patients, 22 from patients with benign breast tumors, 28 from patients with tumors of other localizations, and 24 samples from healthy donors) have been analyzed. MGB1 expression was significantly higher in BC tissue samples compared to MNT (p=0.0019). The maximal expression level was in the samples T1 (p=0.013), stage I BC (p=0.037), GI (p=0.0019). The MGB1 expression positively correlated with expression of estrogen (p = 0,034) and progesterone (p=0.0004) receptors. Sensitivity and specificity of the MGB1 mRNA assay in peripheral blood were 60.6% and 92.3%, respectively. Expression of MGB1 was higher in BC than MNT and it decreased during BC progression. The sensitivity and specificity of the MGB1 mRNA assay may be used as an additional diagnostic method.

  3. Inhibition of human tumor xenograft growth in nude mice by a conjugate of monoclonal antibody LA22 to epidermal growth factor receptor with anti-tumor antibiotics mitomycin C

    SciTech Connect

    Shao Wei; Zhao Shan; Liu Zhaofei; Zhang Jianzhong; Ma Shujun; Sato, J. Denry; Zhang Peng; Tong Mei; Han Jiping; Wang Yan; Bai Dongmei; Wang Fan . E-mail: wangfan@bjmu.edu.cn; Sun Le . E-mail: lsun@welsonpharma.com

    2006-10-20

    Anti-EGFR monoclonal antibodies LA22 and Erbitux bind to different epitopes of EGFR. The chemimmunoconjugates of MMC with LA22 or Erbitux were prepared, and in vitro cytotoxicity assays with A549 cells showed that LA22-MMC was much more potent than Erbitux or Erbitux-MMC. Viabilities of A549 cells treated with LA22-MMC, Erbitux or Erbitux-MMC were 35%, 94%, and 81%, respectively. Immunoscintigraphy of xenografts of human A431 and A549 cells in nude mice both showed that {sup 125}I-labeled-LA22-MMC enriched in tumor sites prominently. Most importantly, in vivo assays showed LA22-MMC was significantly more effective than free drug MMC in the treatment of subcutaneous xenografts of human A431 cells in nude mice (83% inhibition for LA22-MMC and 30% for MMC). We concluded that LA22-MMC could be a very potent drug for treatment of solid tumors.

  4. Unfolded protein response is required in nu/nu mice microvasculature for treating breast tumor with tunicamycin.

    PubMed

    Banerjee, Aditi; Lang, Jing-Yu; Hung, Mien-Chie; Sengupta, Krishanu; Banerjee, Sushanta K; Baksi, Krishna; Banerjee, Dipak K

    2011-08-19

    Up-regulation of the dolichol pathway, a "hallmark" of asparagine-linked protein glycosylation, enhances angiogenesis in vitro. The dynamic relationship between these two processes is now evaluated with tunicamycin. Capillary endothelial cells treated with tunicamycin were growth inhibited and could not be reversed with exogenous VEGF(165). Inhibition of angiogenesis is supported by down-regulation of (i) phosphorylated VEGFR1 and VEGFR2 receptors; (ii) VEGF(165)-specific phosphotyrosine kinase activity; and (iii) Matrigel(TM) invasion and chemotaxis. In vivo, tunicamycin prevented the vessel development in Matrigel(TM) implants in athymic Balb/c (nu/nu) mice. Immunohistochemical analysis of CD34 (p < 0.001) and CD144 (p < 0.001) exhibited reduced vascularization. A 3.8-fold increased expression of TSP-1, an endogenous angiogenesis inhibitor in Matrigel(TM) implants correlated with that in tunicamycin (32 h)-treated capillary endothelial cells. Intravenous injection of tunicamycin (0.5 mg/kg to 1.0 mg/kg) per week slowed down a double negative (MDA-MB-435) grade III breast adenocarcinoma growth by ∼50-60% in 3 weeks. Histopathological analysis of the paraffin sections indicated significant reduction in vessel size, the microvascular density and tumor mitotic index. Ki-67 and VEGF expression in tumor tissue were also reduced. A significant reduction of N-glycan expression in tumor microvessel was also observed. High expression of GRP-78 in CD144-positive cells supported unfolded protein response-mediated ER stress in tumor microvasculature. ∼65% reduction of a triple negative (MDA-MB-231) breast tumor xenograft in 1 week with tunicamycin (0.25 mg/kg) given orally and the absence of systemic and/or organ failure strongly supported tunicamycin's potential for a powerful glycotherapeutic treatment of breast cancer in the clinic.

  5. Ultrasound imaging of breast tumor perfusion and neovascular morphology.

    PubMed

    Hoyt, Kenneth; Umphrey, Heidi; Lockhart, Mark; Robbin, Michelle; Forero-Torres, Andres

    2015-09-01

    A novel image processing strategy is detailed for simultaneous measurement of tumor perfusion and neovascular morphology parameters from a sequence of dynamic contrast-enhanced ultrasound (DCE-US) images. After normalization and tumor segmentation, a global time-intensity curve describing contrast agent flow was analyzed to derive surrogate measures of tumor perfusion (i.e., peak intensity, time-to-peak intensity, area under the curve, wash-in rate, wash-out rate). A maximum intensity image was generated from these same segmented image sequences, and each vascular component was skeletonized via a thinning algorithm. This skeletonized data set and collection of vessel segments were then investigated to extract parameters related to the neovascular network and physical architecture (i.e., vessel-to-tissue ratio, number of bifurcations, vessel count, average vessel length and tortuosity). An efficient computation of local perfusion parameters was also introduced and operated by averaging time-intensity curve data over each individual neovascular segment. Each skeletonized neovascular segment was then color-coded by these local measures to produce a parametric map detailing spatial properties of tumor perfusion. Longitudinal DCE-US image data sets were collected in six patients diagnosed with invasive breast cancer using a Philips iU22 ultrasound system equipped with a L9-3 transducer and Definity contrast agent. Patients were imaged using US before and after contrast agent dosing at baseline and again at weeks 6, 12, 18 and 24 after treatment started. Preliminary clinical results suggested that breast tumor response to neoadjuvant chemotherapy may be associated with temporal and spatial changes in DCE-US-derived parametric measures of tumor perfusion. Moreover, changes in neovascular morphology parametric measures may also help identify any breast tumor response (or lack thereof) to systemic treatment. Breast cancer management from early detection to therapeutic

  6. An additional case of breast tumor resembling the tall cell variant of papillary thyroid carcinoma.

    PubMed

    Colella, Renato; Guerriero, Angela; Giansanti, Michele; Sidoni, Angelo; Bellezza, Guido

    2015-05-01

    A type of breast tumor histopathologically similar to the papillary thyroid carcinoma has been described and named "Breast tumor resembling the tall cell variant of papillary thyroid carcinoma." Because breast is not an uncommon site for metastasis and about 5% of all such cases are of the thyroid origin, it is important to be aware of the existence of mammary tumors that can closely mimic a thyroid tumor representing a dangerous diagnostic pitfall that can also lead to unnecessary clinical investigations. Here, we describe a singular case of "Breast tumor resembling the tall cell variant of papillary thyroid carcinoma" showing an amazing macroscopic and microscopic resemblance with thyroid tissue harboring a papillary carcinoma.

  7. Harmonic Motion Microwave Doppler Imaging method for breast tumor detection.

    PubMed

    Top, Can Barıs; Tafreshi, Azadeh Kamali; Gençer, Nevzat G

    2014-01-01

    Harmonic Motion Microwave Doppler Imaging (HMMDI) method is recently proposed as a non-invasive hybrid breast imaging technique for tumor detection. The acquired data depend on acoustic, elastic and electromagnetic properties of the tissue. The potential of the method is analyzed with simulation studies and phantom experiments. In this paper, the results of these studies are summarized. It is shown that HMMDI method has a potential to detect malignancies inside fibro-glandular tissue.

  8. Harmonic Motion Microwave Doppler Imaging method for breast tumor detection.

    PubMed

    Top, Can Barıs; Tafreshi, Azadeh Kamali; Gençer, Nevzat G

    2014-01-01

    Harmonic Motion Microwave Doppler Imaging (HMMDI) method is recently proposed as a non-invasive hybrid breast imaging technique for tumor detection. The acquired data depend on acoustic, elastic and electromagnetic properties of the tissue. The potential of the method is analyzed with simulation studies and phantom experiments. In this paper, the results of these studies are summarized. It is shown that HMMDI method has a potential to detect malignancies inside fibro-glandular tissue. PMID:25571382

  9. Inhibition of Cancer Cell Proliferation and Breast Tumor Targeting of pHLIP-Monomethyl Auristatin E Conjugates

    PubMed Central

    Burns, Kelly E.; Robinson, Matthew K.; Théveninr, Damien

    2015-01-01

    Localized delivery is vital for the successful development of novel and effective therapeutics for the treatment of cancer. The targeting and delivery described herein is based on the pH(Low) Insertion Peptide (pHLIP), a unique delivery peptide that can selectively target tumors in mice and translocate and release cargo molecules intra-cellularly based solely on the low extracellular pH intrinsic to cancer cells. In this study, we investigate the efficacy of pHLIP to target and deliver the highly potent and clinically validated microtubule inhibitor monomethyl auristatin E (MMAE) to cancer cells and breast tumors. We show that pHLIP-MMAE conjugates induce a potent cytotoxic effect (> 90% inhibition of cell growth) in a concentration- and pH-dependent manner after only 2-hour incubation without any apparent disruption of the plasma membrane. pHLIP-MMAE conjugates exhibit between an 11 and 144-fold higher anti-proliferative effect at low pH than at physiological pH, and a pronounced pH-dependent cytotoxicity as compared to free drug. Furthermore, we demonstrate that a pHLIP-MMAE drug conjugate effectively targets triple negative breast tumor xenografts in mice. These results indicate pHLIP-based auristatin conjugates may have an enhanced therapeutic window as compared to free drug, providing a targeting mechanism to attenuate systemic toxicity. PMID:25741818

  10. Combining [11C]-AnxA5 PET Imaging with Serum Biomarkers for Improved Detection in Live Mice of Modest Cell Death in Human Solid Tumor Xenografts

    PubMed Central

    Cheng, Qing; Lu, Li; Grafström, Jonas; Olofsson, Maria Hägg; Thorell, Jan-Olov; Samén, Erik; Johansson, Katarina; Ahlzén, Hanna-Stina; Stone-Elander, Sharon; Linder, Stig; Arnér, Elias S. J.

    2012-01-01

    Background In vivo imaging using Annexin A5-based radioligands is a powerful technique for visualizing massive cell death, but has been less successful in monitoring the modest cell death typically seen in solid tumors after chemotherapy. Here we combined dynamic positron emission tomography (PET) imaging using Annexin A5 with a serum-based apoptosis marker, for improved sensitivity and specificity in assessment of chemotherapy-induced cell death in a solid tumor model. Methodology/Principal Findings Modest cell death was induced by doxorubicin in a mouse xenograft model with human FaDu head and neck cancer cells. PET imaging was based on 11C-labeled Sel-tagged Annexin A5 ([11C]-AnxA5-ST) and a size-matched control. 2-deoxy-2-[18F]fluoro-D-glucose ([18F]-FDG) was utilized as a tracer of tissue metabolism. Serum biomarkers for cell death were ccK18 and K18 (M30 Apoptosense® and M65). Apoptosis in tissue sections was verified ex vivo for validation. Both PET imaging using [11C]-AnxA5-ST and serum ccK18/K18 levels revealed treatment-induced cell death, with ccK18 displaying the highest detection sensitivity. [18F]-FDG uptake was not affected by this treatment in this tumor model. [11C]-AnxA5-ST gave robust imaging readouts at one hour and its short half-life made it possible to perform paired scans in the same animal in one imaging session. Conclusions/Significance The combined use of dynamic PET with [11C]-AnxA5-ST, showing specific increases in tumor binding potential upon therapy, with ccK18/K18 serum measurements, as highly sensitive markers for cell death, enabled effective assessment of modest therapy-induced cell death in this mouse xenograft model of solid human tumors. PMID:22870292

  11. Nature of tumor control by permanently and transiently modified GD2 chimeric antigen receptor T cells in xenograft models of neuroblastoma.

    PubMed

    Singh, Nathan; Liu, Xiaojun; Hulitt, Jessica; Jiang, Shuguang; June, Carl H; Grupp, Stephan A; Barrett, David M; Zhao, Yangbing

    2014-11-01

    Chimeric antigen receptor (CAR) therapy has begun to demonstrate success as a novel treatment modality for hematologic malignancies. The success observed thus far has been with T cells permanently engineered to express chimeric receptors. T cells engineered using RNA electroporation represent an alternative with the potential for similar efficacy and greater safety when initially targeting novel antigens. Neuroblastoma is a common pediatric solid tumor with the potential to be targeted using immunotherapy. We performed xenograft studies in NSG mice in which we assessed the efficacy of both permanently modified and transiently modified CAR T cells directed against the neuroblastoma antigen GD2 in both local and disseminated disease models. Disease response was monitored by tumor volume measurement and histologic examination, as well as in vivo bioluminescence. RNA-modified GD2 CAR T cells mediated rapid tumor destruction when delivered locally. A single infusion of lentivirally modified GD2 CAR T cells resulted in long-term control of disseminated disease. Multiple infusions of RNA GD2 CAR T cells slowed the progression of disseminated disease and improved survival, but did not result in long-term disease control. Histologic examination revealed that the transiently modified cells were unable to significantly penetrate the tumor environment when delivered systemically, despite multiple infusions of CAR T cells. Thus, we demonstrate that RNA-modified GD2 CAR T cells can mediate effective antitumor responses in vivo, and permanently modified cells are able to control disseminated neuroblastoma in xenograft mice. Lack of long-term disease control by RNA-engineered cells resulted from an inability to penetrate the tumor microenvironment.

  12. A novel method to visually determine the intracellular pH of xenografted tumor in vivo by utilizing fluorescent protein as an indicator.

    PubMed

    Tanaka, Shotaro; Harada, Hiroshi; Hiraoka, Masahiro

    2015-09-01

    The alkalization of intracellular pH (pHin) advances together with enhancement of aerobic glycolysis within tumor cells (the Warburg effect), and that is responsible for the progression of tumor malignancy together with hypoxia and angiogenesis. But how they correlate each other during tumor growth is poorly understood, partly due to the lack of suitable imaging methods. In present study, we propose a novel method to visually determine the pHin of tumor xenograft model from fluorescent image ratios. We utilized tandemly-linked two fluorescent proteins as a pH indicator; yellow fluorescent protein (YFP, pH sensitive) as an indicator, and red fluorescent protein (RFP, pH insensitive) as a reference. This method can eliminate the influence of optical factors from tissue as well as of the diverse expression level of pH indicator in the grafted cells. In addition, that can be operated by filter-based fluorescent imagers that are generally used in small animal study. The efficacy of the pH indicator, RFP-YFP, was confirmed by studies using recombinant protein in vitro and HeLa cells expressing RFP-YFP in vivo. Furthermore, we prepared nude mice subcutaneously xenografted HeLa cells expressing RFP-YFP cells as tumor model. The image ratios (YFP/RFP) of the tumor at the day 5 after surgery clearly showed the heterogeneous distribution of diverse pHin cells in the tumor tissue. Concomitantly acquired angiography using near-infrared fluorescence (680 nm for emission) also indicated that the relative alkaline pHin cells located in the region far from tumor vessels in which tumor aerobic glycolysis would be facilitated by progression of hypoxia and nutrient starvation. Applying the present method for a multi-wavelength imaging concerning pO2 and/or nutrient starvation states in addition to pHin and angiogenesis would provide valuable information about complicated alteration of tumoral cell states during tumorigenesis.

  13. Human alpha-lactalbumin made lethal to tumor cells (HAMLET) kills human glioblastoma cells in brain xenografts by an apoptosis-like mechanism and prolongs survival.

    PubMed

    Fischer, Walter; Gustafsson, Lotta; Mossberg, Ann-Kristin; Gronli, Janne; Mork, Sverre; Bjerkvig, Rolf; Svanborg, Catharina

    2004-03-15

    Malignant brain tumors present a major therapeutic challenge because no selective or efficient treatment is available. Here, we demonstrate that intratumoral administration of human alpha-lactalbumin made lethal to tumor cells (HAMLET) prolongs survival in a human glioblastoma (GBM) xenograft model, by selective induction of tumor cell apoptosis. HAMLET is a protein-lipid complex that is formed from alpha-lactalbumin when the protein changes its tertiary conformation and binds oleic acid as a cofactor. HAMLET induces apoptosis in a wide range of tumor cells in vitro, but the therapeutic effect in vivo has not been examined. In this study, invasively growing human GBM tumors were established in nude rats (Han:rnu/rnu Rowett, n = 20) by transplantation of human GBM biopsy spheroids. After 7 days, HAMLET was administered by intracerebral convection-enhanced delivery for 24 h into the tumor area; and alpha-lactalbumin, the native, folded variant of the same protein, was used as a control. HAMLET reduced the intracranial tumor volume and delayed the onset of pressure symptoms in the tumor-bearing rats. After 8 weeks, all alpha-lactalbumin-treated rats had developed pressure symptoms, but the HAMLET-treated rats remained asymptomatic. Magnetic resonance imaging scans revealed large differences in tumor volume (456 versus 63 mm(3)). HAMLET caused apoptosis in vivo in the tumor but not in adjacent intact brain tissue or in nontransformed human astrocytes, and no toxic side effects were observed. The results identify HAMLET as a new candidate in cancer therapy and suggest that HAMLET should be additionally explored as a novel approach to controlling GBM progression.

