Science.gov

Sample records for breath measured blood

  1. Comparison of spectroscopically measured tissue alcohol concentration to blood and breath alcohol measurements

    NASA Astrophysics Data System (ADS)

    Ridder, Trent D.; Ver Steeg, Benjamin J.; Laaksonen, Bentley D.

    2009-09-01

    Alcohol testing is an expanding area of interest due to the impacts of alcohol abuse that extend well beyond drunk driving. However, existing approaches such as blood and urine assays are hampered in some testing environments by biohazard risks. A noninvasive, in vivo spectroscopic technique offers a promising alternative, as no body fluids are required. The purpose of this work is to report the results of a 36-subject clinical study designed to characterize tissue alcohol measured using near-infrared spectroscopy relative to venous blood, capillary blood, and breath alcohol. Comparison of blood and breath alcohol concentrations demonstrated significant differences in alcohol concentration [root mean square of 9.0 to 13.5 mg/dL] that were attributable to both assay accuracy and precision as well as alcohol pharmacokinetics. A first-order kinetic model was used to estimate the contribution of alcohol pharmacokinetics to the differences in concentration observed between the blood, breath, and tissue assays. All pair-wise combinations of alcohol assays were investigated, and the fraction of the alcohol concentration variance explained by pharmacokinetics ranged from 41.0% to 83.5%. Accounting for pharmacokinetic concentration differences, the accuracy and precision of the spectroscopic tissue assay were found to be comparable to those of the blood and breath assays.

  2. Breathing detection with a portable impedance measurement system: first measurements.

    PubMed

    Cordes, Axel; Foussier, Jerome; Leonhardt, Steffen

    2009-01-01

    For monitoring the health status of individuals, detection of breathing and heart activity is important. From an electrical point of view, it is known that breathing and heart activity change the electrical impedance distribution in the human body over the time due to ventilation (high impedance) and blood shifts (low impedance). Thus, it is possible to detect both important vital parameters by measuring the impedance of the thorax or the region around lung and heart. For some measurement scenarios it is also essential to detect these parameters contactless. For instance, monitoring bus drivers health could help to limit accidents, but directly connected systems limit the drivers free moving space. One measurement technology for measuring the impedance changes in the chest without cables is the magnetic impedance tomography (MIT). This article describes a portable measurement system we developed for this scenario that allows to measure breathing contactless. Furthermore, first measurements with five volunteers were performed and analyzed.

  3. Breath measurements as volatile organic compound biomarkers.

    PubMed Central

    Wallace, L; Buckley, T; Pellizzari, E; Gordon, S

    1996-01-01

    A brief review of the uses of breath analysis in studies of environmental exposure to volatile organic compounds (VOCs) is provided. The U.S. Environmental Protection Agency's large-scale Total Exposure Assessment Methodology Studies have measured concentrations of 32 target VOCs in the exhaled breath of about 800 residents of various U.S. cities. Since the previous 12-hr integrated personal air exposures to the same chemicals were also measured, the relation between exposure and body burden is illuminated. Another major use of the breath measurements has been to detect unmeasured pathways of exposure; the major impact of active smoking on exposure to benzene and styrene was detected in this way. Following the earlier field studies, a series of chamber studies have provided estimates of several important physiological parameters. Among these are the fraction, f, of the inhaled chemical that is exhaled under steady-state conditions and the residence times. tau i in several body compartments, which may be associated with the blood (or liver), organs, muscle, and fat. Most of the targeted VOCs appear to have similar residence times of a few minutes, 30 min, several hours, and several days in the respective tissue groups. Knowledge of these parameters can be helpful in estimating body burden from exposure or vice versa and in planning environmental studies, particularly in setting times to monitor breath in studies of the variation with time of body burden. Improvements in breath methods have made it possible to study short-term peak exposure situations such as filling a gas tank or taking a shower in contaminated water. PMID:8933027

  4. Breath-by-breath measurement of particle deposition in the lung of spontaneously breathing rats.

    PubMed

    Karrasch, S; Eder, G; Bolle, I; Tsuda, A; Schulz, H

    2009-10-01

    A number of deposition models for humans, as well as experimental animals, have been described. However, no breath-by-breath deposition measurement in rats has been reported to date. The objective of this study is to determine lung deposition of micrometer-sized particles as a function of breathing parameters in the adult rat lung. A new aerosol photometry system was designed to measure deposition of nonhygroscopic, 2-mum sebacate particles in anesthetized, intubated, and spontaneously breathing 90-day-old Wistar-Kyoto rats placed in a size-adjusted body plethysmograph box. Instrumental dead space of the system was minimized down to 310 microl (i.e., approximately 20% of respiratory dead space). The system allows continuous monitoring of particle concentration in the respired volume. Breathing parameters, such as respiratory rate (f), tidal volume (Vt), as well as inspiration/expiration times, were also monitored at different levels of anesthesia. The results showed that Vt typically varied between 1.5 and 4.0 ml for regular breathing and between 4.0 and 10.0 ml for single-sigh breaths; f ranged from 40 to 200 breaths/min. Corresponding deposition values varied between 5 and 50%, depending on breath-by-breath breathing patterns. The best fit of deposition (D) was achieved by a bilinear function of Vt and f and found to be D = 11.0 - 0.09.f + 3.75.Vt. We conclude that our approach provides more realistic conditions for the measurement of deposition than conventional models using ventilated animals and allows us to analyze the correlation between breath-specific deposition and spontaneous breathing patterns.

  5. Comparison of breath gases, including acetone, with blood glucose and blood ketones in children and adolescents with type 1 diabetes.

    PubMed

    Blaikie, Tom P J; Edge, Julie A; Hancock, Gus; Lunn, Daniel; Megson, Clare; Peverall, Rob; Richmond, Graham; Ritchie, Grant A D; Taylor, David

    2014-11-25

    Previous studies have suggested that breath gases may be related to simultaneous blood glucose and blood ketone levels in adults with type 2 and type 1 diabetes. The aims of this study were to investigate these relationships in children and young people with type 1 diabetes in order to assess the efficacy of a simple breath test as a non-invasive means of diabetes management. Gases were collected in breath bags and measurements were compared with capillary blood glucose and ketone levels taken at the same time on a single visit to a routine hospital clinic in 113 subjects (59 male, age 7 years 11 months-18 years 3 months) with type 1 diabetes. The patients were well-controlled with relatively low concentrations of the blood ketone measured (β hydroxybutyrate, 0-0.4 mmol l(-1)). Breath acetone levels were found to increase with blood β hydroxybutyrate levels and a significant relationship was found between the two (Spearman's rank correlation ρ = 0.364, p < 10(-4)). A weak positive relationship was found between blood glucose and breath acetone (ρ = 0.16, p = 0.1), but led to the conclusion that single breath measurements of acetone do not provide a good measure of blood glucose levels in this cohort. This result suggests a potential to develop breath gas analysis to provide an alternative to blood testing for ketone measurement, for example to assist with the management of type 1 diabetes.

  6. [The correlation of results of breath analysers and laboratory blood examinations of blood-ethanol concentration (Czech and Slovak study)].

    PubMed

    Hirt, M; Vojtísek, T; Zelený, M; Krajsa, J; Stanková, M; Fialka, J; Holoubek, J; Novotná, Rychtecká A; Vlcková, A; Pilin, A; Ondra, P; Hejna, P; Mudrová, J; Duchanová, S; Zedniková, K; Machácek, R; Cerná, I; Krejzlíková, E; Válka, I; Schneller, K; Vanerková, H; Datko, M; Novomeský, F; Straka, L; Krajcovic, J; Hajtman, A; Macko, V; Vorel, F

    2010-01-01

    The target of this study was to compare the results of breath analysers and "lege artis" laboratory blood examinations when determining alcohol levels. This was then used to determine whether any differences exist between the two methods, and how large these differences are. 610 cases from 11 workplaces in the Czech Republic and Slovakia were analysed. The type of breath analyser was not taken into consideration. All cases had to be in the elimination phase. Difference of time between breath test and blood test were rectified through the use of reverse recomputation. It was detected that only 20.8% of the results of respiratory analyser tests correspond to the detected real alcohol level in blood. The maximum difference when a respiratory analyser measured more than a blood test was 1.34 g x kg(-1). and the maximum difference when the analyse measured less was 1.86 g x kg(-1). PMID:21280283

  7. Correlations between blood glucose and breath components from portable gas sensors and PTR-TOF-MS.

    PubMed

    Righettoni, M; Schmid, A; Amann, A; Pratsinis, S E

    2013-09-01

    Acetone is one of the most abundant volatile compounds in the human breath and might be important for monitoring diabetic patients. Here, a portable acetone sensor consisting of flame-made, nanostructured, Si-doped WO3 sensing films was used to analyse the end tidal fraction of the breath (collected in Tedlar bags) from eight healthy volunteers after overnight fasting (morning) and after lunch (afternoon). After breath sampling, the gaseous components were also analysed by proton transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS), and each person's blood glucose level was measured. The portable sensor accurately detected the presence of acetone with fast response/recovery times (<12 s) and a high signal-to-noise ratio. Statistical analysis of the relationship between the PTR-TOF-MS measurements of breath gases (e.g., acetone, isoprene, ethanol and methanol), sensor response and the blood glucose level was performed for both sampling periods. The best correlations were found after overnight fasting (morning): in particular, between blood glucose level and breath acetone (Pearson's 0.98 and Spearman's 0.93). Whereas the portable sensor response correlated best with the blood glucose (Pearson's 0.96 and Spearman's 0.81) and breath acetone (Pearson's 0.92 and Spearman's 0.69). PMID:23959908

  8. Variability in the blood/breath alcohol ratio and implications for evidentiary purposes.

    PubMed

    Jaffe, Dena H; Siman-Tov, Maya; Gopher, Asher; Peleg, Kobi

    2013-09-01

    The breath analyzer is an indispensable tool for identifying alcohol levels among drivers. While numerous studies have shown high correlations between blood and breath alcohol concentrations, most are limited by the study design. This study seeks to assess this relationship by minimizing potential measurement bias, document time from alcohol consumption to testing, and adjusting for potential confounders. A blinded study was performed using conditions closely resembling those in the field. The Draeger 7110 MKIII IL breath analyzer was used to assess breath alcohol concentrations (BrAC). Participants were 61 healthy volunteers aged 21-37 years with body mass index ≤30 and no history of alcoholism. A total of 242 valid blood/breath tests were performed in four test sets. The study results showed a high correlation coefficient between BrAC and blood alcohol concentration (BAC) levels (r = 0.983) with high sensitivity (97%) and specificity (93%). This strong association between the breath analyzer and BAC persisted even after adjustment for various stages of alcohol absorption. These results illustrate the high diagnostic sensitivity of the breath analyzer in field-tested conditions.

  9. Interactions between breathing rate and low-frequency fluctuations in blood pressure and cardiac intervals.

    PubMed

    Horsman, H M; Peebles, K C; Tzeng, Y C

    2015-10-01

    Evidence derived from spontaneous measures of cardiovagal baroreflex sensitivity (BRS) suggests that slow breathing at 6 breaths/min augments BRS. However, increases in BRS associated with slow breathing may simply reflect the frequency-dependent nature of the baroreflex rather than the modulation of baroreflex function by changes in breathing rate per se. To test this hypothesis we employed a crossover study design (n = 14) wherein breathing rate and systolic arterial blood pressure (SAP) oscillation induced via the application of oscillating lower body negative pressure (OLBNP) were independently varied at fixed frequencies. Breathing rate was controlled at 6 or 10 breaths/min with the aid of a metronome, and SAP oscillations were driven at 0.06 Hz and 0.1 Hz using OLBNP. The magnitudes of SAP and R-R interval (cardiac period) oscillations were quantified using power spectral analysis, and the transfer function gain between SAP and R-R interval was used to estimate BRS. Linear mixed-effects models were used to examine the main effects and interactions between breathing rate and OLBNP frequency. There was no statistical interaction between breathing and OLBNP frequency (P = 0.59), indicating that the effect of breathing rate on BRS did not differ according to OLBNP frequency (and vice versa). Additionally, there was no main effect for breathing rate (P = 0.28). However, we observed a significant main effect for OLBNP frequency (P = 0.01) consistent with the frequency-dependent nature of baroreflex. These findings suggest that increases in spectral indices of BRS reflect the frequency dependence of the baroreflex and are not due to slow breathing per se.

