Science.gov

Sample records for breast-specific gamma camera

  1. Optimal configuration of a low-dose breast-specific gamma camera based on semiconductor CdZnTe pixelated detectors

    NASA Astrophysics Data System (ADS)

    Genocchi, B.; Pickford Scienti, O.; Darambara, DG

    2017-05-01

    Breast cancer is one of the most frequent tumours in women. During the ‘90s, the introduction of screening programmes allowed the detection of cancer before the palpable stage, reducing its mortality up to 50%. About 50% of the women aged between 30 and 50 years present dense breast parenchyma. This percentage decreases to 30% for women between 50 to 80 years. In these women, mammography has a sensitivity of around 30%, and small tumours are covered by the dense parenchyma and missed in the mammogram. Interestingly, breast-specific gamma-cameras based on semiconductor CdZnTe detectors have shown to be of great interest to early diagnosis. Infact, due to the high energy, spatial resolution, and high sensitivity of CdZnTe, molecular breast imaging has been shown to have a sensitivity of about 90% independently of the breast parenchyma. The aim of this work is to determine the optimal combination of the detector pixel size, hole shape, and collimator material in a low dose dual head breast specific gamma camera based on a CdZnTe pixelated detector at 140 keV, in order to achieve high count rate, and the best possible image spatial resolution. The optimal combination has been studied by modeling the system using the Monte Carlo code GATE. Six different pixel sizes from 0.85 mm to 1.6 mm, two hole shapes, hexagonal and square, and two different collimator materials, lead and tungsten were considered. It was demonstrated that the camera achieved higher count rates, and better signal-to-noise ratio when equipped with square hole, and large pixels (> 1.3 mm). In these configurations, the spatial resolution was worse than using small pixel sizes (< 1.3 mm), but remained under 3.6 mm in all cases.

  2. Occult Breast Cancer: Scintimammography with High-Resolution Breast-specific Gamma Camera in Women at High Risk for Breast Cancer

    SciTech Connect

    Rachel F. Brem; Jocelyn A. Rapelyea; , Gilat Zisman; Kevin Mohtashemi; Joyce Raub; Christine B. Teal; Stan Majewski; Benjamin L. Welch

    2005-08-01

    To prospectively evaluate a high-resolution breast-specific gamma camera for depicting occult breast cancer in women at high risk for breast cancer but with normal mammographic and physical examination findings. MATERIALS AND METHODS: Institutional Review Board approval and informed consent were obtained. The study was HIPAA compliant. Ninety-four high-risk women (age range, 36-78 years; mean, 55 years) with normal mammographic (Breast Imaging Reporting and Data System [BI-RADS] 1 or 2) and physical examination findings were evaluated with scintimammography. After injection with 25-30 mCi (925-1110 MBq) of technetium 99m sestamibi, patients were imaged with a high-resolution small-field-of-view breast-specific gamma camera in craniocaudal and mediolateral oblique projections. Scintimammograms were prospectively classified according to focal radiotracer uptake as normal (score of 1), with no focal or diffuse uptake; benign (score of 2), with minimal patchy uptake; probably benign (score of 3), with scattered patchy uptake; probably abnormal (score of 4), with mild focal radiotracer uptake; and abnormal (score of 5), with marked focal radiotracer uptake. Mammographic breast density was categorized according to BI-RADS criteria. Patients with normal scintimammograms (scores of 1, 2, or 3) were followed up for 1 year with an annual mammogram, physical examination, and repeat scintimammography. Patients with abnormal scintimammograms (scores of 4 or 5) underwent ultrasonography (US), and those with focal hypoechoic lesions underwent biopsy. If no lesion was found during US, patients were followed up with scintimammography. Specific pathologic findings were compared with scintimammographic findings. RESULTS: Of 94 women, 78 (83%) had normal scintimammograms (score of 1, 2, or 3) at initial examination and 16 (17%) had abnormal scintimammograms (score of 4 or 5). Fourteen (88%) of the 16 patients had either benign findings at biopsy or no focal abnormality at US; in two

  3. Gamma ray camera

    DOEpatents

    Perez-Mendez, V.

    1997-01-21

    A gamma ray camera is disclosed for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array. 6 figs.

  4. Gamma ray camera

    DOEpatents

    Perez-Mendez, Victor

    1997-01-01

    A gamma ray camera for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array.

  5. The DRAGO gamma camera

    SciTech Connect

    Fiorini, C.; Gola, A.; Peloso, R.; Longoni, A.; Lechner, P.; Soltau, H.; Strueder, L.; Ottobrini, L.; Martelli, C.; Lui, R.; Madaschi, L.; Belloli, S.

    2010-04-15

    In this work, we present the results of the experimental characterization of the DRAGO (DRift detector Array-based Gamma camera for Oncology), a detection system developed for high-spatial resolution gamma-ray imaging. This camera is based on a monolithic array of 77 silicon drift detectors (SDDs), with a total active area of 6.7 cm{sup 2}, coupled to a single 5-mm-thick CsI(Tl) scintillator crystal. The use of an array of SDDs provides a high quantum efficiency for the detection of the scintillation light together with a very low electronics noise. A very compact detection module based on the use of integrated readout circuits was developed. The performances achieved in gamma-ray imaging using this camera are reported here. When imaging a 0.2 mm collimated {sup 57}Co source (122 keV) over different points of the active area, a spatial resolution ranging from 0.25 to 0.5 mm was measured. The depth-of-interaction capability of the detector, thanks to the use of a Maximum Likelihood reconstruction algorithm, was also investigated by imaging a collimated beam tilted to an angle of 45 deg. with respect to the scintillator surface. Finally, the imager was characterized with in vivo measurements on mice, in a real preclinical environment.

  6. Gamma-ray camera flyby

    SciTech Connect

    2010-01-01

    Animation based on an actual classroom demonstration of the prototype CCI-2 gamma-ray camera's ability to image a hidden radioactive source, a cesium-137 line source, in three dimensions. For more information see http://newscenter.lbl.gov/feature-stories/2010/06/02/applied-nuclear-physics/.

  7. The virtual gamma camera room.

    PubMed

    Penrose, J M; Trowbridge, E A; Tindale, W B

    1996-05-01

    The installation of a gamma camera is time-consuming and costly and, once installed, the camera position is unlikely to be altered during its working life. Poor choice of camera position therefore has long-term consequences. Additional equipment such as collimators and carts, the operator's workstation and wall-mounted display monitors must also be situated to maximize access and ease of use. The layout of a gamma camera room can be optimized prior to installation by creating a virtual environment. Super-Scape VRT software running on an upgraded 486 PC microprocessor was used to create a 'virtual camera room'. The simulation included an operator's viewpoint and a controlled tour of the room. Equipment could be repositioned as required, allowing potential problems to be identified at the design stage. Access for bed-ridden patients, operator ergonomics, operator and patient visibility were addressed. The display can also be used for patient education. Creation of a virtual environment is a valuable tool which allows different camera systems to be compared interactively in terms of dimensions, extent of movement and use of a defined space. Such a system also has applications in radiopharmacy design and simulation.

  8. Gamma cameras--state of the art.

    PubMed

    Zimmerman, R E

    1979-01-01

    The growth of nuclear medicine has paralleled the development and acceptance of gamma cameras, which are stationary instruments that produce an image of an isotope distribution. The most successful gamma camera is based on a large, single crystal of the scintillator sodium iodide coupled to an array of photomultiplier tubes and electronic networks to determine the location of a gamma ray. Current cameras are capable of spatial resolution of 4.0 mm or better. Other types of gamma cameras have been developed, including the multi-crystal camera and a limited number of instruments using gas detectors and semiconductor detectors. The scintillation type of gamma camera will continue to be the dominant camera for the next 5 to 10 years, and will continue to gradually improve. Most significant improvements will result from application of digital electronics to position circuits.

  9. Breast-specific gamma imaging is a cost effective and efficacious imaging modality when compared with MRI.

    PubMed

    Johnson, Nathalie; Sorenson, Leslie; Bennetts, Laura; Winter, Karen; Bryn, Sally; Johnson, William; Glissmeyer, Margie; Garreau, Jennifer; Blanchard, Deb

    2014-05-01

    Both MRI and breast-specific gamma imaging are tools for surgical planning in newly diagnosed breast cancer. Breast-specific gamma imaging (BSGI) is used less frequently although it is of similar utility and lower cost. We compared the diagnostic and cost efficacy of BSGI with MRI. Retrospective review of 1,480 BSGIs was performed in a community breast health center, 539 had a new diagnosis of cancer, 75 patients having both MRI and BSGI performed within 2 months of each other. Institutional charges for BSGI ($850) and MRI ($3,381) were noted. BSGI had a sensitivity of 92%, specificity of 73%, positive predictive value of 78%, and negative predictive value of 90%. This compared favorably with MRI that had sensitivity of 89%, specificity 54%, positive predictive value 67%, and negative predictive value 83%. The accuracy of BSGI was higher at 82% vs MRI at 72%. Total cost of MRI imaging was $253,575 vs BSGI at $63,750. BSGI is a cost-effective and accurate imaging study for further evaluation of dense breast tissue and new diagnosis of cancer. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Traditional gamma cameras are preferred.

    PubMed

    DePuey, E Gordon

    2016-08-01

    Although the new solid-state dedicated cardiac cameras provide excellent spatial and energy resolution and allow for markedly reduced SPECT acquisition times and/or injected radiopharmaceutical activity, they have some distinct disadvantages compared to traditional sodium iodide SPECT cameras. They are expensive. Attenuation correction is not available. Cardio-focused collimation, advantageous to increase depth-dependent resolution and myocardial count density, accentuates diaphragmatic attenuation and scatter from subdiaphragmatic structures. Although supplemental prone imaging is therefore routinely advised, many patients cannot tolerate it. Moreover, very large patients cannot be accommodated in the solid-state camera gantries. Since data are acquired simultaneously with an arc of solid-state detectors around the chest, no temporally dependent "rotating" projection images are obtained. Therefore, patient motion can be neither detected nor corrected. In contrast, traditional sodium iodide SPECT cameras provide rotating projection images to allow technologists and physicians to detect and correct patient motion and to accurately detect the position of soft tissue attenuators and to anticipate associated artifacts. Very large patients are easily accommodated. Low-dose x-ray attenuation correction is widely available. Also, relatively inexpensive low-count density software is provided by many vendors, allowing shorter SPECT acquisition times and reduced injected activity approaching that achievable with solid-state cameras.

  11. [Analog gamma camera digitalization computer system].

    PubMed

    Rojas, G M; Quintana, J C; Jer, J; Astudillo, S; Arenas, L; Araya, H

    2004-01-01

    Digitalization of analogue gamma cameras systems, using special acquisition boards in microcomputers and appropriate software for acquisition and processing of nuclear medicine images is described in detail. Microcomputer integrated systems interconnected by means of a Local Area Network (LAN) and connected to several gamma cameras have been implemented using specialized acquisition boards. The PIP software (Portable Image Processing) was installed on each microcomputer to acquire and preprocess the nuclear medicine images. A specialized image processing software has been designed and developed for these purposes. This software allows processing of each nuclear medicine exam, in a semiautomatic procedure, and recording of the results on radiological films. . A stable, flexible and inexpensive system which makes it possible to digitize, visualize, process, and print nuclear medicine images obtained from analogue gamma cameras was implemented in the Nuclear Medicine Division. Such a system yields higher quality images than those obtained with analogue cameras while keeping operating costs considerably lower (filming: 24.6%, fixing 48.2% and developing 26%.) Analogue gamma camera systems can be digitalized economically. This system makes it possible to obtain optimal clinical quality nuclear medicine images, to increase the acquisition and processing efficiency, and to reduce the steps involved in each exam.

  12. Mini gamma camera, camera system and method of use

    DOEpatents

    Majewski, Stanislaw; Weisenberger, Andrew G.; Wojcik, Randolph F.

    2001-01-01

    A gamma camera comprising essentially and in order from the front outer or gamma ray impinging surface: 1) a collimator, 2) a scintillator layer, 3) a light guide, 4) an array of position sensitive, high resolution photomultiplier tubes, and 5) printed circuitry for receipt of the output of the photomultipliers. There is also described, a system wherein the output supplied by the high resolution, position sensitive photomultipiler tubes is communicated to: a) a digitizer and b) a computer where it is processed using advanced image processing techniques and a specific algorithm to calculate the center of gravity of any abnormality observed during imaging, and c) optional image display and telecommunications ports.

  13. Development of gamma ray imaging cameras

    SciTech Connect

    Wehe, D.K.; Knoll, G.F.

    1992-05-28

    In January 1990, the Department of Energy initiated this project with the objective to develop the technology for general purpose, portable gamma ray imaging cameras useful to the nuclear industry. The ultimate goal of this R D initiative is to develop the analog to the color television camera where the camera would respond to gamma rays instead of visible photons. The two-dimensional real-time image would be displayed would indicate the geometric location of the radiation relative to the camera's orientation, while the brightness and color'' would indicate the intensity and energy of the radiation (and hence identify the emitting isotope). There is a strong motivation for developing such a device for applications within the nuclear industry, for both high- and low-level waste repositories, for environmental restoration problems, and for space and fusion applications. At present, there are no general purpose radiation cameras capable of producing spectral images for such practical applications. At the time of this writing, work on this project has been underway for almost 18 months. Substantial progress has been made in the project's two primary areas: mechanically-collimated (MCC) and electronically-collimated camera (ECC) designs. We present developments covering the mechanically-collimated design, and then discuss the efforts on the electronically-collimated camera. The renewal proposal addresses the continuing R D efforts for the third year effort. 8 refs.

  14. Development of gamma ray imaging cameras

    NASA Astrophysics Data System (ADS)

    Wehe, D. K.; Knoll, G. F.

    1992-05-01

    In January 1990, the Department of Energy initiated this project with the objective to develop the technology for general purpose, portable gamma ray imaging cameras useful to the nuclear industry. The ultimate goal of this R&D initiative is to develop the analog to the color television camera where the camera would respond to gamma rays instead of visible photons. The two-dimensional real-time image would be displayed and indicate the geometric location of the radiation relative to the camera's orientation, while the brightness and 'color' would indicate the intensity and energy of the radiation and, hence, identify the emitting isotope. There is a strong motivation for developing such a device for applications within the nuclear industry, for both high- and low-level waste repositories, for environmental restoration problems, and for space and fusion applications. At present, there are no general purpose radiation cameras capable of producing spectral images for such practical applications. At the time of this writing, work on this project has been underway for almost 18 months. Substantial progress has been made in the project's two primary areas: mechanically-collimated (MCC) and electronically-collimated camera (ECC) designs. We present developments covering the mechanically-collimated design, and then discuss the efforts on the electronically-collimated camera. The renewal proposal addresses the continuing R&D efforts for the third year effort.

  15. A novel fully integrated handheld gamma camera

    NASA Astrophysics Data System (ADS)

    Massari, R.; Ucci, A.; Campisi, C.; Scopinaro, F.; Soluri, A.

    2016-10-01

    In this paper, we present an innovative, fully integrated handheld gamma camera, namely designed to gather in the same device the gamma ray detector with the display and the embedded computing system. The low power consumption allows the prototype to be battery operated. To be useful in radioguided surgery, an intraoperative gamma camera must be very easy to handle since it must be moved to find a suitable view. Consequently, we have developed the first prototype of a fully integrated, compact and lightweight gamma camera for radiopharmaceuticals fast imaging. The device can operate without cables across the sterile field, so it may be easily used in the operating theater for radioguided surgery. The prototype proposed consists of a Silicon Photomultiplier (SiPM) array coupled with a proprietary scintillation structure based on CsI(Tl) crystals. To read the SiPM output signals, we have developed a very low power readout electronics and a dedicated analog to digital conversion system. One of the most critical aspects we faced designing the prototype was the low power consumption, which is mandatory to develop a battery operated device. We have applied this detection device in the lymphoscintigraphy technique (sentinel lymph node mapping) comparing the results obtained with those of a commercial gamma camera (Philips SKYLight). The results obtained confirm a rapid response of the device and an adequate spatial resolution for the use in the scintigraphic imaging. This work confirms the feasibility of a small gamma camera with an integrated display. This device is designed for radioguided surgery and small organ imaging, but it could be easily combined into surgical navigation systems.

  16. COMPUTER ANALYSIS OF PLANAR GAMMA CAMERA IMAGES

    EPA Science Inventory



    COMPUTER ANALYSIS OF PLANAR GAMMA CAMERA IMAGES

    T Martonen1 and J Schroeter2

    1Experimental Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. EPA, Research Triangle Park, NC 27711 USA and 2Curriculum in Toxicology, Unive...

  17. Toward standardising gamma camera quality control procedures

    NASA Astrophysics Data System (ADS)

    Alkhorayef, M. A.; Alnaaimi, M. A.; Alduaij, M. A.; Mohamed, M. O.; Ibahim, S. Y.; Alkandari, F. A.; Bradley, D. A.

    2015-11-01

    Attaining high standards of efficiency and reliability in the practice of nuclear medicine requires appropriate quality control (QC) programs. For instance, the regular evaluation and comparison of extrinsic and intrinsic flood-field uniformity enables the quick correction of many gamma camera problems. Whereas QC tests for uniformity are usually performed by exposing the gamma camera crystal to a uniform flux of gamma radiation from a source of known activity, such protocols can vary significantly. Thus, there is a need for optimization and standardization, in part to allow direct comparison between gamma cameras from different vendors. In the present study, intrinsic uniformity was examined as a function of source distance, source activity, source volume and number of counts. The extrinsic uniformity and spatial resolution were also examined. Proper standard QC procedures need to be implemented because of the continual development of nuclear medicine imaging technology and the rapid expansion and increasing complexity of hybrid imaging system data. The present work seeks to promote a set of standard testing procedures to contribute to the delivery of safe and effective nuclear medicine services.

  18. Benefit to Radiation Risk of Breast-specific Gamma Imaging Compared with Mammography in Screening Asymptomatic Women with Dense Breasts.

    PubMed

    Hendrick, R Edward; Tredennick, Tara

    2016-11-01

    Purpose To estimate the benefit-to-radiation risk ratios of mammography alone, breast-specific gamma imaging (BSGI) alone, and mammography plus BSGI in women with dense breasts who were asymptomatic and examined in the 2015 study by Rhodes et al. Materials and Methods This study uses previously published breast cancer detection rates and estimates of radiation dose and radiation risk and is, therefore, exempt from institutional review board approval. By using breast cancer detection rates for mammography alone, BSGI alone, and mammography plus BSGI from the study by Rhodes et al, as well as lifetime estimates of radiation-induced cancer mortality for mammography and BSGI on the basis of the Biologic Effects of Ionizing Radiation VII report, the benefit-to-radiation risk ratios of mammography alone, BSGI alone, and mammography plus BSGI performed annually over 10-year age intervals from ages 40 to 79 years are estimated. Results The benefit-to-radiation risk ratio is estimated to be 13 for women who are 40-49 years old and are screened with mammography, a figure that approximately doubles for each subsequent 10-year age interval up to 70-79 years old. For low-dose BSGI, annual screening benefit-to-radiation risk ratios are estimated to be 5 for women 40-49 years old and to double by age 70-79 years, while mammography plus BSGI has benefit-to-radiation risk ratios similar to those of BSGI alone. There are wide ranges for all of these estimates. Conclusion While lower dose (300 MBq) BSGI has estimated benefit-to-radiation risk ratios well in excess of 1 for screening of asymptomatic women with dense breasts who are 40 years old and older, it does not match the benefit-to-radiation risk ratio of screening mammography. (©) RSNA, 2016.

  19. Clinical utility of breast-specific gamma imaging for evaluating disease extent in the newly diagnosed breast cancer patient.

    PubMed

    Zhou, Minhao; Johnson, Nathalie; Gruner, Sam; Ecklund, G W; Meunier, Paul; Bryn, Sally; Glissmeyer, Margie; Steinbock, Kari

    2009-02-01

    Breast-specific gamma imaging (BSGI) is a functional imaging modality that has comparable sensitivity but superior specificity compared with magnetic resonance imaging, yielding fewer false-positive results and thereby improving clinical management of the newly diagnosed breast cancer patient. A retrospective review was performed from 2 community-based breast imaging centers of newly diagnosed breast cancer patients in whom BSGI was performed as part of the imaging work-up. A total of 138 patients (69 invasive ductal carcinoma, 20 invasive lobular carcinoma, 32 ductal carcinoma in situ, and 17 mixtures of invasive ductal carcinoma, invasive lobular carcinoma, or ductal carcinoma in situ and other) were reviewed. Twenty-five patients (18.1%) had a positive BSGI study at a site remote from their known cancer or more extensive disease than detected from previous imaging. Fifteen patients (10.9%) were positive for a synchronous or more extensive malignancy in the same or contralateral breast. Five patients had benign findings on pathology, 5 benign on ultrasound follow-up (false-positive rate, 7.2%). Findings converted 7 patients to mastectomy, 1 patient to neoadjuvant chemotherapy, and 7 patients were found to have previously undetected contralateral cancer. The positive predictive value for BSGI was 92.9%. BSGI detected additional or more extensive malignancy in the same or contralateral breast in 10.9% of newly diagnosed breast cancer patients. Only 7.2% incurred an additional work-up. BSGI provides accurate evaluation of remaining breast tissue in newly diagnosed breast cancer patients with few false-positive readings.

  20. Nuclear probes and intraoperative gamma cameras.

    PubMed

    Heller, Sherman; Zanzonico, Pat

    2011-05-01

    Gamma probes are now an important, well-established technology in the management of cancer, particularly in the detection of sentinel lymph nodes. Intraoperative sentinel lymph node as well as tumor detection may be improved under some circumstances by the use of beta (negatron or positron), rather than gamma detection, because the very short range (∼ 1 mm or less) of such particulate radiations eliminates the contribution of confounding counts from activity other than in the immediate vicinity of the detector. This has led to the development of intraoperative beta probes. Gamma camera imaging also benefits from short source-to-detector distances and minimal overlying tissue, and intraoperative small field-of-view gamma cameras have therefore been developed as well. Radiation detectors for intraoperative probes can generally be characterized as either scintillation or ionization detectors. Scintillators used in scintillation-detector probes include thallium-doped sodium iodide, thallium- and sodium-doped cesium iodide, and cerium-doped lutecium orthooxysilicate. Alternatives to inorganic scintillators are plastic scintillators, solutions of organic scintillation compounds dissolved in an organic solvent that is subsequently polymerized to form a solid. Their combined high counting efficiency for beta particles and low counting efficiency for 511-keV annihilation γ-rays make plastic scintillators well-suited as intraoperative beta probes in general and positron probes in particular Semiconductors used in ionization-detector probes include cadmium telluride, cadmium zinc telluride, and mercuric iodide. Clinical studies directly comparing scintillation and semiconductor intraoperative probes have not provided a clear choice between scintillation and ionization detector-based probes. The earliest small field-of-view intraoperative gamma camera systems were hand-held devices having fields of view of only 1.5-2.5 cm in diameter that used conventional thallium

  1. A Gamma-Ray Camera for Inspection Control

    SciTech Connect

    Danilenko, K.N.; Ignatyev, G.N.; Semenov, D.S; D Chernov, M.Y.; Morgan, J.

    2000-06-29

    The Research Institute of Pulse Technique has constructed a gamma-ray camera for imaging radioactive materials. The work was performed under the DOE Lab to Lab Dismantlement Transparency Program with the Lawrence Livermore National Laboratory (USA). The gamma-ray camera was intended for imaging radioactive materials, including fissile materials, in a storage container. In this case, the spatial resolution established in the specifications for the gamma ray camera was limited for reasons of inspection non-intrusiveness.

  2. 21 CFR 892.1100 - Scintillation (gamma) camera.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Scintillation (gamma) camera. 892.1100 Section 892.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1100 Scintillation (gamma) camera....

  3. 21 CFR 892.1100 - Scintillation (gamma) camera.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Scintillation (gamma) camera. 892.1100 Section 892.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1100 Scintillation (gamma) camera....

  4. 21 CFR 892.1100 - Scintillation (gamma) camera.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Scintillation (gamma) camera. 892.1100 Section 892.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1100 Scintillation (gamma) camera....

  5. 21 CFR 892.1100 - Scintillation (gamma) camera.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Scintillation (gamma) camera. 892.1100 Section 892.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1100 Scintillation (gamma) camera....

  6. Breast Imaging Utilizing Dedicated Gamma Camera and (99m)Tc-MIBI: Experience at the Tel Aviv Medical Center and Review of the Literature Breast Imaging.

    PubMed

    Even-Sapir, Einat; Golan, Orit; Menes, Tehillah; Weinstein, Yuliana; Lerman, Hedva

    2016-07-01

    The scope of the current article is the clinical role of gamma cameras dedicated for breast imaging and (99m)Tc-MIBI tumor-seeking tracer, as both a screening modality among a healthy population and as a diagnostic modality in patients with breast cancer. Such cameras are now commercially available. The technology utilizing a camera composed of a NaI (Tl) detector is termed breast-specific gamma imaging. The technology of dual-headed camera composed of semiconductor cadmium zinc telluride detectors that directly converts gamma-ray energy into electronic signals is termed molecular breast imaging. Molecular breast imaging system has been installed at the Department of Nuclear medicine at the Tel Aviv Sourasky Medical Center, Tel Aviv in 2009. The article reviews the literature well as our own experience. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. 21 CFR 892.1100 - Scintillation (gamma) camera.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Identification. A scintillation (gamma) camera is a device intended to image the distribution of radionuclides in the body by means of a photon radiation detector. This generic type of device may include...

  8. A Multimodality Hybrid Gamma-Optical Camera for Intraoperative Imaging

    PubMed Central

    Lees, John E.; Bugby, Sarah L.; Alqahtani, Mohammed S.; Jambi, Layal K.; Dawood, Numan S.; McKnight, William R.; Ng, Aik H.; Perkins, Alan C.

    2017-01-01

    The development of low profile gamma-ray detectors has encouraged the production of small field of view (SFOV) hand-held imaging devices for use at the patient bedside and in operating theatres. Early development of these SFOV cameras was focussed on a single modality—gamma ray imaging. Recently, a hybrid system—gamma plus optical imaging—has been developed. This combination of optical and gamma cameras enables high spatial resolution multi-modal imaging, giving a superimposed scintigraphic and optical image. Hybrid imaging offers new possibilities for assisting clinicians and surgeons in localising the site of uptake in procedures such as sentinel node detection. The hybrid camera concept can be extended to a multimodal detector design which can offer stereoscopic images, depth estimation of gamma-emitting sources, and simultaneous gamma and fluorescence imaging. Recent improvements to the hybrid camera have been used to produce dual-modality images in both laboratory simulations and in the clinic. Hybrid imaging of a patient who underwent thyroid scintigraphy is reported. In addition, we present data which shows that the hybrid camera concept can be extended to estimate the position and depth of radionuclide distribution within an object and also report the first combined gamma and Near-Infrared (NIR) fluorescence images. PMID:28282957

  9. The clinical impact of breast scintigraphy acquired with a breast specific γ-camera (BSGC) in the diagnosis of breast cancer: incremental value versus mammography.

    PubMed

    Spanu, Angela; Sanna, Daniela; Chessa, Francesca; Manca, Alessandra; Cottu, Pierina; Fancellu, Alessandro; Nuvoli, Susanna; Madeddu, Giuseppe

    2012-08-01

    We investigated the clinical impact of breast scintigraphy acquired with a breast specific γ-camera (BSGC) in the diagnosis of breast cancer (BC) and assessed its incremental value over mammography (Mx). A consecutive series of 467 patients underwent BSGC scintigraphy for different indications: suspicious lesions on physical examination and/or on US/MRI negative at Mx (BI-RADS 1 or 3), characterization of lesions suspicious at Mx (BI-RADS 4), preoperative staging in lesions highly suggestive of malignancy at Mx (BI-RADS 5). Definitive histopathological findings were obtained in all cases after scintigraphy: 420/467 patients had BC, while 47/467 patients had benign lesions. The scintigraphic data were correlated to Mx BI-RADS category findings and to histology. The incremental value of scintigraphy over Mx was calculated. Scintigraphy was true-positive in 97.1% BC patients, detecting 96.2% of overall tumor foci, including 91.5% of carcinomas ≤10 mm, and it was true-negative in 85.1% of patients with benign lesions. Scintigraphy gave an additional value over Mx in 141/467 cases (30.2%). In particular, scintigraphy ascertained BC missed at Mx in 31 patients with BI-RADS 1 or 3, including 26 patients with heterogeneously/high dense breast (19/26 with tumors ≤10 mm) and detected additional clinically occult ipsilateral or controlateral tumor foci (all <10 mm) or the in situ component sited around invasive tumors in 77 BC patients with BI-RADS 4 or 5, changing surgical management in 18.2% of these cases; moreover, scintigraphy ruled out malignancy in 33 patients with BI-RADS 4. BSGC scintigraphy proved a highly sensitive diagnostic tool, even in small size carcinoma detection, while maintaining a high specificity. The procedure increased both the sensitivity of Mx, especially in dense breast and in multifocal/multicentric disease, and the specificity as well as it better defined local tumor extension, thus guiding the surgeon to a more appropriate surgical treatment.

  10. Spectroscopic gamma camera for use in high dose environments

    NASA Astrophysics Data System (ADS)

    Ueno, Yuichiro; Takahashi, Isao; Ishitsu, Takafumi; Tadokoro, Takahiro; Okada, Koichi; Nagumo, Yasushi; Fujishima, Yasutake; Kometani, Yutaka; Suzuki, Yasuhiko; Umegaki, Kikuo

    2016-06-01

    We developed a pinhole gamma camera to measure distributions of radioactive material contaminants and to identify radionuclides in extraordinarily high dose regions (1000 mSv/h). The developed gamma camera is characterized by: (1) tolerance for high dose rate environments; (2) high spatial and spectral resolution for identifying unknown contaminating sources; and (3) good usability for being carried on a robot and remotely controlled. These are achieved by using a compact pixelated detector module with CdTe semiconductors, efficient shielding, and a fine resolution pinhole collimator. The gamma camera weighs less than 100 kg, and its field of view is an 8 m square in the case of a distance of 10 m and its image is divided into 256 (16×16) pixels. From the laboratory test, we found the energy resolution at the 662 keV photopeak was 2.3% FWHM, which is enough to identify the radionuclides. We found that the count rate per background dose rate was 220 cps h/mSv and the maximum count rate was 300 kcps, so the maximum dose rate of the environment where the gamma camera can be operated was calculated as 1400 mSv/h. We investigated the reactor building of Unit 1 at the Fukushima Dai-ichi Nuclear Power Plant using the gamma camera and could identify the unknown contaminating source in the dose rate environment that was as high as 659 mSv/h.

  11. Development and application of a small gamma camera

    NASA Astrophysics Data System (ADS)

    Matthews, Kenneth Lee, II

    This work investigates the design, construction, and application of a portable gamma camera based on a single position-sensitive photomultiplier tube (PSPMT) rather than an array of conventional photomultiplier tubes as used in the majority of gamma cameras. The PSPMT is an innovation in phototube design which allows two-dimensional (2-D) position information to be obtained from a single phototube. PSPMT-based portable gamma cameras can have several distinct advantages over portable systems using conventional technology: lower weight, reduced electronics, and smaller size. These advantages imply that PSPMT imagers can be more portable and possibly less expensive than their conventional counterparts. Additionally, this design can be incorporated as modules in conjugate imaging, orthogonal view, or ring detector systems, or even in conventional large-area planar imagers. The PSPMT design is applicable for diagnostic clinical procedures and for basic biomedical research. Clinically, this system could be used for intraoperative imaging; bedside imaging of non-transportable patients, e.g., in an intensive care unit, nursing home, or burn unit; and imaging in outpatient settings. In research settings such as radiopharmaceutical development laboratories, the PSPMT camera is suitable for imaging of small animals. The University of Chicago Small Gamma Camera (SGC) is a PSPMT-based gamma camera. Two SGC systems have been designed and constructed. Computer simulations and physical measurements have been applied to the performance characterization of the SGC. A maximum-likelihood position estimation scheme has been implemented in the system in place of the Anger position estimation scheme used in the majority of conventional gamma cameras. The SGC has been evaluated for several nuclear medicine imaging applications as well as laboratory research imaging. The clinical applications include planar and tomographic imaging. Radiotracer imaging with the SGC has been applied to the

  12. Charge splitting resistive layer for a semiconductor gamma camera

    SciTech Connect

    Miller, D.W.; Schlosser, P.A.

    1981-09-29

    An improved semiconductor gamma camera is disclosed. The gamma camera includes a p-i-n semiconductor diode which detects the presence and energy of gamma radiation from a source. Typically the source is radioactive material in a patient organ which is detected and then interpreted by a doctor while diagnosing the condition of that organ. The detector includes an improved electrical connection technique to allow the p-i-n diode to be connected to electronic circuitry necessary to provide spatial and energy information. In the improved camera first a passivation layer is deposited on both faces of the p-i-n diode and then a resistive layer is applied to form a reliable easily reproduced electrical contact to the junction. These two layers in combination prevent foreign matter from contacting the semiconductor material comprising the detector while providing interconnection to the electronic circuitry.

  13. Specifying dual-detector gamma cameras and associated computer systems.

    PubMed

    Tindale, W B

    1995-07-01

    Increasingly, dual-detector gamma cameras are being purchased as replacements for single-headed cameras. The improvement in sensitivity offered by a dual-detector device can be used in several ways: to shorten acquisition times, to improve signal-to-noise ratios, or to reduce administered doses. This paper focuses on the practical aspects of dual-headed devices and aims to provide some guidance for potential purchasers in the drawing up of an equipment specification.

  14. Upgrade of the JET Gamma-Ray Cameras

    SciTech Connect

    Soare, S.; Curuia, M.; Anghel, M.; Constantin, M.; David, E.; Zoita, V.; Craciunescu, T.; Falie, D.; Pantea, A.; Tiseanu, I.; Kiptily, V.; Prior, P.; Edlington, T.; Griph, S.; Krivchenkov, Y.; Loughlin, M.; Popovichev, S.; Riccardo, V.; Syme, B.; Thompson, V.

    2008-03-12

    The JET gamma-ray camera diagnostics have already provided valuable information on the gamma-ray imaging of fast ion in JET plasmas /1,2/. The applicability of gamma-ray imaging to high performance deuterium and deuterium-tritium JET discharges is strongly dependent on the fulfilment of rather strict requirements for the characterisation of the neutron and gamma-ray radiation fields. These requirements have to be satisfied within very stringent boundary conditions for the design, such as the requirement of minimum impact on the co-existing neutron camera diagnostics. The JET Gamma-Ray Cameras (GRC) upgrade project deals with these issues with particular emphasis on the design of appropriate neutron/gamma-ray filters ('neutron attenuators'). Several design versions have been developed and evaluated for the JET GRC neutron attenuators at the conceptual design level. The main design parameter was the neutron attenuation factor. The two design solutions, that have been finally chosen and developed at the level of scheme design, consist of: a) one quasi-crescent shaped neutron attenuator (for the horizontal camera) and b) two quasi-trapezoid shaped neutron attenuators (for the vertical one). The second design solution has different attenuation lengths: a short version, to be used together with the horizontal attenuator for deuterium discharges, and a long version to be used for high performance deuterium and DT discharges. Various neutron-attenuating materials have been considered (lithium hydride with natural isotopic composition and {sup 6}Li enriched, light and heavy water, polyethylene). Pure light water was finally chosen as the attenuating material for the JET gamma-ray cameras. The neutron attenuators will be steered in and out of the detector line-of-sight by means of an electro-pneumatic steering and control system. The MCNP code was used for neutron and gamma ray transport in order to evaluate the effect of the neutron attenuators on the neutron field of the

  15. Mechanical deficiencies in scintillation counters, scanners, and gamma cameras.

    PubMed

    Shaw, A; Paton, J S; Bessent, R G

    1975-01-04

    After an accident involving a scintillation counter, the machanical integrity of scintillation counters and their stands, rectilinear scanners, and gamma cameras was examined. An alarming proportion of these divices were found to be poorly designed with consequent danger to patients and staff. This class of equipment should be covered by standards incorporated in a comprehensive hospital technical memorandum.

  16. Design, modeling and performance of a hybrid portable gamma camera

    NASA Astrophysics Data System (ADS)

    Smith, Leon Eric

    The combination of a mechanically-collimated gamma-ray camera with an electronically-collimated gamma camera offers both the high efficiency and good angular resolution typical in a mechanically-collimated camera for lower photon energies and the uncoupling of spatial resolution and efficiency provided by an electronically-collimated camera at higher energies. The design, construction, performance modeling and measured performance of the Hybrid Portable Gamma Camera (HPGC) are presented here. Intended for industrial use, the HPGC offers good angular resolution and efficiency over a broad energy range (50 keV to 2 MeV) by combining a MURA coded aperture camera with a Compton scatter camera in a single system. The HPGC consists of two detector modules: (1) a NaI(Tl) scintillator with Anger logic readout and (2) a CsI(Na) pixellated crystal viewed by a position-sensitive photomultiplier tube. Analytical calculations of angular resolution components and efficiency for the HPGC were compared to Monte Carlo calculations of the same quantities. The predicted angular resolution performance for on-axis point sources, a central scattering angle of 45sp° and a detector separation distance of 35 cm ranges from 3.5-6sp° FWHM over the sensitive energy range. The mechanical collimation intrinsic efficiency for energies up to 800 keV varies from 0.50 to 0.05 while the electronic collimation intrinsic efficiency for energies above 400 keV is 7.0×10sp{-4} to 5×10sp{-5}. The experimentally measured angular resolution and efficiency values show good agreement with the modeling predictions for incident energies of 412 keV and 662 keV. Although work has been done on mechanical collimation cameras and electronic collimation cameras operating independently, no truly hybrid imaging system has been constructed that uses the same gamma ray for both mechanical collimation and electronic collimation information. This dissertation compares the relative information per photon for three

  17. Miniature gamma-ray camera for tumor localization

    SciTech Connect

    Lund, J.C.; Olsen, R.W.; James, R.B.; Cross, E.

    1997-08-01

    The overall goal of this LDRD project was to develop technology for a miniature gamma-ray camera for use in nuclear medicine. The camera will meet a need of the medical community for an improved means to image radio-pharmaceuticals in the body. In addition, this technology-with only slight modifications-should prove useful in applications requiring the monitoring and verification of special nuclear materials (SNMs). Utilization of the good energy resolution of mercuric iodide and cadmium zinc telluride detectors provides a means for rejecting scattered gamma-rays and improving the isotopic selectivity in gamma-ray images. The first year of this project involved fabrication and testing of a monolithic mercuric iodide and cadmium zinc telluride detector arrays and appropriate collimators/apertures. The second year of the program involved integration of the front-end detector module, pulse processing electronics, computer, software, and display.

  18. Clinical usefulness of breast-specific gamma imaging as an adjunct modality to mammography for diagnosis of breast cancer: a systemic review and meta-analysis.

    PubMed

    Sun, Yu; Wei, Wei; Yang, Hua-Wei; Liu, Jian-Lun

    2013-02-01

    The purpose of this study was to assess the diagnostic performance of breast-specific gamma imaging (BSGI) as an adjunct modality to mammography for detecting breast cancer. Comprehensive searches of MEDLINE (1984 to August 2012) and EMBASE (1994 to August 2012) were performed. A summary receiver operating characteristic curve (SROC) was constructed to summarize the overall test performance of BSGI. The sensitivities for detecting subcentimetre cancer and ductal carcinoma in situ (DCIS) were pooled. The potential of BSGI to complement mammography was also evaluated by identifying mammography-occult breast cancer. Analysis of the studies revealed that the overall validity estimates of BSGI in detecting breast cancer were as follows: sensitivity 95 % (95 % CI 93-96 %), specificity 80 % (95 % CI 78-82 %), positive likelihood ratio 4.63 (95 % CI 3.13-6.85), negative likelihood ratio 0.08 (95 % CI 0.05-0.14), and diagnostic odds ratio 56.67 (95 % CI 26.68-120.34). The area under the SROC was 0.9552 and the Q* point was 0.8977. The pooled sensitivities for detecting subcentimetre cancer and DCIS were 84 % (95 % CI 80-88 %) and 88 % (95 % CI 81-92 %), respectively. Among patients with normal mammography, 4 % were diagnosed with breast cancer by BSGI, and among those with mammography suggestive of malignancy or new biopsy-proven breast cancer, 6 % were diagnosed with additional cancers in the breast by BSGI. BSGI had a high diagnostic performance as an excellent adjunct modality to mammography for detecting breast cancer. The ability to identify subcentimetre cancer and DCIS was also high.

  19. Real-world application of breast-specific gamma imaging, initial experience at a community breast center and its potential impact on clinical care.

    PubMed

    Zhou, Minhao; Johnson, Nathalie; Blanchard, Deb; Bryn, Sally; Nelson, Joanne

    2008-05-01

    Breast-specific gamma imaging (BSGI) has brought scintimammography back to the forefront by using a dedicated small field-of-view system designed to detect and localize lesions down to 2 mm. Initial studies have reported sensitivity equaling that of magnetic resonance imaging, but with improved specificity. We reviewed our initial experience to evaluate the impact of this technology at our community breast center. We performed a retrospective review of the initial 176 patients who underwent BSGI. A total of 128 patients underwent BSGI because of suspicious imaging, abnormal physical examination, or high risk with dense breasts. BSGI was positive in 12 of 107 patients with breast imaging reporting and data system (BI-RADS) 1, 2, or 3. Two of these were cancer. Of the 21 patients with BI-RADS 4, 18 were BSGI negative (11 with benign biopsy, 7 observed), and 3 were BSGI positive with 2 being cancer. Forty-eight patients with a new diagnosis of cancer obtained BSGI for further work-up. It was positive at a new location in 6 cases: 2 cases were new cancers in the contralateral breast, 1 was in the ipsilateral breast, and the remaining 3 had benign pathology. Of the 176 initial patients, clinical management was changed significantly in 14.2%, with another 6.3% in whom a negative BSGI could have prevented a biopsy. BSGI has played an important role in our clinical management of breast patients with complex breast tissue. BSGI is also a good adjunctive imaging tool in the work-up of newly diagnosed breast cancer patients.

  20. The diagnostic sensitivity of dynamic contrast-enhanced magnetic resonance imaging and breast-specific gamma imaging in women with calcified and non-calcified DCIS.

    PubMed

    Kim, Jin Sil; Lee, Sang Min; Cha, Eun Suk

    2014-07-01

    Early detection of breast cancer reduces mortality. Therefore, diagnosis of ductal carcinoma in situ (DCIS) is important. To compare the sensitivities of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and breast-specific gamma imaging (BSGI) in pathologically proven calcified and non-calcified DCIS. Thirty-five patients with pathologically diagnosed DCIS from 1 June 2009 through 31 December 2011, underwent a protocol involving both breast MRI and BSGI. Each image was assessed by a separate dedicated breast radiologist. All lesions were divided into two groups; with or without microcalcifications on mammograms. In cases without microcalcifications, we recorded the mass, asymmetry, or negative findings on mammography. On MRI, the enhancement pattern was categorized as mass or non-mass-like enhancement. On BSGI, the uptake pattern was analyzed. The histopathological features of the lesions were obtained. Statistical analysis of the sensitivity of each modality was performed using McNemar's test. Thirty-five women with a mean age of 48 years (range, 26-69 years) were enrolled in the study. The total sensitivities of MRI and BSGI in the 35 cases were 91.4% (32 of 35 DCIS) and 68.6% (24 of 35 DCIS), respectively. Eighteen cases with DCIS displayed microcalcifications on mammography, while 17 cases did not. Of these 17 cases without microcalcifications on mammography, 88.2% (15 of 17 DCIS) were detected by MRI and 52.9% (9 of 17 DCIS) by BSGI. Of 18 cases with microcalcifications on mammography, 94.4% (17 of 18 DCIS) were detected by MRI and 83.3% (15 of 19 DCIS) by BSGI. MRI showed a higher sensitivity for the detection of calcified and non-calcified DCIS and is more helpful than BSGI in cases without microcalcifications on mammography. © The Foundation Acta Radiologica 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  1. Observed inter-camera variability of clinically relevant performance characteristics for Siemens Symbia gamma cameras.

    PubMed

    Kappadath, S Cheenu; Erwin, William D; Wendt, Richard E

    2006-11-28

    We conducted an evaluation of the intercamera (i.e., between cameras) variability in clinically relevant performance characteristics for Symbia gamma cameras (Siemens Medical Solutions, Malvern, PA) based on measurements made using nine separate systems. The significance of the observed intercamera variability was determined by comparing it to the intracamera (i.e., within a single camera) variability. Measurements of performance characteristics were based on the standards of the National Electrical Manufacturers Association and reports 6, 9, 22, and 52 from the American Association of Physicists in Medicine. All measurements were performed using 99mTc (except 57Co used for extrinsic resolution) and low-energy, high-resolution collimation. Of the nine cameras, four have crystals 3/8 in. thick and five have crystals 5/8 in. thick. We evaluated intrinsic energy resolution, intrinsic and extrinsic spatial resolution, intrinsic integral and differential flood uniformity over the useful field-of-view, count rate at 20% count loss, planar sensitivity, single-photon emission computed tomography (SPECT) resolution, and SPECT integral uniformity. The intracamera variability was estimated by repeated measurements of the performance characteristics on a single system. The significance of the observed intercamera variability was evaluated using the two-tailed F distribution. The planar sensitivity of the gamma cameras tested was found be variable at the 99.8% confidence level for both the 3/8-in. and 5/8-in. crystal systems. The integral uniformity and energy resolution were found to be variable only for the 5/8-in. crystal systems at the 98% and 90% confidence level, respectively. All other performance characteristics tested exhibited no significant variability between camera systems. The measured variability reported here could perhaps be used to define nominal performance values of Symbia gamma cameras for planar and SPECT imaging.

  2. Design of a wire-mesh collimator for gamma cameras.

    PubMed

    Saripan, M Iqbal; Petrou, Maria; Wells, Kevin

    2007-09-01

    This paper presents a model of a wire-mesh collimator for a gamma camera that produces images of comparable quality as those produced with the conventional multihole collimator, but has about half the weight of the multihole collimator. The gamma camera and the collimator are simulated using the MCNPX code. Two final configurations of the wire-mesh collimator are proposed, and their performance is compared with other wire-mesh collimators and with the multihole collimator, using a point source, a planar square source, and two point sources, all in water. In all cases, photons with energy 140 keV are simulated. In addition, we use the simulation of a realistic phantom of a hot tumor in a warm background to assess the performance of our collimator in conjunction with an extended source.

  3. Acquisition of gamma camera and physiological data by computer.

    PubMed

    Hack, S N; Chang, M; Line, B R; Cooper, J A; Robeson, G H

    1986-11-01

    We have designed, implemented, and tested a new Research Data Acquisition System (RDAS) that permits a general purpose digital computer to acquire signals from both gamma camera sources and physiological signal sources concurrently. This system overcomes the limited multi-source, high speed data acquisition capabilities found in most clinically oriented nuclear medicine computers. The RDAS can simultaneously input signals from up to four gamma camera sources with a throughput of 200 kHz per source and from up to eight physiological signal sources with an aggregate throughput of 50 kHz. Rigorous testing has found the RDAS to exhibit acceptable linearity and timing characteristics. In addition, flood images obtained by this system were compared with flood images acquired by a commercial nuclear medicine computer system. National Electrical Manufacturers Association performance standards of the flood images were found to be comparable.

  4. Gamma camera intrinsic uniformity in an unstable power supply environment.

    PubMed

    Ejeh, John E; Adedapo, Kayode S; Akinlade, Bidemi I; Osifo, Bola O A

    2011-01-01

    The main objective of this work was to show that a gamma camera in a developing country could perform efficiently despite electricity outages using intrinsic flood uniformity tests as an index of performance. A total of 143 intrinsic uniformity test results for a new gamma camera in use in an environment with unstable power supply are presented. The integral uniformity for the central field of view (CFOV) was found to be between 3.43% and 1.49% (3.29% for acceptance test) while the integral uniformity for the useful field of view (UFOV) was between 4.51% and 1.9% (5.21% for acceptance test). The differential uniformity for the CFOV was between 1.99% and 1.04% (2.25% for acceptance test) while that of the UFOV was between 2.84% and 1.23% (2.63% for acceptance test). In conclusion, these results show that the uniformity of the gamma camera under this condition is within an acceptable range for both planar and SPET imaging.

  5. Suitability of nuclear medicine gamma cameras as gamma spectrometers in the event of a radiological emergency

    NASA Astrophysics Data System (ADS)

    Engdahl, J. C.; Bharwani, K.

    2005-11-01

    Nuclear medicine gamma cameras are large area NaI(Tl) scintillation detectors that measure both the position and energy of incident gamma rays. A typical, commercial, large field-of-view (LFOV), gamma camera has about 2000 cm 3 of useful detector volume with an entrance window of 50×40 cm 2 by 1 cm thickness. A 3″×3″ NaI(Tl) detector, by comparison, has 17.4% of the volume and 2.3% of the area of the LFOV gamma camera. A 2002 survey reported 11,700 gamma cameras as being installed in hospitals and clinics in the US. In the event of a radiological emergency, the ability to utilize some of this installed detector capacity would be desirable. This work investigates the feasibility of using the gamma camera as a large area gamma spectrometer for detecting and quantifying isotopes likely to be involved in a radiological emergency caused by dispersion of radioactivity by a so called "dirty bomb." Monte Carlo modeling was used to analyze detection sensitivity as a function of energy for the camera vs. the 3″×3″ cylinder. For a point source positioned 100 cm from the face of the detector, the ratio of total extrinsic efficiency of the camera to that of the 3″×3″ cylinder varied from 40.3 at 140 keV to 7.3 at 5 MeV. Ratios for extrinsic efficiency of peaks (including the full energy peak, single escape, and double escape peaks) varied from 41.1 at 140 keV to 5.5 at 5 MeV. Modifications that will be required to enable the cameras to function as spectrometers over a wide energy range are described and discussed. Given the large sensitivity advantage, the fact that the camera is shielded on three sides, and that cameras are already present at many locations to where victims of a disaster would be transported, it is desirable that such system capabilities be investigated.

  6. Added value of semi-quantitative breast-specific gamma imaging in the work-up of suspicious breast lesions compared to mammography, ultrasound and 3-T MRI.

    PubMed

    Meissnitzer, T; Seymer, A; Keinrath, P; Holzmannhofer, J; Pirich, C; Hergan, K; Meissnitzer, M W

    2015-07-01

    To prospectively analyse the diagnostic value of semi-quantitative breast-specific gamma imaging (BSGI) in the work-up of suspicious breast lesions compared with that of mammography (MG), breast ultrasound and MRI of the breast. Within a 15-month period, 67 patients with 92 breast lesions rated as Category IV or V according to the breast imaging reporting and data system detected with MG and/or ultrasound were included into the study. After the injection of 740-1110 MBq of Technetium-99m ((99m)Tc) SestaMIBI intravenously, scintigrams were obtained in two projections comparable to MG. The BSGI was analysed visually and semi-quantitatively by calculating a relative uptake factor (X). With the exception of two patients with cardiac pacemakers, all patients underwent 3-T breast MRI. Biopsy results were obtained as the reference standard in all patients. Sensitivity, specificity, positive- and negative-predictive values, accuracy and area under the curve were calculated for each modality. Among the 92 lesions, 67 (72.8%) were malignant. 60 of the 67 cancers of any size were detected by BSGI with an overall sensitivity of 90%, only exceeded by ultrasound with a sensitivity of 99%. The sensitivity of BSGI for lesions <1 cm declined significantly to 60%. Overall specificity of ultrasound was only 20%. Specificity, accuracy and positive-predictive value were the highest for BSGI (56%, 80% and 85%, respectively). X was significantly higher for malignant lesions (mean, 4.27) and differed significantly between ductal types (mean, 4.53) and the other histopathological entities (mean, 3.12). Semi-quantitative BSGI with calculation of the relative uptake factor (X) can help to characterize breast lesions. BSGI negativity may obviate the need for biopsy of breast lesions >1 cm with low or intermediate prevalence for malignancy. Compared with morphological imaging modalities, specificity, positive-predictive value for malignancy and accuracy were the highest for BSGI in our

  7. Added value of semi-quantitative breast-specific gamma imaging in the work-up of suspicious breast lesions compared to mammography, ultrasound and 3-T MRI

    PubMed Central

    Seymer, A; Keinrath, P; Holzmannhofer, J; Pirich, C; Hergan, K; Meissnitzer, M W

    2015-01-01

    Objective: To prospectively analyse the diagnostic value of semi-quantitative breast-specific gamma imaging (BSGI) in the work-up of suspicious breast lesions compared with that of mammography (MG), breast ultrasound and MRI of the breast. Methods: Within a 15-month period, 67 patients with 92 breast lesions rated as Category IV or V according to the breast imaging reporting and data system detected with MG and/or ultrasound were included into the study. After the injection of 740–1110 MBq of Technetium-99m (99mTc) SestaMIBI intravenously, scintigrams were obtained in two projections comparable to MG. The BSGI was analysed visually and semi-quantitatively by calculating a relative uptake factor (X). With the exception of two patients with cardiac pacemakers, all patients underwent 3-T breast MRI. Biopsy results were obtained as the reference standard in all patients. Sensitivity, specificity, positive- and negative-predictive values, accuracy and area under the curve were calculated for each modality. Results: Among the 92 lesions, 67 (72.8%) were malignant. 60 of the 67 cancers of any size were detected by BSGI with an overall sensitivity of 90%, only exceeded by ultrasound with a sensitivity of 99%. The sensitivity of BSGI for lesions <1 cm declined significantly to 60%. Overall specificity of ultrasound was only 20%. Specificity, accuracy and positive-predictive value were the highest for BSGI (56%, 80% and 85%, respectively). X was significantly higher for malignant lesions (mean, 4.27) and differed significantly between ductal types (mean, 4.53) and the other histopathological entities (mean, 3.12). Conclusion: Semi-quantitative BSGI with calculation of the relative uptake factor (X) can help to characterize breast lesions. BSGI negativity may obviate the need for biopsy of breast lesions >1 cm with low or intermediate prevalence for malignancy. Advances in knowledge: Compared with morphological imaging modalities, specificity, positive

  8. A scheme for assessing the performance characteristics of small field-of-view gamma cameras.

    PubMed

    Bhatia, B S; Bugby, S L; Lees, J E; Perkins, A C

    2015-02-01

    Existing protocols for assessing the performance characteristics of large field-of-view (LFOV) gamma cameras can be inappropriate and require modification for use with small field-of-view (SFOV) gamma camera systems. This communication proposes a generic scheme suitable for evaluating the performance characteristics of SFOV gamma cameras, based on modifications to the standard procedures of NEMA NU1-2007. Key differences in methodology between tests for LFOV and SFOV gamma cameras are highlighted along with the rationale for these changes. It is envisaged that this scheme will provide more appropriate methods for equipment characterisation, ensuring quality and consistency for all SFOV cameras.

  9. Improved readout system for multi-crystal gamma cameras

    DOEpatents

    Derenzo, S.E.

    1985-08-21

    A radioisotope camera having an array of scintillation crystals arranged in N rows and M columns and adapted to be struck by gamma-rays from a subject, a separate solid state photodetector optically coupled to each crystal, and N + M amplifiers connected to the photodetectors to distinguish the particular row and column of an activated photodetector. One of the anode or cathode leads of each photodetector is coupled to the row amplifier associated with the row containing that photodetector while the other of the two leads is coupled to the column amplifier associated with the column containing that photodetector.

  10. A new gamma camera for positron emission tomography

    NASA Astrophysics Data System (ADS)

    Schotanus, Paul

    1988-06-01

    The detection of annihilation radiation employing radiation absorbed in a barium fluoride (BaF2) crystal is described. The resulting scintillation light is detected in a multiwire proportional chamber filled with a photosensitive vapor. The use of a high density fast scintillator with a low pressure wire chamber offers a good detection efficiency and permits high count rates because of the small dead time. The physical background of the detection mechanism is explored and the performance parameters of a gamma camera using this principle are determined. The scintillation mechanism and physical characteristics of the BaF2 scintillator are examined. Ultraviolet scintillation materials consisting of rare earth doped fluorides are introduced.

  11. A fast algorithm for computer aided collimation gamma camera (CACAO)

    NASA Astrophysics Data System (ADS)

    Jeanguillaume, C.; Begot, S.; Quartuccio, M.; Douiri, A.; Franck, D.; Pihet, P.; Ballongue, P.

    2000-08-01

    The computer aided collimation gamma camera is aimed at breaking down the resolution sensitivity trade-off of the conventional parallel hole collimator. It uses larger and longer holes, having an added linear movement at the acquisition sequence. A dedicated algorithm including shift and sum, deconvolution, parabolic filtering and rotation is described. Examples of reconstruction are given. This work shows that a simple and fast algorithm, based on a diagonal dominant approximation of the problem can be derived. Its gives a practical solution to the CACAO reconstruction problem.

  12. Europe's space camera unmasks a cosmic gamma-ray machine

    NASA Astrophysics Data System (ADS)

    1996-11-01

    The new-found neutron star is the visible counterpart of a pulsating radio source, Pulsar 1055-52. It is a mere 20 kilometres wide. Although the neutron star is very hot, at about a million degrees C, very little of its radiant energy takes the form of visible light. It emits mainly gamma-rays, an extremely energetic form of radiation. By examining it at visible wavelengths, astronomers hope to figure out why Pulsar 1055-52 is the most efficient generator of gamma-rays known so far, anywhere the Universe. The Faint Object Camera found Pulsar 1055-52 in near ultraviolet light at 3400 angstroms, a little shorter in wavelength than the violet light at the extremity of the human visual range. Roberto Mignani, Patrizia Caraveo and Giovanni Bignami of the Istituto di Fisica Cosmica in Milan, Italy, report its optical identification in a forthcoming issue of Astrophysical Journal Letters (1 January 1997). The formal name of the object is PSR 1055-52. Evading the glare of an adjacent star The Italian team had tried since 1988 to spot Pulsar 1055-52 with two of the most powerful ground-based optical telescopes in the Southern Hemisphere. These were the 3.6-metre Telescope and the 3.5-metre New Technology Telescope of the European Southern Observatory at La Silla, Chile. Unfortunately an ordinary star 100,000 times brighter lay in almost the same direction in the sky, separated from the neutron star by only a thousandth of a degree. The Earth's atmosphere defocused the star's light sufficiently to mask the glimmer from Pulsar 1055-52. The astronomers therefore needed an instrument in space. The Faint Object Camera offered the best precision and sensitivity to continue the hunt. Devised by European astronomers to complement the American wide field camera in the Hubble Space Telescope, the Faint Object Camera has a relatively narrow field of view. It intensifies the image of a faint object by repeatedly accelerating electrons from photo-electric films, so as to produce

  13. Mini gamma cameras for intra-operative nuclear tomographic reconstruction.

    PubMed

    Matthies, Philipp; Gardiazabal, José; Okur, Aslı; Vogel, Jakob; Lasser, Tobias; Navab, Nassir

    2014-12-01

    Nuclear imaging modalities like PET or SPECT are in extensive use in medical diagnostics. In a move towards personalized therapy, we present a flexible nuclear tomographic imaging system to enable intra-operative SPECT-like 3D imaging. The system consists of a miniaturized gamma camera mounted on a robot arm for flexible positioning, while spatio-temporal localization is provided by an optical tracking system. To facilitate statistical tomographic reconstruction of the radiotracer distribution using a maximum likelihood approach, a precise model of the mini gamma camera is generated by measurements. The entire system is evaluated in a series of experiments using a hot spot phantom, with a focus on criteria relevant for the intra-operative workflow, namely the number of required imaging positions as well as the required imaging time. The results show that high quality reconstructed images of simple hot spot configurations with positional errors of less than one millimeter are possible within acquisition times as short as 15s.

  14. Performance characteristics of a new pixelated portable gamma camera

    PubMed Central

    Siman, W.; Cheenu Kappadath, S.

    2012-01-01

    Purpose: To evaluate and characterize the performance of a new commercially available pixelated portable gamma camera Ergo (Digirad, Poway, CA). Methods: The authors evaluated a pixelated portable gamma camera system, Ergo, that consists of 11 520 elements of 3 × 3 mm2 CsI(Tl) crystals that are 6-mm thick and are coupled to silicon photodiodes. The detector element has a size of 3.31 × 3.24 mm2. The gamma camera performance was evaluated for both low-energy all-purpose (LEAP) and low-energy high-resolution (LEHR) collimators. The flood-field uniformity for 99mTc and 201Tl was assessed using fillable uniform flood phantoms. Energy spectra were acquired for 99mTc, 111In, 201Tl, and 67Ga to evaluate energy linearity and energy resolution. Spectral fits were performed to calculate the photopeak energies and resolutions. The pixel size and multiwindow spatial registration (MWSR) was evaluated by measuring mixed 99mTc and 201Tl point sources placed at known distances apart. The system’s sensitivity was measured according to the National Electrical Manufacturer’s Association (NEMA) NU1-2007 standards for both LEAP and LEHR collimators as a function of distance from the collimator surface (5, 10, 15, 20, 25, 30, and 40 cm). The system resolution without scatter was measured for both LEAP and LEHR using 99mTc-filled capillary tubes located at 0, 2, 4, 6, 10, and 12 cm away from the surface of the collimator. As a measure of the spatial resolution, the full width at half maximum (FWHM) at a given distance was calculated from the presampling line spread function (LSF), constructed from the line profiles of the capillary tubes at the same distance. As a comparison, the FWHM at 10 cm away from LEHR and LEAP collimators was also calculated from linear interpolation as described by NEMA NU-1 2007 and from fitting the profiles to a Gaussian-plus-constant model. Results: All isotope-collimator pairs demonstrated good flood-field uniformity with an integral

  15. Characterisation of a high resolution small field of view portable gamma camera.

    PubMed

    Bugby, S L; Lees, J E; Bhatia, B S; Perkins, A C

    2014-05-01

    A handheld, high-resolution small field of view (SFOV) pinhole gamma camera has been characterised using a new set of protocols adapted from standards previously developed for large field of view (LFOV) systems. Parameters investigated include intrinsic and extrinsic spatial resolution, spatial linearity, uniformity, sensitivity, count rate capability and energy resolution. Camera characteristics are compared to some clinical LFOV gamma cameras and also to other SFOV cameras in development.

  16. High count rate gamma camera with independent modules

    NASA Astrophysics Data System (ADS)

    Massari, R.; Ucci, A.; Campisi, C.; Scopinaro, F.; Soluri, A.

    2015-11-01

    Advances in nuclear medical imaging are based on the improvements of the detector's performance. Generally the research is focussed on the spatial resolution improvement. However, another important parameter is the acquisition time that can significantly affect performance in some clinical investigation (e.g. first-pass cardiac studies). At present, there are several clinical imaging systems which are able to solve these diagnostic requirements, such as the D-SPECT Cardiac Imaging System (Spectrum Dynamics) or the Nucline Cardiodesk Medical Imaging System (Mediso). Actually, these solutions are organ-specific dedicated systems, while it would be preferable having general purpose planar detectors with high counting rate. Our group has recently introduced the use of scintillation matrices whose size is equal to the overall area of a position sensitive photomultiplier tube (PSPMT) in order to design a modular gamma camera. This study allowed optimising the overall pixel identification by improving and controlling the light collection efficiency of each PSPMT. Although we achieved a solution for the problems about the dead area at the junction of the PSPMTs when they are set side by side. In this paper, we propose a modular gamma camera design as the basis to build large area detectors. The modular detector design allows us to achieve better counting performance. In this approach, each module that is made of one or more PSPMTs, can actually acquire data independently and simultaneously, increasing the overall detection efficiency. To verify the improvement in count rate capability we have built two detectors with a field of view of 5 × 5cm2, by using four R8900-C12 PSPMTs (Hamamatsu Photonics K.K.). Each PSPMT was coupled to a dedicated discrete scintillation structure designed to obtain a good homogeneity, high imaging performance and high efficiency. One of the detectors was designed as a standard gamma camera, while the other was composed by four independent

  17. Coded-aperture Compton camera for gamma-ray imaging

    NASA Astrophysics Data System (ADS)

    Farber, Aaron M.

    This dissertation describes the development of a novel gamma-ray imaging system concept and presents results from Monte Carlo simulations of the new design. Current designs for large field-of-view gamma cameras suitable for homeland security applications implement either a coded aperture or a Compton scattering geometry to image a gamma-ray source. Both of these systems require large, expensive position-sensitive detectors in order to work effectively. By combining characteristics of both of these systems, a new design can be implemented that does not require such expensive detectors and that can be scaled down to a portable size. This new system has significant promise in homeland security, astronomy, botany and other fields, while future iterations may prove useful in medical imaging, other biological sciences and other areas, such as non-destructive testing. A proof-of-principle study of the new gamma-ray imaging system has been performed by Monte Carlo simulation. Various reconstruction methods have been explored and compared. General-Purpose Graphics-Processor-Unit (GPGPU) computation has also been incorporated. The resulting code is a primary design tool for exploring variables such as detector spacing, material selection and thickness and pixel geometry. The advancement of the system from a simple 1-dimensional simulation to a full 3-dimensional model is described. Methods of image reconstruction are discussed and results of simulations consisting of both a 4 x 4 and a 16 x 16 object space mesh have been presented. A discussion of the limitations and potential areas of further study is also presented.

  18. Optical modeling, design optimization, and performance analysis of a gamma camera for detection of breast cancer

    NASA Astrophysics Data System (ADS)

    Sain, John David

    2001-07-01

    This dissertation presents the research performed to develop an optical model, improve some design parameters, and analyze the performance of the UA modular gamma camera. Initially we provide a brief background on nuclear medical imaging with scintillation cameras. The key hardware components of a camera are introduced, and some of the fundamental physics involved in the detection of gamma rays is explained. Then we describe a stand-alone modular camera imaging system that was developed to image human breasts in the clinic. The hardware and software components, calibration procedure, and general operation of the system are detailed. We explain the concepts of position estimation and scatter rejection and note how they have been applied to imaging with the UA modular gamma camera. Position estimation uses the output signals of the camera to determine where an incident gamma ray interacted within the camera, and scatter rejection uses the signals to decide whether or not an incident gamma ray underwent scattering prior to being detected by the camera. Then we present an analytical optical model of the UA modular gamma camera. Taking into account physical and optical properties of the camera components, the model performs radiometric calculations to estimate the mean response of the camera to a scintillation event anywhere within the scintillation crystal. The results of several studies using the optical model to test and improve some camera design parameters are reported. Finally, we demonstrate how straightforward signal detection theory can be used to evaluate the performance of a modular gamma camera for the task of detecting signals in noisy backgrounds. Guided by the preliminary design of a dedicated breast imaging system, estimates of how well the UA modular gamma camera can detect lesions within human breasts were generated.

  19. Readout system for multi-crystal gamma cameras

    DOEpatents

    Derenzo, Stephen E.

    1987-01-01

    A radioisotope camera (10) having an array (12) of scintillation crystals (13) arranged in N rows and M columns and adapted to be struck by gamma-rays from a subject, a separate solid state photodetector (15 ) optically coupled to each crystal (13), and N+M amplifiers (24) connected to the photodetectors (15) to distinguish the particular row and column of an activated photodetector. One of the anode or cathode leads (33 or 34) of each photodetector (15) is coupled to the row amplifier (24) associated with the row containing that photodetector while the other of the two leads (34 or 33) is coupled to the column amplifier (24) associated with the column containing that photodetector.

  20. Characterization of the count rate performance of modern gamma cameras

    PubMed Central

    Silosky, M.; Johnson, V.; Beasley, C.; Cheenu Kappadath, S.

    2013-01-01

    Purpose: Evaluation of count rate performance (CRP) is an integral component of gamma camera quality assurance and system deadtime (τ) may be utilized for image correction in quantitative studies. This work characterizes the CRP of three modern gamma cameras and estimates τ using two established methods (decay and dual source) under a variety of experimental conditions. Methods: For the decay method, uncollimated detectors were exposed to a Tc-99m source of relatively high activity and count rates were sampled regularly over 48 h. Input count rate at each time point was based on the lowest observed count rate data point. The input count rate was plotted against the observed count rate and fit via least-squares to the paralyzable detector model (PDM) to estimate τ (rates method). A novel expression for observed counts as a function of measurement time interval was derived, taking into account the PDM and the presence of background but making no assumption regarding input count rate. The observed counts were fit via least-squares to this novel expression to estimate τ (counts method). Correlation and Bland-Altman analyses were performed to assess agreement in estimates of τ between the rates and counts methods. The dependence of τ on energy window definition and incident energy spectrum were characterized. The dual source method was also used to estimate τ and its agreement with estimates from the decay method under identical conditions was also investigated. The dependences of τ on the total activity and the ratio of source activities were characterized. Results: The observed CRP curves for each gamma camera agreed with the PDM at low count rates but deviated substantially from it at high count rates. The estimates of τ determined from the paralyzable portion of the CPR curve using the rates method and the counts method were found to be highly correlated (r = 0.999) but with a small (∼6%) difference. No statistically significant difference was observed

  1. Gamma-ray camera for arms control applications

    SciTech Connect

    Chevnov, M; Ignoytev, G; Morgan, J F; Seminov, D

    1999-06-01

    The Research Institute of Pulse Techniques, in collaboration with the Proliferation Prevention and Arms Control Program at LLNL, has constructed a gamma-ray camera for use in arms control agreements such as Mutual Reciprocal Inspections and Warhead Dismantlement Transparency. The camera is designed to have high efficiency (in order to reduce inspection times), moderate resolution (to decrease the intrusiveness of the measurements), and sturdy construction (to allow operation in the types of conditions that might be met during shipment and use at various forward weapons sites). The imaging element consists of a honeycomb or soda-straw lead collimator and a 312-mm-diameter NaI(Tl) scintillator viewed by an array of phototubes. Software was developed to display two- and three-dimensional views of the data and to analyze shape and peak areas.The first model was tuned for plutonium radiation in the 375- to 415-keV energy range. Images from various arrays of point sources were obtained and are presented.

  2. Optimizing a three-stage Compton camera for measuring prompt gamma rays emitted during proton radiotherapy

    PubMed Central

    Peterson, S W; Robertson, D; Polf, J

    2011-01-01

    In this work, we investigate the use of a three-stage Compton camera to measure secondary prompt gamma rays emitted from patients treated with proton beam radiotherapy. The purpose of this study was (1) to develop an optimal three-stage Compton camera specifically designed to measure prompt gamma rays emitted from tissue and (2) to determine the feasibility of using this optimized Compton camera design to measure and image prompt gamma rays emitted during proton beam irradiation. The three-stage Compton camera was modeled in Geant4 as three high-purity germanium detector stages arranged in parallel-plane geometry. Initially, an isotropic gamma source ranging from 0 to 15 MeV was used to determine lateral width and thickness of the detector stages that provided the optimal detection efficiency. Then, the gamma source was replaced by a proton beam irradiating a tissue phantom to calculate the overall efficiency of the optimized camera for detecting emitted prompt gammas. The overall calculated efficiencies varied from ~10−6 to 10−3 prompt gammas detected per proton incident on the tissue phantom for several variations of the optimal camera design studied. Based on the overall efficiency results, we believe it feasible that a three-stage Compton camera could detect a sufficient number of prompt gammas to allow measurement and imaging of prompt gamma emission during proton radiotherapy. PMID:21048295

  3. Optimizing a three-stage Compton camera for measuring prompt gamma rays emitted during proton radiotherapy

    NASA Astrophysics Data System (ADS)

    Peterson, S. W.; Robertson, D.; Polf, J.

