Science.gov

Sample records for breast tumor xenografts

  1. Lapatinib in Combination With Radiation Diminishes Tumor Regrowth in HER2+ and Basal-Like/EGFR+ Breast Tumor Xenografts

    SciTech Connect

    Sambade, Maria J.; Kimple, Randall J.; Camp, J. Terese; Peters, Eldon; Livasy, Chad A.; Sartor, Carolyn I.; Shields, Janiel M.

    2010-06-01

    Purpose: To determine whether lapatinib, a dual epidermal growth factor receptor (EGFR)/HER2 kinase inhibitor, can radiosensitize EGFR+ or HER2+ breast cancer xenografts. Methods and Materials: Mice bearing xenografts of basal-like/EGFR+ SUM149 and HER2+ SUM225 breast cancer cells were treated with lapatinib and fractionated radiotherapy and tumor growth inhibition correlated with alterations in ERK1 and AKT activation by immunohistochemistry. Results: Basal-like/EGFR+ SUM149 breast cancer tumors were completely resistant to treatment with lapatinib alone but highly growth impaired with lapatinib plus radiotherapy, exhibiting an enhancement ratio average of 2.75 and a fractional tumor product ratio average of 2.20 during the study period. In contrast, HER2+ SUM225 breast cancer tumors were highly responsive to treatment with lapatinib alone and yielded a relatively lower enhancement ratio average of 1.25 during the study period with lapatinib plus radiotherapy. Durable tumor control in the HER2+ SUM225 model was more effective with the combination treatment than either lapatinib or radiotherapy alone. Immunohistochemical analyses demonstrated that radiosensitization by lapatinib correlated with ERK1/2 inhibition in the EGFR+ SUM149 model and with AKT inhibition in the HER2+ SUM225 model. Conclusion: Our data suggest that lapatinib combined with fractionated radiotherapy may be useful against EGFR+ and HER2+ breast cancers and that inhibition of downstream signaling to ERK1/2 and AKT correlates with sensitization in EGFR+ and HER2+ cells, respectively.

  2. Tumor Sequencing and Patient-Derived Xenografts in the Neoadjuvant Treatment of Breast Cancer

    PubMed Central

    Kalari, Krishna R.; Suman, Vera J.; Moyer, Ann M.; Yu, Jia; Visscher, Daniel W.; Dockter, Travis J.; Vedell, Peter T.; Sinnwell, Jason P.; Tang, Xiaojia; Thompson, Kevin J.; McLaughlin, Sarah A.; Moreno-Aspitia, Alvaro; Copland, John A; Northfelt, Donald W.; Gray, Richard J.; Hunt, Katie; Conners, Amy; Weinshilboum, Richard; Wang, Liewei; Boughey, Judy C.

    2017-01-01

    Background: Breast cancer patients with residual disease after neoadjuvant chemotherapy (NAC) have increased recurrence risk. Molecular characterization, knowledge of NAC response, and simultaneous generation of patient-derived xenografts (PDXs) may accelerate drug development. However, the feasibility of this approach is unknown. Methods: We conducted a prospective study of 140 breast cancer patients treated with NAC and performed tumor and germline sequencing and generated patient-derived xenografts (PDXs) using core needle biopsies. Chemotherapy response was assessed at surgery. Results: Recurrent “targetable” alterations were not enriched in patients without pathologic complete response (pCR); however, upregulation of steroid receptor signaling and lower pCR rates (16.7%, 1/6) were observed in triple-negative breast cancer (TNBC) patients with luminal androgen receptor (LAR) vs basal subtypes (60.0%, 21/35). Within TNBC, TP53 mutation frequency (75.6%, 31/41) did not differ comparing basal (74.3%, 26/35) and LAR (83.3%, 5/6); however, TP53 stop-gain mutations were more common in basal (22.9%, 8/35) vs LAR (0.0%, 0/6), which was confirmed in The Cancer Genome Atlas and British Columbia data sets. In luminal B tumors, Ki-67 responses were observed in tumors that harbored mutations conferring endocrine resistance (p53, AKT, and IKBKE). PDX take rate (27.4%, 31/113) varied according to tumor subtype, and in a patient with progression on NAC, sequencing data informed drug selection (olaparib) with in vivo antitumor activity observed in the primary and resistant (postchemotherapy) PDXs. Conclusions: In this study, we demonstrate the feasibility of tumor sequencing and PDX generation in the NAC setting. “Targetable” alterations were not enriched in chemotherapy-resistant tumors; however, prioritization of drug testing based on sequence data may accelerate drug development. PMID:28376176

  3. Optimization of an indazole series of selective estrogen receptor degraders: Tumor regression in a tamoxifen-resistant breast cancer xenograft.

    PubMed

    Govek, Steven P; Nagasawa, Johnny Y; Douglas, Karensa L; Lai, Andiliy G; Kahraman, Mehmet; Bonnefous, Celine; Aparicio, Anna M; Darimont, Beatrice D; Grillot, Katherine L; Joseph, James D; Kaufman, Joshua A; Lee, Kyoung-Jin; Lu, Nhin; Moon, Michael J; Prudente, Rene Y; Sensintaffar, John; Rix, Peter J; Hager, Jeffrey H; Smith, Nicholas D

    2015-11-15

    Selective estrogen receptor degraders (SERDs) have shown promise for the treatment of ER+ breast cancer. Disclosed herein is the continued optimization of our indazole series of SERDs. Exploration of ER degradation and antagonism in vitro followed by in vivo antagonism and oral exposure culminated in the discovery of indazoles 47 and 56, which induce tumor regression in a tamoxifen-resistant breast cancer xenograft.

  4. Effect of Melatonin on Tumor Growth and Angiogenesis in Xenograft Model of Breast Cancer

    PubMed Central

    Jardim-Perassi, Bruna Victorasso; Arbab, Ali S.; Ferreira, Lívia Carvalho; Borin, Thaiz Ferraz; Varma, Nadimpalli R. S.; Iskander, A. S. M.; Shankar, Adarsh; Ali, Meser M.; de Campos Zuccari, Debora Aparecida Pires

    2014-01-01

    As neovascularization is essential for tumor growth and metastasis, controlling angiogenesis is a promising tactic in limiting cancer progression. Melatonin has been studied for their inhibitory properties on angiogenesis in cancer. We performed an in vivo study to evaluate the effects of melatonin treatment on angiogenesis in breast cancer. Cell viability was measured by MTT assay after melatonin treatment in triple-negative breast cancer cells (MDA-MB-231). After, cells were implanted in athymic nude mice and treated with melatonin or vehicle daily, administered intraperitoneally 1 hour before turning the room light off. Volume of the tumors was measured weekly with a digital caliper and at the end of treatments animals underwent single photon emission computed tomography (SPECT) with Technetium-99m tagged vascular endothelial growth factor (VEGF) C to detect in vivo angiogenesis. In addition, expression of pro-angiogenic/growth factors in the tumor extracts was evaluated by membrane antibody array and collected tumor tissues were analyzed with histochemical staining. Melatonin in vitro treatment (1 mM) decreased cell viability (p<0.05). The breast cancer xenografts nude mice treated with melatonin showed reduced tumor size and cell proliferation (Ki-67) compared to control animals after 21 days of treatment (p<0.05). Expression of VEGF receptor 2 decreased significantly in the treated animals compared to that of control when determined by immunohistochemistry (p<0.05) but the changes were not significant on SPECT (p>0.05) images. In addition, there was a decrease of micro-vessel density (Von Willebrand Factor) in melatonin treated mice (p<0.05). However, semiquantitative densitometry analysis of membrane array indicated increased expression of epidermal growth factor receptor and insulin-like growth factor 1 in treated tumors compared to vehicle treated tumors (p<0.05). In conclusion, melatonin treatment showed effectiveness in reducing tumor growth and cell

  5. Monitoring breast tumor progression by photoacoustic measurements: a xenograft mice model study

    NASA Astrophysics Data System (ADS)

    Priya, Mallika; Satish Rao, Bola Sadashiva; Chandra, Subhash; Datta, Anirbit; Nayak, Subramanya G.; Mahato, Krishna Kishore

    2015-10-01

    The current study reports the photoacoustic spectroscopy-based assessment of breast tumor progression in a nude mice xenograft model. The tumor was induced through subcutaneous injection of MCF-7 cells in female nude mice and was monitored for 20 days until the tumor volume reached 1000 mm3. The tumor tissues were extracted at three different time points (days 10, 15, and 20) after tumor inoculation and subjected to photoacoustic spectral recordings in time domain ex vivo at 281 nm pulsed laser excitations. The spectra were converted into the frequency domain using the fast Fourier transformed tools of MATLAB® algorithms and further utilized to extract seven statistical features (mean, median, area under the curve, variance and standard deviation, skewness and kurtosis) from each time point sample to assess the tumor growth with wavelet principal component analysis based logistic regression analysis performed on the data. The prediction accuracies of the analysis for day 10 versus day 15, day 15 versus day 20, and day 10 versus day 20 were found to be 92.31, 87.5, and 95.2%, respectively. Also, receiver operator characteristics area under the curve analysis for day 10 versus day 15, day 15 versus day 20, and day 10 versus day 20 were found to be 0.95, 0.85, and 0.93, respectively. The ability of photoacoustic measurements in the objective assessment of tumor progression has been clearly demonstrated, indicating its clinical potential.

  6. DCE-MRI Detects Early Vascular Response in Breast Tumor Xenografts Following Anti-DR5 Therapy

    PubMed Central

    Kim, Hyunki; Folks, Karri D.; Guo, Lingling; Stockard, Cecil R.; Fineberg, Naomi S.; Grizzle, William E.; George, James F.; Buchsbaum, Donald J.; Morgan, Desiree E.; Zinn, Kurt R.

    2014-01-01

    Purpose Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) measured the early vascular changes after administration of TRA-8, bevacizumab, or TRA-8 combined with bevacizumab in breast tumor xenografts. Procedures Groups 1–4 of nude mice bearing human breast carcinoma were injected with phosphate-buffered saline, TRA-8, bevacizumab, and TRA-8 + bevacizumab on day0, respectively. DCE-MRI was performed on days0, 1, 2, and 3, and thereafter tumors were collected for terminal deoxynucleotidyl transferase-mediated dUT nick end labeling and CD31 staining. Results DCE-MRI measured a significant Ktrans change within 3 days after TRA-8 therapy that correlated with tumor growth arrest, whichwas not shown with statistical significance by histopathology at these early time points posttreatment. The Ktrans changes followed quadratic polynomial curves. Conclusion DCE-MRI detected significantly lower Ktrans levels in breast tumor xenografts following TRA-8 monotherapy or combined therapy with bevacizumab. PMID:20383593

  7. Mass Spectrometric Imaging of Red Fluorescent Protein in Breast Tumor Xenografts

    NASA Astrophysics Data System (ADS)

    Chughtai, Kamila; Jiang, Lu; Post, Harm; Winnard, Paul T.; Greenwood, Tiffany R.; Raman, Venu; Bhujwalla, Zaver M.; Heeren, Ron M. A.; Glunde, Kristine

    2013-05-01

    Mass spectrometric imaging (MSI) in combination with electrospray mass spectrometry (ESI-MS) is a powerful technique for visualization and identification of a variety of different biomolecules directly from thin tissue sections. As commonly used tools for molecular reporting, fluorescent proteins are molecular reporter tools that have enabled the elucidation of a multitude of biological pathways and processes. To combine these two approaches, we have performed targeted MS analysis and MALDI-MSI visualization of a tandem dimer (td)Tomato red fluorescent protein, which was expressed exclusively in the hypoxic regions of a breast tumor xenograft model. For the first time, a fluorescent protein has been visualized by both optical microscopy and MALDI-MSI. Visualization of tdTomato by MALDI-MSI directly from breast tumor tissue sections will allow us to simultaneously detect and subsequently identify novel molecules present in hypoxic regions of the tumor. MS and MALDI-MSI of fluorescent proteins, as exemplified in our study, is useful for studies in which the advantages of MS and MSI will benefit from the combination with molecular approaches that use fluorescent proteins as reporters.

  8. Integrated Bottom-Up and Top-Down Proteomics of Patient-Derived Breast Tumor Xenografts.

    PubMed

    Ntai, Ioanna; LeDuc, Richard D; Fellers, Ryan T; Erdmann-Gilmore, Petra; Davies, Sherri R; Rumsey, Jeanne; Early, Bryan P; Thomas, Paul M; Li, Shunqiang; Compton, Philip D; Ellis, Matthew J C; Ruggles, Kelly V; Fenyö, David; Boja, Emily S; Rodriguez, Henry; Townsend, R Reid; Kelleher, Neil L

    2016-01-01

    Bottom-up proteomics relies on the use of proteases and is the method of choice for identifying thousands of protein groups in complex samples. Top-down proteomics has been shown to be robust for direct analysis of small proteins and offers a solution to the "peptide-to-protein" inference problem inherent with bottom-up approaches. Here, we describe the first large-scale integration of genomic, bottom-up and top-down proteomic data for the comparative analysis of patient-derived mouse xenograft models of basal and luminal B human breast cancer, WHIM2 and WHIM16, respectively. Using these well-characterized xenograft models established by the National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium, we compared and contrasted the performance of bottom-up and top-down proteomics to detect cancer-specific aberrations at the peptide and proteoform levels and to measure differential expression of proteins and proteoforms. Bottom-up proteomic analysis of the tumor xenografts detected almost 10 times as many coding nucleotide polymorphisms and peptides resulting from novel splice junctions than top-down. For proteins in the range of 0-30 kDa, where quantitation was performed using both approaches, bottom-up proteomics quantified 3,519 protein groups from 49,185 peptides, while top-down proteomics quantified 982 proteoforms mapping to 358 proteins. Examples of both concordant and discordant quantitation were found in a ∼60:40 ratio, providing a unique opportunity for top-down to fill in missing information. The two techniques showed complementary performance, with bottom-up yielding eight times more identifications of 0-30 kDa proteins in xenograft proteomes, but failing to detect differences in certain posttranslational modifications (PTMs), such as phosphorylation pattern changes of alpha-endosulfine. This work illustrates the potency of a combined bottom-up and top-down proteomics approach to deepen our knowledge of cancer biology, especially when

  9. Genes regulated by estrogen in breast tumor cells in vitro are similarly regulated in vivo in tumor xenografts and human breast tumors

    PubMed Central

    Creighton, Chad J; Cordero, Kevin E; Larios, Jose M; Miller, Rebecca S; Johnson, Michael D; Chinnaiyan, Arul M; Lippman, Marc E; Rae, James M

    2006-01-01

    Background Estrogen plays a central role in breast cancer pathogenesis. Although many studies have characterized the estrogen regulation of genes using in vitro cell culture models by global mRNA expression profiling, it is not clear whether these genes are similarly regulated in vivo or how they might be coordinately expressed in primary human tumors. Results We generated DNA microarray-based gene expression profiles from three estrogen receptor α (ERα)-positive breast cancer cell lines stimulated by 17β-estradiol (E2) in vitro over a time course, as well as from MCF-7 cells grown as xenografts in ovariectomized athymic nude mice with E2 supplementation and after its withdrawal. When the patterns of genes regulated by E2 in vitro were compared to those obtained from xenografts, we found a remarkable overlap (over 40%) of genes regulated by E2 in both contexts. These patterns were compared to those obtained from published clinical data sets. We show that, as a group, E2-regulated genes from our preclinical models were co-expressed with ERα in a panel of ERα+ breast tumor mRNA profiles, when corrections were made for patient age, as well as with progesterone receptor. Furthermore, the E2-regulated genes were significantly enriched for transcriptional targets of the myc oncogene and were found to be coordinately expressed with Myc in human tumors. Conclusion Our results provide significant validation of a widely used in vitro model of estrogen signaling as being pathologically relevant to breast cancers in vivo. PMID:16606439

  10. Predictive potential of photoacoustic spectroscopy in breast tumor detection based on xenograft serum profiles

    NASA Astrophysics Data System (ADS)

    Priya, Mallika; Chandra, Subhas; Rao, Bola Sadashiva Satish; Ray, Satadru; Mahato, Krishna Kishore

    2015-02-01

    Breast cancer is the second most common cancer all over the world. Heterogeneity in breast cancer makes it a difficult task to detect with the existing serum markers at an early stage. With an aim to detect the disease early at the pre-malignant level, MCF-7 cells xenografts were developed using female nude mice and blood serum were extracted on days 0th, 10th, 15th & 20th post tumor cells injection (N=12 for each time point). Photoacoustic spectra were recorded on the serum samples at 281nm pulsed laser excitations. A total of 144 time domain spectra were recorded from 48 serum samples belonging to 4 different time points. These spectra were then converted into frequency domain (0-1250kHz) using MATLAB algorithms. Subsequently, seven features (mean, median, mode, variance, standard deviation, area under the curve & spectral residuals after 10th degree polynomial fit) were extracted from them and used for PCA. Further, using the first three Principal components (PCs) of the data, Linear Discriminate Analysis has been carried out. The performance of the analysis showed 82.64% accuracy in predicting various time points under study. Further, frequency-region wise analysis was also performed on the data and found 95 - 203.13 kHz region most suitable for the discrimination among the 4 time points. The analysis provided a clear discrimination in most of the spectral features under study suggesting that the photoacoustic technique has the potential to be a diagnostic tool for early detection of breast tumor development

  11. Labeling of breast cancer patient-derived xenografts with traceable reporters for tumor growth and metastasis studies

    PubMed Central

    Hanna, Colton; Kwok, Letty; Finlay-Schultz, Jessica; Sartorius, Carol A; Cittelly, Diana M

    2017-01-01

    We describe a method for stable labeling of patient-derived xenografts (PDXs) with lentiviral particles expressing green-fluorescent protein and luciferase reporters. This method allows for tracking the growth of PDXs at the primary site, as well as detecting spontaneous and experimental metastases using in vivo imaging systems. The use of preclinical models to study tumor biology and response to treatment is central to cancer research. Long-established human cell lines, and many transgenic mouse models, often fail to recapitulate the key aspects of human malignancies. Thus, alternative models that better represent the heterogeneity of patients’ tumors and their metastases are being developed. Patient-derived xenograft (PDX) models in which surgically resected tumor samples are engrafted into immunocompromised mice have become an attractive alternative as they can be transplanted through multiple generations, and more efficiently reflect tumor heterogeneity than xenografts derived from human cancer cell lines. A limitation to the use of PDXs is that they are difficult to transfect or transduce to introduce traceable reporters or to manipulate gene expression. The current protocol describes methods to transduce dissociated tumor cells from PDXs with high transduction efficiency, and the use of labeled PDXs for experimental models of breast cancer metastases. The protocol also demonstrates the use of labeled PDXs in experimental metastasis models to study the organ-colonization process of the metastatic cascade. Metastases to different organs can be easily visualized and quantified using bioluminescent imaging in live animals, or GFP expression during dissection and in excised organs. These methods provide a powerful tool to extend the use of multiple types of PDXs to metastasis research. PMID:27929464

  12. Patient-derived xenografts of triple-negative breast cancer reproduce molecular features of patient tumors and respond to mTOR inhibition.

    PubMed

    Zhang, Haiyu; Cohen, Adam L; Krishnakumar, Sujatha; Wapnir, Irene L; Veeriah, Selvaraju; Deng, Glenn; Coram, Marc A; Piskun, Caroline M; Longacre, Teri A; Herrler, Michael; Frimannsson, Daniel O; Telli, Melinda L; Dirbas, Frederick M; Matin, A C; Dairkee, Shanaz H; Larijani, Banafshe; Glinsky, Gennadi V; Bild, Andrea H; Jeffrey, Stefanie S

    2014-04-07

    Triple-negative breast cancer (TNBC) is aggressive and lacks targeted therapies. Phosphatidylinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) pathways are frequently activated in TNBC patient tumors at the genome, gene expression and protein levels, and mTOR inhibitors have been shown to inhibit growth in TNBC cell lines. We describe a panel of patient-derived xenografts representing multiple TNBC subtypes and use them to test preclinical drug efficacy of two mTOR inhibitors, sirolimus (rapamycin) and temsirolimus (CCI-779). We generated a panel of seven patient-derived orthotopic xenografts from six primary TNBC tumors and one metastasis. Patient tumors and corresponding xenografts were compared by histology, immunohistochemistry, array comparative genomic hybridization (aCGH) and phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA) sequencing; TNBC subtypes were determined. Using a previously published logistic regression approach, we generated a rapamycin response signature from Connectivity Map gene expression data and used it to predict rapamycin sensitivity in 1,401 human breast cancers of different intrinsic subtypes, prompting in vivo testing of mTOR inhibitors and doxorubicin in our TNBC xenografts. Patient-derived xenografts recapitulated histology, biomarker expression and global genomic features of patient tumors. Two primary tumors had PIK3CA coding mutations, and five of six primary tumors showed flanking intron single nucleotide polymorphisms (SNPs) with conservation of sequence variations between primary tumors and xenografts, even on subsequent xenograft passages. Gene expression profiling showed that our models represent at least four of six TNBC subtypes. The rapamycin response signature predicted sensitivity for 94% of basal-like breast cancers in a large dataset. Drug testing of mTOR inhibitors in our xenografts showed 77 to 99% growth inhibition, significantly more than doxorubicin; protein

  13. Patient-derived xenografts of triple-negative breast cancer reproduce molecular features of patient tumors and respond to mTOR inhibition

    PubMed Central

    2014-01-01

    Introduction Triple-negative breast cancer (TNBC) is aggressive and lacks targeted therapies. Phosphatidylinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) pathways are frequently activated in TNBC patient tumors at the genome, gene expression and protein levels, and mTOR inhibitors have been shown to inhibit growth in TNBC cell lines. We describe a panel of patient-derived xenografts representing multiple TNBC subtypes and use them to test preclinical drug efficacy of two mTOR inhibitors, sirolimus (rapamycin) and temsirolimus (CCI-779). Methods We generated a panel of seven patient-derived orthotopic xenografts from six primary TNBC tumors and one metastasis. Patient tumors and corresponding xenografts were compared by histology, immunohistochemistry, array comparative genomic hybridization (aCGH) and phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA) sequencing; TNBC subtypes were determined. Using a previously published logistic regression approach, we generated a rapamycin response signature from Connectivity Map gene expression data and used it to predict rapamycin sensitivity in 1,401 human breast cancers of different intrinsic subtypes, prompting in vivo testing of mTOR inhibitors and doxorubicin in our TNBC xenografts. Results Patient-derived xenografts recapitulated histology, biomarker expression and global genomic features of patient tumors. Two primary tumors had PIK3CA coding mutations, and five of six primary tumors showed flanking intron single nucleotide polymorphisms (SNPs) with conservation of sequence variations between primary tumors and xenografts, even on subsequent xenograft passages. Gene expression profiling showed that our models represent at least four of six TNBC subtypes. The rapamycin response signature predicted sensitivity for 94% of basal-like breast cancers in a large dataset. Drug testing of mTOR inhibitors in our xenografts showed 77 to 99% growth inhibition, significantly more than

  14. Combination of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and canstatin gene suppression therapy on breast tumor xenograft growth in mice.

    PubMed

    Wang, Wen-Bo; Zhou, Yu-Lin; Heng, De-Feng; Miao, Chuan-Hui; Cao, Ying-Lin

    2008-07-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) gene therapy and canstatin gene therapy have been investigated extensively in human xenograft tumor models established in immunocompromised nude mice. However, combination antitumor activity of these two agents and the safety of such gene constructs driven by the human telomerase reverse transcriptase (hTERT) promoter in nude mice have not been well documented. We hypothesized that TRAIL and canstatin gene therapy driven by the hTERT promoter might overcome the problem of liver toxicity and still effectively induce apoptosis on tumor cells. In this study, we evaluated the antitumor effects of TRAIL in human breast cancer cell lines and the antiangiogenic effects of canstatin on ECV204 cells. We also analyzed the effects of combined gene therapy using both TRAIL and canstatin in a human breast cancer nude mouse model. Tumor growth, tumor inhibition rate of each group, and toxicity were evaluated after gene therapy. Our results demonstrate that treatment using the canstatin- or TRAIL-expressing vector alone significantly suppresses tumor growth, compared to PBS or a vector control. We also found that combining these two therapies had greater antitumor activity than either treatment alone in the mouse model. Moreover, induction of apoptosis was not detected in normal mouse tissues after intratumoral injection of vectors and liver toxicity did not occur with either treatment. Thus, the combination of TRAIL and canstatin appears to be a promising approach for the gene therapy of breast tumors.

  15. Mango polyphenolics suppressed tumor growth in breast cancer xenografts in mice: role of the PI3K/AKT pathway and associated microRNAs.

    PubMed

    Banerjee, Nivedita; Kim, Hyemee; Krenek, Kimberly; Talcott, Stephen T; Mertens-Talcott, Susanne U

    2015-08-01

    The cytotoxic and anti-inflammatory properties of mango polyphenolics including gallic acid and gallotannins have been demonstrated in numerous types of cancers. We hypothesized that the phosphoinositide 3-kinase (PI3K)/AKT pathway and the expression of related miRNAs are involved in the chemotherapeutic activities of mango polyphenolics in a mouse xenograft model for breast cancer. The objectives of this research were to determine the tumor-cytotoxic activities of mango polyphenolics and the underlying molecular mechanisms involving posttranscriptional targets in BT474 breast cancer cells and xenografts in mice. In vitro findings showed cytotoxic effects of mango polyphenolics in BT474 breast cancer cells within a concentration range of 2.5 to 20 mg/L gallic acid equivalents. Mango polyphenolics suppressed the expression of PI3K, AKT, hypoxia inducible factor-1α, and vascular endothelial growth factor (VEGF) mRNA, and pAKT, AKT, pPI3K (p85), VEGF and nuclear factor-kappa B protein levels. The involvement of miR-126 was verified by using antagomiR for miR-126, where mango reversed the effect of the antagomiR of miR-126. In vivo, the intake of mango polyphenolics decreased the tumor volume by 73% in BT474 xenograft-bearing mice compared with the control group. In addition, mango reduced the expression of nuclear factor-kappa B (p65), pAKT, pPI3K, mammalian target of rapamycin, hypoxia inducible factor-1α, and VEGF protein in athymic nude mice. A screening for miRNA expression changes confirmed that mango polyphenolics modulated the expression of cancer-associated miRNAs including miR-126 in the xenografted tumors. In summary, mango polyphenolics have a chemotherapeutic potential against breast cancer that at least in part is mediated through the PI3K/AKT pathway and miR-126.

  16. Pleurocidin-family cationic antimicrobial peptides are cytolytic for breast carcinoma cells and prevent growth of tumor xenografts

    PubMed Central

    2011-01-01

    Introduction Cationic antimicrobial peptides (CAPs) defend against microbial pathogens; however, certain CAPs also exhibit anticancer activity. The purpose of this investigation was to determine the effect of the pleurocidin-family CAPs, NRC-03 and NRC-07, on breast cancer cells. Methods MTT (3-(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium bromide) and acid phosphatase cell-viability assays were used to assess NRC-03- and NRC-07-mediated killing of breast carcinoma cells. Erythrocyte lysis was determined with hemolysis assay. NRC-03 and NRC-07 binding to breast cancer cells and normal fibroblasts was assessed with fluorescence microscopy by using biotinylated-NRC-03 and -NRC-07. Lactate dehydrogenase-release assays and scanning electron microscopy were used to evaluate the effect of NRC-03 and NRC-07 on the cell membrane. Flow-cytometric analysis of 3,3'-dihexyloxacarbocyanine iodide- and dihydroethidium-stained breast cancer cells was used to evaluate the effects of NRC-03 and NRC-07 on mitochondrial membrane integrity and reactive oxygen species (ROS) production, respectively. Tumoricidal activity of NRC-03 and NRC-07 was evaluated in NOD SCID mice bearing breast cancer xenografts. Results NRC-03 and NRC-07 killed breast cancer cells, including drug-resistant variants, and human mammary epithelial cells but showed little or no lysis of human dermal fibroblasts, umbilical vein endothelial cells, or erythrocytes. Sublethal doses of NRC-03 and, to a lesser extent, NRC-07 significantly reduced the median effective concentration (EC50) of cisplatin for breast cancer cells. NRC-03 and NRC-07 bound to breast cancer cells but not fibroblasts, suggesting that killing required peptide binding to target cells. NRC-03- and NRC-07-mediated killing of breast cancer cells correlated with expression of several different anionic cell-surface molecules, suggesting that NRC-03 and NRC-07 bind to a variety of negatively-charged cell-surface molecules. NRC-03 and NRC-07 also

  17. Decorin protein core affects the global gene expression profile of the tumor microenvironment in a triple-negative orthotopic breast carcinoma xenograft model.

    PubMed

    Buraschi, Simone; Neill, Thomas; Owens, Rick T; Iniguez, Leonardo A; Purkins, George; Vadigepalli, Rajanikanth; Evans, Barry; Schaefer, Liliana; Peiper, Stephen C; Wang, Zi-Xuan; Iozzo, Renato V

    2012-01-01

    Decorin, a member of the small leucine-rich proteoglycan gene family, exists and functions wholly within the tumor microenvironment to suppress tumorigenesis by directly targeting and antagonizing multiple receptor tyrosine kinases, such as the EGFR and Met. This leads to potent and sustained signal attenuation, growth arrest, and angiostasis. We thus sought to evaluate the tumoricidal benefits of systemic decorin on a triple-negative orthotopic breast carcinoma xenograft model. To this end, we employed a novel high-density mixed expression array capable of differentiating and simultaneously measuring gene signatures of both Mus musculus (stromal) and Homo sapiens (epithelial) tissue origins. We found that decorin protein core modulated the differential expression of 374 genes within the stromal compartment of the tumor xenograft. Further, our top gene ontology classes strongly suggests an unexpected and preferential role for decorin protein core to inhibit genes necessary for immunomodulatory responses while simultaneously inducing expression of those possessing cellular adhesion and tumor suppressive gene properties. Rigorous verification of the top scoring candidates led to the discovery of three genes heretofore unlinked to malignant breast cancer that were reproducibly found to be induced in several models of tumor stroma. Collectively, our data provide highly novel and unexpected stromal gene signatures as a direct function of systemic administration of decorin protein core and reveals a fundamental basis of action for decorin to modulate the tumor stroma as a biological mechanism for the ascribed anti-tumorigenic properties.

  18. Decorin Protein Core Affects the Global Gene Expression Profile of the Tumor Microenvironment in a Triple-Negative Orthotopic Breast Carcinoma Xenograft Model

    PubMed Central

    Owens, Rick T.; Iniguez, Leonardo A.; Purkins, George; Vadigepalli, Rajanikanth; Evans, Barry; Schaefer, Liliana; Peiper, Stephen C.; Wang, Zi-Xuan; Iozzo, Renato V.

    2012-01-01

    Decorin, a member of the small leucine-rich proteoglycan gene family, exists and functions wholly within the tumor microenvironment to suppress tumorigenesis by directly targeting and antagonizing multiple receptor tyrosine kinases, such as the EGFR and Met. This leads to potent and sustained signal attenuation, growth arrest, and angiostasis. We thus sought to evaluate the tumoricidal benefits of systemic decorin on a triple-negative orthotopic breast carcinoma xenograft model. To this end, we employed a novel high-density mixed expression array capable of differentiating and simultaneously measuring gene signatures of both Mus musculus (stromal) and Homo sapiens (epithelial) tissue origins. We found that decorin protein core modulated the differential expression of 374 genes within the stromal compartment of the tumor xenograft. Further, our top gene ontology classes strongly suggests an unexpected and preferential role for decorin protein core to inhibit genes necessary for immunomodulatory responses while simultaneously inducing expression of those possessing cellular adhesion and tumor suppressive gene properties. Rigorous verification of the top scoring candidates led to the discovery of three genes heretofore unlinked to malignant breast cancer that were reproducibly found to be induced in several models of tumor stroma. Collectively, our data provide highly novel and unexpected stromal gene signatures as a direct function of systemic administration of decorin protein core and reveals a fundamental basis of action for decorin to modulate the tumor stroma as a biological mechanism for the ascribed anti-tumorigenic properties. PMID:23029096

  19. Monitoring of tumor growth and metastasis potential in MDA-MB-435s/ tk-luc human breast cancer xenografts

    NASA Astrophysics Data System (ADS)

    Chang, Ya-Fang; Lin, Yi-Yu; Wang, Hsin-Ell; Liu, Ren-Shen; Pang, Fei; Hwang, Jeng-Jong

    2007-02-01

    Molecular imaging of reporter gene expression provides a rapid, sensitive and non-invasive monitoring of tumor behaviors. In this study, we reported the establishment of a novel animal model for longitudinal examination of tumor growth kinetics and metastatic spreading in vivo. The highly metastatic human breast carcinoma MDA-MB-435s cell line was engineered to stably express herpes simplex virus type 1 thymidine kinase (HSV-1- tk) and luciferase ( luc). Both 131I-FIAU and D-luciferin were used as reporter probes. For orthotopic tumor formation, MDA-MB-435s/ tk-luc cells were implanted into the first nipple of 6-week-old female NOD/SCID mice. For metastatic study, cells were injected via the lateral tail vein. Mice-bearing MDA-MB-435s/ tk-luc tumors were scanned for tumor growth and metastatsis using Xenogen IVIS50 system. Gamma scintigraphy and whole-body autoradiography were also applied to confirm the tumor localization. The results of bioluminescence imaging as well as histopathological finding showed that tumors could be detected in femur, spine, ovary, lungs, kidney, adrenal gland, lymph nodes and muscle at 16 weeks post i.v. injection, and correlated photons could be quantified. This MDA-MB-435s/ tk-luc human breast carcinoma-bearing mouse model combined with multimodalities of molecular imaging may facilitate studies on the molecular mechanisms of cancer invasion and metastasis.

  20. Combination of the c-Met Inhibitor Tivantinib and Zoledronic Acid Prevents Tumor Bone Engraftment and Inhibits Progression of Established Bone Metastases in a Breast Xenograft Model

    PubMed Central

    Previdi, Sara; Scolari, Federica; Chilà, Rosaria; Ricci, Francesca; Abbadessa, Giovanni; Broggini, Massimo

    2013-01-01

    Bone is the most common metastatic site for breast cancer. There is a significant need to understand the molecular mechanisms controlling the engraftment and growth of tumor cells in bone and to discover novel effective therapeutic strategies. The aim of this study was to assess the effects of tivantinib and Zoledronic Acid (ZA) in combination in a breast xenograft model of bone metastases. Cancer cells were intracardially implanted into immunodeficient mice and the effects of drugs alone or in combination on bone metastasis were evaluated by in vivo non-invasive optical and micro-CT imaging technologies. Drugs were administered either before (preventive regimen) or after (therapeutic regimen) bone metastases were detectable. In the preventive regimen, the combination of tivantinib plus ZA was much more effective than single agents in delaying bone metastatic tumor growth. When administered in the therapeutic schedule, the combination delayed metastatic progression and was effective in improving survival. These effects were not ascribed to a direct cytotoxic effect of the combined therapy on breast cancer cells in vitro. The results of this study provide the rationale for the design of new combinatorial strategies with tivantinib and ZA for the treatment of breast cancer bone metastases. PMID:24260160

  1. The Angiogenic Secretome in VEGF overexpressing Breast Cancer Xenografts

    PubMed Central

    Dore-Savard, Louis; Lee, Esak; Kakkad, Samata; Popel, Aleksander S.; Bhujwalla, Zaver M.

    2016-01-01

    The plasticity of cancer cells and the fluidity of the tumor microenvironment continue to present major challenges in the comprehensive understanding of cancer that is essential to design effective treatments. The tumor interstitial fluid (TIF) encompasses the secretome and holds the key to several of the phenotypic characteristics of cancer. Difficulties in sampling this fluid have resulted in limited characterization of its components. Here we have sampled TIF from triple negative and estrogen receptor (ER)-positive human breast tumor xenografts with or without VEGF overexpression. Angiogenesis-related factors were characterized in the TIF and plasma, to understand the relationship between the TIF and plasma secretomes. Clear differences were observed between the TIF and plasma angiogenic secretomes in triple negative MDA-MB-231 breast cancer xenografts compared to ER-positive MCF-7 xenografts with or without VEGF overexpression that provide new insights into TIF components and the role of VEGF in modifying the angiogenic secretome. PMID:27995973

  2. Selective small molecule Stat3 inhibitor reduces breast cancer tumor-initiating cells and improves recurrence free survival in a human-xenograft model.

    PubMed

    Dave, Bhuvanesh; Landis, Melissa D; Tweardy, David J; Chang, Jenny C; Dobrolecki, Lacey E; Wu, Meng-Fen; Zhang, Xiaomei; Westbrook, Thomas F; Hilsenbeck, Susan G; Liu, Dan; Lewis, Michael T

    2012-01-01

    Metastasis and disease relapse are hypothesized to result from tumor initiating cells (TICs). Previously, we have defined a CD44+/CD24-/low mammosphere-forming tumorigenic 493-gene signature in breast cancer. Stat3 was identified as a critical node in self-renewal based on an ongoing lentiviral shRNA screen being conducted in two breast cancer cell lines SUM159 and BT549. In corroborating work, targeting the SH2 domain of Stat3 with a novel small molecule decreased the percentage of cells expressing TIC markers (CD44+/CD24-/low and ALDH+) and mammosphere formation in p-Stat3 overexpressing human breast cancer xenografts in SCID-beige mice. Importantly, we observed a four-fold improvement in the 30-day recurrence-free survival relative to docetaxel alone with the addition of the Stat3 inhibitor in the chemoresistant tumor model. Thus, these findings provide a strong impetus for the development of selective Stat3 inhibitors in order to improve survival in patients with p-Stat3 overexpressing tumors.

  3. Selective Small Molecule Stat3 Inhibitor Reduces Breast Cancer Tumor-Initiating Cells and Improves Recurrence Free Survival in a Human-Xenograft Model

    PubMed Central

    Dave, Bhuvanesh; Landis, Melissa D.; Dobrolecki, Lacey E.; Wu, Meng-Fen; Zhang, Xiaomei; Westbrook, Thomas F.; Hilsenbeck, Susan G.; Liu, Dan; Lewis, Michael T.; Tweardy, David J.; Chang, Jenny C.

    2012-01-01

    Metastasis and disease relapse are hypothesized to result from tumor initiating cells (TICs). Previously, we have defined a CD44+/CD24−/low mammosphere-forming tumorigenic 493-gene signature in breast cancer. Stat3 was identified as a critical node in self-renewal based on an ongoing lentiviral shRNA screen being conducted in two breast cancer cell lines SUM159 and BT549. In corroborating work, targeting the SH2 domain of Stat3 with a novel small molecule decreased the percentage of cells expressing TIC markers (CD44+/CD24−/low and ALDH+) and mammosphere formation in p-Stat3 overexpressing human breast cancer xenografts in SCID-beige mice. Importantly, we observed a four-fold improvement in the 30-day recurrence-free survival relative to docetaxel alone with the addition of the Stat3 inhibitor in the chemoresistant tumor model. Thus, these findings provide a strong impetus for the development of selective Stat3 inhibitors in order to improve survival in patients with p-Stat3 overexpressing tumors. PMID:22879872

  4. Progesterone receptor membrane component 1 promotes survival of human breast cancer cells and the growth of xenograft tumors

    PubMed Central

    Clark, Nicole C.; Friel, Anne M.; Pru, Cindy A.; Zhang, Ling; Shioda, Toshi; Rueda, Bo R.; Peluso, John J.; Pru, James K.

    2016-01-01

    ABSTRACT Triple negative breast cancers (TNBCs) are highly aggressive and grow in response to sex steroid hormones despite lacking expression of the classical estrogen (E2) and progesterone (P4) receptors. Since P4 receptor membrane component 1 (PGRMC1) is expressed in breast cancer tumors and is known to mediate P4-induced cell survival, this study was designed to determine the expression of PGRMC1 in TNBC tumors and the involvement of PGRMC1 in regulating proliferation and survival of TNBC cells in vitro and the growth of TNBC tumors in vivo. For the latter studies, the MDA-MB-231 (MDA) cell line derived from TNBC was used. These cells express PGRMC1 but lack expression of the classical P4 receptor. A lentiviral-based shRNA approach was used to generate a stably transfected PGRMC1-deplete MDA line for comparison to the PGRMC1-intact MDA line. The present studies demonstrate that PGRMC1: 1) is expressed in TNBC cells; 2) mediates the ability of P4 to suppress TNBC cell mitosis in vitro; 3) is required for P4 to reduce the apoptotic effects of doxorubicin in vitro; and 4) facilitates TNBC tumor formation and growth in vivo. Taken together, these findings indicate that PGRMC1 plays an important role in regulating the growth and survival of TNBC cells in vitro and ultimately in the formation and development of these tumors in vivo. Thus, PGRMC1 may be a therapeutic target for TNBCs. PMID:26785864

  5. Progesterone receptor membrane component 1 promotes survival of human breast cancer cells and the growth of xenograft tumors.

    PubMed

    Clark, Nicole C; Friel, Anne M; Pru, Cindy A; Zhang, Ling; Shioda, Toshi; Rueda, Bo R; Peluso, John J; Pru, James K

    2016-01-01

    Triple negative breast cancers (TNBCs) are highly aggressive and grow in response to sex steroid hormones despite lacking expression of the classical estrogen (E2) and progesterone (P4) receptors. Since P4 receptor membrane component 1 (PGRMC1) is expressed in breast cancer tumors and is known to mediate P4-induced cell survival, this study was designed to determine the expression of PGRMC1 in TNBC tumors and the involvement of PGRMC1 in regulating proliferation and survival of TNBC cells in vitro and the growth of TNBC tumors in vivo. For the latter studies, the MDA-MB-231 (MDA) cell line derived from TNBC was used. These cells express PGRMC1 but lack expression of the classical P4 receptor. A lentiviral-based shRNA approach was used to generate a stably transfected PGRMC1-deplete MDA line for comparison to the PGRMC1-intact MDA line. The present studies demonstrate that PGRMC1: 1) is expressed in TNBC cells; 2) mediates the ability of P4 to suppress TNBC cell mitosis in vitro; 3) is required for P4 to reduce the apoptotic effects of doxorubicin in vitro; and 4) facilitates TNBC tumor formation and growth in vivo. Taken together, these findings indicate that PGRMC1 plays an important role in regulating the growth and survival of TNBC cells in vitro and ultimately in the formation and development of these tumors in vivo. Thus, PGRMC1 may be a therapeutic target for TNBCs.

  6. Targeted NGS, array-CGH, and patient-derived tumor xenografts for precision medicine in advanced breast cancer: a single-center prospective study

    PubMed Central

    Gonçalves, Anthony; Bertucci, François; Guille, Arnaud; Garnier, Severine; Adelaide, José; Carbuccia, Nadine; Cabaud, Oliver; Finetti, Pascal; Brunelle, Serge; Piana, Gilles; Tomassin-Piana, Jeanne; Paciencia, Maria; Lambaudie, Eric; Popovici, Cornel; Sabatier, Renaud; Tarpin, Carole; Provansal, Magali; Extra, Jean-Marc; Eisinger, François; Sobol, Hagay; Viens, Patrice; Lopez, Marc; Ginestier, Christophe; Charafe-Jauffret, Emmanuelle; Chaffanet, Max; Birnbaum, Daniel

    2016-01-01

    Background Routine feasibility and clinical impact of genomics-based tumor profiling in advanced breast cancer (aBC) remains to be determined. We conducted a pilot study to evaluate whether precision medicine could be prospectively implemented for aBC patients in a single center and to examine whether patient-derived tumor xenografts (PDX) could be obtained in this population. Results Thirty-four aBC patients were included. Actionable targets were found in 28 patients (82%). A targeted therapy could be proposed to 22 patients (64%), either through a clinical trial (n=15) and/or using already registered drugs (n=21). Ten patients (29%) eventually received targeted treatment, 2 of them deriving clinical benefit. Of 22 patients subjected to mouse implantation, 10 had successful xenografting (45%), mostly in triple-negative aBC. Methods aBC patients accessible to tumor biopsy were prospectively enrolled at the Institut Paoli-Calmettes in the BC-BIO study (ClinicalTrials.gov, NCT01521676). Genomic profiling was established by whole-genome array comparative genomic hybridization (aCGH) and targeted next-generation sequencing (NGS) of 365 candidate cancer genes. For a subset of patients, a sample of fresh tumor was orthotopically implanted in humanized cleared fat pads of NSG mice for establishing PDX. Conclusions Precision medicine can be implemented in a single center in the context of clinical practice and may allow genomic-driven treatment in approximately 30% of aBC patients. PDX may be obtained in a significant fraction of cases. PMID:27765906

  7. Hwanggeumchal sorghum Induces Cell Cycle Arrest, and Suppresses Tumor Growth and Metastasis through Jak2/STAT Pathways in Breast Cancer Xenografts

    PubMed Central

    Lim, Eun Joung; Joung, Youn Hee; Hong, Dae Young; Park, Eui U.; Park, Seung Hwa; Choi, Soo Keun; Moon, Eon-Soo; Cho, Byung Wook; Park, Kyung Do; Lee, Hak Kyo; Kim, Myong-Jo; Park, Dong-Sik; Yang, Young Mok

    2012-01-01

    Background Cancer is one of the highly virulent diseases known to humankind with a high mortality rate. Breast cancer is the most common cancer in women worldwide. Sorghum is a principal cereal food in many parts of the world, and is critical in folk medicine of Asia and Africa. In the present study, we analyzed the effects of HSE in metastatic breast cancer. Methodology/Principal Findings Preliminary studies conducted on MDA-MB 231 and MCF-7 xenograft models showed tumor growth suppression by HSE. Western blotting studies conducted both in vivo and in vitro to check the effect of HSE in Jak/STAT pathways. Anti-metastatic effects of HSE were confirmed using both MDA-MB 231 and MCF-7 metastatic animal models. These studies showed that HSE can modulate Jak/STAT pathways, and it hindered the STAT5b/IGF-1R and STAT3/VEGF pathways not only by down-regulating the expression of these signal molecules and but also by preventing their phosphorylation. The expression of angiogenic factors like VEGF, VEGF-R2 and cell cycle regulators like cyclin D, cyclin E, and pRb were found down-regulated by HSE. In addition, it also targets Brk, p53, and HIF-1α for anti-cancer effects. HSE induced G1 phase arrest and migration inhibition in MDA-MB 231 cells. The metastasis of breast cancer to the lungs also found blocked by HSE in the metastatic animal model. Conclusions/Significance Usage of HS as a dietary supplement is an inexpensive natural cancer therapy, without any side effects. We strongly recommend the use of HS as an edible therapeutic agent as it possesses tumor suppression, migration inhibition, and anti-metastatic effects on breast cancer. PMID:22792362

  8. Reversibly crosslinked hyaluronic acid nanoparticles for active targeting and intelligent delivery of doxorubicin to drug resistant CD44+ human breast tumor xenografts.

    PubMed

    Zhong, Yinan; Zhang, Jian; Cheng, Ru; Deng, Chao; Meng, Fenghua; Xie, Fang; Zhong, Zhiyuan

    2015-05-10

    The existence of drug resistance poses a major obstacle for the treatment of various malignant human cancers. Here, we report on reduction-sensitive reversibly crosslinked hyaluronic acid (HA) nanoparticles based on HA-Lys-LA conjugates (Lys: l-lysine methyl ester, LA: lipoic acid) for active targeting delivery of doxorubicin (DOX) to CD44+ breast cancers in vitro and in vivo, effectively overcoming drug resistance (ADR). HA-Lys-LA with degrees of substitution of 5, 10 and 28% formed robust nano-sized nanoparticles (152-219nm) following auto-crosslinking. DOX-loaded crosslinked nanoparticles revealed inhibited DOX release under physiological conditions while fast drug release in the presence of 10mM glutathione (GSH). Notably, MTT assays showed that DOX-loaded crosslinked HA-Lys-LA10 nanoparticles possessed an apparent targetability and a superior antitumor activity toward CD44 receptor overexpressing DOX-resistant MCF-7 human breast cancer cells (MCF-7/ADR). The in vivo pharmacokinetics and biodistribution studies in MCF-7/ADR tumor xenografts in nude mice showed that DOX-loaded crosslinked HA-Lys-LA10 nanoparticles had a prolonged circulation time and a remarkably high accumulation in the tumor (12.71%ID/g). Notably, DOX-loaded crosslinked HA-Lys-LA10 nanoparticles exhibited effective inhibition of tumor growth while continuous tumor growth was observed for mice treated with free drug. The Kaplan-Meier survival curves showed that in contrast to control groups, all mice treated with DOX-loaded crosslinked HA-Lys-LA10 nanoparticles survived over an experimental period of 44days. Importantly, DOX-loaded crosslinked HA nanoparticles caused low side effects. The reversibly crosslinked hyaluronic acid nanoparticles with excellent biocompatibility, CD44-targetability, and effective reversal of drug resistance have a great potential in cancer therapy.

  9. 184AA3: a xenograft model of ER+ breast adenocarcinoma

    SciTech Connect

    Hines, William C.; Kuhn, Irene; Thi, Kate; Chu, Berbie; Stanford-Moore, Gaelen; Sampayo, Rocío; Garbe, James C.; Stampfer, Martha; Borowsky, Alexander D.; Bissell, Mina J.

    2015-12-12

    Despite the prevalence and significant morbidity resulting from estrogen receptor positive (ER+) breast adenocarcinomas, there are only a few models of this cancer subtype available for drug development and arguably none for studying etiology. Those models that do exist have questionable clinical relevance. Given our goal of developing luminal models, we focused on six cell lines derived by minimal mutagenesis from normal human breast cells, and asked if any could generate clinically relevant xenografts, which we then extensively characterized. Xenografts of one cell line, 184AA3, consistently formed ER+ adenocarcinomas that had a high proliferative rate and other features consistent with “luminal B” intrinsic subtype. Squamous and spindle cell/mesenchymal differentiation was absent, in stark contrast to other cell lines that we examined or others have reported. We explored intratumoral heterogeneity produced by 184AA3 by immunophenotyping xenograft tumors and cultured cells, and characterized marker expression by immunofluorescence and flow cytometry. A CD44High subpopulation was discovered, yet their tumor forming ability was far less than CD44Low cells. Single cell cloning revealed the phenotypic plasticity of 184AA3, consistent with the intratumoral heterogeneity observed in xenografts. Characterization of ER expression in cultures revealed ER protein and signaling is intact, yet when estrogen was depleted in culture, and in vivo, it did not impact cell or tumor growth, analogous to therapeutically resistant ER+ cancers. This model is appropriate for studies of the etiology of ovarian hormone independent adenocarcinomas, for identification of therapeutic targets, predictive testing, and drug development.

  10. Significant Radiation Enhancement Effects by Gold Nanoparticles in Combination with Cisplatin in Triple Negative Breast Cancer Cells and Tumor Xenografts.

    PubMed

    Cui, Lei; Her, Sohyoung; Dunne, Michael; Borst, Gerben R; De Souza, Raquel; Bristow, Robert G; Jaffray, David A; Allen, Christine

    2017-02-01

    Gold nanoparticles (AuNPs) and cisplatin have been explored in concomitant chemoradiotherapy, wherein they elicit their effects by distinct and overlapping mechanisms. Cisplatin is one of the most frequently utilized radiosensitizers in the clinical setting; however, the therapeutic window of cisplatin-aided chemoradiotherapy is limited by its toxicity. The goal of this study was to determine whether AuNPs contribute to improving the treatment response when combined with fractionated cisplatin-based chemoradiation in both in vitro and in vivo models of triple-negative breast cancer (MDA-MB-231(Luc+)). Cellular-targeting AuNPs with receptor-mediated endocytosis (AuNP-RME) in vitro at a noncytotoxic concentration (0.5 mg/ml) or cisplatin at IC25 (12 μM) demonstrated dose enhancement factors (DEFs) of 1.25 and 1.14, respectively; the combination of AuNP-RME and cisplatin resulted in a significant DEF of 1.39 in vitro. Transmission electron microscopy (TEM) images showed effective cellular uptake of AuNPs at tumor sites 24 h after intratumoral infusion. Computed tomography (CT) images demonstrated that the intratumoral levels of gold remained stable up to 120 h after infusion. AuNPs (0.5 mg gold per tumor) demonstrated a radiation enhancement effect that was equivalent to three doses of cisplatin at IC25 (4 mg/kg), but did not induce intrinsic toxicity or increased radiotoxicity. Results from this study suggest that AuNPs are the true radiosensitizer in these settings. Importantly, AuNPs enhance the treatment response when combined with cisplatin-based fractionated chemoradiation. This combination of AuNPs and cisplatin provides a promising approach to improving the therapeutic ratio of fractionated radiotherapy.

  11. HS-1793, a resveratrol analogue, downregulates the expression of hypoxia-induced HIF-1 and VEGF and inhibits tumor growth of human breast cancer cells in a nude mouse xenograft model.

    PubMed

    Kim, Dong Hwan; Sung, Bokyung; Kim, Jin-Ah; Kang, Yong Jung; Hwang, Seong Yeon; Hwang, Na-Lam; Suh, Hongsuk; Choi, Yung Hyun; Im, Eunok; Chung, Hae Young; Kim, Nam Deuk

    2017-08-01

    A synthetic analogue of resveratrol, 4-(6-hydroxy-2-naphtyl)-1,3-benzenediol (HS-1793), with improved photosensitivity and stability profiles, has been recently reported to exert anticancer activity on various cancer cells. However, the molecular mechanism of action and in vivo efficacy of HS-1793 in breast cancer cells have not been fully investigated. In the present study, we evaluated the effect of HS-1793 on hypoxia-inducible factor-1α (HIF-1α), which drives angiogenesis and the growth of solid tumors, in addition to the in vivo therapeutic effects of HS-1793 on breast cancer cells. HS-1793 was found to inhibit hypoxia (1.0% oxygen)-induced HIF-1α expression at the protein level, and its inhibitory effect was more potent than that of resveratrol in MCF-7 and MDA-MB-231 breast cancer cells. Furthermore, HS-1793 reduced the secretion and mRNA expression of vascular endothelial growth factor (VEGF), a key mediator of HIF-1-driven angiogenesis, without affecting cell viability. To evaluate the anticancer effects of HS-1793 in vivo, triple-negative MDA-MB-231 breast cancer xenografts were established in nude mice. HS-1793 significantly suppressed the growth of breast cancer tumor xenografts, without any apparent toxicity. Additionally, decreases in Ki-67, a proliferation index marker, and CD31, a biomarker of microvessel density, were observed in the tumor tissue. Expression of HIF-1 and VEGF was also downregulated in xenograft tumors treated with HS-1793. These in vivo results reinforce the improved anticancer activity of HS-1793 when compared with that of resveratrol. Overall, the present study suggests that the synthetic resveratrol analogue HS-1793 is a potent antitumor agent that inhibits tumor growth via the regulation of HIF-1, and demonstrates significant therapeutic potential for solid cancers.

  12. Targeting tissue factor as a novel therapeutic oncotarget for eradication of cancer stem cells isolated from tumor cell lines, tumor xenografts and patients of breast, lung and ovarian cancer

    PubMed Central

    Hu, Zhiwei; Xu, Jie; Cheng, Jijun; McMichael, Elizabeth; Yu, Lianbo; Carson, William E.

    2017-01-01

    Targeting cancer stem cell (CSC) represents a promising therapeutic approach as it can potentially fight cancer at its root. The challenge is to identify a surface therapeutic oncotarget on CSC. Tissue factor (TF) is known as a common yet specific surface target for cancer cells and tumor neovasculature in several solid cancers. However, it is unknown if TF is expressed by CSCs. Here we demonstrate that TF is constitutively expressed on CD133 positive (CD133+) or CD24-CD44+ CSCs isolated from human cancer cell lines, tumor xenografts from mice and breast tumor tissues from patients. TF-targeted agents, i.e., a factor VII (fVII)-conjugated photosensitizer (fVII-PS for targeted photodynamic therapy) and fVII-IgG1Fc (Immunoconjugate or ICON for immunotherapy), can eradicate CSC via the induction of apoptosis and necrosis and via antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity, respectively. In conclusion, these results demonstrate that TF is a novel surface therapeutic oncotarget for CSC, in addition to cancer cell TF and tumor angiogenic vascular endothelial TF. Moreover, this research highlights that TF-targeting therapeutics can effectively eradicate CSCs, without drug resistance, isolated from breast, lung and ovarian cancer with potential to translate into other most commonly diagnosed solid cancer, in which TF is also highly expressed. PMID:27903969

  13. Targeting tissue factor as a novel therapeutic oncotarget for eradication of cancer stem cells isolated from tumor cell lines, tumor xenografts and patients of breast, lung and ovarian cancer.

    PubMed

    Hu, Zhiwei; Xu, Jie; Cheng, Jijun; McMichael, Elizabeth; Yu, Lianbo; Carson, William E

    2017-01-03

    Targeting cancer stem cell (CSC) represents a promising therapeutic approach as it can potentially fight cancer at its root. The challenge is to identify a surface therapeutic oncotarget on CSC. Tissue factor (TF) is known as a common yet specific surface target for cancer cells and tumor neovasculature in several solid cancers. However, it is unknown if TF is expressed by CSCs. Here we demonstrate that TF is constitutively expressed on CD133 positive (CD133+) or CD24-CD44+ CSCs isolated from human cancer cell lines, tumor xenografts from mice and breast tumor tissues from patients. TF-targeted agents, i.e., a factor VII (fVII)-conjugated photosensitizer (fVII-PS for targeted photodynamic therapy) and fVII-IgG1Fc (Immunoconjugate or ICON for immunotherapy), can eradicate CSC via the induction of apoptosis and necrosis and via antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity, respectively. In conclusion, these results demonstrate that TF is a novel surface therapeutic oncotarget for CSC, in addition to cancer cell TF and tumor angiogenic vascular endothelial TF. Moreover, this research highlights that TF-targeting therapeutics can effectively eradicate CSCs, without drug resistance, isolated from breast, lung and ovarian cancer with potential to translate into other most commonly diagnosed solid cancer, in which TF is also highly expressed.

  14. Epithelial requirement for in vitro proliferation and xenograft growth and metastasis of MDA-MB-468 human breast cancer cells: oncogenic rather than tumor-suppressive role of E-cadherin.

    PubMed

    Hugo, H J; Gunasinghe, N P A D; Hollier, B G; Tanaka, T; Blick, T; Toh, A; Hill, P; Gilles, C; Waltham, M; Thompson, E W

    2017-07-27

    Epithelial-to-mesenchymal transition (EMT) is associated with downregulated E-cadherin and frequently with decreased proliferation. Proliferation may be restored in secondary metastases by mesenchymal-to-epithelial transition (MET). We tested whether E-cadherin maintains epithelial proliferation in MDA-MB-468 breast cancer cells, facilitating metastatic colonization in severe combined immunodeficiency (SCID) mice. EMT/MET markers were assessed in xenograft tumors by immunohistochemistry. Stable E-cadherin manipulation was effected by transfection and verified by Western blotting, immunocytochemistry, and quantitative polymerase chain reaction (qPCR). Effects of E-cadherin manipulation on proliferation and chemomigration were assessed in vitro by performing sulforhodamine B assays and Transwell assays, respectively. Invasion was assessed by Matrigel outgrowth; growth in vivo was assessed in SCID mice; and EMT status was assessed by qPCR. Hypoxic response of E-cadherin knockdown cell lines was assessed by qPCR after hypoxic culture. Repeated measures analysis of variance (ANOVA), one- and two-way ANOVA with posttests, and paired Student's t tests were performed to determine significance (p < 0.05). EMT occurred at the necrotic interface of MDA-MB-468 xenografts in regions of hypoxia. Extratumoral deposits (vascular and lymphatic inclusions, local and axillary nodes, and lung metastases) strongly expressed E-cadherin. MDA-MB-468 cells overexpressing E-cadherin were more proliferative and less migratory in vitro, whereas E-cadherin knockdown (short hairpin CDH1 [shCDH1]) cells were more migratory and invasive, less proliferative, and took longer to form tumors. shCDH1-MDA-MB-468 xenografts did not contain the hypoxia-induced necrotic areas observed in wild-type (WT) and shSCR-MDA-MB-468 tumors, but they did not exhibit an impaired hypoxic response in vitro. Although vimentin expression was not stimulated by E-cadherin knockdown in 2D or 3D cultures, xenografts of

  15. 184AA3: a xenograft model of ER+ breast adenocarcinoma

    DOE PAGES

    Hines, William C.; Kuhn, Irene; Thi, Kate; ...

    2015-12-12

    Despite the prevalence and significant morbidity resulting from estrogen receptor positive (ER+) breast adenocarcinomas, there are only a few models of this cancer subtype available for drug development and arguably none for studying etiology. Those models that do exist have questionable clinical relevance. Given our goal of developing luminal models, we focused on six cell lines derived by minimal mutagenesis from normal human breast cells, and asked if any could generate clinically relevant xenografts, which we then extensively characterized. Xenografts of one cell line, 184AA3, consistently formed ER+ adenocarcinomas that had a high proliferative rate and other features consistent withmore » “luminal B” intrinsic subtype. Squamous and spindle cell/mesenchymal differentiation was absent, in stark contrast to other cell lines that we examined or others have reported. We explored intratumoral heterogeneity produced by 184AA3 by immunophenotyping xenograft tumors and cultured cells, and characterized marker expression by immunofluorescence and flow cytometry. A CD44High subpopulation was discovered, yet their tumor forming ability was far less than CD44Low cells. Single cell cloning revealed the phenotypic plasticity of 184AA3, consistent with the intratumoral heterogeneity observed in xenografts. Characterization of ER expression in cultures revealed ER protein and signaling is intact, yet when estrogen was depleted in culture, and in vivo, it did not impact cell or tumor growth, analogous to therapeutically resistant ER+ cancers. This model is appropriate for studies of the etiology of ovarian hormone independent adenocarcinomas, for identification of therapeutic targets, predictive testing, and drug development.« less

  16. 184AA3: A Xenograft Model of ER+ Breast Adenocarcinoma

    PubMed Central

    Hines, William C.; Kuhn, Irene; Thi, Kate; Chu, Berbie; Stanford-Moore, Gaelen; Sampayo, Rocío; Garbe, James C.; Stampfer, Martha; Borowsky, Alexander D.; Bissell, Mina

    2015-01-01

    Purpose Despite the prevalence and significant morbidity resulting from estrogen receptor positive (ER+) breast adenocarcinomas, there are only a few models of this cancer subtype available for drug development, and arguably none for studying etiology. Those models that do exist have questionable clinical relevance. Methods Given our goal of developing luminal models, we focused on six cell lines derived by minimal mutagenesis from normal human breast cells, and asked if any could generate clinically relevant xenografts, which we then extensively characterized. Results Xenografts of one cell line, 184AA3, consistently formed ER+ adenocarcinomas that had a high proliferative rate and other features consistent with “luminal B” intrinsic subtype. Squamous and spindle cell/mesenchymal differentiation was absent, in stark contrast to other cell lines that we examined or others have reported. We explored intratumoral heterogeneity produced by 184AA3 by immunophenotyping xenograft tumors and cultured cells, and characterized marker expression by immunofluorescence and flow cytometry. A CD44High subpopulation was discovered, yet their tumor forming ability was far less than CD44Low cells. Single cell cloning revealed the phenotypic plasticity of 184AA3, consistent with the intratumoral heterogeneity observed in xenografts. Characterization of ER expression in cultures revealed ER protein and signaling is intact, yet when estrogen was depleted in culture, and in vivo, it did not impact cell or tumor growth, analogous to therapeutically resistant ER+ cancers. Conclusions This model is appropriate for studies of the etiology of ovarian hormone independent adenocarcinomas, for identification of therapeutic targets, predictive testing and drug development. PMID:26661596

  17. Reduced Dose and Intermittent Treatment with Lapatinib and Trastuzumab for Potent Blockade of the HER Pathway in HER-2/neu Overexpressing Breast Tumor Xenografts

    PubMed Central

    Rimawi, Mothaffar F.; Wiechmann, Lisa S.; Wang, Yen-Chao; Huang, Catherine; Migliaccio, Ilenia; Wu, Meng-Fen; Gutierrez, Carolina; Hilsenbeck, Susan G.; Arpino, Grazia; Massarweh, Suleiman; Ward, Robin; Soliz, Robert; Osborne, C. Kent; Schiff, Rachel

    2010-01-01

    Purpose We have shown that incomplete blockade of the Human Epidermal Growth Factor (HER) pathway is a mechanism of resistance to treatment with trastuzumab (T) in HER2-overexpressing tumor xenografts. We now investigate whether the addition of lapatinib (L), a dual HER1/2 kinase inhibitor, to T results in more potent inhibition of the pathway and therefore inhibition of tumor growth, and whether reduced dose and intermittent treatment with the combination is equally effective. Experimental Design Nude mice bearing HER2-overexpressing MCF7/HER2-18 or BT474 xenograft tumors were treated with L, T, alone or in various combinations with other HER inhibitors. L+T for short duration (14, 42 days), intermittent administration (14 days on/off), and reduced dosing (1/2 dose) was also investigated. Inhibition of tumor growth, downstream signaling, proliferation, and induction of apoptosis were assessed. All statistical tests were two-sided. Results L+T was the most effective regimen in both MCF7/HER2-18 and BT474 xenografts with complete tumor regression (CR) observed in all mice. Intermittent and reduced dose treatment (½ dose) resulted in high rates of CR and low rates of tumor recurrence that were comparable to full dose continuous treatment. L+T resulted in significantly reduced downstream signaling and proliferation, and increased apoptosis. Conclusions L+T is a potent and effective combination even when given in reduced dose or intermittent schedule potentially resulting in lower toxicity and reduced cost if translated to patients. These findings warrant timely clinical testing. PMID:21138857

  18. Native MAG-1 antibody almost destroys human breast cancer xenografts.

    PubMed

    North, William G; Pang, Roy H L; Gao, Guohong; Memoli, Vincent A; Cole, Bernard F

    2011-06-01

    A native form of mouse monoclonal IgG1 antibody called MAG-1, which recognizes an epitope on provasopressin, has been found to shrink and produce extensive necrosis of human breast tumor xenografts in nu/nu mice. We examined the ability of (90)Yttrium-labeled and native MAG-1 to affect the growth in nu/nu mice of cancer xenografts that were estrogen-responsive (from MCF-7 cells) and triple-negative (from MDA-MB231 cells). The growth rates of treated cells were compared to those receiving saline vehicle and those receiving (90)Yttrium-labeled and native forms of the ubiquitous antibody, MOPC21. Short-term treatments (4 doses over 6 days) not only with (90)Yttrium-MAG-1 but also native MAG-1 produced large reductions in size of rapidly growing tumors of both types, while both (90)Yttrium- MOPC21 and native MOPC21 had no effect. Native and (90)Yttrium-MAG-1 effects were similar, and arrested tumors recommenced growing soon after treatments stopped. Increasing native MAG-1 treatment to single dosing for 16 consecutive days shrank tumors of both types with no regrowth apparent over a 20-day post-treatment period of observation. Pathological examination of such tumors revealed they had undergone very extensive (>66%) necrosis.

  19. Patient-Derived Tumor Xenografts Are Susceptible to Formation of Human Lymphocytic Tumors.

    PubMed

    Bondarenko, Gennadiy; Ugolkov, Andrey; Rohan, Stephen; Kulesza, Piotr; Dubrovskyi, Oleksii; Gursel, Demirkan; Mathews, Jeremy; O'Halloran, Thomas V; Wei, Jian J; Mazar, Andrew P

    2015-09-01

    Patient-derived xenograft (PDX) tumor models have emerged as a new approach to evaluate the effects of cancer drugs on patients' personalized tumor grafts enabling to select the best treatment for the cancer patient and providing a new tool for oncology drug developers. Here, we report that human tumors engrafted in immunodeficient mice are susceptible to formation of B-and T-cell PDX tumors. We xenografted human primary and metastatic tumor samples into immunodeficient mice and found that a fraction of PDX tumors generated from patients' samples of breast, colon, pancreatic, bladder and renal cancer were histologically similar to lymphocytic neoplasms. Moreover, we found that the first passage of breast and pancreatic cancer PDX tumors after initial transplantation of the tumor pieces from the same human tumor graft could grow as a lymphocytic tumor in one mouse and as an adenocarcinoma in another mouse. Whereas subcutaneous PDX tumors resembling human adenocarcinoma histology were slow growing and non-metastatic, we found that subcutaneous PDX lymphocytic tumors were fast growing and formed large metastatic lesions in mouse lymph nodes, liver, lungs, and spleen. PDX lymphocytic tumors were comprised of B-cells which were Epstein-Barr virus positive and expressed CD45 and CD20. Because B-cells are typically present in malignant solid tumors, formation of B-cell tumor may evolve in a wide range of PDX tumor models. Although PDX tumor models show great promise in the development of personalized therapy for cancer patients, our results suggest that confidence in any given PDX tumor model requires careful screening of lymphocytic markers. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Inhibition on the growth of human MDA-MB-231 breast cancer cells in vitro and tumor growth in a mouse xenograft model by Se-containing polysaccharides from Pyracantha fortuneana.

    PubMed

    Yuan, Chengfu; Wang, Changdong; Wang, Junjie; Kumar, Vikas; Anwar, Firoz; Xiao, Fangxiang; Mushtaq, Gohar; Liu, Yufei; Kamal, Mohammad Amjad; Yuan, Ding

    2016-11-01

    Breast cancer is the second cause of cancer-related death among Women. Current therapies for breast cancer have adverse side-effects. Selenium (Se)-containing polysaccharides have multiple health benefits to humans. Pyracantha fortuneana (P. fortuneana) contains rich Se polysaccharides. We hypothesized that Se-containing polysaccharides from P. fortuneana possess anticancer activity on breast cancer via inhibiting growth and inducing apoptosis. This study aimed to assess the anticancer effect of Se-containing polysaccharides from P. fortuneana and the underlying mechanisms. Se-containing polysaccharides were purified. Their properties and monosaccharide compositions were analyzed. Their effects on cell growth, expression of cycle proteins, apoptosis and apoptosis-related protein, and tumor growth in mouse xenograft model were examined. This extract contained 93.7% (w/w) of carbohydrate, 2.1% (w/w) of uronic acid and 3.7μg/g of Se, and was considered as Se-conjugated polysaccharides (Se-PFPs). In vitro studies showed that treatment of triple negative breast cancer (TNBC) MDA-MB-231 cells with Se-PFPs (1) inhibited cell growth dose-dependently by arresting cells at G2 phase via inhibiting CDC25C-CyclinB1/CDC2 pathway; (2) caused apoptosis associated with increased p53, Bax, Puma and Noxa, decreased Bcl2, increased Bax/Bcl2 ratio and increased activities of caspases 3/9, suggesting its effect on p53-mediated cytochrome c-caspase pathway. Treatment of nude mice bearing MDA-MB-231-derived xenograft tumors with Se-PFPs significantly reduced tumor growth without altering body weight, confirming its antitumor activity without toxic side effects. Se-PFPs enhanced doxorubicin cytotoxic effects. It is concluded that Se-containing polysaccharides from P. fortuneana potently inhibit the growth and induce apoptosis of TNBC cells and can be potential anticancer agent for TNBC. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Synthetic progestins induce growth and metastasis of BT-474 human breast cancer xenografts in nude mice

    PubMed Central

    Liang, Yayun; Benakanakere, Indira; Besch-Williford, Cynthia; Hyder, Ryyan S; Ellersieck, Mark R.; Hyder, Salman M

    2010-01-01

    Objective Previous studies showed that sequential exposure to estrogen and progesterone or medroxyprogesterone acetate (MPA) stimulates vascularization and promotes the progression of BT-474 and T47-D human breast cancer cell xenografts in nude mice (Liang et al, Cancer Res 2007, 67:9929). In this follow-up study, the effects of progesterone, MPA, norgestrel (N-EL) and norethindrone (N-ONE) on BT-474 xenograft tumors were compared in the context of several different hormonal environments. N-EL and N-ONE were included in the study since synthetic progestins vary considerably in their biological effects and the effects of these two progestins on the growth of human tumor xenografts are not known. Methods Estradiol-supplemented intact and ovariectomized Immunodeficient mice were implanted with BT-474 cells. Progestin pellets were implanted either simultaneously with estradiol pellets 2-days prior to tumor cell injection (i.e. combined), or 5-days following tumor cell injections (i.e. sequentially). Results Progestins stimulated the growth of BT-474 xenograft tumors independent of exposure timing and protocol, MPA stimulated the growth of BT-474 xenograft tumors in ovariectomized mice and progestins stimulated VEGF elaboration and increased tumor vascularity. Progestins also increased lymph node metastasis of BT-474 cells. Therefore, progestins, including N-EL and N-ONE, induce the progression of breast cancer xenografts in nude mice and promote tumor metastasis. Conclusions These observations suggests that women who ingest progestins for HT or oral contraception could be more at risk for developing breast cancer as a result of proliferation of existing latent tumor cells. Such risks should be considered in the clinical setting. PMID:20461021

  2. An Experimental Analysis of the Molecular Effects of Trastuzumab (Herceptin) and Fulvestrant (Falsodex), as Single Agents or in Combination, on Human HR+/HER2+ Breast Cancer Cell Lines and Mouse Tumor Xenografts

    PubMed Central

    Lu, Yunshu; Jia, Yijun; Ding, Longlong; Bai, Fang; Ge, Meixin; Lin, Qing; Wu, Kejin

    2017-01-01

    Purpose To investigate the effects of trastuzumab (herceptin) and fulvestrant (falsodex) either in combination or alone, on downstream cell signaling pathways in lab-cultured human HR+/HER2+ breast cancer cell lines ZR-75-1 and BT-474, as well as on protein expression levels in mouse xenograft tissue. Methods Cells were cultivated in the presence of trastuzumab or fulvestrant or both. Molecular events that resulted in an inhibition of cell proliferation and cell cycle progression or in an increased rate of apoptosis were studied. The distribution and abundance of the proteins p-Akt and p-Erk expressed in these cells in response to single agents or combinatorial treatment were also investigated. In addition, the effects of trastuzumab and fulvestrant, either as single agents or in combination on tumor growth as well as on expression of the protein p-MED1 expressed in in vivo mouse xenograft models was also examined. Results Cell proliferation was increasingly inhibited by trastuzumab or fulvestrant or both, with a CI<1 and DRI>1 in both human cell lines. The rate of apoptosis increased only in the BT-474 cell line and not in the ZR-75-1 cell line upon treatment with fulvestrant and not trastuzumab as a single agent (P<0.05). Interestingly, fulvestrant, in combination with trastuzumab, did not significantly alter the rate of apoptosis (in comparison with fulvestrant alone), in the BT-474 cell line (P>0.05). Cell accumulation in the G1 phase of cell cycle was investigated in all treatment groups (P<0.05), and the combination of trastuzumab and fulvestrant reversed the effects of fulvestrant alone on p-Akt and p-Erk protein expression levels. Using ZR-75-1 or BT-474 to generate in vivo tumor xenografts in BALB/c athymic mouse models, we showed that a combination of both drugs resulted in a stronger inhibition of tumor growth (P<0.05) and a greater decrease in the levels of activated MED1 (p-MED1) expressed in tumor issues compared with the use of either drug as a

  3. p53 deficiency linked to B cell translocation gene 2 (BTG2) loss enhances metastatic potential by promoting tumor growth in primary and metastatic sites in patient-derived xenograft (PDX) models of triple-negative breast cancer.

    PubMed

    Powell, Emily; Shao, Jiansu; Yuan, Yuan; Chen, Hsiang-Chun; Cai, Shirong; Echeverria, Gloria V; Mistry, Nipun; Decker, Keith F; Schlosberg, Christopher; Do, Kim-Anh; Edwards, John R; Liang, Han; Piwnica-Worms, David; Piwnica-Worms, Helen

    2016-01-27

    Despite advances in early diagnosis and treatment of cancer patients, metastasis remains the major cause of mortality. TP53 is one of the most frequently mutated genes in human cancer, and these alterations can occur during the early stages of oncogenesis or as later events as tumors progress to more aggressive forms. Previous studies have suggested that p53 plays a role in cellular pathways that govern metastasis. To investigate how p53 deficiency contributes to late-stage tumor growth and metastasis, we developed paired isogenic patient-derived xenograft (PDX) models of triple-negative breast cancer (TNBC) differing only in p53 status for longitudinal analysis. Patient-derived isogenic human tumor lines differing only in p53 status were implanted into mouse mammary glands. Tumor growth and metastasis were monitored with bioluminescence imaging, and circulating tumor cells (CTCs) were quantified by flow cytometry. RNA-Seq was performed on p53-deficient and p53 wild-type tumors, and functional validation of a lead candidate gene was performed in vivo. Isogenic p53 wild-type and p53-deficient tumors metastasized out of mammary glands and colonized distant sites with similar frequency. However, p53-deficient tumors metastasized earlier than p53 wild-type tumors and grew faster in both primary and metastatic sites as a result of increased proliferation and decreased apoptosis. In addition, greater numbers of CTCs were detected in the blood of mice engrafted with p53-deficient tumors. However, when normalized to tumor mass, the number of CTCs isolated from mice bearing parental and p53-deficient tumors was not significantly different. Gene expression profiling followed by functional validation identified B cell translocation gene 2 (BTG2), a downstream effector of p53, as a negative regulator of tumor growth both at primary and metastatic sites. BTG2 expression status correlated with survival of TNBC patients. Using paired isogenic PDX-derived metastatic TNBC cells

  4. Suicide HSVtk Gene Delivery by Neurotensin-Polyplex Nanoparticles via the Bloodstream and GCV Treatment Specifically Inhibit the Growth of Human MDA-MB-231 Triple Negative Breast Cancer Tumors Xenografted in Athymic Mice

    PubMed Central

    Castillo-Rodríguez, Rosa A.; Arango-Rodríguez, Martha L.; Escobedo, Lourdes; Hernandez-Baltazar, Daniel; Gompel, Anne

    2014-01-01

    The human breast adenocarcinoma cell line MDA-MB-231 has the triple-negative breast cancer (TNBC) phenotype, which is an aggressive subtype with no specific treatment. MDA-MB-231 cells express neurotensin receptor type 1 (NTSR1), which makes these cells an attractive target of therapeutic genes that are delivered by the neurotensin (NTS)-polyplex nanocarrier via the bloodstream. We addressed the relevance of this strategy for TNBC treatment using NTS-polyplex nanoparticles harboring the herpes simplex virus thymidine kinase (HSVtk) suicide gene and its complementary prodrug ganciclovir (GCV). The reporter gene encoding green fluorescent protein (GFP) was used as a control. NTS-polyplex successfully transfected both genes in cultured MDA-MB-231 cells. The transfection was demonstrated pharmacologically to be dependent on activation of NTSR1. The expression of HSVtk gene decreased cell viability by 49% (P<0.0001) and induced apoptosis in cultured MDA-MB-231 cells after complementary GCV treatment. In the MDA-MB-231 xenograft model, NTS-polyplex nanoparticles carrying either the HSVtk gene or GFP gene were injected into the tumors or via the bloodstream. Both routes of administration allowed the NTS-polyplex nanoparticles to reach and transfect tumorous cells. HSVtk expression and GCV led to apoptosis, as shown by the presence of cleaved caspase-3 and Apostain immunoreactivity, and significantly inhibited the tumor growth (55–60%) (P<0.001). At the end of the experiment, the weight of tumors transfected with the HSVtk gene was 55% less than that of control tumors (P<0.05). The intravenous transfection did not induce apoptosis in peripheral organs. Our results offer a promising gene therapy for TNBC using the NTS-polyplex nanocarrier. PMID:24824754

  5. Suicide HSVtk gene delivery by neurotensin-polyplex nanoparticles via the bloodstream and GCV Treatment specifically inhibit the growth of human MDA-MB-231 triple negative breast cancer tumors xenografted in athymic mice.

    PubMed

    Castillo-Rodríguez, Rosa A; Arango-Rodríguez, Martha L; Escobedo, Lourdes; Hernandez-Baltazar, Daniel; Gompel, Anne; Forgez, Patricia; Martínez-Fong, Daniel

    2014-01-01

    The human breast adenocarcinoma cell line MDA-MB-231 has the triple-negative breast cancer (TNBC) phenotype, which is an aggressive subtype with no specific treatment. MDA-MB-231 cells express neurotensin receptor type 1 (NTSR1), which makes these cells an attractive target of therapeutic genes that are delivered by the neurotensin (NTS)-polyplex nanocarrier via the bloodstream. We addressed the relevance of this strategy for TNBC treatment using NTS-polyplex nanoparticles harboring the herpes simplex virus thymidine kinase (HSVtk) suicide gene and its complementary prodrug ganciclovir (GCV). The reporter gene encoding green fluorescent protein (GFP) was used as a control. NTS-polyplex successfully transfected both genes in cultured MDA-MB-231 cells. The transfection was demonstrated pharmacologically to be dependent on activation of NTSR1. The expression of HSVtk gene decreased cell viability by 49% (P<0.0001) and induced apoptosis in cultured MDA-MB-231 cells after complementary GCV treatment. In the MDA-MB-231 xenograft model, NTS-polyplex nanoparticles carrying either the HSVtk gene or GFP gene were injected into the tumors or via the bloodstream. Both routes of administration allowed the NTS-polyplex nanoparticles to reach and transfect tumorous cells. HSVtk expression and GCV led to apoptosis, as shown by the presence of cleaved caspase-3 and Apostain immunoreactivity, and significantly inhibited the tumor growth (55-60%) (P<0.001). At the end of the experiment, the weight of tumors transfected with the HSVtk gene was 55% less than that of control tumors (P<0.05). The intravenous transfection did not induce apoptosis in peripheral organs. Our results offer a promising gene therapy for TNBC using the NTS-polyplex nanocarrier.

  6. Maintaining Tumor Heterogeneity in Patient-Derived Tumor Xenografts.

    PubMed

    Cassidy, John W; Caldas, Carlos; Bruna, Alejandra

    2015-08-01

    Preclinical models often fail to capture the diverse heterogeneity of human malignancies and as such lack clinical predictive power. Patient-derived tumor xenografts (PDX) have emerged as a powerful technology: capable of retaining the molecular heterogeneity of their originating sample. However, heterogeneity within a tumor is governed by both cell-autonomous (e.g., genetic and epigenetic heterogeneity) and non-cell-autonomous (e.g., stromal heterogeneity) drivers. Although PDXs can largely recapitulate the polygenomic architecture of human tumors, they do not fully account for heterogeneity in the tumor microenvironment. Hence, these models have substantial utility in basic and translational research in cancer biology; however, study of stromal or immune drivers of malignant progression may be limited. Similarly, PDX models offer the ability to conduct patient-specific in vivo and ex vivo drug screens, but stromal contributions to treatment responses may be under-represented. This review discusses the sources and consequences of intratumor heterogeneity and how these are recapitulated in the PDX model. Limitations of the current generation of PDXs are discussed and strategies to improve several aspects of the model with respect to preserving heterogeneity are proposed.