  10. Electrochemical measurement of carbon monoxide in breath: Interference by hydrogen

    NASA Astrophysics Data System (ADS)

    Vreman, Hendrik J.; Mahoney, John J.; Stevenson, David K.

    The purpose of this study was to determine the concentration of carbon monoxide (CO) in blood (COHb) and breath to demonstrate that breath hydrogen (H 2) can be a significant interferant. For this purpose, we measured blood COHb with CO-oximetry and breath CO with an electrochemical analyzer. In addition, the samples were analyzed by gas chromatography (GC). The concentration of CO in breath, collected with a Priestley tube after a 20 s breath hold, from healthy, nonsmoking adult males ( n = 20) and females ( n = 10) had a mean ± SD (range) of 2.6 ± 0.4 ppm (2.0-3.9), respectively, when measured by GC. However, these same samples when measured with an electrochemical (EC) analyzer showed elevated CO values of 4.7 ± 2.9 ppm (2.6-17.6). The concentration of H 2, a prominent trace gas in breath known to interfere with EC analyzers, correlated strongly with the observed EC analyzer response [EC (ppm CO) = 0.336 H 2 (ppm) + 1.93, r2 = 0.98]. The EC analyzer was linear for H 2 concentrations up to 40 ppm, with a sensitivity of 0.035 V ppm -1. The analyzer sensitivity to CO was 0.10 V ppm -1. Blood from this population showed COHb concentrations of 0.56 ± 0.11% (0.40-0.97), as measured by GC, but elevated values were found when measured by CO-oximeter (Ciba Corning Diagnostics Corp., Models 2500 and 270), 1.3 ± 0.2% (1.1-1.6) and 1.0 ± 0.3% (0.1-1.6), respectively. When breath CO was compared to blood COHb, only measurements by GC significantly correlated [COHb% = 0.241 CO(ppm) — 0.076, r2 = 0.78]. We conclude that, relative to quantitative analysis by GC, (1) EC analyzers are susceptible to H 2 interference that cause falsely elevated CO measurements, and (2) CO-oximeters overestimate COHb concentrations in the range typical for healthy nonsmokers.

  11. Blood and breath levels of selected volatile organic compounds in healthy volunteers

    PubMed Central

    King, Julian; Klieber, Martin; Unterkofler, Karl; Hinterhuber, Hartmann; Baumann, Matthias

    2016-01-01

    Gas chromatography with mass spectrometric detection (GC-MS) was used to identify and quantify volatile organic compounds in the blood and breath of healthy individuals. Blood and breath volatiles were preconcentrated using headspace solid phase micro-extraction (HS-SPME) and needle trap devices (NTDs), respectively. The study involved a group of 28 healthy test subjects and resulted in the quantification of a total of 74 compounds in both types of samples. The concentrations of the species under study varied between 0.01 and 6700 nmol L−1 in blood and between 0.02 and 2500 ppb in exhaled air. Limits of detection (LOD) ranged from 0.01 to 270 nmol L−1 for blood compounds and from 0.01 to 0.7 ppb for breath species. Relative standard deviations for both measurement regimes varied from 1.5 to 14%. The predominant chemical classes among the compounds quantified were hydrocarbons (24), ketones (10), terpenes (8), heterocyclic compounds (7) and aromatic compounds (7). Twelve analytes were found to be highly present in both blood and exhaled air (with incidence rates higher than 80%) and for 32 species significant differences (Wilcoxon signed-rank test) between room air and exhaled breath were observed. By comparing blood, room air and breath levels in parallel, a tentative classification of volatiles into endogenous and exogenous compounds can be achieved. PMID:23435188

  12. Measuring Breath Alcohol Concentrations with an FTIR Spectrometer

    NASA Astrophysics Data System (ADS)

    Kneisel, Adam; Bellamy, Michael K.

    2003-12-01

    An FTIR spectrometer equipped with a long-path gas cell can be used to measure breath alcohol concentrations in an instrumental analysis laboratory course. Students use aqueous ethanol solutions to make a calibration curve that relates absorbance signals of breath samples with blood alcohol concentrations. Students use their calibration curve to determine the time needed for their calculated blood alcohol levels to drop below the legal limit following use of a commercial mouthwash. They also calculate their blood alcohol levels immediately after chewing bread. The main goal of the experiment is to provide the students with an interesting laboratory exercise that teaches them about infrared spectrometers. While the results are meant to be only semiquantitative, they have compared well with results from other published studies. A reference is included that describes how to fabricate a long-path gas cell.

  13. Fast and Accurate Exhaled Breath Ammonia Measurement

    PubMed Central

    Solga, Steven F.; Mudalel, Matthew L.; Spacek, Lisa A.; Risby, Terence H.

    2014-01-01

    This exhaled breath ammonia method uses a fast and highly sensitive spectroscopic method known as quartz enhanced photoacoustic spectroscopy (QEPAS) that uses a quantum cascade based laser. The monitor is coupled to a sampler that measures mouth pressure and carbon dioxide. The system is temperature controlled and specifically designed to address the reactivity of this compound. The sampler provides immediate feedback to the subject and the technician on the quality of the breath effort. Together with the quick response time of the monitor, this system is capable of accurately measuring exhaled breath ammonia representative of deep lung systemic levels. Because the system is easy to use and produces real time results, it has enabled experiments to identify factors that influence measurements. For example, mouth rinse and oral pH reproducibly and significantly affect results and therefore must be controlled. Temperature and mode of breathing are other examples. As our understanding of these factors evolves, error is reduced, and clinical studies become more meaningful. This system is very reliable and individual measurements are inexpensive. The sampler is relatively inexpensive and quite portable, but the monitor is neither. This limits options for some clinical studies and provides rational for future innovations. PMID:24962141

  14. Arterial blood gas tensions during breath-hold diving in the Korean ama.

    PubMed

    Qvist, J; Hurford, W E; Park, Y S; Radermacher, P; Falke, K J; Ahn, D W; Guyton, G P; Stanek, K S; Hong, S K; Weber, R E

    1993-07-01

    Korean female unassisted divers (cachido ama) breath-hold dive > 100 times to depths of 3-7 m during a work day. We sought to determine the extent of arterial hypoxemia during normal working dives and reasonable time limits for breath-hold diving by measuring radial artery blood gas tensions and pH in five cachido ama who dove to a fixed depth of 4-5 m and then continued to breath hold for various times after their return to the surface. Eighty-two blood samples were withdrawn from indwelling radial artery catheters during 37 ocean dives. We measured compression hyperoxia [arterial PO2 = 141 +/- 24 (SD) Torr] and hypercapnia (arterial PCO2 = 46.6 +/- 2.4 Torr) at depth. Mean arterial PO2 near the end of breath-hold dives lasting 32-95 s (62 +/- 14 s) was decreased (62.6 +/- 13.5 Torr). Mean arterial PCO2 reached 49.9 +/- 5.4 Torr. Complete return of these values to their baseline did not occur until 15-20 s after breathing was resumed. In dives of usual working duration (< 30 s), blood gas tensions remained within normal ranges. Detailed analysis of hemoglobin components and intrinsic oxygenation properties revealed no evidence for adaptive changes that could increase the tolerance of the ama to hypoxic or hypothermic conditions associated with repetitive diving.

  15. Slow breathing training reduces resting blood pressure and the pressure responses to exercise.

    PubMed

    Jones, C U; Sangthong, B; Pachirat, O; Jones, D A

    2015-01-01

    Slow breathing training reduces resting blood pressure, probably by modifying central autonomic control, but evidence for this is lacking. The pressor response to static handgrip exercise is a measure of autonomic control and the aim of this study was to determine whether slow breathing training modulates the pressor responses to exercise of untrained muscles. Twenty hypertensive patients trained for 8 weeks, 10 with unloaded slow breathing (Unloaded) and 10 breathing against an inspiratory load of 20 cm H(2)O (Loaded). Ten subjects were untrained controls. Subjects performed a 2 min handgrip pressor test (30 % MVC) pre- and post-training, and blood pressure and heart rate (HR) were measured before the contraction, at the end and following 2 min recovery. Resting systolic (sBP) and HR were reduced as a result of training, as reported previously. After training there was both a smaller pressor response to hand grip exercise and a more rapid recovery of sBP and HR compared to pre-training. There were no changes in the Controls and no differences between the Unloaded and Loaded groups. Combining the two training groups, the sBP response to handgrip exercise after training was reduced by 10 mm Hg (95 % CI: -7, -13) and HR by 5 bpm (95 % CI: -4, -6), all p<0.05. These results are consistent with slow breathing training modifying central mechanisms regulating cardiovascular function. PMID:25804100

  16. Blood pressure measurement

    MedlinePlus

    Diastolic blood pressure; Systolic blood pressure; Blood pressure reading; Measuring blood pressure ... your health care provider will wrap the blood pressure cuff snugly around your upper arm. The lower ...

  17. An analysis of estimation of pulmonary blood flow by the single-breath method

    NASA Technical Reports Server (NTRS)

    Srinivasan, R.

    1986-01-01

    The single-breath method represents a simple noninvasive technique for the assessment of capillary blood flow across the lung. However, this method has not gained widespread acceptance, because its accuracy is still being questioned. A rigorous procedure is described for estimating pulmonary blood flow (PBF) using data obtained with the aid of the single-breath method. Attention is given to the minimization of data-processing errors in the presence of measurement errors and to questions regarding a correction for possible loss of CO2 in the lung tissue. It is pointed out that the estimations are based on the exact solution of the underlying differential equations which describe the dynamics of gas exchange in the lung. The reported study demonstrates the feasibility of obtaining highly reliable estimates of PBF from expiratory data in the presence of random measurement errors.

  18. Measurement of nitric oxide in human exhaled breath

    SciTech Connect

    Gordon, S.M.; Spicer, C.W.; Ollison, W.M.

    1997-12-31

    This project was initiated to confirm the reliability of nitric oxide (NO) measurement in the breath matrix, using two different analytical techniques - ozone and luminol chemiluminescence - and to corroborate literature reports of elevated breath NO values. To measure peak oral and nasal NO levels, subjects performed slow vital capacity and breath holding maneuvers directly into the monitors through the mouth and the nose, respectively. Additional measurements were made using normal breathing techniques. Initial interferent tests indicate that measured NO signals are real and are not confounded by measurement artifacts. Similar results were obtained using the two independent analytical methods in dry or humid air. The NO signal was unaffected by maximum concentrations of potential breath interferents, such as sulfur compounds and alkenes. The measured breath NO concentrations were greater than typical room air levels and differed significantly with the breathing technique used. During these tests room air averaged 4-5 ppb NO. Peak oral NO levels were 4.3 {+-} 1.5 ppb during a slow vital capacity maneuver and 8.0 {+-} 5.0 ppb during a breath holding maneuver. By contrast, higher peak nasal NO levels were measured for both slow vital capacity (17.8 {+-} 7.8 ppb) and breath holding maneuvers (45.4 {+-} 29.5 ppb).