    2010-11-01

    In this work, we investigate the use of a three-stage Compton camera to measure secondary prompt gamma rays emitted from patients treated with proton beam radiotherapy. The purpose of this study was (1) to develop an optimal three-stage Compton camera specifically designed to measure prompt gamma rays emitted from tissue and (2) to determine the feasibility of using this optimized Compton camera design to measure and image prompt gamma rays emitted during proton beam irradiation. The three-stage Compton camera was modeled in Geant4 as three high-purity germanium detector stages arranged in parallel-plane geometry. Initially, an isotropic gamma source ranging from 0 to 15 MeV was used to determine lateral width and thickness of the detector stages that provided the optimal detection efficiency. Then, the gamma source was replaced by a proton beam irradiating a tissue phantom to calculate the overall efficiency of the optimized camera for detecting emitted prompt gammas. The overall calculated efficiencies varied from ~10-6 to 10-3 prompt gammas detected per proton incident on the tissue phantom for several variations of the optimal camera design studied. Based on the overall efficiency results, we believe it feasible that a three-stage Compton camera could detect a sufficient number of prompt gammas to allow measurement and imaging of prompt gamma emission during proton radiotherapy.

  4. Optimizing a three-stage Compton camera for measuring prompt gamma rays emitted during proton radiotherapy.

    PubMed

    Peterson, S W; Robertson, D; Polf, J

    2010-11-21

    In this work, we investigate the use of a three-stage Compton camera to measure secondary prompt gamma rays emitted from patients treated with proton beam radiotherapy. The purpose of this study was (1) to develop an optimal three-stage Compton camera specifically designed to measure prompt gamma rays emitted from tissue and (2) to determine the feasibility of using this optimized Compton camera design to measure and image prompt gamma rays emitted during proton beam irradiation. The three-stage Compton camera was modeled in Geant4 as three high-purity germanium detector stages arranged in parallel-plane geometry. Initially, an isotropic gamma source ranging from 0 to 15 MeV was used to determine lateral width and thickness of the detector stages that provided the optimal detection efficiency. Then, the gamma source was replaced by a proton beam irradiating a tissue phantom to calculate the overall efficiency of the optimized camera for detecting emitted prompt gammas. The overall calculated efficiencies varied from ∼ 10(-6) to 10(-3) prompt gammas detected per proton incident on the tissue phantom for several variations of the optimal camera design studied. Based on the overall efficiency results, we believe it feasible that a three-stage Compton camera could detect a sufficient number of prompt gammas to allow measurement and imaging of prompt gamma emission during proton radiotherapy.

  5. Coded-Aperture Transaxial Tomography Using Modular Gamma Cameras

    NASA Astrophysics Data System (ADS)

    Roney, Timothy Joseph

    Imaging in nuclear medicine involves the injection of a radioactive tracer into the body and subsequent detection of the radiation emanating from an organ of interest. Single -photon emission computed tomography (SPECT) is the branch of nuclear medicine that yields three-dimensional maps of the distribution of a tracer, most commonly as a series of two-dimensional slices. One major drawback to transaxial tomographic imaging in SPECT today is the rotation required of a gamma camera to collect the tomographic data set. Transaxial SPECT usually involves a large, single-crystal scintillation camera and an aperture (collimator) that together only satisfy a small portion of the spatial sampling requirements simultaneously. It would be very desirable to have a stationary data-collection apparatus that allows all spatial sampling in the data set to occur simultaneously. Aperture or detector motion (or both) is merely an inconvenience in most imaging situations where the patient is stationary. However, aperture or detector motion (or both) enormously complicate the prospect of tomograhically recording dynamic events, such as the beating heart, with radioactive pharmaceuticals. By substituting a set of small modular detectors for the large single-crystal detector, we can arrange the usable detector area in such a way as to collect all spatial samples simultaneously. The modular detectors allow for the possibility of using other types of stationary apertures. We demonstrate the capabilities of one such aperture, the pinhole array. The pinhole array is one of many kinds of collimators known as coded apertures. Coded apertures differ from conventional apertures in nuclear medicine in that they allow for overlapping projections of the object on the detector. Although overlapping projections is not a requirement when using pinhole arrays, there are potential benefits in terms of collection efficiency. There are also potential drawbacks in terms of the position uncertainty of

  6. Development of NEMA-based software for gamma camera quality control.

    PubMed

    Rova, Andrew; Celler, Anna; Hamarneh, Ghassan

    2008-06-01

    We have developed a cross-platform software application that implements all of the basic standardized nuclear medicine scintillation camera quality control analyses, thus serving as an independent complement to camera manufacturers' software. Our application allows direct comparison of data and statistics from different cameras through its ability to uniformly analyze a range of file types. The program has been tested using multiple gamma cameras, and its results agree with comparable analysis by the manufacturers' software.

  7. Gate simulation of Compton Ar-Xe gamma-camera for radionuclide imaging in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Dubov, L. Yu; Belyaev, V. N.; Berdnikova, A. K.; Bolozdynia, A. I.; Akmalova, Yu A.; Shtotsky, Yu V.

    2017-01-01

    Computer simulations of cylindrical Compton Ar-Xe gamma camera are described in the current report. Detection efficiency of cylindrical Ar-Xe Compton camera with internal diameter of 40 cm is estimated as1-3%that is 10-100 times higher than collimated Anger’s camera. It is shown that cylindrical Compton camera can image Tc-99m radiotracer distribution with uniform spatial resolution of 20 mm through the whole field of view.

  8. Retrospective and comparative analysis of (99m)Tc-Sestamibi breast specific gamma imaging versus mammography, ultrasound, and magnetic resonance imaging for the detection of breast cancer in Chinese women.

    PubMed

    Yu, Xiuyan; Hu, Guoming; Zhang, Zhigang; Qiu, Fuming; Shao, Xuan; Wang, Xiaochen; Zhan, Hongwei; Chen, Yiding; Deng, Yongchuan; Huang, Jian

    2016-07-11

    Diagnosing breast cancer during the early stage may be helpful for decreasing cancer-related mortality. In Western developed countries, mammographies have been the gold standard for breast cancer detection. However, Chinese women usually have denser and smaller-sized breasts compared to Caucasian women, which decreases the diagnostic accuracy of mammography. However, breast specific gamma imaging, a type of molecular functional breast imaging, has been used for the accurate diagnosis of breast cancer and is not influenced by breast density. Our objective was to analyze the breast specific gamma imaging (BSGI) diagnostic value for Chinese women. During a 2-year period, 357 women were diagnosed and treated at our oncology department and received BSGI in addition to mammography (MMG), ultrasound (US) and magnetic resonance imaging (MRI) for diagnostic assessment. We investigated the sensitivity and specificity of each method of detection and compared the biological profiles of the four imaging methods. A total of 357 women received a final surgical pathology diagnosis, with 168 malignant diseases (58.5 %) and 119 benign diseases (41.5 %). Of these, 166 underwent the four imaging tests preoperatively. The sensitivity of BSGI was 80.35 and 82.14 % by US, 75.6 % by MMG, and 94.06 % by MRI. Furthermore, the breast cancer diagnosis specificity of BSGI was high (83.19 % vs. 77.31 % vs. 66.39 % vs. 67.69 %, respectively). The BSGI diagnostic sensitivity for mammographic breast density in women was superior to mammography and more sensitive for non-luminal A subtypes (luminal A vs. non-luminal A, 68.63 % vs. 88.30 %). BSGI may help improve the ability to diagnose early stage breast cancer for Chinese women, particularly for ductal carcinoma in situ (DCIS), mammographic breast density and non-luminal A breast cancer.

  9. Imaging multi-energy gamma-ray fields with a Compton scatter camera

    NASA Astrophysics Data System (ADS)

    Martin, J. B.; Dogan, N.; Gormley, J. E.; Knoll, G. F.; O'Donnell, M.; Wehe, D. K.

    1994-08-01

    Multi-energy gamma-ray fields have been imaged with a ring Compton scatter camera (RCC). The RCC is intended for industrial applications, where there is a need to image multiple gamma-ray lines from spatially extended sources. To our knowledge, the ability of a Compton scatter camera to perform this task had not previously been demonstrated. Gamma rays with different incident energies are distinguished based on the total energy deposited in the camera elements. For multiple gamma-ray lines, separate images are generated for each line energy. Random coincidences and other interfering interactions have been investigated. Camera response has been characterized for energies from 0.511 to 2.75 MeV. Different gamma-ray lines from extended sources have been measured and images reconstructed using both direct and iterative algorithms.

  10. Development of a high resolution gamma camera system using finely grooved GAGG scintillator

    NASA Astrophysics Data System (ADS)

    Yamamoto, Seiichi; Kataoka, Jun; Oshima, Tsubasa; Ogata, Yoshimune; Watabe, Tadashi; Ikeda, Hayato; Kanai, Yasukazu; Hatazawa, Jun

    2016-06-01

    High resolution gamma cameras require small pixel scintillator blocks with high light output. However, manufacturing a small pixel scintillator block is difficult when the pixel size becomes small. To solve this limitation, we developed a high resolution gamma camera system using a finely grooved Ce-doped Gd3Al2Ga3O12 (GAGG) plate. Our gamma camera's detector consists of a 1-mm-thick finely grooved GAGG plate that is optically coupled to a 1-in. position sensitive photomultiplier tube (PSPMT). The grooved GAGG plate has 0.2×0.2 mm pixels with 0.05-mm wide slits (between the pixels) that were manufactured using a dicing saw. We used a Hamamatsu PSPMT with a 1-in. square high quantum efficiency (HQE) PSPMT (R8900-100-C12). The energy resolution for the Co-57 gamma photons (122 keV) was 18.5% FWHM. The intrinsic spatial resolution was estimated to be 0.7-mm FWHM. With a 0.5-mm diameter pinhole collimator mounted to its front, we achieved a high resolution, small field-of-view gamma camera. The system spatial resolution for the Co-57 gamma photons was 1.0-mm FWHM, and the sensitivity was 0.0025%, 10 mm from the collimator surface. The Tc-99m HMDP administered mouse images showed the fine structures of the mouse body's parts. Our developed high resolution small pixel GAGG gamma camera is promising for such small animal imaging.

  11. Quality controls for gamma cameras and PET cameras: development of a free open-source ImageJ program

    NASA Astrophysics Data System (ADS)

    Carlier, Thomas; Ferrer, Ludovic; Berruchon, Jean B.; Cuissard, Regis; Martineau, Adeline; Loonis, Pierre; Couturier, Olivier

    2005-04-01

    Acquisition data and treatments for quality controls of gamma cameras and Positron Emission Tomography (PET) cameras are commonly performed with dedicated program packages, which are running only on manufactured computers and differ from each other, depending on camera company and program versions. The aim of this work was to develop a free open-source program (written in JAVA language) to analyze data for quality control of gamma cameras and PET cameras. The program is based on the free application software ImageJ and can be easily loaded on any computer operating system (OS) and thus on any type of computer in every nuclear medicine department. Based on standard parameters of quality control, this program includes 1) for gamma camera: a rotation center control (extracted from the American Association of Physics in Medicine, AAPM, norms) and two uniformity controls (extracted from the Institute of Physics and Engineering in Medicine, IPEM, and National Electronic Manufacturers Association, NEMA, norms). 2) For PET systems, three quality controls recently defined by the French Medical Physicist Society (SFPM), i.e. spatial resolution and uniformity in a reconstructed slice and scatter fraction, are included. The determination of spatial resolution (thanks to the Point Spread Function, PSF, acquisition) allows to compute the Modulation Transfer Function (MTF) in both modalities of cameras. All the control functions are included in a tool box which is a free ImageJ plugin and could be soon downloaded from Internet. Besides, this program offers the possibility to save on HTML format the uniformity quality control results and a warning can be set to automatically inform users in case of abnormal results. The architecture of the program allows users to easily add any other specific quality control program. Finally, this toolkit is an easy and robust tool to perform quality control on gamma cameras and PET cameras based on standard computation parameters, is free, run on

  12. 131I activity quantification of gamma camera planar images

    NASA Astrophysics Data System (ADS)

    Barquero, Raquel; Garcia, Hugo P.; Incio, Monica G.; Minguez, Pablo; Cardenas, Alexander; Martínez, Daniel; Lassmann, Michael

    2017-02-01

    A procedure to estimate the activity in target tissues in patients during the therapeutic administration of 131I radiopharmaceutical treatment for thyroid conditions (hyperthyroidism and differentiated thyroid cancer) using a gamma camera (GC) with a high energy (HE) collimator, is proposed. Planar images are acquired for lesions of different sizes r, and at different distances d, in two HE GC systems. Defining a region of interest (ROI) on the image of size r, total counts n g are measured. Sensitivity S (cps MBq-1) in each acquisition is estimated as the product of the geometric G and the intrinsic efficiency η 0. The mean fluence of 364 keV photons arriving at the ROI per disintegration G, is calculated with the MCNPX code, simulating the entire GC and the HE collimator. Intrinsic efficiency η 0 is estimated from a calibration measurement of a plane reference source of 131I in air. Values of G and S for two GC systems—Philips Skylight and Siemens e-cam—are calculated. The total range of possible sensitivity values in thyroidal imaging in the e-cam and skylight GC measure from 7 cps MBq-1 to 35 cps MBq-1, and from 6 cps MBq-1 to 29 cps MBq-1, respectively. These sensitivity values have been verified with the SIMIND code, with good agreement between them. The results have been validated with experimental measurements in air, and in a medium with scatter and attenuation. The counts in the ROI can be produced by direct, scatter and penetration photons. The fluence value for direct photons is constant for any r and d values, but scatter and penetration photons show different values related to specific r and d values, resulting in the large sensitivity differences found. The sensitivity in thyroidal GC planar imaging is strongly dependent on uptake size, and distance from the GC. An individual value for the acquisition sensitivity of each lesion can significantly alleviate the level of uncertainty in the measurement of thyroid uptake activity for each patient.

  13. (131)I activity quantification of gamma camera planar images.

    PubMed

    Barquero, Raquel; Garcia, Hugo P; Incio, Monica G; Minguez, Pablo; Cardenas, Alexander; Martínez, Daniel; Lassmann, Michael

    2017-02-07

    A procedure to estimate the activity in target tissues in patients during the therapeutic administration of (131)I radiopharmaceutical treatment for thyroid conditions (hyperthyroidism and differentiated thyroid cancer) using a gamma camera (GC) with a high energy (HE) collimator, is proposed. Planar images are acquired for lesions of different sizes r, and at different distances d, in two HE GC systems. Defining a region of interest (ROI) on the image of size r, total counts n g are measured. Sensitivity S (cps MBq(-1)) in each acquisition is estimated as the product of the geometric G and the intrinsic efficiency η 0. The mean fluence of 364 keV photons arriving at the ROI per disintegration G, is calculated with the MCNPX code, simulating the entire GC and the HE collimator. Intrinsic efficiency η 0 is estimated from a calibration measurement of a plane reference source of (131)I in air. Values of G and S for two GC systems-Philips Skylight and Siemens e-cam-are calculated. The total range of possible sensitivity values in thyroidal imaging in the e-cam and skylight GC measure from 7 cps MBq(-1) to 35 cps MBq(-1), and from 6 cps MBq(-1) to 29 cps MBq(-1), respectively. These sensitivity values have been verified with the SIMIND code, with good agreement between them. The results have been validated with experimental measurements in air, and in a medium with scatter and attenuation. The counts in the ROI can be produced by direct, scatter and penetration photons. The fluence value for direct photons is constant for any r and d values, but scatter and penetration photons show different values related to specific r and d values, resulting in the large sensitivity differences found. The sensitivity in thyroidal GC planar imaging is strongly dependent on uptake size, and distance from the GC. An individual value for the acquisition sensitivity of each lesion can significantly alleviate the level of uncertainty in the measurement of thyroid uptake activity for

  14. Monitoring performance of the cameras under the high dose-rate gamma ray environments.

    PubMed

    Cho, Jai Wan; Choi, Young Soo; Jeong, Kyung Min

    2014-05-01

    CCD/CMOS cameras, loaded on a robot system, are generally used as the eye of the robot and monitoring unit. A major problem that arises when dealing with images provided by CCD/CMOS cameras under severe accident situations of a nuclear power plant is the presence of speckles owing to the high dose-rate gamma irradiation fields. To use a CCD/CMOS camera as a monitoring unit in a high radiation area, the legibility of the camera image in such intense gamma-radiation fields should therefore be defined. In this paper, the authors describe the monitoring index as a figure of merit of the camera's legibleness under a high dose-rate gamma ray irradiation environment. From a low dose-rate (10 Gy h) to a high dose-rate (200 Gy h) level, the legible performances of the cameras owing to the speckles are evaluated. The numbers of speckles generated by gamma ray irradiation in the camera image are calculated by an image processing technique. The legibility of the sensor indicator (thermo/hygrometer) owing to the number of speckles is also presented.

  15. Development of a high-resolution Si-PM-based gamma camera system.

    PubMed

    Yamamoto, Seiichi; Watabe, Hiroshi; Kanai, Yasukazu; Imaizumi, Masao; Watabe, Tadashi; Shimosegawa, Eku; Hatazawa, Jun

    2011-12-07

    A silicon photomultiplier (Si-PM) is a promising photodetector for PET, especially for PET/MRI combined systems, due to its high gain, small size, and lower sensitivity to static magnetic fields. However, these properties are also promising for gamma camera systems for single-photon imaging. We developed an ultra-high-resolution Si-PM-based compact gamma camera system for small animals. Y(2)SiO(5):Ce (YSO) was selected as scintillators because of its high light output and no natural radioactivity. The gamma camera consists of 0.6 mm × 0.6 mm × 6 mm YSO pixels combined with a 0.1 mm thick reflector to form a 17 × 17 matrix that was optically coupled to a Si-PM array (Hamamatsu multi-pixel photon counter S11064-050P) with a 2 mm thick light guide. The YSO block size was 12 mm × 12 mm. The YSO gamma camera was encased in a 5 mm thick gamma shield, and a parallel hole collimator was mounted in front of the camera (0.5 mm hole, 0.7 mm separation, 5 mm thick). The two-dimensional distribution for the Co-57 gamma photons (122 keV) was almost resolved. The energy resolution was 24.4% full-width at half-maximum (FWHM) for the Co-57 gamma photons. The spatial resolution at 1.5 mm from the collimator surface was 1.25 mm FWHM measured using a 1 mm diameter Co-57 point source. Phantom and small animal images were successfully obtained. We conclude that a Si-PM-based gamma camera is promising for molecular imaging research.

  16. Hydrogenated amorphous silicon (a-Si:H) based gamma camera--Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Lee, Hyoung-Koo; Drewery, John S.; Hong, Wan S.; Jing, Tao; Kaplan, Selig N.; Mireshghi, Ali; Perez-Mendez, Victor

    1994-05-01

    A new gamma camera using a-Si:H photodetectors has been designed for the imaging of heart and other small organs. In this new design the photomultiplier tubes and the position sensing circuitry are replaced by 2D array of a-Si:H p-i-n pixel photodetectors and readout circuitry which are built on a substrate. Without the photomultiplier tubes this camera is light weight, hence can be made portable. To predict the characteristics and the performance of this new gamma camera we did Monte Carlo simulations. In the simulations 128 X 128 imaging array of various pixel sizes were used. 99mTc (140 keV) and 201Tl (70 keV) were used as radiation sources. From the simulations we could obtain the resolution of the camera and the overall system, and the blurring effects due to scattering in the phantom. Using the Wiener filter for image processing, restoration of the blurred image could be achieved. Simulation results of a-Si:H based gamma camera were compared with those of a conventional gamma camera.

  17. Online gamma-camera imaging of 103Pd seeds (OGIPS) for permanent breast seed implantation

    NASA Astrophysics Data System (ADS)

    Ravi, Ananth; Caldwell, Curtis B.; Keller, Brian M.; Reznik, Alla; Pignol, Jean-Philippe

    2007-09-01

    Permanent brachytherapy seed implantation is being investigated as a mode of accelerated partial breast irradiation for early stage breast cancer patients. Currently, the seeds are poorly visualized during the procedure making it difficult to perform a real-time correction of the implantation if required. The objective was to determine if a customized gamma-camera can accurately localize the seeds during implantation. Monte Carlo simulations of a CZT based gamma-camera were used to assess whether images of suitable quality could be derived by detecting the 21 keV photons emitted from 74 MBq 103Pd brachytherapy seeds. A hexagonal parallel hole collimator with a hole length of 38 mm, hole diameter of 1.2 mm and 0.2 mm septa, was modeled. The design of the gamma-camera was evaluated on a realistic model of the breast and three layers of the seed distribution (55 seeds) based on a pre-implantation CT treatment plan. The Monte Carlo simulations showed that the gamma-camera was able to localize the seeds with a maximum error of 2.0 mm, using only two views and 20 s of imaging. A gamma-camera can potentially be used as an intra-procedural image guidance system for quality assurance for permanent breast seed implantation.

  18. Development of an all-in-one gamma camera/CCD system for safeguard verification

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Il; An, Su Jung; Chung, Yong Hyun; Kwak, Sung-Woo

    2014-12-01

    For the purpose of monitoring and verifying efforts at safeguarding radioactive materials in various fields, a new all-in-one gamma camera/charged coupled device (CCD) system was developed. This combined system consists of a gamma camera, which gathers energy and position information on gamma-ray sources, and a CCD camera, which identifies the specific location in a monitored area. Therefore, 2-D image information and quantitative information regarding gamma-ray sources can be obtained using fused images. A gamma camera consists of a diverging collimator, a 22 × 22 array CsI(Na) pixelated scintillation crystal with a pixel size of 2 × 2 × 6 mm3 and Hamamatsu H8500 position-sensitive photomultiplier tube (PSPMT). The Basler scA640-70gc CCD camera, which delivers 70 frames per second at video graphics array (VGA) resolution, was employed. Performance testing was performed using a Co-57 point source 30 cm from the detector. The measured spatial resolution and sensitivity were 4.77 mm full width at half maximum (FWHM) and 7.78 cps/MBq, respectively. The energy resolution was 18% at 122 keV. These results demonstrate that the combined system has considerable potential for radiation monitoring.

  19. The x-/gamma-ray camera ECLAIRs for the gamma-ray burst mission SVOM

    NASA Astrophysics Data System (ADS)

    Godet, O.; Nasser, G.; Atteia, J.-.; Cordier, B.; Mandrou, P.; Barret, D.; Triou, H.; Pons, R.; Amoros, C.; Bordon, S.; Gevin, O.; Gonzalez, F.; Götz, D.; Gros, A.; Houret, B.; Lachaud, C.; Lacombe, K.; Marty, W.; Mercier, K.; Rambaud, D.; Ramon, P.; Rouaix, G.; Schanne, S.; Waegebaert, V.

    2014-07-01

    We present ECLAIRs, the Gamma-ray burst (GRB) trigger camera to fly on-board the Chinese-French mission SVOM. ECLAIRs is a wide-field (~ 2 sr) coded mask camera with a mask transparency of 40% and a 1024 cm2 detection plane coupled to a data processing unit, so-called UGTS, which is in charge of locating GRBs in near real time thanks to image and rate triggers. We present the instrument science requirements and how the design of ECLAIRs has been optimized to increase its sensitivity to high-redshift GRBs and low-luminosity GRBs in the local Universe, by having a low-energy threshold of 4 keV. The total spectral coverage ranges from 4 to 150 keV. ECLAIRs is expected to detect ~ 200 GRBs of all types during the nominal 3 year mission lifetime. To reach a 4 keV low-energy threshold, the ECLAIRs detection plane is paved with 6400 4 × 4 mm2 and 1 mm-thick Schottky CdTe detectors. The detectors are grouped by 32, in 8×4 matrices read by a low-noise ASIC, forming elementary modules called XRDPIX. In this paper, we also present our current efforts to investigate the performance of these modules with their front-end electronics when illuminated by charged particles and/or photons using radioactive sources. All measurements are made in different instrument configurations in vacuum and with a nominal in-flight detector temperature of -20°C. This work will enable us to choose the in-flight configuration that will make the best compromise between the science performance and the in-flight operability of ECLAIRs. We will show some highlights of this work.

  20. Color gamma ray camera: Laboratory directed research & development (LDRD) FY 1995

    SciTech Connect

    Bionta, R.M.

    1996-06-01

    Gamma-Ray imaging is a potentially powerful tool for the areas of arms-control, counter proliferation, safeguards and forensics. Combining spectral and spatial information increases the amount of information available for the detection and characterization of Special Nuclear Material (SNM). Two advanced gamma ray imaging technologies have been completed and are nearing completion at LLNL. These include the Gamma Ray Imaging System (GRIS), used to detect sub-600 keV gamma rays, and the Gamma Ray Bar Imaging Telescope (GRABIT), which extends the work of GRIS to larger areas and higher energies ({approximately}1000 keV). We proposed to continue work on a third, complementary type of detector, a Gamma Ray Color Camera (GRCC), which will incorporate spatial and spectral information from a gamma emitter.

  1. Coded-Aperture Compton Camera for Gamma-Ray Imaging

    NASA Astrophysics Data System (ADS)

    Farber, Aaron M.; Williams, John G.

    2016-02-01

    A novel gamma-ray imaging system is demonstrated, by means of Monte Carlo simulation. Previous designs have used either a coded aperture or Compton scattering system to image a gamma-ray source. By taking advantage of characteristics of each of these systems a new design can be implemented that does not require a pixelated stopping detector. Use of the system is illustrated for a simulated radiation survey in a decontamination and decommissioning operation.

  2. Gamma camera calibration and validation for quantitative SPECT imaging with (177)Lu.

    PubMed

    D'Arienzo, M; Cazzato, M; Cozzella, M L; Cox, M; D'Andrea, M; Fazio, A; Fenwick, A; Iaccarino, G; Johansson, L; Strigari, L; Ungania, S; De Felice, P

    2016-06-01

    Over the last years (177)Lu has received considerable attention from the clinical nuclear medicine community thanks to its wide range of applications in molecular radiotherapy, especially in peptide-receptor radionuclide therapy (PRRT). In addition to short-range beta particles, (177)Lu emits low energy gamma radiation of 113keV and 208keV that allows gamma camera quantitative imaging. Despite quantitative cancer imaging in molecular radiotherapy having been proven to be a key instrument for the assessment of therapeutic response, at present no general clinically accepted quantitative imaging protocol exists and absolute quantification studies are usually based on individual initiatives. The aim of this work was to develop and evaluate an approach to gamma camera calibration for absolute quantification in tomographic imaging with (177)Lu. We assessed the gamma camera calibration factors for a Philips IRIX and Philips AXIS gamma camera system using various reference geometries, both in air and in water. Images were corrected for the major effects that contribute to image degradation, i.e. attenuation, scatter and dead- time. We validated our method in non-reference geometry using an anthropomorphic torso phantom provided with the liver cavity uniformly filled with (177)LuCl3. Our results showed that calibration factors depend on the particular reference condition. In general, acquisitions performed with the IRIX gamma camera provided good results at 208keV, with agreement within 5% for all geometries. The use of a Jaszczak 16mL hollow sphere in water provided calibration factors capable of recovering the activity in anthropomorphic geometry within 1% for the 208keV peak, for both gamma cameras. The point source provided the poorest results, most likely because scatter and attenuation correction are not incorporated in the calibration factor. However, for both gamma cameras all geometries provided calibration factors capable of recovering the activity in

  3. Method for manufacturing a charge splitting resistive layer for a semiconductor gamma camera

    SciTech Connect

    Schlosser, P.A.; Miller, D.W.

    1983-10-25

    An improved semiconductor gamma camera is disclosed. The gamma camera includes a p-i-n semiconductor diode which detects the presence and energy of gamma radiation from a source. Typically the source is radioactive material in a patient organ which is detected and then interpreted by a doctor while diagnosing the condition of that organ. The detector includes an improved electrical connection technique to allow the p-i-n diode to be connected to electronic circuitry necessary to provide spatial and energy information. In the improved camera first a passivation layer is deposited on both faces of the p-i-n diode and then a resistive layer is applied to form a reliable easily reproduced electrical contact to the junction. These two layers in combination prevent foreign matter from contacting the semiconductor material comprising the detector while providing interconnection to the electronic circuitry.

  4. Development of gamma ray imaging cameras. Progress report for second year

    SciTech Connect

    Wehe, D.K.; Knoll, G.F.

    1992-05-28

    In January 1990, the Department of Energy initiated this project with the objective to develop the technology for general purpose, portable gamma ray imaging cameras useful to the nuclear industry. The ultimate goal of this R&D initiative is to develop the analog to the color television camera where the camera would respond to gamma rays instead of visible photons. The two-dimensional real-time image would be displayed would indicate the geometric location of the radiation relative to the camera`s orientation, while the brightness and ``color`` would indicate the intensity and energy of the radiation (and hence identify the emitting isotope). There is a strong motivation for developing such a device for applications within the nuclear industry, for both high- and low-level waste repositories, for environmental restoration problems, and for space and fusion applications. At present, there are no general purpose radiation cameras capable of producing spectral images for such practical applications. At the time of this writing, work on this project has been underway for almost 18 months. Substantial progress has been made in the project`s two primary areas: mechanically-collimated (MCC) and electronically-collimated camera (ECC) designs. We present developments covering the mechanically-collimated design, and then discuss the efforts on the electronically-collimated camera. The renewal proposal addresses the continuing R&D efforts for the third year effort. 8 refs.

  5. High resolution bone mineral densitometry with a gamma camera

    NASA Technical Reports Server (NTRS)

    Leblanc, A.; Evans, H.; Jhingran, S.; Johnson, P.

    1983-01-01

    A technique by which the regional distribution of bone mineral can be determined in bone samples from small animals is described. The technique employs an Anger camera interfaced to a medical computer. High resolution imaging is possible by producing magnified images of the bone samples. Regional densitometry of femurs from oophorectomised and bone mineral loss.

  6. Triple-head gamma camera PET: system overview and performance characteristics.

    PubMed

    Grosev, D; Loncarić, S; Vandenberghe, S; Dodig, D

    2002-08-01

    Positron emission tomography (PET) is currently performed using either a dedicated PET scanner or scintillation gamma camera equipped with electronic circuitry for coincidence detection of 511 keV annihilation quanta (gamma camera PET system). Although the resolution limits of these two instruments are comparable, the sensitivity and count rate performance of the gamma camera PET system are several times lower than that of the PET scanner. Most gamma camera PET systems are manufactured as dual-detector systems capable of performing dual-head coincidence imaging. One possible step towards the improvement of the sensitivity of the gamma camera PET system is to add another detector head. This work investigates the characteristics of one such triple-head gamma camera PET system capable of performing triple-head coincidence imaging. The following performance characteristics of the system were assessed: spatial resolution, sensitivity, count rate performance. The spatial resolution, expressed as the full width at half-maximum (FWHM), at 1 cm radius is 5.9 mm; at 10 cm radius, the transverse radial resolution is 5.3 mm, whilst the transverse tangential and axial resolutions are 8.9 mm and 13.3 mm, respectively. The sensitivity for a standard cylindrical phantom is 255 counts.s(-1).MBq*(-1)), using a 30% width photopeak energy window. An increase of 35% in the PET sensitivity is achievable by opening an additional 30% width energy window in the Compton region. The count rate in coincidence mode, at the upper limit of the systems optimal performance, is 45 kc.s(-1) (kc=kilocounts) using the photopeak energy window only, and increases to 60 kc.s(-1) using the photopeak + Compton windows. Sensitivity results are compared with published data for a similar dual-head detector system.

  7. First use of mini gamma cameras for intra-operative robotic SPECT reconstruction.

    PubMed

    Matthies, Philipp; Sharma, Kanishka; Okur, Ash; Gardiazabal, José; Vogel, Jakob; Lasserl, Tobias; Navab, Nassir

    2013-01-01

    Different types of nuclear imaging systems have been used in the past, starting with pre-operative gantry-based SPECT systems and gamma cameras for 2D imaging of radioactive distributions. The main applications are concentrated on diagnostic imaging, since traditional SPECT systems and gamma cameras are bulky and heavy. With the development of compact gamma cameras with good resolution and high sensitivity, it is now possible to use them without a fixed imaging gantry. Mounting the camera onto a robot arm solves the weight issue, while also providing a highly repeatable and reliable acquisition platform. In this work we introduce a novel robotic setup performing scans with a mini gamma camera, along with the required calibration steps, and show the first SPECT reconstructions. The results are extremely promising, both in terms of image quality as well as reproducibility. In our experiments, the novel setup outperformed a commercial fhSPECT system, reaching accuracies comparable to state-of-the-art SPECT systems.

  8. A Compton camera prototype for prompt gamma medical imaging

    NASA Astrophysics Data System (ADS)

    Thirolf, P. G.; Aldawood, S.; Böhmer, M.; Bortfeldt, J.; Castelhano, I.; Dedes, G.; Fiedler, F.; Gernhäuser, R.; Golnik, C.; Helmbrecht, S.; Hueso-González, F.; Kolff, H. v. d.; Kormoll, T.; Lang, C.; Liprandi, S.; Lutter, R.; Marinšek, T.; Maier, L.; Pausch, G.; Petzoldt, J.; Römer, K.; Schaart, D.; Parodi, K.

    2016-05-01

    Compton camera prototype for a position-sensitive detection of prompt γ rays from proton-induced nuclear reactions is being developed in Garching. The detector system allows to track the Comptonscattered electrons. The camera consists of a monolithic LaBr3:Ce scintillation absorber crystal, read out by a multi-anode PMT, preceded by a stacked array of 6 double-sided silicon strip detectors acting as scatterers. The LaBr3:Ce crystal has been characterized with radioactive sources. Online commissioning measurements were performed with a pulsed deuteron beam at the Garching Tandem accelerator and with a clinical proton beam at the OncoRay facility in Dresden. The determination of the interaction point of the photons in the monolithic crystal was investigated.

  9. Scintimammography (Breast Specific Gamma Imaging-BSGI)

    MedlinePlus

    ... with caption Related Articles and Media Mammography General Nuclear Medicine Radiation Dose in X-Ray and CT Exams X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety Sponsored by Please note RadiologyInfo.org is ...

  10. Scintimammography (Breast Specific Gamma Imaging-BSGI)

    MedlinePlus

    ... and medications you’re taking, including vitamins and herbal supplements. Leave jewelry at home and wear loose, comfortable ... any medications you are taking, including vitamins and herbal supplements. You should also inform them if you have ...

  11. Design of a modified uniform redundant-array mask for portable gamma cameras.

    PubMed

    Olmos, P; Cid, C; Bru, A; Oller, J C; de Pablos, J L; Perez, J M

    1992-08-10

    Uniform redundant-array masks have been reported as good lenses to form the image of gamma sources, with the correlation between the mask-aperture matrix and the shadows projected on a static position-sensitive detector. We present a modified uniform redundant-array configuration suitable for portable and small-size gamma cameras; its ability to reconstruct the image of several sources is analyzed. We have carried out a Montecarlo simulation of the gamma interactions in the mask, defining the expected response of the correlation process and comparing it with that achieved with the usual uniform redundant-array configurations.

  12. An enhanced high-resolution EMCCD-based gamma camera using SiPM side detection.

    PubMed

    Heemskerk, J W T; Korevaar, M A N; Huizenga, J; Kreuger, R; Schaart, D R; Goorden, M C; Beekman, F J

    2010-11-21

    Electron-multiplying charge-coupled devices (EMCCDs) coupled to scintillation crystals can be used for high-resolution imaging of gamma rays in scintillation counting mode. However, the detection of false events as a result of EMCCD noise deteriorates the spatial and energy resolution of these gamma cameras and creates a detrimental background in the reconstructed image. In order to improve the performance of an EMCCD-based gamma camera with a monolithic scintillation crystal, arrays of silicon photon-multipliers (SiPMs) can be mounted on the sides of the crystal to detect escaping scintillation photons, which are otherwise neglected. This will provide a priori knowledge about the correct number and energies of gamma interactions that are to be detected in each CCD frame. This information can be used as an additional detection criterion, e.g. for the rejection of otherwise falsely detected events. The method was tested using a gamma camera based on a back-illuminated EMCCD, coupled to a 3 mm thick continuous CsI:Tl crystal. Twelve SiPMs have been mounted on the sides of the CsI:Tl crystal. When the information of the SiPMs is used to select scintillation events in the EMCCD image, the background level for (99m)Tc is reduced by a factor of 2. Furthermore, the SiPMs enable detection of (125)I scintillations. A hybrid SiPM-/EMCCD-based gamma camera thus offers great potential for applications such as in vivo imaging of gamma emitters.

  13. A multiple-plate, multiple-pinhole camera for X-ray gamma-ray imaging

    NASA Technical Reports Server (NTRS)

    Hoover, R. B.

    1971-01-01

    Plates with identical patterns of precisely aligned pinholes constitute lens system which, when rotated about optical axis, produces continuous high resolution image of small energy X-ray or gamma ray source. Camera has applications in radiation treatment and nuclear medicine.

  14. A Rotating Phantom: Evaluation Of Hard And Software For Gated Gamma Camera Systems In Nuclear Medicine.

    NASA Astrophysics Data System (ADS)

    Vanregemorter, J.; Deconinck, F.; Bossuyt, A.

    1986-06-01

    In this paper we describe a rotating dynamic phantom which allows quality control of hardware and software for gated gamma camera systems in nuclear medicine. The phantom not only allows simulation of a gated heart study but also testing of the response of the whole system to time frequencies.

  15. Portable gamma camera guidance in sentinel lymph node biopsy: prospective observational study of consecutive cases.

    PubMed

    Peral Rubio, F; de La Riva, P; Moreno-Ramírez, D; Ferrándiz-Pulido, L

    2015-06-01

    Sentinel lymph node biopsy is the most important tool available for node staging in patients with melanoma. To analyze sentinel lymph node detection and dissection with radio guidance from a portable gamma camera. To assess the number of complications attributable to this biopsy technique. Prospective observational study of a consecutive series of patients undergoing radioguided sentinel lymph node biopsy. We analyzed agreement between nodes detected by presurgical lymphography, those detected by the gamma camera, and those finally dissected. A total of 29 patients (17 women [62.5%] and 12 men [37.5%]) were enrolled. The mean age was 52.6 years (range, 26-82 years). The sentinel node was dissected from all patients; secondary nodes were dissected from some. In 16 cases (55.2%), there was agreement between the number of nodes detected by lymphography, those detected by the gamma camera, and those finally dissected. The only complications observed were seromas (3.64%). No cases of wound dehiscence, infection, hematoma, or hemorrhage were observed. Portable gamma-camera radio guidance may be of use in improving the detection and dissection of sentinel lymph nodes and may also reduce complications. These goals are essential in a procedure whose purpose is melanoma staging. Copyright © 2014 Elsevier España, S.L.U. and AEDV. All rights reserved.

  16. Development and evaluation of a portable CZT coded aperture gamma-camera

    SciTech Connect

    Montemont, G.; Monnet, O.; Stanchina, S.; Maingault, L.; Verger, L.; Carrel, F.; Lemaire, H.; Schoepff, V.; Ferrand, G.; Lalleman, A.-S.

    2015-07-01

    We present the design and the evaluation of a CdZnTe (CZT) based gamma camera using a coded aperture mask. This camera, based on a 8 cm{sup 3} detection module, is small enough to be portable and battery-powered (4 kg weight and 4 W power dissipation). As the detector has spectral capabilities, the gamma camera allows isotope identification and colored imaging, by affecting one color channel to each identified isotope. As all data processing is done at real time, the user can directly observe the outcome of an acquisition and can immediately react to what he sees. We first present the architecture of the system, how the detector works, and its performances. After, we focus on the imaging technique used and its strengths and limitations. Finally, results concerning sensitivity, spatial resolution, field of view and multi-isotope imaging are shown and discussed. (authors)

  17. Searches for optical counterparts of BATSE gamma-ray bursts with the Explosive Transient Camera.

    NASA Astrophysics Data System (ADS)

    Krimm, H. A.; Vanderspek, R. K.; Ricker, G. R.

    1996-12-01

    The Explosive Transient Camera (ETC) is a wide-field CCD camera system capable of detecting short (1-10s) celestial optical flashes as faint as m~10 over a field-of-view of 0.75-steradians between -15° and +62° declination. The ETC has been operating automatically under computer control since January 1991. Since the launch of the Compton Gamma Ray Observatory, the ETC has been capable of observing an optical flash coincident with a gamma-ray burst (GRB) detected by the Burst and Transient Spectroscopy Experiment (BATSE). Between April 1991 and August 1995, there were seven cases of at least partial spatial overlap between a BATSE 68% confidence positional error box and the ETC field-of-view during an ETC observation. In each case upper limits are placed on the optical-to-gamma-ray flux ratio.

  18. Searches for optical counterparts of BATSE gamma-ray bursts with the Explosive Transient Camera

    NASA Astrophysics Data System (ADS)

    Krimm, Hans A.; Vanderspek, Roland K.; Ricker, George R.

    1996-08-01

    The Explosive Transient Camera (ETC) is a wide-field CCD camera system capable of detecting short (1-10 s) celestial optical flashes as faint as m~10 over a field-of-view of 0.75 steradians between -15° and +62° declination. The ETC has been operating automatically under computer control since January 1991. Since the launch of the Compton Gamma Ray Observatory, the ETC has been capable of observing an optical flash coincident with a gamma-ray burst (GRB) detected by the Burst and Transient Source Experiment (BATSE). Between April 1991 and August 1995, there were seven cases of at least partial spatial overlap between a BATSE 68% confidence positional error box and the ETC field-of-view during an ETC observation. In each case upper limits are placed on the optical-to-gamma-ray flux ratio.

  19. SU-E-E-06: Teaching About the Gamma Camera and Ultrasound Imaging

    SciTech Connect

    Lowe, M; Spiro, A; Vogel, R; Donaldson, N; Gosselin, C

    2015-06-15

    Purpose: Instructional modules on applications of physics in medicine are being developed. The target audience consists of students who have had an introductory undergraduate physics course. This presentation will concentrate on an active learning approach to teach the principles of the gamma camera. There will also be a description of an apparatus to teach ultrasound imaging. Methods: Since a real gamma camera is not feasible in the undergraduate classroom, we have developed two types of optical apparatus that teach the main principles. To understand the collimator, LEDS mimic gamma emitters in the body, and the photons pass through an array of tubes. The distance, spacing, diameter, and length of the tubes can be varied to understand the effect upon the resolution of the image. To determine the positions of the gamma emitters, a second apparatus uses a movable green laser, fluorescent plastic in lieu of the scintillation crystal, acrylic rods that mimic the PMTs, and a photodetector to measure the intensity. The position of the laser is calculated with a centroid algorithm.To teach the principles of ultrasound imaging, we are using the sound head and pulser box of an educational product, variable gain amplifier, rotation table, digital oscilloscope, Matlab software, and phantoms. Results: Gamma camera curriculum materials have been implemented in the classroom at Loyola in 2014 and 2015. Written work shows good knowledge retention and a more complete understanding of the material. Preliminary ultrasound imaging materials were run in 2015. Conclusion: Active learning methods add another dimension to descriptions in textbooks and are effective in keeping the students engaged during class time. The teaching apparatus for the gamma camera and ultrasound imaging can be expanded to include more cases, and could potentially improve students’ understanding of artifacts and distortions in the images.

  20. Cramer-Rao lower bound optimization of an EM-CCD-based scintillation gamma camera.

    PubMed

    Korevaar, Marc A N; Goorden, Marlies C; Beekman, Freek J

    2013-04-21

    Scintillation gamma cameras based on low-noise electron multiplication (EM-)CCDs can reach high spatial resolutions. For further improvement of these gamma cameras, more insight is needed into how various parameters that characterize these devices influence their performance. Here, we use the Cramer-Rao lower bound (CRLB) to investigate the sensitivity of the energy and spatial resolution of an EM-CCD-based gamma camera to several parameters. The gamma camera setup consists of a 3 mm thick CsI(Tl) scintillator optically coupled by a fiber optic plate to the E2V CCD97 EM-CCD. For this setup, the position and energy of incoming gamma photons are determined with a maximum-likelihood detection algorithm. To serve as the basis for the CRLB calculations, accurate models for the depth-dependent scintillation light distribution are derived and combined with a previously validated statistical response model for the EM-CCD. The sensitivity of the lower bounds for energy and spatial resolution to the EM gain and the depth-of-interaction (DOI) are calculated and compared to experimentally obtained values. Furthermore, calculations of the influence of the number of detected optical photons and noise sources in the image area on the energy and spatial resolution are presented. Trends predicted by CRLB calculations agree with experiments, although experimental values for spatial and energy resolution are typically a factor of 1.5 above the calculated lower bounds. Calculations and experiments both show that an intermediate EM gain setting results in the best possible spatial or energy resolution and that the spatial resolution of the gamma camera degrades rapidly as a function of the DOI. Furthermore, calculations suggest that a large improvement in gamma camera performance is achieved by an increase in the number of detected photons or a reduction of noise in the image area. A large noise reduction, as is possible with a new generation of EM-CCD electronics, may improve the

  1. PETIROC2 based readout electronics optimization for Gamma Cameras and PET detectors

    NASA Astrophysics Data System (ADS)

    Monzo, J. M.; Aguilar, A.; González-Montoro, A.; Lamprou, E.; González, A. J.; Hernández, L.; Mazur, D.; Colom, R. J.; Benlloch, J. M.

    2017-02-01

    Developing front-end electronics to improve charge detection and time resolution in gamma-ray detectors is one of the main tasks to improve performance in new multimodal imaging systems that merge information of Magnetic Resonance Imaging and Gamma Camera or PET tomographs. The aim of this work is to study the behaviour and to optimize the performance of an ASIC for PET and Gamma Camera applications based on SiPMs detectors. PETIROC2 is a commercial ASIC developed by Weeroc to provide accurate charge and time coincidence resolutions. It has 32 analog input channels that are independently managed. Each channel is divided into two signals, one for time stamping using a TDC and another for charge measurement. In this work, PETIROC2 is evaluated in an experimental setup composed of two pixelated LYSO crystals based detectors, each coupled to a Hamamatsu 4×4 SiPM array. Both detectors are working in coincidence with a separation distance between them that can be modified. In the present work, an energy resolution of 13.6% FWHM and a time coincidence resolution of 815 ps FWHM have been obtained. These results will be useful to optimize and improve PETIROC2 based PET and Gamma Camera systems.

  2. New design of a gamma camera detector with reduced edge effect for breast imaging

    NASA Astrophysics Data System (ADS)

    Yeon Hwang, Ji; Lee, Seung-Jae; Baek, Cheol-Ha; Hyun Kim, Kwang; Hyun Chung, Yong

    2011-05-01

    In recent years, there has been a growing interest in developing small gamma cameras dedicated to breast imaging. We designed a new detector with trapezoidal shape to expand the field of view (FOV) of camera without increasing its dimensions. To find optimal parameters, images of point sources at the edge area as functions of the angle and optical treatment of crystal side surface were simulated by using a DETECT2000. Our detector employs monolithic CsI(Tl) with dimensions of 48.0×48.0×6.0 mm coupled to an array of photo-sensors. Side surfaces of crystal were treated with three different surface finishes: black absorber, metal reflector and white reflector. The trapezoidal angle varied from 45° to 90° in steps of 15°. Gamma events were generated on 15 evenly spaced points with 1.0 mm spacing in the X-axis starting 1.0 mm away from the side surface. Ten thousand gamma events were simulated at each location and images were formed by calculating the Anger-logic. The results demonstrated that all the 15 points could be identified only for the crystal with trapezoidal shape having 45° angle and white reflector on the side surface. In conclusion, our new detector proved to be a reliable design to expand the FOV of small gamma camera for breast imaging.

  3. A fast photon counting camera for {gamma}-ray pulsar astronomy

    SciTech Connect

    Orozco, Benito; Carraminana, Alberto; Michel, Raul; Zazueta, Salvador; Fordham, John L. A.

    2007-07-12

    The Electron Multiplying CCD (EMCCD) astronomical camera, under development at the Institute of Astronomy UNAM, will be able to obtain images of faint optical objects with very low instrumental noise and short integration times. The EMCCD is a normal CCD with an additional multiplication register located before the input of the readout amplifier. This will be a very suitable instrument to search for optical pulsations of unidentified gamma-ray sources, specially with GLAST entering the realm of radio quiet gamma-ray loud pulsars.

  4. A portable device for small animal SPECT imaging in clinical gamma-cameras

    NASA Astrophysics Data System (ADS)

    Aguiar, P.; Silva-Rodríguez, J.; González-Castaño, D. M.; Pino, F.; Sánchez, M.; Herranz, M.; Iglesias, A.; Lois, C.; Ruibal, A.

    2014-07-01

    Molecular imaging is reshaping clinical practice in the last decades, providing practitioners with non-invasive ways to obtain functional in-vivo information on a diversity of relevant biological processes. The use of molecular imaging techniques in preclinical research is equally beneficial, but spreads more slowly due to the difficulties to justify a costly investment dedicated only to animal scanning. An alternative for lowering the costs is to repurpose parts of old clinical scanners to build new preclinical ones. Following this trend, we have designed, built, and characterized the performance of a portable system that can be attached to a clinical gamma-camera to make a preclinical single photon emission computed tomography scanner. Our system offers an image quality comparable to commercial systems at a fraction of their cost, and can be used with any existing gamma-camera with just an adaptation of the reconstruction software.

  5. Real-time Data Acquisition and Maximum-Likelihood Estimation for Gamma Cameras

    PubMed Central

    Furenlid, L.R.; Hesterman, J.Y.; Barrett, H.H.

    2015-01-01

    We have developed modular gamma-ray cameras for biomedical imaging that acquire data with a raw list-mode acquisition architecture. All observations associated with a gamma-ray event, such as photomultiplier (PMT) signals and time, are assembled into an event packet and added to an ordered list of event entries that comprise the acquired data. In this work we present the design of the data-acquisition system, and discuss algorithms for a specialized computing engine to reside in the data path between the front and back ends of each camera and carry out maximum-likelihood position and energy estimations in real time while data was being acquired.. PMID:27066595

  6. A high-speed, pressurised multi-wire gamma camera for dynamic imaging in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Barr, A.; Bonaldi, L.; Carugno, G.; Charpak, G.; Iannuzzi, D.; Nicoletto, M.; Pepato, A.; Ventura, S.

    2002-01-01

    High count rate detectors are of particular interest in nuclear medicine as they permit lower radiation doses to be received by the patient and allow dynamic images of high statistical quality to be obtained. We have developed a high-speed gamma camera based on a multi-wire proportional chamber. The chamber is filled with a xenon gas mixture and has been operated at pressures ranging from 5 to 10 bar. With an active imaging area of 25 cm×25 cm, the chamber has been equipped with an advanced, high rate, digital, electronic read-out system which carries out pulse shaping, energy discrimination, XY coincidence and cluster selection at speeds of up to a few megahertz. In order to ensure stable, long-term operation of the camera without degradation in performance, a gas purification system was designed and integrated into the camera. Measurements have been carried out to determine the properties and applicability of the camera using photon sources in the 20-120 keV energy range. We present some design features of the camera and selected results obtained from preliminary measurements carried out to measure its performance characteristics. Initial images obtained from the camera will also be presented.

  7. Determination of the detective quantum efficiency of gamma camera systems: a Monte Carlo study.

    PubMed

    Eriksson, Ida; Starck, Sven-Ake; Båth, Magnus

    2010-01-01

    The purpose of the present work was to investigate the validity of using the Monte Carlo technique for determining the detective quantum efficiency (DQE) of a gamma camera system and to use this technique in investigating the DQE behaviour of a gamma camera system and its dependency on a number of relevant parameters. The Monte Carlo-based software SIMIND, simulating a complete gamma camera system, was used in the present study. The modulation transfer function (MTF) of the system was determined from simulated images of a point source of (99m)Tc, positioned at different depths in a water phantom. Simulations were performed using different collimators and energy windows. The MTF of the system was combined with the photon yield and the sensitivity, obtained from the simulations, to form the frequency-dependent DQE of the system. As figure-of-merit (FOM), the integral of the 2D DQE was used. The simulated DQE curves agreed well with published data. As expected, there was a strong dependency of the shape and magnitude of the DQE curve on the collimator, energy window and imaging position. The highest FOM was obtained for a lower energy threshold of 127 keV for objects close to the detector and 131 keV for objects deeper in the phantom, supporting an asymmetric window setting to reduce scatter. The Monte Carlo software SIMIND can be used to determine the DQE of a gamma camera system from a simulated point source alone. The optimal DQE results in the present study were obtained for parameter settings close to the clinically used settings.

  8. Gamma camera for medical applications, using a multiwire proportional counter. [Dogs, pigs

    SciTech Connect

    Lacy, L.J.; LeBlanc, A.D.; Babich, J.W.; Bungo, M.W.; Latson, L.A.; Lewis, R.M.; Poliner, L.R.; Jones, R.H.; Johnson, P.C.

    1984-09-01

    A multiwire proportional counter gamma camera, specially designed for nuclear medicine applications, is portable and weighs less than 50 lb including shielding and collimator. The basic operating characteristics have been investigated with various radioactive sealed sources. The camera demonstrates a peak count rate of 850,000 cps, an intrinsic spatial resolution of 2.5 mm, and excellent image uniformity when used with x-ray sources in the range of 22-81 keV. Tests of the device with Ta-178 using 20 mCi injections provided images of quality comparable to those obtained from 15 mCi Tc-99m studies with conventional imaging devices. The camera used with Ta-178 offers particular promise in first-pass nuclear cardiology studies.

  9. Development and calibration of a new gamma camera detector using large square Photomultiplier Tubes

    NASA Astrophysics Data System (ADS)

    Zeraatkar, N.; Sajedi, S.; Teimourian Fard, B.; Kaviani, S.; Akbarzadeh, A.; Farahani, M. H.; Sarkar, S.; Ay, M. R.

    2017-09-01

    Large area scintillation detectors applied in gamma cameras as well as Single Photon Computed Tomography (SPECT) systems, have a major role in in-vivo functional imaging. Most of the gamma detectors utilize hexagonal arrangement of Photomultiplier Tubes (PMTs). In this work we applied large square-shaped PMTs with row/column arrangement and positioning. The Use of large square PMTs reduces dead zones in the detector surface. However, the conventional center of gravity method for positioning may not introduce an acceptable result. Hence, the digital correlated signal enhancement (CSE) algorithm was optimized to obtain better linearity and spatial resolution in the developed detector. The performance of the developed detector was evaluated based on NEMA-NU1-2007 standard. The acquired images using this method showed acceptable uniformity and linearity comparing to three commercial gamma cameras. Also the intrinsic and extrinsic spatial resolutions with low-energy high-resolution (LEHR) collimator at 10 cm from surface of the detector were 3.7 mm and 7.5 mm, respectively. The energy resolution of the camera was measured 9.5%. The performance evaluation demonstrated that the developed detector maintains image quality with a reduced number of used PMTs relative to the detection area.

  10. Comparison of gamma (Anger) camera systems in terms of detective quantum efficiency using Monte Carlo simulation.

    PubMed

    Eriksson, Ida; Starck, Sven-Åke; Båth, Magnus

    2014-04-01

    The aim of the present study was to perform an extensive evaluation of available gamma camera systems in terms of their detective quantum efficiency (DQE) and determine their dependency on relevant parameters such as collimator type, imaging depth, and energy window using the Monte Carlo technique. The modulation transfer function was determined from a simulated (99m)Tc point source and was combined with the system sensitivity and photon yield to obtain the DQE of the system. The simulations were performed for different imaging depths in a water phantom for 13 gamma camera systems from four manufacturers. Except at very low spatial frequencies, the highest DQE values were found with a lower energy window threshold of around 130 keV for all systems. The height and shape of the DQE curves were affected by the collimator design and the intrinsic properties of the gamma camera systems. High-sensitivity collimators gave the highest DQE at low spatial frequencies, whereas the high-resolution and ultrahigh-resolution collimators showed higher DQE values at higher frequencies. The intrinsic resolution of the system mainly affected the DQE curve at superficial depths. The results indicate that the manufacturers have succeeded differently in their attempts to design a system constituting an optimal compromise between sensitivity and spatial resolution.

  11. Maximum Likelihood Expectation-Maximization Algorithms Applied to Localization and Identification of Radioactive Sources with Recent Coded Mask Gamma Cameras

    SciTech Connect

    Lemaire, H.; Barat, E.; Carrel, F.; Dautremer, T.; Dubos, S.; Limousin, O.; Montagu, T.; Normand, S.; Schoepff, V.; Amgarou, K.; Menaa, N.; Angelique, J.-C.; Patoz, A.

    2015-07-01

    In this work, we tested Maximum likelihood expectation-maximization (MLEM) algorithms optimized for gamma imaging applications on two recent coded mask gamma cameras. We respectively took advantage of the characteristics of the GAMPIX and Caliste HD-based gamma cameras: noise reduction thanks to mask/anti-mask procedure but limited energy resolution for GAMPIX, high energy resolution for Caliste HD. One of our short-term perspectives is the test of MAPEM algorithms integrating specific prior values for the data to reconstruct adapted to the gamma imaging topic. (authors)

  12. Separability of three-dimensional geometric sensitivity correction in triple-headed gamma camera systems

    NASA Astrophysics Data System (ADS)

    D'Asseler, Yves; Vandenberghe, Stefaan; Koole, Michel; Bouwens, Luc; Van de Walle, Rik; Lemahieu, Ignace L.; Dierckx, Rudi A.

    2001-06-01

    Gamma camera PET (Positron Emission Tomography) offers a low-cost alternative for dedicated PET scanners. However, sensitivity and count rate capabilities of dual-headed gamma cameras with PET capabilities are still limited compared to full-ring dedicated PET scanners. To improve the geometric sensitivity of these systems, triple-headed gamma camera PET has been proposed. As is the case for dual-headed PET, the sensitivity of these devices varies with the position within the field of view (FOV) of the camera. This variation should be corrected for when reconstructing the images. In earlier work, we calculated the two-dimensional sensitivity variation for any triple-headed configuration. This can be used to correct the data if the acquisition is done using axial filters, which effectively limit the axial angle of incidence of the photons, comparable to 2D dedicated PET. More recently, these results were extended to a fully 3D calculation of the geometric sensitivity variation. In this work, the results of these calculations are compared to the standard approach to correct for 3D geometric sensitivity variation. Current implementations of triple-headed gamma camera PET use two independent corrections to account for three-dimensional sensitivity variations: one in the transaxial direction and one in the axial direction. This approach implicitly assumes that the actual variation is separable in two independent components. We recently derived a theoretical expression for the 3D sensitivity variation, and in this work we investigate the separability of our result. To investigate the separability of the sensitivity variations, an axial and transaxial profile through the calculated variation was taken, and these two were multiplied, thus creating a separable function. If the variation were perfectly separable, this function would be identical to the calculated variation. As a measure of separability, we calculated the percentual deviation of the separable function to the

  13. Medium field of view multiflat panel-based portable gamma camera

    NASA Astrophysics Data System (ADS)

    Giménez, M.; Benlloch, J. M.; Cerdá, J.; Escat, B.; Fernández, M.; Giménez, E. N.; Lerche, Ch. W.; Martínez, J. D.; Mora, F. J.; Pavón, N.; Sánchez, F.; Sebastià, A.

    2004-06-01

    A portable gamma camera based on the multianode technology has been built and tested. The camera consists in optically coupling four "Flat Panel" H8500 PSPMTs to a 100×100×4 mm 3 CsI(Na) continuous scintillation crystal. The dimensions of the camera are 17×12×12 cm 3 including the pinhole collimator and it weighs a total of 2 kg. Its average spatial resolution is 2 mm, its energy resolution is about 15%, and it shows a field of view of 95 mm. Because of its portability, its FOV and its cost, it is a convenient choice for osteological, renal, mammary, and endocrine (thyroid, parathyroid and suprarenal) scintigraphies, as well as other important applications such as intraoperatory detection of lymph nodes and surgical oncology. We describe the simulations performed which explain the crystal choice, the mechanical design of the camera and the method of calibration and algorithms used for position, energy and uniformity correction. We present images taken from phantoms. We plan to increase the camera sensitivity by using a four-holes collimator in combination with the MLEM algorithm, in order to decrease the exploration time and to reduce the dose given to the patient.

  14. Modeling of a slanted-hole collimator in a compact endo-cavity gamma camera.

    NASA Astrophysics Data System (ADS)

    Kamuda, Mark; Cui, Yonggang; Lall, Terry; Ionson, Jim; Camarda, Giuseppe S.; Hossain, Anwar; Yang, Ge; Roy, Utpal N.; James, Ralph B.

    2013-09-01

    Having the ability to take an accurate 3D image of a tumor greatly helps doctors diagnose it and then create a treatment plan for a patient. One way to accomplish molecular imaging is to inject a radioactive tracer into a patient and then measure the gamma rays emitted from regions with high-uptake of the tracer, viz., the cancerous tissues. In large, expensive PET- or SPECT-imaging systems, the 3D imaging easily is accomplished by rotating the gamma-ray detectors and then employing software to reconstruct the 3D images from the multiple 2D projections at different angles of view. However, this method is impractical in a very compact imaging system due to anatomical considerations, e.g., the transrectal gamma camera under development at Brookhaven National Laboratory (BNL) for detection of intra-prostatic tumors. The camera uses pixilated cadmium zinc telluride (CdZnTe or CZT) detectors with matched parallel-hole collimator. Our research investigated the possibility of using a collimator with slanted holes to create 3D pictures of a radioactive source. The underlying concept is to take 2D projection images at different angles of view by adjusting the slant angle of the collimator, then using the 2D projection images to reconstruct the 3D image. To do this, we first simulated the response of a pixilated CZT detector to radiation sources placed in the field of view of the camera. Then, we formulated an algorithm to use the simulation results as prior knowledge and estimate the distribution of a shaped source from its 2D projection images. From the results of the simulation, we measured the spatial resolution of the camera as ~7-mm at a depth of 13.85-mm when using a detector with 2.46-mm pixel pitch and a collimator with 60° slant angle.

  15. Development of a pixelated GSO gamma camera system with tungsten parallel hole collimator for single photon imaging

    SciTech Connect

    Yamamoto, S.; Watabe, H.; Kanai, Y.; Shimosegawa, E.; Hatazawa, J.

    2012-02-15

    Purpose: In small animal imaging using a single photon emitting radionuclide, a high resolution gamma camera is required. Recently, position sensitive photomultiplier tubes (PSPMTs) with high quantum efficiency have been developed. By combining these with nonhygroscopic scintillators with a relatively low light output, a high resolution gamma camera can become useful for low energy gamma photons. Therefore, the authors developed a gamma camera by combining a pixelated Ce-doped Gd{sub 2}SiO{sub 5} (GSO) block with a high quantum efficiency PSPMT. Methods: GSO was selected for the scintillator, because it is not hygroscopic and does not contain any natural radioactivity. An array of 1.9 mm x 1.9 mm x 7 mm individual GSO crystal elements was constructed. These GSOs were combined with a 0.1-mm thick reflector to form a 22 x 22 matrix and optically coupled to a high quantum efficiency PSPMT (H8500C-100 MOD8). The GSO gamma camera was encased in a tungsten gamma-ray shield with tungsten pixelated parallel hole collimator, and the basic performance was measured for Co-57 gamma photons (122 keV). Results: In a two-dimensional position histogram, all pixels were clearly resolved. The energy resolution was {approx}15% FWHM. With the 20-mm thick tungsten pixelated collimator, the spatial resolution was 4.4-mm FWHM 40 mm from the collimator surface, and the sensitivity was {approx}0.05%. Phantom and small animal images were successfully obtained with our developed gamma camera. Conclusions: These results confirmed that the developed pixelated GSO gamma camera has potential as an effective instrument for low energy gamma photon imaging.

  16. Detection of mixed-range proton pencil beams with a prompt gamma slit camera.

    PubMed

    Priegnitz, M; Helmbrecht, S; Janssens, G; Perali, I; Smeets, J; Vander Stappen, F; Sterpin, E; Fiedler, F

    2016-01-21

    With increasing availability of proton and particle therapy centers for tumor treatment, the need for in vivo range verification methods comes more into the focus. Imaging of prompt gamma rays emitted during the treatment is one of the possibilities currently under investigation. A knife-edge shaped slit camera was recently proposed for this task and measurements proved the feasibility of range deviation detection in homogeneous and inhomogeneous targets. In the present paper, we concentrate on laterally inhomogeneous materials, which lead to range mixing situations when crossed by one pencil beam: different sections of the beam have different ranges. We chose exemplative cases from clinical irradiation and assembled idealized tissue equivalent targets. One-dimensional emission profiles were obtained by measuring the prompt gamma emission with the slit camera. It could be shown that the resulting range deviations can be detected by evaluation of the measured data with a previously developed range deviation detection algorithm. The retrieved value, however, strongly depends on the target composition, and is not necessarily in direct relation to the ranges of both parts of the beam. By combining the range deviation detection with an analysis of the slope of the distal edge of the measured prompt gamma profile, the origin of the detected range deviation, i.e. the mixed range of the beam, is also identified. It could be demonstrated that range mixed prompt gamma profiles exhibit less steep distal slopes than profiles from beams traversing laterally homogeneous material. For future application of the slit camera to patient irradiation with double scattered proton beams, situations similar to the range mixing cases are present and results could possibly apply.

  17. Detection of mixed-range proton pencil beams with a prompt gamma slit camera

    NASA Astrophysics Data System (ADS)

    Priegnitz, M.; Helmbrecht, S.; Janssens, G.; Perali, I.; Smeets, J.; Vander Stappen, F.; Sterpin, E.; Fiedler, F.

    2016-01-01

    With increasing availability of proton and particle therapy centers for tumor treatment, the need for in vivo range verification methods comes more into the focus. Imaging of prompt gamma rays emitted during the treatment is one of the possibilities currently under investigation. A knife-edge shaped slit camera was recently proposed for this task and measurements proved the feasibility of range deviation detection in homogeneous and inhomogeneous targets. In the present paper, we concentrate on laterally inhomogeneous materials, which lead to range mixing situations when crossed by one pencil beam: different sections of the beam have different ranges. We chose exemplative cases from clinical irradiation and assembled idealized tissue equivalent targets. One-dimensional emission profiles were obtained by measuring the prompt gamma emission with the slit camera. It could be shown that the resulting range deviations can be detected by evaluation of the measured data with a previously developed range deviation detection algorithm. The retrieved value, however, strongly depends on the target composition, and is not necessarily in direct relation to the ranges of both parts of the beam. By combining the range deviation detection with an analysis of the slope of the distal edge of the measured prompt gamma profile, the origin of the detected range deviation, i.e. the mixed range of the beam, is also identified. It could be demonstrated that range mixed prompt gamma profiles exhibit less steep distal slopes than profiles from beams traversing laterally homogeneous material. For future application of the slit camera to patient irradiation with double scattered proton beams, situations similar to the range mixing cases are present and results could possibly apply.

  18. Event Processing for Modular Gamma Cameras with Tiled Multi-Anode Photomultiplier Tubes

    PubMed Central

    Salçın, Esen; Furenlid, Lars R.

    2015-01-01

    Multi-anode photomultiplier tubes (MAPMTs) are good candidates as light sensors for a new generation of modular scintillation cameras for Single-photon emission computed tomography (SPECT) and Positron emission tomography (PET) applications. MAPMTs can provide improved intrinsic spatial resolution (<1mm) compared to arrays of larger individual PMTs due to their small anode sizes, and the increased number of channels also allows accurate estimation of depth-of-interaction (DOI). However, the area of a single MAPMT module is small for a modular gamma camera, so we are designing read-out electronics that will allow multiple individual MAPMT modules to be optically coupled to a single monolithic scintillator crystal. In order to allow such flexibility, the read-out electronics, which we refer to as the event processor, must be compact and adaptable. In combining arrays of MAPMTs, which may each have 64 to 1024 anodes per unit, issues need to be overcome with amplifying, digitizing, and recording potentially very large numbers of channels per gamma-ray event. In this study, we have investigated different event-processor strategies for gamma cameras with multiple MAPMTs that will employ maximum-likelihood (ML) methods for estimation of 3D spatial location, deposited energy and time of occurrence of events. We simulated anode signals for hypothetical gamma–camera geometries based on models of the stochastic processes inherent in scintillation cameras. The comparison between different triggering and read-out schemes was carried out by quantifying the information content in the anode signals via the Fisher Information Matrix (FIM). We observed that a decline in spatial resolution at the edges of the individual MAPMTs could be improved by the inclusion of neighboring MAPMT anode signals for events near the tiling boundaries. Thus in order to maintain spatial resolution uniformity throughout the modular camera face, we propose dividing an MAPMT’s array of anode signals

  19. Monte Carlo simulations of compact gamma cameras based on avalanche photodiodes.

    PubMed

    Després, Philippe; Funk, Tobias; Shah, Kanai S; Hasegawa, Bruce H

    2007-06-07

    Avalanche photodiodes (APDs), and in particular position-sensitive avalanche photodiodes (PSAPDs), are an attractive alternative to photomultiplier tubes (PMTs) for reading out scintillators for PET and SPECT. These solid-state devices offer high gain and quantum efficiency, and can potentially lead to more compact and robust imaging systems with improved spatial and energy resolution. In order to evaluate this performance improvement, we have conducted Monte Carlo simulations of gamma cameras based on avalanche photodiodes. Specifically, we investigated the relative merit of discrete and PSAPDs in a simple continuous crystal gamma camera. The simulated camera was composed of either a 4 x 4 array of four channels 8 x 8 mm2 PSAPDs or an 8 x 8 array of 4 x 4 mm2 discrete APDs. These configurations, requiring 64 channels readout each, were used to read the scintillation light from a 6 mm thick continuous CsI:Tl crystal covering the entire 3.6 x 3.6 cm2 photodiode array. The simulations, conducted with GEANT4, accounted for the optical properties of the materials, the noise characteristics of the photodiodes and the nonlinear charge division in PSAPDs. The performance of the simulated camera was evaluated in terms of spatial resolution, energy resolution and spatial uniformity at 99mTc (140 keV) and 125I ( approximately 30 keV) energies. Intrinsic spatial resolutions of 1.0 and 0.9 mm were obtained for the APD- and PSAPD-based cameras respectively for 99mTc, and corresponding values of 1.2 and 1.3 mm FWHM for 125I. The simulations yielded maximal energy resolutions of 7% and 23% for 99mTc and 125I, respectively. PSAPDs also provided better spatial uniformity than APDs in the simple system studied. These results suggest that APDs constitute an attractive technology especially suitable to build compact, small field of view gamma cameras dedicated, for example, to small animal or organ imaging.

  20. Evaluation of intersubchannel mixing in a simulated nuclear fuel rod bundle using a gamma camera

    SciTech Connect

    Sedaghat-Hamedani, A.

    1984-01-01

    Single-phase, isothermal turbulent and forced mixing data were obtained from two and three-subchannel simulations of a nuclear fuel assembly using a gamma-camera imaging system. One of the two or three inlet streams was traced with the gamma emitting radionuclide 99m-Tc pertechnetate, and axial subchannel concentration gradients were measured as a function of gap spacing and Reynolds number over the respective ranges 0.050 to 0.197 inch, and 3000 to 20,000. The gamma camera allowed external monitoring over the axial length of the test assembly thereby eliminating experimental problems associated with flow partitioning and withdrawal systems. In addition, it provided a methodology for making noninvasive measurements under operating conditions downstream of a mixing vane and over the active region of diversion crossflow. The missing parameter ..beta.., defined as the ratio of the transverse to axial mass velocities, was found to be relatively independent of the pitch to rod diameter ratio for gap spaces of 0.100, 0.157, and 0.197 inches, but was observed to increase sharply for the smallest gap spacing (0.050 inch) at a constant Reynolds number. Diversion crossflow was characterized by providing fixed but different flow rate to each subchannel.