  7. Increased expression of Beige/Brown adipose markers from host and breast cancer cells influence xenograft formation in mice

    PubMed Central

    Singh, Rajan; Parveen, Meher; Basgen, John M.; Fazel, Sayeda; Meshesha, Meron F.; Thames, Easter C.; Moore, Brandis; Martinez, Luis; Howard, Carolyn B.; Vergnes, Laurent; Reue, Karen; Pervin, Shehla

    2016-01-01

    The initiation and progression of breast cancer is a complex process that is influenced by heterogeneous cell populations within the tumor microenvironment (TME). Although adipocytes have been shown to promote breast cancer development, adipocyte characteristics involved in this process remain poorly understood. In this study, we demonstrate enrichment of beige/brown adipose markers, contributed from the host as well as tumor cells, in the xenografts from breast cancer cell lines. In addition to uncoupling protein-1 (UCP1) that is exclusively expressed in beige/brown adipocytes, gene expression for classical brown (MYF5, EVA1 and OPLAH), as well as beige (CD137/TNFRSF9 and TBX1) adipocyte markers, were also elevated in the xenografts. Enrichment of beige/brown characteristics in the xenografts was independent of the site of implantation of the breast tumor cells. Early stages of xenografts showed an expansion of a subset of mammary cancer stem cells (MCSCs) that expressed PRDM16, a master regulator of brown adipocyte differentiation. Depletion of UCP1+ or Myf5+ cells significantly reduced tumor development. There was increased COX-2 (MT-CO2) expression, which is known to stimulate formation of beige adipocytes in early xenografts and treatment with a COX-2 inhibitor (SC236) reduced tumor growth. By contrast, treatment with factors that induce brown adipocyte differentiation in vitro led to larger tumors in vivo. A panel of xenografts derived from established breast tumor cells as well as patient-tumor tissues were generated that expressed key brown adipose tissue (BAT)-related markers and contained cells that morphologically resembled brown adipocytes. Implications This is the first report demonstrating that beige /brown adipocyte characteristics could play an important role in breast tumor development and suggest a potential target for therapeutic drug design. PMID:26464213

  8. A Renewable Tissue Resource of Phenotypically Stable, Biologically and Ethnically Diverse, Patient-derived Human Breast Cancer Xenograft (PDX) Models

    PubMed Central

    Zhang, Xiaomei; Claerhout, Sofie; Pratt, Aleix; Dobrolecki, Lacey E.; Petrovic, Ivana; Lai, Qing; Landis, Melissa D.; Wiechmann, Lisa; Schiff, Rachel; Giuliano, Mario; Wong, Helen; Fuqua, Suzanne W.; Contreras, Alejandro; Gutierrez, Carolina; Huang, Jian; Mao, Sufeng; Pavlick, Anne C.; Froehlich, Amber M.; Wu, Meng-Fen; Tsimelzon, Anna; Hilsenbeck, Susan G.; Chen, Edward S.; Zuloaga, Pavel; Shaw, Chad A.; Rimawi, Mothaffar F.; Perou, Charles M.; Mills, Gordon B.; Chang, Jenny C.; Lewis, Michael T.

    2013-01-01

    Breast cancer research is hampered by difficulties in obtaining and studying primary human breast tissue, and by the lack of in vivo preclinical models that reflect patient tumor biology accurately. To overcome these limitations, we propagated a cohort of human breast tumors grown in the epithelium-free mammary fat pad of SCID/Beige and NOD/SCID/IL2γ-receptor null (NSG) mice, under a series of transplant conditions. Both models yielded stably transplantable xenografts at comparably high rates (~21% and ~19%, respectively). Of the conditions tested, xenograft take rate was highest in the presence of a low-dose estradiol pellet. Overall, 32 stably transplantable xenograft lines were established, representing 25 unique patients. Most tumors yielding xenografts were “triple-negative” (ER-PR-HER2+) (n=19). However, we established lines from three ER-PR-HER2+ tumors, one ER+PR-HER2−, one ER+PR+HER2− and one “triple-positive” (ER+PR+HER2+) tumor. Serially passaged xenografts show biological consistency with the tumor of origin, are phenotypically stable across multiple transplant generations at the histologic, transcriptomic, proteomic, and genomic levels, and show comparable treatment responses as those observed clinically. Xenografts representing 12 patients, including two ER+ lines, showed metastasis to the mouse lung. These models thus serve as a renewable, quality-controlled tissue resource for preclinical studies investigating treatment response and metastasis. PMID:23737486

  9. Photo activation of HPPH encapsulated in “Pocket” liposomes triggers multiple drug release and tumor cell killing in mouse breast cancer xenografts

    PubMed Central

    Sine, Jessica; Urban, Cordula; Thayer, Derek; Charron, Heather; Valim, Niksa; Tata, Darrell B; Schiff, Rachel; Blumenthal, Robert; Joshi, Amit; Puri, Anu

    2015-01-01

    We recently reported laser-triggered release of photosensitive compounds from liposomes containing dipalmitoylphosphatidylcholine (DPPC) and 1,2 bis(tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine (DC8,9PC). We hypothesized that the permeation of photoactivated compounds occurs through domains of enhanced fluidity in the liposome membrane and have thus called them “Pocket” liposomes. In this study we have encapsulated the red light activatable anticancer photodynamic therapy drug 2-(1-Hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH) (Ex/Em410/670 nm) together with calcein (Ex/Em490/517 nm) as a marker for drug release in Pocket liposomes. A mole ratio of 7.6:1 lipid:HPPH was found to be optimal, with >80% of HPPH being included in the liposomes. Exposure of liposomes with a cw-diode 660 nm laser (90 mW, 0–5 minutes) resulted in calcein release only when HPPH was included in the liposomes. Further analysis of the quenching ratios of liposome-entrapped calcein in the laser treated samples indicated that the laser-triggered release occurred via the graded mechanism. In vitro studies with MDA-MB-231-LM2 breast cancer cell line showed significant cell killing upon treatment of cell-liposome suspensions with the laser. To assess in vivo efficacy, we implanted MDA-MB-231-LM2 cells containing the luciferase gene along the mammary fat pads on the ribcage of mice. For biodistribution experiments, trace amounts of a near infrared lipid probe DiR (Ex/Em745/840 nm) were included in the liposomes. Liposomes were injected intravenously and laser treatments (90 mW, 0.9 cm diameter, for an exposure duration ranging from 5–8 minutes) were done 4 hours postinjection (only one tumor per mouse was treated, keeping the second flank tumor as control). Calcein release occurred as indicated by an increase in calcein fluorescence from laser treated tumors only. The animals were observed for up to 15 days postinjection and tumor volume and luciferase expression was measured. A

  10. High-resolution single-photon emission computed tomography and X-ray computed tomography imaging of Tc-99m-labeled anti-DR5 antibody in breast tumor xenografts.

    PubMed

    Kim, Hyunki; Chaudhuri, Tandra R; Buchsbaum, Donald J; Wang, Deli; Zinn, Kurt R

    2007-03-01

    A murine, apoptosis-inducing monoclonal antibody (mTRA-8) targeting human DR5 was radiolabeled with Tc-99m. The binding affinity (K(d)) and the number of DR5 receptors were measured in MD MBA-231-derived 2LMP cell lines that were "sensitive" or "resistant" to mTRA-8 killing. Single-photon emission computed tomography and X-ray computed tomography (SPECT/CT) evaluated the Tc-99m-mTRA-8 retention and distribution within xenograft tumors; biodistribution analyses confirmed the levels. Scatchard assays showed specific and high binding affinity of Tc-99m-mTRA-8 to DR5; the killing efficacy of mTRA-8 was unchanged by Tc-99m labeling. There was no significant difference between sensitive and resistant 2LMP cells for K(d) values (1.5 +/- 0.3 nmol/L = acid labile), or DR5 receptors (mean/cell = 11,000). SPECT/CT imaging analyses at 6 h after injection of Tc-99m-mTRA-8 revealed the second 1.5 mm shell from the surface of the mammary fat pad tumors (n = 5; 5,627 mm(3)) retained 12.7 +/- 1.4%ID/g, higher than the other shells, with no difference between the sensitive and resistant 2LMP tumors. Binding of Tc-99m-labeled mTRA-8 in tumor was specific; excess unlabeled mTRA-8 blocked Tc-99m-mTRA-8 retention in tumor by 45%. Retention of Tc-99m-labeled isotype antibody in tumor was consistent with the blocking study, and 30% lower. These studies show that SPECT/CT imaging provided detailed distribution information of Tc-99m-labeled mTRA-8 within breast tumor xenografts. Imaging could provide a mechanism to assess DR5 modulation when DR5 therapy is combined with chemotherapy and radiation, and thereby aid in optimizing the dosing schedule.

  11. Evaluation of 89Zr-pertuzumab in Breast Cancer Xenografts

    PubMed Central

    2015-01-01

    Pertuzumab is a monoclonal antibody that binds to HER2 and is used in combination with another HER2–specific monoclonal antibody, trastuzumab, for the treatment of HER2+ metastatic breast cancer. Pertuzumab binds to an HER2 binding site distinct from that of trastuzumab, and its affinity is enhanced when trastuzumab is present. We aim to exploit this enhanced affinity of pertuzumab for its HER2 binding epitope and adapt this antibody as a PET imaging agent by radiolabeling with 89Zr to increase the sensitivity of HER2 detection in vivo. Here, we investigate the biodistribution of 89Zr-pertuzumab in HER2–expressing BT-474 and HER2–nonexpressing MDA-MB-231 xenografts to quantitatively assess HER2 expression in vivo. In vitro cell binding studies were performed resulting in retained immunoreactivity and specificity for HER2–expressing cells. In vivo evaluation of 89Zr-pertuzumab was conducted in severely combined immunodeficient mice, subcutaneously inoculated with BT-474 and MDA-MB-231 cells. 89Zr-pertuzumab was systemically administered and imaged at 7 days postinjection (p.i.) followed by terminal biodistribution studies. Higher tumor uptake was observed in BT-474 compared to MDA-MB-231 xenografts with 47.5 ± 32.9 and 9.5 ± 1.7% ID/g, respectively at 7 days p.i (P = 0.0009) and blocking studies with excess unlabeled pertuzumab showed a 5-fold decrease in BT-474 tumor uptake (P = 0.0006), confirming the in vivo specificity of this radiotracer. Importantly, we observed that the tumor accumulation of 89Zr-pertuzumab was increased in the presence of unlabeled trastuzumab, at 173 ± 74.5% ID/g (P = 0.01). Biodistribution studies correlate with PET imaging quantification using max SUV (r = 0.98, P = 0.01). Collectively, these results illustrate that 89Zr-pertuzumab as a PET imaging agent may be beneficial for the quantitative and noninvasive assessment of HER2 expression in vivo especially for patients undergoing trastuzumab therapy. PMID:25058168

  12. Patient-derived luminal breast cancer xenografts retain hormone receptor heterogeneity and help define unique estrogen-dependent gene signatures.

    PubMed

    Kabos, Peter; Finlay-Schultz, Jessica; Li, Chunling; Kline, Enos; Finlayson, Christina; Wisell, Joshua; Manuel, Christopher A; Edgerton, Susan M; Harrell, J Chuck; Elias, Anthony; Sartorius, Carol A

    2012-09-01

    Bypassing estrogen receptor (ER) signaling during development of endocrine resistance remains the most common cause of disease progression and mortality in breast cancer patients. To date, the majority of molecular research on ER action in breast cancer has occurred in cell line models derived from late stage disease. Here we describe patient-derived ER+ luminal breast tumor models for the study of intratumoral hormone and receptor action. Human breast tumor samples obtained from patients post surgery were immediately transplanted into NOD/SCID or NOD/SCID/ILIIrg(-/-) mice under estrogen supplementation. Five transplantable patient-derived ER+ breast cancer xenografts were established, derived from both primary and metastatic cases. These were assessed for estrogen dependency, steroid receptor expression, cancer stem cell content, and endocrine therapy response. Gene expression patterns were determined in select tumors ±estrogen and ±endocrine therapy. Xenografts morphologically resembled the patient tumors of origin, and expressed similar levels of ER (5-99 %), and progesterone and androgen receptors, over multiple passages. Four of the tumor xenografts were estrogen dependent, and tamoxifen or estrogen withdrawal (EWD) treatment abrogated estrogen-dependent growth and/or tumor morphology. Analysis of the ER transcriptome in select tumors revealed notable differences in ER mechanism of action, and downstream activated signaling networks, in addition to identifying a small set of common estrogen-regulated genes. Treatment of a naïve tumor with tamoxifen or EWD showed similar phenotypic responses, but relatively few similarities in estrogen-dependent transcription, and affected signaling pathways. Several core estrogen centric genes were shared with traditional cell line models. However, novel tumor-specific estrogen-regulated potential target genes, such as cancer/testis antigen 45, were uncovered. These results evoke the importance of mapping both conserved

  13. Anticancer effect of silibinin on the xenograft model using MDA-MB-468 breast cancer cells.

    PubMed

    Kil, Won Ho; Kim, Sang Min; Lee, Jeong Eon; Park, Kyoung Sik; Nam, Seok Jin

    2014-10-01

    The aim of this study is to know whether silibinin has an anticancer effect on triple negative breast cancer xenograft model using MDA-MB-468 cells. To establish the xenograft model, we injected the MDA-MB-468 cells into female Balb/c-nude mice. After establishing a xenograft model, oral silibinin was administered to the tested mice in the way of 200 mg/kg for 45 days. The difference of mean tumor volume between silibinin fed mice and control mice was analyzed. The epidermal growth factor receptor (EGFR) phosphorylation in MDA-MB-468 cells was analyzed by Western blotting. The expression of VEGF, COX-2, and MMP-9 genes in tumor tissue was analyzed by real-time polymerase chain reaction (PCR). In the xenograft model using MDA-MB-468 cells, we found that oral administration of silibinin significantly suppressed the tumor volume (silibinin treated mice vs. control mice; 230.3 ± 61.6 mm(3) vs. 435.7 ± 93.5 mm(3), P < 0.001). The phosphorylation of EGFR in MDA-MB-468 cells was inhibited by treatment with 50 µg/mL of silibinin. In real time-PCR analysis of tumor tissue obtained from sacrificed mice, the gene expression of MMP-9, VEGF, and COX-2 was 51.8%-80% smaller in silibinin group than that of control group and we can also verify the similar result using Western blotting analysis. We verified that silibinin had anticancer effect on xenograft model of MDA-MB-468 cells in the way of preventing the phosphorylation of EGFR and eventually suppressed the production of COX-2, VEGF, and MMP-9 expression. Finally, the tumor volume of xenograft models was decreased after administration of Silibinin.

  14. Anticancer effect of silibinin on the xenograft model using MDA-MB-468 breast cancer cells

    PubMed Central

    Kim, Sang Min; Lee, Jeong Eon; Park, Kyoung Sik; Nam, Seok Jin

    2014-01-01

    Purpose The aim of this study is to know whether silibinin has an anticancer effect on triple negative breast cancer xenograft model using MDA-MB-468 cells. Methods To establish the xenograft model, we injected the MDA-MB-468 cells into female Balb/c-nude mice. After establishing a xenograft model, oral silibinin was administered to the tested mice in the way of 200 mg/kg for 45 days. The difference of mean tumor volume between silibinin fed mice and control mice was analyzed. The epidermal growth factor receptor (EGFR) phosphorylation in MDA-MB-468 cells was analyzed by Western blotting. The expression of VEGF, COX-2, and MMP-9 genes in tumor tissue was analyzed by real-time polymerase chain reaction (PCR). Results In the xenograft model using MDA-MB-468 cells, we found that oral administration of silibinin significantly suppressed the tumor volume (silibinin treated mice vs. control mice; 230.3 ± 61.6 mm3 vs. 435.7 ± 93.5 mm3, P < 0.001). The phosphorylation of EGFR in MDA-MB-468 cells was inhibited by treatment with 50 µg/mL of silibinin. In real time-PCR analysis of tumor tissue obtained from sacrificed mice, the gene expression of MMP-9, VEGF, and COX-2 was 51.8%-80% smaller in silibinin group than that of control group and we can also verify the similar result using Western blotting analysis. Conclusion We verified that silibinin had anticancer effect on xenograft model of MDA-MB-468 cells in the way of preventing the phosphorylation of EGFR and eventually suppressed the production of COX-2, VEGF, and MMP-9 expression. Finally, the tumor volume of xenograft models was decreased after administration of Silibinin. PMID:25317410

  15. Avidin targeting of intraperitoneal tumor xenografts.

    PubMed

    Yao, Z; Zhang, M; Sakahara, H; Saga, T; Arano, Y; Konishi, J

    1998-01-07

    Lectins (proteins that bind specific sugar molecules on glycoproteins and glycolipids) are expressed at various levels on the surface of tumor cells. Conjugation of cytotoxic agents to glycoproteins recognized by lectins could be useful in the treatment of tumors. Avidin (a highly glycosylated, positively charged protein found in egg white) contains terminal N-acetylglucosamine and mannose residues that bind to some lectins. In this study, we tested the ability of avidin, labeled through conjugation to radioactive biotin (a B vitamin), to target intraperitoneal tumors. Biotin was radioactively labeled with 111In. Four tumor models (one ovarian, one lung, and two colon) were established in nude mice by intraperitoneal injection of cultured cancer cells. The following two approaches were used in the intraperitoneal administration of avidin: 1) radioactive biotin-avidin conjugates were injected and 2) avidin was injected 1-24 hours before the injection of radioactive biotin (avidin pretargeting; avidin-biotin conjugates formed in vivo). The distribution of injected radioactivity in the tissues of treated animals was assessed. Radiolabeled avidin localized highly and rapidly in the tumors. More than 50% of the administered dose of avidin-biotin conjugate accumulated per gram of tumor tissue 2 hours after injection; high tumor uptake of radioactivity was observed up to 24 hours after conjugate injection. In contrast, accumulation of radioactivity in normal tissues was low, yielding high tumor to nontumor ratios. With avidin pretargeting, accumulation of radioactivity in the liver, kidney, and spleen was reduced to a greater extent than that in the tumor, and tumor to nontumor ratios were increased. Avidin may be a promising vehicle for the delivery of radioisotopes, drugs, toxins, or therapeutic genes to intraperitoneal tumors.

  16. Apigenin induces apoptosis and blocks growth of medroxyprogesterone acetate-dependent BT-474 xenograft tumors.

    PubMed

    Mafuvadze, Benford; Liang, Yayun; Besch-Williford, Cynthia; Zhang, Xu; Hyder, Salman M

    2012-08-01

    Recent clinical and epidemiological evidence shows that hormone replacement therapy (HRT) containing both estrogen and progestin increases the risk of primary and metastatic breast cancer in post-menopausal women while HRT containing only estrogen does not. We and others previously showed that progestins promote the growth of human breast cancer cells in vitro and in vivo. In this study, we sought to determine whether apigenin, a low molecular weight anti-carcinogenic flavonoid, inhibits the growth of aggressive Her2/neu-positive BT-474 xenograft tumors in nude mice exposed to medroxyprogesterone acetate (MPA), the most commonly used progestin in the USA. Our data clearly show that apigenin (50 mg/kg) inhibits progression and development of these xenograft tumors by inducing apoptosis, inhibiting cell proliferation, and reducing expression of Her2/neu. Moreover, apigenin reduced levels of vascular endothelial growth factor (VEGF) without altering blood vessel density, indicating that continued expression of VEGF may be required to promote tumor cell survival and maintain blood flow. While previous studies showed that MPA induces receptor activator of nuclear factor kappa-B ligand (RANKL) expression in rodent mammary gland, MPA reduced levels of RANKL in human tumor xenografts. RANKL levels remained suppressed in the presence of apigenin. Exposure of BT-474 cells to MPA in vitro also resulted in lower levels of RANKL; an effect that was independent of progesterone receptors since it occurred both in the presence and absence of the antiprogestin RU-486. In contrast to our in vivo observations, apigenin protected against MPA-dependent RANKL loss in vitro, suggesting that MPA and apigenin modulate RANKL levels differently in breast cancer cells in vivo and in vitro. These preclinical findings suggest that apigenin has potential as an agent for the treatment of progestin-dependent breast disease.

  17. Monitoring Serial Changes in Circulating Human Breast Cancer Cells in Mruine Xenograft Models

    PubMed Central

    Eliane, Jean-Pierre; Repollet, Madeline; Luker, Kathryn E.; Brown, Martha; Rae, James M.; Dontu, Gabriela; Schott, Anne F.; Wicha, Max; Doyle, Gerald V.; Hayes, Daniel F.; Luker, Gary D.

    2009-01-01

    Circulating tumor cells (CTC) are emerging as a powerful prognostic and predictive biomarker in several types of cancer, including breast, colon, and prostate. Studies of CTC in metastasis and further development of CTC as a biomarker in cancer have been limited by the inability to repetitively monitor CTC in mouse models of cancer. We have validated a method to enumerate CTC in blood samples obtained from living mice using a modified version of an in vitro diagnostic system for quantifying CTC in patients. Different routes of blood collection were tested to identify a method to reproducibly recover CTC from tumor-bearing mice without interference from contaminating normal murine epithelial cells. CTC are present in blood samples from mice bearing orthotopic xenografts of several different breast cancer cell lines and primary breast cancer cells from patient biopsies. We also show that this technology can be used for serial monitoring of CTC in mouse xenograft models of human breast cancer. These results establish a new method for studying CTC in mouse models of epithelial cancer, providing the foundation for studies of molecular regulation of CTC in cancer and CTC as biomarker for therapeutic efficacy. PMID:18632603

  18. DHEA increases epithelial markers and decreases mesenchymal proteins in breast cancer cells and reduces xenograft growth.

    PubMed

    Colín-Val, Zaira; González-Puertos, Viridiana Yazmín; Mendoza-Milla, Criselda; Gómez, Erika Olivia; Huesca-Gómez, Claudia; López-Marure, Rebeca

    2017-10-15

    Breast cancer is one of the most common neoplasias and the leading cause of cancer death in women worldwide. Its high mortality rate is linked to a great metastatic capacity associated with the epithelial-mesenchymal transition (EMT). During this process, a decrease in epithelial proteins expression and an increase of mesenchymal proteins are observed. On the other hand, it has been shown that dehydroepiandrosterone (DHEA), the most abundant steroid in human plasma, inhibits migration of breast cancer cells; however, the underlying mechanisms have not been elucidated. In this study, the in vitro effect of DHEA on the expression pattern of some EMT-related proteins, such as E-cadherin (epithelial), N-cadherin, vimentin and Snail (mesenchymal) was measured by Western blot and immunofluorescence in MDA-MB-231 breast cancer cells with invasive, metastatic and mesenchymal phenotype. Also, the in vivo effect of DHEA on xenograft tumor growth in nude mice (nu(-)/nu(-)) and on expression of the same epithelial and mesenchymal proteins in generated tumors was evaluated. We found that DHEA increased expression of E-cadherin and decreased N-cadherin, vimentin and Snail expression both in MD-MB-231 cells and in the formed tumors, possibly by DHEA-induced reversion of mesenchymal phenotype. These results were correlated with a tumor size reduction in mouse xenografts following DHEA administration either a week earlier or concurrent with breast cancer cells inoculation. In conclusion, DHEA could be useful in the treatment of breast cancer with mesenchymal phenotype. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Monitoring Apoptosis of Breast Cancer Xenograft After Paclitaxel Treatment With 99mTc-Labeled Duramycin SPECT/CT.

    PubMed

    Luo, Rui; Niu, Lei; Qiu, Fan; Fang, Wei; Fu, Tong; Zhao, Ming; Zhang, Ying-Jian; Hua, Zi-Chun; Li, Xiao-Feng; Wang, Feng

    2016-01-01

    Our goal was to validate the feasibility of(99m)Tc-duramycin as a potential apoptosis probe for monitoring tumor response to paclitaxel in breast cancer xenografts. The binding of(99m)Tc-duramycin to phosphatidylethanolamine was validated in vitro using paclitaxel-treated human breast carcinoma MDA-MB-231 cells. Female BALB/c mice (n = 5) bearing breast cancer xenografts were randomized into 2 groups and intraperitoneally injected with 40 mg/kg paclitaxel or phosphate-buffered saline.(99m)Tc-duramycin (37-55.5 MBq) was injected at 72 hours posttreatment, and single-photon emission computed tomography/computed tomography was performed at 2 hours postinjection. Apoptotic cells and activated caspase 3 in explanted tumor tissue were measured by flow cytometry. Cellular ultrastructural changes were assessed by light and transmission electron microscopy.(99m)Tc-duramycin with radiochemical purity of >90% exhibited rapid blood clearance and predominantly renal clearance. The tumor-to-muscle ratio in the paclitaxel-treated group (5.29 ± 0.62) was significantly higher than that in the control. Tumor volume was decreased dramatically, whereas tumor uptake of(99m)Tc-duramycin (ex vivo) significantly increased following paclitaxel treatment, which was consistent with apoptotic index, histological findings, and ultrastructural changes. Our data demonstrated the feasibility of(99m)Tc-duramycin for early detection of apoptosis after paclitaxel chemotherapy in breast carcinoma xenografts. © The Author(s) 2016.

  20. Inhibition of human breast cancer xenograft growth by cruciferous vegetable constituent benzyl isothiocyanate.

    PubMed

    Warin, Renaud; Xiao, Dong; Arlotti, Julie A; Bommareddy, Ajay; Singh, Shivendra V

    2010-05-01

    Benzyl isothiocyanate (BITC), a constituent of cruciferous vegetables such as garden cress, inhibits growth of human breast cancer cell lines in culture. The present study was undertaken to determine in vivo efficacy of BITC against MDA-MB-231 human breast cancer xenografts. The BITC administration retarded growth of MDA-MB-231 cells subcutaneously implanted in female nude mice without causing weight loss or any other side effects. The BITC-mediated suppression of MDA-MB-231 xenograft growth correlated with reduced cell proliferation as revealed by immunohistochemical analysis for Ki-67 expression. Analysis of the vasculature in the tumors from BITC-treated mice indicated smaller vessel area compared with control tumors based on immunohistochemistry for angiogenesis marker CD31. The BITC-mediated inhibition of angiogenesis in vivo correlated with downregulation of vascular endothelial growth factor (VEGF) receptor 2 protein levels in the tumor. Consistent with these results, BITC treatment suppressed VEGF secretion and VEGF receptor 2 protein levels in cultured MDA-MB-231 cells. Moreover, the BITC-treated MDA-MB-231 cells exhibited reduced capacity for migration compared with vehicle-treated control cells. In contrast to cellular data, BITC administration failed to elicit apoptotic response as judged by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay. In conclusion, the present study demonstrates in vivo anti-cancer efficacy of BITC against MDA-MB-231 xenografts in association with reduced cell proliferation and suppression of neovascularization. These preclinical observations merit clinical investigation to determine efficacy of BITC against human breast cancers. (c) 2010 Wiley-Liss, Inc.

  1. beta 1 integrin inhibition dramatically enhances radiotherapy efficacy in human breast cancer xenografts

    SciTech Connect

    Park, Catherine C.; Park, Catherine C.; Zhang, Hui J.; Yao, Evelyn S.; Park, Chong J.; Bissell, Mina J.

    2008-06-02

    {beta}1 integrin signaling has been shown to mediate cellular resistance to apoptosis after exposure to ionizing radiation (IR). Other signaling molecules that increase resistance include Akt, which promotes cell survival downstream of {beta}1 integrin signaling. We showed previously that {beta}1 integrin inhibitory antibodies, AIIB2, enhance apoptosis and decrease growth in human breast cancer cells in 3 dimensional laminin-rich extracellular matrix (3D lrECM) cultures and in vivo. Here we asked whether AIIB2 could synergize with IR to modify Akt-mediated IR resistance. We used 3D lrECM cultures to test the optimal combination of AIIB2 with IR treatment of two breast cancer cell lines, MCF-7 and HMT3522-T4-2, as well as T4-2 myr-Akt breast cancer colonies or HMT3522-S-1, which form normal organotypic structures in 3D lrECM. Colonies were assayed for apoptosis and {beta}1 integrin/Akt signaling pathways were evaluated using western blot. In addition, mice bearing MCF-7 xenografts were used to validate the findings in 3D lrECM. We report that AIIB2 increased apoptosis optimally post-IR by down regulating Akt in breast cancer colonies in 3D lrECM. In vivo, addition of AIIB2 after IR significantly enhanced tumor growth inhibition and apoptosis compared to either treatment alone. Remarkably, the degree of tumor growth inhibition using AIIB2 plus 2 Gy radiation was similar to that of 8 Gy alone. We showed previously that AIIB2 had no discernible toxicity in mice; here, its addition allowed for a significant reduction in the IR dose that was necessary to achieve comparable growth inhibition and apoptosis in breast cancer xenografts in vivo.

  2. 13C Tracer Studies of Metabolism in Mouse Tumor Xenografts

    PubMed Central

    Lane, Andrew N.; Yan, Jun; Fan, Teresa W-M.

    2015-01-01

    Mice are widely used for human tumor xenograft studies of cancer development and drug efficacy and toxicity. Stable isotope tracing coupled with metabolomic analysis is an emerging approach for assaying metabolic network activity. In mouse models there are several routes of tracer introduction, which have particular advantages and disadvantages that depend on the model and the questions addressed. This protocol describes the bolus i.v. route via repeated tail vein injections of solutions of stable isotope enriched tracers including 13C6-glucose and 13C5,15N2-glutamine. Repeated injections give higher enrichments and over longer labeling periods than a single bolus. Multiple injections of glutamine are necessary to achieve adequate enrichment in engrafted tumors. PMID:26693168

  3. [Chemo- and endocrino-therapy of breast carcinoma xenografts in the dormant or exponential growth phase].

    PubMed

    Takeuchi, T

    1995-06-01

    In case of concerning about recurrence case after operative treatment of breast cancer, we must suppose existence of dormant breast cancer cell. To elucidate a rational treatment of the breast cancer in the dormant stage, we have developed a new treatment model using human breast carcinoma xenografts (MCF-7, R-27 and Br-10) in nude mice. After the sc inoculation of the tumors, the treatment was initiated with or without the previous estradiol (E2) stimulation. While MCF-7 was sensitive to mitomycin C (6 mg/kg i.p.) and and tamoxifen pellet (2.5 mg/mouse s.c.) in the dormant and exponential growth phase, R-27 and Br-10 were sensitive to the drugs only in the exponential growth phase but not in the dormant stage. These results suggested that the sensitivity of human breast carcinoma cells in the dormant stage is rather low, however some strain would be also sensitive to the treatment. This model seems to be useful in evaluating the adjuvant therapy of breast carcinoma after surgery.

  4. Patient-derived tumour xenografts for breast cancer drug discovery

    PubMed Central

    Batra, Ankita S; Greenwood, Wendy

    2016-01-01

    Despite remarkable advances in our understanding of the drivers of human malignancies, new targeted therapies often fail to show sufficient efficacy in clinical trials. Indeed, the cost of bringing a new agent to market has risen substantially in the last several decades, in part fuelled by extensive reliance on preclinical models that fail to accurately reflect tumour heterogeneity. To halt unsustainable rates of attrition in the drug discovery process, we must develop a new generation of preclinical models capable of reflecting the heterogeneity of varying degrees of complexity found in human cancers. Patient-derived tumour xenograft (PDTX) models prevail as arguably the most powerful in this regard because they capture cancer’s heterogeneous nature. Herein, we review current breast cancer models and their use in the drug discovery process, before discussing best practices for developing a highly annotated cohort of PDTX models. We describe the importance of extensive multidimensional molecular and functional characterisation of models and combination drug–drug screens to identify complex biomarkers of drug resistance and response. We reflect on our own experiences and propose the use of a cost-effective intermediate pharmacogenomic platform (the PDTX-PDTC platform) for breast cancer drug and biomarker discovery. We discuss the limitations and unanswered questions of PDTX models; yet, still strongly envision that their use in basic and translational research will dramatically change our understanding of breast cancer biology and how to more effectively treat it. PMID:27702751

  5. Proteogenomic integration reveals therapeutic targets in breast cancer xenografts

    PubMed Central

    Huang, Kuan-lin; Li, Shunqiang; Mertins, Philipp; Cao, Song; Gunawardena, Harsha P.; Ruggles, Kelly V.; Mani, D. R.; Clauser, Karl R.; Tanioka, Maki; Usary, Jerry; Kavuri, Shyam M.; Xie, Ling; Yoon, Christopher; Qiao, Jana W; Wrobel, John; Wyczalkowski, Matthew A.; Erdmann-Gilmore, Petra; Snider, Jacqueline E.; Hoog, Jeremy; Singh, Purba; Niu, Beifung; Guo, Zhanfang; Sun, Sam Qiancheng; Sanati, Souzan; Kawaler, Emily; Wang, Xuya; Scott, Adam; Ye, Kai; McLellan, Michael D.; Wendl, Michael C.; Malovannaya, Anna; Held, Jason M.; Gillette, Michael A.; Fenyö, David; Kinsinger, Christopher R.; Mesri, Mehdi; Rodriguez, Henry; Davies, Sherri R.; Perou, Charles M.; Ma, Cynthia; Reid Townsend, R.; Chen, Xian; Carr, Steven A.; Ellis, Matthew J.; Ding, Li

    2017-01-01

    Recent advances in mass spectrometry (MS) have enabled extensive analysis of cancer proteomes. Here, we employed quantitative proteomics to profile protein expression across 24 breast cancer patient-derived xenograft (PDX) models. Integrated proteogenomic analysis shows positive correlation between expression measurements from transcriptomic and proteomic analyses; further, gene expression-based intrinsic subtypes are largely re-capitulated using non-stromal protein markers. Proteogenomic analysis also validates a number of predicted genomic targets in multiple receptor tyrosine kinases. However, several protein/phosphoprotein events such as overexpression of AKT proteins and ARAF, BRAF, HSP90AB1 phosphosites are not readily explainable by genomic analysis, suggesting that druggable translational and/or post-translational regulatory events may be uniquely diagnosed by MS. Drug treatment experiments targeting HER2 and components of the PI3K pathway supported proteogenomic response predictions in seven xenograft models. Our study demonstrates that MS-based proteomics can identify therapeutic targets and highlights the potential of PDX drug response evaluation to annotate MS-based pathway activities. PMID:28348404

  6. Development of Patient Derived Xenograft Models of Overt Spontaneous Breast Cancer Metastasis: A Cautionary Note

    PubMed Central

    Paez-Ribes, Marta; Man, Shan; Xu, Ping; Kerbel, Robert S.

    2016-01-01

    Several approaches are being evaluated to improve the historically limited value of studying transplanted primary tumors derived by injection of cells from established cell lines for predicting subsequent cancer therapy outcomes in patients and clinical trials. These approaches include use of genetically engineered mouse models (GEMMs) of spontaneous tumors, or patient tumor tissue derived xenografts (PDXs). Almost all such therapy studies utilizing such models involve treatment of established primary tumors. An alternative approach we have developed involves transplanted human tumor xenografts derived from established cell lines to treat mice with overt visceral metastases after primary tumor resection. The rationale is to mimic the more challenging circumstance of treating patients with late stage metastatic disease. These metastatic models entail prior in vivo selection of heritable, phenotypically stable variants with increased aggressiveness for spontaneous metastasis; they were derived by orthotopic injection of tumor cells followed by primary tumor resection and serial selection of distant spontaneous metastases, from which variant cell lines having a more aggressive heritable metastatic phenotype were established. We attempted to adopt this strategy for breast cancer PDXs. We studied five breast cancer PDXs, with the emphasis on two, called HCI-001 and HCI-002, both derived from triple negative breast cancer patients. However significant technical obstacles were encountered. These include the inherent slow growth rates of PDXs, the rarity of overt spontaneous metastases (detected in only 3 of 144 mice), very high rates of tumor regrowths at the primary tumor resection site, the failure of the few human PDX metastases isolated to manifest a more aggressive metastatic phenotype upon re-transplantation into new hosts, and the formation of metastases which were derived from de novo mouse thymomas arising in aged SCID mice that we used for the experiments. We

  7. Efficacy and Hemotoxicity of Stealth Doxorubicin-Loaded Magnetic Nanovectors on Breast Cancer Xenografts.

    PubMed

    Gautier, J; Allard-Vannier, E; Burlaud-Gaillard, J; Domenech, J; Chourpa, I

    2015-01-01

    In the field of oncology, research is now focused on the development of theranostic nanosystems that combine the functions of drug delivery and imaging for diagnosis/monitoring. In this context, we designed polyethylene glycol (PEG)ylated superparamagnetic iron oxide nanoparticles (SPIONs) for the delivery of doxorubicin (DOX), an antineoplastic agent. These DOX-loaded PEGylated SPIONs, or DLPS, should be useful for the delivery of DOX in vivo, as well as for magnetic drug targeting (MDT) and magnetic resonance imaging (MRI). The aim of this study was to evaluate the potential applications of DLPS in vivo as drug carrier systems for the reduction of xenograft breast tumors induced in nude mice. Prior to the animal model experiments, the main internalization pathways for the nanovectors in MDA-MB435 breast cancer cells were determined to be based on caveolae- and clathrin-mediated endocytosis. The time- and quantity-dependence of the nanoparticle uptake by the cells altered the in vitro cytotoxicity of the DLPS. The in vitro antiproliferative effect of the DLPS was dependent not only on DOX concentration, but also on the efficacy of nanoparticle internalization. Evaluation of the effect of DLPS treatment on xenograft tumors in nude mice showed that DLPS limited tumor growth in a manner comparable to that of free DOX under normal conditions of tumor growth. The application of an external magnetic field on tumors, i.e., MDT, did not improve the efficacy of the DLPS treatment. Nevertheless, the vectorization of DOX with DLPS appears to limit the hematologic side effects usually associated with DOX treatment.

  8. The in vivo performance of ferrocenyl tamoxifen lipid nanocapsules in xenografted triple negative breast cancer.

    PubMed

    Lainé, Anne-Laure; Adriaenssens, Eric; Vessières, Anne; Jaouen, Gérard; Corbet, Cyril; Desruelles, Emilie; Pigeon, Pascal; Toillon, Robert-Alain; Passirani, Catherine

    2013-09-01

    Triple-negative breast cancers (TNBC) represent the most aggressive form of breast cancers and their treatment are challenging due to the tumor heterogeneity. The high death rate and the limited systemic treatment options for TNBC necessitate the search for alternative chemotherapeutics. We previously found that FcOHTAM, an organometallic derivative of hydroxytamoxifen, showed in vitro a strong antiproliferative effect on various breast cancer cell lines, including MDA-MB-231 cells, the archetype of TNBC. In this study, we developed stealth FcOHTAM loaded lipid nanocapsules (LNCs) to further evaluate this novel drug on a TNBC xenografted model. Cell cycle analysis of MDA-MB-231 cells confirmed the preservation of the drug activity through LNCs causing a cycle arrest in phase S after 48 h exposure at the IC50 concentration (2 μm). Two intraperitoneal injections of FcOHTAM loaded LNCs (20 mg/kg) administered to luciferase-transfected MDA-MB-231 tumors bearing mice led to a marked delay in tumor growth. As a consequence, a significantly lower tumor volume was obtained at the end of the experiment with a difference of 36% at day 38 compared to the untreated group. These results represent the first evidence of an in vivo effect of FcOHTAM and ferrocenyl derivatives in general on xenografted breast tumors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Metabolic response to everolimus in patient-derived triple negative breast cancer xenografts.

    PubMed

    Euceda, Leslie R; Hill, Deborah K; Stokke, Endre; Hatem, Rana; Botty, Rania El; Bièche, Ivan; Marangoni, Elisabetta; Bathen, Tone F; Moestue, Siver A

    2017-03-14

    Patients with triple negative breast cancer (TNBC) are unresponsive to endocrine and anti-HER2 pharmacotherapy, limiting their therapeutic options to chemotherapy. TNBC is frequently associated with abnormalities in the PI3K/AKT/mTOR signaling pathway; drugs targeting this pathway are currently being evaluated in these patients. However, response is variable, partly due to heterogeneity within TNBC, conferring a need to identify biomarkers predicting response and resistance to targeted therapy. In this study, we used a metabolomics approach to assess response to the mTOR inhibitor everolimus in a panel of TNBC patient-derived xenografts (PDX) (n=103 animals). Tumor metabolic profiles were acquired using high-resolution magic angle spinning magnetic resonance spectroscopy. Partial least squares-discriminant analysis on relative metabolite concentrations discriminated treated xenografts from untreated controls with an accuracy of 67% (p=0.003). Multilevel linear mixed-effects models (LMM) indicated reduced glycolytic lactate production and glutaminolysis after treatment, consistent with PI3K/AKT/mTOR pathway inhibition. Although inherent metabolic heterogeneity between different PDX models seemed to hinder prediction of treatment response, the metabolic effects following treatment were more pronounced in responding xenografts compared to non-responders. Additionally, the metabolic information predicted p53 mutation status, which may provide complimentary insight into the interplay between PI3K signaling and other drivers of disease progression.

  10. Matrigel alters the pathophysiology of orthotopic human breast adenocarcinoma xenografts with implications for nanomedicine evaluation.

    PubMed

    Shuhendler, Adam J; Prasad, Preethy; Cai, Ping; Hui, Kelvin K W; Henderson, Jeffrey T; Rauth, Andrew M; Wu, Xiao Yu

    2013-08-01

    Matrigel, a mouse sarcoma-derived basement membrane protein mixture, is frequently used to facilitate human tumor xenograft growth in rodents. Despite its known effects on tumor growth and metastasis, its impact on tumor pathophysiology and preclinical evaluation of nanomedicines in tumor xenografts has not been reported previously. Herein bilateral MDA435 tumors were established orthotopically with (Mat+) or without (Mat-) co-injection of Matrigel. Tumor perfusion, morphology and nanoparticle retention were evaluated. As compared to Mat- tumors, Mat+tumors exhibited enhanced vascular perfusion and lymphatic flow, greater blood vessel and lymphatic growth within the tumor core, and more deformation and collapse of lymphatics in tumor-associated lymph nodes. These changes were accompanied by reduced nanoparticle retention in Mat+tumors. The results suggest that Matrigel is not a passive medium for tumor growth, but rather significantly alters long-term tumor architecture. These findings have significant implications for the evaluation of therapeutic nanomedicine in xenograft mouse models. Matrigel is utilized in facilitating human tumor xenograft growth in rodents. The authors demonstrate that Matrigel is not a passive medium for tumor growth; instead it significantly alters long-term tumor architecture, with major implications in the evaluation of therapeutic nanomedicine in xenograft mouse models. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Diagnosis of breast tumors after breast reduction.

    PubMed

    Beer, G M; Kompatscher, P; Hergan, K

    1996-01-01

    We conducted a retrospective study to evaluate the diagnosability of breast tumors after breast reductions as this is a frequent surgical procedure. The data should shed light on the hypothesis that routine screening methods concerning the diagnosis of breast tumors prove more difficult after breast operations. All women who had undergone breast reduction at our department between January 1989 and December 1994 were examined. During this period we counted 166 patients; the majority of them (n = 144) had undergone a bilateral breast reduction and the rest of them (n = 22) a unilateral breast reduction for various reasons. After the operation, all patients were checked in standardized intervals. Those who developed any kind of breast mass (n = 6) were recorded and examined by ultrasound and mammography, and occasionally by an additional fine-needle biopsy. In case any doubt about the dignity had remained, an excisional biopsy was carried out. In none of our patients was it possible to get a precise diagnosis of an ill-defined mass with ultrasound. With mammography, some of the existing masses, which were really scars, mimicked different kinds of tumors, and once a carcinoma was initially interpreted as scar tissue with oil cysts. The diagnosis of breast masses after breast reductions with routinely used screening methods has proved to be more difficult as breast reductions lead to architectural alterations of the remaining breast parenchyma. Such alterations can and should be documented shortly after the operation so that later occurring tumors are distinguished more easily. Therefore, a basic mammography 3 months after each breast reduction has to be claimed in order to facilitate further breast tumor diagnosis.

  12. Quercetin inhibits angiogenesis by targeting calcineurin in the xenograft model of human breast cancer.

    PubMed

    Zhao, Xin; Wang, Qiuting; Yang, Shijun; Chen, Chen; Li, Xiaoya; Liu, Jinyu; Zou, Zhongmei; Cai, Dayong

    2016-06-15

    Vascular endothelial growth factor receptor 2 (VEGFR2) mediated calcineurin/nuclear factor of activated T-cells (NFAT) pathway is crucial in the angiogenesis of human breast cancer. Quercetin (Qu), a flavonoid known to possess anti-angiogenesis and antitumor properties, inhibited calcineurin activity in vitro. Herein, we performed a study in vivo to evaluate the effects of Qu on the angiogenesis in breast cancer. Female BALB/c nude mice were injected with MCF-7 cells into the mammary fat and were randomly divided into four groups. The animals were treated with vehicle solution, tamoxifen (TAM, 5.6mg/kg), tacrolimus (FK506, 3mg/kg), or Qu (34mg/kg) for 21 days, respectively. The results showed that, similar to TAM and FK506, Qu decreased tumor growth, limited oncocyte proliferation and promoted tumor necrosis. Anti-angiogenic actions of Qu were demonstrated as decreased serum VEGF (P<0.01), and sparse microvessel density (P<0.05). Qu significantly inhibited tumor calcineurin activities, and the inhibitory rate was 62.73% in Qu treated animals, compared to that was 72.90% in FK506 group (P>0.05). Effects of Qu on calcineurin/NFAT pathway were confirmed as decreased subcellular located levels of VEGF (P<0.05), VEGFR2 (P<0.05) and NFATc3 (P<0.01), downregulated gene expression of VEGF (P<0.05), VEGFR2 (P<0.05) and NFATc3 (P<0.01), reduced protein levels of VEGF (P<0.05), VEGFR2 (P<0.05), and NFATc3 (P<0.01) in tumor tissues. These findings indicate that Qu inhibit angiogenesis of human breast cancer xenograft in nude mice, which was associated with suppressing calcineurin activity and its regulated pathway activation.

  13. Desmoplastic small round cell tumor (DSRCT) xenografts and tissue culture lines: Establishment and initial characterization

    PubMed Central

    MARKIDES, CONSTANTINE S.A.; COIL, DOUGLAS R.; LUONG, LINH H.; MENDOZA, JOHN; KOZIELSKI, TONY; VARDEMAN, DANA; GIOVANELLA, BEPPINO C.

    2013-01-01

    Desmoplastic small round cell tumor (DSRCT) is an extremely rare and aggressive neoplasm, which mainly affects young males and generally presents as a widely disseminated tumor within the peritoneal cavity. Due to the rarity of the tumor, its younger and overall healthier patient population (compared with other tumor types) and the fact that it lacks definitive histological and immunohistological features, the diagnosis of DSRCT may be frequently delayed or the tumor may be entirely misdiagnosed as a different type of abdominal sarcoma. The present study aimed to rectify the lack of models that exist for this rare neoplasm, through the development of several DSRCT tissue cultures and xenograft lines. Samples were received from surgeries and biopsies from patients worldwide and were immediately processed for xenograft development in nude mice. Tumor tissues were minced and fragments were injected into the dorsal flanks of nude mice. Of the 14 samples received, nine were established into xenograft lines and five into tissue culture lines. Xenografts displayed the microscopic histology of their parent tumors and demonstrated two different growth rates among the established xenograft lines. Overall, the establishment of these xenograft and tissue culture lines provides researchers with tools to evaluate DSRCT responses to chemotherapy and to investigate DSRCT-specific signaling pathways or mechanisms. PMID:23759995

  14. Therapeutic Activity of Anti-AXL Antibody against Triple-Negative Breast Cancer Patient-Derived Xenografts and Metastasis.

    PubMed

    Leconet, Wilhem; Chentouf, Myriam; du Manoir, Stanislas; Chevalier, Clément; Sirvent, Audrey; Aït-Arsa, Imade; Busson, Muriel; Jarlier, Marta; Radosevic-Robin, Nina; Theillet, Charles; Chalbos, Dany; Pasquet, Jean-Max; Pèlegrin, André; Larbouret, Christel; Robert, Bruno

    2016-12-06

    Purpose: AXL receptor tyrosine kinase has been described as a relevant molecular marker and a key player in invasiveness, especially in triple-negative breast cancer (TNBC).Experimental Design: We evaluate the antitumor efficacy of the anti-AXL monoclonal antibody 20G7-D9 in several TNBC cell xenografts or patient-derived xenograft (PDX) models and decipher the underlying mechanisms. In a dataset of 254 basal-like breast cancer samples, genes correlated with AXL expression are enriched in EMT, migration, and invasion signaling pathways.Results: Treatment with 20G7-D9 inhibited tumor growth and bone metastasis formation in AXL-positive TNBC cell xenografts or PDX, but not in AXL-negative PDX, highlighting AXL role in cancer growth and invasion. In vitro stimulation of AXL-positive cancer cells by its ligand GAS6 induced the expression of several EMT-associated genes (SNAIL, SLUG, and VIM) through an intracellular signaling implicating the transcription factor FRA-1, important in cell invasion and plasticity, and increased their migration/invasion capacity. 20G7-D9 induced AXL degradation and inhibited all AXL/GAS6-dependent cell signaling implicated in EMT and in cell migration/invasion.Conclusions: The anti-AXL antibody 20G7-D9 represents a promising therapeutic strategy in TNBC with mesenchymal features by inhibiting AXL-dependent EMT, tumor growth, and metastasis formation. Clin Cancer Res; 1-11. ©2016 AACR.

  15. Nanomicellar TGX221 blocks xenograft tumor growth of prostate cancer in nude mice

    PubMed Central

    Chen, Ruibao; Zhao, Yunqi; Huang, Yan; Yang, Qiuhong; Zeng, Xing; Jiang, Wencong; Liu, Jihong; Thrasher, J. Brantley; Forrest, M. Laird; Li, Benyi

    2014-01-01

    Background Combination of androgen ablation along with early detection and surgery has made prostate cancer highly treatable at the initial stage. However, this cancer remains the second leading cause of cancer death among American men due to castration-resistant progression, suggesting that novel therapeutic agents are urgently needed for this life-threaten condition. Phosphatidylinositol 3-kinase p110β is a major cellular signaling molecule and has been identified as a critical factor in prostate cancer progression. In a recent report, we established a nanomicelle-based strategy to deliver p110β-specific inhibitor TGX221 to prostate cancer cells by conjugating the surface of nanomicelles with a RNA aptamer against prostate membrane specific antigen (PSMA) present in all clinical prostate cancers. In this study, we tested this nanomicellar TGX221 for its in vivo anti-tumor effect in mouse xenograft models. Methods Prostate cancer cell lines LAPC-4, LNCaP, C4-2 and 22RV1 were used to establish subcutaneous xenograft tumors in nude mice. Paraffin sections from xenograft tumor specimens were used in immunohistochemistry assays to detect AKT phosphorylation, cell proliferation marker Ki67 and PCNA, as well as BrdU incorporation. Quantitative PCR assay was conducted to determine PSA gene expression in xenograft tumors. Results Although systemic delivery of unconjugated TGX221 significantly reduced xenograft tumor growth in nude mice compared to solvent control, the nanomicellar TGX221 conjugates completely blocked tumor growth of xenografts derived from multiple prostate cancer cell lines. Further analyses revealed that AKT phosphorylation and cell proliferation indexes were dramatically reduced in xenograft tumors received nanomicellar TGX221 compared to xenograft tumors received unconjugated TGX221 treatment. There was no noticeable side effect by gross observation or at microscopic level of organ tissue section. Conclusion These data strongly suggest that prostate

  16. Hyaluronic acid-bound letrozole nanoparticles restore sensitivity to letrozole-resistant xenograft tumors in mice.

    PubMed

    Nair, Hareesh B; Huffman, Steven; Veerapaneni, Poornachand; Kirma, Nameer B; Binkley, Peter; Perla, Rao P; Evans, Dean B; Tekmal, Rajeshwar R

    2011-05-01

    Letrozole is a potent aromatase inhibitor and superior to other defined selective estrogen receptor modulators such as tamoxifen in treating hormone-responsive postmenopausal breast cancer patients. Patients who receive this drug may become insensitive to the effects of estrogen deprivation induced by letrozole. Letrozole has known side effects on bone metabolism due to systemic ablation of estrogen production. The purpose of this study was to examine the therapeutic efficacy of hyaluronic acid-bound letrozole nanoparticles (HA-Letr-NPs) in restoring sensitivity to letrozole-resistant (LTLT-Ca) cells. To target letrozole to LTLT-Ca cells, hyaluronic acid-bound letrozole nanoparticles were prepared by nanoprecipitation using biodegradable PLGA-PEG co-polymer. Binding specificity of HA to CD44 on the cell surface was analyzed in vitro using FITC-CD44 Ab and CD44 siRNA by flow cytometry. Effects on in vitro cytotoxicity and aromatase enzymatic activity of HA-Letr-NPs were performed in MCF-7 breast cancer cells, MCF-7 cells over-expressing aromatase (MCF-7/Aro), and LTLT-Ca cells resistant to letrozole. Preclinical efficacy of HA-Letr-NPs was examined in mice using LTLT-Ca xenograft tumors. HA-Letr-NPs were restricted to a maximum size of 100 nm. The in vitro drug release assay showed that the highest released concentration of letrozole occurred after 23 hours at 37 degrees C in phosphate-buffered saline. HA-Letr-NPs on MCF-7/Aro and LTLT-Ca cells showed an IC50 of 2 microM and 5 microM, respectively. HA-Letr-NPs were more efficacious in inhibiting tumor growth, reducing in vitro cellular and in vivo tumor aromatase enzyme activity more than the corresponding Letr-NPs or letrozole. HA-Letr-NPs restored and maintained a prolonged sensitivity and targeted delivery of letrozole in letrozole-resistant tumors in vivo.

  17. Establishment and Genomic Characterization of Mouse Xenografts of Human Primary Prostate Tumors

    PubMed Central

    Priolo, Carmen; Agostini, Michelle; Vena, Natalie; Ligon, Azra H.; Fiorentino, Michelangelo; Shin, Eyoung; Farsetti, Antonella; Pontecorvi, Alfredo; Sicinska, Ewa; Loda, Massimo

    2010-01-01

    Serum prostate-specific antigen screening has led to earlier detection and surgical treatment of prostate cancer, favoring an increasing incidence-to-mortality ratio. However, about one third of tumors that are diagnosed when still confined to the prostate can relapse within 10 years from the first treatment. The challenge is therefore to identify prognostic markers of aggressive versus indolent tumors. Although several preclinical models of advanced prostate tumors are available, a model that recapitulates the genetic and growth behavior of primary tumors is still lacking. Here, we report a complete histopathological and genomic characterization of xenografts derived from primary localized low- and high-grade human prostate tumors that were implanted under the renal capsule of immunodeficient mice. We obtained a tumor take of 56% and show that these xenografts maintained the histological as well as most genomic features of the parental tumors. Serum prostate-specific antigen levels were measurable only in tumor xenograft-bearing mice, but not in those implanted with either normal prostate tissue or in tumors that likely regressed. Finally, we show that a high proliferation rate, but not the pathological stage or the Gleason grade of the original tumor, was a fundamental prerequisite for tumor take in mice. This mouse xenograft model represents a useful preclinical model of primary prostate tumors for their biological characterization, biomarker discovery, and drug testing. PMID:20167861

  18. Therapeutic Electromagnetic Field (TEMF) and gamma irradiation on human breast cancer xenograft growth, angiogenesis and metastasis

    PubMed Central

    Cameron, Ivan L; Sun, Lu-Zhe; Short, Nicholas; Hardman, W Elaine; Williams, C Douglas

    2005-01-01

    Background The effects of a rectified semi-sinewave signal (15 mT amplitude, 120 pulses per second, EMF Therapeutics, Inc.) (TEMF) alone and in combination with gamma irradiation (IR) therapy in nude mice bearing a human MDA MB231 breast cancer xenograft were tested. Green fluorescence protein transfected cancer cells were injected into the mammary fat pad of young female mice. Six weeks later, mice were randomly divided into four treatment groups: untreated controls; 10 minute daily TEMF; 200 cGy of IR every other day (total 800 cGy); IR plus daily TEMF. Some mice in each group were euthanized 24 hours after the end of IR. TEMF treatment continued for 3 additional weeks. Tumor sections were stained for: endothelial cells with CD31 and PAS or hypoxia inducible factor 1α (HIF). Results Most tumors <35 mm3 were white but tumors >35 mm3 were pink and had a vascularized capsule. The cortex within 100 microns of the capsule had little vascularization. Blood vessels, capillaries, and endothelial pseudopods were found at >100 microns from the capsule (subcortex). Tumors >35 mm3 treated with IR 24 hours previously or with TEMF had decreased blood vessels in the subcortex and more endothelial pseudopods projecting into hypoxic, HIF positive areas than tumors from the control group. Mice that received either IR or TEMF had significantly fewer lung metastatic sites and slower tumor growth than did untreated mice. No harmful side effects were attributed to TEMF. Conclusion TEMF therapy provided a safe means for retarding tumor vascularization, growth and metastasis. PMID:16045802

  19. Xenograft Studies of Fatty Acid Synthesis Inhibition as Novel Therapy for Breast Cancer

    DTIC Science & Technology

    2000-08-01

    higher level of malonyl-CoA than liver from tumor bearing mice. Error bars represent standard error of the mean. Xenograft measurements represent...extracted into ether. The organic solution was dried over anhydrous magnesium sulfate and evaporated to a gummy solid, which was dissolved in methylene...individually crystallized from boiling hexanes. 3. Distribution of jH-C75] in MCF7xenograft bearing nude mice. C75 is widely distributed in tumor and

  20. A fully human CXCR4 antibody demonstrates diagnostic utility and therapeutic efficacy in solid tumor xenografts

    PubMed Central

    Azad, Babak Behnam; Chatterjee, Samit; Lesniak, Wojciech G.; Lisok, Ala; Pullambhatla, Mrudula; Bhujwalla, Zaver M.; Pomper, Martin G.; Nimmagadda, Sridhar

    2016-01-01

    For physiologically important cancer therapeutic targets, use of non-invasive imaging for therapeutic guidance and monitoring may improve outcomes for treated patients. The CXC chemokine receptor 4 (CXCR4) is overexpressed in many cancers including non-small cell lung cancer (NSCLC) and triple negative breast cancer (TNBC). CXCR4 overexpression contributes to tumor growth, progression and metastasis. There are several CXCR4-targeted therapeutic agents currently in clinical trials. Since CXCR4 is also crucial for normal biological functions, its prolonged inhibition could lead to unwanted toxicities. While CXCR4-targeted imaging agents and inhibitors have been reported and evaluated independently, there are currently no studies demonstrating CXCR4-targeted imaging for therapeutic guidance. Monoclonal antibodies (mAbs) are commonly used for cancer therapy and imaging. Here, an 89Zr-labeled human CXCR4-mAb (89Zr-CXCR4-mAb) was evaluated for detection of CXCR4 expression with positron emission tomography (PET) while its native unmodified analogue was evaluated for therapy in relevant models of NSCLC and TNBC. In vitro and in vivo evaluation of 89Zr-CXCR4-mAb showed enhanced uptake in NSCLC xenografts with a high expression of CXCR4. It also had the ability to detect lymph node metastases in an experimental model of metastatic TNBC. Treatment of high and low CXCR4 expressing NSCLC and TNBC xenografts with CXCR4-mAb demonstrated a therapeutic response correlating with the expression of CXCR4. Considering the key role of CXCR4 in normal biological functions, our results suggest that combination of 89Zr-CXCR4-mAb-PET with non-radiolabeled mAb therapy may provide a precision medicine approach for selecting patients with tumors that are likely to be responsive to this treatment. PMID:26848769

  1. Anti-tumor effect of bevacizumab on a xenograft model of feline mammary carcinoma

    PubMed Central

    MICHISHITA, Masaki; OHTSUKA, Aya; NAKAHIRA, Rei; TAJIMA, Tsuyoshi; NAKAGAWA, Takayuki; SASAKI, Nobuo; ARAI, Toshiro; TAKAHASHI, Kimimasa

    2015-01-01

    Feline mammary carcinomas are characterized by rapid progression and metastases. Vascular endothelial growth factor (VEGF) is a key regulator of tumor angiogenesis, proliferation and metastasis. The present study aimed to investigate the effects of a single drug therapy of bevacizumab on a xenograft model of feline mammary carcinoma expressing VEGF protein. Bevacizumab treatment suppressed tumor growth by inhibiting angiogenesis and enhancing apoptosis; however, it did not affect the tumor proliferation index. Thus, bevacizumab had anti-tumor effects on a xenograft model, and this may be useful for the treatment of feline mammary carcinoma. PMID:26616000

  2. Assessment of antitumor activity for tumor xenograft studies using exponential growth models.

    PubMed

    Wu, Jianrong

    2011-05-01

    In preclinical tumor xenograft experiments, the antitumor activity of the tested agents is often assessed by endpoints such as tumor doubling time, tumor growth delay (TGD), and log10 cell kill (LCK). In tumor xenograft literature, the values of these endpoints are presented without any statistical inference, which ignores the noise in the experimental data. However, using exponential growth models, these endpoints can be quantified by their growth curve parameters, thus allowing parametric inference, such as an interval estimate, to be used to assess the antitumor activity of the treatment.

  3. Impact of ER520, a candidate of selective estrogen receptor modulators, on in vitro cell growth, migration, invasion, angiogenesis and in vivo tumor xenograft of human breast cancer cells.

    PubMed

    Wang, Lijun; Wang, Ying; Du, Huaqing; Jiang, Yao; Tang, Zhichao; Liu, Hongyi; Xiang, Hua; Xiao, Hong

    2015-12-01

    ER520, a derivative of indenoisoquinoline, is a patented compound. This study was designed to screen its biological properties and to evaluate its antineoplastic and antiangiogenic effect. Western blot was employed to monitor the ERα and ERβ protein expression in human breast cancer MCF-7 cells and endometrial carcinoma Ishikawa cells. MTT assay was employed to determine cell proliferation. Cell adhesion, scratch and Transwell assay were utilized to estimate the ability of cellular adhesion, migration and invasion. ELISA kit was applied to detect the VEGF products in culture medium. In addition, the inhibitory effect of ER520 on the vessel-like construction of HUVEC cells and the angiogenesis of chicken embryos was investigated. The efficiency of ER520 on tumor growth in nude mice was also assessed. ER520 inhibited the expression of ERα in MCF-7 and Ishikawa cells, while it increased ERβ protein level. ER520 also suppressed the proliferation of MCF-7 and Ishikawa cells. Due to its remarkably negative role in cell adhesion, migration and invasion, ER520 showed a potential ability of inhibiting tumor metastasis. Meanwhile, ER520 reduced the VEGF secretion of MCF-7 and Ishikawa cells, prevented the formation of VEGF-stimulated tubular structure and the cell migration of HUVEC cells, and inhibited the angiogenesis of chicken chorioallantoic membrane. Animal experiment also demonstrated that ER520 could frustrate the in vivo tumor growth and the inhibitory ratio was 48.5 % compared with control group. Our findings indicate that ER520 possesses the competence to be a candidate against breast cancer and angiogenesis.

  4. Inhibitory effect of endostatin combined with paclitaxel-cisplatin on breast cancer in xenograft-bearing mice

    PubMed Central

    SUN, JIANGUO; DENG, LI; DUAN, YUZHONG; CHEN, FANGLIN; WANG, XINXIN; LI, DEZHI; CHEN, ZHENGTANG

    2012-01-01

    In the present study, we aimed to investigate the tumor-inhibiting effects of recombinant human endostatin (rhES) combined with paclitaxel-cisplatin (TP regimen) on human breast cancer in xenograft-bearing nude mice. A total of 24 mice bearing human breast cancer xenografts were administered both rhES and TP, TP alone, rhES alone or saline. The tumor growth inhibition was observed. Serum vascular endothelial growth factor (VEGF) levels and microvessel density (MVD) were determined by ELISA and immunohistochemistry, respectively. Cell apoptosis was detected using terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) staining. Survival time was observed in another 24 nude mice with the same treatment. MVD expression in the group administered rhES and TP was lower than that in the other groups (P<0.05); serum VEGF levels in the combined drug group were lower compared to the other groups; the apoptotic index increased in the combined drug group. We conclude that the effect of the TP regimen combined with rhES on breast cancer is better than that of the TP regimen alone. PMID:22969862

  5. Vasculature analysis of patient derived tumor xenografts using species-specific PCR assays: evidence of tumor endothelial cells and atypical VEGFA-VEGFR1/2 signalings

    PubMed Central

    2014-01-01

    Background Tumor endothelial transdifferentiation and VEGFR1/2 expression by cancer cells have been reported in glioblastoma but remain poorly documented for many other cancer types. Methods To characterize vasculature of patient-derived tumor xenografts (PDXs), largely used in preclinical anti-angiogenic assays, we designed here species-specific real-time quantitative RT-PCR assays. Human and mouse PECAM1/CD31, ENG/CD105, FLT1/VEGFR1, KDR/VEGFR2 and VEGFA transcripts were analyzed in a large series of 150 PDXs established from 8 different tumor types (53 colorectal, 14 ovarian, 39 breast and 15 renal cell cancers, 6 small cell and 5 non small cell lung carcinomas, 13 cutaneous melanomas and 5 glioblastomas) and in two bevacizumab-treated non small cell lung carcinomas xenografts. Results As expected, mouse cell proportion in PDXs -evaluated by quantifying expression of the housekeeping gene TBP- correlated with all mouse endothelial markers and human VEGFA RNA levels. More interestingly, we observed human PECAM1/CD31 and ENG/CD105 expression in all tumor types, with higher rate in glioblastoma and renal cancer xenografts. Human VEGFR expression profile varied widely depending on tumor types with particularly high levels of human FLT1/VEGFR1 transcripts in colon cancers and non small cell lung carcinomas, and upper levels of human KDR/VEGFR2 transcripts in non small cell lung carcinomas. Bevacizumab treatment induced significant low expression of mouse Pecam1/Cd31, Eng/Cd105, Flt1/Vegfr1 and Kdr/Vefr2 while the human PECAM1/CD31 and VEGFA were upregulated. Conclusions Taken together, our results strongly suggest existence of human tumor endothelial cells in all tumor types tested and of both stromal and tumoral autocrine VEGFA-VEGFR1/2 signalings. These findings should be considered when evaluating molecular mechanisms of preclinical response and resistance to tumor anti-angiogenic strategies. PMID:24625025

  6. Inhibition of proteasome activity by the dietary flavonoid apigenin is associated with growth inhibition in cultured breast cancer cells and xenografts.

    PubMed

    Chen, Di; Landis-Piwowar, Kristin R; Chen, Marina S; Dou, Q Ping

    2007-01-01

    Proteasome inhibition is an attractive approach to anticancer therapy and may have relevancy in breast cancer treatment. Natural products, such as dietary flavonoids, have been suggested as natural proteasome inhibitors with potential use for cancer prevention and therapeutics. We previously reported that apigenin, a flavonoid widely distributed in many fruits and vegetables, can inhibit proteasome activity and can induce apoptosis in cultured leukemia Jurkat T cells. Whether apigenin has proteasome-inhibitory activity in the highly metastatic human breast MDA-MB-231 cells and xenografts,however, is unknown. MDA-MB-231 breast cancer cell cultures and xenografts were treated with apigenin, followed by measurement of reduced cellular viability/proliferation,proteasome inhibition, and apoptosis induction. Inhibition of the proteasome was determined by levels of the proteasomal chymotrypsin-like activity, by ubiquitinated proteins, and by accumulation of proteasome target proteins in extracts of the treated cells or tumors. Apoptotic cell death was measured by caspase-3/caspase-7 activation, poly(ADP-ribose) polymerase cleavage, and immunohistochemistry for terminal nucleotidyltransferase-mediated nick end labeling positivity. We report for the first time that apigenin inhibits the proteasomal chymotrypsin-like activity and induces apoptosis not only in cultured MDA-MB-231 cells but also in MDA-MB-231 xenografts. Furthermore, while apigenin has antibreast tumor activity, no apparent toxicity to the tested animals was observed. We have shown that apigenin is an effective proteasome inhibitor in cultured breast cancer cells and in breast cancer xenografts. Furthermore, apigenin induces apoptotic cell death in human breast cancer cells and exhibits anticancer activities in tumors. The results suggest its potential benefits in breast cancer prevention and treatment.

  7. Human Adipose Tissue-Derived Stromal/Stem Cells Promote Migration and Early Metastasis of Triple Negative Breast Cancer Xenografts

    PubMed Central

    Rowan, Brian G.; Gimble, Jeffrey M.; Sheng, Mei; Anbalagan, Muralidharan; Jones, Ryan K.; Frazier, Trivia P.; Asher, Majdouline; Lacayo, Eduardo A.; Friedlander, Paul L.; Kutner, Robert; Chiu, Ernest S.

    2014-01-01

    Background Fat grafting is used to restore breast defects after surgical resection of breast tumors. Supplementing fat grafts with adipose tissue-derived stromal/stem cells (ASCs) is proposed to improve the regenerative/restorative ability of the graft and retention. However, long term safety for ASC grafting in proximity of residual breast cancer cells is unknown. The objective of this study was to determine the impact of human ASCs derived from abdominal lipoaspirates of three donors, on a human breast cancer model that exhibits early metastasis. Methodology/Principal Findings Human MDA-MB-231 breast cancer cells represents “triple negative” breast cancer that exhibits early micrometastasis to multiple mouse organs [1]. Human ASCs were derived from abdominal adipose tissue from three healthy female donors. Indirect co-culture of MDA-MB-231 cells with ASCs, as well as direct co-culture demonstrated that ASCs had no effect on MDA-MB-231 growth. Indirect co-culture, and ASC conditioned medium (CM) stimulated migration of MDA-MB-231 cells. ASC/RFP cells from two donors co-injected with MDA-MB-231/GFP cells exhibited a donor effect for stimulation of primary tumor xenografts. Both ASC donors stimulated metastasis. ASC/RFP cells were viable, and integrated with MDA-MB-231/GFP cells in the tumor. Tumors from the co-injection group of one ASC donor exhibited elevated vimentin, matrix metalloproteinase-9 (MMP-9), IL-8, VEGF and microvessel density. The co-injection group exhibited visible metastases to the lung/liver and enlarged spleen not evident in mice injected with MDA-MB-231/GFP alone. Quantitation of the total area of GFP fluorescence and human chromosome 17 DNA in mouse organs, H&E stained paraffin sections and fluorescent microscopy confirmed multi-focal metastases to lung/liver/spleen in the co-injection group without evidence of ASC/RFP cells. Conclusions Human ASCs derived from abdominal lipoaspirates of two donors stimulated metastasis of MDA-MB-231

  8. A 19F NMR Approach using Reporter Molecule Pairs to Assess β-Galactosidase in Human Xenograft Tumors in Vivo

    PubMed Central

    Yu, Jian-Xin; Kodibagkar, Vikram D.; Liu, Li; Mason, Ralph P.

    2011-01-01

    Gene therapy has emerged as a promising strategy for treatment of various diseases. However, widespread implementation is hampered by difficulties in assessing the success of transfection in the target tissue and the longevity of gene expression. Thus, there is increasing interest in the development of non-invasive in vivo reporter techniques to assay gene expression. We recently demonstrated the ability to detect β-galactosidase activity in stably transfected human prostate tumor xenografts in mice in vivo using 19F NMR. We now extend the studies to human MCF7 breast cancer cells growing as xenografts in nude mice. Moreover, by using two spectrally resolved reporters (o-fluoro-p-nitrophenyl-β-D-galactopyranoside and an isomer) two tumors could be interrogated simultaneously revealing lacZ transgene activity in a stably transfected tumor versus no activity in a wild type tumor. Most significantly hydrolytic activity observed by 19F NMR corresponded with differential activity in lacZ expressing tumors. PMID:18288788

  9. Gene expression in local stroma reflects breast tumor states and predicts patient outcome

    PubMed Central

    Bainer, Russell; Frankenberger, Casey; Rabe, Daniel; An, Gary; Gilad, Yoav; Rosner, Marsha Rich

    2016-01-01

    The surrounding microenvironment has been implicated in the progression of breast tumors to metastasis. However, the degree to which metastatic breast tumors locally reprogram stromal cells as they disrupt tissue boundaries is not well understood. We used species-specific RNA sequencing in a mouse xenograft model to determine how the metastasis suppressor RKIP influences transcription in a panel of paired tumor and stroma tissues. We find that gene expression in metastatic breast tumors is pervasively correlated with gene expression in local stroma of both mouse xenografts and human patients. Changes in stromal gene expression elicited by tumors better predicts subtype and patient survival than tumor gene expression, and genes with coordinated expression in both tissues predict metastasis-free survival. These observations support the use of stroma-based strategies for the diagnosis and prognosis of breast cancer. PMID:27982086

  10. Whole transcriptome profiling of patient-derived xenograft models as a tool to identify both tumor and stromal specific biomarkers.

    PubMed

    Bradford, James R; Wappett, Mark; Beran, Garry; Logie, Armelle; Delpuech, Oona; Brown, Henry; Boros, Joanna; Camp, Nicola J; McEwen, Robert; Mazzola, Anne Marie; D'Cruz, Celina; Barry, Simon T

    2016-04-12

    The tumor microenvironment is emerging as a key regulator of cancer growth and progression, however the exact mechanisms of interaction with the tumor are poorly understood. Whilst the majority of genomic profiling efforts thus far have focused on the tumor, here we investigate RNA-Seq as a hypothesis-free tool to generate independent tumor and stromal biomarkers, and explore tumor-stroma interactions by exploiting the human-murine compartment specificity of patient-derived xenografts (PDX).Across a pan-cancer cohort of 79 PDX models, we determine that mouse stroma can be separated into distinct clusters, each corresponding to a specific stromal cell type. This implies heterogeneous recruitment of mouse stroma to the xenograft independent of tumor type. We then generate cross-species expression networks to recapitulate a known association between tumor epithelial cells and fibroblast activation, and propose a potentially novel relationship between two hypoxia-associated genes, human MIF and mouse Ddx6. Assessment of disease subtype also reveals MMP12 as a putative stromal marker of triple-negative breast cancer. Finally, we establish that our ability to dissect recruited stroma from trans-differentiated tumor cells is crucial to identifying stem-like poor-prognosis signatures in the tumor compartment.In conclusion, RNA-Seq is a powerful, cost-effective solution to global analysis of human tumor and mouse stroma simultaneously, providing new insights into mouse stromal heterogeneity and compartment-specific disease markers that are otherwise overlooked by alternative technologies. The study represents the first comprehensive analysis of its kind across multiple PDX models, and supports adoption of the approach in pre-clinical drug efficacy studies, and compartment-specific biomarker discovery.

  11. Whole transcriptome profiling of patient-derived xenograft models as a tool to identify both tumor and stromal specific biomarkers

    PubMed Central

    Bradford, James R.; Wappett, Mark; Beran, Garry; Logie, Armelle; Delpuech, Oona; Brown, Henry; Boros, Joanna; Camp, Nicola J.; McEwen, Robert; Mazzola, Anne Marie; D'Cruz, Celina; Barry, Simon T.

    2016-01-01

    The tumor microenvironment is emerging as a key regulator of cancer growth and progression, however the exact mechanisms of interaction with the tumor are poorly understood. Whilst the majority of genomic profiling efforts thus far have focused on the tumor, here we investigate RNA-Seq as a hypothesis-free tool to generate independent tumor and stromal biomarkers, and explore tumor-stroma interactions by exploiting the human-murine compartment specificity of patient-derived xenografts (PDX). Across a pan-cancer cohort of 79 PDX models, we determine that mouse stroma can be separated into distinct clusters, each corresponding to a specific stromal cell type. This implies heterogeneous recruitment of mouse stroma to the xenograft independent of tumor type. We then generate cross-species expression networks to recapitulate a known association between tumor epithelial cells and fibroblast activation, and propose a potentially novel relationship between two hypoxia-associated genes, human MIF and mouse Ddx6. Assessment of disease subtype also reveals MMP12 as a putative stromal marker of triple-negative breast cancer. Finally, we establish that our ability to dissect recruited stroma from trans-differentiated tumor cells is crucial to identifying stem-like poor-prognosis signatures in the tumor compartment. In conclusion, RNA-Seq is a powerful, cost-effective solution to global analysis of human tumor and mouse stroma simultaneously, providing new insights into mouse stromal heterogeneity and compartment-specific disease markers that are otherwise overlooked by alternative technologies. The study represents the first comprehensive analysis of its kind across multiple PDX models, and supports adoption of the approach in pre-clinical drug efficacy studies, and compartment-specific biomarker discovery. PMID:26980748

  12. Ability to Generate Patient-Derived Breast Cancer Xenografts Is Enhanced in Chemoresistant Disease and Predicts Poor Patient Outcomes

    PubMed Central

    Akcakanat, Argun; Chen, Ken; Zheng, Xiaofeng; Zhao, Hao; Eterovic, Agda Karina; Sangai, Takafumi; Holder, Ashley M.; Sharma, Chandeshwar; Chen, Huiqin; Do, Kim-Anh; Tarco, Emily; Gagea, Mihai; Naff, Katherine A.; Sahin, Aysegul; Multani, Asha S.; Black, Dalliah M.; Mittendorf, Elizabeth A.; Bedrosian, Isabelle; Mills, Gordon B.; Gonzalez-Angulo, Ana Maria; Meric-Bernstam, Funda

    2015-01-01

    Background Breast cancer patients who are resistant to neoadjuvant chemotherapy (NeoCT) have a poor prognosis. There is a pressing need to develop in vivo models of chemo resistant tumors to test novel therapeutics. We hypothesized that patient-derived breast cancer xenografts (BCXs) from chemo- naïve and chemotherapy-exposed tumors can provide high fidelity in vivo models for chemoresistant breast cancers. Methods Patient tumors and BCXs were characterized with short tandem repeat DNA fingerprinting, reverse phase protein arrays, molecular inversion probe arrays, and next generation sequencing. Results Forty-eight breast cancers (24 post-chemotherapy, 24 chemo-naïve) were implanted and 13 BCXs were established (27%). BCX engraftment was higher in TNBC compared to hormone-receptor positive cancer (53.8% vs. 15.6%, p = 0.02), in tumors from patients who received NeoCT (41.7% vs. 8.3%, p = 0.02), and in patients who had progressive disease on NeoCT (85.7% vs. 29.4%, p = 0.02). Twelve patients developed metastases after surgery; in five, BCXs developed before distant relapse. Patients whose tumors developed BCXs had a lower recurrence-free survival (p = 0.015) and overall survival (p<0.001). Genomic losses and gains could be detected in the BCX, and three models demonstrated a transformation to induce mouse tumors. However, overall, somatic mutation profiles including potential drivers were maintained upon implantation and serial passaging. One BCX model was cultured in vitro and re-implanted, maintaining its genomic profile. Conclusions BCXs can be established from clinically aggressive breast cancers, especially in TNBC patients with poor response to NeoCT. Future studies will determine the potential of in vivo models for identification of genotype-phenotype correlations and individualization of treatment. PMID:26325287

  13. [Potential role of patient-derived tumor xenografts (PDTXs) in the selection of optimal therapeutic strategy].

    PubMed

    Tóvári, József

    2015-12-01

    The rapid selection of the efficient anticancer therapy may decrease the unwanted burden to patients and has financial consequences. Tumor models including xenografts in mice were used previously mostly in the development of new anticancer drugs. Nowadays xenografts from direct patient-derived tumor tissues (PDTT) in immune deficient mice yield better models than experimental tumors originating from cell cultures. The new method enables researchers to observe heterogeneous tumor cells with their surrounding tissue elements and matrices representing the clinical situation in humans much better. The cells in PDTT tumors are alive and functionally active through several generations after serial transplantation. Therefore using these models we may investigate tumor response to different therapies, the selection of resistant cell populations and the formation of metastasis predicting the outcomes in the personalized therapy.

  14. Targeting tumor hypoxia: suppression of breast tumor growth and metastasis by novel carbonic anhydrase IX inhibitors.

    PubMed

    Lou, Yuanmei; McDonald, Paul C; Oloumi, Arusha; Chia, Stephen; Ostlund, Christina; Ahmadi, Ardalan; Kyle, Alastair; Auf dem Keller, Ulrich; Leung, Samuel; Huntsman, David; Clarke, Blaise; Sutherland, Brent W; Waterhouse, Dawn; Bally, Marcel; Roskelley, Calvin; Overall, Christopher M; Minchinton, Andrew; Pacchiano, Fabio; Carta, Fabrizio; Scozzafava, Andrea; Touisni, Nadia; Winum, Jean-Yves; Supuran, Claudiu T; Dedhar, Shoukat

    2011-05-01

    Carbonic anhydrase IX (CAIX) is a hypoxia and HIF-1-inducible protein that regulates intra- and extracellular pH under hypoxic conditions and promotes tumor cell survival and invasion in hypoxic microenvironments. Interrogation of 3,630 human breast cancers provided definitive evidence of CAIX as an independent poor prognostic biomarker for distant metastases and survival. shRNA-mediated depletion of CAIX expression in 4T1 mouse metastatic breast cancer cells capable of inducing CAIX in hypoxia resulted in regression of orthotopic mammary tumors and inhibition of spontaneous lung metastasis formation. Stable depletion of CAIX in MDA-MB-231 human breast cancer xenografts also resulted in attenuation of primary tumor growth. CAIX depletion in the 4T1 cells led to caspase-independent cell death and reversal of extracellular acidosis under hypoxic conditions in vitro. Treatment of mice harboring CAIX-positive 4T1 mammary tumors with novel CAIX-specific small molecule inhibitors that mimicked the effects of CAIX depletion in vitro resulted in significant inhibition of tumor growth and metastasis formation in both spontaneous and experimental models of metastasis, without inhibitory effects on CAIX-negative tumors. Similar inhibitory effects on primary tumor growth were observed in mice harboring orthotopic tumors comprised of lung metatstatic MDA-MB-231 LM2-4(Luc+) cells. Our findings show that CAIX is vital for growth and metastasis of hypoxic breast tumors and is a specific, targetable biomarker for breast cancer metastasis.

  15. Generation of orthotopic patient-derived xenografts from gastrointestinal stromal tumor

    PubMed Central

    2014-01-01

    Background Gastrointestinal stromal tumor (GIST) is the most common sarcoma and its treatment with imatinib has served as the paradigm for developing targeted anti-cancer therapies. Despite this success, imatinib-resistance has emerged as a major problem and therefore, the clinical efficacy of other drugs has been investigated. Unfortunately, most clinical trials have failed to identify efficacious drugs despite promising in vitro data and pathological responses in subcutaneous xenografts. We hypothesized that it was feasible to develop orthotopic patient-derived xenografts (PDXs) from resected GIST that could recapitulate the genetic heterogeneity and biology of the human disease. Methods Fresh tumor tissue from three patients with pathologically confirmed GISTs was obtained immediately following tumor resection. Tumor fragments (4.2-mm3) were surgically xenografted into the liver, gastric wall, renal capsule, and pancreas of immunodeficient mice. Tumor growth was serially assessed with ultrasonography (US) every 3-4 weeks. Tumors were also evaluated with positron emission tomography (PET). Animals were sacrificed when they became moribund or their tumors reached a threshold size of 2500-mm3. Tumors were subsequently passaged, as well as immunohistochemically and histologically analyzed. Results Herein, we describe the first model for generating orthotopic GIST PDXs. We have successfully xenografted three unique KIT-mutated tumors into a total of 25 mice with an overall success rate of 84% (21/25). We serially followed tumor growth with US to describe the natural history of PDX growth. Successful PDXs resulted in 12 primary xenografts in NOD-scid gamma or NOD-scid mice while subsequent successful passages resulted in 9 tumors. At a median of 7.9 weeks (range 2.9-33.1 weeks), tumor size averaged 473±695-mm3 (median 199-mm3, range 12.6-2682.5-mm3) by US. Furthermore, tumor size on US within 14 days of death correlated with gross tumor size on necropsy. We also

  16. Metformin decreases the dose of chemotherapy for prolonging tumor remission in mouse xenografts involving multiple cancer cell types.