  14. Magnesium protects against cisplatin-induced acute kidney injury without compromising cisplatin-mediated killing of an ovarian tumor xenograft in mice.

    PubMed

    Solanki, Malvika H; Chatterjee, Prodyot K; Xue, Xiangying; Gupta, Madhu; Rosales, Ivy; Yeboah, Michael M; Kohn, Nina; Metz, Christine N

    2015-07-01

    Cisplatin, a commonly used chemotherapeutic for ovarian and other cancers, leads to hypomagnesemia in most patients and causes acute kidney injury (AKI) in 25-30% of patients. Previously, we showed that magnesium deficiency worsens cisplatin-induced AKI and magnesium replacement during cisplatin treatment protects against cisplatin-mediated AKI in non-tumor-bearing mice (Solanki MH, Chatterjee PK, Gupta M, Xue X, Plagov A, Metz MH, Mintz R, Singhal PC, Metz CN. Am J Physiol Renal Physiol 307: F369-F384, 2014). This study investigates the role of magnesium in cisplatin-induced AKI using a human ovarian tumor (A2780) xenograft model in mice and the effect of magnesium status on tumor growth and the chemotherapeutic efficacy of cisplatin in vivo. Tumor progression was unaffected by magnesium status in saline-treated mice. Cisplatin treatment reduced tumor growth in all mice, irrespective of magnesium status. In fact, cisplatin-treated magnesium-supplemented mice had reduced tumor growth after 3 wk compared with cisplatin-treated controls. While magnesium status did not interfere with tumor killing by cisplatin, it significantly affected renal function following cisplatin. Cisplatin-induced AKI was enhanced by magnesium deficiency, as evidenced by increased blood urea nitrogen, creatinine, and other markers of renal damage. This was accompanied by reduced renal mRNA expression of the cisplatin efflux transporter Abcc6. These effects were significantly reversed by magnesium replacement. On the contrary, magnesium status did not affect the mRNA expression of cisplatin uptake or efflux transporters by the tumors in vivo. Finally, magnesium deficiency enhanced platinum accumulation in the kidneys and renal epithelial cells, but not in the A2780 tumor cells. These findings demonstrate the renoprotective role of magnesium during cisplatin AKI, without compromising the chemotherapeutic efficacy of cisplatin in an ovarian tumor-bearing mouse model.

  15. Nonrigid registration algorithm for longitudinal breast MR images and the preliminary analysis of breast tumor response

    NASA Astrophysics Data System (ADS)

    Li, Xia; Dawant, Benoit M.; Welch, E. Brian; Chakravarthy, A. Bapsi; Freehardt, Darla; Mayer, Ingrid; Kelley, Mark; Meszoely, Ingrid; Gore, John C.; Yankeelov, Thomas E.

    2009-02-01

    Although useful for the detection of breast cancers, conventional imaging methods, including mammography and ultrasonography, do not provide adequate information regarding response to therapy. Dynamic contrast enhanced MRI (DCE-MRI) has emerged as a promising technique to provide relevant information on tumor status. Consequently, accurate longitudinal registration of breast MR images is critical for the comparison of changes induced by treatment at the voxel level. In this study, a nonrigid registration algorithm is proposed to allow for longitudinal registration of breast MR images obtained throughout the course of treatment. We accomplish this by modifying the adaptive bases algorithm (ABA) through adding a tumor volume preserving constraint in the cost function. The registration results demonstrate the proposed algorithm can successfully register the longitudinal breast MR images and permit analysis of the parameter maps. We also propose a novel validation method to evaluate the proposed registration algorithm quantitatively. These validations also demonstrate that the proposed algorithm constrains tumor deformation well and performs better than the unconstrained ABA algorithm.

  16. A novel rabbit anti-hepatocyte growth factor monoclonal neutralizing antibody inhibits tumor growth in prostate cancer cells and mouse xenografts

    SciTech Connect

    Yu, Yanlan; Chen, Yicheng; Ding, Guoqing; Wang, Mingchao; Wu, Haiyang; Xu, Liwei; Rui, Xuefang; Zhang, Zhigen

    2015-08-14

    The hepatocyte growth factor and its receptor c-Met are correlated with castration-resistance in prostate cancer. Although HGF has been considered as an attractive target for therapeutic antibodies, the lack of cross-reactivity of monoclonal antibodies with human/mouse HGFs is a major obstacle in preclinical developments. We generated a panel of anti-HGF RabMAbs either blocking HGF/c-Met interaction or inhibiting c-Met phosphorylation. We selected one RabMAb with mouse cross-reactivity and demonstrated that it blocked HGF-stimulated downstream activation in PC-3 and DU145 cells. Anti-HGF RabMAb inhibited not only the growth of PC-3 cells but also HGF-dependent proliferation in HUVECs. We further demonstrated the efficacy and potency of the anti-HGF RabMAb in tumor xenograft mice models. Through these in vitro and in vivo experiments, we explored a novel therapeutic antibody for advanced prostate cancer. - Highlights: • HGF is an attractive target for castration-refractory prostate cancer. • We generated and characterized a panel of anti-HGF rabbit monoclonal antibodies. • More than half of these anti-HGF RabMAbs was cross-reactive with mouse HGF. • Anti-HGF RabMAb blocks HGF-stimulated phosphorylation and cell growth in vitro. • Anti-HGF RabMAb inhibits tumor growth and angiogenesis in xenograft mice.

  17. Evaluation of Trastuzumab Anti-Tumor Efficacy and its Correlation with HER-2 Status in Patient-Derived Gastric Adenocarcinoma Xenograft Models.

    PubMed

    Chen, Hao; Ye, Qingqing; Lv, Jing; Ye, Peng; Sun, Yun; Fan, Shuqiong; Su, Xinying; Gavine, Paul; Yin, Xiaolu

    2015-09-01

    The aim of the study was to investigate trastuzumab anti-tumor efficacy and its correlation with HER-2 status in primary xenograft models derived from Chinese patients with gastric adenocarcinoma. Patient-derived gastric adenocarcinoma xenograft (PDGAX) mouse models were firstly generated by implanting gastric adenocarcinoma tissues from patients into immune deficient mice. A high degree of histological and molecular similarity between the PDGAX mouse models and their corresponding patients' gastric adenocarcinoma tissues was shown by pathological observation, HER-2 expression, HER-2 gene copy number, and mutation detection. Based on Hoffmann's criteria in gastric cancer, three models (PDGAX001, PDGAX003 and PDGAX005) were defined as HER-2 positive with fluorescence in situ hybridization (FISH) amplification or immunohistochemistry (IHC) 2+/ 3+, while two models (PDGAX002, PDGAX004) were defined as HER-2 negative. Upon trastuzumab treatment, significant tumor regression (105 % TGI) was observed in model PDGAX005 (TP53 wt), while moderate sensitivity (26 % TGI) was observed in PDGAX003, and resistance was observed in PDGAX001, 002 and 004. A significant increase in HER-2 gene copy number was only observed in PDGAX005 (TP53 wt). Interestingly, trastuzumab showed no efficacy in PDGAX001 (HER2 IHC 3+ and FISH amplification, but with mutant TP53). Consistent with this finding, phosphor-HER2 modulation by trastuzumab was observed in model PDGAX005, but not in PDGAX001.

  18. PKM2 Thr454 phosphorylation increases its nuclear translocation and promotes xenograft tumor growth in A549 human lung cancer cells.

    PubMed

    Yu, Zhenhai; Huang, Liangqian; Qiao, Pengyun; Jiang, Aifang; Wang, Li; Yang, Tingting; Tang, Shengjian; Zhang, Wei; Ren, Chune

    2016-05-13

    Pyruvate kinase M2 (PKM2) is a key enzyme of glycolysis which is highly expressed in many tumor cells, and plays an important role in the Warburg effect. In previous study, we found PIM2 phosphorylates PKM2 at Thr454 residue (Yu, etl 2013). However, the functions of PKM2 Thr454 modification in cancer cells still remain unclear. Here we find PKM2 translocates into the nucleus after Thr454 phosphorylation. Replacement of wild type PKM2 with a mutant (T454A) enhances mitochondrial respiration, decreases pentose phosphate pathway, and enhances chemosensitivity in A549 cells. In addition, the mutant (T454A) PKM2 reduces xenograft tumor growth in nude mice. These findings demonstrate that PKM2 T454 phosphorylation is a potential therapeutic target in lung cancer. PMID:27045080

  19. Regulation of triple-negative breast cancer cell metastasis by the tumor-suppressor liver kinase B1

    PubMed Central

    Rhodes, L V; Tate, C R; Hoang, V T; Burks, H E; Gilliam, D; Martin, E C; Elliott, S; Miller, D B; Buechlein, A; Rusch, D; Tang, H; Nephew, K P; Burow, M E; Collins-Burow, B M

    2015-01-01

    Liver kinase B1 (LKB1), also known as serine/threonine kinase 11 (STK11), has been identified as a tumor suppressor in many cancers including breast. Low LKB1 expression has been associated with poor prognosis of breast cancer patients, and we report here a significant association between loss of LKB1 expression and reduced patient survival specifically in the basal subtype of breast cancer. Owing to the aggressive nature of the basal subtype as evidenced by high incidences of metastasis, the purpose of this study was to determine if LKB1 expression could regulate the invasive and metastatic properties of this specific breast cancer subtype. Induction of LKB1 expression in basal-like breast cancer (BLBC)/triple-negative breast cancer cell lines, MDA-MB-231 and BT-549, inhibited invasiveness in vitro and lung metastatic burden in an orthotopic xenograft model. Further analysis of BLBC cells overexpressing LKB1 by unbiased whole transcriptomics (RNA-sequencing) revealed striking regulation of metastasis-associated pathways, including cell adhesion, extracellular matrix remodeling, and epithelial-to-mesenchymal transition (EMT). In addition, LKB1 overexpression inhibited EMT-associated genes (CDH2, Vimentin, Twist) and induced the epithelial cell marker CDH1, indicating reversal of the EMT phenotype in the MDA-MB-231 cells. We further demonstrated marked inhibition of matrix metalloproteinase 1 expression and activity via regulation of c-Jun through inhibition of p38 signaling in LKB1-expressing cells. Taken together, these data support future development of LKB1 inducing therapeutics for the suppression of invasion and metastasis of BLBC. PMID:26436950

  20. CR108, a novel vitamin K3 derivative induces apoptosis and breast tumor inhibition by reactive oxygen species and mitochondrial dysfunction

    SciTech Connect

    Yang, Chun-Ru; Liao, Wei-Siang; Wu, Ya-Hui; Murugan, Kaliyappan; Chen, Chinpiao; Chao, Jui-I

    2013-12-15

    Vitamin K3 derivatives have been shown to exert anticancer activities. Here we show a novel vitamin K3 derivative (S)-2-(2-hydroxy-3-methylbutylthio)naphthalene-1,4-dione, which is named as CR108 that induces apoptosis and tumor inhibition through reactive oxygen species (ROS) and mitochondrial dysfunction in human breast cancer. CR108 is more effective on the breast cancer cell death than other vitamin K3 derivatives. Moreover, CR108 induced apoptosis in both the non-HER-2-overexpressed MCF-7 and HER-2-overexpressed BT-474 breast cancer cells. CR108 caused the loss of mitochondrial membrane potential, cytochrome c released from mitochondria to cytosol, and cleaved PARP proteins for apoptosis induction. CR108 markedly increased ROS levels in breast cancer cells. N-acetylcysteine (NAC), a general ROS scavenger, completely blocked the CR108-induced ROS levels, mitochondrial dysfunction and apoptosis. Interestingly, CR108 increased the phosphorylation of p38 MAP kinase but conversely inhibited the survivin protein expression. NAC treatment prevented the activation of p38 MAP kinase and rescued the survivin protein levels. SB202190, a specific p38 MAP kinase inhibitor, recovered the survivin protein levels and attenuated the cytotoxicity of CR108-treated cells. Furthermore, CR108 inhibited the xenografted human breast tumor growth in nude mice. Together, we demonstrate that CR108 is a novel vitamin K3 derivative that induces apoptosis and tumor inhibition by ROS production and mitochondrial dysfunction and associates with the phosphorylation of p38 MAP kinase and the inhibition of survivin in the human breast cancer. - Highlights: • CR108 is more effective on the cell death than other vitamin K3 derivatives. • CR108 induces apoptosis and tumor inhibition by ROS and mitochondrial dysfunction. • CR108 induces apoptosis by p38 kinase activation and survivin inhibition. • CR108 is a potent vitamin K3 analog that can develop for breast cancer therapy.

  1. Quantification of Ultrasonic Scattering Properties of In Vivo Tumor Cell Death in Mouse Models of Breast Cancer1

    PubMed Central

    Tadayyon, Hadi; Sannachi, Lakshmanan; Sadeghi-Naini, Ali; Al-Mahrouki, Azza; Tran, William T.; Kolios, Michael C.; Czarnota, Gregory J.

    2015-01-01

    INTRODUCTION: Quantitative ultrasound parameters based on form factor models were investigated as potential biomarkers of cell death in breast tumor (MDA-231) xenografts treated with chemotherapy. METHODS: Ultrasound backscatter radiofrequency data were acquired from MDA-231 breast cancer tumor–bearing mice (n = 20) before and after the administration of chemotherapy drugs at two ultrasound frequencies: 7 MHz and 20 MHz. Radiofrequency spectral analysis involved estimating the backscatter coefficient from regions of interest in the center of the tumor, to which form factor models were fitted, resulting in estimates of average scatterer diameter and average acoustic concentration (AAC). RESULTS: The ∆AAC parameter extracted from the spherical Gaussian model was found to be the most effective cell death biomarker (at the lower frequency range, r2 = 0.40). At both frequencies, AAC in the treated tumors increased significantly (P = .026 and .035 at low and high frequencies, respectively) 24 hours after treatment compared with control tumors. Furthermore, stepwise multiple linear regression analysis of the low-frequency data revealed that a multiparameter quantitative ultrasound model was strongly correlated to cell death determined histologically posttreatment (r2 = 0.74). CONCLUSION: The Gaussian form factor model–based scattering parameters can potentially be used to track the extent of cell death at clinically relevant frequencies (7 MHz). The 20-MHz results agreed with previous findings in which parameters related to the backscatter intensity (i.e., AAC) increased with cell death. The findings suggested that, in addition to the backscatter coefficient parameter ∆AAC, biological features including tumor heterogeneity and initial tumor volume were important factors in the prediction of cell death response. PMID:26692527

  2. The Clinical Significance and Molecular Features of the Spatial Tumor Shapes in Breast Cancers

    PubMed Central

    Jeong, Seongmun; Lee, Minju; Moon, HyunHye; Kim, Jongjin; Yoo, Tae-Kyung; Lee, Han-Byoel; Kim, Jisun; Noh, Dong-Young; Han, Wonshik

    2015-01-01

    Each breast cancer has its unique spatial shape, but the clinical importance and the underlying mechanism for the three-dimensional tumor shapes are mostly unknown. We collected the data on the three-dimensional tumor size and tumor volume data of invasive breast cancers from 2,250 patients who underwent surgery between Jan 2000 and Jul 2007. The degree of tumor eccentricity was estimated by using the difference between the spheroid tumor volume and ellipsoid tumor volume (spheroid-ellipsoid discrepancy, SED). In 41 patients, transcriptome and exome sequencing data obtained. Estimation of more accurate tumor burden by calculating ellipsoid tumor volumes did not improve the outcome prediction when compared to the traditional longest diameter measurement. However, the spatial tumor eccentricity, which was measured by SED, showed significant variation between the molecular subtypes of breast cancer. Additionally, the degree of tumor eccentricity was associated with well-known prognostic factors of breast cancer such as tumor size and lymph node metastasis. Transcriptome data from 41 patients showed significant association between MMP13 and spatial tumor shapes. Network analysis and analysis of TCGA gene expression data suggest that MMP13 is regulated by ERBB2 and S100A7A. The present study validates the usefulness of the current tumor size method in determining tumor stages. Furthermore, we show that the tumors with high eccentricity are more likely to have aggressive tumor characteristics. Genes involved in the extracellular matrix remodeling can be candidate regulators of the spatial tumor shapes in breast cancer. PMID:26669540

  3. Combined Vascular Endothelial Growth Factor Receptor and Epidermal Growth Factor Receptor (EGFR) Blockade Inhibits Tumor Growth in Xenograft Models of EGFR Inhibitor Resistance

    PubMed Central

    Naumov, George N.; Nilsson, Monique B.; Cascone, Tina; Briggs, Alexandra; Straume, Oddbjorn; Akslen, Lars A.; Lifshits, Eugene; Byers, Lauren Averett; Xu, Li; Wu, Hua-kang; Jänne, Pasi; Kobayashi, Susumu; Halmos, Balazs; Tenen, Daniel; Tang, Xi M.; Engelman, Jeffrey; Yeap, Beow; Folkman, Judah; Johnson, Bruce E.; Heymach, John V.