  19. Response of choroidal blood flow to carbogen breathing in smokers and non-smokers

    PubMed Central

    Wimpissinger, B; Resch, H; Berisha, F; Weigert, G; Schmetterer, L; Polak, K

    2004-01-01

    Aim: To investigate a potential difference in ocular vascular reactivity during carbogen breathing in optic nerve head, choroid, and retina between healthy smokers and non-smokers. Methods: 25 (13 smokers and 12 non-smokers) healthy male volunteers participated in this observer masked, two cohort study. During inhalation of carbogen (5% CO2 and 95% O2) over 10 minutes measurements were taken using laser Doppler flowmetry to assess submacular choroidal and optic nerve head blood flow, laser interferometry to assess fundus pulsation amplitudes, and retinal vessel analyser (RVA) to assess retinal vessel diameters. Results: At baseline choroidal blood flow was higher (p = 0.018, ANOVA) in smokers than in non-smokers. During administration of carbogen the response in choroidal blood flow was significantly different between the two groups: there was an increase in non-smokers after carbogen breathing (p = 0.048) compared with relatively stable blood flow in smokers (p = 0.049 between groups, ANOVA). A similar response pattern was seen for fundus pulsation amplitude, which increased notably after carbogen breathing in non-smokers but not in smokers (p<0.001 between groups, ANOVA). Optic nerve head blood flow and retinal vessel diameters were reduced in both groups to a comparable degree during carbogen breathing. Conclusion: The study indicated abnormal choroidal vascular reactivity in chronic smokers. These early haemodynamic changes may be related to the increased risk to smokers of developing ocular vascular diseases. The specific mechanisms underlying abnormal choroidal vascular reactivity in chronic smokers remain to be characterised. PMID:15148211

  20. New Zealand's breath and blood alcohol testing programs: further data analysis and forensic implications.

    PubMed

    Stowell, A R; Gainsford, A R; Gullberg, R G

    2008-07-01

    Paired blood and breath alcohol concentrations (BAC, in g/dL, and BrAC, in g/210 L), were determined for 11,837 drivers apprehended by the New Zealand Police. For each driver, duplicate BAC measurements were made using headspace gas chromatography and duplicate BrAC measurements were made with either Intoxilyzer 5000, Seres 679T or Seres 679ENZ Ethylometre infrared analysers. The variability of differences between duplicate results is described in detail, as well as the variability of differences between the paired BrAC and BAC results. The mean delay between breath and blood sampling was 0.73 h, ranging from 0.17 to 3.1 8h. BAC values at the time of breath testing were estimated by adjusting BAC results using an assumed blood alcohol clearance rate. The paired BrAC and time-adjusted BAC results were analysed with the aim of estimating the proportion of false-positive BrAC results, using the time-adjusted BAC results as references. When BAC results were not time-adjusted, the false-positive rate (BrAC>BAC) was 31.3% but after time-adjustment using 0.019 g/dL/h as the blood alcohol clearance rate, the false-positive rate was only 2.8%. However, harmful false-positives (defined as cases where BrAC>0.1 g/210L, while BAC< or =0.1g/dL) occurred at a rate of only 0.14%. When the lower of duplicate breath test results were used as the evidential results instead of the means, the harmful false-positive rate dropped to 0.04%.

  1. Monitoring of rapid blood pH variations by CO detection in breath with tunable diode laser

    NASA Astrophysics Data System (ADS)

    Kouznetsov, Andrian I.; Stepanov, Eugene V.; Zyrianov, Pavel V.; Shulagin, Yurii A.; Diachenko, Alexander I.; Gurfinkel, Youri I.

    1997-06-01

    Detection of endogenous carbon monoxide content in breath with tunable diode lasers (TDL) was proposed for noninvasive monitoring of rapid blood pH variation. Applied approach is based on high sensitivity of the haemoglobin and myoglobin affinity for CO to blood pH value and an ability to detect rapidly small variations of CO content in expired air. Breath CO absorption in 4.7 micrometers spectral region was carefully measured using PbSSe tunable diode laser that can provide 1 ppb CO concentration sensitivity and 10 s time constant. Applied TDL gas analyzer was used to monitor expired air of studied persons in physiological tests including hyperventilation and physical load. Simultaneous blood tests were conducted to demonstrate correlation between blood and breath chemical parameters.

  2. The acute effect of mouth only breathing on time to completion, heart rate, rate of perceived exertion, blood lactate, and ventilatory measures during a high-intensity shuttle run sequence.

    PubMed

    Meir, Rudi; Zhao, Guang-Gao; Zhou, Shi; Beavers, Rosalind; Davie, Allan

    2014-04-01

    This study investigated the effect of restricting nasal breathing during a series of 20-m shuttle runs. Ten male participants (mean age = 21.7 ± 2.4 years, height = 1.80 ± 0.62 m, mass = 79.2 ± 10.4 kg, sum of 4 skinfolds = 54.5 ± 7.8 mm) were required to either (a) dive on the ground and complete a rolling sequence (condition = GRD) or (b) complete the shuttles while staying on their feet and tagging the line with 1 foot, at the end of each 20-m segment (condition = STD). The shuttle runs were completed with and without a nose clip (no clip = nc; with a clip = clip) under 4 different trial conditions in a randomized order (GRDnc; GRDclip; STDnc; and STDclip), requiring the participants to return on 4 separate occasions separated by 5-7 days. Heart rate was recorded throughout each trial, and the rate of perceived exertion (RPE) was measured at the completion of each shuttle sequence. Pretrial and posttrial lactate and respiratory function measures were also recorded. The general linear model with repeated measures analysis indicated that there was a significant effect for Roll (GRD > STD) (p ≤ 0.05) but not for Clip (p > 0.05) on total time to completion in the trials. There was no significant interaction of the conditions (Roll × Clip) for RPE (p > 0.05). Similarly, there was no significant effect for blood lactate measured 3 minutes post the last shuttle for Roll (p > 0.05) and Clip (p > 0.05). There was a significant main effect on the HR across all 6 time points (i.e., pre, intervals 1-4 and 10 minutes post) (p ≤ 0.05) and for Roll (GRD > STD) (p ≤ 0.05), but not for Clip (p > 0.05). No significant effect of Roll or Clip was found for any of the recorded ventilation measures (p > 0.05). On the basis of these findings, the use of restricted nasal breathing, while performing a high-intensity shuttle sequence as a method of increasing the acute training effect on athletes, is questionable, so strength and conditioning coaches should carefully consider

  3. MEASUREMENT METHOD FOR VOLATILE METABOLIC BIOMARKERS IN EXHALED BREATH CONDENSATE

    EPA Science Inventory

    EPA is developing biomarker methodology to interpret spot biological measurements and their linkage to previous environmental pollutants exposures for individuals. This work explores the use of a promising biological media, exhaled breath condensate (EBC), which contains trapped...

  4. Reactivity of retinal blood flow to 100% oxygen breathing after lipopolysaccharide administration in healthy subjects.

    PubMed

    Kolodjaschna, Julia; Berisha, Fatmire; Lasta, Michael; Polska, Elzbieta; Fuchsjäger-Mayrl, Gabriele; Schmetterer, Leopold

    2008-08-01

    Administration of low doses of Escherichia coli endotoxin (LPS) to humans enables the study of inflammatory mechanisms. The purpose of the present study was to investigate the retinal vascular reactivity after LPS infusion. In a randomized placebo-controlled cross-over study, 18 healthy male volunteers received 20 IU/kg LPS or placebo as an intravenous bolus infusion. Outcome parameters were measured at baseline and 4h after LPS/placebo administration. At baseline and at 4h after administration a short period of 100% oxygen inhalation was used to assess retinal vasoreactivity to this stimulus. Perimacular white blood cell velocity, density and flux were assessed with the blue-field entoptic technique, retinal branch arterial and venous diameters were measured with a retinal vessel analyzer and red blood cell velocity in retinal branch veins was measured with laser Doppler velocimetry. LPS is associated with peripheral blood leukocytosis and increased white blood cell density in ocular microvessels (p<0.001). In addition, retinal arterial (p=0.02) and venous (p<0.01) diameters were increased. All retinal hemodynamic parameters showed a decrease during 100% oxygen breathing. This decrease was significantly blunted by LPS for all retinal outcome parameters except venous diameter (p=0.04 for white blood cell velocity, p=0.0002 for white blood cell density, p<0.0001 for white blood cell flux, p=0.01 for arterial diameter, p=0.02 for red blood cell velocity and p=0.006 for red blood cell flux). These data indicate that LPS-induced inflammation induces vascular dysregulation in the retina. This may provide a link between inflammation and vascular dysregulation. Further studies are warranted to investigate whether this model may be suitable to study inflammation induced vascular dysregulation in the eye.

  5. Measuring breath acetone for monitoring fat loss: Review

    PubMed Central

    2015-01-01

    Objective Endogenous acetone production is a by‐product of the fat metabolism process. Because of its small size, acetone appears in exhaled breath. Historically, endogenous acetone has been measured in exhaled breath to monitor ketosis in healthy and diabetic subjects. Recently, breath acetone concentration (BrAce) has been shown to correlate with the rate of fat loss in healthy individuals. In this review, the measurement of breath acetone in healthy subjects is evaluated for its utility in predicting fat loss and its sensitivity to changes in physiologic parameters. Results BrAce can range from 1 ppm in healthy non‐dieting subjects to 1,250 ppm in diabetic ketoacidosis. A strong correlation exists between increased BrAce and the rate of fat loss. Multiple metabolic and respiratory factors affect the measurement of BrAce. BrAce is most affected by changes in the following factors (in descending order): dietary macronutrient composition, caloric restriction, exercise, pulmonary factors, and other assorted factors that increase fat metabolism or inhibit acetone metabolism. Pulmonary factors affecting acetone exchange in the lung should be controlled to optimize the breath sample for measurement. Conclusions When biologic factors are controlled, BrAce measurement provides a non‐invasive tool for monitoring the rate of fat loss in healthy subjects. PMID:26524104

  6. Breathing at birth and the associated blood gas and pH changes in the lamb.

    PubMed

    Berger, P J; Horne, R S; Soust, M; Walker, A M; Maloney, J E

    1990-11-01

    We examined the relationship between the initiation of breathing at birth and the timing of delivery of the chest in a group of 13 lambs undergoing spontaneous unassisted delivery at term. In 8 of 11 lambs with a diaphragm electromyogram or intrapleural pressure signal the first breath occurred before chest delivery. The first breath was always followed by a period of irregular and often powerful inspiratory efforts. Some of these inspirations were followed by a forceful expiration. A regular respiratory rhythm never developed until the chest had delivered, suggesting that chest expansion is essential for the establishment of rhythm. Although PaO2 increased rapidly after birth, pHa declined and reached its lowest level approximately 20 minutes postnatally suggesting that considerable anaerobic metabolism occurs in the face of adequate arterial oxygenation. The level of respiratory activity in the first 30 min following birth did not appear to be related to arterial PO2, PCO2 or pH. Neither the appearance of the EMG activity of the first breath, nor blood samples taken from 2 lambs simultaneously with the first breath, suggested that the first breath was a gasp initiated by asphyxial blood gases. Our results therefore do not support the current hypothesis that the first breath is a gasp initiated by asphyxia accompanying delivery.

  7. The effects of progressive muscular relaxation and breathing control technique on blood pressure during pregnancy

    PubMed Central

    Aalami, Mahboobeh; Jafarnejad, Farzaneh; ModarresGharavi, Morteza

    2016-01-01

    Background: Hypertensive disorders in pregnancy are the main cause of maternal and fetal mortality; however, they have no definite effective treatment. The researchers aimed to study the effects of progressive muscular relaxation and breathing control technique on blood pressure (BP) during pregnancy. Materials and Methods: This three-group clinical trial was conducted in Mashhad health centers and governmental hospitals. Sixty pregnant (after 20 weeks of gestational age) women with systolic BP ≥ 135 mmHg or diastolic BP ≥ 85 mmHg were assigned to three groups. Progressive muscular relaxation and breathing control exercises were administered to the two experimental groups once a week in person and in the rest of the days by instructions given on a CD for 4 weeks. BP was checked before and after the interventions. BP was measured before and after 15 min subjects' waiting without any especial intervention in the control group. Results: After 4 weeks of intervention, the systolic (by a mean of 131.3 to 117.2, P = 0.001 and by a mean of 131.05 to 120.5, P = 0.004, respectively) and diastolic (by a mean of 79.2 to 72.3, P = 0.001 and by a mean of 80.1 to 76.5, P = 0.047, respectively) BPs were significantly decreased in progressive muscular relaxation and breathing control groups, but they were not statistically significant in the control group. Conclusions: The interventions were effective on decreasing systolic and diastolic BP to normal range after 4 weeks in both the groups. The effects of both the interventions were more obvious on systolic BP compared to diastolic BP. PMID:27186213

  8. Simultaneous Measurement of Breathing and Heartbeat using Airborne Ultrasound in a Standing Position

    NASA Astrophysics Data System (ADS)

    Hoshiba, Kotaro; Hirata, Shinnosuke; Hachiya, Hiroyuki

    We have been studied about non-contact measurement of respiration and heart rates. In previous papers, the measurement system of small velocity using the M-sequence-modulated signal and phase difference of reflected signals from the target has been proposed. In this paper, we describe measurement of breathing and heartbeat in a standing position using the proposed method. Body-surface velocities by breathing and heartbeat could be observed respectively when the volunteer was breathing and holding the breath. In addition, measured velocity of breathing volunteer includes the component by heartbeat. It is considered that it has possibility to measure breathing and heartbeat concurrently.