    PubMed

    Iliopoulos, Dimitrios; Hirsch, Heather A; Struhl, Kevin

    2011-05-01

    Metformin, the first-line drug for treating diabetes, selectively kills the chemotherapy resistant subpopulation of cancer stem cells (CSC) in genetically distinct types of breast cancer cell lines. In mouse xenografts, injection of metformin and the chemotherapeutic drug doxorubicin near the tumor is more effective than either drug alone in blocking tumor growth and preventing relapse. Here, we show that metformin is equally effective when given orally together with paclitaxel, carboplatin, and doxorubicin, indicating that metformin works together with a variety of standard chemotherapeutic agents. In addition, metformin has comparable effects on tumor regression and preventing relapse when combined with a four-fold reduced dose of doxorubicin that is not effective as a monotherapy. Finally, the combination of metformin and doxorubicin prevents relapse in xenografts generated with prostate and lung cancer cell lines. These observations provide further evidence for the CSC hypothesis for cancer relapse, an experimental rationale for using metformin as part of combinatorial therapy in a variety of clinical settings, and for reducing the chemotherapy dose in cancer patients.

  17. Detection of cellular senescence within human invasive breast carcinomas distinguishes different breast tumor subtypes.

    PubMed

    Cotarelo, Cristina L; Schad, Arno; Kirkpatrick, Charles James; Sleeman, Jonathan P; Springer, Erik; Schmidt, Marcus; Thaler, Sonja

    2016-11-15

    Oncogene-induced senescence is thought to act as a barrier to tumorigenesis by arresting cells at risk of malignant transformation. Nevertheless, numerous findings suggest that senescent cells may conversely promote tumor progression through the development of the senescence-associated secretome they produce. It is likely that the composition and the physiological consequences mediated by the senescence secretome are dependent on the oncogenes that trigger the senescence program. Breast cancer represents a heterogenous disease that can be divided into breast cancer subtypes due to different subsets of genetic and epigenetic abnormalities. As tumor initiation and progression of these breast cancer subtypes is triggered by diverse oncogenic stimuli, differences in the senescence secretomes within breast tumors might be responsible for tumor initiation, progression, metastasis and therapeutic response. Many studies have addressed the role of senescence as a barrier to tumor progression using murine xenograft models. However, few investigations have been performed to elucidate the degree to which senescent tumor cells are present within untreated human tumors, and if present, whether these senescent tumor cells may play a role in disease progression. In the present study we analysed the appearance of senescent cells within invasive breast cancers. Detection of cellular senescence by the use of SAβ-galactosidase (SAβ-gal) staining within invasive breast carcinoms from 129 untreated patients revealed differences in the amount of SAβ-gal+ tumor cells between breast cancer subtypes. The highest percentages of SAβ-gal+ tumor cells were found in HER2-positive and luminal A breast carcinomas whereas triple negative tumors showed either little or no positivity.

  18. Detection of cellular senescence within human invasive breast carcinomas distinguishes different breast tumor subtypes

    PubMed Central

    Cotarelo, Cristina L.; Schad, Arno; Kirkpatrick, Charles James; Sleeman, Jonathan P.; Springer, Erik; Schmidt, Marcus; Thaler, Sonja

    2016-01-01

    Oncogene-induced senescence is thought to act as a barrier to tumorigenesis by arresting cells at risk of malignant transformation. Nevertheless, numerous findings suggest that senescent cells may conversely promote tumor progression through the development of the senescence-associated secretome they produce. It is likely that the composition and the physiological consequences mediated by the senescence secretome are dependent on the oncogenes that trigger the senescence program. Breast cancer represents a heterogenous disease that can be divided into breast cancer subtypes due to different subsets of genetic and epigenetic abnormalities. As tumor initiation and progression of these breast cancer subtypes is triggered by diverse oncogenic stimuli, differences in the senescence secretomes within breast tumors might be responsible for tumor initiation, progression, metastasis and therapeutic response. Many studies have addressed the role of senescence as a barrier to tumor progression using murine xenograft models. However, few investigations have been performed to elucidate the degree to which senescent tumor cells are present within untreated human tumors, and if present, whether these senescent tumor cells may play a role in disease progression. In the present study we analysed the appearance of senescent cells within invasive breast cancers. Detection of cellular senescence by the use of SAβ-galactosidase (SAβ-gal) staining within invasive breast carcinoms from 129 untreated patients revealed differences in the amount of SAβ-gal+ tumor cells between breast cancer subtypes. The highest percentages of SAβ-gal+ tumor cells were found in HER2-positive and luminal A breast carcinomas whereas triple negative tumors showed either little or no positivity. PMID:27713152

  19. DMU-212 inhibits tumor growth in xenograft model of human ovarian cancer.

    PubMed

    Piotrowska, Hanna; Myszkowski, Krzysztof; Abraszek, Joanna; Kwiatkowska-Borowczyk, Eliza; Amarowicz, Ryszard; Murias, Marek; Wierzchowski, Marcin; Jodynis-Liebert, Jadwiga

    2014-05-01

    DMU-212 has been shown to evoke a mitochondrial apoptotic pathway in transformed fibroblasts and breast cancer. However, recently published data indicated the ability of DMU-212 to evoke apoptosis in both mitochondria- and receptor-mediated manner in two ovarian cancer cell lines, namely A-2780 and SKOV-3, which showed varied sensitivity to the compound tested. The pronounced cytotoxic effects of DMU-212 observed in A-2780 cells were related to the execution of extracellular apoptosis pathway and cell cycle arrest in G2/M phase. In view of the great anticancer potential of DMU-212 against A-2780 cell line, the aim of the current study was to assess antiproliferative activity of DMU-212 in xenograft model of ovarian cancer. To evaluate in vitro metabolic properties of cells that were to be injected into SCID mice, uptake and decline of DMU-212 in A-2780 ovarian cancer cell line was investigated. It was found that the concentration of the test compound in A-2780 cells was growing within first eight hours, and then the gradual decline was observed. A-2780 cells stably transfected with pcDNA3.1/Zeo(-)-Luc vector were subcutaneously inoculated into the right flanks of SCID mice. After seven days of the treatment with DMU-212 (50mg/kg b.w), tumor growth appeared to be suppressed in the animals treated with the compound tested. At day 14 of the experiment, tumor burden in mice treated with DMU-212 was significantly lower, as compared to untreated controls. Our findings suggest that DMU-212 might be considered as a potential anticancer agent used in ovarian cancer therapy. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  20. Genome remodelling in a basal-like breast cancer metastasis and xenograft.

    PubMed

    Ding, Li; Ellis, Matthew J; Li, Shunqiang; Larson, David E; Chen, Ken; Wallis, John W; Harris, Christopher C; McLellan, Michael D; Fulton, Robert S; Fulton, Lucinda L; Abbott, Rachel M; Hoog, Jeremy; Dooling, David J; Koboldt, Daniel C; Schmidt, Heather; Kalicki, Joelle; Zhang, Qunyuan; Chen, Lei; Lin, Ling; Wendl, Michael C; McMichael, Joshua F; Magrini, Vincent J; Cook, Lisa; McGrath, Sean D; Vickery, Tammi L; Appelbaum, Elizabeth; Deschryver, Katherine; Davies, Sherri; Guintoli, Therese; Lin, Li; Crowder, Robert; Tao, Yu; Snider, Jacqueline E; Smith, Scott M; Dukes, Adam F; Sanderson, Gabriel E; Pohl, Craig S; Delehaunty, Kim D; Fronick, Catrina C; Pape, Kimberley A; Reed, Jerry S; Robinson, Jody S; Hodges, Jennifer S; Schierding, William; Dees, Nathan D; Shen, Dong; Locke, Devin P; Wiechert, Madeline E; Eldred, James M; Peck, Josh B; Oberkfell, Benjamin J; Lolofie, Justin T; Du, Feiyu; Hawkins, Amy E; O'Laughlin, Michelle D; Bernard, Kelly E; Cunningham, Mark; Elliott, Glendoria; Mason, Mark D; Thompson, Dominic M; Ivanovich, Jennifer L; Goodfellow, Paul J; Perou, Charles M; Weinstock, George M; Aft, Rebecca; Watson, Mark; Ley, Timothy J; Wilson, Richard K; Mardis, Elaine R

    2010-04-15

    Massively parallel DNA sequencing technologies provide an unprecedented ability to screen entire genomes for genetic changes associated with tumour progression. Here we describe the genomic analyses of four DNA samples from an African-American patient with basal-like breast cancer: peripheral blood, the primary tumour, a brain metastasis and a xenograft derived from the primary tumour. The metastasis contained two de novo mutations and a large deletion not present in the primary tumour, and was significantly enriched for 20 shared mutations. The xenograft retained all primary tumour mutations and displayed a mutation enrichment pattern that resembled the metastasis. Two overlapping large deletions, encompassing CTNNA1, were present in all three tumour samples. The differential mutation frequencies and structural variation patterns in metastasis and xenograft compared with the primary tumour indicate that secondary tumours may arise from a minority of cells within the primary tumour.

  1. New Microscope Scans Breast Tumors During Surgery

    MedlinePlus

    ... page: https://medlineplus.gov/news/fullstory_166925.html New Microscope Scans Breast Tumors During Surgery The instrument ... 2017 WEDNESDAY, June 28, 2017 (HealthDay News) -- A new microscope could help surgeons remove breast tumors completely, ...

  2. Transforming growth factor-β signalling controls human breast cancer metastasis in a zebrafish xenograft model.

    PubMed

    Drabsch, Yvette; He, Shuning; Zhang, Long; Snaar-Jagalska, B Ewa; ten Dijke, Peter

    2013-11-07

    The transforming growth factor beta (TGF-β) signalling pathway is known to control human breast cancer invasion and metastasis. We demonstrate that the zebrafish xenograft assay is a robust and dependable animal model for examining the role of pharmacological modulators and genetic perturbation of TGF-β signalling in human breast tumour cells. We injected cancer cells into the embryonic circulation (duct of cuvier) and examined their invasion and metastasis into the avascular collagenous tail. Various aspects of the TGF-β signalling pathway were blocked by chemical inhibition, small interfering RNA (siRNA), or small hairpin RNA (shRNA). Analysis was conducted using fluorescent microscopy. Breast cancer cells with different levels of malignancy, according to in vitro and in vivo mouse studies, demonstrated invasive and metastatic properties within the embryonic zebrafish model that nicely correlated with their differential tumourigenicity in mouse models. Interestingly, MCF10A M2 and M4 cells invaded into the caudal hematopoietic tissue and were visible as a cluster of cells, whereas MDA MB 231 cells invaded into the tail fin and were visible as individual cells. Pharmacological inhibition with TGF-β receptor kinase inhibitors or tumour specific Smad4 knockdown disturbed invasion and metastasis in the zebrafish xenograft model and closely mimicked the results we obtained with these cells in a mouse metastasis model. Inhibition of matrix metallo proteinases, which are induced by TGF-β in breast cancer cells, blocked invasion and metastasis of breast cancer cells. The zebrafish-embryonic breast cancer xenograft model is applicable for the mechanistic understanding, screening and development of anti-TGF-β drugs for the treatment of metastatic breast cancer in a timely and cost-effective manner.

  3. Phyllodes tumor of the breast

    PubMed Central

    Herazo, Fernando; Gil, Monica; Echeverri, Carolina; Ángel, Gonzalo; Borrero, Mauricio; Madrid, Jorge; Jaramillo, Ricardo

    2015-01-01

    Introduction: Breast Phyllodes tumors are rare breast tumors present in less than 1% of new cases of breast cancer, usually occurring among middle-aged women (40-50 yrs). Objective: This study shows diagnostic experience, surgical management and follows up of patients with this disease during a period of ten years in a oncology referral center. Methods: Retrospectively, breast cancer registries at the institution were reviewed, identifying 77 patients with Phyllodes tumors between 2002 and 2012, who had been operated on at the Instituto de Cancerología - Clínica Las Américas, in Medellín (Colombia). Clinical and histopathological data belonging to these cases was captured and analyzed and descriptive statistics were used. Results: The follow up median was 22.5 months (IQR: 10.5-60.0), average age was 47.2 yrs (SD: 12.4), mean tumor size was 3.6 cm (SD: 4.6), 88.3% of the patients (68 cases) presented negative margins and none of them received adjuvant chemotherapy. Of the patients with Phyllodes tumors; 33.8% had benign, 31.2% had borderline and 35.0% had malignant tumor. Disease-free survival was 85.8% and overall survival was 94.5%. Discussion: Reported data in this article is in accordance with what has been reported in worldwide literature. In our cohort even the high mean size of the tumors, the risk of local relapse and metastatic disease is low than previously reported in literature. Trials with longer follow up and molecular trials in Phyllodes tumors are necessary to understand the behavior of these tumors in Hispanics population. PMID:26600624

  4. Moxifloxacin increases anti-tumor and anti-angiogenic activity of irinotecan in human xenograft tumors.

    PubMed

    Reuveni, Debby; Halperin, Drora; Fabian, Ina; Tsarfaty, Galia; Askenasy, Nadir; Shalit, Itamar

    2010-04-15

    Camptothecins (CPTs) are topoisomerase I inhibitors chemotherapeutic agents used in combination chemotherapy. We showed previously that combination of moxifloxacin (MXF) and CPT induced inhibitory effects on topoisomerase I activity, on proliferation of HT-29 cells in vitro and enhanced apoptosis, compared to CPT alone. Analysis of secretion of the pro-angiogenic factors IL-8 and VEGF showed significant reduction by MXF. Using a murine model of human colon carcinoma xenograft, we compared the effects of MXF/CPT in vitro to MXF/irinotecan combination in vivo. We show that the MXF/CPT inhibitory effects observed in vitro are reflected in the inhibition of the progressive growth of HT-29 cells implanted in SCID mice. Using caliper measurements, Doppler ultrasonography, image analyses and immunohistochemistry of nuclear proteins (Ki-67) and vascular endothelial cells (CD-31) we show that addition of MXF (45mg/kg) to a relatively ineffective dose of irinotecan (20mg/kg), results in a 50% and 30% decrease, respectively, in tumor size and a decrease in Ki-67 staining. Power Doppler Ultrasound showed a significant, pronounced decrease in the number of blood vessels, as did CD-31 staining, indicating decreased blood flow in tumors in mice treated with MXF alone or MXF/irinotecan compared to irinotecan. These results suggest that the combination of MXF/irinotecan may result in enhanced anti-neoplastic/anti-angiogenic activity.

  5. Low dose carboplatin combined with angiostatic agents prevents metastasis in human testicular germ cell tumor xenografts.

    PubMed

    Abraham, Dietmar; Abri, Samad; Hofmann, Michael; Höltl, Wolfgang; Aharinejad, Seyedhossein

    2003-10-01

    Low dose chemotherapy combined with angiogenesis inhibitors has been shown to be more effective for experimental tumor treatment than chemotherapy alone. To our knowledge whether germ cell tumors could benefit from this treatment strategy remains to be evaluated. We examined the efficacy of angiostatic thrombospondin-1 (TSP-1), endostatin and combined angiostatic/low dose carboplatin in mice xenografted with human nonseminomatous germ cell tumor. We monitored tumor progression and angiogenesis in the established model of human nonseminomatous germ cell tumor xenograft in 120 SCID mice using intravital video microscopy, immunocytochemistry and real-time polymerase chain reaction. Mice received TSP-1 (20 mg/kg daily) or endostatin (10 mg/kg daily) subcutaneously (via osmotic mini pumps) for 2 weeks starting 15 days after cancer cell grafting, carboplatin cycled twice (30 mg/kg intraperitoneally days 14 and 21 after cancer cell grafting), or a combination of carboplatin with TSP-1 or endostatin. Untreated, sham and tumor bearing mice treated with Ringer's solution served as controls. Primary tumor development was not affected in mice treated with TSP-1, endostatin or carboplatin alone. All animals had metastases at 6 months, while metastasis did not develop following the combination of carboplatin with TSP-1 or endostatin. This combined therapy suppressed tumor angiogenesis, enhanced apoptosis in tumor cells and decreased vascular endothelial growth factor-A tissue mRNA expression vs controls (p <0.05). These data indicate that angiostatic agents added to low dose carboplatin have the ability to suppress the progression of human germ cell tumor xenografts toward a metastatic phenotype. Therefore, this treatment strategy might be beneficial to prevent metastasis in germ cell tumors.

  6. NVP-AUY922: a novel heat shock protein 90 inhibitor active against xenograft tumor growth, angiogenesis, and metastasis.

    PubMed

    Eccles, Suzanne A; Massey, Andy; Raynaud, Florence I; Sharp, Swee Y; Box, Gary; Valenti, Melanie; Patterson, Lisa; de Haven Brandon, Alexis; Gowan, Sharon; Boxall, Frances; Aherne, Wynne; Rowlands, Martin; Hayes, Angela; Martins, Vanessa; Urban, Frederique; Boxall, Kathy; Prodromou, Chrisostomos; Pearl, Laurence; James, Karen; Matthews, Thomas P; Cheung, Kwai-Ming; Kalusa, Andrew; Jones, Keith; McDonald, Edward; Barril, Xavier; Brough, Paul A; Cansfield, Julie E; Dymock, Brian; Drysdale, Martin J; Finch, Harry; Howes, Rob; Hubbard, Roderick E; Surgenor, Alan; Webb, Paul; Wood, Mike; Wright, Lisa; Workman, Paul

    2008-04-15

    We describe the biological properties of NVP-AUY922, a novel resorcinylic isoxazole amide heat shock protein 90 (HSP90) inhibitor. NVP-AUY922 potently inhibits HSP90 (K(d) = 1.7 nmol/L) and proliferation of human tumor cells with GI(50) values of approximately 2 to 40 nmol/L, inducing G(1)-G(2) arrest and apoptosis. Activity is independent of NQO1/DT-diaphorase, maintained in drug-resistant cells and under hypoxic conditions. The molecular signature of HSP90 inhibition, comprising induced HSP72 and depleted client proteins, was readily demonstrable. NVP-AUY922 was glucuronidated less than previously described isoxazoles, yielding higher drug levels in human cancer cells and xenografts. Daily dosing of NVP-AUY922 (50 mg/kg i.p. or i.v.) to athymic mice generated peak tumor levels at least 100-fold above cellular GI(50). This produced statistically significant growth inhibition and/or regressions in human tumor xenografts with diverse oncogenic profiles: BT474 breast tumor treated/control, 21%; A2780 ovarian, 11%; U87MG glioblastoma, 7%; PC3 prostate, 37%; and WM266.4 melanoma, 31%. Therapeutic effects were concordant with changes in pharmacodynamic markers, including induction of HSP72 and depletion of ERBB2, CRAF, cyclin-dependent kinase 4, phospho-AKT/total AKT, and hypoxia-inducible factor-1alpha, determined by Western blot, electrochemiluminescent immunoassay, or immunohistochemistry. NVP-AUY922 also significantly inhibited tumor cell chemotaxis/invasion in vitro, WM266.4 melanoma lung metastases, and lymphatic metastases from orthotopically implanted PC3LN3 prostate carcinoma. NVP-AUY922 inhibited proliferation, chemomigration, and tubular differentiation of human endothelial cells and antiangiogenic activity was reflected in reduced microvessel density in tumor xenografts. Collectively, the data show that NVP-AUY922 is a potent, novel inhibitor of HSP90, acting via several processes (cytostasis, apoptosis, invasion, and angiogenesis) to inhibit tumor growth

  7. Noninvasive molecular imaging of MYC mRNA expression in human breast cancer xenografts with a [99mTc]peptide-peptide nucleic acid-peptide chimera.

    PubMed

    Tian, Xiaobing; Aruva, Mohan R; Qin, Wenyi; Zhu, Weizhu; Sauter, Edward R; Thakur, Mathew L; Wickstrom, Eric

    2005-01-01

    Human estrogen receptor-positive breast cancer cells typically display elevated levels of Myc protein due to overexpression of MYC mRNA, and elevated insulin-like growth factor 1 receptor (IGF1R) due to overexpression of IGF1R mRNA. We hypothesized that scintigraphic detection of MYC peptide nucleic acid (PNA) probes with an IGF1 peptide loop on the C-terminus, and a [99mTc]chelator peptide on the N-terminus, could measure levels of MYC mRNA noninvasively in human IGF1R-overexpressing MCF7 breast cancer xenografts in nude mice. We prepared the chelator-MYC PNA-IGF1 peptide, as well as a 4-nt mismatch PNA control, by solid-phase synthesis. We imaged MCF7 xenografts scintigraphically and measured the distribution of [99mTc]probes by scintillation counting of dissected tissues. MCF7 xenografts in nude mice were visualized at 4 and 24 h after tail vein administration of the [99mTc]PNA probe specific for MYC mRNA, but not with the mismatch control. The [99mTc]probes distributed normally to the kidneys, livers, tumors, and other tissues. Molecular imaging of oncogene mRNAs in solid tumors with radiolabel-PNA-peptide chimeras might provide additional genetic characterization of preinvasive and invasive breast cancers.

  8. [Phyllodes breast tumors].

    PubMed

    Zedníková, I; Černá, M; Hlaváčková, M; Hes, O

    2015-01-01

    Phyllodes tumour is a breast tumour occurring very rarely. It accounts for only in 1% of all cases of breast tumour. The diagnosis of phyllodes tumours can be difficult in consideration of the small number of cases. Treatment of phyllodes tumours is always surgical. In 2004-2013, we operated on twelve female patients with phyllodes tumours out of the total number of 1564 surgeries for breast tumours (0.8%) at the Department of Surgery at Teaching Hospital in Pilsen. We evaluated the age, the biological behaviour of the tumour depending on the tumour size and duration, the distant metastases, therapy and survival. The average age at the time of surgery was fifty years (2684), the duration of disease to the surgical solution ranged from one month to ten years. Tumour size was in the range of two to twenty-nine centimetres, tumours measuring less than five centimetres were always benign. Tumour excision for benign phyllodes tumour was performed seven times. Malignant phyllodes tumour was diagnosed five times with mastectomy performed in each case, and the axilla was exenterated in three cases where nodes were benign in each of them. In one case, mastectomy was followed by radiotherapy because the tumour reached the edge of the resected part; the other patients were only monitored. In two patients, tumour spreading into the lungs was diagnosed at five to ten months after breast surgery. One patient with generalized disease died, the other ones live with no local recurrence of this disease. Median survival is fifty-two months; the disease-free interval is fifty months. The results show that if phyllodes tumour is diagnosed in time, it is almost exclusively benign. If the case history is longer and the tumour is growing, the likelihood of malignancy increases. Surgical treatment is also sufficient in the case of malignant forms. The breast surgery does not need to be supplemented with exenteration of axilla.Key words: breast - phyllodes tumour.

  9. Enhanced effect of geldanamycin nanocomposite against breast cancer cells growing in vitro and as xenograft with vanquished normal cell toxicity.

    PubMed

    Prabhu, Suma; Ananthanarayanan, Preeta; Aziz, Sajida Kannangar; Rai, Sharada; Mutalik, Srinivas; Sadashiva, Satish Rao Bola

    2017-04-01

    Despite enormous advances in remedies developed for breast cancer, an effective therapeutic strategy by targeting malignant cells with the least normal tissue toxicity is yet to be developed. Hsp90 is considered to be an important therapeutic target to inhibit cell proliferation. Geldanamycin (GDM), a potent inhibitor of Hsp90 was withdrawn from clinical trials due to its undesirable hepatotoxicity. We report a superparamagnetic iron oxide (SPION) based polymeric nanocomposite of GDM augmenting anticancer competence with decreased hepatic toxicity. The particle size of nanocomposite was ascertained to be 76±10nm with acceptable stability. A comparative dose dependent in vitro validation of cytotoxicity showed an enhanced cellular damage and necrosis in breast cancer (MCF-7) cell line at a low dose of 5.49nM (in GDM nanocomposite) in contrast to 20nM of pure GDM, while normal breast epithelial cells (MCF-10A) were least affected. Besides, in vivo study (in breast cancer xenografts) substantiated 2.7 fold delay in tumor progression mediated by redundancy in the downstream functions of p-Akt and MAPK-Erk leading to apoptosis with negligible hepatotoxicity. Pure GDM disrupted the function and morphology of liver with lesser therapeutic efficacy than the GDM nanocomposite. These findings deduce that GDM based polymeric magnetite nanocomposite play a vital role in efficacious therapy while vanquishing normal cells and hepatic toxicity and thereby promising it to be reinstated in clinics.

  10. CABOZANTINIB IS EFFECTIVE IN A SUBSET OF XENOGRAFT GBM TUMORS AND AFFECTS MULTIPLE SIGNALING PATHWAYS

    PubMed Central

    Mikkelsen, Tom; deCarvalho, Ana C.; Arnold, Kimberly; Mueller, Claudius; Petricoin, Emanuel F; Poisson, Laila M.; Irtenkauf, Susan; Hasselbach, Laura

    2014-01-01

    BACKGROUND: (blind field). METHODS: Neurospheres enriched in CSCs were cultured from resected GBM tumors. Sensitivity to cabozantinib was determined in vitro. Cells were treated (IC40) in triplicate, and cell lysates were analyzed by reverse phase protein microarrays (RPPAs). GBM CSCs were implanted intracranially into nude mice. Cabozantinib was administered by oral gavage at a dose of 60 mg/kg for 4 weeks (5 days/week) as a single agent or in combination with 40 mg/kg TMZ. Tumor growth and response to treatment were monitored by non-invasive in vivo bioluminescence imaging (BLI) using the Xenogen IVIS System (Caliper Life Sciences), and overall survival. RESULTS: Sensitivity to cabozantinib treatment varied for the different GBM CSCs. From 70 proteins and phosphoproteins measured, 29 distributed among several signaling pathways were significantly altered after treatment in both resistant and sensitive GBM CSCs, including Met, Ret, AKT, MAPK/ERK. Cabozantinib single agent treatment reduced GBM tumor growth and increased mouse survival in two xenograft lines. Cabozantinib monotherapy reduced tumor size, as measured by BLI, but had no significant effect on overall survival for another xenograft line, however, the combination treatment resulted in sensitization of these xenografts to TMZ treatment. RPPA confirmed downregulation of the described targets for XL184, including activated Met, VEGFR2 and Ret (in vitro). CONCLUSIONS: Consistent with the clinical experience, both sensitive and resistant GBMs are represented in our CSC xenografts. More extensive evaluation will likely identify baseline biomarkers which might be valuable in identifying potentially sensitive sub-populations for subsequent clinical trials. RPPA and next-gen sequencing (NGS) on terminal tumors is underway. SECONDARY CATEGORY: Tumor Biology.

  11. Analyzing spatiotemporal distribution of uniquely fluorescent nanoparticles in xenograft tumors.

    PubMed

    Stirland, Darren L; Matsumoto, Yu; Toh, Kazuko; Kataoka, Kazunori; Bae, You Han

    2016-04-10

    A dose circulating through the blood at one time will have different opportunities to access the tumor compared to a dose circulating hours later. Methods to test this hypothesis allowed us to differentiate two uniquely fluorescent doses of nanoparticles (administered as a mixture or sequentially) and to measure the distribution and correlation of these nanoparticle doses in three dimensions. Multiple colocalization analyses confirm that silica nanoparticles separated into different dose administrations will not accumulate in the same location. Decreased colocalization between separate doses implies dynamic extravasation events on the scale of microns. Further, the perfusion state of different blood vessels can change across the dosing period. Lastly, analyzing the distance traveled by these silica nanoparticles in two dimensions can be an overestimation when compared with three-dimensional distance analysis. Better understanding intratumoral distribution of delivered drugs will be crucial to overcoming the various barriers to transport in solid tumors. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Prostate-targeted biodegradable nanoparticles loaded with androgen receptor silencing constructs eradicate xenograft tumors in mice

    PubMed Central

    Yang, Jun; Xie, Sheng-Xue; Huang, Yiling; Ling, Min; Liu, Jihong; Ran, Yali; Wang, Yanlin; Thrasher, J Brantley; Berkland, Cory; Li, Benyi

    2012-01-01

    Background Prostate cancer is the major cause of cancer death in men and the androgen receptor (AR) has been shown to play a critical role in the progression of the disease. Our previous reports showed that knocking down the expression of the AR gene using a siRNA-based approach in prostate cancer cells led to apoptotic cell death and xenograft tumor eradication. In this study, we utilized a biodegradable nanoparticle to deliver the therapeutic AR shRNA construct specifically to prostate cancer cells. Materials & methods The biodegradable nanoparticles were fabricated using a poly(dl-lactic-co-glycolic acid) polymer and the AR shRNA constructs were loaded inside the particles. The surface of the nanoparticles were then conjugated with prostate-specific membrane antigen aptamer A10 for prostate cancer cell-specific targeting. Results A10-conjugation largely enhanced cellular uptake of nanoparticles in both cell culture- and xenograft-based models. The efficacy of AR shRNA encapsulated in nanoparticles on AR gene silencing was confirmed in PC-3/AR-derived xenografts in nude mice. The therapeutic property of A10-conjugated AR shRNA-loaded nanoparticles was evaluated in xenograft models with different prostate cancer cell lines: 22RV1, LAPC-4 and LNCaP. Upon two injections of the AR shRNA-loaded nanoparticles, rapid tumor regression was observed over 2 weeks. Consistent with previous reports, A10 aptamer conjugation significantly enhanced xenograft tumor regression compared with nonconjugated nanoparticles. Discussion These data demonstrated that tissue-specific delivery of AR shRNA using a biodegradable nanoparticle approach represents a novel therapy for life-threatening prostate cancers. PMID:22583574

  13. Effective Treatment of Established Human Breast Tumor Xenografts in Immunodeficient Mice with a Single Dose of the α-Emitting Radioisotope Astatine-211 Conjugated to Anti-HER2/neu Diabodies

    PubMed Central

    Robinson, Matthew K.; Shaller, Calvin; Garmestani, Kayhan; Plascjak, Paul S.; Hodge, Kathryn M.; Yuan, Qing-An; Marks, James D.; Waldmann, Thomas A.; Brechbiel, Martin W.; Adams, Gregory P.

    2008-01-01

    Successful RAIT strategies depend upon selecting radioisotopes with physical properties complementary to the biological properties of the targeting vehicle. Small, engineered anti-tumor antibody fragments are capable of rapid, highly specific tumor targeting in immunodeficient mouse models. We hypothesized that their rapid systemic elimination would make them ideal radioisotope carriers for the radioimmunotherapy (RAIT) of established tumors. The C6.5 diabody, a non-covalent anti-HER2 single-chain Fv dimer, has a T1/2 α (equilibration phase) of 0.7 hrs, a T1/2 β (elimination phase) of 6 hrs, and a T1/2 in tumor of approximately 30 hrs that favors the use of short-lived radioisotopes. In particular, the α-particle emitting radioisotope 211At (T1/2 = 7.2 hrs) was hypothesized to be very promising for diabody-directed RAIT. This hypothesis was tested in immunodeficient nude mice bearing established HER2/neu positive MDA-MB-361/DYT2 tumors treated with 211At-SAPS C6.5 diabody (N-succinimidyl N-(4-[211At]astatophenethyl)succinamate-C6.5 diabody) at or below the maximum tolerated dose. A single i.v. injection of 211At-SAPS C6.5 diabody lead to a 30 day delay in tumor growth when a 20 µCi dose was administered and a 57 day delay in tumor growth (60% tumor free after one year) when a 45 µCi dose was employed. Treatment of mice bearing the same tumors with 211At-SAPS T84.66 diabody targeting the carcinoembryonic antigen (CEA) at the same doses led to a delay in tumor growth, but no complete responses, likely due to substantially lower expression of this antigen on the MDA-MB-361/DYT2 tumors. A dose of 20 µCi of 211At-SAPS on an a diabody specific for the Müllerian Inhibiting Substance Type II Receptor which is minimally expressed on this tumor cell line did not impact tumor growth rate, demonstrating specificity. These findings indicate that diabody molecules can be effective agents for targeted radioimmunotherapy of solid tumors using powerful, short-lived

  14. Tumor-associated primo vascular system is derived from xenograft, not host.

    PubMed

    Islam, Md Ashraful; Thomas, Shelia D; Sedoris, Kara J; Slone, Stephen P; Alatassi, Houda; Miller, Donald M

    2013-02-01

    The primo vascular system (PVS), which is composed of very small primo-vessels (PV) and primo-nodes (PN), has recently emerged as a third component of circulatory system. Here, we report the presence of a tumor derived PVS in murine xenografts of human histiocytic lymphoma (U937) in close proximity to the tumor. Within this system, PNs are small (~500-600 μM diameter) membranous sac-like structures which contain numerous small cells which can be demonstrated by DAPI staining. Hematoxylin and Eosin (H&E) staining of the peri-tumoral PVS shows the presence of loose structures lined by fibroblasts but filled with dense fibers, cells, lacunae and nerve-like structures. The origin and type of cells within the PVS was characterized by immunostaining with antibodies for CD68, CD45 and lysozyme. The results of these studies reveal that the PVS of the xenograft originates from the human U937 tumor cells. qRT-PCR analysis of mRNA isolated from PVS cells reveals a striking predominance of human, rather than mouse, sequences. Of particular interest, human stem cell specific transcription factors were overexpressed, most notably KLF4, an upstream regulator of NANOG which maintains the pluripotent and undifferentiated state of stem cells. These results suggest that the cells present within the PVS are derived from the human xenograft and suggests that the primo-vessels associated with the xenografted tumor may provide a safe haven for a select population of cancer stem cells. Further understanding of the biological properties of these cells may allow the development of new anti-cancer interventions.

  15. Peptidomimetic Src/pretubulin inhibitor KX-01 alone and in combination with paclitaxel suppresses growth, metastasis in human ER/PR/HER2-negative tumor xenografts

    PubMed Central

    Anbalagan, Muralidharan; Ali, Alaa; Jones, Ryan K; Marsden, Carolyn G; Sheng, Mei; Carrier, Latonya; Bu, Yahao; Hangauer, David; Rowan, Brian G

    2012-01-01

    Src kinase is elevated in breast tumors that are ER/PR negative and do not overexpress HER2 but clinical trials with Src inhibitors have demonstrated little activity. The present study evaluated preclinical efficacy of a novel peptidomimetic compound, KX-01 (KX2-391), that exhibits dual action as a Src and pretubulin inhibitor. KX-01 was evaluated as a single agent and in combination with paclitaxel in MDA-MB-231, MDA-MB-157, and MDA-MB-468 human ER/PR/HER2-negative breast cancer cells. Treatments were evaluated by growth/apoptosis, isobologram analysis, migration/invasion assays, tumor xenograft volume, metastasis, and measurement of Src, FAK, microtubules, Ki67, and microvessel density. KX-01 inhibited cell growth in vitro and in combination with paclitaxel resulted in synergistic growth inhibition. KX-01 resulted in a dose dependent inhibition of MDA-MB-231 and MDA-MB-157 tumor xenografts (1 and 5 mg/kg, BID). KX-01 inhibited activity of Src and downstream mediator FAK in tumors that was coincident with reduced proliferation and angiogenesis, and increased apoptosis. KX01 also resulted in microtubule disruption in tumors. Combination of KX-01 with paclitaxel resulted in significant regression of MDA-MB-231 tumors and reduced metastasis to mouse lung and liver. KX-01 is a potently active Src/pretubulin inhibitor that inhibits breast tumor growth and metastasis. As ER/PR/HER2-negative patients are candidates for paclitaxel therapy, combination with KX-01 may potentiate antitumor efficacy in management of this aggressive breast cancer subtype. PMID:22784709

  16. Telomerase inhibition impairs tumor growth in glioblastoma xenografts.

    PubMed

    Falchetti, Maria Laura; Fiorenzo, Paolo; Mongiardi, Maria Patrizia; Petrucci, Giovanna; Montano, Nicola; Maira, Giulio; Pierconti, Francesco; Larocca, Luigi Maria; Levi, Andrea; Pallini, Roberto

    2006-07-01

    Telomerase is a specialized DNA polymerase that is required to replicate the ends of linear chromosomes, the telomeres. The majority of human cancers express high levels of telomerase activity that is permissive for tumor growth because it provides cells with an extended proliferative potential. Additionally, telomerase exerts cell growth promoting functions and favors cell survival. Human glioblastoma multiforme (GBM) cells express high level of telomerase activity owing to the overexpression of human telomerase reverse transcriptase (hTERT), the limiting subunit of the enzyme. Here we used retroviral mediated RNA interference to dampen down telomerase activity in two distinct human GBM cell lines, U87MG and TB10. Substantial decrease of hTERT mRNA and telomerase activity had only minimal effects on telomere length maintenance, cell growth and survival in vitro. On the contrary, development of tumors upon subcutaneously grafting of U87MG and TB10 cells and intracranial implantation of U87MG cells in nude athymic mice was strongly reduced by telomerase inhibition.

  17. Effective treatment of established human breast tumor xenografts in immunodeficient mice with a single dose of the alpha-emitting radioisotope astatine-211 conjugated to anti-HER2/neu diabodies.

    PubMed

    Robinson, Matthew K; Shaller, Calvin; Garmestani, Kayhan; Plascjak, Paul S; Hodge, Kathryn M; Yuan, Qing-An; Marks, James D; Waldmann, Thomas A; Brechbiel, Martin W; Adams, Gregory P

    2008-02-01

    Successful radioimmunotherapy strategies depend on selecting radioisotopes with physical properties complementary to the biological properties of the targeting vehicle. Small, engineered antitumor antibody fragments are capable of rapid, highly specific tumor targeting in immunodeficient mouse models. We hypothesized that the C6.5 diabody, a noncovalent anti-HER2 single-chain Fv dimer, would be an ideal radioisotope carrier for the radioimmunotherapy of established tumors using the short-lived alpha-emitting radioisotope (211)At. Immunodeficient nude mice bearing established HER2/neu-positive MDA-MB-361/DYT2 tumors treated with N-succinimidyl N-(4-[(211)At]astatophenethyl)succinamate ((211)At-SAPS)-C6.5 diabody. Additional cohorts of mice were treated with (211)At-SAPS T84.66 diabody targeting the carcinoembryonic antigen or (211)At-SAPS on a diabody specific for the Müllerian inhibiting substance type II receptor, which is minimally expressed on this tumor cell line. A single i.v. injection of (211)At-SAPS C6.5 diabody led to a 30-day delay in tumor growth when a 20 muCi dose was administered and a 57-day delay in tumor growth (60% tumor-free after 1 year) when a 45 muCi dose was used. Treatment of mice bearing the same tumors with (211)At-SAPS T84.66 diabody at the same doses led to a delay in tumor growth, but no complete responses, likely due to substantially lower expression of this antigen on the MDA-MB-361/DYT2 tumors. In contrast, a dose of 20 muCi of (211)At-SAPS on the anti-Müllerian-inhibiting substance type II receptor diabody did not affect tumor growth rate, demonstrating specificity of the therapeutic effect. These findings indicate that diabody molecules can be effective agents for targeted radioimmunotherapy of solid tumors using powerful, short-lived alpha-emitting radioisotopes.

  18. Colony-stimulating factor-1 antisense treatment suppresses growth of human tumor xenografts in mice.

    PubMed

    Aharinejad, Seyedhossein; Abraham, Dietmar; Paulus, Patrick; Abri, Hojatollah; Hofmann, Michael; Grossschmidt, Karl; Schäfer, Romana; Stanley, E Richard; Hofbauer, Reinhold

    2002-09-15

    Matrix metalloproteinases (MMPs) foster cellular invasion by disrupting extracellular matrix barriers and thereby facilitate tumor development. MMPs are synthesized by both cancer cells and adjacent stromal cells, primarily macrophages. The production of macrophages is regulated by colony-stimulating factor-1 (CSF-1). Tissue CSF-1 expression increased significantly in embryonic and colon cancer xenografts. We, therefore, hypothesized that blocking CSF-1 may suppress tumor growth by decelerating macrophage-mediated extracellular matrix breakdown. Cells expressing CSF-1 and mice xenografted with CSF-1 receptor (c-fms)- and CSF-1-negative malignant human embryonic or colon cancer cells were treated with mouse CSF-1 antisense oligonucleotides. Two weeks of CSF-1 antisense treatment selectively down-regulated CSF-1 mRNA and protein tissue expression in tumor lysates. CSF-1 blockade suppressed the growth of embryonic tumors to dormant levels and the growth of the colon carcinoma by 50%. In addition, tumor vascularity and the expression of MMP-2 and angiogenic factors were reduced. Six-month survival was observed in colon carcinoma mice only after CSF-1 blockade, whereas controls were all dead at day 65. These results suggest that human embryonic and colon cancer cells up-regulate host CSF-1 and MMP-2 expression. Because the cancer cells used were CSF-1 negative, CSF-1 antisense targeted tumor stromal cell CSF-1 production. CSF-1 blockade could be a novel strategy in treatment of solid tumors.

  19. Bone marrow CFU-GM and human tumor xenograft efficacy of three antitumor nucleoside analogs.

    PubMed

    Bagley, Rebecca G; Roth, Stephanie; Kurtzberg, Leslie S; Rouleau, Cecile; Yao, Min; Crawford, Jennifer; Krumbholz, Roy; Lovett, Dennis; Schmid, Steven; Teicher, Beverly A

    2009-05-01

    Nucleoside analogs are rationally designed anticancer agents that disrupt DNA and RNA synthesis. Fludarabine and cladribine have important roles in the treatment of hematologic malignancies. Clofarabine is a next generation nucleoside analog which is under clinical investigation. The bone marrow toxicity, tumor cell cytotoxicity and human tumor xenograft activity of fludarabine, cladribine and clofarabine were compared. Mouse and human bone marrow were subjected to colony forming (CFU-GM) assays over a 5-log concentration range in culture. NCI-60 cell line screening data were compared. In vivo, a range of clofarabine doses was compared with fludarabine for efficacy in several human tumor xenografts. The IC90 concentrations for fludarabine and cladribine for mouse CFU-GM were >30 and 0.93 microM, and for human CFU-GM were 8 and 0.11 microM, giving mouse to human differentials of >3.8- and 8.5-fold. Clofarabine produced IC90s of 1.7 microM in mouse and 0.51 microM in human CFU-GM, thus a 3.3-fold differential between species. In the NCI-60 cell line screen, fludarabine and cladribine showed selective cytotoxicity toward leukemia cell lines while for clofarabine there was no apparent selectivity based upon origin of the tumor cells. In vivo, clofarabine produced a dose-dependent increase in tumor growth delay in the RL lymphoma, the RPMI-8226 multiple myeloma, and HT-29 colon carcinoma models. The PC3 prostate carcinoma was equally responsive to clofarabine and fludarabine. Bringing together bone marrow toxicity data, tumor cell line cytotoxicity data, and human tumor xenograft efficacy provides valuable information for the translation of preclinical findings to the clinic.

  20. Orthotopic xenografts of RCC retain histological, immunophenotypic and genetic features of tumors in patients

    PubMed Central

    Grisanzio, Chiara; Seeley, Apryle; Chang, Michelle; Collins, Michael; Di Napoli, Arianna; Cheng, Su-Chun; Percy, Andrew; Beroukhim, Rameen; Signoretti, Sabina

    2013-01-01

    Renal cell carcinoma (RCC) is an aggressive malignancy with limited responsiveness to existing treatments. In vivo models of human cancer, including RCC, are critical for developing more effective therapies. Unfortunately, current RCC models do not accurately represent relevant properties of the human disease. The goal of this study was to develop clinically relevant animal models of RCC for preclinical investigations. We transplanted intact human tumor tissue fragments orthotopically in immunodeficient mice. The xenografts were validated by comparing the morphologic, phenotypic, and genetic characteristics of the kidney tumor tissues before and after implantation. Twenty kidney tumors were transplanted into mice. Successful tumor growth was detected in 19 cases (95%). The histopathologic and immunophenotypic features of the xenografts and those of the original tumors largely overlapped in all the cases. Evaluation of genetic alterations in a subset of 10 cases demonstrated that the grafts largely retained the genetic features of the pre-implantation RCC tissues. Indeed, primary tumors and corresponding grafts displayed identical VHL mutations. Moreover, an identical pattern of DNA copy amplification or loss was observed in 6 of 10 cases (60%). In summary, orthotopic engrafting of RCC tissue fragments can be successfully used to generate animal models that closely resemble RCC in patients. These models will be invaluable for in vivo preclinical drug testing, and for deeper understanding of kidney carcinogenesis. PMID:21710693

  1. Nanosuspension delivery of paclitaxel to xenograft mice can alter drug disposition and anti-tumor activity

    NASA Astrophysics Data System (ADS)

    Chiang, Po-Chang; Gould, Stephen; Nannini, Michelle; Qin, Ann; Deng, Yuzhong; Arrazate, Alfonso; Kam, Kimberly R.; Ran, Yingqing; Wong, Harvey

    2014-04-01

    Paclitaxel is a common chemotherapeutic agent that is effective against various cancers. The poor aqueous solubility of paclitaxel necessitates a large percentage of Cremophor EL:ethanol (USP) in its commercial formulation which leads to hypersensitivity reactions in patients. We evaluate the use of a crystalline nanosuspension versus the USP formulation to deliver paclitaxel to tumor-bearing xenograft mice. Anti-tumor efficacy was assessed following intravenous administration of three 20 mg/kg doses of paclitaxel. Paclitaxel pharmacokinetics and tissue distribution were evaluated, and differences were observed between the two formulations. Plasma clearance and tissue to plasma ratio of mice that were dosed with the nanosuspension are approximately 33- and 11-fold higher compared to those of mice that were given the USP formulation. Despite a higher tumor to plasma ratio for the nanosuspension treatment group, absolute paclitaxel tumor exposure was higher for the USP group. Accordingly, a higher anti-tumor effect was observed in the xenograft mice that were dosed with the USP formulation (90% versus 42% tumor growth inhibition). This reduction in activity of nanoparticle formulation appeared to result from a slower than anticipated dissolution in vivo. This study illustrates a need for careful consideration of both dose and systemic solubility prior utilizing nanosuspension as a mode of intravenous delivery.

  2. Nanosuspension delivery of paclitaxel to xenograft mice can alter drug disposition and anti-tumor activity.

    PubMed

    Chiang, Po-Chang; Gould, Stephen; Nannini, Michelle; Qin, Ann; Deng, Yuzhong; Arrazate, Alfonso; Kam, Kimberly R; Ran, Yingqing; Wong, Harvey

    2014-04-01

    Paclitaxel is a common chemotherapeutic agent that is effective against various cancers. The poor aqueous solubility of paclitaxel necessitates a large percentage of Cremophor EL:ethanol (USP) in its commercial formulation which leads to hypersensitivity reactions in patients. We evaluate the use of a crystalline nanosuspension versus the USP formulation to deliver paclitaxel to tumor-bearing xenograft mice. Anti-tumor efficacy was assessed following intravenous administration of three 20 mg/kg doses of paclitaxel. Paclitaxel pharmacokinetics and tissue distribution were evaluated, and differences were observed between the two formulations. Plasma clearance and tissue to plasma ratio of mice that were dosed with the nanosuspension are approximately 33- and 11-fold higher compared to those of mice that were given the USP formulation. Despite a higher tumor to plasma ratio for the nanosuspension treatment group, absolute paclitaxel tumor exposure was higher for the USP group. Accordingly, a higher anti-tumor effect was observed in the xenograft mice that were dosed with the USP formulation (90% versus 42% tumor growth inhibition). This reduction in activity of nanoparticle formulation appeared to result from a slower than anticipated dissolution in vivo. This study illustrates a need for careful consideration of both dose and systemic solubility prior utilizing nanosuspension as a mode of intravenous delivery.

  3. Nanosuspension delivery of paclitaxel to xenograft mice can alter drug disposition and anti-tumor activity

    PubMed Central

    2014-01-01

    Paclitaxel is a common chemotherapeutic agent that is effective against various cancers. The poor aqueous solubility of paclitaxel necessitates a large percentage of Cremophor EL:ethanol (USP) in its commercial formulation which leads to hypersensitivity reactions in patients. We evaluate the use of a crystalline nanosuspension versus the USP formulation to deliver paclitaxel to tumor-bearing xenograft mice. Anti-tumor efficacy was assessed following intravenous administration of three 20 mg/kg doses of paclitaxel. Paclitaxel pharmacokinetics and tissue distribution were evaluated, and differences were observed between the two formulations. Plasma clearance and tissue to plasma ratio of mice that were dosed with the nanosuspension are approximately 33- and 11-fold higher compared to those of mice that were given the USP formulation. Despite a higher tumor to plasma ratio for the nanosuspension treatment group, absolute paclitaxel tumor exposure was higher for the USP group. Accordingly, a higher anti-tumor effect was observed in the xenograft mice that were dosed with the USP formulation (90% versus 42% tumor growth inhibition). This reduction in activity of nanoparticle formulation appeared to result from a slower than anticipated dissolution in vivo. This study illustrates a need for careful consideration of both dose and systemic solubility prior utilizing nanosuspension as a mode of intravenous delivery. PMID:24685243

  4. Antitumor activity of [Pt(O,O'-acac)(γ-acac)(DMS)] in mouse xenograft model of breast cancer

    PubMed Central

    Muscella, A; Vetrugno, C; Migoni, D; Biagioni, F; Fanizzi, F P; Fornai, F; De Pascali, S A; Marsigliante, S

    2014-01-01

    The higher and selective cytotoxicity of [Pt(O,O′-acac)(γ-acac)(DMS)] toward cancer cell in both immortalized cell lines and in breast cancer cells in primary cultures, stimulated a pre-clinical study so as to evaluate its therapeutic potential in vivo. The efficacy of [Pt(O,O′-acac)(γ-acac)(DMS)] was assessed using a xenograft model of breast cancer developed by injection of MCF-7 cells in the flank of BALB/c nude mice. Treatment of solid tumor-bearing mice with [Pt(O,O′-acac)(γ-acac)(DMS)] induced up to 50% reduction of tumor mass compared with an average 10% inhibition recorded in cisplatin-treated animals. Thus, chemotherapy with [Pt(O,O′-acac)(γ-acac)(DMS)] was much more effective than cisplatin. We also demonstrated enhanced in vivo pharmacokinetics, biodistribution and tolerability of [Pt(O,O′-acac)(γ-acac)(DMS)] when compared with cisplatin administered in Wistar rats. Pharmacokinetics studies with [Pt(O,O′-acac)(γ-acac)(DMS)] revealed prolonged Pt persistence in systemic blood circulation and decreased nefrotoxicity and hepatotoxicity, major target sites of cisplatin toxicity. Overall, [Pt(O,O′-acac)(γ-acac)(DMS)] turned out to be extremely promising in terms of greater in vivo anticancer activity, reduced nephrotoxicity and acute toxicity compared with cisplatin. PMID:24457958

  5. Homocysteine Is an Oncometabolite in Breast Cancer, Which Promotes Tumor Progression and Metastasis

    DTIC Science & Technology

    2017-01-01

    genetic backgrounds: Mthfr+/+ and Mthfr-/-. Investigate the ability of homocysteine to induce TGF-β, ANGPTL4, and MMP-9 in breast cancer cell lines...and to disrupt the barrier function of lung microvascular endothelial cells ; (3) Investigate using breast cancer cell lines whether over expression of...MTHFR or exposure to N5-methyltetrahydrofolate decreases cell proliferation in vitro and suppresses tumor growth in xenografts in vivo. 15

  6. Radiocurability Is Associated with Interstitial Fluid Pressure in Human Tumor Xenografts1

    PubMed Central

    Rofstad, Einar K; Gaustad, Jon-Vidar; Brurberg, Kjetil G; Mathiesen, Berit; Galappathi, Kanthi; Simonsen, Trude G

    2009-01-01

    Interstitial fluid pressure (IFP) has been shown to be an independent prognostic parameter for disease-free survival in cervical carcinoma patients treated with radiation therapy. However, the underlying mechanisms are not fully understood. The main aims of this study were to investigate whether tumor radiocurability may be associated with IFP and, if so, to identify possible mechanisms. Human melanoma xenografts transplanted intradermally or in window chamber preparations in BALB/c nu/nu mice were used as preclinical tumor models. Radiation dose resulting in 50% local tumor control was higher by a factor of 1.19 ± 0.06 in tumors with IFP ≥ 9 mm Hg than in tumors with IFP ≤ 7 mm Hg. Tumor IFP was positively correlated to vessel segment length and vessel tortuosity and was inversely correlated to vessel density. Compared with tumors with low IFP, tumors with high IFP showed high resistance to blood flow, high frequency of Po2 fluctuations, and high fractions of acutely hypoxic cells, whereas the fraction of radiobiologically hypoxic cells and the fraction of chronically hypoxic cells did not differ between tumors with high and tumors with low IFP. IFP showed a significant correlation to the fraction of acutely hypoxic cells, probably because both parameters were determined primarily by the microvascular resistance to blood flow. Therefore, the observed association between tumor radiocurability and IFP was most likely an indirect consequence of a strong relationship between IFP and the fraction of acutely hypoxic cells. PMID:19881960

  7. Interstitial Fluid Pressure and Vascularity of Intradermal and Intramuscular Human Tumor Xenografts

    SciTech Connect

    Gulliksrud, Kristine; Galappathi, Kanthi; Rofstad, Einar K.

    2011-05-01

    Purpose: High interstitial fluid pressure (IFP) in tumors has been shown to be associated with poor prognosis. Mechanisms underlying the intertumor heterogeneity in IFP were investigated in this study. Methods and Materials: A-07 melanoma xenografts were transplanted intradermally or intramuscularly in BALB/c nu/nu mice. IFP was measured in the center of the tumors with a Millar catheter. Tumor blood perfusion and extracellular volume fraction were assessed by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). The necrotic fraction, vascular density, and vessel diameters of the tumors were determined by image analysis of histological preparations. Results: Significant intertumor heterogeneity in IFP, blood perfusion, and microvascular morphology was observed whether the tumors were transplanted intradermally or intramuscularly. High IFP was mainly a consequence of high resistance to blood flow caused by low vessel diameters in either transplantation site. IFP decreased with increasing blood perfusion in intradermal tumors and increased with increasing blood perfusion in intramuscular tumors, mainly because the morphology of the tumor microvasculature differed systematically between the two tumor models. Conclusion: The potential of DCE-MRI as a noninvasive method for assessing the IFP of tumors may be limited because any relationship between IFP and blood perfusion may differ with the tumor growth site.

  8. Amplexicaule A exerts anti-tumor effects by inducing apoptosis in human breast cancer

    PubMed Central

    Shu, Guangwen; Wan, Dingrong; He, Feng; Loaec, Morgann; Ding, Yali; Li, Jun; Dovat, Sinisa; Yang, Gaungzhong; Song, Chunhua

    2016-01-01

    Chemotherapy is the main treatment for patients with breast cancer metastases, but natural alternatives have been receiving attention for their potential as novel anti-tumor reagents. Amplexicaule A (APA) is a flavonoid glucoside isolated from rhizomes of Polygonum amplexicaule D. Don var. sinense Forb (PADF). We found that APA has anti-tumor effects in a breast cancer xenograft mouse model and induces apoptosis in breast cancer cell lines. APA increased levels of cleaved caspase-3,-8,-9 and PARP, which resulted from suppression of MCL-1 and BCL-2 expression in the cells. APA also inactivated the Akt/mTOR pathway in breast cancer cells. Thus, APA exerts a strong anti-tumor effect on breast cancer cells, most likely through induction of apoptosis. Our study is the first to identify this novel anti-tumor compound and provides a new strategy for isolation and separation of single compounds from herbs. PMID:26943775

  9. Phyllodes Tumor of the Breast

    SciTech Connect

    Belkacemi, Yazid Bousquet, Guilhem; Marsiglia, Hugo; Ray-Coquard, Isabelle; Magne, Nicolas; Malard, Yann; Lacroix, Magalie; Gutierrez, Cristina; Senkus, Elzbieta; Christie, David; Drumea, Karen; Lagneau, Edouard; Kadish, Sidney P.; Scandolaro, Luciano; Azria, David; Ozsahin, Mahmut

    2008-02-01

    Purpose: To better identify prognostic factors for local control and survival, as well as the role of different therapeutic options, for phyllodes tumors, a rare fibroepithelial neoplasm of the breast. Methods and Materials: Data from 443 women treated between 1971 and 2003 were collected from the Rare Cancer Network. The median age was 40 years (range, 12-87 years). Tumors were benign in 284 cases (64%), borderline in 80 cases (18%), and malignant in 79 cases (18%). Surgery consisted of breast-conserving surgery (BCS) in 377 cases (85%) and total mastectomy (TM) in 66 cases (15%). Thirty-nine patients (9%) received adjuvant radiotherapy (RT). Results: After a median follow-up of 106 months, local recurrence (LR) and distant metastases rates were 19% and 3.4%, respectively. In the malignant and borderline group (n = 159), RT significantly decreased LR (p = 0.02), and TM had better results than BCS (p = 0.0019). Multivariate analysis revealed benign histology, negative margins, and no residual disease (no RD) after initial treatment and RT delivery as independent favorable prognostic factors for local control; benign histology and low number of mitosis for disease-free survival; and pathologic tumor size tumor necrosis for overall survival. In the malignant and borderline subgroup multivariate analysis TM was the only favorable independent prognostic factor for disease-free survival. Conclusions: This study showed that phyllodes tumor patients with no RD after treatment have better local control. Benign tumors have a good prognosis after surgery alone. In borderline and malignant tumors, TM had better results than BCS. Thus, in these forms adjuvant RT should be considered according to histologic criteria.

  10. Efficacy of liposomal curcumin in a human pancreatic tumor xenograft model: inhibition of tumor growth and angiogenesis.

    PubMed

    Ranjan, Amalendu P; Mukerjee, Anindita; Helson, Lawrence; Gupta, Rohan; Vishwanatha, Jamboor K

    2013-09-01

    Liposome-based drug delivery has been successful in the past decade, with some formulations being Food and Drug Administration (FDA)-approved and others in clinical trials around the world. The major disadvantage associated with curcumin, a potent anticancer agent, is its poor aqueous solubility and hence low systemic bioavailability. However, curcumin can be encapsulated into liposomes to improve systemic bioavailability. We determined the antitumor effects of a liposomal curcumin formulation against human MiaPaCa pancreatic cancer cells both in vitro and in xenograft studies. Histological sections were isolated from murine xenografts and immunohistochemistry was performed. The in vitro (IC50) liposomal curcumin proliferation-inhibiting concentration was 17.5 μM. In xenograft tumors in nude mice, liposomal curcumin at 20 mg/kg i.p. three-times a week for four weeks induced 42% suppression of tumor growth compared to untreated controls. A potent antiangiogenic effect characterized by a reduced number of blood vessels and reduced expression of vascular endothelial growth factor and annexin A2 proteins, as determined by immunohistochemistry was observed in treated tumors. These data clearly establish the efficacy of liposomal curcumin in reducing human pancreatic cancer growth in the examined model. The therapeutic curcumin-based effects, with no limiting side-effects, suggest that liposomal curcumin may be beneficial in patients with pancreatic cancer.

  11. Intravital multiphoton imaging reveals multicellular streaming as a crucial component of in vivo cell migration in human breast tumors

    PubMed Central

    Patsialou, Antonia; Bravo-Cordero, Jose Javier; Wang, Yarong; Entenberg, David; Liu, Huiping; Clarke, Michael; Condeelis, John S.

    2014-01-01

    Metastasis is the main cause of death in breast cancer patients. Cell migration is an essential component of almost every step of the metastatic cascade, especially the early step of invasion inside the primary tumor. In this report, we have used intravital multiphoton microscopy to visualize the different migration patterns of human breast tumor cells in live primary tumors. We used xenograft tumors of MDA-MB-231 cells as well as a low passage xenograft tumor from orthotopically injected patient-derived breast tumor cells. Direct visualization of human tumor cells in vivo shows two patterns of high-speed migration inside primary tumors: a. single cells and b. multicellular streams (i.e., cells following each other in a single file but without cohesive cell junctions). Critically, we found that only streaming and not random migration of single cells was significantly correlated with proximity to vessels, with intravasation and with numbers of elevated circulating tumor cells in the bloodstream. Finally, although the two human tumors were derived from diverse genetic backgrounds, we found that their migratory tumor cells exhibited coordinated gene expression changes that led to the same end-phenotype of enhanced migration involving activating actin polymerization and myosin contraction. Our data are the first direct visualization and assessment of in vivo migration within a live patient-derived breast xenograft tumor. PMID:25013744

  12. Combining fisetin and ionizing radiation suppresses the growth of mammalian colorectal cancers in xenograft tumor models.

    PubMed

    Leu, Jyh-Der; Wang, Bo-Shen; Chiu, Shu-Jun; Chang, Chun-Yuan; Chen, Chien-Chih; Chen, Fu-Du; Avirmed, Shiirevnyamba; Lee, Yi-Jang

    2016-12-01

    Fisetin (3,7,3',4'-tetrahydroxyflavone), which belongs to the flavonoid group of polyphenols and is found in a wide range of plants, has been reported to exhibit a number of biological activities in human cancer cells, including antioxidant, anti-inflammatory, antiangiogenic, anti-invasive and antiproliferative effects. Although previous in vitro studies have shown that fisetin treatment increases the apoptotic rate and enhances the radiosensitivity of human colorectal cancer cells, the in vivo effects of fisetin on tumor growth remain unclear. In the present study a murine xenograft tumor model was employed to investigate the therapeutic effects of fisetin in combination with radiation on CT-26 colon cancer cells and human HCT116 colorectal cancer cells. This revealed that intratumoral injection of fisetin significantly suppressed the growth of CT-26 tumors compared with the untreated control group, but had little effect on the growth of HCT116 tumors. However, fisetin in combination with 2-Gy radiation enhanced tumor suppressor activity in murine colon and human colorectal xenograft tumors, as compared with 2-Gy fractionated radiation administered alone for 5 days and fisetin alone. Interestingly, fisetin downregulated the expression of the oncoprotein securin in a p53-independent manner. However, securin-null HCT116 tumors showed only moderate sensitivity to fisetin treatment, and the combination of fisetin and radiation did not significantly suppress securin-null HCT116 tumor growth compared with normal HCT116 tumors. Therefore, the role of securin in mediating the effect of fisetin on colorectal cancer growth warrants further investigation. In conclusion, the results of the current study provide important preclinical data for evaluating the efficacy of fisetin and radiation combination treatment as an adjuvant chemoradiotherapy for human colorectal cancers.

  13. Combining fisetin and ionizing radiation suppresses the growth of mammalian colorectal cancers in xenograft tumor models

    PubMed Central

    Leu, Jyh-Der; Wang, Bo-Shen; Chiu, Shu-Jun; Chang, Chun-Yuan; Chen, Chien-Chih; Chen, Fu-Du; Avirmed, Shiirevnyamba; Lee, Yi-Jang

    2016-01-01

    Fisetin (3,7,3′,4′-tetrahydroxyflavone), which belongs to the flavonoid group of polyphenols and is found in a wide range of plants, has been reported to exhibit a number of biological activities in human cancer cells, including antioxidant, anti-inflammatory, antiangiogenic, anti-invasive and antiproliferative effects. Although previous in vitro studies have shown that fisetin treatment increases the apoptotic rate and enhances the radiosensitivity of human colorectal cancer cells, the in vivo effects of fisetin on tumor growth remain unclear. In the present study a murine xenograft tumor model was employed to investigate the therapeutic effects of fisetin in combination with radiation on CT-26 colon cancer cells and human HCT116 colorectal cancer cells. This revealed that intratumoral injection of fisetin significantly suppressed the growth of CT-26 tumors compared with the untreated control group, but had little effect on the growth of HCT116 tumors. However, fisetin in combination with 2-Gy radiation enhanced tumor suppressor activity in murine colon and human colorectal xenograft tumors, as compared with 2-Gy fractionated radiation administered alone for 5 days and fisetin alone. Interestingly, fisetin downregulated the expression of the oncoprotein securin in a p53-independent manner. However, securin-null HCT116 tumors showed only moderate sensitivity to fisetin treatment, and the combination of fisetin and radiation did not significantly suppress securin-null HCT116 tumor growth compared with normal HCT116 tumors. Therefore, the role of securin in mediating the effect of fisetin on colorectal cancer growth warrants further investigation. In conclusion, the results of the current study provide important preclinical data for evaluating the efficacy of fisetin and radiation combination treatment as an adjuvant chemoradiotherapy for human colorectal cancers. PMID:28105204

  14. Transcriptomic alterations in human prostate cancer cell LNCaP tumor xenograft modulated by dietary phenethyl isothiocyanate

    USDA-ARS?s Scientific Manuscript database

    Temporal growth of tumor xenografts in mice on a control diet was compared to mice supplemented daily with 3 µmol/g of the cancer preventive compound phenethyl isothiocyanate. Phenethyl isothiocyanate decreased the rate of tumor growth. The effects of phenethyl isothiocyanate on tumor growth were ex...

  15. Additive effects of ulinastatin and docetaxel on growth of breast cancer xenograft in nude mice and expression of PGE2, IL-10, and IL-2 in primary breast cancer cells.

    PubMed

    Zhong, Biao; Shen, Hongyan; Sun, Xin; Wang, Hong; Zhang, Yonghua; Sun, Zhijun

    2012-05-01

    Ulinastatin is a broad-spectrum enzyme inhibitor extracted from urine. Previous data from our group suggested that ulinastatin could significantly inhibit proliferation of human breast MDA-MB-231 cells, growth of tumor xenograft in nude mice, and expression of interleukin (IL)-6 and IL-8. In the present study, we investigated whether there is an additive effect of ulinastatin and docetaxel on growth of breast cancer xenografts in nude mice and its possible mechanisms. Nude mice and primary human breast cancer cells were treated with phosphate buffered saline (PBS), ulinastatin, docetaxel, or ulinastatin plus docetaxel, respectively. Their effects on xenograft growth; expressions of cyclooxygenase-2 (COX2), prostaglandin E2 receptor 2 (EP2), IL-10, and IL-2; and secretion of prostaglandin E2 (PGE2) were examined using variety of methods, including semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR), Western blot, enzyme-linked immunosorbent (ELISA) assay, and immunohistochemistry SP method. The treatment with ulinastatin, docetaxel, or ulinastatin plus docetaxel could significantly (1) inhibit COX2 and IL-10 expression in primary tumor cells at both mRNA and protein levels, (2) reduce PGE2 secretion in culture supernatant (p<0.05), (3) inhibit COX2, EP2, and IL-10 protein levels in primary xenograft of nude mice, and (4) increase IL-2 expression (p<0.05) in primary xenografts of nude mice. In addition, ulinastatin and docetaxel had additive effects. We suggest that ulinastatin had similar effects of docetaxel and can enhance docetaxel's anticancer effects possibly by inhibiting COX2 expression, reducing PGE2 and EP2 expression and their binding, upregulating IL-2, and downregulating IL-10.

  16. [Combination of phenylbutyrate and 5-Aza-2'deoxycytidine inhibits human Kasumi-1 xenograft tumor growth in nude mice].

    PubMed

    Hao, Chang-lai; Lin, Dong; Wang, Li-hong; Xing, Hai-yan; Wang, Min; Wang, Jian-Xiang

    2004-11-01

    To investigate the tumor suppression efficacy of histone deacetylase inhibitor, phenylbutyrate (PB), in combination with DNA methylation inhibitor 5-Aza-2-deoxycytidine (5-Aza-CdR) in the treatment of Kasumi-1 xenograft tumor in nude mice and its mechanism. The nude mice model of Kasumi-1 xenograft tumor was established by subcutaneous inoculation. Latency of tumor formation, the ability of Kasumi-1 cells pre treated with PB to form the xenograft tumor, and the tumor suppression activity of PB and 5-Aza-CdR by intraperitoneal injection in xenografted mice model were detected. Cell differentiation and cell cycle parameters of the tumor cells were analyzed by flow cytometry analysis, apoptosis by TUNEL in situ hybridization, and tumor microvessel density (MVD) by immunohistochemistry study. The latency of tumor formation in mice with or without previous lienectomy was 17 approximately 23 and 40 approximately 50 days, respectively. Tumor cells xenografted could not be found in other tissues than in inoculation area, and still harbored the specific t(8;21) and AML1-ETO fusion gene. When the xenografted mice models treated with PB, 5-Aza-CdR, or both, the tumor growth inhibition rates were 49.07%, 25.69% and 87.46% (P < 0.05), the apoptosis indexes (AI) of tumor cells were (2.25 +/- 0.85)%, (1.32 +/- 0.68)%, and (5.41 +/- 1.56)% (P < 0.05), and the microvessel densities (MVD) were 21.69 +/- 6.25, 28.34 +/- 4.24 and 9.48 +/- 3.21 (P < 0.01), respectively. All the data above were significantly different from that in control (P < 0.05). The expression of CD11b and CD13 antigen of the tumor cells was increased in xenografted mice model treated with PB when compared with the control \\[(12.08 +/- 1.02)% and (54.91 +/- 2.72)%\\], respectively (P < 0.01), and tumor cells showed a cell cycle arrest with increased G(0)/G(1)-phase cells and decreased S-phase cells. PB inhibited the growth of Kasumi-1 xenograft tumor by inducing tumor cell apoptosis and differentiation, and

  17. Patient-derived xenograft (PDX) tumors increase growth rate with time

    PubMed Central

    Pearson, Alexander T.; Finkel, Kelsey A.; Warner, Kristy A.; Nör, Felipe; Tice, David; Martins, Manoela D.; Jackson, Trachette L.; Nör, Jacques E.

    2016-01-01

    Patient-derived xenograft (PDX) models are frequently used for translational cancer research, and are assumed to behave consistently as the tumor ages. However, growth rate constancy as a function of time is unclear. Notably, variable PDX growth rates over time might have implications for the interpretation of translational studies. We characterized four PDX models through several in vivo passages from primary human head and neck squamous cell carcinoma and salivary gland adenoid cystic carcinoma. We developed a mathematical approach to merge growth data from different passages into a single measure of relative tumor volume normalized to study initiation size. We analyzed log-relative tumor volume increase with linear mixed effect models. Two oral pathologists analyzed the PDX tissues to determine if histopathological feature changes occurred over in vivo passages. Tumor growth rate increased over time. This was determined by repeated measures linear regression statistical analysis in four different PDX models. A quadratic statistical model for the temporal effect predicted the log-relative tumor volume significantly better than a linear time effect model. We found a significant correlation between passage number and histopathological features of higher tumor grade. Our mathematical treatment of PDX data allows statistical analysis of tumor growth data over long periods of time, including over multiple passages. Non-linear tumor growth in our regression models revealed the exponential growth rate increased over time. The dynamic tumor growth rates correlated with quantifiable histopathological changes that related to passage number in multiple types of cancer. PMID:26783960

  18. Patient-derived xenograft (PDX) tumors increase growth rate with time.

    PubMed

    Pearson, Alexander T; Finkel, Kelsey A; Warner, Kristy A; Nör, Felipe; Tice, David; Martins, Manoela D; Jackson, Trachette L; Nör, Jacques E

    2016-02-16

    Patient-derived xenograft (PDX) models are frequently used for translational cancer research, and are assumed to behave consistently as the tumor ages. However, growth rate constancy as a function of time is unclear. Notably, variable PDX growth rates over time might have implications for the interpretation of translational studies. We characterized four PDX models through several in vivo passages from primary human head and neck squamous cell carcinoma and salivary gland adenoid cystic carcinoma. We developed a mathematical approach to merge growth data from different passages into a single measure of relative tumor volume normalized to study initiation size. We analyzed log-relative tumor volume increase with linear mixed effect models. Two oral pathologists analyzed the PDX tissues to determine if histopathological feature changes occurred over in vivo passages. Tumor growth rate increased over time. This was determined by repeated measures linear regression statistical analysis in four different PDX models. A quadratic statistical model for the temporal effect predicted the log-relative tumor volume significantly better than a linear time effect model. We found a significant correlation between passage number and histopathological features of higher tumor grade. Our mathematical treatment of PDX data allows statistical analysis of tumor growth data over long periods of time, including over multiple passages. Non-linear tumor growth in our regression models revealed the exponential growth rate increased over time. The dynamic tumor growth rates correlated with quantifiable histopathological changes that related to passage number in multiple types of cancer.

  19. Procedure for Horizontal Transfer of Patient-Derived Xenograft Tumors to Eliminate Corynebacterium bovis.

    PubMed

    Manuel, Christopher; Bagby, Stacey; Reisinger, Julie; Pugazhenthi, Umarani; Pitts, Todd; Keysar, Stephen; Arcaroli, John; Leszczynski, Jori

    2017-02-16

    Human patient-derived xenograft (PDX) tumors, propagated in immunodeficient mice, are rapidly growing in use as amodelfor cancer research. Horizontal transfer between mice, without in vitro cell culture, allows these tumors to retainmany of their unique characteristics from their individual patient of origin. However, the immunodeficient mouse strainsused to grow these tumors are susceptible to numerous opportunistic pathogens, including Corynebacterium bovis. At ourinstitution, 2 in vivo tumor banks of PDX tumors had been maintained within nude mouse colonies enzootically infectedwith C. bovis. Elimination of C. bovis from these colonies required the aseptic harvest and horizontal transfer of tumor tissue between infected and naïve recipient mice without cross-contamination. Out of necessity, we developed a standard operating procedure using enhancements to traditional aseptic surgical technique with concurrent application of both procedural and physical barriers to prevent C. bovis transmission. By using these methods, all 61 unique PDX tumor models were successfullyharvested from C. bovis-infected mice and transferred into recipient mice without transmission of infection. Our datademonstrate that, in situations where C. bovis-free colonies can be established and maintained, this procedure can successfullybe used to eliminate C. bovis from an in vivo tumor bank of valuable PDX tumors.

  20. Procedure for Horizontal Transfer of Patient-Derived Xenograft Tumors to Eliminate Corynebacterium bovis.

    PubMed

    Manuel, Christopher A; Bagby, Stacey M; Reisinger, Julie A; Pugazhenthi, Umarani; Pitts, Todd M; Keysar, Stephen B; Arcaroli, John J; Leszczynski, Jori K

    2017-03-01

    Human patient-derived xenograft (PDX) tumors, propagated in immunodeficient mice, are rapidly growing in use as a model for cancer research. Horizontal transfer between mice, without in vitro cell culture, allows these tumors to retain many of their unique characteristics from their individual patient of origin. However, the immunodeficient mouse strains used to grow these tumors are susceptible to numerous opportunistic pathogens, including Corynebacterium bovis. At our institution, 2 in vivo tumor banks of PDX tumors had been maintained within nude mouse colonies enzootically infected with C. bovis. Elimination of C. bovis from these colonies required the aseptic harvest and horizontal transfer of tumor tissue between infected and naïve recipient mice without cross-contamination. Out of necessity, we developed a standard operating procedure using enhancements to traditional aseptic surgical technique with concurrent application of both procedural and physical barriers to prevent C. bovis transmission. By using these methods, all 61 unique PDX tumor models were successfully harvested from C. bovis-infected mice and transferred into recipient mice without transmission of infection. Our data demonstrate that, in situations where C. bovis-free colonies can be established and maintained, this procedure can successfully be used to eliminate C. bovis from an in vivo tumor bank of valuable PDX tumors.

  1. Small-sample inference for incomplete longitudinal data with truncation and censoring in tumor xenograft models.

    PubMed

    Tan, Ming; Fang, Hong-Bin; Tian, Guo-Liang; Houghton, Peter J

    2002-09-01

    In cancer drug development, demonstrating activity in xenograft models, where mice are grafted with human cancer cells, is an important step in bringing a promising compound to humans. A key outcome variable is the tumor volume measured in a given period of time for groups of mice given different doses of a single or combination anticancer regimen. However, a mouse may die before the end of a study or may be sacrificed when its tumor volume quadruples, and its tumor may be suppressed for some time and then grow back. Thus, incomplete repeated measurements arise. The incompleteness or missingness is also caused by drastic tumor shrinkage (<0.01 cm3) or random truncation. Because of the small sample sizes in these models, asymptotic inferences are usually not appropriate. We propose two parametric test procedures based on the EM algorithm and the Bayesian method to compare treatment effects among different groups while accounting for informative censoring. A real xenograft study on a new antitumor agent, temozolomide, combined with irinotecan is analyzed using the proposed methods.

  2. Growth rate analysis and efficient experimental design for tumor xenograft studies.

    PubMed

    Hather, Gregory; Liu, Ray; Bandi, Syamala; Mettetal, Jerome; Manfredi, Mark; Shyu, Wen-Chyi; Donelan, Jill; Chakravarty, Arijit

    2014-01-01

    Human tumor xenograft studies are the primary means to evaluate the biological activity of anticancer agents in late-stage preclinical drug discovery. The variability in the growth rate of human tumors established in mice and the small sample sizes make rigorous statistical analysis critical. The most commonly used summary of antitumor activity for these studies is the T/C ratio. However, alternative methods based on growth rate modeling can be used. Here, we describe a summary metric called the rate-based T/C, derived by fitting each animal's tumor growth to a simple exponential model. The rate-based T/C uses all of the data, in contrast with the traditional T/C, which only uses a single measurement. We compare the rate-based T/C with the traditional T/C and assess their performance through a bootstrap analysis of 219 tumor xenograft studies. We find that the rate-based T/C requires fewer animals to achieve the same power as the traditional T/C. We also compare 14-day studies with 21-day studies and find that 14-day studies are more cost efficient. Finally, we perform a power analysis to determine an appropriate sample size.

  3. The TCD[sub 50] and regrowth delay assay in human tumor xenografts: Differences and implications

    SciTech Connect

    Budach, W.; Budach, V.; Stuschke, M.; Dinges, S.; Sack, H. )

    1993-01-15

    The response to irradiation of five human xenograft cell lines - a malignant paraganglioma, a neurogenic sarcoma, a malignant histiocytoma, a primary lymphoma of the brain, and a squamous cell carcinoma - were tested in nude mice. All mice underwent 5 Gy whole body irradiation prior to xenotransplantation to minimize the residual immune response. The subcutaneous tumors were irradiated at a tumor volume of 120 mm[sup 3] under acutely hypoxic conditions with single doses between 8 Gy and 80 Gy depending on the expected radiation sensitivity of the tumor line. Endpoints of the study were the tumor control dose 50% (TCD[sub 50]) and the regrowth delay endpoints growth delay, specific growth delay, and the tumor bed effect corrected specific growth delay. Specific growth delay and corrected specific growth delay at 76% of the TCD[sub 50] was used in order to compare the data to previously published data from spheroids. The lowest TCD[sub 50] was found in the lymphoma with 24.9 Gy, whereas the TCD[sub 50] of the soft tissue sarcomas and the squamous cell carcinoma ranged from 57.8 Gy to 65.6 Gy. The isoeffective dose levels for the induction of 30 days growth delay, a specific growth delay of 3, and a corrected specific growth delay of 3 ranged from 15.5 Gy (ECL1) to 37.1 Gy (FADU), from 7.2 Gy (ENE2) to 45.6 Gy (EPG1) and from 9.2 Gy (ENE2) to 37.6 Gy (EPG1), respectively. The corrected specific growth delay at 76% of the TCD[sub 50] was correlated with the number of tumor rescue units per 100 cells in spheroids, which was available for three tumor lines, and with the tumor doubling time in xenografts (n = 5). The TCD[sub 50] values corresponded better to the clinical experience than the regrowth delay data. There was no correlation between TCD[sub 50] and any of the regrowth delay endpoints. This missing correlation was most likely a result of large differences in the number of tumor rescue units in human xenografts of the same size.

  4. Targeting Tumor Vasculature Endothelial Cells and Tumor Cells for Immunotherapy of Human Melanoma in a Mouse Xenograft Model

    NASA Astrophysics Data System (ADS)

    Hu, Zhiwei; Sun, Ying; Garen, Alan

    1999-07-01

    An immunotherapy treatment for cancer that targets both the tumor vasculature and tumor cells has shown promising results in a severe combined immunodeficient mouse xenograft model of human melanoma. The treatment involves systemic delivery of an immunoconjugate molecule composed of a tumor-targeting domain conjugated to the Fc effector domain of human IgG1. The effector domain induces a cytolytic immune response against the targeted cells by natural killer cells and complement. Two types of targeting domains were used. One targeting domain is a human single-chain Fv molecule that binds to a chondroitin sulfate proteoglycan expressed on the surface of most human melanoma cells. Another targeting domain is factor VII (fVII), a zymogen that binds with high specificity and affinity to the transmembrane receptor tissue factor (TF) to initiate the blood coagulation cascade. TF is expressed by endothelial cells lining the tumor vasculature but not the normal vasculature, and also by many types of tumor cells including melanoma. Because the binding of a fVII immunoconjugate to TF might cause disseminated intravascular coagulation, the active site of fVII was mutated to inhibit coagulation without affecting the affinity for TF. The immunoconjugates were encoded as secreted molecules in a replication-defective adenovirus vector, which was injected into the tail vein of severe combined immunodeficient mice. The results demonstrate that a mutated fVII immunoconjugate, administered separately or together with a single-chain Fv immunoconjugate that binds to the tumor cells, can inhibit the growth or cause regression of an established human tumor xenograft. This procedure could be effective in treating a broad spectrum of human solid tumors that express TF on vascular endothelial cells and tumor cells.

  5. Intraductal delivery of adenoviruses targets pancreatic tumors in transgenic Ela-myc mice and orthotopic xenografts.

    PubMed

    José, Anabel; Sobrevals, Luciano; Miguel Camacho-Sánchez, Juan; Huch, Meritxell; Andreu, Núria; Ayuso, Eduard; Navarro, Pilar; Alemany, Ramon; Fillat, Cristina

    2013-01-01

    Gene-based anticancer therapies delivered by adenoviruses are limited by the poor viral distribution into the tumor. In the current work we have explored the feasibility of targeting pancreatic tumors through a loco-regional route. We have taken advantage of the ductal network in the pancreas to retrogradelly inject adenoviruses through the common bile duct in two different mouse models of pancreatic carcinogenesis: The transgenic Ela-myc mice that develop mixed neoplasms displaying both acinar-like and duct-like neoplastic cells affecting the whole pancreas; and mice bearing PANC-1 and BxPC-3 orthotopic xenografts that constitute a model of localized human neoplastic tumors. We studied tumor targeting and the anticancer effects of newly thymidine kinase-engineered adenoviruses both in vitro and in vivo, and conducted comparative studies between intraductal or intravenous administration. Our data indicate that the intraductal delivery of adenovirus efficiently targets pancreatic tumors in the two mouse models. The in vivo application of AduPARTKT plus ganciclovir (GCV) treatment induced tumor regression in Ela-myc mice. Moreover, the intraductal injection of ICOVIR15-TKT oncolytic adenoviruses significantly improved mean survival of mice bearing PANC-1 and BxPC-3 pancreatic xenografts from 30 to 52 days and from 20 to 68 days respectively (p less than 0.0001) when combined with GCV. Of notice, both AduPARTKT and ICOVIR15-TKT antitumoral responses were stronger by ductal viral application than intravenously, in line with the 38-fold increase in pancreas transduction observed upon ductal administration. In summary our data show that cytotoxic adenoviruses retrogradelly injected to the pancreas can be a feasible approach to treat localized pancreatic tumors.