    2010-01-01

    Purpose The epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI) gefitinib and erlotinib benefit some non–small cell lung cancer (NSCLC) patients, but most do not respond (primary resistance) and those who initially respond eventually progress (acquired resistance). EGFR TKI resistance is not completely understood and has been associated with certain EGFR and K-RAS mutations and MET amplification. Experimental Design We hypothesized that dual inhibition of the vascular endothelial growth factor (VEGF) and EGFR pathways may overcome primary and acquired resistance. We investigated the VEGF receptor/EGFR TKI vandetanib, and the combination of bevacizumab and erlotinib in vivo using xenograft models of EGFR TKI sensitivity, primary resistance, and three models of acquired resistance, including models with mutated K-RAS and secondary EGFR T790M mutation. Results Vandetanib, gefitinib, and erlotinib had similar profiles of in vitro activity and caused sustained tumor regressions in vivo in the sensitive HCC827 model. In all four resistant models, vandetanib and bevacizumab/erlotinib were significantly more effective than erlotinib or gefitinib alone. Erlotinib resistance was associated with a rise in both host and tumor-derived VEGF but not EGFR secondary mutations in the KRAS mutant-bearing A549 xenografts. Dual inhibition reduced tumor endothelial proliferation compared with VEGF or EGFR blockade alone, suggesting that the enhanced activity of dual inhibition is due at least in part to antiendothelial effects. Conclusion These studies suggest that erlotinib resistance may be associated with a rise in both tumor cell and host stromal VEGF and that combined blockade of the VEGFR and EGFR pathways can abrogate primary or acquired resistance to EGFR TKIs. This approach merits further evaluation in NSCLC patients. PMID:19447865

  4. Effects of Tumor Microenvironment Heterogeneity on Nanoparticle Disposition and Efficacy in Breast Cancer Tumor Models

    PubMed Central

    Song, Gina; Darr, David B.; Santos, Charlene M.; Ross, Mark; Valdivia, Alain; Jordan, Jamie L.; Midkiff, Bentley R.; Cohen, Stephanie; Feinberg, Nana Nikolaishvili; Miller, C. Ryan; Tarrant, Teresa K.; Rogers, Arlin B.; Dudley, Andrew C.; Perou, Charles M.; Zamboni, William C.

    2014-01-01

    Purpose Tumor cells are surrounded by a complex microenvironment. The purpose of our study was to evaluate the role of heterogeneity of the tumor microenvironment in the variability of nanoparticle (NP) delivery and efficacy. Experimental designs C3(1)-T-Antigen genetically engineered mouse model (C3-TAg) and T11/TP53Null orthotopic syngeneic murine transplant model (T11) representing human breast tumor subtypes basal-like and claudin-low, respectively, were evaluated. For the pharmacokinetic studies, non-liposomal doxorubicin (NL-doxo) or polyethylene glycol tagged (PEGylated) liposomal doxorubicin (PLD) was administered at 6 mg/kg intravenously (IV) x1. Area-under-the concentration versus time curve (AUC) of doxorubicin was calculated. Macrophages, collagen, and the amount of vasculature were assessed by immunohistochemistry. Chemokines and cytokines were measured by multiplex immunochemistry. NL-doxo or PLD was administered at 6 mg/kg IV weekly x6 in efficacy studies. Analyses of intermediary tumor response and overall survival were performed. Results Plasma AUC of NL-doxo and PLD encapsulated and released doxorubicin were similar between two models. However, tumor sum total AUC of PLD was 2-fold greater in C3-TAg compared with T11 (P<0.05). T11 tumors showed significantly higher expression of CC chemokine ligand (CCL) 2 and vascular endothelial growth factor (VEGF)-a, greater vascular quantity, and decreased expression of VEGF-c compared to C3-TAg (P<0.05). PLD was more efficacious compared to NL-doxo in both models. Conclusion The tumor microenvironment and/or tumor cell features of breast cancer affected NP tumor delivery and efficacy, but not the small molecule drug. Our findings reveal the role of the tumor microenvironment in variability of NP delivery and therapeutic outcomes. PMID:25231403

  5. A pharmacologic inhibitor of the protease Taspase1 effectively inhibits breast and brain tumor growth.

    PubMed

    Chen, David Y; Lee, Yishan; Van Tine, Brian A; Searleman, Adam C; Westergard, Todd D; Liu, Han; Tu, Ho-Chou; Takeda, Shugaku; Dong, Yiyu; Piwnica-Worms, David R; Oh, Kyoung J; Korsmeyer, Stanley J; Hermone, Ann; Gussio, Richard; Shoemaker, Robert H; Cheng, Emily H-Y; Hsieh, James J-D

    2012-02-01

    The threonine endopeptidase Taspase1 has a critical role in cancer cell proliferation and apoptosis. In this study, we developed and evaluated small molecule inhibitors of Taspase1 as a new candidate class of therapeutic modalities. Genetic deletion of Taspase1 in the mouse produced no overt deficiencies, suggesting the possibility of a wide therapeutic index for use of Taspase1 inhibitors in cancers. We defined the peptidyl motifs recognized by Taspase1 and conducted a cell-based dual-fluorescent proteolytic screen of the National Cancer Institute diversity library to identify Taspase1 inhibitors (TASPIN). On the basis of secondary and tertiary screens the 4-[(4-arsonophenyl)methyl]phenyl] arsonic acid NSC48300 was determined to be the most specific active compound. Structure-activity relationship studies indicated a crucial role for the arsenic acid moiety in mediating Taspase1 inhibition. Additional fluorescence resonance energy transfer-based kinetic analysis characterized NSC48300 as a reversible, noncompetitive inhibitor of Taspase1 (K(i) = 4.22 μmol/L). In the MMTV-neu mouse model of breast cancer and the U251 xenograft model of brain cancer, NSC48300 produced effective tumor growth inhibition. Our results offer an initial preclinical proof-of-concept to develop TASPINs for cancer therapy.

  6. Hinokitiol inhibits cell growth through induction of S-phase arrest and apoptosis in human colon cancer cells and suppresses tumor growth in a mouse xenograft experiment.

    PubMed

    Lee, Youn-Sun; Choi, Kyeong-Mi; Kim, Wonkyun; Jeon, Young-Soo; Lee, Yong-Moon; Hong, Jin-Tae; Yun, Yeo-Pyo; Yoo, Hwan-Soo

    2013-12-27

    Hinokitiol (1), a tropolone-related natural compound, induces apoptosis and has anti-inflammatory, antioxidant, and antitumor activities. In this study, the inhibitory effects of 1 were investigated on human colon cancer cell growth and tumor formation of xenograft mice. HCT-116 and SW-620 cells derived from human colon cancers were found to be similarly susceptible to 1, with IC50 values of 4.5 and 4.4 μM, respectively. Compound 1 induced S-phase arrest in the cell cycle progression and decreased the expression levels of cyclin A, cyclin E, and Cdk2. Conversely, 1 increased the expression of p21, a Cdk inhibitor. Compound 1 decreased Bcl-2 expression and increased the expression of Bax, and cleaved caspase-9 and -3. The effect of 1 on tumor formation when administered orally was evaluated in male BALB/c-nude mice implanted intradermally separately with HCT-116 and SW-620 cells. Tumor volumes and tumor weights in the mice treated with 1 (100 mg/kg) were decreased in both cases. These results suggest that the suppression of tumor formation by compound 1 in human colon cancer may occur through cell cycle arrest and apoptosis.

  7. Analysis of CUL-5 expression in breast epithelial cells, breast cancer cell lines, normal tissues and tumor tissues

    PubMed Central

    Fay, Michael J; Longo, Kenneth A; Karathanasis, George A; Shope, David M; Mandernach, Craig J; Leong, Jason R; Hicks, Alfred; Pherson, Kenneth; Husain, Amyna

    2003-01-01

    Background The chromosomal location of CUL-5 (11q 22-23) is associated with LOH in breast cancer, suggesting that CUL-5 may be a tumor suppressor. The purpose of this research was to determine if there is differential expression of CUL-5 in breast epithelial cells versus breast cancer cell lines, and normal human tissues versus human tumors. The expression of CUL-5 in breast epithelial cells (HMEC, MCF-10A), and breast cancer cells (MCF-7, MDA-MB-231) was examined using RT-PCR, Northern blot analysis, and Western blot analysis. The expression of mRNA for other CUL family members (CUL-1, -2, -3, -4A, and -4B) in these cells was evaluated by RT-PCR. A normal human tissue expression array and a cancer profiling array were used to examine CUL-5 expression in normal human tissues and matched normal tissues versus tumor tissues, respectively. Results CUL-5 is expressed at the mRNA and protein levels by breast epithelial cells (HMEC, MCF-10A) and breast cancer cells (MCF-7, MDA-MB-231). These cells also express mRNA for other CUL family members. The normal human tissue expression array revealed that CUL-5 is widely expressed. The cancer profiling array revealed that 82% (41/50) of the breast cancers demonstrated a decrease in CUL-5 expression versus the matched normal tissue. For the 50 cases of matched breast tissue there was a statistically significant ~2.2 fold decreased expression of CUL-5 in tumor tissue versus normal tissue (P < 0.0001). Conclusions The data demonstrate no apparent decrease in CUL-5 expression in the breast cancer cell lines (MCF-7, MDA-MB-231) versus the breast epithelial cells (HMEC, MCF-10A). The decrease in CUL-5 expression in breast tumor tissue versus matched normal tissue supports the hypothesis that decreased expression of CUL-5 may play a role in breast tumorigenesis. PMID:14641918

  8. Breast tumor detection using continuous wave light source

    NASA Astrophysics Data System (ADS)

    Zhao, Shiyin; O'Leary, Maureen A.; Nioka, Shoko; Chance, Britton

    1995-05-01

    The detection of small amounts of indocyanine green (ICG) in small volumes would suggest its potential use in the detection of early breast tumors. While phased array has already shown its ability to sharply localize small amounts of ICG in the picomole region, the question has arisen, what would be the comparable sensitivity of continous light systems for the same purpose? If this were a comparable sensitivity, the advantages of the simplest of opto- electronic systems and the use of light intensity not limited to those available under FDA regulations for laser diodes could be realized. In this research work, we investigate two methods of enhancing the contrast agent between diseased and healthy tissue using low frequency amplitude modulated light sources. The first method exploits the symmetry between the left and right breast and the second exploits the cylindrical symmetry of the breast. Both effect are enhanced by the use of an injected contrast agent (ICG). Based on the theory and model study, several human subjects cases were studied in the Hospital of the University of Pennsylvania. The results show that the peak signal can get about 60 seconds after ICG injection through the vein and then will take few minutes to get back to the baseline. The half decay time and maximum (Delta) OD are dependent of the characteristics of the breast tissue.

  9. Compartment-specific activation of PPARγ governs breast cancer tumor growth, via metabolic reprogramming and symbiosis.

    PubMed

    Avena, Paola; Anselmo, Wanda; Whitaker-Menezes, Diana; Wang, Chenguang; Pestell, Richard G; Lamb, Rebecca S; Hulit, James; Casaburi, Ivan; Andò, Sebastiano; Martinez-Outschoorn, Ubaldo E; Lisanti, Michael P; Sotgia, Federica

    2013-05-01

    The role of PPARγ in cancer therapy is controversial, with studies showing either pro-tumorigenic or antineoplastic effects. This debate is very clinically relevant, because PPARγ agonists are used as antidiabetic drugs. Here, we evaluated if the effects of PPARγ on tumorigenesis are determined by the cell type in which PPARγ is activated. Second, we examined if the metabolic changes induced by PPARγ, such as glycolysis and autophagy, play any role in the tumorigenic process. To this end, PPARγ was overexpressed in breast cancer cells or in stromal cells. PPARγ-overexpressing cells were examined with respect to (1) their tumorigenic potential, using xenograft models, and (2) regarding their metabolic features. In xenograft models, we show that when PPARγ is activated in cancer cells, tumor growth is inhibited by 40%. However, when PPARγ is activated in stromal cells, the growth of co-injected breast cancer cells is enhanced by 60%. Thus, the effect(s) of PPARγ on tumorigenesis are dependent on the cell compartment in which PPARγ is activated. Mechanistically, stromal cells with activated PPARγ display metabolic features of cancer-associated fibroblasts, with increased autophagy, glycolysis and senescence. Indeed, fibroblasts overexpressing PPARγ show increased expression of autophagic markers, increased numbers of acidic autophagic vacuoles, increased production of L-lactate, cell hypertrophy and mitochondrial dysfunction. In addition, PPARγ fibroblasts show increased expression of CDKs (p16/p21) and β-galactosidase, which are markers of cell cycle arrest and senescence. Finally, PPARγ induces the activation of the two major transcription factors that promote autophagy and glycolysis, i.e., HIF-1α and NFκB, in stromal cells. Thus, PPARγ activation in stromal cells results in the formation of a catabolic pro-inflammatory microenvironment that metabolically supports cancer growth. Interestingly, the tumor inhibition observed when PPARγ is

  10. Radiation-Associated Breast Tumors Display a Distinct Gene Expression Profile

    SciTech Connect

    Broeks, Annegien; Braaf, Linde M.; Wessels, Lodewyk F.A.; Vijver, Marc van de; De Bruin, Marie L.; Stovall, Marilyn; Russell, Nicola S.; Leeuwen, Flora E. van; Van't Veer, Laura J.

    2010-02-01

    Purpose: Women who received irradiation for Hodgkin's lymphoma have a strong increased risk for developing breast cancer. Approximately 90% of the breast cancers in these patients can be attributed to their radiation treatment, rendering such series extremely useful to determine whether a common radiation-associated cause underlies the carcinogenic process. Methods and Materials: In this study we used gene expression profiling technology to assess gene expression changes in radiation-associated breast tumors compared with a set of control breast tumors of women unexposed to radiation, diagnosed at the same age. RNA was obtained from fresh frozen tissue samples from 22 patients who developed breast cancer after Hodgkin's lymphoma (BfHL) and from 20 control breast tumors. Results: Unsupervised hierarchical clustering of the profile data resulted in a clustering of the radiation-associated tumors separate from the control tumors (p < 0.001). Using a supervised class prediction tool, a nearest centroid classifier of 198 probes was identified. The BfHL tumors were often of the intrinsic basal breast tumor subtype, and they showed a chromosomal instability profile and a higher expression of the proliferation marker Ki-67. Conclusion: These results indicate that radiation-associated tumors are different from other breast tumors on the basis of their expression profile and that they are mainly of one specific cause that is characterized by high proliferation and a more aggressive tumor type.

  11. KRAS and PIK3CA mutation frequencies in patient-derived xenograft models of pancreatic and colorectal cancer are reflective of patient tumors and stable across passages.

    PubMed

    Tignanelli, Christopher J; Herrera Loeza, Silvia G; Yeh, Jen Jen

    2014-09-01

    One obstacle in the translation of advances in cancer research into the clinic is a deficiency of adequate preclinical models that recapitulate human disease. Patient-derived xenograft (PDX) models are established by engrafting patient tumor tissue into mice and are advantageous because they capture tumor heterogeneity. One concern with these models is that selective pressure could lead to mutational drift and thus be an inaccurate reflection of patient tumors. Therefore, we evaluated if mutational frequency in PDX models is reflective of patient populations and if crucial mutations are stable across passages. We examined KRAS and PIK3CA gene mutations from pancreatic ductal adenocarcinoma (PDAC) (n = 30) and colorectal cancer (CRC) (n = 37) PDXs for as many as eight passages. DNA was isolated from tumors and target sequences were amplified by polymerase chain reaction. KRAS codons 12/13 and PIK3CA codons 542/545/1047 were examined using pyrosequencing. Twenty-three of 30 (77%) PDAC PDXs had KRAS mutations and one of 30 (3%) had PIK3CA mutations. Fifteen of 37 (41%) CRC PDXs had KRAS mutations and three of 37 (8%) had PIK3CA mutations. Mutations were 100 per cent preserved across passages. We found that the frequency of KRAS (77%) and PIK3CA (3%) mutations in PDAC PDX was similar to frequencies in patient tumors (71 to 100% KRAS, 0 to 11% PIK3CA). Similarly, KRAS (41%) and PIK3CA (8%) mutations in CRC PDX closely paralleled patient tumors (35 to 51% KRAS, 12 to 21% PIK3CA). The accurate mirroring and stability of genetic changes in PDX models compared with patient tumors suggest that these models are good preclinical surrogates for patient tumors.