  9. Use of a turbine in a breath-by-breath computer-based respiratory measurement system.

    PubMed

    Venkateswaran, R S; Gallagher, R R

    1997-01-01

    The Computer-Based Respiratory Measurement System (CBRMS) is capable of analyzing individual breaths to monitor the kinetics of oxygen uptake, carbon dioxide production, tidal volumes, pulmonary ventilation, and other respiratory parameters during rest, exercise, and recovery. Respiratory gas volumes are measured by a calibrated turbine transducer while the respiratory gas concentrations are measured by a calibrated, fast-responding medical gas analyzer. To improve accuracy of the results, the inspiratory volumes and gas concentrations are measured and not assumed to be equal to expiratory volumes or ambient concentrations respectively. The respiratory gas volumes and concentration signals are digitized and stored in arrays. The gas volumes are converted to flow signals by software differentiation. These digitized data arrays are stored as files in a personal computer. Time alignment of the flow and gas concentration signals is performed at each breath for maximum accuracy in analysis. For system verification, data were obtained under resting conditions and under constant load exercises at 50 W, 100 W, and 150 W. These workloads were performed by a healthy, male subject on a bicycle ergometer. A strong correlation existed between the CBRMS steady-state results and the standard end-expirate bag collection technique. Thus, there is reason to believe that the CBRMS is capable of calculating respiratory transient responses accurately, a significant contribution to an understanding of total respiratory system function.

  10. [EFFECT OF VOLUNTARY BREATH-HOLDING AND COGNITIVE LOADS ON REGIONAL CEREBRAL BLOOD FLOW AND BIOELECTRIC ACTIVITY OF THE BRAIN].

    PubMed

    Moreva, T I; Pasekova, O B; Kriushev, E S; Dobrokvashina, E I; Moreva, O V; Builov, S P; Smirnov, O A; Bragin, L Kh; Voronkov, Iu I

    2015-01-01

    Cerebral blood flow and bioelectric activity were studied in 10 normal volunteers in order to assess cerebrovascular reactivity during different types of functional testing. The transcranial Doppler was used to measure linear blood velocity (LBV) in the middle cerebral artery (MCA) during maximal voluntary breath-holding (apnea), controlled verbal association test and tactile memory test. Simultaneous electroencephalography (EEG) registered the bioelectric activity of the brain cortex. Both investigations were performed continuously in the course of each test. Breath-holding induced a smooth symmetric increase of CMA blood velocity; LBV rose to maximum values in the majority of the volunteered subjects. Two subjects with small focal changes in the brain's white matter displayed an asymmetric blood flow reaction to apnea. Gain in LBV was materially less during the cognitive tests; the verbal test decreased LBV in one half of the subjects and increased LBV in the other. The tactile memory test increased LBV which was particularly high in the left CMA of all subjects. LBV dynamics during the cognitive tests was essentially different from what was observed in apnea. Blood flow variations in the course of equally the verbal and tactile tests had a regular undulatory character. Concurrent LBV and EEG monitoring made it possible to compare and contrast dynamics of the cerebral blood velocity and bioelectric activity directly during testing and thus to reveal peculiar reactions of the cerebral blood flow to cognitive and physiological testing.

  11. Lung function measurement with multiple-breath-helium washout system.

    PubMed

    Wang, J-Y; Suddards, M E; Mellor, C J; Owers-Bradley, J R

    2013-04-01

    Multiple-breath-washout (MBW) measurements are regarded as a sensitive technique which can reflect the ventilation inhomogeneity of respiratory airways. Typically nitrogen is used as the tracer gas and is washed out by pure oxygen in multiple-breath-nitrogen washout (MBNW) tests. In this study, instead of using nitrogen, (4)He is used as the tracer gas with smaller gas density which may be able to reach deeper into our lungs in a given time and the helium washout results may be more sensitive to the ventilation inhomogeneity in small airways. A multiple-breath-helium-washout (MBHW) system developed for the lung function study is also presented. Quartz tuning forks with a resonance frequency of 32,768Hz have been used for detecting the change of the respiratory gas density. The resonance frequency of the quartz tuning fork decreases linearly with increasing density of the surrounding gas. Knowing the CO2 concentration from the infrared carbon dioxide detector, the helium concentration can be determined. Results from 14 volunteers (3 mild asthmatics, 4 tobacco smokers, 1 with asthma history, 1 with COPD history, 5 normal) have shown that mild asthmatics have higher ventilation inhomogeneity in either conducting or acinar airways (or both). A feature has been found in washout curve of single breaths from 4 tobacco smokers with different length of smoking history which may indicate the early stage of respiratory ventilation inhomogeneity in acinar airways.

  12. Can breath isoprene be measured by ozone chemiluminescence?

    PubMed

    Ohira, Shin-Ichi; Li, Jianzhong; Lonneman, William A; Dasgupta, Purnendu K; Toda, Kei

    2007-04-01

    Isoprene, involved in the biosynthetic pathway to cholesterol, is the prevalent hydrocarbon in breath. Breath isoprene measurement is of great interest as a measure of basal cholesterol production rate. We investigated the merits and pitfalls of isoprene measurement via its chemiluminescence (CL) reaction with ozone. For many subjects, apparent concentrations measured are higher than those obtained by a gas chromatography (GC) reference method that can be traced to ozone-induced CL with simultaneously present lower olefins and sulfur compounds. A warm column preconcentration method eliminates the lower olefins and greatly improves sensitivity while a silver-form, ion-exchange resin can remove the sulfur gases. The breath sample is captured on a miniature synthetic carbon sorbent column maintained at 55 degrees C, under which conditions ethylene, propylene, and water vapor are not significantly captured while the preconcentration process greatly improves the limit of detection for isoprene to 0.6 ppbv (S/N=3). The captured isoprene is released by heating the column to 150 degrees C. Breath samples from different subjects were collected both before and after meals and analyzed in a double-blind fashion in two laboratories, with the second laboratory performing quantitation by cryofocusing GC-flame ionization detection with parallel measurement by mass spectrometry to provide identity confirmation. For all individuals studied, the CL and the GC results agreed when both warm column preconcentration and passage through Ag+-form cation-exchange resin, which removes divalent sulfur gases, were implemented prior to CL measurement. The intensity of CL from the reaction with ozone can be much higher for some sulfur gases than for isoprene. Even though present at lower concentrations than isoprene, unless removed prior to CL measurement, for some individuals sulfur gases can cause unacceptably large (up to 500%) errors, making the sulfur gas removal step critical. PMID

  13. How Ecosystems Breathe: Measuring Respiration of Soil

    NASA Astrophysics Data System (ADS)

    McTammany, M. E.

    2005-05-01

    Curriculum for general ecology labs often uses in-lab exercises and computer simulations to demonstrate ecological principles rather than experimental field projects. In addition, ecosystem processes can be difficult to incorporate into general ecology labs because the techniques require sophisticated equipment or complex field designs. As an alternative to in-lab projects, I have integrated field measurement of soil respiration into my general ecology lab to teach students aspects of experimental design (sampling, replication, error, etc.) and to demonstrate how organism-level processes operate beyond single organisms in nature and are influenced by environmental conditions. In a program laden with biomedical interests, analogies between organisms and ecosystems are quite appealing to students. Students in my general ecology course complete a 2-week field project in which they measure soil respiration inside a dark microcosm chamber. We use 10% KOH to trap evolved CO2 and titrate unreacted KOH in lab using 1N HCl. The protocol is simple, only requires some chemicals, and can be used in many different habitats (including flower beds on campus) quite easily. Potential experiments could involve varying environmental conditions, such as soil moisture, nutrient availability, gaseous environment, carbon supply, or temperature, to affect soil respiration rate.

  14. Comparison of ethanol concentrations in venous blood and end-expired breath during a controlled drinking study.

    PubMed

    Jones, A W; Andersson, L

    2003-03-12

    Concentration-time profiles of ethanol were determined for venous whole blood and end-expired breath during a controlled drinking experiment in which healthy men (n=9) and women (n=9) drank 0.40-0.65 g ethanol per kg body weight in 20-30 min. Specimens of blood and breath were obtained for analysis of ethanol starting at 50-60 min post-dosing and then every 30-60 min for 3-6 h. This protocol furnished 130 blood-breath pairs for statistical evaluation. Blood-ethanol concentration (BAC, mg/g) was determined by headspace gas chromatography and breath-ethanol concentration (BrAC, mg/2l) was determined with a quantitative infrared analyzer (Intoxilyzer 5000S), which is the instrument currently used in Sweden for legal purposes. In 18 instances the Intoxilyzer 5000S gave readings of 0.00 mg/2l whereas the actual BAC was 0.08 mg/g on average (range 0.04-0.15 mg/g). The remaining 112 blood- and breath-alcohol measurements were highly correlated (r=0.97) and the regression relationship was BAC=0.10+0.91BrAC and the residual standard deviation (S.D.) was 0.042 mg/g (8.4%). The slope (0.91+/-0.0217) differed significantly from unity being 9% low and the intercept (0.10+/-0.0101) deviated from zero (t=10.2, P<0.001), indicating the presence of both proportional and constant bias, respectively. The mean bias (BAC - BrAC) was 0.068 mg/g and the 95% limits of agreement were -0.021 and 0.156 mg/g. The average BAC/BrAC ratio was 2448+/-540 (+/-S.D.) with a median of 2351 and 2.5th and 97.5th percentiles of 1836 and 4082. We found no significant gender-related differences in BAC/BrAC ratios, being 2553+/-576 for men and 2417+/-494 for women (t=1.34, P>0.05). The mean rate of ethanol disappearance from blood was 0.157+/-0.021 mg/(g per hour), which was very close to the elimination rate from breath of 0.161+/-0.021 mg/(2l per hour) (P>0.05). Breath-test results obtained with Intoxilyzer 5000S (mg/2l) were generally less than the coexisting concentrations of ethanol in venous blood

  15. Measurement of Ethanol in Gaseous Breath Using a Miniature Gas Chromatograph

    PubMed Central

    Morey, Timothy E.; Booth, Matthew M.; Prather, Robert A.; Nixon, Sara J.; Boissoneault, Jeff; Melker, Richard J.; Goldberger, Bruce A.; Wohltjen, Hank; Dennis, Donn M.