  1. Dual-purpose camera for terrestrial x- and gamma-ray observations

    NASA Astrophysics Data System (ADS)

    Westergaard, Niels J.; Budtz-Joergensen, Carl; Kuvvetli, Irfan; Jonasson, Per; Velasco, Tirso; Requena, Jose-Luis; Reglero, Victor; Eyles, Christopher J.; Neubert, Torsten; Stauning, Peter

    1999-09-01

    This paper describes the x-ray camera for the Atmospheric X- ray Observatory (AXO) proposed for the Danish Small Satellite Program, which is under evaluation for the next mission in 2003. AXO is aimed at localizing the origin of the Terrestrial Gamma Flashes (TGF) that have been observed with BATSE. An additional objective is a detailed mapping of the auroral x-ray and optical emission. The x-ray camera to be used must be capable of detecting quite weak and pointlike, short-duration emission from TGF, and also to handle with the rather intense and extended radiation from auroral activity. The x-ray energy range is 5-200 keV and the angular resolution about 2 degrees. The requested satellite orbit is polar with an altitude of 500 km so that the phenomena can be seen from a close range. The design of a coded mask camera matching these requirements is discussed in terms of energy and angular resolution, sensitivity, count rates, and time resolution. Detailed simulations of the camera imaging capabilities are presented.

  2. Active damping of the camera support mast of a Cherenkov Gamma-ray telescope

    NASA Astrophysics Data System (ADS)

    Smrz, M.; Bastaits, R.; Preumont, A.

    2011-04-01

    This paper explores the possibility of damping actively the camera support mast of Gamma-ray telescopes with a configuration similar to the MAGIC telescope, where the camera is supported by a curved mast and an array of cables. This is achieved by replacing a set of passive cables by a set of active ones, controlled by active tendons. Each active tendon consists of a displacement actuator collocated to a force sensor with independent force feedback control loops. The paper outlines the theory of decentralized active damping of cable-structures, points out the main design parameters, and evaluates the amount of damping that the control system can provide. The effect of the control on the wind response and on the transient response of the telescope is estimated.

  3. Analytical and experimental FWHM of a gamma camera: theoretical and practical issues

    PubMed Central

    Poggiali, Davide; Riccardi, Lucia; Turco, Paolo; Bui, Franco; De Marchi, Stefano

    2015-01-01

    Introduction. It is well known that resolution on a gamma camera varies as a function of distance, scatter and the camera’s characteristics (collimator type, crystal thickness, intrinsic resolution etc). Manufacturers frequently provide only a few pre-calculated resolution values (using a line source in air, 10–15 cm from the collimator surface and without scattering). However, these are typically not obtained in situations resembling a clinical setting. From a diagnostic point of view, it is useful to know the expected resolution of a gamma camera at a given distance from the collimator surface for a particular setting in order to decide whether it is worth scanning patients with “small lesion” or not. When dealing with absolute quantification it is also mandatory to know precisely the expected resolution and its uncertainty in order to make appropriate corrections. Aim. Our aims are: to test a novel mathematical approach, the cubic spline interpolation, for the extraction of the full width at half maximum (FWHM) from the acquisition of a line source (experimental resolution) also considering measurement uncertainty; to compare it with the usually adopted methods such as the gaussian approach; to compare it with the theoretical resolution (analytical resolution) of a gamma camera at different distances; to create a web-based educational program with which to test these theories. Methods. Three mathematical methods (direct calculation, global interpolation using gaussian and local interpolation using splines) for calculating FWHM from a line source (planar scintigraphy) were tested and compared. A NEMA Triple Line Source Phantom was used to obtain static images both in air and with different scattering levels. An advanced, open-source software (MATLAB/Octave and PHP based) was created “ad hoc” to obtain and compare FWHM values and relative uncertainty. Results and Conclusion. Local interpolation using splines proved faster and more reliable than the

  4. A clinical gamma camera-based pinhole collimated system for high resolution small animal SPECT imaging.

    PubMed

    Mejia, J; Galvis-Alonso, O Y; Castro, A A de; Braga, J; Leite, J P; Simões, M V

    2010-12-01

    The main objective of the present study was to upgrade a clinical gamma camera to obtain high resolution tomographic images of small animal organs. The system is based on a clinical gamma camera to which we have adapted a special-purpose pinhole collimator and a device for positioning and rotating the target based on a computer-controlled step motor. We developed a software tool to reconstruct the target's three-dimensional distribution of emission from a set of planar projections, based on the maximum likelihood algorithm. We present details on the hardware and software implementation. We imaged phantoms and heart and kidneys of rats. When using pinhole collimators, the spatial resolution and sensitivity of the imaging system depend on parameters such as the detector-to-collimator and detector-to-target distances and pinhole diameter. In this study, we reached an object voxel size of 0.6 mm and spatial resolution better than 2.4 and 1.7 mm full width at half maximum when 1.5- and 1.0-mm diameter pinholes were used, respectively. Appropriate sensitivity to study the target of interest was attained in both cases. Additionally, we show that as few as 12 projections are sufficient to attain good quality reconstructions, a result that implies a significant reduction of acquisition time and opens the possibility for radiotracer dynamic studies. In conclusion, a high resolution single photon emission computed tomography (SPECT) system was developed using a commercial clinical gamma camera, allowing the acquisition of detailed volumetric images of small animal organs. This type of system has important implications for research areas such as Cardiology, Neurology or Oncology.

  5. Performance of a small CdTe gamma camera for radio-guided surgery

    NASA Astrophysics Data System (ADS)

    Tsuchimochi, Makoto; Sakahara, Harmui; Hayama, Kazuhide; Funaki, Minoru; Shirahata, T.; Orskaug, Terje; Maehlum, Gunnar; Yoshioka, Koki; Nygard, Einar

    2001-12-01

    Sentinel lymph node biopsy has been shown to be highly accurate for detecting metastatic diseases, such as melanoma and breast cancer. Gamma probes that measure only the relative presence of radioactivity are commonly used to identify sentinel lymph nodes. We have developed a small semiconductor gamma camera (SSGC) that allows the size, shape, and location of the target tissues to be visualized. The purpose of this study is to characterize the performance of the SSGC for radioguided surgery of metastatic lesions and for diagnosing other diseases amenable to the smaller- format associated with this prototype imaging system. Methods & Design: The detector head was comprised of a 32 x 32 Cadmium Telluride semiconductor array and application- specific integrated circuit (ASIC) with a tungsten collimator. The entire assembly was encased in a lead housing measuring 152 mm x 166 mm x 65 mm. The effective visual field was 44.8 mm x 44.8 mm. Two spherical 5 mm diameter Tc-99m radioactive sources having activities of 0.15 MBq and 100 MBq were used to simulate sentinel lymph nodes and injection site. The relative detectability of these foci was compared using the new detector and a conventional scintillation camera. Use of the prototype was also explored on patients in a variety of clinical applications. Results: the SSGC provided better spatial resolution on phantom studies than the conventional gamma camera control. Both foci could be visualized clearly by the SSGC using a 15 second acquisition time, whereas they could not be readily identified using the conventional system under comparable conditions. Preliminary clinical tests of the SSGC were found to be successful in imaging diseases in a variety of tissues including salivary and thyroid glands, temporomandibular joints, and sentinel lymph nodes. Conclusion: The SSGC has significant potential for use in diagnosing diseases and for facilitating subsequent radioguided surgery. (This project was supported by a Grant- in

  6. MONICA: a compact, portable dual gamma camera system for mouse whole-body imaging

    SciTech Connect

    Xi, Wenze; Seidel, Jurgen; Kakareka, John W.; Pohida, Thomas J.; Milenic, Diane E.; Proffitt, James; Majewski, Stan; Weisenberger, Andrew G.; Green, Michael V.; Choyke, Peter L.

    2010-04-01

    Introduction We describe a compact, portable dual-gamma camera system (named "MONICA" for MObile Nuclear Imaging CAmeras) for visualizing and analyzing the whole-body biodistribution of putative diagnostic and therapeutic single photon emitting radiotracers in animals the size of mice. Methods Two identical, miniature pixelated NaI(Tl) gamma cameras were fabricated and installed ?looking up? through the tabletop of a compact portable cart. Mice are placed directly on the tabletop for imaging. Camera imaging performance was evaluated with phantoms and field performance was evaluated in a weeklong In-111 imaging study performed in a mouse tumor xenograft model. Results Tc-99m performance measurements, using a photopeak energy window of 140 keV?10%, yielded the following results: spatial resolution (FWHM at 1 cm), 2.2 mm; sensitivity, 149 cps (counts per seconds)/MBq (5.5 cps/μCi); energy resolution (FWHM, full width at half maximum), 10.8%; count rate linearity (count rate vs. activity), r2=0.99 for 0?185 MBq (0?5 mCi) in the field of view (FOV); spatial uniformity, <3% count rate variation across the FOV. Tumor and whole-body distributions of the In-111 agent were well visualized in all animals in 5-min images acquired throughout the 168-h study period. Conclusion Performance measurements indicate that MONICA is well suited to whole-body single photon mouse imaging. The field study suggests that inter-device communications and user-oriented interfaces included in the MONICA design facilitate use of the system in practice. We believe that MONICA may be particularly useful early in the (cancer) drug development cycle where basic whole-body biodistribution data can direct future development of the agent under study and where logistical factors, e.g., limited imaging space, portability and, potentially, cost are important.

  7. MONICA: A Compact, Portable Dual Gamma Camera System for Mouse Whole-Body Imaging

    PubMed Central

    Xi, Wenze; Seidel, Jurgen; Karkareka, John W.; Pohida, Thomas J.; Milenic, Diane E.; Proffitt, James; Majewski, Stan; Weisenberger, Andrew G.; Green, Michael V.; Choyke, Peter L.

    2009-01-01

    Introduction We describe a compact, portable dual-gamma camera system (named “MONICA” for MObile Nuclear Imaging CAmeras) for visualizing and analyzing the whole-body biodistribution of putative diagnostic and therapeutic single photon emitting radiotracers in animals the size of mice. Methods Two identical, miniature pixelated NaI(Tl) gamma cameras were fabricated and installed “looking up” through the tabletop of a compact portable cart. Mice are placed directly on the tabletop for imaging. Camera imaging performance was evaluated with phantoms and field performance was evaluated in a weeklong In-111 imaging study performed in a mouse tumor xenograft model. Results Tc-99m performance measurements, using a photopeak energy window of 140 keV ± 10%, yielded the following results: spatial resolution (FWHM at 1-cm), 2.2-mm; sensitivity, 149 cps/MBq (5.5 cps/μCi); energy resolution (FWHM), 10.8%; count rate linearity (count rate vs. activity), r2 = 0.99 for 0–185 MBq (0–5 mCi) in the field-of-view (FOV); spatial uniformity, < 3% count rate variation across the FOV. Tumor and whole-body distributions of the In-111 agent were well visualized in all animals in 5-minute images acquired throughout the 168-hour study period. Conclusion Performance measurements indicate that MONICA is well suited to whole-body single photon mouse imaging. The field study suggests that inter-device communications and user-oriented interfaces included in the MONICA design facilitate use of the system in practice. We believe that MONICA may be particularly useful early in the (cancer) drug development cycle where basic whole-body biodistribution data can direct future development of the agent under study and where logistical factors, e.g. limited imaging space, portability, and, potentially, cost are important. PMID:20346864

  8. MO-AB-206-02: Testing Gamma Cameras Based On TG177 WG Report.

    PubMed

    Halama, J

    2016-06-01

    This education session will cover the physics and operation principles of gamma cameras and PET scanners. The first talk will focus on PET imaging. An overview of the principles of PET imaging will be provided, including positron decay physics, and the transition from 2D to 3D imaging. More recent advances in hardware and software will be discussed, such as time-of-flight imaging, and improvements in reconstruction algorithms that provide for options such as depth-of-interaction corrections. Quantitative applications of PET will be discussed, as well as the requirements for doing accurate quantitation. Relevant performance tests will also be described.

  9. Gamma camera and computer-assisted wipe tests: A simple method

    SciTech Connect

    Friede, J.; Dumesnil, C.; Caron, C. Chedoke-McMaster Hospitals, Hamilton, Ontario )

    1990-03-01

    In order to facilitate the technologist's work, a simple method of counting the activity of wipe test samples for contamination control in the nuclear medicine department has been developed. A scintigraphic three-minute image is directly obtained from the uncollimated gamma camera with the help of a homemade plexiglas template which holds the samples. A computer program analyzes this image, simultaneously calculates the activity of a maximum of 12 samples after correcting for the background, and expresses the result as a percentage of the predetermined maximum permissible activity. The results are stored on diskette and a hard copy is produced for permanent record keeping.

  10. COMPACT CdZnTe-BASED GAMMA CAMERA FOR PROSTATE CANCER IMAGING

    SciTech Connect

    CUI, Y.; LALL, T.; TSUI, B.; YU, J.; MAHLER, G.; BOLOTNIKOV, A.; VASKA, P.; DeGERONIMO, G.; O'CONNOR, P.; MEINKEN, G.; JOYAL, J.; BARRETT, J.; CAMARDA, G.; HOSSAIN, A.; KIM, K.H.; YANG, G.; POMPER, M.; CHO, S.; WEISMAN, K.; SEO, Y.; BABICH, J.; LaFRANCE, N.; AND JAMES, R.B.

    2011-10-23

    In this paper, we discuss the design of a compact gamma camera for high-resolution prostate cancer imaging using Cadmium Zinc Telluride (CdZnTe or CZT) radiation detectors. Prostate cancer is a common disease in men. Nowadays, a blood test measuring the level of prostate specific antigen (PSA) is widely used for screening for the disease in males over 50, followed by (ultrasound) imaging-guided biopsy. However, PSA tests have a high false-positive rate and ultrasound-guided biopsy has a high likelihood of missing small cancerous tissues. Commercial methods of nuclear medical imaging, e.g. PET and SPECT, can functionally image the organs, and potentially find cancer tissues at early stages, but their applications in diagnosing prostate cancer has been limited by the smallness of the prostate gland and the long working distance between the organ and the detectors comprising these imaging systems. CZT is a semiconductor material with wide band-gap and relatively high electron mobility, and thus can operate at room temperature without additional cooling. CZT detectors are photon-electron direct-conversion devices, thus offering high energy-resolution in detecting gamma rays, enabling energy-resolved imaging, and reducing the background of Compton-scattering events. In addition, CZT material has high stopping power for gamma rays; for medical imaging, a few-mm-thick CZT material provides adequate detection efficiency for many SPECT radiotracers. Because of these advantages, CZT detectors are becoming popular for several SPECT medical-imaging applications. Most recently, we designed a compact gamma camera using CZT detectors coupled to an application-specific-integrated-circuit (ASIC). This camera functions as a trans-rectal probe to image the prostate gland from a distance of only 1-5 cm, thus offering higher detection efficiency and higher spatial resolution. Hence, it potentially can detect prostate cancers at their early stages. The performance tests of this camera

  11. Compact CdZnTe-based gamma camera for prostate cancer imaging

    NASA Astrophysics Data System (ADS)

    Cui, Yonggang; Lall, Terry; Tsui, Benjamin; Yu, Jianhua; Mahler, George; Bolotnikov, Aleksey; Vaska, Paul; De Geronimo, Gianluigi; O'Connor, Paul; Meinken, George; Joyal, John; Barrett, John; Camarda, Giuseppe; Hossain, Anwar; Kim, Ki Hyun; Yang, Ge; Pomper, Marty; Cho, Steve; Weisman, Ken; Seo, Youngho; Babich, John; LaFrance, Norman; James, Ralph B.

    2011-06-01

    In this paper, we discuss the design of a compact gamma camera for high-resolution prostate cancer imaging using Cadmium Zinc Telluride (CdZnTe or CZT) radiation detectors. Prostate cancer is a common disease in men. Nowadays, a blood test measuring the level of prostate specific antigen (PSA) is widely used for screening for the disease in males over 50, followed by (ultrasound) imaging-guided biopsy. However, PSA tests have a high falsepositive rate and ultrasound-guided biopsy has a high likelihood of missing small cancerous tissues. Commercial methods of nuclear medical imaging, e.g. PET and SPECT, can functionally image the organs, and potentially find cancer tissues at early stages, but their applications in diagnosing prostate cancer has been limited by the smallness of the prostate gland and the long working distance between the organ and the detectors comprising these imaging systems. CZT is a semiconductor material with wide band-gap and relatively high electron mobility, and thus can operate at room temperature without additional cooling. CZT detectors are photon-electron direct-conversion devices, thus offering high energy-resolution in detecting gamma rays, enabling energy-resolved imaging, and reducing the background of Compton-scattering events. In addition, CZT material has high stopping power for gamma rays; for medical imaging, a few-mm-thick CZT material provides adequate detection efficiency for many SPECT radiotracers. Because of these advantages, CZT detectors are becoming popular for several SPECT medical-imaging applications. Most recently, we designed a compact gamma camera using CZT detectors coupled to an application-specific-integratedcircuit (ASIC). This camera functions as a trans-rectal probe to image the prostate gland from a distance of only 1-5 cm, thus offering higher detection efficiency and higher spatial resolution. Hence, it potentially can detect prostate cancers at their early stages. The performance tests of this camera

  12. Modulated Multiple Slit Camera for improved localization of gamma ray bursts

    NASA Technical Reports Server (NTRS)

    Gorenstein, P.

    1982-01-01

    An instrument is described in which a cylindrical modulation collimator is added to one half of a Multiple Slit Camera (MSC) coded-aperture imaging system. The instrument provides gamma-ray burst positions from a single spacecraft that are as precise as the best positions from the long-baseline network of interplanetary spacecraft. The determination of fine positions is described, and the fine-position capability is shown to operate over about two-thirds of the MSC's nearly all-sky field of view. It is noted that the addition of the modulation collimator only slightly reduces the system's sensitivity and can improve the location precision for gamma-ray bursts and slower hard-X-ray transients to about 0.1 sq arcmin.

  13. The co-imaging of gamma camera measurements of aerosol deposition and respiratory anatomy.

    PubMed

    Conway, Joy; Fleming, John; Bennett, Michael; Havelock, Tom

    2013-06-01

    The use of gamma camera imaging following the inhalation of a radiolabel has been widely used by researchers to investigate the fate of inhaled aerosols. The application of two-dimensional (2D) planar gamma scintigraphy and single-photon emission computed tomography (SPECT) to the study of inhaled aerosols is discussed in this review. Information on co-localized anatomy can be derived from other imaging techniques such as krypton ventilation scans and low- and high-resolution X-ray computed tomography (CT). Radionuclide imaging, combined with information on anatomy, is a potentially useful approach when the understanding of regional deposition within the lung is central to research objectives for following disease progression and for the evaluation of therapeutic intervention.

  14. An Intensified EMCCD Camera for Low Energy Gamma Ray Imaging Applications

    PubMed Central

    Meng, L. J.

    2016-01-01

    This paper presents the design and feasibility study of a very-high resolution gamma camera for detecting 27–35 keV X and gamma rays emitted by I-125 labelled radiotracers. This detector consists of a newly developed Electron-multiplying CCD (EMCCD) sensor and a de-magnifier tube coupled to a thin layer of scintillator. A prototype detector was developed and experimentally evaluated. This detector has a detection area of ~ 5 cm2. It provided an intrinsic spatial resolution of < 60 µm FWHM and a high signal-to-noise ratio for detecting the 27–35 keV photons, which ensures an excellent counting efficiency. This detector will be used as the key component for a single photon emission microscope (SPEM) system that is under development.

  15. Prompt gamma imaging with a slit camera for real-time range control in proton therapy.

    PubMed

    Smeets, J; Roellinghoff, F; Prieels, D; Stichelbaut, F; Benilov, A; Busca, P; Fiorini, C; Peloso, R; Basilavecchia, M; Frizzi, T; Dehaes, J C; Dubus, A

    2012-06-07

    Treatments delivered by proton therapy are affected by uncertainties on the range of the beam within the patient, requiring medical physicists to add safety margins on the penetration depth of the beam. To reduce these margins and deliver safer treatments, different projects are currently investigating real-time range control by imaging prompt gammas emitted along the proton tracks in the patient. This study reports on the feasibility, development and test of a new concept of prompt gamma camera using a slit collimator to obtain a one-dimensional projection of the beam path on a scintillation detector. This concept was optimized, using the Monte Carlo code MCNPX version 2.5.0, to select high energy photons correlated with the beam range and detect them with both high statistics and sufficient spatial resolution. To validate the Monte Carlo model, spectrometry measurements of secondary particles emitted by a PMMA target during proton irradiation at 160 MeV were realized. An excellent agreement with the simulations was observed when using subtraction methods to isolate the gammas in direct incidence. A first prototype slit camera using the HiCam gamma detector was consequently prepared and tested successfully at 100 and 160 MeV beam energies. Results confirmed the potential of this concept for real-time range monitoring with millimetre accuracy in pencil beam scanning mode for typical clinical conditions. If we neglect electronic dead times and rejection of detected events, the current solution with its collimator at 15 cm from the beam axis can achieve a 1-2 mm standard deviation on range estimation in a homogeneous PMMA target for numbers of protons that correspond to doses in water at the Bragg peak as low as 15 cGy at 100 MeV and 25 cGy at 160 MeV assuming pencil beams with a Gaussian profile of 5 mm sigma at target entrance.

  16. Intraoperative Imaging Guidance for Sentinel Node Biopsy in Melanoma Using a Mobile Gamma Camera

    SciTech Connect

    Dengel, Lynn T; Judy, Patricia G; Petroni, Gina R; Smolkin, Mark E; Rehm, Patrice K; Majewski, Stan; Williams, Mark B; Slingluff Jr., Craig L

    2011-04-01

    The objective is to evaluate the sensitivity and clinical utility of intraoperative mobile gamma camera (MGC) imaging in sentinel lymph node biopsy (SLNB) in melanoma. The false-negative rate for SLNB for melanoma is approximately 17%, for which failure to identify the sentinel lymph node (SLN) is a major cause. Intraoperative imaging may aid in detection of SLN near the primary site, in ambiguous locations, and after excision of each SLN. The present pilot study reports outcomes with a prototype MGC designed for rapid intraoperative image acquisition. We hypothesized that intraoperative use of the MGC would be feasible and that sensitivity would be at least 90%. From April to September 2008, 20 patients underwent Tc99 sulfur colloid lymphoscintigraphy, and SLNB was performed with use of a conventional fixed gamma camera (FGC), and gamma probe followed by intraoperative MGC imaging. Sensitivity was calculated for each detection method. Intraoperative logistical challenges were scored. Cases in which MGC provided clinical benefit were recorded. Sensitivity for detecting SLN basins was 97% for the FGC and 90% for the MGC. A total of 46 SLN were identified: 32 (70%) were identified as distinct hot spots by preoperative FGC imaging, 31 (67%) by preoperative MGC imaging, and 43 (93%) by MGC imaging pre- or intraoperatively. The gamma probe identified 44 (96%) independent of MGC imaging. The MGC provided defined clinical benefit as an addition to standard practice in 5 (25%) of 20 patients. Mean score for MGC logistic feasibility was 2 on a scale of 1-9 (1 = best). Intraoperative MGC imaging provides additional information when standard techniques fail or are ambiguous. Sensitivity is 90% and can be increased. This pilot study has identified ways to improve the usefulness of an MGC for intraoperative imaging, which holds promise for reducing false negatives of SLNB for melanoma.

  17. Photon-counting versus an integrating CCD-based gamma camera: important consequences for spatial resolution.

    PubMed

    Beekman, Freek J; de Vree, Gerralt A

    2005-06-21

    Charge-coupled devices (CCDs) coupled to scintillation crystals can be used for high resolution imaging with x-rays and gamma-rays. When the CCD images can be read out fast enough, the energy and interaction position of individual gamma quanta can be estimated by real-time image analysis of scintillation light flashes ('photon counting mode'). We tested a set-up in which an electron-multiplying CCD was coupled to a 1 mm thick columnar CsI crystal by means of a fibre-optic taper. We found that, compared to light integration, photon counting improves the intrinsic spatial resolution by a factor of about 3 to 6. Applying our set-up to Tc-99m and I-125 imaging, we were able to obtain intrinsic resolutions below 60 microm (full width at half maximum). Counting losses due to overlapping of light flashes are negligible for event rates typical for biomedical radio-nuclide imaging and do strongly depend on energy window settings. Energy resolution was estimated to be approximately 35 keV FWHM for a 1:1 taper. We conclude that CCD-based gamma cameras have great potential for applications such as in vivo imaging of gamma emitters.

  18. Material efficiency studies for a Compton camera designed to measure characteristic prompt gamma rays emitted during proton beam radiotherapy.

    PubMed

    Robertson, Daniel; Polf, Jerimy C; Peterson, Steve W; Gillin, Michael T; Beddar, Sam

    2011-05-21

    Prompt gamma rays emitted from biological tissues during proton irradiation carry dosimetric and spectroscopic information that can assist with treatment verification and provide an indication of the biological response of the irradiated tissues. Compton cameras are capable of determining the origin and energy of gamma rays. However, prompt gamma monitoring during proton therapy requires new Compton camera designs that perform well at the high gamma energies produced when tissues are bombarded with therapeutic protons. In this study we optimize the materials and geometry of a three-stage Compton camera for prompt gamma detection and calculate the theoretical efficiency of such a detector. The materials evaluated in this study include germanium, bismuth germanate (BGO), NaI, xenon, silicon and lanthanum bromide (LaBr(3)). For each material, the dimensions of each detector stage were optimized to produce the maximum number of relevant interactions. These results were used to predict the efficiency of various multi-material cameras. The theoretical detection efficiencies of the most promising multi-material cameras were then calculated for the photons emitted from a tissue-equivalent phantom irradiated by therapeutic proton beams ranging from 50 to 250 MeV. The optimized detector stages had a lateral extent of 10 × 10 cm(2) with the thickness of the initial two stages dependent on the detector material. The thickness of the third stage was fixed at 10 cm regardless of material. The most efficient single-material cameras were composed of germanium (3 cm) and BGO (2.5 cm). These cameras exhibited efficiencies of 1.15 × 10(-4) and 9.58 × 10(-5) per incident proton, respectively. The most efficient multi-material camera design consisted of two initial stages of germanium (3 cm) and a final stage of BGO, resulting in a theoretical efficiency of 1.26 × 10(-4) per incident proton.

  19. Material efficiency studies for a Compton camera designed to measure characteristic prompt gamma rays emitted during proton beam radiotherapy

    PubMed Central

    Robertson, Daniel; Polf, Jerimy C; Peterson, Steve W; Gillin, Michael T; Beddar, Sam

    2011-01-01

    Prompt gamma rays emitted from biological tissues during proton irradiation carry dosimetric and spectroscopic information that can assist with treatment verification and provide an indication of the biological response of the irradiated tissues. Compton cameras are capable of determining the origin and energy of gamma rays. However, prompt gamma monitoring during proton therapy requires new Compton camera designs that perform well at the high gamma energies produced when tissues are bombarded with therapeutic protons. In this study we optimize the materials and geometry of a three-stage Compton camera for prompt gamma detection and calculate the theoretical efficiency of such a detector. The materials evaluated in this study include germanium, bismuth germanate (BGO), NaI, xenon, silicon and lanthanum bromide (LaBr3). For each material, the dimensions of each detector stage were optimized to produce the maximum number of relevant interactions. These results were used to predict the efficiency of various multi-material cameras. The theoretical detection efficiencies of the most promising multi-material cameras were then calculated for the photons emitted from a tissue-equivalent phantom irradiated by therapeutic proton beams ranging from 50 to 250 MeV. The optimized detector stages had a lateral extent of 10 × 10 cm2 with the thickness of the initial two stages dependent on the detector material. The thickness of the third stage was fixed at 10 cm regardless of material. The most efficient single-material cameras were composed of germanium (3 cm) and BGO (2.5 cm). These cameras exhibited efficiencies of 1.15 × 10−4 and 9.58 × 10−5 per incident proton, respectively. The most efficient multi-material camera design consisted of two initial stages of germanium (3 cm) and a final stage of BGO, resulting in a theoretical efficiency of 1.26 × 10−4 per incident proton. PMID:21508442

  20. Characteristics of Multihole Collimator Gamma Camera Simulation Modeled Using MCNP5

    SciTech Connect

    Saripan, M. I.; Mashohor, S.; Adnan, W. A. Wan; Marhaban, M. H.; Hashim, S.

    2008-05-20

    This paper describes the characteristics of the multihole collimator gamma camera that is simulated using the combination of the Monte Carlo N-Particles Code (MCNP) version 5 and in-house software. The model is constructed based on the GCA-7100A Toshiba Gamma Camera at the Royal Surrey County Hospital, Guildford, Surrey, UK. The characteristics are analyzed based on the spatial resolution of the images detected by the Sodium Iodide (NaI) detector. The result is recorded in a list-mode file referred to as a PTRAC file within MCNP5. All pertinent nuclear reaction mechanisms, such as Compton and Rayleigh scattering and photoelectric absorption are undertaken by MCNP5 for all materials encountered by each photon. The experiments were conducted on Tl-201, Co-57, Tc-99 m and Cr-51 radio nuclides. The comparison of full width half maximum value of each datasets obtained from experimental work, simulation and literature are also reported in this paper. The relationship of the simulated data is in agreement with the experimental results and data obtained in the literature. A careful inspection at each of the data points of the spatial resolution of Tc-99 m shows a slight discrepancy between these sets. However, the difference is very insignificant, i.e. less than 3 mm only, which corresponds to a size of less than 1 pixel only (of the segmented detector)00.

  1. Comparison of the barium test meal and the gamma camera scanning technic in measuring gastric emptying

    SciTech Connect

    Perkel, M.S.; Fajman, W.A.; Hersh, T.

    1981-09-01

    In 21 patients with nonresected stomachs and symptoms of delayed gastric emptying, obstruction was excluded by upper gastrointestinal series and upper endoscopy; all had abnormal results of barium test meal (BTM) study. Each had repeat BTM after the administration of 10 mg of metoclopramide. Each patient also had two gamma camera studies after a technetium Tc 99m sulfur colloid labeled meal; normal saline or metoclopramide was administered before each test in a blinded and random manner. Half-time (T 1/2) and percentage of isotope remaining at six hours (GC6) were recorded. Ten asymptomatic controls had a gamma camera scanning study, and seven of these had a BTM. Nine of 19 patients had a T 1/2 in the normal range, and in 12 of 19 patients the GC6 was in the normal range. The magnitude of retention of barium at six hours on the BTM did not correlate with the T 1/2 (r = 0.076) or the GC6 (r = 0.296). Thus, these tests were not comparable in this study. By regression analysis, a significant reduction was shown in the amount of retained food and barium (P < .01), the T 1/2 (P < .01), and the GC6 (P < .01) after intramuscular administration of metoclopramide, indicating that both tests were able to evaluate the effects of this drug.

  2. Comparison of the barium test meal and the gamma camera scanning technic in measuring gastric emptying

    SciTech Connect

    Perkel, M.S.; Fajman, W.A.; Hersh, T.; Moore, C.; Davidson, E.D.; Haun, C.

    1981-09-01

    In 21 patients with nonresected stomachs and symptoms of delayed gastric emptying, obstruction was excluded by upper gastrointestinal series and upper endoscopy; all had abnormal results of barium test meal (BTM) study. Each had repeat BTM after the administration of 10 mg of metoclopramide. Each patient also had two gamma camera studies after a technetium Tc 99m sulfur colloid labeled meal; normal saline or metoclopramide was administered before each test in a blinded and random manner. Half-time (T1/2) and percentage of isotope remaining at six hours (GC6) were recorded. Ten asymptomatic controls had a gamma camera scanning study, and seven of these had a BTM. Nine of 19 patients had a T1/2 in the normal range, and in 12 of 19 patients the GC6 was in the normal range. The magnitude of retention of barium at six hours on the BTM did not correlate with the T1/2 (r . 0.076) or the GC6 (r. 0.296). Thus, these tests were not comparable in this study. By regression analysis, a significant reduction was shown in the amount of retained food and barium (P less than .01), the T1/2 (P less than .01), and the GC6 (P less than .01) after intramuscular administration of metoclopramide, indicating that both tests were able to evaluate the effects of this drug.

  3. Characteristics of Multihole Collimator Gamma Camera Simulation Modeled Using MCNP5

    NASA Astrophysics Data System (ADS)

    Saripan, M. I.; Hashim, S.; Mashohor, S.; Adnan, W. A. Wan; Marhaban, M. H.

    2008-05-01

    This paper describes the characteristics of the multihole collimator gamma camera that is simulated using the combination of the Monte Carlo N-Particles Code (MCNP) version 5 and in-house software. The model is constructed based on the GCA-7100A Toshiba Gamma Camera at the Royal Surrey County Hospital, Guildford, Surrey, UK. The characteristics are analyzed based on the spatial resolution of the images detected by the Sodium Iodide (NaI) detector. The result is recorded in a list-mode file referred to as a PTRAC file within MCNP5. All pertinent nuclear reaction mechanisms, such as Compton and Rayleigh scattering and photoelectric absorption are undertaken by MCNP5 for all materials encountered by each photon. The experiments were conducted on Tl-201, Co-57, Tc-99 m and Cr-51 radio nuclides. The comparison of full width half maximum value of each datasets obtained from experimental work, simulation and literature are also reported in this paper. The relationship of the simulated data is in agreement with the experimental results and data obtained in the literature. A careful inspection at each of the data points of the spatial resolution of Tc-99 m shows a slight discrepancy between these sets. However, the difference is very insignificant, i.e. less than 3 mm only, which corresponds to a size of less than 1 pixel only (of the segmented detector).

  4. POCI: A compact high resolution {gamma} camera for intra-operative surgical use

    SciTech Connect

    Menard, L.; Charon, Y.; Solal, M.; Laniece, P.; Mastrippolito, R.; Pinot, L.; Ploux, L.; Valentin, L. |; Ricard, M.

    1998-06-01

    The development of a hand-held {gamma} imaging probe for inside body localization of small tumors is of first interest for radio-guided operative cancer surgery. In that context, the authors have developed a sub-millimeter spatial resolution, small field of view, {gamma} per-operative compact imager (POCI). It consists of a head module composed of a high resolution tungsten collimator and a YAP:Ce crystal plate, optically coupled to an intensified position sensitive diode (IPSD). The authors report here the essential imaging performance characteristics of the POCI camera (spatial resolution, position linearity, efficiency and energy response). These were obtained by studying the influence of the collimator and the crystal design to evaluate the optimal configuration. The present version of POCI has a 24 mm diameter usable field of view and an intrinsic spatial resolution of 0.9 mm to 1.2 mm FWHM at 120 keV. These good detection performance characteristics combined with the small size of the camera make the device well suited to provide intra-operative monitoring in several medical procedures, such as thyroid and breast tumor removal.

  5. A new design for a high resolution, high efficiency CZT gamma camera detector

    NASA Astrophysics Data System (ADS)

    Mestais, C.; Baffert, N.; Bonnefoy, J. P.; Chapuis, A.; Koenig, A.; Monnet, O.; Ouvrier Buffet, P.; Rostaing, J. P.; Sauvage, F.; Verger, L.

    2001-02-01

    We have designed a CZT gamma camera detector that provides an array of CZT pixels and associated front-end electronics - including an ASIC - and permits gamma camera measurements using the method patented by CEA-LETI and reported by Verger et al. [1]. Electron response in each CZT pixel is registered by correcting pulse height for position of interaction based on fast rise-time information. This method brings advantages of high scatter rejection while allowing high detection efficiency. These techniques and the systems approach have been developed at CEA-LETI in an exclusive joint development with BICRON and CRISMATEC who in turn are commercializing the technology. The initial system is implemented in an array framework with 1920 pixels, approximately 180×215 mm 2 in dimension, but the system architecture expands readily to 4096 pixels, and these arrays can be ganged into groups of up to 8 for pixel planes totaling over 32 000 pixels without architecture changes. The overall system design is described and brain phantom images are presented that were obtained by scanning with a small number of pixels.

  6. SiPM arrays and miniaturized readout electronics for compact gamma camera

    NASA Astrophysics Data System (ADS)

    Dinu, N.; Imando, T. Ait; Nagai, A.; Pinot, L.; Puill, V.; Callier, S.; Janvier, B.; Esnault, C.; Verdier, M.-A.; Raux, L.; Vandenbussche, V.; Charon, Y.; Menard, L.

    2015-07-01

    This article reports on the design and features of a very compact and light gamma camera based on SiPM arrays and miniaturized readout electronics dedicated to tumor localization during radio-guided cancer surgery. This gamma camera, called MAGICS, is composed of four (2×2) photo-detection elementary modules coupled to an inorganic scintillator. The 256 channels photo-detection system covers a sensitive area of 54×53 m2. Each elementary module is based on four (2×2) SiPM monolithic arrays, each array consisting of 16 SiPM photo-sensors (4×4) with 3×3 mm2 sensitive area, coupled to a miniaturized readout electronics and a dedicated ASIC. The overall dimensions of the electronics fit the size of the detector, enabling to assemble side-by-side several elementary modules in a close-packed arrangement. The preliminary performances of the system are very encouraging, showing an energy resolution of 9.8% and a spatial resolution of less than 1 mm at 122 keV.

  7. A novel compact small field of view hybrid gamma camera: first clinical results.

    PubMed

    Ng, Aik H; Blackshaw, Patricia E; Alqahtani, Mohammed S; Jambi, Layal K; Bugby, Sarah L; Lees, John E; Perkins, Alan C

    2017-09-01

    Hybrid imaging has proven to be a major innovation in nuclear medicine, allowing the fusion of functional information with anatomical detail. In the past, the use of hybrid imaging such as PET-CT, PET-MRI and SPECT-CT has been of great clinical benefit; however, these scanners are relatively large and bulky. We have developed and investigated the clinical application of a compact small field of view hybrid gamma camera (HGC) that is suitable for small-organ imaging at the patient bedside. The HGC - consisting of a CsI(Tl) scintillation crystal coupled to an electron-multiplying charge-coupled device and an optical camera - was used in this study. Eligible patients attending the nuclear medicine clinic at Queen's Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham, UK, were invited to take part in this study. Following the standard injection of either a Tc-labelled or I-labelled radiopharmaceutical, images of the patient were acquired using the HGC and presented in a fused optical-gamma display. There were 24 patients enrolled in the study (age range between 30 and 83 years, mean: 58.6 years), images of 18 of whom were successfully acquired. These included patients who were undergoing bone, thyroid, lacrimal drainage, DaTscan and lymphatic imaging. In general, the small field of view system was well suited to small-organ imaging. The uptake could be clearly seen in relation to the patient surface anatomy and showed particular promise for lymphatic, thyroid and lacrimal drainage studies. This pilot study has demonstrated the first clinical results of hybrid optical-gamma imaging in patients. The use of this system has raised new possibilities for small-organ imaging, in which the localization of radiopharmaceutical uptake can be presented in an anatomical context using optical imaging. The compact nature of the hybrid system offers the potential for bedside investigations and intraoperative use.

  8. Method of Calibrating Response Statistics for ML Estimation of 3D Interaction Position in a Thick-Detector Gamma Camera

    PubMed Central

    Hunter, William C. J.; Barrett, Harrison H.; Furenlid, Lars R.; Moore, Stephen K.

    2015-01-01

    High-energy photon detectors are often made thick in order to improve their photon-detection efficiency. To avoid issues of parallax and increased signal variance that result from random interaction depth, we must determine the 3D interaction position in the imaging detector. With this goal in mind, we examine a method of calibrating response statistics of a thick-detector gamma camera to produce a maximum- likelihood estimate of 3D interaction position. We parameterize the mean detector response as a function of 3D position and estimate the parameters by maximizing their likelihood given prior knowledge of the pathlength distribution and a complete list of camera signals for an ensemble of gamma-ray interactions. Demonstrating this calibration method with simulated gamma-camera data, we show that the resulting calibration is accurate and can be used to produce unbiased estimates of 3D interaction position. PMID:26617458

  9. Trapezoidal-shaped detector to reduce edge effects in small gamma camera

    NASA Astrophysics Data System (ADS)

    Chung, Yong Hyun; Hwang, Ji Yeon; Baek, Cheol-Ha; An, Su Jung; Kim, Hyun-Il; Kim, Kwang Hyun

    2011-08-01

    In recent years, there has been a growing interest in compact and high resolution small gamma cameras for the early detection of breast cancer and thyroid diseases. We proposed a new detector consisting of a trapezoidal-shaped crystal and a position-sensitive photomultiplier tube (PSPMT) to reduce the edge effect. In this study, the imaging performance of the proposed detector was evaluated by DETECT2000 simulation. Trapezoidal-shaped NaI(Tl) and CsI(Tl) crystals were modeled and the 2-dimensional event positions were calculated using Anger-logic. 99mTc (140 keV) and 131I (364 keV) gamma rays were generated on evenly spaced points with 3.0 mm spacing in the X-Y plane starting 1.0 mm away from the corner surface and 10,000 gamma events were simulated at each location. The simulated results demonstrated that all the 99mTc and 131I point sources were clearly identified in the NaI(Tl) crystal. CsI(Tl) crystal could image 131I sources without edge effect but did not distinguish 99mTc points at the periphery region due to low light yield. In conclusion, our new detector with an enlarged FOV without increasing crystal size could be a useful tool in breast as well as thyroid imaging.

  10. A novel Compton camera design featuring a rear-panel shield for substantial noise reduction in gamma-ray images

    NASA Astrophysics Data System (ADS)

    Nishiyama, T.; Kataoka, J.; Kishimoto, A.; Fujita, T.; Iwamoto, Y.; Taya, T.; Ohsuka, S.; Nakamura, S.; Hirayanagi, M.; Sakurai, N.; Adachi, S.; Uchiyama, T.

    2014-12-01

    After the Japanese nuclear disaster in 2011, large amounts of radioactive isotopes were released and still remain a serious problem in Japan. Consequently, various gamma cameras are being developed to help identify radiation hotspots and ensure effective decontamination operation. The Compton camera utilizes the kinematics of Compton scattering to contract images without using a mechanical collimator, and features a wide field of view. For instance, we have developed a novel Compton camera that features a small size (13 × 14 × 15 cm3) and light weight (1.9 kg), but which also achieves high sensitivity thanks to Ce:GAGG scintillators optically coupled wiith MPPC arrays. By definition, in such a Compton camera, gamma rays are expected to scatter in the ``scatterer'' and then be fully absorbed in the ``absorber'' (in what is called a forward-scattered event). However, high energy gamma rays often interact with the detector in the opposite direction - initially scattered in the absorber and then absorbed in the scatterer - in what is called a ``back-scattered'' event. Any contamination of such back-scattered events is known to substantially degrade the quality of gamma-ray images, but determining the order of gamma-ray interaction based solely on energy deposits in the scatterer and absorber is quite difficult. For this reason, we propose a novel yet simple Compton camera design that includes a rear-panel shield (a few mm thick) consisting of W or Pb located just behind the scatterer. Since the energy of scattered gamma rays in back-scattered events is much lower than that in forward-scattered events, we can effectively discriminate and reduce back-scattered events to improve the signal-to-noise ratio in the images. This paper presents our detailed optimization of the rear-panel shield using Geant4 simulation, and describes a demonstration test using our Compton camera.

  11. A Compton scatter camera for spectral imaging of 0.5 to 3.0 MeV gamma rays

    SciTech Connect

    Martin, Jeffrey Basil

    1994-01-01

    A prototype Compton scatter camera for imaging gamma rays has been built and tested. This camera addresses unique aspects of gamma-ray imaging at nuclear industrial sites, including gamma-ray energies in the 0.5 to 3.0 MeV range and polychromatic fields. Analytic models of camera efficiency, resolution and contaminating events are developed. The response of the camera bears strong similarity to emission computed tomography devices used in nuclear medicine. A direct Fourier based algorithm is developed to reconstruct two-dimensional images of measured gamma-ray fields. Iterative ART and MLE algorithms are also investigated. The point response of the camera to gamma rays of energies from 0.5 to 2.8 MeV is measured and compared to the analytic models. The direct reconstruction algorithm is at least ten times more efficient than the iterative algorithms are also investigated. The point response of the camera to gamma rays energies from 0.5 to 2.8 MeV is measured and compared to the analytic models. The direct reconstruction algorithm is at least ten times more efficient than the iterative algorithms and produces images that are, in general, of the same quality. Measured images of several phantoms are shown. Important results include angular resolutions as low as 4.4{degrees}, reproduction of phantom size and position within 7%, and contrast recovery of 84% or better. Spectral imaging is demonstrated with independent images from a multi-energy phantom consisting of two sources imaged simultaneously.

  12. First demonstration of real-time gamma imaging by using a handheld Compton camera for particle therapy

    NASA Astrophysics Data System (ADS)

    Taya, T.; Kataoka, J.; Kishimoto, A.; Iwamoto, Y.; Koide, A.; Nishio, T.; Kabuki, S.; Inaniwa, T.

    2016-09-01

    The use of real-time gamma imaging for cancer treatment in particle therapy is expected to improve the accuracy of the treatment beam delivery. In this study, we demonstrated the imaging of gamma rays generated by the nuclear interactions during proton irradiation, using a handheld Compton camera (14 cm×15 cm×16 cm, 2.5 kg) based on scintillation detectors. The angular resolution of this Compton camera is ∼8° at full width at half maximum (FWHM) for a 137Cs source. We measured the energy spectra of the gamma rays using a LaBr3(Ce) scintillator and photomultiplier tube, and using the handheld Compton camera, performed image reconstruction when using a 70 MeV proton beam to irradiate a water, Ca(OH)2, and polymethyl methacrylate (PMMA) phantom. In the energy spectra of all three phantoms, we found an obvious peak at 511 keV, which was derived from annihilation gamma rays, and in the energy spectrum of the PMMA phantom, we found another peak at 718 keV, which contains some of the prompt gamma rays produced from 10B. Therefore, we evaluated the peak positions of the projection from the reconstructed images of the PMMA phantom. The differences between the peak positions and the Bragg peak position calculated using simulation are 7 mm±2 mm and 3 mm±8 mm, respectively. Although we could quickly acquire online gamma imaging of both of the energy ranges during proton irradiation, we cannot arrive at a clear conclusion that prompt gamma rays sufficiently trace the Bragg peak from these results because of the uncertainty given by the spatial resolution of the Compton camera. We will develop a high-resolution Compton camera in the near future for further study.

  13. Imaging of radiocesium uptake dynamics in a plant body by using a newly developed high-resolution gamma camera.

    PubMed

    Kawachi, Naoki; Yin, Yong-Gen; Suzui, Nobuo; Ishii, Satomi; Yoshihara, Toshihiro; Watabe, Hiroshi; Yamamoto, Seiichi; Fujimaki, Shu

    2016-01-01

    We developed a new gamma camera specifically for plant nutritional research and successfully performed live imaging of the uptake and partitioning of (137)Cs in intact plants. The gamma camera was specially designed for high-energy gamma photons from (137)Cs (662 keV). To obtain reliable images, a pinhole collimator made of tungsten heavy alloy was used to reduce penetration and scattering of gamma photons. A single-crystal scintillator, Ce-doped Gd3Al2Ga3O12, with high sensitivity, no natural radioactivity, and no hygroscopicity was used. The array block of the scintillator was coupled to a high-quantum efficiency position sensitive photomultiplier tube to obtain accurate images. The completed gamma camera had a sensitivity of 0.83 count s(-1) MBq(-1) for (137)Cs with an energy window from 600 keV to 730 keV, and a spatial resolution of 23.5 mm. We used this gamma camera to study soybean plants that were hydroponically grown and fed with 2.0 MBq of (137)Cs for 6 days to visualize and investigate the transport dynamics in aerial plant parts. (137)Cs gradually appeared in the shoot several hours after feeding, and then accumulated preferentially and intensively in growing pods and seeds; very little accumulation was observed in mature leaves. Our results also suggested that this gamma-camera method may serve as a practical analyzing tool for breeding crops and improving cultivation techniques resulting in low accumulation of radiocesium into the consumable parts of plants.

  14. Test of Compton camera components for prompt gamma imaging at the ELBE bremsstrahlung beam

    NASA Astrophysics Data System (ADS)

    Hueso-González, F.; Golnik, C.; Berthel, M.; Dreyer, A.; Enghardt, W.; Fiedler, F.; Heidel, K.; Kormoll, T.; Rohling, H.; Schöne, S.; Schwengner, R.; Wagner, A.; Pausch, G.

    2014-05-01

    In the context of ion beam therapy, particle range verification is a major challenge for the quality assurance of the treatment. One approach is the measurement of the prompt gamma rays resulting from the tissue irradiation. A Compton camera based on several position sensitive gamma ray detectors, together with an imaging algorithm, is expected to reconstruct the prompt gamma ray emission density map, which is correlated with the dose distribution. At OncoRay and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), a Compton camera setup is being developed consisting of two scatter planes: two CdZnTe (CZT) cross strip detectors, and an absorber consisting of one Lu2SiO5 (LSO) block detector. The data acquisition is based on VME electronics and handled by software developed on the ROOT framework. The setup has been tested at the linear electron accelerator ELBE at HZDR, which is used in this experiment to produce bunched bremsstrahlung photons with up to 12.5 MeV energy and a repetition rate of 13 MHz. Their spectrum has similarities with the shape expected from prompt gamma rays in the clinical environment, and the flux is also bunched with the accelerator frequency. The charge sharing effect of the CZT detector is studied qualitatively for different energy ranges. The LSO detector pixel discrimination resolution is analyzed and it shows a trend to improve for high energy depositions. The time correlation between the pulsed prompt photons and the measured detector signals, to be used for background suppression, exhibits a time resolution of 3 ns FWHM for the CZT detector and of 2 ns for the LSO detector. A time walk correction and pixel-wise calibration is applied for the LSO detector, whose resolution improves up to 630 ps. In conclusion, the detector setup is suitable for time-resolved background suppression in pulsed clinical particle accelerators. Ongoing tasks are the quantitative comparison with simulations and the test of imaging algorithms. Experiments at proton

  15. Development and characterization of a round hand-held silicon photomultiplier based gamma camera for intraoperative imaging

    PubMed Central

    Popovic, Kosta; McKisson, Jack E.; Kross, Brian; Lee, Seungjoon; McKisson, John; Weisenberger, Andrew G.; Proffitt, James; Stolin, Alexander; Majewski, Stan; Williams, Mark B.

    2017-01-01

    This paper describes the development of a hand-held gamma camera for intraoperative surgical guidance that is based on silicon photomultiplier (SiPM) technology. The camera incorporates a cerium doped lanthanum bromide (LaBr3:Ce) plate scintillator, an array of 80 SiPM photodetectors and a two-layer parallel-hole collimator. The field of view is circular with a 60 mm diameter. The disk-shaped camera housing is 75 mm in diameter, approximately 40.5 mm thick and has a mass of only 1.4 kg, permitting either hand-held or arm-mounted use. All camera components are integrated on a mobile cart that allows easy transport. The camera was developed for use in surgical procedures including determination of the location and extent of primary carcinomas, detection of secondary lesions and sentinel lymph node biopsy (SLNB). Here we describe the camera design and its principal operating characteristics, including spatial resolution, energy resolution, sensitivity uniformity, and geometric linearity. The gamma camera has an intrinsic spatial resolution of 4.2 mm FWHM, an energy resolution of 21.1 % FWHM at 140 keV, and a sensitivity of 481 and 73 cps/MBq when using the single- and double-layer collimators, respectively. PMID:28286345

  16. Development and Characterization of a Round Hand-Held Silicon Photomultiplier Based Gamma Camera for Intraoperative Imaging

    NASA Astrophysics Data System (ADS)

    Popovic, Kosta; McKisson, Jack E.; Kross, Brian; Lee, Seungjoon; McKisson, John; Weisenberger, Andrew G.; Proffitt, James; Stolin, Alexander; Majewski, Stan; Williams, Mark B.

    2014-06-01

    This paper describes the development of a hand-held gamma camera for intraoperative surgical guidance that is based on silicon photomultiplier (SiPM) technology. The camera incorporates a cerium doped lanthanum bromide ( LaBr3:Ce) plate scintillator, an array of 80 SiPM photodetectors and a two-layer parallel-hole collimator. The field of view is circular with a 60 mm diameter. The disk-shaped camera housing is 75 mm in diameter, approximately 40.5 mm thick and has a mass of only 1.4 kg, permitting either hand-held or arm-mounted use. All camera components are integrated on a mobile cart that allows easy transport. The camera was developed for use in surgical procedures, including determination of the location and extent of primary carcinomas, detection of secondary lesions, and sentinel lymph node biopsy (SLNB). Here, we describe the camera design and its principal operating characteristics, including spatial resolution, energy resolution, sensitivity uniformity, and geometric linearity. The gamma camera has an intrinsic spatial resolution of 4.2 mm FWHM, an energy resolution of 21.1% FWHM at 140 keV, and a sensitivity of 481 and 73 cps/MBq when using the single- and double-layer collimators, respectively.

  17. Development and characterization of a round hand-held silicon photomultiplier based gamma camera for intraoperative imaging.

    PubMed

    Popovic, Kosta; McKisson, Jack E; Kross, Brian; Lee, Seungjoon; McKisson, John; Weisenberger, Andrew G; Proffitt, James; Stolin, Alexander; Majewski, Stan; Williams, Mark B

    2014-05-01

    This paper describes the development of a hand-held gamma camera for intraoperative surgical guidance that is based on silicon photomultiplier (SiPM) technology. The camera incorporates a cerium doped lanthanum bromide (LaBr3:Ce) plate scintillator, an array of 80 SiPM photodetectors and a two-layer parallel-hole collimator. The field of view is circular with a 60 mm diameter. The disk-shaped camera housing is 75 mm in diameter, approximately 40.5 mm thick and has a mass of only 1.4 kg, permitting either hand-held or arm-mounted use. All camera components are integrated on a mobile cart that allows easy transport. The camera was developed for use in surgical procedures including determination of the location and extent of primary carcinomas, detection of secondary lesions and sentinel lymph node biopsy (SLNB). Here we describe the camera design and its principal operating characteristics, including spatial resolution, energy resolution, sensitivity uniformity, and geometric linearity. The gamma camera has an intrinsic spatial resolution of 4.2 mm FWHM, an energy resolution of 21.1 % FWHM at 140 keV, and a sensitivity of 481 and 73 cps/MBq when using the single- and double-layer collimators, respectively.

  18. Regional cerebral blood flow utilizing the gamma camera and xenon inhalation: reproducibility and clinical applications

    SciTech Connect

    Fox, R.A.; Knuckey, N.W.; Fleay, R.F.; Stokes, B.A.; Van der Schaaf, A.; Surveyor, I.

    1985-11-01

    A modified collimator and standard gamma camera have been used to measure regional cerebral blood flow following inhalation of radioactive xenon. The collimator and a simplified analysis technique enables excellent statistical accuracy to be achieved with acceptable precision in the measurement of grey matter blood flow. The validity of the analysis was supported by computer modelling and patient measurements. Sixty-one patients with subarachnoid hemorrhage, cerebrovascular disease or dementia were retested to determine the reproducibility of our method. The measured coefficient of variation was 6.5%. Of forty-six patients who had a proven subarachnoid hemorrhage, 15 subsequently developed cerebral ischaemia. These showed a CBF of 42 +/- 6 ml X minute-1 X 100 g brain-1 compared with 49 +/- 11 ml X minute-1 X 100 g brain-1 for the remainder. There is evidence that decreasing blood flow and low initial flow correlate with the subsequent onset of cerebral ischemia.

  19. 3D position of radiation sources using an automated gamma camera and ML algorithm with energy-dependent response functions

    NASA Astrophysics Data System (ADS)

    Lee, Wonho; Wehe, David

    2004-09-01

    Portable γ-ray imaging systems operating from 100keV to 3MeV are used in nuclear medicine, astrophysics and industrial applications. 2D images of γ-rays are common in many fields using radiation-detection systems (Appl. Opt. 17 (3) (1978) 337; IEEE Trans. Nucl. Sci. Ns- 31 (1984) 771; IEEE Trans. Nucl. Sci. NS- 44 (3) (1997) 911). In this work, the 3D position of a radiation source is determined by a portable gamma-ray imaging system. 2D gamma-ray images were obtained from different positions of the gamma camera and the third dimension, the distance between the detector and the radiation source, was calculated using triangulation. The imaging system consists of a 4×4 array of CsI(Tl) detectors coupled to photodiode detectors that are mounted on an automated table which can precisely position the angular axis of the camera. Lead shields the detector array from the background radiation. Additionally, a CCD camera is attached to the top of the gamma camera and provides coincident 2D visual information. The inferred distances from the center of the two measurement points and a radiation source had less than a 3% error within a range of 3m. The radiation image from the gamma camera and the visual image from CCD camera are superimposed into one combined image using a maximum-likelihood (ML) algorithm to make the image more precise. The response functions for the ML algorithm depend on the energy of incident radiation, and are obtained from both experiments and simulations. The energy-dependent response functions are shown to yield better imaging performance compared with the fixed energy response function commonly used previously.

  20. Maximum-likelihood scintillation detection for EM-CCD based gamma cameras.

    PubMed

    Korevaar, Marc A N; Goorden, Marlies C; Heemskerk, Jan W T; Beekman, Freek J

    2011-08-07

    Gamma cameras based on charge-coupled devices (CCDs) coupled to continuous scintillation crystals can combine a good detection efficiency with high spatial resolutions with the aid of advanced scintillation detection algorithms. A previously developed analytical multi-scale algorithm (MSA) models the depth-dependent light distribution but does not take statistics into account. Here we present and validate a novel statistical maximum-likelihood algorithm (MLA) that combines a realistic light distribution model with an experimentally validated statistical model. The MLA was tested for an electron multiplying CCD optically coupled to CsI(Tl) scintillators of different thicknesses. For (99m)Tc imaging, the spatial resolution (for perpendicular and oblique incidence), energy resolution and signal-to-background counts ratio (SBR) obtained with the MLA were compared with those of the MSA. Compared to the MSA, the MLA improves the energy resolution by more than a factor of 1.6 and the SBR is enhanced by more than a factor of 1.3. For oblique incidence (approximately 45°), the depth-of-interaction corrected spatial resolution is improved by a factor of at least 1.1, while for perpendicular incidence the MLA resolution does not consistently differ significantly from the MSA result for all tested scintillator thicknesses. For the thickest scintillator (3 mm, interaction probability 66% at 141 keV) a spatial resolution (perpendicular incidence) of 147 µm full width at half maximum (FWHM) was obtained with an energy resolution of 35.2% FWHM. These results of the MLA were achieved without prior calibration of scintillations as is needed for many statistical scintillation detection algorithms. We conclude that the MLA significantly improves the gamma camera performance compared to the MSA.

  1. Temperature dependent operation of PSAPD-based compact gamma camera for SPECT imaging

    PubMed Central

    Kim, Sangtaek; McClish, Mickel; Alhassen, Fares; Seo, Youngho; Shah, Kanai S.; Gould, Robert G.

    2011-01-01

    We investigated the dependence of image quality on the temperature of a position sensitive avalanche photodiode (PSAPD)-based small animal single photon emission computed tomography (SPECT) gamma camera with a CsI:Tl scintillator. Currently, nitrogen gas cooling is preferred to operate PSAPDs in order to minimize the dark current shot noise. Being able to operate a PSAPD at a relatively high temperature (e.g., 5 °C) would allow a more compact and simple cooling system for the PSAPD. In our investigation, the temperature of the PSAPD was controlled by varying the flow of cold nitrogen gas through the PSAPD module and varied from −40 °C to 20 °C. Three experiments were performed to demonstrate the performance variation over this temperature range. The point spread function (PSF) of the gamma camera was measured at various temperatures, showing variation of full-width-half-maximum (FWHM) of the PSF. In addition, a 99mTc-pertechnetate (140 keV) flood source was imaged and the visibility of the scintillator segmentation (16×16 array, 8 mm × 8 mm area, 400 μm pixel size) at different temperatures was evaluated. Comparison of image quality was made at −25 °C and 5 °C using a mouse heart phantom filled with an aqueous solution of 99mTc-pertechnetate and imaged using a 0.5 mm pinhole collimator made of tungsten. The reconstructed image quality of the mouse heart phantom at 5 °C degraded in comparision to the reconstructed image quality at −25 °C. However, the defect and structure of the mouse heart phantom were clearly observed, showing the feasibility of operating PSAPDs for SPECT imaging at 5 °C, a temperature that would not need the nitrogen cooling. All PSAPD evaluations were conducted with an applied bias voltage that allowed the highest gain at a given temperature. PMID:24465051

  2. Adapting clinical gamma cameras for body monitoring in the event of a large-scale radiological incident.

    PubMed

    Scuffham, J W; Yip-Braidley, M; Shutt, A L; Hinton, P J; Nisbet, A; Bradley, D A

    2016-06-06

    After a release of radionuclides, accidental or otherwise, there will be an urgent need to identify members of the general public who have received a significant intake of radioactive material, sufficient to require medical treatment or further investigation. A large number of people could be contaminated in such an incident. For gamma-ray emitting radionuclides this screening could be carried out using gamma camera medical imaging systems, such as those that are present in many large UK hospital sites. By making a number of simple reversible changes such as removal of collimators, these cameras could be employed as useful additional screening instruments as well as an aid in contamination control. A study was carried out to investigate which systems were present in sufficient number to offer wide scale coverage of UK population centres. Nine gamma cameras (eight dual head and one single head) were assessed using point source and bottle mannequin (BOMAB) phantom measurements so that a mathematical model could be developed for use with the MCNPX Monte Carlo radiation transport code. The gamma camera models were assessed for practical seated and supine geometries to give calibration factors for a list of target radionuclides that could be released in a radiological incident. The minimum detectable activities (MDAs) that were achieved for a five minute measurement demonstrated that these systems are sufficiently sensitive to be used for screening of the general public and are comparable to other body monitoring facilities. While gamma cameras have on-board software that are designed for imaging and provide for a gamma-ray energy range suitable for radionuclides for diagnostic imaging (such as (99m)Tc), they are not as versatile as custom-built body monitoring systems.

  3. Monte Carlo simulation of breast tumor imaging properties with compact, discrete gamma cameras

    SciTech Connect

    Gruber, G.J.; Moses, W.W.; Derenzo, S.E.

    1999-12-01

    The authors describe Monte Carlo simulation results for breast tumor imaging using a compact, discrete gamma camera. The simulations were designed to analyze and optimize camera design, particularly collimator configuration and detector pixel size. Simulated planar images of 5--15 mm diameter tumors in a phantom patient (including a breast, torso, and heart) were generated for imaging distances of 5--55 mm, pixel sizes of 2 x 2--4 x 4 mm{sup 2}, and hexagonal and square hole collimators with sensitivities from 4,000 to 16,000 counts/mCi/sec. Other factors considered included T/B (tumor-to-background tissue uptake ratio) and detector energy resolution. Image properties were quantified by computing the observed tumor fwhm (full-width at half-maximum) and S/N (sum of detected tumor events divided by the statistical noise). Results suggest that hexagonal and square hole collimators perform comparably, that higher sensitivity collimators provide higher tumor S/N with little increase in the observed tumor fwhm, that smaller pixels only slightly improve tumor fwhm and S/N, and that improved detector energy resolution has little impact on either the observed tumor fwhm or the observed tumor S/N.

  4. Validation of an iterative reconstruction for a mobile tomographic gamma camera system—The Cardiotom

    NASA Astrophysics Data System (ADS)

    Valastyán, I.; Bone, D.; Brodin, L.-Å.; Elmqvist, H.; Lagerlöf, J.; Kerek, A.; Molnár, J.; Novák, D.

    2007-10-01

    The Cardiotom is a mobile gamma camera that uses ectomography, an alternative method of acquisition to SPECT. It is designed for early diagnosis of myocardial and cerebral infarctions in the emergency room. Ectomography is a limited view angle method, using a rotating slant hole collimator and a stationary camera head, to acquire projection images. The aim of this work was to validate a fully 3D ML-EM iterative reconstruction algorithm for the Cardiotom. Validation measurements were performed with 99mTc point sources. Resolution in the reconstructed volume was determined in X, Y, and Z directions from the point spread functions. The results were compared with the values for the formerly used filtered back projection (FBP). The new reconstruction algorithm provides greatly improved depth resolution with respect to the FBP method previously implemented on the Cardiotom. Furthermore, for clinical examinations, images can be available for interpretation within 15 min of the injection, therefore, valuable information can be obtained without delaying treatment of the patient.

  5. LaBr3:Ce small FOV gamma camera with excellent energy resolution for multi-isotope imaging

    NASA Astrophysics Data System (ADS)

    Pani, R.; Fabbri, A.; Cinti, M. N.; Orlandi, C.; Pellegrini, R.; Scafè, R.; Artibani, M.

    2015-06-01

    The simultaneous administration of radiopharmaceuticals labeled with more than one radioisotope is becoming of increasing interest in clinical practice. Because the photon energies of the utilized radioisotopes could be very close (less than 15% difference), a gamma camera with adequate energy resolution is required. The availability of scintillation crystals with high light yield, as lanthanum tri-bromide (LaBr3:Ce), is particularly appealing for these applications. In this work, a new small field of view gamma camera prototype is presented, based on a planar LaBr3:Ce scintillation crystal with surfaces treatment typical of spectrometric devices, in order to enhance energy resolution performances. The crystal has round shape and has been optically coupled with a position sensitive photomultiplier tube with high quantum efficiency. The presented gamma camera shows outstanding energy resolution results in the investigated energy range (32-662 keV). These relevant performances have been obtained through the application of uniformity correction on the raw data, necessary due to the presence of position sensitive phototube, characterized by a spread of anodic gain values. In spite of position linearity degradation at crystal edges, due to reflective treatment of surfaces, intrinsic spatial resolution values are satisfactory on the useful field of view.The characterization of the presented gamma camera, based on a continuous LaBr3:Ce scintillation crystal with reflective surfaces, indicates good performances in multi-isotope imaging due to the excellent energy resolution results, also in comparison with similar detectors.

  6. Small Field of View Scintimammography Gamma Camera Integrated to a Stereotactic Core Biopsy Digital X-ray System

    SciTech Connect

    Andrew Weisenberger; Fernando Barbosa; T. D. Green; R. Hoefer; Cynthia Keppel; Brian Kross; Stanislaw Majewski; Vladimir Popov; Randolph Wojcik

    2002-10-01

    A small field of view gamma camera has been developed for integration with a commercial stereotactic core biopsy system. The goal is to develop and implement a dual-modality imaging system utilizing scintimammography and digital radiography to evaluate the reliability of scintimammography in predicting the malignancy of suspected breast lesions from conventional X-ray mammography. The scintimammography gamma camera is a custom-built mini gamma camera with an active area of 5.3 cm /spl times/ 5.3 cm and is based on a 2 /spl times/ 2 array of Hamamatsu R7600-C8 position-sensitive photomultiplier tubes. The spatial resolution of the gamma camera at the collimator surface is < 4 mm full-width at half-maximum and a sensitivity of /spl sim/ 4000 Hz/mCi. The system is also capable of acquiring dynamic scintimammographic data to allow for dynamic uptake studies. Sample images of preliminary clinical results are presented to demonstrate the performance of the system.

  7. Lymphoscintigraphic imaging study for quantitative evaluation of a small field of view (SFOV) gamma camera

    NASA Astrophysics Data System (ADS)

    Alqahtani, M. S.; Lees, J. E.; Bugby, S. L.; Jambi, L. K.; Perkins, A. C.

    2015-07-01

    The Hybrid Compact Gamma Camera (HCGC) is a portable optical-gamma hybrid imager designed for intraoperative medical imaging, particularly for sentinel lymph node biopsy procedures. To investigate the capability of the HCGC in lymphatic system imaging, two lymphoscintigraphic phantoms have been designed and constructed. These phantoms allowed quantitative assessment and evaluation of the HCGC for lymphatic vessel (LV) and sentinel lymph node (SLN) detection. Fused optical and gamma images showed good alignment of the two modalities allowing localisation of activity within the LV and the SLN. At an imaging distance of 10 cm, the spatial resolution of the HCGC during the detection process of the simulated LV was not degraded at a separation of more than 1.5 cm (variation <5%) from the injection site (IS). Even in the presence of the IS the targeted LV was detectable with an acquisition time of less than 2 minutes. The HCGC could detect SLNs containing different radioactivity concentrations (ranging between 1:20 to 1:100 SLN to IS activity ratios) and under various scattering thicknesses (ranging between 5 mm to 30 mm) with high contrast-to-noise ratio (CNR) values (ranging between 11.6 and 110.8). The HCGC can detect the simulated SLNs at various IS to SLN distances, different IS to SLN activity ratios and through varied scattering medium thicknesses. The HCGC provided an accurate physical localisation of radiopharmaceutical uptake in the simulated SLN. These characteristics of the HCGC reflect its suitability for utilisation in lymphatic vessel drainage imaging and SLN imaging in patients in different critical clinical situations such as interventional and surgical procedures.

  8. Evaluation of a CdTe semiconductor based compact gamma camera for sentinel lymph node imaging

    SciTech Connect

    Russo, Paolo; Curion, Assunta S.; Mettivier, Giovanni; Esposito, Michela; Aurilio, Michela; Caraco, Corradina; Aloj, Luigi; Lastoria, Secondo

    2011-03-15

    Purpose: The authors assembled a prototype compact gamma-ray imaging probe (MediPROBE) for sentinel lymph node (SLN) localization. This probe is based on a semiconductor pixel detector. Its basic performance was assessed in the laboratory and clinically in comparison with a conventional gamma camera. Methods: The room-temperature CdTe pixel detector (1 mm thick) has 256x256 square pixels arranged with a 55 {mu}m pitch (sensitive area 14.08x14.08 mm{sup 2}), coupled pixel-by-pixel via bump-bonding to the Medipix2 photon-counting readout CMOS integrated circuit. The imaging probe is equipped with a set of three interchangeable knife-edge pinhole collimators (0.94, 1.2, or 2.1 mm effective diameter at 140 keV) and its focal distance can be regulated in order to set a given field of view (FOV). A typical FOV of 70 mm at 50 mm skin-to-collimator distance corresponds to a minification factor 1:5. The detector is operated at a single low-energy threshold of about 20 keV. Results: For {sup 99m}Tc, at 50 mm distance, a background-subtracted sensitivity of 6.5x10{sup -3} cps/kBq and a system spatial resolution of 5.5 mm FWHM were obtained for the 0.94 mm pinhole; corresponding values for the 2.1 mm pinhole were 3.3x10{sup -2} cps/kBq and 12.6 mm. The dark count rate was 0.71 cps. Clinical images in three patients with melanoma indicate detection of the SLNs with acquisition times between 60 and 410 s with an injected activity of 26 MBq {sup 99m}Tc and prior localization with standard gamma camera lymphoscintigraphy. Conclusions: The laboratory performance of this imaging probe is limited by the pinhole collimator performance and the necessity of working in minification due to the limited detector size. However, in clinical operative conditions, the CdTe imaging probe was effective in detecting SLNs with adequate resolution and an acceptable sensitivity. Sensitivity is expected to improve with the future availability of a larger CdTe detector permitting operation at shorter

  9. Design and characterization of a low profile NaI(Tl) gamma camera for dedicated molecular breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Polemi, Andrew M.; Niestroy, Justin; Stolin, Alexander; Jaliparthi, Gangadhar; Wojcik, Randy; Majewski, Stan; Williams, Mark B.

    2016-10-01

    A new low profile gamma camera is being developed for use in a dual modality (x-ray transmission and gamma-ray emission) tomosynthesis system. Compared to the system's current gamma camera, the new camera has a larger field of view ( 20x25 cm) to better match the system's x-ray detector ( 23x29 cm), and is thinner (7.3 cm instead of 10.3 cm) permitting easier camera positioning near the top surface of the breast. It contains a pixelated NaI(Tl) array with a crystal pitch of 2.2 mm, which is optically coupled to a 4x5 array of Hamamatsu H8500C position sensitive photomultiplier tubes (PSPMTs). The manufacturer-provided connector board of each PSPMT was replaced with a custom designed board that a) reduces the 64 channel readout of the 8x8 electrode anode of the H8500C to 16 channels (8X and 8Y), b) performs gain non-uniformity correction, and c) reduces the height of the PSPMT-base assembly, 37.7 mm to 27.87 mm. The X and Y outputs of each module are connected in a lattice framework, and at two edges of this lattice, the X and Y outputs (32Y by 40X) are coupled to an amplifier/output board whose signals are fed via shielded ribbon cables to external ADCs. The camera uses parallel hole collimation. We describe the measured camera imaging performance, including intrinsic and extrinsic spatial resolution, detection sensitivity, uniformity of response, energy resolution for 140 keV gamma rays, and geometric linearity.