  6. Intraductal Delivery of Adenoviruses Targets Pancreatic Tumors in Transgenic Ela-myc Mice and Orthotopic Xenografts

    PubMed Central

    José, Anabel; Sobrevals, Luciano; Camacho-Sánchez, Juan Miguel; Huch, Meritxell; Andreu, Núria; Ayuso, Eduard; Navarro, Pilar; Alemany, Ramon; Fillat, Cristina

    2013-01-01

    Gene-based anticancer therapies delivered by adenoviruses are limited by the poor viral distribution into the tumor. In the current work we have explored the feasibility of targeting pancreatic tumors through a loco-regional route. We have taken advantage of the ductal network in the pancreas to retrogradelly inject adenoviruses through the common bile duct in two different mouse models of pancreatic carcinogenesis: The transgenic Ela-myc mice that develop mixed neoplasms displaying both acinar-like and duct-like neoplastic cells affecting the whole pancreas; and mice bearing PANC-1 and BxPC-3 orthotopic xenografts that constitute a model of localized human neoplastic tumors. We studied tumor targeting and the anticancer effects of newly thymidine kinase-engineered adenoviruses both in vitro and in vivo, and conducted comparative studies between intraductal or intravenous administration. Our data indicate that the intraductal delivery of adenovirus efficiently targets pancreatic tumors in the two mouse models. The in vivo application of AduPARTKT plus ganciclovir (GCV) treatment induced tumor regression in Ela-myc mice. Moreover, the intraductal injection of ICOVIR15-TKT oncolytic adenoviruses significantly improved mean survival of mice bearing PANC-1 and BxPC-3 pancreatic xenografts from 30 to 52 days and from 20 to 68 days respectively (p<0.0001) when combined with GCV. Of notice, both AduPARTKT and ICOVIR15-TKT antitumoral responses were stronger by ductal viral application than intravenously, in line with the 38-fold increase in pancreas transduction observed upon ductal administration. In summary our data show that cytotoxic adenoviruses retrogradelly injected to the pancreas can be a feasible approach to treat localized pancreatic tumors. PMID:23328228

  7. Increased plasma colloid osmotic pressure facilitates the uptake of therapeutic macromolecules in a xenograft tumor model.

    PubMed

    Hofmann, Matthias; McCormack, Emmet; Mujić, Maja; Rossberg, Maila; Bernd, August; Bereiter-Hahn, Jürgen; Gjertsen, Bjørn Tore; Wiig, Helge; Kippenberger, Stefan

    2009-08-01

    Elevated tumor interstitial fluid pressure (TIFP) is a characteristic of most solid tumors. Clinically, TIFP may hamper the uptake of chemotherapeutic drugs into the tumor tissue reducing their therapeutic efficacy. In this study, a means of modulating TIFP to increase the flux of macromolecules into tumor tissue is presented, which is based on the rationale that elevated plasma colloid osmotic pressure (COP) pulls water from tumor interstitium lowering the TIFP. Concentrated human serum albumin (20% HSA), used as an agent to enhance COP, reduced the TIFP time-dependently from 8 to 2 mm Hg in human tumor xenograft models bearing A431 epidermoid vulva carcinomas. To evaluate whether this reduction facilitates the uptake of macromolecules, the intratumoral distribution of fluorescently conjugated dextrans (2.5 mg/ml) and cetuximab (2.0 mg/ml) was probed using novel time domain nearinfrared fluorescence imaging. This method permitted discrimination and semiquantification of tumor-accumulated conjugate from background and unspecific probe fluorescence. The coadministration of 20% HSA together with either dextrans or cetuximab was found to lower the TIFP significantly and increase the concentration of the substances within the tumor tissue in comparison to control tumors. Furthermore, combined administration of 20% HSA plus cetuximab reduced the tumor growth significantly in comparison to standard cetuximab treatment. These data demonstrate that increased COP lowers the TIFP within hours and increases the uptake of therapeutic macromolecules into the tumor interstitium leading to reduced tumor growth. This model represents a novel approach to facilitate the delivery of therapeutics into tumor tissue, particularly monoclonal antibodies.

  8. Assessment of Tumor Stiffness With Shear Wave Elastography in a Human Prostate Cancer Xenograft Implantation Model.

    PubMed

    Wang, Yiru; Yao, Binwei; Li, Hongfei; Zhang, Yan; Gao, Hanjing; Gao, Yabin; Peng, Ruiyun; Tang, Jie

    2017-05-01

    To investigate the stiffness of human prostate cancer in a xenograft implantation model using shear wave elastography and compare the pathologic features of tumors with varying elasticity. Human prostate cancer DU-145 cells were injected into 24 nude male mice. The mice were divided into 3 groups according to the time of transplantation (6, 8, and 10 weeks). The volume, elasticity, and Young modulus of tumors were recorded by 2-dimensional sonography and shear wave elastography. The tumors were collected for pathologic analyses: hematoxylin-eosin staining, Ponceau S, and aniline staining were used to stain collagen and elastic fibers, and picric acid-sirius red staining was used to indicate type I and III collagen. The area ratios of collagen I/III were calculated. The correlation between the Young modulus of the tumor and area ratio of collagen I/III were evaluated. Immunohistochemistry of vimentin and α-smooth muscle actin was performed. Nineteen tumors in 3 groups were collected. The volume and mean Young modulus increased with the time of transplantation. There were more collagen fibers in the stiff tumors, and there were significant differences in the area ratios of collagen I/III between groups 1 (mean ± SD, 0.50 ± 0.17) and 3 (1.97 ± 0.56; P < .01). The Young modulus of the tumors showed a very significant correlation with the area ratios of collagen I/III (r = 0.968; P < .05). The expression level of α-smooth muscle actin protein was higher in group 3 than in the other groups, but differences in vimentin expression were barely seen. Shear wave elastography is a novel useful technology for showing the elasticity of human prostate cancer xenograft implantation tumors. Collagen fibers, especially collagen type I, play a crucial role in the elasticity in the human prostate cancer xenograft implantation model. © 2017 by the American Institute of Ultrasound in Medicine.

  9. Midazolam Induces Cellular Apoptosis in Human Cancer Cells and Inhibits Tumor Growth in Xenograft Mice

    PubMed Central

    Mishra, Siddhartha Kumar; Kang, Ju-Hee; Lee, Chang Woo; Oh, Seung Hyun; Ryu, Jun Sun; Bae, Yun Soo; Kim, Hwan Mook

    2013-01-01

    Midazolam is a widely used anesthetic of the benzodiazepine class that has shown cytotoxicity and apoptosis-inducing activity in neuronal cells and lymphocytes. This study aims to evaluate the effect of midazolam on growth of K562 human leukemia cells and HT29 colon cancer cells. The in vivo effect of midazolam was investigated in BALB/c-nu mice bearing K562 and HT29 cells human tumor xenografts. The results show that midazolam decreased the viability of K562 and HT29 cells by inducing apoptosis and S phase cell-cycle arrest in a concentration-dependent manner. Midazolam activated caspase-9, capspase-3 and PARP indicating induction of the mitochondrial intrinsic pathway of apoptosis. Midazolam lowered mitochondrial membrane potential and increased apoptotic DNA fragmentation. Midazolam showed reactive oxygen species (ROS) scavenging activity through inhibition of NADPH oxidase 2 (Nox2) enzyme activity in K562 cells. Midazolam caused inhibition of pERK1/2 signaling which led to inhibition of the anti-apoptotic proteins Bcl-XL and XIAP and phosphorylation activation of the pro-apoptotic protein Bid. Midazolam inhibited growth of HT29 tumors in xenograft mice. Collectively our results demonstrate that midazolam caused growth inhibition of cancer cells via activation of the mitochondrial intrinsic pathway of apoptosis and inhibited HT29 tumor growth in xenograft mice. The mechanism underlying these effects of midazolam might be suppression of ROS production leading to modulation of apoptosis and growth regulatory proteins. These findings present possible clinical implications of midazolam as an anesthetic to relieve pain during in vivo anticancer drug delivery and to enhance anticancer efficacy through its ROS-scavenging and pro-apoptotic properties. PMID:24008365

  10. Cyclophilin A Enhances Cell Proliferation and Xenografted Tumor Growth of Early Gastric Cancer.

    PubMed

    Feng, Wenhua; Xin, Yan; Xiao, Yuping; Li, Wenhui; Sun, Dan

    2015-09-01

    Recently Cyclophilin A (CypA) was identified as a candidate target protein in gastric carcinoma. However, the role of CypA in gastric cancer (GC) has not been investigated extensively so far. The purpose of this study was to determine the expression pattern of CypA in human GC, and to explore the effects of suppressed CypA expression on cell proliferation and xenografted tumor growth of gastric cancer. In the present study, we detected the expression pattern of CypA in human GC by immunohistochemistry analysis. Further, the RNAi method was used to silence CypA, and colony formation assay, growth curves, cell cycle and mouse xenograft were analysed. An elevated expression of CypA in GC tissues compared with normal gastric mucosa was observed, especially in TNM stage-I and intestinal type of tumor. CypA was overexpressed in most GC cell lines and endogenous expression of CypA correlated with cell growth phenotypes. Transient suppression of CypA reduced the proliferation of BGC-823 and SGC-7901 GC cell lines. Exogenous CypA promoted the proliferation of NCI-N87 GC cells in a concentration dependent manner. Further study revealed that stable CypA silencing inhibited the proliferation, prevented cell cycle and reduced autophagy of BGC-823 GC cells in vitro through suppressing the ERK1/2 signal pathway. Stable CypA silencing also inhibited the growth of xenografted tumor of BGC-823 GC cell in nude mice. These results indicate a special function mode for CypA of playing more important roles in the early stage of gastric tumorigenesis and suggest CypA as a new molecular target of diagnosis and treatment for GC patients.

  11. Oxygenation-Enhanced Radiation Therapy of Breast Tumors

    DTIC Science & Technology

    2011-11-01

    10-1-0751 TITLE: Oxygenation-Enhanced Radiation Therapy of Breast Tumors PRINCIPAL INVESTIGATOR: Dr. Mikhail Skliar...locoregional breast cancer has evolved from radical mastectomy to targeted local therapy with breast conservation. The efficacy of conserving treatments...of breast cancers is impeded by tumor hypoxia, which affects 50% of locally advanced breast tumors. Poor oxygenation of hypoxic tumors reduces

  12. Epigenetic modulation of endogenous tumor suppressor expression in lung cancer xenografts suppresses tumorigenicity.

    PubMed

    Cantor, Joshua P; Iliopoulos, Dimitrios; Rao, Atul S; Druck, Teresa; Semba, Shuho; Han, Shuang-Yin; McCorkell, Kelly A; Lakshman, Thiru V; Collins, Joshua E; Wachsberger, Phyllis; Friedberg, Joseph S; Huebner, Kay

    2007-01-01

    Epigenetic changes involved in cancer development, unlike genetic changes, are reversible. DNA methyltransferase and histone deacetylase inhibitors show antiproliferative effects in vitro, through tumor suppressor reactivation and induction of apoptosis. Such inhibitors have shown activity in the treatment of hematologic disorders but there is little data concerning their effectiveness in treatment of solid tumors. FHIT, WWOX and other tumor suppressor genes are frequently epigenetically inactivated in lung cancers. Lung cancer cell clones carrying conditional FHIT or WWOX transgenes showed significant suppression of xenograft tumor growth after induction of expression of the FHIT or WWOX transgene, suggesting that treatments to restore endogenous Fhit and Wwox expression in lung cancers would result in decreased tumorigenicity. H1299 lung cancer cells, lacking Fhit, Wwox, p16(INK4a) and Rassf1a expression due to epigenetic modifications, were used to assess efficacy of epigenetically targeted protocols in suppressing growth of lung tumors, by injection of 5-aza-2-deoxycytidine (AZA) and trichostatin A (TSA) in nude mice with established H1299 tumors. High doses of intraperitoneal AZA/TSA suppressed growth of small tumors but did not affect large tumors (200 mm(3)); lower AZA doses, administered intraperitoneally or intratumorally, suppressed growth of small tumors without apparent toxicity. Responding tumors showed restoration of Fhit, Wwox, p16(INKa), Rassf1a expression, low mitotic activity, high apoptotic fraction and activation of caspase 3. These preclinical studies show the therapeutic potential of restoration of tumor suppressor expression through epigenetic modulation and the promise of re-expressed tumor suppressors as markers and effectors of the responses.

  13. Loquat (Eriobotrya japonica) leaf extract inhibits the growth of MDA-MB-231 tumors in nude mouse xenografts and invasion of MDA-MB-231 cells

    PubMed Central

    You, Mi-Kyoung; Kim, Min-Sook; Jeong, Kyu-Shik; Kim, Eun; Kim, Yong-Jae

    2016-01-01

    BACKGROUND/OBJECTIVES The present study was conducted to examine the inhibitory effect of loquat leaves on MDA-MB-231 cell proliferation and invasion. MATERIALS/METHODS Female athymic nude mice were given a subcutaneous (s.c.) inoculation of MDA-MB-231 cells and randomly grouped to receive a s.c. injection of either 500 mg/kg ethanol, water extract or vehicle five times a week. Tumor growth, mitotic rate and necrosis were examined. MDA-MB-231 cells were cultured with DMSO or with various concentrations of loquat water or ethanol extract. Proliferation, adhesion, migration, invasion and matrix metalloproteinase (MMP) activity were examined. RESULTS Tumor growth of xenograft nude mouse was significantly reduced by loquat extracts. The results of mitotic examination revealed that loquat extracts reduced tumor cell division. Both ethanol and water extracts significantly inhibited MDA-MB-231 cell proliferation. The protein expression of ErbB3 was significantly down-regulated by loquat leaf extracts. Loquat leaf extracts increased apoptosis of MDA-MB-231 cells following 24 hour incubation and the ethanol extract was more potent in inducing apoptosis than the water extract. Furthermore, loquat extracts inhibited adhesion, migration and invasion of MDA-MB-231 cells. MMP activity was significantly inhibited by loquat extracts. CONCLUSION Our results show that extracts of loquat inhibit the growth of tumor in MDA-MB-231 xenograft nude mice and the invasion of human breast cancer cells, indicating the inhibition of tumor cell proliferation and invasion. PMID:27087896

  14. Loquat (Eriobotrya japonica) leaf extract inhibits the growth of MDA-MB-231 tumors in nude mouse xenografts and invasion of MDA-MB-231 cells.

    PubMed

    You, Mi-Kyoung; Kim, Min-Sook; Jeong, Kyu-Shik; Kim, Eun; Kim, Yong-Jae; Kim, Hyeon-A

    2016-04-01

    The present study was conducted to examine the inhibitory effect of loquat leaves on MDA-MB-231 cell proliferation and invasion. Female athymic nude mice were given a subcutaneous (s.c.) inoculation of MDA-MB-231 cells and randomly grouped to receive a s.c. injection of either 500 mg/kg ethanol, water extract or vehicle five times a week. Tumor growth, mitotic rate and necrosis were examined. MDA-MB-231 cells were cultured with DMSO or with various concentrations of loquat water or ethanol extract. Proliferation, adhesion, migration, invasion and matrix metalloproteinase (MMP) activity were examined. Tumor growth of xenograft nude mouse was significantly reduced by loquat extracts. The results of mitotic examination revealed that loquat extracts reduced tumor cell division. Both ethanol and water extracts significantly inhibited MDA-MB-231 cell proliferation. The protein expression of ErbB3 was significantly down-regulated by loquat leaf extracts. Loquat leaf extracts increased apoptosis of MDA-MB-231 cells following 24 hour incubation and the ethanol extract was more potent in inducing apoptosis than the water extract. Furthermore, loquat extracts inhibited adhesion, migration and invasion of MDA-MB-231 cells. MMP activity was significantly inhibited by loquat extracts. Our results show that extracts of loquat inhibit the growth of tumor in MDA-MB-231 xenograft nude mice and the invasion of human breast cancer cells, indicating the inhibition of tumor cell proliferation and invasion.

  15. Optimal Design for Informative Protocols in Xenograft Tumor Growth Inhibition Experiments in Mice.

    PubMed

    Lestini, Giulia; Mentré, France; Magni, Paolo

    2016-09-01

    Tumor growth inhibition (TGI) models are increasingly used during preclinical drug development in oncology for the in vivo evaluation of antitumor effect. Tumor sizes are measured in xenografted mice, often only during and shortly after treatment, thus preventing correct identification of some TGI model parameters. Our aims were (i) to evaluate the importance of including measurements during tumor regrowth and (ii) to investigate the proportions of mice included in each arm. For these purposes, optimal design theory based on the Fisher information matrix implemented in PFIM4.0 was applied. Published xenograft experiments, involving different drugs, schedules, and cell lines, were used to help optimize experimental settings and parameters using the Simeoni TGI model. For each experiment, a two-arm design, i.e., control versus treatment, was optimized with or without the constraint of not sampling during tumor regrowth, i.e., "short" and "long" studies, respectively. In long studies, measurements could be taken up to 6 g of tumor weight, whereas in short studies the experiment was stopped 3 days after the end of treatment. Predicted relative standard errors were smaller in long studies than in corresponding short studies. Some optimal measurement times were located in the regrowth phase, highlighting the importance of continuing the experiment after the end of treatment. In the four-arm designs, the results showed that the proportions of control and treated mice can differ. To conclude, making measurements during tumor regrowth should become a general rule for informative preclinical studies in oncology, especially when a delayed drug effect is suspected.

  16. SKI-606, a Src/Abl inhibitor with in vivo activity in colon tumor xenograft models.

    PubMed

    Golas, Jennifer M; Lucas, Judy; Etienne, Carlo; Golas, Jonathan; Discafani, Carolyn; Sridharan, Latha; Boghaert, Erwin; Arndt, Kim; Ye, Fei; Boschelli, Diane H; Li, Fangbiao; Titsch, Craig; Huselton, Christine; Chaudhary, Inder; Boschelli, Frank

    2005-06-15

    Src up-regulation is a common event in human cancers. In colorectal cancer, increased Src levels are an indicator of poor prognosis, and progression to metastatic disease is associated with substantial increases in Src activity. Therefore, we examined the activity of SKI-606, a potent inhibitor of Src and Abl kinases, against colon tumor lines in vitro and in s.c. tumor xenograft models. SKI-606 inhibited Src autophosphorylation with an IC(50) of approximately 0.25 micromol/L in HT29 cells. Phosphorylation of Tyr(925) of focal adhesion kinase, a Src substrate, was reduced by similar concentrations of inhibitor. Antiproliferative activity on plastic did not correlate with Src inhibition in either HT29 or Colo205 cells (IC(50)s, 1.5 and 2.5 micromol/L, respectively), although submicromolar concentrations of SKI-606 inhibited HT29 cell colony formation in soft agar. SKI-606 also caused loosely aggregated Colo205 spheroids to condense into compact spheroids. On oral administration to nude mice at the lowest efficacious dose, peak plasma concentrations of approximately 3 micromol/L, an oral bioavailability of 18%, and a t(1/2) of 8.6 hours were observed. SKI-606 was orally active in s.c. colon tumor xenograft models and caused substantial reductions in Src autophosphorylation on Tyr(418) in HT29 and Colo205 tumors. SKI-606 inhibited HT29 tumor growth on once daily administration, whereas twice daily administration was necessary to inhibit Colo205, HCT116, and DLD1 tumor growth. These results support development of SKI-606 as a therapeutic agent for treatment of colorectal cancer.

  17. Growth of LAPC4 prostate cancer xenograft tumor is insensitive to 5α-reductase inhibitor dutasteride

    PubMed Central

    Garcia, Raquel Ramos; Masoodi, Khalid Z; Pascal, Laura E; Nelson, Joel B; Wang, Zhou

    2014-01-01

    Intermittent androgen deprivation therapy (IADT) allows prostate cancer patients a break from the side-effects of continuous androgen deprivation therapy (ADT). Although clinical studies suggest that IADT can significantly improve patient quality of life over ADT, it has not been demonstrated to improve patient survival. Recently, increased survival has been demonstrated when 5α-reductase inhibitors have been used during the off-cycle of IADT in animal xenograft tumor models LNCaP and LuCaP35. In the current study, the sensitivity of LAPC4 xenograft tumor regrowth to the 5ARI dutasteride was determined. Tumor regrowth and gene expression changes in LAPC4 tumors were compared to the previously determined response of LNCaP and LuCaP35 xenograft tumors to 5ARI treatment during the off-cycle of IADT, LAPC4, LNCaP and LuCaP35 tumors were sensitive to androgen manipulation. However, in contrast to LNCaP and LuCaP35, dutasteride treatment during testosterone-stimulated prostate regrowth did not affect tumor regrowth or the expression of androgen responsive genes. Tumor response to dutasteride during the off-cycle of IADT is variable in xenograft prostate tumor models. Future studies will be required to elucidate the mechanisms contributing to the dutasteride resistance observed in the LAPC4 model during the off-cycle. PMID:25374909

  18. Downregulation of c-Myc is involved in TLR3-mediated tumor death of neuroblastoma xenografts.

    PubMed

    Lin, Li-Ling; Huang, Chao-Cheng; Wu, Chia-Ling; Wu, Min-Tsui; Hsu, Wen-Ming; Chuang, Jiin-Haur

    2016-07-01

    Neuroblastoma (NB) is the deadliest pediatric solid tumor due to its pleomorphic molecular characteristics. In the innate immune system, toll-like receptor 3 (TLR3) recognizes viral double-stranded RNAs to initiate immune signaling. Positive TLR3 expression indicates a favorable prognosis in NB patients, and is associated with MYCN-non-amplified. However, TLR3-mediated innate immune responses remain elusive in NB. In this study, we attempted to dissect the molecular mechanism underlying TLR3-agonist polyinosinic-polycytidylic acid [poly(I:C)] treatment in NB in vivo. We established NB xenograft models in non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice with MYCN-amplified SK-N-DZ (DZ) cells or MYCN-non-amplified SK-N-AS (AS) cells. Poly(I:C) treatment led to significant tumor regression in AS xenografts, but not in DZ xenografts. Through immunohistochemical analysis, significant suppression of tumor proliferation, downregulation of c-Myc expression, and upregulation of TLR3 expression were found in the treatment group. Poly(I:C) inducing activation of TLR3/IRF3-mediated innate immunity associated with downregulation of c-Myc can be found in MYCN-non-amplified SK-N-AS cells, but not in MYCN-amplified BE(2)-M17 cells. Knockdown of TLR3 disturbed poly(I:C)-induced suppression of c-Myc and upregulation of p-IRF3 in AS cells. Furthermore, poly(I:C) treatment upregulated active NF-κB, mitochondrial antioxidant manganese superoxide dismutase and 8-hydroxydeoxyguanosine, which works with reactive oxygen species (ROS) generation and DNA damage. Upregulation of active caspase 3 and cleaved poly [ADP-ribose] polymerase 1 were found in poly(I:C)-treated AS xenografts, which indicates the induction of apoptosis. Thus, our results suggest that c-Myc overexpression may increase sensitivity to poly(I:C)-induced tumor growth arrest and ROS-mediated apoptosis in NB. This study demonstrates that c-Myc protein expression has an important role in TLR3-induced innate

  19. Scavenging of CXCL12 by CXCR7 Promotes Tumor Growth and Metastasis of CXCR4-positive Breast Cancer Cells

    PubMed Central

    Luker, Kathryn E.; Lewin, Sarah A.; Mihalko, Laura Anne; Schmidt, Bradley T.; Winkler, Jessica S.; Coggins, Nathaniel L.; Thomas, Dafydd G.; Luker, Gary D.

    2011-01-01

    Chemokine CXCL12 and receptor CXCR4 control multiple steps in primary tumor growth and metastasis in breast cancer and more than 20 other human malignancies. Mechanisms that regulate availability of CXCL12 in tumor microenvironments will substantially impact cancer progression and ongoing efforts to target the CXCL12-CXCR4 pathway for cancer chemotherapy. We used dual luciferase imaging to investigate CXCR7 dependent scavenging of CXCL12 in breast tumors in vivo and quantify effects of CXCR7 on tumor growth and metastasis of a separate population of CXCR4+ breast cancer cells. In a mouse xenograft model of human breast cancer, in vivo imaging showed that malignant cells expressing CXCR7 reduced bioluminescent CXCL12 secreted in the primary tumor microenvironment. Capitalizing on sensitive detection of bioluminescent CXCL12, we also demonstrated that CXCR7+ cells reduced amounts of chemokine released from orthotopic tumors into the circulation. Immunofluorescence staining of human primary breast cancers showed expression of CXCR4 and CXCR7 on malignant cells in ≈ 30% of cases. In most cases, CXCR4 and CXCR7 predominantly were expressed on separate populations of malignant cells in a tumor. We modeled these cases of human breast cancer by co-implanting tumor xenografts with CXCR4+ breast cancer cells, human mammary fibroblasts secreting CXCL12, and CXCR7+ or control breast cancer cells. Bioluminescence imaging showed that CXCR7+ breast cancer cells enhanced proliferation of CXCR4+ breast cancer cells in orthotopic tumors and spontaneous metastases. Treatment with a small molecule inhibitor of CXCR7 chemokine scavenging limited growth of CXCR4+ breast cancer cells in tumors that also contained malignant CXCR7+ cells. These studies establish a new in vivo imaging method to quantify chemokine scavenging by CXCR7 in the tumor microenvironment and identify that CXCR7+ cells promote growth and metastasis of CXCR4+ breast cancer cells. PMID:22266857

  20. Patient-derived xenograft (PDX) models in basic and translational breast cancer research.

    PubMed

    Dobrolecki, Lacey E; Airhart, Susie D; Alferez, Denis G; Aparicio, Samuel; Behbod, Fariba; Bentires-Alj, Mohamed; Brisken, Cathrin; Bult, Carol J; Cai, Shirong; Clarke, Robert B; Dowst, Heidi; Ellis, Matthew J; Gonzalez-Suarez, Eva; Iggo, Richard D; Kabos, Peter; Li, Shunqiang; Lindeman, Geoffrey J; Marangoni, Elisabetta; McCoy, Aaron; Meric-Bernstam, Funda; Piwnica-Worms, Helen; Poupon, Marie-France; Reis-Filho, Jorge; Sartorius, Carol A; Scabia, Valentina; Sflomos, George; Tu, Yizheng; Vaillant, François; Visvader, Jane E; Welm, Alana; Wicha, Max S; Lewis, Michael T

    2016-12-01

    Patient-derived xenograft (PDX) models of a growing spectrum of cancers are rapidly supplanting long-established traditional cell lines as preferred models for conducting basic and translational preclinical research. In breast cancer, to complement the now curated collection of approximately 45 long-established human breast cancer cell lines, a newly formed consortium of academic laboratories, currently from Europe, Australia, and North America, herein summarizes data on over 500 stably transplantable PDX models representing all three clinical subtypes of breast cancer (ER+, HER2+, and "Triple-negative" (TNBC)). Many of these models are well-characterized with respect to genomic, transcriptomic, and proteomic features, metastatic behavior, and treatment response to a variety of standard-of-care and experimental therapeutics. These stably transplantable PDX lines are generally available for dissemination to laboratories conducting translational research, and contact information for each collection is provided. This review summarizes current experiences related to PDX generation across participating groups, efforts to develop data standards for annotation and dissemination of patient clinical information that does not compromise patient privacy, efforts to develop complementary data standards for annotation of PDX characteristics and biology, and progress toward "credentialing" of PDX models as surrogates to represent individual patients for use in preclinical and co-clinical translational research. In addition, this review highlights important unresolved questions, as well as current limitations, that have hampered more efficient generation of PDX lines and more rapid adoption of PDX use in translational breast cancer research.

  1. Dynamics of genomic clones in breast cancer patient xenografts at single cell resolution

    PubMed Central

    Eirew, Peter; Steif, Adi; Khattra, Jaswinder; Ha, Gavin; Yap, Damian; Farahani, Hossein; Gelmon, Karen; Chia, Stephen; Mar, Colin; Wan, Adrian; Laks, Emma; Biele, Justina; Shumansky, Karey; Rosner, Jamie; McPherson, Andrew; Nielsen, Cydney; Roth, Andrew J. L.; Lefebvre, Calvin; Bashashati, Ali; de Souza, Camila; Siu, Celia; Aniba, Radhouane; Brimhall, Jazmine; Oloumi, Arusha; Osako, Tomo; Bruna, Alejandra; Sandoval, Jose; Algara, Teresa; Greenwood, Wendy; Leung, Kaston; Cheng, Hongwei; Xue, Hui; Wang, Yuzhuo; Lin, Dong; Mungall, Andrew J.; Moore, Richard; Zhao, Yongjun; Lorette, Julie; Nguyen, Long; Huntsman, David; Eaves, Connie J.; Hansen, Carl; Marra, Marco A.; Caldas, Carlos; Shah, Sohrab P.; Aparicio, Samuel

    2016-01-01

    Human cancers, including breast cancers, are comprised of clones differing in mutation content. Clones evolve dynamically in space and time following principles of Darwinian evolution1,2, underpinning important emergent features such as drug resistance and metastasis3–7. Human breast cancer xenoengraftment is used as a means of capturing and studying tumour biology, and breast tumour xenografts are generally assumed to be reasonable models of the originating tumours8–10. However the consequences and reproducibility of engraftment and propagation on the genomic clonal architecture of tumours has not been systematically examined at single cell resolution. Here we show by both deep genome and single cell sequencing methods, the clonal dynamics of initial engraftment and subsequent serial propagation of primary and metastatic human breast cancers in immunodeficient mice. In all 15 cases examined, clonal selection on engraftment was observed in both primary and metastatic breast tumours, varying in degree from extreme selective engraftment of minor (<5% of starting population) clones to moderate, polyclonal engraftment. Furthermore, ongoing clonal dynamics during serial passaging is a feature of tumours experiencing modest initial selection. Through single cell sequencing, we show that major mutation clusters estimated from tumour population sequencing relate predictably to the most abundant clonal genotypes, even in clonally complex and rapidly evolving cases. Finally, we show that similar clonal expansion patterns can emerge in independent grafts of the same starting tumour population, indicating that genomic aberrations can be reproducible determinants of evolutionary trajectories. Our results show that measurement of genomically defined clonal population dynamics will be highly informative for functional studies utilizing patient-derived breast cancer xenoengraftment. PMID:25470049

  2. Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution.

    PubMed

    Eirew, Peter; Steif, Adi; Khattra, Jaswinder; Ha, Gavin; Yap, Damian; Farahani, Hossein; Gelmon, Karen; Chia, Stephen; Mar, Colin; Wan, Adrian; Laks, Emma; Biele, Justina; Shumansky, Karey; Rosner, Jamie; McPherson, Andrew; Nielsen, Cydney; Roth, Andrew J L; Lefebvre, Calvin; Bashashati, Ali; de Souza, Camila; Siu, Celia; Aniba, Radhouane; Brimhall, Jazmine; Oloumi, Arusha; Osako, Tomo; Bruna, Alejandra; Sandoval, Jose L; Algara, Teresa; Greenwood, Wendy; Leung, Kaston; Cheng, Hongwei; Xue, Hui; Wang, Yuzhuo; Lin, Dong; Mungall, Andrew J; Moore, Richard; Zhao, Yongjun; Lorette, Julie; Nguyen, Long; Huntsman, David; Eaves, Connie J; Hansen, Carl; Marra, Marco A; Caldas, Carlos; Shah, Sohrab P; Aparicio, Samuel

    2015-02-19

    Human cancers, including breast cancers, comprise clones differing in mutation content. Clones evolve dynamically in space and time following principles of Darwinian evolution, underpinning important emergent features such as drug resistance and metastasis. Human breast cancer xenoengraftment is used as a means of capturing and studying tumour biology, and breast tumour xenografts are generally assumed to be reasonable models of the originating tumours. However, the consequences and reproducibility of engraftment and propagation on the genomic clonal architecture of tumours have not been systematically examined at single-cell resolution. Here we show, using deep-genome and single-cell sequencing methods, the clonal dynamics of initial engraftment and subsequent serial propagation of primary and metastatic human breast cancers in immunodeficient mice. In all 15 cases examined, clonal selection on engraftment was observed in both primary and metastatic breast tumours, varying in degree from extreme selective engraftment of minor (<5% of starting population) clones to moderate, polyclonal engraftment. Furthermore, ongoing clonal dynamics during serial passaging is a feature of tumours experiencing modest initial selection. Through single-cell sequencing, we show that major mutation clusters estimated from tumour population sequencing relate predictably to the most abundant clonal genotypes, even in clonally complex and rapidly evolving cases. Finally, we show that similar clonal expansion patterns can emerge in independent grafts of the same starting tumour population, indicating that genomic aberrations can be reproducible determinants of evolutionary trajectories. Our results show that measurement of genomically defined clonal population dynamics will be highly informative for functional studies using patient-derived breast cancer xenoengraftment.

  3. Comprehensive Quantitative Analysis of Ovarian and Breast Cancer Tumor Peptidomes

    DOE PAGES

    Xu, Zhe; Wu, Chaochao; Xie, Fang; ...

    2014-10-28

    Aberrant degradation of proteins is associated with many pathological states, including cancers. Mass spectrometric analysis of tumor peptidomes, the intracellular and intercellular products of protein degradation, has the potential to provide biological insights on proteolytic processing in cancer. However, attempts to use the information on these smaller protein degradation products from tumors for biomarker discovery and cancer biology studies have been fairly limited to date, largely due to the lack of effective approaches for robust peptidomics identification and quantification, and the prevalence of confounding factors and biases associated with sample handling and processing. Herein, we have developed an effective andmore » robust analytical platform for comprehensive analyses of tissue peptidomes, and which is suitable for high throughput quantitative studies. The reproducibility and coverage of the platform, as well as the suitability of clinical ovarian tumor and patient-derived breast tumor xenograft samples with post-excision delay of up to 60 min before freezing for peptidomics analysis, have been demonstrated. Additionally, our data also show that the peptidomics profiles can effectively separate breast cancer subtypes, reflecting tumor-associated protease activities. In conclusion, peptidomics complements results obtainable from conventional bottom-up proteomics, and provides insights not readily obtainable from such approaches.« less

  4. Comprehensive Quantitative Analysis of Ovarian and Breast Cancer Tumor Peptidomes

    SciTech Connect

    Xu, Zhe; Wu, Chaochao; Xie, Fang; Slysz, Gordon W.; Tolic, Nikola; Monroe, Matthew E.; Petyuk, Vladislav A.; Payne, Samuel H.; Fujimoto, Grant M.; Moore, Ronald J.; Fillmore, Thomas L.; Schepmoes, Athena A.; Levine, Douglas; Townsend, Reid; Davies, Sherri; Li, Shunqiang; Ellis, Matthew; Boja, Emily; Rivers, Robert; Rodriguez, Henry; Rodland, Karin D.; Liu, Tao; Smith, Richard D.

    2015-01-02

    Aberrant degradation of proteins is associated with many pathological states, including cancers. Mass spectrometric analysis of tumor peptidomes, the intracellular and intercellular products of protein degradation, has the potential to provide biological insights on proteolytic processing in cancer. However, attempts to use the information on these smaller protein degradation products from tumors for biomarker discovery and cancer biology studies have been fairly limited to date, largely due to the lack of effective approaches for robust peptidomics identification and quantification, and the prevalence of confounding factors and biases associated with sample handling and processing. Herein, we have developed an effective and robust analytical platform for comprehensive analyses of tissue peptidomes, which is suitable for high throughput quantitative studies. The reproducibility and coverage of the platform, as well as the suitability of clinical ovarian tumor and patient-derived breast tumor xenograft samples with post-excision delay of up to 60 min before freezing for peptidomics analysis, have been demonstrated. Moreover, our data also show that the peptidomics profiles can effectively separate breast cancer subtypes, reflecting tumor-associated protease activities. Peptidomics complements results obtainable from conventional bottom-up proteomics, and provides insights not readily obtainable from such approaches.

  5. Sensitization of BCL-2–expressing breast tumors to chemotherapy by the BH3 mimetic ABT-737

    PubMed Central

    Oakes, Samantha R.; Vaillant, François; Lim, Elgene; Lee, Lily; Breslin, Kelsey; Feleppa, Frank; Deb, Siddhartha; Ritchie, Matthew E.; Takano, Elena; Ward, Teresa; Fox, Stephen B.; Generali, Daniele; Smyth, Gordon K.; Strasser, Andreas; Huang, David C. S.; Visvader, Jane E.; Lindeman, Geoffrey J.

    2012-01-01

    Overexpression of the prosurvival protein BCL-2 is common in breast cancer. Here we have explored its role as a potential therapeutic target in this disease. BCL-2, its anti-apoptotic relatives MCL-1 and BCL-XL, and the proapoptotic BH3-only ligand BIM were found to be coexpressed at relatively high levels in a substantial proportion of heterogeneous breast tumors, including clinically aggressive basal-like cancers. To determine whether the BH3 mimetic ABT-737 that neutralizes BCL-2, BCL-XL, and BCL-W had potential efficacy in targeting BCL-2–expressing basal-like triple-negative tumors, we generated a panel of primary breast tumor xenografts in immunocompromised mice and treated recipients with either ABT-737, docetaxel, or a combination. Tumor response and overall survival were significantly improved by combination therapy, but only for tumor xenografts that expressed elevated levels of BCL-2. Treatment with ABT-737 alone was ineffective, suggesting that ABT-737 sensitizes the tumor cells to docetaxel. Combination therapy was accompanied by a marked increase in apoptosis and dissociation of BIM from BCL-2. Notably, BH3 mimetics also appeared effective in BCL-2–expressing xenograft lines that harbored p53 mutations. Our findings provide in vivo evidence that BH3 mimetics can be used to sensitize primary breast tumors to chemotherapy and further suggest that elevated BCL-2 expression constitutes a predictive response marker in breast cancer. PMID:21768359

  6. Whole Exome Sequencing of Rapid Autopsy Tumors and Xenograft Models Reveals Possible Driver Mutations Underlying Tumor Progression

    PubMed Central

    Xie, Tao; Musteanu, Monica; Lopez-Casas, Pedro P.; Shields, David J.; Olson, Peter; Rejto, Paul A.; Hidalgo, Manuel

    2015-01-01

    Pancreatic Ductal Adenocarcinoma (PDAC) is a highly lethal malignancy due to its propensity to invade and rapidly metastasize and remains very difficult to manage clinically. One major hindrance towards a better understanding of PDAC is the lack of molecular data sets and models representative of end stage disease. Moreover, it remains unclear how molecularly similar patient-derived xenograft (PDX) models are to the primary tumor from which they were derived. To identify potential molecular drivers in metastatic pancreatic cancer progression, we obtained matched primary tumor, metastases and normal (peripheral blood) samples under a rapid autopsy program and performed whole exome sequencing (WES) on tumor as well as normal samples. PDX models were also generated, sequenced and compared to tumors. Across the matched data sets generated for three patients, there were on average approximately 160 single-nucleotide mutations in each sample. The majority of mutations in each patient were shared among the primary and metastatic samples and, importantly, were largely retained in the xenograft models. Based on the mutation prevalence in the primary and metastatic sites, we proposed possible clonal evolution patterns marked by functional mutations affecting cancer genes such as KRAS, TP53 and SMAD4 that may play an important role in tumor initiation, progression and metastasis. These results add to our understanding of pancreatic tumor biology, and demonstrate that PDX models derived from advanced or end-stage likely closely approximate the genetics of the disease in the clinic and thus represent a biologically and clinically relevant pre-clinical platform that may enable the development of effective targeted therapies for PDAC. PMID:26555578

  7. Imaging Tumor Variation in Response to Photodynamic Therapy in Pancreatic Cancer Xenograft Models

    SciTech Connect

    Samkoe, Kimberley S.; Chen, Alina; Rizvi, Imran; O'Hara, Julia A.; Hoopes, P. Jack; Pereira, Stephen P.; Hasan, Tayyaba; Pogue, Brian W.

    2010-01-15

    Purpose: A treatment monitoring study investigated the differential effects of orthotopic pancreatic cancer models in response to interstitial photodynamic therapy (PDT), and the validity of using magnetic resonance imaging as a surrogate measure of response was assessed. Methods and Materials: Different orthotopic pancreatic cancer xenograft models (AsPC-1 and Panc-1) were used to represent the range of pathophysiology observed in human beings. Identical dose escalation studies (10, 20, and 40J/cm) using interstitial verteporfin PDT were performed, and magnetic resonance imaging with T2-weighted and T1-weighted contrast were used to monitor the total tumor volume and the vascular perfusion volume, respectively. Results: There was a significant amount of necrosis in the slower-growing Panc-1 tumor using high light dose, although complete necrosis was not observed. Lower doses were required for the same level of tumor kill in the faster-growing AsPC-1 cell line. Conclusions: The tumor growth rate and vascular pattern of the tumor affect the optimal PDT treatment regimen, with faster-growing tumors being relatively easier to treat. This highlights the fact that therapy in human beings shows a heterogeneous range of outcomes, and suggests a need for careful individualized treatment outcomes assessment in clinical work.

  8. Inhibition of telomerase in the endothelial cells disrupts tumor angiogenesis in glioblastoma xenografts.

    PubMed

    Falchetti, Maria Laura; Mongiardi, Maria Patrizia; Fiorenzo, Paolo; Petrucci, Giovanna; Pierconti, Francesco; D'Agnano, Igea; D'Alessandris, Giorgio; Alessandri, Giulio; Gelati, Maurizio; Ricci-Vitiani, Lucia; Maira, Giulio; Larocca, Luigi Maria; Levi, Andrea; Pallini, Roberto

    2008-03-15

    Tumor angiogenesis is a complex process that involves a series of interactions between tumor cells and endothelial cells (ECs). In vitro, glioblastoma multiforme (GBM) cells are known to induce an increase in proliferation, migration and tube formation by the ECs. We have previously shown that in human GBM specimens the proliferating ECs of the tumor vasculature express the catalytic component of telomerase, hTERT, and that telomerase can be upregulated in human ECs by exposing these cells to GBM in vitro. Here, we developed a controlled in vivo assay of tumor angiogenesis in which primary human umbilical vascular endothelial cells (HUVECs) were subcutaneously grafted with or without human GBM cells in immunocompromised mice as Matrigel implants. We found that primary HUVECs did not survive in Matrigel implants, and that telomerase upregulation had little effect on HUVEC survival. In the presence of GBM cells, however, the grafted HUVECs not only survived in Matrigel implants but developed tubule structures that integrated with murine microvessels. Telomerase upregulation in HUVECs enhanced such effect. More importantly, inhibition of telomerase in HUVECs completely abolished tubule formation and greatly reduced survival of these cells in the tumor xenografts. Our data demonstrate that telomerase upregulation by the ECs is a key requisite for GBM tumor angiogenesis. (c) 2007 Wiley-Liss, Inc.

  9. Absence of preferential uptake of ( sup 125 I)iododihydrorhodamine 123 by four human tumor xenografts

    SciTech Connect

    Kinsey, B.M.; Van den Abbeele, A.D.; Adelstein, S.J.; Kassis, A.I. )

    1989-11-01

    The biodistribution of ({sup 125}I)iododihydrorhodamine 123 has been studied over a 96-h period in four human tumor xenograft models: HT-29 colon adenocarcinoma, PC-3 prostate carcinoma, HT-1080 fibrosarcoma, and PaCa-2 pancreatic carcinoma. Elimination of radioactivity in the tumor-bearing nude mice was rapid during the first 24 h and slow thereafter. The lack of uptake in the thyroid indicated there was little, if any, deiodination of the molecule. Activity was found mainly in the liver and spleen. Accumulation of radioactivity was low in all four tumors examined. At 4 h postinjection, as well as at 24 and 48 h, however, the total radioactive content in each of the four tumors was directly proportional to the weight of the tumor sample. This correlation was independent of tumor type, route of injection (i.v./i.p.) or dose (1.2-6 microCi/mouse). This was not true for any of the normal tissues, suggesting that this accumulation may be governed by certain intrinsic characteristics of the cancers tested.

  10. Evaluation of 6-([18F] fluoroacetamido)-1-hexanoic-anilide (18F-FAHA) as imaging probe in tumor xenograft mice model

    NASA Astrophysics Data System (ADS)

    Li, Fiona; Cho, Sung Ju; Yu, Lihai; Hudson, Robert H. E.; Luyt, Leonard G.; Pin, Christopher L.; Kovacs, Michael S.; Koropatnick, James; Lee, Ting-Yim

    2016-03-01

    Alteration in genetic expression is as important as gene mutation in cancer development and proliferation. Epigenetic changes affect gene expression without altering the DNA sequence. Histone deacetylase (HDAC), an enzyme facilitating histone remodelling, can lead to silencing of tumor suppressor genes making HDAC inhibitors viable anticancer drugs against tumors with increased activity of the enzyme. In this study we evaluated 18F-fluroacetamido-1-hexanoicanilide (18F-FAHA), an artificial HDAC substrate, as imaging probe of HDAC activity of human tumor xenografts in immunocompromised host mice. Human breast and melanoma cell lines, MDA-MB-468 and MDA-MB-435 respectively, known to overexpress HDAC activity were xenografted into immunocompromised mice and HDAC activity was imaged using 18F-FAHA. The melanoma group was treated with saline, SAHA (suberoylanilide hydroxamic acid, an approved anticancer HDAC inhibitor) in DMSO, or DMSO as positive control. Tracer kinetic modelling and SUV were used to estimate HDAC activity from dynamic PET data. Both breast tumor and melanoma group showed great variability in binding rate constant (BRC) of 18F-FAHA suggesting highly variable inter- and intra-tumoral HDAC activity. For the SAHA treated melanoma group, HDAC activity, as monitored by BRC of 18F-FAHA, decreased more than the two (positive and negative) control groups but not tumor growth. Our preliminary study showed that noninvasive PET imaging with 18F-FAHA has the potential to identify patients for whom treatment with HDAC inhibitors are appropriate, to assess the effectiveness of that treatment as an early marker of target reduction, and also eliminate the need for invasive tissue biopsy to individualize treatment.

  11. DADS Suppresses Human Esophageal Xenograft Tumors through RAF/MEK/ERK and Mitochondria-Dependent Pathways

    PubMed Central

    Yin, Xiaoran; Zhang, Jun; Li, Xiaoning; Liu, Dong; Feng, Cheng; Liang, Rongrui; Zhuang, Kun; Cai, Chenlei; Xue, Xinghuan; Jing, Fuchun; Wang, Xijing; Wang, Jun; Liu, Xinlian; Ma, Hongbing

    2014-01-01

    Diallyl disulfide (DADS) is a natural organosulfur compound isolated from garlic. DADS has various biological properties, including anticancer, antiangiogenic, and antioxidant effects. However, the anticancer mechanisms of DADS in human esophageal carcinoma have not been elucidated, especially in vivo. In this study, MTT assay showed that DADS significantly reduced cell viability in human esophageal carcinoma ECA109 cells, but was relatively less toxic in normal liver cells. The pro–apoptotic effect of DADS on ECA109 cells was detected by Annexin V-FITC/propidium iodide (PI) staining. Flow cytometry analysis showed that DADS promoted apoptosis in a dose-dependent manner and the apoptosis rate could be decreased by caspase-3 inhibitor Ac-DEVD-CHO. Xenograft study in nude mice showed that DADS treatment inhibited the growth of ECA109 tumor in both 20 and 40 mg/kg DADS groups without obvious side effects. DADS inhibited ECA109 tumor proliferation by down-regulating proliferation cell nuclear antigen (PCNA). DADS induced apoptosis by activating a mitochondria-dependent pathway with the executor of caspase-3, increasing p53 level and Bax/Bcl-2 ratio, and downregulating the RAF/MEK/ERK pathway in ECA109 xenograft tumosr. Based on studies in cell culture and animal models, the findings here indicate that DADS is an effective and safe anti-cancer agent for esophageal carcinoma. PMID:25026173

  12. Estrogen receptor beta inhibits angiogenesis and growth of T47D breast cancer xenografts.

    PubMed

    Hartman, Johan; Lindberg, Karolina; Morani, Andrea; Inzunza, José; Ström, Anders; Gustafsson, Jan-Ake

    2006-12-01

    Estrogens, which are stimulators of growth of both the normal breast and malignant breast, mediate their effects through two estrogen receptors (ER), namely ERalpha and ERbeta. ERalpha mediates the proliferative effect of estrogen in breast cancer cells, whereas ERbeta seems to be antiproliferative. We engineered ERalpha-positive T47D breast cancer cells to express ERbeta in a Tet-Off-regulated manner. These cells were then injected orthotopically into severe combined immunodeficient mice, and the growth of the resulting tumors was compared with tumors resulting from injecting the parental T47D cells that do not express ERbeta. The presence of ERbeta resulted in a reduction in tumor growth. Comparison of the ERbeta-expressing and non-ERbeta-expressing tumors revealed that the expression of ERbeta caused a reduction in the number of intratumoral blood vessels and a decrease in expression of the proangiogenic factors vascular endothelial growth factor (VEGF) and platelet-derived growth factor beta (PDGFbeta). In cell culture, with the Tet-Off-regulated ERbeta-expressing cells, expression of ERbeta decreased expression of VEGF and PDGFbeta mRNA under normoxic as well as hypoxic conditions and reduced secreted VEGF and PDGFbeta proteins in cell culture medium. Transient transfection assays with 1,026 bp VEGF and 1,006 bp PDGFbeta promoter constructs revealed a repressive effect of ERbeta at the promoter level of these genes. Taken together, these data show that introduction of ERbeta into malignant cells inhibits their growth and prevents tumor expansion by inhibiting angiogenesis.

  13. CysLT(1)R antagonists inhibit tumor growth in a xenograft model of colon cancer.

    PubMed

    Savari, Sayeh; Liu, Minghui; Zhang, Yuan; Sime, Wondossen; Sjölander, Anita

    2013-01-01

    The expression of the inflammatory G-protein coupled receptor CysLT1R has been shown to be upregulated in colon cancer patients and associated with poor prognosis. The present study investigated the correlation between CysLT1R and colon cancer development in vivo using CysLT1R antagonists (ZM198,615 or Montelukast) and the nude mouse xenograft model. Two drug administration regimens were established. The first regimen was established to investigate the importance of CysLT1R in tumor initiation. Nude mice were inoculated with 50 µM CysLT1R antagonist-pretreated HCT-116 colon cancer cells and received continued treatment (5 mg/kg/day, intraperitoneally). The second regimen aimed to address the role of CysLT1R in tumor progression. Nude mice were inoculated with non-pretreated HCT-116 cells and did not receive CysLT1R antagonist treatment until recordable tumor appearance. Both regimens resulted in significantly reduced tumor size, attributed to changes in proliferation and apoptosis as determined by reduced Ki-67 levels and increased levels of p21(WAF/Cip1) (P<0.01), cleaved caspase 3, and the caspase-cleaved product of cytokeratin 18. Decreased levels of VEGF (P<0.01) and reduced vessel size (P<0.05) were also observed, the latter only in the ZM198,615-pretreatment group. Furthermore, we performed a series of in vitro studies using the colon cancer cell line HCT-116 and CysLT1R antagonists. In addition to significant reductions in cell proliferation, adhesion and colony formation, we observed induction of cell cycle arrest and apoptosis in a dose-dependent manner. The ability of Montelukast to inhibit growth of human colon cancer xenograft was further validated by using two additional colon cancer cell lines, SW-480 and HT-29. Our results demonstrate that CysLT1R antagonists inhibit growth of colon cancer xenografts primarily by reducing proliferation and inducing apoptosis of the tumor cells.

  14. CysLT1R Antagonists Inhibit Tumor Growth in a Xenograft Model of Colon Cancer

    PubMed Central

    Savari, Sayeh; Liu, Minghui; Zhang, Yuan; Sime, Wondossen; Sjölander, Anita

    2013-01-01

    The expression of the inflammatory G-protein coupled receptor CysLT1R has been shown to be upregulated in colon cancer patients and associated with poor prognosis. The present study investigated the correlation between CysLT1R and colon cancer development in vivo using CysLT1R antagonists (ZM198,615 or Montelukast) and the nude mouse xenograft model. Two drug administration regimens were established. The first regimen was established to investigate the importance of CysLT1R in tumor initiation. Nude mice were inoculated with 50 µM CysLT1R antagonist-pretreated HCT-116 colon cancer cells and received continued treatment (5 mg/kg/day, intraperitoneally). The second regimen aimed to address the role of CysLT1R in tumor progression. Nude mice were inoculated with non-pretreated HCT-116 cells and did not receive CysLT1R antagonist treatment until recordable tumor appearance. Both regimens resulted in significantly reduced tumor size, attributed to changes in proliferation and apoptosis as determined by reduced Ki-67 levels and increased levels of p21WAF/Cip1 (P<0.01), cleaved caspase 3, and the caspase-cleaved product of cytokeratin 18. Decreased levels of VEGF (P<0.01) and reduced vessel size (P<0.05) were also observed, the latter only in the ZM198,615-pretreatment group. Furthermore, we performed a series of in vitro studies using the colon cancer cell line HCT-116 and CysLT1R antagonists. In addition to significant reductions in cell proliferation, adhesion and colony formation, we observed induction of cell cycle arrest and apoptosis in a dose-dependent manner. The ability of Montelukast to inhibit growth of human colon cancer xenograft was further validated by using two additional colon cancer cell lines, SW-480 and HT-29. Our results demonstrate that CysLT1R antagonists inhibit growth of colon cancer xenografts primarily by reducing proliferation and inducing apoptosis of the tumor cells. PMID:24039952

  15. Reproducibility study of [(18)F]FPP(RGD)2 uptake in murine models of human tumor xenografts.

    PubMed

    Chang, Edwin; Liu, Shuangdong; Gowrishankar, Gayatri; Yaghoubi, Shahriar; Wedgeworth, James Patrick; Chin, Frederick; Berndorff, Dietmar; Gekeler, Volker; Gambhir, Sanjiv S; Cheng, Zhen

    2011-04-01

    An (18)F-labeled PEGylated arginine-glycine-aspartic acid (RGD) dimer {[(18)F]FPP(RGD)(2)} has been used to image tumor α(v)β(3) integrin levels in preclinical and clinical studies. Serial positron emission tomography (PET) studies may be useful for monitoring antiangiogenic therapy response or for drug screening; however, the reproducibility of serial scans has not been determined for this PET probe. The purpose of this study was to determine the reproducibility of the integrin α(v)β(3)-targeted PET probe, [(18)F]FPP(RGD)(2,) using small animal PET. Human HCT116 colon cancer xenografts were implanted into nude mice (n = 12) in the breast and scapular region and grown to mean diameters of 5-15 mm for approximately 2.5 weeks. A 3-min acquisition was performed on a small animal PET scanner approximately 1 h after administration of [(18)F]FPP(RGD)(2) (1.9-3.8 MBq, 50-100 μCi) via the tail vein. A second small animal PET scan was performed approximately 6 h later after reinjection of the probe to assess for reproducibility. Images were analyzed by drawing an ellipsoidal region of interest (ROI) around the tumor xenograft activity. Percentage injected dose per gram (%ID/g) values were calculated from the mean or maximum activity in the ROIs. Coefficients of variation and differences in %ID/g values between studies from the same day were calculated to determine the reproducibility. The coefficient of variation (mean±SD) for %ID(mean)/g and %ID(max)/g values between [(18)F]FPP(RGD)(2) small animal PET scans performed 6 h apart on the same day were 11.1 ± 7.6% and 10.4 ± 9.3%, respectively. The corresponding differences in %ID(mean)/g and %ID(max)/g values between scans were -0.025 ± 0.067 and -0.039 ± 0.426. Immunofluorescence studies revealed a direct relationship between extent of α(ν)β(3) integrin expression in tumors and tumor vasculature with level of tracer uptake. Mouse body weight, injected dose, and fasting state did not

  16. An orthotopic xenograft model of intraneural NF1 MPNST suggests a potential association between steroid hormones and tumor cell proliferation.

    PubMed

    Perrin, George Q; Li, Hua; Fishbein, Lauren; Thomson, Susanne A; Hwang, Min S; Scarborough, Mark T; Yachnis, Anthony T; Wallace, Margaret R; Mareci, Thomas H; Muir, David

    2007-11-01

    Malignant peripheral nerve sheath tumors (MPNST) are the most aggressive cancers associated with neurofibromatosis type 1 (NF1). Here we report a practical and reproducible model of intraneural NF1 MPNST, by orthotopic xenograft of an immortal human NF1 tumor-derived Schwann cell line into the sciatic nerves of female scid mice. Intraneural injection of the cell line sNF96.2 consistently produced MPNST-like tumors that were highly cellular and showed extensive intraneural growth. These xenografts had a high proliferative index, were angiogenic, had significant mast cell infiltration and rapidly dominated the host nerve. The histopathology of engrafted intraneural tumors was consistent with that of human NF1 MPNST. Xenograft tumors were readily examined by magnetic resonance imaging, which also was used to assess tumor vascularity. In addition, the intraneural proliferation of sNF96.2 cell tumors was decreased in ovariectomized mice, while replacement of estrogen or progesterone restored tumor cell proliferation. This suggests a potential role for steroid hormones in supporting tumor cell growth of this MPNST cell line in vivo. The controlled orthotopic implantation of sNF96.2 cells provides for the precise initiation of intraneural MPNST-like tumors in a model system suitable for therapeutic interventions, including inhibitors of angiogenesis and further study of steroid hormone effects on tumor cell growth.

  17. Effect of grape procyanidins on tumor angiogenesis in liver cancer xenograft models.

    PubMed

    Feng, Li-Li; Liu, Bing-Xia; Zhong, Jin-Yi; Sun, Li-Bin; Yu, Hong-Sheng

    2014-01-01

    In recent years a wide variety of flavonoids or polyphenolic substances have been reported to possess substantial anti-carcinogenic and antimutagenic activities. Grape proanthocyanidins (GPC) are considered as good examples for which there is evidence of potential roles as anti-carcinogenic agents. A xenograft model was established using H22 cells subcutaneously injected into mice and used to assess different concentrations of grape proanthocyanidins (GPC) and Endostar. Treatments were maintained for 10 days, then levels of vascular endothelial growth factor (VEGF) and microvessel density (MVD) were examined by immunohistochemistry, while VEGF mRNA was determined by real-time PCR in tumor tissue. The expression of MVD and VEGF decreased gradually as the concentration of GPC increased.There was a significant positive correlation between MVD and VEGF. These results suggest that GPC restrains the growth of tumor, possibly by inhibiting tumour angiogenesis.

  18. CD44 targeting reduces tumour growth and prevents post-chemotherapy relapse of human breast cancers xenografts

    PubMed Central

    Marangoni, E; Lecomte, N; Durand, L; de Pinieux, G; Decaudin, D; Chomienne, C; Smadja-Joffe, F; Poupon, M-F

    2009-01-01

    CD44 is a marker of tumour-initiating cells and is upregulated in invasive breast carcinoma; however, its role in the cancer progression is unknown. Here, we show that antibody-mediated CD44-targeting in human breast cancer xenografts (HBCx) significantly reduces tumour growth and that this effect is associated to induction of growth-inhibiting factors. Moreover, treatment with this antibody prevents tumour relapse after chemotherapy-induced remission in a basal-like HBCx. PMID:19240712

  19. Effects of CH4893237, a new orally active estrogen receptor downregulator, on breast cancer xenograft models with low serum estrogen levels.

    PubMed

    Yoneya, Takaaki; Tsunenari, Toshiaki; Taniguchi, Kenji; Kanbe, Yoshitake; Morikawa, Kazumi; Yamada-Okabe, Hisafumi; Lee, Yeon-Ho; Lee, Mee-Hyun; Kwon, Lae-Sung

    2009-03-01

    We compared the antitumor efficacy and estrogen receptor (ER) degradation of CH4893237, a new orally active selective ER downregulator, with fulvestrant and tamoxifen in human breast cancer xenografts with low levels of serum estrogen (E2) (50.6, 22.9 and <16.7 pg/ml), equivalent to the ranges in postmenopausal or aromatase inhibitor-treated breast cancer patients. In addition, using proteolysis assays, we tested the conformational changes induced in ERalpha and ERbeta by CH4893237, fulvestrant, and 4-OH tamoxifen (4OHT). In ZR-75-1 xenografts with 50.6 pg/ml E2, CH4893237 (100 and 300 mg/kg/day p.o.) as well as fulvestrant (1 and 3 mg/body/week s.c.) showed complete growth inhibition (>90%) and tamoxifen (30 and 100 mg/kg/day p.o.) showed moderate tamoxifen resistance. The antitumor activity of CH4893237 (300 mg/kg) was the same as that of fulvestrant (3 mg/body) but the rate of ER degradation induced by CH4893237 (300 mg/kg) was significantly stronger than that of fulvestrant (3 mg/body) (94.3 vs. 85.5%, P<0.01). In Br-10 xenografts with 22.9 pg/ml E2, CH4893237 (30 mg/kg) and fulvestrant (1 mg/body) showed potent growth inhibition (>70%) whereas tamoxifen (1, 10 and 100 mg/kg) showed strong tamoxifen resistance. In Br-10 xenografts with ovariectomized-level E2 (<16.7 pg/ml), tamoxifen (30 mg/kg) increased the tumor volume but CH4893237 (30 mg/kg) showed no agonistic activity. In the ERalpha and ERbeta proteolysis assays, the band pattern for CH4893237 was different from fulvestrant. Thus, CH48793237 showed potent antitumor efficacies without agonistic activity and superior ER degradation in human breast cancer xenografts with low serum E2. Furthermore, the proteolysis studies suggest that CH4893237 induces conformational changes of ER different from those induced by fulvestrant. Therefore, CH4893237 alone or in combination with an aromatase inhibitor may be an efficient treatment for postmenopausal breast cancer patients.

  20. [Effect of valproic acid against angiogenesis of Kasumi-1 xenograft tumor in nude mice].

    PubMed

    Wang, Li-Hong; Zhang, Zhi-Hua; Zhao, Lei; Zhu, Cui-Min; Zhao, Li-Shuang; Hao, Chang-Lai

    2013-02-01

    This study was aimed to investigate the effect of valproic acid (VPA), a histone deacetylase inhibitor, on angiogenesis of acute myeloid leukemia in vivo and vitro, and to explore its molecular mechanism. Human t (8;21) AML cell line Kasumi-1 cells were treated with VPA at different concentration for 3 d, the mRNA and protein expression levels of Ang1 and Ang2 were determined by semi-quantitative RT-PCR and Western blot respectively. Nude mice model with xenograft Kasumi-1 tumor was established by subcutaneous inoculation of Kasumi-1 cells. The CD34, Ang1 and Ang2 protein levels were analyzed by immunohistochemistry method. The mRNA and protein expression levels of Ang1, Ang2 and VEGF were determined by semi-quantitative RT-PCR and Western blot. The results showed that in vitro, VPA at 3 mmol/L downregulated the Ang mRNA relative expression level for Ang1 from 0.360 ± 0.116 to 0.040 ± 0.008, Ang2 from 0.540 ± 0.049 to 0.146 ± 0.038. The animal experiment further verified that VPA 500 mg/kg, ip, for 14 d, reduced the relative expression of Ang1, Ang2 and VEGF mRNA and proteins in Kasumi-1 tumor of nude mice, and reduced microvascular density in xenograft tumor of nude mice (8.470 ± 0.300 vs 2.600 ± 0.200). It is concluded that VPA significantly inhibits tumor angiogenesis through the regulation of angiopoietins, thereby inhibits the proliferation and metastasis of leukemia cells.

  1. Chronic moderate ethanol intake differentially regulates vitamin D hydroxylases gene expression in kidneys and xenografted breast cancer cells in female mice.

    PubMed

    García-Quiroz, Janice; García-Becerra, Rocío; Lara-Sotelo, Galia; Avila, Euclides; López, Sofía; Santos-Martínez, Nancy; Halhali, Ali; Ordaz-Rosado, David; Barrera, David; Olmos-Ortiz, Andrea; Ibarra-Sánchez, María J; Esparza-López, José; Larrea, Fernando; Díaz, Lorenza

    2017-10-01

    Factors affecting vitamin D metabolism may preclude anti-carcinogenic effects of its active metabolite calcitriol. Chronic ethanol consumption is an etiological factor for breast cancer that affects vitamin D metabolism; however, the mechanisms underlying this causal association have not been fully clarified. Using a murine model, we examined the effects of chronic moderate ethanol intake on tumoral and renal CYP27B1 and CYP24A1 gene expression, the enzymes involved in calcitriol synthesis and inactivation, respectively. Ethanol (5% w/v) was administered to 25-hydroxyvitamin D3-treated or control mice during one month. Afterwards, human breast cancer cells were xenografted and treatments continued another month. Ethanol intake decreased renal Cyp27b1 while increased tumoral CYP24A1 gene expression.Treatment with 25-hydroxyvitamin D3 significantly stimulated CYP27B1 in tumors of non-alcohol-drinking mice, while increased both renal and tumoral CYP24A1. Coadministration of ethanol and 25-hydroxyvitamin D3 reduced in 60% renal 25-hydroxyvitamin D3-dependent Cyp24a1 upregulation (P<0.05). We found 5 folds higher basal Cyp27b1 than Cyp24a1 gene expression in kidneys, whereas this relation was inverted in tumors, showing 5 folds more CYP24A1 than CYP27B1. Tumor expression of the calcitriol target cathelicidin increased only in 25-hydroxyvitamin D3-treated non-ethanol drinking animals (P<0.05). Mean final body weight was higher in 25-hydroxyvitamin D3 treated groups (P<0.001). Overall, these results suggest that moderate ethanol intake decreases renal and tumoral 25-hydroxyvitamin D3 bioconversion into calcitriol, while favors degradation of both vitamin D metabolites in breast cancer cells. The latter may partially explain why alcohol consumption is associated with vitamin D deficiency and increased breast cancer risk and progression. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Macroscopic Stiffness of Breast Tumors Predicts Metastasis

    PubMed Central

    Fenner, Joseph; Stacer, Amanda C.; Winterroth, Frank; Johnson, Timothy D.; Luker, Kathryn E.; Luker, Gary D.

    2014-01-01

    Mechanical properties of tumors differ substantially from normal cells and tissues. Changes in stiffness or elasticity regulate pro-metastatic behaviors of cancer cells, but effects have been documented predominantly in isolated cells or in vitro cell culture systems. To directly link relative stiffness of tumors to cancer progression, we combined a mouse model of metastatic breast cancer with ex vivo measurements of bulk moduli of freshly excised, intact tumors. We found a high, inverse correlation between bulk modulus of resected tumors and subsequent local recurrence and metastasis. More compliant tumors were associated with more frequent, larger local recurrences and more extensive metastases than mice with relatively stiff tumors. We found that collagen content of resected tumors correlated with bulk modulus values. These data establish that relative differences in tumor stiffness correspond with tumor progression and metastasis, supporting further testing and development of tumor compliance as a prognostic biomarker in breast cancer. PMID:24981707

  3. New mouse xenograft model modulated by tumor-associated fibroblasts for human multi-drug resistance in cancer

    PubMed Central

    MA, YAN; LIN, ZHIQIANG; FALLON, JOHN K.; ZHAO, QIANG; LIU, DAN; WANG, YONGJUN; LIU, FENG

    2015-01-01

    We developed an MDR tumor model that is modulated by tumor-associated fibroblasts. Studies on proliferation of tumor cell lines including paclitaxel-sensitive and resistant cell lines were performed. The expressions of P-gp and α-smooth muscle actin (α-SMA) antigen were evaluated by immunohistochemistry and western blot analysis. Quantitative P-gp analyses of different cell lines were accomplished by nanoUPLC-MS/MS. Tumor cell colony formation assay and established xenograft model was used to investigate the relationship between P-gp expression, fibroblast levels and tumorigenesis. The mouse xenograft model was developed after co-inoculation with MDR tumor cells and NIH/3T3 fibroblast cells. There was no correlation between tumorigenesis in vivo and the growth rate of cells in vitro. The proliferation among different cell lines had no significant differences, but the P-gp expression and tumor growth in the xenograft model were fairly different. P-gp determination and α-SMA immunofluorescence staining clarified the relationship between P-gp expression, fibroblast levels and tumorigenesis. It was more difficult for tumor cells with higher P-gp levels to recruit fibroblasts in vivo, resulting in lower tumorigenesis due to the lack of structural and chemical support during tumor progression. In the established paclitaxel-resistant mouse xenograft model, no obvious antitumor effect was observed after Taxol treatment, but a significant decrease in tumor size for the group treated with gemcitabine sensitive to the model. The results show that the added fibroblasts do not disturb the applicability of the model in MDR. Therefore, this mouse xenograft MDR model could serve as an effective tool for MDR research. PMID:26352907

  4. Sclerostin induced tumor growth, bone metastasis and osteolysis in breast cancer.

    PubMed

    Zhu, Menghai; Liu, Changzhen; Li, Shifei; Zhang, Shudong; Yao, Qi; Song, Qingkun

    2017-09-12

    Breast cancer is the second leading cause of cancer-related deaths among women worldwide. Many patients suffer from bone metastasis. Sclerostin, a key regulator of normal bone remodeling, is critically involved in osteolytic bone diseases. However, its role in breast cancer bone metastasis remains unknown. Here, we found that sclerostin was overexpressed in breast cancer tumor tissues and cell lines. Inhibition of sclerostin by antibody (Scl-Ab) significantly reduced migration and invasion of MDA-MB-231 and MCF-7 cells in a time- and dose-dependent manner. In xenograft model, sclerostin inhibition improved survival of nude mice and prevented osteolytic lesions resulting from tumor metastasis. Taken together, sclerostin promotes breast cancer cell migration, invasion and bone osteolysis. Inhibition of sclerostin may serve as an efficient strategy for interventions against breast cancer bone metastasis or osteolytic bone diseases.

  5. Effect of soy isoflavones on the growth of human breast tumors: findings from preclinical studies

    PubMed Central

    Kwon, Youngjoo

    2014-01-01

    Breast cancer is the most common cancer among women worldwide, and many women with breast cancer live more than 5 years after their diagnosis. Breast cancer patients and survivors have a greater interest in taking soy foods and isoflavone supplements. However, the effect of isoflavones on breast cancer remains controversial. Thus, it is critical to determine if and when isoflavones are beneficial or detrimental to breast cancer patients. According to the available preclinical data, high concentrations of isoflavones inhibit the proliferation of breast cancer cells, regardless of their estrogen receptor (ER) status. In comparison, genistein, a major isoflavone, has stimulated tumor growth at low concentrations and mitigated tamoxifen efficacy in ER-positive breast cancer. Studies have indicated that the relative levels of genistein and estrogen at the target site are important to determine the genistein effect on the ER-positive tumor growth. However, studies using ovariectomized mice and subcutaneous xenograft models might not truly reflect estrogen concentrations in human breast tumors. Moreover, it may be an oversimplification that isoflavones stimulate hormone-dependent tumor growth due to their potential estrogenic effect since studies also suggest nonestrogenic anticancer effects of isoflavones and ER-independent anticancer activity of tamoxifen. Therefore, the concentrations of isoflavones and estrogen in human breast tumors should be considered better in future preclinical studies and the parameters that can estimate those levels in breast tumors are required in human clinical/epidemiological investigation. In addition, it will be important to identify the molecular mechanisms that either inhibit or promote the growth of breast cancer cells by soy isoflavones, and use those molecules to evaluate the relevance of the preclinical findings to the human disease and to predict the health effects of isoflavones in human breast tumors. PMID:25493176

  6. Combination inhibition of PI3K and mTORC1 yields durable remissions in orthotopic patient-derived xenografts of HER2-positive breast cancer brain metastases

    PubMed Central

    Ni, Jing; Ramkissoon, Shakti H.; Xie, Shaozhen; Goel, Shom; Stover, Daniel G.; Guo, Hanbing; Luu, Victor; Marco, Eugenio; Ramkissoon, Lori A.; Kang, Yun Jee; Hayashi, Marika; Nguyen, Quang-De; Ligon, Azra H.; Du, Rose; Claus, Elizabeth B.; Alexander, Brian M.; Yuan, Guo-Cheng; Wang, Zhigang C.; Iglehart, J. Dirk; Krop, Ian E.; Roberts, Thomas M.; Winer, Eric P.; Lin, Nancy U.; Ligon, Keith L.; Zhao, Jean J.

    2016-01-01

    Brain metastases represent the greatest clinical challenge in treating HER2-positive breast cancer. We report the development of orthotopic patient-derived xenografts (PDXs) of HER2-expressing breast cancer brain metastases (BCBM), and their use for the identification of targeted combination therapies. Combined inhibition of PI3K and mTOR resulted in durable tumor regressions in three of five PDXs, and therapeutic response correlated with reduction of 4EBP1 phosphorylation. The two non-responding PDXs showed hypermutated genomes with enrichment of mutations in DNA repair genes, suggesting an association of genomic instability with therapeutic resistance. These findings suggest that a biomarker-driven clinical trial of PI3K inhibitor plus an mTOR inhibitor should be conducted for patients with HER2-positive BCBM. PMID:27270588

  7. [Inhibitory effect of valproic acid on xenografted Kasumi-1 tumor growth in nude mouse and its mechanism].

    PubMed

    Liu, Peng; Tian, Xia; Shi, Gui-Rong; Jiang, Feng-Yun; Liu, Bao-Qin; Zhang, Zhi-Hua; Zhao, Lei; Yan, Li-Na; Liang, Zhi-Qiang; Hao, Chang-Lai

    2011-07-01

    To investigate in vivo inhibitory effect of histone deacetylase (HDAC) inhibitor valproic acid (VPA) on xenografted Kasumi-1 tumor in nude mice and its mechanism. Xenografted Kasumi-1 tumor mouse model was established by subcutaneous inoculation of Kasumi-1 cells. Xenotransplanted nude mice were assigned into control or VPA treatment groups. Volume of the xenografted tumors was measured and compared between the two groups. Terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) was applied to detection of tumor cell apoptosis. The gene expression of GM-CSF, HDAC1, Ac-H3 and survivin was studied with semi-quantitative RT-PCR and Western blotting. ChIP method was used to assay the effects of VPA on acetylation of histone H3 within GM-CSF promoter region. (1) VAP significantly inhibited xenografted Kasumi-1 tumor growth. The calculated inhibition rate was 57.25%. (2) Morphologic study showed that VPA induced differentiation and apoptosis of Kasumi-1 tumor cells. The apoptosis index of VAP treatment group [(3.661 +/- 0.768)%] was significantly higher than that of control group [(0.267 +/- 0.110)%]. (3) Comparing to those in control group, the level of nuclear HDAC1 protein was significantly decreased, the Ac-H3 protein expression level was increased, the mRNA and protein expression levels of GM-CSF and acetylation of histone H3 were remarkably increased, and the gene expression level of survivin significantly decreased in VPA treatment group. VAP significantly inhibits xenografted Kasumi-1 tumor growth and induces tumor cell differentiation and apoptosis. The mechanism may be decrease of survivin gene expression, inhibition of nuclear expression of HDAC, promotion of histone protein acetylation level and acetylation of histone H3 within GM-CSF promoter region, and increase of GM-CSF transcription.

  8. Augmented reality for breast tumors visualization.

    PubMed

    Ghaderi, Mohammad Ali; Heydarzadeh, Mehrdad; Nourani, Mehrdad; Gupta, Gopal; Tamil, Lakshman

    2016-08-01

    3D visualization of breast tumors are shown to be effective by previous studies. In this paper, we introduce a new augmented reality application that can help doctors and surgeons to have a more accurate visualization of breast tumors; this system uses a marker-based image-processing technique to render a 3D model of the tumors on the body. The model can be created using a combination of breast 3D mammography by experts. We have tested the system using an Android smartphone and a head-mounted device. This proof of concept can be useful for oncologists to have a more effective screening, and surgeons to plan the surgery.

  9. Astaxanthin Inhibits PC-3 Xenograft Prostate Tumor Growth in Nude Mice

    PubMed Central

    Ni, Xiaofeng; Yu, Haining; Wang, Shanshan; Zhang, Chengcheng; Shen, Shengrong

    2017-01-01

    Prostate cancer (PCa), the most common malignancy in men, is a major cause of cancer deaths. A better understanding of the mechanisms that drive tumor initiation and progression may identify actionable targets to improve treatment of this patient group. As a dietary carotenoid, astaxanthin has been demonstrated to exert beneficial effects against inflammation, cardiovascular disease, oxidative damage, or different cancer sites. This study used intragastric administration of astaxanthin to detect its role on tumor proliferation, apoptosis, microRNA (miRNA) overexpression, and microbacteria composition change by establishing androgen-independent PCa cell PC-3 xenograft nude mice. Nude mice were inoculated with androgen-independent prostate cancer PC-3 cells subcutaneously. The intervention was started when tumors reached 0.5–0.6 cm in diameter. Mice were intragastrically administered 100 mg/kg astaxanthin (HA), 25 mg/kg astaxanthin (LA), or olive oil (TC). The results showed that 100 mg/kg astaxanthin significantly inhibited tumor growth compared to the TC group, with an inhibitory rate of 41.7%. A decrease of Ki67 and proliferating cell nuclear antigen (PCNA) as well as an increase of cleaved caspase-3 were observed in HA-treated tumors, along with increasing apoptotic cells, obtained by TUNEL assay. The HA significantly elevated the levels of tumor suppressors miR-375 and miR-487b in tumor tissues and the amount of Lactobacillus sp. and Lachnospiraceae in mice stools, while there was no significant difference between LA and TC groups. These results provide a promising regimen to enhance the therapeutic effect in a dietary supplement manner. PMID:28282880

  10. Astaxanthin Inhibits PC-3 Xenograft Prostate Tumor Growth in Nude Mice.

    PubMed

    Ni, Xiaofeng; Yu, Haining; Wang, Shanshan; Zhang, Chengcheng; Shen, Shengrong

    2017-03-08

    Prostate cancer (PCa), the most common malignancy in men, is a major cause of cancer deaths. A better understanding of the mechanisms that drive tumor initiation and progression may identify actionable targets to improve treatment of this patient group. As a dietary carotenoid, astaxanthin has been demonstrated to exert beneficial effects against inflammation, cardiovascular disease, oxidative damage, or different cancer sites. This study used intragastric administration of astaxanthin to detect its role on tumor proliferation, apoptosis, microRNA (miRNA) overexpression, and microbacteria composition change by establishing androgen-independent PCa cell PC-3 xenograft nude mice. Nude mice were inoculated with androgen-independent prostate cancer PC-3 cells subcutaneously. The intervention was started when tumors reached 0.5-0.6 cm in diameter. Mice were intragastrically administered 100 mg/kg astaxanthin (HA), 25 mg/kg astaxanthin (LA), or olive oil (TC). The results showed that 100 mg/kg astaxanthin significantly inhibited tumor growth compared to the TC group, with an inhibitory rate of 41.7%. A decrease of Ki67 and proliferating cell nuclear antigen (PCNA) as well as an increase of cleaved caspase-3 were observed in HA-treated tumors, along with increasing apoptotic cells, obtained by TUNEL assay. The HA significantly elevated the levels of tumor suppressors miR-375 and miR-487b in tumor tissues and the amount of Lactobacillus sp. and Lachnospiraceae in mice stools, while there was no significant difference between LA and TC groups. These results provide a promising regimen to enhance the therapeutic effect in a dietary supplement manner.

  11. Mitochondrially targeted wild-type p53 induces apoptosis in a solid human tumor xenograft model

    PubMed Central

    Palacios, Gustavo; Crawford, Howard C.; Vaseva, Angelina; Moll, Ute M.

    2013-01-01

    Classic but also novel roles of p53 are becoming increasingly well characterized. We previously showed that ex vivo retroviral transfer of mitochondrially targeted wild type p53 (mitop53) in the Eμ-myc mouse lymphoma model efficiently induces tumor cell killing in vivo. In an effort to further explore the therapeutic potential of mitop53 for its pro-apoptotic effect in solid tumors, we generated replication-deficient recombinant human Adenovirus type 5 vectors. We show here that adenoviral delivery of mitop53 by intratumoral injection into HCT116 human colon carcinoma xenograft tumors in nude mice is surprisingly effective, resulting in tumor cell death of comparable potency to conventional p53. These apoptotic effects in vivo were confirmed by Ad5-mitop53 mediated cell death of HCT116 cells in culture. Together, these data provide encouragement to further explore the potential for novel mitop53 proteins in cancer therapy to execute the shortest known circuitry of p53 death signaling. PMID:18719383

  12. Incorporation of OSI-7836 into DNA of Calu-6 and H460 xenograft tumors.

    PubMed

    Richardson, Frank; Black, Chris; Richardson, Katherine; Franks, April; Wells, Edward; Karimi, Susan; Sennello, Gina; Hart, Karen; Meyer, Denny; Emerson, David; Brown, Eric; LeRay, Jeremy; Nilsson, Christy; Tomkinson, Blake; Bendele, Raymond

    2005-03-01

    OSI-7836 (4'-thio-beta-D-arabinofuranosylcytosine) is a novel nucleoside analog in phase I clinical development for the treatment of cancer. As with other nucleoside analogs, the proposed mechanism of action involves phosphorylation to the triphosphate form followed by incorporation into cellular DNA, leading to cell death. This hypothesis has been examined by measuring and comparing the incorporation of ara-C, OSI-7836, and gemcitabine (dFdC) into DNA of cultured cells and by investigating the role of deoxycytidine kinase in OSI-7836 toxicity. We report here additional studies in which the role of cell cycling on OSI-7836 toxicity was investigated and incorporation of OSI-7836 into DNA of xenograft tumors measured. The role of the cell cycle was examined by comparing the toxicity of OSI-7836 in A549 NSCLC cells that were either in log phase growth or had reached confluence. A novel validated LC-MS/MS assay was developed to quantify the concentrations of OSI-7836 in DNA from Calu-6 and H460 human tumor xenografts in mice. Results showed that apoptosis induced by OSI-7836 was markedly greater in cycling cells than in confluent non-cycling cells despite only a modest increase in intracellular OSI-7836 triphosphate concentration. The LC-MS/MS assay developed to measure OSI-7836 incorporation into DNA had an on-column detection limit of 0.25 fmol, a quantification limit of 0.5 fmol, and a sensitivity of approximately 0.1 pmol OSI-7836/micromol dThy. Concentrations of OSI-7836 in splenic DNA (0.4 pmol OSI-7836/micromol dThy) averaged fivefold less than the average concentration in Calu-6 and H460 xenograft DNA (3.0 pmol OSI-7836/micromol dThy) following a 400 mg/kg dose of OSI-7836. Concentrations of OSI-7836 in Calu-6 tumor DNA isolated 24 h following a dose of 400, 1000, or 1600 mg OSI-7836/kg were approximately 1.3, 1 and 1.3 pmol OSI-7836/micromol dThy, respectively. Concentrations of OSI-7836 in DNA from H460 and Calu-6 xenografts did not appear to increase during

  13. Therapeutic effect against human xenograft tumors in nude mice by the third generation microtubule stabilizing epothilones.