    2011-01-01

    We designed and built a novel, miniature gas chromatograph (mGC) to use exhaled breath to estimate blood ethanol concentrations that may offer GC quality sensitivity and specificity, but with portability, reduced size, and decreased cost. We hypothesized that the mGC would accurately estimate the serum ethanol concentration using exhaled breath. Human subjects (n = 8) were dosed with ethanol employing the Widmark criteria, targeting a blood concentration of 0.08 g/dL. Serum and breath samples were collected concurrently over an hour. Ethanol concentrations in serum were measured using a CLIA-approved laboratory. Ethanol concentrations in conventional breath were assayed using a calibrated mGC or Intoxilyzer 400PA. Data were analyzed using Bland-Altman analysis using serum concentrations as a “gold standard”. For the mGC, the regression line (correlation coefficient), bias, and 95% limits of agreement were y = 1.013x − 0.009 (r = 0.91), −0.008 g/dL, and −0.031 to 0.016 g/dL, respectively, for 30 specimens. For the Intoxilyzer 400PA, the regression line (correlation coefficient), bias, and 95% limits of agreement were y = 0.599x + 0.008 (r = 0.86), −0.024 g/dL, and −0.049 to 0.002 g/dL, respectively, for 71 specimens with a large magnitude effect. We concluded that the mGC, using exhaled breath, performed well to estimate the serum ethanol concentrations. PMID:21439148

  16. Breath-hold black blood quantitative T1rho imaging of liver using single shot fast spin echo acquisition

    PubMed Central

    Chan, Queenie; Wáng, Yì-Xiáng J.

    2016-01-01

    Background Liver fibrosis is a key feature in most chronic liver diseases. T1rho magnetic resonance imaging is a potentially important technique for noninvasive diagnosis, severity grading, and therapy monitoring of liver fibrosis. However, it remains challenging to perform robust T1rho quantification of liver on human subjects. One major reason is that the presence of rich blood signal in liver can cause artificially high T1rho measurement and makes T1rho quantification susceptible to motion. Methods A pulse sequence based on single shot fast/turbo spin echo (SSFSE/SSTSE) acquisition, with theoretical analysis and simulation based on the extended phase graph (EPG) algorithm, was presented for breath-hold single slice quantitative T1rho imaging of liver with suppression of blood signal. The pulse sequence was evaluated in human subjects at 3.0 T with 500 Hz spinlock frequency and time-of-spinlock (TSL) 0, 10, 30 and 50 ms. Results Human scan demonstrated that the entire T1rho data sets with four spinlock time can be acquired within a single breath-hold of 10 seconds with black blood effect. T1rho quantification with suppression of blood signal results in significantly reduced T1rho value of liver compared to the results without blood suppression. Conclusions A signal-to-noise ratio (SNR) efficient pulse sequence was reported for T1rho quantification of liver. The black blood effect, together with a short breath-hold, mitigates the risk of quantification errors as would occur in the conventional methods. PMID:27190769

  17. What is the optimal anesthetic protocol for measurements of cerebral autoregulation in spontaneously breathing mice?

    PubMed

    Wang, Zhenghui; Schuler, Beat; Vogel, Olga; Arras, Margarete; Vogel, Johannes

    2010-12-01

    Autoregulation, an important feature of the cerebral circulation, is affected in many diseases. Since genetically modified mice are a fundamental tool in biomedical research, including neuro(bio)logy also in this specie measurements of cerebral autoregulation (CA) are mandatory. However, this requires anesthesia that unfortunately significantly impacts cerebral perfusion and consequently might distort CA measurements directly or by altering arterial pCO(2). The latter can be avoided by artificial ventilation but requires several control measurements of blood gases, each consuming at least 100 μl of blood or 5% of a mouse's blood volume. To avoid such diagnostic hemorrhage, we systematically analyzed the effect of different common anesthetic protocols used for rodents in spontaneously breathing mice on CA measured with Laser speckle perfusion imaging. Halothane, Isoflurane and Pentobarbital abrogated CA and Ketamin/Xylazine as well as Chloralose had a moderate reproducibility. In contrast, the rather rarely used anesthetic Ethomidate applied in low doses combined with local anesthetics had the best reproducibility. Although with this anesthesia the lower CA limit was lower than with Ketamin/Xylazine and Chloralose as reported in the handful of papers so far dealing with CA in mice, we suggest Ethomidate as the anesthetic of choice for CA measurements in spontaneously breathing mice.

  18. Blood (Breath) Alcohol Concentration Rates of College Football Fans on Game Day

    ERIC Educational Resources Information Center

    Glassman, Tavis; Braun, Robert; Reindl, Diana M.; Whewell, Aubrey

    2011-01-01

    The purpose of this study was to determine the Blood (breath) Alcohol Concentration (BrAC) rates of college football fans on game day. Researchers employed a time-series study design, collecting data at home football games at a large university in the Midwest. Participants included 536 individuals (64.4% male) ages 18-83 (M = 28.44, SD = 12.32).…

  19. Noninvasive Measurement of Plasma Triglycerides and Free Fatty Acids from Exhaled Breath

    PubMed Central

    Minh, Timothy Do Chau; Oliver, Stacy R; Flores, Rebecca L; Ngo, Jerry; Meinardi, Simone; Carlson, Matthew K; Midyett, Jason; Rowland, F Sherwood; Blake, Donald R; Galassetti, Pietro Renato

    2012-01-01

    Background Although altered metabolism has long been known to affect human breath, generating clinically usable metabolic tests from exhaled compounds has proven challenging. If developed, a breath-based lipid test would greatly simplify management of diabetes and serious pathological conditions (e.g., obesity, familial hyperlipidemia, and coronary artery disease), in which systemic lipid levels are a critical risk factor for onset and development of future cardiovascular events. Methods We, therefore, induced controlled fluctuations of plasma lipids (insulin-induced lipid suppression or intravenous infusion of Intralipid) during 4-h in vivo experiments on 23 healthy volunteers (12 males/11 females, 28.0 ± 0.3 years) to find correlations between exhaled volatile organic compounds and plasma lipids. In each subject, plasma triglycerides (TG) and free fatty acids (FFA) concentrations were both directly measured and calculated via individualized prediction equations based on the multiple linear regression analysis of a cluster of 4 gases. In the lipid infusion protocol, we also generated common prediction equations using a maximum of 10 gases. Results This analysis yielded strong correlations between measured and predicted values during both lipid suppression (r = 0.97 for TG; r = 0.90 for FFA) and lipid infusion (r = 0.97 for TG; r = 0.94 for FFA) studies. In our most accurate common prediction model, measured and predicted TG and FFA values also displayed very strong statistical agreement (r = 0.86 and r = 0.81, respectively). Conclusions Our results demonstrate the feasibility of measuring plasma lipids through breath analysis. Optimization of this technology may ultimately lead to the development of portable breath analyzers for plasma lipids, replacing blood-based bioassays. PMID:22401327

  20. Effect of breath-hold on blood gas analysis in captive Pacific white-sided dolphins (Lagenorhynchus obliquidens).

    PubMed

    Terasawa, Fumio; Ohizumi, Hiroshi; Ohshita, Isao

    2010-09-01

    The effect of a breath-hold on blood gas was evaluated in captive Pacific white-sided dolphins (Lagenorhynchus obliquidens). Serial blood collections were performed from a vessel on the ventral surface of the flukes during breath-hold. In total, 178 blood samples were taken from three dolphins for five trials in each animal. During a breath-hold, partial pressure of oxygen (Po₂) decreased from 152.5 to 21.8 mmHg and partial pressure of carbon dioxide (Po₂) conversely increased from 31.8 to 83.6 mmHg. The range of pH was 7.54 to 7.25, suggesting drastic change from alkalemia to acidemia. These wide ranges of blood gas imply a considerable change of oxygen affinity caused by the Bohr effect during breath-hold, which enable effective uptake and distribution of oxygen to metabolizing tissues.

  1. Phase Diagram and Breathing Dynamics of Red Blood Cell Motion in Shear Flow

    NASA Astrophysics Data System (ADS)

    Bagchi, Prosenjit; Yazdani, Alireza

    2011-11-01

    We present phase diagrams of red blood cell dynamics in shear flow using three-dimensional numerical simulations. By considering a wide range of shear rate and interior-to-exterior fluid viscosity ratio, it is shown that the cell dynamics is often more complex than the well-known tank-treading, tumbling and swinging motion, and is characterized by an extreme variation of the cell shape. We identify such complex shape dynamics as `breathing' dynamics. During the breathing motion, the cell either completely aligns with the flow direction and the membrane folds inward forming two cusps, or, it undergoes large swinging motion while deep, crater-like dimples periodically emerge and disappear. At lower bending rigidity, the breathing motion occurs over a wider range of shear rates, and is often characterized by the emergence of a quad-concave shape. The effect of the breathing dynamics on the tank-treading-to-tumbling transition is illustrated by detailed phase diagrams which appear to be more complex and richer than those of vesicles. In a remarkable departure from classical theory of nondeformable cells, we find that there exists a critical viscosity ratio below which the transition is dependent on shear rate only. Supported by NSF.

  2. Reliability and Determinants of Self-Evaluation of Breathing Questionnaire (SEBQ) Score: A Symptoms-Based Measure of Dysfunctional Breathing.

    PubMed

    Mitchell, A J; Bacon, C J; Moran, R W

    2016-03-01

    Dysfunctional breathing is characterised by an abnormal breathing pattern leading to respiratory symptoms. The 25-item Self Evaluation of Breathing Questionnaire (SEBQ) has been developed to measure breathing-related symptoms and their severity but lacks thorough evaluation. To determine reproducibility, internal consistency and predictors of SEBQ score, 180 participants completed an online SEBQ with additional demographic and lifestyle questions. Two weeks later, 155 of those repeated SEBQ. Test-retest correlation of the SEBQ was high [intraclass correlation coefficient (3, 1) = 0.89; 95 % CI 0.85-0.92]. There was no difference in SEBQ score between test and retest (15.1 (11.6) [mean (SD)] versus 14.7 (12.4); P = 0.4) and the score showed a typical error (standard error of measurement) of 4.0. Internal consistency was high (Cronbach's α = 0.93), and a single factor structure for items was shown. Smoking status, reported respiratory disease, recent respiratory illness and female gender were positively-associated predictors of SEBQ score, and together explained 25.6 % of score variance (P ≤ 0.001). The SEBQ has high test-retest reproducibility and its score may be predicted by current smoking, chronic respiratory disease, recent respiratory illness and female gender, thus may be a useful clinical screening tool for dysfunctional breathing.

  3. Noninvasive measurement of plasma glucose from exhaled breath in healthy and type 1 diabetic subjects

    PubMed Central

    Oliver, Stacy R.; Ngo, Jerry; Flores, Rebecca; Midyett, Jason; Meinardi, Simone; Carlson, Matthew K.; Rowland, F. Sherwood; Blake, Donald R.; Galassetti, Pietro R.

    2011-01-01

    Effective management of diabetes mellitus, affecting tens of millions of patients, requires frequent assessment of plasma glucose. Patient compliance for sufficient testing is often reduced by the unpleasantness of current methodologies, which require blood samples and often cause pain and skin callusing. We propose that the analysis of volatile organic compounds (VOCs) in exhaled breath can be used as a novel, alternative, noninvasive means to monitor glycemia in these patients. Seventeen healthy (9 females and 8 males, 28.0 ± 1.0 yr) and eight type 1 diabetic (T1DM) volunteers (5 females and 3 males, 25.8 ± 1.7 yr) were enrolled in a 240-min triphasic intravenous dextrose infusion protocol (baseline, hyperglycemia, euglycemia-hyperinsulinemia). In T1DM patients, insulin was also administered (using differing protocols on 2 repeated visits to separate the effects of insulinemia on breath composition). Exhaled breath and room air samples were collected at 12 time points, and concentrations of ∼100 VOCs were determined by gas chromatography and matched with direct plasma glucose measurements. Standard least squares regression was used on several subsets of exhaled gases to generate multilinear models to predict plasma glucose for each subject. Plasma glucose estimates based on two groups of four gases each (cluster A: acetone, methyl nitrate, ethanol, and ethyl benzene; cluster B: 2-pentyl nitrate, propane, methanol, and acetone) displayed very strong correlations with glucose concentrations (0.883 and 0.869 for clusters A and B, respectively) across nearly 300 measurements. Our study demonstrates the feasibility to accurately predict glycemia through exhaled breath analysis over a broad range of clinically relevant concentrations in both healthy and T1DM subjects. PMID:21467303

  4. Ethylene and ammonia traces measurements from the patients' breath with renal failure via LPAS method

    NASA Astrophysics Data System (ADS)

    Popa, C.; Dutu, D. C. A.; Cernat, R.; Matei, C.; Bratu, A. M.; Banita, S.; Dumitras, D. C.