  12. Partial hypoxia as a cause of radioresistance in a human tumor xenograft: its influence illustrated by the sensitizing effect of misonidazole and hyperbaric oxygen

    SciTech Connect

    Reynaud-Bougnoux, A.; Lespinasse, F.; Malaise, E.P.; Guichard, M.

    1986-08-01

    While previous studies with three human tumor xenografts suggest that contact-resistance plays a major role in the response of these tumors to radiation, it remains possible that partial hypoxia may provide an alternate explanation. The present study was carried out to check this possibility by investigating the influence of misonidazole (MISO) and hyperbaric oxygen (HBO) on both the initial and distal components of the survival curves of HRT18 tumor cells. The effect of a challenge dose of radiation on the initial radioresistance of this tumor was also studied. To assess the effects of MISO and HBO, tumor cell survival was determined by excision assay in two groups of tumor-bearing mice, one given MISO (1 mg/g body weight, i.p.) 45 min before irradiation and the other exposed to HBO (3.5 bars). MISO treatment caused greater sensitization than HBO. The enhancement ratios at the 5.10(-1) level were 1.7 (MISO) and 1.7 (HBO); at the 10(-1) level, they were 1.6 (MISO) and 1.4 (HBO); while at 10(-2), they were 1.6 (MISO) and 1.4 (HBO). These two sensitizing effects favor the hypothesis that solid tumors contain a compartment of partially hypoxic cells. To study the effect of a challenge radiation dose on initial radioresistance, tumors were given a challenge dose of 8 Gy, followed 24-48 hr later by doses ranging from 2-12 Gy. The challenge dose did not modify the shape of the survival curve.

  13. The vitamin E analog, alpha-tocopheryloxyacetic acid enhances the anti-tumor activity of trastuzumab against HER2/neu-expressing breast cancer

    PubMed Central

    2011-01-01

    Background HER2/neu is an oncogene that facilitates neoplastic transformation due to its ability to transduce growth signals in a ligand-independent manner, is over-expressed in 20-30% of human breast cancers correlating with aggressive disease and has been successfully targeted with trastuzumab (Herceptin®). Because trastuzumab alone achieves only a 15-30% response rate, it is now commonly combined with conventional chemotherapeutic drugs. While the combination of trastuzumab plus chemotherapy has greatly improved response rates and increased survival, these conventional chemotherapy drugs are frequently associated with gastrointestinal and cardiac toxicity, bone marrow and immune suppression. These drawbacks necessitate the development of new, less toxic drugs that can be combined with trastuzumab. Recently, we reported that orally administered alpha-tocopheryloxyacetic acid (α-TEA), a novel ether derivative of alpha-tocopherol, dramatically suppressed primary tumor growth and reduced the incidence of lung metastases both in a transplanted and a spontaneous mouse model of breast cancer without discernable toxicity. Methods In this study we examined the effect of α-TEA plus HER2/neu-specific antibody treatment on HER2/neu-expressing breast cancer cells in vitro and in a HER2/neu positive human xenograft tumor model in vivo. Results We show in vitro that α-TEA plus anti-HER2/neu antibody has an increased cytotoxic effect against murine mammary tumor cells and human breast cancer cells and that the anti-tumor effect of α-TEA is independent of HER2/neu status. More importantly, in a human breast cancer xenograft model, the combination of α-TEA plus trastuzumab resulted in faster tumor regression and more tumor-free animals than trastuzumab alone. Conclusion Due to the cancer cell selectivity of α-TEA, and because α-TEA kills both HER2/neu positive and HER2/neu negative breast cancer cells, it has the potential to be effective and less toxic than existing

  14. Formulation, Characterization, and Antitumor Properties of Trans- and Cis-Citral in the 4T1 Breast Cancer Xenograft Mouse Model

    PubMed Central

    Zeng, San; Kapur, Arvinder; Patankar, Manish S.; Xiong, May P.

    2015-01-01

    Purpose Citral is composed of a random mixture of two geometric stereoisomers geranial (trans-citral) and neral (cis-citral) yet few studies have directly compared their in vivo antitumor properties. A micelle formulation was therefore developed. Methods Geranial and neral were synthesized. Commercially-purchased citral, geranial, and neral were formulated in PEG-b-PCL (block sizes of 5000:10000, Mw/Mn 1.26) micelles. In vitro degradation, drug release, cytotoxicity, flow cytometry, and western blot studies were conducted. The antitumor properties of drug formulations (40 mg/kg and 80 mg/kg based on MTD studies) were evaluated on the 4T1 xenograft mouse model and tumor tissues were analyzed by western blot. Results Micelles encapsulated drugs with >50% LE at 5-40% drug to polymer (w/w), displayed sustained release (t1/2 of 8-9 hours), and improved drug stability at pH 5.0. The IC50 of drug formulations against 4T1 cells ranged from 1.4-9.9 μM. Western blot revealed that autophagy was the main cause of cytotoxicity. Geranial at 80 mg/kg was most effective at inhibiting tumor growth. Conclusions Geranial is significantly more potent than neral and citral at 80 mg/kg (p<0.001) and western blot of tumor tissues confirms that autophagy and not apoptosis is the major mechanism of tumor growth inhibition in p53-null 4T1 cells. PMID:25673043

  15. Pharmacokinetics and tissue distribution of inositol hexaphosphate in C.B17 SCID mice bearing human breast cancer xenografts.

    PubMed

    Eiseman, Julie; Lan, Jing; Guo, Jianxia; Joseph, Erin; Vucenik, Ivana

    2011-10-01

    Inositol hexaphosphate (IP(6)) is effective in preclinical cancer prevention and chemotherapy. In addition to cancer, IP(6) has many other beneficial effects for human health, such as reduction in risk of developing cardiovascular disease and diabetes and inhibition of kidney stone formation. Studies presented here describe the pharmacokinetics, tissue distribution, and metabolism of IP(6) following intravenous (IV) or per os (PO) administration to mice. SCID mice bearing MDA-MB-231 xenografts were treated with 20 mg/kg IP(6) (3 μCi per mouse [(14)C]-uniformly ring-labeled IP(6)) and euthanized at various times after IP(6) treatment. Plasma and tissues were analyzed for [(14)C]-IP(6) and metabolites by high-performance liquid chromatography with radioactivity detection. Following IV administration of IP(6), plasma IP(6) concentrations peaked at 5 minutes and were detectable until 45 minutes. Liver IP(6) concentrations were more than 10-fold higher than plasma concentrations, whereas other normal tissue concentrations were similar to plasma. Only inositol was detected in xenografts. After PO administration, IP(6) was detected in liver; but only inositol was detectable in other tissues. After both IV and PO administration, exogenous IP(6) was rapidly dephosphorylated to inositol; however, alterations in endogenous IPs were not examined.

  16. Anti-estrogen Resistance in Human Breast Tumors Is Driven by JAG1-NOTCH4-Dependent Cancer Stem Cell Activity.

    PubMed

    Simões, Bruno M; O'Brien, Ciara S; Eyre, Rachel; Silva, Andreia; Yu, Ling; Sarmiento-Castro, Aida; Alférez, Denis G; Spence, Kath; Santiago-Gómez, Angélica; Chemi, Francesca; Acar, Ahmet; Gandhi, Ashu; Howell, Anthony; Brennan, Keith; Rydén, Lisa; Catalano, Stefania; Andó, Sebastiano; Gee, Julia; Ucar, Ahmet; Sims, Andrew H; Marangoni, Elisabetta; Farnie, Gillian; Landberg, Göran; Howell, Sacha J; Clarke, Robert B

    2015-09-29

    Breast cancers (BCs) typically express estrogen receptors (ERs) but frequently exhibit de novo or acquired resistance to hormonal therapies. Here, we show that short-term treatment with the anti-estrogens tamoxifen or fulvestrant decrease cell proliferation but increase BC stem cell (BCSC) activity through JAG1-NOTCH4 receptor activation both in patient-derived samples and xenograft (PDX) tumors. In support of this mechanism, we demonstrate that high ALDH1 predicts resistance in women treated with tamoxifen and that a NOTCH4/HES/HEY gene signature predicts for a poor response/prognosis in 2 ER+ patient cohorts. Targeting of NOTCH4 reverses the increase in Notch and BCSC activity induced by anti-estrogens. Importantly, in PDX tumors with acquired tamoxifen resistance, NOTCH4 inhibition reduced BCSC activity. Thus, we establish that BCSC and NOTCH4 activities predict both de novo and acquired tamoxifen resistance and that combining endocrine therapy with targeting JAG1-NOTCH4 overcomes resistance in human breast cancers. PMID:26387946

  17. Anti-estrogen Resistance in Human Breast Tumors Is Driven by JAG1-NOTCH4-Dependent Cancer Stem Cell Activity

    PubMed Central

    Simões, Bruno M.; O’Brien, Ciara S.; Eyre, Rachel; Silva, Andreia; Yu, Ling; Sarmiento-Castro, Aida; Alférez, Denis G.; Spence, Kath; Santiago-Gómez, Angélica; Chemi, Francesca; Acar, Ahmet; Gandhi, Ashu; Howell, Anthony; Brennan, Keith; Rydén, Lisa; Catalano, Stefania; Andó, Sebastiano; Gee, Julia; Ucar, Ahmet; Sims, Andrew H.; Marangoni, Elisabetta; Farnie, Gillian; Landberg, Göran; Howell, Sacha J.; Clarke, Robert B.

    2015-01-01

    Summary Breast cancers (BCs) typically express estrogen receptors (ERs) but frequently exhibit de novo or acquired resistance to hormonal therapies. Here, we show that short-term treatment with the anti-estrogens tamoxifen or fulvestrant decrease cell proliferation but increase BC stem cell (BCSC) activity through JAG1-NOTCH4 receptor activation both in patient-derived samples and xenograft (PDX) tumors. In support of this mechanism, we demonstrate that high ALDH1 predicts resistance in women treated with tamoxifen and that a NOTCH4/HES/HEY gene signature predicts for a poor response/prognosis in 2 ER+ patient cohorts. Targeting of NOTCH4 reverses the increase in Notch and BCSC activity induced by anti-estrogens. Importantly, in PDX tumors with acquired tamoxifen resistance, NOTCH4 inhibition reduced BCSC activity. Thus, we establish that BCSC and NOTCH4 activities predict both de novo and acquired tamoxifen resistance and that combining endocrine therapy with targeting JAG1-NOTCH4 overcomes resistance in human breast cancers. PMID:26387946

  18. Biosynthesized Platinum Nanoparticles Inhibit the Proliferation of Human Lung-Cancer Cells in vitro and Delay the Growth of a Human Lung-Tumor Xenograft in vivo

    PubMed Central

    Yogesh, Bendale; Vineeta, Bendale; Rammesh, Natu; Saili, Paul

    2016-01-01

    Objectives: Lung cancer remains a deadly disease with unsatisfactory overall survival. Cisplatin, a standard platinum (Pt)-based chemotherapeutic agent, has the potential to inhibit the growth of lung cancer. Its use, however, is occasionally limited by severe organ toxicity. However, until now, no systematic study has been conducted to verify its efficacy with proper experimental support in vivo. Therefore, we examined whether biosynthesized Pt nanoparticles (NPs) inhibited human lung cancer in vitro and in vivo to validate their use in alternative and complementary medicine. Methods: We evaluated the in vitro and the in vivo anticancer efficiencies of biosynthesized Pt NPs in a subcutaneous xenograft model with A549 cells. Severe combined immune deficient mice (SCID) were divided into four groups: group 1 being the vehicle control group and groups 2, 3 and 4 being the experimental groups. Once the tumor volume had reached 70 ─ 75 mm3, the progression profile of the tumor growth kinetics and the body weights of the mice were measured every week for 6 weeks after oral administration of Pt NPs. Doses of Pt NPs of 500, 1,000 and 2,000 mg/kg of body weight were administered to the experimental groups and a dose of honey was administered to the vehicle control group. The efficacy was quantified by using the delay in tumor growth following the administration of Pt NPs of A549 human-lung-cancer xenografts growing in SCID mice. Results: The in vitro cytotoxicity evaluation indicated that Pt NPs, in a dose-dependent manner, inhibited the growth of A549 cells, and the in vivo evaluation showed that Pt NPs at the mid and high doses effectively inhibited and delayed the growth of lung cancer in SCID mice. Conclusion: These findings confirm the antitumor properties of biosynthesized Pt NPs and suggest that they may be a cost-effective alternative for the treatment of patients with lung cancer. PMID:27386144

  19. Mitochondrial dysfunction in breast cancer cells prevents tumor growth

    PubMed Central

    Sanchez-Alvarez, Rosa; Martinez-Outschoorn, Ubaldo E.; Lamb, Rebecca; Hulit, James; Howell, Anthony; Gandara, Ricardo; Sartini, Marina; Rubin, Emanuel; Lisanti, Michael P.; Sotgia, Federica

    2013-01-01

    Metformin is a well-established diabetes drug that prevents the onset of most types of human cancers in diabetic patients, especially by targeting cancer stem cells. Metformin exerts its protective effects by functioning as a weak “mitochondrial poison,” as it acts as a complex I inhibitor and prevents oxidative mitochondrial metabolism (OXPHOS). Thus, mitochondrial metabolism must play an essential role in promoting tumor growth. To determine the functional role of “mitochondrial health” in breast cancer pathogenesis, here we used mitochondrial uncoupling proteins (UCPs) to genetically induce mitochondrial dysfunction in either human breast cancer cells (MDA-MB-231) or cancer-associated fibroblasts (hTERT-BJ1 cells). Our results directly show that all three UCP family members (UCP-1/2/3) induce autophagy and mitochondrial dysfunction in human breast cancer cells, which results in significant reductions in tumor growth. Conversely, induction of mitochondrial dysfunction in cancer-associated fibroblasts has just the opposite effect. More specifically, overexpression of UCP-1 in stromal fibroblasts increases β-oxidation, ketone body production and the release of ATP-rich vesicles, which “fuels” tumor growth by providing high-energy nutrients in a paracrine fashion to epithelial cancer cells. Hence, the effects of mitochondrial dysfunction are truly compartment-specific. Thus, we conclude that the beneficial anticancer effects of mitochondrial inhibitors (such as metformin) may be attributed to the induction of mitochondrial dysfunction in the epithelial cancer cell compartment. Our studies identify cancer cell mitochondria as a clear target for drug discovery and for novel therapeutic interventions. PMID:23257779

  20. Computer-Aided Assessment of Tumor Grade for Breast Cancer in Ultrasound Images

    PubMed Central

    2015-01-01

    This study involved developing a computer-aided diagnosis (CAD) system for discriminating the grades of breast cancer tumors in ultrasound (US) images. Histological tumor grades of breast cancer lesions are standard prognostic indicators. Tumor grade information enables physicians to determine appropriate treatments for their patients. US imaging is a noninvasive approach to breast cancer examination. In this study, 148 3-dimensional US images of malignant breast tumors were obtained. Textural, morphological, ellipsoid fitting, and posterior acoustic features were quantified to characterize the tumor masses. A support vector machine was developed to classify breast tumor grades as either low or high. The proposed CAD system achieved an accuracy of 85.14% (126/148), a sensitivity of 79.31% (23/29), a specificity of 86.55% (103/119), and an AZ of 0.7940. PMID:25810750

  1. Computer-aided assessment of tumor grade for breast cancer in ultrasound images.

    PubMed

    Chen, Dar-Ren; Chien, Cheng-Liang; Kuo, Yan-Fu

    2015-01-01

    This study involved developing a computer-aided diagnosis (CAD) system for discriminating the grades of breast cancer tumors in ultrasound (US) images. Histological tumor grades of breast cancer lesions are standard prognostic indicators. Tumor grade information enables physicians to determine appropriate treatments for their patients. US imaging is a noninvasive approach to breast cancer examination. In this study, 148 3-dimensional US images of malignant breast tumors were obtained. Textural, morphological, ellipsoid fitting, and posterior acoustic features were quantified to characterize the tumor masses. A support vector machine was developed to classify breast tumor grades as either low or high. The proposed CAD system achieved an accuracy of 85.14% (126/148), a sensitivity of 79.31% (23/29), a specificity of 86.55% (103/119), and an A Z of 0.7940.