    PubMed

    Chou, Ting-Chao; Zhang, Xiuguo; Zhong, Zi-Yang; Li, Yong; Feng, Li; Eng, Sara; Myles, David R; Johnson, Robert; Wu, Nian; Yin, Ye Ingrid; Wilson, Rebecca M; Danishefsky, Samuel J

    2008-09-02

    The epothilones represent a promising class of natural product-based antitumor drug candidates. Although these compounds operate through a microtubule stabilization mechanism similar to that of taxol, the epothilones offer a major potential therapeutic advantage in that they retain their activity against multidrug-resistant cell lines. We have been systematically synthesizing and evaluating synthetic epothilone congeners that are not accessible through modification of the natural product itself. We report herein the results of biological investigations directed at two epothilone congeners: iso-fludelone and iso-dehydelone. Iso-fludelone, in particular, exhibits a number of properties that render it an excellent candidate for preclinical development, including biological stability, excellent solubility in water, and remarkable potency relative to other epothilones. In nude mouse xenograft settings, iso-fludelone was able to achieve therapeutic cures against a number of human cancer cell lines, including mammarian-MX-1, ovarian-SK-OV-3, and the fast-growing, refractory, subcutaneous neuroblastoma-SK-NAS. Strong therapeutic effect was observed against drug-resistant lung-A549/taxol and mammary-MCF-7/Adr xenografts. In addition, iso-fludelone was shown to exhibit a significant therapeutic effect against an intracranially implanted SK-NAS tumor.

  14. Protective Effect of Perindopril on Tumor Progression and Angiogenesis in Animal Model of Breast Cancer.

    PubMed

    Patel, Snehal S; Nakka, Surender

    2017-01-01

    Studies have shown that the renin angiotensin system via angiogenesis is involved in tumor development. Therefore, objective of the present study was to examine the effect of perindopril on tumor growth and angiogenesis in animal models of breast cancer. In the present study, the effect of perindopril on tumor development of mammary gland cancer induced by 7,12-dimethylbenz[a]anthracene, mouse tumor xenograft and corneal micropocket model has been investigated. Anti-angiogenic effect by chick yolk sac membrane assay has also been studied. In the present study, it has been found that perindopril produced a significant inhibition of tumor growth, in DMBA induced breast cancer. Treatment also produced significant suppression of cancer biomarkers such as lactate dehydrogenase, gamma glutamyl transferase and inflammatory markers such as C-reactive protein, erythrocyte sedimentation rate. Histopathological analysis also showed that perindopril was able to inhibit tumor development by the inhibition of hyperplastic lesions. Perindopril produced significant inhibition of tumor growth, in a mouse xenograft model and caused inhibition of neovascularization in the corneal micropocket model. In chick yolk sac membrane assay, perindopril showed inhibition of vascular growth and reduced blood vessel formation. Therefore, perindopril is widely used in clinical practice, may represent a neo-adjuvant therapy for treatment of breast cancer. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Endocrine-Therapy-Resistant ESR1 Variants Revealed by Genomic Characterization of Breast-Cancer-Derived Xenografts

    PubMed Central

    Li, Shunqiang; Shen, Dong; Shao, Jieya; Crowder, Robert; Liu, Wenbin; Prat, Aleix; He, Xiaping; Liu, Shuying; Hoog, Jeremy; Lu, Charles; Ding, Li; Griffith, Obi L.; Miller, Christopher; Larson, Dave; Fulton, Robert S.; Harrison, Michelle; Mooney, Tom; McMichael, Joshua F.; Luo, Jingqin; Tao, Yu; Goncalves, Rodrigo; Schlosberg, Christopher; Hiken, Jeffrey F.; Saied, Laila; Sanchez, Cesar; Giuntoli, Therese; Bumb, Caroline; Cooper, Crystal; Kitchens, Robert T.; Lin, Austin; Phommaly, Chanpheng; Davies, Sherri R.; Zhang, Jin; Kavuri, Megha Shyam; McEachern, Donna; Dong, Yi Yu; Ma, Cynthia; Pluard, Timothy; Naughton, Michael; Bose, Ron; Suresh, Rama; McDowell, Reida; Michel, Loren; Aft, Rebecca; Gillanders, William; DeSchryver, Katherine; Wilson, Richard K.; Wang, Shaomeng; Mills, Gordon B.; Gonzalez-Angulo, Ana; Edwards, John R.; Maher, Christopher; Perou, Charles M.; Mardis, Elaine R.; Ellis, Matthew J.

    2013-01-01

    SUMMARY To characterize patient-derived xenografts (PDXs) for functional studies, we made whole-genome comparisons with originating breast cancers representative of the major intrinsic subtypes. Structural and copy number aberrations were found to be retained with high fidelity. However, at the single-nucleotide level, variable numbers of PDX-specific somatic events were documented, although they were only rarely functionally significant. Variant allele frequencies were often preserved in the PDXs, demonstrating that clonal representation can be transplantable. Estrogen-receptor-positive PDXs were associated with ESR1 ligand-binding-domain mutations, gene amplification, or an ESR1/YAP1 translocation. These events produced different endocrine-therapy-response phenotypes in human, cell line, and PDX endocrine-response studies. Hence, deeply sequenced PDX models are an important resource for the search for genome-forward treatment options and capture endocrine-drug-resistance etiologies that are not observed in standard cell lines. The originating tumor genome provides a benchmark for assessing genetic drift and clonal representation after transplantation. PMID:24055055

  16. A Small Molecule Inhibitor of Human RAD51 Potentiates Breast Cancer Cell Killing by Therapeutic Agents in Mouse Xenografts

    PubMed Central

    Huang, Fei; Mazin, Alexander V.

    2014-01-01

    The homologous recombination pathway is responsible for the repair of DNA double strand breaks. RAD51, a key homologous recombination protein, promotes the search for homology and DNA strand exchange between homologous DNA molecules. RAD51 is overexpressed in a variety of cancer cells. Downregulation of RAD51 by siRNA increases radio- or chemo-sensitivity of cancer cells. We recently developed a specific RAD51 small molecule inhibitor, B02, which inhibits DNA strand exchange activity of RAD51 in vitro. In this study, we used human breast cancer cells MDA-MB-231 to investigate the ability of B02 to inhibit RAD51 and to potentiate an anti-cancer effect of chemotherapeutic agents including doxorubicin, etoposide, topotecan, and cisplatin. We found that the combination of B02 with cisplatin has the strongest killing effect on the cancer cells. We then tested the effect of B02 and cisplatin on the MDA-MB-231 cell proliferation in mouse xenografts. Our results showed that B02 significantly enhances the therapeutic effect of cisplatin on tumor cells in vivo. Our current data demonstrate that use of RAD51-specific small molecule inhibitor represents a feasible strategy of a combination anti-cancer therapy. PMID:24971740

  17. Clinically Relevant Doses of Candesartan Inhibit Growth of Prostate Tumor Xenografts In Vivo through Modulation of Tumor Angiogenesis

    PubMed Central

    Alhusban, Ahmed; Al-Azayzih, Ahmad; Goc, Anna; Gao, Fei; Fagan, Susan C.

    2014-01-01

    Angiotensin II receptor type 1 blockers (ARBs), widely used antihypertensive drugs, have also been investigated for their anticancer effects. The effect of ARBs on prostate cancer in experimental models compared with meta-analysis data from clinical trials is conflicting. Whereas this discrepancy might be due to the use of supratherapeutic doses of ARBs in cellular and animal models as compared with the clinical doses used in human trials, further investigation of the effects of clinical doses of ARBs on prostate cancer in experimental models is warranted. In the current study, we sought to determine the effects of candesartan on prostate cancer cellular function in vitro and tumor growth in vivo, and characterize the underlying mechanisms. Our analysis indicated that clinically relevant doses of candesartan significantly inhibited growth of PC3 cell tumor xenografts in mice. Interestingly, the same concentrations of candesartan actually promoted prostate cancer cellular function in vitro, through a modest but significant inhibition in apoptosis. Inhibition of tumor growth by candesartan was associated with a decrease in vascular endothelial growth factor (VEGF) expression in tumors and inhibition of tumor angiogenesis, but normalization of tumor vasculature. Although candesartan did not impair PC3 cell viability, it inhibited endothelial-barrier disruption by tumor-derived factors. Furthermore, candesartan significantly inhibited expression of VEGF in PC3 and DU145 cell lines independent of angiotensin II type 2 receptor, but potentially via angiotensin II type 1 receptor inhibition. Our findings clearly demonstrate the therapeutic potential of candesartan for prostate cancer and establish a link between ARBs, VEGF expression, and prostate tumor angiogenesis. PMID:24990940

  18. Genomic and phenotypic profiles of two Brazilian breast cancer cell lines derived from primary human tumors

    PubMed Central

    CORRÊA, NATÁSSIA C.R.; KUASNE, HELLEN; FARIA, JERUSA A.Q.A.; SEIXAS, CIÇA C.S.; SANTOS, IRIA G.D.; ABREU, FRANCINE B.; NONOGAKI, SUELY; ROCHA, RAFAEL M.; SILVA, GERLUZA APARECIDA BORGES; GOBBI, HELENICE; ROGATTO, SILVIA R.; GOES, ALFREDO M.; GOMES, DAWIDSON A.

    2013-01-01

    Breast cancer is the most common type of cancer among women worldwide. Research using breast cancer cell lines derived from primary tumors may provide valuable additional knowledge regarding this type of cancer. Therefore, the aim of this study was to investigate the phenotypic profiles of MACL-1 and MGSO-3, the only Brazilian breast cancer cell lines available for comparative studies. We evaluated the presence of hormone receptors, proliferation, differentiation and stem cell markers, using immunohistochemical staining of the primary tumor, cultured cells and xenografts implanted in immunodeficient mice. We also investigated the ability of the cell lines to form colonies and copy number alterations by array comparative genomic hybridization. Histopathological analysis showed that the invasive primary tumor from which the MACL-1 cell line was derived, was a luminal A subtype carcinoma, while the ductal carcinoma in situ (DCIS) that gave rise to the MGSO-3 cell line was a HER2 subtype tumor, both showing different proliferation levels. The cell lines and the tumor xenografts in mice preserved their high proliferative potential, but did not maintain the expression of the other markers assessed. This shift in expression may be due to the selection of an ‘establishment’ phenotype in vitro. Whole-genome DNA evaluation showed a large amount of copy number alterations (CNAs) in the two cell lines. These findings render MACL-1 and MGSO-3 the first characterized Brazilian breast cancer cell lines to be potentially used for comparative research. PMID:23404580

  19. Effects of combining rapamycin and resveratrol on apoptosis and growth of TSC2-deficient xenograft tumors.

    PubMed

    Alayev, Anya; Salamon, Rachel S; Sun, Yang; Schwartz, Naomi S; Li, Chenggang; Yu, Jane J; Holz, Marina K

    2015-11-01

    Lymphangioleiomyomatosis (LAM) is a rare neoplastic metastatic disease affecting women of childbearing age. LAM is caused by hyperactivation of the mechanistic target of rapamycin complex 1 (mTORC1) as a consequence of tuberous sclerosis complex (TSC) 1/2 inactivation. Clinically, LAM results in cystic lung destruction. mTORC1 inhibition using rapamycin analogs (rapalogs) is partially effective in reducing disease progression and improving lung function. However, cessation of treatment results in continued progression of the disease. In the present study, we investigated the effectiveness of the combination of rapamycin treatment with resveratrol, an autophagy inhibitor, in the TSC2-null xenograft tumor model. We determined that this combination inhibits phosphatidylinositol-4,5-bisphosphate 3-kinase PI3K/Akt/mTORC1 signaling and activates apoptosis. Therefore, the combination of rapamycin and resveratrol may be an effective clinical strategy for treatment of LAM and other diseases with mTORC1 hyperactivation.

  20. Chondrocytic differentiation of peripheral neuroectodermal tumor cell line in nude mouse xenograft.

    PubMed

    Goji, J; Sano, K; Nakamura, H; Ito, H

    1992-08-01

    We have established a cell line (KU-SN) from a peripheral neuroectodermal tumor originating in the left scapula of a 4-year-old girl. The original tumor was immunoreactive with antibodies for neurofilament proteins, neuron-specific enolase, vimentin, S100 protein, and beta 2-microglobulin. Dense core granules, 50-150 nm in diameter, were identified by electron microscopy. The cell line was established from tumor cells in metastatic lung fluid. KU-SN cells were immunoreactive with the antibodies for neurofilament proteins, vimentin, neuron-specific enolase, S100 protein, glial fibrillary acidic protein, cytokeratin, and carcinoembryonic antigen. Besides these neuronal features, KU-SN cells express type 2 collagen and insulin-like growth factor 1 receptor. The addition of insulin-like growth factor 1 (100 ng/ml) increased the growth rate of KU-SN cells 2.1-fold over control. Some cells were positive for Alcian blue and alkaline phosphatase staining. Cytogenetic analysis of KU-SN cells disclosed a reciprocal chromosomal translocation [t(11,22)]. Northern blot analysis of KU-SN cells demonstrated amplified expression of the c-myc gene but not the N-myc gene. When tumor cells were transplanted into nude mice, cartilage was formed. The cartilage was immunoreactive with the antibody for HLA-ABC, indicating that it was derived from the tumor cells, not from mouse tissue. Chondrocytic differentiation was not observed in xenografts of Ewing's sarcoma cell lines SK-ES or RD-ES or the peripheral neuroectodermal tumor cell line SK-N-MC. These results indicate that KU-SN cells represent primitive neural crest cells having the potential for chondrocytic differentiation.

  1. Genomic tumor evolution of breast cancer.

    PubMed

    Sato, Fumiaki; Saji, Shigehira; Toi, Masakazu

    2016-01-01

    Owing to recent technical development of comprehensive genome-wide analysis such as next generation sequencing, deep biological insights of breast cancer have been revealed. Information of genomic mutations and rearrangements in patients' tumors is indispensable to understand the mechanism in carcinogenesis, progression, metastasis, and resistance to systemic treatment of breast cancer. To date, comprehensive genomic analyses illustrate not only base substitution patterns and lists of driver mutations and key rearrangements, but also a manner of tumor evolution. Breast cancer genome is dynamically changing and evolving during cancer development course from non-invasive disease via invasive primary tumor to metastatic tumor, and during treatment exposure. The accumulation pattern of base substitution and genomic rearrangement looks gradual and punctuated, respectively, in analogy with contrasting theories for evolution manner of species, Darwin's phyletic gradualism, and Eldredge and Gould's "punctuated equilibrium". Liquid biopsy is a non-invasive method to detect the genomic evolution of breast cancer. Genomic mutation patterns in circulating tumor cells and circulating cell-free tumor DNA represent those of tumors existing in patient body. Liquid biopsy methods are now under development for future application to clinical practice of cancer treatment. In this article, latest knowledge regarding breast cancer genome, especially in terms of 'tumor evolution', is summarized.

  2. Photonic Breast Tomography and Tumor Aggressiveness Assessment

    DTIC Science & Technology

    2008-07-01

    component involved application and further refinement of optical tomographic imaging using independent component analysis ( OPTICA ) for locating and cross...section imaging of a tumor in a model cancerous breast assembled using ex vivo breast tissue specimens. The OPTICA approach was able to detect...infrared imaging, optical tomography using independent component analysis ( OPTICA ), training, molecular imaging, cancer biology 16. SECURITY

  3. In vivo hyperspectral imaging of microvessel response to trastuzumab treatment in breast cancer xenografts

    PubMed Central

    McCormack, Devin R.; Walsh, Alex J.; Sit, Wesley; Arteaga, Carlos L.; Chen, Jin; Cook, Rebecca S.; Skala, Melissa C.

    2014-01-01

    HER2-amplified (HER2 + ) breast cancers are treated with the anti-HER2 monoclonal antibody trastuzumab. Although trastuzumab reduces production of the angiogenic factor VEGF in HER2 + tumors, the acute and sustained effects of trastuzumab on the tumor vasculature are not understood fully, particularly in trastuzumab-resistant tumors. We used mouse models of trastuzumab sensitive and trastuzumab-resistant HER2 + breast cancers to measure dynamic changes in tumor microvessel density and hemoglobin oxygenation (sO2) in vivo using quantitative hyperspectral imaging at 2, 5, 9, and 14 days after antibody treatment. Further analysis quantified the distribution of microvessels into low and high oxygenation groups, and monitored changes in these distributions with trastuzumab treatment. Gold standard immunohistochemistry was performed to validate complementary markers of tumor cell and vascular response to treatment. Trastuzumab treatment in both responsive and resistant tumors resulted in decreased sO2 5 days after initial treatment when compared to IgG-treated controls (p<0.05). Importantly, responsive tumors showed significantly higher vessel density and significantly lower sO2 than all other groups at 5 days post-treatment (p<0.05). Distribution analysis of vessel sO2 showed a significant (p<0.05) shift of highly oxygenated vessels towards lower oxygenation over the time-course in both trastuzumab-treated responsive and resistant tumors. This study suggests that longitudinal hyperspectral imaging of microvessel sO2 and density could distinguish trastuzumab-responsive from trastuzumab-resistant tumors, a finding that could be exploited in the post-neoadjuvant setting to guide post-surgical treatment decisions. PMID:25071962

  4. Effects of Tetrahydrocurcumin on Tumor Growth and Cellular Signaling in Cervical Cancer Xenografts in Nude Mice

    PubMed Central

    Yoysungnoen, Bhornprom; Bhattarakosol, Parvapan; Changtam, Chatchawan; Patumraj, Suthiluk

    2016-01-01

    Tetrahydrocurcumin (THC) is a stable metabolite of curcumin (CUR) in physiological systems. The mechanism underlying the anticancer effect of THC is not completely understood. In the present study, we investigated the effects of THC on tumor growth and cellular signaling in cervical cancer xenografts in nude mice. Cervical cancer cells (CaSki) were subcutaneously injected in nude mice to establish tumors. One month after the injection, mice were orally administered vehicle or 100, 300, and 500 mg/kg of THC daily for 30 consecutive days. Relative tumor volume (RTV) was measured every 3-4 days. COX-2, EGFR, p-ERK1&2, p-AKT, and Ki-67 expressions were measured by immunohistochemistry whereas cell apoptosis was detected by TUNELS method. THC treatments at the doses of 100, 300, and 500 mg/kg statistically retarded the RTV by 70.40%, 76.41%, and 77.93%, respectively. The CaSki + vehicle group also showed significantly increased COX-2, EGFR, p-ERK1&2, and p-AKT; however they were attenuated by all treatments with THC. Ki-67 overexpression and a decreasing of cell apoptosis were found in CaSki + vehicle group, but these findings were reversed after the THC treatments. PMID:26881213

  5. Effects of Tetrahydrocurcumin on Tumor Growth and Cellular Signaling in Cervical Cancer Xenografts in Nude Mice.

    PubMed

    Yoysungnoen, Bhornprom; Bhattarakosol, Parvapan; Changtam, Chatchawan; Patumraj, Suthiluk

    2016-01-01

    Tetrahydrocurcumin (THC) is a stable metabolite of curcumin (CUR) in physiological systems. The mechanism underlying the anticancer effect of THC is not completely understood. In the present study, we investigated the effects of THC on tumor growth and cellular signaling in cervical cancer xenografts in nude mice. Cervical cancer cells (CaSki) were subcutaneously injected in nude mice to establish tumors. One month after the injection, mice were orally administered vehicle or 100, 300, and 500 mg/kg of THC daily for 30 consecutive days. Relative tumor volume (RTV) was measured every 3-4 days. COX-2, EGFR, p-ERK1&2, p-AKT, and Ki-67 expressions were measured by immunohistochemistry whereas cell apoptosis was detected by TUNELS method. THC treatments at the doses of 100, 300, and 500 mg/kg statistically retarded the RTV by 70.40%, 76.41%, and 77.93%, respectively. The CaSki + vehicle group also showed significantly increased COX-2, EGFR, p-ERK1&2, and p-AKT; however they were attenuated by all treatments with THC. Ki-67 overexpression and a decreasing of cell apoptosis were found in CaSki + vehicle group, but these findings were reversed after the THC treatments.

  6. In vivo PET imaging and biodistribution of radiolabeled gold nanoshells in rats with tumor xenografts.

    PubMed

    Xie, Huan; Wang, Zheng Jim; Bao, Ande; Goins, Beth; Phillips, William T

    2010-08-16

    Here we report the radiolabeling of gold nanoshells (NSs) for PET imaging in rat tumor model. A conjugation method was developed to attach NSs with the radionuclide, (64)Cu. The resulting conjugates showed good labeling efficiency and stability in PBS and serum. The pharmacokinetics of (64)Cu-NS and the controls ((64)Cu-DOTA and (64)Cu-DOTA-PEG2K) were determined in nude rats with a head and neck squamous cell carcinoma xenograft by radioactive counting. Using PET/CT imaging, we monitored the in vivo distribution of (64)Cu-NS and the controls in the tumor-bearing rats at various time points after their intravenous injection. PET images of the rats showed accumulation of (64)Cu-NSs in the tumors and other organs with significant difference from the controls. The organ biodistribution of rats at 46h post-injection was analyzed by radioactive counting and compared between the (64)Cu-NS and the controls. Different clearance kinetics was indicated. Neutron activation analysis (NAA) of gold concentration was performed to quantify the amount of NSs in major tissues of the dosed rats and the results showed similar distribution. Overall, PET images with (64)Cu had good resolution and therefore can be further applied to guide photothermal treatment of cancer. Published by Elsevier B.V.

  7. Freehand 3D ultrasound breast tumor segmentation

    NASA Astrophysics Data System (ADS)

    Liu, Qi; Ge, Yinan; Ou, Yue; Cao, Biao

    2007-12-01

    It is very important for physicians to accurately determine breast tumor location, size and shape in ultrasound image. The precision of breast tumor volume quantification relies on the accurate segmentation of the images. Given the known location and orientation of the ultrasound probe, We propose using freehand three dimensional (3D) ultrasound to acquire original images of the breast tumor and the surrounding tissues in real-time, after preprocessing with anisotropic diffusion filtering, the segmentation operation is performed slice by slice based on the level set method in the image stack. For the segmentation on each slice, the user can adjust the parameters to fit the requirement in the specified image in order to get the satisfied result. By the quantification procedure, the user can know the tumor size varying in different images in the stack. Surface rendering and interpolation are used to reconstruct the 3D breast tumor image. And the breast volume is constructed by the segmented contours in the stack of images. After the segmentation, the volume of the breast tumor in the 3D image data can be obtained.

  8. Near-Infrared Fluorescence Imaging of Carbonic Anhydrase IX in Athymic Mice Bearing HT-29 Tumor Xenografts

    PubMed Central

    2016-01-01

    Near-infrared fluorescence (NIRF) imaging technology is a highly sensitive imaging modality and has been widely used in noninvasively studying the status of receptor expression in small animal models, with an appropriate NIRF probe targeting a specific receptor. In this report, Cy5.5-conjugated anti-CAIX monoclonal antibody (Mab-Cy5.5) was evaluated in athymic mice bearing HT-29 tumor xenografts in order to investigate the effect of conjugate on tumor targeting efficacy. In vitro binding studies showed that Mab-Cy5.5 could specifically bind to the cells which expressed CAIX. Results from in vivo imaging showed that HT-29 tumor xenografts can be clearly visualized at 48 h after injection of Mab-Cy5.5, and in the blocking experiment, free anti-CAIX antibody effectively blocked the concentration of Mab-Cy5.5 in the tumors. Western blotting and immunohistochemistry analysis of HT-29 tumor xenografts verified the expression of CAIX in HT-29 tumors. Mab-Cy5.5 could specifically bind to the tumors which expressed CAIX. These results suggested that Mab-Cy5.5 was suitable for CAIX expression imaging in the preclinical research. PMID:27652266

  9. Correlation of MRI Biomarkers with Tumor Necrosis in Hras5 Tumor Xenograft in Athymic Rats

    PubMed Central

    Bradley, Daniel P; Tessier, Jean J; Ashton, Susan E; Waterton, John C; Wilson, Zena; Worthington, Philip L; Ryan, Anderson J

    2007-01-01

    Magnetic resonance imaging (MRI) can measure the effects of therapies targeting the tumor vasculature and has demonstrated that vascular-damaging agents (VDA) induce acute vascular shutdown in tumors in human and animal models. However, at subtherapeutic doses, blood flow may recover before the induction of significant levels of necrosis. We present the relationship between changes in MRI biomarkers and tumor necrosis. Multiple MRI measurements were taken at 4.7 T in athymic rats (n = 24) bearing 1.94 ± 0.2-cm3 subcutaneous Hras5 tumors (ATCC 41000) before and 24 hours after clinically relevant doses of the VDA, ZD6126 (0–10 mg/kg, i.v.). We measured effective transverse relaxation rate (R2*), initial area under the gadolinium concentration-time curve (IAUGC60/150), equivalent enhancing fractions (EHF60/150), time constant (Ktrans), proportion of hypoperfused voxels as estimated from fit failures in Ktrans analysis, and signal intensity (SI) in T2-weighted MRI (T2W). ZD6126 treatment induced > 90% dose-dependent tumor necrosis at 10 mg/kg; correspondingly, SI changes were evident from T2W MRI. Although R2* did not correlate, other MRI biomarkers significantly correlated with necrosis at doses of ≥ 5 mg/kg ZD6126. These data on Hras5 tumors suggest that the quantification of hypoperfused voxels might provide a useful biomarker of tumor necrosis. PMID:17534443

  10. [Molecular imaging for PET-CT reporter gene in breast adenocarcinoma (HSV1-tk) of subcutaneous xenografts in living nude mice].

    PubMed

    Xu, Wen-gui; Dai, Dong; Fang, Na; Song, Xiu-yu; Wang, Jian; Zhu, Yan-jia; Men, Xiao-yuan

    2009-12-29

    To study the in vitro accumulation of (18)F-FHBG, its in vivo distribution and (18)F-FHBG PET-CT imaging for reporter gene (HSV1-tk) in nude mice with a xenograft of breast adenocarcinoma. The in vitro uptake of (18)F-FHBG in tumor cells of T47D and T47D-tk and the distribution of (18)F-FHBG in normal Kunming mice and nude mice with breast adenocarcinoma xenograft were detected by well-type gamma counter. Reporter gene PET-CT imaging with (18)F-FHBG was performed in nude mice with a xenograft of breast adenocarcinoma. And the expression location of HSV1-tk gene could be monitored by observing the in vitro and in vivo accumulation of (18)F-FHBG. The in vitro uptake of (18)F-FHBG in T47D-tk cells (143.67 dpm/10(4) +/- 5.82 dpm/10(4) cells) was significantly higher than that in T47D cells (2.23 dpm/10(4) +/- 0.23 dpm/10(4) cells) at 60 and 120 min post-injection (P < 0.001) and reaches a plateau at 60 min. In normal Kunming mice, (18)F-FHBG was mainly distributed in liver, intestine, kidney and bladder while there was no obvious radioactive accumulation in brain. (18)F-FHBG accumulated at a significantly higher level in T47D-tk tumors than in T47D tumors and its accumulation yielded the best image effect at 2 h by PET-CT imaging in nude mice. The in vitro uptake of (18)F-FHBG in T47D-tk cells is significantly higher than that in T47D cells. (18)F-FHBG is mainly excreted by digestive tract and urinary tract in mice. It agrees with the expression pattern of HSV1-tk gene. (18)F-FHBG can determine the localization of HSV1-tk gene expression in an efficient way. This study will offer a monitoring method and scientific base for (18)F-FHBG reporter gene imaging and HSV1-tk gene therapy in tumors.

  11. A Giant Phyllodes Tumor of the Breast

    PubMed Central

    Schillebeeckx, Charlotte; Verbeeck, Guy; Daenen, Geert; Servaes, Dirk; Bronckaers, Marc

    2016-01-01

    Phyllodes tumors of the breast are rare, accounting for less than 1% of the breast tumors. They are mostly seen in women between 45 and 49 years old. These are fast growing tumors with a large spectrum of behavior (from benign to metastatic) and can resemble fibroadenomas. Correct diagnosis mostly through core needle biopsy is important to decide whether a surgical excision has to be done. Here we report a case of a 57-year-old woman with a fast growing, ulcerated tumor in the left breast. Core needle biopsy suggested a malignant phyllodes tumor with heterologous liposarcomatous differentiation. Treatment with total mastectomy and adjuvant radiotherapy followed. Primary treatment is always surgery, whether radiotherapy or chemotherapy has to follow remains uncertain. There is a high-recurrence rate, especially when the surgical margins are narrow. PMID:27746880

  12. Preclinical evaluation of new radioligand of cholecystokinin/gastrin receptors in endocrine tumors xenograft nude mice

    NASA Astrophysics Data System (ADS)

    Brillouet, S.; Caselles, O.; Dierickx, L. O.; Mestre, B.; Nalis, J.; Picard, C.; Favre, G.; Poirot, M.; Silvente-Poirot, S.; Courbon, F.

    2007-02-01

    The cholecystokinin(CCK)/gastrin 2 receptors (R-CCK2) are overexpressed in 90% of medullary thyroid cancers (MTC) and in 60% of small cell lung cancers but not or poorly in corresponding healthy tissues. They represent a relevant target for the diagnosis and internal targeted radiotherapy of these tumors. Although previous studies have demonstrated the feasibility of radiolabeled CCK/gastrin to target CCK-2 receptor-expressing tissues in animals and patients, some problems remained unsolved to identify an optimum candidate for in vivo targeting of R-CCK2-expressing tumors. By a rational approach and " in silico" drug design, we synthesized a new CCK-derivative with high affinity for the R-CCK2. The aim of this study was to achieve the radiolabeling of a new radioligand, to assess its efficacy using a published CCK radioligand ( 111In-DTPA-CCK8) as a control for the R-CCK2 targeting. This new CCK-derivative was radiolabeled with 111In. Nude mice, bearing the human MTC TT tumors and NIH-3T3 cell line expressing a tumorigenic mutant of the R-CCK2, were injected with this radiolabeled peptide. In vivo planar scintigraphies were acquired. Thereafter, biodistribution studies (%ID/g tissue) were done. The conditions of radiolabelling were optimized to obtain a radiochemical purity >90%. Scintigraphic images of xenograft mice showed significant tumor uptake with a target to nontarget ratio higher than two. These results were confirmed by the biodistribution studies which showed as expected a significant activity in the spleen, the liver and the kidneys. Therefore, this new radiolabeled compound is a promised new candidate for molecular imaging and internal radiotherapy for R-CCK2 tumor targeting.

  13. Human Xenografts Are Not Rejected in a Naturally Occurring Immunodeficient Porcine Line: A Human Tumor Model in Pigs

    PubMed Central

    Basel, Matthew T.; Balivada, Sivasai; Beck, Amanda P.; Kerrigan, Maureen A.; Pyle, Marla M.; Dekkers, Jack C.M.; Wyatt, Carol R.; Rowland, Robert R.R.; Anderson, David E.; Bossmann, Stefan H.

    2012-01-01

    Abstract Animal models for cancer therapy are invaluable for preclinical testing of potential cancer treatments; however, therapies tested in such models often fail to translate into clinical settings. Therefore, a better preclinical model for cancer treatment testing is needed. Here we demonstrate that an immunodeficient line of pigs can host and support the growth of xenografted human tumors and has the potential to be an effective animal model for cancer therapy. Wild-type and immunodeficient pigs were injected subcutaneously in the left ear with human melanoma cells (A375SM cells) and in the right ear with human pancreatic carcinoma cells (PANC-1). All immunodeficient pigs developed tumors that were verified by histology and immunohistochemistry. Nonaffected littermates did not develop tumors. Immunodeficient pigs, which do not reject xenografted human tumors, have the potential to become an extremely useful animal model for cancer therapy because of their similarity in size, anatomy, and physiology to humans. PMID:23514746

  14. Progesterone receptor membrane component 1 deficiency attenuates growth while promoting chemosensitivity of human endometrial xenograft tumors

    PubMed Central

    Friel, Anne M.; Zhang, Ling; Pru, Cindy A.; Clark, Nicole C.; McCallum, Melissa L.; Blok, Leen J.; Shioda, Toshi; Peluso, John J.; Rueda, Bo R.; Pru, James K.

    2014-01-01

    Endometrial cancer is the leading gynecologic cancer in women in the United States with 52,630 women predicted to be diagnosed with the disease in 2014. The objective of this study was to determine if progesterone (P4) receptor membrane component 1 (PGRMC1) influenced endometrial cancer cell viability in response to chemotherapy in vitro and in vivo. A Jentiviral-based shRNA knockdown approach was used to generate stable PGRMC1-intact and PGRMC1-deplete Ishikawa endometrial cancer cell lines that also lacked expression of the classical progesterone receptor (PGR). Progesterone treatment inhibited mitosis of PGRMC1-intact, but not PGRMC1-deplete cells, suggesting that PGRMC1 mediates the anti-mitotic actions of P4.To test the hypothesis that PGRMC1 attenuates chemotherapy-induced apoptosis, PGRMC1-intact and PGRMC1-deplete cells were treated in vitro with vehicle, P4 (1 μM), doxorubicin (Dox. 2 μg/ml). or P4 + Dox for 48 h. Doxorubicin treatment of PGRMC1-intact cells resulted in a significant increase in cell death; however, co-treatment with P4 significantly attenuated Dex-induced cell death. This response to P4 was lost in PGRMC1-deplete cells. To extend these observations in vivo, a xenograft model was employed where PGRMC1-intact and PGRMC1-deplete endometrial tumors were generated following subcutaneous and intraperitonea l inoculation of immunocompromised NOD/SCIO and nude mice, respectively. Tumors derived from PGRMC1-deplete cells grew slower than tumors from PGRMC1-intact cells. Mice harboring endometrial tumors were then given three treatments of vehicle (1:1 cremophor EL: ethanol + 0.9% saline) or chemotherapy [Paclitaxel (15 mg/kg, i.p.) followed after an interval of 30 minutes by CARBOplatin (SO mg/kg)] at five day intervals. In response to chemotherapy, tumor volume decreased approximately four-fold more in PGRMC1-deplete tumors when compared with PGRMC1 intact control tumors, suggesting that PGRMC1 promotes tumor cell viability during

  15. Regulation of cytochrome P450 gene expression in human colon and breast tumour xenografts.

    PubMed Central

    Smith, G.; Harrison, D. J.; East, N.; Rae, F.; Wolf, H.; Wolf, C. R.

    1993-01-01

    It is extremely difficult to identify the factors which regulate the expression of drug-metabolising enzymes in man. To address this problem, we have developed a model involving the use of human tumours grown as xenografts in immune deficient mice. Mice bearing human colon or breast tumours as xenografts were challenged with a range of compounds, known from animal studies to be inducers of cytochrome P450s from a variety of gene families. Almost all of the compounds tested could induce human tumour P450 expression, measured either by Western blot or immunohistochemical analysis. Indeed, the levels of P450s from several distinct gene families or subfamilies including CYP2A, CYP2B, CYP2C, CYP3A and CYP4A were induced. Of particular interest was the profound induction of human P450s by 1,4 bis 2-(3,5dichloro-pyridyloxybenzene)(TCPOBOP), a compound which exhibits a marked species specificity in its ability to induce P450 expression in experimental animals. Induction of a human CYP2B protein by this compound was confirmed by Northern blot analysis and in situ hybridisation for mRNA, indicating that induction occurred at the level of transcription. These studies have a variety of implications: they provide a method for approaching the previously intractable problem of how environmental, hormonal and metabolic factors regulate human P450 genes and other genes involved in drug metabolism; they demonstrate that human tumours express P450s constitutively and that the levels of these proteins can be modulated by exogenous agents. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:8318421

  16. Genomic landscapes of breast fibroepithelial tumors.

    PubMed

    Tan, Jing; Ong, Choon Kiat; Lim, Weng Khong; Ng, Cedric Chuan Young; Thike, Aye Aye; Ng, Ley Moy; Rajasegaran, Vikneswari; Myint, Swe Swe; Nagarajan, Sanjanaa; Thangaraju, Saranya; Dey, Sucharita; Nasir, Nur Diyana Md; Wijaya, Giovani Claresta; Lim, Jing Quan; Huang, Dachuan; Li, Zhimei; Wong, Bernice Huimin; Chan, Jason Yong Sheng; McPherson, John R; Cutcutache, Ioana; Poore, Gregory; Tay, Su Ting; Tan, Wai Jin; Putti, Thomas Choudary; Ahmad, Buhari Shaik; Iau, Philip; Chan, Ching Wan; Tang, Anthony P H; Yong, Wei Sean; Madhukumar, Preetha; Ho, Gay Hui; Tan, Veronique Kiak Mien; Wong, Chow Yin; Hartman, Mikael; Ong, Kong Wee; Tan, Benita K T; Rozen, Steven G; Tan, Patrick; Tan, Puay Hoon; Teh, Bin Tean

    2015-11-01

    Breast fibroepithelial tumors comprise a heterogeneous spectrum of pathological entities, from benign fibroadenomas to malignant phyllodes tumors. Although MED12 mutations have been frequently found in fibroadenomas and phyllodes tumors, the landscapes of genetic alterations across the fibroepithelial tumor spectrum remain unclear. Here, by performing exome sequencing of 22 phyllodes tumors followed by targeted sequencing of 100 breast fibroepithelial tumors, we observed three distinct somatic mutation patterns. First, we frequently observed MED12 and RARA mutations in both fibroadenomas and phyllodes tumors, emphasizing the importance of these mutations in fibroepithelial tumorigenesis. Second, phyllodes tumors exhibited mutations in FLNA, SETD2 and KMT2D, suggesting a role in driving phyllodes tumor development. Third, borderline and malignant phyllodes tumors harbored additional mutations in cancer-associated genes. RARA mutations exhibited clustering in the portion of the gene encoding the ligand-binding domain, functionally suppressed RARA-mediated transcriptional activation and enhanced RARA interactions with transcriptional co-repressors. This study provides insights into the molecular pathogenesis of breast fibroepithelial tumors, with potential clinical implications.

  17. Polyphenol-rich Avicennia marina leaf extracts induce apoptosis in human breast and liver cancer cells and in a nude mouse xenograft model.

    PubMed

    Huang, Cheng; Lu, Chung-Kuang; Tu, Ming-Chin; Chang, Jia-Hua; Chen, Yen-Ju; Tu, Yu-Hsuan; Huang, Hsiu-Chen

    2016-06-14

    Avicennia marina is the most abundant and common mangrove species and has been used as a traditional medicine for skin diseases, rheumatism, ulcers, and smallpox. However, its anticancer activities and polyphenol contents remain poorly characterized. Thus, here we investigated anticancer activities of secondary A. marina metabolites that were purified by sequential soxhlet extraction in water, ethanol, methanol, and ethyl acetate (EtOAc). Experiments were performed in three human breast cancer cell lines (AU565, MDA-MB-231, and BT483), two human liver cancer cell lines (HepG2 and Huh7), and one normal cell line (NIH3T3). The chemotherapeutic potential of A. marina extracts was evaluated in a xenograft mouse model. The present data show that EtOAc extracts of A. marina leaves have the highest phenolic and flavonoid contents and anticancer activities and, following column chromatography, the EtOAc fractions F2-5, F3-2-9, and F3-2-10 showed higher cytotoxic effects than the other fractions. 1H-NMR and 13C-NMR profiles indicated that the F3-2-10 fraction contained avicennones D and E. EtOAc extracts of A. marina leaves also suppressed xenograft MDA-MB-231 tumor growth in nude mice, suggesting that EtOAc extracts of A. marina leaves may provide a useful treatment for breast cancer.

  18. Polyphenol-rich Avicennia marina leaf extracts induce apoptosis in human breast and liver cancer cells and in a nude mouse xenograft model

    PubMed Central

    Tu, Ming-Chin; Chang, Jia-Hua; Chen, Yen-Ju; Tu, Yu-Hsuan; Huang, Hsiu-Chen

    2016-01-01

    Avicennia marina is the most abundant and common mangrove species and has been used as a traditional medicine for skin diseases, rheumatism, ulcers, and smallpox. However, its anticancer activities and polyphenol contents remain poorly characterized. Thus, here we investigated anticancer activities of secondary A. marina metabolites that were purified by sequential soxhlet extraction in water, ethanol, methanol, and ethyl acetate (EtOAc). Experiments were performed in three human breast cancer cell lines (AU565, MDA-MB-231, and BT483), two human liver cancer cell lines (HepG2 and Huh7), and one normal cell line (NIH3T3). The chemotherapeutic potential of A. marina extracts was evaluated in a xenograft mouse model. The present data show that EtOAc extracts of A. marina leaves have the highest phenolic and flavonoid contents and anticancer activities and, following column chromatography, the EtOAc fractions F2-5, F3-2-9, and F3-2-10 showed higher cytotoxic effects than the other fractions. 1H-NMR and 13C-NMR profiles indicated that the F3-2-10 fraction contained avicennones D and E. EtOAc extracts of A. marina leaves also suppressed xenograft MDA-MB-231 tumor growth in nude mice, suggesting that EtOAc extracts of A. marina leaves may provide a useful treatment for breast cancer. PMID:27078842

  19. Successful establishment of patient-derived tumor xenografts from gastrointestinal stromal tumor-a single center experience

    PubMed Central

    Jiang, Quan; Tong, Han-Xing; Zhang, Yong; Hou, Ying-Yong; Li, Jing-Lei; Wang, Jiong-Yuan; Zhou, Yu-Hong; Lu, Wei-Qi

    2016-01-01

    Patient-derived tumor xenografts (PDTX) generally represent a kind of more reliable model of human disease, by which a potential drugs’ preclinical efficacy could be evaluated. To date, no stable gastrointestinal stromal tumor (GIST) PDTX models have been reported. In this study, we aimed to establish stable GIST PDTX models and to evaluate whether these models accurately reflected the histological feature of the corresponding patient tumors and create a reliable GIST PDTX models for our future experiment. By engrafting fresh patient GIST tissues into immune-compromised mice (BALB/c athymic mice), 4 PDTX models were established. Histological features were assessed by a qualified pathologist based on H&E staining, CD117 and DOG-1. We also conduct whole exome sequencing(WES) for the 4 established GIST PDTX models to test if the model still harbored the same mutation detected in corresponding patient tumors and get a more intensive vision for the genetic profile of the models we have established, which will help a lot for our future experiment. To explore the tumorigenesis mechanism for GIST, we also have a statistical analysis for the genes detected as nonsynchronous-mutated simultaneously in 4 samples. All 4 GIST PDTX models retained the histological features of the corresponding human tumors, with original morphology type and positive stains for CD117 and DOG-1. Between the GIST PDTX models and their parental tumors, a same mutation site was detected, which confirmed the genetic consistency. The stability of molecular profiles observed within the GIST PDTX models provides confidence in the utility and translational significance of these models for in vivo testing of personalized therapies. To date, we conducted the first study to successfully establish a GIST PDTX model whose genetic profiles were revealed by whole exome sequencing. Our experience could be of great use. PMID:27186422

  20. SPARC independent delivery of nab-paclitaxel without depleting tumor stroma in patient-derived pancreatic cancer xenografts

    PubMed Central

    Kim, Harrison; Samuel, Sharon L.; Lopez-Casas, Pedro P.; Grizzle, William E.; Hidalgo, Manuel; Kovar, Joy; Oelschlager, Denise K.; Zinn, Kurt R.; Warram, Jason M.; Buchsbaum, Donald J.

    2016-01-01

    The study goal was to examine the relationship between nab-paclitaxel delivery and SPARC (secreted protein acidic and rich in cysteine) expression in pancreatic tumor xenografts and to determine the anti-stromal effect of nab-paclitaxel, which may affect tumor vascular perfusion. SPARC positive and negative mice bearing Panc02 tumor xenografts (n=5–6/group) were injected with IRDye 800CW (IR800)-labeled nab-paclitaxel. After 24 hours, tumors were collected and stained with DL650-labeled anti-SPARC antibody, and the correlation between nab-paclitaxel and SPARC distributions was examined. Eight groups of mice bearing either Panc039 or Panc198 patient-derived xenografts (PDXs) (4 groups/model, 5 animals/group) were untreated (served as control) or treated with gemcitabine (100 mg/kg BW, i.p., twice per week), nab-paclitaxel (30 mg/kg BW, i.v., for 5 consecutive days), and these agents in combination, respectively, for 3 weeks, and tumor volume and perfusion changes were assessed using T2-weighted magnetic resonance imaging (MRI) and dynamic contrast-enhanced (DCE) MRI, respectively. All tumors were collected and stained with Masson’s Trichrome Stain, followed by a blinded comparative analysis of tumor stroma density. IR800-nab-paclitaxel was mainly distributed in tumor stromal tissue, but nab-paclitaxel and SPARC distributions were minimally correlated in either SPARC positive or negative animals. Nab-paclitaxel treatment did not decrease tumor stroma nor increase tumor vascular perfusion in either PDX model when compared to control groups. These data suggest that the specific tumor delivery of nab-paclitaxel is not directly related to SPARC expression, and nab-paclitaxel does not deplete tumor stroma in general. PMID:26832793

  1. Irradiation combined with SU5416: Microvascular changes and growth delay in a human xenograft glioblastoma tumor line

    SciTech Connect

    Schuuring, Janneke; Bussink, Johan . E-mail: J.Bussink@rther.umcn.nl; Bernsen, Hans; Peeters, Wenny; Kogel, Albert J. van der

    2005-02-01

    Purpose: The combination of irradiation and the antiangiogenic compound SU5416 was tested and compared with irradiation alone in a human glioblastoma tumor line xenografted in nude mice. The aim of this study was to monitor microenvironmental changes and growth delay. Methods and materials: A human glioblastoma xenograft tumor line was implanted in nude mice. Irradiations consisted of 10 Gy or 20 Gy with and without SU5416. Several microenvironmental parameters (tumor cell hypoxia, tumor blood perfusion, vascular volume, and microvascular density) were analyzed after imunohistochemical staining. Tumor growth delay was monitored for up to 200 days after treatment. Results: SU5416, when combined with irradiation, has an additive effect over treatment with irradiation alone. Analysis of the tumor microenvironment showed a decreased vascular density during treatment with SU5416. In tumors regrowing after reaching only a partial remission, vascular characteristics normalized shortly after cessation of SU5416. However, in tumors regrowing after reaching a complete remission, permanent microenvironmental changes and an increase of tumor necrosis with a subsequent slower tumor regrowth was found. Conclusions: Permanent vascular changes were seen after combined treatment resulting in complete remission. Antiangiogenic treatment with SU5416 when combined with irradiation has an additive effect over treatment with irradiation or antiangiogenic treatment alone.

  2. Potent anti-cancer effects of citrus peel flavonoids in human prostate xenograft tumors.

    PubMed

    Lai, Ching-Shu; Li, Shiming; Miyauchi, Yutaka; Suzawa, Michiko; Ho, Chi-Tang; Pan, Min-Hsiung

    2013-06-01

    Prostate cancer is one of the most prevalent malignancies and is the second leading cause of cancer-related deaths in men. Fruit and vegetable consumption is a novel, non-toxic therapeutic approach that can be used to prevent and treat prostate cancer. Citrus peels and their extracts have been reported to have potent pharmacological activities and health benefits due to the abundance of flavonoids in citrus fruits, particularly in the peels. Our previous studies demonstrated that oral administration of Gold Lotion (GL), an extract of multiple varieties of citrus peels containing abundant flavonoids, including a large percentage of polymethoxyflavones (PMFs), effectively suppressed azoxymethane (AOM)-induced colonic tumorigenesis. However, the efficacy of GL against prostate cancer has not yet been investigated. Here, we explored the anti-tumor effects of GL using a human prostate tumor xenograft mouse model. Our data demonstrated that treatment with GL by both intraperitoneal (i.p.) injection and oral administration dramatically reduced both the weights (57%-100% inhibition) and volumes (78%-94% inhibition) of the tumors without any observed toxicity. These inhibitory effects were accompanied by mechanistic down-regulation of the protein levels of inflammatory enzymes (inducible nitric oxide synthase, iNOS and cyclooxygenase-2, COX-2), metastasis (matrix metallopeptidase-2, MMP-2 and MMP-9), angiogenesis (vascular endothelial growth factor, VEGF), and proliferative molecules, as well as by the induction of apoptosis in prostate tumors. Our findings suggest that GL is an effective anti-cancer agent that may potentially serve as a novel therapeutic option for prostate cancer treatment.

  3. STGC3 inhibits xenograft tumor growth of nasopharyngeal carcinoma cells by altering the expression of proteins associated with apoptosis

    PubMed Central

    Qiu, Qing-chao; Hu, Bo; He, Xiu-pei; Luo, Qiao; Tang, Guo-hua; Long, Zhi-feng; Chen, Zhu-chu; He, Xiu-sheng

    2012-01-01

    STGC3 is a potential tumor suppressor that inhibits the growth of the nasopharyngeal carcinoma cell line CNE2; the expression of this protein is reduced in nasopharyngeal carcinoma compared with normal nasopharyngeal tissue. In this study, we investigated the tumor-suppressing activity of STGC3 in nude mice injected subcutaneously with Tet/pTRE-STGC3/CNE2 cells. STGC3 expression was induced by the intraperitoneal injection of doxycycline (Dox). The volume mean of Tet/pTRE-STGC3/CNE2+Dox xenografts was smaller than that of Tet/pTRE/CNE2+Dox xenografts. In addition, Tet/pTRE-STGC3/CNE2+Dox xenografts showed an increase in the percentage of apoptotic cells, a decrease in Bcl-2 protein expression and an increase in Bax protein expression. A proteomic approach was used to assess the protein expression profile associated with STGC3-mediated apoptosis. Western blotting confirmed the differential up-regulation of prohibitin seen in proteomic analysis. These results indicate that overexpression of STGC3 inhibits xenograft growth in nude mice by enhancing apoptotic cell death through altered expression of apoptosis-related proteins such as Bcl-2, Bax and prohibitin. These data contribute to our understanding of the function of STGC3 in human nasopharyngeal carcinoma and provide new clues for investigating other STGC3-associated tumors. PMID:22481869

  4. Genomic characterization of a large panel of patient-derived hepatocellular carcinoma xenograft tumor models for preclinical development

    PubMed Central

    Sun, Hongye; Xu, Qiang; Tan, Yexiong; Wang, Guan; Luo, Qin; Xu, Weiguo; Yang, Shuqun; Li, Jian; Fu, Jing; Chen, Lei; Yuan, Shengxian; Liang, Guibai; Ji, Qunsheng; Chen, Shu-Hui; Chan, Chi-Chung; Zhou, Weiping; Xu, Xiaowei; Wang, Hongyang; Fang, Douglas D.

    2015-01-01

    Lack of clinically relevant tumor models dramatically hampers development of effective therapies for hepatocellular carcinoma (HCC). Establishment of patient-derived xenograft (PDX) models that faithfully recapitulate the genetic and phenotypic features of HCC becomes important. In this study, we first established a cohort of 65 stable PDX models of HCC from corresponding Chinese patients. Then we showed that the histology and gene expression patterns of PDX models were highly consistent between xenografts and case-matched original tumors. Genetic alterations, including mutations and DNA copy number alterations (CNAs), of the xenografts correlated well with the published data of HCC patient specimens. Furthermore, differential responses to sorafenib, the standard-of-care agent, in randomly chosen xenografts were unveiled. Finally, in the models expressing high levels of FGFR1 gene according to the genomic data, FGFR1 inhibitor lenvatinib showed greater efficacy than sorafenib. Taken together, our data indicate that PDX models resemble histopathological and genomic characteristics of clinical HCC tumors, as well as recapitulate the differential responses of HCC patients to the standard-of-care treatment. Overall, this large collection of PDX models becomes a clinically relevant platform for drug screening, biomarker discovery and translational research in preclinical setting. PMID:26062443

  5. Genomic characterization of a large panel of patient-derived hepatocellular carcinoma xenograft tumor models for preclinical development.

    PubMed

    Gu, Qingyang; Zhang, Bin; Sun, Hongye; Xu, Qiang; Tan, Yexiong; Wang, Guan; Luo, Qin; Xu, Weiguo; Yang, Shuqun; Li, Jian; Fu, Jing; Chen, Lei; Yuan, Shengxian; Liang, Guibai; Ji, Qunsheng; Chen, Shu-Hui; Chan, Chi-Chung; Zhou, Weiping; Xu, Xiaowei; Wang, Hongyang; Fang, Douglas D

    2015-08-21

    Lack of clinically relevant tumor models dramatically hampers development of effective therapies for hepatocellular carcinoma (HCC). Establishment of patient-derived xenograft (PDX) models that faithfully recapitulate the genetic and phenotypic features of HCC becomes important. In this study, we first established a cohort of 65 stable PDX models of HCC from corresponding Chinese patients. Then we showed that the histology and gene expression patterns of PDX models were highly consistent between xenografts and case-matched original tumors. Genetic alterations, including mutations and DNA copy number alterations (CNAs), of the xenografts correlated well with the published data of HCC patient specimens. Furthermore, differential responses to sorafenib, the standard-of-care agent, in randomly chosen xenografts were unveiled. Finally, in the models expressing high levels of FGFR1 gene according to the genomic data, FGFR1 inhibitor lenvatinib showed greater efficacy than sorafenib. Taken together, our data indicate that PDX models resemble histopathological and genomic characteristics of clinical HCC tumors, as well as recapitulate the differential responses of HCC patients to the standard-of-care treatment. Overall, this large collection of PDX models becomes a clinically relevant platform for drug screening, biomarker discovery and translational research in preclinical setting.

  6. Inhibition of leukemic cells by valproic acid, an HDAC inhibitor, in xenograft tumors

    PubMed Central

    Zhang, Zhihua; Hao, Changlai; Wang, Lihong; Liu, Peng; Zhao, Lei; Zhu, Cuimin; Tian, Xia

    2013-01-01

    The chimeric fusion protein, AML1-ETO, generated by translocation of t(8;21), abnormally recruits histone deacetylase (HDAC) to the promoters of AML1 target genes, resulting in transcriptional repression of the target genes and development of t(8;21) acute myeloid leukemia. Abnormal expression of cyclin-dependent kinase inhibitors, especially p21, is considered a possible mechanism of the arrested maturation and differentiation seen in leukemia cells. A new generation of HDAC inhibitors is becoming an increasing focus of attention for their ability to induce differentiation and apoptosis in tumor cells and to block the cell cycle. Our previous research had demonstrated that valproic acid induces G0/G1 arrest of Kasumi-1 cells in t(8;21) acute myeloid leukemia. In this study, we further confirmed that valproic acid inhibits the growth of Kasumi-1 cells in a murine xenograft tumor model, and that this occurs via upregulation of histone acetylation in the p21 promoter region, enhancement of p21 expression, suppression of phosphorylation of retinoblastoma protein, blocking of transcription activated by E2F, and induction of G0/G1 arrest. PMID:23836985

  7. Novel LIMK2 Inhibitor Blocks Panc-1 Tumor Growth in a mouse xenograft model

    PubMed Central

    Rak, Roni; Haklai, Roni; Elad-Tzfadia, Galit; Wolfson, Haim J.; Carmeli, Shmuel; Kloog, Yoel

    2014-01-01

    LIM kinases (LIMKs) are important cell cytoskeleton regulators that play a prominent role in cancer manifestation and neuronal diseases. The LIMK family consists of two homologues, LIMK1 and LIMK2, which differ from one another in expression profile, intercellular localization, and function. The main substrate of LIMK is cofilin, a member of the actin-depolymerizing factor (ADF) protein family. When phosphorylated by LIMK, cofilin is inactive. LIMKs play a contributory role in several neurodevelopmental disorders and in cancer growth and metastasis. We recently reported the development and validation of a novel LIMK inhibitor, referred to here as T56-LIMKi, using a combination of computational methods and classical biochemistry techniques. Here we report that T56-LIMKi inhibits LIMK2 with high specificity, and shows little or no cross-reactivity with LIMK1. We found that T56-LIMKi decreases phosphorylated cofilin (p-cofilin) levels and thus inhibits growth of several cancerous cell lines, including those of pancreatic cancer, glioma and schwannoma. Because the most promising in-vitro effect of T56-LIMKi was observed in the pancreatic cancer cell line Panc-1, we tested the inhibitor on a nude mouse Panc-1 xenograft model. T56-LIMKi reduced tumor size and p-cofilin levels in the Panc-1 tumors, leading us to propose T56-LIMKi as a candidate drug for cancer therapy. PMID:25593987

  8. Proscillaridin A is cytotoxic for glioblastoma cell lines and controls tumor xenograft growth in vivo

    PubMed Central

    Tchoghandjian, Aurélie; Carré, Manon; Colin, Carole; Jiglaire, Carine Jiguet; Mercurio, Sandy; Beclin, Christophe; Figarella-Branger, Dominique

    2014-01-01

    Glioblastoma is the most frequent primary brain tumor in adults. Because of molecular and cellular heterogeneity, high proliferation rate and significant invasive ability, prognosis of patients is poor. Recent therapeutic advances increased median overall survival but tumor recurrence remains inevitable. In this context, we used a high throughput screening approach to bring out novel compounds with anti-proliferative and anti-migratory properties for glioblastoma treatment. Screening of the Prestwick chemical library® of 1120 molecules identified proscillaridin A, a cardiac glycoside inhibitor of the Na+/K+ ATPase pump, with most significant effects on glioblastoma cell lines. In vitro effects of proscillaridin A were evaluated on GBM6 and GBM9 stem-like cell lines and on U87-MG and U251-MG cell lines. We showed that proscillaridin A displayed cytotoxic properties, triggered cell death, induced G2/M phase blockade in all the glioblastoma cell lines and impaired GBM stem self-renewal capacity even at low concentrations. Heterotopic and orthotopic xenotransplantations were used to confirm in vivo anticancer effects of proscillaridin A that both controls xenograft growth and improves mice survival. Altogether, results suggest that proscillaridin A is a promising candidate as cancer therapies in glioblastoma. This sustains previous reports showing that cardiac glycosides act as anticancer drugs in other cancers. PMID:25400117

  9. PEITC treatment suppresses myeloid derived tumor suppressor cells to inhibit breast tumor growth.

    PubMed

    Gupta, Parul; Wright, Stephen E; Srivastava, Sanjay K

    2015-02-01

    Breast tumors are heterogeneous with a complex etiology. The immune system plays a crucial role in the development of tumors and can facilitate tumor growth pleiotropically. Myeloid derived suppressor cells (MDSCs) generate reactive oxygen species (ROS) and cytokines to suppress T cells, dendritic cells and natural killer (NK) cells. Hence, the inhibition of MDSCs could be an important strategy for anticancer therapeutics. Phenethyl isothiocyanate (PEITC), a bioactive compound present in cruciferous vegetables, is known to have anticancer properties. However, the effects of PEITC administration on the immune system have not been previously reported. In the current study, we evaluated the effects of administering PEITC to immunocompromised NOD-SCID IL2Rγ(-/-) (SCID/NSG) host mice bearing MDA-MB-231 xenografts on MDSCs in the peripheral blood. Our results reveal that oral administration of 12 μmol PEITC attenuated tumor growth by 76%. This was marked tumor-inhibitory phenotype was associated with a significant reduction in the levels of MDSCs bearing the surface markers CD33, CD34 and CD11b in PEITC treated mice, indicating that overall tumor growth suppression by PEITC correlates with inhibition of MDSCs. To the best of our knowledge, this is the first study showing effects of PEITC on MDSCs.

  10. Differential In Vivo Tumorigenicity of Distinct Subpopulations from a Luminal-Like Breast Cancer Xenograft

    PubMed Central

    Skrbo, Nirma; Hjortland, Geir-Olav; Kristian, Alexandr; Holm, Ruth; Nord, Silje; Prasmickaite, Lina; Engebraaten, Olav; Mælandsmo, Gunhild M.; Sørlie, Therese; Andersen, Kristin

    2014-01-01

    Intratumor heterogeneity caused by genetic, phenotypic or functional differences between cancer cell subpopulations is a considerable clinical challenge. Understanding subpopulation dynamics is therefore central for both optimization of existing therapy and for development of new treatment. The aim of this study was to isolate subpopulations from a primary tumor and by comparing molecular characteristics of these subpopulations, find explanations to their differing tumorigenicity. Cell subpopulations from two patient derived in vivo models of primary breast cancer, ER+ and ER-, were identified. EpCAM+ cells from the ER+ model gave rise to tumors independently of stroma cell support. The tumorigenic fraction was further divided based on SSEA-4 and CD24 expression. Both markers were expressed in ER+ breast cancer biopsies. FAC-sorted cells based on EpCAM, SSEA-4 and CD24 expression were subsequently tested for differences in functionality by in vivo tumorigenicity assay. Three out of four subpopulations of cells were tumorigenic and showed variable ability to recapitulate the marker expression of the original tumor. Whole genome expression analysis of the sorted populations disclosed high similarity in the transcriptional profiles between the tumorigenic populations. Comparing the non-tumorigenic vs the tumorigenic populations, 44 transcripts were, however, significantly differentially expressed. A subset of these, 26 identified and named genes, highly expressed in the non-tumorigenic population, predicted longer overall survival (N = 737, p<0.0001) and distant metastasis free survival (DMFS) (N = 1379, p<0.0001) when performing Kaplan-Meier survival analysis using the GOBO online database. The 26 gene set correlated with longer DMFS in multiple breast cancer subgroups. Copy number profiling revealed no aberrations that could explain the observed differences in tumorigenicity. This study emphasizes the functional variability among cell populations that are

  11. Epithelial derived CTGF promotes breast tumor progression via inducing EMT and collagen I fibers deposition

    PubMed Central

    Zhao, Zhen; Sheng, Jianting; Wang, Jiang; Liu, Jiyong; Cui, Kemi; Chang, Jenny; Zhao, Hong; Wong, Stephen

    2015-01-01

    Interactions among tumor cells, stromal cells, and extracellular matrix compositions are mediated through cytokines during tumor progression. Our analysis of 132 known cytokines and growth factors in published clinical breast cohorts and our 84 patient-derived xenograft models revealed that the elevated connective tissue growth factor (CTGF) in tumor epithelial cells significantly correlated with poor clinical prognosis and outcomes. CTGF was able to induce tumor cell epithelial-mesenchymal transition (EMT), and promote stroma deposition of collagen I fibers to stimulate tumor growth and metastasis. This process was mediated through CTGF-tumor necrosis factor receptor I (TNFR1)-IκB autocrine signaling. Drug treatments targeting CTGF, TNFR1, and IκB signaling each prohibited the EMT and tumor progression. PMID:26318291

  12. Selective antitumor effect of neural stem cells expressing cytosine deaminase and interferon-beta against ductal breast cancer cells in cellular and xenograft models.

    PubMed

    Yi, Bo-Rim; Hwang, Kyung-A; Aboody, Karen S; Jeung, Eui-Bae; Kim, Seung U; Choi, Kyung-Chul

    2014-01-01

    Due to their inherent tumor-tropic properties, genetically engineered stem cells may be advantageous for gene therapy treatment of various human cancers, including brain, liver, ovarian, and prostate malignancies. In this study, we employed human neural stem cells (HB1.F3; hNSCs) transduced with genes expressing Escherichia coli cytosine deaminase (HB1.F3.CD) and human interferon-beta (HB1.F3.CD.IFN-β) as a treatment strategy for ductal breast cancer. CD can convert the prodrug 5-fluorocytosine (5-FC) to its active chemotherapeutic form, 5-fluorouracil (5-FU), which induces a tumor-killing effect through DNA synthesis inhibition. IFN-β also strongly inhibits tumor growth by the apoptotic process. RT-PCR confirmed that HB1.F3.CD cells expressed CD and HB1.F3.CD.IFN-β cells expressed both CD and IFN-β. A modified transwell migration assay showed that HB1.F3.CD and HB1.F3.CD.IFN-β cells selectively migrated toward MCF-7 and MDA-MB-231 human breast cancer cells. In hNSC-breast cancer co-cultures the viability of breast cancer cells which were significantly reduced by HB1.F3.CD or HB1.F3.CD.IFN-β cells in the presence of 5-FC. The tumor inhibitory effect was greater with the HB1.F3.CD.IFN-β cells, indicating an additional effect of IFN-β to 5-FU. In addition, the tumor-tropic properties of these hNSCs were found to be attributed to chemoattractant molecules secreted by breast cancer cells, including stem cell factor (SCF), c-kit, vascular endothelial growth factor (VEGF), and VEGF receptor 2. An in vivo assay performed using MDA-MB-231/luc breast cancer mammary fat pad xenografts in immunodeficient mice resulted in 50% reduced tumor growth and increased long-term survival in HB1.F3.CD and HB1.F3.CD.IFN-β plus 5-FC treated mice relative to controls. Our results suggest that hNSCs genetically modified to express CD and/or IFN-β genes can be used as a novel targeted cancer gene therapy.

  13. A New Apparatus and Surgical Technique for the Dual Perfusion of Human Tumor Xenografts in Situ in Nude Rats

    PubMed Central

    Dauchy, Robert T; Dauchy, Erin M; Mao, Lulu; Belancio, Victoria P; Hill, Steven M; Blask, David E

    2012-01-01

    We present a new perfusion system and surgical technique for simultaneous perfusion of 2 tissue-isolated human cancer xenografts in nude rats by using donor blood that preserves a continuous flow. Adult, athymic nude rats (Hsd:RH-Foxn1rnu) were implanted with HeLa human cervical or HT29 colon adenocarcinomas and grown as tissue-isolated xenografts. When tumors reached an estimated weight of 5 to 6 g, rats were prepared for perfusion with donor blood and arteriovenous measurements. The surgical procedure required approximately 20 min to complete for each tumor, and tumors were perfused for a period of 150 min. Results showed that tumor venous blood flow, glucose uptake, lactic acid release, O2 uptake and CO2 production, uptake of total fatty acid and linoleic acid and conversion to the mitogen 13-HODE, cAMP levels, and activation of several marker kinases were all well within the normal physiologic, metabolic, and signaling parameters characteristic of individually perfused xenografts. This new perfusion system and technique reduced procedure time by more than 50%. These findings demonstrate that 2 human tumors can be perfused simultaneously in situ or ex vivo by using either rodent or human blood and suggest that the system may also be adapted for use in the dual perfusion of other organs. Advantages of this dual perfusion technique include decreased anesthesia time, decreased surgical manipulation, and increased efficiency, thereby potentially reducing the numbers of laboratory animals required for scientific investigations. PMID:22546915

  14. The Growth of SGC-7901 Tumor Xenografts Was Suppressed by Chinese Bayberry Anthocyanin Extract through Upregulating KLF6 Gene Expression

    PubMed Central

    Wang, Yue; Zhang, Xia-nan; Xie, Wen-hua; Zheng, Yi-xiong; Cao, Jin-ping; Cao, Pei-rang; Chen, Qing-jun; Li, Xian; Sun, Chong-de

    2016-01-01

    To investigate the antitumor effect of anthocyanins extracted from Chinese bayberry fruit (Myrica rubra Sieb. et Zucc.), a nude mouse tumor xenograft model was established. Treatments with C3G (cyanidin-3-glucoside, an anthocyanin) significantly suppressed the growth of SGC-7901 tumor xenografts in a dose-dependent manner. Immunohistochemical staining showed a significant increase in p21 expression, indicating that the cell cycle of tumor xenografts was inhibited. qPCR screening showed that C3G treatment up-regulated the expression of the KLF6 gene, which is an important tumor suppressor gene inactivated in many human cancers. Western blot showed that C3G treatments markedly increased KLF6 and p21 protein levels, inhibited CDK4 and Cyclin D1 expression, but did not notably change the expression of p53. These results indicated that KLF6 up-regulates p21 in a p53-independent manner and significantly reduces tumor proliferation. This study provides important information for the possible mechanism of C3G-induced antitumor activity against gastric adenocarcinoma in vivo. PMID:27690088

  15. Fractionated Therapy of HER2-Expressing Breast and Ovarian Cancer Xenografts in Mice with Targeted Alpha Emitting 227Th-DOTA-p-benzyl-trastuzumab

    PubMed Central

    Heyerdahl, Helen; Abbas, Nasir; Brevik, Ellen Mengshoel; Mollatt, Camilla; Dahle, Jostein

    2012-01-01

    Background The aim of this study was to investigate therapeutic efficacy and normal tissue toxicity of single dosage and fractionated targeted alpha therapy (TAT) in mice with HER2-expressing breast and ovarian cancer xenografts using the low dose rate radioimmunoconjugate 227Th-DOTA-p-benzyl-trastuzumab. Methodology/Principal Findings Nude mice carrying HER2-overexpressing subcutaneous SKOV-3 or SKBR-3 xenografts were treated with 1000 kBq/kg 227Th-trastuzumab as single injection or four injections of 250 kBq/kg with intervals of 4–5 days, 2 weeks, or 4 weeks. Control animals were treated with normal saline or unlabeled trastuzumab. In SKOV-3 xenografts tumor growth to 10-fold size was delayed (p<0.01) and survival with tumor diameter less than 16 mm was prolonged (p<0.05) in all TAT groups compared to the control groups. No statistically significant differences were seen among the treated groups. In SKBR-3 xenografts tumor growth to 10-fold size was delayed in the single injection and 4–5 days interval groups (p<0.001) and all except the 4 weeks interval TAT group showed improved survival to the control groups (p<0.05). Toxicity was assessed by blood cell counts, clinical chemistry measurements and body weight. Transient reduction in white blood cells was seen for the single injection and 4–5 days interval groups (p<0.05). No significant changes were seen in red blood cells, platelets or clinical chemistry parameters. Survival without life threatening loss of body weight was significantly prolonged in 4 weeks interval group compared to single injection group (p<0.05) for SKOV-3 animals and in 2 weeks interval group compared with the 4–5 days interval groups (p<0.05) for SKBR-3 animals. Conclusions/Significance The same concentration of radioactivity split into several fractions may improve toxicity of 227Th-radioimmunotherapy while the therapeutic effect is maintained. Thus, it might be possible to increase the cumulative absorbed radiation dose to tumor

  16. Peginterferon Beta-1a Shows Antitumor Activity as a Single Agent and Enhances Efficacy of Standard of Care Cancer Therapeutics in Human Melanoma, Breast, Renal, and Colon Xenograft Models.

    PubMed

    Boccia, Antonio; Virata, Cyrus; Lindner, Daniel; English, Nicki; Pathan, Nuzhat; Brickelmaier, Margot; Hu, Xiao; Gardner, Jennifer L; Peng, Liaomin; Wang, Xinzhong; Zhang, Xiamei; Yang, Lu; Perron, Keli; Yco, Grace; Kelly, Rebecca; Gamez, James; Scripps, Thomas; Bennett, Donald; Joseph, Ingrid B; Baker, Darren P

    2017-01-01

    Because of its tumor-suppressive effect, interferon-based therapy has been used for the treatment of melanoma. However, limited data are available regarding the antitumor effects of pegylated interferons, either alone or in combination with approved anticancer drugs. We report that treatment of human WM-266-4 melanoma cells with peginterferon beta-1a induced apoptotic markers. Additionally, peginterferon beta-1a significantly inhibited the growth of human SK-MEL-1, A-375, and WM-266-4 melanoma xenografts established in immunocompromised mice. Peginterferon beta-1a regressed large, established WM-266-4 xenografts in nude mice. Treatment of SK-MEL-1 tumor-bearing mice with a combination of peginterferon beta-1a and the MEK inhibitor PD325901 ((R)-N-(2,3-dihydroxypropoxy)-3,4-difluoro-2-(2-fluoro-4-iodophenylamino)benzamide) significantly improved tumor growth inhibition compared with either agent alone. Examination of the antitumor activity of peginterferon beta-1a in combination with approved anticancer drugs in breast and renal carcinomas revealed improved antitumor activity in these preclinical xenograft models, as did the combination of peginterferon beta-1a and bevacizumab in a colon carcinoma xenograft model.

  17. King cobra (Ophiophagus hannah) venom L-amino acid oxidase induces apoptosis in PC-3 cells and suppresses PC-3 solid tumor growth in a tumor xenograft mouse model.

    PubMed

    Lee, Mui Li; Fung, Shin Yee; Chung, Ivy; Pailoor, Jayalakshmi; Cheah, Swee Hung; Tan, Nget Hong

    2014-01-01

    King cobra (Ophiophagus hannah) venom L-amino acid oxidase (OH-LAAO), a heat stable enzyme, has been shown to exhibit very potent anti-proliferative activity against human breast and lung tumorigenic cells but not in their non-tumorigenic counterparts. We further examine its in vitro and in vivo anti-tumor activity in a human prostate adenocarcinoma (PC-3) model. OH-LAAO demonstrated potent cytotoxicity against PC-3 cells with IC50 of 0.05 µg/mL after 72 h incubation in vitro. It induced apoptosis as evidenced with an increase in caspase-3/7 cleavages and an increase in annexin V-stained cells. To examine its in vivo anti-tumor activity, we treated PC-3 tumor xenograft implanted subcutaneously in immunodeficient NU/NU (nude) mice with 1 µg/g OH-LAAO given intraperitoneally (i.p.). After 8 weeks of treatment, OH-LAAO treated PC-3 tumors were markedly inhibited, when compared to the control group (P <0.05). TUNEL staining analysis on the tumor sections showed a significantly increase of apoptotic cells in the LAAO-treated animals. Histological examinations of the vital organs in these two groups showed no significant differences with normal tissues, indicating no obvious tissue damage. The treatment also did not cause any significant changes on the body weight of the mice during the duration of the study. These observations suggest that OH-LAAO cytotoxic effects may be specific to tumor xenografts and less to normal organs. Given its potent anti-tumor activities shown in vitro as well as in vivo, the king cobra venom LAAO can potentially be developed to treat prostate cancer and other solid tumors.

  18. The mammary ducts create a favourable microenvironment for xenografting of luminal and molecular apocrine breast tumours.

    PubMed

    Richard, Elodie; Grellety, Thomas; Velasco, Valerie; MacGrogan, Gaetan; Bonnefoi, Hervé; Iggo, Richard

    2016-11-01

    There is a paucity of models for hormone receptor-positive (HR+) breast cancer because of the difficulty of establishing xenografts from these tumours. We show that this obstacle can be overcome by injecting human tumour cells directly into the mammary ducts of immunodeficient mice. Tumours from 31 patients were infected overnight with a lentiviral vector expressing tdTomato and injected through the nipple into the mammary ducts of NOD-SCID-IL2RG-/- mice. Tumours formed in the mice in 77% of cases after the first injection (6/8 luminal A, 15/20 luminal B, and 3/3 molecular apocrine). Four luminal A and one molecular apocrine graft were tested in secondary and tertiary grafts: all were successfully passaged in secondary and 4/5 in tertiary grafts. None of the samples engrafted when injected subcutaneously. The morphology, oestrogen receptor (ER), progesterone receptor (PR), androgen receptor (AR), and Ki-67 profiles of the clinical samples were maintained in the tertiary grafts. We also show that the intraductal approach can be used to test the response to targeted therapy with fulvestrant and palbociclib, using a genetically defined ER+ model. We conclude that the mammary ducts create a microenvironment that is uniquely favourable to the survival and growth of tumours derived from mammary hormone-sensing cells. This approach opens the door to testing genomically targeted treatment of HR+ tumours in precision medicine programmes. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  19. Assessment of Tryptophan Uptake and Kinetics Using 1-(2-18F-Fluoroethyl)-l-Tryptophan and α-11C-Methyl-l-Tryptophan PET Imaging in Mice Implanted with Patient-Derived Brain Tumor Xenografts

    PubMed Central

    Michelhaugh, Sharon K.; Muzik, Otto; Guastella, Anthony R.; Klinger, Neil V.; Polin, Lisa A.; Cai, Hancheng; Xin, Yangchun; Mangner, Thomas J.; Zhang, Shaohui; Juhász, Csaba

    2017-01-01

    Abnormal tryptophan metabolism via the kynurenine pathway is involved in the pathophysiology of a variety of human diseases including cancers. α-11C-methyl-l-tryptophan (11C-AMT) PET imaging demonstrated increased tryptophan uptake and trapping in epileptic foci and brain tumors, but the short half-life of 11C limits its widespread clinical application. Recent in vitro studies suggested that the novel radiotracer 1-(2-18F-fluoroethyl)-l-tryptophan (18F-FETrp) may be useful to assess tryptophan metabolism via the kynurenine pathway. In this study, we tested in vivo organ and tumor uptake and kinetics of 18F-FETrp in patient-derived xenograft mouse models and compared them with 11C-AMT uptake. Methods: Xenograft mouse models of glioblastoma and metastatic brain tumors (from lung and breast cancer) were developed by subcutaneous implantation of patient tumor fragments. Dynamic PET scans with 18F-FETrp and 11C-AMT were obtained for mice bearing human brain tumors 1–7 d apart. The biodistribution and tumoral SUVs for both tracers were compared. Results: 18F-FETrp showed prominent uptake in the pancreas and no bone uptake, whereas 11C-AMT showed higher uptake in the kidneys. Both tracers showed uptake in the xenograft tumors, with a plateau of approximately 30 min after injection; however, 18F-FETrp showed higher tumoral SUV than 11C-AMT in all 3 tumor types tested. The radiation dosimetry for 18F-FETrp determined from the mouse data compared favorably with the clinical 18F-FDG PET tracer. Conclusion: 18F-FETrp tumoral uptake, biodistribution, and radiation dosimetry data provide strong preclinical evidence that this new radiotracer warrants further studies that may lead to a broadly applicable molecular imaging tool to examine abnormal tryptophan metabolism in human tumors. PMID:27765857

  20. Phyllodes Tumor in a Lactating Breast

    PubMed Central

    Murthy, Sudha S.; Raju, K. V. V. N.; Nair, Haripreetha G.

    2016-01-01

    Phyllodes tumor is attributed to a small fraction of primary tumors of the breast. Such tumors occur rarely in pregnancy and lactation. We report a case of a 25-year-old lactating mother presenting with a lump in the left breast. Core needle biopsy was opined as phyllodes tumor with lactational changes, and subsequent wide local excision confirmed the diagnosis of benign phyllodes tumor with lactational changes. The characteristic gross and microscopic findings of a well-circumscribed lesion with leaf-like fibroepithelial growth pattern and typical nonuniform or diffuse stromal proliferation with periductal accentuation even in the absence of mitotic figures can help clinch the diagnosis. Benign phyllodes is known for its recurrence and requires wide excision and close follow-up. It is vital to identify these lesions even on limited biopsies as therapeutic options differ. This case is presented for its rarity and the diagnostic challenge it poses in limited biopsy. PMID:27081326

  1. Hsp90 inhibitor 17-AAG inhibits progression of LuCaP35 xenograft prostate tumors to castration resistance

    PubMed Central

    O’Malley, Katherine J.; Langmann, Gabrielle; Ai, Junkui; Ramos-Garcia, Raquel; Vessella, Robert L.; Wang, Zhou

    2011-01-01

    BACKGROUND Advanced prostate cancer is currently treated with androgen deprivation therapy (ADT). ADT initially results in tumor regression, however, all patients eventually relapse with castration-resistant prostate cancer. New approaches to delay the progression of prostate cancer to castration resistance are in desperate need. This study addresses whether targeting HSP90 regulation of androgen receptor (AR) can inhibit prostate cancer progression to castration resistance. METHODS The HSP90 inhibitor 17-AAG was injected intraperitoneally into nude mice bearing LuCaP35 xenograft tumors to determine the effect of HSP90 inhibition on prostate cancer progression to castration resistance and host survival. RESULTS Administration of 17-AAG maintained androgen-sensitivity, delayed the progression of LuCaP35 xenograft tumors to castration resistance and prolonged the survival of host. In addition, 17-AAG prevented nuclear localization of endogenous AR in LuCaP35 xenograft tumors in castrated nude mice. CONCLUSIONS Targeting Hsp90 or the mechanism by which HSP90 regulates androgen-independent AR nuclear localization and activation may lead to new approaches to prevent and/or treat castration-resistant prostate cancer. PMID:22161776

  2. pH-Responsive Artemisinin Dimer in Lipid Nanoparticles Are Effective Against Human Breast Cancer in a Xenograft Model

    PubMed Central

    ZHANG, YITONG J.; ZHAN, XI; WANG, LIGUO; HO, RODNEY J.Y.; SASAKI, TOMIKAZU

    2016-01-01

    Artemisinin (ART), a well-known antimalaria drug, also exhibits anticancer activities. We previously reported a group of novel dimeric artemisinin piperazine conjugates (ADPs) possessing pH-dependent aqueous solubility and a proof-of-concept lipid nanoparticle formulation based on natural egg phosphatidylcholine (EPC). EPC may induce allergic reactions in individuals sensitive to egg products. Therefore, the goal of this report is to develop ADP-synthetic lipid particles suitable for in vivo evaluation. We found that ADP binds to 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) with greater than 90% efficiency and forms drug–lipid particles (d ~ 80 nm). Cryo-electron microscopy of the ADP drug–lipid particles revealed unilamellar vesicle-like structures. Detailed characterization studies show insertion of the ADP lead compound, ADP109, into the DPPC membrane and the presence of an aqueous core. Over 50% of the ADP109 was released in 48 hours at pH4 compared with less than 20% at neutral. ADP109–lipid particles exhibited high potency against human breast cancer, but was tolerated well by nontumorigenic cells. In MDA-MB-231 mouse xenograft model, lipid-bound ADP109 particles were more effective than paclitaxel in controlling tumor growth. Cellular uptake studies showed endocytosis of the nanoparticles and release of core-trapped marker throughout the cytosol at 37°C. These results demonstrate, for the first time, the in vivo feasibility of lipid-bound ART dimer for cancer chemotherapy. PMID:25753991

  3. In vivo cell cycle profiling in xenograft tumors by quantitative intravital microscopy

    PubMed Central

    Chittajallu, Deepak R; Florian, Stefan; Kohler, Rainer H; Iwamoto, Yoshiko; Orth, James D; Weissleder, Ralph; Danuser, Gaudenz; Mitchison, Timothy J

    2015-01-01

    Quantification of cell-cycle state at a single-cell level is essential to understand fundamental three-dimensional biological processes such as tissue development and cancer. Analysis of 3D in vivo images, however, is very challenging. Today’s best practice, manual annotation of select image events, generates arbitrarily sampled data distributions, unsuitable for reliable mechanistic inferences. Here, we present an integrated workflow for quantitative in vivo cell-cycle profiling. It combines image analysis and machine learning methods for automated 3D segmentation and cell-cycle state identification of individual cell-nuclei with widely varying morphologies embedded in complex tumor environments. We applied our workflow to quantify cell-cycle effects of three antimitotic cancer drugs over 8 days in HT-1080 fibrosarcoma xenografts in living mice using a dataset of 38,000 cells and compared the induced phenotypes. In contrast to 2D culture, observed mitotic arrest was relatively low, suggesting involvement of additional mechanisms in their antitumor effect in vivo. PMID:25867850

  4. Shotgun proteomic analysis to study the decrease of xenograft tumor growth after rosemary extract treatment.

    PubMed

    Valdés, Alberto; García-Cañas, Virginia; Pérez-Sánchez, Almudena; Barrajón-Catalán, Enrique; Ruiz-Torres, Verónica; Artemenko, Konstantin A; Micol, Vicente; Bergquist, Jonas; Cifuentes, Alejandro

    2017-05-26

    The antiproliferative activity of Rosemary (Rosmarinus officinalis) has been widely studied in different in vitro and in vivo models, which demonstrate that rosemary extracts inhibit the cellular proliferation due to its ability to interact with a wide spectrum of molecular targets. However, a comprehensive proteomics study in vivo has not been carried out yet. In the present work, the effects of rosemary extract on xenograft tumor growth has been studied and, for the first time, a shotgun proteomic analysis based on nano-LC-MS/MS together with stable isotope dimethyl labeling (DML) has been applied to investigate the global protein changes in vivo. Our results show that the daily administration of a polyphenol-enriched rosemary extract reduces the progression of colorectal cancer in vivo with the subsequent deregulation of 74 proteins. The bioinformatic analysis of these proteins indicates that the rosemary extract mainly alters the RNA Post-Transcriptional Modification, the Protein Synthesis and the Amino Acid Metabolism functions and suggests the inactivation of the oncogene MYC. These results demonstrate the high utility of the proposed analytical methodology to determine, simultaneously, the expression levels of a large number of protein biomarkers and to generate new hypothesis about the molecular mechanisms of this extract in vivo. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Intra- and inter-tumor heterogeneity in a vemurafenib-resistant melanoma patient and derived xenografts.