  10. Design and characterization of a low profile NaI(Tl) gamma camera for dedicated molecular breast tomosynthesis.

    PubMed

    Polemi, Andrew M; Niestroy, Justin; Stolin, Alexander; Jaliparthi, Gangadhar; Wojcik, Randy; Majewski, Stan; Williams, Mark B

    2016-08-28

    A new low profile gamma camera is being developed for use in a dual modality (x-ray transmission and gamma-ray emission) tomosynthesis system. Compared to the system's current gamma camera, the new camera has a larger field of view (~20×25 cm) to better match the system's x-ray detector (~23×29 cm), and is thinner (7.3 cm instead of 10.3 cm) permitting easier camera positioning near the top surface of the breast. It contains a pixelated NaI(Tl) array with a crystal pitch of 2.2 mm, which is optically coupled to a 4×5 array of Hamamatsu H8500C position sensitive photomultiplier tubes (PSPMTs). The manufacturer-provided connector board of each PSPMT was replaced with a custom designed board that a) reduces the 64 channel readout of the 8×8 electrode anode of the H8500C to 16 channels (8X and 8Y), b) performs gain non-uniformity correction, and c) reduces the height of the PSPMT-base assembly, 37.7 mm to 27.87 mm. The X and Y outputs of each module are connected in a lattice framework, and at two edges of this lattice, the X and Y outputs (32Y by 40X) are coupled to an amplifier/output board whose signals are fed via shielded ribbon cables to external ADCs. The camera uses parallel hole collimation. We describe the measured camera imaging performance, including intrinsic and extrinsic spatial resolution, detection sensitivity, uniformity of response, energy resolution for 140 keV gamma rays, and geometric linearity.

  11. Performance of the prototype LaBr{sub 3} spectrometer developed for the JET gamma-ray camera upgrade

    SciTech Connect

    Rigamonti, D. Nocente, M.; Gorini, G.; Muraro, A.; Giacomelli, L.; Cippo, E. P.; Tardocchi, M.; Perseo, V.; Boltruczyk, G.; Gosk, M.; Korolczuk, S.; Mianowski, S.; Zychor, I.; Fernandes, A.; Pereira, R. C.; Figueiredo, J.; Kiptily, V.; Murari, A.; Collaboration: EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB

    2016-11-15

    In this work, we describe the solution developed by the gamma ray camera upgrade enhancement project to improve the spectroscopic properties of the existing JET γ-ray camera. Aim of the project is to enable gamma-ray spectroscopy in JET deuterium-tritium plasmas. A dedicated pilot spectrometer based on a LaBr{sub 3} crystal coupled to a silicon photo-multiplier has been developed. A proper pole zero cancellation network able to shorten the output signal to a length of 120 ns has been implemented allowing for spectroscopy at MHz count rates. The system has been characterized in the laboratory and shows an energy resolution of 5.5% at E{sub γ} = 0.662 MeV, which extrapolates favorably in the energy range of interest for gamma-ray emission from fast ions in fusion plasmas.

  12. Performance of the prototype LaBr3 spectrometer developed for the JET gamma-ray camera upgrade

    NASA Astrophysics Data System (ADS)

    Rigamonti, D.; Muraro, A.; Nocente, M.; Perseo, V.; Boltruczyk, G.; Fernandes, A.; Figueiredo, J.; Giacomelli, L.; Gorini, G.; Gosk, M.; Kiptily, V.; Korolczuk, S.; Mianowski, S.; Murari, A.; Pereira, R. C.; Cippo, E. P.; Zychor, I.; Tardocchi, M.

    2016-11-01

    In this work, we describe the solution developed by the gamma ray camera upgrade enhancement project to improve the spectroscopic properties of the existing JET γ-ray camera. Aim of the project is to enable gamma-ray spectroscopy in JET deuterium-tritium plasmas. A dedicated pilot spectrometer based on a LaBr3 crystal coupled to a silicon photo-multiplier has been developed. A proper pole zero cancellation network able to shorten the output signal to a length of 120 ns has been implemented allowing for spectroscopy at MHz count rates. The system has been characterized in the laboratory and shows an energy resolution of 5.5% at Eγ = 0.662 MeV, which extrapolates favorably in the energy range of interest for gamma-ray emission from fast ions in fusion plasmas.

  13. Clinical applications of a pressurized xenon wire chamber gamma camera utilizing the short lived agent 178Ta

    NASA Astrophysics Data System (ADS)

    Lacy, J. L.; Verani, M. S.; Ball, M. E.; Roberts, R.

    1988-06-01

    A pressurized xenon wire chamber camera has been developed for applications in nuclear medicine. The device employs a high speed delay-line readout and digital processing system providing a peak count rate of 850 000 cps, spatial resolution of 2.5 mm and highly uniform imaging characteristics. A short-lived generator produced radionuclide, 178Ta, having an emission energy of 55-65 keV has also been developed. It provides greatly reduced radiation dosimetry compared with any commercial isotope in current use and is imaged very effectively with the wire chamber camera. Performance of this camera and isotope for first-pass radionuclide assessment of cardiac function compares favorably with the accepted standard of this technique, the multicrystal gamma camera and 99mTc. Currently ongoing studies in exercise cardiac assessment, bedside imaging in myocardial infarction patients and pediatric cardiac imaging, point the way to unique applications of this technology in cardiology.

  14. A performance study of an electron-tracking Compton camera with a compact system for environmental gamma-ray observation

    NASA Astrophysics Data System (ADS)

    Mizumoto, T.; Tomono, D.; Takada, A.; Tanimori, T.; Komura, S.; Kubo, H.; Matsuoka, Y.; Mizumura, Y.; Nakamura, K.; Nakamura, S.; Oda, M.; Parker, J. D.; Sawano, T.; Bando, N.; Nabetani, A.

    2015-06-01

    An electron-tracking Compton camera (ETCC) is a detector that can determine the arrival direction and energy of incident sub-MeV/MeV gamma-ray events on an event-by-event basis. It is a hybrid detector consisting of a gaseous time projection chamber (TPC), that is the Compton-scattering target and the tracker of recoil electrons, and a position-sensitive scintillation camera that absorbs of the scattered gamma rays, to measure gamma rays in the environment from contaminated soil. To measure of environmental gamma rays from soil contaminated with radioactive cesium (Cs), we developed a portable battery-powered ETCC system with a compact readout circuit and data-acquisition system for the SMILE-II experiment [1,2]. We checked the gamma-ray imaging ability and ETCC performance in the laboratory by using several gamma-ray point sources. The performance test indicates that the field of view (FoV) of the detector is about 1 sr and that the detection efficiency and angular resolution for 662 keV gamma rays from the center of the FoV is (9.31 ± 0.95) × 10-5 and 5.9° ± 0.6°, respectively. Furthermore, the ETCC can detect 0.15 μSv/h from a 137Cs gamma-ray source with a significance of 5σ in 13 min in the laboratory. In this paper, we report the specifications of the ETCC and the results of the performance tests. Furthermore, we discuss its potential use for environmental gamma-ray measurements.

  15. Radioisotope guided surgery with imaging probe, a hand-held high-resolution gamma camera

    NASA Astrophysics Data System (ADS)

    Soluri, A.; Trotta, C.; Scopinaro, F.; Tofani, A.; D'Alessandria, C.; Pasta, V.; Stella, S.; Massari, R.

    2007-12-01

    Since 1997, our group of Physics together with Nuclear Physicians studies imaging probes (IP), hand-held, high-resolution gamma cameras for radio-guided surgery (RGS). Present work is aimed to verify the usefulness of two updated IP in different surgical operations. Forty patients scheduled for breast cancer sentinel node (SN) biopsy, five patients with nodal recurrence of thyroid cancer, seven patients with parathyroid adenomas, five patients with neuroendocrine tumours (NET), were operated under the guide of IP. We used two different IP with field of view of 1 and 4 in. 2, respectively and intrinsic spatial resolution of about 2 mm. Radioisotopes were 99mTc, 123I and 111In. The 1 in. 2 IP detected SN in all the 40 patients and more than one node in 24, whereas anger camera (AC) failed locating SN in four patients and detected true positive second nodes in only nine patients. The 4 in. 2 IP was used for RGS of thyroid, parathyroid and NETs. It detected eight latero-cervical nodes. In the same patients, AC detected five invaded nodes. Parathyroid adenomas detected by IP were 10 in 7 patients, NET five in five patients. One and 4 in. 2 IPs showed usefulness in all operations. Initial studies on SN biopsy were carried out on small series of patients to validate IP and to demonstrate the effectiveness and usefulness of IP alone or against conventional probes. We propose the use of the IP as control method for legal documentation and surgeon strategy guide before and after lesion(s) removal.

  16. A prototype small CdTe gamma camera for radioguided surgery and other imaging applications.

    PubMed

    Tsuchimochi, Makoto; Sakahara, Harumi; Hayama, Kazuhide; Funaki, Minoru; Ohno, Ryoichi; Shirahata, Takashi; Orskaug, Terje; Maehlum, Gunnar; Yoshioka, Koki; Nygard, Einar

    2003-12-01

    Gamma probes have been used for sentinel lymph node biopsy in melanoma and breast cancer. However, these probes can provide only radioactivity counts and variable pitch audio output based on the intensity of the detected radioactivity. We have developed a small semiconductor gamma camera (SSGC) that allows visualisation of the size, shape and location of the target tissues. This study is designed to characterise the performance of the SSGC for radioguided surgery of metastatic lesions and for other imaging applications amenable to the smaller format of this prototype imaging system. The detector head had 32 cadmium telluride semiconductor arrays with a total of 1,024 pixels, and with application-specific integrated circuits (ASICs) and a tungsten collimator. The entire assembly was encased in a lead housing measuring 152 mmx166 mmx65 mm. The effective visual field was 44.8 mmx44.8 mm. The energy resolution and imaging aspects were tested. Two spherical 5-mm- and 15-mm-diameter technetium-99m radioactive sources that had activities of 0.15 MBq and 100 MBq, respectively, were used to simulate a sentinel lymph node and an injection site. The relative detectability of these foci by the new detector and a conventional scintillation camera was studied. The prototype was also examined in a variety of clinical applications. Energy resolution [full-width at half-maximum (FWHM)] for a single element at the centre of the field of view was 4.2% at 140 keV (99mTc), and the mean energy resolution of the CdTe detector arrays was approximately 7.8%. The spatial resolution, represented by FWHM, had a mean value of 1.56 +/- 0.05 mm. Simulated node foci could be visualised clearly by the SSGC using a 15-s acquisition time. In preliminary clinical tests, the SSGC successfully imaged diseases in a variety of tissues, including salivary and thyroid glands, temporomandibular joints and sentinel lymph nodes. The SSGC has significant potential for diagnosing diseases and facilitating

  17. Characterization of a small CsI(Na)-WSF-SiPM gamma camera prototype using 99mTc

    NASA Astrophysics Data System (ADS)

    Castro, I. F.; Soares, A. J.; Moutinho, L. M.; Ferreira, M. A.; Ferreira, R.; Combo, A.; Muchacho, F.; Veloso, J. F. C. A.

    2013-03-01

    A small field of view gamma camera is being developed, aiming for applications in scintimammography, sentinel lymph node detection or small animal imaging and research. The proposed wavelength-shifting fibre (WSF) gamma camera consists of two perpendicular sets of WSFs covering both sides of a CsI(Na) crystal, such that the fibres positioned at the bottom of the crystal provide the x coordinate and the ones on top the y coordinate of the gamma photon interaction point. The 2D position is given by highly sensitive photodetectors reading out each WSF and the energy information is provided by PMTs that cover the full detector area. This concept has the advantage of using N+N instead of N × N photodetectors to cover an identical imaging area, and is being applied using for the first time SiPMs. Previous studies carried out with 57Co have proved the feasibility of this concept using SiPM readout. In this work, we present experimental results from true 2D image acquisitions with a 10+10 SiPMs prototype, i.e. 10 × 10 mm2, using a parallel-hole collimator and different samples filled with 99mTc solution. The performance of the small prototype in these conditions is evaluated through the characterization of different gamma camera parameters, such as energy and spatial resolution. Ongoing advances towards a larger prototype of 100+100 SiPMs (10 × 10 cm2) are also presented.

  18. Iterative reconstruction of SiPM light response functions in a square-shaped compact gamma camera

    NASA Astrophysics Data System (ADS)

    Morozov, A.; Alves, F.; Marcos, J.; Martins, R.; Pereira, L.; Solovov, V.; Chepel, V.

    2017-05-01

    Compact gamma cameras with a square-shaped monolithic scintillator crystal and an array of silicon photomultipliers (SiPMs) are actively being developed for applications in areas such as small animal imaging, cancer diagnostics and radiotracer guided surgery. Statistical methods of position reconstruction, which are potentially superior to the traditional centroid method, require accurate knowledge of the spatial response of each photomultiplier. Using both Monte Carlo simulations and experimental data obtained with a camera prototype, we show that the spatial response of all photomultipliers (light response functions) can be parameterized with axially symmetric functions obtained iteratively from flood field irradiation data. The study was performed with a camera prototype equipped with a 30  ×  30  ×  2 mm3 LYSO crystal and an 8  ×  8 array of SiPMs for 140 keV gamma rays. The simulations demonstrate that the images, reconstructed with the maximum likelihood method using the response obtained with the iterative approach, exhibit only minor distortions: the average difference between the reconstructed and the true positions in X and Y directions does not exceed 0.2 mm in the central area of 22  ×  22 mm2 and 0.4 mm at the periphery of the camera. A similar level of image distortions is shown experimentally with the camera prototype.

  19. Iterative reconstruction of SiPM light response functions in a square-shaped compact gamma camera.

    PubMed

    Morozov, Andrey; Alves, Francisco; Marcos, Joao; Martins, Raimundo; Pereira, Luis; Solovov, Vladimir; Chepel, Vitaly

    2017-02-13

    Compact gamma cameras with a square-shaped monolithic scintillator crystal and an array of silicon photomultipliers (SiPMs) are actively being developed for applications in areas such as small animal imaging, cancer diagnostics and radiotracer guided surgery. Statistical methods of position reconstruction, which are potentially superior to the traditional centroid method, require accurate knowledge of the spatial response of each photomultiplier. Using both Monte Carlo simulations and experimental data obtained with a camera prototype, we show that the spatial response of all photomultipliers (light response functions) can be parameterized with axially symmetric functions obtained iteratively from flood field irradiation data. The study was performed with a camera prototype equipped with a 30 x 30 x 2 mm3 LYSO crystal and an 8 x 8 array of SiPMs for 140 keV gamma rays. The simulations demonstrate that the images, reconstructed with the maximum likelihood method using the response obtained with the iterative approach, exhibit only minor distortions: the average difference between the reconstructed and the true positions in X and Y directions does not exceed 0.2 mm in the central area of 22 x 22 mm2 and 0.4 mm at the periphery of the camera. A similar level of image distortions is shown experimentally with the camera prototype.

  20. Pinhole SPECT of mice using the LumaGEM gamma camera

    NASA Astrophysics Data System (ADS)

    MacDonald, L. R.; Patt, B. E.; Iwanczyk, J. S.; Tsui, B. M. W.; Wang, Y.; Frey, E. C.; Wessell, D. E.; Acton, P. D.; Kung, H. F.

    2001-06-01

    LumaGEM is a newly developed gamma camera for dedicated, small field of view, high spatial resolution imaging. The system consists of an array of 2/spl times/2/spl times/6 mm/sup 3/ NaI(Tl) pixels coupled to an array of position-sensitive photomultiplier tubes. It has a 125/spl times/125 mm/sup 2/ field of view. A pinhole collimator was used on LumaGEM to acquire SPECT images of mice that had transgenic modifications so as to model various diseases. Pinhole apertures of 1, 2 and 3 mm are interchangeable on the collimator and were used to acquire images. An iterative MLEM algorithm for pinhole SPECT was used to reconstruct the 128 projection images that covered 360/spl deg/ rotation. The reconstruction algorithm is based on a projector and backprojector pair implemented using a ray-tracing algorithm. The crucial reconstruction input parameters are the radius of rotation, center of rotation, and pinhole focal length. Ideal pinhole geometry is assumed, and no correction for attenuation has been made. The preliminary images presented here show detailed uptake in the mice subjects and are a convincing sign that animal SPECT can reach submillimeter spatial resolution and be a valuable tool in the study of diseases and the development of pharmaceuticals in animal models.

  1. UK audit and analysis of quantitative parameters obtained from gamma camera renography.

    PubMed

    Houston, A S; Whalley, D R; Skrypniuk, J V; Jarritt, P H; Fleming, J S; Cosgriff, P S

    2001-05-01

    The purpose of this study was to perform an audit of quantitative values obtained from gamma camera renography in the UK. Ten patient image sequences representing normal and pathological renal function were obtained from archived studies and distributed to hospitals in the UK. Hospitals were asked to measure five parameters: relative function, renogram time-to-peak (left and right), and whole kidney mean transit time (left and right). Details of methodology, software used and operator experience were requested. This allowed the influence of operational factors on variations in reported values to be examined. A total of 180 responses from 81 hospitals were received. Values reported for the parameters, together with other details supplied, were entered into Excel and SPSS for statistical analysis. Histograms representing the distribution of values were produced for each parameter. The largest variations were found for mean transit time and occasionally for time-to-peak. The effect of factors was assessed using nonparametric statistical tests applied independently to each renogram. For all the parameters, the hospital, UK region, supplier, computer and software version influenced variations in the reported values. Algorithm and site of background region were influencing factors for relative function, the background subtraction method influenced time-to-peak, and curve smoothing influenced mean transit time.

  2. The use of detective quantum efficiency (DQE) in evaluating the performance of gamma camera systems.

    PubMed

    Starck, Sven-Ake; Båth, Magnus; Carlsson, Sten

    2005-04-07

    The imaging properties of an imaging system can be described by its detective quantum efficiency (DQE). Using the modulation transfer function calculated from measured line spread functions and the normalized noise power spectrum calculated from uniformity images, DQE was calculated with the number of photons emitted from a plane source as a measure for the incoming SNR2. Measurements were made with 99mTc, using three different pulse height windows at 2 cm and 12 cm depths in water with high resolution and all purpose collimators and with two different crystal thicknesses. The results indicated that at greater depths a 15% window is the best choice. The choice of collimator depends on the details in the organ being investigated. There is a break point at 0.5 cycles cm-1 and 1.2 cycles cm-1 at 12 cm and 2 cm depths, respectively. A difference was found in DQE between the two crystal thicknesses, with a slightly better result for the thick crystal for measurements at 12 cm depth. At 2 cm depth, the thinner crystal was slightly better for frequencies over 0.5 cm-1. The determination of DQE could be a method to optimize the parameters for different nuclear medicine investigations. The DQE could also be used in comparing different gamma camera systems with different collimators to obtain a figure of merit.

  3. Detection of postinfarction left ventricular aneurysms by first pass radionuclide ventriculography using a multicrystal gamma camera.

    PubMed Central

    Dymond, D S; Jarritt, P H; Britton, K E; Spurrell, R A

    1979-01-01

    Eighteen patients with a history of previous anterior myocardial infarction and suspected left ventricular aneurysms were studied both by contrast left ventriculography and by first pass radionuclide ventriculography using Technetium99m and a computerised multicrystal gamma camera. The radionuclide study successfully identified all 14 patients with aneurysms and all 4 with diffusely hypo-kinetic ventricles. Ejection fraction calculated from the change in radioactive counts in the left ventricle correlated well with that calculated from the area-length method from the contrast angiogram (r = 0.83). Ventricular volumes calculated from the area-length formula for both contrast and radionuclide angiograms correlated closely (r = 0.85 and r = 0.89 for end-systolic and end-diastolic volumes, respectively). In the patients with aneurysms, there was a close correlation between the extent of akinesis, as assessed by the two methods (r = 0.94). The ability of the radionuclide ventriculogram to provide accurate information on global and segmental ventricular function, and to differentiate between segmental and diffuse ventricular dysfunction, enables the method to act as a screening procedure in the investigation of patients with suspected left ventricular aneurysms. Images PMID:426958

  4. Measuring neutron fluences and gamma/x ray fluxes with CCD cameras

    NASA Astrophysics Data System (ADS)

    Yates, G. J.; Smith, G. W.; Zagarino, P.; Thomas, M. C.

    The capability to measure bursts of neutron fluences and gamma/x-ray fluxes directly with charge coupled device (CCD) cameras while being able to distinguish between the video signals produced by these two types of radiation, even when they occur simultaneously, has been demonstrated. Volume and area measurements of transient radiation-induced pixel charge in English Electric Valve (EEV) Frame Transfer (FT) charge coupled devices (CCD's) from irradiation with pulsed neutrons (14 MeV) and Bremsstrahlung photons (4-12 MeV endpoint) are utilized to calibrate the devices as radiometric imaging sensors capable of distinguishing between the two types of ionizing radiation. Measurements indicate approx. = .05 V/rad responsivity with greater than or = 1 rad required for saturation from photon irradiation. Neutron-generated localized charge centers or 'peaks' binned by area and amplitude as functions of fluence in the 105 to 107 n/cc range indicate smearing over approx. 1 to 10 percent of the CCD array with charge per pixel ranging between noise and saturation levels.

  5. Optimization of a parallel hole collimator/CdZnTe gamma-camera architecture for scintimammography

    SciTech Connect

    Robert, Charlotte; Montemont, Guillaume; Rebuffel, Veronique; Verger, Loieck; Buvat, Irene

    2011-04-15

    Purpose: Small field-of-view CdZnTe (CZT) gamma cameras are increasingly studied for breast lesion detection to complement mammography or ultrasonographic findings. However, in classical collimation configurations, they remain limited by the trade-off between spatial resolution and sensitivity. The HiSens architecture was proposed to overcome these limitations. Using an accurate 3D localization of the interactions inside the detector, this architecture leads to a gain in sensitivity without loss in spatial resolution. In this article, the relevance of the HiSens architecture for planar scintimammography is studied. Methods: A detective quantum efficiency (DQE) computation method is developed and used to optimize the dimensioning of a parallel hole collimator dedicated to scintimammography. Based on the DQE curves, the impact of the collimator-to-detector distance is studied. Two algorithms are proposed to combine data acquired with different collimator-to-detector distances. Results: It is shown that CZT detector virtual pixelization increases system sensitivity by 3.3 while preserving a standard LEHR spatial resolution. The introduction of a gap between the CZT detector and the collimator is useful to modulate the DQE curve shape. The combination of data acquired using different gaps in the image formation process leads to enhanced restoration of the frequency content of the images, resulting in image contrast and spatial resolution improvements. Conclusions: Acquisition duration or injected activity could be markedly reduced if the HiSens architecture with an appropriate collimator-detector gap were used.

  6. Caudate nucleus infarction demonstrated by N-isopropyl-p iodoamphetamine SPECT imaging using a rotating gamma camera

    SciTech Connect

    Polak, J.F.; Mueller, S.P.; Holman, B.L.

    1986-10-01

    N-isopropyl p-iodoamphetamine (I-123 IMP) was used in two patients with previous unilateral basal ganglia infarcts documented by CT of the head. Tomographic images obtained with a commercially available rotating gamma camera equipped with a long-bore collimator showed corresponding areas of decreased uptake in the head of the caudate nuclei. Detection of such small areas of decreased perfusion is possible using SPECT and I-123 radiolabeled IMP.

  7. Radionuclide venography of the lower extremities and inferior vena cava by continuous injection and moving bed gamma camera technique.

    PubMed

    Hayt, D B; Reddy, K; Patel, H; Freeman, L M

    1976-12-01

    Radionuclide venography has proved to be a tedious procedure because of the need for multiple imaging set-ups with coordinated, repeated injections of radionuclide. The use of a moving bed gamma camera has shortened the procedure. This method enables the entire sapheno-femoral-iliac-caval system to be visualized in continuity on a single film. The moving table top system also adequately imaged the suspected areas of thrombi or endothelial damage on the post-exercise study on a single film.

  8. NOTE: Changes in the energy response of a dedicated gamma camera after exposure to a high-flux irradiation

    NASA Astrophysics Data System (ADS)

    Matheoud, Roberta; Zito, Felicia; Canzi, Cristina; Voltini, Franco; Gerundini, Paolo

    1999-06-01

    This work reports the effects of the gain variation of the photomultiplier tubes (PMTs) observed on a cardiac dedicated gamma camera after accidental high-flux irradiation. One detector of this dual-headed 90°-fixed gamma camera was accidentally left uncollimated during a quality assurance procedure on the other detector with a 57Co flood source (259 MBq) and received a non-uniform high flux of 1.9-0.6 Mcps over 25 000 mm2 areas for about 30 min. To evaluate the severity and the duration of the perturbation effect on the energy response of the detector, the photopeak position was monitored for about 1 month with a 99mTc point source. The 140 keV photopeak shifted to 158 keV soon after irradiation, reached the correct position after 9 days and moved to a stable value of 132 keV after 15 days. Afterwards, a new energy calibration reset the photopeak position at 140 keV and the correct energy response of the gamma camera. This experience suggests that particular care should be taken to avoid exposures to high radiation fluxes that induce persistent gain shifts on the PMTs of this system.

  9. Modelling image profiles produced with a small field of view gamma camera with a single pinhole collimator

    NASA Astrophysics Data System (ADS)

    Bugby, S. L.; Lees, J. E.; Perkins, A. C.

    2012-11-01

    Gamma cameras making use of parallel-hole collimators have a long history in medical imaging. Pinhole collimators were used in the original gamma camera instruments and have been used more recently in dedicated organ specific systems, intraoperative instruments and for small animal imaging, providing higher resolution over a smaller field of view than the traditional large field of view systems. With the resurgence of interest in the use of pinhole collimators for small field of view (SOV) medical gamma cameras, it is important to be able to accurately determine their response under various conditions. Several analytical approaches to pinhole response have been reported in the literature including models of 3D pinhole imaging systems. Success has also been reported in the use of Monte Carlo simulations; however this approach can require significant time and computing power. This report describes a 2D model that was used to investigate some common problems in pinhole imaging, the variation in resolution over the field of view and the use of `point' sources for quantifying pinhole response.

  10. Applicability of a high-resolution small semiconductor gamma camera to small animal imaging.

    PubMed

    Kiyono, Yasushi; Kuge, Yuji; Katada, Yumiko; Kawashima, Hidekazu; Magata, Yasuhiro; Saji, Hideo

    2007-09-01

    Recently, small semiconductor gamma cameras (SSGCs) with high resolution and sensitivity, which are much more convenient to use as compared with SPECT and PET, have been developed for mapping the sentinel lymph node. The high resolution and sensitivity of the SSGCs may make them useful for small animal imaging. Therefore, we assessed the applicability of the SSGC to small animal imaging using a rat model of focal cerebral ischaemia. The right middle cerebral artery (MCA) of anaesthetized rats was occluded intraluminally with a nylon monofilament. Twenty-four hours after the occlusion, 99mTc-HMPAO (3.7 MBq) was injected and a static acquisition (5 min) was performed using the SSGC. Regions of interest (ROIs) were set on each hemisphere of the horizontal brain images. After the acquisition, the brains were removed and the radioactivity in each hemisphere was measured using an NaI scintillation counter. Reduced CBF in the right MCA territory was clearly visualized with the SSGC in vivo. The radioactivity in the ROIs determined by the SSGC was significantly correlated with that determined by the ex vivo counting method (P<0.001, R2=0.74). Furthermore, in both of the in-vivo imaging and ex-vivo counting methods, the right to left count ratio (R/L ratio) was significantly lower in the MCA-occluded rats than that in normal rats (MCA-occluded rats: 0.77+/-0.08, normal rats: 1.01+/-0.07, P<0.005). The SSGC clearly visualized and quantitatively detected the reduced CBF in MCA-occluded rats. Furthermore, these high resolution and sensitivity of SSGC can avoid the disadvantage of small animal imaging with PET and SPECT, such as a large mass injected tracer and the exposure of investigators to radiation. Thus, the high resolution and sensitivity of the SSGC make it useful for small animal imaging.

  11. Development of a phantom and assessment of (141)Ce as a surrogate radionuclide for flood field uniformity testing of gamma cameras.

    PubMed

    Saxena, Sanjay Kumar; Kumar, Yogendra; Malpani, Basant; Rakshit, Sutapa; Dash, Ashutosh

    2016-06-01

    This paper describes an indigenous method for development and deployment of rechargeable liquid filled phantom with newly proposed radionuclide (141)Ce for determination of extrinsic uniformity of gamma cameras. Details about design of phantom, neutron irradiation of cerium targets, chemical processing of (141)Ce, charging of phantom with (141)Ce solution and their performance evaluation are presented. Suitability of (141)Ce in quality assurance of gamma cameras used in in-vivo diagnostic imaging procedures has been amply demonstrated.

  12. Coactivation of liver receptor homologue-1 by peroxisome proliferator-activated receptor gamma coactivator-1alpha on aromatase promoter II and its inhibition by activated retinoid X receptor suggest a novel target for breast-specific antiestrogen therapy.

    PubMed

    Safi, Rachid; Kovacic, Agnes; Gaillard, Stéphanie; Murata, Yoko; Simpson, Evan R; McDonnell, Donald P; Clyne, Colin D

    2005-12-15

    Aromatase inhibitors target the production of estrogen in breast adipose tissue, but in doing so, also decrease estrogen formation in bone and other sites, giving rise to deleterious side effects, such as bone loss and arthralgia. Thus, it would be clinically useful to selectively inhibit aromatase production in breast. In this regard, we have determined that the orphan nuclear receptor liver receptor homologue-1 (LRH-1) is a specific transcriptional activator of aromatase gene expression in human breast preadipocytes but not in other tissues of postmenopausal women. In this study, we show that the coactivator peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) is a physiologically relevant modulator of LRH-1, and that its transcriptional activity can be inhibited effectively using receptor-interacting peptide antagonists that prevent PGC-1alpha recruitment. Interestingly, we note that all of these peptides also interact in an agonist-dependent manner with retinoid X receptor alpha (RXRalpha), suggesting that these two receptors may compete for limiting cofactors within target cells. In support of this hypothesis, we show that 9-cis-retinoic acid, acting through RXR, inhibits both the basal and PGC-1alpha-induced transcriptional activity of LRH-1. The importance of this finding was confirmed by showing that LRH-1-dependent, PGC-1alpha-stimulated regulation of aromatase gene expression in primary human breast preadipocytes was effectively suppressed by RXR agonists. We infer from these data that LRH-1 is a bona fide target whose inhibition would selectively block aromatase expression in breast, while sparing other sites of expression.

  13. OBSERVATION OF DIFFUSE COSMIC AND ATMOSPHERIC GAMMA RAYS AT BALLOON ALTITUDES WITH AN ELECTRON-TRACKING COMPTON CAMERA

    SciTech Connect

    Takada, Atsushi; Nonaka, Naoki; Kubo, Hidetoshi; Nishimura, Hironobu; Ueno, Kazuki; Hattori, Kaori; Kabuki, Shigeto; Kurosawa, Shunsuke; Miuchi, Kentaro; Nagayoshi, Tsutomu; Okada, Yoko; Orito, Reiko; Sekiya, Hiroyuki; Takeda, Atsushi; Tanimori, Toru; Mizuta, Eiichi

    2011-05-20

    We observed diffuse cosmic and atmospheric gamma rays at balloon altitudes with the Sub-MeV gamma-ray Imaging Loaded-on-balloon Experiment I (SMILE-I) as the first step toward a future all-sky survey with a high sensitivity. SMILE-I employed an electron-tracking Compton camera comprised of a gaseous electron tracker as a Compton-scattering target and a scintillation camera as an absorber. The balloon carrying the SMILE-I detector was launched from the Sanriku Balloon Center of the Institute of Space and Astronautical Science/Japan Aerospace Exploration Agency on 2006 September 1, and the flight lasted for 6.8 hr, including level flight for 4.1 hr at an altitude of 32-35 km. During the level flight, we successfully detected 420 downward gamma rays between 100 keV and 1 MeV at zenith angles below 60 deg. To obtain the flux of diffuse cosmic gamma rays, we first simulated their scattering in the atmosphere using Geant4, and for gamma rays detected at an atmospheric depth of 7.0 g cm{sup -2} we found that 50% and 21% of the gamma rays at energies of 150 keV and 1 MeV, respectively, were scattered in the atmosphere prior to reaching the detector. Moreover, by using Geant4 simulations and the QinetiQ atmospheric radiation model, we estimated that the detected events consisted of diffuse cosmic and atmospheric gamma rays (79%), secondary photons produced in the instrument through the interaction between cosmic rays and materials surrounding the detector (19%), and other particles (2%). The obtained growth curve was comparable to Ling's model, and the fluxes of diffuse cosmic and atmospheric gamma rays were consistent with the results of previous experiments. The expected detection sensitivity of a future SMILE experiment measuring gamma rays between 150 keV and 20 MeV was estimated from our SMILE-I results and was found to be 10 times better than that of other experiments at around 1 MeV.

  14. Measurement of prompt gamma profiles in inhomogeneous targets with a knife-edge slit camera during proton irradiation.

    PubMed

    Priegnitz, M; Helmbrecht, S; Janssens, G; Perali, I; Smeets, J; Vander Stappen, F; Sterpin, E; Fiedler, F

    2015-06-21

    Proton and ion beam therapies become increasingly relevant in radiation therapy. To fully exploit the potential of this irradiation technique and to achieve maximum target volume conformality, the verification of particle ranges is highly desirable. Many research activities focus on the measurement of the spatial distributions of prompt gamma rays emitted during irradiation. A passively collimating knife-edge slit camera is a promising option to perform such measurements. In former publications, the feasibility of accurate detection of proton range shifts in homogeneous targets could be shown with such a camera. We present slit camera measurements of prompt gamma depth profiles in inhomogeneous targets. From real treatment plans and their underlying CTs, representative beam paths are selected and assembled as one-dimensional inhomogeneous targets built from tissue equivalent materials. These phantoms have been irradiated with monoenergetic proton pencil beams. The accuracy of range deviation estimation as well as the detectability of range shifts is investigated in different scenarios. In most cases, range deviations can be detected within less than 2 mm. In close vicinity to low-density regions, range detection is challenging. In particular, a minimum beam penetration depth of 7 mm beyond a cavity is required for reliable detection of a cavity filling with the present setup. Dedicated data post-processing methods may be capable of overcoming this limitation.

  15. Measurement of prompt gamma profiles in inhomogeneous targets with a knife-edge slit camera during proton irradiation

    NASA Astrophysics Data System (ADS)

    Priegnitz, M.; Helmbrecht, S.; Janssens, G.; Perali, I.; Smeets, J.; Vander Stappen, F.; Sterpin, E.; Fiedler, F.

    2015-06-01

    Proton and ion beam therapies become increasingly relevant in radiation therapy. To fully exploit the potential of this irradiation technique and to achieve maximum target volume conformality, the verification of particle ranges is highly desirable. Many research activities focus on the measurement of the spatial distributions of prompt gamma rays emitted during irradiation. A passively collimating knife-edge slit camera is a promising option to perform such measurements. In former publications, the feasibility of accurate detection of proton range shifts in homogeneous targets could be shown with such a camera. We present slit camera measurements of prompt gamma depth profiles in inhomogeneous targets. From real treatment plans and their underlying CTs, representative beam paths are selected and assembled as one-dimensional inhomogeneous targets built from tissue equivalent materials. These phantoms have been irradiated with monoenergetic proton pencil beams. The accuracy of range deviation estimation as well as the detectability of range shifts is investigated in different scenarios. In most cases, range deviations can be detected within less than 2 mm. In close vicinity to low-density regions, range detection is challenging. In particular, a minimum beam penetration depth of 7 mm beyond a cavity is required for reliable detection of a cavity filling with the present setup. Dedicated data post-processing methods may be capable of overcoming this limitation.

  16. Phantom experiments on a PSAPD-based compact gamma camera with submillimeter spatial resolution for small animal SPECT

    PubMed Central

    Kim, Sangtaek; McClish, Mickel; Alhassen, Fares; Seo, Youngho; Shah, Kanai S.; Gould, Robert G.

    2010-01-01

    We demonstrate a position sensitive avalanche photodiode (PSAPD) based compact gamma camera for the application of small animal single photon emission computed tomography (SPECT). The silicon PSAPD with a two-dimensional resistive layer and four readout channels is implemented as a gamma ray detector to record the energy and position of radiation events from a radionuclide source. A 2 mm thick monolithic CsI:Tl scintillator is optically coupled to a PSAPD with a 8mm×8mm active area, providing submillimeter intrinsic spatial resolution, high energy resolution (16% full-width half maximum at 140 keV) and high gain. A mouse heart phantom filled with an aqueous solution of 370 MBq 99mTc-pertechnetate (140 keV) was imaged using the PSAPD detector module and a tungsten knife-edge pinhole collimator with a 0.5 mm diameter aperture. The PSAPD detector module was cooled with cold nitrogen gas to suppress dark current shot noise. For each projection image of the mouse heart phantom, a rotated diagonal readout algorithm was used to calculate the position of radiation events and correct for pincushion distortion. The reconstructed image of the mouse heart phantom demonstrated reproducible image quality with submillimeter spatial resolution (0.7 mm), showing the feasibility of using the compact PSAPD-based gamma camera for a small animal SPECT system. PMID:21278833

  17. Dual-head gamma camera system for intraoperative localization of radioactive seeds

    NASA Astrophysics Data System (ADS)

    Arsenali, B.; de Jong, H. W. A. M.; Viergever, M. A.; Dickerscheid, D. B. M.; Beijst, C.; Gilhuijs, K. G. A.

    2015-10-01

    Breast-conserving surgery is a standard option for the treatment of patients with early-stage breast cancer. This form of surgery may result in incomplete excision of the tumor. Iodine-125 labeled titanium seeds are currently used in clinical practice to reduce the number of incomplete excisions. It seems likely that the number of incomplete excisions can be reduced even further if intraoperative information about the location of the radioactive seed is combined with preoperative information about the extent of the tumor. This can be combined if the location of the radioactive seed is established in a world coordinate system that can be linked to the (preoperative) image coordinate system. With this in mind, we propose a radioactive seed localization system which is composed of two static ceiling-suspended gamma camera heads and two parallel-hole collimators. Physical experiments and computer simulations which mimic realistic clinical situations were performed to estimate the localization accuracy (defined as trueness and precision) of the proposed system with respect to collimator-source distance (ranging between 50 cm and 100 cm) and imaging time (ranging between 1 s and 10 s). The goal of the study was to determine whether or not a trueness of 5 mm can be achieved if a collimator-source distance of 50 cm and imaging time of 5 s are used (these specifications were defined by a group of dedicated breast cancer surgeons). The results from the experiments indicate that the location of the radioactive seed can be established with an accuracy of 1.6 mm  ±  0.6 mm if a collimator-source distance of 50 cm and imaging time of 5 s are used (these experiments were performed with a 4.5 cm thick block phantom). Furthermore, the results from the simulations indicate that a trueness of 3.2 mm or less can be achieved if a collimator-source distance of 50 cm and imaging time of 5 s are used (this trueness was achieved for all 14 breast phantoms which

  18. Implementation of test for quality assurance in nuclear medicine gamma camera

    NASA Astrophysics Data System (ADS)

    Moreno, A. Montoya; Laguna, A. Rodríguez; Zamudio, Flavio E. Trujillo

    2012-10-01

    In nuclear medicine (NM) over 90% of procedures are performed for diagnostic purposes. To ensure adequate diagnostic quality of images and the optimization of the doses received by patients originated from the radioactive material is essential for regular monitoring and equipment performance through a quality assurance program (QAP). The QAP consists of 15 proposed performance tomographic and not tomographic gamma camera (GC) tests, and is based on recommendations of international organizations. We describe some results of the performance parameters of QAP applied to a GC model e.cam Siemens, of the Department of NM of the National Cancer Institute of Mexico (INCan). The results were: (1) The average intrinsic spatial resolution (Rin) was 4.67 ± 0.25 mm at the limit of acceptance criterion of 4.4 mm. (2) The sensitivity extrinsic (Sext), with maximum variations of 1.8% (less than 2% which is the criterion of acceptance). (3) Rotational Uniformity (Urot), with values of integral uniformity (IU) in the useful field of view detector (UFOV), with maximum percentage change of 0.97% and monthly variations equal angles, ranging from 0.13 to 0.99% less than 1%. (4) The displacement of the center of rotation (DCOR), indicated a maximum deviation of 0.155 ± 0.039 mm less than 4.795 mm, an absolute deviation of less than 0.5 where pixel 0.085 pixel is suggested, the criteria are assigned to low-energy collimator high resolution. (5) In tomographic uniformity (Utomo), UI values (%) and percentage noise level (rms%) were 7.54 ± 1.53 and 4.18 ± 1.69 which are consistent with the limits of acceptance of 7.0-12.0% and 3.0-6.0% respectively. The smallest cold sphere has a diameter of 11.4 mm. The implementation of a QAP allows for high quality diagnostic images, optimization of the doses given to patients, a reduction of exposure to occupationally exposed workers (POE, by its Spanish acronym), and generally improves the productivity of the service. This proposal can be used to

  19. Implementation of test for quality assurance in nuclear medicine gamma camera

    SciTech Connect

    Montoya Moreno, A.; Rodriguez Laguna, A.; Trujillo Zamudio, Flavio E

    2012-10-23

    In nuclear medicine (NM) over 90% of procedures are performed for diagnostic purposes. To ensure adequate diagnostic quality of images and the optimization of the doses received by patients originated from the radioactive material is essential for regular monitoring and equipment performance through a quality assurance program (QAP). The QAP consists of 15 proposed performance tomographic and not tomographic gamma camera (GC) tests, and is based on recommendations of international organizations. We describe some results of the performance parameters of QAP applied to a GC model e.cam Siemens, of the Department of NM of the National Cancer Institute of Mexico (INCan). The results were: (1) The average intrinsic spatial resolution (R{sub in}) was 4.67 {+-} 0.25 mm at the limit of acceptance criterion of 4.4 mm. (2) The sensitivity extrinsic (S{sub ext}), with maximum variations of 1.8% (less than 2% which is the criterion of acceptance). (3) Rotational Uniformity (U{sub rot}), with values of integral uniformity (IU) in the useful field of view detector (UFOV), with maximum percentage change of 0.97% and monthly variations equal angles, ranging from 0.13 to 0.99% less than 1%. (4) The displacement of the center of rotation (DCOR), indicated a maximum deviation of 0.155 {+-} 0.039 mm less than 4.795 mm, an absolute deviation of less than 0.5 where pixel 0.085 pixel is suggested, the criteria are assigned to low-energy collimator high resolution. (5) In tomographic uniformity (U{sub tomo}), UI values (%) and percentage noise level (rms%) were 7.54 {+-} 1.53 and 4.18 {+-} 1.69 which are consistent with the limits of acceptance of 7.0-12.0% and 3.0-6.0% respectively. The smallest cold sphere has a diameter of 11.4 mm. The implementation of a QAP allows for high quality diagnostic images, optimization of the doses given to patients, a reduction of exposure to occupationally exposed workers (POE, by its Spanish acronym), and generally improves the productivity of the

  20. How many x-ray photons can be scattered from a SPECT/CT room to an adjacent gamma camera?

    NASA Astrophysics Data System (ADS)

    Cao, Zongjian

    2009-02-01

    The upper limit of the amount of x-rays that are scattered from a SPECT/CT room and are acquired by an adjacent gamma camera is estimated using physical principles and approximations. Methods: We first estimated the amount of xrays scattered from the patient to the ceiling of the SPECT/CT room, then the amount scattered from the ceiling through the gap between the ceiling and the top of lead walls to reach outside of the room, and finally the amount acquired by an adjacent gamma camera into the Tl-201 data. Results: The counts of scattered x-ray photons acquired in the Tl-201 energy window can reach 0.12% of the CT primary counts when the standard 2.13 m high lead walls are used for the SPECT/CT room. Due to the high CT counts, contamination to the Tl-201 data cannot be ignored. It is not effective to reduce the contamination by increase the lead height or change the floor plan because the scattered x-rays reduce moderately with increasing lead height or different floor plans. When the lead height increases from 2.13 m to 2.74 m, for example, the amount of scattered x-rays only decreases by 20%. With the same 2.13 m lead height, there is little difference in the amount of scattered x-rays for three different floor plans. Conclusions: The standard lead walls for a SPECT/CT room cannot prevent scattered x-rays from severe contamination to the Tl-201 data acquired by an adjacent gamma camera. Since dramatic increase of lead height is costly and often prohibitive due to the heavy load, we recommend that Tl-201 studies be stopped when an adjacent CT scanner is in operation.

  1. Lymphoscintigraphic demonstration of chyle leak after kidney transplantation and gamma camera detection of radioactivity in chylous aspirate.

    PubMed

    Oh, Jin Kyoung; Yoon, Hye Eun; Chung, Yong-An

    2014-08-01

    Iatrogenic chyle leak with chyloma formation is a rare complication of kidney transplantation resulting from injury to the lymphatics. We present a case of a 53-year-old man who complained of right leg swelling 2 months after kidney transplantation for chronic renal failure. Abdomen CT showed loculated fluid collection around the transplanted kidney. Lymphoscintigraphy demonstrated chyle leak in the right iliac fossa, and subsequent ultrasound-guided aspiration of the chyloma showed radioactivity as detected by gamma camera. After drainage insertion, the amount of collected fluid gradually decreased, and right leg edema was relieved.

  2. Two-level multi-pinhole collimator for SPECT imaging using a small-field-of-view gamma camera

    NASA Astrophysics Data System (ADS)

    Bae, Jaekeon; Bae, Seungbin; Lee, Soo-young; Lee, Kisung; Kim, Yongkwon; Joung, Jinhun; Kim, MinHo; Kim, Kyeong Min

    2017-01-01

    The aim of this study was to develop a high-throughput imaging method for single-photon emission computed tomography. We developed a target-oriented multi-pinhole collimator and limitedangle method for scanning small organs such as the thyroid. To maximize the resolution and the sensitivity of the collimator, we designed a two-level multi-pinhole collimator whose levels were optimized for concave body contours. One level had a center hole whereas the other had surrounding holes. The limited-angle scanning method was employed to obtain tomographic images by using the collimator located near the body contour of the target, and a corresponding image reconstruction algorithm was implemented. A small-field-of-view gamma camera was used to achieve a smaller footprint. The design of the collimator also considered the dimensions of used gamma camera. Evaluation studies were conducted using the Geant4 application for tomographic emission. The results showed the resolution of the proposed collimator to be more than twice that of the previously designed multi-pinhole collimator while maintaining the same efficiency. Given that the designed collimator can be changed by simply replacing the center hole, the suggested imaging method is suitable for studying not only the thyroid but also any organ whose diameter is less than 90 mm.

  3. A Theoretical Model for Fast Evaluation of Position Linearity and Spatial Resolution in Gamma Cameras Based on Monolithic Scintillators

    NASA Astrophysics Data System (ADS)

    Galasso, Matteo; Fabbri, Andrea; Borrazzo, Cristian; Cencelli, Valentino Orsolini; Pani, Roberto

    2016-06-01

    In this work, we developed a model that is able to predict in a few seconds the response of a gamma camera based on continuous scintillator in terms of linearity and spatial resolution in the whole field of view (FoV). This model will be useful during the design phase of a SPECT or PET detector in order to predict and optimize gamma camera performance by varying the parameter values of its components (scintillator, light guides, and photodetector). Starting from a model of the scintillation light distribution on the photodetector sensitive surface, a theoretical analysis based on the estimation theory is carried out in order to find the analytical expressions of bias and FWHM related to four interaction position estimation methods: the classical Center of Gravity method (Anger Logic), an enhanced Center of Gravity method, a Mean Square Error fitting method, and the Maximum Likelihood Estimation method. Afterwards, spatial resolution as well as depth of interaction (DOI) distribution effects are evaluated by processing biases and FWHMs at different DOIs. The comparison between the model and GEANT4 Monte Carlo simulations of four different detection systems has been carried out. Our model prediction errors of spatial resolution, in terms of percentage RMSDs with respect to the simulated spatial resolution, are lower than 13.2% in the whole FoV for three estimation methods. The computational time to calculate spatial resolutions with the model in the whole FoV is five order of magnitudes faster than an equivalent standard Monte Carlo simulation.

  4. AIRWAY IDENTIFICATION WITHIN PLANAR GAMMA CAMERA IMAGES USING COMPUTER MODELS OF LUNG MORPHOLOGY

    EPA Science Inventory

    The quantification of inhaled aerosols could be improved if a more comprehensive assessment of their spatial distribution patterns among lung airways were obtained. A common technique for quantifying particle deposition in human lungs is with planar gamma scintigraphy. However, t...

  5. AIRWAY IDENTIFICATION WITHIN PLANAR GAMMA CAMERA IMAGES USING COMPUTER MODELS OF LUNG MORPHOLOGY

    EPA Science Inventory

    The quantification of inhaled aerosols could be improved if a more comprehensive assessment of their spatial distribution patterns among lung airways were obtained. A common technique for quantifying particle deposition in human lungs is with planar gamma scintigraphy. However, t...

  6. Tumor dosimetry for I-131 trastuzumab therapy in a Her2+ NCI N87 xenograft mouse model using the Siemens SYMBIA E gamma camera with a pinhole collimator

    NASA Astrophysics Data System (ADS)

    Lee, Young Sub; Kim, Jin Su; Deuk Cho, Kyung; Kang, Joo Hyun; Moo Lim, Sang

    2015-07-01

    We performed imaging and therapy using I-131 trastuzumab and a pinhole collimator attached to a conventional gamma camera for human use in a mouse model. The conventional clinical gamma camera with a 2-mm radius-sized pinhole collimator was used for monitoring the animal model after administration of I-131 trastuzumab The highest and lowest radiation-received organs were osteogenic cells (0.349 mSv/MBq) and skin (0.137 mSv/MBq), respectively. The mean coefficients of variation (%CV) of the effective dose equivalent and effective dose were 0.091 and 0.093 mSv/MBq respectively. We showed the feasibility of the pinholeattached conventional gamma camera for human use for the assessment of dosimetry. Mouse dosimetry and prediction of human dosimetry could be used to provide data for the safety and efficacy of newly developed therapeutic schemes.

  7. RITM and POCI: Pre and per-operative mini {gamma} cameras evaluation for bone tumor localization in theater blocks

    SciTech Connect

    Menard, L.; Mastrippolito, R.; Charon, Y.

    1996-12-31

    We have developed a multi-functional portable {gamma} radio-imager (RITM) based on a position sensitive photomultiplier tube (PSPMT) in order to evaluate the potential of such miniature {gamma} camera concept in radio-pharmacology and nuclear medicine. We report here an evaluation of our RITM device for cancer surgery. It concerns localization of the osteoid osteoma (bone benign tumor) performed in theater block before skin incision and during the surgical lesion extraction. Over 13 cases we studied, the diagnosis furnished by RITM was always confirmed by post-operation anatomo-pathological analysis. This shows how RITM can be used as an additional indicator to monitor the operation. Following this first experience, we are developing a new small field of view {gamma} per operative compact imager (POCI) performing a sub-millimeter spatial resolution. It consists of a high resolution collimator and a YAP:Ce crystal assembly coupled to an intensified position sensitive diode (IPSD). This hand held imaging probe is first dedicated to intra-operative monitoring for thyroid and neuroblastoma tumor removal. Characteristics of the POCI device and preliminary results are presented.

  8. Design of a compact gamma camera with semiconductor hybrid pixel detectors: imaging tests with a pinhole collimator

    NASA Astrophysics Data System (ADS)

    Mettivier, G.; Montesi, M. C.; Russo, P.

    2003-08-01

    We are designing and building a compact gamma camera using a semiconductor hybrid pixel detector, for Tc-99m 140-keV imaging of sentinel lymph nodes during radio-guided surgery. In order to perform preliminary evaluations on the spatial resolution attainable with different collimators, we used the Medipix1 readout chip, bump-bonded to a silicon pixel detector (300 μm thick, 64×64 pixels, 170 μm pixel pitch, 1% detection efficiency at 140 keV). In this work we tested its performance with a knife-edge 0.35 mm pinhole collimator. Imaging results obtained with a 122 keV Co-57 gamma source show an on-axis system spatial resolution of 0.8 mm (resp. 1.8 mm) at 10 mm (resp. 40 mm) from the collimator face. The collimator efficiency was 2×10 -4 at 10 mm, reducing to 3×10 -5 at 40 mm from the collimator face. This gamma imaging system is compact, can be made hand-held and provides live-time imaging. It will have an acceptable detection efficiency when the Medipix2 chip will be available, in the next future, bonded to a CdTe pixel detector.

  9. An innovative silicon photomultiplier digitizing camera for gamma-ray astronomy

    NASA Astrophysics Data System (ADS)

    Heller, M.; Schioppa, E., Jr.; Porcelli, A.; Pujadas, I. Troyano; Ziȩtara, K.; Volpe, D. della; Montaruli, T.; Cadoux, F.; Favre, Y.; Aguilar, J. A.; Christov, A.; Prandini, E.; Rajda, P.; Rameez, M.; Bilnik, W.; Błocki, J.; Bogacz, L.; Borkowski, J.; Bulik, T.; Frankowski, A.; Grudzińska, M.; Idźkowski, B.; Jamrozy, M.; Janiak, M.; Kasperek, J.; Lalik, K.; Lyard, E.; Mach, E.; Mandat, D.; Marszałek, A.; Miranda, L. D. Medina; Michałowski, J.; Moderski, R.; Neronov, A.; Niemiec, J.; Ostrowski, M.; Paśko, P.; Pech, M.; Schovanek, P.; Seweryn, K.; Sliusar, V.; Skowron, K.; Stawarz, Ł.; Stodulska, M.; Stodulski, M.; Walter, R.; Wiȩcek, M.; Zagdański, A.

    2017-01-01

    The single-mirror small-size telescope (SST-1M) is one of the three proposed designs for the small-size telescopes (SSTs) of the Cherenkov Telescope Array (CTA) project. The SST-1M will be equipped with a 4 m-diameter segmented reflector dish and an innovative fully digital camera based on silicon photo-multipliers. Since the SST sub-array will consist of up to 70 telescopes, the challenge is not only to build telescopes with excellent performance, but also to design them so that their components can be commissioned, assembled and tested by industry. In this paper we review the basic steps that led to the design concepts for the SST-1M camera and the ongoing realization of the first prototype, with focus on the innovative solutions adopted for the photodetector plane and the readout and trigger parts of the camera. In addition, we report on results of laboratory measurements on real scale elements that validate the camera design and show that it is capable of matching the CTA requirements of operating up to high moonlight background conditions.

  10. The HURRA filter: An easy method to eliminate collimator artifacts in high-energy gamma camera images.

    PubMed

    Perez-Garcia, H; Barquero, R

    The correct determination and delineation of tumor/organ size is crucial in 2-D imaging in (131)I therapy. These images are usually obtained using a system composed of a Gamma camera and high-energy collimator, although the system can produce artifacts in the image. This article analyses these artifacts and describes a correction filter that can eliminate those collimator artifacts. Using free software, ImageJ, a central profile in the image is obtained and analyzed. Two components can be seen in the fluctuation of the profile: one associated with the stochastic nature of the radiation, plus electronic noise and the other periodically across the position in space due to the collimator. These frequencies are analytically obtained and compared with the frequencies in the Fourier transform of the profile. A specially developed filter removes the artifacts in the 2D Fourier transform of the DICOM image. This filter is tested using a 15-cm-diameter Petri dish with (131)I radioactive water (big object size) image, a (131)I clinical pill (small object size) image, and an image of the remainder of the lesion of two patients treated with 3.7GBq (100mCi), and 4.44GBq (120mCi) of (131)I, respectively, after thyroidectomy. The artifact is due to the hexagonal periodic structure of the collimator. The use of the filter on large-sized images reduces the fluctuation by 5.8-3.5%. In small-sized images, the FWHM can be determined in the filtered image, while this is impossible in the unfiltered image. The definition of tumor boundary and the visualization of the activity distribution inside patient lesions improve drastically when the filter is applied to the corresponding images obtained with HE gamma camera. The HURRA filter removes the artifact of high-energy collimator artifacts in planar images obtained with a Gamma camera without reducing the image resolution. It can be applied in any study of patient quantification because the number of counts remains invariant. The filter

  11. SU-C-201-07: Validation of a GATE Gamma Camera Model for the Siemens Symbia

    SciTech Connect

    Mikell, J; Siman, W; Kappadath, S; Mourtada, F

    2015-06-15

    Purpose: To develop a simulation model of a clinical gamma camera/SPECT system and to validate the model using experimental and published measurements from the clinical system. Methods: Geant4 Application for Tomographic Emission (GATE) was used to create a model of the Siemens Symbia gamma camera. A modular model was implemented that allows specifying combinations of crystal thickness (3/8”, 5/8”) and collimator (LEHR, MELP, HE). Shielding, energy resolution, intrinsic resolution, crystal thickness, and collimator properties were set based on manufacturer specifications. Validation of the model was performed by simulating NEMA 2007 gamma camera tests including spatial resolution and sensitivity for Tc99; these were compared with experimental and published data for the scanner. The simulated energy spectra of a Tc99 line source in acrylic blocks was visually compared with the corresponding experimental acquisition. For a 4 cm diameter sphere filled with Tc99, the attenuation maps were generated from simulation data, and the photopeak and scatter window were extracted from GATE output using ROOT to create DICOM files to use in the clinical reconstruction. Results: Simulated spatial resolutions for LEHR 3/8” crystal at 0, 10 cm, 10 cm (with scatter), and 30 cm were 4, 6.7, 7.9, and 14.5 mm FWHM; these were 9% less than published data. For 5/8” crystal the spatial resolutions were 4.5, 7.0, 8.5, and 14.7 mm FWHM; these were 4% to 10% less than published data. Simulated sensitivity was within 3.5% of published data for both LEHR 3/8” and 5/8”. The simulated energy spectra matched the photopeak and scatter window well, but did overestimate the counts below 90 keV. The simulated attenuation map and projection data were successfully reconstructed with the clinical software, and the passed visual inspection. Conclusions: Validation of a specific clinical scanner allows future studies of quantification accuracy for both planar and SPECT imaging. Research

  12. I-123 HIPDM brain imaging with a rotating gamma camera and slant-hole collimator

    SciTech Connect

    Polak, J.F.; Holman, B.L.; Moretti, J.L.; Eisner, R.L.; Lister-James, J.; English, R.J.

    1984-04-01

    The performance of a slant-hole collimator was compared with that of a standard straight-bore, low-energy collimator for tomographic imaging of I-123-iodinated amine brain agent. Improved in-slice resolution was due to the greater proximity between collimator and the subjects' heads. It was concluded that high quality tomographic images of the brain can be obtained from rotating cameras equipped with slant-hole collimators.

  13. Evaluation of Compton gamma camera prototype based on pixelated CdTe detectors

    PubMed Central

    Calderón, Y.; Chmeissani, M.; Kolstein, M.; De Lorenzo, G.

    2014-01-01

    A proposed Compton camera prototype based on pixelated CdTe is simulated and evaluated in order to establish its feasibility and expected performance in real laboratory tests. The system is based on module units containing a 2×4 array of square CdTe detectors of 10×10 mm2 area and 2 mm thickness. The detectors are pixelated and stacked forming a 3D detector with voxel sizes of 2 × 1 × 2 mm3. The camera performance is simulated with Geant4-based Architecture for Medicine-Oriented Simulations(GAMOS) and the Origin Ensemble(OE) algorithm is used for the image reconstruction. The simulation shows that the camera can operate with up to 104 Bq source activities with equal efficiency and is completely saturated at 109 Bq. The efficiency of the system is evaluated using a simulated 18F point source phantom in the center of the Field-of-View (FOV) achieving an intrinsic efficiency of 0.4 counts per second per kilobecquerel. The spatial resolution measured from the point spread function (PSF) shows a FWHM of 1.5 mm along the direction perpendicular to the scatterer, making it possible to distinguish two points at 3 mm separation with a peak-to-valley ratio of 8. PMID:24932209

  14. Evaluation of Compton gamma camera prototype based on pixelated CdTe detectors.

    PubMed

    Calderón, Y; Chmeissani, M; Kolstein, M; De Lorenzo, G

    2014-06-01

    A proposed Compton camera prototype based on pixelated CdTe is simulated and evaluated in order to establish its feasibility and expected performance in real laboratory tests. The system is based on module units containing a 2×4 array of square CdTe detectors of 10×10 mm(2) area and 2 mm thickness. The detectors are pixelated and stacked forming a 3D detector with voxel sizes of 2 × 1 × 2 mm(3). The camera performance is simulated with Geant4-based Architecture for Medicine-Oriented Simulations(GAMOS) and the Origin Ensemble(OE) algorithm is used for the image reconstruction. The simulation shows that the camera can operate with up to 10(4) Bq source activities with equal efficiency and is completely saturated at 10(9) Bq. The efficiency of the system is evaluated using a simulated (18)F point source phantom in the center of the Field-of-View (FOV) achieving an intrinsic efficiency of 0.4 counts per second per kilobecquerel. The spatial resolution measured from the point spread function (PSF) shows a FWHM of 1.5 mm along the direction perpendicular to the scatterer, making it possible to distinguish two points at 3 mm separation with a peak-to-valley ratio of 8.

  15. A gamma camera count rate saturation correction method for whole-body planar imaging

    PubMed Central

    Hobbs, Robert F; Baechler, Sébastien; Senthamizhchelvan, Srinivasan; Prideaux, Andrew R; Esaias, Caroline E; Reinhardt, Melvin; Frey, Eric C; Loeb, David M; Sgouros, George

    2010-01-01

    Whole-body (WB) planar imaging has long been one of the staple methods of dosimetry, and its quantification has been formalized by the MIRD Committee in pamphlet no 16. One of the issues not specifically addressed in the formalism occurs when the count rates reaching the detector are sufficiently high to result in camera count saturation. Camera dead-time effects have been extensively studied, but all of the developed correction methods assume static acquisitions. However, during WB planar (sweep) imaging, a variable amount of imaged activity exists in the detector’s field of view as a function of time and therefore the camera saturation is time dependent. A new time-dependent algorithm was developed to correct for dead-time effects during WB planar acquisitions that accounts for relative motion between detector heads and imaged object. Static camera dead-time parameters were acquired by imaging decaying activity in a phantom and obtaining a saturation curve. Using these parameters, an iterative algorithm akin to Newton’s method was developed, which takes into account the variable count rate seen by the detector as a function of time. The algorithm was tested on simulated data as well as on a whole-body scan of high activity Samarium-153 in an ellipsoid phantom. A complete set of parameters from unsaturated phantom data necessary for count rate to activity conversion was also obtained, including build-up and attenuation coefficients, in order to convert corrected count rate values to activity. The algorithm proved successful in accounting for motion-and time-dependent saturation effects in both the simulated and measured data and converged to any desired degree of precision. The clearance half-life calculated from the ellipsoid phantom data was calculated to be 45.1 h after dead-time correction and 51.4 h with no correction; the physical decay half-life of Samarium-153 is 46.3 h. Accurate WB planar dosimetry of high activities relies on successfully

  16. Gamma camera energy windows for Tc-99m bone scintigraphy: effect of asymmetry on contrast resolution. Work in progress.

    PubMed

    Collier, B D; Palmer, D W; Knobel, J; Isitman, A T; Hellman, R S; Zielonka, J S

    1984-05-01

    By raising the lower threshold of the Tc-99m energy window, rejection of scattered photons can be made more efficient. Unfortunately, with most gamma cameras significant nonuniformities are produced when the window is changed to an asymmetric setting. Recently introduced designs with gain stabilization of the photomultiplier tubes and improved energy correction maintain field uniformity even for an asymmetric window. To assess the impact of an asymmetric energy window on clinical images, 33 Tc-99m-MDP scintigrams of the lumbar spine were taken with symmetrical (126-154 keV) and asymmetric windows (135-154 keV). Bone:soft tissue ratios improved with the asymmetric window, and the resulting images were preferred by the physicians questioned.

  17. Performance improvement of small gamma camera using NaI(Tl) plate and position sensitive photo-multiplier tubes.

    PubMed

    Jeong, Myung Hwan; Choi, Yong; Chung, Yong Hyun; Song, Tae Yong; Jung, Jin Ho; Hong, Key Jo; Min, Byung Jun; Choe, Yearn Seong; Lee, Kyung-Han; Kim, Byung-Tae

    2004-11-07

    The purpose of this study was to improve the performance of a small gamma camera, utilizing a NaI(Tl) plate and a 5" position sensitive PMT. We attempted to build a NaI(Tl) plate crystal system which retained all its advantages, while at the same time integrating some of the advantages inherent in an array-type scintillation crystal system. Flood images were obtained with a lead hole mask, and position mapping was performed by detecting hole positions in the flood image. Energy calibration was performed using the energy spectra obtained from each hole position. Flood correction was performed using a uniformity correction table containing the relative efficiency of each image element. The spatial resolution was improved about 16% after correction at the centre field of view. Resolution deterioration at the outer field of view (OFOV) was considerably ameliorated, from 6.7 mm to 3.2 mm after correction. The sensitivity at the OFOV was also increased after correction, from 0.7 cps microCi(-1) to 2.0 cps microCi(-1). The correction also improved uniformity, from 5.2% to 2.1%, and linearity, from 0.5 mm to 0 mm. The results of this study indicate that the revised correction method can be employed to considerably improve the performance of a small gamma camera using a NaI(Tl) plate-type crystal. This method also provides high spatial resolution and linearity, like array-type crystals do, while retaining the specific advantages of plate-type crystals.

  18. Imaging system for cardiac planar imaging using a dedicated dual-head gamma camera

    DOEpatents

    Majewski, Stanislaw; Umeno, Marc M.

    2011-09-13

    A cardiac imaging system employing dual gamma imaging heads co-registered with one another to provide two dynamic simultaneous views of the heart sector of a patient torso. A first gamma imaging head is positioned in a first orientation with respect to the heart sector and a second gamma imaging head is positioned in a second orientation with respect to the heart sector. An adjustment arrangement is capable of adjusting the distance between the separate imaging heads and the angle between the heads. With the angle between the imaging heads set to 180 degrees and operating in a range of 140-159 keV and at a rate of up to 500kHz, the imaging heads are co-registered to produce simultaneous dynamic recording of two stereotactic views of the heart. The use of co-registered imaging heads maximizes the uniformity of detection sensitivity of blood flow in and around the heart over the whole heart volume and minimizes radiation absorption effects. A normalization/image fusion technique is implemented pixel-by-corresponding pixel to increase signal for any cardiac region viewed in two images obtained from the two opposed detector heads for the same time bin. The imaging system is capable of producing enhanced first pass studies, bloodpool studies including planar, gated and non-gated EKG studies, planar EKG perfusion studies, and planar hot spot imaging.

  19. Electron-tracking Compton gamma-ray camera for small animal and phantom imaging

    NASA Astrophysics Data System (ADS)

    Kabuki, Shigeto; Kimura, Hiroyuki; Amano, Hiroo; Nakamoto, Yuji; Kubo, Hidetoshi; Miuchi, Kentaro; Kurosawa, Shunsuke; Takahashi, Michiaki; Kawashima, Hidekazu; Ueda, Masashi; Okada, Tomohisa; Kubo, Atsushi; Kunieda, Etuso; Nakahara, Tadaki; Kohara, Ryota; Miyazaki, Osamu; Nakazawa, Tetsuo; Shirahata, Takashi; Yamamoto, Etsuji; Ogawa, Koichi; Togashi, Kaori; Saji, Hideo; Tanimori, Toru

    2010-11-01

    We have developed an electron-tracking Compton camera (ETCC) for medical use. Our ETCC has a wide energy dynamic range (200-1300 keV) and wide field of view (3 sr), and thus has potential for advanced medical use. To evaluate the ETCC, we imaged the head (brain) and bladder of mice that had been administered with F-18-FDG. We also imaged the head and thyroid gland of mice using double tracers of F-18-FDG and I-131 ions.

  20. Effect of different thickness of material filter on Tc-99m spectra and performance parameters of gamma camera

    NASA Astrophysics Data System (ADS)

    Nazifah, A.; Norhanna, S.; Shah, S. I.; Zakaria, A.

    2014-11-01

    This study aimed to investigate the effects of material filter technique on Tc-99m spectra and performance parameters of Philip ADAC forte dual head gamma camera. Thickness of material filter was selected on the basis of percentage attenuation of various gamma ray energies by different thicknesses of zinc material. A cylindrical source tank of NEMA single photon emission computed tomography (SPECT) Triple Line Source Phantom filled with water and Tc-99m radionuclide injected was used for spectra, uniformity and sensitivity measurements. Vinyl plastic tube was used as a line source for spatial resolution. Images for uniformity were reconstructed by filtered back projection method. Butterworth filter of order 5 and cut off frequency 0.35 cycles/cm was selected. Chang's attenuation correction method was applied by selecting 0.13/cm linear attenuation coefficient. Count rate was decreased with material filter from the compton region of Tc-99m energy spectrum, also from the photopeak region. Spatial resolution was improved. However, uniformity of tomographic image was equivocal, and system volume sensitivity was reduced by material filter. Material filter improved system's spatial resolution. Therefore, the technique may be used for phantom studies to improve the image quality.

  1. Investigation of high resolution compact gamma camera module based on a continuous scintillation crystal using a novel charge division readout method

    NASA Astrophysics Data System (ADS)

    Dai, Qiu-Sheng; Zhao, Cui-Lan; Zhang, Hua-Lin; Qi, Yu-Jin

    2010-08-01

    The objective of this study is to investigate a high performance and lower cost compact gamma camera module for a multi-head small animal SPECT system. A compact camera module was developed using a thin Lutetium Oxyorthosilicate (LSO) scintillation crystal slice coupled to a Hamamatsu H8500 position sensitive photomultiplier tube (PSPMT). A two-stage charge division readout board based on a novel sub-tractive resistive readout with a truncated center-of-gravity (TCOG) positioning method was developed for the camera. The performance of the camera was evaluated using a flood 99mTc source with a four-quadrant bar-mask phantom. The preliminary experimental results show that the image shrinkage problem associated with the conventional resistive readout can be effectively overcome by the novel subtractive resistive readout with an appropriate fraction subtraction factor. The response output area (ROA) of the camera shown in the flood image was improved up to 34%, and an intrinsic spatial resolution better than 2 mm of detector was achieved. In conclusion, the utilization of a continuous scintillation crystal and a flat-panel PSPMT equipped with a novel subtractive resistive readout is a feasible approach for developing a high performance and lower cost compact gamma camera.