  2. Combination of Quercetin and 2-Methoxyestradiol Enhances Inhibition of Human Prostate Cancer LNCaP and PC-3 Cells Xenograft Tumor Growth

    PubMed Central

    Yang, Feiya; Song, Liming; Wang, Huiping; Wang, Jun; Xu, Zhiqing; Xing, Nianzeng

    2015-01-01

    Quercetin and 2-Methoxyestradiol (2-ME) are promising anti-cancer substances. Our previous in vitro study showed that quercetin synergized with 2-Methoxyestradiol exhibiting increased antiproliferative and proapoptotic activity in both androgen-dependent LNCaP and androgen-independent PC-3 human prostate cancer cell lines. In the present study, we determined whether their combination could inhibit LNCaP and PC-3 xenograft tumor growth in vivo and explored the underlying mechanism. Human prostate cancer LNCaP and PC-3 cells were inoculated subcutaneously in male BALB/c nude mice. When xenograft tumors reached about 100 mm3, mice were randomly allocated to vehicle control, quercetin or 2-Methoxyestradiol singly treated and combination treatment groups. After therapeutic intervention for 4 weeks, combination treatment of quercetin and 2-ME i) significantly inhibited prostate cancer xenograft tumor growth by 46.8% for LNCaP and 51.3% for PC-3 as compared to vehicle control group, more effective than quercetin (28.4% for LNCaP, 24.8% for PC3) or 2-ME (32.1% for LNCaP, 28.9% for PC3) alone; ii) was well tolerated by BALB/c mice and no obvious toxic reactions were observed; iii) led to higher Bax/Bcl-2 ratio, cleaved caspase-3 protein expression and apoptosis rate; and iv) resulted in lower phosphorylated AKT (pAKT) protein level, vascular endothelial growth factor protein and mRNA expression, microvascular density and proliferation rate than single drug treatment. These effects were more remarkable compared to vehicle group. Therefore, combination of quercetin and 2-ME can serve as a novel clinical treatment regimen owning the potential of enhancing antitumor effect on prostate cancer in vivo and lessening the dose and side effects of either quercetin or 2-ME alone. These in vivo results will lay a further solid basis for subsequent researches on this novel therapeutic regimen in human prostate cancer. PMID:26011145

  3. A novel, selective inhibitor of fibroblast growth factor receptors that shows a potent broad spectrum of antitumor activity in several tumor xenograft models.

    PubMed

    Zhao, Genshi; Li, Wei-Ying; Chen, Daohong; Henry, James R; Li, Hong-Yu; Chen, Zhaogen; Zia-Ebrahimi, Mohammad; Bloem, Laura; Zhai, Yan; Huss, Karen; Peng, Sheng-Bin; McCann, Denis J

    2011-11-01

    The fibroblast growth factor receptors (FGFR) are tyrosine kinases that are present in many types of endothelial and tumor cells and play an important role in tumor cell growth, survival, and migration as well as in maintaining tumor angiogenesis. Overexpression of FGFRs or aberrant regulation of their activities has been implicated in many forms of human malignancies. Therefore, targeting FGFRs represents an attractive strategy for development of cancer treatment options by simultaneously inhibiting tumor cell growth, survival, and migration as well as tumor angiogenesis. Here, we describe a potent, selective, small-molecule FGFR inhibitor, (R)-(E)-2-(4-(2-(5-(1-(3,5-Dichloropyridin-4-yl)ethoxy)-1H-indazol-3yl)vinyl)-1H-pyrazol-1-yl)ethanol, designated as LY2874455. This molecule is active against all 4 FGFRs, with a similar potency in biochemical assays. It exhibits a potent activity against FGF/FGFR-mediated signaling in several cancer cell lines and shows an excellent broad spectrum of antitumor activity in several tumor xenograft models representing the major FGF/FGFR relevant tumor histologies including lung, gastric, and bladder cancers and multiple myeloma, and with a well-defined pharmacokinetic/pharmacodynamic relationship. LY2874455 also exhibits a 6- to 9-fold in vitro and in vivo selectivity on inhibition of FGF- over VEGF-mediated target signaling in mice. Furthermore, LY2874455 did not show VEGF receptor 2-mediated toxicities such as hypertension at efficacious doses. Currently, this molecule is being evaluated for its potential use in the clinic.

  4. Cediranib combined with chemotherapy reduces tumor dissemination and prolongs the survival of mice bearing patient-derived ovarian cancer xenografts with different responsiveness to cisplatin.

    PubMed

    Decio, Alessandra; Cesca, Marta; Bizzaro, Francesca; Porcu, Luca; Bettolini, Rossana; Ubezio, Paolo; Taraboletti, Giulia; Belotti, Dorina; Giavazzi, Raffaella

    2015-10-01

    Cediranib is a pan-vascular endothelial growth factor receptor tyrosine kinase inhibitor that affects tumor angiogenesis and is under investigation in clinical studies on ovarian cancer. Using a panel of eleven patient-derived ovarian cancer xenografts (EOC-PDX) growing orthotopically in the peritoneal cavity of nude mice we investigated the effect of cediranib as monotherapy or in combination with chemotherapy on overall survival (primary endpoint, at euthanasia), and tumor dissemination and metastasis in the peritoneal cavity (secondary endpoint, interim analysis). The response of EOC-PDX to cediranib varied (increment of lifespan, ILS between 12 and 85 %) in the different EOC-PDX, independently from tumor responsiveness to cisplatin (DDP). Cediranib combined with DDP and in maintenance regimen prolonged the survival of mice bearing EOC-PDX with different responsiveness to DDP (ILS between 34 and 224 % with only DDP and between 135 and 337 % with DDP plus Cediranib); survival was extended with the addition of paclitaxel to chemotherapy (50-77 % complete remissions). Cediranib reduced ascites of advanced EOC-PDX, but had limited effect on tumor dissemination; only combined with chemotherapy, ascites and metastases were both reduced. The reduction of tumor dissemination was associated to the increase of overall survival. In conclusion, the response to cediranib differs in the various EOC-PDX, reproducing the heterogeneous response of cancer patients to angiogenesis inhibitors. Cediranib potentiated chemotherapy, significantly inhibiting tumor progression and dissemination to metastatic organs, even in tumors poorly responsive to DDP. EOC-PDX preclinical models with different responsiveness to Cediranib may help in identifying determinants of response to cediranib and mechanisms of adaptation to antiangiogenic treatments.

  5. Dependence of Wilms tumor cells on signaling through insulin-like growth factor 1 in an orthotopic xenograft model targetable by specific receptor inhibition.

    PubMed

    Bielen, Aleksandra; Box, Gary; Perryman, Lara; Bjerke, Lynn; Popov, Sergey; Jamin, Yann; Jury, Alexa; Valenti, Melanie; Brandon, Alexis de Haven; Martins, Vanessa; Romanet, Vincent; Jeay, Sebastien; Raynaud, Florence I; Hofmann, Francesco; Robinson, Simon P; Eccles, Suzanne A; Jones, Chris

    2012-05-15

    We have previously demonstrated an increased DNA copy number and expression of IGF1R to be associated with poor outcome in Wilms tumors. We have now tested whether inhibiting this receptor may be a useful therapeutic strategy by using a panel of Wilms tumor cell lines. Both genetic and pharmacological targeting resulted in inhibition of downstream signaling through PI3 and MAP kinases, G(1) cell cycle arrest, and cell death, with drug efficacy dependent on the levels of phosphorylated IGF1R. These effects were further associated with specific gene expression signatures reflecting pathway inhibition, and conferred synergistic chemosensitisation to doxorubicin and topotecan. In the in vivo setting, s.c. xenografts of WiT49 cells resembled malignant rhabdoid tumors rather than Wilms tumors. Treatment with an IGF1R inhibitor (NVP-AEW541) showed no discernable antitumor activity and no downstream pathway inactivation. By contrast, Wilms tumor cells established orthotopically within the kidney were histologically accurate and exhibited significantly elevated insulin-like growth factor-mediated signaling, and growth was significantly reduced on treatment with NVP-AEW541 in parallel with signaling pathway ablation. As a result of the paracrine effects of enhanced IGF2 expression in Wilms tumor, this disease may be acutely dependent on signaling through the IGF1 receptor, and thus treatment strategies aimed at its inhibition may be useful in the clinic. Such efficacy may be missed if only standard ectopic models are considered as a result of an imperfect recapitulation of the specific tumor microenvironment.

  6. Tubeimoside-1 suppresses tumor angiogenesis by stimulation of proteasomal VEGFR2 and Tie2 degradation in a non-small cell lung cancer xenograft model

    PubMed Central

    Gu, Yuan; Körbel, Christina; Scheuer, Claudia; Nenicu, Anca; Menger, Michael D.; Laschke, Matthias W.

    2016-01-01

    Tubeimoside-1 (TBMS1) is a potent anti-tumor phytochemical. Its functional and molecular mode of action, however, remains elusive so far. Since angiogenesis is essential for tumor progression and metastasis, we herein investigated the anti-angiogenic effects of the compound. In a non-small cell lung cancer (NSCLC) xenograft model we found that treatment of CD1 nu/nu mice with TBMS1 (5mg/kg) significantly suppressed the growth and vascularization of NCI-H460 flank tumors. Moreover, TBMS1 dose-dependently reduced vascular sprouting in a rat aortic ring assay. In vitro, TBMS1 induced endothelial cell apoptosis without decreasing the viability of NSCLC tumor cells and inhibited the migration of endothelial cells by disturbing their actin filament organization. TBMS1 further stimulated the proteasomal degradation of vascular endothelial growth factor receptor-2 (VEGFR2) and Tie2 in endothelial cells, which down-regulated AKT/mTOR signaling. These findings indicate that TBMS1 represents a novel phytochemical for anti-angiogenic treatment of cancer and other angiogenesis-related diseases. PMID:26701724

  7. Granzyme B-based cytolytic fusion protein targeting EpCAM specifically kills triple negative breast cancer cells in vitro and inhibits tumor growth in a subcutaneous mouse tumor model.

    PubMed

    Amoury, Manal; Kolberg, Katharina; Pham, Anh-Tuan; Hristodorov, Dmitrij; Mladenov, Radoslav; Di Fiore, Stefano; Helfrich, Wijnand; Kiessling, Fabian; Fischer, Rainer; Pardo, Alessa; Thepen, Theophilus; Hussain, Ahmad F; Nachreiner, Thomas; Barth, Stefan

    2016-03-28

    Triple-negative breast cancer (TNBC) is associated with poor prognosis and high prevalence among young premenopausal women. Unlike in other breast cancer subtypes, no targeted therapy is currently available. Overexpression of epithelial cell adhesion molecule (EpCAM) in 60% of TNBC tumors correlates with poorer prognosis and is associated with cancer stem cell phenotype. Thus, selective elimination of EpCAM(+) TNBC tumor cells is of clinical importance. Therefore, we constructed a fully human targeted cytolytic fusion protein, designated GbR201K-αEpCAM(scFv), in which an EpCAM-selective single-chain antibody fragment (scFv) is genetically fused to a granzyme B (Gb) mutant with reduced sensitivity to its natural inhibitor serpin B9. In vitro studies confirmed its specific binding, internalization and cytotoxicity toward a panel of EpCAM-expressing TNBC cells. Biodistribution kinetics and tumor-targeting efficacy using MDA-MB-468 cells in a human TNBC xenograft model in mice revealed selective accumulation of GbR201K-αEpCAM(scFv) in the tumors after i.v. injection. Moreover, treatment of tumor-bearing mice demonstrated a prominent inhibition of tumor growth of up to 50 % in this proof-of-concept study. Taken together, our results indicate that GbR201K-αEpCAM(scFv) is a promising novel targeted therapeutic for the treatment of TNBC. PMID:26806809

  8. AZU-1: A Candidate Breast Tumor Suppressor and Biomarker for Tumor Progression

    SciTech Connect

    Chen, Huei-Mei; Schmeichel, Karen L; Mian, I. Saira; Lelie`vre, Sophie; Petersen, Ole W; Bissell, Mina J

    2000-02-04

    To identify genes misregulated in the final stages of breast carcinogenesis, we performed differential display to compare the gene expression patterns of the human tumorigenic mammary epithelial cells, HMT-3522-T4-2, with those of their immediate premalignant progenitors, HMT-3522-S2. We identified a novel gene, called anti-zuai-1 (AZU-1), that was abundantly expressed in non- and premalignant cells and tissues but was appreciably reduced in breast tumor cell types and in primary tumors. The AZU-1 gene encodes an acidic 571-amino-acid protein containing at least two structurally distinct domains with potential protein-binding functions: an N-terminal serine and proline-rich domain with a predicted immunoglobulin-like fold and a C-terminal coiled-coil domain. In HMT-3522 cells, the bulk of AZU-1 protein resided in a detergent-extractable cytoplasmic pool and was present at much lower levels in tumorigenic T4-2 cells than in their nonmalignant counterparts. Reversion of the tumorigenic phenotype of T4-2 cells, by means described previously, was accompanied by the up-regulation of AZU-1. In addition, reexpression of AZU-1 in T4-2 cells, using viral vectors, was sufficient to reduce their malignant phenotype substantially, both in culture and in vivo. These results indicate that AZU-1 is a candidate breast tumor suppressor that may exert its effects by promoting correct tissue morphogenesis.

  9. Benign mixed tumor (pleomorphic adenoma) of the breast: ultrastructural study and review of the literature.

    PubMed

    Cuadros, C L; Ryan, S S; Miller, R E

    1987-09-01

    A patient is presented with a benign mixed tumor (pleomorphic adenoma) of the breast. There are 11 well-documented cases of this rare breast neoplasm. It is histologically and ultrastructurally identical to that seen in the salivary gland and follows a similar benign course. A central role of the ductal myoepithelial cell is proposed for the histogenesis of this tumor.

  10. An Orally Bioavailable, Indole-3-glyoxylamide Based Series of Tubulin Polymerization Inhibitors Showing Tumor Growth Inhibition in a Mouse Xenograft Model of Head and Neck Cancer.

    PubMed

    Colley, Helen E; Muthana, Munitta; Danson, Sarah J; Jackson, Lucinda V; Brett, Matthew L; Harrison, Joanne; Coole, Sean F; Mason, Daniel P; Jennings, Luke R; Wong, Melanie; Tulasi, Vamshi; Norman, Dennis; Lockey, Peter M; Williams, Lynne; Dossetter, Alexander G; Griffen, Edward J; Thompson, Mark J

    2015-12-10

    A number of indole-3-glyoxylamides have previously been reported as tubulin polymerization inhibitors, although none has yet been successfully developed clinically. We report here a new series of related compounds, modified according to a strategy of reducing aromatic ring count and introducing a greater degree of saturation, which retain potent tubulin polymerization activity but with a distinct SAR from previously documented libraries. A subset of active compounds from the reported series is shown to interact with tubulin at the colchicine binding site, disrupt the cellular microtubule network, and exert a cytotoxic effect against multiple cancer cell lines. Two compounds demonstrated significant tumor growth inhibition in a mouse xenograft model of head and neck cancer, a type of the disease which often proves resistant to chemotherapy, supporting further development of the current series as potential new therapeutics.

  11. Plasma DCLK1 is a marker of hepatocellular carcinoma (HCC): Targeting DCLK1 prevents HCC tumor xenograft growth via a microRNA-dependent mechanism

    PubMed Central

    May, Randal; Qu, Dongfeng; Ali, Naushad; Fazili, Javid; Weygant, Nathaniel; Chandrakesan, Parthasarathy; Ding, Kai; Lightfoot, Stanley A.; Houchen, Courtney W.