    PubMed

    Kemper, Kristel; Krijgsman, Oscar; Cornelissen-Steijger, Paulien; Shahrabi, Aida; Weeber, Fleur; Song, Ji-Ying; Kuilman, Thomas; Vis, Daniel J; Wessels, Lodewyk F; Voest, Emile E; Schumacher, Ton Nm; Blank, Christian U; Adams, David J; Haanen, John B; Peeper, Daniel S

    2015-09-01

    The development of targeted inhibitors, like vemurafenib, has greatly improved the clinical outcome of BRAF(V600E) metastatic melanoma. However, resistance to such compounds represents a formidable problem. Using whole-exome sequencing and functional analyses, we have investigated the nature and pleiotropy of vemurafenib resistance in a melanoma patient carrying multiple drug-resistant metastases. Resistance was caused by a plethora of mechanisms, all of which reactivated the MAPK pathway. In addition to three independent amplifications and an aberrant form of BRAF(V600E), we identified a new activating insertion in MEK1. This MEK1(T55delins) (RT) mutation could be traced back to a fraction of the pre-treatment lesion and not only provided protection against vemurafenib but also promoted local invasion of transplanted melanomas. Analysis of patient-derived xenografts (PDX) from therapy-refractory metastases revealed that multiple resistance mechanisms were present within one metastasis. This heterogeneity, both inter- and intra-tumorally, caused an incomplete capture in the PDX of the resistance mechanisms observed in the patient. In conclusion, vemurafenib resistance in a single patient can be established through distinct events, which may be preexisting. Furthermore, our results indicate that PDX may not harbor the full genetic heterogeneity seen in the patient's melanoma.

  6. FL118, a novel camptothecin analogue, overcomes irinotecan and topotecan resistance in human tumor xenograft models

    PubMed Central

    Ling, Xiang; Liu, Xiaojun; Zhong, Kai; Smith, Nicholas; Prey, Joshua; Li, Fengzhi

    2015-01-01

    Irinotecan and topotecan are the only camptothecin analogues approved by the FDA for cancer treatment. However, inherent and/or acquired irinotecan and topotecan resistance is a challenging issue in clinical practice. In this report, we showed that FL118, a novel camptothecin analogue, effectively obliterated human xenograft tumors that acquire irinotecan and topotecan resistance. Consistent with this finding, Pharmacokinetics studies indicated that FL118 rapidly clears from circulation, while effectively accumulating in tumors with a long elimination half-life. Consistent with our previous studies on irinotecan, FL118 exhibited ≥25 fold more effectiveness than topotecan at inhibiting cancer cell growth and colony formation; we further showed that although topotecan can inhibit the expression of survivin, Mcl-1, XIAP or cIAP2, its effectiveness is about 10-100 fold weaker than FL118. Lastly, in contrast to both SN-38 (active metabolite of irinotecan) and topotecan are substrates of the efflux pump proteins P-gp/MDR1 and ABCG2/BCRP, FL118 is not a substrate of P-gp and ABCG2. Consistently, sildenafil, a multiple efflux pump inhibitor, sensitized SN-38 much more than these of the ABCG2-selective inhibitor KO143 in growth inhibition of SW620 and HCT-8 cells. In contrast, both inhibitors showed no effect on FL118 efficacy. Given that both P-gp and ABCG2 express in SW620 and HCT-8 cells and FL118 is not a substrate for P-gp and ABCG2, this suggests that FL118 appears to bypass multiple efflux pump protein-induced resistance, which may contribute to FL118 overcoming irinotecan and topotecan resistance in vivo. These new findings provide renewed perspectives for further development of FL118 for clinical applications. PMID:26692923

  7. Pancratistatin selectively targets cancer cell mitochondria and reduces growth of human colon tumor xenografts.

    PubMed

    Griffin, Carly; Karnik, Aditya; McNulty, James; Pandey, Siyaram

    2011-01-01

    The naturally occurring Amaryllidaceae alkaloid pancratistatin exhibits potent apoptotic activity against a large panel of cancer cells lines and has an insignificant effect on noncancerous cell lines, although with an elusive cellular target. Many current chemotherapeutics induce apoptosis via genotoxic mechanisms and thus have low selectivity. The observed selectivity of pancratistatin for cancer cells promoted us to consider the hypothesis that this alkaloid targets cancer cell mitochondria rather than DNA or its replicative machinery. In this study, we report that pancratistatin decreased mitochondrial membrane potential and induced apoptotic nuclear morphology in p53-mutant (HT-29) and wild-type p53 (HCT116) colorectal carcinoma cell lines, but not in noncancerous colon fibroblast (CCD-18Co) cells. Interestingly, pancratistatin was found to be ineffective against mtDNA-depleted (ρ(0)) cancer cells. Moreover, pancratistatin induced cell death in a manner independent of Bax and caspase activation, and did not alter β-tubulin polymerization rate nor cause double-stranded DNA breaks. For the first time we report the efficacy of pancratistatin in vivo against human colorectal adenocarcinoma xenografts. Intratumor administration of pancratistatin (3 mg/kg) caused significant reduction in the growth of subcutaneous HT-29 tumors in Nu/Nu mice (n = 6), with no apparent toxicity to the liver or kidneys as indicated by histopathologic analysis and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling. Altogether, this work suggests that pancratistatin may be a novel mitochondria-targeting compound that selectively induces apoptosis in cancer cells and significantly reduces tumor growth.

  8. Potentiated DNA Damage Response in Circulating Breast Tumor Cells Confers Resistance to Chemotherapy*

    PubMed Central

    Gong, Chang; Liu, Bodu; Yao, Yandan; Qu, Shaohua; Luo, Wei; Tan, Weige; Liu, Qiang; Yao, Herui; Zou, Lee; Su, Fengxi; Song, Erwei

    2015-01-01

    Circulating tumor cells (CTCs) are seeds for cancer metastasis and are predictive of poor prognosis in breast cancer patients. Whether CTCs and primary tumor cells (PTCs) respond to chemotherapy differently is not known. Here, we show that CTCs of breast cancer are more resistant to chemotherapy than PTCs because of potentiated DNA repair. Surprisingly, the chemoresistance of CTCs was recapitulated in PTCs when they were detached from the extracellular matrix. Detachment of PTCs increased the levels of reactive oxygen species and partially activated the DNA damage checkpoint, converting PTCs to a CTC-like state. Inhibition of checkpoint kinases Chk1 and Chk2 in CTCs reduces the basal checkpoint response and sensitizes CTCs to DNA damage in vitro and in mouse xenografts. Our results suggest that DNA damage checkpoint inhibitors may benefit the chemotherapy of breast cancer patients by suppressing the chemoresistance of CTCs and reducing the risk of cancer metastasis. PMID:25897074

  9. Potentiated DNA Damage Response in Circulating Breast Tumor Cells Confers Resistance to Chemotherapy.

    PubMed

    Gong, Chang; Liu, Bodu; Yao, Yandan; Qu, Shaohua; Luo, Wei; Tan, Weige; Liu, Qiang; Yao, Herui; Zou, Lee; Su, Fengxi; Song, Erwei

    2015-06-12

    Circulating tumor cells (CTCs) are seeds for cancer metastasis and are predictive of poor prognosis in breast cancer patients. Whether CTCs and primary tumor cells (PTCs) respond to chemotherapy differently is not known. Here, we show that CTCs of breast cancer are more resistant to chemotherapy than PTCs because of potentiated DNA repair. Surprisingly, the chemoresistance of CTCs was recapitulated in PTCs when they were detached from the extracellular matrix. Detachment of PTCs increased the levels of reactive oxygen species and partially activated the DNA damage checkpoint, converting PTCs to a CTC-like state. Inhibition of checkpoint kinases Chk1 and Chk2 in CTCs reduces the basal checkpoint response and sensitizes CTCs to DNA damage in vitro and in mouse xenografts. Our results suggest that DNA damage checkpoint inhibitors may benefit the chemotherapy of breast cancer patients by suppressing the chemoresistance of CTCs and reducing the risk of cancer metastasis.

  10. Antitumor activity of celastrol nanoparticles in a xenograft retinoblastoma tumor model

    PubMed Central

    Li, Zhanrong; Wu, Xianghua; Li, Jingguo; Yao, Lin; Sun, Limei; Shi, Yingying; Zhang, Wenxin; Lin, Jianxian; Liang, Dan; Li, Yongping

    2012-01-01

    Background Celastrol, a Chinese herbal medicine, has shown antitumor activity against various tumor cell lines. However, the effect of celastrol on retinoblastoma has not yet been analyzed. Additionally, the poor water solubility of celastrol restricts further therapeutic applications. The goal of this study was to evaluate the effect of celastrol nanoparticles (CNPs) on retinoblastoma and to investigate the potential mechanisms involved. Methods Celastrol-loaded poly(ethylene glycol)-block-poly(ɛ-caprolactone) nanopolymeric micelles were developed to improve the hydrophilicity of celastrol. The 2-(2-methoxy-4- nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulf-ophenyl)-2H tetrazolium monosodium salt (WST-8) assay was used to determine the inhibitory effect of CNPs on SO-Rb 50 cell proliferation in vitro. Immunofluorescence was used to evaluate the apoptotic effect of CNPs on nuclear morphology, and flow cytometry was used to quantify cellular apoptosis. The expression of Bcl-2, Bax, NF-κB p65, and phospo-NF-κB p65 proteins was assessed by Western blotting. A human retinoblastoma xenograft model was used to evaluate the inhibitory effects of CNPs on retinoblastoma in NOD-SCID mice. Hematoxylin and eosin staining was used to assess the apoptotic effects of CNPs on retinoblastoma. Results CNPs inhibit the proliferation of SO-Rb 50 cells in a dose- and time-dependent manner with an IC50 of 17.733 μg/mL (celastrol-loading content: 7.36%) after exposure to CNPs for 48 hours. CNPs induce apoptosis in SO-Rb 50 cells in a dose-dependent manner. The expression of Bcl-2, NF-κB p65, and phospo-NF-κB p65 proteins decreased after exposure to CNPs 54.4 μg/mL for 48 hours. Additionally, the Bax/Bcl-2 ratio increased, whereas the expression of Bax itself was not significantly altered. CNPs inhibit the growth of retinoblastoma and induce apoptosis in retinoblastoma cells in mice. Conclusion CNPs inhibit the growth of retinoblastoma in mouse xenograft model by inducing apoptosis in

  11. Antitumor activity of celastrol nanoparticles in a xenograft retinoblastoma tumor model.

    PubMed

    Li, Zhanrong; Wu, Xianghua; Li, Jingguo; Yao, Lin; Sun, Limei; Shi, Yingying; Zhang, Wenxin; Lin, Jianxian; Liang, Dan; Li, Yongping

    2012-01-01

    Celastrol, a Chinese herbal medicine, has shown antitumor activity against various tumor cell lines. However, the effect of celastrol on retinoblastoma has not yet been analyzed. Additionally, the poor water solubility of celastrol restricts further therapeutic applications. The goal of this study was to evaluate the effect of celastrol nanoparticles (CNPs) on retinoblastoma and to investigate the potential mechanisms involved. Celastrol-loaded poly(ethylene glycol)-block-poly(ɛ-caprolactone) nanopolymeric micelles were developed to improve the hydrophilicity of celastrol. The 2-(2-methoxy-4- nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulf-ophenyl)-2H tetrazolium monosodium salt (WST-8) assay was used to determine the inhibitory effect of CNPs on SO-Rb 50 cell proliferation in vitro. Immunofluorescence was used to evaluate the apoptotic effect of CNPs on nuclear morphology, and flow cytometry was used to quantify cellular apoptosis. The expression of Bcl-2, Bax, NF-κB p65, and phospo-NF-κB p65 proteins was assessed by Western blotting. A human retinoblastoma xenograft model was used to evaluate the inhibitory effects of CNPs on retinoblastoma in NOD-SCID mice. Hematoxylin and eosin staining was used to assess the apoptotic effects of CNPs on retinoblastoma. CNPs inhibit the proliferation of SO-Rb 50 cells in a dose- and time-dependent manner with an IC(50) of 17.733 μg/mL (celastrol-loading content: 7.36%) after exposure to CNPs for 48 hours. CNPs induce apoptosis in SO-Rb 50 cells in a dose-dependent manner. The expression of Bcl-2, NF-κB p65, and phospo-NF-κB p65 proteins decreased after exposure to CNPs 54.4 μg/mL for 48 hours. Additionally, the Bax/Bcl-2 ratio increased, whereas the expression of Bax itself was not significantly altered. CNPs inhibit the growth of retinoblastoma and induce apoptosis in retinoblastoma cells in mice. CNPs inhibit the growth of retinoblastoma in mouse xenograft model by inducing apoptosis in SO-Rb 50 cells, which may be

  12. CCL18 from Tumor-Associated Macrophages Promotes Breast Cancer Metastasis via PITPNM3

    PubMed Central

    Chen, Jingqi; Yao, Yandan; Gong, Chang; Yu, Fengyan; Su, Shicheng; Chen, Jianing; Liu, Bodu; Deng, Hui; Wang, Fengsong; Lin, Ling; Yao, Herui; Su, Fengxi; Anderson, Karen S.; Liu, Qiang; Ewen, Mark E.; Yao, Xuebiao; Song, Erwei

    2011-01-01

    SUMMARY Tumor-associated macrophages (TAMs) can influence cancer progression and metastasis, but the mechanism remains unclear. Here, we show that breast TAMs abundantly produce CCL18, and its expression in blood or cancer stroma is associated with metastasis and reduced patient survival. CCL18 released by breast TAMs promotes the invasiveness of cancer cells by triggering integrin clustering and enhancing their adherence to extracellular matrix. Furthermore, we identify PITPNM3 as a functional receptor for CCL18 that mediates CCL18 effect and activates intracellular calcium signaling. CCL18 promotes the invasion and metastasis of breast cancer xenografts, whereas suppressing PITPNM3 abrogates these effects. These findings indicate that CCL18 derived from TAMs plays a critical role in promoting breast cancer metastasis via its receptor, PITPNM3. PMID:21481794

  13. Tumor suppressor berberine binds VASP to inhibit cell migration in basal-like breast cancer

    PubMed Central

    Wang, Xiaolan; Kuang, Changchun; Xiang, Qingmin; Yang, Fang; Xiang, Jin; Zhu, Shan; Wei, Lei; Zhang, Jingwei

    2016-01-01

    Berberine is a plant-derived compound used in traditional Chinese medicine, which has been shown to inhibit cell proliferation and migration in breast cancer. On the other hand, vasodilator-stimulated phosphoprotein (VASP) promotes actin filament elongation and cell migration. We previously showed that VASP is overexpressed in high-motility breast cancer cells. Here we investigated whether the anti-tumorigenic effects of berberine are mediated by binding VASP in basal-like breast cancer. Our results show that berberine suppresses proliferation and migration of MDA-MB-231 cells as well as tumor growth in MDA-MB-231 nude mouse xenografts. We also show that berberine binds to VASP, inducing changes in its secondary structure and inhibits actin polymerization. Our study reveals the mechanism underlying berberine's inhibition of cell proliferation and migration in basal-like breast cancer, highlighting the use of berberine as a potential adjuvant therapeutic agent. PMID:27322681

  14. [Phyllodes breast tumors: apropos 2 cases].

    PubMed

    Bruzzese, A; Chiarini, S; Pasquino, C; Favoriti, M; Stella, S

    1995-01-01

    The observation of two cases of phyllode tumors of the breast, one benign and the other malignant, brought the Authors to focus the fundamental aspects of these neoplasias. The histologic coexistence of both epithelial and connectival components, a relative unpredictable clinical evolution, the high frequency of recurrences, the stromal hyperproduction and modifications as expression of malignancy, and the need for large excisions are the fundamental characteristics of these tumors, which are considered transitional forms between benignity and malignancy.

  15. Sodium Selenite Radiosensitizes Hormone-Refractory Prostate Cancer Xenograft Tumors but Not Intestinal Crypt Cells In Vivo

    SciTech Connect

    Tian Junqiang; Ning Shouchen; Knox, Susan J.

    2010-09-01

    Purpose: We have previously shown that sodium selenite (SSE) increases radiation-induced cell killing of human prostate carcinoma cells in vitro. In this study we further evaluated the in vivo radiosensitizing effect of SSE in prostate cancer xenograft tumors and normal radiosensitive intestinal crypt cells. Methods and Materials: Immunodeficient (SCID) mice with hormone-independent LAPC-4 (HI-LAPC-4) and PC-3 xenograft tumors (approximately 200 mm{sup 3}) were divided into four groups: control (untreated), radiation therapy (XRT, local irradiation), SSE (2 mg/kg, intraperitoneally, 3 times/week), and XRT plus SSE. The XRT was given at the beginning of the regimen as a single dose of 5 Gy for HI-LAPC-4 tumors and a single dose of 7 Gy followed by a fractional dose of 3 Gy/d for 5 days for PC-3 tumors. The tumor volume was measured 3 times per week. The radiosensitizing effect of SSE on normal intestinal epithelial cells was assessed by use of a crypt cell microcolony assay. Results: In the efficacy study, SSE alone significantly inhibited the tumor growth in HI-LAPC-4 tumors but not PC-3 tumors. Sodium selenite significantly enhanced the XRT-induced tumor growth inhibition in both HI-LAPC-4 and PC-3 tumors. In the toxicity study, SSE did not affect the intestinal crypt cell survival either alone or in combination with XRT. Conclusions: Sodium selenite significantly enhances the effect of radiation on well-established hormone-independent prostate tumors and does not sensitize the intestinal epithelial cells to radiation. These results suggest that SSE may increase the therapeutic index of XRT for the treatment of prostate cancer.

  16. Characterization of a large panel of patient-derived tumor xenografts representing the clinical heterogeneity of human colorectal cancer.

    PubMed

    Julien, Sylvia; Merino-Trigo, Ana; Lacroix, Ludovic; Pocard, Marc; Goéré, Diane; Mariani, Pascale; Landron, Sophie; Bigot, Ludovic; Nemati, Fariba; Dartigues, Peggy; Weiswald, Louis-Bastien; Lantuas, Denis; Morgand, Loïc; Pham, Emmanuel; Gonin, Patrick; Dangles-Marie, Virginie; Job, Bastien; Dessen, Philippe; Bruno, Alain; Pierré, Alain; De Thé, Hugues; Soliman, Hany; Nunes, Manoel; Lardier, Guillaume; Calvet, Loreley; Demers, Brigitte; Prévost, Grégoire; Vrignaud, Patricia; Roman-Roman, Sergio; Duchamp, Olivier; Berthet, Cyril

    2012-10-01

    Patient-derived xenograft models are considered to represent the heterogeneity of human cancers and advanced preclinical models. Our consortium joins efforts to extensively develop and characterize a new collection of patient-derived colorectal cancer (CRC) models. From the 85 unsupervised surgical colorectal samples collection, 54 tumors were successfully xenografted in immunodeficient mice and rats, representing 35 primary tumors, 5 peritoneal carcinoses and 14 metastases. Histologic and molecular characterization of patient tumors, first and late passages on mice includes the sequence of key genes involved in CRC (i.e., APC, KRAS, TP53), aCGH, and transcriptomic analysis. This comprehensive characterization shows that our collection recapitulates the clinical situation about the histopathology and molecular diversity of CRC. Moreover, patient tumors and corresponding models are clustering together allowing comparison studies between clinical and preclinical data. Hence, we conducted pharmacologic monotherapy studies with standard of care for CRC (5-fluorouracil, oxaliplatin, irinotecan, and cetuximab). Through this extensive in vivo analysis, we have shown the loss of human stroma cells after engraftment, observed a metastatic phenotype in some models, and finally compared the molecular profile with the drug sensitivity of each tumor model. Through an experimental cetuximab phase II trial, we confirmed the key role of KRAS mutation in cetuximab resistance. This new collection could bring benefit to evaluate novel targeted therapeutic strategies and to better understand the basis for sensitivity or resistance of tumors from individual patients.

  17. Fluorescence lifetime FRET non-invasive imaging of breast cancer xenografts provides a measure of target engagement in vivo (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Rudkouskaya, Alena; Sinsuebphon, Nattawut; Intes, Xavier; Barroso, Margarida

    2017-02-01

    Fluorescence Lifetime Förster Resonance Energy Transfer (FLIM-FRET) is a unique non-invasive imaging platform to monitor and quantify in vivo target engagement in pre-clinical studies. FLIM FRET is a valuable tool in targeted drug delivery due to its nanoscale-range molecular resolution that detects near-infrared labeled ligand binding to dimerized receptors followed by their uptake into cancer cells in vivo. Various imaging platforms, including PET, lack the ability to directly discriminate between unbound and internalized ligands. Since transferrin receptor (TfR) level is significantly elevated in cancer cells compared to non-cancerous cells, transferrin (Tf) has been successfully used in molecular imaging and targeted anti-cancer drug delivery. The dimeric nature of TfR allows for the quantification of Tf internalization into cancer cells by measuring FLIM FRET between receptor-bound Tf donor and acceptor NIR fluorophore pairs, based on the reduction of donor fluorophore lifetime in live mice. We analyzed tumor morphology, the level of expression of TfR, estrogen receptor (ER) and Tf accumulation in human breast cancer tumor xenografts. We found a remarkable heterogeneity of breast cancer tumors regarding their size, cell density, TfR and ER expression and Tf uptake. The results of this study confirm a strong correlation between in vivo NIR FLIM FRET and ex vivo evaluation of Tf uptake into tumor tissues, thus validating FD% as a robust measure of the target engagement of TfR-Tf in tumor cells in vivo.

  18. Non-Invasive Monitoring of Breast Tumor Oxygenation: A Key to Tumor Therapy Planning and Tumor Prognosis

    DTIC Science & Technology

    2004-09-01

    AD_ Award Number: DAMD17-00-1-0459 TITLE: Non-Invasive Monitoring of Breast Tumor Oxygenation: A Key to Tumor Therapy Planning and Tumor Prognosis...SUBTITLE 5. FUNDING NUMBERS Non-Invasive Monitoring of Breast Tumor Oxygenation: A Key DAMD17-00-1-0459 to Tumor Therapy Planning and Tumor Prognosis 6...research project is to develop and evaluate a new approach to monitoring of oxygenated hemoglobin concentration (HbO 2) of breast tumors under

  19. Therapeutic Antibodies Targeting CSF1 Impede Macrophage Recruitment in a Xenograft Model of Tenosynovial Giant Cell Tumor

    PubMed Central

    Cheng, Hongwei; Clarkson, Paul W.; Gao, Dongxia; Pacheco, Marina; Wang, Yuzhuo; Nielsen, Torsten O.

    2010-01-01

    Tenosynovial giant cell tumor is a neoplastic disease of joints that can cause severe morbidity. Recurrences are common following local therapy, and no effective medical therapy currently exists. Recent work has demonstrated that all cases overexpress macrophage colony-stimulating factor (CSF1), usually as a consequence of an activating gene translocation, resulting in an influx of macrophages that form the bulk of the tumor. New anti-CSF1 drugs have been developed; however there are no preclinical models suitable for evaluation of drug benefits in this disease. In this paper, we describe a novel renal subcapsular xenograft model of tenosynovial giant cell tumor. Using this model, we demonstrate that an anti-CSF1 monoclonal antibody significantly inhibits host macrophage infiltration into this tumor. The results from this model support clinical trials of equivalent humanized agents and anti-CSF1R small molecule drugs in cases of tenosynovial giant cell tumor refractory to conventional local therapy. PMID:20981142

  20. Therapeutic Antibodies Targeting CSF1 Impede Macrophage Recruitment in a Xenograft Model of Tenosynovial Giant Cell Tumor.

    PubMed

    Cheng, Hongwei; Clarkson, Paul W; Gao, Dongxia; Pacheco, Marina; Wang, Yuzhuo; Nielsen, Torsten O

    2010-01-01

    Tenosynovial giant cell tumor is a neoplastic disease of joints that can cause severe morbidity. Recurrences are common following local therapy, and no effective medical therapy currently exists. Recent work has demonstrated that all cases overexpress macrophage colony-stimulating factor (CSF1), usually as a consequence of an activating gene translocation, resulting in an influx of macrophages that form the bulk of the tumor. New anti-CSF1 drugs have been developed; however there are no preclinical models suitable for evaluation of drug benefits in this disease. In this paper, we describe a novel renal subcapsular xenograft model of tenosynovial giant cell tumor. Using this model, we demonstrate that an anti-CSF1 monoclonal antibody significantly inhibits host macrophage infiltration into this tumor. The results from this model support clinical trials of equivalent humanized agents and anti-CSF1R small molecule drugs in cases of tenosynovial giant cell tumor refractory to conventional local therapy.

  1. An orthotopic xenograft model with survival hindlimb amputation allows investigation of the effect of tumor microenvironment on sarcoma metastasis.

    PubMed

    Goldstein, Seth D; Hayashi, Masanori; Albert, Catherine M; Jackson, Kyle W; Loeb, David M

    2015-10-01

    Overall survival rates for pediatric high-grade sarcoma have improved greatly in the past few decades, but prevention and treatment of distant metastasis remain the most compelling problems facing these patients. Traditional preclinical mouse models have not proven adequate to study the biology and treatment of spontaneous distant sarcoma metastasis. To address this deficit, we developed an orthotopic implantation/amputation model in which patient-derived sarcoma xenografts are surgically implanted into mouse hindlimbs, allowed to grow, then subsequently amputated and the animals observed for development of metastases. NOD/SCID/IL-2Rγ-null mice were implanted with either histologically intact high grade sarcoma patient-derived xenografts or cell lines in the pretibial space and affected limbs were amputated after tumor growth. In contrast to subcutaneous flank tumors, we were able to consistently detect spontaneous distant spread of the tumors using our model. Metastases were seen in 27-90 % of animals, depending on the xenograft, and were repeatable and predictable. We also demonstrate the utility of this model for studying the biology of metastasis and present preliminary new insights suggesting the role of arginine metabolism and macrophage phenotype polarization in creating a tumor microenvironment that facilitates metastasis. Subcutaneous tumors express more arginase than inducible nitric oxide synthase and demonstrate significant macrophage infiltration, whereas orthotopic tumors express similar amounts of inducible nitric oxide synthase and arginase and have only a scant macrophage infiltrate. Thus, we present a model of spontaneous distant sarcoma metastasis that mimics the clinical situation and is amenable to studying the biology of the entire metastatic cascade.

  2. Comprehensive molecular portraits of human breast tumors

    PubMed Central

    2012-01-01

    Summary We analyzed primary breast cancers by genomic DNA copy number arrays, DNA methylation, exome sequencing, mRNA arrays, microRNA sequencing and reverse phase protein arrays. Our ability to integrate information across platforms provided key insights into previously-defined gene expression subtypes and demonstrated the existence of four main breast cancer classes when combining data from five platforms, each of which shows significant molecular heterogeneity. Somatic mutations in only three genes (TP53, PIK3CA and GATA3) occurred at > 10% incidence across all breast cancers; however, there were numerous subtype-associated and novel gene mutations including the enrichment of specific mutations in GATA3, PIK3CA and MAP3K1 with the Luminal A subtype. We identified two novel protein expression-defined subgroups, possibly contributed by stromal/microenvironmental elements, and integrated analyses identified specific signaling pathways dominant in each molecular subtype including a HER2/p-HER2/HER1/p-HER1 signature within the HER2-Enriched expression subtype. Comparison of Basal-like breast tumors with high-grade Serous Ovarian tumors showed many molecular commonalities, suggesting a related etiology and similar therapeutic opportunities. The biologic finding of the four main breast cancer subtypes caused by different subsets of genetic and epigenetic abnormalities raises the hypothesis that much of the clinically observable plasticity and heterogeneity occurs within, and not across, these major biologic subtypes of breast cancer. PMID:23000897

  3. Roscovitine confers tumor suppressive effect on therapy-resistant breast tumor cells

    PubMed Central

    2011-01-01

    Introduction Current clinical strategies for treating hormonal breast cancer involve the use of anti-estrogens that block estrogen receptor (ER)α functions and aromatase inhibitors that decrease local and systemic estrogen production. Both of these strategies improve outcomes for ERα-positive breast cancer patients, however, development of therapy resistance remains a major clinical problem. Divergent molecular pathways have been described for this resistant phenotype and interestingly, the majority of downstream events in these resistance pathways converge upon the modulation of cell cycle regulatory proteins including aberrant activation of cyclin dependent kinase 2 (CDK2). In this study, we examined whether the CDK inhibitor roscovitine confers a tumor suppressive effect on therapy-resistant breast epithelial cells. Methods Using various in vitro and in vivo assays, we tested the effect of roscovitine on three hormonal therapy-resistant model cells: (a) MCF-7-TamR (acquired tamoxifen resistance model); (b) MCF-7-LTLTca (acquired letrozole resistance model); and (c) MCF-7-HER2 that exhibit tamoxifen resistance (ER-growth factor signaling cross talk model). Results Hormonal therapy-resistant cells exhibited aberrant activation of the CDK2 pathway. Roscovitine at a dose of 20 μM significantly inhibited the cell proliferation rate and foci formation potential of all three therapy-resistant cells. The drug treatment substantially increased the proportion of cells in G2/M cell cycle phase with decreased CDK2 activity and promoted low cyclin D1 levels. Interestingly, roscovitine also preferentially down regulated the ERα isoform and ER-coregulators including AIB1 and PELP1. Results from xenograft studies further showed that roscovitine can attenuate growth of therapy-resistant tumors in vivo. Conclusions Roscovitine can reduce cell proliferation and survival of hormone therapy-resistant breast cancer cells. Our results support the emerging concept that inhibition

  4. Roscovitine confers tumor suppressive effect on therapy-resistant breast tumor cells.

    PubMed

    Nair, Binoj C; Vallabhaneni, Sreeram; Tekmal, Rajeshwar R; Vadlamudi, Ratna K

    2011-08-11

    Current clinical strategies for treating hormonal breast cancer involve the use of anti-estrogens that block estrogen receptor (ER)α functions and aromatase inhibitors that decrease local and systemic estrogen production. Both of these strategies improve outcomes for ERα-positive breast cancer patients, however, development of therapy resistance remains a major clinical problem. Divergent molecular pathways have been described for this resistant phenotype and interestingly, the majority of downstream events in these resistance pathways converge upon the modulation of cell cycle regulatory proteins including aberrant activation of cyclin dependent kinase 2 (CDK2). In this study, we examined whether the CDK inhibitor roscovitine confers a tumor suppressive effect on therapy-resistant breast epithelial cells. Using various in vitro and in vivo assays, we tested the effect of roscovitine on three hormonal therapy-resistant model cells: (a) MCF-7-TamR (acquired tamoxifen resistance model); (b) MCF-7-LTLTca (acquired letrozole resistance model); and (c) MCF-7-HER2 that exhibit tamoxifen resistance (ER-growth factor signaling cross talk model). Hormonal therapy-resistant cells exhibited aberrant activation of the CDK2 pathway. Roscovitine at a dose of 20 μM significantly inhibited the cell proliferation rate and foci formation potential of all three therapy-resistant cells. The drug treatment substantially increased the proportion of cells in G2/M cell cycle phase with decreased CDK2 activity and promoted low cyclin D1 levels. Interestingly, roscovitine also preferentially down regulated the ERα isoform and ER-coregulators including AIB1 and PELP1. Results from xenograft studies further showed that roscovitine can attenuate growth of therapy-resistant tumors in vivo. Roscovitine can reduce cell proliferation and survival of hormone therapy-resistant breast cancer cells. Our results support the emerging concept that inhibition of CDK2 activity has the potential to

  5. Unusual Benign Tumors of the Breast

    PubMed Central

    Adrada, Beatriz E; Krishnamurthy, Savitri; Carkaci, Selin; Posleman-Monetto, Flavia E; Ewere, Adesuwa; Whitman, Gary J

    2015-01-01

    The purpose of this article is to describe the imaging characteristics of a variety of benign breast tumors that may be encountered in daily practice, in order to formulate an appropriate differential diagnosis and to establish concordance between the imaging and the pathologic findings, and to assist the clinician with appropriate management. PMID:26085959

  6. Gefitinib enhances radiotherapeutic effects of (131)I-hEGF targeted to EGFR by increasing tumor uptake of hEGF in tumor xenografts.

    PubMed

    Xia, Lu; Peng, He; Zhiqiang, Luo; Xiaoli, Zhang

    2017-02-04

    Gefitinib is an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor which has been proven effective for cancer treatment. In this study, we sought to determine whether gefitinib could increase the in vivo tumor uptake of human (131)I-EGF ((131)I-hEGF), thereby enhancing the potential of hEGF as a vehicle for EGFR-targeted radionuclide therapy. Western blot analysis was conducted to detect the effects of gefitinib on EGFR expression in human head and neck squamous carcinoma cell line UM-SCC-22B. Nude mice bearing UM-SCC-22B tumor xenografts were pretreated via i.p. injection of gefitinib or DMSO (vehicle control), followed by i.v. injection of (125)I-hEGF; the animals were then subjected to ex vivo biodistribution or injection of (131)I-hEGF for planar γ-imaging using SPECT, respectively. Targeted radionuclide therapy using (131)I-hEGF combined with gefitinib as a vehicle targeting EGFR was also performed in UM-SCC-22B tumor xenografts. The EGFR level was unchangeable in cells pretreated with gefitinib, but after gefitinib pretreatment, the uptake of (125)I-hEGF in 22B tumor xenografts increased substantially while the uptake of (125)I-hEGF in normal organs was effectively unchanged. (131)I-hEGF as a vehicle for EGFR-targeting therapy combined with gefitinib therefore showed strong therapeutic effects against 22B tumor xenografts tolerant to gefitinib. The uptake of hEGF to EGFR-positive tumors was enhanced significantly after gefitinib pretreatment, suggesting that (131)I-hEGF is a potential vehicle for EGFR-targeting radionuclide therapy when combined with gefitinib.

  7. High resolution digital autoradiographic and dosimetric analysis of heterogeneous radioactivity distribution in xenografted prostate tumors.

    PubMed

    Timmermand, Oskar V; Nilsson, Jenny; Strand, Sven-Erik; Elgqvist, Jörgen

    2016-12-01

    The first main aim of this study was to illustrate the absorbed dose rate distribution from (177)Lu in sections of xenografted prostate cancer (PCa) tumors using high resolution digital autoradiography (DAR) and compare it with hypothetical identical radioactivity distributions of (90)Y or 7 MeV alpha-particles. Three dosimetry models based on either dose point kernels or Monte Carlo simulations were used and evaluated. The second and overlapping aim, was to perform DAR imaging and dosimetric analysis of the distribution of radioactivity, and hence the absorbed dose rate, in tumor sections at an early time point after injection during radioimmunotherapy using (177)Lu-h11B6, directed against the human kallikrein 2 antigen. Male immunodeficient BALB/c nude mice, aged 6-8 w, were inoculated by subcutaneous injection of ∼10(7) LNCaP cells in a 200 μl suspension of a 1:1 mixture of medium and Matrigel. The antibody h11B6 was conjugated with the chelator CHX-A″-DTPA after which conjugated h11B6 was mixed with (177)LuCl3. The incubation was performed at room temperature for 2 h, after which the labeling was terminated and the solution was purified on a NAP-5 column. About 20 MBq (177)Lu-h11B6 was injected intravenously in the tail vein. At approximately 10 h postinjection (hpi), the mice were sacrificed and one tumor was collected from each of the five animals and cryosectioned into 10 μm thick slices. The tumor slices were measured and imaged using the DAR MicroImager system and the M3Vision software. Then the absorbed dose rate was calculated using a dose point kernel generated with the Monte Carlo code gate v7.0. The DAR system produced high resolution images of the radioactivity distribution, close to the resolution of single PCa cells. The DAR images revealed a pronounced heterogeneous radioactivity distribution, i.e., count rate per area, in the tumors, indicated by the normalized intensity variations along cross sections as mean ± SD: 0.15 ± 0.15, 0.20 ± 0

  8. Chemotherapy enhances tumor vascularization via Notch signaling-mediated formation of tumor-derived endothelium in breast cancer.

    PubMed

    Zhang, Peng; He, Dongxu; Chen, Zhen; Pan, Qiongxi; Du, Fangfang; Zang, Xian; Wang, Yan; Tang, Chunlei; Li, Hong; Lu, He; Yao, Xiaoqiang; Jin, Jian; Ma, Xin

    2016-10-15

    It is believed that tumor cells can give rise to endothelial cells and tumor endothelium has a neoplastic origin. Yet, the stimuli and underlying mechanism remain unclear. Here, we demonstrate that adriamycin or paclitaxel, first-line chemotherapy agent, induced breast cancer cells to generate morphological, phenotypical and functional features of endothelial cells in vitro. In xenografts models, challenges from adriamycin or paclitaxel induced cancer cells to generate the majority of microvessels. Importantly, in breast cancer specimens from patients with neoadjuvant anthracycline-based or taxane-based chemotherapy, tumor-derived endothelial microvessels, lined by EGFR-amplified or/and TP53(+)-CD31(+) endothelial cells, was significantly higher in patients with progressive or stable disease (PD/SD) than in those with a partial or complete response (PR/CR). Further, exposure to the Notch signaling inhibitor and gene silencing studies showed that Notch signaling inhibition or silencing Nothc4/Dll3 decreased endothelial markers and function of tumor-derived endothelial cells under chemotherapy treatment, which may be through VEGFR3. Thus, our findings demonstrate that chemotherapy induces functional tumor-derived endothelial microvessels by mediating Notch signaling and VEGF signaling, and may provide new targets for anti-angiogenesis therapy in breast cancer.

  9. Mass spectrometry images acylcarnitines, phosphatidylcholines, and sphingomyelin in MDA-MB-231 breast tumor models[S

    PubMed Central

    Chughtai, Kamila; Jiang, Lu; Greenwood, Tiffany R.; Glunde, Kristine; Heeren, Ron M. A.

    2013-01-01

    The lipid compositions of different breast tumor microenvironments are largely unknown due to limitations in lipid imaging techniques. Imaging lipid distributions would enhance our understanding of processes occurring inside growing tumors, such as cancer cell proliferation, invasion, and metastasis. Recent developments in MALDI mass spectrometry imaging (MSI) enable rapid and specific detection of lipids directly from thin tissue sections. In this study, we performed multimodal imaging of acylcarnitines, phosphatidylcholines (PC), a lysophosphatidylcholine (LPC), and a sphingomyelin (SM) from different microenvironments of breast tumor xenograft models, which carried tdTomato red fluorescent protein as a hypoxia-response element-driven reporter gene. The MSI molecular lipid images revealed spatially heterogeneous lipid distributions within tumor tissue. Four of the most-abundant lipid species, namely PC(16:0/16:0), PC(16:0/18:1), PC(18:1/18:1), and PC(18:0/18:1), were localized in viable tumor regions, whereas LPC(16:0/0:0) was detected in necrotic tumor regions. We identified a heterogeneous distribution of palmitoylcarnitine, stearoylcarnitine, PC(16:0/22:1), and SM(d18:1/16:0) sodium adduct, which colocalized primarily with hypoxic tumor regions. For the first time, we have applied a multimodal imaging approach that has combined optical imaging and MALDI-MSI with ion mobility separation to spatially localize and structurally identify acylcarnitines and a variety of lipid species present in breast tumor xenograft models. PMID:22930811

  10. Complement inhibitor CSMD1 acts as tumor suppressor in human breast cancer

    PubMed Central

    Escudero-Esparza, Astrid; Okroj, Marcin; Owen, Sioned; Jirström, Karin; Orimo, Akira; Jiang, Wen G.; Pietras, Kristian; Blom, Anna M.

    2016-01-01

    Human CUB and Sushi multiple domains 1 (CSMD1) is a membrane-bound complement inhibitor suggested to act as a putative tumor suppressor gene, since allelic loss of this region encompassing 8p23 including CSMD1 characterizes various malignancies. Here, we assessed the role of CSMD1 as a tumor suppressor gene in the development of breast cancer in vitro and in vivo. We found that human breast tumor tissues expressed CSMD1 at lower levels compared to that in normal mammary tissues. The decreased expression of CSMD1 was linked to a shorter overall survival of breast cancer patients. We also revealed that expression of CSMD1 in human breast cancer cells BT-20 and MDA-MB-231 significantly inhibited their malignant phenotypes, including migration, adhesion and invasion. Conversely, stable silencing of CSMD1 expression in T47D cells enhanced cancer cell migratory, adherent and clonogenic abilities. Moreover, expression of CSMD1 in the highly invasive MDA-MB-231 cells diminished their signaling potential as well as their stem cell-like properties as assessed by measurement of aldehyde dehydrogenase activity. In a xenograft model, expression of CSMD1 blocked the ability of cancer cells to metastasize to secondary sites in vivo, likely via inhibiting local invasion but not the extravasation into distant tissues. Taken together, these findings demonstrate the role of CSMD1 as a tumor suppressor gene in breast cancer. PMID:27764775

  11. Combination of erlotinib and a PARP inhibitor inhibits growth of A2780 tumor xenografts due to increased autophagy

    PubMed Central

    Sui, Hongying; Shi, Caixia; Yan, Zhipeng; Li, Hucheng

    2015-01-01

    Background Ovarian cancer is the leading cause of death in women with gynecological malignancy worldwide. Despite multiple new approaches to treatment, relapse remains almost inevitable in patients with advanced disease. The poor outcome of advanced ovarian cancer treated with conventional therapy stimulated the search for new strategies to improve therapeutic efficacy. Although epidermal growth factor receptor (EGFR) and poly(ADP-ribose) polymerase (PARP) inhibitors have known activity in advanced ovarian cancer, the effect of combined therapy against EGFR and PARP in this population has not been reported. In the current study, we investigated the mechanisms of erlotinib used alone or in combination with olaparib (AZD2281), a potent inhibitor of PARP, in an EGFR-overexpressing ovarian tumor xenograft model. Methods A2780 (EGFR-overexpressing, BRCA1/2 wild-type) cells were subcutaneously injected into nude mice, which were then randomly assigned to treatment with vehicle, erlotinib, AZD2281, or erlotinib + AZD2281, for up to 3 weeks. All mice were then sacrificed and tumor tissues were subjected to Western blot analysis and monodansylcadervarine staining (for analysis of autophagy). Results Erlotinib could slightly inhibit growth of A2780 tumor xenografts, and AZD2281 alone had similar effects on tumor growth. However, the combination treatment had a markedly enhanced antitumor effect. Western blot analysis revealed that treatment with erlotinib could significantly reduce the phosphorylation level of ERK1/2 and AKT in A2780 tumor tissue. Of interest, monodansylcadervarine staining showed that the autophagic effects were substantially enhanced when the agents were combined, which may be due to downregulation of apoptosis. Conclusion These results suggest that combination of a selective EGFR inhibitor and a PARP inhibitor is effective in ovarian cancer A2780 xenografts, and depends on enhanced autophagy. PMID:26124641

  12. The somatostatin analog 188Re-P2045 inhibits the growth of AR42J pancreatic tumor xenografts.

    PubMed

    Nelson, Carol A; Azure, Michael T; Adams, Christopher T; Zinn, Kurt R

    2014-12-01

    P2045 is a peptide analog of somatostatin with picomolar affinity for the somatostatin receptor subtype 2 (SSTR2) upregulated in some pancreatic tumors. Studies were conducted in rat AR42J pancreatic tumor xenograft mice to determine whether (188)Re-P2045 could inhibit the growth of pancreatic cancer in an animal model. (188)Re-P2045 was intravenously administered every 3 d for 16 d to nude mice with AR42J tumor xenografts that were approximately 20 mm(3) at study initiation. Tumor volumes were recorded throughout the dosing period. At necropsy, all tissues were assessed for levels of radioactivity and evaluated for histologic abnormalities. Clinical chemistry and hematology parameters were determined from terminal blood samples. The affinity of nonradioactive (185/187)Re-P2045 for somatostatin receptors was compared in human NCI-H69 and rat AR42J tumor cell membranes expressing predominantly SSTR2. In the 1.85- and 5.55-MBq groups, tumor growth was inhibited in a dose-dependent fashion. In the 11.1-MBq group, tumor growth was completely inhibited throughout the dosing period and for 12 d after the last administered dose. The radioactivity level in tumors 4 h after injection was 10 percentage injected dose per gram, which was 2-fold higher than in the kidneys. (188)Re-P2045 was well tolerated in all dose groups, with no adverse clinical, histologic, or hematologic findings. The nonradioactive (185/187)Re-P2045 bound more avidly (0.2 nM) to SSTR2 in human than rat tumor membranes, suggesting that these studies are relevant to human studies. (188)Re-P2045 is a promising therapeutic candidate for patients with somatostatin receptor-positive cancer. © 2014 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  13. Tumor Tension Induces Persistent Inflammation and Promotes Breast Cancer Aggression

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-14-1-0056 TITLE: Tumor Tension Induces Persistent Inflammation and Promotes Breast Cancer Aggression PRINCIPAL...to 09-29-2016 4. TITLE AND SUBTITLE Tumor Tension Induces Persistent Inflammation and Promotes Breast Cancer Aggression 5a. CONTRACT NUMBER 5b...previously established a positive correlation between a fibrotic phenotype in human breast tumors — especially the HER2 and Basal-like breast cancer subtypes

  14. Tumor priming by Apo2L/TRAIL reduces interstitial fluid pressure and enhances efficacy of liposomal gemcitabine in a patient derived xenograft tumor model.

    PubMed

    Hylander, Bonnie L; Sen, Arindam; Beachy, Sarah H; Pitoniak, Rose; Ullas, Soumya; Gibbs, John F; Qiu, Jingxin; Prey, Joshua D; Fetterly, Gerald J; Repasky, Elizabeth A

    2015-11-10

    Interstitial fluid pressure (IFP) is elevated in tumors and high IFP, a negative cancer prognosticator, is known to limit the uptake and efficacy of anti-tumor therapeutics. Approaches that alter the tumor microenvironment and enhance uptake of therapeutics are collectively referred to as tumor "priming". Here we show that the cytotoxic biological therapy Apo2L/TRAIL can prime the tumor microenvironment and significantly lower IFP in three different human tumor xenograft models (Colo205, MiaPaca-2 and a patient gastrointestinal adenocarcinoma tumor xenograft). We found that a single dose of Apo2L/TRAIL resulted in a wave of apoptosis which reached a maximum at 8h post-treatment. Apoptotic debris subsequently disappeared concurrent with an increase in macrophage infiltration. By 24h post-treatment, treated tumors appeared less condensed with widening of the stromal areas which increased at 48 and 72h. Analysis of tumor vasculature demonstrated a significant increase in overall vessel size at 48 and 72h although the number of vessels did not change. Notably, IFP was significantly reduced in these tumors by 48h after Apo2L/TRAIL treatment. Administration of gemcitabine at this time resulted in increased tumor uptake of both gemcitabine and liposomal gemcitabine and significantly improved anti-tumor efficacy of liposomal gemcitabine. These results suggest that Apo2L/TRAIL has a potential as a tumor priming agent and provides a rationale for developing a sequencing schema for combination therapy such that an initial dose of Apo2L/TRAIL would precede administration of gemcitabine or other therapies.

  15. IGFBP7 reduces breast tumor growth by induction of senescence and apoptosis pathways.

    PubMed

    Benatar, Tania; Yang, Wenyi; Amemiya, Yutaka; Evdokimova, Valentina; Kahn, Harriette; Holloway, Claire; Seth, Arun

    2012-06-01

    Insulin-like growth factor binding protein 7 (IGFBP7) has been shown to be a tumor suppressor in a variety of cancers. We previously have shown that IGFBP7 expression is inversely correlated with disease progression and poor outcome in breast cancer. Overexpression of IGFBP7 in MDA-MB-468, a triple-negative breast cancer (TNBC) cell line, resulted in inhibition of growth and migration. Xenografted tumors bearing ectopic IGFBP7 expression were significantly growth-impaired compared to IGFBP7-negative controls, which suggested that IGFBP7 treatment could inhibit breast cancer cell growth. To confirm this notion, 14 human patient primary breast tumors were analyzed by qRTPCR for IGFBP7 expression. The TNBC tumors expressed the lowest levels of IGFBP7 expression, which also correlated with higher tumorigenicity in mice. Furthermore, when breast cancer cell lines were treated with IGFBP7, only the TNBC cell lines were growth inhibited. Treatment of NOD/SCID mice harboring xenografts of TNBC cells with IGFBP7 systemically every 3-4 days inhibited tumorigenesis, with associated anti-angiogenic effects, together with increased apoptosis. Upon examining the mechanism of IGFBP7-mediated growth inhibition in TNBC cells, we found that cells not only were arrested in G1 phase of the cell cycle but also underwent senescence as a result of treatment with IGFBP7. Interestingly, IGFBP7 treatment was also associated with strong activation of the stress-associated p38 MAPK pathway, together with upregulation of p53 and the cyclin-dependent protein kinase (CDK) inhibitor, p21(cip1). Prolonged treatment of cells with IGFBP7 resulted in increased cell death, marked by an increase in apoptotic cells and associated cleaved PARP. This is the first study showing that exogenous IGFBP7 inhibits TNBC cell growth both in vitro and in vivo. Taken together, these results suggest IGFBP7 treatment might have therapeutic potential for TNBC.

  16. Tumor-Penetrating Nanosystem Strongly Suppresses Breast Tumor Growth.

    PubMed

    Sharma, Shweta; Kotamraju, Venkata Ramana; Mölder, Tarmo; Tobi, Allan; Teesalu, Tambet; Ruoslahti, Erkki

    2017-03-08

    Antiangiogenic and vascular disrupting compounds have shown promise in cancer therapy, but tend to be only partially effective. We previously reported a potent theranostic nanosystem that was highly effective in glioblastoma and breast cancer mouse models, retarding tumor growth and producing some cures [ Agemy , L. et al. Proc. Natl. Acad. Sci. U.S.A. 2011 , 108 , 17450 - 17455 . Agemy , L. et al. Mol. Ther. 2013 , 21 , 2195 - 2204 .]. The nanosystem consists of iron oxide NPs ("nanoworms") coated with a composite peptide with tumor-homing and pro-apoptotic domains. The homing component targets tumor vessels by binding to p32/gC1qR at the surface or tumor endothelial cells. We sought to further improve the efficacy nanosystem by searching for an optimally effective homing peptide that would also incorporate a tumor-penetrating function. To this effect, we tested a panel of candidate p32 binding peptides with a sequence motif that conveys tumor-penetrating activity (CendR motif). We identified a peptide designated as Linear TT1 (Lin TT1) (sequence: AKRGARSTA) as most effective in causing tumor homing and penetration of the nanosystem. This peptide had the lowest affinity for p32 among the peptides tested. The low affinity may have moderated the avidity effect from the multivalent presentation on nanoparticles (NPs), such that the NPs avoid getting trapped by the so-called "binding-site barrier", which can hinder tissue penetration of compounds with a high affinity for their receptors. Treatment of breast cancer mice with the LinTT1 nanosystem showed greatly improved efficacy compared to the original system. These results identify a promising treatment modality and underscore the value of tumor penetration effect in improving the efficacy tumor treatment.

  17. Spatial and temporal mapping of heterogeneity in liposome uptake and microvascular distribution in an orthotopic tumor xenograft model.

    PubMed

    Ekdawi, Sandra N; Stewart, James M P; Dunne, Michael; Stapleton, Shawn; Mitsakakis, Nicholas; Dou, Yannan N; Jaffray, David A; Allen, Christine

    2015-06-10

    Existing paradigms in nano-based drug delivery are currently being challenged. Assessment of bulk tumor accumulation has been routinely considered an indicative measure of nanomedicine potency. However, it is now recognized that the intratumoral distribution of nanomedicines also impacts their therapeutic effect. At this time, our understanding of the relationship between the bulk (i.e., macro-) tumor accumulation of nanocarriers and their intratumoral (i.e., micro-) distribution remains limited. Liposome-based drug formulations, in particular, suffer from diminished efficacy in vivo as a result of transport-limiting properties, combined with the heterogeneous nature of the tumor microenvironment. In this report, we perform a quantitative image-based assessment of macro- and microdistribution of liposomes. Multi-scalar assessment of liposome distribution was enabled by a stable formulation which co-encapsulates an iodinated contrast agent and a near-infrared fluorescence probe, for computed tomography (CT) and optical microscopy, respectively. Spatio-temporal quantification of tumor uptake in orthotopic xenografts was performed using CT at the bulk tissue level, and within defined sub-volumes of the tumor (i.e., rim, periphery and core). Tumor penetration and relative distribution of liposomes were assessed by fluorescence microscopy of whole tumor sections. Microdistribution analysis of whole tumor images exposed a heterogeneous distribution of both liposomes and tumor vasculature. Highest levels of liposome uptake were achieved and maintained in the well-vascularized tumor rim over the study period, corresponding to a positive correlation between liposome and microvascular density. Tumor penetration of liposomes was found to be time-dependent in all regions of the tumor however independent of location in the tumor. Importantly, a multi-scalar comparison of liposome distribution reveals that macro-accumulation in tissues (e.g., blood, whole tumor) may not reflect

  18. TRIM28 multi-domain protein regulates cancer stem cell population in breast tumor development

    PubMed Central

    Czerwińska, Patrycja; Shah, Parantu K.; Tomczak, Katarzyna; Klimczak, Marta; Mazurek, Sylwia; Sozańska, Barbara; Biecek, Przemysław; Korski, Konstanty; Filas, Violetta; Mackiewicz, Andrzej; Andersen, Jannik N.; Wiznerowicz, Maciej

    2017-01-01

    The expression of Tripartite motif-containing protein 28 (TRIM28)/Krüppel-associated box (KRAB)-associated protein 1 (KAP1), is elevated in at least 14 tumor types, including solid and hematopoietic tumors. High level of TRIM28 is associated with triple-negative subtype of breast cancer (TNBC), which shows higher aggressiveness and lower survival rates. Interestingly, TRIM28 is essential for maintaining the pluripotent phenotype in embryonic stem cells. Following on that finding, we evaluated the role of TRIM28 protein in the regulation of breast cancer stem cells (CSC) populations and tumorigenesis in vitro and in vivo. Downregulation of TRIM28 expression in xenografts led to deceased expression of pluripotency and mesenchymal markers, as well as inhibition of signaling pathways involved in the complex mechanism of CSC maintenance. Moreover, TRIM28 depletion reduced the ability of cancer cells to induce tumor growth when subcutaneously injected in limiting dilutions. Our data demonstrate that the downregulation of TRIM28 gene expression reduced the ability of CSCs to self-renew that resulted in significant reduction of tumor growth. Loss of function of TRIM28 leads to dysregulation of cell cycle, cellular response to stress, cancer cell metabolism, and inhibition of oxidative phosphorylation. All these mechanisms directly regulate maintenance of CSC population. Our original results revealed the role of the TRIM28 in regulating the CSC population in breast cancer. These findings may pave the way to novel and more effective therapies targeting cancer stem cells in breast tumors. PMID:27845900

  19. RGD-conjugated PLA-PLL nanoparticles targeting to Bacp-37 breast cancer xenografts in vivo.

    PubMed

    Liu, Peifeng; Qi, Xuelian; Sun, Ying; Wang, Hongzhi; Li, Yaogang; Duan, Yourong

    2011-12-01

    Targeted delivery carriers are receiving considerable attention, the development of a more precise targeted delivery carrier is critical for the advancement of cancer chemotherapy. In this study, we evaluated the effects of RGD-conjugated poly (lactic acid-co-lysine)-(Arginine-Glycine-Aspartic) nanoparticles (PLA-PLL-RGD NPs) on targeted delivery to Bacp-37 breast cancer bearing mice. PLA-PLL-RGD NPs were prepared by using the emulsion-solvent evaporation method. A subsequent MTT assay indicated that the NPs were non-toxic and had good biocompatibility. In vitro, the results of Confocal Laser Scanning Microscope (CLSM) and FAC Scan flow cytometry (FACS) indicated that the PLA-PLL-RGD NPs can bind more significantly to human umbilical vein endothelial cells, compared to PLA-PLL NPs. In vivo, the results of target imaging and biodistribution showed that PLA-PLL-RGD can significantly target to tumor of Bacp-37 breast cancer bearing mice. These results demonstrated that PLA-PLL-RGD NPs can effectively enhance targeted efficiency in vivo, and have the potential to be used as targeted delivery carrier.

  20. Comparative analyses of gene copy number and mRNA expression in GBM tumors and GBM xenografts

    SciTech Connect

    Hodgson, J. Graeme; Yeh, Ru-Fang; Ray, Amrita; Wang, Nicholas J.; Smirnov, Ivan; Yu, Mamie; Hariono, Sujatmi; Silber, Joachim; Feiler, Heidi S.; Gray, Joe W.; Spellman, Paul T.; Vandenberg, Scott R.; Berger, Mitchel S.; James, C. David

    2009-04-03

    Development of model systems that recapitulate the molecular heterogeneity observed among glioblastoma multiforme (GBM) tumors will expedite the testing of targeted molecular therapeutic strategies for GBM treatment. In this study, we profiled DNA copy number and mRNA expression in 21 independent GBM tumor lines maintained as subcutaneous xenografts (GBMX), and compared GBMX molecular signatures to those observed in GBM clinical specimens derived from the Cancer Genome Atlas (TCGA). The predominant copy number signature in both tumor groups was defined by chromosome-7 gain/chromosome-10 loss, a poor-prognosis genetic signature. We also observed, at frequencies similar to that detected in TCGA GBM tumors, genomic amplification and overexpression of known GBM oncogenes, such as EGFR, MDM2, CDK6, and MYCN, and novel genes, including NUP107, SLC35E3, MMP1, MMP13, and DDX1. The transcriptional signature of GBMX tumors, which was stable over multiple subcutaneous passages, was defined by overexpression of genes involved in M phase, DNA replication, and chromosome organization (MRC) and was highly similar to the poor-prognosis mitosis and cell-cycle module (MCM) in GBM. Assessment of gene expression in TCGA-derived GBMs revealed overexpression of MRC cancer genes AURKB, BIRC5, CCNB1, CCNB2, CDC2, CDK2, and FOXM1, which form a transcriptional network important for G2/M progression and/or checkpoint activation. Our study supports propagation of GBM tumors as subcutaneous xenografts as a useful approach for sustaining key molecular characteristics of patient tumors, and highlights therapeutic opportunities conferred by this GBMX tumor panel for testing targeted therapeutic strategies for GBM treatment.

  1. Xanthatin, a novel potent inhibitor of VEGFR2 signaling, inhibits angiogenesis and tumor growth in breast cancer cells.

    PubMed

    Yu, Yao; Yu, Jing; Pei, Chong Gang; Li, Yun Yan; Tu, Ping; Gao, Gui Ping; Shao, Yi

    2015-01-01

    Anti-angiogenesis targeting vascular endothelial growth factor receptor 2 (VEGFR2) has emerged as an important tool for cancer treatment. In this study, we described a novel VEGFR2 inhibitor, xanthatin, which inhibits tumor angiogenesis and growth. The biochemical profiles of xanthatin were investigated using kinase assay, migration assay, tube formation, Matrigel plug assay, western blot, immunofluorescence and human tumor xenograft model. Xanthatin significantly inhibited growth, migration and tube formation of human umbilical vascular endothelial cell as well as inhibited vascular endothelial growth factor (VEGF)-stimulated angiogenesis. In addition, it inhibited VEGF-induced phosphorylation of VEGFR2 and its downstream signaling regulator. Moreover, xanthatin directly inhibit proliferation of breast cancer cells MDA-MB-231. Oral administration of xanthatin could markedly inhibit human tumor xenograft growth and decreased microvessel densities (MVD) in tumor sections. Taken together, these preclinical evaluations suggest that xanthatin inhibits angiogenesis and may be a promising anticancer drug candidate.

  2. Cytokine pattern of the breast tumor supernatant.

    PubMed

    Autenshlyus, A I; Kunts, T A; Karpukhina, K V; Mikhaylova, E S; Varaksin, N A; Marinkin, I O; Lyakhovich, V V

    2016-09-01

    Cytokine production was evaluated in supernatants of cultured tumor cells that were obtained by biopsy of the breast invasive ductal carcinoma (IDC) and breast fibroadenoma (FA) and grown in vitro. In the IDC supernatants, the concentrations of pro-inflammatory (pro-oncogenic) cytokines IL-17, IL-18, and IFNγ and of IL-1 receptor antagonist were significantly higher than in the FA cell supernatants. The concentrations of anti-inflammatory cytokine IL-10 and MCP-1 protein in supernatants of IDC cells were significantly lower than those determined in FA supernatants.

  3. Gene mutations in primary tumors and corresponding patient-derived xenografts derived from non-small cell lung cancer.

    PubMed

    Hao, Chuncheng; Wang, Li; Peng, Shaohua; Cao, Mengru; Li, Hongyu; Hu, Jing; Huang, Xiao; Liu, Wei; Zhang, Hui; Wu, Shuhong; Pataer, Apar; Heymach, John V; Eterovic, Agda Karina; Zhang, Qingxiu; Shaw, Kenna R; Chen, Ken; Futreal, Andrew; Wang, Michael; Hofstetter, Wayne; Mehran, Reza; Rice, David; Roth, Jack A; Sepesi, Boris; Swisher, Stephen G; Vaporciyan, Ara; Walsh, Garrett L; Johnson, Faye M; Fang, Bingliang

    2015-02-01

    Molecular annotated patient-derived xenograft (PDX) models are useful for the preclinical investigation of anticancer drugs and individualized anticancer therapy. We established 23 PDXs from 88 surgical specimens of lung cancer patients and determined gene mutations in these PDXs and their paired primary tumors by ultradeep exome sequencing on 202 cancer-related genes. The numbers of primary tumors with deleterious mutations in TP53, KRAS, PI3KCA, ALK, STK11, and EGFR were 43.5%, 21.7%, 17.4%, 17.4%, 13.0%, and 8.7%, respectively. Other genes with deleterious mutations in ≥3 (13.0%) primary tumors were MLL3, SETD2, ATM, ARID1A, CRIPAK, HGF, BAI3, EP300, KDR, PDGRRA and RUNX1. Of 315 mutations detected in the primary tumors, 293 (93%) were also detected in their corresponding PDXs, indicating that PDXs have the capacity to recapitulate the mutations in primary tumors. Nevertheless, a substantial number of mutations had higher allele frequencies in the PDXs than in the primary tumors, or were not detectable in the primary tumor, suggesting the possibility of tumor cell enrichment in PDXs or heterogeneity in the primary tumors. The molecularly annotated PDXs generated from this study could be useful for future translational studies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Circulating tumor cells in breast cancer

    PubMed Central

    Pukazhendhi, Geetha; Glück, Stefan

    2014-01-01

    Circulating tumor cell (CTC) measurement in peripheral blood of patients with breast cancer offers prognostic information. In this review, we will try to identify evidence that could be used for prognosis, predictive power to draw this tool to clinical utility. We reviewed 81 manuscripts, and categorized those in discovery datasets, prognostic factors in metastatic breast cancer, identification of clinical utility in early breast cancer and in novel approaches. With each patient responding differently to chemotherapy, more efficient markers would improve clinical outcome. Current CTC diagnostic techniques use epithelial markers predominantly; however, the most appropriate method is the measurement of circulating DNA. It has been hypothesized that micrometastasis occurs early in the development of tumors. That implies the presence of CTCs in nonmetastatic setting. The origin of stimulus for malignant transformation is yet unknown. The role of microenvironment as a stimulus is also being investigated. It has been shown that CTCs vary in numbers with chemotherapy. The markers, which are followed-up in the primary tumors, are also being studied on the CTCs. There is discordance of the human epidermal growth factor receptor-2 status between the primary tumor and CTCs. This review summarizes our current knowledge about the CTCs. With genetic profiling and molecular characterization of CTCs, it is possible to overcome the diagnostic difficulties. Evidence for clinical utility of CTC as prognostic and predictive marker is increasing. Appropriate patient stratification according to CTC determination among other tests, would make personalized cancer therapy more feasible. PMID:25191136

  5. Phyllodes tumor of the breast: an update.

    PubMed

    Tse, Gary M K; Niu, Yun; Shi, Hui-Juan

    2010-01-01

    Phyllodes tumor is an uncommon biphasic breast tumor, with the ability to recur and metastasize, and it behaves biologically like a stromal neoplasm. Traditionally, phyllodes tumors are graded by the use of a set of histologic data into benign, borderline, and malignant. In most series, all phyllodes tumors may recur, but only the borderline and malignant phyllodes tumors metastasize. On the basis of histologic features, prediction of behavior is difficult. The expression of many biological markers, including p53, hormone receptors, proliferation markers, angiogenesis group of markers, c-kit, CD10 and epidermal growth factor receptor have been explored, and many have been shown to be variably expressed, depending on the grade of the tumor. These markers are, however, of limited value in predicting the behavior of the tumor. Recently investigators have reported a plethora of genetic changes in phyllodes tumors, the most consistent of which seems to be 1q gain by comparative genomic hybridization. Some candidate genes have been mapped to various sites, and preliminary data suggest that some of these changes may be related to recurrence. It is foreseeable that more exciting data will be generated to help us to understand the etiology and pathogenesis of phyllodes tumor.

  6. Evaluation of Novel Agents Which Target Neovasculature of Breast Tumors

    DTIC Science & Technology

    2006-04-01

    DAMD17-02-1-0457 TITLE: Evaluation of Novel Agents Which Target Neovasculature of Breast Tumors PRINCIPAL INVESTIGATOR: Michael G...Which Target Neovasculature of Breast Tumors 5b. GRANT NUMBER DAMD17-02-1-0457 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER... breast model resulted in significant delay of tumor growth, by ~50%. In addition, tumors completely regressed in 3/6 (50%) of treated mice. In the

  7. Activation of PI3K/Akt/mTOR signaling in the tumor stroma drives endocrine therapy-dependent breast tumor regression

    PubMed Central

    Polo, María Laura; Riggio, Marina; May, María; Rodríguez, María Jimena; Perrone, María Cecilia; Stallings-Mann, Melody; Kaen, Diego; Frost, Marlene; Goetz, Matthew; Boughey, Judy; Lanari, Claudia; Radisky, Derek; Novaro, Virginia

    2015-01-01

    Improved efficacy of neoadjuvant endocrine-targeting therapies in luminal breast carcinomas could be achieved with optimal use of pathway targeting agents. In a mouse model of ductal breast carcinoma we identify a tumor regressive stromal reaction that is induced by neoadjuvant endocrine therapy. This reparative reaction is characterized by tumor neovascularization accompanied by infiltration of immune cells and carcinoma-associated fibroblasts that stain for phosphorylated ribosomal protein S6 (pS6), downstream the PI3K/Akt/mTOR pathway. While tumor variants with higher PI3K/Akt/mTOR activity respond well to a combination of endocrine and PI3K/Akt/mTOR inhibitors, tumor variants with lower PI3K/Akt/mTOR activity respond more poorly to the combination therapy than to the endocrine therapy alone, associated with inhibition of stromal pS6 and the reparative reaction. In human breast cancer xenografts we confirm that such differential sensitivity to therapy is primarily determined by the level of PI3K/Akt/mTOR in tumor cells. We further show that the clinical response of breast cancer patients undergoing neoadjuvant endocrine therapy is associated with the reparative stromal reaction. We conclude that tumor level and localization of pS6 are associated with therapeutic response in breast cancer and represent biomarkers to distinguish which tumors will benefit from the incorporation of PI3K/Akt/mTOR inhibitors with neoadjuvant endocrine therapy. PMID:26098779

  8. Pharmacodynamics of DT-IgG, a dual-targeting antibody against VEGF-EGFR, in tumor xenografted mice.

    PubMed

    Hurwitz, Selwyn J; Zhang, Hongzheng; Yun, Sujin; Batuwangala, Thil D; Steward, Michael; Holmes, Steve D; Rycroft, Daniel; Pan, Lin; Tighiouart, Mourad; Shin, Hyung Ju C; Koenig, Lydia; Wang, Yuxiang; Chen, Zhuo Georgia; Shin, Dong M

    2012-03-01

    DT-IgG is a fully humanized dual-target therapeutic antibody being developed to simultaneously target epidermal growth factor receptor (EGFR) and vascular endothelial growth factor (VEGF), important signaling molecules for tumor growth. The antitumor pharmacodynamics (PD) of DT-IgG was studied in nude mice bearing human tumor xenografts with different EGFR and VEGF expressions and K-ras oncogene status and compared with bevacizumab, cetuximab and bevacizumab + cetuximab. Mice bearing human oral squamous cell carcinoma (Tu212), lung adenocarcinoma (A549), or colon cancer (GEO) subcutaneous xenografts were administered with the antibodies intraperitoneally (i.p.), and tumor volumes were measured versus time. Nonlinear mixed effects modeling (NONMEM) was used to study drug potencies (IC(50)) and variations in tumor growth. The PD models adequately described tumor responses for the antibody dose regimens. In vivo IC(50) values varied with EGFR and K-ras status. DT-IgG had a similar serum t (1/2) as cetuximab (~1.7 vs. 1.5 day), was more rapid than bevacizumab (~6 day), and had the largest apparent distribution volume (DT-IgG > cetuximab > bevacizumab). The efficacy of DT-IgG was comparable to bevacizumab despite lower serum concentrations, but was less than bevacizumab + cetuximab. A lower IC(50) of DT-IgG partially compensated for lower serum concentrations than bevacizumab and cetuximab, but may require higher doses for comparable efficacy as the combination. The model adequately predicted variations of tumor response at the DT-IgG doses tested and could be used for targeting specific tumor efficacies for future testing.

  9. Comparison of planar, PET and well-counter measurements of total tumor radioactivity in a mouse xenograft model.

    PubMed

    Green, Michael V; Seidel, Jurgen; Williams, Mark R; Wong, Karen J; Ton, Anita; Basuli, Falguni; Choyke, Peter L; Jagoda, Elaine M

    2017-10-01

    Quantitative small animal radionuclide imaging studies are often carried out with the intention of estimating the total radioactivity content of various tissues such as the radioactivity content of mouse xenograft tumors exposed to putative diagnostic or therapeutic agents. We show that for at least one specific application, positron projection imaging (PPI) and PET yield comparable estimates of absolute total tumor activity and that both of these estimates are highly correlated with direct well-counting of these same tumors. These findings further suggest that in this particular application, PPI is a far more efficient data acquisition and processing methodology than PET. Forty-one athymic mice were implanted with PC3 human prostate cancer cells transfected with prostate-specific membrane antigen (PSMA (+)) and one additional animal (for a total of 42) with a control blank vector (PSMA (-)). All animals were injected with [(18)F] DCFPyl, a ligand for PSMA, and imaged for total tumor radioactivity with PET and PPI. The tumors were then removed, assayed by well counting for total radioactivity and the values between these methods intercompared. PET, PPI and well-counter estimates of total tumor radioactivity were highly correlated (R(2)>0.98) with regression line slopes near unity (0.95xenograft tumor radioactivity can be measured with PET or PPI with an accuracy comparable to well counting if certain experimental and pharmacokinetic conditions are met. In this particular application, PPI is significantly more efficient than PET in making these measurements. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Human amniotic fluid-derived stem cells expressing cytosine deaminase and thymidine kinase inhibits the growth of breast cancer cells in cellular and xenograft mouse models.

    PubMed

    Kang, N-H; Hwang, K-A; Yi, B-R; Lee, H J; Jeung, E-B; Kim, S U; Choi, K-C

    2012-06-01

    As human amniotic fluid-derived stem cells (hAFSCs) are capable of multiple lineage differentiation, extensive self-renewal and tumor targeting, they may be valuable for clinical anticancer therapies. In this study, we used hAFSCs as vehicles for targeted delivery of therapeutic suicide genes to breast cancer cells. hAFSCs were engineered to produce AF2.CD-TK cells in order to express two suicide genes encoding bacterial cytosine deaminase (CD) and herpes simplex virus thymidine kinase (HSV-TK) that convert non-toxic prodrugs, 5-fluorocytosine (5-FC) and mono-phosphorylate ganciclovir (GCV-MP), into cytotoxic metabolites, 5-fluorouracil (5-FU) and triphosphate ganciclovir (GCV-TP), respectively. In cell viability test in vitro, AF2.CD-TK cells inhibited the growth of MDA-MB-231 human breast cancer cells in the presence of the 5-FC or GCV prodrugs, or a combination of these two reagents. When the mixture of 5-FC and GCV was treated together, an additive cytotoxic effect was observed in the cell viability. In animal experiments using female BALB/c nude mouse xenografts, which developed by injecting MDA-MB-231 cells, treatment with AF2.CD-TK cells in the presence of 5-FC and GCV significantly reduced tumor volume and weight to the same extent seen in the mice treated with 5-FU. Histopathological and fluorescent staining assays further showed that AF2.CD-TK cells were located exactly at the site of tumor formation. Furthermore, breast tissues treated with AF2.CD-TK cells and two prodrugs maintained their normal structures (for example, the epidermis and reticular layers) while breast tissue structures in 5-FU-treated mice were almost destroyed by the potent cytotoxicity of the drug. Taken together, these results indicate that AF2.CD-TK cells can serve as excellent vehicles in a novel therapeutic cell-based gene-directed prodrug system to selectively target breast malignancies.

  11. Genomic Heterogeneity of Breast Tumor Pathogenesis

    PubMed Central

    Ellsworth, Rachel E.; Hooke, Jeffrey A.; Shriver, Craig D.; Ellsworth, Darrell L.

    2009-01-01

    Pathological grade is a useful prognostic factor for stratifying breast cancer patients into favorable (low-grade, well-differentiated tumors) and less favorable (high-grade, poorly-differentiated tumors) outcome groups. Under the current system of tumor grading, however, a large proportion of tumors are characterized as intermediate-grade, making determination of optimal treatments difficult. In an effort to increase objectivity in the pathological assessment of tumor grade, differences in chromosomal alterations and gene expression patterns have been characterized in low-grade, intermediate-grade, and high-grade disease. In this review, we outline molecular data supporting a linear model of progression from low-grade to high-grade carcinomas, as well as contradicting genetic data suggesting that low-grade and high-grade tumors develop independently. While debate regarding specific pathways of development continues, molecular data suggest that intermediate-grade tumors do not comprise an independent disease subtype, but represent clinical and molecular hybrids between low-grade and high-grade tumors. Finally, we discuss the clinical implications associated with different pathways of development, including a new clinical test to assign grade and guide treatment options. PMID:20689613

  12. Quercetin, Siamois 1 and Siamois 2 induce apoptosis in human breast cancer MDA-mB-435 cells xenograft in vivo.

    PubMed

    Dechsupa, Samarn; Kothan, Suchart; Vergote, Jackie; Leger, Gerard; Martineau, Antoine; Berangeo, Simone; Kosanlavit, Rachain; Moretti, Jean-Luc; Mankhetkorn, Samlee

    2007-01-01

    We sought to investigate the apoptosis-inducing activities of quercetin, Siamois 1, and Siamois 2 against invasive estrogen-receptor negative MDA-MB 435 cells xenografted in athymic nude mice. This study clearly demonstrated that these compounds exhibited apoptosis-inducing activities in cell culture system. Quercetin (20 microg/mL), Siamois 1 (100 microg/mL), and Siamois 2 (200 microg/mL) can induce apoptotic cell death by 40 +/-5%, 44 +/- 14 %, and 31 +/- 13 %, respectively. Two-fold of IC50 of these compounds were clearly found to induce apoptosis in breast tumor tissue which can be determined by 99mTc-Annexin V scintigraphy and histological staining. This is the first report that the apoptosis-inducing effects of quercetin, Siamois 1 and Siamois 2 on the MDA-MB 435 cell in vitro were effectively extrapolated to the in vivo situation. These compounds might be considered as a simple dietary supplement and with further clinical investigation for their use as a nutrition-based intervention in breast cancer treatment.

  13. Inhibition of breast tumor growth and angiogenesis by a medicinal herb: Ocimum sanctum

    PubMed Central

    Nangia-Makker, Pratima; Tait, Larry; Hogan, Victor; Shekhar, Malathy P.V.; Funasaka, Tatsuyoshi; Raz, Avraham

    2013-01-01

    Ocimum sanctum (OS) is a traditionally used medicinal herb, which shows anti-oxidant, anti-carcinogenic, radio-protective and free radical scavenging properties. So far no detailed studies have been reported on its effects on human cancers. Thus, we analyzed its effects on human breast cancer utilizing in vitro and in vivo methodologies. Aqueous extracts were prepared from the mature leaves of Ocimum sanctum cultivated devoid of pesticides. Tumor progression and angiogenesis related processes like chemotaxis, proliferation, apoptosis, 3-dimensional growth and morphogenesis, angiogenesis, and tumor growth were studied in the presence or absence of the extract and in some experiments a comparison was made with purified commercially available eugenol, apigenin and ursolic acid. Aqueous OS leaf extract inhibits proliferation, migration, anchorage independent growth, three dimensional growth and morphogenesis, and induction of COX-2 protein in breast cancer cells. A comparative analysis with eugenol, apigenin and ursolic acid showed that the inhibitory effects on chemotaxis and three dimensional morphogenesis of breast cancer cells were specific to OS extract. In addition, OS extracts also reduced tumor size and neoangiogenesis in a MCF10 DCIS.com xenograft model of human DCIS. This is the first detailed report showing that OS leaf extract may be of value as a breast cancer preventive and therapeutic agent and might be considered as additional additive in the arsenal of components aiming at combating breast cancer progression and metastasis. PMID:17437270

  14. Notch activation stimulates migration of breast cancer cells and promotes tumor growth

    PubMed Central

    2013-01-01

    Introduction Dysregulated NOTCH receptor activity has been implicated in breast cancer but the mechanisms by which NOTCH contributes to transformation are not yet clear, as it has context-dependent effects on the properties of transformed cells. Methods We have used various in vitro and in vivo carcinogenic models to analyze the impact of Notch signaling in the onset and progression of breast tumors. Results We found that ectopic expression of the Notch1 intracellular domain (N1ICD) in MCF-7 breast adenocarcinoma cell line caused reduction and delocalization of E-CADHERIN levels and increased migratory and invasive abilities. Notch inhibition in the invasive breast cancer cell line MDA-MB-231 resulted in increased E-CADHERIN expression and a parallel reduction in their invasive capacity. The growth of subcutaneous xenografts produced with MCF-7 cells was boosted after N1ICD induction, in a cell autonomous manner. In vivo Notch1 activation in the mammary gland using the MMTV-Cre driver caused the formation of papillary tumors that showed increased Hes1 and Hey1 expression and delocalized E-cadherin staining. Conclusions These results confirm NOTCH1 as a signal triggering epithelial-mesenchymal transition in epithelial cancer cells, which may have implications in tumor dissemination, metastasis and proliferation in vivo. The identification of specific factors interacting with NOTCH signaling could thus be relevant to fully understanding the role of NOTCH in breast neoplasia. PMID:23826634

  15. Estrogen-related receptor gamma promotes mesenchymal-to-epithelial transition and suppresses breast tumor growth.

    PubMed

    Tiraby, Claire; Hazen, Bethany C; Gantner, Marin L; Kralli, Anastasia

    2011-04-01

    Estrogen-related receptors (ERR), ERR alpha (ERRα) and ERR gamma (ERRγ), are orphan nuclear receptors implicated in breast cancer that function similarly in the regulation of oxidative metabolism genes. Paradoxically, in clinical studies, high levels of ERRα are associated with poor outcomes whereas high levels of ERRγ are associated with a favorable course. Recent studies suggest that ERRα may indeed promote breast tumor growth. The roles of ERRγ in breast cancer progression and how ERRα and ERRγ may differentially affect cancer growth are unclear. In mammary carcinoma cells that do not express endogenous ERRγ, we found that ectopic expression of ERRγ enhanced oxidative metabolism in vitro and inhibited the growth of tumor xenografts in vivo. In contrast, ectopic expression of the ERRα coactivator PGC-1α enhanced oxidative metabolism but did not affect tumor growth. Notably, ERRγ activated expression of a genetic program characteristic of mesenchymal-to-epithelial transition (MET). This program was apparent by changes in cellular morphology, upregulation of epithelial cell markers, downregulation of mesenchymal markers, and decreased cellular invasiveness. We determined that this program was also associated with upregulation of E-cadherin, which is activated directly by ERRγ. In contrast, PGC-1α activated only a subset of genes characteristic of the MET program and, unlike ERRγ, did not upregulate E-cadherin. In conclusion, these results show that ERRγ induces E-cadherin, promotes MET, and suppresses breast cancer growth. Our findings suggest that ERRγ agonists may have applications in the treatment of breast cancer.