  2. A fast cardiac gamma camera with dynamic SPECT capabilities: design, system validation and future potential

    PubMed Central

    Blevis, Ira M.; Tsukerman, Leonid; Shrem, Yigal; Kovalski, Gil; Volokh, Lana

    2010-01-01

    Purpose The goal of this study is to present the Discovery NM 530c (DNM), a cardiac SPECT camera, interfacing multi-pinhole collimators with solid-state modules, aiming at slashing acquisition time without jeopardizing quality. DNM resembles PET since it enables 3-D SPECT without detector motion. We further envision how these novel capabilities may help with current and future challenges of cardiac imaging. Methods DNM sensitivity, spatial resolution (SR) and energy resolution (ER), count rate response, cardiac uniformity and cardiac defect contrast were measured and compared to a dedicated cardiac, dual-head standard SPECT (S-SPECT) camera. Results DNM sensitivity was more than threefold higher while SR was notably better. Significantly, SR was the same for 99mTc and 201Tl. ER was improved on DNM and allowed good separation of 99mTc and 123I spectral peaks. Count rate remained linear on DNM up to 612 kcps, while S-SPECT showed severe dead time limitations. Phantom studies revealed comparable uniformity and defect contrast, notwithstanding significantly shorter acquisition time for the DNM. First patient images, including dynamic SPECT, are also presented. Conclusion DNM is raising the bar for expedition and upgrade of practice. It features high sensitivity as well as improved SR, temporal resolution and ER. It enables reduction of acquisition time and fast protocols. Importantly, it is potentially capable of dynamic 3-D acquisition. The new technology is potentially upgradeable and may become a milestone in the evolution of nuclear cardiology as it assumes its key role in molecular imaging of the heart. PMID:20585775

  3. Improving quality assurance for assembled COMS eye plaques using a pinhole gamma camera

    SciTech Connect

    Beiki-Ardakani, Akbar; Jezioranski, John; Jaffray, David A.; Yeung, Ivan

    2008-10-15

    A quality assurance system has been designed to verify the location and strength of seeds loaded in a brachytherapy eye plaque. This system consists of (1) a pinhole camera in conjunction with a Lumisys ACR-2000i computed radiography (CR) unit to image the location and measure the relative strength of the seeds with autoradiography, and (2) a source strength jig with a survey meter to estimate the total activity of the seeds in the plaque. Five holders of different sizes were made for fixation of the COMS (Collaborative Ocular Melanoma Study) plaques (12, 14, 16, 18, and 20 mm) in the camera. The plaque-to-pinhole distance (d{sub pp}) has been optimized to be 30 mm to give approximately uniform intensity on the CR image for uniformly loaded COMS plaques. The pinhole-to-detector distance (d{sub pd}) can be kept at either 30 mm for 1:1 scale, or at larger distances for higher magnification. For a 1:1 scaling and pinhole diameter of 0.345 mm, useful images are obtained with time-activity product (mCi sec) ranging from 5 to 250 mCi sec. Within this range, the pinhole system is able to differentiate seed activities of >10%. The resulting pinhole autoradiograph is able to (1) confirm the correct number of seeds loaded in the plaque, (2) verify the proper sitting of the seeds in the silastic carrier and the plaque, (3) verify the relative activity distribution of the seeds loaded in the plaque, and (4) potentially evaluate the integrity of the seed. The source strength measurement system is able to measure the total strength of seeds in the plaque ranging from 10 to 80 mCi with an uncertainty of 5%.

  4. Performance evaluation of a small CZT pixelated semiconductor gamma camera system with a newly designed stack-up parallel-hole collimator

    NASA Astrophysics Data System (ADS)

    Lee, Youngjin; Kim, Hee-Joung

    2015-09-01

    Gamma ray imaging techniques that use a cadmium zinc telluride (CZT) or cadmium telluride (CdTe) pixelated semiconductor detectors have rapidly gained popularity as a key tool for nuclear medicine research. By using a pinhole collimator with a pixelated semiconductor gamma camera system, better spatial resolution can be achieved. However, this improvement in spatial resolution is accomplished with a decrease in the sensitivity due to the small collimator hole diameter. Furthermore, few studies have been conducted for novel parallel-hole collimator geometric designs with pixelated semiconductor gamma camera systems. A gamma camera system which combines a CZT pixelated semiconductor detector with a newly designed stack-up parallel-hole collimator was developed and evaluated. The eValuator-2500 CZT pixelated semiconductor detector (eV product, Saxonburg, PA) was selected for the gamma camera system. This detector consisted of a row of four CZT crystals of 12.8 mm in length with 3 mm in thickness. The proposed parallel-hole collimator consists of two layers. The upper layer results in a fourfold increase in hole size compared to a matched square hole parallel-hole collimator with an equal hole and pixel size, while the lower layer also consisted of fourfold holes size and pretty acts as a matched square hole parallel-hole collimator. The overlap ratios of these collimators were 1:1, 1:2, 2:1, 1:5, and 5:1. These collimators were mounted on the eValuator-2500 CZT pixelated semiconductor detector. The basic performance of the imaging system was measured for a 57Co gamma source (122 keV). The measured averages of sensitivity and spatial resolution varied depending on the overlap ratios of the proposed parallel-hole collimator and source-to-collimator distances. One advantage of our system is the use of stacked collimators that can select the best combination of system sensitivity and spatial resolution. With low counts, we can select a high sensitivity collimator with a 1

  5. Improved EMCCD gamma camera performance by SiPM pre-localization.

    PubMed

    Salvador, S; Korevaar, M A N; Heemskerk, J W T; Kreuger, R; Huizenga, J; Seifert, S; Schaart, D R; Beekman, F J

    2012-11-21

    High spatial resolution γ-imaging can be achieved with scintillator readout by low-noise, fast, electron-multiplying charge-coupled devices (EMCCDs). Previously we have shown that false-positive events due to EMCCD noise can be rejected by using the sum signal from silicon photomultipliers (SiPMs) mounted on the sides of the scintillator. Here we launch a next generation hybrid CCD-SiPM camera that utilizes the individual SiPM signals and maximum likelihood estimation (MLE) pre-localization of events to discriminate between true and false events in CCD frames. In addition, SiPM signals are utilized for improved energy discrimination. The performance of this hybrid detector was tested for a continuous CsI:Tl crystal at 140 keV. With a pre-localization accuracy of 1.06 mm (full-width-at-half-maximum) attained with MLE the signal-to-background ratio (SBR) was improved by a factor of 5.9, 4.0 or 2.2 compared to the EMCCD-only readout, at the cost of rejecting, respectively, 47%, 9% or 4% of the events. Combining the pre-localization and SiPM energy estimation improved the energy resolution from 50% to (19 ± 3)% while maintaining the spatial resolution at 180 µm.

  6. Gamma camera imaging of HSV-tk gene expression with [131I]-FIAU: Clinical applications in gene therapy

    SciTech Connect

    Tjuvajev, J.; Joshi, R.; Kennedy, J.

    1996-05-01

    Develop a method to image gene expression that can be used to monitor successful gene transduction in patients. Currently there are no noninvasive ways to define the extent and spatial location of gene transduction or the level of gene expression in targeted organs or tumors. Wild-type RF2 s.c. tumors were produced by implantation of 10{sup 6} cells into both flanks of Sprague Dawley R-Nu rats. Following a 46 day growth period, the left and right flank tumors reached a 5x4x3 and 3x2x1 cm size. The left tumor was inoculated with 10{sup 6} gp-STK-A2 retroviral vector-producer cells (10{sup 6}-10{sup 7} cfu/ml) in 100 {mu}l of media to induce in vivo transduction with HSV-tk gene. No carrier added 2`-fluoro-1-{beta}-D-arabinofuranosyl-5-[131I]-iodo-uracil [131I]-FIAU was synthesized and 2.8 mCi was injected i.v. 14 days after gp-STK-A2 cell inoculation. Gamma camera imaging was performed in vivo at 4,24 and 36 hours post [131I]-FIAU injection with a dual-headed gamma camera. The 24 and 36 hour images showed specific localization of retained radioactivity only in the transduced tumors. These results were confirmed using quantitative autoradiography (QAR) of the same tumors. QAR also showed significantly higher levels of retained radioactivity (>1% dose/g) in the transduced tumor than in other nontransduced areas (<0.03 %dose/g). The transduced tumor tissue had microscopic features typical of subcutaneously growing RG2 glioma and non vector-producer cells could be identified. Gene therapy trials in patients would benefit greatly from a noninvasive measure and image that could define the location, magnitude and persistence of gene expression overtime. HSV-tk and FIAU can be used as a {open_quotes}marker gene{close_quotes} - {open_quotes}marker substrate{close_quotes} combination for PET ([124-I]) or possibly SPECT ([123-I]) imaging.

  7. Performance of cardiac cadmium-zinc-telluride gamma camera imaging in coronary artery disease: a review from the cardiovascular committee of the European Association of Nuclear Medicine (EANM).

    PubMed

    Agostini, Denis; Marie, Pierre-Yves; Ben-Haim, Simona; Rouzet, François; Songy, Bernard; Giordano, Alessandro; Gimelli, Alessia; Hyafil, Fabien; Sciagrà, Roberto; Bucerius, Jan; Verberne, Hein J; Slart, Riemer H J A; Lindner, Oliver; Übleis, Christopher; Hacker, Marcus

    2016-12-01

    The trade-off between resolution and count sensitivity dominates the performance of standard gamma cameras and dictates the need for relatively high doses of radioactivity of the used radiopharmaceuticals in order to limit image acquisition duration. The introduction of cadmium-zinc-telluride (CZT)-based cameras may overcome some of the limitations against conventional gamma cameras. CZT cameras used for the evaluation of myocardial perfusion have been shown to have a higher count sensitivity compared to conventional single photon emission computed tomography (SPECT) techniques. CZT image quality is further improved by the development of a dedicated three-dimensional iterative reconstruction algorithm, based on maximum likelihood expectation maximization (MLEM), which corrects for the loss in spatial resolution due to line response function of the collimator. All these innovations significantly reduce imaging time and result in a lower patient's radiation exposure compared with standard SPECT. To guide current and possible future users of the CZT technique for myocardial perfusion imaging, the Cardiovascular Committee of the European Association of Nuclear Medicine, starting from the experience of its members, has decided to examine the current literature regarding procedures and clinical data on CZT cameras. The committee hereby aims 1) to identify the main acquisitions protocols; 2) to evaluate the diagnostic and prognostic value of CZT derived myocardial perfusion, and finally 3) to determine the impact of CZT on radiation exposure.

  8. Compton Camera and Prompt Gamma Ray Timing: Two Methods for In Vivo Range Assessment in Proton Therapy

    PubMed Central

    Hueso-González, Fernando; Fiedler, Fine; Golnik, Christian; Kormoll, Thomas; Pausch, Guntram; Petzoldt, Johannes; Römer, Katja E.; Enghardt, Wolfgang

    2016-01-01

    Proton beams are promising means for treating tumors. Such charged particles stop at a defined depth, where the ionization density is maximum. As the dose deposit beyond this distal edge is very low, proton therapy minimizes the damage to normal tissue compared to photon therapy. Nevertheless, inherent range uncertainties cast doubts on the irradiation of tumors close to organs at risk and lead to the application of conservative safety margins. This constrains significantly the potential benefits of protons over photons. In this context, several research groups are developing experimental tools for range verification based on the detection of prompt gammas, a nuclear by-product of the proton irradiation. At OncoRay and Helmholtz-Zentrum Dresden-Rossendorf, detector components have been characterized in realistic radiation environments as a step toward a clinical Compton camera. On the one hand, corresponding experimental methods and results obtained during the ENTERVISION training network are reviewed. On the other hand, a novel method based on timing spectroscopy has been proposed as an alternative to collimated imaging systems. The first tests of the timing method at a clinical proton accelerator are summarized, its applicability in a clinical environment for challenging the current safety margins is assessed, and the factors limiting its precision are discussed. PMID:27148473

  9. Reliability of single kidney glomerular filtration rate measured by a 99mTc-DTPA gamma camera technique

    SciTech Connect

    Rehling, M.; Moller, M.L.; Jensen, J.J.; Thamdrup, B.; Lund, J.O.; Trap-Jensen, J.

    1986-01-01

    The reliability of a previously published method for determination of single kidney glomerular filtration rate (SKGFR) by means of technetium-99m-diethylenetriaminepenta-acetate (99mTc-DTPA) gamma camera renography was evaluated. The day-to-day variation in the calculated SKGFR values was earlier found to be 8.8%. The technique was compared to the simultaneously measured renal clearance of inulin in 19 unilaterally nephrectomized patients with GFR varying from 11 to 76 ml/min. The regression line (y = 1.04 X -2.5) did not differ significantly from the line of identity. The standard error of estimate was 4.3 ml/min. In 17 patients the inter- and intraobserver variation of the calculated SKGFR values was 1.2 ml/min and 1.3 ml/min, respectively. In 21 of 25 healthy subjects studied (age range 27-29 years), total GFR calculated from the renograms was within an established age-dependent normal range of GFR.

  10. A CdTe position sensitive detector for a hard X- and gamma-ray wide field camera

    SciTech Connect

    Caroli, E.; Cesare, G. de; Donati, A.; Dusi, W.; Landini, G.; Stephen, J.B.; Perotti, F.

    1998-12-31

    An important region of the electromagnetic spectrum for astrophysics is the hard X- and gamma ray band between 10 keV and a few MeV, where several processes occur in a wide variety of objects and with different spatial distribution and time scales. In order to fulfill the observational requirements in this energy range and taking into account the opportunities given by small/medium size missions (e.g., on the ISS), the authors have proposed a compact, wide field camera based on a thick (1 cm) position sensitive CdTe detector (PSD). The detector is made of an array of 128x96 CdTe microspectrometers with a pixel size of 2x2 mm{sup 2}. The basic element of the PSD is the linear module that is an independent detection unit with 32 CdTe crystals and monolithic front-electronics (ASIC) supported by a thin (300 {micro}m) ceramic layer. The expected performance of the PSD over the operative energy range and some of the required ASIC functionality are presented and discussed.

  11. Evaluation of a gamma camera system for the RITS-6 accelerator using the self-magnetic pinch diode

    NASA Astrophysics Data System (ADS)

    Webb, Timothy J.; Kiefer, Mark L.; Gignac, Raymond; Baker, Stuart A.

    2015-08-01

    The self-magnetic pinch (SMP) diode is an intense radiographic source fielded on the Radiographic Integrated Test Stand (RITS-6) accelerator at Sandia National Laboratories in Albuquerque, NM. The accelerator is an inductive voltage adder (IVA) that can operate from 2-10 MV with currents up to 160 kA (at 7 MV). The SMP diode consists of an annular cathode separated from a flat anode, holding the bremsstrahlung conversion target, by a vacuum gap. Until recently the primary imaging diagnostic utilized image plates (storage phosphors) which has generally low DQE at these photon energies along with other problems. The benefits of using image plates include a high-dynamic range, good spatial resolution, and ease of use. A scintillator-based X-ray imaging system or "gamma camera" has been fielded in front of RITS and the SMP diode which has been able to provide vastly superior images in terms of signal-to-noise with similar resolution and acceptable dynamic range.

  12. Development of an Optical Fiber-Based MR Compatible Gamma Camera for SPECT/MRI Systems

    NASA Astrophysics Data System (ADS)

    Yamamoto, Seiichi; Watabe, Tadashi; Kanai, Yasukazu; Watabe, Hiroshi; Hatazawa, Jun

    2015-02-01

    Optical fiber is a promising material for integrated positron emission tomography (PET) and magnetic resonance imaging (MRI) PET/MRI systems. Because its material is plastic, it has no interference between MRI. However, it is unclear whether this material can also be used for a single photon emission tomography (SPECT)/MRI system. For this purpose, we developed an optical fiber-based block detector for a SPECT/MRI system and tested its performance by combining 1.2 ×1.2 ×6 mm Y2SiO5 (YSO) pixels into a 15 ×15 block and was coupled it to an optical fiber image guide that used was 0.5-mm in diameter with 80-cm long double clad fibers. The image guide had 22 ×22 mm rectangular input and an equal size output. The input of the optical fiber-based image guide was bent at 90 degrees, and the output was optically coupled to a 1-in square high quantum efficiency position sensitive photomultiplier tube (HQE-PSPMT). The parallel hole, 7-mm-thick collimator made of tungsten plastic was mounted on a YSO block. The diameter of the collimator holes was 0.8 mm which was positioned one-to-one coupled to the YSO pixels. We evaluated the intrinsic and system performances. We resolved most of the YSO pixels in a two-dimensional histogram for Co-57 gamma photons (122-keV) with an average peak-to-value ratio of 1.5. The energy resolution was 38% full-width at half-maximum (FWHM). The system resolution was 1.7-mm FWHM, 1.5 mm from the collimator surface, and the sensitivity was 0.06%. Images of a Co-57 point source could be successfully obtained inside 0.3 T MRI without serious interference. We conclude that the developed optical fiber-based YSO block detector is promising for SPECT/MRI systems.

  13. [Evaluation of the efficacy of sentinel node detection in breast cancer: chronological course and influence of the incorporation of an intra-operative portable gamma camera].

    PubMed

    Goñi Gironés, E; Vicente García, F; Serra Arbeloa, P; Estébanez Estébanez, C; Calvo Benito, A; Rodrigo Rincón, I; Camarero Salazar, A; Martínez Lozano, M E

    2013-01-01

    To define the sentinel node identification rate in breast cancer, the chronological evolution of this parameter and the influence of the introduction of a portable gamma camera. A retrospective study was conducted using a prospective database of 754 patients who had undergone a sentinel lymph node biopsy between January 2003 and December 2011. The technique was mixed in the starting period and subsequently was performed with radiotracer intra-peritumorally administered the day before of the surgery. Until October 2009, excision of the sentinel node was guided by a probe. After that date, a portable gamma camera was introduced for intrasurgical detection. The SN was biopsied in 725 out of the 754 patients studied. The resulting technique global effectiveness was 96.2%. In accordance with the year of the surgical intervention, the identification percentage was 93.5% in 2003, 88.7% in 2004, 94.3% in 2005, 95.7% in 2006, 93.3% in 2007, 98.8% in 2008, 97.1% in 2009 and 99.1% in 2010 and 2011. There was a significant difference in the proportion of identification before and after the incorporation of the portable gamma camera of 4.6% (95% CI of the difference 2-7.2%, P = 0.0037). The percentage of global identification exceeds the recommended level following the current guidelines. Chronologically, the improvement for this parameter during the study period has been observed. These data suggest that the incorporation of a portable gamma camera had an important role. Copyright © 2013 Elsevier España, S.L. and SEMNIM. All rights reserved.

  14. Waste reduction efforts through evaluation and procurement of a digital camera system for the Alpha-Gamma Hot Cell Facility at Argonne National Laboratory-East.

    SciTech Connect

    Bray, T. S.; Cohen, A. B.; Tsai, H.; Kettman, W. C.; Trychta, K.

    1999-11-08

    The Alpha-Gamma Hot Cell Facility (AGHCF) at Argonne National Laboratory-East is a research facility where sample examinations involve traditional photography. The AGHCF documents samples with photographs (both Polaroid self-developing and negative film). Wastes generated include developing chemicals. The AGHCF evaluated, procured, and installed a digital camera system for the Leitz metallograph to significantly reduce labor, supplies, and wastes associated with traditional photography with a return on investment of less than two years.

  15. Quantitative investigation of a novel small field of view hybrid gamma camera (HGC) capability for sentinel lymph node detection

    PubMed Central

    Lees, John E; Bugby, Sarah L; Jambi, Layal K; Perkins, Alan C

    2016-01-01

    Objective: The hybrid gamma camera (HGC) has been developed to enhance the localization of radiopharmaceutical uptake in targeted tissues during surgical procedures such as sentinel lymph node (SLN) biopsy. To assess the capability of the HGC, a lymph node contrast (LNC) phantom was constructed to simulate medical scenarios of varying radioactivity concentrations and SLN size. Methods: The phantom was constructed using two clear acrylic glass plates. The SLNs were simulated by circular wells of diameters ranging from 10 to 2.5 mm (16 wells in total) in 1 plate. The second plate contains four larger rectangular wells to simulate tissue background activity surrounding the SLNs. The activity used to simulate each SLN ranged between 4 and 0.025 MBq. The activity concentration ratio between the background and the activity injected in the SLNs was 1 : 10. The LNC phantom was placed at different depths of scattering material ranging between 5 and 40 mm. The collimator-to-source distance was 120 mm. Image acquisition times ranged from 60 to 240 s. Results: Contrast-to-noise ratio analysis and full-width-at-half-maximum (FWHM) measurements of the simulated SLNs were carried out for the images obtained. Over the range of activities used, the HGC detected between 87.5 and 100% of the SLNs through 20 mm of scattering material and 75–93.75% of the SLNs through 40 mm of scattering material. The FWHM of the detected SLNs ranged between 11.93 and 14.70 mm. Conclusion: The HGC is capable of detecting low accumulation of activity in small SLNs, indicating its usefulness as an intraoperative imaging system during surgical SLN procedures. Advances in knowledge: This study investigates the capability of a novel small-field-of-view (SFOV) HGC to detect low activity uptake in small SLNs. The phantom and procedure described are inexpensive and could be easily replicated and applied to any SFOV camera, to provide a comparison between systems with clinically relevant

  16. Monte Carlo simulation of the basic features of the GE Millennium MG single photon emission computed tomography gamma camera.

    PubMed

    Vieira, L; Vaz, T F; Costa, D C; Almeida, P

    2014-01-01

    To describe and validate the simulation of the basic features of GE Millennium MG gamma camera using the GATE Monte Carlo platform. Crystal size and thickness, parallel-hole collimation and a realistic energy acquisition window were simulated in the GATE platform. GATE results were compared to experimental data in the following imaging conditions: a point source of (99m)Tc at different positions during static imaging and tomographic acquisitions using two different energy windows. The accuracy between the events expected and detected by simulation was obtained with the Mann-Whitney-Wilcoxon test. Comparisons were made regarding the measurement of sensitivity and spatial resolution, static and tomographic. Simulated and experimental spatial resolutions for tomographic data were compared with the Kruskal-Wallis test to assess simulation accuracy for this parameter. There was good agreement between simulated and experimental data. The number of decays expected when compared with the number of decays registered, showed small deviation (≤ 0.007%). The sensitivity comparisons between static acquisitions for different distances from source to collimator (1, 5, 10, 20, 30 cm) with energy windows of 126-154 keV and 130-158 keV showed differences of 4.4%, 5.5%, 4.2%, 5.5%, 4.5% and 5.4%, 6.3%, 6.3%, 5.8%, 5.3%, respectively. For the tomographic acquisitions, the mean differences were 7.5% and 9.8% for the energy window 126-154 keV and 130-158 keV. Comparison of simulated and experimental spatial resolutions for tomographic data showed no statistically significant differences with 95% confidence interval. Adequate simulation of the system basic features using GATE Monte Carlo simulation platform was achieved and validated. Copyright © 2013 Elsevier España, S.L. and SEMNIM. All rights reserved.

  17. A comparison of two prompt gamma imaging techniques with collimator-based cameras for range verification in proton therapy

    NASA Astrophysics Data System (ADS)

    Lin, Hsin-Hon; Chang, Hao-Ting; Chao, Tsi-Chian; Chuang, Keh-Shih

    2017-08-01

    In vivo range verification plays an important role in proton therapy to fully utilize the benefits of the Bragg peak (BP) for delivering high radiation dose to tumor, while sparing the normal tissue. For accurately locating the position of BP, camera equipped with collimators (multi-slit and knife-edge collimator) to image prompt gamma (PG) emitted along the proton tracks in the patient have been proposed for range verification. The aim of the work is to compare the performance of multi-slit collimator and knife-edge collimator for non-invasive proton beam range verification. PG imaging was simulated by a validated GATE/GEANT4 Monte Carlo code to model the spot-scanning proton therapy and cylindrical PMMA phantom in detail. For each spot, 108 protons were simulated. To investigate the correlation between the acquired PG profile and the proton range, the falloff regions of PG profiles were fitted with a 3-line-segment curve function as the range estimate. Factors including the energy window setting, proton energy, phantom size, and phantom shift that may influence the accuracy of detecting range were studied. Results indicated that both collimator systems achieve reasonable accuracy and good response to the phantom shift. The accuracy of range predicted by multi-slit collimator system is less affected by the proton energy, while knife-edge collimator system can achieve higher detection efficiency that lead to a smaller deviation in predicting range. We conclude that both collimator systems have potentials for accurately range monitoring in proton therapy. It is noted that neutron contamination has a marked impact on range prediction of the two systems, especially in multi-slit system. Therefore, a neutron reduction technique for improving the accuracy of range verification of proton therapy is needed.

  18. New readout and data-acquisition system in an electron-tracking Compton camera for MeV gamma-ray astronomy (SMILE-II)

    NASA Astrophysics Data System (ADS)

    Mizumoto, T.; Matsuoka, Y.; Mizumura, Y.; Tanimori, T.; Kubo, H.; Takada, A.; Iwaki, S.; Sawano, T.; Nakamura, K.; Komura, S.; Nakamura, S.; Kishimoto, T.; Oda, M.; Miyamoto, S.; Takemura, T.; Parker, J. D.; Tomono, D.; Sonoda, S.; Miuchi, K.; Kurosawa, S.

    2015-11-01

    For MeV gamma-ray astronomy, we have developed an electron-tracking Compton camera (ETCC) as a MeV gamma-ray telescope capable of rejecting the radiation background and attaining the high sensitivity of near 1 mCrab in space. Our ETCC comprises a gaseous time-projection chamber (TPC) with a micro pattern gas detector for tracking recoil electrons and a position-sensitive scintillation camera for detecting scattered gamma rays. After the success of a first balloon experiment in 2006 with a small ETCC (using a 10×10×15 cm3 TPC) for measuring diffuse cosmic and atmospheric sub-MeV gamma rays (Sub-MeV gamma-ray Imaging Loaded-on-balloon Experiment I; SMILE-I), a (30 cm)3 medium-sized ETCC was developed to measure MeV gamma-ray spectra from celestial sources, such as the Crab Nebula, with single-day balloon flights (SMILE-II). To achieve this goal, a 100-times-larger detection area compared with that of SMILE-I is required without changing the weight or power consumption of the detector system. In addition, the event rate is also expected to dramatically increase during observation. Here, we describe both the concept and the performance of the new data-acquisition system with this (30 cm)3 ETCC to manage 100 times more data while satisfying the severe restrictions regarding the weight and power consumption imposed by a balloon-borne observation. In particular, to improve the detection efficiency of the fine tracks in the TPC from 10% to 100%, we introduce a new data-handling algorithm in the TPC. Therefore, for efficient management of such large amounts of data, we developed a data-acquisition system with parallel data flow.

  19. Imaging performance comparison between a LaBr3: Ce scintillator based and a CdTe semiconductor based photon counting compact gamma camera.

    PubMed

    Russo, P; Mettivier, G; Pani, R; Pellegrini, R; Cinti, M N; Bennati, P

    2009-04-01

    The authors report on the performance of two small field of view, compact gamma cameras working in single photon counting in planar imaging tests at 122 and 140 keV. The first camera is based on a LaBr3: Ce scintillator continuous crystal (49 x 49 x 5 mm3) assembled with a flat panel multianode photomultiplier tube with parallel readout. The second one belongs to the class of semiconductor hybrid pixel detectors, specifically, a CdTe pixel detector (14 x 14 x 1 mm3) with 256 x 256 square pixels and a pitch of 55 microm, read out by a CMOS single photon counting integrated circuit of the Medipix2 series. The scintillation camera was operated with selectable energy window while the CdTe camera was operated with a single low-energy detection threshold of about 20 keV, i.e., without energy discrimination. The detectors were coupled to pinhole or parallel-hole high-resolution collimators. The evaluation of their overall performance in basic imaging tasks is presented through measurements of their detection efficiency, intrinsic spatial resolution, noise, image SNR, and contrast recovery. The scintillation and CdTe cameras showed, respectively, detection efficiencies at 122 keV of 83% and 45%, intrinsic spatial resolutions of 0.9 mm and 75 microm, and total background noises of 40.5 and 1.6 cps. Imaging tests with high-resolution parallel-hole and pinhole collimators are also reported.

  20. Simulation study on a stationary data acquisition SPECT system with multi-pinhole collimators attached to a triple-head gamma camera system.

    PubMed

    Ogawa, Koichi; Ichimura, Yuta

    2014-10-01

    The aim of the study was to develop a new SPECT system that makes it possible to acquire projection data stationary using a triple-head gamma camera system. We evaluated several data acquisition geometry with multi-pinhole collimators attached to a triple-head gamma camera system. The number of pinholes for each camera was three to twelve, and we located these holes on collimator plates adequately. These collimator holes were tilted by predefined angles to efficiently cover the field of view of the data acquisition system. Acquired data were reconstructed with the OS-EM method. In the simulations, we used a three-dimensional point source phantom, brain phantom, and myocardial phantom. Attenuation correction was conducted with the x-ray CT image of the corresponding slice. Reconstructed images of the point source phantom showed that the spatial resolution could be improved with the small number of pinholes. On the other hand, reconstructed images of the brain phantom showed that the large number of pinholes yielded images with less artifact. The results of the simulations with the myocardial phantom showed that more than eight pinholes could yield an accurate distribution of activity when the source was distributed only in the myocardium. The results of the simulations confirmed that more than eight pinholes for each detector were required to reconstruct an artifact free image in the triple-head SPECT system for imaging of brain and myocardium.

  1. The added value of a portable gamma camera for intraoperative detection of sentinel lymph node in squamous cell carcinoma of the oral cavity: A case report.

    PubMed

    Mayoral, M; Paredes, P; Sieira, R; Vidal-Sicart, S; Marti, C; Pons, F

    2014-01-01

    The use of sentinel lymph node biopsy in squamous cell carcinoma of the oral cavity is still subject to debate although some studies have reported its feasibility. The main reason for this debate is probably due to the high false-negative rate for floor-of-mouth tumors per se. We report the case of a 54-year-old man with a T1N0 floor-of-mouth squamous cell carcinoma who underwent the sentinel lymph node procedure. Lymphoscintigraphy and SPECT/CT imaging were performed for lymphatic mapping with a conventional gamma camera. Sentinel lymph nodes were identified at right Ib, left IIa and Ia levels. However, these sentinel lymph nodes were difficult to detect intraoperatively with a gamma probe owing to the activity originating from the injection site. The use of a portable gamma camera made it possible to localize and excise all the sentinel lymph nodes. This case demonstrates the usefulness of this tool to improve sentinel lymph node detecting in floor-of-mouth tumors, especially those close to the injection area.

  2. Molecular Breast Imaging: Use of a Dual-Head Dedicated Gamma Camera to Detect Small Breast Tumors

    PubMed Central

    Hruska, Carrie B.; Phillips, Stephen W.; Whaley, Dana H.; Rhodes, Deborah J.; O’Connor, Michael K.

    2014-01-01

    OBJECTIVE Molecular breast imaging with a single-head cadmium zinc telluride (CZT) gamma camera has previously been shown to have good sensitivity for the detection of small lesions. To further improve sensitivity, we developed a dual-head molecular breast imaging system using two CZT detectors to simultaneously acquire opposing breast views and reduce lesion-to-detector distance. We determined the incremental gain in sensitivity of molecular breast imaging with dual detectors. SUBJECTS AND METHODS Patients with BI-RADS category 4 or 5 lesions < 2 cm that were identified on mammography or sonography and scheduled for biopsy underwent molecular breast imaging as follows: After injection of 740 MBq of technetium-99m (99mTc) sestamibi, 10-minute craniocaudal and mediolateral oblique views of each breast were acquired. Blinded reviews were performed using images from both detectors 1 and 2 and images from detector 1 only (simulating a single-head system). Lesions were scored on a scale of 1–5; 2 or higher was considered positive. RESULTS Of the 150 patients in the study, 128 cancers were confirmed in 88 patients. Averaging the results from the three blinded readers, the sensitivity of dual-head molecular breast imaging was 90% (115/128), whereas the sensitivity from review of only single-head molecular breast imaging was 80% (102/128). The sensitivity for the detection of cancers ≤ 10 mm in diameter was 82% (50/61) for dual-head molecular breast imaging and 68% (41/61) for single-head molecular breast imaging. On average, 13 additional cancers were seen on dual-head images and the tumor uptake score increased by 1 or more in 60% of the identified tumors. CONCLUSION Gains in sensitivity with the dual-head system molecular breast imaging are partially due to increased confidence in lesion detection. Molecular breast imaging can reliably detect breast lesions < 2 cm and dual-head molecular breast imaging can significantly increase sensitivity for subcentimeter lesions

  3. Evaluation of list-mode ordered subset expectation maximization image reconstruction for pixelated solid-state compton gamma camera with large number of channels

    NASA Astrophysics Data System (ADS)

    Kolstein, M.; De Lorenzo, G.; Chmeissani, M.

    2014-04-01

    The Voxel Imaging PET (VIP) Pathfinder project intends to show the advantages of using pixelated solid-state technology for nuclear medicine applications. It proposes designs for Positron Emission Tomography (PET), Positron Emission Mammography (PEM) and Compton gamma camera detectors with a large number of signal channels (of the order of 106). For Compton camera, especially with a large number of readout channels, image reconstruction presents a big challenge. In this work, results are presented for the List-Mode Ordered Subset Expectation Maximization (LM-OSEM) image reconstruction algorithm on simulated data with the VIP Compton camera design. For the simulation, all realistic contributions to the spatial resolution are taken into account, including the Doppler broadening effect. The results show that even with a straightforward implementation of LM-OSEM, good images can be obtained for the proposed Compton camera design. Results are shown for various phantoms, including extended sources and with a distance between the field of view and the first detector plane equal to 100 mm which corresponds to a realistic nuclear medicine environment.

  4. BrachyView: proof-of-principle of a novel in-body gamma camera for low dose-rate prostate brachytherapy.

    PubMed

    Petasecca, M; Loo, K J; Safavi-Naeini, M; Han, Z; Metcalfe, P E; Meikle, S; Pospisil, S; Jakubek, J; Bucci, J A; Zaider, M; Lerch, M L F; Qi, Y; Rosenfeld, A B

    2013-04-01

    The conformity of the achieved dose distribution to the treatment plan strongly correlates with the accuracy of seed implantation in a prostate brachytherapy treatment procedure. Incorrect seed placement leads to both short and long term complications, including urethral and rectal toxicity. The authors present BrachyView, a novel concept of a fast intraoperative treatment planning system, to provide real-time seed placement information based on in-body gamma camera data. BrachyView combines the high spatial resolution of a pixellated silicon detector (Medipix2) with the volumetric information acquired by a transrectal ultrasound (TRUS). The two systems will be embedded in the same probe so as to provide anatomically correct seed positions for intraoperative planning and postimplant dosimetry. Dosimetric calculations are based on the TG-43 method using the real position of the seeds. The purpose of this paper is to demonstrate the feasibility of BrachyView using the Medipix2 pixel detector and a pinhole collimator to reconstruct the real-time 3D position of low dose-rate brachytherapy seeds in a phantom. BrachyView incorporates three Medipix2 detectors coupled to a multipinhole collimator. Three-dimensionally triangulated seed positions from multiple planar images are used to determine the seed placement in a PMMA prostate phantom in real time. MATLAB codes were used to test the reconstruction method and to optimize the device geometry. The results presented in this paper show a 3D position reconstruction accuracy of the seed in the range of 0.5-3 mm for a 10-60 mm seed-to-detector distance interval (Z direction), respectively. The BrachyView system also demonstrates a spatial resolution of 0.25 mm in the XY plane for sources at 10 mm distance from Medipix2 detector plane, comparable to the theoretical value calculated for an equivalent gamma camera arrangement. The authors successfully demonstrated the capability of BrachyView for real-time imaging (using a 3 s

  5. Electronics for the camera of the First G-APD Cherenkov Telescope (FACT) for ground based gamma-ray astronomy

    NASA Astrophysics Data System (ADS)

    Anderhub, H.; Backes, M.; Biland, A.; Boller, A.; Braun, I.; Bretz, T.; Commichau, V.; Djambazov, L.; Dorner, D.; Farnier, C.; Gendotti, A.; Grimm, O.; von Gunten, H. P.; Hildebrand, D.; Horisberger, U.; Huber, B.; Kim, K.-S.; Köhne, J.-H.; Krähenbühl, T.; Krumm, B.; Lee, M.; Lenain, J.-P.; Lorenz, E.; Lustermann, W.; Lyard, E.; Mannheim, K.; Meharga, M.; Neise, D.; Nessi-Tedaldi, F.; Overkemping, A.-K.; Pauss, F.; Renker, D.; Rhode, W.; Ribordy, M.; Rohlfs, R.; Röser, U.; Stucki, J.-P.; Thaele, J.; Tibolla, O.; Viertel, G.; Vogler, P.; Walter, R.; Warda, K.; Weitzel, Q.

    2012-01-01

    Within the FACT project, we construct a new type of camera based on Geiger-mode avalanche photodiodes (G-APDs). Compared to photomultipliers, G-APDs are more robust, need a lower operation voltage and have the potential of higher photon-detection efficiency and lower cost, but were never fully tested in the harsh environments of Cherenkov telescopes. The FACT camera consists of 1440 G-APD pixels and readout channels, based on the DRS4 (Domino Ring Sampler) analog pipeline chip and commercial Ethernet components. Preamplifiers, trigger system, digitization, slow control and power converters are integrated into the camera.

  6. Imaging performance comparison between a LaBr{sub 3}:Ce scintillator based and a CdTe semiconductor based photon counting compact gamma camera

    SciTech Connect

    Russo, P.; Mettivier, G.; Pani, R.; Pellegrini, R.; Cinti, M. N.; Bennati, P.

    2009-04-15

    The authors report on the performance of two small field of view, compact gamma cameras working in single photon counting in planar imaging tests at 122 and 140 keV. The first camera is based on a LaBr{sub 3}:Ce scintillator continuous crystal (49x49x5 mm{sup 3}) assembled with a flat panel multianode photomultiplier tube with parallel readout. The second one belongs to the class of semiconductor hybrid pixel detectors, specifically, a CdTe pixel detector (14x14x1 mm{sup 3}) with 256x256 square pixels and a pitch of 55 {mu}m, read out by a CMOS single photon counting integrated circuit of the Medipix2 series. The scintillation camera was operated with selectable energy window while the CdTe camera was operated with a single low-energy detection threshold of about 20 keV, i.e., without energy discrimination. The detectors were coupled to pinhole or parallel-hole high-resolution collimators. The evaluation of their overall performance in basic imaging tasks is presented through measurements of their detection efficiency, intrinsic spatial resolution, noise, image SNR, and contrast recovery. The scintillation and CdTe cameras showed, respectively, detection efficiencies at 122 keV of 83% and 45%, intrinsic spatial resolutions of 0.9 mm and 75 {mu}m, and total background noises of 40.5 and 1.6 cps. Imaging tests with high-resolution parallel-hole and pinhole collimators are also reported.

  7. Glomerular filtration rate in adults estimated from 123iodine-hippuran and 99mtechnetium-diethylenetriaminepenta-acetic acid gamma camera renography.

    PubMed

    Carlsen, O; Nathan, E

    1988-08-01

    In a retrospective study a close relationship was found between the rate constant for renal clearance of the radioactive indicator (lambda pk) and the glomerular filtration rate (GFR) measured by 51Cr-EDTA plasma clearance. The material comprised eighteen adult subjects submitted to 123I-hippuran gamma camera renography (IHGR) and twenty-two adult subjects to 99mTc-DTPA gamma camera renography (TDGR). The rate constant was calculated from a bi-exponential decomposition of the activity-time curve recorded within a small region of interest over the left ventricle. The total cleared renal fraction (TCRF) of the cardiac output with respect to the radioactive indicator has previously been shown to be closely related to GFR. A pooled estimate of GFR (GFRp) was calculated from the stochastically independent estimates of GFR based on lambda pk and TCRF. The comparison of GFRp with measured GFR was satisfactory and yielded substantially smaller standard deviations (SD) of GFRp than estimates based on lambda pk and TCRF separately. The standard deviations of GFRp were about 7 and 12 ml/min/1.73 m2 in IHGR for GFR equal to 50 and 100 ml/min/1.73 m2, respectively. The corresponding SD in TDGR were about 7 and 11 ml/min/1.73 m2. These standard deviations are sufficiently small for many clinical purposes and the method requires no blood samples or urine collections.

  8. Initial evaluation of a modified dual-energy window scatter correction method for CZT-based gamma cameras for breast SPECT

    NASA Astrophysics Data System (ADS)

    Mann, Steve D.; Tornai, Martin P.

    2015-03-01

    Solid state Cadmium Zinc Telluride (CZT) gamma cameras for SPECT imaging offer significantly improved energy resolution compared to traditional scintillation detectors. However, the photopeak resolution is often asymmetric due to incomplete charge collection within the detector, resulting in many photopeak events incorrectly sorted into lower energy bins ("tailing"). These misplaced events contaminate the true scatter signal, which may negatively impact scatter correction methods that rely on estimates of scatter from the spectra. Additionally, because CZT detectors are organized into arrays, each individual detector element may exhibit different degrees of tailing. Here, we present a modified dualenergy window scatter correction method for emission detection and imaging that attempts to account for positiondependent effects of incomplete charge collection in the CZT gamma camera of our dedicated breast SPECT-CT system. Point source measurements and geometric phantoms were used to estimate the impact of tailing on the scatter signal and extract a better estimate of the ratio of scatter within two energy windows. To evaluate the method, cylindrical phantoms with and without a separate fillable chamber were scanned to determine the impact on quantification in hot, cold, and uniform background regions. Projections were reconstructed using OSEM, and the results for the traditional and modified scatter correction methods were compared. Results show that while modest reduced quantification accuracy was observed in hot and cold regions of the multi-chamber phantoms, the modified scatter correction method yields up to 8% improved quantification accuracy with 4% less added noise than the traditional DEW method within uniform background regions.

  9. Towards clinical application: prompt gamma imaging of passively scattered proton fields with a knife-edge slit camera

    NASA Astrophysics Data System (ADS)

    Priegnitz, M.; Barczyk, S.; Nenoff, L.; Golnik, C.; Keitz, I.; Werner, T.; Mein, S.; Smeets, J.; Vander Stappen, F.; Janssens, G.; Hotoiu, L.; Fiedler, F.; Prieels, D.; Enghardt, W.; Pausch, G.; Richter, C.

    2016-11-01

    Prompt γ-ray imaging with a knife-edge shaped slit camera provides the possibility of verifying proton beam range in tumor therapy. Dedicated experiments regarding the characterization of the camera system have been performed previously. Now, we aim at implementing the prototype into clinical application of monitoring patient treatments. Focused on this goal of translation into clinical operation, we systematically addressed remaining challenges and questions. We developed a robust energy calibration routine and corresponding quality assurance protocols. Furthermore, with dedicated experiments, we determined the positioning precision of the system to 1.1 mm (2σ). For the first time, we demonstrated the application of the slit camera, which was intentionally developed for pencil beam scanning, to double scattered proton beams. Systematic experiments with increasing complexity were performed. It was possible to visualize proton range shifts of 2-5 mm with the camera system in phantom experiments in passive scattered fields. Moreover, prompt γ-ray profiles for single iso-energy layers were acquired by synchronizing time resolved measurements to the rotation of the range modulator wheel of the treatment system. Thus, a mapping of the acquired profiles to different anatomical regions along the beam path is feasible and additional information on the source of potential range shifts can be obtained. With the work presented here, we show that an application of the slit camera in clinical treatments is possible and of potential benefit.

  10. Towards clinical application: prompt gamma imaging of passively scattered proton fields with a knife-edge slit camera.

    PubMed

    Priegnitz, M; Barczyk, S; Nenoff, L; Golnik, C; Keitz, I; Werner, T; Mein, S; Smeets, J; Vander Stappen, F; Janssens, G; Hotoiu, L; Fiedler, F; Prieels, D; Enghardt, W; Pausch, G; Richter, C

    2016-11-21

    Prompt γ-ray imaging with a knife-edge shaped slit camera provides the possibility of verifying proton beam range in tumor therapy. Dedicated experiments regarding the characterization of the camera system have been performed previously. Now, we aim at implementing the prototype into clinical application of monitoring patient treatments. Focused on this goal of translation into clinical operation, we systematically addressed remaining challenges and questions. We developed a robust energy calibration routine and corresponding quality assurance protocols. Furthermore, with dedicated experiments, we determined the positioning precision of the system to 1.1 mm (2σ). For the first time, we demonstrated the application of the slit camera, which was intentionally developed for pencil beam scanning, to double scattered proton beams. Systematic experiments with increasing complexity were performed. It was possible to visualize proton range shifts of 2-5 mm with the camera system in phantom experiments in passive scattered fields. Moreover, prompt γ-ray profiles for single iso-energy layers were acquired by synchronizing time resolved measurements to the rotation of the range modulator wheel of the treatment system. Thus, a mapping of the acquired profiles to different anatomical regions along the beam path is feasible and additional information on the source of potential range shifts can be obtained. With the work presented here, we show that an application of the slit camera in clinical treatments is possible and of potential benefit.

  11. A compact, discrete CsI(Tl) scintillator/Si photodiode gamma camera for breast cancer imaging

    SciTech Connect

    Gruber, Gregory J.

    2000-01-01

    Recent clinical evaluations of scintimammography (radionuclide breast imaging) are promising and suggest that this modality may prove a valuable complement to X-ray mammography and traditional breast cancer detection and diagnosis techniques. Scintimammography, however, typically has difficulty revealing tumors that are less than 1 cm in diameter, are located in the medial part of the breast, or are located in the axillary nodes. These shortcomings may in part be due to the use of large, conventional Anger cameras not optimized for breast imaging. In this thesis I present compact single photon camera technology designed specifically for scintimammography which strives to alleviate some of these limitations by allowing better and closer access to sites of possible breast tumors. Specific applications are outlined. The design is modular, thus a camera of the desired size and geometry can be constructed from an array (or arrays) of individual modules and a parallel hole lead collimator for directional information. Each module consists of: (1) an array of 64 discrete, optically-isolated CsI(Tl) scintillator crystals 3 x 3 x 5 mm3 in size, (2) an array of 64 low-noise Si PIN photodiodes matched 1-to-1 to the scintillator crystals, (3) an application-specific integrated circuit (ASIC) that amplifies the 64 photodiode signals and selects the signal with the largest amplitude, and (4) connectors and hardware for interfacing the module with a motherboard, thereby allowing straightforward computer control of all individual modules within a camera.

  12. Microchannel plate streak camera

    DOEpatents

    Wang, Ching L.

    1989-01-01

    An improved streak camera in which a microchannel plate electron multiplier is used in place of or in combination with the photocathode used in prior streak cameras. The improved streak camera is far more sensitive to photons (UV to gamma-rays) than the conventional x-ray streak camera which uses a photocathode. The improved streak camera offers gamma-ray detection with high temporal resolution. It also offers low-energy x-ray detection without attenuation inside the cathode. Using the microchannel plate in the improved camera has resulted in a time resolution of about 150 ps, and has provided a sensitivity sufficient for 1000 KeV x-rays.

  13. Microchannel plate streak camera

    DOEpatents

    Wang, C.L.

    1984-09-28

    An improved streak camera in which a microchannel plate electron multiplier is used in place of or in combination with the photocathode used in prior streak cameras. The improved streak camera is far more sensitive to photons (uv to gamma-rays) than the conventional x-ray streak camera which uses a photocathode. The improved streak camera offers gamma-ray detection with high temporal resolution. It also offers low-energy x-ray detection without attenuation inside the cathode. Using the microchannel plate in the improved camera has resulted in a time resolution of about 150 ps, and has provided a sensitivity sufficient for 1000 keV x-rays.

  14. Microchannel plate streak camera

    DOEpatents

    Wang, C.L.

    1989-03-21

    An improved streak camera in which a microchannel plate electron multiplier is used in place of or in combination with the photocathode used in prior streak cameras is disclosed. The improved streak camera is far more sensitive to photons (UV to gamma-rays) than the conventional x-ray streak camera which uses a photocathode. The improved streak camera offers gamma-ray detection with high temporal resolution. It also offers low-energy x-ray detection without attenuation inside the cathode. Using the microchannel plate in the improved camera has resulted in a time resolution of about 150 ps, and has provided a sensitivity sufficient for 1,000 KeV x-rays. 3 figs.

  15. The intraoperative use of the mini-gamma camera (MGC) in the surgical treatment of primary hyperparathyroidism: Technical reports and immediate results from the initial experience.

    PubMed

    Scerrino, Gregorio; Castorina, Serena; Melfa, Giuseppina Irene; Lo Piccolo, Clotilde; Raspanti, Cristina; Richiusa, Pierina; Costa, Renato Patrizio; Gulotta, Gaspare

    2015-01-01

    Il trattamento dell’iperparatiroidismo primario è quasi esclusivamente chirurgico e consiste nell’esplorazione sistematica delle quattro ghiandole con asportazione di quella( e) patologica(e). Le più moderne tecniche di diagnosi (ecotomografia, scintigrafia 99 mTc sestamibi), migliorando le possibilità di individuare la ghiandola responsabile della malattia, consentono l’esecuzione di tecniche miniinvasive quando vi è concordanza tra i risultati delle due tecniche, ma la sensibilità di tali indagini è inficiata dalle ectopie ghiandolari, da paratiroidi intratiroidee, da malattia multighiandolare o dalla contemporanea presenza di malattie tiroidee. Il presente studio illustra una nuova tecnica di imaging scintigrafico intraoperatorio ed indaga sulla sua possibilità di migliorare la localizzazione intraoperatoria della paratiroide patologica. A tal fine, 5 pazienti sono state sottoposte a tale metodica, tutte trattate con paratiroidectomia previa esplorazione completa delle quattro ghiandole con tecnica tradizionale, con monitoraggio intraoperatorio del paratormone. Alla tecnica convenzionale è stato aggiunto l’impiego della gamma camera intraoperatoria. Abbiamo valutato la concordanza dei risultati di tale esame con i dati dell’esplorazione chirurgica e con il dosaggio intraoperatorio del paratormone. In tutte e 5 le pazienti si è osservata una perfetta concordanza tra la localizzazione della ghiandola patologica con la scintigrafia intraoperatoria e l’esplorazione chirurgica, ed il dosaggio intraoperatorio del paratormone ha confermato i dati. Anche il follow-up ad un mese ha confermato l’eradicazione della malattia. La gamma camera intraoperatoria sembra quindi poter migliorare le possibilità di localizzazione della ghiandola responsabile dell’iperparati-roidismo primario, favorendo l’impiego di tecniche mini-invasive e migliorando i risultati dinanzi a casi “difficili”.

  16. The Italian multicentre dosimetric study for lesion dosimetry in (223)Ra therapy of bone metastases: Calibration protocol of gamma cameras and patient eligibility criteria.

    PubMed

    Pacilio, Massimiliano; Cassano, Bartolomeo; Chiesa, Carlo; Giancola, Stefano; Ferrari, Mahila; Pettinato, Cinzia; Amato, Ernesto; Fioroni, Federica; Lorenzon, Leda; Pellegrini, Rosanna; Di Castro, Elisabetta; Pani, Roberto; Cremonesi, Marta

    2016-12-01

    The aims of this work were to explore patient eligibility criteria for dosimetric studies in (223)Ra therapy and evaluate the effects of differences in gamma camera calibration procedures into activity quantification. Calibrations with (223)Ra were performed with four gamma cameras (3/8-inch crystal) acquiring planar static images with double-peak (82 and 154keV, 20% wide) and MEGP collimator. The sensitivity was measured in air by varying activity, source-detector distance, and source diameter. Transmission curves were measured for attenuation/scatter correction with the pseudo-extrapolation number method, varying the experimental setup. (223)Ra images of twenty-five patients (69 lesions) were acquired to study the lesions visibility. Univariate ROC analysis was performed considering visible/non visible lesions on (223)Ra images as true positive/true negative group, and using as score value the lesion/soft tissue contrast ratio (CR) derived from (99m)Tc-MDP WB scan. Sensitivity was nearly constant varying activity and distance (maximum s.d.=2%). Partial volume effects were negligible for object area ⩾960mm(2). Transmission curve measurements are affected by experimental setup and source size, leading to activity quantification errors up to 20%. The ROC analysis yielded an AUC of 0.972 and an optimal threshold of CR of 10, corresponding to an accuracy of 92%. The minimum calibration protocol requires sensitivity and transmission curve measurements varying the object size, performing a careful procedure standardisation. Lesions with (99m)Tc-MDP CR higher than 10, not overlapping the GI tract, are generally visible on (223)Ra images acquired at 24h after the administration, and possibly eligible for dosimetric studies. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  17. Experimental evaluation of a multi-pinhole collimator for a small organ by using a small-field-of-view gamma camera

    NASA Astrophysics Data System (ADS)

    Bae, Jaekeon; Bae, Seungbin; Jung, Young-Jun; Lee, Kisung; Kim, Yongkwon; Joung, Jinhun; Kim, Kyeong Min; Kim, Hee-Joung

    2017-02-01

    The aim of this study is to design and evaluate a multi-pinhole (MP) collimator for a gamma imaging system that requires a high sensitivity, organ-specific, and small footprint. To ensure these requirements, we designed an eight-hole collimator that can be integrated into a small field-of-view gamma camera for imaging the thyroid or relatively sized organs. Each pinhole was designed to have a cylindrical shape with a 2-mm diameter. Experiments were performed with both a two-sphere phantom and a four-rod phantom. An image reconstruction based on the maximum likelihood expectation maximization with the distance-driven method was used for obtaining a 3-dimensional image. For improving the uniformity of the reconstruction image, we modeled the sensitivity of the cylindrical pinhole by calculating the area of the overlapped circle. The results show that the full width at half maximum values of the two-sphere phantom and the four-rod phantom were 7.56 mm (5-mm-diameter source) and 6.84 mm (5-mm-diameter rod), respectively. The scanning time can be reduced by up to 20 minutes in small-organ applications by using developed MP collimator. Thus, the results indicate that the proposed MP collimator is suitable for a fast scan time, as well as for organ-specific and small-footprint applications.

  18. High-resolution mini gamma camera for diagnosis and radio-guided surgery in diabetic foot infection

    NASA Astrophysics Data System (ADS)

    Scopinaro, F.; Capriotti, G.; Di Santo, G.; Capotondi, C.; Micarelli, A.; Massari, R.; Trotta, C.; Soluri, A.

    2006-12-01

    The diagnosis of diabetic foot osteomyelitis is often difficult. 99mTc-WBC (White Blood Cell) scintigraphy plays a key role in the diagnosis of bone infections. Spatial resolution of Anger camera is not always able to differentiate soft tissue from bone infection. Aim of present study is to verify if HRD (High-Resolution Detector) is able to improve diagnosis and to help surgery. Patients were studied by HRD showing 25.7×25.7 mm 2 FOV, 2 mm spatial resolution and 18% energy resolution. The patients were underwent to surgery and, when necessary, bone biopsy, both guided by HRD. Four patients were positive at Anger camera without specific signs of osteomyelitis. HRS (High-Resolution Scintigraphy) showed hot spots in the same patients. In two of them the hot spot was bar-shaped and it was localized in correspondence of the small phalanx. The presence of bone infection was confirmed at surgery, which was successfully guided by HRS. 99mTc-WBC HRS was able to diagnose pedal infection and to guide the surgery of diabetic foot, opening a new way in the treatment of infected diabetic foot.

  19. Imaging Polarimeter for a Sub-MeV Gamma-Ray All-sky Survey Using an Electron-tracking Compton Camera

    NASA Astrophysics Data System (ADS)

    Komura, S.; Takada, A.; Mizumura, Y.; Miyamoto, S.; Takemura, T.; Kishimoto, T.; Kubo, H.; Kurosawa, S.; Matsuoka, Y.; Miuchi, K.; Mizumoto, T.; Nakamasu, Y.; Nakamura, K.; Oda, M.; Parker, J. D.; Sawano, T.; Sonoda, S.; Tanimori, T.; Tomono, D.; Yoshikawa, K.

    2017-04-01

    X-ray and gamma-ray polarimetry is a promising tool to study the geometry and the magnetic configuration of various celestial objects, such as binary black holes or gamma-ray bursts (GRBs). However, statistically significant polarizations have been detected in few of the brightest objects. Even though future polarimeters using X-ray telescopes are expected to observe weak persistent sources, there are no effective approaches to survey transient and serendipitous sources with a wide field of view (FoV). Here we present an electron-tracking Compton camera (ETCC) as a highly sensitive gamma-ray imaging polarimeter. The ETCC provides powerful background rejection and a high modulation factor over an FoV of up to 2π sr thanks to its excellent imaging based on a well-defined point-spread function. Importantly, we demonstrated for the first time the stability of the modulation factor under realistic conditions of off-axis incidence and huge backgrounds using the SPring-8 polarized X-ray beam. The measured modulation factor of the ETCC was 0.65 ± 0.01 at 150 keV for an off-axis incidence with an oblique angle of 30° and was not degraded compared to the 0.58 ± 0.02 at 130 keV for on-axis incidence. These measured results are consistent with the simulation results. Consequently, we found that the satellite-ETCC proposed in Tanimori et al. would provide all-sky surveys of weak persistent sources of 13 mCrab with 10% polarization for a 107 s exposure and over 20 GRBs down to a 6 × 10-6 erg cm-2 fluence and 10% polarization during a one-year observation.

  20. Application of Two Phase (Liquid/Gas) Xenon Gamma-Camera for the Detection of Special Nuclear Material and PET Medical Imaging

    SciTech Connect

    McKinsey, Daniel Nicholas

    2013-08-27

    The McKinsey group at Yale has been awarded a grant from DTRA for the building of a Liquid Xenon Gamma Ray Color Camera (LXe-GRCC), which combines state-of-the-art detection of LXe scintillation light and time projection chamber (TPC) charge readout. The DTRA application requires a movable detector and hence only a single phase (liquid) xenon detector can be considered in this case. We propose to extend the DTRA project to applications that allow a two phase (liquid/gas) xenon TPC. This entails additional (yet minimal) hardware and extension of the research effort funded by DTRA. The two phase detector will have better energy and angular resolution. Such detectors will be useful for PET medical imaging and detection of special nuclear material in stationary applications (e.g. port of entry). The expertise of the UConn group in gas phase TPCs will enhance the capabilities of the Yale group and the synergy between the two groups will be very beneficial for this research project as well as the education and research projects of the two universities. The LXe technology to be used in this project has matured rapidly over the past few years, developed for use in detectors for nuclear physics and astrophysics. This technology may now be applied in a straightforward way to the imaging of gamma rays. According to detailed Monte Carlo simulations recently performed at Yale University, energy resolution of 1% and angular resolution of 3 degrees may be obtained for 1.0 MeV gamma rays, using existing technology. With further research and development, energy resolution of 0.5% and angular resolution of 1.3 degrees will be possible at 1.0 MeV. Because liquid xenon is a high density, high Z material, it is highly efficient for scattering and capturing gamma rays. In addition, this technology scales elegantly to large detector areas, with several square meter apertures possible. The Yale research group is highly experienced in the development and use of noble liquid detectors for

  1. Development of a 32-detector CdTe matrix for the SVOM ECLAIRs x/gamma camera: tests results of first flight models

    NASA Astrophysics Data System (ADS)

    Lacombe, K.; Dezalay, J.-P.; Houret, B.; Amoros, C.; Atteia, J.-L.; Aubaret, K.; Billot, M.; Bordon, S.; Cordier, B.; Delaigue, S.; Galliano, M.; Gevin, O.; Godet, O.; Gonzalez, F.; Guillemot, Ph.; Limousin, O.; Mercier, K.; Nasser, G.; Pons, R.; Rambaud, D.; Ramon, P.; Waegebaert, V.

    2016-07-01

    ECLAIRs, a 2-D coded-mask imaging camera on-board the Sino-French SVOM space mission, will detect and locate gamma-ray bursts in near real time in the 4 - 150 keV energy band in a large field of view. The design of ECLAIRs has been driven by the objective to reach an unprecedented low-energy threshold of 4 keV. The detection plane is an assembly of 6400 Schottky CdTe detectors of size 4x4x1 mm3, biased from -200V to -500V and operated at -20°C. The low-energy threshold is achieved thanks to an innovative hybrid module composed of a thick film ceramic holding 32 CdTe detectors ("Detectors Ceramics"), associated to an HTCC ceramic housing a low-noise 32-channel ASIC ("ASIC Ceramics"). We manage the coupling between Detectors Ceramics and ASIC Ceramics in order to achieve the best performance and ensure the uniformity of the detection plane. In this paper, we describe the complete hybrid XRDPIX, of which 50 flight models have been manufactured by the SAGEM company. Afterwards, we show test results obtained on Detectors Ceramics, on ASIC Ceramics and on the modules once assembled. Then, we compare and confront detectors leakage currents and ASIC ENC with the energy threshold values and FWHM measured on XRDPIX modules at the temperature of -20°C by using a calibrated radioactive source of 241Am. Finally, we study the homogeneity of the spectral properties of the 32-detector hybrid matrices and we conclude on general performance of more than 1000 detection channels which may reach the lowenergy threshold of 4 keV required for the future ECLAIRs space camera.

  2. A PHANTOM FOR DETERMINATION OF CALIBRATION COEFFICIENTS AND MINIMUM DETECTABLE ACTIVITIES USING A DUAL-HEAD GAMMA CAMERA FOR INTERNAL CONTAMINATION MONITORING FOLLOWING RADIATION EMERGENCY SITUATIONS.

    PubMed

    Ören, Ünal; Andersson, Martin; Rääf, Christopher L; Mattsson, Sören

    2016-06-01

    The purpose of this study was to derive calibration coefficients (in terms of cps kBq(-1)) and minimum detectable activities, MDA, (in terms of kBq and corresponding dose rate) for the dual head gamma camera part of an SPECT/CT-instrument when used for in vivo internal contamination measurements in radiation emergency situations. A cylindrical-conical PMMA phantom with diameters in the range of 7-30 cm was developed in order to simulate different body parts and individuals of different sizes. A series of planar gamma camera investigations were conducted using an SPECT/CT modality with the collimators removed for (131)I and (137)Cs, radionuclides potentially associated with radiation emergencies. Energy windows of 337-391 and 490-690 keV were selected for (131)I and (137)Cs, respectively. The measurements show that the calibration coefficients for (137)Cs range from 10 to 19 cps kBq(-1) with MDA values in the range of 0.29-0.55 kBq for phantom diameters of 10-30 cm. The corresponding values for (131)I are 12-37 cps kBq(-1) with MDA values of 0.08-0.26 kBq. An internal dosimetry computer program was used for the estimation of minimum detectable dose rates. A thyroid uptake of 0.1 kBq (131)I (representing MDA) corresponds to an effective dose rate of 0.6 µSv d(-1) A (137)Cs source position representing the colon with an MDA of 0.55 kBq corresponds to an effective dose rate was 1 µSv y(-1) This method using a simple phantom for the determination of calibration coefficients, and MDA levels can be implemented within the emergency preparedness plans in hospitals with nuclear medicine departments. The derived data will help to quickly estimate the internal contamination of humans following radiation emergencies. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Traffic camera system development

    NASA Astrophysics Data System (ADS)

    Hori, Toshi

    1997-04-01

    The intelligent transportation system has generated a strong need for the development of intelligent camera systems to meet the requirements of sophisticated applications, such as electronic toll collection (ETC), traffic violation detection and automatic parking lot control. In order to achieve the highest levels of accuracy in detection, these cameras must have high speed electronic shutters, high resolution, high frame rate, and communication capabilities. A progressive scan interline transfer CCD camera, with its high speed electronic shutter and resolution capabilities, provides the basic functions to meet the requirements of a traffic camera system. Unlike most industrial video imaging applications, traffic cameras must deal with harsh environmental conditions and an extremely wide range of light. Optical character recognition is a critical function of a modern traffic camera system, with detection and accuracy heavily dependent on the camera function. In order to operate under demanding conditions, communication and functional optimization is implemented to control cameras from a roadside computer. The camera operates with a shutter speed faster than 1/2000 sec. to capture highway traffic both day and night. Consequently camera gain, pedestal level, shutter speed and gamma functions are controlled by a look-up table containing various parameters based on environmental conditions, particularly lighting. Lighting conditions are studied carefully, to focus only on the critical license plate surface. A unique light sensor permits accurate reading under a variety of conditions, such as a sunny day, evening, twilight, storms, etc. These camera systems are being deployed successfully in major ETC projects throughout the world.

  4. WE-EF-303-07: Imaging of Prompt Gamma Rays Emitted During Delivery of Clinical Proton Beams with a Compton Camera: Feasibility Studies for Range Verification

    SciTech Connect

    Polf, J; Avery, S; Mackin, D; Beddar, S

    2015-06-15

    Purpose: Evaluation of a prototype Compton camera (CC) for imaging prompt gamma rays (PG) emitted during clinical proton beam irradiation for in vivo beam range verification. Methods: We irradiated a water phantom with 114 MeV and 150 MeV proton pencil beams at clinical beam currents ranging from 1 nA up to 5 nA. The CC was placed 15 cm from the beam central axis and PGs from 0.2 MeV up to 6.5 MeV were measured during irradiation. From the measured data, 2-dimensional (2D) PG images were reconstructed. One-dimensional (1D) profiles from the PG images were compared to measured depth dose curves. Results: The CC was able to measure PG emission during delivery of both a single 150 MeV pencil beam and a 5 cm x 5 cm mono-energetic layer of 114 MeV pencil beams. From the 2D images, a strong correlation was seen between the depth of the distal falloff of PG emission and the Bragg peak (BP). 1D profiles extracted from the PG images show that the distal 60% falloff of the PG emission lined up well with the distal 90% of the BP. Shifts as small as 3 mm in the beam range could be detected on both the 2D PG images and 1D profiles with an uncertainty of 1.5 mm. With the current CC prototype, a minimum dose delivery of 400 cGy was required to produce usable PG images. Conclusions: It was possible to measure and image PG emission with our prototype CC during proton beam delivery and to detect shifts in the BP range in the images. Therefore prompt gamma imaging with a CC for the purpose of in vivo range verification is feasible. However, for the studied system improvements in detector efficiency and reconstruction algorithms are necessary to make it clinically viable.

  5. Development of a 32-detector CdTe matrix for the SVOM ECLAIRs X/Gamma camera: Preliminary results

    NASA Astrophysics Data System (ADS)

    Lacombe, K.; Nasser, G.; Amoros, C.; Atteia, J.-L.; Barret, D.; Billot, M.; Cordier, B.; Gevin, O.; Godet, O.; Gonzalez, F.; Houret, B.; Landé, J.; Lugiez, F.; Mandrou, P.; Martin, J.-A.; Marty, W.; Mercier, K.; Pons, R.; Rambaud, D.; Ramon, P.; Rouaix, G.; Waegebaert, V.

    2013-12-01

    ECLAIRs, a 2D coded-mask imaging telescope on the Sino-French SVOM space mission, will detect and locate gamma-ray bursts (GRBs) between 4 and 150 keV. The detector array is an assembly of 6400 Schottky CdTe detectors of size 4×4×1 mm3, biased from -100 V to -600 V and operated at -20 °C to minimize the leakage current and maximize the polarization time. The remarkable low-energy threshold is achieved through various steps: an extensive detectors selection, a low-noise 32 channels ASIC study, and the design of an innovative detection module called XRDPIX formed by a thick film ceramic holding 32 detectors, a high voltage grid and an HTCC substrate housing the ASIC within a hermetic cavity. In this paper, we describe the XRDPIX module and explain the results of first tests to measure the linearity and compare the sources of noise, such as leakage currents and the Equivalent Noise Charge (ENC) measured on ASIC Ceramics. We confront these values with the energy threshold and spectral resolution made with dedicated test benches. Finally, we present the superposition of 32 calibrated spectra of one XRDPIX module, showing the excellent homogeneity of the 32 detectors and the achievement of a detection threshold at 4 keV over the entire module.

  6. Relative Renal Blood Flow Measurements With Rb-82 and a Hybrid Gamma Camera Using a Pig Model

    NASA Astrophysics Data System (ADS)

    Pretorius, P. H.; Fung, L. C. T.; Schell, C. P.; King, M. A.

    2005-02-01

    We have successfully demonstrated with chronically implanted blood flow probes in a pig model that renal uptake of Rb-82 is indeed sensitive to acute renal blood flow changes. Two flow probes were placed around the left and right renal arteries in a surgical procedure nine weeks before the first Rb-82 measurements. Together with the flow probes, a flow restrictor was implanted around the left renal artery. Single bolus infusions of 6 mCi Rb-82 were used to study the uptake in the kidneys approximately 7 minutes apart in hybrid-image limited-angle acquisitions (stationary camera heads posterior and anterior of the pig) while changing the flow to the left kidney between acquisitions. The acquired data were reconstructed into 7.5-s frames using a maximum likelihood (ML) list-mode reconstruction algorithm exploiting timing signals inserted into the list every 0.25 s. Reconstructed data were orientated to coronal views before regions of interest (ROIs) were drawn over both kidneys with a separate background region for each. The data represented are noisy due to the reconstructed 7.5-s frames, and the total imaging time of 5 min (or 4 Rb-82 half-lives). We were able to show a steady decline in uptake of Rb-82 in the left kidney that correlates with the reduction in renal blood flow. The reduced blood flow to the left kidney affects the Rb-82 uptake to the right kidney slightly, while blood flow decreased up to 33%. Comparing the baseline renal blood flow of the left kidney obtained before and after the intervention indicates that some ischemia persists after blood flow was restored. Attenuation compensation better described the contour of the kidney but only scales the time activity curve without changing its shape.

  7. Proposal of balloon and satellite observations of MeV gammas using Electron Tracking Compton Camera for reaching a high sensitivity of 1 mCrab

    NASA Astrophysics Data System (ADS)

    Takada, Atsushi; Tanimori, Toru

    2016-04-01

    ETCC with a gas Time Projection Chamber (TPC) and pixel GSO scintillators, by measuring electron tracks precisely, provides both a strong background rejection by dE/dx of the track and well-defined 2-dimensional Point Spread Function (PDF) with better than several degrees by adding the arc direction of incident gammas (SPD: Scatter Plane Deviation) with the ARM (angular Resolution Measure) direction measured in standard Compton Camera (CC). In 2006 its background rejection was revealed by SMILE-I balloon experiment with 10cm-cubic ETCC using the dE/dx of tracks. In 2013, 30cm-cube-ETCC has been developed to catch gammas from Crab in next SMILE-II balloon with >5sigma detection for 4 hrs. Now its sensitivity has been improved to 10sigma by attaining the angular resolution of the track (SPD angle) to that determined by multiple scattering of the gas. Thus, we show the ability of ETCC to give a better significance by a factor of 10 than that of standard CCs having same detection area by electron tracking?and we have found that SPD is an essential to define the PSF of Compton imaging quantitatively. Such a well-defined PSF is, for the first time, able to provide reliable sensitivity in Compton imaging without assuming the use of optimization algorithm. These studies uncover the uncertainties of CCs from both points of view of the intense background and the difficulty of the definition of the PSF, and overcome the above problems. Based on this technology, SMILE-II with 3atm CF4 gas is expected to provide a 5times better sensitivity than COMPTEL in one month balloon, and 4modules of 50cm-cube ETCCs would exceed over 10^-12 erg/cm^2s^1 (1mCrab) in satellite. Here we summarize the performance of the ETCC and new astrophysics opened in near future by high sensitive observation of MeV gamma-rays.

  8. Testing and Performance Validation of a Sensitive Gamma Ray Camera Designed for Radiation Detection and Decommissioning Measurements in Nuclear Facilities-13044

    SciTech Connect

    Mason, John A.; Looman, Marc R.; Poundall, Adam J.; Towner, Antony C.N.; Creed, Richard; Pancake, Daniel

    2013-07-01

    This paper describes the measurements, testing and performance validation of a sensitive gamma ray camera designed for radiation detection and quantification in the environment and decommissioning and hold-up measurements in nuclear facilities. The instrument, which is known as RadSearch, combines a sensitive and highly collimated LaBr{sub 3} scintillation detector with an optical (video) camera with controllable zoom and focus and a laser range finder in one detector head. The LaBr{sub 3} detector has a typical energy resolution of between 2.5% and 3% at the 662 keV energy of Cs-137 compared to that of NaI detectors with a resolution of typically 7% to 8% at the same energy. At this energy the tungsten shielding of the detector provides a shielding ratio of greater than 900:1 in the forward direction and 100:1 on the sides and from the rear. The detector head is mounted on a pan/tile mechanism with a range of motion of ±180 degrees (pan) and ±90 degrees (tilt) equivalent to 4 π steradians. The detector head with pan/tilt is normally mounted on a tripod or wheeled cart. It can also be mounted on vehicles or a mobile robot for access to high dose-rate areas and areas with high levels of contamination. Ethernet connects RadSearch to a ruggedized notebook computer from which it is operated and controlled. Power can be supplied either as 24-volts DC from a battery or as 50 volts DC supplied by a small mains (110 or 230 VAC) power supply unit that is co-located with the controlling notebook computer. In this latter case both power and Ethernet are supplied through a single cable that can be up to 80 metres in length. If a local battery supplies power, the unit can be controlled through wireless Ethernet. Both manual operation and automatic scanning of surfaces and objects is available through the software interface on the notebook computer. For each scan element making up a part of an overall scanned area, the unit measures a gamma ray spectrum. Multiple

  9. Imaging of prompt gamma rays emitted during delivery of clinical proton beams with a Compton camera: feasibility studies for range verification.