    2015-01-01

    Tumor stem cell marker Doublecortin-like kinase1 (DCLK1) is upregulated in several solid tumors. The role of DCLK1 in hepatocellular carcinoma (HCC) is unclear. We immunostained tissues from human livers with HCC, cirrhosis controls (CC), and non-cirrhosis controls (NCC) for DCLK1. Western blot and ELISA analyses for DCLK1 were performed with stored plasma samples. We observed increased immunoreactive DCLK1 in epithelia and stroma in HCC and CCs compared with NCCs, and observed a marked increase in plasma DCLK1 from patients with HCC compared with CC and NCC. Analysis of the Cancer Genome Atlas’ HCC dataset revealed that DCLK1 is overexpressed in HCC tumors relative to adjacent normal tissues. High DCLK1-expressing cells had more epithelial-mesenchymal transition (EMT). Various tumor suppressor miRNAs were also downregulated in HCC tumors. We evaluated the effects of DCLK1 knockdown on Huh7.5-derived tumor xenograft growth. This was associated with growth arrest and a marked downregulation of cMYC, and EMT transcription factors ZEB1, ZEB2, SNAIL, and SLUG via let-7a and miR-200 miRNA-dependent mechanisms. Furthermore, upregulation of miR-143/145, a corresponding decrease in pluripotency factors OCT4, NANOG, KLF4, and LIN28, and a reduction of let-7a, miR-143/145, and miR-200-specific luciferase activity was observed. These findings suggest that the detection of elevated plasma DCLK1 may provide a cost-effective, less invasive tool for confirmation of clinical signs of cirrhosis, and a potential companion diagnostic marker for patients with cirrhosis and HCC. Our results support evaluating DCLK1 as a biomarker for detection and as a therapeutic target for eradicating HCC. PMID:26468984

  12. Copper-64-diacetyl-bis(N(4)-methylthiosemicarbazone) Pharmacokinetics in FaDu Xenograft Tumors and Correlation With Microscopic Markers of Hypoxia

    SciTech Connect

    McCall, Keisha C.; Humm, John L.; Bartlett, Rachel; Reese, Megan; Carlin, Sean

    2012-11-01

    Purpose: The behavior of copper-64-diacetyl-bis(N(4)-methylthiosemicarbazone) ({sup 64}Cu-ATSM) in hypoxic tumors was examined through a combination of in vivo dynamic positron emission tomography (PET) and ex vivo autoradiographic and histologic evaluation using a xenograft model of head-and-neck squamous cell carcinoma. Methods and Materials: {sup 64}Cu-ATSM was administered during dynamic PET imaging, and temporal changes in {sup 64}Cu-ATSM distribution within tumors were evaluated for at least 1 hour and up to 18 hours. Animals were sacrificed at either 1 hour (cohort A) or after 18 hours (cohort B) postinjection of radiotracer and autoradiography performed. Ex vivo analysis of microenvironment subregions was conducted by immunohistochemical staining for markers of hypoxia (pimonidazole hydrochloride) and blood flow (Hoechst-33342). Results: Kinetic analysis revealed rapid uptake of radiotracer by tumors. The net influx (K{sub i}) constant was 12-fold that of muscle, whereas the distribution volume (V{sub d}) was 5-fold. PET images showed large tumor-to-muscle ratios, which continually increased over the entire 18-hour course of imaging. However, no spatial changes in {sup 64}Cu-ATSM distribution occurred in PET imaging at 20 minutes postinjection. Microscopic intratumoral distribution of {sup 64}Cu-ATSM and pimonidazole were not correlated at 1 hour or after 18 hours postinjection, nor was {sup 64}Cu-ATSM and Hoechst-33342. Conclusions: The oxygen partial pressures at which {sup 64}Cu-ATSM and pimonidazole are reduced and bound in cells are theorized to be distinct and separable. However, this study demonstrated that microscopic distributions of these tracers within tumors are independent. Researchers have shown {sup 64}Cu-ATSM uptake to be specific to malignant expression, and this work has also demonstrated clear tumor targeting by the radiotracer.

  13. Anti-CCR7 therapy exerts a potent anti-tumor activity in a xenograft model of human mantle cell lymphoma

    PubMed Central

    2013-01-01

    Background The chemokine receptor CCR7 mediates lymphoid dissemination of many cancers, including lymphomas and epithelial carcinomas, thus representing an attractive therapeutic target. Previous results have highlighted the potential of the anti-CCR7 monoclonal antibodies to inhibit migration in transwell assays. The present study aimed to evaluate the in vivo therapeutic efficacy of an anti-CCR7 antibody in a xenografted human mantle cell lymphoma model. Methods NOD/SCID mice were either subcutaneously or intravenously inoculated with Granta-519 cells, a human cell line derived from a leukemic mantle cell lymphoma. The anti-CCR7 mAb treatment (3 × 200 μg) was started on day 2 or 7 to target lymphoma cells in either a peri-implantation or a post-implantation stage, respectively. Results The anti-CCR7 therapy significantly delayed the tumor appearance and also reduced the volumes of tumors in the subcutaneous model. Moreover, an increased number of apoptotic tumor cells was detected in mice treated with the anti-CCR7 mAb compared to the untreated animals. In addition, significantly reduced number of Granta-519 cells migrated from subcutaneous tumors to distant lymphoid organs, such as bone marrow and spleen in the anti-CCR7 treated mice. In the intravenous models, the anti-CCR7 mAb drastically increased survival of the mice. Accordingly, dissemination and infiltration of tumor cells in lymphoid and non-lymphoid organs, including lungs and central nervous system, was almost abrogated. Conclusions The anti-CCR7 mAb exerts a potent anti-tumor activity and might represent an interesting therapeutic alternative to conventional therapies. PMID:24305507

  14. Inorganic Nanovehicle Targets Tumor in an Orthotopic Breast Cancer Model

    NASA Astrophysics Data System (ADS)

    Choi, Goeun; Kwon, Oh-Joon; Oh, Yeonji; Yun, Chae-Ok; Choy, Jin-Ho

    2014-03-01

    The clinical efficacy of conventional chemotherapeutic agent, methotrexate (MTX), can be limited by its very short plasma half-life, the drug resistance, and the high dosage required for cancer cell suppression. In this study, a new drug delivery system is proposed to overcome such limitations. To realize such a system, MTX was intercalated into layered double hydroxides (LDHs), inorganic drug delivery vehicle, through a co-precipitation route to produce a MTX-LDH nanohybrid with an average particle size of approximately 130 nm. Biodistribution studies in mice bearing orthotopic human breast tumors revealed that the tumor-to-liver ratio of MTX in the MTX-LDH-treated-group was 6-fold higher than that of MTX-treated-one after drug treatment for 2 hr. Moreover, MTX-LDH exhibited superior targeting effect resulting in high antitumor efficacy inducing a 74.3% reduction in tumor volume compared to MTX alone, and as a consequence, significant survival benefits. Annexin-V and propidium iodine dual staining and TUNEL analysis showed that MTX-LDH induced a greater degree of apoptosis than free MTX. Taken together, our data demonstrate that a new MTX-LDH nanohybrid exhibits a superior efficacy profile and improved distribution compared to MTX alone and has the potential to enhance therapeutic efficacy via inhibition of tumor proliferation and induction of apoptosis.

  15. Patient-derived Models of Human Breast Cancer: Protocols for In vitro and In vivo Applications in Tumor Biology and Translational Medicine

    PubMed Central

    DeRose, Yoko S.; Gligorich, Keith M.; Wang, Guoying; Georgelas, Ann; Bowman, Paulette; Courdy, Samir J.; Welm, Alana L.; Welm, Bryan E.

    2013-01-01

    Research models that replicate the diverse genetic and molecular landscape of breast cancer are critical for developing the next generation therapeutic entities that can target specific cancer subtypes. Patient-derived tumorgrafts, generated by transplanting primary human tumor samples into immune-compromised mice, are a valuable method to model the clinical diversity of breast cancer in mice, and are a potential resource in personalized medicine. Primary tumorgrafts also enable in vivo testing of therapeutics and make possible the use of patient cancer tissue for in vitro screens. Described in this unit are a variety of protocols including tissue collection, biospecimen tracking, tissue processing, transplantation, and 3-dimensional culturing of xenografted tissue, that enable use of bona fide uncultured human tissue in designing and validating cancer therapies. PMID:23456611

  16. Can Breast Tumors Affect the Oxidative Status of the Surrounding Environment? A Comparative Analysis among Cancerous Breast, Mammary Adjacent Tissue, and Plasma.

    PubMed

    Panis, C; Victorino, V J; Herrera, A C S A; Cecchini, A L; Simão, A N C; Tomita, L Y; Cecchini, R

    2015-01-01

    In this paper, we investigated the oxidative profile of breast tumors in comparison with their normal adjacent breast tissue. Our study indicates that breast tumors present enhanced oxidative/nitrosative stress, with concomitant augmented antioxidant capacity when compared to the adjacent normal breast. These data indicate that breast cancers may be responsible for the induction of a prooxidant environment in the mammary gland, in association with enhanced TNF-α and nitric oxide. PMID:26697139

  17. Can Breast Tumors Affect the Oxidative Status of the Surrounding Environment? A Comparative Analysis among Cancerous Breast, Mammary Adjacent Tissue, and Plasma.

    PubMed

    Panis, C; Victorino, V J; Herrera, A C S A; Cecchini, A L; Simão, A N C; Tomita, L Y; Cecchini, R

    2015-01-01

    In this paper, we investigated the oxidative profile of breast tumors in comparison with their normal adjacent breast tissue. Our study indicates that breast tumors present enhanced oxidative/nitrosative stress, with concomitant augmented antioxidant capacity when compared to the adjacent normal breast. These data indicate that breast cancers may be responsible for the induction of a prooxidant environment in the mammary gland, in association with enhanced TNF-α and nitric oxide.

  18. Anti-tumor activity of the novel hexahydrocannabinol analog LYR-8 in Human colorectal tumor xenograft is mediated through the inhibition of Akt and hypoxia-inducible factor-1α activation.

    PubMed

    Thapa, Dinesh; Kang, Youra; Park, Pil-Hoon; Noh, Seok Kyun; Lee, Yong Rok; Han, Sung Soo; Ku, Sae Kwang; Jung, Yunjin; Kim, Jung-Ae

    2012-01-01

    Cannabinoid compounds have been shown to exert anti-tumor effects by affecting angiogenesis, invasion, and metastasis. In the present study, we examined the action mechanism by which LYR-8, a novel hexahydrocannabinol analog, exerts anti-angiogenic and anti-tumor activity in human cancer xenografts. In the xenografted tumor tissues, LYR-8 significantly reduced the expression of hypoxia-inducible factor-1 alpha (HIF-1α), a transcription factor responsible for induction of angiogenesis-promoting factors, and its target genes, vascular endothelial growth factor (VEGF) and cyclooxygenase-2 (COX-2). In HT-29 human colon cancer cells treated with a hypoxia-inducing agent (CoCl(2)), LYR-8 dose-dependently suppressed the induction of HIF-1α and subsequently its targets, VEGF and COX-2. In addition, highly elevated prostaglandin E(2) (PGE(2)) concentrations in CoCl(2)-treated HT-29 cells were also significantly suppressed by LYR-8. However, LYR-8 alone in the absence of CoCl(2) did not alter the basal expression of VEGF and COX-2, or PGE(2) production. Furthermore, LYR-8 effectively suppressed Akt signaling, which corresponded to the suppression of CoCl(2)-induced HIF-1α accumulation. Taken together, LYR-8 exerts anti-tumor effects through the inhibition of Akt and HIF-1α activation, and subsequently suppressing factors regulating tumor microenvironment, such as VEGF and COX-2. These results indicate a novel function of cannabinoid-like compound LYR-8 as an anti-tumor agent with a HIF-1α inhibitory activity.

  19. A 3D in vitro model of patient-derived prostate cancer xenograft for controlled interrogation of in vivo tumor-stromal interactions.

    PubMed

    Fong, Eliza L S; Wan, Xinhai; Yang, Jun; Morgado, Micaela; Mikos, Antonios G; Harrington, Daniel A; Navone, Nora M; Farach-Carson, Mary C

    2016-01-01

    Patient-derived xenograft (PDX) models better represent human cancer than traditional cell lines. However, the complex in vivo environment makes it challenging to employ PDX models to investigate tumor-stromal interactions, such as those that mediate prostate cancer (PCa) bone metastasis. Thus, we engineered a defined three-dimensional (3D) hydrogel system capable of supporting the co-culture of PCa PDX cells and osteoblastic cells to recapitulate the PCa-osteoblast unit within the bone metastatic microenvironment in vitro. Our 3D model not only maintained cell viability but also preserved the typical osteogenic phenotype of PCa PDX cells. Additionally, co-culture cellularity was maintained over that of either cell type cultured alone, suggesting that the PCa-osteoblast cross-talk supports PCa progression in bone, as is hypothesized to occur in patients with prostatic bone metastasis. Strikingly, osteoblastic cells co-cultured with PCa PDX tumoroids organized around the tumoroids, closely mimicking the architecture of PCa metastases in bone. Finally, tumor-stromal signaling mediated by the fibroblast growth factor axis tightly paralleled that in the in vivo counterpart. Together, these findings indicate that this 3D PCa PDX model recapitulates important pathological properties of PCa bone metastasis, and validate the use of this model for controlled and systematic interrogation of complex in vivo tumor-stromal interactions.

  20. Tumor-targeting Salmonella typhimurium A1-R in combination with doxorubicin eradicate soft tissue sarcoma in a patient-derived orthotopic xenograft (PDOX) model

    PubMed Central

    Murakami, Takashi; DeLong, Jonathan; Eilber, Fritz C.; Zhao, Ming; Zhang, Yong; Zhang, Nan; Singh, Arun; Russell, Tara; Deng, Samantha; Reynoso, Jose; Quan, Cuong; Hiroshima, Yukihiko; Matsuyama, Ryusei; Chishima, Takashi; Tanaka, Kuniya; Bouvet, Michael; Chawla, Sant; Endo, Itaru; Hoffman, Robert M.

    2016-01-01

    A patient with high grade undifferentiated pleomorphic soft-tissue sarcoma from a striated muscle was grown orthotopically in the right biceps femoris muscle of mice to establish a patient-derived orthotopic xenograft (PDOX) model. Twenty PDOX mice were divided into 4 groups: G1, control without treatment; G2, Salmonella typhimurium (S. typhimurium)A1-R administered by intratumoral (i.t.) injection once a week for 4 weeks; G3, doxorubicin (DOX) administered by intraperitoneal (i.p.) injection once a week for 4 weeks; G4, S. typhimurium A1-R (i.t.) administered once a week for 2 weeks followed by i.p. doxorubicin once a week for 2 weeks. On day 25 from the initiation of treatment, tumor volume in G2, G3, and G4 was significantly lower than G1. Mice found without gross tumor included one mouse (20%) in G2; one mouse (20%) in G3; and 3 mice (60%) in G4. Body weight loss did not significantly differ between the 3 treated groups or from the untreated control. Histological examination revealed eradication of tumor only in G4 where mice were treated with S. typhimurium A1-R followed by DOX. Our present study indicates future clinical potential of combining S. typhimurium A1-R with chemotherapy such as DOX for soft tissue sarcoma patients. PMID:26859573

  1. Inhibition of p300 lysine acetyltransferase activity by luteolin reduces tumor growth in head and neck squamous cell carcinoma (HNSCC) xenograft mouse model

    PubMed Central

    Selvi, Ruthrotha B.; Swaminathan, Amrutha; Chatterjee, Snehajyoti; Shanmugam, Muthu K.; Li, Feng; Ramakrishnan, Gowsica B.; Siveen, Kodappully Sivaraman; Chinnathambi, Arunachalam; Zayed, M. Emam; Alharbi, Sulaiman Ali; Basha, Jeelan; Bhat, Akshay; Vasudevan, Madavan; Dharmarajan, Arunasalam; Sethi, Gautam; Kundu, Tapas K.

    2015-01-01

    Chromatin acetylation is attributed with distinct functional relevance with respect to gene expression in normal and diseased conditions thereby leading to a topical interest in the concept of epigenetic modulators and therapy. We report here the identification and characterization of the acetylation inhibitory potential of an important dietary flavonoid, luteolin. Luteolin was found to inhibit p300 acetyltransferase with competitive binding to the acetyl CoA binding site. Luteolin treatment in a xenografted tumor model of head and neck squamous cell carcinoma (HNSCC), led to a dramatic reduction in tumor growth within 4 weeks corresponding to a decrease in histone acetylation. Cells treated with luteolin exhibit cell cycle arrest and decreased cell migration. Luteolin treatment led to an alteration in gene expression and miRNA profile including up-regulation of p53 induced miR-195/215, let7C; potentially translating into a tumor suppressor function. It also led to down-regulation of oncomiRNAs such as miR-135a, thereby reflecting global changes in the microRNA network. Furthermore, a direct correlation between the inhibition of histone acetylation and gene expression was established using chromatin immunoprecipitation on promoters of differentially expressed genes. A network of dysregulated genes and miRNAs was mapped along with the gene ontology categories, and the effects of luteolin were observed to be potentially at multiple levels: at the level of gene expression, miRNA expression and miRNA processing. PMID:26517526

  2. Tumor-targeting Salmonella typhimurium A1-R in combination with doxorubicin eradicate soft tissue sarcoma in a patient-derived orthotopic xenograft (PDOX) model.