  16. A Rare Breast Tumor: Dermatofibrosarcoma Protuberans

    PubMed Central

    Özcan, Tevhide Bilgen; Hacıhasanoğlu, Ezgi; Nazlı, Mehmet Ali; Aksoy, Şefika; Leblebici, Cem; Talu, Canan Kelten

    2016-01-01

    Dermatofibrosarcoma protuberans is a slow-growing, local aggressive fibrous tumor of the subcutaneous tissue, frequently seen in the proximal extremities and the trunk. Its occurrence in the breast is very rare. Herein, we present a female who presented with a breast mass, and aim to discuss pathological features and differential diagnosis of dermatofibrosarcoma protuberans. A 44-year-old female presented to our clinic with a mass on her breast. Physical examination revealed a 8×5.5 cm mass with multilobular nodules on the skin in the lower inner quadrant of her right breast. Her mammography revealed a hyperdense, 7.5×6.5 cm, well-demarcated, lobulated mass in the right breast, which caused nodules on the lower para-areolar portion of the breast skin. There was no axillary lymphadenopathy on both clinical and radiologic examinations. A core needle biopsy had been performed prior to her referral to our center, which revealed a ‘spindle cell lesion’. The patient underwent simple mastectomy. On macroscopic examination; the skin over the lesion appeared ulcerated, and there was a well-defined solid mass, which was pale white-tan on the cut surface. Microscopic examination revealed monotonous spindle cell proliferation arranged in storiform pattern within the collagenous stroma with irregular extensions into deep adipose tissue. There were no necrosis or nuclear pleomorphism. The mitotic rate was 2–3/10 HPF. Immunohistochemically tumor cells showed diffuse CD34 positivity, and S100, EMA and SMA negativity. Based on histopathological and immunohistochemical findings, the lesion was diagnosed as dermatofibrosarcoma protuberans. Local recurrence is expected in 20–50% of these cases. Its treatment requires complete surgical excision with wide margins. Distant metastases, although rare, have been reported.

  17. The Influence of Hypoxia and pH on Bioluminescence Imaging of Luciferase-Transfected Tumor Cells and Xenografts

    PubMed Central

    Khalil, Ashraf A.; Jameson, Mark J.; Broaddus, William C.; Lin, Peck Sun; Dever, Seth M.; Golding, Sarah E.; Rosenberg, Elizabeth; Valerie, Kristoffer; Chung, Theodore D.

    2013-01-01

    Bioluminescence imaging (BLI) is a relatively new noninvasive technology used for quantitative assessment of tumor growth and therapeutic effect in living animal models. BLI involves the generation of light by luciferase-expressing cells following administration of the substrate luciferin in the presence of oxygen and ATP. In the present study, the effects of hypoxia, hypoperfusion, and pH on BLI signal (BLS) intensity were evaluated in vitro using cultured cells and in vivo using a xenograft model in nude mice. The intensity of the BLS was significantly reduced in the presence of acute and chronic hypoxia. Changes in cell density, viability, and pH also affected BLS. Although BLI is a convenient non-invasive tool for tumor assessment, these factors should be considered when interpreting BLS intensity, especially in solid tumors that could be hypoxic due to rapid growth, inadequate blood supply, and/or treatment. PMID:23936647

  18. Patient-derived xenografts for childhood solid tumors: a valuable tool to test new drugs and personalize treatments.

    PubMed

    Zarzosa, P; Navarro, N; Giralt, I; Molist, C; Almazán-Moga, A; Vidal, I; Soriano, A; Segura, M F; Hladun, R; Villanueva, A; Gallego, S; Roma, J

    2017-01-01

    The use of preclinical models is essential in translational cancer research and especially important in pediatric cancer given the low incidence of each particular type of cancer. Cell line cultures have led to significant advances in cancer biology. However, cell lines have adapted to growth in artificial culture conditions, thereby undergoing genetic and phenotypic changes which may hinder the translational application. Tumor grafts developed in mice from patient tumor tissues, generally known as patient-derived xenografts (PDXs), are interesting alternative approaches to reproducing the biology of the original tumor. This review is focused on highlighting the interest of PDX models in pediatric cancer research and supporting strategies of personalized medicine. This review provides: (1) a description of the background of PDX in cancer, (2) the particular case of PDX in pediatric cancer, (3) how PDX can improve personalized medicine strategies, (4) new methods to increase engraftment, and, finally, (5) concluding remarks.

  19. The dual pathway inhibitor rigosertib is effective in direct-patient tumor xenografts of head and neck squamous cell carcinomas

    PubMed Central

    Anderson, Ryan T.; Keysar, Stephen B.; Bowles, Daniel W.; Glogowska, Magdalena J.; Astling, David P.; Morton, J. Jason; Le, Phuong; Umpierrez, Adrian; Eagles-Soukup, Justin; Gan, Gregory N.; Vogler, Brian W.; Sehrt, Daniel; Takimoto, Sarah M.; Aisner, Dara L.; Wilhelm, Francois; Frederick, Barbara A.; Varella-Garcia, Marileila; Tan, Aik-Choon; Jimeno, Antonio

    2013-01-01

    The dual pathway inhibitor rigosertib inhibits phosphoinositide 3-kinase (PI3K) pathway activation as well as polo-like kinase 1 (PLK1) activity across a broad spectrum of cancer cell lines. The importance of PIK3CA alterations in head and neck squamous cell cancer (HNSCC) has raised interest in exploring agents targeting PI3K, the product of PIK3CA. The genetic and molecular basis of rigosertib treatment response was investigated in a panel of 16 HNSCC cell lines, and direct patient tumor xenografts from 8 HNSCC patients (4 HPV16-positive). HNSCC cell lines and xenografts were characterized by pathway enrichment gene expression analysis, exon sequencing, gene copy number, western blotting, and IHC. Rigosertib had potent antiproliferative effects on 11 of the 16 HPV− HNSCC cell lines. Treatment sensitivity was confirmed in two cell lines using an orthotopic in vivo xenograft model. Growth reduction after rigosertib treatment was observed in 3/8 HNSCC direct patient tumor lines. The responsive tumor lines carried a combination of a PI3KCA activating event (amplification or mutation) and a p53 inactivating event (either HPV16-mediated or mutation-mediated TP53 inactivation). In this study, we evaluated the in vitro and in vivo efficacy of rigosertib in both HPV+ and HPV− HNSCCs focusing on inhibition of the PI3K pathway. Although consistent inhibition of the PI3K pathway was not evident in HNSCC, we identified a combination of PI3K/TP53 events necessary, but not sufficient for rigosertib-sensitivity. PMID:23873848

  20. Tubulin binding cofactor C (TBCC) suppresses tumor growth and enhances chemosensitivity in human breast cancer cells

    PubMed Central

    2010-01-01

    Background Microtubules are considered major therapeutic targets in patients with breast cancer. In spite of their essential role in biological functions including cell motility, cell division and intracellular transport, microtubules have not yet been considered as critical actors influencing tumor cell aggressivity. To evaluate the impact of microtubule mass and dynamics on the phenotype and sensitivity of breast cancer cells, we have targeted tubulin binding cofactor C (TBCC), a crucial protein for the proper folding of α and β tubulins into polymerization-competent tubulin heterodimers. Methods We developed variants of human breast cancer cells with increased content of TBCC. Analysis of proliferation, cell cycle distribution and mitotic durations were assayed to investigate the influence of TBCC on the cell phenotype. In vivo growth of tumors was monitored in mice xenografted with breast cancer cells. The microtubule dynamics and the different fractions of tubulins were studied by time-lapse microscopy and lysate fractionation, respectively. In vitro sensitivity to antimicrotubule agents was studied by flow cytometry. In vivo chemosensitivity was assayed by treatment of mice implanted with tumor cells. Results TBCC overexpression influenced tubulin fraction distribution, with higher content of nonpolymerizable tubulins and lower content of polymerizable dimers and microtubules. Microtubule dynamicity was reduced in cells overexpressing TBCC. Cell cycle distribution was altered in cells containing larger amounts of TBCC with higher percentage of cells in G2-M phase and lower percentage in S-phase, along with slower passage into mitosis. While increased content of TBCC had little effect on cell proliferation in vitro, we observed a significant delay in tumor growth with respect to controls when TBCC overexpressing cells were implanted as xenografts in vivo. TBCC overexpressing variants displayed enhanced sensitivity to antimicrotubule agents both in vitro and

  1. Tumor growth inhibition by olaparib in BRCA2 germline-mutated patient-derived ovarian cancer tissue xenografts.

    PubMed

    Kortmann, Ursula; McAlpine, Jessica N; Xue, Hui; Guan, Jun; Ha, Gavin; Tully, Sophie; Shafait, Sharaz; Lau, Alan; Cranston, Aaron N; O'Connor, Mark J; Huntsman, David G; Wang, Yuzhuo; Gilks, C Blake

    2011-02-15

    Most patients with ovarian carcinomas succumb to their disease and there is a critical need for improved therapeutic approaches. Carcinomas arising in BRCA mutation carriers display defective DNA double-strand break repair that can be therapeutically exploited by inhibition of PARP-1, a key enzyme in the repair of DNA single-strand breaks, creating synthetic lethality in tumor cells. To investigate synthetic lethality in vivo, we established a BRCA2 germline-mutated xenograft model that was developed directly from human ovarian cancer tissue, treated with the PARP inhibitor olaparib (AZD2281) alone and in combination with carboplatin. We show that olaparib alone and in combination with carboplatin greatly inhibit growth in BRCA2-mutated ovarian serous carcinoma. This effect was not observed in a serous carcinoma with normal BRCA function, showing a specific antitumor effect of olaparib in mutation carriers. Immunohistochemistry (cleaved caspase-3 and Ki-67 stains) of remnant tissue after olaparib treatment revealed significantly decreased proliferation and increased apoptotic indices in these tumors compared with untreated controls. Furthermore, olaparib-treated tumors showed highly reduced PARP-1 activity that correlated with olaparib levels. We established a BRCA2-mutated human ovarian cancer xenograft model suitable for experimental drug testing. The demonstrated in vivo efficacy of olaparib extends on the preclinical rationale for further clinical trials targeting ovarian cancer patients with BRCA mutations. ©2010 AACR.

  2. Convection-enhanced delivery of nanoliposomal CPT-11 (irinotecan) and PEGylated liposomal doxorubicin (Doxil) in rodent intracranial brain tumor xenografts

    PubMed Central

    Krauze, Michal T.; Noble, Charles O.; Kawaguchi, Tomohiro; Drummond, Daryl; Kirpotin, Dmitri B.; Yamashita, Yoji; Kullberg, Erika; Forsayeth, John; Park, John W.; Bankiewicz, Krystof S.

    2007-01-01

    We have previously shown that convection-enhanced delivery (CED) of highly stable nanoparticle/liposome agents encapsulating chemotherapeutic drugs is effective against intracranial rodent brain tumor xenografts. In this study, we have evaluated the combination of a newly developed nanoparticle/liposome containing the topoisomerase I inhibitor CPT-11 (nanoliposomal CPT-11 [nLs-CPT-11]), and PEGylated liposomal doxorubicin (Doxil) containing the topoisomerase II inhibitor doxorubicin. Both drugs were detectable in the CNS for more than 36 days after a single CED application. Tissue half-life was 16.7 days for nLs-CPT-11 and 10.9 days for Doxil. The combination of the two agents produced synergistic cytotoxicity in vitro. In vivo in U251MG and U87MG intracranial rodent xenograft models, CED of the combination was also more efficacious than either agent used singly. Analysis of the parameters involved in this approach indicated that tissue pharmacokinetics, tumor microanatomy, and biochemical interactions of the drugs all contributed to the therapeutic efficacy observed. These findings have implications for further clinical applications of CED-based treatment of brain tumors. PMID:17652269

  3. Convection-enhanced delivery of nanoliposomal CPT-11 (irinotecan) and PEGylated liposomal doxorubicin (Doxil) in rodent intracranial brain tumor xenografts.

    PubMed

    Krauze, Michal T; Noble, Charles O; Kawaguchi, Tomohiro; Drummond, Daryl; Kirpotin, Dmitri B; Yamashita, Yoji; Kullberg, Erika; Forsayeth, John; Park, John W; Bankiewicz, Krystof S

    2007-10-01

    We have previously shown that convection-enhanced delivery (CED) of highly stable nanoparticle/liposome agents encapsulating chemotherapeutic drugs is effective against intracranial rodent brain tumor xenografts. In this study, we have evaluated the combination of a newly developed nanoparticle/liposome containing the topoisomerase I inhibitor CPT-11 (nanoliposomal CPT-11 [nLs-CPT-11]), and PEGylated liposomal doxorubicin (Doxil) containing the topoisomerase II inhibitor doxorubicin. Both drugs were detectable in the CNS for more than 36 days after a single CED application. Tissue half-life was 16.7 days for nLs-CPT-11 and 10.9 days for Doxil. The combination of the two agents produced synergistic cytotoxicity in vitro. In vivo in U251MG and U87MG intracranial rodent xenograft models, CED of the combination was also more efficacious than either agent used singly. Analysis of the parameters involved in this approach indicated that tissue pharmacokinetics, tumor microanatomy, and biochemical interactions of the drugs all contributed to the therapeutic efficacy observed. These findings have implications for further clinical applications of CED-based treatment of brain tumors.

  4. Spontaneous formation of tumorigenic hybrids between breast cancer and multipotent stromal cells is a source of tumor heterogeneity.

    PubMed

    Rappa, Germana; Mercapide, Javier; Lorico, Aurelio

    2012-06-01

    Breast cancer progression involves cancer cell heterogeneity, with generation of invasive/metastatic breast cancer cells within populations of nonmetastatic cells of the primary tumor. Sequential genetic mutations, epithelial-to-mesenchymal transition, interaction with local stroma, and formation of hybrids between cancer cells and normal bone marrow-derived cells have been advocated as tumor progression mechanisms. We report herein the spontaneous in vitro formation of heterotypic hybrids between human bone marrow-derived multipotent stromal cells (MSCs) and two different breast carcinoma cell lines, MDA-MB-231 (MDA) and MA11. Hybrids showed predominantly mesenchymal morphological characteristics, mixed gene expression profiles, and increased DNA ploidy. Both MA11 and MDA hybrids were tumorigenic in immunodeficient mice, and some MDA hybrids had an increased metastatic capacity. Both in culture and as xenografts, hybrids underwent DNA ploidy reduction and morphological reversal to breast carcinoma-like morphological characteristics, while maintaining a mixed breast cancer-mesenchymal expression profile. Analysis of coding single-nucleotide polymorphisms by RNA sequencing revealed genetic contributions from both parental partners to hybrid tumors and metastasis. Because MSCs migrate and localize to breast carcinoma, our findings indicate that formation of MSC-breast cancer cell hybrids is a potential mechanism of the generation of invasive/metastatic breast cancer cells. Our findings reconcile the fusion theory of cancer progression with the common observation that breast cancer metastases are generally aneuploid, but not tetraploid, and are histopathologically similar to the primary neoplasm.

  5. Spontaneous Formation of Tumorigenic Hybrids between Breast Cancer and Multipotent Stromal Cells Is a Source of Tumor Heterogeneity

    PubMed Central

    Rappa, Germana; Mercapide, Javier; Lorico, Aurelio

    2012-01-01

    Breast cancer progression involves cancer cell heterogeneity, with generation of invasive/metastatic breast cancer cells within populations of nonmetastatic cells of the primary tumor. Sequential genetic mutations, epithelial-to-mesenchymal transition, interaction with local stroma, and formation of hybrids between cancer cells and normal bone marrow–derived cells have been advocated as tumor progression mechanisms. We report herein the spontaneous in vitro formation of heterotypic hybrids between human bone marrow–derived multipotent stromal cells (MSCs) and two different breast carcinoma cell lines, MDA-MB-231 (MDA) and MA11. Hybrids showed predominantly mesenchymal morphological characteristics, mixed gene expression profiles, and increased DNA ploidy. Both MA11 and MDA hybrids were tumorigenic in immunodeficient mice, and some MDA hybrids had an increased metastatic capacity. Both in culture and as xenografts, hybrids underwent DNA ploidy reduction and morphological reversal to breast carcinoma–like morphological characteristics, while maintaining a mixed breast cancer–mesenchymal expression profile. Analysis of coding single-nucleotide polymorphisms by RNA sequencing revealed genetic contributions from both parental partners to hybrid tumors and metastasis. Because MSCs migrate and localize to breast carcinoma, our findings indicate that formation of MSC–breast cancer cell hybrids is a potential mechanism of the generation of invasive/metastatic breast cancer cells. Our findings reconcile the fusion theory of cancer progression with the common observation that breast cancer metastases are generally aneuploid, but not tetraploid, and are histopathologically similar to the primary neoplasm. PMID:22542847

  6. Collision tumor with inflammatory breast carcinoma and malignant phyllodes tumor: a case report and literature review.

    PubMed

    Shin, Young Duck; Lee, Seul Kee; Kim, Kyu Sun; Park, Mi Ja; Kim, Joo Heon; Yim, Hyun Sun; Choi, Young Jin

    2014-01-08

    There have been some reports of coincidental presentation of breast carcinoma and phyllodes tumor in the same breast. Most of the cases were carcinoma that arose from a phyllodes tumor with a histologically identified transitional area, and they behaved less aggressively than the usually encountered carcinoma. Collision tumors are rare clinical entities in which two histologically distinct tumor types show involvement at the same site. The occurrence of these tumors in the breast is extremely rare. Here, we report a case of 45-year-old woman who had both invasive ductal carcinoma as the finding of inflammatory carcinoma and a malignant phyllodes tumor in the same breast. There was no evidence of a transitional area between the phyllodes tumor and the invasive ductal carcinoma. To our knowledge, this is the first report of a collision tumor of inflammatory breast carcinoma coincident with a malignant phyllodes tumor in same breast.

  7. The nuclear corepressor 1 and the thyroid hormone receptor β suppress breast tumor lymphangiogenesis.

    PubMed

    Martínez-Iglesias, Olaia; Olmeda, David; Alonso-Merino, Elvira; Gómez-Rey, Sara; González-López, Ana M; Luengo, Enrique; Soengas, María S; Palacios, José; Regadera, Javier; Aranda, Ana

    2016-11-29

    Vascular Endotelial Growth Factors C and D (VEGF-C and VEGF-D) are crucial regulators of lymphangiogenesis, a main event in the metastatic spread of breast cancer tumors. Although inhibition of lymphangiogenic gene expression might be a useful therapeutic strategy to restrict the progression of cancer, the factors involved in the transcriptional repression of these genes are still unknown. We have previously shown that Nuclear Receptor Corepressor 1 (NCoR) and the thyroid hormone receptor β1 (TRβ) inhibit tumor invasion. Here we show that these molecules repress VEGF-C and VEGF-D gene transcription in breast cancer cells, reducing lymphatic vessel density and sentinel lymph node invasion in tumor xenografts. The clinical significance of these results is stressed by the finding that NCoR and TRβ transcripts correlate negatively with those of the lymphangiogenic genes and the lymphatic vessel marker LYVE-1 in human breast tumors. Our results point to the use of NCoR and TRβ as potential biomarkers for diagnosis or prognosis in breast cancer and suggest that further studies of these molecules as potential targets for anti-lymphangiogenic therapy are warranted.

  8. The nuclear corepressor 1 and the thyroid hormone receptor β suppress breast tumor lymphangiogenesis

    PubMed Central

    Martínez-Iglesias, Olaia; Olmeda, David; Alonso-Merino, Elvira; Gómez-Rey, Sara; González-López, Ana M.; Luengo, Enrique; Soengas, María S.; Palacios, José; Regadera, Javier; Aranda, Ana

    2016-01-01

    Vascular Endotelial Growth Factors C and D (VEGF-C and VEGF-D) are crucial regulators of lymphangiogenesis, a main event in the metastatic spread of breast cancer tumors. Although inhibition of lymphangiogenic gene expression might be a useful therapeutic strategy to restrict the progression of cancer, the factors involved in the transcriptional repression of these genes are still unknown. We have previously shown that Nuclear Receptor Corepressor 1 (NCoR) and the thyroid hormone receptor β1 (TRβ) inhibit tumor invasion. Here we show that these molecules repress VEGF-C and VEGF-D gene transcription in breast cancer cells, reducing lymphatic vessel density and sentinel lymph node invasion in tumor xenografts. The clinical significance of these results is stressed by the finding that NCoR and TRβ transcripts correlate negatively with those of the lymphangiogenic genes and the lymphatic vessel marker LYVE-1 in human breast tumors. Our results point to the use of NCoR and TRβ as potential biomarkers for diagnosis or prognosis in breast cancer and suggest that further studies of these molecules as potential targets for anti-lymphangiogenic therapy are warranted. PMID:27806339

  9. Activated FXR Inhibits Leptin Signaling and Counteracts Tumor-promoting Activities of Cancer-Associated Fibroblasts in Breast Malignancy

    PubMed Central

    Giordano, Cinzia; Barone, Ines; Vircillo, Valentina; Panza, Salvatore; Malivindi, Rocco; Gelsomino, Luca; Pellegrino, Michele; Rago, Vittoria; Mauro, Loredana; Lanzino, Marilena; Panno, Maria Luisa; Bonofiglio, Daniela; Catalano, Stefania; Andò, Sebastiano

    2016-01-01

    Cancer-associated fibroblasts (CAFs), the principal components of the tumor stroma, play a central role in cancer development and progression. As an important regulator of the crosstalk between breast cancer cells and CAFs, the cytokine leptin has been associated to breast carcinogenesis. The nuclear Farnesoid X Receptor-(FXR) seems to exert an oncosuppressive role in different tumors, including breast cancer. Herein, we demonstrated, for the first time, that the synthetic FXR agonist GW4064, inhibiting leptin signaling, affects the tumor-promoting activities of CAFs in breast malignancy. GW4064 inhibited growth, motility and invasiveness induced by leptin as well as by CAF-conditioned media in different breast cancer cell lines. These effects rely on the ability of activated FXR to increase the expression of the suppressor of the cytokine signaling 3 (SOCS3) leading to inhibition of leptin-activated signaling and downregulation of leptin-target genes. In vivo xenograft studies, using MCF-7 cells alone or co-injected with CAFs, showed that GW4064 administration markedly reduced tumor growth. Interestingly, GW4064-treated tumors exhibited decreased levels of leptin-regulated proteins along with a strong staining intensity for SOCS3. Thus, FXR ligands might represent an emerging potential anti-cancer therapy able to block the tumor supportive role of activated fibroblasts within the breast microenvironment. PMID:26899873

  10. Drug Helps Fight Breast Tumors Tied to 'Cancer Genes'

    MedlinePlus

    ... Drug Helps Fight Breast Tumors Tied to 'Cancer Genes' Lynparza may offer a new treatment for women ... with breast cancer linked to BRCA1 and BRCA2 gene mutations, according to the study. Olaparib delayed cancer ...

  11. Malignant phyllodes tumor of the breast: a case study.

    PubMed

    Keim-Malpass, Jessica; Mills, Anne M; Showalter, Shayna L

    2014-10-01

    Malignant phyllodes tumors of the breast are rare, fast-growing tumors that can be difficult to diagnose. A case study is featured about a young adult patient who lacked insurance and received a delayed diagnosis of malignant phyllodes tumor of the breast. This article includes pertinent clinical and age-specific considerations for comprehensive management.

  12. [Papillary tumors of the breast].

    PubMed

    Hungermann, D; Decker, T; Bürger, H; Kersting, C; Böcker, W

    2006-09-01

    The term papilloma applies to benign proliferative epithelial breast lesions with a papillary architecture. The papillae in such lesions contain an arborizing fibrovascular core, glandular surface epithelium and a basal myoepithelial layer. A basement membrane encloses these structures. Papilloma may occur at any site in the ductal lobular system and according to its localization is subdivided into two types: solitary (central) papilloma which are located in the major nipple/subareolar ducts or large segmental ducts and multiple (peripheral) papillomas in cystically dilated terminal ductal lobular units (TDLU). Stromal changes, epithelial metaplasia and/or proliferations and neoplasia may alter the prototypical architecture. In a significant number of papillomas atypia can be identified which have to be classified as atypical proliferates of the ductal type. These lesions must be distinguished from the papillary type of ductal carcinoma in situ. Some 17% of all papilloma are associated with (synchronous) intraductal or invasive carcinoma, but these also act as an indicator for subsequent (metachronous) carcinoma. As a consequence, in minimally invasive biopsy papilloma has to be classified as B3 and usually has to be followed by surgical excision.

  13. Effects of nicotinamide and carbogen on oxygenation in human tumor xenografts measured with luminescense based fiber-optic probes.

    PubMed

    Bussink, J; Kaanders, J H; Strik, A M; van der Kogel, A J

    2000-10-01

    In head and neck cancer, addition of both carbogen breathing and nicotinamide to accelerated fractionated radiotherapy showed increased loco-regional control rates. An assay based on the measurement of changes in tumor pO(2) in response to oxygenation modification could be helpful for selecting patients for these new treatment approaches. The fiber-optic oxygen-sensing device, OxyLite, was used to measure changes in pO(2), at a single position in tumors, after treatment with nicotinamide and carbogen in three human xenograft tumor lines with different vascular architecture and hypoxic patterns. Pimonidazole was used as a marker of hypoxia and was analyzed with a digital image processing system. At the position of pO(2) measurement, half of the tumors showed a local increase in pO(2) after nicotinamide administration. Steep increases in pO(2) were measured in most tumors during carbogen breathing although the increase was less pronounced in tumor areas with a low pre-treatment pO(2). A trend towards a faster local response to carbogen breathing for nicotinamide pre-treated tumors was found in all three lines. There were significant differences in hypoxic fractions, based on pimonidazole binding, between the three tumor lines. There was no correlation between hypoxic marker binding and the response to carbogen breathing. Temporal changes in local pO(2) can be measured with the OxyLite. This system was used to quantitate the effects of oxygen modifying treatments. Rapid increases in pO(2) during carbogen breathing were observed in most tumor areas. The locally measured response to nicotinamide was smaller and more variable. Bio-reductive hypoxic cell marker binding in combination with OxyLite pO(2) determination gives spatial information about the distribution patterns of tumor hypoxia at the microscopic level together with the possibility to continuously measure changes in pO(2) in specific tumor areas.

  14. Blockade of PAR1 signaling with cell-penetrating pepducins inhibits Akt-survival pathways in breast cancer cells and suppresses tumor survival and metastasis

    PubMed Central

    Yang, Eric; Boire, Adrienne; Agarwal, Anika; Nguyen, Nga; O'Callaghan, Katie; Tu, Powen; Kuliopulos, Athan; Covic, Lidija

    2009-01-01

    Protease-activated receptor 1 (PAR1) is a G protein-coupled receptor that is not expressed in normal breast epithelia, but is up-regulated in invasive breast carcinomas. In the present study, we found that matrix metalloprotease-1 (MMP-1) robustly activates the PAR1-Akt survival pathway in breast carcinoma cells. This process is blocked by a cell-penetrating lipopeptide ‘pepducin’, P1pal-7, which is a potent inhibitor of cell viability in breast carcinoma cells expressing PAR1. Both a MMP-1 inhibitor and P1pal-7 significantly promote apoptosis in breast tumor xenografts and inhibit metastasis to the lungs by up to 88%. Dual therapy with P1pal-7 and taxotere inhibits the growth of MDA-MB-231 xenografts by 95%. Consistently, biochemical analysis of xenograft tumors treated with P1pal-7 or MMP-1 inhibitor demonstrated attenuated Akt activity. Ectopic expression of constitutively active Akt rescues breast cancer cells from the synergistic cytotoxicity of P1pal-7 and taxotere, suggesting that Akt is a critical component of PAR1-dependent cancer cell viability. Together, these findings indicate that blockade of MMP1-PAR1 signaling may provide a benefit beyond treatment with taxotere alone in advanced, metastatic breast cancer. PMID:19622769

  15. Characterization of Gene Expression in Human Breast Tumor Endothelium

    DTIC Science & Technology

    2008-05-01

    to UV-induced apoptosis in primary culture of canine mammary gland tumors (7), and SFRP2 decreased apoptosis in cardiomyocytes exposed to hypoxia(8...microdissection (LCM) of vascular cells from frozen human breast tumors and normal breast tissue for genomic analysis. We found SFRP2 to have 6 fold increased...vascular cells from frozen human breast tumors , where the RNA was of high quality and sufficient for genomic analysis(6). We found 55 genes with > 4

  16. Tumor-targeted gene therapy using Adv-AFP-HRPC/IAA prodrug system suppresses growth of hepatoma xenografted in mice.

    PubMed

    Dai, M; Liu, J; Chen, D-E; Rao, Y; Tang, Z-J; Ho, W-Z; Dong, C-Y

    2012-02-01

    Clinical efficacy of current therapies for hepatocellular carcinoma (HCC) treatment is limited. Indole-3-acetic acid (IAA) is non-toxic for mammalian cells. Oxidative decarboxylation of IAA by horseradish peroxidase (HRP) leads to toxic effects of IAA. The purpose of this study was to investigate the effects of a novel gene-targeted enzyme prodrug therapy with IAA on hepatoma growth in vitro and in vivo mouse hepatoma models. We generated a plasmid using adenovirus to express HRP isoenzyme C (HRPC) with the HCC marker, alpha-fetoprotein (AFP), as the promoter (pAdv-AFP-HRPC). Hepatocellular cells were infected with pAdv-AFP-HRPC and treated with IAA. Cell death was detected using MTT assay. Hepatoma xenografts were developed in mice by injection of mouse hepatoma cells. The size and weight of tumors and organs were evaluated. Cell death in tumors was assessed using hematoxylin and eosin-stained tissue sections. HRPC expression in tissues was detected using Reverse Transcriptase-Polymerase Chain Reaction. IAA stimulated death of hepatocellular cells infected with pAdv-AFP-HRPC, in a dose- and time-dependent manner, but not in control cells. Growth of hepatoma xenografts, including the size and weight, was inhibited in mice treated with pAdv-AFP-HRPC and IAA, compared with that in control group. pAdv-AFP-HRPC/IAA treatment induced cell death in hepatoma xenografts in mice. HRPC gene expressed only in hepatoma, but not in other normal organs of mice. pAdv-AFP-HRPC/IAA treatment did not cause any side effects on normal organs. These findings suggest that pAdv-AFP-HRPC/IAA enzyme/prodrug system may serve as a strategy for HCC therapy.

  17. The effect of bumetanide on photodynamic therapy-induced peri-tumor edema of C6 glioma xenografts.

    PubMed

    Zhang, Xufeng; Cong, Damin; Shen, Dawei; Gao, Xin; Chen, Lei; Hu, Shaoshan

    2014-07-01

    The aim of this study was to investigate the effect of bumetanide on peri-tumor edema caused by photodynamic therapy (PDT) of intraparenchymal C6 glioma xenografts. Seven days after inoculation with C6 cells, rats with MRI-confirmed glioma received hematoporphyrin monomethyl ether (HMME)-mediated PDT, injection of bumetanide or a combination of the two treatments. After treatment, tumor volume, tumor weight, brain water content, microvessel density, expression of NKCC-1, Zonula occludens-1 (ZO-1), and animal survival time were examined. In the PDT group, tumor growth was significantly inhibited and survival prolonged. Bumetanide enhanced the efficacy of PDT and reduced PDT-induced peri-tumor edema in the combined PDT + bumetanide treatment group where NKCC-1 expression in response to PDT was significantly suppressed. ZO-1 expression was significantly suppressed in the PDT-only group. This suppression was not observed in the combined PDT + bumetanide treatment group. PDT, in combination with bumetanide was seen to significantly inhibit the growth of C6 glioma, relieve peri-tumor edema caused by PDT alone and prolong survival. These results suggest that PDT, in combination with bumetanide, may be a useful and promising strategy in the treatment of human glioma. © 2014 Wiley Periodicals, Inc.

  18. Basal Tumor Cell Isolation and Patient-Derived Xenograft Engraftment Identify High-Risk Clinical Bladder Cancers

    PubMed Central

    Skowron, K. B.; Pitroda, S. P.; Namm, J. P.; Balogun, O.; Beckett, M. A.; Zenner, M. L.; Fayanju, O.; Huang, X.; Fernandez, C.; Zheng, W.; Qiao, G.; Chin, R.; Kron, S. J.; Khodarev, N. N.; Posner, M. C.; Steinberg, G. D.; Weichselbaum, R. R.

    2016-01-01

    Strategies to identify tumors at highest risk for treatment failure are currently under investigation for patients with bladder cancer. We demonstrate that flow cytometric detection of poorly differentiated basal tumor cells (BTCs), as defined by the co-expression of CD90, CD44 and CD49f, directly from patients with early stage tumors (T1-T2 and N0) and patient-derived xenograft (PDX) engraftment in locally advanced tumors (T3-T4 or N+) predict poor prognosis in patients with bladder cancer. Comparative transcriptomic analysis of bladder tumor cells isolated from PDXs indicates unique patterns of gene expression during bladder tumor cell differentiation. We found cell division cycle 25C (CDC25C) overexpression in poorly differentiated BTCs and determined that CDC25C expression predicts adverse survival independent of standard clinical and pathologic features in bladder cancer patients. Taken together, our findings support the utility of BTCs and bladder cancer PDX models in the discovery of novel molecular targets and predictive biomarkers for personalizing oncology care for patients. PMID:27775025

  19. Do mammographic tumor features in breast cancer relate to breast density and invasiveness, tumor size, and axillary lymph node involvement?

    PubMed

    Sartor, Hanna; Borgquist, Signe; Hartman, Linda; Olsson, Åsa; Jawdat, Faith; Zackrisson, Sophia

    2015-05-01

    Breast density and mammographic tumor features of breast cancer may carry prognostic information. The potential benefit of using the combined information obtained from breast density, mammographic tumor features, and pathological tumor characteristics has not been extensively studied. To investigate how mammographic tumor features relate to breast density and pathological tumor characteristics. This retrospective study was carried out within the Malmö Diet and Cancer Study: a population-based cohort study recruiting 17,035 women during 1991-1996. A total of 826 incident breast cancers were identified during follow-up. Mammography images were collected and analyzed according to breast density and tumor features at diagnosis. Pathological data were retrieved from medical reports. Mammographic tumor features in relation to invasiveness, tumor size, and axillary lymph node involvement were analyzed using logistic regression yielding odds ratios (OR) with 95% confidence intervals (CI) and adjusted for age at diagnosis, mode of detection, and breast density. Tumors presenting as an ill-defined mass or calcifications were more common in dense breasts than tumors presenting as a distinct mass or with spiculated appearance. Invasive cancer was more common in tumors with spiculated appearance than tumors presenting as a distinct mass (adjusted OR, 5.68 [1.81-17.84]). Among invasive tumors, an ill-defined mass was more often large (>20 mm) compared with a distinct mass, (adjusted OR, 3.16 [1.80-5.55]). Tumors presenting as an ill-defined mass or calcifications were more common in dense breasts. Spiculated appearance was related to invasiveness, and ill-defined mass to larger tumor size, regardless of mode of detection and breast density. The potential role of mammographic tumor features in clinical decision-making warrants further investigation. © The Foundation Acta Radiologica 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  20. Nano-encapsulation of plitidepsin: in vivo pharmacokinetics, biodistribution, and efficacy in a renal xenograft tumor model.

    PubMed

    Oliveira, Hugo; Thevenot, Julie; Garanger, Elisabeth; Ibarboure, Emmanuel; Calvo, Pilar; Aviles, Pablo; Guillen, Maria Jose; Lecommandoux, Sébastien

    2014-04-01

    Plitidepsin is an antineoplasic currently in clinical evaluation in a phase III trial in multiple myeloma (ADMYRE). Presently, the hydrophobic drug plitidepsin is formulated using Cremophor®, an adjuvant associated with unwanted hypersensitivity reactions. In search of alternatives, we developed and tested two nanoparticle-based formulations of plitidepsin, aiming to modify/improve drug biodistribution and efficacy. Using nanoprecipitation, plitidepsin was loaded in polymer nanoparticles made of amphiphilic block copolymers (i.e. PEG-b-PBLG or PTMC-b-PGA). The pharmacokinetics, biodistribution and therapeutic efficacy was assessed using a xenograft renal cancer mouse model (MRI-H-121 xenograft) upon administration of the different plitidepsin formulations at maximum tolerated multiple doses (0.20 and 0.25 mg/kg for Cremophor® and copolymer formulations, respectively). High plitidepsin loading efficiencies were obtained for both copolymer formulations. Considering pharmacokinetics, PEG-b-PBLG formulation showed lower plasma clearance, associated with higher AUC and Cmax than Cremophor® or PTMC-b-PGA formulations. Additionally, the PEG-b-PBLG formulation presented lower liver and kidney accumulation compared with the other two formulations, associated with an equivalent tumor distribution. Regarding the anticancer activity, all formulations elicited similar efficacy profiles, as compared to the Cremophor® formulation, successfully reducing tumor growth rate. Although the nanoparticle formulations present equivalent anticancer activity, compared to the Cremophor® formulation, they show improved biodistribution profiles, presenting novel tools for future plitidepsin-based therapies.

  1. Scaffold-integrated microchips for end-to-end in vitro tumor cell attachment and xenograft formation

    PubMed Central

    Lee, Jungwoo; Kohl, Nathaniel; Shanbhang, Sachin; Parekkadan, Biju

    2015-01-01

    Microfluidic technologies have substantially advanced cancer research by enabling the isolation of rare circulating tumor cells (CTCs) for diagnostic and prognostic purposes. The characterization of isolated CTCs has been limited due to the difficulty in recovering and growing isolated cells with high fidelity. Here, we present a strategy that uses a 3D scaffold, integrated into a microfludic device, as a transferable substrate that can be readily isolated after device operation for serial use in vivo as a transplanted tissue bed. Hydrogel scaffolds were incorporated into a PDMS fluidic chamber prior to bonding and were rehydrated in the chamber after fluid contact. The hydrogel matrix completely filled the fluid chamber, significantly increasing the surface area to volume ratio, and could be directly visualized under a microscope. Computational modeling defined different flow and pressure regimes that guided the conditions used to operate the chip. As a proof of concept using a model cell line, we confirmed human prostate tumor cell attachment in the microfluidic scaffold chip, retrieval of the scaffold en masse, and serial implantation of the scaffold to a mouse model with preserved xenograft development. With further improvement in capture efficiency, this approach can offer an end-to-end platform for the continuous study of isolated cancer cells from a biological fluid to a xenograft in mice. PMID:26709385

  2. Scaffold-integrated microchips for end-to-end in vitro tumor cell attachment and xenograft formation.

    PubMed

    Lee, Jungwoo; Kohl, Nathaniel; Shanbhang, Sachin; Parekkadan, Biju

    2015-12-01

    Microfluidic technologies have substantially advanced cancer research by enabling the isolation of rare circulating tumor cells (CTCs) for diagnostic and prognostic purposes. The characterization of isolated CTCs has been limited due to the difficulty in recovering and growing isolated cells with high fidelity. Here, we present a strategy that uses a 3D scaffold, integrated into a microfludic device, as a transferable substrate that can be readily isolated after device operation for serial use in vivo as a transplanted tissue bed. Hydrogel scaffolds were incorporated into a PDMS fluidic chamber prior to bonding and were rehydrated in the chamber after fluid contact. The hydrogel matrix completely filled the fluid chamber, significantly increasing the surface area to volume ratio, and could be directly visualized under a microscope. Computational modeling defined different flow and pressure regimes that guided the conditions used to operate the chip. As a proof of concept using a model cell line, we confirmed human prostate tumor cell attachment in the microfluidic scaffold chip, retrieval of the scaffold en masse, and serial implantation of the scaffold to a mouse model with preserved xenograft development. With further improvement in capture efficiency, this approach can offer an end-to-end platform for the continuous study of isolated cancer cells from a biological fluid to a xenograft in mice.

  3. A Novel 99mTc-Labeled Molecular Probe for Tumor Angiogenesis Imaging in Hepatoma Xenografts Model: A Pilot Study

    PubMed Central

    Zhao, Qian; Yan, Ping; Wang, Rong Fu; Zhang, Chun Li; Li, Ling; Yin, Lei

    2013-01-01

    Introduction Visualization of tumor angiogenesis using radionuclide targeting provides important diagnostic information. In previous study, we proved that an arginine-arginine-leucine (RRL) peptide should be a tumor endothelial cell specific binding sequence. The overall aim of this study was to evaluate whether 99mTc-radiolabeled RRL could be noninvasively used for imaging of malignant tumors in vivo, and act as a new molecular probe targeting tumor angiogenesis. Methods The RRL peptide was designed and radiosynthesized with 99mTc by a one-step method. The radiolabeling efficiency and radiochemical purity were then characterized in vitro. 99mTc-RRL was injected intravenously in HepG2 xenograft-bearing BALB/c nude mice. Biodistribution and in vivo imaging were performed periodically. The relationship between tumor size and %ID uptake of 99mTc-RRL was also explored. Results The labeling efficiencies of 99mTc-RRL reached 76.9%±4.5% (n = 6) within 30–60 min at room temperature, and the radiochemical purity exceeded 96% after purification. In vitro stability experiment revealed the radiolabeled peptide was stable. Biodistribution data showed that 99mTc-RRL rapidly cleared from the blood and predominantly accumulated in the kidneys and tumor. The specific uptake of 99mTc-RRL in tumor was significantly higher than that of unlabeled RRL blocking and free pertechnetate control test after injection (p<0.05). The ratio of the tumor-to-muscle exceeded 6.5, tumor-to-liver reached 1.98 and tumor-to-blood reached 1.95. In planar gamma imaging study, the tumors were imaged clearly at 2–6 h after injection of 99mTc-RRL, whereas the tumor was not imaged clearly in blocking group. The tumor-to-muscle ratio of images with 99mTc-RRL was comparable with that of 18F-FDG PET images. Immunohistochemical analysis verified the excessive vasculature of tumor. There was a linear relationship between the tumor size and uptake of 99mTc-RRL with R2 = 0.821. Conclusion 99mTc-RRL can

  4. Metallofullerene-based Nanoplatform for Brain Tumor Brachytherapy and Longitudinal Imaging in a Murine Orthotopic Xenograft Model

    PubMed Central

    Shultz, Michael D.; Wilson, John D.; Fuller, Christine E.; Zhang, Jianyuan; Dorn, Harry C.

    2011-01-01

    Purpose: To demonstrate in an orthotopic xenograft brain tumor model that a functionalized metallofullerene (f-Gd3N@C80) can enable longitudinal tumor imaging and, when radiolabeled with lutetium 177 (177Lu) and tetraazacyclododecane tetraacetic acid (DOTA) (177Lu-DOTA-f-Gd3N@C80), provide an anchor to deliver effective brachytherapy. Materials and Methods: All experiments involving the use of mice were carried out in accordance with protocols approved by the institutional animal care and use committee. Human glioblastoma U87MG cells were implanted by using stereotactic procedures into the brains of 37 female athymic nude-Foxn1nu mice and allowed to develop into a tumor for 8 days. T1- and T2-weighted magnetic resonance (MR) imaging was performed in five mice. Biodistribution studies were performed in 12 mice at four time points over 7 days to evaluate gadolinium content. Survival studies involved 20 mice that received infusion of a nanoplatform by means of convection-enhanced delivery (CED) 8 days after tumor implantation. Mice in survival studies were divided into two groups: one comprised untreated mice that received f-Gd3N@C80 alone and the other comprised mice treated with brachytherapy that received 1.11 MBq of 177Lu-DOTA-f-Gd3N@C80. Survival data were evaluated by using Kaplan-Meier statistical methods. Results: MR imaging showed extended tumor retention (25.6% ± 1.2 of the infused dose at 52 days, confirmed with biodistribution studies) of the f-Gd3N@C80 nanoplatform, which enabled longitudinal imaging. Successful coupling of 177Lu to the f-Gd3N@C80 surface was achieved by using a bifunctional macrocyclic chelator. The extended tumor retention allowed for effective brachytherapy, as indicated by extended survival time (>2.5 times that of the untreated group) and histologic signs of radiation-induced tumor damage. Conclusion: The authors have developed a multimodal nanoplatform and have demonstrated longitudinal tumor imaging, prolonged intratumoral probe

  5. Dynamic (18)F-FDG-PET for monitoring treatment effect following anti-angiogenic therapy in triple-negative breast cancer xenografts.

    PubMed

    Kristian, Alexandr; Revheim, Mona Elisabeth; Qu, Hong; Mælandsmo, Gunhild M; Engebråten, Olav; Seierstad, Therese; Malinen, Eirik

    2013-10-01

    Dynamic (18)F-FDG PET allows the study of glucose distribution in tissues as a function of time and space. Using pharmacokinetics, the temporal uptake pattern of (18)F-FDG may be separated into components reflecting perfusion and metabolism. Bevacizumab is an angiogenesis inhibitor which prevents the growth of new blood vessels, and may potentially lead to normalization of the blood circulation in the tumor. The purpose of the study was to explore the use of dynamic PET as a tool for monitoring treatment effect, reflected by changes in perfusion and metabolism. Twelve athymic nude mice, bearing the bilateral triple-negative human breast cancer xenograft MAS98.12 were treated with bevacizumab (5 mg/kg i.p.). Dynamic PET data was acquired prior to and 24 and 72 hours after treatment for 1 hour after injection of 10 MBq (18)F-FDG and fitted with a FDG two-tissue compartment model. The changes in the rate constants k1, k3, MRFDG and the vascular fraction νB were assessed. To evaluate the effect of treatment regimes, 30 mice, randomized in 5 groups, received either vehicle (0.9% NaCl), bevacizumab (5 mg/kg i.p.), doxorubicin (8 mg/kg i.v.) or bevacizumab and doxorubicin either together, or doxorubicin 24 hours after bevacizumab treatment. Tumor volume was measured twice a week. The perfusion-related rate parameter k1 and the metabolic rate constant k3 decreased significantly 24 hours after treatment. This decrease was followed by an increase, albeit non-significant, at 72 hours post treatment. Doxorubicin given 24 hours after bevacizumab showed less antitumor effect compared to concomitant treatment. Dynamic PET can detect changes in tumor perfusion and metabolism following anti-angiogenic therapy in mouse xenograft models. Longitudinal dynamic PET, used to assess the efficacy of anti-angiogenic treatment, can identify the time frame of potential tumor vasculature re-normalization and allow optimal timing of supplementary therapy (radiation or chemotherapy).

  6. Anti-GPC3-CAR T Cells Suppress the Growth of Tumor Cells in Patient-Derived Xenografts of Hepatocellular Carcinoma.

    PubMed

    Jiang, Zhiwu; Jiang, Xiaofeng; Chen, Suimin; Lai, Yunxin; Wei, Xinru; Li, Baiheng; Lin, Simiao; Wang, Suna; Wu, Qiting; Liang, Qiubin; Liu, Qifa; Peng, Muyun; Yu, Fenglei; Weng, Jianyu; Du, Xin; Pei, Duanqing; Liu, Pentao; Yao, Yao; Xue, Ping; Li, Peng

    2016-01-01

    The lack of a general clinic-relevant model for human cancer is a major impediment to the acceleration of novel therapeutic approaches for clinical use. We propose to establish and characterize primary human hepatocellular carcinoma (HCC) xenografts that can be used to evaluate the cytotoxicity of adoptive chimeric antigen receptor (CAR) T cells and accelerate the clinical translation of CAR T cells used in HCC. Primary HCCs were used to establish the xenografts. The morphology, immunological markers, and gene expression characteristics of xenografts were detected and compared to those of the corresponding primary tumors. CAR T cells were adoptively transplanted into patient-derived xenograft (PDX) models of HCC. The cytotoxicity of CAR T cells in vivo was evaluated. PDX1, PDX2, and PDX3 were established using primary tumors from three individual HCC patients. All three PDXs maintained original tumor characteristics in their morphology, immunological markers, and gene expression. Tumors in PDX1 grew relatively slower than that in PDX2 and PDX3. Glypican 3 (GPC3)-CAR T cells efficiently suppressed tumor growth in PDX3 and impressively eradicated tumor cells from PDX1 and PDX2, in which GPC3 proteins were highly expressed. GPC3-CAR T cells were capable of effectively eliminating tumors in PDX model of HCC. Therefore, GPC3-CAR T cell therapy is a promising candidate for HCC treatment.

  7. Soy isoflavone extracts stimulate the growth of nude mouse xenografts bearing estrogen-dependent human breast cancer cells (MCF-7)☆

    PubMed Central

    Wu, Qian; Yang, Ye; Yu, Jing; Jin, Nianzu

    2012-01-01

    We explored the effects of different lifetime exposures to soy isoflavone extracts on the growth of estrogen-dependent human breast cancer cells (MCF-7) implanted into athymic mice of different ovarian statuses. The athymic mice, ovariectomized or not, were implanted with MCF-7 cells. Mice were fed with low, moderate and high doses of soy isoflavone extract, at dietary concentrations of 6.25, 12.5 and 25 g/kg, in different reproductive models, respectively. The expression of ki-67 was detected by immunohistochemistry. pS2 expression in tumors was analyzed by real-time PCR. Estrogen level in the serum was measured by chemiluminescence enzyme immunoassay. Total genistein and daidzein levels in serum and urine were determined by liquid chromatography-electrospray tandem mass spectrometry (LC-ES/MS/MS). In Group A, on week 4, nude mice were exposed to different doses of soy iosflavone extracts. In Group B, the experimental diets were given to the nude mice following ovariectomy and tumor implantation. In both groups, 6.25 and 12.5 g/kg soy isoflavone extracts stimulated the growth of MCF-7 xenografts, increased pS2 expression, proliferation and estrogen level in serum. In both Group B (postmenopausal mouse model) and Group C (premenopausal mouse model), soy isoflavone extracts at doses of 6.25 and 12.5 g/kg showed stimulatory effects on the growth of MCF-7 tumors. In conclusion, administration of soy isoflavone extracts at doses of 6.25 and 12.5 g/kg during adolescence or later in life stimulated tumor growth in both menopausal and postmenopausal mouse models. PMID:23554729

  8. Molecular biology of breast tumors and prognosis.

    PubMed

    Baldassarre, Gustavo; Belletti, Barbara

    2016-01-01

    Breast cancer is the most common cancer among women worldwide. Great scientific, economical, and organizational efforts are in place to understand the causes of onset, identify the critical molecular players of progression, and define new lines of intervention providing more benefits and less toxicity. These efforts have certainly not been vain, since overall survival, especially in specific subsets of breast cancer, has greatly improved during the last decades. At present, breast cancer patients' treatment and care have reached a high standard of quality, and currently one of the most urgent needs resides in the necessity to better distinguish the tumors that need to be more aggressively treated and identify the best therapeutic option tailored to each patient. This objective will be achievable only if the information clarifying the biology of breast cancer can be successfully transferred to the clinic. A common effort by scientists and clinicians toward this integration and toward the use of multidisciplinary approaches will be necessary to reach this important goal.

  9. 5α-Reductase Inhibition Suppresses Testosterone-Induced Initial Regrowth of Regressed Xenograft Prostate Tumors in Animal Models

    PubMed Central

    Masoodi, Khalid Z.; Ramos Garcia, Raquel; Pascal, Laura E.; Wang, Yujuan; Ma, Hei M.; O'Malley, Katherine; Eisermann, Kurtis; Shevrin, Daniel H.; Nguyen, Holly M.; Vessella, Robert L.; Nelson, Joel B.; Parikh, Rahul A.

    2013-01-01

    Androgen deprivation therapy (ADT) is the standard treatment for patients with prostate-specific antigen progression after treatment for localized prostate cancer. An alternative to continuous ADT is intermittent ADT (IADT), which allows recovery of testosterone during off-cycles to stimulate regrowth and differentiation of the regressed prostate tumor. IADT offers patients a reduction in side effects associated with ADT, improved quality of life, and reduced cost with no difference in overall survival. Our previous studies showed that IADT coupled with 5α-reductase inhibitor (5ARI), which blocks testosterone conversion to DHT could prolong survival of animals bearing androgen-sensitive prostate tumors when off-cycle duration was fixed. To further investigate this clinically relevant observation, we measured the time course of testosterone-induced regrowth of regressed LuCaP35 and LNCaP xenograft tumors in the presence or absence of a 5ARI. 5α-Reductase inhibitors suppressed the initial regrowth of regressed prostate tumors. However, tumors resumed growth and were no longer responsive to 5α-reductase inhibition several days after testosterone replacement. This finding was substantiated by bromodeoxyuridine and Ki67 staining of LuCaP35 tumors, which showed inhibition of prostate tumor cell proliferation by 5ARI on day 2, but not day 14, after testosterone replacement. 5α-Reductase inhibitors also suppressed testosterone-stimulated proliferation of LNCaP cells precultured in androgen-free media, suggesting that blocking testosterone conversion to DHT can inhibit prostate tumor cell proliferation via an intracrine mechanism. These results suggest that short off-cycle coupled with 5α-reductase inhibition could maximize suppression of prostate tumor growth and, thus, improve potential survival benefit achieved in combination with IADT. PMID:23671262

  10. Inhibition of 4E-BP1 Sensitizes U87 Glioblastoma Xenograft Tumors to Irradiation by Decreasing Hypoxia Tolerance

    SciTech Connect

    Dubois, Ludwig; Magagnin, Michael G.; Cleven, Arjen H.G.; Weppler, Sherry A.; Grenacher, Beat; Landuyt, Willy; Lieuwes, Natasja; Lambin, Philippe; Gorr, Thomas A.; Koritzinsky, Marianne

    2009-03-15

    Purpose: Eukaryotic initiation factor 4E (eIF4E) is an essential rate-limiting factor for cap-dependent translation in eukaryotic cells. Elevated eIF4E activity is common in many human tumors and is associated with disease progression. The growth-promoting effects of eIF4E are in turn negatively regulated by 4E-BP1. However, although 4E-BP1 harbors anti-growth activity, its expression is paradoxically elevated in some tumors. The aim of this study was to investigate the functional role of 4E-BP1 in the context of solid tumors. Methods and Materials: In vitro and in vivo growth properties, hypoxia tolerance, and response to radiation were assessed for HeLa and U87 cells, after stable expression of shRNA specific for 4E-BP1. Results: We found that loss of 4E-BP1 expression did not significantly alter in vitro growth but did accelerate the growth of U87 tumor xenografts, consistent with the growth-promoting function of deregulated eIF4E. However, cells lacking 4E-BP1 were significantly more sensitive to hypoxia-induced cell death in vitro. Furthermore, 4E-BP1 knockdown cells produced tumors more sensitive to radiation because of a reduction in the viable fraction of radioresistant hypoxic cells. Decreased hypoxia tolerance in the 4E-BP1 knockdown tumors was evident by increased cleaved caspase-3 levels and was associated with a reduction in adenosine triphosphate (ATP). Conclusions: Our results suggest that although tumors often demonstrate increases in cap-dependent translation, regulation of this activity is required to facilitate energy conservation, hypoxia tolerance, and tumor radioresistance. Furthermore, we suggest that targeting translational control may be an effective way to target hypoxic cells and radioresistance in metabolically hyperactive tumors.

  11. Enantiomeric CopA3 dimer peptide suppresses cell viability and tumor xenograft growth of human gastric cancer cells.

    PubMed

    Lee, Joon Ha; Kim, In-Woo; Shin, Yong Pyo; Park, Ho Jin; Lee, Young Shin; Lee, In Hee; Kim, Mi-Ae; Yun, Eun-Young; Nam, Sung-Hee; Ahn, Mi-Young; Kang, Dongchul; Hwang, Jae Sam

    2016-03-01

    The CopA3 dimer peptide is a coprisin analog that has an anticancer effect against human cancer cells in vitro. In this study, we investigated the anticancer activity of the enantiomeric CopA3 dimer peptide in human gastric cancer cell lines as well as in an in vivo tumor xenograft model. Enantiomeric CopA3 reduced gastric cancer cell viability and exhibited cytotoxicity against cancer cells. Enantiomeric CopA3-induced cell death was mediated by specific interactions with phosphatidylserine and phosphatidylcholine, membrane components that are enriched in cancer cells, in a calcein leakage assay. Moreover, acridine orange/ethidium bromide staining, flow cytometric analysis, and Western blot analysis showed that enantiomeric CopA3 induced apoptotic and necrotic gastric cancer cell death. The antitumor effect was also observed in a mouse tumor xenograft model in which intratumoral inoculation of the peptide resulted in a significant decrease in the SNU-668 gastric cancer tumor volume. In addition, periodic acid-Schiff and hematoxylin staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay revealed apoptotic and necrotic cell death in tumor masses treated with greater than 150 μg CopA3. Collectively, these results indicate that the enantiomeric CopA3 dimer peptide induces apoptosis and necrosis of gastric cancer cells in vitro and in vivo, indicating that the peptide is a potential candidate for the treatment of gastric cancer, which is a common cause of cancer and cancer deaths worldwide.

  12. The perivascular niche regulates breast tumor dormancy

    PubMed Central

    Peinado, Héctor; Mori, Hidetoshi; Matei, Irina R.; Evason, Kimberley J.; Brazier, Hélène; Almeida, Dena; Koller, Antonius; Hajjar, Katherine A.; Stainier, Didier Y.R.; Chen, Emily I.; Lyden, David

    2013-01-01

    In a significant fraction of breast cancer patients, distant metastases emerge after years or even decades of latency. How disseminated tumor cells (DTCs) are kept dormant, and what ‘wakes them up’, are fundamental problems in tumor biology. To address these questions, we utilized metastasis assays in mice to show that dormant DTCs reside upon microvasculature of lung, bone marrow and brain. We then engineered organotypic microvascular niches to determine whether endothelial cells directly influence breast cancer cell (BCC) growth. These models demonstrated that endothelial-derived thrombospondin-1 induces sustained BCC quiescence. This suppressive cue was lost in sprouting neovasculature; time-lapse analysis showed that sprouting vessels not only permit, but accelerate BCC outgrowth. We confirmed this surprising result in dormancy models and in zebrafish, and identified active TGF-β1 and periostin as tumor-promoting, endothelial tip cell-derived factors. Our work reveals that stable microvasculature constitutes a ‘dormant niche,’ whereas sprouting neovasculature sparks micrometastatic outgrowth. PMID:23728425

  13. Development of an ErbB-overexpressing A-431 Optical Reporting Tumor Xenograft Model to Assess Targeted Photodynamic Therapy Regimens

    PubMed Central

    Savellano, Mark D.; Owusu-Brackett, Nicci; Son, Ji; Callier, Thierri; Savellano, Dagmar Högemann

    2010-01-01

    To better assess the efficacy of erbB-targeted therapies, it would help to have optical reporting human tumor xenograft models that abundantly express erbB receptors. A-431 cells have frequently been used in erbB1-targeting studies, but a well-characterized optical reporting version of the cell line has not been readily available. In this study, optical reporting A-431 clones were developed that express both a fluorescent protein reporter (green, GFP; or red, RFP) and a bioluminescent reporter, firefly luciferase. Reporter genes were transduced into cells using commercial lentiviral vectors, and clonal selection was carried out using a series of procedures. A number of clones were isolated for further characterization. A GFP/luciferase clone, A-431/D4, and an RFP/luciferase clone, A-431/G4, were obtained that exhibit erbB1 expression levels and tumor growth kinetics similar to the parental cells. To demonstrate the utility of the optical reporting clones, A-431/G4 tumors were grown subcutaneously in nude mice and treated with vascular-targeted photodynamic therapy (PDT), which targets the angiogenic consequences of erbB signaling. The A-431/G4 tumor model permitted highly sensitive longitudinal monitoring of PDT treatment response using optical imaging. A-431/D4 and A-431/G4 optical reporting tumor models should also prove useful for assessing therapies that directly target the erbB1 receptor. PMID:20880229

  14. Quantitation of Murine Stroma and Selective Purification of the Human Tumor Component of Patient-Derived Xenografts for Genomic Analysis.

    PubMed

    Schneeberger, Valentina E; Allaj, Viola; Gardner, Eric E; Poirier, J T; Rudin, Charles M

    2016-01-01

    Patient-derived xenograft (PDX) mouse models are increasingly used for preclinical therapeutic testing of human cancer. A limitation in molecular and genetic characterization of PDX tumors is the presence of integral murine stroma. This is particularly problematic for genomic sequencing of PDX models. Rapid and dependable approaches for quantitating stromal content and purifying the malignant human component of these tumors are needed. We used a recently developed technique exploiting species-specific polymerase chain reaction (PCR) amplicon length (ssPAL) differences to define the fractional composition of murine and human DNA, which was proportional to the fractional composition of cells in a series of lung cancer PDX lines. We compared four methods of human cancer cell isolation: fluorescence-activated cell sorting (FACS), an immunomagnetic mouse cell depletion (MCD) approach, and two distinct EpCAM-based immunomagnetic positive selection methods. We further analyzed DNA extracted from the resulting enriched human cancer cells by targeted sequencing using a clinically validated multi-gene panel. Stromal content varied widely among tumors of similar histology, but appeared stable over multiple serial tumor passages of an individual model. FACS and MCD were superior to either positive selection approach, especially in cases of high stromal content, and consistently allowed high quality human-specific genomic profiling. ssPAL is a dependable approach to quantitation of murine stromal content, and MCD is a simple, efficient, and high yield approach to human cancer cell isolation for genomic analysis of PDX tumors.

  15. Quantitation of Murine Stroma and Selective Purification of the Human Tumor Component of Patient-Derived Xenografts for Genomic Analysis

    PubMed Central

    Schneeberger, Valentina E.; Allaj, Viola; Gardner, Eric E.; Rudin, Charles M.

    2016-01-01

    Patient-derived xenograft (PDX) mouse models are increasingly used for preclinical therapeutic testing of human cancer. A limitation in molecular and genetic characterization of PDX tumors is the presence of integral murine stroma. This is particularly problematic for genomic sequencing of PDX models. Rapid and dependable approaches for quantitating stromal content and purifying the malignant human component of these tumors are needed. We used a recently developed technique exploiting species-specific polymerase chain reaction (PCR) amplicon length (ssPAL) differences to define the fractional composition of murine and human DNA, which was proportional to the fractional composition of cells in a series of lung cancer PDX lines. We compared four methods of human cancer cell isolation: fluorescence-activated cell sorting (FACS), an immunomagnetic mouse cell depletion (MCD) approach, and two distinct EpCAM-based immunomagnetic positive selection methods. We further analyzed DNA extracted from the resulting enriched human cancer cells by targeted sequencing using a clinically validated multi-gene panel. Stromal content varied widely among tumors of similar histology, but appeared stable over multiple serial tumor passages of an individual model. FACS and MCD were superior to either positive selection approach, especially in cases of high stromal content, and consistently allowed high quality human-specific genomic profiling. ssPAL is a dependable approach to quantitation of murine stromal content, and MCD is a simple, efficient, and high yield approach to human cancer cell isolation for genomic analysis of PDX tumors. PMID:27611664

  16. Xenograft Studies of Fatty Acid Synthesis Inhibition as Novel Therapy for Breast Cancer

    DTIC Science & Technology

    1999-08-01

    Research. 56: 1189-1193, 1996. 19. Witters, L . and Kemp, B. Insulin activation of acetyl -CoA carboxylase accompanied by inhibition of the 5’-AMP...substrate for FAS, malonyl-CoA acts at the outer mitochondrial membrane to regulate fatty acid oxidation by inhibition of carnitine palmitoyltransferase 1...compared to the xenograft, it has about 10 fold higher levels of acetyl -CoA, and higher levels of other CoA derivatives. These data indicate significant

  17. Fish oil supplementation enhanced CPT-11 (irinotecan) efficacy against MCF7 breast carcinoma xenografts and ameliorated intestinal side-effects

    PubMed Central

    Hardman, W E; Moyer, M P; Cameron, I L

    1999-01-01

    The cancer chemotherapeutic efficacy of the topoisomerase I inhibitor, CPT-11 (irinotecan) is often limited by the induction of severe delayed diarrhoea. In animal studies, CPT-11 use is associated with histopathological damage to the mucosa of the small and large intestines. Results from the present study demonstrate that 60 mg CPT-11 per kg body weight (i.v. q4d × 6) halted the growth, but did not cause significant regression, of MCF7 human breast carcinoma xenografts in mice fed a diet containing 7% corn oil. However, when the diet of the MCF7-bearing mice was supplemented with 3% or 6% fish oil, the same CPT-11 treatment caused significant regression of the MCF7 xenograft. Histomorphometric analyses of intestinal mucosa of mice treated with CPT-11 and fed the diet containing 7% corn oil indicated that treatment with CPT-11 induced structural changes in the intestinal mucosa which persisted at least 5 days after the last dose of CPT-11. The intestinal mucosal architecture of mice that were treated with CPT-11 and fed the diets containing fish oil was largely unchanged from the architecture of the group of mice which did not receive CPT-11. These findings indicate that fish oil supplements may be a useful adjunct to CPT-11 treatment. © 1999 Cancer Research Campaign PMID:10507768

  18. Retinal-conjugated pH-sensitive micelles induce tumor senescence for boosting breast cancer chemotherapy.

    PubMed

    Zhang, Yijuan; Li, Ping; Pan, Hong; Liu, Lanlan; Ji, Manyi; Sheng, Nan; Wang, Ce; Cai, Lintao; Ma, Yifan

    2016-03-01

    Evoking tumor cellular senescence, an irreversible status of cell growth quiescence, has been recently proposed as a potential strategy to improve the efficacy of cancer treatment. In the current study, all-trans retinal, the precursor of all-trans retinoic acid, was conjugated to dextran via hydrazone bond to generate amphiphilic dextran-retinal (DR) conjugates, which self-assembled into pH-sensitive DR micelles. Our results showed that DR micelles moderately inhibited MCF-7 breast cancer cell growth through inducing p21-associated cellular senescence, which relied on retinoic acid receptors (RARs) and was accompanied by significant G0/G1 cell cycle arrest. Moreover, DR micelles were capable of encapsulating doxorubicin (DOX) to generate DOX-loaded DD micelles, facilitating the uptake and release of DOX in cancer cells. Compared with free DOX, DD micelles more effectively suppressed tumor growth and prolonged survival time of mouse xenograft model through inducing tumor apoptosis and cellular senescence. However, blocking cellular senescence diminished DD-caused apoptosis in MCF-7 cells by 40-50%. Therefore, pH-sensitive DR micelles not only served as a potent platform for DOX delivery, but also enhanced the anti-tumor effect of DOX by inducing tumor cellular senescence. These data reveal a great potential of evoking tumor senescence with retinal-conjugated micelles for boosting breast cancer chemotherapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Microspheres targeted with a mesothelin antibody and loaded with doxorubicin reduce tumor volume of human mesotheliomas in xenografts

    PubMed Central

    2013-01-01

    Background Malignant mesotheliomas (MMs) are chemoresistant tumors related to exposure to asbestos fibers. The long latency period of MM (30-40 yrs) and heterogeneity of tumor presentation make MM difficult to diagnose and treat at early stages. Currently approved second-line treatments following surgical resection of MMs include a combination of cisplatin or carboplatin (delivered systemically) and pemetrexed, a folate inhibitor, with or without subsequent radiation. The systemic toxicities of these treatments emphasize the need for more effective, localized treatment regimens. Methods Acid-prepared mesoporous silica (APMS) microparticles were loaded with doxorubicin (DOX) and modified externally with a mesothelin (MB) specific antibody before repeated intraperitoneal (IP) injections into a mouse xenograft model of human peritoneal MM. The health/weight of mice, tumor volume/weight, tumor necrosis and cell proliferation were evaluated in tumor-bearing mice receiving saline, DOX high (0.2 mg/kg), DOX low (0.05 mg/kg), APMS-MB, or APMS-MB-DOX (0.05 mg/kg) in saline. Results Targeted therapy (APMS-MB-DOX at 0.05 mg/kg) was more effective than DOX low (0.05 mg/kg) and less toxic than treatment with DOX high (0.2 mg/kg). It also resulted in the reduction of tumor volume without loss of animal health and weight, and significantly decreased tumor cell proliferation. High pressure liquid chromatography (HPLC) of tumor tissue confirmed that APMS-MB-DOX particles delivered DOX to target tissue. Conclusions Data suggest that targeted therapy results in greater chemotherapeutic efficacy with fewer adverse side effects than administration of DOX alone. Targeted microparticles are an attractive option for localized drug delivery. PMID:24024776

  20. Inhibition of Pediatric Glioblastoma Tumor Growth by the Anti-Cancer Agent OKN-007 in Orthotopic Mouse Xenografts

    PubMed Central

    Coutinho de Souza, Patricia; Mallory, Samantha; Smith, Nataliya; Saunders, Debra; Li, Xiao-Nan; McNall-Knapp, Rene Y.; Fung, Kar-Ming; Towner, Rheal A.

    2015-01-01

    Pediatric glioblastomas (pGBM), although rare, are one of the leading causes of cancer-related deaths in children, with tumors essentially refractory to existing treatments. Here, we describe the use of conventional and advanced in vivo magnetic resonance imaging (MRI) techniques to assess a novel orthotopic xenograft pGBM mouse (IC-3752GBM patient-derived culture) model, and to monitor the effects of the anti-cancer agent OKN-007 as an inhibitor of pGBM tumor growth. Immunohistochemistry support data is also presented for cell proliferation and tumor growth signaling. OKN-007 was found to significantly decrease tumor volumes (p<0.05) and increase animal survival (p<0.05) in all OKN-007-treated mice compared to untreated animals. In a responsive cohort of treated animals, OKN-007 was able to significantly decrease tumor volumes (p<0.0001), increase survival (p<0.001), and increase diffusion (p<0.01) and perfusion rates (p<0.05). OKN-007 also significantly reduced lipid tumor metabolism in responsive animals [(Lip1.3 and Lip0.9)-to-creatine ratio (p<0.05)], as well as significantly decrease tumor cell proliferation (p<0.05) and microvessel density (p<0.05). Furthermore, in relationship to the PDGFRα pathway, OKN-007 was able to significantly decrease SULF2 (p<0.05) and PDGFR-α (platelet-derived growth factor receptor-α) (p<0.05) immunoexpression, and significantly increase decorin expression (p<0.05) in responsive mice. This study indicates that OKN-007 may be an effective anti-cancer agent for some patients with pGBMs by inhibiting cell proliferation and angiogenesis, possibly via the PDGFRα pathway, and could be considered as an additional therapy for pediatric brain tumor patients. PMID:26248280

  1. Resveratrol Is Rapidly Metabolized in Athymic (Nu/Nu) Mice and Does Not Inhibit Human Melanoma Xenograft Tumor Growth1

    PubMed Central

    Niles, Richard M.; Cook, Carla P.; Meadows, Gary G.; Fu, Ya-Min; McLaughlin, Jerry L.; Rankin, Gary O.

    2006-01-01

    Resveratrol has been shown to have anticarcinogenic activity. We previously found that resveratrol inhibited growth and induced apoptosis in 2 human melanoma cell lines. In this study we determined whether resveratrol would inhibit human melanoma xenograft growth. Athymic mice received control diets or diets containing 110 μmol/L or 263 μmol/L resveratrol, 2 wk prior to subcutaneous injection of the tumor cells. Tumor growth was measured during a 3-wk period. Metabolism of resveratrol was assayed by bolus gavage of 75 mg/kg resveratrol in tumor-bearing and nontumor-bearing mice. Pellets containing 10–100 mg resveratrol were implanted into the mice, next to newly palpated tumors, and tumor growth determined. We also determined the effect of a major resveratrol metabolite, piceatannol, on experimental lung metastasis. Resveratrol, at any concentration tested, did not have a statistically significant effect on tumor growth. The higher levels of resveratrol tested (0.006% in food or 100 mg in slow-release pellets) tended to stimulate tumor growth (P = 0.08–0.09). Resveratrol and its major metabolites, resveratrol glucuronide and piceatannol, were found in serum, liver, skin, and tumor tissue. Piceatannol did not affect the in vitro growth of a murine melanoma cell line, but significantly stimulated the number of lung metastases when these melanoma cells were directly injected into the tail vein of the mouse. These results suggest that resveratrol is not likely to be useful in the treatment of melanoma and that the effects of phytochemicals on cell cultures may not translate to the whole animal system. PMID:16988123

  2. Effect of antidepressants on body weight, ethology and tumor growth of human pancreatic carcinoma xenografts in nude mice.

    PubMed

    Jia, Lin; Shang, Yuan-Yuan; Li, Yu-Yuan

    2008-07-21

    To investigate the effects of mirtazapine and fluoxetine, representatives of the noradrenergic and specific serotonergic antidepressant (NaSSA) and selective serotonin reuptake inhibitor (SSRI) antidepressant respectively, on body weight, ingestive behavior, locomotor activity and tumor growth of human pancreatic carcinoma xenografts in nude mice. A subcutaneous xenograft model of human pancreatic cancer cell line SW1990 was established in nude mice. The tumor-bearing mice were randomly divided into mirtazapine group (10 mg/kg per day), fluoxetine group (10 mg/kg per day) and control group (an equivalent normal saline solution) (7 mice in each group). Doses of all drugs were administered orally, once a day for 42 d. Tumor volume and body weight were measured biweekly. Food intake was recorded once a week. Locomotor activity was detected weekly using an open field test (OFT). Compared to the fluoxetine, mirtazapine significantly increased food intake from d 14 to 42 and attenuated the rate of weight loss from d 28 to 42 (t = 4.38, P < 0.05). Compared to the control group, food intake was significantly suppressed from d 21 to 42 and weight loss was promoted from d 35 to 42 in the fluoxetine group (t = 2.52, P < 0.05). There was a significant difference in body weight of the mice after removal of tumors among the three groups. The body weight of mice was the heaviest (13.66 +/- 1.55 g) in the mirtazapine group and the lightest (11.39 +/- 1.45 g) in the fluoxetine group (F( (2,12) ) = 11.43, P < 0.01). The behavioral test on d 7 showed that the horizontal and vertical activities were significantly increased in the mirtazapine group compared with the fluoxetine and control groups (F( (2,18) ) = 10.89, P < 0.01). These effects disappeared in the mirtazapine and fluoxetine groups during 2-6 wk. The grooming activity was higher in the mirtazapine group than in the fluoxetine group (10.1 +/- 2.1 vs 7.1 +/- 1.9 ) (t = 2.40, P < 0.05) in the second week. There was no

  3. CRISPR/Cas9 Technology-Based Xenograft Tumors as Candidate Reference Materials for Multiple EML4-ALK Rearrangements Testing.

    PubMed

    Peng, Rongxue; Zhang, Rui; Lin, Guigao; Yang, Xin; Li, Ziyang; Zhang, Kuo; Zhang, Jiawei; Li, Jinming

    2017-09-01

    The echinoderm microtubule-associated protein-like 4 and anaplastic lymphoma kinase (ALK) receptor tyrosine kinase (EML4-ALK) rearrangement is an important biomarker that plays a pivotal role in therapeutic decision making for non-small-cell lung cancer (NSCLC) patients. Ensuring accuracy and reproducibility of EML4-ALK testing by fluorescence in situ hybridization, immunohistochemistry, RT-PCR, and next-generation sequencing requires reliable reference materials for monitoring assay sensitivity and specificity. Herein, we developed novel reference materials for various kinds of EML4-ALK testing. CRISPR/Cas9 was used to edit various NSCLC cell lines containing EML4-ALK rearrangement variants 1, 2, and 3a/b. After s.c. inoculation, the formalin-fixed, paraffin-embedded (FFPE) samples from xenografts were prepared and tested for suitability as candidate reference materials by fluorescence in situ hybridization, immunohistochemistry, RT-PCR, and next-generation sequencing. Sample validation and commutability assessments showed that all types of FFPE samples derived from xenograft tumors have typical histological structures, and EML4-ALK testing results were similar to the clinical ALK-positive NSCLC specimens. Among the four methods for EML4-ALK detection, the validation test showed 100% concordance. Furthermore, these novel FFPE reference materials showed good stability and homogeneity. Without limitations on variant types and production, our novel FFPE samples based on CRISPR/Cas9 editing and xenografts are suitable as candidate reference materials for the validation, verification, internal quality control, and proficiency testing of EML4-ALK detection. Copyright © 2017 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  4. Mammographic Breast Density and Subsequent Risk of Breast Cancer in Postmenopausal Women According to Tumor Characteristics

    PubMed Central

    Yaghjyan, Lusine; Colditz, Graham A.; Collins, Laura C.; Schnitt, Stuart J.; Rosner, Bernard; Vachon, Celine

    2011-01-01

    Background Few studies that investigated the associations between breast density and subsequent breast cancer according to tumor characteristics have produced inconclusive findings. We aimed to determine whether the associations between breast density and subsequent breast cancer varied by tumor characteristics. Methods We included 1042 postmenopausal women diagnosed with breast cancer between June 1, 1989, and June 30, 2004, and 1794 matched control subjects from the Nurses’ Health Study, an ongoing prospective cohort study of 121 701 registered female nurses across the United States. Breast density was estimated from digitized images using computerized techniques. Information on breast cancer risk factors was obtained prospectively from biennial questionnaires before the date of cancer diagnosis for case subjects and matched control subjects. Polychotomous logistic regression was used to assess associations of breast density with tumor subtypes based on invasiveness, histology, size, grade, receptor status, and involvement of lymph nodes. All tests of statistical significance were two-sided. Results The risk of breast cancer increased progressively with increase in percent breast density (Ptrend < .001). Women with higher breast density (≥50%) showed a 3.39-fold (odds ratio = 3.39, 95% confidence interval = 2.46 to 4.68) increased risk of breast cancer compared with women with lower breast density (<10%). The associations between breast density and breast cancer risk were stronger for in situ compared with invasive tumors (Pheterogeneity < .01), high-grade compared with low-grade tumors (Pheterogeneity = .02), larger (>2 cm) compared with smaller (≤2 cm) tumors (Pheterogeneity < .01), and estrogen receptor–negative compared with estrogen receptor–positive tumors (Pheterogeneity = .04). There were no differences in associations by tumor histology, involvement of lymph nodes, and progesterone receptor and HER2 status (Pheterogeneity > .05). Conclusions

  5. Cisplatin and photodynamic therapy exert synergistic inhibitory effects on small-cell lung cancer cell viability and xenograft tumor growth.

    PubMed

    Chen, You-Shuang; Peng, Yin-Bo; Yao, Min; Teng, Ji-Ping; Ni, Da; Zhu, Zhi-Jun; Zhuang, Bu-Feng; Yang, Zhi-Yin

    2017-06-03

    Lung cancer is the leading cause of cancer death worldwide. Small-cell lung cancer (SCLC) is an aggressive type of lung cancer that shows an overall 5-year survival rate below 10%. Although chemotherapy using cisplatin has been proven effective in SCLC treatment, conventional dose of cisplatin causes adverse side effects. Photodynamic therapy, a form of non-ionizing radiation therapy, is increasingly used alone or in combination with other therapeutics in cancer treatment. Herein, we aimed to address whether low dose cisplatin combination with PDT can effectively induce SCLC cell death by using in vitro cultured human SCLC NCI-H446 cells and in vivo tumor xenograft model. We found that both cisplatin and PDT showed dose-dependent cytotoxic effects in NCI-H446 cells. Importantly, co-treatment with low dose cisplatin (1 μM) and PDT (1.25 J/cm(2)) synergistically inhibited cell viability and cell migration. We further showed that the combined therapy induced a higher level of intracellular ROS in cultured NCI-H446 cells. Moreover, the synergistic effect by cisplatin and PDT was recapitulated in tumor xenograft as revealed by a more robust increase in the staining of TUNEL (a marker of cell death) and decrease in tumor volume. Taken together, our findings suggest that low dose cisplatin combination with PDT can be an effective therapeutic modality in the treatment of SCLC patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. An integrated genomic approach identifies persistent tumor suppressive effects of transforming growth factor-β in human breast cancer

    PubMed Central

    2014-01-01

    Introduction Transforming growth factor-βs (TGF-βs) play a dual role in breast cancer, with context-dependent tumor-suppressive or pro-oncogenic effects. TGF-β antagonists are showing promise in early-phase clinical oncology trials to neutralize the pro-oncogenic effects. However, there is currently no way to determine whether the tumor-suppressive effects of TGF-β are still active in human breast tumors at the time of surgery and treatment, a situation that could lead to adverse therapeutic responses. Methods Using a breast cancer progression model that exemplifies the dual role of TGF-β, promoter-wide chromatin immunoprecipitation and transcriptomic approaches were applied to identify a core set of TGF-β-regulated genes that specifically reflect only the tumor-suppressor arm of the pathway. The clinical significance of this signature and the underlying biology were investigated using bioinformatic analyses in clinical breast cancer datasets, and knockdown validation approaches in tumor xenografts. Results TGF-β-driven tumor suppression was highly dependent on Smad3, and Smad3 target genes that were specifically enriched for involvement in tumor suppression were identified. Patterns of Smad3 binding reflected the preexisting active chromatin landscape, and target genes were frequently regulated in opposite directions in vitro and in vivo, highlighting the strong contextuality of TGF-β action. An in vivo-weighted TGF-β/Smad3 tumor-suppressor signature was associated with good outcome in estrogen receptor-positive breast cancer cohorts. TGF-β/Smad3 effects on cell proliferation, differentiation and ephrin signaling contributed to the observed tumor suppression. Conclusions Tumor-suppressive effects of TGF-β persist in some breast cancer patients at the time of surgery and affect clinical outcome. Carefully tailored in vitro/in vivo genomic approaches can identify such patients for exclusion from treatment with TGF-β antagonists. PMID:24890385

  7. KIT Signaling Promotes Growth of Colon Xenograft Tumors in Mice and Is Up-Regulated in a Subset of Human Colon Cancers.

    PubMed

    Chen, Evan C; Karl, Taylor A; Kalisky, Tomer; Gupta, Santosh K; O'Brien, Catherine A; Longacre, Teri A; van de Rijn, Matt; Quake, Stephen R; Clarke, Michael F; Rothenberg, Michael E

    2015-09-01

    Receptor tyrosine kinase (RTK) inhibitors have advanced colon cancer treatment. We investigated the role of the RTK KIT in development of human colon cancer. An array of 137 patient-derived colon tumors and their associated xenografts were analyzed by immunohistochemistry to measure levels of KIT and its ligand KITLG. KIT and/or KITLG was stably knocked down by expression of small hairpin RNAs from lentiviral vectors in DLD1, HT29, LS174T, and COLO320 DM colon cancer cell lines, and in UM-COLON#8 and POP77 xenografts; cells transduced with only vector were used as controls. Cells were analyzed by real-time quantitative reverse transcription polymerase chain reaction, single-cell gene expression analysis, flow cytometry, and immunohistochemical, immunoblot, and functional assays. Xenograft tumors were grown from control and KIT-knockdown DLD1 and UM-COLON#8 cells in immunocompromised mice and compared. Some mice were given the RTK inhibitor imatinib after injection of cancer cells; tumor growth was measured based on bioluminescence. We assessed tumorigenicity using limiting dilution analysis. KIT and KITLG were expressed heterogeneously by a subset of human colon tumors. Knockdown of KIT decreased proliferation of colon cancer cell lines and growth of xenograft tumors in mice compared with control cells. KIT knockdown cells had increased expression of enterocyte markers, decreased expression of cycling genes, and, unexpectedly, increased expression of LGR5 associated genes. No activating mutations in KIT were detected in DLD1, POP77, or UM-COLON#8 cells. However, KITLG-knockdown DLD1 cells formed smaller xenograft tumors than control cells. Gene expression analysis of single CD44(+) cells indicated that KIT can promote growth via KITLG autocrine and/or paracrine signaling. Imatinib inhibited growth of KIT(+) colon cancer organoids in culture and growth of xenograft tumors in mice. Cancer cells with endogenous KIT expression were more tumorigenic in mice. KIT and

  8. Smad4 inhibits tumor growth by inducing apoptosis in estrogen receptor-alpha-positive breast cancer cells.

    PubMed

    Li, Qingnan; Wu, Liyu; Oelschlager, Denise K; Wan, Mei; Stockard, Cecil R; Grizzle, William E; Wang, Ning; Chen, Huaiqing; Sun, Yi; Cao, Xu

    2005-07-22

    Estrogen is a mitogen in most estrogen receptor-alpha (ERalpha)-positive breast cancers. We have found that Smad4, a common signal transducer in the transforming growth factor-beta superfamily, acts as an ERalpha transcriptional corepressor. Here, we show that Smad4 induces apoptosis in ERalpha-positive MCF-7 breast cancer cells, but not in ERalpha-negative MDA-MB-231 cells. Smad4 induced expression of short Bim isoforms (by alternative splicing) and Bax and release of cytochrome c in ERalpha-positive cells only, and expression of these apoptotic marker genes was reduced when ERalpha small interfering RNA was introduced. Notably, Smad4 was able to induce apoptosis in MDA-231 cells with acquired ERalpha expression. Furthermore, Smad4 inhibited ERalpha-positive tumor growth by inducing apoptosis in tumor xenografts in nude mice. The sizes of tumors expressing Smad4 were only one-tenth the size of those expressing green fluorescent protein, whereas in ERalpha-negative cells, Smad4 did not reduce the tumor size. Notably, Smad4 also promoted short Bim isoform and Bax expression and release of cytochrome c only in ERalpha-positive MCF-7 tumor xenografts. Bim was sufficient for induction of apoptosis, and the short form was the most potent inducer. Our results demonstrate that Smad4 induces apoptosis by regulating Bim splicing as an initial intrinsic signal in ERalpha-positive cells. Smad4-induced apoptosis in ERalpha-positive breast cancer cells may explain the invasive nature of ERalpha-negative breast tumors, thereby providing a potential target for breast cancer intervention.