    PubMed

    Polf, Jerimy C; Avery, Stephen; Mackin, Dennis S; Beddar, Sam

    2015-09-21

    The purpose of this paper is to evaluate the ability of a prototype Compton camera (CC) to measure prompt gamma rays (PG) emitted during delivery of clinical proton pencil beams for prompt gamma imaging (PGI) as a means of providing in vivo verification of the delivered proton radiotherapy beams. A water phantom was irradiated with clinical 114 MeV and 150 MeV proton pencil beams. Up to 500 cGy of dose was delivered per irradiation using clinical beam currents. The prototype CC was placed 15 cm from the beam central axis and PGs from 0.2 MeV up to 6.5 MeV were measured during irradiation. From the measured data (2D) images of the PG emission were reconstructed. (1D) profiles were extracted from the PG images and compared to measured depth dose curves of the delivered proton pencil beams. The CC was able to measure PG emission during delivery of both 114 MeV and 150 MeV proton beams at clinical beam currents. 2D images of the PG emission were reconstructed for single 150 MeV proton pencil beams as well as for a 5   ×   5 cm mono-energetic layer of 114 MeV pencil beams. Shifts in the Bragg peak (BP) range were detectable on the 2D images. 1D profiles extracted from the PG images show that the distal falloff of the PG emission profile lined up well with the distal BP falloff. Shifts as small as 3 mm in the beam range could be detected from the 1D PG profiles with an accuracy of 1.5 mm or better. However, with the current CC prototype, a dose of 400 cGy was required to acquire adequate PG signal for 2D PG image reconstruction. It was possible to measure PG interactions with our prototype CC during delivery of proton pencil beams at clinical dose rates. Images of the PG emission could be reconstructed and shifts in the BP range were detectable. Therefore PGI with a CC for in vivo range verification during proton treatment delivery is feasible. However, improvements in the prototype CC detection efficiency and reconstruction algorithms are necessary

  10. Time-resolved imaging of prompt-gamma rays for proton range verification using a knife-edge slit camera based on digital photon counters.

    PubMed

    Cambraia Lopes, Patricia; Clementel, Enrico; Crespo, Paulo; Henrotin, Sebastien; Huizenga, Jan; Janssens, Guillaume; Parodi, Katia; Prieels, Damien; Roellinghoff, Frauke; Smeets, Julien; Stichelbaut, Frederic; Schaart, Dennis R

    2015-08-07

    Proton range monitoring may facilitate online adaptive proton therapy and improve treatment outcomes. Imaging of proton-induced prompt gamma (PG) rays using a knife-edge slit collimator is currently under investigation as a potential tool for real-time proton range monitoring. A major challenge in collimated PG imaging is the suppression of neutron-induced background counts. In this work, we present an initial performance test of two knife-edge slit camera prototypes based on arrays of digital photon counters (DPCs). PG profiles emitted from a PMMA target upon irradiation with a 160 MeV proton pencil beams (about 6.5 × 10(9) protons delivered in total) were measured using detector modules equipped with four DPC arrays coupled to BGO or LYSO : Ce crystal matrices. The knife-edge slit collimator and detector module were placed at 15 cm and 30 cm from the beam axis, respectively, in all cases. The use of LYSO : Ce enabled time-of-flight (TOF) rejection of background events, by synchronizing the DPC readout electronics with the 106 MHz radiofrequency signal of the cyclotron. The signal-to-background (S/B) ratio of 1.6 obtained with a 1.5 ns TOF window and a 3 MeV-7 MeV energy window was about 3 times higher than that obtained with the same detector module without TOF discrimination and 2 times higher than the S/B ratio obtained with the BGO module. Even 1 mm shifts of the Bragg peak position translated into clear and consistent shifts of the PG profile if TOF discrimination was applied, for a total number of protons as low as about 6.5 × 10(8) and a detector surface of 6.6 cm × 6.6 cm.

  11. REPEATABILITY AND RELIABILITY OF GLOMERULAR FILTRATION RATE DETERMINATION VIA GAMMA CAMERA UPTAKE OF TC-99M-DTPA IN CATS WITH CHRONIC KIDNEY DISEASE.

    PubMed

    Felumlee, Amy E; Marolf, Angela J; Randall, Elissa K; Bachand, Annette M; Quimby, Jessica M

    2017-01-01

    Measurement of glomerular filtration rate (GFR) via gamma camera uptake of 99mTc-diethylenetriaminepentaacetic acid is a standard method for quantifying renal function. Aims of this retrospective, observer agreement study were to determine intra- and interobserver variation in GFR values for cats with chronic kidney disease and to determine whether renal insufficiency classification changed between observers. Guideline cut-points were established for the difference in repeated GFRs to differentiate changes caused by therapeutic effect vs. inherent variation. Included cats had a diagnosis of chronic kidney disease and had undergone GFR examinations between the years of 2010 and 2013. Twenty-nine GFR studies were sampled. Each study was read twice, 6 months apart, by two veterinary radiologists and one radiology resident. Modified Bland-Altman plots were used to investigate differences between readings 1 and 2 by observer and between pairs of observers by reading. Reliability of clinical classification was assessed through comparisons between readings and observers. Measurements were not systematically different between readings for the experienced observers but were higher in reading 1 than reading 2 for the inexperienced observer. Measurements were not systematically different between the experienced observers in reading 1 or between any two observers in reading 2. Reliability for GFR measurements was high among experienced observers; variations in GFR measurements rarely led to differences in clinical classification. Results suggested that, for experienced observers, changes in GFR values following treatment in cats with chronic kidney disease between -0.4 and 0.4 mL/min/kg may be due to inherent variability rather than treatment effect. © 2016 American College of Veterinary Radiology.

  12. A new method for measuring dynamic change of tracer distribution using dynamic single photon emission tomography with a slip-ring rotational gamma camera.

    PubMed

    Miyazaki, Y; Hashimoto, M; Kinuya, S; Murata, Y; Inoue, H; Shiozaki, J; Takimoto, M; Yoshioka, K; Nakajima, K; Taki, J

    2002-11-01

    The clinical applicability of dynamic single photon emission tomograpy (SPET) using a dual-head gamma camera equipped with a slip-ring rotational mechanism, referred to as serial SPET, was examined in the present investigation. Serial SPET enables the production of tomographic images for any arbitrary time frame from an arbitrary range of data to 360 degrees. In a pre-clinical evaluation, a correlation between radioactivity concentration and serial SPET counts was evaluated in a phantom with continuous changes in 99mTc concentration. A differential value was obtained from each pair of SPET images; moreover, moving average approximation processing was investigated with respect to the elimination of noise in the data. In 11 and one patient presenting with cerebrovascular disease and meningioma, respectively, changes in SPET counts were evaluated when 99mTc ethyl cysteinate dimer (99mTc-ECD) was continuously administered at a constant rate in the resting state. Furthermore, in six of 11 subjects with cerebrovascular disease, changes occurring in SPET counts were examined by using acetazolamide loading while continuously administering 99mTc-ECD at a constant rate. Consequently, serial SPET enabled the evaluation of changes in radioactivity concentration over time in both the phantom and preliminary clinical studies. Data analysis by differential processing utilizing moving average approximation processing enabled the detection of minor changes in radioactivity concentration. An increase of 15.1+/-5.4% was observed in SPET counts of the unaffected cerebral hemisphere with acetazolamide loading. The response of the affected hemisphere was less prominent. These findings suggest that serial SPET would be an effective technique for the pharmacokinetic analysis of radiopharmaceuticals.

  13. SU-E-J-121: Measuring Prompt Gamma Emission Profiles with a Multi-Stage Compton Camera During Proton Beam Irradiation: Initial Studies

    SciTech Connect

    Polf, J; McCleskey, M; Brown, S; Mann, J; He, Z; Mackin, D; Beddar, S; Zheng, Y

    2014-06-01

    Purpose: Recent studies have suggested that the characteristics of prompt gammas (PG) emitted during proton beam irradiation are advantageous for determining beam range during treatment delivery. The purpose of this work was to determine the feasibility of determining the proton beam range from PG data measured with a prototype Compton camera (CC) during proton beam irradiation. Methods: Using a prototype multi-stage CC the PG emission from a water phantom was measured during irradiation with clinical proton therapy beams. The measured PG emission data was used to reconstruct an image of the PG emission using a backprojection reconstruction algorithm. One dimensional (1D) profiles extracted from the PG images were compared to: 1) PG emission data measured at fixed depths using collimated high purity Germanium and Lanthanum Bromide detectors, and 2) the measured depth dose profiles of the proton beams. Results: Comparisons showed that the PG emission profiles reconstructed from CC measurements agreed very well with the measurements of PG emission as a function of depth made with the collimated detectors. The distal falloff of the measured PG profile was between 1 mm to 4 mm proximal to the distal edge of the Bragg peak for proton beam ranges from 4 cm to 16 cm in water. Doses of at least 5 Gy were needed for the CC to measure sufficient data to image the PG profile and localize the distal PG falloff. Conclusion: Initial tests of a prototype CC for imaging PG emission during proton beam irradiation indicated that measurement and reconstruction of the PG profile was possible. However, due to limitations of the operational parameters (energy range and count rate) of the current CC prototype, doses of greater than a typical treatment dose (∼2 Gy) were needed to measure adequate PG signal to reconstruct viable images. Funding support for this project provided by a grant from DoD.

  14. Analysis of stress-only imaging, comparing upright and supine CZT camera acquisition to conventional gamma camera images with and without attenuation correction, with coronary angiography as a reference.

    PubMed

    Jameria, Zenith A; Abdallah, Mouhamad; Fernandez-Ulloa, Mariano; O'Donnell, Robert; Dwivedi, Alok K; Washburn, Erica; Khan, Naseer; Khaleghi, Mahyar; Kalakota, Nischelle; Gerson, Myron C

    2017-01-20

    Diagnostic performance of stress-only imaging using a Cadmium-Zinc-Telluride (CZT) camera has not been directly compared in the same patients to stress-only attenuation-corrected conventional Anger camera images. 112 subjects with correlative coronary angiographic data and 40 subjects with <5% pre-test likelihood of coronary disease completed attenuation-corrected stress-only images on a conventional Anger camera and uncorrected upright and supine stress images on a CZT camera. Two readers provided independent, blinded interpretations of stress-only images. Upright and supine stress-only CZT images and attenuation-corrected Anger camera images provided similar positive (reader 1/reader 2, 50.0%/44.1% vs 46.4%/51.9%) and negative (66.7%/64.0% vs 67.9%/67.7%) predictive values (all P = NS) for obstructive coronary artery disease; however, the sensitivity was higher (81.3% vs 58.3%, P = .05), specificity lower (29.7% vs 50.0%, P = .005), and normalcy rate lower (87.5% vs 100%, P = .025) with attenuation-corrected Anger camera images for the first reader with no significant differences between cameras for the second reader. Stress-only upright and supine CZT imaging was non-inferior statistically to attenuation-corrected stress-only Anger camera imaging. Nevertheless, stress-only CZT imaging may be associated with reduced diagnostic sensitivity for some readers compared to attenuation-corrected Anger camera images, which may be less acceptable clinically compared to stress plus rest images.

  15. Comparison of a newly-designed stack-up collimator with conventional parallel-hole collimators in pre-clinical CZT gamma camera systems: a Monte Carlo simulation study

    NASA Astrophysics Data System (ADS)

    Lee, Young-Jin; Kim, Hee-Joung

    2014-10-01

    Recently, many studies have been conducted with pixelated semiconductor detectors that use cadmium zinc telluride (CZT) because these detectors have many advantages in pre-clinical gamma imaging. Collimators play an extremely important role in the imaging performance of pixelated semiconductor gamma cameras. In our previous study, based on the pixelated semiconductor gamma camera system we recommended the use of a pixelated parallel-hole collimator with equal hole and pixel sizes; this approach improved both the sensitivity and the spatial resolution. However, the pixelated parallel-hole collimator had two major limitations: (a) Although its sensitivity was higher than that of pinhole systems, the pixelated parallel-hole collimator may have still resulted in a partial loss of sensitivity due to its small collimator hole size. (b) The pixelated parallel-hole collimator with an adequate septal height was difficult to manufacture due to its small holes. Here, we present a new design for a parallel-hole collimator, which uses the stack-up method and a CZT pixelated semiconductor gamma camera system. The purpose of this study was to compare the performances of various geometric designs of our newly-designed parallel-hole collimator with those of conventional parallel-hole collimators [low-energy high-resolution (LEHR) and low-energy high-sensitivity (LEHS)]. The detector was modeled as an eValuator-2500 (eV Microelectronics Inc., Saxonburg, PA, USA) (3-mm thick, 0.5-mm pixel size) by using a Geant4 Application for Tomographic Emission (GATE) simulation. The proposed parallel-hole collimator consisted of two overlapping parallel-hole collimators. The size of each hole in the proposed parallel-hole collimator was four times that of the hole in the pixelated parallel-hole collimator. The overlap ratios of these collimators were 1 : 1, 1 : 2, 2 : 1, 1 : 5, and 5 : 1. To evaluate and compare the performances of these systems, we evaluated the sensitivity and the spatial

  16. Effects of Fe as a physical filter on spectra of Technitium- 99m, uniformity, system volume sensitivity and spatial resolution of Philip ADAC Forte dual-head gamma camera

    NASA Astrophysics Data System (ADS)

    Sohaimi, N.; Abdullah, N.; Shah, S. I.; Zakaria, A.

    2014-11-01

    Single photon emission computed tomography (SPECT) imaging inherits some limitations, i.e., due to scattered gamma photons which degrade spatial resolution causes poor image quality. This study attempts to reduce a fraction of scattered gamma photons before reaching gamma camera detector by using Fe sheet (0.35 mm and 0.40 mm) as a physical filter. Also investigate the effects on spectra of Tc-99m, spatial resolution, system volume sensitivity and uniformity. The thickness of Fe physical filter is selected on the basis of percentage attenuation calculations of different gamma ray energies by various thicknesses of material. Data were acquired using Philip ADAC forte dual-head gamma camera without and with physical filter with LEHR collimator installed. For spectra, uniformity and system volume sensitivity, a cylindrical source tank filled with water added with Tc-99m was scanned. Uniformity and system volume sensitivity images were reconstructed with FBP method by applying Butterworth filter of order 5, cut-off frequency 0.35 cycles/cm and Chang's attenuation correction method using 0.13 cm-1 linear attenuation coefficient. Spatial resolution study was done by scanning a line source (0.8 mm inner diameter) of Tc-99m at various source-to-collimator distances in air and in scattering medium without and with physical filter. A substantial reduction in count rate from Compton and photopeak regions of Tc-99m spectra with physical filter is recorded. Improvement in spatial resolution with physical filter up to 4 cm source-to-collimator distance is obtained. System volume sensitivity was reduced and no improvement in uniformity. These thicknesses of physical filter may be tested further by scanning different planar/SPECT phantoms in Tc-99m imaging.

  17. Changes in left ventricular function as determined by the multi-wire gamma camera at near presyncopal levels of lower body negative pressure

    NASA Technical Reports Server (NTRS)

    Pintner, R.; Fortney, S.; Mulvagh, S.; Lacy, J.

    1992-01-01

    At presyncopal levels of lower body negative pressure (LBNP), we have frequently observed electrocardiographic responses that may be due to changes in cardiac position and/or shape, but could be indicative of altered myocardial function. To further investigate this, we evaluated cardiac function using a nuclear imaging technique in 21 healthy subjects (17 men and 4 women) after 30 minutes of supine rest and near the end of a presyncopal-limited LBNP exposure (LBNP averaged 65 plus or minus 3 mmHg at injection). Cardiac first pass images were obtained with a Multi-Wire Gamma Camera following an intravenous bolus injection of 30-50 millicurries of Tantalum-178. Manual blood pressures and electrocardiograms were obtained throughout the 3 minute graded LBNP protocol. Between rest and injection during LBNP, heart rate increased (P less than 0.01) from 67 plus or minus 3 beats per minute to 99 plus or minus beats per minute, systolic blood pressure decreased (P less than 0.01) from 110 plus or minus 3 mmHg to 107 plus or minus 3 mmHg and left ventricular ejection fraction (EF) decreased (P less than 0.01) from 0.57 plus or minus 0.02 to 0.48 plus or minus 0.02. During LBNP, ST segment depression of at least 0.5 mm occurred in 7 subjects. Subjects with ST depression had greater reductions (P = 0.05) in EF than subjects without ST depression (0.15 plus or minus 0.07 versus 0.005 plus or minus 0.03), but also tolerated greater levels (P less than 0.05) of negative pressure (88 plus or minus mmHg versus 69 plus or minus 5 mmHg). There was a significant relationship between presyncopal LBNP level and EF (R(exp 2) = 0.50, P less than 0.05). Our findings suggest there may be a decrease in systolic myocardial function at high levels of LBNP.

  18. Time-resolved imaging of prompt-gamma rays for proton range verification using a knife-edge slit camera based on digital photon counters

    NASA Astrophysics Data System (ADS)

    Cambraia Lopes, Patricia; Clementel, Enrico; Crespo, Paulo; Henrotin, Sebastien; Huizenga, Jan; Janssens, Guillaume; Parodi, Katia; Prieels, Damien; Roellinghoff, Frauke; Smeets, Julien; Stichelbaut, Frederic; Schaart, Dennis R.

    2015-08-01

    Proton range monitoring may facilitate online adaptive proton therapy and improve treatment outcomes. Imaging of proton-induced prompt gamma (PG) rays using a knife-edge slit collimator is currently under investigation as a potential tool for real-time proton range monitoring. A major challenge in collimated PG imaging is the suppression of neutron-induced background counts. In this work, we present an initial performance test of two knife-edge slit camera prototypes based on arrays of digital photon counters (DPCs). PG profiles emitted from a PMMA target upon irradiation with a 160 MeV proton pencil beams (about 6.5   ×   109 protons delivered in total) were measured using detector modules equipped with four DPC arrays coupled to BGO or LYSO : Ce crystal matrices. The knife-edge slit collimator and detector module were placed at 15 cm and 30 cm from the beam axis, respectively, in all cases. The use of LYSO : Ce enabled time-of-flight (TOF) rejection of background events, by synchronizing the DPC readout electronics with the 106 MHz radiofrequency signal of the cyclotron. The signal-to-background (S/B) ratio of 1.6 obtained with a 1.5 ns TOF window and a 3 MeV-7 MeV energy window was about 3 times higher than that obtained with the same detector module without TOF discrimination and 2 times higher than the S/B ratio obtained with the BGO module. Even 1 mm shifts of the Bragg peak position translated into clear and consistent shifts of the PG profile if TOF discrimination was applied, for a total number of protons as low as about 6.5   ×   108 and a detector surface of 6.6 cm  ×  6.6 cm.

  19. The benefit of functional-anatomical imaging with [18F]fluorodeoxyglucose utilizing a dual-head coincidence gamma camera with an integrated X-ray transmission system in non-small cell lung cancer.

    PubMed

    Eschmann, Susanne M; Bitzer, Michael; Paulsen, Frank; Friedel, Godehard; Besenfelder, Hariolf; Horger, Marius; Reimold, Matthias; Dittmann, Helmut; Pfannenberg, Anna C; Bares, Roland

    2004-09-01

    To evaluate functional-anatomical imaging with 2-[F]fluoro-2-deoxy-D-glucose (F-FDG) utilizing a dual-head coincidence gamma camera with an integrated X-ray transmission system for attenuation correction, anatomical mapping, and image fusion compared to conventional diagnostics by computed tomography (CT) in non-small cell lung cancer (NSCLC). Thirty-five patients with NSCLC underwent FDG imaging of the thoracic area using a dual-head coincidence gamma camera (DHC) with an integrated X-ray transmission system. State-of-the-art CT scans had been performed before. Whole-body dedicated FDG positron emission tomography (PET) was performed immediately prior to DHC. Staging by CT and DHC, and DHC with integrated image fusion (FDHC) were re-evaluated with regard to detectable lesions, correct anatomical diagnoses, and clinical impact. Results of DHC and PET were compared for analysis of limitations of DHC. One hundred and thirteen tumour lesions were identified by CT. DHC detected 128 lesions overall: 102 true positive CT lesions were confirmed, 25 additional lesions were detected which affected staging in eight patients, and one false positive lung lesion did not show up in DHC. Nine CT lesions were missed by DHC (lymph node and lung). PET detected 150 areas of focally enhanced uptake, delivering two false positive results (nuchal muscles, pneumonia). Final evaluation confirmed 148 malignant lesions. Compared to CT, the results of DHC changed staging or treatment in 8/35 patients (23%). Lesion detection by DHC was limited by tumour size and intensity of FDG uptake. Image fusion provided relevant clinical information in 9/35 patients (26%). Functional imaging in NSCLC with this dual-head gamma camera is superior to morphological imaging by CT, although inferior to dedicated PET imaging. Combined functional-anatomical imaging has the potential to improve staging and localization procedures before surgery or radiotherapy.

  20. Camera Optics.

    ERIC Educational Resources Information Center

    Ruiz, Michael J.

    1982-01-01

    The camera presents an excellent way to illustrate principles of geometrical optics. Basic camera optics of the single-lens reflex camera are discussed, including interchangeable lenses and accessories available to most owners. Several experiments are described and results compared with theoretical predictions or manufacturer specifications.…

  1. Camera Optics.

    ERIC Educational Resources Information Center

    Ruiz, Michael J.

    1982-01-01

    The camera presents an excellent way to illustrate principles of geometrical optics. Basic camera optics of the single-lens reflex camera are discussed, including interchangeable lenses and accessories available to most owners. Several experiments are described and results compared with theoretical predictions or manufacturer specifications.…

  2. Proof of concept for low-dose molecular breast imaging with a dual-head CZT gamma camera. Part II. Evaluation in patients

    PubMed Central

    Hruska, Carrie B.; Weinmann, Amanda L.; Tello Skjerseth, Christina M.; Wagenaar, Eric M.; Conners, Amy L.; Tortorelli, Cindy L.; Maxwell, Robert W.; Rhodes, Deborah J.; O’Connor, Michael K.

    2012-01-01

    Purpose: Molecular breast imaging (MBI) has shown promise as an adjunct screening technique to mammography for women with dense breasts. The demonstration of reliable lesion detection with MBI performed at low administered doses of Tc-99 m sestamibi, comparable in effective radiation dose to screening mammography, is essential to adoption of MBI for screening. The concept of performing low-dose MBI with dual-head cadmium zinc telluride (CZT) gamma cameras has been investigated in phantoms in Part I. In this work, the objectives were to evaluate the impact of the count sensitivity improvement methods on image quality in patient MBI exams and to determine if adequate lesion detection could be achieved at reduced doses. Methods: Following the implementation of two count sensitivity improvement methods, registered collimation optimized for near-field imaging and energy acceptance window optimized for CZT, MBI exams were performed in the course of clinical care. Clinical image count density (counts/cm2) was compared between standard MBI [740 MBq (20 mCi) Tc-99 m sestamibi, standard collimation, standard energy window] and low-dose MBI [296 MBq (8 mCi) Tc-99 m sestamibi, optimized collimation, wide energy window] in a cohort of 50 patients who had both types of MBI exams performed. Lesion detection at low doses was evaluated in a separate cohort of 32 patients, in which low-dose MBI was performed following 296 MBq injection and acquired in dynamic mode, allowing the generation of images acquired for 2.5, 5, 7.5, and 10 min/breast view with proportionately reduced count densities. Diagnostic accuracy at each count density level was compared and kappa statistic was used to assess intrareader agreement between 10 min acquisitions and those at shorter acquisition durations. Results: In patient studies, low-dose MBI performed with 296 MBq Tc-99 m sestamibi and new optimal collimation/wide energy window resulted in an average relative gain in count density of 4

  3. Neutron cameras for ITER

    SciTech Connect

    Johnson, L.C.; Barnes, C.W.; Batistoni, P.

    1998-12-31

    Neutron cameras with horizontal and vertical views have been designed for ITER, based on systems used on JET and TFTR. The cameras consist of fan-shaped arrays of collimated flight tubes, with suitably chosen detectors situated outside the biological shield. The sight lines view the ITER plasma through slots in the shield blanket and penetrate the vacuum vessel, cryostat, and biological shield through stainless steel windows. This paper analyzes the expected performance of several neutron camera arrangements for ITER. In addition to the reference designs, the authors examine proposed compact cameras, in which neutron fluxes are inferred from {sup 16}N decay gammas in dedicated flowing water loops, and conventional cameras with fewer sight lines and more limited fields of view than in the reference designs. It is shown that the spatial sampling provided by the reference designs is sufficient to satisfy target measurement requirements and that some reduction in field of view may be permissible. The accuracy of measurements with {sup 16}N-based compact cameras is not yet established, and they fail to satisfy requirements for parameter range and time resolution by large margins.

  4. Rapid-acquisition myocardial perfusion scintigraphy (MPS) on a novel gamma camera using multipinhole collimation and miniaturized cadmium-zinc-telluride (CZT) detectors: prognostic value and diagnostic accuracy in a 'real-world' nuclear cardiology service.

    PubMed

    Chowdhury, F U; Vaidyanathan, S; Bould, M; Marsh, J; Trickett, C; Dodds, K; Clark, T P R; Sapsford, R J; Dickinson, C J; Patel, C N; Thorley, P J

    2014-03-01

    To study the prognostic value of rapid-acquisition adenosine stress-rest myocardial perfusion scintigraphy (MPS) on a gamma camera using multipinhole collimation and cadmium-zinc-telluride (CZT) detectors. The secondary aim was to assess the diagnostic accuracy of the technique compared with invasive coronary angiography. Retrospective analysis of 1109 consecutive patients undergoing MPS in a routine clinical setting on a high-efficiency multipinhole gamma camera. MPS acquisition, performed with a standard injection of 550 MBq of (99m)Tc-tetrofosmin, required a mean (±SD) scanning time of 322 ± 51 s. The hard cardiac event rate at a median (inter-quartile range) follow-up of 624 (552-699) days was 0.4% (95% CI 0.1-1.1) in patients with no significant perfusion abnormality versus 6.8% (95% CI 4.3-10.7%, P < 0.001) in those with an abnormal scan. In a sub-group of 165 patients, comparison with obstructive coronary artery disease on X-ray angiography gave a sensitivity, specificity, positive predictive value, negative predictive value, and accuracy for rapid-acquisition MPS of 84% (95% CI 74-91), 79% (95% CI 68-87), 82% (95% CI 72-89), 81% (95% CI 70-89), and 82% (95% CI 73-89), respectively. MPS performed on a CZT solid-state detector camera with multipinhole collimation is an evolutionary development that provides reliable prognostic and diagnostic information, while significantly reducing image acquisition time.

  5. Comparison of FDG PET and positron coincidence detection imaging using a dual-head gamma camera with 5/8-inch NaI(Tl) crystals in patients with suspected body malignancies.

    PubMed

    Boren, E L; Delbeke, D; Patton, J A; Sandler, M P

    1999-04-01

    The purpose of this study was to compare the diagnostic accuracy of fluorine-18 fluorodeoxyglucose (FDG) images obtained with (a) a dual-head coincidence gamma camera (DHC) equipped with 5/8-inch-thick NaI(Tl) crystals and parallel slit collimators and (b) a dedicated positron emission tomograph (PET) in a series of 28 patients with known or suspected malignancies. Twenty-eight patients with known or suspected malignancies underwent whole-body FDG PET imaging (Siemens, ECAT 933) after injection of approximately 10 mCi of 18F-FDG. FDG DHC images were then acquired for 30 min over the regions of interest using a dual-head gamma camera (VariCam, Elscint). The images were reconstructed in the normal mode, using photopeak/photopeak, photopeak/Compton, and Compton/photopeak coincidence events. FDG PET imaging found 45 lesions ranging in size from 1 cm to 7 cm in 28 patients. FDG DHC imaging detected 35/45 (78%) of these lesions. Among the ten lesions not seen with FDG DHC imaging, eight were less than 1.5 cm in size, and two were located centrally within the abdomen suffering from marked attenuation effects. The lesions were classified into three categories: thorax (n=24), liver (n=12), and extrahepatic abdominal (n=9). FDG DHC imaging identified 100% of lesions above 1.5 cm in the thorax group and 78% of those below 1.5 cm, for an overall total of 83%. FDG DHC imaging identified 100% of lesions above 1.5 cm, in the liver and 43% of lesions below 1.5 cm, for an overall total of 67%. FDG DHC imaging identified 78% of lesions above 1.5 cm in the extrahepatic abdominal group. There were no lesions below 1.5 cm in this group. FDG coincidence imaging using a dual-head gamma camera detected 90% of lesions greater than 1.5 cm. These data suggest that DHC imaging can be used clinically in well-defined diagnostic situations to differentiate benign from malignant lesions.

  6. SPEIR: A Ge Compton Camera

    SciTech Connect

    Mihailescu, L; Vetter, K M; Burks, M T; Hull, E L; Craig, W W

    2004-02-11

    The SPEctroscopic Imager for {gamma}-Rays (SPEIR) is a new concept of a compact {gamma}-ray imaging system of high efficiency and spectroscopic resolution with a 4-{pi} field-of-view. The system behind this concept employs double-sided segmented planar Ge detectors accompanied by the use of list-mode photon reconstruction methods to create a sensitive, compact Compton scatter camera.

  7. Comment on ‘Imaging of prompt gamma rays emitted during delivery of clinical proton beams with a Compton camera: feasibility studies for range verification’

    NASA Astrophysics Data System (ADS)

    Sitek, Arkadiusz

    2016-12-01

    The origin ensemble (OE) algorithm is a new method used for image reconstruction from nuclear tomographic data. The main advantage of this algorithm is the ease of implementation for complex tomographic models and the sound statistical theory. In this comment, the author provides the basics of the statistical interpretation of OE and gives suggestions for the improvement of the algorithm in the application to prompt gamma imaging as described in Polf et al (2015 Phys. Med. Biol. 60 7085).

  8. Cardiac cameras.

    PubMed

    Travin, Mark I

    2011-05-01

    Cardiac imaging with radiotracers plays an important role in patient evaluation, and the development of suitable imaging instruments has been crucial. While initially performed with the rectilinear scanner that slowly transmitted, in a row-by-row fashion, cardiac count distributions onto various printing media, the Anger scintillation camera allowed electronic determination of tracer energies and of the distribution of radioactive counts in 2D space. Increased sophistication of cardiac cameras and development of powerful computers to analyze, display, and quantify data has been essential to making radionuclide cardiac imaging a key component of the cardiac work-up. Newer processing algorithms and solid state cameras, fundamentally different from the Anger camera, show promise to provide higher counting efficiency and resolution, leading to better image quality, more patient comfort and potentially lower radiation exposure. While the focus has been on myocardial perfusion imaging with single-photon emission computed tomography, increased use of positron emission tomography is broadening the field to include molecular imaging of the myocardium and of the coronary vasculature. Further advances may require integrating cardiac nuclear cameras with other imaging devices, ie, hybrid imaging cameras. The goal is to image the heart and its physiological processes as accurately as possible, to prevent and cure disease processes.

  9. Prediction of left main or 3-vessel disease using myocardial perfusion reserve on dynamic thallium-201 single-photon emission computed tomography with a semiconductor gamma camera.

    PubMed

    Shiraishi, Shinya; Sakamoto, Fumi; Tsuda, Noriko; Yoshida, Morikatsu; Tomiguchi, Seiji; Utsunomiya, Daisuke; Ogawa, Hisao; Yamashita, Yasuyuki

    2015-01-01

    Myocardial perfusion imaging (MPI) may fail to detect balanced ischemia. We evaluated myocardial perfusion reserve (MPR) using Tl dynamic single-photon emission computed tomography (SPECT) and a novel cadmium zinc telluride (CZT) camera for predicting 3-vessel or left main coronary artery disease (CAD). METHODS AND RESULTS: A total of 55 consecutive patients with suspected CAD underwent SPECT-MPI and coronary angiography. The MPR index was calculated using the standard 2-compartment kinetic model. We analyzed the utility of MPR index, other SPECT findings, and various clinical variables. On multivariate analysis, MPR index and history of previous myocardial infarction (MI) predicted left main and 3-vessel disease. The area under the receiver operating characteristic curve was 0.81 for MPR index, 0.699 for history of previous MI, and 0.86 for MPR index plus history of previous MI. MPR index ≤1.5 yielded the highest diagnostic accuracy. Sensitivity, specificity, and accuracy were 86%, 78%, and 80%, respectively, for MPR index, 64%, 76%, 73% for previous MI, and 57%, 93%, and 84% for MPR index plus history of previous MI. Quantification of MPR using dynamic SPECT and a novel CZT camera may identify balanced ischemia in patients with left main or 3-vessel disease.

  10. Neutron Imaging Camera

    NASA Technical Reports Server (NTRS)

    Hunter, Stanley; deNolfo, G. A.; Barbier, L. M.; Link, J. T.; Son, S.; Floyd, S. R.; Guardala, N.; Skopec, M.; Stark, B.

    2008-01-01

    The Neutron Imaging Camera (NIC) is based on the Three-dimensional Track Imager (3DTI) technology developed at GSFC for gamma-ray astrophysics applications. The 3-DTI, a large volume time-projection chamber, provides accurate, approximately 0.4 mm resolution, 3-D tracking of charged particles. The incident direction of fast neutrons, En > 0.5 MeV, are reconstructed from the momenta and energies of the proton and triton fragments resulting from (sup 3)He(n,p) (sup 3)H interactions in the 3-DTI volume. The performance of the NIC from laboratory and accelerator tests is presented.

  11. Infrared Camera

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A sensitive infrared camera that observes the blazing plumes from the Space Shuttle or expendable rocket lift-offs is capable of scanning for fires, monitoring the environment and providing medical imaging. The hand-held camera uses highly sensitive arrays in infrared photodetectors known as quantum well infrared photo detectors (QWIPS). QWIPS were developed by the Jet Propulsion Laboratory's Center for Space Microelectronics Technology in partnership with Amber, a Raytheon company. In October 1996, QWIP detectors pointed out hot spots of the destructive fires speeding through Malibu, California. Night vision, early warning systems, navigation, flight control systems, weather monitoring, security and surveillance are among the duties for which the camera is suited. Medical applications are also expected.

  12. Nikon Camera

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Nikon FM compact has simplification feature derived from cameras designed for easy, yet accurate use in a weightless environment. Innovation is a plastic-cushioned advance lever which advances the film and simultaneously switches on a built in light meter. With a turn of the lens aperture ring, a glowing signal in viewfinder confirms correct exposure.

  13. CCD Camera

    DOEpatents

    Roth, Roger R.

    1983-01-01

    A CCD camera capable of observing a moving object which has varying intensities of radiation eminating therefrom and which may move at varying speeds is shown wherein there is substantially no overlapping of successive images and wherein the exposure times and scan times may be varied independently of each other.

  14. CCD Camera

    DOEpatents

    Roth, R.R.

    1983-08-02

    A CCD camera capable of observing a moving object which has varying intensities of radiation emanating therefrom and which may move at varying speeds is shown wherein there is substantially no overlapping of successive images and wherein the exposure times and scan times may be varied independently of each other. 7 figs.

  15. Whole body retention of Se-75-homotaurocholic acid (SeBCAT) using a Gamma Camera: A new test in chronic diarrhea

    SciTech Connect

    Amaral, H.; Palma, R.; Pfau, J.; Coudeu, I.; Bauer, K.

    1985-05-01

    Bile acid malabsorption has been recognized as an important cause of chronic diarrhea. Se-75HCAT, a bile acid, is absorbed in the terminal ileum. Therefore, measurement of its body retention indicate ileal function not requiring fecal collections. The authors studied 8 normal volunteers presenting with chronic recurrent diarrhea for more than 2 years. Each received orally a 10 ..mu..Ci capsule of SeHCAT (Amersham Intl.) and 3 hours later anterior and posterior whole body activity was measured using a digital camera without collimator. Measurements were repeated daily for 7 days and expressed as % of retention. Three patients had normal retention (1 celiac disease, 1 inactive Crohn disease and 1 functional diarrhea), another was borderline (an immunodeficiency) and 4 patients presented abnormal bile acid absorption (2 had vagotomy, 1 Crohn disease and 1 idiopathic diarrhea). This last group was treated with cholestyramine showing improvement of the diarrhea, and relapse on drug withdrawal. These findings demonstrate that this technique can identify bile acid malabsorption as the cause of chronic diarrhea by external counting.

  16. Characterization of "γ-Eye": a Low-Cost Benchtop Mouse-Sized Gamma Camera for Dynamic and Static Imaging Studies.

    PubMed

    Georgiou, Maria; Fysikopoulos, Eleftherios; Mikropoulos, Konstantinos; Fragogeorgi, Eirini; Loudos, George

    2017-06-01

    Several preclinical imaging systems are commercially available, but their purchase and maintenance costs make them unaffordable for the majority of small- and medium-sized groups. Taking into account the needs of average users, we developed "γ-eye", a mouse-sized, benchtop γ-camera suitable for in vivo scintigraphic imaging. The γ-eye is based on two position-sensitive photomultiplier tubes, coupled to a CsI(Na) pixelated scintillator and a low-energy lead collimator with parallel hexagonal holes. The spatial resolution of the system is 2 mm at 0 mm. The energy resolution is 26 % at 140 keV and the maximum recorded sensitivity 210 cps/MBq. The system was evaluated in a proof-of-concept animal study, using three different clinical Tc-99m-labeled radiopharmaceuticals. Phantom and animal studies demonstrate its ability to provide semiquantitative results even for short scans. Systems' performance, dimensions, and cost make γ-eye a unique solution for efficient whole-body mouse nuclear imaging.

  17. An array of virtual Frisch-grid CdZnTe detectors and a front-end application-specific integrated circuit for large-area position-sensitive gamma-ray cameras

    SciTech Connect

    Bolotnikov, A. E.; Ackley, K.; Camarda, G. S.; Cherches, C.; Cui, Y.; De Geronimo, G.; Fried, J.; Hodges, D.; Hossain, A.; Lee, W.; Mahler, G.; Maritato, M.; Petryk, M.; Roy, U.; Salwen, C.; Vernon, E.; Yang, G.; James, R. B.

    2015-07-28

    We developed a robust and low-cost array of virtual Frisch-grid CdZnTe (CZT) detectors coupled to a front-end readout ASIC for spectroscopy and imaging of gamma rays. The array operates as a self-reliant detector module. It is comprised of 36 close-packed 6x6x15 mm3 detectors grouped into 3x3 sub-arrays of 2x2 detectors with the common cathodes. The front-end analog ASIC accommodates up to 36 anode and 9 cathode inputs. Several detector modules can be integrated into a single- or multi-layer unit operating as a Compton or a coded-aperture camera. We present the results from testing two fully assembled modules and readout electronics. The further enhancement of the arrays’ performance and reduction of their cost are made possible by using position-sensitive virtual Frisch-grid detectors, which allow for accurate corrections of the response of material non-uniformities caused by crystal defects.

  18. An array of virtual Frisch-grid CdZnTe detectors and a front-end application-specific integrated circuit for large-area position-sensitive gamma-ray cameras

    DOE PAGES

    Bolotnikov, A. E.; Ackley, K.; Camarda, G. S.; ...

    2015-07-28

    We developed a robust and low-cost array of virtual Frisch-grid CdZnTe (CZT) detectors coupled to a front-end readout ASIC for spectroscopy and imaging of gamma rays. The array operates as a self-reliant detector module. It is comprised of 36 close-packed 6x6x15 mm3 detectors grouped into 3x3 sub-arrays of 2x2 detectors with the common cathodes. The front-end analog ASIC accommodates up to 36 anode and 9 cathode inputs. Several detector modules can be integrated into a single- or multi-layer unit operating as a Compton or a coded-aperture camera. We present the results from testing two fully assembled modules and readout electronics.more » The further enhancement of the arrays’ performance and reduction of their cost are made possible by using position-sensitive virtual Frisch-grid detectors, which allow for accurate corrections of the response of material non-uniformities caused by crystal defects.« less

  19. An array of virtual Frisch-grid CdZnTe detectors and a front-end application-specific integrated circuit for large-area position-sensitive gamma-ray cameras.

    PubMed

    Bolotnikov, A E; Ackley, K; Camarda, G S; Cherches, C; Cui, Y; De Geronimo, G; Fried, J; Hodges, D; Hossain, A; Lee, W; Mahler, G; Maritato, M; Petryk, M; Roy, U; Salwen, C; Vernon, E; Yang, G; James, R B

    2015-07-01

    We developed a robust and low-cost array of virtual Frisch-grid CdZnTe detectors coupled to a front-end readout application-specific integrated circuit (ASIC) for spectroscopy and imaging of gamma rays. The array operates as a self-reliant detector module. It is comprised of 36 close-packed 6 × 6 × 15 mm(3) detectors grouped into 3 × 3 sub-arrays of 2 × 2 detectors with the common cathodes. The front-end analog ASIC accommodates up to 36 anode and 9 cathode inputs. Several detector modules can be integrated into a single- or multi-layer unit operating as a Compton or a coded-aperture camera. We present the results from testing two fully assembled modules and readout electronics. The further enhancement of the arrays' performance and reduction of their cost are possible by using position-sensitive virtual Frisch-grid detectors, which allow for accurate corrections of the response of material non-uniformities caused by crystal defects.

  20. An array of virtual Frisch-grid CdZnTe detectors and a front-end application-specific integrated circuit for large-area position-sensitive gamma-ray cameras

    SciTech Connect

    Bolotnikov, A. E. Ackley, K.; Camarda, G. S.; Cherches, C.; Cui, Y.; De Geronimo, G.; Fried, J.; Hossain, A.; Mahler, G.; Maritato, M.; Roy, U.; Salwen, C.; Vernon, E.; Yang, G.; James, R. B.; Hodges, D.; Lee, W.; Petryk, M.

    2015-07-15

    We developed a robust and low-cost array of virtual Frisch-grid CdZnTe detectors coupled to a front-end readout application-specific integrated circuit (ASIC) for spectroscopy and imaging of gamma rays. The array operates as a self-reliant detector module. It is comprised of 36 close-packed 6 × 6 × 15 mm{sup 3} detectors grouped into 3 × 3 sub-arrays of 2 × 2 detectors with the common cathodes. The front-end analog ASIC accommodates up to 36 anode and 9 cathode inputs. Several detector modules can be integrated into a single- or multi-layer unit operating as a Compton or a coded-aperture camera. We present the results from testing two fully assembled modules and readout electronics. The further enhancement of the arrays’ performance and reduction of their cost are possible by using position-sensitive virtual Frisch-grid detectors, which allow for accurate corrections of the response of material non-uniformities caused by crystal defects.

  1. Explosive Transient Camera (ETC) Program

    DTIC Science & Technology

    1991-10-01

    satellites. This modelling has led to the development of a successful scheme, based upon observing into the earth’s shadow, to dramatically reduce the...and for the UV CCD camera to be flown on the USA/France/Japan High Energy Transient(HETE) mission in 1994. I I I I In 1989, one major stumbling block...1984). The completed ETC became operational in 1990. Conception of the first practical multiwavelength observatory for the dedicated study of gamma

  2. ISO camera array development status

    NASA Technical Reports Server (NTRS)

    Sibille, F.; Cesarsky, C.; Agnese, P.; Rouan, D.

    1989-01-01

    A short outline is given of the Infrared Space Observatory Camera (ISOCAM), one of the 4 instruments onboard the Infrared Space Observatory (ISO), with the current status of its two 32x32 arrays, an InSb charge injection device (CID) and a Si:Ga direct read-out (DRO), and the results of the in orbit radiation simulation with gamma ray sources. A tentative technique for the evaluation of the flat fielding accuracy is also proposed.

  3. Neutron Imaging Camera

    NASA Technical Reports Server (NTRS)

    Hunter, Stanley D.; DeNolfo, Georgia; Floyd, Sam; Krizmanic, John; Link, Jason; Son, Seunghee; Guardala, Noel; Skopec, Marlene; Stark, Robert

    2008-01-01

    We describe the Neutron Imaging Camera (NIC) being developed for DTRA applications by NASA/GSFC and NSWC/Carderock. The NIC is based on the Three-dimensional Track Imager (3-DTI) technology developed at GSFC for gamma-ray astrophysics applications. The 3-DTI, a large volume time-projection chamber, provides accurate, approximately 0.4 mm resolution. 3-D tracking of charged particles. The incident direction of fast neutrons, E(sub N) > 0.5 MeV. arc reconstructed from the momenta and energies of the proton and triton fragments resulting from 3He(n,p)3H interactions in the 3-DTI volume. We present angular and energy resolution performance of the NIC derived from accelerator tests.

  4. Neutron Imaging Camera

    NASA Technical Reports Server (NTRS)

    Hunter, Stanley D.; DeNolfo, Georgia; Floyd, Sam; Krizmanic, John; Link, Jason; Son, Seunghee; Guardala, Noel; Skopec, Marlene; Stark, Robert

    2008-01-01

    We describe the Neutron Imaging Camera (NIC) being developed for DTRA applications by NASA/GSFC and NSWC/Carderock. The NIC is based on the Three-dimensional Track Imager (3-DTI) technology developed at GSFC for gamma-ray astrophysics applications. The 3-DTI, a large volume time-projection chamber, provides accurate, approximately 0.4 mm resolution. 3-D tracking of charged particles. The incident direction of fast neutrons, E(sub N) > 0.5 MeV. arc reconstructed from the momenta and energies of the proton and triton fragments resulting from 3He(n,p)3H interactions in the 3-DTI volume. We present angular and energy resolution performance of the NIC derived from accelerator tests.

  5. Use of a tantalum-178 generator and a multiwire gamma camera to study the effect of the Mueller maneuver on left ventricular performance: comparison to hemodynamics and single photon emission computed tomography perfusion patterns.

    PubMed

    Gioia, G; Lin, B; Katz, R; DiMarino, A J; Ogilby, J D; Cassel, D; DePace, N L; Heo, J; Iskandrian, A S

    1995-11-01

    During the Mueller maneuver, there is a decrease in intrathoracic pressure and an increase in transmural left ventricular pressure. The changes in loading conditions cause transient left ventricular dysfunction. This study examined the effects of the Mueller maneuver on left ventricular performance using tantalum (Ta)-178 (half-life 9.3 min) and a multiwire gamma camera. First-pass radionuclide angiograms were obtained at baseline and during Mueller maneuver in 41 patients aged 58 +/- 10 years. In 34 patients, stress single photon emission computed tomography (SPECT) myocardial perfusion imaging with thallium-201 or sestamibi was also performed. Hemodynamic measurements during the Mueller maneuver (n = 10) showed a decrease in systemic pressure (139 +/- 25 mm Hg vs 123 +/- 24 mm Hg, p < 0.001) and pulmonary artery pressure (24 +/- 6 mm Hg vs 14 +/- 12 mm Hg, p = 0.01) and an increase in heart rate (67 +/- 10 bpm vs 75 +/- 14 beats/min, p = 0.001). Among the 34 patients who had perfusion imaging, the left ventricular ejection fraction remained unchanged or increased in 17 patients (group 1) (48% +/- 19% vs 49% +/- 21%, p not significant) and decreased (> or = 5%) in 17 patients (group 2) (55% +/- 13% vs 40% +/- 16%, p = 0.001). The stress SPECT images showed no or only fixed defects in 11 (65%) patients in group 1 and 3 (18%) patients in group 2 (p = 0.02), and reversible defects in 6 (35%) patients in group 1 and 14 (82%) patients in group 2 (p = 0.04).(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Caught on Camera.

    ERIC Educational Resources Information Center

    Milshtein, Amy

    2002-01-01

    Describes the benefits of and rules to be followed when using surveillance cameras for school security. Discusses various camera models, including indoor and outdoor fixed position cameras, pan-tilt zoom cameras, and pinhole-lens cameras for covert surveillance. (EV)

  7. A compact gamma camera for biological imaging

    SciTech Connect

    Bradley, E L; Cella, J; Majewski, S; Popov, V; Qian, Jianguo; Saha, M S; Smith, M F; Weisenberger, A G; Welsh, R E

    2006-02-01

    A compact detector, sized particularly for imaging a mouse, is described. The active area of the detector is approximately 46 mm; spl times/ 96 mm. Two flat-panel Hamamatsu H8500 position-sensitive photomultiplier tubes (PSPMTs) are coupled to a pixellated NaI(Tl) scintillator which views the animal through a copper-beryllium (CuBe) parallel-hole collimator specially designed for {sup 125}I. Although the PSPMTs have insensitive areas at their edges and there is a physical gap, corrections for scintillation light collection at the junction between the two tubes results in a uniform response across the entire rectangular area of the detector. The system described has been developed to optimize both sensitivity and resolution for in-vivo imaging of small animals injected with iodinated compounds. We demonstrate an in-vivo application of this detector, particularly to SPECT, by imaging mice injected with approximately 10-15; spl mu/Ci of {sup 125}I.

  8. Determining Camera Gain in Room Temperature Cameras

    SciTech Connect

    Joshua Cogliati

    2010-12-01

    James R. Janesick provides a method for determining the amplification of a CCD or CMOS camera when only access to the raw images is provided. However, the equation that is provided ignores the contribution of dark current. For CCD or CMOS cameras that are cooled well below room temperature, this is not a problem, however, the technique needs adjustment for use with room temperature cameras. This article describes the adjustment made to the equation, and a test of this method.

  9. High-performance digital color video camera

    NASA Astrophysics Data System (ADS)

    Parulski, Kenneth A.; D'Luna, Lionel J.; Benamati, Brian L.; Shelley, Paul R.

    1992-01-01

    Typical one-chip color cameras use analog video processing circuits. An improved digital camera architecture has been developed using a dual-slope A/D conversion technique and two full-custom CMOS digital video processing integrated circuits, the color filter array (CFA) processor and the RGB postprocessor. The system used a 768 X 484 active element interline transfer CCD with a new field-staggered 3G color filter pattern and a lenslet overlay, which doubles the sensitivity of the camera. The industrial-quality digital camera design offers improved image quality, reliability, manufacturability, while meeting aggressive size, power, and cost constraints. The CFA processor digital VLSI chip includes color filter interpolation processing, an optical black clamp, defect correction, white balance, and gain control. The RGB postprocessor digital integrated circuit includes a color correction matrix, gamma correction, 2D edge enhancement, and circuits to control the black balance, lens aperture, and focus.

  10. High-performance digital color video camera

    NASA Astrophysics Data System (ADS)

    Parulski, Kenneth A.; Benamati, Brian L.; D'Luna, Lionel J.; Shelley, Paul R.

    1991-06-01

    Typical one-chip color cameras use analog video processing circuits. An improved digital camera architecture has been developed using a dual-slope A/D conversion technique, and two full custom CMOS digital video processing ICs, the 'CFA processor' and the 'RGB post- processor.' The system uses a 768 X 484 active element interline transfer CCD with a new 'field-staggered 3G' color filter pattern and a 'lenslet' overlay, which doubles the sensitivity of the camera. The digital camera design offers improved image quality, reliability, and manufacturability, while meeting aggressive size, power, and cost constraints. The CFA processor digital VLSI chip includes color filter interpolation processing, an optical black clamp, defect correction, white balance, and gain control. The RGB post-processor digital IC includes a color correction matrix, gamma correction, two-dimensional edge-enhancement, and circuits to control the black balance, lens aperture, and focus.

  11. Interconnected network of cameras

    NASA Astrophysics Data System (ADS)

    Hosseini Kamal, Mahdad; Afshari, Hossein; Leblebici, Yusuf; Schmid, Alexandre; Vandergheynst, Pierre

    2013-02-01

    The real-time development of multi-camera systems is a great challenge. Synchronization and large data rates of the cameras adds to the complexity of these systems as well. The complexity of such system also increases as the number of their incorporating cameras increases. The customary approach to implementation of such system is a central type, where all the raw stream from the camera are first stored then processed for their target application. An alternative approach is to embed smart cameras to these systems instead of ordinary cameras with limited or no processing capability. Smart cameras with intra and inter camera processing capability and programmability at the software and hardware level will offer the right platform for distributed and parallel processing for multi- camera systems real-time application development. Inter camera processing requires the interconnection of smart cameras in a network arrangement. A novel hardware emulating platform is introduced for demonstrating the concept of the interconnected network of cameras. A methodology is demonstrated for the interconnection network of camera construction and analysis. A sample application is developed and demonstrated.

  12. The GCT camera for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Brown, A. M.; Abchiche, A.; Allan, D.; Amans, J.-P.; Armstrong, T. P.; Balzer, A.; Berge, D.; Boisson, C.; Bousquet, J.-J.; Bryan, M.; Buchholtz, G.; Chadwick, P. M.; Costantini, H.; Cotter, G.; Daniel, M. K.; De Franco, A.; de Frondat, F.; Dournaux, J.-L.; Dumas, D.; Fasola, G.; Funk, S.; Gironnet, J.; Graham, J. A.; Greenshaw, T.; Hervet, O.; Hidaka, N.; Hinton, J. A.; Huet, J.-M.; Jégouzo, I.; Jogler, T.; Kraus, M.; Lapington, J. S.; Laporte, P.; Lefaucheur, J.; Markoff, S.; Melse, T.; Mohrmann, L.; Molyneux, P.; Nolan, S. J.; Okumura, A.; Osborne, J. P.; Parsons, R. D.; Rosen, S.; Ross, D.; Rowell, G.; Sato, Y.; Sayede, F.; Schmoll, J.; Schoorlemmer, H.; Servillat, M.; Sol, H.; Stamatescu, V.; Stephan, M.; Stuik, R.; Sykes, J.; Tajima, H.; Thornhill, J.; Tibaldo, L.; Trichard, C.; Vink, J.; Watson, J. J.; White, R.; Yamane, N.; Zech, A.; Zink, A.; Zorn, J.

    2016-07-01

    The Gamma-ray Cherenkov Telescope (GCT) is proposed for the Small-Sized Telescope component of the Cherenkov Telescope Array (CTA). GCT's dual-mirror Schwarzschild-Couder (SC) optical system allows the use of a compact camera with small form-factor photosensors. The GCT camera is 0:4 m in diameter and has 2048 pixels; each pixel has a 0:2° angular size, resulting in a wide field-of-view. The design of the GCT camera is high performance at low cost, with the camera housing 32 front-end electronics modules providing full waveform information for all of the camera's 2048 pixels. The first GCT camera prototype, CHEC-M, was commissioned during 2015, culminating in the first Cherenkov images recorded by a SC telescope and the first light of a CTA prototype. In this contribution we give a detailed description of the GCT camera and present preliminary results from CHEC-M's commissioning.

  13. Novel fundus camera design

    NASA Astrophysics Data System (ADS)

    Dehoog, Edward A.

    A fundus camera a complex optical system that makes use of the principle of reflex free indirect ophthalmoscopy to image the retina. Despite being in existence as early as 1900's, little has changed in the design of a fundus camera and there is minimal information about the design principles utilized. Parameters and specifications involved in the design of fundus camera are determined and their affect on system performance are discussed. Fundus cameras incorporating different design methods are modeled and a performance evaluation based on design parameters is used to determine the effectiveness of each design strategy. By determining the design principles involved in the fundus camera, new cameras can be designed to include specific imaging modalities such as optical coherence tomography, imaging spectroscopy and imaging polarimetry to gather additional information about properties and structure of the retina. Design principles utilized to incorporate such modalities into fundus camera systems are discussed. Design, implementation and testing of a snapshot polarimeter fundus camera are demonstrated.

  14. Constrained space camera assembly

    DOEpatents

    Heckendorn, Frank M.; Anderson, Erin K.; Robinson, Casandra W.; Haynes, Harriet B.

    1999-01-01

    A constrained space camera assembly which is intended to be lowered through a hole into a tank, a borehole or another cavity. The assembly includes a generally cylindrical chamber comprising a head and a body and a wiring-carrying conduit extending from the chamber. Means are included in the chamber for rotating the body about the head without breaking an airtight seal formed therebetween. The assembly may be pressurized and accompanied with a pressure sensing means for sensing if a breach has occurred in the assembly. In one embodiment, two cameras, separated from their respective lenses, are installed on a mounting apparatus disposed in the chamber. The mounting apparatus includes means allowing both longitudinal and lateral movement of the cameras. Moving the cameras longitudinally focuses the cameras, and moving the cameras laterally away from one another effectively converges the cameras so that close objects can be viewed. The assembly further includes means for moving lenses of different magnification forward of the cameras.

  15. Making Ceramic Cameras

    ERIC Educational Resources Information Center

    Squibb, Matt

    2009-01-01

    This article describes how to make a clay camera. This idea of creating functional cameras from clay allows students to experience ceramics, photography, and painting all in one unit. (Contains 1 resource and 3 online resources.)

  16. Vacuum Camera Cooler

    NASA Technical Reports Server (NTRS)

    Laugen, Geoffrey A.

    2011-01-01

    Acquiring cheap, moving video was impossible in a vacuum environment, due to camera overheating. This overheating is brought on by the lack of cooling media in vacuum. A water-jacketed camera cooler enclosure machined and assembled from copper plate and tube has been developed. The camera cooler (see figure) is cup-shaped and cooled by circulating water or nitrogen gas through copper tubing. The camera, a store-bought "spy type," is not designed to work in a vacuum. With some modifications the unit can be thermally connected when mounted in the cup portion of the camera cooler. The thermal conductivity is provided by copper tape between parts of the camera and the cooled enclosure. During initial testing of the demonstration unit, the camera cooler kept the CPU (central processing unit) of this video camera at operating temperature. This development allowed video recording of an in-progress test, within a vacuum environment.

  17. Making Ceramic Cameras

    ERIC Educational Resources Information Center

    Squibb, Matt

    2009-01-01

    This article describes how to make a clay camera. This idea of creating functional cameras from clay allows students to experience ceramics, photography, and painting all in one unit. (Contains 1 resource and 3 online resources.)

  18. Nanosecond frame cameras

    SciTech Connect

    Frank, A M; Wilkins, P R

    2001-01-05

    The advent of CCD cameras and computerized data recording has spurred the development of several new cameras and techniques for recording nanosecond images. We have made a side by side comparison of three nanosecond frame cameras, examining them for both performance and operational characteristics. The cameras include; Micro-Channel Plate/CCD, Image Diode/CCD and Image Diode/Film; combinations of gating/data recording. The advantages and disadvantages of each device will be discussed.

  19. Harpicon camera for HDTV

    NASA Astrophysics Data System (ADS)

    Tanada, Jun

    1992-08-01

    Ikegami has been involved in broadcast equipment ever since it was established as a company. In conjunction with NHK it has brought forth countless television cameras, from black-and-white cameras to color cameras, HDTV cameras, and special-purpose cameras. In the early days of HDTV (high-definition television, also known as "High Vision") cameras the specifications were different from those for the cameras of the present-day system, and cameras using all kinds of components, having different arrangements of components, and having different appearances were developed into products, with time spent on experimentation, design, fabrication, adjustment, and inspection. But recently the knowhow built up thus far in components, , printed circuit boards, and wiring methods has been incorporated in camera fabrication, making it possible to make HDTV cameras by metbods similar to the present system. In addition, more-efficient production, lower costs, and better after-sales service are being achieved by using the same circuits, components, mechanism parts, and software for both HDTV cameras and cameras that operate by the present system.

  20. Those Nifty Digital Cameras!

    ERIC Educational Resources Information Center

    Ekhaml, Leticia

    1996-01-01

    Describes digital photography--an electronic imaging technology that merges computer capabilities with traditional photography--and its uses in education. Discusses how a filmless camera works, types of filmless cameras, advantages and disadvantages, and educational applications of the consumer digital cameras. (AEF)

  1. Digital Pinhole Camera

    ERIC Educational Resources Information Center

    Lancor, Rachael; Lancor, Brian

    2014-01-01

    In this article we describe how the classic pinhole camera demonstration can be adapted for use with digital cameras. Students can easily explore the effects of the size of the pinhole and its distance from the sensor on exposure time, magnification, and image quality. Instructions for constructing a digital pinhole camera and our method for…

  2. Digital Pinhole Camera

    ERIC Educational Resources Information Center

    Lancor, Rachael; Lancor, Brian

    2014-01-01

    In this article we describe how the classic pinhole camera demonstration can be adapted for use with digital cameras. Students can easily explore the effects of the size of the pinhole and its distance from the sensor on exposure time, magnification, and image quality. Instructions for constructing a digital pinhole camera and our method for…

  3. Omnifocus video camera.

    PubMed

    Iizuka, Keigo

    2011-04-01

    The omnifocus video camera takes videos, in which objects at different distances are all in focus in a single video display. The omnifocus video camera consists of an array of color video cameras combined with a unique distance mapping camera called the Divcam. The color video cameras are all aimed at the same scene, but each is focused at a different distance. The Divcam provides real-time distance information for every pixel in the scene. A pixel selection utility uses the distance information to select individual pixels from the multiple video outputs focused at different distances, in order to generate the final single video display that is everywhere in focus. This paper presents principle of operation, design consideration, detailed construction, and over all performance of the omnifocus video camera. The major emphasis of the paper is the proof of concept, but the prototype has been developed enough to demonstrate the superiority of this video camera over a conventional video camera. The resolution of the prototype is high, capturing even fine details such as fingerprints in the image. Just as the movie camera was a significant advance over the still camera, the omnifocus video camera represents a significant advance over all-focus cameras for still images. © 2011 American Institute of Physics

  4. 2. VAL CAMERA CAR, VIEW OF CAMERA CAR AND TRACK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VAL CAMERA CAR, VIEW OF CAMERA CAR AND TRACK WITH CAMERA STATION ABOVE LOOKING WEST TAKEN FROM RESERVOIR. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  5. 7. VAL CAMERA CAR, DETAIL OF 'FLARE' OR TRAJECTORY CAMERA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VAL CAMERA CAR, DETAIL OF 'FLARE' OR TRAJECTORY CAMERA INSIDE CAMERA CAR. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  6. 6. VAL CAMERA CAR, DETAIL OF COMMUNICATION EQUIPMENT INSIDE CAMERA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VAL CAMERA CAR, DETAIL OF COMMUNICATION EQUIPMENT INSIDE CAMERA CAR WITH CAMERA MOUNT IN FOREGROUND. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  7. Tower Camera Handbook

    SciTech Connect

    Moudry, D

    2005-01-01

    The tower camera in Barrow provides hourly images of ground surrounding the tower. These images may be used to determine fractional snow cover as winter arrives, for comparison with the albedo that can be calculated from downward-looking radiometers, as well as some indication of present weather. Similarly, during spring time, the camera images show the changes in the ground albedo as the snow melts. The tower images are saved in hourly intervals. In addition, two other cameras, the skydeck camera in Barrow and the piling camera in Atqasuk, show the current conditions at those sites.

  8. Miniaturized fundus camera

    NASA Astrophysics Data System (ADS)

    Gliss, Christine; Parel, Jean-Marie A.; Flynn, John T.; Pratisto, Hans S.; Niederer, Peter F.

    2003-07-01

    We present a miniaturized version of a fundus camera. The camera is designed for the use in screening for retinopathy of prematurity (ROP). There, but also in other applications a small, light weight, digital camera system can be extremely useful. We present a small wide angle digital camera system. The handpiece is significantly smaller and lighter then in all other systems. The electronics is truly portable fitting in a standard boardcase. The camera is designed to be offered at a compatible price. Data from tests on young rabbits' eyes is presented. The development of the camera system is part of a telemedicine project screening for ROP. Telemedical applications are a perfect application for this camera system using both advantages: the portability as well as the digital image.

  9. In vivo evaluation of a breast-specific magnetic resonance guided focused ultrasound system in a goat udder model

    PubMed Central

    Payne, A.; Todd, N.; Minalga, E.; Wang, Y.; Diakite, M.; Hadley, R.; Merrill, R.; Factor, R.; Neumayer, L.; Parker, D. L.

    2013-01-01

    Purpose: This work further evaluates the functionality, efficacy, and safety of a new breast-specific magnetic resonance guided high intensity focused ultrasound (MRgFUS) system in an in vivo goat udder model. Methods: Eight female goats underwent an MRgFUS ablation procedure using the breast-specific MRgFUS system. Tissue classification was achieved through the 3D magnetic resonance imaging (MRI) acquisition of several contrasts (T1w, T2w, PDw, 3-point Dixon). The MRgFUS treatment was performed with a grid trajectory executed in one or two planes within the glandular tissue of the goat udder. Temperature was monitored using a 3D proton resonance frequency (PRF) MRI technique. Delayed contrast enhanced-MR images were acquired immediately and 14 days post MRgFUS treatment. A localized tissue excision was performed in one animal and histological analysis was performed. Animals were available for adoption at the conclusion of the study. Results: The breast-specific MRgFUS system was able to ablate regions ranging in size from 0.4 to 3.6 cm3 in the goat udder model. Tissue damage was confirmed through the correlation of thermal dose measurements obtained with realtime 3D MR thermometry to delayed contrast enhanced-MR images immediately after the treatment and 14 days postablation. In general, lesions were longer in the ultrasound propagation direction, which is consistent with the dimensions of the ultrasound focal spot. Thermal dose volumes had better agreement with nonenhancing areas of the DCE-MRI images obtained 14 days after the MRgFUS treatment. Conclusions: The system was able to successfully ablate lesions up to 3.6 cm3. The thermal dose volume was found to correlate better with the 14-day postablation nonenhancing delayed contrast enhanced-MR image volumes. While the goat udder is not an ideal model for the human breast, this study has proven the feasibility of using this system on a wide variety of udder shapes and sizes, demonstrating the flexibility that

  10. Camera Development for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Moncada, Roberto Jose

    2017-01-01

    With the Cherenkov Telescope Array (CTA), the very-high-energy gamma-ray universe, between 30 GeV and 300 TeV, will be probed at an unprecedented resolution, allowing deeper studies of known gamma-ray emitters and the possible discovery of new ones. This exciting project could also confirm the particle nature of dark matter by looking for the gamma rays produced by self-annihilating weakly interacting massive particles (WIMPs). The telescopes will use the imaging atmospheric Cherenkov technique (IACT) to record Cherenkov photons that are produced by the gamma-ray induced extensive air shower. One telescope design features dual-mirror Schwarzschild-Couder (SC) optics that allows the light to be finely focused on the high-resolution silicon photomultipliers of the camera modules starting from a 9.5-meter primary mirror. Each camera module will consist of a focal plane module and front-end electronics, and will have four TeV Array Readout with GSa/s Sampling and Event Trigger (TARGET) chips, giving them 64 parallel input channels. The TARGET chip has a self-trigger functionality for readout that can be used in higher logic across camera modules as well as across individual telescopes, which will each have 177 camera modules. There will be two sites, one in the northern and the other in the southern hemisphere, for full sky coverage, each spanning at least one square kilometer. A prototype SC telescope is currently under construction at the Fred Lawrence Whipple Observatory in Arizona. This work was supported by the National Science Foundation's REU program through NSF award AST-1560016.

  11. GRACE star camera noise

    NASA Astrophysics Data System (ADS)

    Harvey, Nate

    2016-08-01

    Extending results from previous work by Bandikova et al. (2012) and Inacio et al. (2015), this paper analyzes Gravity Recovery and Climate Experiment (GRACE) star camera attitude measurement noise by processing inter-camera quaternions from 2003 to 2015. We describe a correction to star camera data, which will eliminate a several-arcsec twice-per-rev error with daily modulation, currently visible in the auto-covariance function of the inter-camera quaternion, from future GRACE Level-1B product releases. We also present evidence supporting the argument that thermal conditions/settings affect long-term inter-camera attitude biases by at least tens-of-arcsecs, and that several-to-tens-of-arcsecs per-rev star camera errors depend largely on field-of-view.

  12. Analytical multicollimator camera calibration

    USGS Publications Warehouse

    Tayman, W.P.

    1978-01-01

    Calibration with the U.S. Geological survey multicollimator determines the calibrated focal length, the point of symmetry, the radial distortion referred to the point of symmetry, and the asymmetric characteristiecs of the camera lens. For this project, two cameras were calibrated, a Zeiss RMK A 15/23 and a Wild RC 8. Four test exposures were made with each camera. Results are tabulated for each exposure and averaged for each set. Copies of the standard USGS calibration reports are included. ?? 1978.

  13. FPA camera standardisation

    NASA Astrophysics Data System (ADS)

    Horny, N.

    2003-04-01

    The temperature standardisation of an infrared camera is generally done with an internal black body. However, some cameras do not have such correction and some particular effects like Narcissus or other internal contributions disturb the measurements. The determination of the different contributions of the thermosignal given by the camera allows us to propose a procedure in order to obtain an absolute temperature with a precision of one degree.

  14. Streak camera meeting summary

    SciTech Connect

    Dolan, Daniel H.; Bliss, David E.

    2014-09-01

    Streak cameras are important for high-speed data acquisition in single event experiments, where the total recorded information (I) is shared between the number of measurements (M) and the number of samples (S). Topics of this meeting included: streak camera use at the national laboratories; current streak camera production; new tube developments and alternative technologies; and future planning. Each topic is summarized in the following sections.

  15. Digital camera simulation.

    PubMed

    Farrell, Joyce E; Catrysse, Peter B; Wandell, Brian A

    2012-02-01

    We describe a simulation of the complete image processing pipeline of a digital camera, beginning with a radiometric description of the scene captured by the camera and ending with a radiometric description of the image rendered on a display. We show that there is a good correspondence between measured and simulated sensor performance. Through the use of simulation, we can quantify the effects of individual digital camera components on system performance and image quality. This computational approach can be helpful for both camera design and image quality assessment.

  16. Polarization encoded color camera.

    PubMed

    Schonbrun, Ethan; Möller, Guðfríður; Di Caprio, Giuseppe

    2014-03-15

    Digital cameras would be colorblind if they did not have pixelated color filters integrated into their image sensors. Integration of conventional fixed filters, however, comes at the expense of an inability to modify the camera's spectral properties. Instead, we demonstrate a micropolarizer-based camera that can reconfigure its spectral response. Color is encoded into a linear polarization state by a chiral dispersive element and then read out in a single exposure. The polarization encoded color camera is capable of capturing three-color images at wavelengths spanning the visible to the near infrared.

  17. Digital Electronic Still Camera

    NASA Technical Reports Server (NTRS)

    Holland, Samuel D.; Yeates, Herbert D.

    1993-01-01

    Digital electronic still camera part of electronic recording, processing, tansmitting, and displaying system. Removable hard-disk drive in camera serves as digital electronic equivalent of photographic film. Images viewed, analyzed, or transmitted quickly. Camera takes images of nearly photographic quality and stores them in digital form. Portable, hand-held, battery-powered unit designed for scientific use. Camera used in conjunction with playback unit also serving as transmitting unit if images sent to remote station. Remote station equipped to store, process, and display images. Digital image data encoded with error-correcting code at playback/transmitting unit for error-free transmission to remote station.