    PubMed

    Murakami, Takashi; DeLong, Jonathan; Eilber, Fritz C; Zhao, Ming; Zhang, Yong; Zhang, Nan; Singh, Arun; Russell, Tara; Deng, Samantha; Reynoso, Jose; Quan, Cuong; Hiroshima, Yukihiko; Matsuyama, Ryusei; Chishima, Takashi; Tanaka, Kuniya; Bouvet, Michael; Chawla, Sant; Endo, Itaru; Hoffman, Robert M

    2016-03-15

    A patient with high grade undifferentiated pleomorphic soft-tissue sarcoma from a striated muscle was grown orthotopically in the right biceps femoris muscle of mice to establish a patient-derived orthotopic xenograft (PDOX) model. Twenty PDOX mice were divided into 4 groups: G1, control without treatment; G2, Salmonella typhimurium (S. typhimurium)A1-R administered by intratumoral (i.t.) injection once a week for 4 weeks; G3, doxorubicin (DOX) administered by intraperitoneal (i.p.) injection once a week for 4 weeks; G4, S. typhimurium A1-R (i.t.) administered once a week for 2 weeks followed by i.p. doxorubicin once a week for 2 weeks. On day 25 from the initiation of treatment, tumor volume in G2, G3, and G4 was significantly lower than G1. Mice found without gross tumor included one mouse (20%) in G2; one mouse (20%) in G3; and 3 mice (60%) in G4. Body weight loss did not significantly differ between the 3 treated groups or from the untreated control. Histological examination revealed eradication of tumor only in G4 where mice were treated with S. typhimurium A1-R followed by DOX. Our present study indicates future clinical potential of combining S. typhimurium A1-R with chemotherapy such as DOX for soft tissue sarcoma patients.

  3. A novel type of cellular senescence that can be enhanced in mouse models and human tumor xenografts to suppress prostate tumorigenesis

    PubMed Central

    Alimonti, Andrea; Nardella, Caterina; Chen, Zhenbang; Clohessy, John G.; Carracedo, Arkaitz; Trotman, Lloyd C.; Cheng, Ke; Varmeh, Shohreh; Kozma, Sara C.; Thomas, George; Rosivatz, Erika; Woscholski, Rudiger; Cognetti, Francesco; Scher, Howard I.; Pandolfi, Pier Paolo

    2010-01-01

    Irreversible cell growth arrest, a process termed cellular senescence, is emerging as an intrinsic tumor suppressive mechanism. Oncogene-induced senescence is thought to be invariably preceded by hyperproliferation, aberrant replication, and activation of a DNA damage checkpoint response (DDR), rendering therapeutic enhancement of this process unsuitable for cancer treatment. We previously demonstrated in a mouse model of prostate cancer that inactivation of the tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (Pten) elicits a senescence response that opposes tumorigenesis. Here, we show that Pten-loss–induced cellular senescence (PICS) represents a senescence response that is distinct from oncogene-induced senescence and can be targeted for cancer therapy. Using mouse embryonic fibroblasts, we determined that PICS occurs rapidly after Pten inactivation, in the absence of cellular proliferation and DDR. Further, we found that PICS is associated with enhanced p53 translation. Consistent with these data, we showed that in mice p53-stabilizing drugs potentiated PICS and its tumor suppressive potential. Importantly, we demonstrated that pharmacological inhibition of PTEN drives senescence and inhibits tumorigenesis in vivo in a human xenograft model of prostate cancer. Taken together, our data identify a type of cellular senescence that can be triggered in nonproliferating cells in the absence of DNA damage, which we believe will be useful for developing a “pro-senescence” approach for cancer prevention and therapy. PMID:20197621

  4. Ipsilateral Breast Tumor Relapse: Local Recurrence Versus New Primary Tumor and the Effect of Whole-Breast Radiotherapy on the Rate of New Primaries

    SciTech Connect

    Gujral, Dorothy M.; Sumo, Georges; Owen, John R.; Ashton, Anita; Bliss, Judith M.; Haviland, Joanne; Yarnold, John R.

    2011-01-01

    Purpose: The justification for partial breast radiotherapy after breast conservation surgery assumes that ipsilateral breast tumor relapses (IBTR) outside the index quadrant are mostly new primary (NP) tumors that develop despite radiotherapy. We tested the hypothesis that whole-breast radiotherapy (WBRT) is ineffective in preventing NP by comparing development rates in irradiated and contralateral breasts after tumor excision and WBRT. Methods and Materials: We retrospectively reviewed 1,410 women with breast cancer who were entered into a prospective randomized trial of radiotherapy fractionation and monitored annually for ipsilateral breast tumor relapses (IBTR) and contralateral breast cancer (CLBC). Cases of IBTR were classified into local recurrence (LR) or NP tumors based on location and histology and were subdivided as definite or likely depending on clinical data. Rates of ipsilateral NP and CLBC were compared over a 15-year period of follow-up. Results: At a median follow-up of 10.1 years, there were 150 documented cases of IBTR: 118 (79%) cases were definite or likely LR; 27 (18%) cases were definite or likely NP; and 5 (3%) cases could not be classified. There were 71 cases of CLBC. The crude proportion of definite-plus-likely NP was 1.9% (27/1,410) patients compared with 5% (71/1,410) CLBC patients. Cumulative incidence rates at 5, 10, and 15 years were 0.8%, 2.0%, and 3.5%, respectively, for definite-plus-likely NP and 2.4%, 5.8%, and 7.9%, respectively for CLBC, suggesting a difference in the rates of NP and CLBC. Conclusions: This analysis suggests that WBRT reduces the rate of ipsilateral NP tumors. The late presentation of NP has implications for the reporting of trials that are testing partial breast radiotherapy.

  5. Prevalence of Papillomaviruses, Polyomaviruses, and Herpesviruses in Triple-Negative and Inflammatory Breast Tumors from Algeria Compared with Other Types of Breast Cancer Tumors

    PubMed Central

    Corbex, Marilys; Bouzbid, Sabiha; Traverse-Glehen, Alexandra; Aouras, Hayette; McKay-Chopin, Sandrine; Carreira, Christine; Lankar, Abdelaziz; Tommasino, Massimo; Gheit, Tarik

    2014-01-01

    Background The possible role of viruses in breast cancer etiology remains an unresolved question. We hypothesized that if some viruses are involved, it may be in a subgroup of breast cancers only. Epidemiological arguments drove our interest in breast cancer subgroups that are more frequent in Africa, namely inflammatory breast cancer (IBC) and triple-negative breast cancer. We tested whether viral prevalence was significantly higher in these subgroups. Materials and Methods One hundred fifty-five paraffin-embedded malignant breast tumors were randomly selected at the pathology laboratory of the University Hospital of Annaba (Algeria) to include one third of IBC and two thirds of non-IBC. They were tested for the presence of DNA from 61 viral agents (46 human papillomaviruses, 10 polyomaviruses, and 5 herpesviruses) using type-specific multiplex genotyping assays, which combine multiplex PCR and bead-based Luminex technology. Results Viral DNA was found in 22 (17.9%) of 123 tumors. The most prevalent viruses were EBV1 and HPV16. IBC tumors carried significantly more viruses (any type) than non-IBC tumors (30% vs. 13%, p<0.04). Similarly, triple-negative tumors displayed higher virus-positivity than non-triple-negative tumors (44% vs. 14%, p<0.009). Conclusions Our results suggest an association between the presence of viral DNA and aggressive breast cancer phenotypes (IBC, triple-negative). While preliminary, they underline the importance of focusing on subgroups when studying viral etiology in breast cancer. Further studies on viruses in breast cancer should be conducted in much larger samples to confirm these initial findings. PMID:25478862

  6. Three-dimensional in vitro co-culture model of breast tumor using magnetic levitation.

    PubMed

    Jaganathan, Hamsa; Gage, Jacob; Leonard, Fransisca; Srinivasan, Srimeenakshi; Souza, Glauco R; Dave, Bhuvanesh; Godin, Biana

    2014-01-01

    In this study, we investigate a novel in vitro model to mimic heterogeneous breast tumors without the use of a scaffold while allowing for cell-cell and tumor-fibroblast interactions. Previous studies have shown that magnetic levitation system under conventional culturing conditions results in the formation of three-dimensional (3D) structures, closely resembling in vivo tissues (fat tissue, vasculature, etc.). Three-dimensional heterogeneous tumor models for breast cancer were designed to effectively model the influences of the tumor microenvironment on drug efficiency. Various breast cancer cells were co-cultured with fibroblasts and then magnetically levitated. Size and cell density of the resulting tumors were measured. The model was phenotypically compared to in vivo tumors and examined for the presence of ECM proteins. Lastly, the effects of tumor stroma in the 3D in vitro model on drug transport and efficiency were assessed. Our data suggest that the proposed 3D in vitro breast tumor is advantageous due to the ability to: (1) form large-sized (millimeter in diameter) breast tumor models within 24 h; (2) control tumor cell composition and density; (3) accurately mimic the in vivo tumor microenvironment; and (4) test drug efficiency in an in vitro model that is comparable to in vivo tumors. PMID:25270048

  7. Magnetic thermoablation stimuli alter BCL2 and FGF-R1 but not HSP70 expression profiles in BT474 breast tumors

    PubMed Central

    Stapf, Marcus; Pömpner, Nadine; Kettering, Melanie; Hilger, Ingrid

    2015-01-01

    Magnetically induced heating of magnetic nanoparticles (MNP) in an alternating magnetic field (AMF) is a promising minimal invasive tool for localized tumor treatment that eradicates tumor cells by applying thermal stress. While temperatures between 42°C and 45°C induce apoptosis and sensitize the cells for chemo- and radiation therapies when applied for at least 30 minutes, temperatures above 50°C, so-called thermoablative temperatures, rapidly induce irreversible cell damage resulting in necrosis. Since only little is known concerning the protein expression of anti-apoptotic B-cell lymphoma 2 (BCL2), fibroblast growth factor receptor 1 (FGF-R1), and heat shock protein (HSP70) after short-time magnetic thermoablative tumor treatment, these relevant tumor proteins were investigated by immunohistochemistry (IHC) in a human BT474 breast cancer mouse xenograft model. In the investigated sample groups, the application of thermoablative temperatures (<2 minutes) led to a downregulation of BCL2 and FGF-R1 on the protein level while the level of HSP70 remained unchanged. Coincidently, the tumor tissue was damaged by heat, resulting in large apoptotic and necrotic areas in regions with high MNP concentration. Taken together, thermoablative heating induced via magnetic methods can reduce the expression of tumor-related proteins and locally inactivate tumor tissue, leading to a prospectively reduced tumorigenicity of cancerous tissues. The presented data allow a deeper insight into the molecular mechanisms in relation to magnetic thermoablative tumor treatments with the aim of further improvements. PMID:25792827

  8. Endostatin enhances antitumor effect of tumor antigen-pulsed dendritic cell therapy in mouse xenograft model of lung carcinoma

    PubMed Central

    Liang, Jing; Liu, Xiaolin; Xie, Qi; Chen, Guoling; Li, Xingyu; Jia, Yanrui; Yin, Beibei; Qu, Xun; Li, Yan

    2016-01-01

    Objective To investigate the antitumor effect of endostatin combined with tumor antigen-pulsed dendritic cell (DC)-T cell therapy on lung cancer. Methods Transplanted Lewis lung cancer (LLC) models of C57BL/6 mice were established by subcutaneous injection of LLC cells in left extremity axillary. Tumor antigen-pulsed DC-T cells from spleen cells and bone of mice were cultured in vitro. Tumor-bearing mice were randomly divided into three groups, including DC-T+endostatin group, DC-T group, and phosphate-buffered saline (PBS) control group. Microvessel density (MVD) of tumor tissue in tumor-bearing mice was determined by immunohistochemistry (IHC). The expressions of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor-1α (HIF-1α) were determined by Western blotting and IHC staining. The proportions of CD8+ T cells, mature dendritic cells (mDC), tumor-associated macrophages [TAM (M1/M2)], and myeloid-derived suppressor cells (MDSC) in suspended cells of tumor tissue were determined by flow cytometry. The expressions of interleukin (IL)-6, IL-10, IL-17, transforming growth factor-β (TGF-β) and interferon-γ (IFN-γ) in suspended cells of tumor tissue were detected by enzyme-linked immune sorbent assay (ELISA). Results DC-T cells combined with endostatin remarkably suppressed tumor growth. MVD of mice in DC-T+endostatin group was significantly lower than that of the control group and DC-T monotherapy group. The expressions of VEGF, IL-6 and IL-17 in tumors were markedly decreased, but IFN-γ and HIF-1α increased after treating with DC-T cells combined with endostatin, compared to control group and DC-T group. In the DC-T+endostatin group, the proportions of MDSC and TAM (M2 type) were significantly decreased, mDC and TAM (M1 type) were up-regulated, and CD8+ T cells were recruited to infiltrate tumors, in contrast to PBS control and DC-T monotherapy. DC-T cells combined with endostatin potently reduced the expressions of IL-6, IL-10, TGF-β and

  9. Targeting COX-2 and EP4 to control tumor growth, angiogenesis, lymphangiogenesis and metastasis to the lungs and lymph nodes in a breast cancer model.

    PubMed

    Xin, Xiping; Majumder, Mousumi; Girish, Gannareddy V; Mohindra, Vik; Maruyama, Takayuki; Lala, Peeyush K

    2012-08-01

    We reported that cyclo-oxygenase (COX)-2 expression in human breast cancer stimulated cancer cell migration and invasiveness, production of vascular endothelial growth factor (VEGF)-C and lymphangiogenesis in situ, largely from endogenous PGE2-mediated stimulation of prostaglandin E (EP)1 and EP4 receptors, presenting them as candidate therapeutic targets against lymphatic metastasis. As human breast cancer xenografts in immuno-compromised mice have limitations for preclinical testing, we developed a syngeneic murine breast cancer model of spontaneous lymphatic metastasis mimicking human and applied it for mechanistic and therapeutic studies. We tested the roles of COX-2 and EP receptors in VEGF-C and -D production by a highly metastatic COX-2 expressing murine breast cancer cell line C3L5. These cells expressed all EP receptors and produced VEGF-C and -D, both inhibited with COX-2 inhibitors or EP4 (but not EP1, EP2 or EP3) antagonists. C3H/HeJ mice, when implanted SC in both inguinal regions with C3L5 cells suspended in growth factor-reduced Matrigel, exhibited rapid tumor growth, tumor-associated angiogenesis and lymphangiogenesis (respectively measured with CD31 and LYVE-1 immunostaining), metastasis to the inguinal and axillary lymph nodes and the lungs. Chronic oral administration of COX-1/COX-2 inhibitor indomethacin, COX-2 inhibitor celecoxib and an EP4 antagonist ONO-AE3-208, but not an EP1 antagonist ONO-8713 at nontoxic doses markedly reduced tumor growth, lymphangiogenesis, angiogenesis, and metastasis to lymph nodes and lungs. Residual tumors in responding mice revealed reduced VEGF-C and -D proteins, AkT phosphorylation and increased apoptotic/proliferative cell ratios consistent with blockade of EP4 signaling. We suggest that EP4 antagonists deserve clinical testing for chemo-intervention of lymphatic metastasis in human breast cancer.