  9. Irradiation-Dependent Effects on Tumor Perfusion and Endogenous and Exogenous Hypoxia Markers in an A549 Xenograft Model

    SciTech Connect

    Fokas, Emmanouil; Haenze, Joerg; Kamlah, Florentine; Eul, Bastian G.; Lang, Nico; Keil, Boris; Heverhagen, Johannes T.; Engenhart-Cabillic, Rita; An Hanxiang; Rose, Frank

    2010-08-01

    Purpose: Hypoxia is a major determinant of tumor radiosensitivity, and microenvironmental changes in response to ionizing radiation (IR) are often heterogenous. We analyzed IR-dependent changes in hypoxia and perfusion in A549 human lung adenocarcinoma xenografts. Materials and Methods: Immunohistological analysis of two exogenously added chemical hypoxic markers, pimonidazole and CCI-103F, and of the endogenous marker Glut-1 was performed time dependently after IR. Tumor vessels and apoptosis were analyzed using CD31 and caspase-3 antibodies. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and fluorescent beads (Hoechst 33342) were used to monitor vascular perfusion. Results: CCI-103F signals measuring the fraction of hypoxic areas after IR were significantly decreased by approximately 50% when compared with pimonidazole signals, representing the fraction of hypoxic areas from the same tumors before IR. Interestingly, Glut-1 signals were significantly decreased at early time point (6.5 h) after IR returning to the initial levels at 30.5 h. Vascular density showed no difference between irradiated and control groups, whereas apoptosis was significantly induced at 10.5 h post-IR. DCE-MRI indicated increased perfusion 1 h post-IR. Conclusions: The discrepancy between the hypoxic fractions of CCI-103F and Glut-1 forces us to consider the possibility that both markers reflect different metabolic alterations of tumor microenvironment. The reliability of endogenous markers such as Glut-1 to measure reoxygenation in irradiated tumors needs further consideration. Monitoring tumor microvascular response to IR by DCE-MRI and measuring tumor volume alterations should be encouraged.

  10. Inhibition of poly(ADP-ribose) polymerase-1 by olaparib (AZD2281) increases the radiosensitivity of a lung tumor xenograft

    PubMed Central

    Senra, Joana M.; Telfer, Brian A.; Cherry, Kim E.; McCrudden, Cian M.; Hirst, David G.; O’Connor, Mark J.; Wedge, Stephen R.; Stratford, Ian J.

    2011-01-01

    Poly(ADP-ribose) polymerase-1 is a critical enzyme in the repair of DNA strand breaks. Inhibition of PARP-1 increases the effectiveness of radiation in killing tumor cells. However, while the mechanism(s) are well understood for these radiosensitizing effects in vitro, the underlying mechanism(s) in vivo are less clear. Nicotinamide, a drug structurally related to the first generation PARP-1 inhibitor, 3-aminobenzamide, reduces tumor hypoxia by preventing transient cessations in tumor blood flow, thus improving tumor oxygenation and sensitivity to radiotherapy. Here we investigate whether olaparib, a potent PARP-1 inhibitor, enhances radiotherapy, not only by inhibiting DNA repair but also by changing tumor vascular haemodynamics in non-small cell lung carcinoma. In irradiated Calu-6 and A549 cells, olaparib enhanced the cytotoxic effects of radiation (SER10=1.5 and 1.3) and DNA double strand breaks persisted for at least 24 h after treatment. Combination treatment of Calu-6 xenografts with olaparib and fractionated radiotherapy caused significant tumor regression (p=0.007) relative to radiotherapy alone. To determine whether this radiosensitisation was due solely to effects on DNA repair we used a dorsal window chamber model to establish the drug/radiation effects on vessel dynamics. Olaparib alone, when given as single or multiple daily doses, or in combination with fractionated radiotherapy, increased the perfusion of tumor blood vessels. Furthermore, an ex vivo assay in phenylephrine pre-constricted arteries confirmed olaparib to have higher vasodilatory properties than nicotinamide. This study suggests that olaparib warrants consideration for further development in combination with radiotherapy in clinical oncology settings such as NSCLC. PMID:21825006

  11. Responsiveness of human prostate carcinoma bone tumors to interleukin-2 therapy in a mouse xenograft tumor model.

    PubMed

    Kocheril, S V; Grignon, D J; Wang, C Y; Maughan, R L; Montecillo, E J; Talati, B; Tekyi-Mensah, S; Pontes, J e; Hillman, G G

    1999-01-01

    We have tested an immunotherapy approach for the treatment of metastatic prostate carcinoma using a bone tumor model. Human PC-3 prostate carcinoma tumor cells were heterotransplanted into the femur cavity of athymic Balb/c nude mice. Tumor cells replaced marrow cells in the bone cavity, invaded adjacent bone and muscle tissues, and formed a palpable tumor at the hip joint. PC-3/IF cell lines, generated from bone tumors by serial in vivo passages, grew with faster kinetics in the femur and metastasized to inguinal lymph nodes. Established tumors were treated with systemic interleukin-2 (IL-2) injections. IL-2 significantly inhibited the formation of palpable tumors and prolonged mouse survival at nontoxic low doses. Histologically IL-2 caused vascular damage and infiltration of polymorphonuclear cells and lymphocytes in the tumor as well as necrotic areas with apoptotic cells. These findings suggest destruction of tumor cells by systemic IL-2 therapy and IL-2 responsiveness of prostate carcinoma bone tumors.

  12. Filamentous, mixed micelles of triblock copolymers enhance tumor localization of indocyanine green in a murine xenograft model

    PubMed Central

    Kim, Tae Hee; Mount, Christopher W; Dulken, Benjamin W; Ramos, Jenelyn; Fu, Caroline J; Khant, Htet A; Chiu, Wah; Gombotz, Wayne R; Pun, Suzie H

    2012-01-01

    Polymeric micelles formed by the self-assembly of amphiphilic block copolymers can be used to encapsulate hydrophobic drugs for tumor-delivery applications. Filamentous carriers with high aspect ratios offer potential advantages over spherical carriers, including prolonged circulation times. In this work, mixed micelles comprised of poly (ethylene oxide)-poly-[(R)-3-hydroxybutyrate]-poly (ethylene oxide) (PEO-PHB-PEO) and Pluronic F-127 (PF-127) were used to encapsulate a near-infrared fluorophore. The micelle formulations were assessed for tumor accumulation after tail vein injection to xenograft tumor-bearing mice by non-invasive optical imaging. The mixed micelle formulation that facilitated the highest tumor accumulation was shown by cryo-electron microscopy to be filamentous in structure compared to spherical structures of pure PF-127 micelles. In addition, increased dye loading efficiency and dye stability was attained in this mixed micelle formulation compared to pure PEO-PHB-PEO micelles. Therefore, the optimized PEO-PHB-PEO/PF-127 mixed micelle formulation offers advantages for cancer delivery over micelles formed from the individual copolymer components. PMID:22118658

  13. Synthetic paclitaxel-octreotide conjugate reversing the resistance of A2780/Taxol to paclitaxel in xenografted tumor in nude mice

    PubMed Central

    Chen, Xi; Zhang, Xiao-Yu; Shen, Yang; Fan, Li-Li; Ren, Mu-Lan; Wu, Yong-Ping

    2016-01-01

    Peptide hormone-based targeted therapy to tumors has been studied extensively. Our previous study shows that somatostatin receptor expresses high level on drug-resistant human ovarian cancer. The paclitaxel-octreotide conjugate (POC) exhibits enhanced growth inhibition, as well as reduced toxicity, in paclitaxel-resistant human ovarian cancer cells. The aim of this study was to investigate the effect of targeted cytotoxicity and potential reversal mechanism of resistance in paclitaxel-resistant human ovarian cancer cells xenografted into nude mice. The SSTR2 shows higher expression levels in tumor tissue. Moreover, fluorescein-labeled POC displays favorable targeting in tumor cells. POC presents the perfect efficacy in inhibiting tumor growth and exerts lower or no toxic effects on normal tissues. Real-time PCR and Western Blotting has demonstrated that the mRNA and protein expressions of SSTR2 in POC group were significantly higher, while MDR1, α-tubulin, βIII-tubulin, VEGF and MMP-9 were significantly lower than in the other treatment groups and controls. Combined with the previous study in vitro, this study evaluates an effective approach on the treatment of paclitaxel-resistant ovarian cancer which expresses somatostatin receptor SSTR. Our investigation has also revealed the possible molecular mechanism of POC in treating the ovarian cancer, and therefore, provided a theoretical basis for the clinical application of this newly-invented compound. PMID:27825139

  14. Synthetic paclitaxel-octreotide conjugate reversing the resistance of A2780/Taxol to paclitaxel in xenografted tumor in nude mice.

    PubMed

    Chen, Xi; Zhang, Xiao-Yu; Shen, Yang; Fan, Li-Li; Ren, Mu-Lan; Wu, Yong-Ping

    2016-12-13

    Peptide hormone-based targeted therapy to tumors has been studied extensively. Our previous study shows that somatostatin receptor expresses high level on drug-resistant human ovarian cancer. The paclitaxel-octreotide conjugate (POC) exhibits enhanced growth inhibition, as well as reduced toxicity, in paclitaxel-resistant human ovarian cancer cells. The aim of this study was to investigate the effect of targeted cytotoxicity and potential reversal mechanism of resistance in paclitaxel-resistant human ovarian cancer cells xenografted into nude mice. The SSTR2 shows higher expression levels in tumor tissue. Moreover, fluorescein-labeled POC displays favorable targeting in tumor cells. POC presents the perfect efficacy in inhibiting tumor growth and exerts lower or no toxic effects on normal tissues. Real-time PCR and Western Blotting has demonstrated that the mRNA and protein expressions of SSTR2 in POC group were significantly higher, while MDR1, α-tubulin, βIII-tubulin, VEGF and MMP-9 were significantly lower than in the other treatment groups and controls. Combined with the previous study in vitro, this study evaluates an effective approach on the treatment of paclitaxel-resistant ovarian cancer which expresses somatostatin receptor SSTR. Our investigation has also revealed the possible molecular mechanism of POC in treating the ovarian cancer, and therefore, provided a theoretical basis for the clinical application of this newly-invented compound.

  15. Pten in the Breast Tumor Microenvironment: Modeling Tumor-Stroma Co-Evolution

    PubMed Central

    Wallace, Julie A.; Li, Fu; Leone, Gustavo; Ostrowski, Michael C.

    2010-01-01

    Solid human tumors and their surrounding microenvironment are hypothesized to co-evolve in a manner that promotes tumor growth, invasiveness and spread. Mouse models of cancer have focused on genetic changes in the epithelial tumor cells and therefore have not robustly tested this hypothesis. We have recently developed a murine breast cancer model that ablates the PTEN tumor suppressor pathway in stromal fibroblasts. Remarkably, the model resembles human breast tumors both at morphologic and molecular levels. We propose that such models reflect subtypes of tumor-stromal co-evolution relevant to human breast cancer, and will therefore be useful in defining the mechanisms that underpin tumor-stroma crosstalk. Additionally, these models should also aid in molecularly classifying human breast tumors based on both the microenvironment subtypes they contain as well as on the tumor subtype. PMID:21303970

  16. Melanocytic Malignant Peripheral Nerve Sheath Tumor of the Male Breast.

    PubMed

    Wang, Haijun; Ge, Jing; Chen, Lirong; Xie, Panpan; Chen, Fangfang; Chen, Yiding

    2009-01-01

    SUMMARY: BACKGROUND: Malignant peripheral nerve sheath tumors are rare tumor entities that originate from peripheral nerve sheaths and have an unfavorable prognosis. Common sites include deeper soft tissues, usually in the proximity of a nerve trunk. Breast is an absolutely rare location of this lesion, and presentation as a breast lump in the male breast is even rarer. CASE REPORT: A 65-year-old man presented with a 6-month history of a painless mass of the left breast. Tissue biopsy was performed. Histopathology revealed a malignant spindle cell tumor which was confirmed to be a melanocytic malignant peripheral nerve sheath tumor on the basis of immunopositivity for HMB45 and S-100. CONCLUSION: There are no generally accepted guidelines for the treatment of malignant peripheral nerve sheath tumors in the male breast. The patient was referred for radiation therapy after simple mastectomy.

  17. Targeting the receptor tyrosine kinase RET in combination with aromatase inhibitors in ER positive breast cancer xenografts

    PubMed Central

    Fearns, Antony; Martin, Lesley-Ann; Chiarugi, Paola; Isacke, Clare M.; Morandi, Andrea

    2016-01-01

    The majority of breast cancers are estrogen receptor positive (ER+). Blockade of estrogen biosynthesis by aromatase inhibitors (AIs) is the first-line endocrine therapy for post-menopausal women with ER+ breast cancers. However, AI resistance remains a major challenge. We have demonstrated previously that increased GDNF/RET signaling in ER+ breast cancers promotes AI resistance. Here we investigated the efficacy of different small molecule RET kinase inhibitors, sunitinib, cabozantinib, NVP-BBT594 and NVP-AST487, and the potential of combining a RET inhibitor with the AI letrozole in ER+ breast cancers. The most effective inhibitor identified, NVP-AST487, suppressed GDNF-stimulated RET downstream signaling and 3D tumor spheroid growth. Ovariectomized mice were inoculated with ER+ aromatase-overexpressing MCF7-AROM1 cells and treated with letrozole, NVP-AST487 or the two drugs in combination. Surprisingly, the three treatment regimens showed similar efficacy in impairing MCF7-AROM1 tumor growth in vivo. However in vitro, NVP-AST487 was superior to letrozole in inhibiting the GDNF-induced motility and tumor spheroid growth of MCF7-AROM1 cells and required in combination with letrozole to inhibit GDNF-induced motility in BT474-AROM3 aromatase expressing cells. These data indicate that inhibiting RET is as effective as the current therapeutic regimen of AI therapy but that a combination treatment may delay cancer cell dissemination and metastasis. PMID:27602955

  18. Heterogeneous drug penetrance of veliparib and carboplatin measured in triple negative breast tumors.

    PubMed

    Bartelink, Imke H; Prideaux, Brendan; Krings, Gregor; Wilmes, Lisa; Lee, Pei Rong Evelyn; Bo, Pan; Hann, Byron; Coppé, Jean-Philippe; Heditsian, Diane; Swigart-Brown, Lamorna; Jones, Ella F; Magnitsky, Sergey; Keizer, Ron J; de Vries, Niels; Rosing, Hilde; Pawlowska, Nela; Thomas, Scott; Dhawan, Mallika; Aggarwal, Rahul; Munster, Pamela N; Esserman, Laura J; Ruan, Weiming; Wu, Alan H B; Yee, Douglas; Dartois, Véronique; Savic, Radojka M; Wolf, Denise M; van 't Veer, Laura

    2017-09-11

    Poly(ADP-ribose) polymerase inhibitors (PARPi), coupled to a DNA damaging agent is a promising approach to treating triple negative breast cancer (TNBC). However, not all patients respond; we hypothesize that non-response in some patients may be due to insufficient drug penetration. As a first step to testing this hypothesis, we quantified and visualized veliparib and carboplatin penetration in mouse xenograft TNBCs and patient blood samples. MDA-MB-231, HCC70 or MDA-MB-436 human TNBC cells were implanted in 41 beige SCID mice. Low dose (20 mg/kg) or high dose (60 mg/kg) veliparib was given three times daily for three days, with carboplatin (60 mg/kg) administered twice. In addition, blood samples were analyzed from 19 patients from a phase 1 study of carboplatin + PARPi talazoparib. Veliparib and carboplatin was quantified using liquid chromatography-mass spectrometry (LC-MS). Veliparib tissue penetration was visualized using matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI) and platinum adducts (covalent nuclear DNA-binding) were quantified using inductively coupled plasma-mass spectrometry (ICP-MS). Pharmacokinetic modeling and Pearson's correlation were used to explore associations between concentrations in plasma, tumor cells and peripheral blood mononuclear cells (PBMCs). Veliparib penetration in xenograft tumors was highly heterogeneous between and within tumors. Only 35% (CI 95% 26-44%), 74% (40-97%) and 46% (9-37%) of veliparib observed in plasma penetrated into MDA-MB-231, HCC70 and MDA-MB-436 cell-based xenografts, respectively. Within tumors, penetration heterogeneity was larger with the 60 mg/kg compared to the 20 mg/kg dose (RSD 155% versus 255%, P = 0.001). These tumor concentrations were predicted similar to clinical dosing levels, but predicted tumor concentrations were below half maximal concentration values as threshold of response. Xenograft veliparib concentrations correlated positively with platinum adduct

  19. PTHrP drives breast tumor initiation, progression, and metastasis in mice and is a potential therapy target

    PubMed Central

    Li, Jiarong; Karaplis, Andrew C.; Huang, Dao C.; Siegel, Peter M.; Camirand, Anne; Yang, Xian Fang; Muller, William J.; Kremer, Richard

    2011-01-01

    Parathyroid hormone–related protein (PTHrP) is a secreted factor expressed in almost all normal fetal and adult tissues. It is involved in a wide range of developmental and physiological processes, including serum calcium regulation. PTHrP is also associated with the progression of skeletal metastases, and its dysregulated expression in advanced cancers causes malignancy-associated hypercalcemia. Although PTHrP is frequently expressed by breast tumors and other solid cancers, its effects on tumor progression are unclear. Here, we demonstrate in mice pleiotropic involvement of PTHrP in key steps of breast cancer — it influences the initiation and progression of primary tumors and metastases. Pthrp ablation in the mammary epithelium of the PyMT-MMTV breast cancer mouse model caused a delay in primary tumor initiation, inhibited tumor progression, and reduced metastasis to distal sites. Mechanistically, it reduced expression of molecular markers of cell proliferation (Ki67) and angiogenesis (factor VIII), antiapoptotic factor Bcl-2, cell-cycle progression regulator cyclin D1, and survival factor AKT1. PTHrP also influenced expression of the adhesion factor CXCR4, and coexpression of PTHrP and CXCR4 was crucial for metastatic spread. Importantly, PTHrP-specific neutralizing antibodies slowed the progression and metastasis of human breast cancer xenografts. Our data identify what we believe to be new functions for PTHrP in several key steps of breast cancer and suggest that PTHrP may constitute a novel target for therapeutic intervention. PMID:22056386

  20. Male Malignant Phyllodes Breast Tumor After Prophylactic Breast Radiotherapy and Bicalutamide Treatment: A Case Report.

    PubMed

    Karihtala, Peeter; Rissanen, Tarja; Tuominen, Hannu

    2016-07-01

    Phyllodes tumor in male breast is an exceptionally rare neoplasm with only few published case reports. Herein, we present a case of malignant phyllodes tumor in male breast nine years after prophylactic breast 10 Gy radiotherapy and after nine year bicalutamide treatment. The imaging findings of the tumor and pathological correlation are also presented. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  1. Inhibition of signaling between human CXCR4 and zebrafish ligands by the small molecule IT1t impairs the formation of triple-negative breast cancer early metastases in a zebrafish xenograft model

    PubMed Central

    Tulotta, Claudia; Stefanescu, Cristina; Beletkaia, Elena; Bussmann, Jeroen; Tarbashevich, Katsiaryna; Schmidt, Thomas; Snaar-Jagalska, B. Ewa

    2016-01-01

    ABSTRACT Triple-negative breast cancer (TNBC) is a highly aggressive and recurrent type of breast carcinoma that is associated with poor patient prognosis. Because of the limited efficacy of current treatments, new therapeutic strategies need to be developed. The CXCR4-CXCL12 chemokine signaling axis guides cell migration in physiological and pathological processes, including breast cancer metastasis. Although targeted therapies to inhibit the CXCR4-CXCL12 axis are under clinical experimentation, still no effective therapeutic approaches have been established to block CXCR4 in TNBC. To unravel the role of the CXCR4-CXCL12 axis in the formation of TNBC early metastases, we used the zebrafish xenograft model. Importantly, we demonstrate that cross-communication between the zebrafish and human ligands and receptors takes place and human tumor cells expressing CXCR4 initiate early metastatic events by sensing zebrafish cognate ligands at the metastatic site. Taking advantage of the conserved intercommunication between human tumor cells and the zebrafish host, we blocked TNBC early metastatic events by chemical and genetic inhibition of CXCR4 signaling. We used IT1t, a potent CXCR4 antagonist, and show for the first time its promising anti-tumor effects. In conclusion, we confirm the validity of the zebrafish as a xenotransplantation model and propose a pharmacological approach to target CXCR4 in TNBC. PMID:26744352

  2. Detection of Hypoxia in Human Brain Tumor Xenografts Using a Modified Comet Assay1

    PubMed Central

    Wang, Jingli; Klem, Jack; Wyrick, Jan B; Ozawa, Tomoko; Cunningham, Erin; Golinveaux, Jay; Allen, Max J; Lamborn, Kathleen R; Deen, Dennis F

    2003-01-01

    Abstract We used the standard comet assay successfully to generate in vitro dose-response curves under oxic and hypoxic conditions. We then made mixtures of cells that had been irradiated with 3 and 9 Gy of X-rays to simulate two subpopulations in a tumor, but efforts to accurately detect and quantify the subpopulations using the standard comet assay were unsuccessful. Therefore, we investigated a modified comet assay to determine whether it could be used for measuring hypoxia in our model systems. U251 MG cells were grown as subcutaneous tumors in athymic mice; U251 MG and U87 MG cells were grown as intracerebral (i.c.) tumors in athymic rats. Animals were injected with RSU 1069, irradiated, and euthanized. Tumors and normal brains were removed, and the cells were analyzed using a modified comet assay. Differences in comet tail moment distributions between tumor and contralateral normal brain, using tail moments at either the 25th or 50th percentile in each distribution, were taken as measures of the degree of tumor hypoxia. For U251 MG tumors, there was a positive relationship between tumor size and the degree of hypoxia, whereas preliminary data from U87 MG i.c. tumors showed less hypoxia and no apparent relationship between tumor size and hypoxia. PMID:14511400

  3. Multiple Breast Cancer Cell-Lines Derived from a Single Tumor Differ in Their Molecular Characteristics and Tumorigenic Potential

    PubMed Central

    Mosoyan, Goar; Nagi, Chandandeep; Marukian, Svetlana; Teixeira, Avelino; Simonian, Anait; Resnick-Silverman, Lois; DiFeo, Analisa; Johnston, Dean; Reynolds, Sandra R.; Roses, Daniel F.; Mosoian, Arevik

    2013-01-01

    Background Breast cancer cell lines are widely used tools to investigate breast cancer biology and to develop new therapies. Breast cancer tissue contains molecularly heterogeneous cell populations. Thus, it is important to understand which cell lines best represent the primary tumor and have similarly diverse phenotype. Here, we describe the development of five breast cancer cell lines from a single patient’s breast cancer tissue. We characterize the molecular profiles, tumorigenicity and metastatic ability in vivo of all five cell lines and compare their responsiveness to 4-hydroxytamoxifen (4-OHT) treatment. Methods Five breast cancer cell lines were derived from a single patient’s primary breast cancer tissue. Expression of different antigens including HER2, estrogen receptor (ER), CK8/18, CD44 and CD24 was determined by flow cytometry, western blotting and immunohistochemistry (IHC). In addition, a Fuorescent In Situ Hybridization (FISH) assay for HER2 gene amplification and p53 genotyping was performed on all cell lines. A xenograft model in nude mice was utilized to assess the tumorigenic and metastatic abilities of the breast cancer cells. Results We have isolated, cloned and established five new breast cancer cell lines with different tumorigenicity and metastatic abilities from a single primary breast cancer. Although all the cell lines expressed low levels of ER, their growth was estrogen-independent and all had high-levels of expression of mutated non-functional p53. The HER2 gene was rearranged in all cell lines. Low doses of 4-OHT induced proliferation of these breast cancer cell lines. Conclusions All five breast cancer cell lines have different antigenic expression profiles, tumorigenicity and organ specific metastatic abilities although they derive from a single tumor. None of the studied markers correlated with tumorigenic potential. These new cell lines could serve as a model for detailed genomic and proteomic analyses to identify mechanisms

  4. Complete Regression of Xenograft Tumors upon Targeted Delivery of Paclitaxel via Π-Π Stacking Stabilized Polymeric Micelles

    PubMed Central

    Shi, Yang; van der Meel, Roy; Theek, Benjamin; Blenke, Erik Oude; Pieters, Ebel H.E.; Fens, Marcel H.A.M.; Ehling, Josef; Schiffelers, Raymond M.; Storm, Gert; van Nostrum, Cornelus F.; Lammers, Twan; Hennink, Wim E.

    2015-01-01

    Treatment of cancer patients with taxane-based chemotherapeutics, such as paclitaxel (PTX), is complicated by their narrow therapeutic index. Polymeric micelles are attractive nanocarriers for tumor-targeted delivery of PTX, as they can be tailored to encapsulate large amounts of hydrophobic drugs and achieve prolonged circulation kinetics. As a result, PTX deposition in tumors is increased while drug exposure to healthy tissues is reduced. However, many PTX-loaded micelle formulations suffer from low stability and fast drug release in the circulation, limiting their suitability for systemic drug targeting. To overcome these limitations, we have developed paclitaxel (PTX)-loaded micelles which are stable without chemical crosslinking and covalent drug attachment. These micelles are characterized by excellent loading capacity and strong drug retention, attributed to π-π stacking interaction between PTX and the aromatic groups of the polymer chains in the micellar core. The micelles are based on methoxy poly(ethylene glycol)-b-(N-(2-benzoyloxypropyl) methacrylamide) (mPEG-b-p(HPMAm-Bz)) block copolymers, which improved the pharmacokinetics and the biodistribution of PTX, and substantially increased PTX tumor accumulation (by more than 2000%; as compared to Taxol® or control micellar formulations). Improved biodistribution and tumor accumulation were confirmed by hybrid μCT-FMT imaging using near-infrared labeled micelles and payload. The PTX-loaded micelles were well tolerated at different doses while they induced complete tumor regression in two different xenograft models (i.e. A431 and MDA-MB-468). Our findings consequently indicate that π-π stacking-stabilized polymeric micelles are promising carriers to improve the delivery of highly hydrophobic drugs to tumors and to increase their therapeutic index. PMID:25831471

  5. Enhancement by N-methylformamide of the effect of ionizing radiation on a human colon tumor xenografted in nude mice

    SciTech Connect

    Dexter, D.L.; Lee, E.S.; Bliven, S.F.; Glicksman, A.S.; Leith, J.T.

    1984-11-01

    Polar solvents, which induce differentiation in murine and human tumor cells, enhance the effect of ionizing radiation on cultured mouse mammary and human colon cancer cells. To determine whether this enhancement occurs in vivo, DLD-2 human colon carcinoma xenografts in nude mice were treated with combinations of 6 MV photon irradiation, the polar solvent N-methylformamide (NMF), or combinations of the two agents. Nude mice bearing 300-mg s.c. implants of DLD-2 tumors were treated i.p. with 150 mg NMF/kg daily for 19 days. Local tumor irradiations were administered as graded single doses or as fractionated doses, daily for 4 days, following the third NMF injection. The growth-inhibiting effect of the radiation treatment for both single dose and fractionation protocols was enhanced by the polar solvent. NMF alone increased the time required for a doubling of initial tumor volume by 1.7 days, compared to control tumors. Initial tumor volume doubling times compared to untreated controls were increased by 3.6 and 7.6 days by photon doses of 10.0 and 13.75 Gy, respectively, whereas NMF plus 10.0 or 13.75 Gy increased the DLD-2 regrowth delay time by 7.5 or 12.9 days. NMF caused essentially equivalent enhancements, whether split-dose schedules of 2.5 Gy daily for 4 days, and 3.44 Gy daily for 4 days, or single doses of 10.0 and 13.75 Gy were used; therefore, radiation enhancement was not due to effects on sublethal damage repair. The results support the use of NMF, currently in Phase 1-Phase 2 clinical trials, with radiation in the therapy of selected human neoplasms.

  6. Changes in subcellular distribution of topoisomerase IIalpha correlate with etoposide resistance in multicell spheroids and xenograft tumors.

    PubMed

    Oloumi, A; MacPhail, S H; Johnston, P J; Banáth, J P; Olive, P L

    2000-10-15

    The outer cells of Chinese hamster V79 spheroids are about 10 times more resistant than monolayers to DNA damage and cell killing by the topoisomerase (topo) II inhibitor etoposide. Although the amount and catalytic activity of topo IIalpha are identical for monolayers or the outer cells of spheroids, and the cell proliferation rate is the same, our previous results indicated that phosphorylation of topo IIalpha is at least 10 times higher in V79 monolayers than in spheroids. Because phosphorylation of topo IIalpha has been associated with nuclear translocation, we examined subcellular distribution of Topo IIalpha in monolayers, spheroids, and xenograft tumors using immunohistochemistry. Topo IIalpha was located predominantly in the nucleus of V79, human SiHa, and rat C6 monolayers but was found mainly in the cytoplasm of the proliferating outer cells of spheroids formed from these cell lines. Conversely, the outer cells of WiDr human colon carcinoma spheroids showed predominantly nuclear localization of topo IIalpha, and only WiDr cells showed no increase in resistance to etoposide when grown as spheroids. Cells sorted from xenografts resembled the spheroids in terms of sensitivity to etoposide and location of topo IIalpha. When the outer cells of V79 spheroids were returned to monolayer growth, the rate of redistribution of topo IIalpha to the nucleus occurred with similar kinetics as the increase in sensitivity to killing by etoposide. Removal and return of individual outer V79 spheroid cells to suspension culture resulted in the translocation of topo IIalpha to the nucleus for the first 24 h, accompanied by an increase in sensitivity to DNA damage by etoposide. Therefore, the cytoplasmic topo IIalpha distribution in outer spheroid cells and tumors appears to correlate not with morphological changes associated with growth in suspension but rather with the presence of neighboring, noncycling cells.

  7. Desmoid tumor following abdominally-based free flap breast reconstruction

    PubMed Central

    Oh, Christine; Hammoudeh, Ziyad S.

    2017-01-01

    Desmoid tumors are fibroblastic connective tissue tumors that most commonly develop within the anterior abdominal wall. The etiology of desmoid tumors has not been well defined; however, hereditary, hormonal, traumatic, and surgery-related causes have been implicated. Desmoid tumors are believed to arise from musculoaponeurotic structures. Development in the breast is very rare. Several reports of desmoid tumors arising in the vicinity of the fibrous capsule of a breast implant have been described, but to date, the authors are not aware of any published cases following autologous breast reconstruction. This report describes a desmoid tumor developing after a muscle-sparing free transverse rectus abdominis musculocutaneous (TRAM) flap for breast reconstruction and subsequent surgical management. PMID:28210557

  8. Pharmacokinetically Guided Everolimus in Patients With Breast Cancer, Pancreatic Neuroendocrine Tumors, or Kidney Cancer

    ClinicalTrials.gov

    2016-12-09

    Estrogen Receptor-positive Breast Cancer; Gastrinoma; Glucagonoma; HER2-negative Breast Cancer; Insulinoma; Mucositis; Oral Complications; Pancreatic Polypeptide Tumor; Progesterone Receptor-positive Breast Cancer; Recurrent Breast Cancer; Recurrent Islet Cell Carcinoma; Recurrent Renal Cell Cancer; Somatostatinoma; Stage III Renal Cell Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Breast Cancer; Stage IV Renal Cell Cancer

  9. A triple combination of atorvastatin, celecoxib and tipifarnib strongly inhibits pancreatic cancer cells and xenograft pancreatic tumors.

    PubMed

    Ding, Ning; Cui, Xiao-Xing; Gao, Zhi; Huang, Huarong; Wei, Xingchuan; Du, Zhiyun; Lin, Yong; Shih, Weichung Joe; Rabson, Arnold B; Conney, Allan H; Hu, Chunhong; Zheng, Xi

    2014-06-01

    Because K-Ras mutation and cyclooxygenase-2 (COX-2) overexpression are hallmarks of majority of pancreatic cancer patients, an approach to inhibit the progression and growth of pancreatic cancer using the simultaneous administration of agents that inhibit the function of both targets, should be considered. In the present study, we assessed the effects of atorvastatin (Lipitor), celecoxib (Celebrex) and tipifarnib (Zarnestra) on the growth of human pancreatic cancer. In the in vitro studies, we found that treatment of human pancreatic tumor cells with a combination of atorvastatin, celecoxib and tipifarnib had a stronger inhibitory effect on growth and a stronger stimulatory effect on apoptosis than each drug alone or for any combination of two drugs. We also found that treatment of Panc-1 cells with a combination of all three drugs strongly decreased the levels of phosphorylated Erk1/2 and Akt. In an animal model of xenograft tumors in severe combined immunodeficient (SCID) mice, we found that daily i.p. injections of a combination of atorvastatin, celecoxib and tipifarnib had a stronger inhibitory effect on the growth of the tumors in mice than each drug alone or for any combination of two drugs. The results of our study indicate that a combination of atorvastatin, celecoxib and tipifarnib may be an effective strategy for the treatment of pancreatic cancer.

  10. Targeting FGF19 inhibits tumor growth in colon cancer xenograft and FGF19 transgenic hepatocellular carcinoma models.

    PubMed

    Desnoyers, L R; Pai, R; Ferrando, R E; Hötzel, K; Le, T; Ross, J; Carano, R; D'Souza, A; Qing, J; Mohtashemi, I; Ashkenazi, A; French, D M

    2008-01-03

    Although fibroblast growth factor 19 (FGF19) can promote liver carcinogenesis in mice its involvement in human cancer is not well characterized. Here we report that FGF19 and its cognate receptor FGF receptor 4 (FGFR4) are coexpressed in primary human liver, lung and colon tumors and in a subset of human colon cancer cell lines. To test the importance of FGF19 for tumor growth, we developed an anti-FGF19 monoclonal antibody that selectively blocks the interaction of FGF19 with FGFR4. This antibody abolished FGF19-mediated activity in vitro and inhibited growth of colon tumor xenografts in vivo and effectively prevented hepatocellular carcinomas in FGF19 transgenic mice. The efficacy of the antibody in these models was linked to inhibition of FGF19-dependent activation of FGFR4, FRS2, ERK and beta-catenin. These findings suggest that the inactivation of FGF19 could be beneficial for the treatment of colon cancer, liver cancer and other malignancies involving interaction of FGF19 and FGFR4.

  11. ALDH1-positive cancer stem cells predict engraftment of primary breast tumors and are governed by a common stem cell program.

    PubMed

    Charafe-Jauffret, Emmanuelle; Ginestier, Christophe; Bertucci, François; Cabaud, Olivier; Wicinski, Julien; Finetti, Pascal; Josselin, Emmanuelle; Adelaide, José; Nguyen, Tien-Tuan; Monville, Florence; Jacquemier, Jocelyne; Thomassin-Piana, Jeanne; Pinna, Guillaume; Jalaguier, Aurélie; Lambaudie, Eric; Houvenaeghel, Gilles; Xerri, Luc; Harel-Bellan, Annick; Chaffanet, Max; Viens, Patrice; Birnbaum, Daniel

    2013-12-15

    Cancer stem-like cells (CSC) have been widely studied, but their clinical relevance has yet to be established in breast cancer. Here, we report the establishment of primary breast tumor-derived xenografts (PDX) that encompass the main diversity of human breast cancer and retain the major clinicopathologic features of primary tumors. Successful engraftment was correlated with the presence of ALDH1-positive CSCs, which predicted prognosis in patients. The xenografts we developed showed a hierarchical cell organization of breast cancer with the ALDH1-positive CSCs constituting the tumorigenic cell population. Analysis of gene expression from functionally validated CSCs yielded a breast CSC signature and identified a core transcriptional program of 19 genes shared with murine embryonic, hematopoietic, and neural stem cells. This generalized stem cell program allowed the identification of potential CSC regulators, which were related mainly to metabolic processes. Using an siRNA genetic screen designed to target the 19 genes, we validated the functional role of this stem cell program in the regulation of breast CSC biology. Our work offers a proof of the functional importance of CSCs in breast cancer, and it establishes the reliability of PDXs for use in developing personalized CSC therapies for patients with breast cancer.

  12. MicroRNA-544 down-regulates both Bcl6 and Stat3 to inhibit tumor growth of human triple negative breast cancer.

    PubMed

    Zhu, Zhengzhi; Wang, Shengying; Zhu, Jinhai; Yang, Qifeng; Dong, Huiming; Huang, Jiankang

    2016-10-01

    Triple negative breast cancer lacking estrogen receptor (ER), progesterone receptor and Her2 account for account for the majority of the breast cancer deaths, due to the lack of specific gene targeted therapy. Our current study aimed to investigate the role of miR-544 in triple negative breast cancer. Endogenous levels of miR-544 were significantly lower in breast cancer cell lines than in human breast non-tumorigenic and mammary epithelial cell lines. We found that miR-544 directly targeted the 3'-untranslated region (UTR) on both Bcl6 and Stat3 mRNAs, and overexpression of miR-544 in triple negative breast cancer cells significantly down-regulated expressions of Bcl6 and Stat3, which in turn severely inhibited cancer cell proliferation, migration and invasion in vitro. Employing a mouse xenograft model to examine the in vivo function of miR-544, we found that expression of miR-544 significantly repressed the growth of xenograft tumors. Our current study reported miR-544 as a tumor-suppressor microRNA particularly in triple negative breast cancer. Our data supported the role of miR-544 as a potential biomarker in developing gene targeted therapies in the clinical treatment of triple negative breast cancer.

  13. CD47 blockade inhibits tumor progression human osteosarcoma in xenograft models

    PubMed Central

    Zhang, Shui-Jun; Zhao, Chen; Qiu, Bin-Song; Gu, Hai-Feng; Hong, Jian-Fei; Cao, Li; Chen, Yu; Xia, Bing; Bi, Qin; Wang, Ya-Ping

    2015-01-01

    Osteosarcoma is the most common bone tumors in children and adolescents. Despite intensive chemotherapy, patients with advanced disease still have a poor prognosis, illustrating the need for alternative therapies. In this study, we explored the use of antibodies that block CD47 with a tumor growth suppressive effect on osteosarcoma. We first found that up-regulation of CD47 mRNA levels in the tumorous tissues from eight patients with osteosarcoma when compared with that in adjacent non-tumorous tissues. Further western-blot (WB) and immunohistochemistry (IHC) demonstrated that CD47 protein level was highly expressed in osteosarcoma compared to normal osteoblastic cells and adjacent non-tumorous tissues. Osteosarcoma cancer stem cell markers staining shown that the majority of CD44+ cells expressed CD47 albeit with different percentages (ranging from 80% to 99%). Furthermore, high CD47 mRNA expression levels were associated with a decreased probability of progression-free and overall survival. In addition, blockade of CD47 by specific Abs suppresses the invasive ability of osteosarcoma tumor cells and further inhibits spontaneous pulmonary metastasis of KRIB osteosarcoma cells in vivo. Finally, CD47 blockade increases macrophage phagocytosis of osteosarcoma tumor cells. In conclusion, our findings demonstrate that CD47 is a critical regulator in the metastasis of osteosarcoma and suggest that targeted inhibition of this antigen by anti-CD47 may be a novel immunotherapeutic approach in the management of this tumor. PMID:26093091

  14. Tumor-specific expression of αvβ3 integrin promotes spontaneous metastasis of breast cancer to bone

    PubMed Central

    Sloan, Erica K; Pouliot, Normand; Stanley, Kym L; Chia, Jenny; Moseley, Jane M; Hards, Daphne K; Anderson, Robin L

    2006-01-01

    Introduction Studies in xenograft models and experimental models of metastasis have implicated several β3 integrin-expressing cell populations, including endothelium, platelets and osteoclasts, in breast tumor progression. Since orthotopic human xenograft models of breast cancer are poorly metastatic to bone and experimental models bypass the formation of a primary tumor, however, the precise contribution of tumor-specific αvβ3 to the spontaneous metastasis of breast tumors from the mammary gland to bone remains unclear. Methods We used a syngeneic orthotopic model of spontaneous breast cancer metastasis to test whether exogenous expression of αvβ3 in a mammary carcinoma line (66cl4) that metastasizes to the lung, but not to bone, was sufficient to promote its spontaneous metastasis to bone from the mammary gland. The tumor burden in the spine and the lung following inoculation of αvβ3-expressing 66cl4 (66cl4beta3) tumor cells or control 66cl4pBabe into the mammary gland was analyzed by real-time quantitative PCR. The ability of these cells to grow and form osteolytic lesions in bone was determined by histology and tartrate-resistant acid phosphatase staining of bone sections following intratibial injection of tumor cells. The adhesive, migratory and invasive properties of 66cl4pBabe and 66cl4beta3 cells were evaluated in standard in vitro assays. Results The 66cl4beta3 tumors showed a 20-fold increase in metastatic burden in the spine compared with 66cl4pBabe. A similar trend in lung metastasis was observed. αvβ3 did not increase the proliferation of 66cl4 cells in vitro or in the mammary gland in vivo. Similarly, αvβ3 is not required for the proliferation of 66cl4 cells in bone as both 66cl4pBabe and 66cl4beta3 proliferated to the same extent when injected directly into the tibia. 66cl4beta3 tumor growth in the tibia, however, increased osteoclast recruitment and bone resorption compared with 66cl4 tumors. Moreover, αvβ3 increased 66cl4 tumor cell

  15. Monoclonal antibodies to an epithelial ovarian adenocarcinoma: distinctive reactivity with xenografts of the original tumor and a cultured cell line.

    PubMed

    Baumal, R; Law, J; Buick, R N; Kahn, H; Yeger, H; Sheldon, K; Colgan, T; Marks, A

    1986-08-01

    Four monoclonal antibodies (mAb) (8C, 10B, M2A, and M2D) were produced against the human epithelial ovarian adenocarcinoma cell line, HEY. The affinity constants of binding of the mAb to cultured HEY cells were 8 X 10(8) M-1 (M2D) and 10(9) M-1 (8C and 10B). mAb 8C reacted with a major glycoprotein of Mr 90,000 on the surface of HEY cells. The four mAb differed from previously reported mAb to epithelial ovarian adenocarcinomas on the basis of their reactivity with cultured ovarian adenocarcinoma cell lines using a cell-binding radioimmunoassay, and their staining of cryostat sections of various human normal and tumor tissues using an immunoperoxidase reaction. All four mAb reacted with s.c. tumors derived by injecting cultured HEY cells into thymectomized CBA/CJ mice. However, only two of the four mAb (8C and 10B) also reacted with s.c. tumors of the original HEY xenograft from which the cultured cell line was derived. In addition, mAb 8C and 10B reacted by immunoperoxidase staining with 2 and 4 different cases, respectively, of 11 epithelial ovarian adenocarcinomas examined. Cultured HEY cells were adapted to grow i.p. in BALB/c-nu/nu mice and the i.p. tumors retained their reactivity with the monoclonal antibodies. These tumor-bearing mice offer a useful model system for studying the potential of mAb, especially 8C and 10B, for the diagnosis and treatment of patients with peritoneal extension of epithelial ovarian adenocarcinomas.

  16. Primary breast tumor-derived cellular models: characterization of tumorigenic, metastatic, and cancer-associated fibroblasts in dissociated tumor (DT) cultures.

    PubMed

    Drews-Elger, Katherine; Brinkman, Joeli A; Miller, Philip; Shah, Sanket H; Harrell, J Chuck; da Silva, Thiago G; Ao, Zheng; Schlater, Amy; Azzam, Diana J; Diehl, Kathleen; Thomas, Dafydd; Slingerland, Joyce M; Perou, Charles M; Lippman, Marc E; El-Ashry, Dorraya

    2014-04-01

    Our goal was to establish primary cultures from dissociation of breast tumors in order to provide cellular models that may better recapitulate breast cancer pathogenesis and the metastatic process. Here, we report the characterization of six cellular models derived from the dissociation of primary breast tumor specimens, referred to as "dissociated tumor (DT) cells." In vitro, DT cells were characterized by proliferation assays, colony formation assays, protein, and gene expression profiling, including PAM50 predictor analysis. In vivo, tumorigenic and metastatic potential of DT cultures was assessed in NOD/SCID and NSG mice. These cellular models differ from recently developed patient-derived xenograft models in that they can be used for both in vitro and in vivo studies. PAM50 predictor analysis showed DT cultures similar to their paired primary tumor and as belonging to the basal and Her2-enriched subtypes. In vivo, three DT cultures are tumorigenic in NOD/SCID and NSG mice, and one of these is metastatic to lymph nodes and lung after orthotopic inoculation into the mammary fat pad, without excision of the primary tumor. Three DT cultures comprised of cancer-associated fibroblasts (CAFs) were isolated from luminal A, Her2-enriched, and basal primary tumors. Among the DT cells are those that are tumorigenic and metastatic in immunosuppressed mice, offering novel cellular models of ER-negative breast cancer subtypes. A group of CAFs provide tumor subtype-specific components of the tumor microenvironment (TME). Altogether, these DT cultures provide closer-to-primary cellular models for the study of breast cancer pathogenesis, metastasis, and TME.

  17. TRAIL-R2 promotes skeletal metastasis in a breast cancer xenograft mouse model

    PubMed Central

    Hauser, Charlotte; von Au, Anja; El-Sheikh, Doaa; Campbell, Graeme M.; Alp, Göhkan; Schewe, Denis; Hübner, Sebastian; Tiwari, Sanjay; Kownatzki, Daniel; Boretius, Susann; Adam, Dieter; Jonat, Walter; Becker, Thomas; Glüer, Claus C.; Zöller, Margot; Kalthoff, Holger

    2015-01-01

    Despite improvements in detection, surgical approaches and systemic therapies, breast cancer remains typically incurable once distant metastases occur. High expression of TRAIL-R2 was found to be associated with poor prognostic parameters in breast cancer patients, suggesting an oncogenic function of this receptor. In the present study, we aimed to determine the impact of TRAIL-R2 on breast cancer metastasis. Using an osteotropic variant of MDA-MB-231 breast cancer cells, we examine the effects of TRAIL-R2 knockdown in vitro and in vivo. Strikingly, in addition to the reduced levels of the proliferation-promoting factor HMGA2 and corresponding inhibition of cell proliferation, knockdown of TRAIL-R2 increased the levels of E-Cadherin and decreased migration. In vivo, these cells were strongly impaired in their ability to form bone metastases after intracardiac injection. Evaluating possible underlying mechanisms revealed a strong downregulation of CXCR4, the receptor for the chemokine SDF-1 important for homing of cancers cells to the bone. In accordance, cell migration towards SDF-1 was significantly impaired by TRAIL-R2 knockdown. Conversely, overexpression of TRAIL-R2 upregulated CXCR4 levels and enhanced SDF-1-directed migration. We therefore postulate that inhibition of TRAIL-R2 expression could represent a promising therapeutic strategy leading to an effective impairment of breast cancer cell capability to form skeletal metastases. PMID:25909161

  18. Carnosine inhibits carbonic anhydrase IX-mediated extracellular acidosis and suppresses growth of HeLa tumor xenografts.

    PubMed

    Ditte, Zuzana; Ditte, Peter; Labudova, Martina; Simko, Veronika; Iuliano, Filippo; Zatovicova, Miriam; Csaderova, Lucia; Pastorekova, Silvia; Pastorek, Jaromir

    2014-05-22

    Carbonic anhydrase IX (CA IX) is a transmembrane enzyme that is present in many types of solid tumors. Expression of CA IX is driven predominantly by the hypoxia-inducible factor (HIF) pathway and helps to maintain intracellular pH homeostasis under hypoxic conditions, resulting in acidification of the tumor microenvironment. Carnosine (β-alanyl-L-histidine) is an anti-tumorigenic agent that inhibits the proliferation of cancer cells. In this study, we investigated the role of CA IX in carnosine-mediated antitumor activity and whether the underlying mechanism involves transcriptional and translational modulation of HIF-1α and CA IX and/or altered CA IX function. The effect of carnosine was studied using two-dimensional cell monolayers of several cell lines with endogenous CA IX expression as well as Madin Darby canine kidney transfectants, three-dimensional HeLa spheroids, and an in vivo model of HeLa xenografts in nude mice. mRNA and protein expression and protein localization were analyzed by real-time PCR, western blot analysis, and immunofluorescence staining, respectively. Cell viability was measured by a flow cytometric assay. Expression of HIF-1α and CA IX in tumors was assessed by immunohistochemical staining. Real-time measurement of pH was performed using a sensor dish reader. Binding of CA IX to specific antibodies and metabolon partners was investigated by competitive ELISA and proximity ligation assays, respectively. Carnosine increased the expression levels of HIF-1α and HIF targets and increased the extracellular pH, suggesting an inhibitory effect on CA IX-mediated acidosis. Moreover, carnosine significantly inhibited the growth of three-dimensional spheroids and tumor xenografts compared with untreated controls. Competitive ELISA showed that carnosine disrupted binding between CA IX and antibodies specific for its catalytic domain. This finding was supported by reduced formation of the functional metabolon of CA IX and anion exchanger 2 in the

  19. Carnosine inhibits carbonic anhydrase IX-mediated extracellular acidosis and suppresses growth of HeLa tumor xenografts

    PubMed Central

    2014-01-01

    Background Carbonic anhydrase IX (CA IX) is a transmembrane enzyme that is present in many types of solid tumors. Expression of CA IX is driven predominantly by the hypoxia-inducible factor (HIF) pathway and helps to maintain intracellular pH homeostasis under hypoxic conditions, resulting in acidification of the tumor microenvironment. Carnosine (β-alanyl-L-histidine) is an anti-tumorigenic agent that inhibits the proliferation of cancer cells. In this study, we investigated the role of CA IX in carnosine-mediated antitumor activity and whether the underlying mechanism involves transcriptional and translational modulation of HIF-1α and CA IX and/or altered CA IX function. Methods The effect of carnosine was studied using two-dimensional cell monolayers of several cell lines with endogenous CA IX expression as well as Madin Darby canine kidney transfectants, three-dimensional HeLa spheroids, and an in vivo model of HeLa xenografts in nude mice. mRNA and protein expression and protein localization were analyzed by real-time PCR, western blot analysis, and immunofluorescence staining, respectively. Cell viability was measured by a flow cytometric assay. Expression of HIF-1α and CA IX in tumors was assessed by immunohistochemical staining. Real-time measurement of pH was performed using a sensor dish reader. Binding of CA IX to specific antibodies and metabolon partners was investigated by competitive ELISA and proximity ligation assays, respectively. Results Carnosine increased the expression levels of HIF-1α and HIF targets and increased the extracellular pH, suggesting an inhibitory effect on CA IX-mediated acidosis. Moreover, carnosine significantly inhibited the growth of three-dimensional spheroids and tumor xenografts compared with untreated controls. Competitive ELISA showed that carnosine disrupted binding between CA IX and antibodies specific for its catalytic domain. This finding was supported by reduced formation of the functional metabolon of CA IX

  20. Clinical and cytopathological aspects in phyllodes tumors of the breast.

    PubMed

    Pătraşcu, Anca; Popescu, Carmen Florina; Pleşea, I E; Bădulescu, Adriana; Tănase, Florentina; Mateescu, Garofiţa

    2009-01-01

    The frequency of mesenchymal breast tumors is very low, being represented mostly by tumors with biphasic proliferation (phyllodes tumors) and less by other types of non-epithelial tumors. From clinical point of view, phyllodes tumors (PT) can mimic a breast carcinoma. Therefore, the preoperative diagnosis by cytological examination on material obtained by fine needle aspiration (FNA) is very important for adequate treatment of these tumors. In current study, we assessed clinical aspects of 79 phyllodes tumors regarding patient's age and localization of the tumors. In 17 out of 79 cases, it has been performed FNA within the tumors with further cytological examination on the smears obtained. The median age of the patients was 46.07-year-old, being progressively higher with grade of the tumors with significant values between benign and borderline tumors (p=0.04954) and between benign and malignant ones (p=0.02890). The distinguish on the smears of stromal fragments and naked stromal nuclei with variable grade of atypia regarding the tumoral type, in detriment of epithelial elements have been conclusive for fibroepithelial lesion as cytopathological diagnosis. The preoperative differentiation between a breast phyllodes tumor and a breast carcinoma is extremely important for avoiding of a useless radical surgery for the patient. If the fine needle aspiration was correctly performed, the accuracy of the cytodiagnosis has been 82% in current study.

  1. Effect of fixation time on breast biomarker expression: a controlled study using cell line-derived xenografted (CDX) tumours.

    PubMed

    Kao, K R; Hasan, T; Baptista, A; Truong, T; Gai, L; Smith, A C; Li, S; Gonzales, P; Voisey, K; Erivwo, P; Power, J; Denic, N

    2017-03-23

    Altering the length of time specimens are placed in fixative without compromising analytical testing accuracy is a continuous challenge in the anatomical pathology lab. The aim of this study was to determine under controlled conditions the effects of variable fixation time on breast biomarker expression in human breast cancer cell line-derived xenografted (CDX) tumours. CDX tumours using strong oestrogen receptor (ER)-positive, Her2-negative (MCF7) and weak ER-positive, Her2 equivocal (T47D) breast cancer cell lines were fixed for various times ranging from 1 to 336 hours in 10% neutral buffered formalin. CDX tumours were processed according to routine biomarker testing protocols and stained for ER and Her2 immunohistochemistry (IHC) and processed for HER2 fluorescence in situ hybridisation (FISH). The tumours were evaluated using Allred scoring for ER and current ASCO/CAP guidelines for Her2, and by objective cell counting methodology. No differences were found in expression of ER in either MCF7 or T47D CDX tumours under variable fixation. T47D tumours displayed variably equivocal Her2 staining when fixed for 24 hours, but fixation for ≤8 hours resulted in consistently negative staining while tumours fixed for >72 hours demonstrated consistent equivocal staining (p<0.01). Cell counting assays revealed only a significant increase in sensitivity in tumours fixed for >72 hours (p<0.01). As expected, FISH results were unaffected by variable fixation. Neither shortened nor prolonged fixation affects ER expression, consistent with previous findings. In equivocal Her2-expressing tumours, however, increasing fixation increased the sensitivity of Her2 IHC reporting while not affecting FISH. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  2. Improvement of Parameter Estimations in Tumor Growth Inhibition Models on Xenografted Animals: Handling Sacrifice Censoring and Error Caused by Experimental Measurement on Larger Tumor Sizes.

    PubMed

    Pierrillas, Philippe B; Tod, Michel; Amiel, Magali; Chenel, Marylore; Henin, Emilie

    2016-09-01

    The purpose of this study was to explore the impact of censoring due to animal sacrifice on parameter estimates and tumor volume calculated from two diameters in larger tumors during tumor growth experiments in preclinical studies. The type of measurement error that can be expected was also investigated. Different scenarios were challenged using the stochastic simulation and estimation process. One thousand datasets were simulated under the design of a typical tumor growth study in xenografted mice, and then, eight approaches were used for parameter estimation with the simulated datasets. The distribution of estimates and simulation-based diagnostics were computed for comparison. The different approaches were robust regarding the choice of residual error and gave equivalent results. However, by not considering missing data induced by sacrificing the animal, parameter estimates were biased and led to false inferences in terms of compound potency; the threshold concentration for tumor eradication when ignoring censoring was 581 ng.ml(-1), but the true value was 240 ng.ml(-1).

  3. Dynamic Quantitative T1 Mapping in Orthotopic Brain Tumor Xenografts1

    PubMed Central

    Herrmann, Kelsey; Erokwu, Bernadette O.; Johansen, Mette L.; Basilion, James P.; Gulani, Vikas; Griswold, Mark A.; Flask, Chris A.; Brady-Kalnay, Susann M.

    2016-01-01

    Human brain tumors such as glioblastomas are typically detected using conventional, nonquantitative magnetic resonance imaging (MRI) techniques, such as T2-weighted and contrast enhanced T1-weighted MRI. In this manuscript, we tested whether dynamic quantitative T1 mapping by MRI can localize orthotopic glioma tumors in an objective manner. Quantitative T1 mapping was performed by MRI over multiple time points using the conventional contrast agent Optimark. We compared signal differences to determine the gadolinium concentration in tissues over time. The T1 parametric maps made it easy to identify the regions of contrast enhancement and thus tumor location. Doubling the typical human dose of contrast agent resulted in a clearer demarcation of these tumors. Therefore, T1 mapping of brain tumors is gadolinium dose dependent and improves detection of tumors by MRI. The use of T1 maps provides a quantitative means to evaluate tumor detection by gadolinium-based contrast agents over time. This dynamic quantitative T1 mapping technique will also enable future quantitative evaluation of various targeted MRI contrast agents. PMID:27084431

  4. Maximizing Immune Response to Carbohydrate Antigens on Breast Tumors

    DTIC Science & Technology

    2003-08-01

    antigens expressed on breast tumors. Towards this end we are developing peptide mimotopes of tumor associated carbohydrate antigens as they are T cell...dependent antigens. In our progress to date we have shown the 1) immunization with peptide mimotope activates a specific cellular response to a model murine...tumor cell line; 2) vaccination of mice with peptide eradicates established tumor; 3) Immunization with DNA format of the peptide suppresses tumor

  5. In vivo echographic evidence of tumoral vascularization and microenvironment interactions in metastatic orthotopic human neuroblastoma xenografts.

    PubMed

    Joseph, Jean-Marc; Gross, Nicole; Lassau, Nathalie; Rouffiac, Valérie; Opolon, Paule; Laudani, Lysiane; Auderset, Katya; Geay, Jean-François; Mühlethaler-Mottet, Annick; Vassal, Gilles

    2005-03-01

    Human neuroblastoma (NB) is the second most frequent solid tumor of childhood and represents a highly heterogeneous disease at clinical and biologic levels. Little progress has been made to improve the poor prognosis of patients with high-stage NB. Tumor progression and metastatic dissemination still represent major obstacles to the successful treatment of advanced stage disease. In order to develop and evaluate new, targeted, therapeutic strategies, fully defined and biologically relevant in vivo models of NB are strongly needed. We have developed an orthotopic model of metastatic human NB in the nude mouse, using 2 well-characterized NB cell lines. Tumor growth, vascular properties and metastatic patterns were investigated using a sensitive and newly developed in vivo echographic technology in addition to immunohistochemistry and PCR analyses. Results show that implantation of low numbers of NB cells directly into the adrenal gland of nude mice resulted in rapid and homogeneous tumor growth without tumor morbidity. Nude mice were shown to rapidly develop highly vascularized adrenal tumors that selectively metastasized to the liver and bone marrow. In addition, the newly formed mouse vessels in orthotopic but not in heterotopic tumors, were found to express the highly angiogenic alphavbeta3 integrin marker, indicating the development of a truly malignant neovasculature in orthotopic conditions only. This observation confirms the impact of the regional microenvironment on tumor biology and suggests the existence of cross-talk with the tumor cells. In conclusion, such model faithfully reproduces the growth, vascular and metastatic patterns as observed in patients. It therefore represents a powerful and biologically relevant tool to improve our understanding of the biology of NB and to develop and assess new antiangiogenic and metastasis-targeted therapies. (c) 2004 Wiley-Liss, Inc.

  6. Optical Imaging with HER2-targeted Affibody Molecules can monitor Hsp90 treatment response in a breast cancer xenograft mouse model

    PubMed Central

    van de Ven, Stephanie M.W.Y.; Elias, Sjoerd G.; Chan, Carmel T.; Miao, Zheng; Cheng, Zhen; De, Abhijit; Gambhir, Sanjiv S.

    2012-01-01

    Purpose To determine if optical imaging can be used for in vivo therapy response monitoring as an alternative to radionuclide techniques. For this we evaluated the known Her2 response to 17-DMAG treatment, a Hsp90 inhibitor. Experimental design After in vitro 17-DMAG treatment response evaluation of MCF7 parental cells and two HER2 transfected clones (Clone A medium, B high Her2 expression), we established human breast cancer xenografts in nude mice (only parental and clone B) for in vivo evaluation. Mice received 120 mg/kg of 17-DMAG in 4 doses at 12 hour intervals i.p. (n=14), or PBS as carrier control (n=9). Optical images were obtained both pre-treatment (day 0) and post-treatment (day 3, 6, and 9), always 5 hours post-injection of 500 pmol of anti-Her2 Affibody-AlexaFluor680 via tail vein (with pre-injection background subtraction). Day 3 and 9 in vivo optical imaging signal was further correlated with ex vivo Her2 levels by western blot after sacrifice. Results Her2 expression decreased with 17-DMAG dose in vitro. In vivo optical imaging signal was reduced by 22.5% in Clone B (p=0.003) and by 9% in MCF7 parental tumors (p=0.23) at 3 days after 17-DMAG treatment; optical imaging signal recovered in both tumor types at day 6–9. In the carrier group no signal reduction was observed. Pearson correlation of in vivo optical imaging signal with ex vivo Her2 levels ranged from 0.73 to 0.89. Conclusion Optical imaging with an affibody can be used to non-invasively monitor changes in Her2 expression in vivo as a response to treatment with an Hsp90 inhibitor, with results similar to response measurements in PET imaging studies. PMID:22235098

  7. Blockade of the ERK pathway enhances the therapeutic efficacy of the histone deacetylase inhibitor MS-275 in human tumor xenograft models

    SciTech Connect

    Sakamoto, Toshiaki; Ozaki, Kei-ichi; Fujio, Kohsuke; Kajikawa, Shu-hei; Uesato, Shin-ichi; Watanabe, Kazushi; Tanimura, Susumu; Koji, Takehiko; Kohno, Michiaki

    2013-04-19

    Highlights: •Blockade of the ERK pathway enhances the anticancer efficacy of HDAC inhibitors. •MEK inhibitors sensitize human tumor xenografts to HDAC inhibitor cytotoxicity. •Such the enhanced efficacy is achieved by a transient blockade of the ERK pathway. •This drug combination provides a promising therapeutic strategy for cancer patients. -- Abstract: The ERK pathway is up-regulated in various human cancers and represents a prime target for mechanism-based approaches to cancer treatment. Specific blockade of the ERK pathway alone induces mostly cytostatic rather than pro-apoptotic effects, however, resulting in a limited therapeutic efficacy of the ERK kinase (MEK) inhibitors. We previously showed that MEK inhibitors markedly enhance the ability of histone deacetylase (HDAC) inhibitors to induce apoptosis in tumor cells with constitutive ERK pathway activation in vitro. To evaluate the therapeutic efficacy of such drug combinations, we administered the MEK inhibitor PD184352 or AZD6244 together with the HDAC inhibitor MS-275 in nude mice harboring HT-29 or H1650 xenografts. Co-administration of the MEK inhibitor markedly sensitized the human xenografts to MS-275 cytotoxicity. A dose of MS-275 that alone showed only moderate cytotoxicity thus suppressed the growth of tumor xenografts almost completely as well as induced a marked reduction in tumor cellularity when administered with PD184352 or AZD6244. The combination of the two types of inhibitor also induced marked oxidative stress, which appeared to result in DNA damage and massive cell death, specifically in the tumor xenografts. The enhanced therapeutic efficacy of the drug combination was achieved by a relatively transient blockade of the ERK pathway. Administration of both MEK and HDAC inhibitors represents a promising chemotherapeutic strategy with improved safety for cancer patients.

  8. Nicastrin regulates breast cancer stem cell properties and tumor growth in vitro and in vivo.

    PubMed

    Lombardo, Ylenia; Filipović, Aleksandra; Molyneux, Gemma; Periyasamy, Manikandan; Giamas, Georgios; Hu, Yunhui; Trivedi, Pritesh S; Wang, Jayson; Yagüe, Ernesto; Michel, Loren; Coombes, R Charles

    2012-10-09

    Nicastrin (NCT) is a crucial component of the γ-secretase (GS) enzyme, which prompted investigations into its biological role in cancer. We have previously shown that nicastrin is overexpressed in breast cancer (BC), conferring worse overall survival in invasive, ERα negative patients. Here, we used 2D and 3D Matrigel, anchorage-independent growth conditions and a breast cancer xenograft mouse model to assess the impact of nicastrin on breast cancer stem cell (BCSC) propagation and invasion in vitro and tumor growth in vivo. Stable knockdown of nicastrin in HCC1806 breast cancer cells reduced cell invasion by 51.4 ± 1.7%, accompanied by a morphological change to a rounded cell phenotype and down-regulation of vimentin, Snail, Twist, MMP2, and MMP9. We observed a reduction of the pool of CD44(+)/CD24(-) and ALDH1 high breast cancer stem cells by threefold and twofold, respectively, and a reduction by 2.6-fold of the mammospheres formation. Nicastrin overexpression in nontransformed MCF10A cells caused an induction of epithelial to mesenchymal regulators, as well as a fivefold increased ALDH1 activity, a threefold enrichment for CD44(+)/CD24(-) stem cells, and a 3.2-fold enhanced mammosphere-forming capacity. Using the γ-sescretase inhibiton, Notch1/4 siRNA, and Akt inhibition, we show that nicastrin regulates breast cancer stem cells partly through Notch1 and the Akt pathway. Exploiting serial dilution transplantation of the HCC1806 cells expressing nicastrin and HCC1806 stably depleted of nicastrin, in vivo, we demonstrate that nicastrin inhibition may be relevant for the reduced tumorigenicity of breast cancer cells. These data could serve as a benchmark for development of nicastrin-targeted therapies in breast cancer.

  9. 13C high-resolution-magic angle spinning MRS reveals differences in glucose metabolism between two breast cancer xenograft models with different gene expression patterns.

    PubMed

    Grinde, Maria T; Moestue, Siver A; Borgan, Eldrid; Risa, Øystein; Engebraaten, Olav; Gribbestad, Ingrid S

    2011-12-01

    Tumor cells have increased glycolytic activity, and glucose is mainly used to form lactate and alanine, even when high concentrations of oxygen are present (Warburg effect). The purpose of the present study was to investigate glucose metabolism in two xenograft models representing basal-like and luminal-like breast cancer using (13) C high-resolution-magic angle spinning (HR-MAS) MRS and gene expression analysis. Tumor tissue was collected from two groups for each model: untreated mice (n=19) and a group of mice (n=16) that received an injection of [1-(13) C]-glucose 10 or 15 min before harvesting the tissue. (13) C HR-MAS MRS was performed on the tumor samples and differences in the glucose/alanine (Glc/Ala), glucose/lactate (Glc/Lac) and alanine/lactate (Ala/Lac) ratios between the models were studied. The expression of glycolytic genes was studied using tumor tissue from the same models. In the natural abundance MR spectra, a significantly lower Glc/Ala and Glc/Lac ratio (p<0.001) was observed in the luminal-like model compared with the basal-like model. In the labeled samples, the predominant glucose metabolites were lactate and alanine. Significantly lower Glc/Ala and Glc/Lac ratios were observed in the luminal-like model (p<0.05). Most genes contributing to glycolysis were expressed at higher levels in the luminal-like model (fdr<0.001). The lower Glc/Ala and Glc/Lac ratios and higher glycolytic gene expression observed in the luminal-like model indicates that the transformation of glucose to lactate and alanine occurred faster in this model than in the basal-like model, which has a growth rate several times faster than that of the luminal-like model. The results from the present study suggest that the tumor growth rate is not necessarily a determinant of glycolytic activity. Copyright © 2011 John Wiley & Sons, Ltd.

  10. Discrepancy Between Tumor Antigen Distribution and Radiolabeled Antibody Binding in a Nude Mouse Xenograft Model of Human Melanoma.

    PubMed

    Kim, Yong-Il; Paeng, Jin Chul; Cheon, Gi Jeong; Kang, Keon Wook; Lee, Dong Soo; Chung, June-Key

    2017-04-01

    Biodistribution of antibodies is vital to successful immunoscintigraphy/immunotherapy, and it is assumed to be similar to antigen distribution. We measured and compared the binding pattern of radiolabeled antibody to tissue antigen distribution in a nude mouse xenograft model of human melanoma. We transplanted 10(7) FEM-XII human melanoma cells into the right flank of five nude mice. For the control, we transplanted 5 × 10(6) LS174T human colon cancer cells into the left flank. Two weeks later, 10 μCi of (131)I-labeled melanoma-associated 96.5 monoclonal antibody (targeting p97 antigen) was intravenously injected. Three days later, we sacrificed the mice and evaluated 96.5 antibody binding and concentration in the tumors by ex vivo quantitative autoradiography (QAR). Two months later, we incubated adjacent tumor tissue slices in various concentrations of (125)I-labeled 96.5 MoAb and evaluated the distribution/concentration of p97 antigen by in vitro QAR. p97 antigen distribution was homogeneous in the tumors (total antigen concentration [Bmax] = 17.36-38.36 pmol/g). In contrast, radiolabeled 96.5 antibody binding was heterogenous between location within the tumor (estimated bound antigen concentration = 0.7-6.6 pmol/g). No quantifiable parameters were found to be related with radiolabeled antibody binding and tumor antigen distribution. Antibody-bound tumor antigen to total antigen ratios ranged between 2% and 38%. Heterogeneous features of target antibody binding were observed in contrast to relatively homogenous feature of tumor antigen. We did not identify any correlations between p97 antigen distribution and 96.5 antibody binding in melanoma tissue. Radiolabeled 96.5 antibody binding patterns within melanoma cannot be predicted based on p97 antigen distribution in the tumor, which needs to be further studied with several other methods and more subjects in the future.

  11. Identification of new tumor suppressor genes in triple-negative breast cancer.

    PubMed

    Rangel, Roberto; Guzman-Rojas, Liliana; Kodama, Takahiro; Kodama, Michiko; Newberg, Justin Y; Copeland, Neal G; Jenkins, Nancy A

    2017-07-19

    Although genomic sequencing has provided a better understating of the genetic landmarks in triple-negative breast cancer (TNBC), functional validation of candidate cancer genes (CCG) remains unsolved. In this study, we used a transposon mutagenesis strategy based on a two-step Sleeping Beauty (SB) forward genetic screen to identify and validate new tumor suppressors (TS) in this disease. We generated 120 siRNAs targeting 40 SB-identified candidate breast cancer TS genes and used them to downregulate expression of these genes in four human TNBC cell lines. Among CCG whose SB-mediated genetic mutation resulted in increased cellular proliferation in all cell lines tested, the genes ADNP, AP2B1, TOMM70A and ZNF326 showed tumor suppressor (TS) activity in tumor xenograft studies. Subsequent studies showed that ZNF326 regulated expression of multiple EMT and cancer stem cell (CSC) pathway genes. It also modulated expression of TS genes involved in the regulation of migration and cellular invasion and was a direct transcriptional activator of genes that regulate CSC self-renewal. ZNF326 expression associated with TNBC patient survival, with ZNF326 protein levels showing a marked reduction in TNBC. Our validation of several new tumor suppressor genes in TNBC demonstrate the utility of two-step forward genetic screens in mice, and offer an invaluable tool to identify novel candidate therapeutic pathways and targets. Copyright ©2017, American Association for Cancer Research.

  12. PPMP, a novel tubulin-depolymerizing agent against esophageal cancer in patient-derived tumor xenografts

    PubMed Central

    Oi, Naomi; Chen, Hanyong; Reddy, Kanamata; Jiang, Yanan; Yao, Ke; Li, Haitao; Li, Wei; Zhang, Yi; Saleem, Mohammad; Ma, Wei-Ya; Bode, Ann M.; Dong, Ziming; Dong, Zigang

    2016-01-01

    Esophageal cancer is one of the least studied and deadliest cancers worldwide with a poor prognosis due to limited options for treatment. Chemotherapy agents such as the microtubule-targeting compounds are the mainstay of palliation for advanced esophageal cancer treatment. However, the toxicity and side effects of tubulin-binding agents (TBAs) have promoted the development of novel, more potent but less toxic TBAs. Herein, we identified 2-[4-(3,4-dimethoxyphenyl)-3-methyl-1H-pyrazol-5-yl]-5-[(2-methylprop-2-en-1-yl)oxy] phenol (PPMP) as a novel TBA for esophageal cancer treatment. PPMP markedly inhibited tubulin polymerization, and decreased viability and anchorage-independent growth of esophageal cancer cell lines, effects that were accompanied by G2/M arrest and apoptosis. Importantly, we produced patient-derived esophageal cancer xenografts to evaluate the therapeutic effect of PPMP in a setting that best mimics the clinical context in patients with esophageal cancer. Overall, we identified PPMP as a novel microtubule-destabilizing compound and as a new therapeutic agent against esophageal carcinoma. PMID:27129160

  13. PIM kinase inhibition presents a novel targeted therapy against triple-negative breast tumors with elevated MYC expression

    PubMed Central

    Horiuchi, Dai; Camarda, Roman; Zhou, Alicia Y.; Yau, Christina; Momcilovic, Olga; Balakrishnan, Sanjeev; Corella, Alexandra N.; Eyob, Henok; Kessenbrock, Kai; Lawson, Devon A.; Marsh, Lindsey A.; Anderton, Brittany N.; Rohrberg, Julia; Kunder, Ratika; Bazarov, Alexey V.; Yaswen, Paul; McManus, Michael T.; Rugo, Hope S.; Werb, Zena; Goga, Andrei

    2017-01-01

    Triple-negative breast cancer (TNBC), which lacks the expression of the estrogen, progesterone, and HER2 receptors, represents the breast cancer subtype with the poorest outcome1. No targeted therapy is available against this subtype due to lack of validated molecular targets. We previously reported that MYC signaling is disproportionally elevated in triple-negative (TN) tumors compared to receptor-positive (RP) tumors2. MYC is an essential, pleiotropic transcription factor that regulates the expression of hundreds of genes3. Direct inhibition of oncogenic MYC transcriptional activity has remained challenging4,5. The present study conducted an shRNA screen against all kinases to uncover novel MYC-dependent synthetic lethal combinations, and identified PIM1, a non-essential kinase. Here we demonstrate that PIM1 expression was elevated in TN tumors and was associated with poor prognosis in patients with hormone and HER2 receptor-negative tumors. Small molecule PIM kinase inhibitors halted the growth of human TN tumors with elevated MYC expression in patient-derived tumor xenograft (PDX) and MYC-driven transgenic breast cancer models by inhibiting oncogenic transcriptional activity of MYC while simultaneously restoring the function of the endogenous cell cycle inhibitor, p27. Our findings warrant clinical evaluation of PIM kinase inhibitors in patients with TN tumors that exhibit elevated MYC expression. PMID:27775705

  14. Circulating Tumor Cells as a Biomarker of Response to Treatment in Patient-Derived Xenograft Mouse Models of Pancreatic Adenocarcinoma

    PubMed Central

    Torphy, Robert J.; Tignanelli, Christopher J.; Kamande, Joyce W.; Moffitt, Richard A.; Herrera Loeza, Silvia G.; Soper, Steven A.; Yeh, Jen Jen

    2014-01-01

    Circulating tumor cells (CTCs) are cells shed from solid tumors into circulation and have been shown to be prognostic in the setting of metastatic disease. These cells are obtained through a routine blood draw and may serve as an easily accessible marker for monitoring treatment effectiveness. Because of the rapid progression of pancreatic ductal adenocarcinoma (PDAC), early insight into treatment effectiveness may allow for necessary and timely changes in treatment regimens. The objective of this study was to evaluate CTC burden as a biomarker of response to treatment with a oral phosphatidylinositol-3-kinase inhibitor, BKM120, in patient-derived xenograft (PDX) mouse models of PDAC. PDX mice were randomized to receive vehicle or BKM120 treatment for 28 days and CTCs were enumerated from whole blood before and after treatment using a microfluidic chip that selected for EpCAM (epithelial cell adhesion molecule) positive cells. This microfluidic device allowed for the release of captured CTCs and enumeration of these cells via their electrical impedance signatures. Median CTC counts significantly decreased in the BKM120 group from pre- to post-treatment (26.61 to 2.21 CTCs/250 µL, p = 0.0207) while no significant change was observed in the vehicle group (23.26 to 11.89 CTCs/250 µL, p = 0.8081). This reduction in CTC burden in the treatment group correlated with tumor growth inhibition indicating CTC burden is a promising biomarker of response to treatment in preclinical models. Mutant enriched sequencing of isolated CTCs confirmed that they harbored KRAS G12V mutations, identical to the matched tumors. In the long-term, PDX mice are a useful preclinical model for furthering our understanding of CTCs. Clinically, mutational analysis of CTCs and serial monitoring of CTC burden may be used as a minimally invasive approach to predict and monitor treatment response to guide therapeutic regimens. PMID:24586805

  15. Establishment of Patient-Derived Tumor Xenograft Models of Epithelial Ovarian Cancer for Preclinical Evaluation of Novel Therapeutics.

    PubMed

    Liu, Joyce F; Palakurthi, Sangeetha; Zeng, Qing; Zhou, Shan; Ivanova, Elena; Huang, Wei; Zervantonakis, Ioannis K; Selfors, Laura M; Shen, Yiping; Pritchard, Colin C; Zheng, Mei; Adleff, Vilmos; Papp, Eniko; Piao, Huiying; Novak, Marian; Fotheringham, Susan; Wulf, Gerburg M; English, Jessie; Kirschmeier, Paul T; Velculescu, Victor E; Paweletz, Cloud; Mills, Gordon B; Livingston, David M; Brugge, Joan S; Matulonis, Ursula A; Drapkin, Ronny

    2017-03-01

    Purpose: Ovarian cancer is the leading cause of death from gynecologic malignancy in the United States, with high rates of recurrence and eventual resistance to cytotoxic chemotherapy. Model systems that allow for accurate and reproducible target discovery and validation are needed to support further drug development in this disease.Experimental Design: Clinically annotated patient-derived xenograft (PDX) models were generated from tumor cells isolated from the ascites or pleural fluid of patients undergoing clinical procedures. Models were characterized by IHC and by molecular analyses. Each PDX was luciferized to allow for reproducible in vivo assessment of intraperitoneal tumor burden by bioluminescence imaging (BLI). Plasma assays for CA125 and human LINE-1 were developed as secondary tests of in vivo disease burden.Results: Fourteen clinically annotated and molecularly characterized luciferized ovarian PDX models were generated. Luciferized PDX models retain fidelity to both the nonluciferized PDX and the original patient tumor, as demonstrated by IHC, array CGH, and targeted and whole-exome sequencing analyses. Models demonstrated diversity in specific genetic alterations and activation of PI3K signaling pathway members. Response of luciferized PDX models to standard-of-care therapy could be reproducibly monitored by BLI or plasma markers.Conclusions: We describe the establishment of a collection of 14 clinically annotated and molecularly characterized luciferized ovarian PDX models in which orthotopic tumor burden in the intraperitoneal space can be followed by standard and reproducible methods. This collection is well suited as a platform for proof-of-concept efficacy and biomarker studies and for validation of novel therapeutic strategies in ovarian cancer. Clin Cancer Res; 23(5); 1263-73. ©2016 AACR. ©2016 American Association for Cancer Research.

  16. Local delivery of cannabinoid-loaded microparticles inhibits tumor growth in a murine xenograft model of glioblastoma multiforme.

    PubMed

    Hernán Pérez de la Ossa, Dolores; Lorente, Mar; Gil-Alegre, Maria Esther; Torres, Sofía; García-Taboada, Elena; Aberturas, María Del Rosario; Molpeceres, Jesús; Velasco, Guillermo; Torres-Suárez, Ana Isabel

    2013-01-01

    Cannabinoids, the active components of marijuana and their derivatives, are currently investigated due to their potential therapeutic application for the management of many different diseases, including cancer. Specifically, Δ(9)-Tetrahydrocannabinol (THC) and Cannabidiol (CBD) - the two major ingredients of marijuana - have been shown to inhibit tumor growth in a number of animal models of cancer, including glioma. Although there are several pharmaceutical preparations that permit the oral administration of THC or its analogue nabilone or the oromucosal delivery of a THC- and CBD-enriched cannabis extract, the systemic administration of cannabinoids has several limitations in part derived from the high lipophilicity exhibited by these compounds. In this work we analyzed CBD- and THC-loaded poly-ε-caprolactone microparticles as an alternative delivery system for long-term cannabinoid administration in a murine xenograft model of glioma. In vitro characterization of THC- and CBD-loaded microparticles showed that this method of microencapsulation facilitates a sustained release of the two cannabinoids for several days. Local administration of THC-, CBD- or a mixture (1:1 w:w) of THC- and CBD-loaded microparticles every 5 days to mice bearing glioma xenografts reduced tumour growth with the same efficacy than a daily local administration of the equivalent amount of those cannabinoids in solution. Moreover, treatment with cannabinoid-loaded microparticles enhanced apoptosis and decreased cell proliferation and angiogenesis in these tumours. Our findings support that THC- and CBD-loaded microparticles could be used as an alternative method of cannabinoid delivery in anticancer therapies.

  17. Prediction of drug distribution in subcutaneous xenografts of human tumor cell lines and healthy tissues in mouse: application of the tissue composition-based model to antineoplastic drugs.

    PubMed

    Poulin, Patrick; Chen, Yung-Hsiang; Ding, Xiao; Gould, Stephen E; Hop, Cornelis Eca; Messick, Kirsten; Oeh, Jason; Liederer, Bianca M

    2015-04-01

    Advanced tissue composition-based models can predict the tissue-plasma partition coefficient (Kp ) values of drugs under in vivo conditions on the basis of in vitro and physiological input data. These models, however, focus on healthy tissues and do not incorporate data from tumors. The objective of this study was to apply a tissue composition-based model to six marketed antineoplastic drugs (docetaxel, DOC; doxorubicin, DOX; gemcitabine, GEM; methotrexate, MTX; topotecan, TOP; and fluorouracil, 5-FU) to predict their Kp values in three human tumor xenografts (HCT-116, H2122, and PC3) as well as in healthy tissues (brain, muscle, lung