  18. LSST Camera Optics Design

    SciTech Connect

    Riot, V J; Olivier, S; Bauman, B; Pratuch, S; Seppala, L; Gilmore, D; Ku, J; Nordby, M; Foss, M; Antilogus, P; Morgado, N

    2012-05-24

    The Large Synoptic Survey Telescope (LSST) uses a novel, three-mirror, telescope design feeding a camera system that includes a set of broad-band filters and three refractive corrector lenses to produce a flat field at the focal plane with a wide field of view. Optical design of the camera lenses and filters is integrated in with the optical design of telescope mirrors to optimize performance. We discuss the rationale for the LSST camera optics design, describe the methodology for fabricating, coating, mounting and testing the lenses and filters, and present the results of detailed analyses demonstrating that the camera optics will meet their performance goals.

  19. Ringfield lithographic camera

    DOEpatents

    Sweatt, William C.

    1998-01-01

    A projection lithography camera is presented with a wide ringfield optimized so as to make efficient use of extreme ultraviolet radiation from a large area radiation source (e.g., D.sub.source .apprxeq.0.5 mm). The camera comprises four aspheric mirrors optically arranged on a common axis of symmetry with an increased etendue for the camera system. The camera includes an aperture stop that is accessible through a plurality of partial aperture stops to synthesize the theoretical aperture stop. Radiation from a mask is focused to form a reduced image on a wafer, relative to the mask, by reflection from the four aspheric mirrors.

  20. Explosive Transient Camera (ETC) Program

    NASA Technical Reports Server (NTRS)

    Ricker, George

    1991-01-01

    Since the inception of the ETC program, a wide range of new technologies was developed to support this astronomical instrument. The prototype unit was installed at ETC Site 1. The first partially automated observations were made and some major renovations were later added to the ETC hardware. The ETC was outfitted with new thermoelectrically-cooled CCD cameras and a sophisticated vacuum manifold, which, together, made the ETC a much more reliable unit than the prototype. The ETC instrumentation and building were placed under full computer control, allowing the ETC to operate as an automated, autonomous instrument with virtually no human intervention necessary. The first fully-automated operation of the ETC was performed, during which the ETC monitored the error region of the repeating soft gamma-ray burster SGR 1806-21.

  1. GAMCIT: A gamma ray burst detector

    NASA Technical Reports Server (NTRS)

    Surka, Derek M.; Grunsfeld, John M.; Warneke, Brett A.

    1992-01-01

    The origin of celestial gamma ray bursts remains one of the great mysteries of modern astrophysics. The GAMCIT Get-Away-Special payload is designed to provide new and unique data in the search for the sources of gamma ray bursts. GAMCIT consists of three gamma ray detectors, an optical CCD camera, and an intelligent electronics system. This paper describes the major components of the system, including the electronics and structural designs.

  2. CCD Luminescence Camera

    NASA Technical Reports Server (NTRS)

    Janesick, James R.; Elliott, Tom

    1987-01-01

    New diagnostic tool used to understand performance and failures of microelectronic devices. Microscope integrated to low-noise charge-coupled-device (CCD) camera to produce new instrument for analyzing performance and failures of microelectronics devices that emit infrared light during operation. CCD camera also used to indentify very clearly parts that have failed where luminescence typically found.

  3. Constrained space camera assembly

    DOEpatents

    Heckendorn, F.M.; Anderson, E.K.; Robinson, C.W.; Haynes, H.B.

    1999-05-11

    A constrained space camera assembly which is intended to be lowered through a hole into a tank, a borehole or another cavity is disclosed. The assembly includes a generally cylindrical chamber comprising a head and a body and a wiring-carrying conduit extending from the chamber. Means are included in the chamber for rotating the body about the head without breaking an airtight seal formed therebetween. The assembly may be pressurized and accompanied with a pressure sensing means for sensing if a breach has occurred in the assembly. In one embodiment, two cameras, separated from their respective lenses, are installed on a mounting apparatus disposed in the chamber. The mounting apparatus includes means allowing both longitudinal and lateral movement of the cameras. Moving the cameras longitudinally focuses the cameras, and moving the cameras laterally away from one another effectively converges the cameras so that close objects can be viewed. The assembly further includes means for moving lenses of different magnification forward of the cameras. 17 figs.

  4. Compact Solar Camera.

    ERIC Educational Resources Information Center

    Juergens, Albert

    1980-01-01

    Describes a compact solar camera built as a one-semester student project. This camera is used for taking pictures of the sun and moon and for direct observation of the image of the sun on a screen. (Author/HM)

  5. Cameras in mobile phones

    NASA Astrophysics Data System (ADS)

    Nummela, Ville; Viinikanoja, Jarkko; Alakarhu, Juha

    2006-04-01

    One of the fastest growing markets in consumer markets today are camera phones. During past few years total volume has been growing fast and today millions of mobile phones with camera will be sold. At the same time resolution and functionality of the cameras has been growing from CIF towards DSC level. From camera point of view the mobile world is an extremely challenging field. Cameras should have good image quality but in small size. They also need to be reliable and their construction should be suitable for mass manufacturing. All components of the imaging chain should be well optimized in this environment. Image quality and usability are the most important parameters to user. The current trend of adding more megapixels to cameras and at the same time using smaller pixels is affecting both. On the other hand reliability and miniaturization are key drivers for product development as well as the cost. In optimized solution all parameters are in balance but the process of finding the right trade-offs is not an easy task. In this paper trade-offs related to optics and their effects to image quality and usability of cameras are discussed. Key development areas from mobile phone camera point of view are also listed.

  6. Camera Operator and Videographer

    ERIC Educational Resources Information Center

    Moore, Pam

    2007-01-01

    Television, video, and motion picture camera operators produce images that tell a story, inform or entertain an audience, or record an event. They use various cameras to shoot a wide range of material, including television series, news and sporting events, music videos, motion pictures, documentaries, and training sessions. Those who film or…

  7. Camera Operator and Videographer

    ERIC Educational Resources Information Center

    Moore, Pam

    2007-01-01

    Television, video, and motion picture camera operators produce images that tell a story, inform or entertain an audience, or record an event. They use various cameras to shoot a wide range of material, including television series, news and sporting events, music videos, motion pictures, documentaries, and training sessions. Those who film or…

  8. The DSLR Camera

    NASA Astrophysics Data System (ADS)

    Berkó, Ernő; Argyle, R. W.

    Cameras have developed significantly in the past decade; in particular, digital Single-Lens Reflex Cameras (DSLR) have appeared. As a consequence we can buy cameras of higher and higher pixel number, and mass production has resulted in the great reduction of prices. CMOS sensors used for imaging are increasingly sensitive, and the electronics in the cameras allows images to be taken with much less noise. The software background is developing in a similar way—intelligent programs are created for after-processing and other supplementary works. Nowadays we can find a digital camera in almost every household, most of these cameras are DSLR ones. These can be used very well for astronomical imaging, which is nicely demonstrated by the amount and quality of the spectacular astrophotos appearing in different publications. These examples also show how much post-processing software contributes to the rise in the standard of the pictures. To sum up, the DSLR camera serves as a cheap alternative for the CCD camera, with somewhat weaker technical characteristics. In the following, I will introduce how we can measure the main parameters (position angle and separation) of double stars, based on the methods, software and equipment I use. Others can easily apply these for their own circumstances.

  9. Future planetary television cameras

    NASA Technical Reports Server (NTRS)

    Norris, D. D.; Landauer, F. P.

    1976-01-01

    The evolution of planetary slow-scan vidicon cameras started with the exploratory flyby mission to Mars in 1965, and has continued through the planned launch of the Mariner Jupiter/Saturn 1977 Mission. To date, the camera performance has been constrained by limited spacecraft capabilities rather than driven by desires of experimenters. The paper traces this evolution for a generation of camera using charge-coupled device (CCD) sensors, which have greater capability within spacecraft weight and power constraints. Projections are given of scientific objectives for the CCD cameras, and it is shown how these objectives will drive the camera performance, data rates, on-board processing, pointing accuracy, and other spacecraft system parameters.

  10. Dry imaging cameras.

    PubMed

    Indrajit, Ik; Alam, Aftab; Sahni, Hirdesh; Bhatia, Mukul; Sahu, Samaresh

    2011-04-01

    Dry imaging cameras are important hard copy devices in radiology. Using dry imaging camera, multiformat images of digital modalities in radiology are created from a sealed unit of unexposed films. The functioning of a modern dry camera, involves a blend of concurrent processes, in areas of diverse sciences like computers, mechanics, thermal, optics, electricity and radiography. Broadly, hard copy devices are classified as laser and non laser based technology. When compared with the working knowledge and technical awareness of different modalities in radiology, the understanding of a dry imaging camera is often superficial and neglected. To fill this void, this article outlines the key features of a modern dry camera and its important issues that impact radiology workflow.

  11. Dry imaging cameras

    PubMed Central

    Indrajit, IK; Alam, Aftab; Sahni, Hirdesh; Bhatia, Mukul; Sahu, Samaresh

    2011-01-01

    Dry imaging cameras are important hard copy devices in radiology. Using dry imaging camera, multiformat images of digital modalities in radiology are created from a sealed unit of unexposed films. The functioning of a modern dry camera, involves a blend of concurrent processes, in areas of diverse sciences like computers, mechanics, thermal, optics, electricity and radiography. Broadly, hard copy devices are classified as laser and non laser based technology. When compared with the working knowledge and technical awareness of different modalities in radiology, the understanding of a dry imaging camera is often superficial and neglected. To fill this void, this article outlines the key features of a modern dry camera and its important issues that impact radiology workflow. PMID:21799589

  12. 7. VAL CAMERA STATION, INTERIOR VIEW OF CAMERA MOUNT, COMMUNICATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VAL CAMERA STATION, INTERIOR VIEW OF CAMERA MOUNT, COMMUNICATION EQUIPMENT AND STORAGE CABINET. - Variable Angle Launcher Complex, Camera Stations, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  13. 3. VAL CAMERA CAR, VIEW OF CAMERA CAR AND TRACK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VAL CAMERA CAR, VIEW OF CAMERA CAR AND TRACK WITH THE VAL TO THE RIGHT, LOOKING NORTHEAST. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  14. Kitt Peak speckle camera

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. B.; Mcalister, H. A.; Robinson, W. G.

    1979-01-01

    The speckle camera in regular use at Kitt Peak National Observatory since 1974 is described in detail. The design of the atmospheric dispersion compensation prisms, the use of film as a recording medium, the accuracy of double star measurements, and the next generation speckle camera are discussed. Photographs of double star speckle patterns with separations from 1.4 sec of arc to 4.7 sec of arc are shown to illustrate the quality of image formation with this camera, the effects of seeing on the patterns, and to illustrate the isoplanatic patch of the atmosphere.

  15. Night Vision Camera

    NASA Technical Reports Server (NTRS)

    1996-01-01

    PixelVision, Inc. developed the Night Video NV652 Back-illuminated CCD Camera, based on the expertise of a former Jet Propulsion Laboratory employee and a former employee of Scientific Imaging Technologies, Inc. The camera operates without an image intensifier, using back-illuminated and thinned CCD technology to achieve extremely low light level imaging performance. The advantages of PixelVision's system over conventional cameras include greater resolution and better target identification under low light conditions, lower cost and a longer lifetime. It is used commercially for research and aviation.

  16. Kitt Peak speckle camera

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. B.; Mcalister, H. A.; Robinson, W. G.

    1979-01-01

    The speckle camera in regular use at Kitt Peak National Observatory since 1974 is described in detail. The design of the atmospheric dispersion compensation prisms, the use of film as a recording medium, the accuracy of double star measurements, and the next generation speckle camera are discussed. Photographs of double star speckle patterns with separations from 1.4 sec of arc to 4.7 sec of arc are shown to illustrate the quality of image formation with this camera, the effects of seeing on the patterns, and to illustrate the isoplanatic patch of the atmosphere.

  17. The Mars observer camera

    NASA Technical Reports Server (NTRS)

    Malin, M. C.; Danielson, G. E.; Ingersoll, A. P.; Masursky, H.; Veverka, J.; Soulanille, T.; Ravine, M.

    1987-01-01

    A camera designed to operate under the extreme constraints of the Mars Observer Mission was selected by NASA in April, 1986. Contingent upon final confirmation in mid-November, the Mars Observer Camera (MOC) will begin acquiring images of the surface and atmosphere of Mars in September-October 1991. The MOC incorporates both a wide angle system for low resolution global monitoring and intermediate resolution regional targeting, and a narrow angle system for high resolution selective surveys. Camera electronics provide control of image clocking and on-board, internal editing and buffering to match whatever spacecraft data system capabilities are allocated to the experiment. The objectives of the MOC experiment follow.

  18. Ringfield lithographic camera

    DOEpatents

    Sweatt, W.C.

    1998-09-08

    A projection lithography camera is presented with a wide ringfield optimized so as to make efficient use of extreme ultraviolet radiation from a large area radiation source (e.g., D{sub source} {approx_equal} 0.5 mm). The camera comprises four aspheric mirrors optically arranged on a common axis of symmetry. The camera includes an aperture stop that is accessible through a plurality of partial aperture stops to synthesize the theoretical aperture stop. Radiation from a mask is focused to form a reduced image on a wafer, relative to the mask, by reflection from the four aspheric mirrors. 11 figs.

  19. Do speed cameras reduce collisions?

    PubMed

    Skubic, Jeffrey; Johnson, Steven B; Salvino, Chris; Vanhoy, Steven; Hu, Chengcheng

    2013-01-01

    We investigated the effects of speed cameras along a 26 mile segment in metropolitan Phoenix, Arizona. Motor vehicle collisions were retrospectively identified according to three time periods - before cameras were placed, while cameras were in place and after cameras were removed. A 14 mile segment in the same area without cameras was used for control purposes. Five cofounding variables were eliminated. In this study, the placement or removal of interstate highway speed cameras did not independently affect the incidence of motor vehicle collisions.

  20. The Complementary Pinhole Camera.

    ERIC Educational Resources Information Center

    Bissonnette, D.; And Others

    1991-01-01

    Presents an experiment based on the principles of rectilinear motion of light operating in a pinhole camera that projects the image of an illuminated object through a small hole in a sheet to an image screen. (MDH)

  1. Cameras in the Classroom.

    ERIC Educational Resources Information Center

    Steinman, Richard C.

    1993-01-01

    Describes the following uses for a video camera in the science classroom: video presentations, microscope work, taping and/or monitoring experiments, analyzing everyday phenomena, lesson enhancement, field trip alternative, and classroom management. (PR)

  2. Foale with digital camera

    NASA Image and Video Library

    2003-10-25

    ISS007-E-17982 (25 Oct. 2003) --- Astronaut C. Michael Foale, Expedition 8 mission commander and NASA ISS science officer, holds a camera in the Zvezda Service Module on the International Space Station (ISS).

  3. Miniature TV Camera

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Originally devised to observe Saturn stage separation during Apollo flights, Marshall Space Flight Center's Miniature Television Camera, measuring only 4 x 3 x 1 1/2 inches, quickly made its way to the commercial telecommunications market.

  4. LSST camera control system

    NASA Astrophysics Data System (ADS)

    Marshall, Stuart; Thaler, Jon; Schalk, Terry; Huffer, Michael

    2006-06-01

    The LSST Camera Control System (CCS) will manage the activities of the various camera subsystems and coordinate those activities with the LSST Observatory Control System (OCS). The CCS comprises a set of modules (nominally implemented in software) which are each responsible for managing one camera subsystem. Generally, a control module will be a long lived "server" process running on an embedded computer in the subsystem. Multiple control modules may run on a single computer or a module may be implemented in "firmware" on a subsystem. In any case control modules must exchange messages and status data with a master control module (MCM). The main features of this approach are: (1) control is distributed to the local subsystem level; (2) the systems follow a "Master/Slave" strategy; (3) coordination will be achieved by the exchange of messages through the interfaces between the CCS and its subsystems. The interface between the camera data acquisition system and its downstream clients is also presented.

  5. The MKID Camera

    NASA Astrophysics Data System (ADS)

    Maloney, P. R.; Czakon, N. G.; Day, P. K.; Duan, R.; Gao, J.; Glenn, J.; Golwala, S.; Hollister, M.; LeDuc, H. G.; Mazin, B.; Noroozian, O.; Nguyen, H. T.; Sayers, J.; Schlaerth, J.; Vaillancourt, J. E.; Vayonakis, A.; Wilson, P.; Zmuidzinas, J.

    2009-12-01

    The MKID Camera project is a collaborative effort of Caltech, JPL, the University of Colorado, and UC Santa Barbara to develop a large-format, multi-color millimeter and submillimeter-wavelength camera for astronomy using microwave kinetic inductance detectors (MKIDs). These are superconducting, micro-resonators fabricated from thin aluminum and niobium films. We couple the MKIDs to multi-slot antennas and measure the change in surface impedance produced by photon-induced breaking of Cooper pairs. The readout is almost entirely at room temperature and can be highly multiplexed; in principle hundreds or even thousands of resonators could be read out on a single feedline. The camera will have 576 spatial pixels that image simultaneously in four bands at 750, 850, 1100 and 1300 microns. It is scheduled for deployment at the Caltech Submillimeter Observatory in the summer of 2010. We present an overview of the camera design and readout and describe the current status of testing and fabrication.

  6. Advanced CCD camera developments

    SciTech Connect

    Condor, A.

    1994-11-15

    Two charge coupled device (CCD) camera systems are introduced and discussed, describing briefly the hardware involved, and the data obtained in their various applications. The Advanced Development Group Defense Sciences Engineering Division has been actively designing, manufacturing, fielding state-of-the-art CCD camera systems for over a decade. These systems were originally developed for the nuclear test program to record data from underground nuclear tests. Today, new and interesting application for these systems have surfaced and development is continuing in the area of advanced CCD camera systems, with the new CCD camera that will allow experimenters to replace film for x-ray imaging at the JANUS, USP, and NOVA laser facilities.

  7. Spacecraft camera image registration

    NASA Technical Reports Server (NTRS)

    Kamel, Ahmed A. (Inventor); Graul, Donald W. (Inventor); Chan, Fred N. T. (Inventor); Gamble, Donald W. (Inventor)

    1987-01-01

    A system for achieving spacecraft camera (1, 2) image registration comprises a portion external to the spacecraft and an image motion compensation system (IMCS) portion onboard the spacecraft. Within the IMCS, a computer (38) calculates an image registration compensation signal (60) which is sent to the scan control loops (84, 88, 94, 98) of the onboard cameras (1, 2). At the location external to the spacecraft, the long-term orbital and attitude perturbations on the spacecraft are modeled. Coefficients (K, A) from this model are periodically sent to the onboard computer (38) by means of a command unit (39). The coefficients (K, A) take into account observations of stars and landmarks made by the spacecraft cameras (1, 2) themselves. The computer (38) takes as inputs the updated coefficients (K, A) plus synchronization information indicating the mirror position (AZ, EL) of each of the spacecraft cameras (1, 2), operating mode, and starting and stopping status of the scan lines generated by these cameras (1, 2), and generates in response thereto the image registration compensation signal (60). The sources of periodic thermal errors on the spacecraft are discussed. The system is checked by calculating measurement residuals, the difference between the landmark and star locations predicted at the external location and the landmark and star locations as measured by the spacecraft cameras (1, 2).

  8. 9. VIEW OF CAMERA STATIONS UNDER CONSTRUCTION INCLUDING CAMERA CAR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW OF CAMERA STATIONS UNDER CONSTRUCTION INCLUDING CAMERA CAR ON RAILROAD TRACK AND FIXED CAMERA STATION 1400 (BUILDING NO. 42021) ABOVE, ADJACENT TO STATE HIGHWAY 39, LOOKING WEST, March 23, 1948. (Original photograph in possession of Dave Willis, San Diego, California.) - Variable Angle Launcher Complex, Camera Stations, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  9. 1. VARIABLEANGLE LAUNCHER CAMERA CAR, VIEW OF CAMERA CAR AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VARIABLE-ANGLE LAUNCHER CAMERA CAR, VIEW OF CAMERA CAR AND TRACK WITH CAMERA STATION ABOVE LOOKING NORTH TAKEN FROM RESERVOIR. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  10. Deployable Wireless Camera Penetrators

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Jones, Jack; Sherrit, Stewart; Wu, Jiunn Jeng

    2008-01-01

    A lightweight, low-power camera dart has been designed and tested for context imaging of sampling sites and ground surveys from an aerobot or an orbiting spacecraft in a microgravity environment. The camera penetrators also can be used to image any line-of-sight surface, such as cliff walls, that is difficult to access. Tethered cameras to inspect the surfaces of planetary bodies use both power and signal transmission lines to operate. A tether adds the possibility of inadvertently anchoring the aerobot, and requires some form of station-keeping capability of the aerobot if extended examination time is required. The new camera penetrators are deployed without a tether, weigh less than 30 grams, and are disposable. They are designed to drop from any altitude with the boost in transmitting power currently demonstrated at approximately 100-m line-of-sight. The penetrators also can be deployed to monitor lander or rover operations from a distance, and can be used for surface surveys or for context information gathering from a touch-and-go sampling site. Thanks to wireless operation, the complexity of the sampling or survey mechanisms may be reduced. The penetrators may be battery powered for short-duration missions, or have solar panels for longer or intermittent duration missions. The imaging device is embedded in the penetrator, which is dropped or projected at the surface of a study site at 90 to the surface. Mirrors can be used in the design to image the ground or the horizon. Some of the camera features were tested using commercial "nanny" or "spy" camera components with the charge-coupled device (CCD) looking at a direction parallel to the ground. Figure 1 shows components of one camera that weighs less than 8 g and occupies a volume of 11 cm3. This camera could transmit a standard television signal, including sound, up to 100 m. Figure 2 shows the CAD models of a version of the penetrator. A low-volume array of such penetrator cameras could be deployed from an

  11. Gamma Knife

    MedlinePlus

    ... equipment? How is safety ensured? What is this equipment used for? The Gamma Knife® and its associated ... in size. top of page How does the equipment work? The Gamma Knife® utilizes a technique called ...

  12. ProxiScan™: A Novel Camera for Imaging Prostate Cancer

    SciTech Connect

    Ralph James

    2009-10-27

    ProxiScan is a compact gamma camera suited for high-resolution imaging of prostate cancer. Developed by Brookhaven National Laboratory and Hybridyne Imaging Technologies, Inc., ProxiScan won a 2009 R&D 100 Award, sponsored by R&D Magazine to recognize t

  13. "Stereo Compton cameras" for the 3-D localization of radioisotopes

    NASA Astrophysics Data System (ADS)

    Takeuchi, K.; Kataoka, J.; Nishiyama, T.; Fujita, T.; Kishimoto, A.; Ohsuka, S.; Nakamura, S.; Adachi, S.; Hirayanagi, M.; Uchiyama, T.; Ishikawa, Y.; Kato, T.

    2014-11-01

    The Compton camera is a viable and convenient tool used to visualize the distribution of radioactive isotopes that emit gamma rays. After the nuclear disaster in Fukushima in 2011, there is a particularly urgent need to develop "gamma cameras", which can visualize the distribution of such radioisotopes. In response, we propose a portable Compton camera, which comprises 3-D position-sensitive GAGG scintillators coupled with thin monolithic MPPC arrays. The pulse-height ratio of two MPPC-arrays allocated at both ends of the scintillator block determines the depth of interaction (DOI), which dramatically improves the position resolution of the scintillation detectors. We report on the detailed optimization of the detector design, based on Geant4 simulation. The results indicate that detection efficiency reaches up to 0.54%, or more than 10 times that of other cameras being tested in Fukushima, along with a moderate angular resolution of 8.1° (FWHM). By applying the triangular surveying method, we also propose a new concept for the stereo measurement of gamma rays by using two Compton cameras, thus enabling the 3-D positional measurement of radioactive isotopes for the first time. From one point source simulation data, we ensured that the source position and the distance to the same could be determined typically to within 2 meters' accuracy and we also confirmed that more than two sources are clearly separated by the event selection from two point sources of simulation data.

  14. Uncooled radiometric camera performance

    NASA Astrophysics Data System (ADS)

    Meyer, Bill; Hoelter, T.

    1998-07-01

    Thermal imaging equipment utilizing microbolometer detectors operating at room temperature has found widespread acceptance in both military and commercial applications. Uncooled camera products are becoming effective solutions to applications currently using traditional, photonic infrared sensors. The reduced power consumption and decreased mechanical complexity offered by uncooled cameras have realized highly reliable, low-cost, hand-held instruments. Initially these instruments displayed only relative temperature differences which limited their usefulness in applications such as Thermography. Radiometrically calibrated microbolometer instruments are now available. The ExplorIR Thermography camera leverages the technology developed for Raytheon Systems Company's first production microbolometer imaging camera, the Sentinel. The ExplorIR camera has a demonstrated temperature measurement accuracy of 4 degrees Celsius or 4% of the measured value (whichever is greater) over scene temperatures ranges of minus 20 degrees Celsius to 300 degrees Celsius (minus 20 degrees Celsius to 900 degrees Celsius for extended range models) and camera environmental temperatures of minus 10 degrees Celsius to 40 degrees Celsius. Direct temperature measurement with high resolution video imaging creates some unique challenges when using uncooled detectors. A temperature controlled, field-of-view limiting aperture (cold shield) is not typically included in the small volume dewars used for uncooled detector packages. The lack of a field-of-view shield allows a significant amount of extraneous radiation from the dewar walls and lens body to affect the sensor operation. In addition, the transmission of the Germanium lens elements is a function of ambient temperature. The ExplorIR camera design compensates for these environmental effects while maintaining the accuracy and dynamic range required by today's predictive maintenance and condition monitoring markets.

  15. Camera for Quasars in Early Universe (CQUEAN)

    NASA Astrophysics Data System (ADS)

    Park, Won-Kee; Pak, Soojong; Im, Myungshin; Choi, Changsu; Jeon, Yiseul; Chang, Seunghyuk; Jeong, Hyeonju; Lim, Juhee; Kim, Eunbin

    2012-08-01

    We describe the overall characteristics and the performance of an optical CCD camera system, Camera for Quasars in Early Universe (CQUEAN), which has been used at the 2.1 m Otto Struve Telescope of the McDonald Observatory since 2010 August. CQUEAN was developed for follow-up imaging observations of red sources such as high-redshift quasar candidates (z ≳ 5), gamma-ray bursts, brown dwarfs, and young stellar objects. For efficient observations of the red objects, CQUEAN has a science camera with a deep-depletion CCD chip, which boasts a higher quantum efficiency at 0.7–1.1 μm than conventional CCD chips. The camera was developed in a short timescale () and has been working reliably. By employing an autoguiding system and a focal reducer to enhance the field of view on the classical Cassegrain focus, we achieve a stable guiding in 20 minute exposures, an imaging quality with FWHM≥0.6‧‧ over the whole field (4.8‧ × 4.8‧), and a limiting magnitude of z = 23.4 AB mag at 5-σ with 1 hr total integration time. This article includes data taken at the McDonald Observatory of The University of Texas at Austin.

  16. Satellite camera image navigation

    NASA Technical Reports Server (NTRS)

    Kamel, Ahmed A. (Inventor); Graul, Donald W. (Inventor); Savides, John (Inventor); Hanson, Charles W. (Inventor)

    1987-01-01

    Pixels within a satellite camera (1, 2) image are precisely located in terms of latitude and longitude on a celestial body, such as the earth, being imaged. A computer (60) on the earth generates models (40, 50) of the satellite's orbit and attitude, respectively. The orbit model (40) is generated from measurements of stars and landmarks taken by the camera (1, 2), and by range data. The orbit model (40) is an expression of the satellite's latitude and longitude at the subsatellite point, and of the altitude of the satellite, as a function of time, using as coefficients (K) the six Keplerian elements at epoch. The attitude model (50) is based upon star measurements taken by each camera (1, 2). The attitude model (50) is a set of expressions for the deviations in a set of mutually orthogonal reference optical axes (x, y, z) as a function of time, for each camera (1, 2). Measured data is fit into the models (40, 50) using a walking least squares fit algorithm. A transformation computer (66 ) transforms pixel coordinates as telemetered by the camera (1, 2) into earth latitude and longitude coordinates, using the orbit and attitude models (40, 50).

  17. The Dark Energy Camera

    SciTech Connect

    Flaugher, B.

    2015-04-11

    The Dark Energy Camera is a new imager with a 2.2-degree diameter field of view mounted at the prime focus of the Victor M. Blanco 4-meter telescope on Cerro Tololo near La Serena, Chile. The camera was designed and constructed by the Dark Energy Survey Collaboration, and meets or exceeds the stringent requirements designed for the wide-field and supernova surveys for which the collaboration uses it. The camera consists of a five element optical corrector, seven filters, a shutter with a 60 cm aperture, and a CCD focal plane of 250-μm thick fully depleted CCDs cooled inside a vacuum Dewar. The 570 Mpixel focal plane comprises 62 2k x 4k CCDs for imaging and 12 2k x 2k CCDs for guiding and focus. The CCDs have 15μm x 15μm pixels with a plate scale of 0.263" per pixel. A hexapod system provides state-of-the-art focus and alignment capability. The camera is read out in 20 seconds with 6-9 electrons readout noise. This paper provides a technical description of the camera's engineering, construction, installation, and current status.

  18. The Dark Energy Camera

    DOE PAGES

    Flaugher, B.

    2015-04-11

    The Dark Energy Camera is a new imager with a 2.2-degree diameter field of view mounted at the prime focus of the Victor M. Blanco 4-meter telescope on Cerro Tololo near La Serena, Chile. The camera was designed and constructed by the Dark Energy Survey Collaboration, and meets or exceeds the stringent requirements designed for the wide-field and supernova surveys for which the collaboration uses it. The camera consists of a five element optical corrector, seven filters, a shutter with a 60 cm aperture, and a CCD focal plane of 250-μm thick fully depleted CCDs cooled inside a vacuum Dewar.more » The 570 Mpixel focal plane comprises 62 2k x 4k CCDs for imaging and 12 2k x 2k CCDs for guiding and focus. The CCDs have 15μm x 15μm pixels with a plate scale of 0.263" per pixel. A hexapod system provides state-of-the-art focus and alignment capability. The camera is read out in 20 seconds with 6-9 electrons readout noise. This paper provides a technical description of the camera's engineering, construction, installation, and current status.« less

  19. The Dark Energy Camera

    NASA Astrophysics Data System (ADS)

    Flaugher, B.; Diehl, H. T.; Honscheid, K.; Abbott, T. M. C.; Alvarez, O.; Angstadt, R.; Annis, J. T.; Antonik, M.; Ballester, O.; Beaufore, L.; Bernstein, G. M.; Bernstein, R. A.; Bigelow, B.; Bonati, M.; Boprie, D.; Brooks, D.; Buckley-Geer, E. J.; Campa, J.; Cardiel-Sas, L.; Castander, F. J.; Castilla, J.; Cease, H.; Cela-Ruiz, J. M.; Chappa, S.; Chi, E.; Cooper, C.; da Costa, L. N.; Dede, E.; Derylo, G.; DePoy, D. L.; de Vicente, J.; Doel, P.; Drlica-Wagner, A.; Eiting, J.; Elliott, A. E.; Emes, J.; Estrada, J.; Fausti Neto, A.; Finley, D. A.; Flores, R.; Frieman, J.; Gerdes, D.; Gladders, M. D.; Gregory, B.; Gutierrez, G. R.; Hao, J.; Holland, S. E.; Holm, S.; Huffman, D.; Jackson, C.; James, D. J.; Jonas, M.; Karcher, A.; Karliner, I.; Kent, S.; Kessler, R.; Kozlovsky, M.; Kron, R. G.; Kubik, D.; Kuehn, K.; Kuhlmann, S.; Kuk, K.; Lahav, O.; Lathrop, A.; Lee, J.; Levi, M. E.; Lewis, P.; Li, T. S.; Mandrichenko, I.; Marshall, J. L.; Martinez, G.; Merritt, K. W.; Miquel, R.; Muñoz, F.; Neilsen, E. H.; Nichol, R. C.; Nord, B.; Ogando, R.; Olsen, J.; Palaio, N.; Patton, K.; Peoples, J.; Plazas, A. A.; Rauch, J.; Reil, K.; Rheault, J.-P.; Roe, N. A.; Rogers, H.; Roodman, A.; Sanchez, E.; Scarpine, V.; Schindler, R. H.; Schmidt, R.; Schmitt, R.; Schubnell, M.; Schultz, K.; Schurter, P.; Scott, L.; Serrano, S.; Shaw, T. M.; Smith, R. C.; Soares-Santos, M.; Stefanik, A.; Stuermer, W.; Suchyta, E.; Sypniewski, A.; Tarle, G.; Thaler, J.; Tighe, R.; Tran, C.; Tucker, D.; Walker, A. R.; Wang, G.; Watson, M.; Weaverdyck, C.; Wester, W.; Woods, R.; Yanny, B.; DES Collaboration

    2015-11-01

    The Dark Energy Camera is a new imager with a 2.°2 diameter field of view mounted at the prime focus of the Victor M. Blanco 4 m telescope on Cerro Tololo near La Serena, Chile. The camera was designed and constructed by the Dark Energy Survey Collaboration and meets or exceeds the stringent requirements designed for the wide-field and supernova surveys for which the collaboration uses it. The camera consists of a five-element optical corrector, seven filters, a shutter with a 60 cm aperture, and a charge-coupled device (CCD) focal plane of 250 μm thick fully depleted CCDs cooled inside a vacuum Dewar. The 570 megapixel focal plane comprises 62 2k × 4k CCDs for imaging and 12 2k × 2k CCDs for guiding and focus. The CCDs have 15 μm × 15 μm pixels with a plate scale of 0.″263 pixel-1. A hexapod system provides state-of-the-art focus and alignment capability. The camera is read out in 20 s with 6-9 electron readout noise. This paper provides a technical description of the camera's engineering, construction, installation, and current status.

  20. The VISTA IR camera

    NASA Astrophysics Data System (ADS)

    Dalton, Gavin B.; Caldwell, Martin; Ward, Kim; Whalley, Martin S.; Burke, Kevin; Lucas, John M.; Richards, Tony; Ferlet, Marc; Edeson, Ruben L.; Tye, Daniel; Shaughnessy, Bryan M.; Strachan, Mel; Atad-Ettedgui, Eli; Leclerc, Melanie R.; Gallie, Angus; Bezawada, Nagaraja N.; Clark, Paul; Bissonauth, Nirmal; Luke, Peter; Dipper, Nigel A.; Berry, Paul; Sutherland, Will; Emerson, Jim

    2004-09-01

    The VISTA IR Camera has now completed its detailed design phase and is on schedule for delivery to ESO"s Cerro Paranal Observatory in 2006. The camera consists of 16 Raytheon VIRGO 2048x2048 HgCdTe arrays in a sparse focal plane sampling a 1.65 degree field of view. A 1.4m diameter filter wheel provides slots for 7 distinct science filters, each comprising 16 individual filter panes. The camera also provides autoguiding and curvature sensing information for the VISTA telescope, and relies on tight tolerancing to meet the demanding requirements of the f/1 telescope design. The VISTA IR camera is unusual in that it contains no cold pupil-stop, but rather relies on a series of nested cold baffles to constrain the light reaching the focal plane to the science beam. In this paper we present a complete overview of the status of the final IR Camera design, its interaction with the VISTA telescope, and a summary of the predicted performance of the system.

  1. THE DARK ENERGY CAMERA

    SciTech Connect

    Flaugher, B.; Diehl, H. T.; Alvarez, O.; Angstadt, R.; Annis, J. T.; Buckley-Geer, E. J.; Honscheid, K.; Abbott, T. M. C.; Bonati, M.; Antonik, M.; Brooks, D.; Ballester, O.; Cardiel-Sas, L.; Beaufore, L.; Bernstein, G. M.; Bernstein, R. A.; Bigelow, B.; Boprie, D.; Campa, J.; Castander, F. J.; Collaboration: DES Collaboration; and others

    2015-11-15

    The Dark Energy Camera is a new imager with a 2.°2 diameter field of view mounted at the prime focus of the Victor M. Blanco 4 m telescope on Cerro Tololo near La Serena, Chile. The camera was designed and constructed by the Dark Energy Survey Collaboration and meets or exceeds the stringent requirements designed for the wide-field and supernova surveys for which the collaboration uses it. The camera consists of a five-element optical corrector, seven filters, a shutter with a 60 cm aperture, and a charge-coupled device (CCD) focal plane of 250 μm thick fully depleted CCDs cooled inside a vacuum Dewar. The 570 megapixel focal plane comprises 62 2k × 4k CCDs for imaging and 12 2k × 2k CCDs for guiding and focus. The CCDs have 15 μm × 15 μm pixels with a plate scale of 0.″263 pixel{sup −1}. A hexapod system provides state-of-the-art focus and alignment capability. The camera is read out in 20 s with 6–9 electron readout noise. This paper provides a technical description of the camera's engineering, construction, installation, and current status.

  2. Neutron counting with cameras

    SciTech Connect

    Van Esch, Patrick; Crisanti, Marta; Mutti, Paolo

    2015-07-01

    A research project is presented in which we aim at counting individual neutrons with CCD-like cameras. We explore theoretically a technique that allows us to use imaging detectors as counting detectors at lower counting rates, and transits smoothly to continuous imaging at higher counting rates. As such, the hope is to combine the good background rejection properties of standard neutron counting detectors with the absence of dead time of integrating neutron imaging cameras as well as their very good spatial resolution. Compared to Xray detection, the essence of thermal neutron detection is the nuclear conversion reaction. The released energies involved are of the order of a few MeV, while X-ray detection releases energies of the order of the photon energy, which is in the 10 KeV range. Thanks to advances in camera technology which have resulted in increased quantum efficiency, lower noise, as well as increased frame rate up to 100 fps for CMOS-type cameras, this more than 100-fold higher available detection energy implies that the individual neutron detection light signal can be significantly above the noise level, as such allowing for discrimination and individual counting, which is hard to achieve with X-rays. The time scale of CMOS-type cameras doesn't allow one to consider time-of-flight measurements, but kinetic experiments in the 10 ms range are possible. The theory is next confronted to the first experimental results. (authors)

  3. CAOS-CMOS camera.

    PubMed

    Riza, Nabeel A; La Torre, Juan Pablo; Amin, M Junaid

    2016-06-13

    Proposed and experimentally demonstrated is the CAOS-CMOS camera design that combines the coded access optical sensor (CAOS) imager platform with the CMOS multi-pixel optical sensor. The unique CAOS-CMOS camera engages the classic CMOS sensor light staring mode with the time-frequency-space agile pixel CAOS imager mode within one programmable optical unit to realize a high dynamic range imager for extreme light contrast conditions. The experimentally demonstrated CAOS-CMOS camera is built using a digital micromirror device, a silicon point-photo-detector with a variable gain amplifier, and a silicon CMOS sensor with a maximum rated 51.3 dB dynamic range. White light imaging of three different brightness simultaneously viewed targets, that is not possible by the CMOS sensor, is achieved by the CAOS-CMOS camera demonstrating an 82.06 dB dynamic range. Applications for the camera include industrial machine vision, welding, laser analysis, automotive, night vision, surveillance and multispectral military systems.

  4. Breast-Specific γ-Imaging for the Detection of Mammographically Occult Breast Cancer in Women at Increased Risk.

    PubMed

    Brem, Rachel F; Ruda, Rachel C; Yang, Jialu L; Coffey, Caitrín M; Rapelyea, Jocelyn A

    2016-05-01

    Breast-specific γ-imaging (BSGI) is a physiologic imaging modality that can detect subcentimeter and mammographically occult breast cancer, with a sensitivity and specificity comparable to MRI. The purpose of this study was to determine the incremental increase in breast cancer detection when BSGI is used as an adjunct to mammography in women at increased risk for breast cancer. All patients undergoing BSGI from April 2010 through January 2014 were retrospectively reviewed. Eligible patients were identified as women at increased risk for breast cancer and whose most recent mammogram was benign. Examinations exhibiting focally increased radiotracer uptake were considered positive. Incremental increase in cancer detection was calculated as the percentage of mammographically occult BSGI-detected breast cancer and the number of mammographically occult breast cancers detected per 1,000 women screened. Included in this study were 849 patients in whom 14 BSGI examinations detected mammographically occult breast cancer. Patients ranged in age from 26 to 83 y, with a mean age of 57 y. Eleven of 14 cancers were detected in women with dense breasts. The addition of BSGI to the annual breast screen of asymptomatic women at increased risk for breast cancer yields 16.5 cancers per 1,000 women screened. When high-risk lesions and cancers were combined, BSGI detected 33.0 high-risk lesions and cancers per 1,000 women screened. BSGI is a reliable adjunct modality to screening mammography that increases breast cancer detection by 1.7% (14/849) in women at increased risk for breast cancer, comparable to results reported for breast MRI. BSGI is beneficial in breast cancer detection in women at increased risk, particularly in those with dense breasts. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  5. Selective-imaging camera

    NASA Astrophysics Data System (ADS)

    Szu, Harold; Hsu, Charles; Landa, Joseph; Cha, Jae H.; Krapels, Keith A.

    2015-05-01

    How can we design cameras that image selectively in Full Electro-Magnetic (FEM) spectra? Without selective imaging, we cannot use, for example, ordinary tourist cameras to see through fire, smoke, or other obscurants contributing to creating a Visually Degraded Environment (VDE). This paper addresses a possible new design of selective-imaging cameras at firmware level. The design is consistent with physics of the irreversible thermodynamics of Boltzmann's molecular entropy. It enables imaging in appropriate FEM spectra for sensing through the VDE, and displaying in color spectra for Human Visual System (HVS). We sense within the spectra the largest entropy value of obscurants such as fire, smoke, etc. Then we apply a smart firmware implementation of Blind Sources Separation (BSS) to separate all entropy sources associated with specific Kelvin temperatures. Finally, we recompose the scene using specific RGB colors constrained by the HVS, by up/down shifting Planck spectra at each pixel and time.

  6. HIGH SPEED CAMERA

    DOEpatents

    Rogers, B.T. Jr.; Davis, W.C.

    1957-12-17

    This patent relates to high speed cameras having resolution times of less than one-tenth microseconds suitable for filming distinct sequences of a very fast event such as an explosion. This camera consists of a rotating mirror with reflecting surfaces on both sides, a narrow mirror acting as a slit in a focal plane shutter, various other mirror and lens systems as well as an innage recording surface. The combination of the rotating mirrors and the slit mirror causes discrete, narrow, separate pictures to fall upon the film plane, thereby forming a moving image increment of the photographed event. Placing a reflecting surface on each side of the rotating mirror cancels the image velocity that one side of the rotating mirror would impart, so as a camera having this short a resolution time is thereby possible.

  7. Solid state television camera

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The design, fabrication, and tests of a solid state television camera using a new charge-coupled imaging device are reported. An RCA charge-coupled device arranged in a 512 by 320 format and directly compatible with EIA format standards was the sensor selected. This is a three-phase, sealed surface-channel array that has 163,840 sensor elements, which employs a vertical frame transfer system for image readout. Included are test results of the complete camera system, circuit description and changes to such circuits as a result of integration and test, maintenance and operation section, recommendations to improve the camera system, and a complete set of electrical and mechanical drawing sketches.

  8. Electronic still camera

    NASA Astrophysics Data System (ADS)

    Holland, S. Douglas

    1992-09-01

    A handheld, programmable, digital camera is disclosed that supports a variety of sensors and has program control over the system components to provide versatility. The camera uses a high performance design which produces near film quality images from an electronic system. The optical system of the camera incorporates a conventional camera body that was slightly modified, thus permitting the use of conventional camera accessories, such as telephoto lenses, wide-angle lenses, auto-focusing circuitry, auto-exposure circuitry, flash units, and the like. An image sensor, such as a charge coupled device ('CCD') collects the photons that pass through the camera aperture when the shutter is opened, and produces an analog electrical signal indicative of the image. The analog image signal is read out of the CCD and is processed by preamplifier circuitry, a correlated double sampler, and a sample and hold circuit before it is converted to a digital signal. The analog-to-digital converter has an accuracy of eight bits to insure accuracy during the conversion. Two types of data ports are included for two different data transfer needs. One data port comprises a general purpose industrial standard port and the other a high speed/high performance application specific port. The system uses removable hard disks as its permanent storage media. The hard disk receives the digital image signal from the memory buffer and correlates the image signal with other sensed parameters, such as longitudinal or other information. When the storage capacity of the hard disk has been filled, the disk can be replaced with a new disk.

  9. Electronic Still Camera

    NASA Technical Reports Server (NTRS)

    Holland, S. Douglas (Inventor)

    1992-01-01

    A handheld, programmable, digital camera is disclosed that supports a variety of sensors and has program control over the system components to provide versatility. The camera uses a high performance design which produces near film quality images from an electronic system. The optical system of the camera incorporates a conventional camera body that was slightly modified, thus permitting the use of conventional camera accessories, such as telephoto lenses, wide-angle lenses, auto-focusing circuitry, auto-exposure circuitry, flash units, and the like. An image sensor, such as a charge coupled device ('CCD') collects the photons that pass through the camera aperture when the shutter is opened, and produces an analog electrical signal indicative of the image. The analog image signal is read out of the CCD and is processed by preamplifier circuitry, a correlated double sampler, and a sample and hold circuit before it is converted to a digital signal. The analog-to-digital converter has an accuracy of eight bits to insure accuracy during the conversion. Two types of data ports are included for two different data transfer needs. One data port comprises a general purpose industrial standard port and the other a high speed/high performance application specific port. The system uses removable hard disks as its permanent storage media. The hard disk receives the digital image signal from the memory buffer and correlates the image signal with other sensed parameters, such as longitudinal or other information. When the storage capacity of the hard disk has been filled, the disk can be replaced with a new disk.

  10. Artificial human vision camera

    NASA Astrophysics Data System (ADS)

    Goudou, J.-F.; Maggio, S.; Fagno, M.

    2014-10-01

    In this paper we present a real-time vision system modeling the human vision system. Our purpose is to inspire from human vision bio-mechanics to improve robotic capabilities for tasks such as objects detection and tracking. This work describes first the bio-mechanical discrepancies between human vision and classic cameras and the retinal processing stage that takes place in the eye, before the optic nerve. The second part describes our implementation of these principles on a 3-camera optical, mechanical and software model of the human eyes and associated bio-inspired attention model.

  11. Laser Range Camera Modeling

    SciTech Connect

    Storjohann, K.

    1990-01-01

    This paper describes an imaging model that was derived for use with a laser range camera (LRC) developed by the Advanced Intelligent Machines Division of Odetics. However, this model could be applied to any comparable imaging system. Both the derivation of the model and the determination of the LRC's intrinsic parameters are explained. For the purpose of evaluating the LRC's extrinsic parameters, i.e., its external orientation, a transformation of the LRC's imaging model into a standard camera's (SC) pinhole model is derived. By virtue of this transformation, the evaluation of the LRC's external orientation can be found by applying any SC calibration technique.

  12. Make a Pinhole Camera

    ERIC Educational Resources Information Center

    Fisher, Diane K.; Novati, Alexander

    2009-01-01

    On Earth, using ordinary visible light, one can create a single image of light recorded over time. Of course a movie or video is light recorded over time, but it is a series of instantaneous snapshots, rather than light and time both recorded on the same medium. A pinhole camera, which is simple to make out of ordinary materials and using ordinary…

  13. The LSST Camera Overview

    SciTech Connect

    Gilmore, Kirk; Kahn, Steven A.; Nordby, Martin; Burke, David; O'Connor, Paul; Oliver, John; Radeka, Veljko; Schalk, Terry; Schindler, Rafe; /SLAC

    2007-01-10

    The LSST camera is a wide-field optical (0.35-1um) imager designed to provide a 3.5 degree FOV with better than 0.2 arcsecond sampling. The detector format will be a circular mosaic providing approximately 3.2 Gigapixels per image. The camera includes a filter mechanism and, shuttering capability. It is positioned in the middle of the telescope where cross-sectional area is constrained by optical vignetting and heat dissipation must be controlled to limit thermal gradients in the optical beam. The fast, f/1.2 beam will require tight tolerances on the focal plane mechanical assembly. The focal plane array operates at a temperature of approximately -100 C to achieve desired detector performance. The focal plane array is contained within an evacuated cryostat, which incorporates detector front-end electronics and thermal control. The cryostat lens serves as an entrance window and vacuum seal for the cryostat. Similarly, the camera body lens serves as an entrance window and gas seal for the camera housing, which is filled with a suitable gas to provide the operating environment for the shutter and filter change mechanisms. The filter carousel can accommodate 5 filters, each 75 cm in diameter, for rapid exchange without external intervention.

  14. Make a Pinhole Camera

    ERIC Educational Resources Information Center

    Fisher, Diane K.; Novati, Alexander

    2009-01-01

    On Earth, using ordinary visible light, one can create a single image of light recorded over time. Of course a movie or video is light recorded over time, but it is a series of instantaneous snapshots, rather than light and time both recorded on the same medium. A pinhole camera, which is simple to make out of ordinary materials and using ordinary…

  15. Jack & the Video Camera

    ERIC Educational Resources Information Center

    Charlan, Nathan

    2010-01-01

    This article narrates how the use of video camera has transformed the life of Jack Williams, a 10-year-old boy from Colorado Springs, Colorado, who has autism. The way autism affected Jack was unique. For the first nine years of his life, Jack remained in his world, alone. Functionally non-verbal and with motor skill problems that affected his…

  16. The canopy camera

    Treesearch

    Harry E. Brown

    1962-01-01

    The canopy camera is a device of new design that takes wide-angle, overhead photographs of vegetation canopies, cloud cover, topographic horizons, and similar subjects. Since the entire hemisphere is photographed in a single exposure, the resulting photograph is circular, with the horizon forming the perimeter and the zenith the center. Photographs of this type provide...

  17. Anger Camera Firmware

    SciTech Connect

    2010-11-19

    The firmware is responsible for the operation of Anger Camera Electronics, calculation of position, time of flight and digital communications. It provides a first stage analysis of 48 signals from 48 analog signals that have been converted to digital values using A/D convertors.

  18. Communities, Cameras, and Conservation

    ERIC Educational Resources Information Center

    Patterson, Barbara

    2012-01-01

    Communities, Cameras, and Conservation (CCC) is the most exciting and valuable program the author has seen in her 30 years of teaching field science courses. In this citizen science project, students and community volunteers collect data on mountain lions ("Puma concolor") at four natural areas and public parks along the Front Range of Colorado.…

  19. Snapshot polarimeter fundus camera.

    PubMed

    DeHoog, Edward; Luo, Haitao; Oka, Kazuhiko; Dereniak, Eustace; Schwiegerling, James

    2009-03-20

    A snapshot imaging polarimeter utilizing Savart plates is integrated into a fundus camera for retinal imaging. Acquired retinal images can be processed to reconstruct Stokes vector images, giving insight into the polarization properties of the retina. Results for images from a normal healthy retina and retinas with pathology are examined and compared.

  20. Apollo TV Camera

    NASA Image and Video Library

    2009-07-15

    An Apollo TV camera from the National Electronic Museum in Baltimore, Maryland is on display for NASA's briefing to release restored Apollo 11 moonwalk footage at the Newseum, Thursday, July 16, 2009, in Washington, DC. Photo Credit: (NASA/Bill Ingalls)

  1. Apollo TV Camera

    NASA Image and Video Library

    2009-07-15

    Mike Simons, Director of the National Electronic Museum in Baltimore, Maryland assembles an Apollo TV camera for display prior to NASA's briefing to release restored Apollo 11 moonwalk footage at the Newseum, Thursday, July 16, 2009, in Washington, DC. Photo Credit: (NASA/Bill Ingalls)

  2. Advanced Virgo phase cameras

    NASA Astrophysics Data System (ADS)

    van der Schaaf, L.; Agatsuma, K.; van Beuzekom, M.; Gebyehu, M.; van den Brand, J.

    2016-05-01

    A century after the prediction of gravitational waves, detectors have reached the sensitivity needed to proof their existence. One of them, the Virgo interferometer in Pisa, is presently being upgraded to Advanced Virgo (AdV) and will come into operation in 2016. The power stored in the interferometer arms raises from 20 to 700 kW. This increase is expected to introduce higher order modes in the beam, which could reduce the circulating power in the interferometer, limiting the sensitivity of the instrument. To suppress these higher-order modes, the core optics of Advanced Virgo is equipped with a thermal compensation system. Phase cameras, monitoring the real-time status of the beam constitute a critical component of this compensation system. These cameras measure the phases and amplitudes of the laser-light fields at the frequencies selected to control the interferometer. The measurement combines heterodyne detection with a scan of the wave front over a photodetector with pin-hole aperture. Three cameras observe the phase front of these laser sidebands. Two of them monitor the in-and output of the interferometer arms and the third one is used in the control of the aberrations introduced by the power recycling cavity. In this paper the working principle of the phase cameras is explained and some characteristic parameters are described.

  3. Mars Observer camera

    NASA Technical Reports Server (NTRS)

    Malin, M. C.; Danielson, G. E.; Ingersoll, A. P.; Masursky, H.; Veverka, J.; Ravine, M. A.; Soulanille, T. A.

    1992-01-01

    The Mars Observer camera (MOC) is a three-component system (one narrow-angle and two wide-angle cameras) designed to take high spatial resolution pictures of the surface of Mars and to obtain lower spatial resolution, synoptic coverage of the planet's surface and atmosphere. The cameras are based on the 'push broom' technique; that is, they do not take 'frames' but rather build pictures, one line at a time, as the spacecraft moves around the planet in its orbit. MOC is primarily a telescope for taking extremely high resolution pictures of selected locations on Mars. Using the narrow-angle camera, areas ranging from 2.8 km x 2.8 km to 2.8 km x 25.2 km (depending on available internal digital buffer memory) can be photographed at about 1.4 m/pixel. Additionally, lower-resolution pictures (to a lowest resolution of about 11 m/pixel) can be acquired by pixel averaging; these images can be much longer, ranging up to 2.8 x 500 km at 11 m/pixel. High-resolution data will be used to study sediments and sedimentary processes, polar processes and deposits, volcanism, and other geologic/geomorphic processes.

  4. Communities, Cameras, and Conservation

    ERIC Educational Resources Information Center

    Patterson, Barbara

    2012-01-01

    Communities, Cameras, and Conservation (CCC) is the most exciting and valuable program the author has seen in her 30 years of teaching field science courses. In this citizen science project, students and community volunteers collect data on mountain lions ("Puma concolor") at four natural areas and public parks along the Front Range of Colorado.…

  5. Spas color camera

    NASA Technical Reports Server (NTRS)

    Toffales, C.

    1983-01-01

    The procedures to be followed in assessing the performance of the MOS color camera are defined. Aspects considered include: horizontal and vertical resolution; value of the video signal; gray scale rendition; environmental (vibration and temperature) tests; signal to noise ratios; and white balance correction.

  6. Ultraminiature television camera

    NASA Technical Reports Server (NTRS)

    Deterville, R. J.; Drago, N.

    1967-01-01

    Ultraminiature television camera with a total volume of 20.25 cubic inches, requires 28 vdc power, operates on UHF and accommodates standard 8-mm optics. It uses microelectronic assembly packaging techniques and contains a magnetically deflected and electrostatically focused vidicon, automatic gain control circuit, power supply, and transmitter.

  7. Photogrammetric camera calibration

    USGS Publications Warehouse

    Tayman, W.P.; Ziemann, H.

    1984-01-01

    Section 2 (Calibration) of the document "Recommended Procedures for Calibrating Photogrammetric Cameras and Related Optical Tests" from the International Archives of Photogrammetry, Vol. XIII, Part 4, is reviewed in the light of recent practical work, and suggestions for changes are made. These suggestions are intended as a basis for a further discussion. ?? 1984.

  8. Underwater camera with depth measurement

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Chih; Lin, Keng-Ren; Tsui, Chi L.; Schipf, David; Leang, Jonathan

    2016-04-01

    The objective of this study is to develop an RGB-D (video + depth) camera that provides three-dimensional image data for use in the haptic feedback of a robotic underwater ordnance recovery system. Two camera systems were developed and studied. The first depth camera relies on structured light (as used by the Microsoft Kinect), where the displacement of an object is determined by variations of the geometry of a projected pattern. The other camera system is based on a Time of Flight (ToF) depth camera. The results of the structural light camera system shows that the camera system requires a stronger light source with a similar operating wavelength and bandwidth to achieve a desirable working distance in water. This approach might not be robust enough for our proposed underwater RGB-D camera system, as it will require a complete re-design of the light source component. The ToF camera system instead, allows an arbitrary placement of light source and camera. The intensity output of the broadband LED light source in the ToF camera system can be increased by putting them into an array configuration and the LEDs can be modulated comfortably with any waveform and frequencies required by the ToF camera. In this paper, both camera were evaluated and experiments were conducted to demonstrate the versatility of the ToF camera.

  9. Gamma-ray optical counterpart search experiment (GROCSE)

    SciTech Connect

    Akerlof, C.; Fatuzzo, M.; Lee, B.; Bionta, R.; Ledebuhr, A.; Park, H.S.; Barthelmy, S.; Cline, T.; Gehrels, N.

    1993-12-15

    The requirements of a gamma-ray burst optical counterpart detector are reviewed. By taking advantage of real-time notification of bursts, new instruments can make sensitive searches while the gamma-ray transient is still in progress. A wide field of view camera at Livermore National Laboratories has recently been adapted for detecting GRB optical counterparts to a limiting magnitude of 8. A more sensitive camera, capable of reaching m{sub upsilon} = 14, is under development.

  10. The PAU Camera

    NASA Astrophysics Data System (ADS)

    Casas, R.; Ballester, O.; Cardiel-Sas, L.; Carretero, J.; Castander, F. J.; Castilla, J.; Crocce, M.; de Vicente, J.; Delfino, M.; Fernández, E.; Fosalba, P.; García-Bellido, J.; Gaztañaga, E.; Grañena, F.; Jiménez, J.; Madrid, F.; Maiorino, M.; Martí, P.; Miquel, R.; Neissner, C.; Ponce, R.; Sánchez, E.; Serrano, S.; Sevilla, I.; Tonello, N.; Troyano, I.

    2011-11-01

    The PAU Camera (PAUCam) is a wide-field camera designed to be mounted at the William Herschel Telescope (WHT) prime focus, located at the Observatorio del Roque de los Muchachos in the island of La Palma (Canary Islands).Its primary function is to carry out a cosmological survey, the PAU Survey, covering an area of several hundred square degrees of sky. Its purpose is to determine positions and distances using photometric redshift techniques. To achieve accurate photo-z's, PAUCam will be equipped with 40 narrow-band filters covering the range from 450 to850 nm, and six broad-band filters, those of the SDSS system plus the Y band. To fully cover the focal plane delivered by the telescope optics, 18 CCDs 2k x 4k are needed. The pixels are square of 15 μ m size. The optical characteristics of the prime focus corrector deliver a field-of-view where eight of these CCDs will have an illumination of more than 95% covering a field of 40 arc minutes. The rest of the CCDs will occupy the vignetted region extending the field diameter to one degree. Two of the CCDs will be devoted to auto-guiding.This camera have some innovative features. Firstly, both the broad-band and the narrow-band filters will be placed in mobile trays, hosting 16 such filters at most. Those are located inside the cryostat at few millimeters in front of the CCDs when observing. Secondly, a pressurized liquid nitrogen tank outside the camera will feed a boiler inside the cryostat with a controlled massflow. The read-out electronics will use the Monsoon architecture, originally developed by NOAO, modified and manufactured by our team in the frame of the DECam project (the camera used in the DES Survey).PAUCam will also be available to the astronomical community of the WHT.

  11. Camera network video summarization

    NASA Astrophysics Data System (ADS)

    Panda, Rameswar; Roy-Chowdhury, Amit K.

    2017-05-01

    Networks of vision sensors are deployed in many settings, ranging from security needs to disaster response to environmental monitoring. Many of these setups have hundreds of cameras and tens of thousands of hours of video. The difficulty of analyzing such a massive volume of video data is apparent whenever there is an incident that requires foraging through vast video archives to identify events of interest. As a result, video summarization, that automatically extract a brief yet informative summary of these videos, has attracted intense attention in the recent years. Much progress has been made in developing a variety of ways to summarize a single video in form of a key sequence or video skim. However, generating a summary from a set of videos captured in a multi-camera network still remains as a novel and largely under-addressed problem. In this paper, with the aim of summarizing videos in a camera network, we introduce a novel representative selection approach via joint embedding and capped l21-norm minimization. The objective function is two-fold. The first is to capture the structural relationships of data points in a camera network via an embedding, which helps in characterizing the outliers and also in extracting a diverse set of representatives. The second is to use a capped l21-norm to model the sparsity and to suppress the influence of data outliers in representative selection. We propose to jointly optimize both of the objectives, such that embedding can not only characterize the structure, but also indicate the requirements of sparse representative selection. Extensive experiments on standard multi-camera datasets well demonstrate the efficacy of our method over state-of-the-art methods.

  12. Image Sensors Enhance Camera Technologies

    NASA Technical Reports Server (NTRS)

    2010-01-01

    In the 1990s, a Jet Propulsion Laboratory team led by Eric Fossum researched ways of improving complementary metal-oxide semiconductor (CMOS) image sensors in order to miniaturize cameras on spacecraft while maintaining scientific image quality. Fossum s team founded a company to commercialize the resulting CMOS active pixel sensor. Now called the Aptina Imaging Corporation, based in San Jose, California, the company has shipped over 1 billion sensors for use in applications such as digital cameras, camera phones, Web cameras, and automotive cameras. Today, one of every three cell phone cameras on the planet feature Aptina s sensor technology.

  13. Do Speed Cameras Reduce Collisions?

    PubMed Central

    Skubic, Jeffrey; Johnson, Steven B.; Salvino, Chris; Vanhoy, Steven; Hu, Chengcheng

    2013-01-01

    We investigated the effects of speed cameras along a 26 mile segment in metropolitan Phoenix, Arizona. Motor vehicle collisions were retrospectively identified according to three time periods – before cameras were placed, while cameras were in place and after cameras were removed. A 14 mile segment in the same area without cameras was used for control purposes. Five cofounding variables were eliminated. In this study, the placement or removal of interstate highway speed cameras did not independently affect the incidence of motor vehicle collisions. PMID:24406979

  14. Dual cameras acquisition and display system of retina-like sensor camera and rectangular sensor camera

    NASA Astrophysics Data System (ADS)

    Cao, Nan; Cao, Fengmei; Lin, Yabin; Bai, Tingzhu; Song, Shengyu

    2015-04-01

    For a new kind of retina-like senor camera and a traditional rectangular sensor camera, dual cameras acquisition and display system need to be built. We introduce the principle and the development of retina-like senor. Image coordinates transformation and interpolation based on sub-pixel interpolation need to be realized for our retina-like sensor's special pixels distribution. The hardware platform is composed of retina-like senor camera, rectangular sensor camera, image grabber and PC. Combined the MIL and OpenCV library, the software program is composed in VC++ on VS 2010. Experience results show that the system can realizes two cameras' acquisition and display.

  15. LSST Camera Optics

    SciTech Connect

    Olivier, S S; Seppala, L; Gilmore, K; Hale, L; Whistler, W

    2006-06-05

    The Large Synoptic Survey Telescope (LSST) is a unique, three-mirror, modified Paul-Baker design with an 8.4m primary, a 3.4m secondary, and a 5.0m tertiary feeding a camera system that includes corrector optics to produce a 3.5 degree field of view with excellent image quality (<0.3 arcsecond 80% encircled diffracted energy) over the entire field from blue to near infra-red wavelengths. We describe the design of the LSST camera optics, consisting of three refractive lenses with diameters of 1.6m, 1.0m and 0.7m, along with a set of interchangeable, broad-band, interference filters with diameters of 0.75m. We also describe current plans for fabricating, coating, mounting and testing these lenses and filters.

  16. Combustion pinhole camera system

    DOEpatents

    Witte, Arvel B.

    1984-02-21

    A pinhole camera system utilizing a sealed optical-purge assembly which provides optical access into a coal combustor or other energy conversion reactors. The camera system basically consists of a focused-purge pinhole optical port assembly, a conventional TV vidicon receiver, an external, variable density light filter which is coupled electronically to the vidicon automatic gain control (agc). The key component of this system is the focused-purge pinhole optical port assembly which utilizes a purging inert gas to keep debris from entering the port and a lens arrangement which transfers the pinhole to the outside of the port assembly. One additional feature of the port assembly is that it is not flush with the interior of the combustor.

  17. Combustion pinhole camera system

    DOEpatents

    Witte, A.B.

    1984-02-21

    A pinhole camera system is described utilizing a sealed optical-purge assembly which provides optical access into a coal combustor or other energy conversion reactors. The camera system basically consists of a focused-purge pinhole optical port assembly, a conventional TV vidicon receiver, an external, variable density light filter which is coupled electronically to the vidicon automatic gain control (agc). The key component of this system is the focused-purge pinhole optical port assembly which utilizes a purging inert gas to keep debris from entering the port and a lens arrangement which transfers the pinhole to the outside of the port assembly. One additional feature of the port assembly is that it is not flush with the interior of the combustor. 2 figs.

  18. Streak camera receiver definition study

    NASA Technical Reports Server (NTRS)

    Johnson, C. B.; Hunkler, L. T., Sr.; Letzring, S. A.; Jaanimagi, P.

    1990-01-01

    Detailed streak camera definition studies were made as a first step toward full flight qualification of a dual channel picosecond resolution streak camera receiver for the Geoscience Laser Altimeter and Ranging System (GLRS). The streak camera receiver requirements are discussed as they pertain specifically to the GLRS system, and estimates of the characteristics of the streak camera are given, based upon existing and near-term technological capabilities. Important problem areas are highlighted, and possible corresponding solutions are discussed.

  19. Automated Camera Array Fine Calibration

    NASA Technical Reports Server (NTRS)

    Clouse, Daniel; Padgett, Curtis; Ansar, Adnan; Cheng, Yang

    2008-01-01

    Using aerial imagery, the JPL FineCalibration (JPL FineCal) software automatically tunes a set of existing CAHVOR camera models for an array of cameras. The software finds matching features in the overlap region between images from adjacent cameras, and uses these features to refine the camera models. It is not necessary to take special imagery of a known target and no surveying is required. JPL FineCal was developed for use with an aerial, persistent surveillance platform.

  20. SPECT detectors: the Anger Camera and beyond.

    PubMed

    Peterson, Todd E; Furenlid, Lars R

    2011-09-07

    The development of radiation detectors capable of delivering spatial information about gamma-ray interactions was one of the key enabling technologies for nuclear medicine imaging and, eventually, single-photon emission computed tomography (SPECT). The continuous sodium iodide scintillator crystal coupled to an array of photomultiplier tubes, almost universally referred to as the Anger Camera after its inventor, has long been the dominant SPECT detector system. Nevertheless, many alternative materials and configurations have been investigated over the years. Technological advances as well as the emerging importance of specialized applications, such as cardiac and preclinical imaging, have spurred innovation such that alternatives to the Anger Camera are now part of commercial imaging systems. Increased computing power has made it practical to apply advanced signal processing and estimation schemes to make better use of the information contained in the detector signals. In this review we discuss the key performance properties of SPECT detectors and survey developments in both scintillator and semiconductor detectors and their readouts with an eye toward some of the practical issues at least in part responsible for the continuing prevalence of the Anger Camera in the clinic.

  1. SPECT detectors: the Anger Camera and beyond

    PubMed Central

    Peterson, Todd E.; Furenlid, Lars R.

    2011-01-01

    The development of radiation detectors capable of delivering spatial information about gamma-ray interactions was one of the key enabling technologies for nuclear medicine imaging and, eventually, single-photon emission computed tomography (SPECT). The continuous NaI(Tl) scintillator crystal coupled to an array of photomultiplier tubes, almost universally referred to as the Anger Camera after its inventor, has long been the dominant SPECT detector system. Nevertheless, many alternative materials and configurations have been investigated over the years. Technological advances as well as the emerging importance of specialized applications, such as cardiac and preclinical imaging, have spurred innovation such that alternatives to the Anger Camera are now part of commercial imaging systems. Increased computing power has made it practical to apply advanced signal processing and estimation schemes to make better use of the information contained in the detector signals. In this review we discuss the key performance properties of SPECT detectors and survey developments in both scintillator and semiconductor detectors and their readouts with an eye toward some of the practical issues at least in part responsible for the continuing prevalence of the Anger Camera in the clinic. PMID:21828904

  2. SPECT detectors: the Anger Camera and beyond

    NASA Astrophysics Data System (ADS)

    Peterson, Todd E.; Furenlid, Lars R.

    2011-09-01

    The development of radiation detectors capable of delivering spatial information about gamma-ray interactions was one of the key enabling technologies for nuclear medicine imaging and, eventually, single-photon emission computed tomography (SPECT). The continuous sodium iodide scintillator crystal coupled to an array of photomultiplier tubes, almost universally referred to as the Anger Camera after its inventor, has long been the dominant SPECT detector system. Nevertheless, many alternative materials and configurations have been investigated over the years. Technological advances as well as the emerging importance of specialized applications, such as cardiac and preclinical imaging, have spurred innovation such that alternatives to the Anger Camera are now part of commercial imaging systems. Increased computing power has made it practical to apply advanced signal processing and estimation schemes to make better use of the information contained in the detector signals. In this review we discuss the key performance properties of SPECT detectors and survey developments in both scintillator and semiconductor detectors and their readouts with an eye toward some of the practical issues at least in part responsible for the continuing prevalence of the Anger Camera in the clinic.

  3. Airborne Network Camera Standard

    DTIC Science & Technology

    2015-06-01

    Protocol UDP Universal Datagram Protocol XML extensible markup language RCC Document 466-15, Airborne Network Camera Standard, June 2015 x This...GEV device MUST provide an extensible markup language (XML) device description file compliant to the syntax of the GenICam as mandated by this...NAVAL AIR WARFARE CENTER AIRCRAFT DIVISION NAVAL AIR WARFARE CENTER WEAPONS DIVISION NAVAL UNDERSEA WARFARE CENTER DIVISION, KEYPORT NAVAL UNDERSEA

  4. Multi-Camera Saliency.

    PubMed

    Luo, Yan; Jiang, Ming; Wong, Yongkang; Zhao, Qi

    2015-10-01

    A significant body of literature on saliency modeling predicts where humans look in a single image or video. Besides the scientific goal of understanding how information is fused from multiple visual sources to identify regions of interest in a holistic manner, there are tremendous engineering applications of multi-camera saliency due to the widespread of cameras. This paper proposes a principled framework to smoothly integrate visual information from multiple views to a global scene map, and to employ a saliency algorithm incorporating high-level features to identify the most important regions by fusing visual information. The proposed method has the following key distinguishing features compared with its counterparts: (1) the proposed saliency detection is global (salient regions from one local view may not be important in a global context), (2) it does not require special ways for camera deployment or overlapping field of view, and (3) the key saliency algorithm is effective in highlighting interesting object regions though not a single detector is used. Experiments on several data sets confirm the effectiveness of the proposed principled framework.

  5. Hemispherical Laue camera

    DOEpatents

    Li, James C. M.; Chu, Sungnee G.

    1980-01-01

    A hemispherical Laue camera comprises a crystal sample mount for positioning a sample to be analyzed at the center of sphere of a hemispherical, X-radiation sensitive film cassette, a collimator, a stationary or rotating sample mount and a set of standard spherical projection spheres. X-radiation generated from an external source is directed through the collimator to impinge onto the single crystal sample on the stationary mount. The diffracted beam is recorded on the hemispherical X-radiation sensitive film mounted inside the hemispherical film cassette in either transmission or back-reflection geometry. The distances travelled by X-radiation diffracted from the crystal to the hemispherical film are the same for all crystal planes which satisfy Bragg's Law. The recorded diffraction spots or Laue spots on the film thereby preserve both the symmetry information of the crystal structure and the relative intensities which are directly related to the relative structure factors of the crystal orientations. The diffraction pattern on the exposed film is compared with the known diffraction pattern on one of the standard spherical projection spheres for a specific crystal structure to determine the orientation of the crystal sample. By replacing the stationary sample support with a rotating sample mount, the hemispherical Laue camera can be used for crystal structure determination in a manner previously provided in conventional Debye-Scherrer cameras.