  10. Reduced 64Cu Uptake and Tumor Growth Inhibition by Knockdown of Human Copper Transporter 1 in Xenograft Mouse Model of Prostate Cancer

    PubMed Central

    Cai, Huawei; Wu, Jiu-sheng; Muzik, Otto; Hsieh, Jer-Tsong; Lee, Robert J.; Peng, Fangyu

    2015-01-01

    Copper is an element required for cell proliferation and angiogenesis. Human prostate cancer xenografts with increased 64Cu radioactivity were visualized previously by PET using 64CuCl2 as a radiotracer (64CuCl2 PET). This study aimed to determine whether the increased tumor 64Cu radioactivity was due to increased cellular uptake of 64Cu mediated by human copper transporter 1 (hCtr1) or simply due to nonspecific binding of ionic 64CuCl2 to tumor tissue. In addition, the functional role of hCtr1 in proliferation of prostate cancer cells and tumor growth was also assessed. Methods A lentiviral vector encoding short-hairpin RNA specific for hCtr1 (Lenti-hCtr1-shRNA) was constructed for RNA interference–mediated knockdown of hCtr1 expression in prostate cancer cells. The degree of hCtr1 knockdown was determined by Western blot, and the effect of hCtr1 knockdown on copper uptake and proliferation were examined in vitro by cellular 64Cu uptake and cell proliferation assays. The effects of hCtr1 knockdown on tumor uptake of 64Cu were determined by PET quantification and tissue radioactivity assay. The effects of hCtr1 knockdown on tumor growth were assessed by PET/CT and tumor size measurement with a caliper. Results RNA interference–mediated knockdown of hCtr1 was associated with the reduced cellular uptake of 64Cu and the suppression of prostate cancer cell proliferation in vitro. At 24 h after intravenous injection of the tracer 64CuCl2, the 64Cu uptake by the tumors with knockdown of hCtr1 (4.02 ± 0.31 percentage injected dose per gram [%ID/g] in Lenti-hCtr1-shRNA-PC-3 and 2.30 ± 0.59 %ID/g in Lenti-hCtr1-shRNA-DU-145) was significantly lower than the 64Cu uptake by the control tumors without knockdown of hCtr1 (7.21 ± 1.48 %ID/g in Lenti-SCR-shRNA-PC-3 and 5.57 ± 1.20 % ID/g in Lenti-SCR-shRNA-DU-145, P < 0.001) by PET quantification. Moreover, the volumes of prostate cancer xenograft tumors with knockdown of hCtr1 (179 ± 111 mm3 for Lenti-hCtr1-shRNA-PC-3

  11. Assessment of early changes in 3H-fluorothymidine uptake after treatment with gefitinib in human tumor xenograft in comparison with Ki-67 and phospho-EGFR expression

    PubMed Central

    2013-01-01

    Background The purpose of this study was to evaluate whether early changes in 3′-deoxy-3′-3H-fluorothymidine (3H-FLT) uptake can reflect the antiproliferative effect of gefitinib in a human tumor xenograft, in comparison with the histopathological markers, Ki-67 and phosphorylated EGFR (phospho-EGFR). Methods An EGFR-dependent human tumor xenograft model (A431) was established in female BALB/c athymic mice, which were divided into three groups: one control group and two treatment groups. Mice in the treatment groups were orally administered a partial regression dose (100 mg/kg/day) or the maximum tolerated dose of gefitinib (200 mg/kg/day), once daily for 2 days. Mice in the control group were administered the vehicle (0.1% Tween 80). Tumor size was measured before and 3 days after the start of treatment. Biodistribution of 3H-FLT and 18F-FDG (%ID/g/kg) was examined 3 days after the start of the treatment. Tumor cell proliferative activity with Ki-67 was determined. Immunohistochemical staining of EGFR and measurement of phospho-EGFR were also performed. Results High expression levels of EGFR and Ki-67 were observed in the A431 tumor. After the treatment with 100 and 200 mg/kg gefitinib, the uptake levels of 3H-FLT in the tumor were significantly reduced to 67% and 61% of the control value, respectively (0.39 ± 0.09, 0.36 ± 0.06, 0.59 ± 0.11%ID/g/kg for 100 mg/kg, 200 mg/kg, and control groups, respectively; p < 0.01 vs. control), but those of 18F-FDG were not. After the treatment with 100 and 200 mg/kg gefitinib, the expression levels of Ki-67 in the tumor were markedly decreased (4.6 ± 2.4%, 6.2 ± 1.8%, and 10.4 ± 5.7% for 100 mg/kg, 200 mg/kg, and control groups, respectively, p < 0.01 vs. control). The expression levels of the phospho-EGFR protein also significantly decreased (29% and 21% of the control value for 100, and 200 mg/kg, respectively p < 0.01 vs. control). There was no statistically

  12. Quantitative analysis of peri-tumor tissue elasticity based on shear-wave elastography for breast tumor classification.

    PubMed

    Xiao, Yang; Zeng, Jie; Qian, Ming; Zheng, Rongqin; Zheng, Hairong

    2013-01-01

    For shear-wave elastography (SWE) images, the most common site of tumor-associated stiffness is generally in the surrounding stroma rather than the tumor itself. The aim of this study is to assess the value of the peri-tumor tissue elasticity in the classification of breast tumors. SWE images of 106 breast tumors (65 benign, 41 malignant) were collected from 82 consecutive patients. By applying the image processing method, 5 elastographic features of the peri-tumor area (elasticity modulus mean, maximum, standard deviation, hardness degree and elasticity ratio) were computed to represent peri-tumor tissue elasticity. B-mode Breast Imaging Reporting and Data System (BI-RADS) were used for comparing the diagnostic performances between the grayscale US and color SWE images. Histopathologic results were used as the reference standard. The t-test, point biserial correlation coefficient and receiver operating characteristic (ROC) curve analysis were performed for statistical analysis. As a result, the Az values (area under ROC curve) were 0.92, 0.95, 0.94, 0.91, and 0.98 for the classifiers using the five elastographic features respectively, and 0.91 for BI-RADS assessment. The results showed that the peri-tumor tissue elasticity could provide valuable information for breast tumor classification.

  13. Didymin reverses phthalate ester-associated breast cancer aggravation in the breast cancer tumor microenvironment

    PubMed Central

    HSU, YA-LING; HSIEH, CHIA-JUNG; TSAI, EING-MEI; HUNG, JEN-YU; CHANG, WEI-AN; HOU, MING-FENG; KUO, PO-LIN

    2016-01-01

    The present study demonstrated two novel findings. To the best of our knowledge, it is the first study to demonstrate that regulated upon activation, normal T-cell expressed and secreted (RANTES), produced by breast tumor-associated monocyte-derived dendritic cells (TADCs) following breast cancer cell exposure to phthalate esters, may contribute to the progression of cancer via enhancement of cancer cell proliferation, migration and invasion. Furthermore, the present study revealed that didymin, a dietary flavonoid glycoside present in citrus fruits, was able to reverse phthalate ester-mediated breast cancer aggravation. MDA-MB-231 cells were treated with butyl benzyl phthalate (BBP), di-n-butyl phthalate (DBP) or di-2-ethylhexyl phthalate (DEHP). Subsequently, the conditioned medium (CM) was harvested and cultured with monocyte-derived dendritic cells (mdDCs). Cultures of MDA-MB-231 cells with the conditioned medium of BBP-, DBP- or DEHP-MDA-MB-231 tumor-associated mdDCs (BBP-, DBP- or DEHP-MDA-TADC-CM) demonstrated enhanced proliferation, migration and invasion. Exposure of the MDA-MB-231 cells to DBP induced the MDA-TADCs to produce the inflammatory cytokine RANTES, which subsequently induced MDA-MB-231 cell proliferation, migration and invasion. Depleting RANTES reversed the effects of DBP-MDA-TADC-mediated MDA-MB-231 cell proliferation, migration and invasion. In addition, didymin was observed to suppress phthalate-mediated breast cancer cell proliferation, migration and invasion. The present study suggested that didymin was capable of preventing phthalate ester-associated cancer aggravation. PMID:26893687

  14. Residual dormant cancer stem-cell foci are responsible for tumor relapse after antiangiogenic metronomic therapy in hepatocellular carcinoma xenografts.

    PubMed

    Martin-Padura, Ines; Marighetti, Paola; Agliano, Alice; Colombo, Federico; Larzabal, Leyre; Redrado, Miriam; Bleau, Anne-Marie; Prior, Celia; Bertolini, Francesco; Calvo, Alfonso

    2012-07-01

    Hepatocellular carcinoma (HCC) is the fifth most common solid tumor and the third leading cause of cancer-related deaths. Currently available chemotherapeutic options are not curative due in part to tumor resistance to conventional therapies. We generated orthotopic HCC mouse models in immunodeficient NOD/SCID/IL2rγ null mice by injection of human alpha-feto protein (hAFP)- and/or luciferase-expressing HCC cell lines and primary cells from patients, where tumor growth and spread can be accurately monitored in a non-invasive way. In this model, low-dose metronomic administration of cyclophosphamide (LDM-CTX) caused complete regression of the tumor mass. A significant increase in survival (P<0.0001), reduced aberrant angiogenesis and hyperproliferation, and decrease in the number of circulating tumor cells were found in LDM-CTX-treated animals, in comparison with untreated mice. Co-administration of LDM-CTX with anti-VEGF therapy further improved the therapeutic efficacy. However, the presence of residual circulating hAFP levels suggested that some tumor cells were still present in livers of treated mice. Immunohistochemistry revealed that those cells had a hAFP+/CD13+/PCNA- phenotype, suggesting that they were dormant cancer stem cells (CSC). Indeed, discontinuation of therapy resulted in tumor regrowth. Moreover, in-vitro LDM-CTX treatment reduced hepatosphere formation in both number and size, and the resulting spheres were enriched in CD13+ cells indicating that these cells were particularly resistant to therapy. Co-treatment of the CD13-targeting drug, bestatin, with LDM-CTX leads to slower tumor growth and a decreased tumor volume. Therefore, combining a CD13 inhibitor, which targets the CSC-like population, with LDM-CTX chemotherapy may be used to eradicate minimal residual disease and improve the treatment of liver cancer. PMID:22546866

  15. Breast cancer-specific mortality in small-sized tumor with node-positive breast cancer: a nation-wide study in Korean breast cancer society.

    PubMed

    Ryu, Jai Min; Lee, Hyouk Jin; Yoon, Tae In; Lee, Eun Sook; Lee, Soo Jung; Jung, Jin Hyang; Chae, Byung Joo; Nam, Seok Jin; Lee, Jeong Eon; Lee, Se Kyung; Bae, Soo Youn; Yu, Jonghan; Kim, Seok Won

    2016-10-01

    Tumor size and number of lymph node (LN) metastases are well known as the most important prognostic factors of breast cancer. We hypothesized that very small breast cancers with LN metastasis represent a progressive biologic behavior and evaluated tumor size stratified by LN metastasis. Data between 1990 and 2010 were obtained retrospectively from the Korean Breast Cancer Society Registry with inclusion criteria of female, non-metastatic, unilateral, and T1/2 breast cancer. We collected the following variables: age at surgery, tumor size, number of LN metastases, nuclear grade (NG), lymphovascular invasion (LVI), estrogen receptor status, progesterone receptor status, and epidermal growth factor receptor-2 status. Patient characteristics were compared by means of independent t-tests for continuous variables and the Chi-square or Fisher's exact test for categorical variables. Kaplan-Meier curves, with corresponding results of log-rank tests, were constructed for breast cancer-specific survival (BCSS). Five- and eight-year breast cancer-specific mortality (BCSM) was obtained in groups of 300 patients, followed by smoothing according to the confidence interval using the lowess method. We identified 39,826 breast cancer patients who met the inclusion criteria. Among them, 1433 (3.6 %) patients died due to breast cancer. The median follow-up duration was 63.4 (3-255) months. In the multivariate analysis, age at surgery, NG, LVI, subtype, and tumor size-nodal interactions were independently associated with BCSM. The N1 group had lower BCSS for T1a than T1b. The N2+ group also had lower BCSS for T1b than T1c or T2. In the N1 group of tumors smaller than 10 mm, 5- and 8-year BCSM decreased with larger tumor size. Patients with very small tumors with LN metastasis have decreased BCSM according to increase tumor size. Small tumors with LN metastasis could have aggressive biological behavior. PMID:27590199

  16. Breast Cancer

    MedlinePlus

    ... version of this page please turn Javascript on. Breast Cancer What is Breast Cancer? How Tumors Form The body is made up ... tumors form in the breast tissue. Who Gets Breast Cancer? Breast cancer is one of the most common ...

  17. High-sensitivity detection of breast tumors in vivo by use of a pH-sensitive near-infrared fluorescence probe

    NASA Astrophysics Data System (ADS)

    Mathejczyk, Julia Eva; Pauli, Jutta; Dullin, Christian; Resch-Genger, Ute; Alves, Frauke; Napp, Joanna

    2012-07-01

    We investigated the potential of the pH-sensitive dye, CypHer5E, conjugated to Herceptin (pH-Her) for the sensitive detection of breast tumors in mice using noninvasive time-domain near-infrared fluorescence imaging and different methods of data analysis. First, the fluorescence properties of pH-Her were analyzed as function of pH and/or dye-to-protein ratio, and binding specificity was confirmed in cell-based assays. Subsequently, the performance of pH-Her in nude mice bearing orthotopic HER2-positive (KPL-4) and HER2-negative (MDA-MB-231) breast carcinoma xenografts was compared to that of an always-on fluorescent conjugate Alexa Fluor 647-Herceptin (Alexa-Her). Subtraction of autofluorescence and lifetime (LT)-gated image analyses were performed for background fluorescence suppression. In mice bearing HER2-positive tumors, autofluorescence subtraction together with the selective fluorescence enhancement of pH-Her solely in the tumor's acidic environment provided high contrast-to-noise ratios (CNRs). This led to an improved sensitivity of tumor detection compared to Alexa-Her. In contrast, LT-gated imaging using LTs determined in model systems did not improve tumor-detection sensitivity in vivo for either probe. In conclusion, pH-Her is suitable for sensitive in vivo monitoring of HER2-expressing breast tumors with imaging in the intensity domain and represents a promising tool for detection of weak fluorescent signals deriving from small tumors or metastases.

  18. Synthesis and characterization of a porphyrazine–Gd(III) MRI contrast agent and in vivo imaging of a breast cancer xenograft model

    PubMed Central

    Trivedi, Evan R.; Ma, Zhidong; Waters, Emily A.; Macrenaris, Keith W.; Subramanian, Rohit; Barrettf, Anthony G. M.; Meade, Thomas J.; Hoffman, Brian M.

    2015-01-01

    Porphyrazines (Pz), or tetraazaporphyrins, are being studied for their potential use in detection and treatment of cancer. Here, an amphiphilic Cu–Pz–Gd(III) conjugate has been prepared via azide-alkyne Huisgen cycloaddition or ‘click’ chemistry between an azide functionalized Pz and alkyne functionalized DOTA–Gd(III) analog for use as an MRI contrast agent. This agent, Cu–Pz–Gd(III), is synthesized in good yield and exhibits solution-phase ionic relaxivity (r1 = 11.5 mm−1 s−1) that is approximately four times higher than that of a clinically used monomeric Gd (III) contrast agent, DOTA–Gd(III). Breast tumor cells (MDA-MB-231) associate with Cu–Pz–Gd(III) in vitro, where significant contrast enhancement (9.336 ± 0.335 contrast-to-noise ratio) is observed in phantom cell pellet MR images. This novel contrast agent was administered in vivo to an orthotopic breast tumor model in athymic nude mice and MR images were collected. The average T1 of tumor regions in mice treated with 50 mg kg−1 Cu–Pz–Gd (III) decreased relative to saline-treated controls. Furthermore, the decrease in T1 was persistent relative to mice treated with the monomeric Gd(III) contrast agent. An ex vivo biodistribution study confirmed that Cu–Pz–Gd(III) accumulates in the tumors and is rapidly cleared, primarily through the kidneys. Differential accumulation and T1 enhancement by Cu–Pz–Gd(III) in the tumor's core relative to the periphery offer preliminary evidence that this agent would find application in the imaging of necrotic tissue. PMID:24706615

  19. Combined thermal and elastic modeling of the normal and tumorous breast

    NASA Astrophysics Data System (ADS)

    Jiang, Li; Zhan, Wang; Loew, Murray

    2008-03-01

    The abnormal thermogram has been shown to be a reliable indicator of a high risk of breast cancer, but an open question is how to quantify the complex relationships between the breast thermal behaviors and the underlying physiological/pathological conditions. Previous thermal modeling techniques generally did not utilize the breast geometry determined by the gravity-induced elastic deformations arising from various body postures. In this paper, a 3-D finite-element method is developed for combined modeling of the thermal and elastic properties of the breast, including the mechanical nonlinearity associated with large deformations. The effects of the thermal and elastic properties of the breast tissues are investigated quantitatively. For the normal breast in a standing/sitting up posture, the gravity-induced deformation alone is found to be able to cause an asymmetric temperature distribution even though all the thermal/elastic properties are symmetrical, and this temperature asymmetry increases for softer and more compressible breast tissues. For a tumorous breast, we found that the surface-temperature alterations generally can be recognizable for superficial tumors at depths less than 20 mm. Tumor size plays a less important role than the tumor depth in determining the tumor-induced temperature difference. This result may imply that a higher thermal sensitivity is critical for a breast thermogram system when deeper tumors are present, even if the tumor is relatively large. We expect this new method to provide a stronger foundation for, and greater specificity and precision in, thermographic diagnosis and treatment of breast tumors.

  20. Potent inhibitory effect of δ-tocopherol on prostate cancer cells cultured in vitro and grown as xenograft tumors in vivo.

    PubMed

    Huang, Huarong; He, Yan; Cui, Xiao-Xing; Goodin, Susan; Wang, Hong; Du, Zhi Yun; Li, Dongli; Zhang, Kun; Tony Kong, Ah-Ng; DiPaola, Robert S; Yang, Chung S; Conney, Allan H; Zheng, Xi

    2014-11-01

    In the present study, the effects of δ-tocopherol (δ-T) on growth and apoptosis of human prostate cancer cells were determined and compared with that of α-tocopherol (α-T), a commonly used form of vitamin E. Treatment of human prostate cancer cells with δ-T resulted in strong growth inhibition and apoptosis stimulation, while the effects of α-T were modest. The strong effects of δ-T on the cells were associated with suppression of androgen receptor (AR) activity and decreased level of prostate specific antigen (PSA) that is a downstream target of the AR signaling. In the in vivo study, we found that δ-T had a more potent inhibitory effect on the formation and growth of prostate xenograft tumors than that of α-T. Moreover, δ-T inhibited proliferation and stimulated apoptosis in the tumors. The present study identified δ-T as a better form of vitamin E than α-T for future clinical studies of prostate cancer prevention.