    2011-11-01

    The application of laser photoacoustic spectroscopy (LPAS) for fast and precise measurements of breath biomarkers has opened up new promises for monitoring and diagnostics in recent years, especially because breath test is a non-invasive method, safe, rapid and acceptable to patients. Our study involved assessment of breath ethylene and breath ammonia levels in patients with renal failure receiving haemodialysis (HD) treatment. Breath samples from healthy subjects and from patients with renal failure were collected using chemically inert aluminized bags and were subsequently analyzed using the LPAS technique. We have found out that the composition of exhaled breath in patients with renal failure contains not only ethylene, but also ammonia and gives valuable information for determining efficacy and endpoint of HD. Analysis of ethylene and ammonia traces from the human breath may provide insight into severity of oxidative stress and metabolic disturbances and may ensure optimal therapy and prevention of pathology at patients on continuous HD.

  5. Measurement for breath concentration of hydrogen and methane in horses.

    PubMed

    Sasaki, N; Hobo, S; Yoshihara, T

    1999-09-01

    This study concerns the establishment of a simple testing method for breath concentration of hydrogen and methane in horses. Twenty-eight healthy thoroughbreds and 24 Arabians were used. Breath samples were collected using one-minute closed circulatory respiration through an aluminum bag filled with 10 liters of pure oxygen, which was mounted on the subjects by means of a face mask. Breath samples obtained, were analyzed by gas chromatography. A significant correlation in both hydrogen and methane levels was observed for samples collected at separate times. These findings confirmed the usefulness of our approach for testing breath concentrations of hydrogen and methane in horses.

  6. Acoustic plethysmography measures breathing in unrestrained neonatal mice.

    PubMed

    Daubenspeck, J Andrew; Li, Aihua; Nattie, Eugene E

    2008-01-01

    Measurement of breathing volumes in neonatal mice is of growing importance in order to characterize the influence of development and genetic modifications on respiratory control to evaluate hypotheses concerned with human infant deficits that may affect sudden infant death syndrome, for example. Current techniques require undesirable physical constraints or incur possible artifacts specific to very small animals. We have examined the utility of a recently proposed approach using an acoustic resonance procedure that does not require undue physical constraint beyond placement in the acoustic plethysmograph. We show here that this approach can be applied to baby mice 5 days after birth and that it can be accurately calibrated. In addition, this approach should be useful to study unrestrained neonatal mice under conditions where body temperature approaches environmental temperature and barometric plethysmography cannot be used. PMID:17962574

  7. Optical measures of changes in cerebral vascular tone during voluntary breath holding and a Sternberg memory task.

    PubMed

    Tan, Chin Hong; Low, Kathy A; Schneider-Garces, Nils; Zimmerman, Benjamin; Fletcher, Mark A; Maclin, Edward L; Chiarelli, Antonio M; Gratton, Gabriele; Fabiani, Monica

    2016-07-01

    The human cerebral vasculature responds to changes in blood pressure and demands for oxygenation via cerebral autoregulation. Changes in cerebrovascular tone (vasoconstriction and vasodilation) also mediate the changes in blood flow measured by the BOLD fMRI signal. This cerebrovascular reactivity is known to vary with age. In two experiments, we demonstrate that cerebral pulse parameters measured using optical imaging can quantify changes in cerebral vascular tone, both globally and locally. In experiment 1, 51 older adults (age range=55-87) performed a voluntary breath-holding task while cerebral pulse amplitude measures were taken. We found significant pulse amplitude variations across breath-holding periods, indicating vasodilation during, and vasoconstriction after breath holding. The breath-holding index (BHI), a measure of cerebrovascular reactivity (CVR) was derived and found to correlate with age. BHI was also correlated with performance in the Modified Mini-Mental Status Examination, even after controlling for age and education. In experiment 2, the same participants performed a Sternberg task, and changes in regional pulse amplitude between high (set-size 6) and low (set-size 2) task loads were compared. Only task-related areas in the fronto-parietal network (FPN) showed significant reduction in pulse amplitude, indicating vasodilation. Non-task-related areas such as the somatosensory and auditory cortices did not show such reductions. Taken together, these experiments suggest that optical pulse parameters can index changes in brain vascular tone both globally and locally, using both physiological and cognitive load manipulations.

  8. A Modified Carbon Monoxide Breath Test for Measuring Erythrocyte Lifespan in Small Animals

    PubMed Central

    Ma, Yong-Jian; Zhang, Hou-De; Ji, Yong-Qiang; Zhu, Guo-Liang; Huang, Jia-Liang; Du, Li-Tao; Cao, Ping; Zang, De-Yue; Du, Ji-Hui; Li, Rong; Wang, Lei

    2016-01-01

    This study was to develop a CO breath test for RBC lifespan estimation of small animals. The ribavirin induced hemolysis rabbit models were placed individually in a closed rebreath cage and air samples were collected for measurement of CO concentration. RBC lifespan was calculated from accumulated CO, blood volume, and hemoglobin concentration data. RBC lifespan was determined in the same animals with the standard biotin-labeling method. RBC lifespan data obtained by the CO breath test method for control (CON, 49.0 ± 5.9 d) rabbits, rabbits given 10 mg/kg·d−1 of ribavirin (RIB10, 31.0 ± 4.0 d), and rabbits given 20 mg/kg·d−1 of ribavirin (RIB20, 25.0 ± 2.9 d) were statistically similar (all p > 0.05) to and linearly correlated (r = 0.96, p < 0.01) with the RBC lifespan data obtained for the same rabbits by the standard biotin-labeling method (CON, 51.0 ± 2.7 d; RIB10, 33.0 ± 1.3 d; and RIB20, 27.0 ± 0.8 d). The CO breath test method takes less than 3 h to complete, whereas the standard method requires at least several weeks. In conclusion, the CO breath test method provides a simple and rapid means of estimating RBC lifespan and is feasible for use with small animal models. PMID:27294128

  9. A Modified Carbon Monoxide Breath Test for Measuring Erythrocyte Lifespan in Small Animals.

    PubMed

    Ma, Yong-Jian; Zhang, Hou-De; Ji, Yong-Qiang; Zhu, Guo-Liang; Huang, Jia-Liang; Du, Li-Tao; Cao, Ping; Zang, De-Yue; Du, Ji-Hui; Li, Rong; Wang, Lei

    2016-01-01

    This study was to develop a CO breath test for RBC lifespan estimation of small animals. The ribavirin induced hemolysis rabbit models were placed individually in a closed rebreath cage and air samples were collected for measurement of CO concentration. RBC lifespan was calculated from accumulated CO, blood volume, and hemoglobin concentration data. RBC lifespan was determined in the same animals with the standard biotin-labeling method. RBC lifespan data obtained by the CO breath test method for control (CON, 49.0 ± 5.9 d) rabbits, rabbits given 10 mg/kg·d(-1) of ribavirin (RIB10, 31.0 ± 4.0 d), and rabbits given 20 mg/kg·d(-1) of ribavirin (RIB20, 25.0 ± 2.9 d) were statistically similar (all p > 0.05) to and linearly correlated (r = 0.96, p < 0.01) with the RBC lifespan data obtained for the same rabbits by the standard biotin-labeling method (CON, 51.0 ± 2.7 d; RIB10, 33.0 ± 1.3 d; and RIB20, 27.0 ± 0.8 d). The CO breath test method takes less than 3 h to complete, whereas the standard method requires at least several weeks. In conclusion, the CO breath test method provides a simple and rapid means of estimating RBC lifespan and is feasible for use with small animal models.

  10. A Modified Carbon Monoxide Breath Test for Measuring Erythrocyte Lifespan in Small Animals.

    PubMed

    Ma, Yong-Jian; Zhang, Hou-De; Ji, Yong-Qiang; Zhu, Guo-Liang; Huang, Jia-Liang; Du, Li-Tao; Cao, Ping; Zang, De-Yue; Du, Ji-Hui; Li, Rong; Wang, Lei

    2016-01-01

    This study was to develop a CO breath test for RBC lifespan estimation of small animals. The ribavirin induced hemolysis rabbit models were placed individually in a closed rebreath cage and air samples were collected for measurement of CO concentration. RBC lifespan was calculated from accumulated CO, blood volume, and hemoglobin concentration data. RBC lifespan was determined in the same animals with the standard biotin-labeling method. RBC lifespan data obtained by the CO breath test method for control (CON, 49.0 ± 5.9 d) rabbits, rabbits given 10 mg/kg·d(-1) of ribavirin (RIB10, 31.0 ± 4.0 d), and rabbits given 20 mg/kg·d(-1) of ribavirin (RIB20, 25.0 ± 2.9 d) were statistically similar (all p > 0.05) to and linearly correlated (r = 0.96, p < 0.01) with the RBC lifespan data obtained for the same rabbits by the standard biotin-labeling method (CON, 51.0 ± 2.7 d; RIB10, 33.0 ± 1.3 d; and RIB20, 27.0 ± 0.8 d). The CO breath test method takes less than 3 h to complete, whereas the standard method requires at least several weeks. In conclusion, the CO breath test method provides a simple and rapid means of estimating RBC lifespan and is feasible for use with small animal models. PMID:27294128

  11. Influence of breathing frequency on the pattern of respiratory sinus arrhythmia and blood pressure: old questions revisited.

    PubMed

    Sin, P Y W; Galletly, D C; Tzeng, Y C

    2010-05-01

    Respiratory sinus arrhythmia (RSA) is classically described as a vagally mediated increase and decrease in heart rate concurrent with inspiration and expiration, respectively. However, although breathing frequency is known to alter this temporal relationship, the precise nature of this phase dependency and its relationship to blood pressure remains unclear. In 16 subjects we systematically examined the temporal relationships between respiration, RSA, and blood pressure by graphically portraying cardiac interval (R-R) and systolic blood pressure (SBP) variations as a function of the respiratory cycle (pattern analysis), during incremental stepwise paced breathing. The principal findings were 1) the time interval between R-R maximum and expiration onset remained the same ( approximately 2.5-3.0 s) irrespective of breathing frequency (P = 0.10), whereas R-R minimum progressively shifted from expiratory onset into midinspiration with slower breathing (P < 0.0001); 2) there is a clear qualitative distinction between pre- versus postinspiratory cardiac acceleration during slow (0.10 Hz) but not fast (0.20 Hz) breathing; 3) the time interval from inspiration onset to SBP minimum (P = 0.16) and from expiration onset to SBP maximum (P = 0.26) remained unchanged across breathing frequencies; 4) SBP maximum and R-R maximum maintained an unchanged temporal alignment of approximately 1.1 s irrespective of breathing frequency (P = 0.84), whereas the alignment between SBP minimum and R-R minimum was inconstant (P > 0.0001); and 5) beta(1)-adrenergic blockade did not influence the respiration-RSA relationships or distinct RSA patterns observed during slow breathing, suggesting that temporal dependencies associated with alterations in breathing frequency are unrelated to cardiac sympathetic modulation. Collectively, these results illustrate nonlinear respiration-RSA-blood pressure relationships that may yield new insights to the fundamental mechanism of RSA in humans.

  12. Perspective use of direct human blood as an energy source in air-breathing hybrid microfluidic fuel cells

    NASA Astrophysics Data System (ADS)

    Dector, A.; Escalona-Villalpando, R. A.; Dector, D.; Vallejo-Becerra, V.; Chávez-Ramírez, A. U.; Arriaga, L. G.; Ledesma-García, J.