  6. Orbiter Camera Payload System

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Components for an orbiting camera payload system (OCPS) include the large format camera (LFC), a gas supply assembly, and ground test, handling, and calibration hardware. The LFC, a high resolution large format photogrammetric camera for use in the cargo bay of the space transport system, is also adaptable to use on an RB-57 aircraft or on a free flyer satellite. Carrying 4000 feet of film, the LFC is usable over the visible to near IR, at V/h rates of from 11 to 41 milliradians per second, overlap of 10, 60, 70 or 80 percent and exposure times of from 4 to 32 milliseconds. With a 12 inch focal length it produces a 9 by 18 inch format (long dimension in line of flight) with full format low contrast resolution of 88 lines per millimeter (AWAR), full format distortion of less than 14 microns and a complement of 45 Reseau marks and 12 fiducial marks. Weight of the OCPS as supplied, fully loaded is 944 pounds and power dissipation is 273 watts average when in operation, 95 watts in standby. The LFC contains an internal exposure sensor, or will respond to external command. It is able to photograph starfields for inflight calibration upon command.

  7. Carbon camera detection of vehicular-transported bulk narcotics

    NASA Astrophysics Data System (ADS)

    Trower, W. Peter; Saunders, Anna W.; Shvedunov, Vasiliy I.

    1997-02-01

    We describe a nuclear technique, the carbon camera, with which we have produced images of elemental carbon in concentrations and with surface densities typical in kilo quantities of narcotics. The signal is all high-energy gamma rays detected in a short time interval after irradiation of a target pixel by photons produced with an electron beam. Our carbon marker, the photoproton reaction on the minority carbon isotope, gives a robust signal with no interfering signals. We describe here the physics of the carbon camera and sketch our efforts to develop the technology of a fieldable instrument.

  8. NIF Gamma Reaction History

    NASA Astrophysics Data System (ADS)

    Herrmann, H. W.; Kim, Y.; Young, C. S.; Mack, J. M.; McEvoy, A. M.; Hoffman, N. M.; Wilson, D. C.; Langenbrunner, J. R.; Evans, S.; Batha, S. H.; Stoeffl, W.; Lee, A.; Horsfield, C. J.; Rubery, M.; Miller, E. K.; Malone, R. M.; Kaufman, M. I.

    2010-11-01

    The primary objective of the NIF Gamma Reaction History (GRH) diagnostics is to provide bang time and burn width information based upon measurement of fusion gamma-rays. This is accomplished with energy-thresholded Gas Cherenkov detectors that convert MeV gamma-rays into UV/visible photons for high-bandwidth optical detection. In addition, the GRH detectors can perform γ-ray spectroscopy to explore other nuclear processes from which additional significant implosion parameters may be inferred (e.g., plastic ablator areal density). Implementation is occurring in 2 phases: 1) four PMT-based channels mounted to the outside of the NIF target chamber at ˜6 m from TCC (GRH-6m) for the 3e13-3e16 DT neutron yield range expected during the early ignition-tuning campaigns; and 2) several channels located just inside the target bay shield wall at ˜15 m from TCC (GRH-15m) with optical paths leading through the wall into well-shielded streak cameras and PMTs for the 1e16-1e20 yield range expected during the DT ignition campaign. This suite of diagnostics will allow exploration of interesting γ-ray physics well beyond the ignition campaign. Recent data from OMEGA and NIF will be shown.

  9. Efficacy of novel robotic camera vs a standard laparoscopic camera.

    PubMed

    Strong, Vivian E M; Hogle, Nancy J; Fowler, Dennis L

    2005-12-01

    To improve visualization during minimal access surgery, a novel robotic camera has been developed. The prototype camera is totally insertable, has 5 degrees of freedom, and is remotely controlled. This study compared the performance of laparoscopic surgeons using both a laparoscope and the robotic camera. The MISTELS (McGill Inanimate System for the Training and Evaluation of Laparoscopic Skill) tasks were used to test six laparoscopic fellows and attending surgeons. Half the surgeons used the laparoscope first and half used the robotic camera first. Total scores from the MISTELS sessions in which the laparoscope was used were compared with the sessions in which the robotic camera was used and then analyzed with a paired t test (P < .05 was considered significant). All six surgeons tested showed no significant difference in their MISTELS task performance on the robotic camera compared with the standard laparoscopic camera. The mean MISTELS score of 963 for all subjects who used a laparoscope and camera was not significantly different than the mean score of 904 for the robotic camera (P = .17). This new robotic camera prototype allows for equivalent performance on a validated laparoscopic assessment tool when compared with performance using a standard laparoscope.

  10. Universal ICT Picosecond Camera

    NASA Astrophysics Data System (ADS)

    Lebedev, Vitaly B.; Syrtzev, V. N.; Tolmachyov, A. M.; Feldman, Gregory G.; Chernyshov, N. A.

    1989-06-01

    The paper reports on the design of an ICI camera operating in the mode of linear or three-frame image scan. The camera incorporates two tubes: time-analyzing ICI PIM-107 1 with cathode S-11, and brightness amplifier PMU-2V (gain about 104) for the image shaped by the first tube. The camera is designed on the basis of streak camera AGAT-SF3 2 with almost the same power sources, but substantially modified pulse electronics. Schematically, the design of tube PIM-107 is depicted in the figure. The tube consists of cermet housing 1, photocathode 2 made in a separate vacuum volume and introduced into the housing by means of a manipulator. In a direct vicinity of the photocathode, accelerating electrode is located made of a fine-structure grid. An electrostatic lens formed by focusing electrode 4 and anode diaphragm 5 produces a beam of electrons with a "remote crossover". The authors have suggested this term for an electron beam whose crossover is 40 to 60 mm away from the anode diaphragm plane which guarantees high sensitivity of scan plates 6 with respect to multiaperture framing diaphragm 7. Beyond every diaphragm aperture, a pair of deflecting plates 8 is found shielded from compensation plates 10 by diaphragm 9. The electronic image produced by the photocathode is focused on luminescent screen 11. The tube is controlled with the help of two saw-tooth voltages applied in antiphase across plates 6 and 10. Plates 6 serve for sweeping the electron beam over the surface of diaphragm 7. The beam is either allowed toward the screen, or delayed by the diaphragm walls. In such a manner, three frames are obtained, the number corresponding to that of the diaphragm apertures. Plates 10 serve for stopping the compensation of the image streak sweep on the screen. To avoid overlapping of frames, plates 8 receive static potentials responsible for shifting frames on the screen. Changing the potentials applied to plates 8, one can control the spacing between frames and partially or

  11. Fabrication of collimators for gamma-ray imaging.

    SciTech Connect

    Makarova, O. V.; Yang, G.; Tang, C.-M.; Mancini, D. C.; Divan, R.; Yaeger, J.; Experimental Facilities Division; Creatv Micro Tech, Inc.

    2004-01-01

    Collimators capable of higher resolution and optimized for greater sensitivity can significantly improve the imaging quality of gamma-cameras for single-photon-emission computed tomography of small animals. We are applying deep x-ray lithography and gold electroforming techniques to fabricate high-resolution collimators with continuous, smooth, and thin septa. Negative SU-8 photoresist was used for mold fabrication. To be efficient, collimators for gamma-cameras designed to image 140 keV gamma-rays should be over 1.5 cm tall. The height of the collimator can be achieved by stacking the appropriate number of layers.

  12. Working safely in gamma radiography. A training manual for industrial radiographers

    SciTech Connect

    McGuire, S.A.; Peabody, C.A.

    1982-09-01

    This manual is designed for classroom training in working safely in industrial radiography using gamma sources. The purpose is to train radiographers' assistants to work safely as a qualified gamma radiographer. The contents cover the essentials of radiation, radiation protection, emergency procedures, gamma cameras, and biological effects of radiation. (ACR)

  13. Automatic inference of geometric camera parameters and inter-camera topology in uncalibrated disjoint surveillance cameras

    NASA Astrophysics Data System (ADS)

    den Hollander, Richard J. M.; Bouma, Henri; Baan, Jan; Eendebak, Pieter T.; van Rest, Jeroen H. C.

    2015-10-01

    Person tracking across non-overlapping cameras and other types of video analytics benefit from spatial calibration information that allows an estimation of the distance between cameras and a relation between pixel coordinates and world coordinates within a camera. In a large environment with many cameras, or for frequent ad-hoc deployments of cameras, the cost of this calibration is high. This creates a barrier for the use of video analytics. Automating the calibration allows for a short configuration time, and the use of video analytics in a wider range of scenarios, including ad-hoc crisis situations and large scale surveillance systems. We show an autocalibration method entirely based on pedestrian detections in surveillance video in multiple non-overlapping cameras. In this paper, we show the two main components of automatic calibration. The first shows the intra-camera geometry estimation that leads to an estimate of the tilt angle, focal length and camera height, which is important for the conversion from pixels to meters and vice versa. The second component shows the inter-camera topology inference that leads to an estimate of the distance between cameras, which is important for spatio-temporal analysis of multi-camera tracking. This paper describes each of these methods and provides results on realistic video data.

  14. Upgraded cameras for the HESS imaging atmospheric Cherenkov telescopes

    NASA Astrophysics Data System (ADS)

    Giavitto, Gianluca; Ashton, Terry; Balzer, Arnim; Berge, David; Brun, Francois; Chaminade, Thomas; Delagnes, Eric; Fontaine, Gérard; Füßling, Matthias; Giebels, Berrie; Glicenstein, Jean-François; Gräber, Tobias; Hinton, James; Jahnke, Albert; Klepser, Stefan; Kossatz, Marko; Kretzschmann, Axel; Lefranc, Valentin; Leich, Holger; Lüdecke, Hartmut; Lypova, Iryna; Manigot, Pascal; Marandon, Vincent; Moulin, Emmanuel; de Naurois, Mathieu; Nayman, Patrick; Penno, Marek; Ross, Duncan; Salek, David; Schade, Markus; Schwab, Thomas; Simoni, Rachel; Stegmann, Christian; Steppa, Constantin; Thornhill, Julian; Toussnel, François

    2016-08-01

    The High Energy Stereoscopic System (H.E.S.S.) is an array of five imaging atmospheric Cherenkov telescopes, sensitive to cosmic gamma rays of energies between 30 GeV and several tens of TeV. Four of them started operations in 2003 and their photomultiplier tube (PMT) cameras are currently undergoing a major upgrade, with the goals of improving the overall performance of the array and reducing the failure rate of the ageing systems. With the exception of the 960 PMTs, all components inside the camera have been replaced: these include the readout and trigger electronics, the power, ventilation and pneumatic systems and the control and data acquisition software. New designs and technical solutions have been introduced: the readout makes use of the NECTAr analog memory chip, which samples and stores the PMT signals and was developed for the Cherenkov Telescope Array (CTA). The control of all hardware subsystems is carried out by an FPGA coupled to an embedded ARM computer, a modular design which has proven to be very fast and reliable. The new camera software is based on modern C++ libraries such as Apache Thrift, ØMQ and Protocol buffers, offering very good performance, robustness, flexibility and ease of development. The first camera was upgraded in 2015, the other three cameras are foreseen to follow in fall 2016. We describe the design, the performance, the results of the tests and the lessons learned from the first upgraded H.E.S.S. camera.

  15. Mars Science Laboratory Engineering Cameras

    NASA Technical Reports Server (NTRS)

    Maki, Justin N.; Thiessen, David L.; Pourangi, Ali M.; Kobzeff, Peter A.; Lee, Steven W.; Dingizian, Arsham; Schwochert, Mark A.

    2012-01-01

    NASA's Mars Science Laboratory (MSL) Rover, which launched to Mars in 2011, is equipped with a set of 12 engineering cameras. These cameras are build-to-print copies of the Mars Exploration Rover (MER) cameras, which were sent to Mars in 2003. The engineering cameras weigh less than 300 grams each and use less than 3 W of power. Images returned from the engineering cameras are used to navigate the rover on the Martian surface, deploy the rover robotic arm, and ingest samples into the rover sample processing system. The navigation cameras (Navcams) are mounted to a pan/tilt mast and have a 45-degree square field of view (FOV) with a pixel scale of 0.82 mrad/pixel. The hazard avoidance cameras (Haz - cams) are body-mounted to the rover chassis in the front and rear of the vehicle and have a 124-degree square FOV with a pixel scale of 2.1 mrad/pixel. All of the cameras utilize a frame-transfer CCD (charge-coupled device) with a 1024x1024 imaging region and red/near IR bandpass filters centered at 650 nm. The MSL engineering cameras are grouped into two sets of six: one set of cameras is connected to rover computer A and the other set is connected to rover computer B. The MSL rover carries 8 Hazcams and 4 Navcams.

  16. PAU camera: detectors characterization

    NASA Astrophysics Data System (ADS)

    Casas, Ricard; Ballester, Otger; Cardiel-Sas, Laia; Castilla, Javier; Jiménez, Jorge; Maiorino, Marino; Pío, Cristóbal; Sevilla, Ignacio; de Vicente, Juan

    2012-07-01

    The PAU Camera (PAUCam) [1,2] is a wide field camera that will be mounted at the corrected prime focus of the William Herschel Telescope (Observatorio del Roque de los Muchachos, Canary Islands, Spain) in the next months. The focal plane of PAUCam is composed by a mosaic of 18 CCD detectors of 2,048 x 4,176 pixels each one with a pixel size of 15 microns, manufactured by Hamamatsu Photonics K. K. This mosaic covers a field of view (FoV) of 60 arcmin (minutes of arc), 40 of them are unvignetted. The behaviour of these 18 devices, plus four spares, and their electronic response should be characterized and optimized for the use in PAUCam. This job is being carried out in the laboratories of the ICE/IFAE and the CIEMAT. The electronic optimization of the CCD detectors is being carried out by means of an OG (Output Gate) scan and maximizing it CTE (Charge Transfer Efficiency) while the read-out noise is minimized. The device characterization itself is obtained with different tests. The photon transfer curve (PTC) that allows to obtain the electronic gain, the linearity vs. light stimulus, the full-well capacity and the cosmetic defects. The read-out noise, the dark current, the stability vs. temperature and the light remanence.

  17. Stereoscopic camera design

    NASA Astrophysics Data System (ADS)

    Montgomery, David J.; Jones, Christopher K.; Stewart, James N.; Smith, Alan

    2002-05-01

    It is clear from the literature that the majority of work in stereoscopic imaging is directed towards the development of modern stereoscopic displays. As costs come down, wider public interest in this technology is expected to increase. This new technology would require new methods of image formation. Advances in stereo computer graphics will of course lead to the creation of new stereo computer games, graphics in films etc. However, the consumer would also like to see real-world stereoscopic images, pictures of family, holiday snaps etc. Such scenery would have wide ranges of depth to accommodate and would need also to cope with moving objects, such as cars, and in particular other people. Thus, the consumer acceptance of auto/stereoscopic displays and 3D in general would be greatly enhanced by the existence of a quality stereoscopic camera. This paper will cover an analysis of existing stereoscopic camera designs and show that they can be categorized into four different types, with inherent advantages and disadvantages. A recommendation is then made with regard to 3D consumer still and video photography. The paper will go on to discuss this recommendation and describe its advantages and how it can be realized in practice.

  18. HONEY -- The Honeywell Camera

    NASA Astrophysics Data System (ADS)

    Clayton, C. A.; Wilkins, T. N.

    The Honeywell model 3000 colour graphic recorder system (hereafter referred to simply as Honeywell) has been bought by Starlink for producing publishable quality photographic hardcopy from the IKON image displays. Full colour and black & white images can be recorded on positive or negative 35mm film. The Honeywell consists of a built-in high resolution flat-faced monochrome video monitor, a red/green/blue colour filter mechanism and a 35mm camera. The device works on the direct video signals from the IKON. This means that changing the brightness or contrast on the IKON monitor will not affect any photographs that you take. The video signals from the IKON consist of separate red, green and blue signals. When you take a picture, the Honeywell takes the red, green and blue signals in turn and displays three pictures consecutively on its internal monitor. It takes an exposure through each of three filters (red, green and blue) onto the film in the camera. This builds up the complete colour picture on the film. Honeywell systems are installed at nine Starlink sites, namely Belfast (locally funded), Birmingham, Cambridge, Durham, Leicester, Manchester, Rutherford, ROE and UCL.

  19. NFC - Narrow Field Camera

    NASA Astrophysics Data System (ADS)

    Koukal, J.; Srba, J.; Gorková, S.

    2015-01-01

    We have been introducing a low-cost CCTV video system for faint meteor monitoring and here we describe the first results from 5 months of two-station operations. Our system called NFC (Narrow Field Camera) with a meteor limiting magnitude around +6.5mag allows research on trajectories of less massive meteoroids within individual parent meteor showers and the sporadic background. At present 4 stations (2 pairs with coordinated fields of view) of NFC system are operated in the frame of CEMeNt (Central European Meteor Network). The heart of each NFC station is a sensitive CCTV camera Watec 902 H2 and a fast cinematographic lens Meopta Meostigmat 1/50 - 52.5 mm (50 mm focal length and fixed aperture f/1.0). In this paper we present the first results based on 1595 individual meteors, 368 of which were recorded from two stations simultaneously. This data set allows the first empirical verification of theoretical assumptions for NFC system capabilities (stellar and meteor magnitude limit, meteor apparent brightness distribution and accuracy of single station measurements) and the first low mass meteoroid trajectory calculations. Our experimental data clearly showed the capabilities of the proposed system for low mass meteor registration and for calculations based on NFC data to lead to a significant refinement in the orbital elements for low mass meteoroids.

  20. Radiation damage of the PCO Pixelfly VGA CCD camera of the BES system on KSTAR tokamak

    NASA Astrophysics Data System (ADS)

    Náfrádi, Gábor; Kovácsik, Ákos; Pór, Gábor; Lampert, Máté; Un Nam, Yong; Zoletnik, Sándor

    2015-01-01

    A PCO Pixelfly VGA CCD camera which is part a of the Beam Emission Spectroscopy (BES) diagnostic system of the Korea Superconducting Tokamak Advanced Research (KSTAR) used for spatial calibrations, suffered from serious radiation damage, white pixel defects have been generated in it. The main goal of this work was to identify the origin of the radiation damage and to give solutions to avoid it. Monte Carlo N-Particle eXtended (MCNPX) model was built using Monte Carlo Modeling Interface Program (MCAM) and calculations were carried out to predict the neutron and gamma-ray fields in the camera position. Besides the MCNPX calculations pure gamma-ray irradiations of the CCD camera were carried out in the Training Reactor of BME. Before, during and after the irradiations numerous frames were taken with the camera with 5 s long exposure times. The evaluation of these frames showed that with the applied high gamma-ray dose (1.7 Gy) and dose rate levels (up to 2 Gy/h) the number of the white pixels did not increase. We have found that the origin of the white pixel generation was the neutron-induced thermal hopping of the electrons which means that in the future only neutron shielding is necessary around the CCD camera. Another solution could be to replace the CCD camera with a more radiation tolerant one for example with a suitable CMOS camera or apply both solutions simultaneously.

  1. GAMMA FACILITY, TRA641. AERIAL CONTEXTUAL VIEW OF GAMMA FACILITY, UNDER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GAMMA FACILITY, TRA-641. AERIAL CONTEXTUAL VIEW OF GAMMA FACILITY, UNDER CONSTRUCTION NEXT TO CONTROL HOUSE, TRA-620. CAMERA FACING NORTHWEST. CONCRETE SLAB AND BUILDING AT RIGHT EDGE OF VIEW IS TRA-614, IN USE AS A COLD METALLURGICAL LAB. INL NEGATIVE NO. 13187. Unknown Photographer, 11/24/1954 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  2. A hybrid version of the Whipple observatory's air Cherenkov imaging camera for use in moonlight

    NASA Astrophysics Data System (ADS)

    Chantell, M. C.; Akerlof, C. W.; Badran, H. M.; Buckley, J.; Carter-Lewis, D. A.; Cawley, M. F.; Connaughton, V.; Fegan, D. J.; Fleury, P.; Gaidos, J.; Hillas, A. M.; Lamb, R. C.; Pare, E.; Rose, H. J.; Rovero, A. C.; Sarazin, X.; Sembroski, G.; Schubnell, M. S.; Urban, M.; Weekes, T. C.; Wilson, C.

    1997-02-01

    A hybrid version of the Whipple Observatory's atmospheric Cherenkov imaging camera that permits observation during periods of bright moonlight is described. The hybrid camera combines a blue-light blocking filter with the standard Whipple imaging camera to reduce sensitivity to wavelengths greater than 360 nm. Data taken with this camera are found to be free from the effects of the moonlit night-sky after the application of simple off-line noise filtering. This camera has been used to successfully detect TeV gamma rays, in bright moon light, from both the Crab Nebula and the active galactic nucleus Markarian 421 at the 4.9σ and 3.9σ levels of statistical significance, respectively. The energy threshold of the camera is estimated to be 1.1 ( +0.6/-0.3) TeV from Monte Carlo simulations.

  3. [Evaluation of exposure to ionizing radiation among gamma camera operators].

    PubMed

    Domańska, Agnieszka Anna; Bieńkiewicz, Malgorzata; Olszewski, Jerzy

    2013-01-01

    Protection of nuclear medicine unit employees from hazards of the ionizing radiation is a crucial issue of radiation protection services. We aimed to assess the severity of the occupational radiation exposure of technicians performing scintigraphic examinations at the Nuclear Medicine Department, Central Teaching Hospital of Medical University in Lódz, where thousands of different diagnostic procedures are performed yearly. In 2013 the studied diagnostic unit has employed 10 technicians, whose exposure is permanently monitored by individual dosimetry. We analyzed retrospective data of quarterly doses in terms of Hp(10) dose equivalents over the years 2001-2010. Also annual and five-year doses were determined to relate the results to current regulations. Moreover, for a selected period of one year, we collected data on the total activity of radiopharmaceuticals used for diagnostics, to analyze potential relationship with doses recorded in technicians performing the examinations. In a 10-year period under study, the highest annual dose recorded in a technician was 2 mSv, which represented 10% of the annual dose limit of 20 mSv. The highest total dose for a 5-year period was 7.1 mSv, less than 10% of a 5-year dose limit for occupational exposure. Positive linear correlation was observed between total activity of radiopharmaceuticals used for diagnostics in the period of three months and respective quarterly doses received by technicians performing examinations. Doses received by nuclear medicine technicians performing diagnostic procedures in compliance with principles of radiation protection are low, which is confirmed by recognizing the technicians of this unit as B category employees.

  4. A portable Si/CdTe Compton camera and its applications to the visualization of radioactive substances

    NASA Astrophysics Data System (ADS)

    Takeda, Shin`ichiro; Harayama, Atsushi; Ichinohe, Yuto; Odaka, Hirokazu; Watanabe, Shin; Takahashi, Tadayuki; Tajima, Hiroyasu; Genba, Kei; Matsuura, Daisuke; Ikebuchi, Hiroshi; Kuroda, Yoshikatsu; Tomonaka, Tetsuya

    2015-07-01

    Gamma-ray imagers with the potential for visualizing the distribution of radioactive materials are required in the fields of astrophysics, medicine, nuclear applications, and homeland security. Based on the technology of the Si/CdTe Compton camera, we have manufactured the first commercial Compton camera for practical use. Through field tests in Fukushima, we demonstrated that the camera is capable of hot spot detection and the evaluation of radioactive decontamination.

  5. A compact neutron scatter camera for field deployment

    DOE PAGES

    Goldsmith, John E. M.; Gerling, Mark D.; Brennan, James S.

    2016-08-23

    Here, we describe a very compact (0.9 m high, 0.4 m diameter, 40 kg) battery operable neutron scatter camera designed for field deployment. Unlike most other systems, the configuration of the sixteen liquid-scintillator detection cells are arranged to provide omnidirectional (4π) imaging with sensitivity comparable to a conventional two-plane system. Although designed primarily to operate as a neutron scatter camera for localizing energetic neutron sources, it also functions as a Compton camera for localizing gamma sources. In addition to describing the radionuclide source localization capabilities of this system, we demonstrate how it provides neutron spectra that can distinguish plutonium metalmore » from plutonium oxide sources, in addition to the easier task of distinguishing AmBe from fission sources.« less

  6. A compact neutron scatter camera for field deployment

    SciTech Connect

    Goldsmith, John E. M.; Gerling, Mark D.; Brennan, James S.

    2016-08-23

    Here, we describe a very compact (0.9 m high, 0.4 m diameter, 40 kg) battery operable neutron scatter camera designed for field deployment. Unlike most other systems, the configuration of the sixteen liquid-scintillator detection cells are arranged to provide omnidirectional (4π) imaging with sensitivity comparable to a conventional two-plane system. Although designed primarily to operate as a neutron scatter camera for localizing energetic neutron sources, it also functions as a Compton camera for localizing gamma sources. In addition to describing the radionuclide source localization capabilities of this system, we demonstrate how it provides neutron spectra that can distinguish plutonium metal from plutonium oxide sources, in addition to the easier task of distinguishing AmBe from fission sources.

  7. A compact neutron scatter camera for field deployment

    SciTech Connect

    Goldsmith, John E. M.; Gerling, Mark D.; Brennan, James S.

    2016-08-23

    Here, we describe a very compact (0.9 m high, 0.4 m diameter, 40 kg) battery operable neutron scatter camera designed for field deployment. Unlike most other systems, the configuration of the sixteen liquid-scintillator detection cells are arranged to provide omnidirectional (4π) imaging with sensitivity comparable to a conventional two-plane system. Although designed primarily to operate as a neutron scatter camera for localizing energetic neutron sources, it also functions as a Compton camera for localizing gamma sources. In addition to describing the radionuclide source localization capabilities of this system, we demonstrate how it provides neutron spectra that can distinguish plutonium metal from plutonium oxide sources, in addition to the easier task of distinguishing AmBe from fission sources.

  8. A compact neutron scatter camera for field deployment

    NASA Astrophysics Data System (ADS)

    Goldsmith, John E. M.; Gerling, Mark D.; Brennan, James S.

    2016-08-01

    We describe a very compact (0.9 m high, 0.4 m diameter, 40 kg) battery operable neutron scatter camera designed for field deployment. Unlike most other systems, the configuration of the sixteen liquid-scintillator detection cells are arranged to provide omnidirectional (4π) imaging with sensitivity comparable to a conventional two-plane system. Although designed primarily to operate as a neutron scatter camera for localizing energetic neutron sources, it also functions as a Compton camera for localizing gamma sources. In addition to describing the radionuclide source localization capabilities of this system, we demonstrate how it provides neutron spectra that can distinguish plutonium metal from plutonium oxide sources, in addition to the easier task of distinguishing AmBe from fission sources.

  9. Transmission electron microscope CCD camera

    DOEpatents

    Downing, Kenneth H.

    1999-01-01

    In order to improve the performance of a CCD camera on a high voltage electron microscope, an electron decelerator is inserted between the microscope column and the CCD. This arrangement optimizes the interaction of the electron beam with the scintillator of the CCD camera while retaining optimization of the microscope optics and of the interaction of the beam with the specimen. Changing the electron beam energy between the specimen and camera allows both to be optimized.

  10. Presentation on Improved Tracking Cameras

    NASA Image and Video Library

    2003-10-08

    Inside the dome building at Playalinda Beach, Bob Fore points to a map of camera sites during a presentation to the media on the improved tracking cameras and long-range optical tracking systems that will be used to capture ascent imagery during the return to flight of the Space Shuttle. The press opportunity also includes tours of the launch pad perimeter camera site at Launch Complex 39B and the other optical tracking site at the Merritt Island National Refuge.

  11. Crystal Compton Camera

    SciTech Connect

    Ziock, Klaus-Peter; Braverman, Joshua B.; Harrison, Mark J.; Hornback, Donald Eric; Fabris, Lorenzo; Newby, Jason

    2013-09-26

    Stand-off detection is one of the most important radiation detection capabilities for arms control and the control of illicit nuclear materials. For long range passive detection one requires a large detector and a means of “seeing through” the naturally occurring and varying background radiation, i.e. imaging. Arguably, Compton imaging is the best approach over much of the emission band suitable for long range detection. It provides not only imaging, but more information about the direction of incidence of each detected gamma-ray than the alternate approach of coded-aperture imaging. The directional information allows one to reduce the background and hence improve the sensitivity of a measurement. However, to make an efficient Compton imager requires localizing and measuring the simultaneous energy depositions when gamma-rays Compton scatter and are subsequently captured within a single, large detector volume. This concept has been demonstrated in semi-conductor detectors (HPGe, CZT, Si) but at ~ $1k/cm3 these materials are too expensive to build the large systems needed for standoff detection. Scintillator detectors, such as NaI(Tl), are two orders of magnitude less expensive and possess the energy resolution required to make such an imager. However, they do not currently have the ability to localize closely spaced, simultaneous energy depositions in a single large crystal. In this project we are applying a new technique that should, for the first time ever, allow cubic-millimeter event localization in a bulk scintillator crystal.

  12. The PAU camera

    NASA Astrophysics Data System (ADS)

    Casas, R.; Ballester, O.; Cardiel-Sas, L.; Carretero, J.; Castander, F. J.; Castilla, J.; Crocce, M.; de Vicente, J.; Delfino, M.; Fernández, E.; Fosalba, P.; Garcia-Bellido, J.; Gaztañaga, E.; Grañena, F.; Jiménez, J.; Madrid, F.; Maiorino, M.; Martí, P.; Miquel, R.; Neisser, Ch.; Sánchez, E.; Serrano, S.; Sevilla, I.; Tonello, N.

    2010-07-01

    The Physics of the Accelerating Universe (PAU) collaboration aims at conducting a competitive cosmology experiment. For that purpose it is building the PAU Camera (PAUCam) to carry out a wide area survey to study dark energy. PAUCam has been designed to be mounted at the prime focus of the William Herschel Telescope with its current optical corrector that delivers a maximum field of view of ~0.8 square degrees. In order to cover the entire field of view available, the PAUCam focal plane will be populated with a mosaic of eighteen CCD detectors. PAUCam will be equipped with a set of narrow band filters and a set of broad band filters to sample the spectral energy distribution of astronomical objects with photometric techniques equivalent to low resolution spectroscopy. In particular it will be able to determine the redshift of galaxies with good precision and therefore conduct cosmological surveys. PAUCam will also be offered to the broad astronomical community.

  13. Evryscope Robotilter automated camera / ccd alignment system

    NASA Astrophysics Data System (ADS)

    Ratzloff, Jeff K.; Law, Nicholas M.; Fors, Octavi; Ser, Daniel d.; Corbett, Henry T.

    2016-08-01

    We have deployed a new class of telescope, the Evryscope, which opens a new parameter space in optical astronomy - the ability to detect short time scale events across the entire sky simultaneously. The system is a gigapixel-scale array camera with an 8000 sq. deg. field of view, 13 arcsec per pixel sampling, and the ability to detect objects brighter than g = 16 in each 2-minute exposure. The Evryscope is designed to find transiting exoplanets around exotic stars, as well as detect nearby supernovae and provide continuous records of distant relativistic explosions like gamma-ray-bursts. The Evryscope uses commercially available CCDs and optics; the machine and assembly tolerances inherent in the mass production of these parts introduce problematic variations in the lens / CCD alignment which degrades image quality. We have built an automated alignment system (Robotilters) to solve this challenge. In this paper we describe the Robotilter system, mechanical and software design, image quality improvement, and current status.

  14. Process simulation in digital camera system

    NASA Astrophysics Data System (ADS)

    Toadere, Florin

    2012-06-01

    The goal of this paper is to simulate the functionality of a digital camera system. The simulations cover the conversion from light to numerical signal and the color processing and rendering. We consider the image acquisition system to be linear shift invariant and axial. The light propagation is orthogonal to the system. We use a spectral image processing algorithm in order to simulate the radiometric properties of a digital camera. In the algorithm we take into consideration the transmittances of the: light source, lenses, filters and the quantum efficiency of a CMOS (complementary metal oxide semiconductor) sensor. The optical part is characterized by a multiple convolution between the different points spread functions of the optical components. We use a Cooke triplet, the aperture, the light fall off and the optical part of the CMOS sensor. The electrical part consists of the: Bayer sampling, interpolation, signal to noise ratio, dynamic range, analog to digital conversion and JPG compression. We reconstruct the noisy blurred image by blending different light exposed images in order to reduce the photon shot noise, also we filter the fixed pattern noise and we sharpen the image. Then we have the color processing blocks: white balancing, color correction, gamma correction, and conversion from XYZ color space to RGB color space. For the reproduction of color we use an OLED (organic light emitting diode) monitor. The analysis can be useful to assist students and engineers in image quality evaluation and imaging system design. Many other configurations of blocks can be used in our analysis.

  15. Gamma II

    NASA Astrophysics Data System (ADS)

    Barker, Thurburn; Castelaz, M.; Cline, J.; Owen, L.; Boehme, J.; Rottler, L.; Whitworth, C.; Clavier, D.

    2011-05-01

    GAMMA II is the Guide Star Automatic Measuring MAchine relocated from STScI to the Astronomical Photographic Data Archive (APDA) at the Pisgah Astronomical Research Institute (PARI). GAMMA II is a multi-channel laser-scanning microdensitometer that was used to measure POSS and SERC plates to create the Guide Star Catalog and the Digital Sky Survey. The microdensitometer is designed with submicron accuracy in x and y measurements using a HP 5507 laser interferometer, 15 micron sampling, and the capability to measure plates as large as 0.5-m across. GAMMA II is a vital instrument for the success of digitizing the direct, objective prism, and spectra photographic plate collections in APDA for research. We plan several targeted projects. One is a collaboration with Drs. P.D. Hemenway and R. L. Duncombe who plan to scan 1000 plates of 34 minor planets to identify systematic errors in the Fundamental System of celestial coordinates. Another is a collaboration with Dr. R. Hudec (Astronomical Institute, Academy of Sciences of the Czech Republic) who is working within the Gaia Variability Unit CU7 to digitize objective prism spectra on the Henize plates and Burrell-Schmidt plates located in APDA. These low dispersion spectral plates provide optical counterparts of celestial high-energy sources and cataclysmic variables enabling the simulation of Gaia BP/RP outputs. The astronomical community is invited to explore the more than 140,000 plates from 20 observatories now archived in APDA, and use GAMMA II. The process of relocating GAMMA to APDA, re-commissioning, and starting up the production scan programs will be described. Also, we will present planned research and future upgrades to GAMMA II.

  16. An Educational PET Camera Model

    ERIC Educational Resources Information Center

    Johansson, K. E.; Nilsson, Ch.; Tegner, P. E.

    2006-01-01

    Positron emission tomography (PET) cameras are now in widespread use in hospitals. A model of a PET camera has been installed in Stockholm House of Science and is used to explain the principles of PET to school pupils as described here.

  17. Mars Exploration Rover engineering cameras

    USGS Publications Warehouse

    Maki, J.N.; Bell, J.F.; Herkenhoff, K. E.; Squyres, S. W.; Kiely, A.; Klimesh, M.; Schwochert, M.; Litwin, T.; Willson, R.; Johnson, Aaron H.; Maimone, M.; Baumgartner, E.; Collins, A.; Wadsworth, M.; Elliot, S.T.; Dingizian, A.; Brown, D.; Hagerott, E.C.; Scherr, L.; Deen, R.; Alexander, D.; Lorre, J.

    2003-01-01

    NASA's Mars Exploration Rover (MER) Mission will place a total of 20 cameras (10 per rover) onto the surface of Mars in early 2004. Fourteen of the 20 cameras are designated as engineering cameras and will support the operation of the vehicles on the Martian surface. Images returned from the engineering cameras will also be of significant importance to the scientific community for investigative studies of rock and soil morphology. The Navigation cameras (Navcams, two per rover) are a mast-mounted stereo pair each with a 45?? square field of view (FOV) and an angular resolution of 0.82 milliradians per pixel (mrad/pixel). The Hazard Avoidance cameras (Hazcams, four per rover) are a body-mounted, front- and rear-facing set of stereo pairs, each with a 124?? square FOV and an angular resolution of 2.1 mrad/pixel. The Descent camera (one per rover), mounted to the lander, has a 45?? square FOV and will return images with spatial resolutions of ???4 m/pixel. All of the engineering cameras utilize broadband visible filters and 1024 x 1024 pixel detectors. Copyright 2003 by the American Geophysical Union.

  18. Airborne ballistic camera tracking systems

    NASA Technical Reports Server (NTRS)

    Redish, W. L.

    1976-01-01

    An operational airborne ballistic camera tracking system was tested for operational and data reduction feasibility. The acquisition and data processing requirements of the system are discussed. Suggestions for future improvements are also noted. A description of the data reduction mathematics is outlined. Results from a successful reentry test mission are tabulated. The test mission indicated that airborne ballistic camera tracking systems are feasible.

  19. Mars Exploration Rover Engineering Cameras

    NASA Astrophysics Data System (ADS)

    Maki, J. N.; Bell, J. F.; Herkenhoff, K. E.; Squyres, S. W.; Kiely, A.; Klimesh, M.; Schwochert, M.; Litwin, T.; Willson, R.; Johnson, A.; Maimone, M.; Baumgartner, E.; Collins, A.; Wadsworth, M.; Elliot, S. T.; Dingizian, A.; Brown, D.; Hagerott, E. C.; Scherr, L.; Deen, R.; Alexander, D.; Lorre, J.

    2003-12-01

    NASA's Mars Exploration Rover (MER) Mission will place a total of 20 cameras (10 per rover) onto the surface of Mars in early 2004. Fourteen of the 20 cameras are designated as engineering cameras and will support the operation of the vehicles on the Martian surface. Images returned from the engineering cameras will also be of significant importance to the scientific community for investigative studies of rock and soil morphology. The Navigation cameras (Navcams, two per rover) are a mast-mounted stereo pair each with a 45° square field of view (FOV) and an angular resolution of 0.82 milliradians per pixel (mrad/pixel). The Hazard Avoidance cameras (Hazcams, four per rover) are a body-mounted, front- and rear-facing set of stereo pairs, each with a 124° square FOV and an angular resolution of 2.1 mrad/pixel. The Descent camera (one per rover), mounted to the lander, has a 45° square FOV and will return images with spatial resolutions of ~4 m/pixel. All of the engineering cameras utilize broadband visible filters and 1024 × 1024 pixel detectors.

  20. The "All Sky Camera Network"

    ERIC Educational Resources Information Center

    Caldwell, Andy

    2005-01-01

    In 2001, the "All Sky Camera Network" came to life as an outreach program to connect the Denver Museum of Nature and Science (DMNS) exhibit "Space Odyssey" with Colorado schools. The network is comprised of cameras placed strategically at schools throughout Colorado to capture fireballs--rare events that produce meteorites.…

  1. Camera artifacts in IUE spectra

    NASA Technical Reports Server (NTRS)

    Bruegman, O. W.; Crenshaw, D. M.

    1994-01-01

    This study of emission line mimicking features in the IUE cameras has produced an atlas of artifiacts in high-dispersion images with an accompanying table of prominent artifacts and a table of prominent artifacts in the raw images along with a medium image of the sky background for each IUE camera.

  2. The "All Sky Camera Network"

    ERIC Educational Resources Information Center

    Caldwell, Andy

    2005-01-01

    In 2001, the "All Sky Camera Network" came to life as an outreach program to connect the Denver Museum of Nature and Science (DMNS) exhibit "Space Odyssey" with Colorado schools. The network is comprised of cameras placed strategically at schools throughout Colorado to capture fireballs--rare events that produce meteorites.…

  3. An Educational PET Camera Model

    ERIC Educational Resources Information Center

    Johansson, K. E.; Nilsson, Ch.; Tegner, P. E.

    2006-01-01

    Positron emission tomography (PET) cameras are now in widespread use in hospitals. A model of a PET camera has been installed in Stockholm House of Science and is used to explain the principles of PET to school pupils as described here.

  4. SEOS frame camera applications study

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A research and development satellite is discussed which will provide opportunities for observation of transient phenomena that fall within the fixed viewing circle of the spacecraft. The evaluation of possible applications for frame cameras, for SEOS, are studied. The computed lens characteristics for each camera are listed.

  5. Radiation camera motion correction system

    DOEpatents

    Hoffer, P.B.

    1973-12-18

    The device determines the ratio of the intensity of radiation received by a radiation camera from two separate portions of the object. A correction signal is developed to maintain this ratio at a substantially constant value and this correction signal is combined with the camera signal to correct for object motion. (Official Gazette)

  6. RGB-NIR multispectral camera.

    PubMed

    Chen, Zhenyue; Wang, Xia; Liang, Rongguang

    2014-03-10

    A multispectral imaging technique with a new CMOS camera is proposed. With a four channel Bayer patterns, the camera can acquire four spectral images simultaneously. We have developed a color correction process to obtain accurate color information, and we have also demonstrated its applications on portrait enhancement, shadow removal, and vein enhancement.

  7. Coherent infrared imaging camera (CIRIC)

    SciTech Connect

    Hutchinson, D.P.; Simpson, M.L.; Bennett, C.A.; Richards, R.K.; Emery, M.S.; Crutcher, R.I.; Sitter, D.N. Jr.; Wachter, E.A.; Huston, M.A.

    1995-07-01

    New developments in 2-D, wide-bandwidth HgCdTe (MCT) and GaAs quantum-well infrared photodetectors (QWIP) coupled with Monolithic Microwave Integrated Circuit (MMIC) technology are now making focal plane array coherent infrared (IR) cameras viable. Unlike conventional IR cameras which provide only thermal data about a scene or target, a coherent camera based on optical heterodyne interferometry will also provide spectral and range information. Each pixel of the camera, consisting of a single photo-sensitive heterodyne mixer followed by an intermediate frequency amplifier and illuminated by a separate local oscillator beam, constitutes a complete optical heterodyne receiver. Applications of coherent IR cameras are numerous and include target surveillance, range detection, chemical plume evolution, monitoring stack plume emissions, and wind shear detection.

  8. Coherent infrared imaging camera (CIRIC)

    NASA Astrophysics Data System (ADS)

    Hutchinson, Donald P.; Simpson, Marc L.; Bennett, Charles A.; Richards, Roger K.; Emery, Mike S.; Crutcher, Richard I.; Sitter, David; Wachter, Eric A.; Huston, Michael A.

    1995-09-01

    New developments in 2-D, wide-bandwidth HgCdTe (MCT) and GaAs quantum-well infrared photodetectors (QWIP) coupled with monolithic microwave integrated circuit (MMIC) technology are now making focal plane array coherent infrared (IR) cameras viable. Unlike conventional IR cameras which provide only thermal data about a scene or target, a coherent camera based on optical heterodyne interferometry will also provide spectral and range information. Each pixel of the camera, consisting of a single photo-sensitive heterodyne mixer followed by an intermediate frequency amplifier and illuminated by a separate local oscillator beam, constitutes a complete optical heterodyne receiver. Applications of coherent IR cameras are numerous and include target surveillance, range detection, chemical plume evolution, monitoring stack plume emissions, and wind shear detection.

  9. IMAX camera (12-IML-1)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The IMAX camera system is used to record on-orbit activities of interest to the public. Because of the extremely high resolution of the IMAX camera, projector, and audio systems, the audience is afforded a motion picture experience unlike any other. IMAX and OMNIMAX motion picture systems were designed to create motion picture images of superior quality and audience impact. The IMAX camera is a 65 mm, single lens, reflex viewing design with a 15 perforation per frame horizontal pull across. The frame size is 2.06 x 2.77 inches. Film travels through the camera at a rate of 336 feet per minute when the camera is running at the standard 24 frames/sec.

  10. Development of SED Camera for Quasars in Early Universe (SQUEAN)

    NASA Astrophysics Data System (ADS)

    Kim, Sanghyuk; Jeon, Yiseul; Lee, Hye-In; Park, Woojin; Ji, Tae-Geun; Hyun, Minhee; Choi, Changsu; Im, Myungshin; Pak, Soojong

    2016-11-01

    We describe the characteristics and performance of a camera system, Spectral energy distribution Camera for Quasars in Early Universe (SQUEAN). It was developed to measure SEDs of high-redshift quasar candidates (z ≳ 5) and other targets, e.g., young stellar objects, supernovae, and gamma-ray bursts, and to trace the time variability of SEDs of objects such as active galactic nuclei (AGNs). SQUEAN consists of an on-axis focal plane camera module, an autoguiding system, and mechanical supporting structures. The science camera module is composed of a focal reducer, a customizable filter wheel, and a CCD camera on the focal plane. The filter wheel uses filter cartridges that can house filters with different shapes and sizes, enabling the filter wheel to hold 20 filters of 50 mm × 50 mm size, 10 filters of 86 mm × 86 mm size, or many other combinations. The initial filter mask was applied to calibrate the filter wheel with high accuracy, and we verified that the filter position is repeatable at much less than one pixel accuracy. We installed and tested 50 nm medium bandwidth filters of 600-1050 nm and other filters at the commissioning observation in 2015 February. We found that SQUEAN can reach limiting magnitudes of 23.3-25.3 AB mag at 5σ in a one-hour total integration time.

  11. Camera sensitivity study

    NASA Astrophysics Data System (ADS)

    Schlueter, Jonathan; Murphey, Yi L.; Miller, John W. V.; Shridhar, Malayappan; Luo, Yun; Khairallah, Farid

    2004-12-01

    As the cost/performance Ratio of vision systems improves with time, new classes of applications become feasible. One such area, automotive applications, is currently being investigated. Applications include occupant detection, collision avoidance and lane tracking. Interest in occupant detection has been spurred by federal automotive safety rules in response to injuries and fatalities caused by deployment of occupant-side air bags. In principle, a vision system could control airbag deployment to prevent this type of mishap. Employing vision technology here, however, presents a variety of challenges, which include controlling costs, inability to control illumination, developing and training a reliable classification system and loss of performance due to production variations due to manufacturing tolerances and customer options. This paper describes the measures that have been developed to evaluate the sensitivity of an occupant detection system to these types of variations. Two procedures are described for evaluating how sensitive the classifier is to camera variations. The first procedure is based on classification accuracy while the second evaluates feature differences.

  12. Proportional counter radiation camera

    DOEpatents

    Borkowski, C.J.; Kopp, M.K.

    1974-01-15

    A gas-filled proportional counter camera that images photon emitting sources is described. A two-dimensional, positionsensitive proportional multiwire counter is provided as the detector. The counter consists of a high- voltage anode screen sandwiched between orthogonally disposed planar arrays of multiple parallel strung, resistively coupled cathode wires. Two terminals from each of the cathode arrays are connected to separate timing circuitry to obtain separate X and Y coordinate signal values from pulse shape measurements to define the position of an event within the counter arrays which may be recorded by various means for data display. The counter is further provided with a linear drift field which effectively enlarges the active gas volume of the counter and constrains the recoil electrons produced from ionizing radiation entering the counter to drift perpendicularly toward the planar detection arrays. A collimator is interposed between a subject to be imaged and the counter to transmit only the radiation from the subject which has a perpendicular trajectory with respect to the planar cathode arrays of the detector. (Official Gazette)

  13. Gamma watermarking

    DOEpatents

    Ishikawa, Muriel Y.; Wood, Lowell L.; Lougheed, Ronald W.; Moody, Kenton J.; Wang, Tzu-Fang

    2004-05-25

    A covert, gamma-ray "signature" is used as a "watermark" for property identification. This new watermarking technology is based on a unique steganographic or "hidden writing" digital signature, implemented in tiny quantities of gamma-ray-emitting radioisotopic material combinations, generally covertly emplaced on or within an object. This digital signature may be readily recovered at distant future times, by placing a sensitive, high energy-resolution gamma-ray detecting instrument reasonably precisely over the location of the watermark, which location may be known only to the object's owner; however, the signature is concealed from all ordinary detection means because its exceedingly low level of activity is obscured by the natural radiation background (including the gamma radiation naturally emanating from the object itself, from cosmic radiation and material surroundings, from human bodies, etc.). The "watermark" is used in object-tagging for establishing object identity, history or ownership. It thus may serve as an aid to law enforcement officials in identifying stolen property and prosecuting theft thereof. Highly effective, potentially very low cost identification-on demand of items of most all types is thus made possible.

  14. Development of the camera for the large size telescopes of the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Inome, Y.; Ambrosi, G.; Awane, Y.; Baba, H.; Bamba, A.; Barceló, M.; Barres de Almeida, U.; Barrio, J. A.; Blanch Bigas, O.; Boix, J.; Brunetti, L.; Carmona, E.; Chabanne, E.; Chikawa, M.; Cho, N.; Colin, P.; Contreras, J. L.; Cortina, J.; Dazzi, F.; Deangelis, A.; Deleglise, G.; Delgado, C.; Díaz, C.; Dubois, F.; Fiasson, A.; Fink, D.; Fouque, N.; Freixas, L.; Fruck, C.; Gadola, A.; García, R.; Gascón, D.; Geffroy, N.; Giglietto, N.; Giordano, F.; Grañena, F.; Gunji, S.; Hagiwara, R.; Hamer, N.; Hanabata, Y.; Hassan, T.; Hatanaka, K.; Haubold, T.; Hayashida, M.; Hermel, R.; Herranz, D.; Hirotani, K.; Hose, J.; Hugh, D.; Inoue, S.; Inoue, Y.; Ioka, K.; Jablonski, C.; Kagaya, M.; Katagiri, H.; Kataoka, J.; Kellermann, H.; Kishimoto, T.; Knoetig, M.; Kodani, K.; Kohri, K.; Kojima, T.; Konno, Y.; Koyama, S.; Kubo, H.; Kushida, J.; Lamanna, G.; Le Flour, T.; López-Moya, M.; López, R.; Lorenz, E.; Majumdar, P.; Manalaysay, A.; Mariotti, M.; Martínez, G.; Martinez, M.; Masuda, S.; Matsuoka, S.; Mazin, D.; Menzel, U.; Miranda, J. M.; Mirzoyan, R.; Monteiro, I.; Moralejo, A.; Murase, K.; Nagataki, S.; Nagayoshi, T.; Nakajima, D.; Nakamori, T.; Nishijima, K.; Noda, K.; Nozato, A.; Ogino, M.; Ohira, Y.; Ohishi, M.; Ohoka, H.; Okumura, A.; Ono, S.; Orito, R.; Panazol, J. L.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Pauletta, G.; Podkladkin, S.; Prast, J.; Rando, R.; Reimann, O.; Ribó, M.; Rosier-Lees, S.; Saito, K.; Saito, T.; Saito, Y.; Sakaki, N.; Sakonaka, R.; Sanuy, A.; Sawada, M.; Scalzotto, V.; Schultz, S.; Schweizer, T.; Shibata, T.; Shu, S.; Sieiro, J.; Stamatescu, V.; Steiner, S.; Straumann, U.; Sugawara, R.; Tajima, H.; Takami, H.; Takahashi, M.; Tanaka, S.; Tanaka, M.; Tejedor, L. A.; Terada, Y.; Teshima, M.; Tomono, Y.; Totani, T.; Toyama, T.; Tsubone, Y.; Tsuchiya, Y.; Tsujimoto, S.; Ueno, H.; Umehara, K.; Umetsu, Y.; Vollhardt, A.; Wagner, R.; Wetteskind, H.; Yamamoto, T.; Yamazaki, R.; Yoshida, A.; Yoshida, T.; Yoshikoshi, T.

    2014-07-01

    The Large Size Telescopes, LSTs, located at the center of the Cherenkov Telescope Array, CTA, will be sensitive for low energy gamma-rays. The camera on the LST focal plane is optimized to detect low energy events based on a high photon detection efficiency and high speed electronics. Also the trigger system is designed to detect low energy showers as much as possible. In addition, the camera is required to work stably without maintenance in a few tens of years. In this contribution we present the design of the camera for the first LST and the status of its development and production.

  15. Vision Sensors and Cameras

    NASA Astrophysics Data System (ADS)

    Hoefflinger, Bernd

    Silicon charge-coupled-device (CCD) imagers have been and are a specialty market ruled by a few companies for decades. Based on CMOS technologies, active-pixel sensors (APS) began to appear in 1990 at the 1 μm technology node. These pixels allow random access, global shutters, and they are compatible with focal-plane imaging systems combining sensing and first-level image processing. The progress towards smaller features and towards ultra-low leakage currents has provided reduced dark currents and μm-size pixels. All chips offer Mega-pixel resolution, and many have very high sensitivities equivalent to ASA 12.800. As a result, HDTV video cameras will become a commodity. Because charge-integration sensors suffer from a limited dynamic range, significant processing effort is spent on multiple exposure and piece-wise analog-digital conversion to reach ranges >10,000:1. The fundamental alternative is log-converting pixels with an eye-like response. This offers a range of almost a million to 1, constant contrast sensitivity and constant colors, important features in professional, technical and medical applications. 3D retino-morphic stacking of sensing and processing on top of each other is being revisited with sub-100 nm CMOS circuits and with TSV technology. With sensor outputs directly on top of neurons, neural focal-plane processing will regain momentum, and new levels of intelligent vision will be achieved. The industry push towards thinned wafers and TSV enables backside-illuminated and other pixels with a 100% fill-factor. 3D vision, which relies on stereo or on time-of-flight, high-speed circuitry, will also benefit from scaled-down CMOS technologies both because of their size as well as their higher speed.

  16. Exposure interlock for oscilloscope cameras

    NASA Technical Reports Server (NTRS)

    Spitzer, C. R.; Stainback, J. D. (Inventor)

    1973-01-01

    An exposure interlock has been developed for oscilloscope cameras which cuts off ambient light from the oscilloscope screen before the shutter of the camera is tripped. A flap is provided which may be selectively positioned to an open position which enables viewing of the oscilloscope screen and a closed position which cuts off the oscilloscope screen from view and simultaneously cuts off ambient light from the oscilloscope screen. A mechanical interlock is provided between the flap to be activated to its closed position before the camera shutter is tripped, thereby preventing overexposure of the film.

  17. Dark energy survey and camera

    SciTech Connect

    William Wester

    2004-08-16

    The authors describe the Dark Energy Survey and Camera. The survey will image 5000 sq. deg. in the southern sky to collect 300 million galaxies, 30,000 galaxy clusters and 2000 Type Ia supernovae. They expect to derive a value for the dark energy equation of state parameters, w, to a precision of 5% by combining four distinct measurement techniques. They describe the mosaic camera that will consist of CCDs with enhanced sensitivity in the near infrared. The camera will be mounted at the prime focus of the 4m Blanco telescope.

  18. Design and realization of an AEC&AGC system for the CCD aerial camera

    NASA Astrophysics Data System (ADS)

    Liu, Hai ying; Feng, Bing; Wang, Peng; Li, Yan; Wei, Hao yun

    2015-08-01

    An AEC and AGC(Automatic Exposure Control and Automatic Gain Control) system was designed for a CCD aerial camera with fixed aperture and electronic shutter. The normal AEC and AGE algorithm is not suitable to the aerial camera since the camera always takes high-resolution photographs in high-speed moving. The AEC and AGE system adjusts electronic shutter and camera gain automatically according to the target brightness and the moving speed of the aircraft. An automatic Gamma correction is used before the image is output so that the image is better for watching and analyzing by human eyes. The AEC and AGC system could avoid underexposure, overexposure, or image blurring caused by fast moving or environment vibration. A series of tests proved that the system meet the requirements of the camera system with its fast adjusting speed, high adaptability, high reliability in severe complex environment.

  19. Gamma Processes

    DTIC Science & Technology

    1986-01-01

    E[exp{-Bn Xn 1 U-Y nU-X vi ] - EeUY )Ee (v+Bu)X1 (2.4) where, in the last step, we have dropped the indices n and n-1 because of stationarity and...1967). "Some Problems of Statistical Inference Relating to Double-Gamma Distribution," Trabajos de Estadistica , 18, 67-87. Hugus, D. K. (1982

  20. Acoustic camera design and implementation

    NASA Astrophysics Data System (ADS)

    Brandes, Thomas Scott

    An acoustic camera for 2-dimensional imaging is developed from concept to physically realized system. The mathematics of the system are described for far-field sound sources, both narrow and broadband. Camera performance for a variety of logarithmically spaced arrays is simulated, as well as stochastically determined configurations from a simulated annealing method. Additionally, hardware development for a 32-microphone log-spaced acoustic camera array, 3.5m by 3.5m, that is built and tested is described. The imaging results of a small aircraft flyover at 400 feet above the array are included. The camera provides actual images that are as detailed as expected from simulations for the aircraft at 250 Hz and 500 Hz. Suggestions are provided for design improvements to image birds as well as bats.

  1. SMART-1/AMIE Camera System

    NASA Astrophysics Data System (ADS)

    Josset, J.-L.; Beauvivre, S.; Cerroni, P.; de Sanctis, M. C.; Pinet, P.; Chevrel, S.; Langevin, Y.; Barucci, M. A.; Plancke, P.; Koschny, D.; Almeida, M.; Sodnik, Z.; Mancuso, S.; Hofmann, B. A.; Muinonen, K.; Shevchenko, V.; Shkuratov, Y.; Ehrenfreund, P.; Foing, B. H.

    2006-03-01

    The Advanced Moon micro-Imager Experiment (AMIE), on board ESA SMART-1, the first European mission to the Moon (launched on 27th September 2003), is a camera system with scientific, technical and public outreach oriented objectives.

  2. An Inexpensive Digital Infrared Camera

    ERIC Educational Resources Information Center

    Mills, Allan

    2012-01-01

    Details are given for the conversion of an inexpensive webcam to a camera specifically sensitive to the near infrared (700-1000 nm). Some experiments and practical applications are suggested and illustrated. (Contains 9 figures.)

  3. An Inexpensive Digital Infrared Camera

    ERIC Educational Resources Information Center

    Mills, Allan

    2012-01-01

    Details are given for the conversion of an inexpensive webcam to a camera specifically sensitive to the near infrared (700-1000 nm). Some experiments and practical applications are suggested and illustrated. (Contains 9 figures.)

  4. Dawn Framing Camera Ceres Atlases

    NASA Astrophysics Data System (ADS)

    Roatsch, T.; Kersten, E.; Matz, K.-D.; Jaumann, R.; Joy, S.; Raymond, C. A.; Russell, C. T.

    2017-06-01

    The Dawn mission mapped the surface of Ceres over a period of 15 months. Imaging data from the Dawn Framing Camera were collected in three primary mapping phases: Survey, High Altitude Mapping Orbit, and Low Altitude Mapping Orbit.

  5. Astronomy and the camera obscura

    NASA Astrophysics Data System (ADS)

    Feist, M.

    2000-02-01

    The camera obscura (from Latin meaning darkened chamber) is a simple optical device with a long history. In the form considered here, it can be traced back to 1550. It had its heyday during the Victorian era when it was to be found at the seaside as a tourist attraction or sideshow. It was also used as an artist's drawing aid and, in 1620, the famous astronomer-mathematician, Johannes Kepler used a small tent camera obscura to trace the scenery.

  6. The future of consumer cameras

    NASA Astrophysics Data System (ADS)

    Battiato, Sebastiano; Moltisanti, Marco

    2015-03-01

    In the last two decades multimedia, and in particular imaging devices (camcorders, tablets, mobile phones, etc.) have been dramatically diffused. Moreover the increasing of their computational performances, combined with an higher storage capability, allows them to process large amount of data. In this paper an overview of the current trends of consumer cameras market and technology will be given, providing also some details about the recent past (from Digital Still Camera up today) and forthcoming key issues.

  7. Presentation on Improved Tracking Cameras

    NASA Image and Video Library

    2003-10-08

    Inside the dome building at Playalinda Beach, Mike Litscher talks to media about the Distant Object Attitude Measurement System (DOAMS), part of the improved tracking cameras and long-range optical tracking systems that will be used to capture ascent imagery during the return to flight of the Space Shuttle. The press opportunity also includes tours of the launch pad perimeter camera site at Launch Complex 39B and the other optical tracking site at the Merritt Island National Refuge.

  8. Presentation on Improved Tracking Cameras

    NASA Image and Video Library

    2003-10-08

    At the launch pad perimeter camera site at Launch Complex 39B, news media representatives are briefed on the improved tracking cameras that will be used to capture ascent imagery during the return to flight of the Space Shuttle. The press opportunity also includes tours of the Image Analysis Facility in the Vehicle Assembly Building and two Playalinda Beach optical tracking sites at the Cape Canaveral National Seashore and the Merritt Island National Refuge.

  9. Solid State Television Camera (CID)

    NASA Technical Reports Server (NTRS)

    Steele, D. W.; Green, W. T.

    1976-01-01

    The design, development and test are described of a charge injection device (CID) camera using a 244x248 element array. A number of video signal processing functions are included which maximize the output video dynamic range while retaining the inherently good resolution response of the CID. Some of the unique features of the camera are: low light level performance, high S/N ratio, antiblooming, geometric distortion, sequential scanning and AGC.

  10. Streak camera dynamic range optimization

    SciTech Connect

    Wiedwald, J.D.; Lerche, R.A.

    1987-09-01

    The LLNL optical streak camera is used by the Laser Fusion Program in a wide range of applications. Many of these applications require a large recorded dynamic range. Recent work has focused on maximizing the dynamic range of the streak camera recording system. For our streak cameras, image intensifier saturation limits the upper end of the dynamic range. We have developed procedures to set the image intensifier gain such that the system dynamic range is maximized. Specifically, the gain is set such that a single streak tube photoelectron is recorded with an exposure of about five times the recording system noise. This ensures detection of single photoelectrons, while not consuming intensifier or recording system dynamic range through excessive intensifier gain. The optimum intensifier gain has been determined for two types of film and for a lens-coupled CCD camera. We have determined that by recording the streak camera image with a CCD camera, the system is shot-noise limited up to the onset of image intensifier nonlinearity. When recording on film, the film determines the noise at high exposure levels. There is discussion of the effects of slit width and image intensifier saturation on dynamic range. 8 refs.

  11. Science, conservation, and camera traps

    USGS Publications Warehouse

    Nichols, James D.; Karanth, K. Ullas; O'Connel, Allan F.; O'Connell, Allan F.; Nichols, James D.; Karanth, K. Ullas

    2011-01-01

    Biologists commonly perceive camera traps as a new tool that enables them to enter the hitherto secret world of wild animals. Camera traps are being used in a wide range of studies dealing with animal ecology, behavior, and conservation. Our intention in this volume is not to simply present the various uses of camera traps, but to focus on their use in the conduct of science and conservation. In this chapter, we provide an overview of these two broad classes of endeavor and sketch the manner in which camera traps are likely to be able to contribute to them. Our main point here is that neither photographs of individual animals, nor detection history data, nor parameter estimates generated from detection histories are the ultimate objective of a camera trap study directed at either science or management. Instead, the ultimate objectives are best viewed as either gaining an understanding of how ecological systems work (science) or trying to make wise decisions that move systems from less desirable to more desirable states (conservation, management). Therefore, we briefly describe here basic approaches to science and management, emphasizing the role of field data and associated analyses in these processes. We provide examples of ways in which camera trap data can inform science and management.

  12. The camera convergence problem revisited

    NASA Astrophysics Data System (ADS)

    Allison, Robert S.

    2004-05-01

    Convergence of the real or virtual stereoscopic cameras is an important operation in stereoscopic display systems. For example, convergence can shift the range of portrayed depth to improve visual comfort; can adjust the disparity of targets to bring them nearer to the screen and reduce accommodation-vergence conflict; or can bring objects of interest into the binocular field-of-view. Although camera convergence is acknowledged as a useful function, there has been considerable debate over the transformation required. It is well known that rotational camera convergence or 'toe-in' distorts the images in the two cameras producing patterns of horizontal and vertical disparities that can cause problems with fusion of the stereoscopic imagery. Behaviorally, similar retinal vertical disparity patterns are known to correlate with viewing distance and strongly affect perception of stereoscopic shape and depth. There has been little analysis of the implications of recent findings on vertical disparity processing for the design of stereoscopic camera and display systems. We ask how such distortions caused by camera convergence affect the ability to fuse and perceive stereoscopic images.

  13. Fundus Camera Guided Photoacoustic Ophthalmoscopy

    PubMed Central

    Liu, Tan; Li, Hao; Song, Wei; Jiao, Shuliang; Zhang, Hao F.

    2014-01-01

    Purpose To demonstrate the feasibility of fundus camera guided photoacoustic ophthalmoscopy (PAOM) system and its multimodal imaging capabilities. Methods We integrated PAOM and a fundus camera consisting of a white-light illuminator and a high-sensitivity, high-speed CCD. The fundus camera captures both retinal anatomy and PAOM illumination at the same time to provide a real-time feedback when we position the PAOM illuminating light. We applied the integrated system to image rat eyes in vivo and used full-spectrum, visible (VIS), and near infrared (NIR) illuminations in fundus photography. Results Both albino and pigmented rat eyes were imaged in vivo. During alignment, different trajectories of PAOM laser scanning were successfully visualized by the fundus camera, which reduced the PAOM alignment time from several minutes to 30 s. In albino eyes, in addition to retinal vessels, main choroidal vessels were observed using VIS-illumination, which is similar to PAOM images. In pigmented eyes, the radial striations of retinal nerve fiber layer were visualized by fundus photography using full-spectrum illumination; meanwhile, PAOM imaged both retinal vessels and the retinal pigmented epithelium melanin distribution. Conclusions The results demonstrated that PAOM can be well-integrated with fundus camera without affecting its functionality. The fundus camera guidance is faster and easier comparing with our previous work. The integrated system also set the stage for the next-step verification between oximetry methods based on PAOM and fundus photography. PMID:24131226

  14. A balloon-borne imaging gamma-ray telescope

    NASA Technical Reports Server (NTRS)

    Althouse, W. E.; Cook, W. R.; Cummings, A. C.; Finger, M. H.; Prince, T. A.; Schindler, S. M.; Starr, C. H.; Stone, E. C.

    1985-01-01

    A balloon-borne coded-aperture gamma-ray telescope for galactic and extragalactic astronomy observations is described. The instrument, called Gamma Ray Imaging Payload (GRIP), is designed for measurements in the energy range from 30 keV to 5 MeV with an angular resolution of 0.6 deg over a 20 deg field of view. Distinguishing characteristics of the telescope are a rotating hexagonal coded-aperture mask and a thick NaI scintillation camera. Rotating hexagonal coded-apertures and the development of thick scintillation cameras are discussed.

  15. The MC and LFC cameras. [metric camera (MC); large format camera (LFC)

    NASA Technical Reports Server (NTRS)

    Norton, Clarice L.; Schroeder, Manfried; Mollberg, Bernard

    1986-01-01

    The characteristics of the shuttle-borne Large Format Camera are listed. The LFC focal plane format was 23 by 46 cm, double the usual size, thereby acquiring approximately double the ground area. Forward motion compensation was employed. With the stable platform (shuttle) it was possible to use the slow exposure, high resolution, Kodak aerial films; 3414 and 3412 black and white, SO-242 color, and SO-131 aerochrome infrared. The camera was designed to maintain stability during varying temperature extremes of space.

  16. ProxiScan™: A Novel Camera for Imaging Prostate Cancer

    ScienceCinema

    Ralph James

    2016-07-12

    ProxiScan is a compact gamma camera suited for high-resolution imaging of prostate cancer. Developed by Brookhaven National Laboratory and Hybridyne Imaging Technologies, Inc., ProxiScan won a 2009 R&D 100 Award, sponsored by R&D Magazine to recognize t

  17. The variation of intrinsic spatial resolution across the UFOV of scintillation cameras.

    PubMed

    Papanastassiou, Emmanouil K; Psarrakos, Kyriakos; Sioundas, Anastasios; Ballas, Apostolos; Koufogiannis, Dimitrios; Hatziioannou, Konstantinos

    2006-12-01

    The aim of the present study was to investigate in detail the variation of the intrinsic spatial resolution across the useful field of view (UFOV) of gamma-cameras and to explore whether this variation could lead to observable effects in clinical images. Two gamma-cameras were used, without their collimators, to acquire 560 (99m)Tc point source images at different points across their UFOVs, in order to measure the intrinsic spatial resolution at each point. Possible clinical effects of the resolution variation were examined on images of a thyroid phantom using a LEHR collimator, acquired at different locations on the UFOV and at various distances from the collimator. The gamma-camera intrinsic resolution varied significantly across the UFOV, being generally lower at the central region and deteriorating at the edges. Pronounced local maxima and minima were found at points corresponding to the centers of the photomultiplier tubes (PMTs) and halfway in between. Maximum differences of more than 50% were observed between the points presenting the best and worst intrinsic resolution. Differences between neighboring points reached 17%. The effects of resolution variation were clearly observable on the thyroid phantom images. It was concluded that an appropriate correction algorithm might be necessary in order to correct for the variation of the intrinsic spatial resolution across the UFOV of gamma-cameras.

  18. The search for optical counterparts to BATSE GRBs with the Explosive Transient Camera

    NASA Technical Reports Server (NTRS)

    Vanderspek, Roland; Ricker, George R.

    1992-01-01

    The Explosive Transient Camera (ETC), an automatic wide-field sky monitor sensitive to short-timescale optical transients, has been operating in conjunction with BATSE since the launch of GRO. In this paper, we discuss the probability and implications of the ETC monitoring a part of the sky in which BATSE detects a gamma-ray burst.

  19. Sub-Camera Calibration of a Penta-Camera

    NASA Astrophysics Data System (ADS)

    Jacobsen, K.; Gerke, M.

    2016-03-01

    Penta cameras consisting of a nadir and four inclined cameras are becoming more and more popular, having the advantage of imaging also facades in built up areas from four directions. Such system cameras require a boresight calibration of the geometric relation of the cameras to each other, but also a calibration of the sub-cameras. Based on data sets of the ISPRS/EuroSDR benchmark for multi platform photogrammetry the inner orientation of the used IGI Penta DigiCAM has been analyzed. The required image coordinates of the blocks Dortmund and Zeche Zollern have been determined by Pix4Dmapper and have been independently adjusted and analyzed by program system BLUH. With 4.1 million image points in 314 images respectively 3.9 million image points in 248 images a dense matching was provided by Pix4Dmapper. With up to 19 respectively 29 images per object point the images are well connected, nevertheless the high number of images per object point are concentrated to the block centres while the inclined images outside the block centre are satisfying but not very strongly connected. This leads to very high values for the Student test (T-test) of the finally used additional parameters or in other words, additional parameters are highly significant. The estimated radial symmetric distortion of the nadir sub-camera corresponds to the laboratory calibration of IGI, but there are still radial symmetric distortions also for the inclined cameras with a size exceeding 5μm even if mentioned as negligible based on the laboratory calibration. Radial and tangential effects of the image corners are limited but still available. Remarkable angular affine systematic image errors can be seen especially in the block Zeche Zollern. Such deformations are unusual for digital matrix cameras, but it can be caused by the correlation between inner and exterior orientation if only parallel flight lines are used. With exception of the angular affinity the systematic image errors for corresponding

  20. Flexible nuclear medicine camera and method of using

    DOEpatents

    Dilmanian, F. Avraham; Packer, Samuel; Slatkin, Daniel N.

    1996-12-10

    A nuclear medicine camera 10 and method of use photographically record radioactive decay particles emitted from a source, for example a small, previously undetectable breast cancer, inside a patient. The camera 10 includes a flexible frame 20 containing a window 22, a photographic film 24, and a scintillation screen 26, with or without a gamma-ray collimator 34. The frame 20 flexes for following the contour of the examination site on the patient, with the window 22 being disposed in substantially abutting contact with the skin of the patient for reducing the distance between the film 24 and the radiation source inside the patient. The frame 20 is removably affixed to the patient at the examination site for allowing the patient mobility to wear the frame 20 for a predetermined exposure time period. The exposure time may be several days for obtaining early qualitative detection of small malignant neoplasms.