    2015-08-01

    This work presents a flexible and light air-breathing hybrid microfluidic fuel cell (HμFC) operated under biological conditions. A mixture of glucose oxidase, glutaraldehyde, multi-walled carbon nanotubes and vulcan carbon (GOx/VC-MWCNT-GA) was used as the bioanode. Meanwhile, integrating an air-exposed electrode (Pt/C) as the cathode enabled direct oxygen delivery from air. The microfluidic fuel cell performance was evaluated using glucose obtained from three different sources as the fuel: 5 mM glucose in phosphate buffer, human serum and human blood. For the last fuel, an open circuit voltage and maximum power density of 0.52 V and 0.20 mW cm-2 (at 0.38 V) were obtained respectively; meanwhile the maximum current density was 1.1 mA cm-2. Furthermore, the stability of the device was measured in terms of recovery after several polarization curves, showing excellent results. Although this air-breathing HμFC requires technological improvements before being tested in a biomedical device, it represents the best performance to date for a microfluidic fuel cell using human blood as glucose source.

  13. 77 FR 35747 - Highway Safety Programs; Conforming Products List of Evidential Breath Alcohol Measurement Devices

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-14

    ...) published in the Federal Register on March 11, 2010 (75 FR 11624) for instruments that conform to the Model Specifications for Evidential Breath Alcohol Measurement Devices dated, September 17, 1993 (58 FR 48705). DATES... Alcohol (38 FR 30459). A Qualified Products List of Evidential Breath Measurement Devices comprised...

  14. 75 FR 11624 - Highway Safety Programs; Conforming Products List of Evidential Breath Alcohol Measurement Devices

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-11

    ... Register on December 17, 2007 (72 FR 71480) for instruments that conform to the Model Specifications for Evidential Breath Alcohol Measurement Devices (58 FR 48705). DATES: Effective Date: March 11, 2010. FOR... Administration (NHTSA) published the Standards for Devices to Measure Breath Alcohol (38 FR 30459). A...

  15. What Controls Your Breathing?

    MedlinePlus

    ... To a limited degree, you can change your breathing rate, such as by breathing faster or holding your ... oxygen levels in your blood and change your breathing rate as needed. Sensors in the airways detect lung ...

  16. Heart rate and blood pressure time courses during prolonged dry apnoea in breath-hold divers.

    PubMed

    Perini, Renza; Tironi, Adelaide; Gheza, Alberto; Butti, Ferdinando; Moia, Christian; Ferretti, Guido

    2008-09-01

    To define the dynamics of cardiovascular adjustments to apnoea, beat-to-beat heart rate (HR) and blood pressure and arterial oxygen saturation (SaO(2)) were recorded during prolonged breath-holding in air in 20 divers. Apnoea had a mean duration of 210 +/- 70 s. In all subjects, HR attained a value 14 beats min(-1) lower than control within the initial 30 s (phase I). HR did not change for the following 2-2.5 min (phase II). Then, nine subjects interrupted the apnoea (group A), whereas 11 subjects (group B) could prolong the breath-holding for about 100 s, during which HR continuously decreased (phase III). In both groups, mean blood pressure was 8 mmHg above control at the end of phase I; it then further increased by additional 12 mmHg at the end of the apnoea. In both groups, SaO(2) did not change in the initial 100-140 s of apnoea; then, it decreased to 95% at the end of phase II. In group B, SaO(2) further diminished to 84% at the end of phase III. A typical pattern of cardiovascular readjustments was identified during dry apnoea. This pattern was not compatible with a role for baroreflexes in phase I and phase II. Further readjustment in group B may imply a role for both baroreflexes and chemoreflexes. Hypothesis has been made that the end of phase II corresponds to physiological breakpoint.

  17. Paper-based analytical devices for electrochemical study of the breathing process of red blood cells.

    PubMed

    Lin, Xiang-Yun; Wu, Ling-Ling; Pan, Zhong-Qin; Shi, Chuan-Guo; Bao, Ning; Gu, Hai-Ying

    2015-04-01

    Herein we utilized the filter paper to physically trap red blood cells (RBC) to observe the breathing process of red blood cells based on the permeability of the filter paper. By integrating double-sided conductive carbon tape as the working electrodes, the device could be applied to monitor electrochemical responses of RBC for up to hundreds of minutes. The differential pulse voltammetry (DPV) peak currents increased under oxygen while decreased under nitrogen, indicating that RBC could take in and release oxygen. Further studies demonstrated that the RBC suspension could more effectively take in oxygen than the solution of hemoglobin and the supernatant of RBC, suggesting the natural advantage of RBC on oxygen transportation. This study implied that simple paper-based analytical devices might be effectively applied in the study of gas-participating reactions and biochemical detections.

  18. Evaluation of Candidate Measures for Home-Based Screening of Sleep Disordered Breathing in Taiwanese Bus Drivers

    PubMed Central

    Ting, Hua; Huang, Ren-Jing; Lai, Ching-Hsiang; Chang, Shen-Wen; Chung, Ai-Hui; Kuo, Teng-Yao; Chang, Ching-Haur; Shih, Tung-Sheng; Lee, Shin-Da

    2014-01-01

    Background: Sleepiness-at-the-wheel has been identified as a major cause of highway accidents. The aim of our study is identifying the candidate measures for home-based screening of sleep disordered breathing in Taiwanese bus drivers, instead of polysomnography. Methods: Overnight polysomnography accompanied with simultaneous measurements of alternative screening devices (pulse oximetry, ApneaLink, and Actigraphy), heart rate variability, wake-up systolic blood pressure and questionnaires were completed by 151 eligible participants who were long-haul bus drivers with a duty period of more than 12 h a day and duty shifting. Results: 63.6% of professional bus drivers were diagnosed as having sleep disordered breathing and had a higher body mass index, neck circumference, systolic blood pressure, arousal index and desaturation index than those professional bus drivers without evidence of sleep disordered breathing. Simple home-based candidate measures: (1) Pulse oximetry, oxygen-desaturation indices by ≥3% and 4% (r = 0.87∼0.92); (2) Pulse oximetry, pulse-rising indices by ≥7% and 8% from a baseline (r = 0.61∼0.89); and (3) ApneaLink airflow detection, apnea-hypopnea indices (r = 0.70∼0.70), based on recording-time or Actigraphy-corrected total sleep time were all significantly correlated with, and had high agreement with, corresponding polysomnographic apnea-hypopnea indices [(1) 94.5%∼96.6%, (2) 93.8%∼97.2%, (3) 91.1%∼91.3%, respectively]. Conversely, no validities of SDB screening were found in the multi-variables apnea prediction questionnaire, Epworth Sleepiness Scale, night-sleep heart rate variability, wake-up systolic blood pressure and anthropometric variables. Conclusions: The indices of pulse oximetry and apnea flow detection are eligible criteria for home-based screening of sleep disordered breathing, specifically for professional drivers. PMID:24803198

  19. Blood Pressure Associated With Sleep-Disordered Breathing in a Population Sample of Children

    PubMed Central

    Bixler, Edward O.; Vgontzas, Alexandros N.; Lin, Hung-Mo; Liao, Duanping; Calhoun, Susan; Fedok, Fred; Vlasic, Vukmir; Graff, Gavin

    2013-01-01

    The current criteria for sleep-disordered breathing (SDB) in children are not based on a clinically relevant outcome. The purpose of this study was to assess the association of blood pressure with SDB in a random sample of the local elementary school children (kindergarten through grade 5) using a 2-phased strategy. During phase 1, a brief questionnaire was completed for all of the children (N=5740) with a response rate of 78.5%. During phase 2, 700 randomly selected children from phase 1 with a response rate of 70.0% were assessed with a full polysomnograph and a history/physical, including an ECG; ear, nose, and throat; and pulmonary evaluation. We observed a significantly elevated systolic blood pressure associated with the apnea hypopnea index (AHI): AHI ≥1 (2.9 mm Hg); AHI ≥3 (7.1 mm Hg); and AHI ≥5 (12.9 mm Hg). The SDB and blood pressure association remained significant after adjusting for age, sex, race, body mass index percentile or waist circumference, sleep efficiency, percentage of rapid eye movement sleep, and snoring. In addition, older age, body mass index percentile, waist circumference, and snoring were significantly associated with blood pressure, independent of SDB. Based on these findings, our study suggests that SDB is significantly associated with higher levels of systolic blood pressure in children aged 5 to 12 years even after adjusting for the various confounding factors. Clinically, the data support the threshold of AHI ≥5 for the initiation of treatment for SDB. Additional research is indicated to assess the efficacy of SDB treatment on reducing blood pressure. PMID:18838624

  20. High blood oxygen affinity in the air-breathing swamp eel Monopterus albus.

    PubMed

    Damsgaard, Christian; Findorf, Inge; Helbo, Signe; Kocagoz, Yigit; Buchanan, Rasmus; Huong, Do Thi Thanh; Weber, Roy E; Fago, Angela; Bayley, Mark; Wang, Tobias

    2014-12-01

    The Asian swamp eel (Monopterus albus, Zuiew 1793) is a facultative air-breathing fish with reduced gills. Previous studies have shown that gas exchange seems to occur across the epithelium of the buccopharyngeal cavity, the esophagus and the integument, resulting in substantial diffusion limitations that must be compensated by adaptations in others steps of the O₂ transport system to secure adequate O₂ delivery to the respiring tissues. We therefore investigated O₂ binding properties of whole blood, stripped hemoglobin (Hb), two major isoHb components and the myoglobin (Mb) from M. albus. Whole blood was sampled using indwelling catheters for blood gas analysis and determination of O₂ equilibrium curves. Hb was purified to assess the effects of endogenous allosteric effectors, and Mb was isolated from heart and skeletal muscle to determine its O₂ binding properties. The blood of M. albus has a high O₂ carrying capacity [hematocrit (Hct) of 42.4±4.5%] and binds O₂ with an unusually high affinity (P₅₀=2.8±0.4mmHg at 27°C and pH7.7), correlating with insensitivity of the Hb to the anionic allosteric effectors that normally decrease Hb-O₂ affinity. In addition, Mb is present at high concentrations in both heart and muscle (5.16±0.99 and 1.08±0.19mg ∙ g wet tissue⁻¹, respectively). We suggest that the high Hct and high blood O₂ affinity serve to overcome the low diffusion capacity in the relatively inefficient respiratory surfaces, while high Hct and Mb concentration aid in increasing the O₂ flux from the blood to the muscles.

  1. MEASUREMENTS OF AIR POLLUTANT BIOMARKERS WITH EXHALED BREATH TECHNIQUES

    EPA Science Inventory

    Use of exhaled breath condensate (EBC) has appeal as a noninvasive surrogate sample for lung-derived fluid. Additionally, EBC can be collected multiple times over the course of a study, unlike many other lung sampling techniques which can be performed fewer times. However validat...

  2. Metabolic analyzer. [for measuring metabolic rate and breathing dynamics of human beings

    NASA Technical Reports Server (NTRS)

    Rummel, J. A.; Perry, C. L. (Inventor)

    1974-01-01

    An apparatus is described for the measurement of metabolic rate and breathing dynamics in which inhaled and exhaled breath are sensed by sealed, piston-displacement type spirometers. These spirometers electrically measure the volume of inhaled and exhaled breath. A mass spectrometer analyzes simultaneously for oxygen, carbon dioxide, nitrogen and water vapor. Computation circuits are responsive to the outputs of the spirometers, mass spectrometer, temperature, pressure and timing signals and compute oxygen consumption, carbon dioxide production, minute volume and respiratory exchange ratio. A selective indicator provides for read-out of these data at predetermined cyclic intervals.

  3. Comparison of breath-alcohol screening test results with venous blood alcohol concentration in suspected drunken drivers.

    PubMed

    Kriikku, Pirkko; Wilhelm, Lars; Jenckel, Stefan; Rintatalo, Janne; Hurme, Jukka; Kramer, Jan; Jones, A Wayne; Ojanperä, Ilkka

    2014-06-01

    Hand-held electronic breath-alcohol analyzers are widely used by police authorities in their efforts to detect drunken drivers and to improve road-traffic safety. Over a three month period, the results of roadside breath-alcohol tests of drivers apprehended in Finland were compared with venous blood alcohol concentration (BAC). The mean (median) time between sampling blood and breath was 0.71h (0.58h) with a range from 0 to 6h. Some hand-held instruments gave results as the concentration of alcohol in breath and were converted into BAC assuming a blood-breath alcohol ratio (BBR) of 2260. The mean venous BAC (1.82g/kg) in traffic offenders was higher than the result predicted by the hand-held breath analyzers (1.72g/kg). In 1875 roadside tests, the relationship between venous BAC (x) and BrAC (y) was defined by the regression equation y=0.18+0.85x. The coefficients show both a constant bias (y-intercept 0.18g/kg) and a proportional bias (slope=0.85). The residual standard deviation (SD), an indicator of random variation, was ±0.40g/kg. After BAC results were corrected for the time elapsed between sampling blood and breath, the y-intercept decreased to 0.10g/kg and 0.004g/kg, respectively, when low (0.1g/kg/h) and high (0.25g/kg/h) rates of alcohol elimination were used. The proportional bias of 0.85 shows that the breath-alcohol test result reads lower than the actual BAC by 15% on average. This suggests that the BBR of 2260 used for calibration should be increased by about 15% to give closer agreement between BAC and BrAC. Because of the large random variation (SD±0.40g/kg), there is considerable uncertainty if and when results from the roadside screening test are used to estimate venous BAC. The roadside breath-alcohol screening instruments worked well for the purpose of selecting drivers above the statutory limit of 0.50g/kg.

  4. [Effects of xenon and krypton-containing breathing mixtures on clinical and biochemical blood indices in animals].

    PubMed

    Kussmaul', A R; Bogacheva, M A; Shkurat, T P; Pavlov, B N

    2007-01-01

    Effects of 24-hr breathing air mixtures containing xenon (XBM) and krypton (KBM) were compared in terms of hormonal status, and blood biochemical indices and morphology in laboratory animals. Some changes observed in blood and hormone indices could be a nonspecific adaptive response. Hence, we should elicit whether these effects are quickly reversible or long. For several indices krypton was a more favorable factor than xenon. However, some of its effects invite to delve into effects of different krypton concentrations on organism.

  5. Wash-out of ambient air contaminations for breath measurements.

    PubMed

    Maurer, F; Wolf, A; Fink, T; Rittershofer, B; Heim, N; Volk, T; Baumbach, J I; Kreuer, S

    2014-06-01

    In breath analysis, ambient air contaminations are ubiquitous and difficult to eliminate. This study was designed to investigate the reduction of ambient air background by a lung wash-out with synthetic air. The reduction of the initial ambient air volatile organic compound (VOC) intensity was investigated in the breath of 20 volunteers inhaling synthetic air via a sealed full face mask in comparison to inhaling ambient air. Over a period of 30 minutes, breath analysis was conducted using ion mobility spectrometry coupled to a multi-capillary column. A total of 68 VOCs were identified for inhaling ambient air or inhaling synthetic air. By treatment with synthetic air, 39 VOCs decreased in intensity, whereas 29 increased in comparison to inhaling ambient air. In total, seven VOCs were significantly reduced (P-value < 0.05). A complete wash-out of VOCs in this setting was not observed, whereby a statistically significant reduction up to 65% as for terpinolene was achieved. Our setting successfully demonstrated a reduction of ambient air contaminations from the airways by a lung wash-out with synthetic air.

  6. Endovascular blood flow measurement system

    NASA Astrophysics Data System (ADS)

    Khe, A. K.; Cherevko, A. A.; Chupakhin, A. P.; Krivoshapkin, A. L.; Orlov, K. Yu

    2016-06-01

    In this paper an endovascular measurement system used for intraoperative cerebral blood flow monitoring is described. The system is based on a Volcano ComboMap Pressure and Flow System extended with analogue-to-digital converter and PC laptop. A series of measurements performed in patients with cerebrovascular pathologies allows us to introduce “velocity-pressure” and “flow rate-energy flow rate” diagrams as important characteristics of the blood flow. The measurement system presented here can be used as an additional instrument in neurosurgery for assessment and monitoring of the operation procedure. Clinical data obtained with the system are used for construction of mathematical models and patient-specific simulations. The monitoring of the blood flow parameters during endovascular interventions was approved by the Ethics Committee at the Meshalkin Novosibirsk Research Institute of Circulation Pathology and included in certain surgical protocols for pre-, intra- and postoperative examinations.

  7. Sleep-Disordered Breathing and 24-Hour Blood Pressure Pattern Among Older Adults

    PubMed Central

    White, William B.; Kutner, Michael; Ouslander, Joseph G.; Bliwise, Donald L.

    2009-01-01

    Background To examine the association between sleep-disordered breathing (SDB) and 24-hour blood pressure (BP) pattern among community-dwelling older adults. Methods A convenience sample of 70 community-dwelling older adults, recruited from senior housing, community centers, and learning centers, were admitted to General Clinical Research Center, Emory University Hospital, Atlanta, Ga. Information regarding demographic and clinical history was obtained using questionnaires. Twenty-four–hour BP monitoring in supine position was performed using Spacelabs model 20207. Breathing during sleep was monitored with the use of a modified sleep recording system (Embletta, PDS), which monitors nasal and oral airflow, chest and abdominal movements, and pulse oximetry. Night time–daytime (night-day) BP ratio (average night-time BP divided by daytime BP) was calculated both for systolic and diastolic BPs. Results Sixty-nine participants, mean age 74.9 ± 6.4 years (41 [57%] women), completed the study. The mean apnea-hypopnea index (AHI) was 13 ± 13 per hour of sleep, and 20 participants (29%) had AHI ≥15 per hour of sleep, indicating moderate to severe SDB. Moderate to severe SDB (AHI ≥15 per hour of sleep) was significantly associated with nocturnal hypertension, whereas there was no statistically significant difference in wake-time BP between those with and without moderate to severe SDB. Stepwise multiple regressions showed that AHI independently predicted increased night-day systolic and night-day diastolic BP ratio, even after controlling for nocturia frequency. Conclusions The results indicate increased BP load associated with increased AHI in this group of older adults. This increased BP load may contribute to increased hypertension-related morbidity and disease burden. PMID:19196901

  8. CONTROLLED METHYL TERTIARY BUTYL ETHER (MTBE) EXPOSURE TO HUMANS THROUGH DERMAL, INGESTION, AND INHALATION ROUTES AND THE RESULTANT BIOMARKER TERTIARY BUTYL ALCOHOL (TBA) AS MEASURED IN EXHALED BREATH AND VENOUS BLOOD

    EPA Science Inventory

    Radiocarbon (14C) measurements provide an estimate of the fraction of carbon in a sample that is biogenic. In September 1997 during SCOS97 a series of 3-h canister samples of ambient air were collected at the Azusa air monitoring station during morning and afternoon periods. ...

  9. Measurement of low breath-alcohol concentrations: laboratory studies and field experience.

    PubMed

    Dubowski, K M; Essary, N A

    1999-10-01

    Recent federal rules and traffic law changes impose breath-alcohol thresholds of 0.02 and 0.04 g/210 L upon some classes of motor vehicle operators, such as juveniles and commercial vehicle operators. In federally regulated alcohol testing in the workplace, removal of covered workers from safety-sensitive duties, and other adverse actions, also occur at breath-alcohol concentrations (BrACs) of 0.02 and 0.04 g/210 L. We therefore studied performance of vapor-alcohol and breath-alcohol measurement at low alcohol concentrations in the laboratory and in the field, with current-generation evidential analyzers. We report here chiefly our field experience with evidential breath-alcohol testing of drinking drivers on paired breath samples using 62 Intoxilyzer 5000-D analyzers, for BrACs of 0-0.059 g/210 L. The data from 62 law enforcement breath-alcohol testing sites were collected and pooled, with BrACs recorded to three decimal places, and otherwise carried out under the standard Oklahoma evidential breath-alcohol testing protocol. For 2105 pooled simulator control tests at 0.06-0.13 g/210 L the mean +/- SD of the differences between target and result were -0.001 +/- 0.0035 g/210 L and 0.003 +/- 0.0023 g/210 L for signed and absolute differences, respectively (spans -0.016-0.010, 0.000-0.016). For 2078 paired duplicate breath-alcohol measurements with the Intoxilyzer 5000-D, the mean +/- SD difference (BrAC1-BrAC2) were 0.002 +/- 0.0026 (span 0-0.020 g/210 L). Variability of breath-alcohol measurements was related inversely to the alcohol concentration. Ninety-nine percent prediction limits for paired BrAC measurements correspond to a 0.020 g/210 L maximum absolute difference, meeting the NSC/CAOD recommendation that paired breath-alcohol analysis results within 0.02 g/210 L shall be deemed to be in acceptable agreement. We conclude that the field system for breath-alcohol analysis studied by us can and does perform reliably and accurately at low BrACs.

  10. Measurement of human cochlear blood flow.

    PubMed

    Miller, J M; Bredberg, G; Grenman, R; Suonpää, J; Lindström, B; Didier, A

    1991-01-01

    Cochlear blood flow (CBF) was measured with a laser-Doppler (L-D) flowmeter (Periflux PR2-B) in four unanesthetized human subjects with chronic tympanic membrane perforations and nine anesthetized human subjects undergoing middle ear operations. The L-D recordings were made over the promontory and/or the round window membrane during carbogen breathing and direct electrical stimulation of the cochlea in both groups and with warm water irrigation of the external ear canal in the anesthetized subjects. Carbogen led to little or no change in CBF as monitored with either measurement approach in either subject group. Electrical stimulation yielded an increase (15% to 25%) in CBF as recorded from the promontory in seven of the nine subjects tested. Warm (44 degrees C to 49 degrees C) water irrigation produced changes of 20% to 60% in CBF that were partially recoverable in the 10 minutes available for study. This study demonstrated the feasibility of direct CBF measurement in humans with the L-D method. Moreover, the data indicate that carbogen has little influence on CBF and that electrical stimulation at relatively safe levels and warm water irrigation of the ear canal produce increases in human CBF.

  11. Measurement of retinal blood velocity

    NASA Astrophysics Data System (ADS)

    Winchester, Leonard W., Jr.; Chou, Nee-Yin

    2006-02-01

    A fundus camera was modified to illuminate the retina of a rabbit model with low power laser light in order to obtain laser speckle images. A fast-exposure charge-coupled device (CCD) camera was used to capture laser speckle images of the retina. Image acquisition was synchronized with the arterial pulses of the rabbit to ensure that all images are obtained at the same point in the cardiac cycle. The rabbits were sedated and a speculum was inserted to prevent the eyelid from closing. Both albino (New Zealand; pigmented (Dutch belted) rabbits were used in the study. The rabbit retina is almost avascular. The measurements are obtained for choroidal tissue as well as retinal tissue. Because the retina is in a region of high metabolism, blood velocity is strongly affected by blood oxygen saturation. Measurements of blood velocity obtained over a wide range of O II saturations (58%-100%) showed that blood velocity increases with decreasing O II saturation. For most experiments, the left eye of the rabbit was used for laser measurements whereas the right eye served as a control. No observable difference between pre- and post-experimented eye was noted. Histological examinations of retinal tissue subjected to repeated laser measurements showed no indication of tissue damage.

  12. Elimination kinetics of volatile organics in humans using breath measurements

    SciTech Connect

    Pellizzari, E.D.; Wallace, L.A.; Gordon, S.M. )

    1992-07-01

    During the past decade significant strides have been made toward understanding the sources and factors which lead to volatile organic chemical (VOC) exposure in the general population. Less is known, however, about the impact of low-level environmental exposure on human health. Investigations are underway in a number of laboratories in an effort to determine the uptake, distribution, metabolism, and elimination kinetics for VOCs in humans. We examined the elimination kinetics for the third phase for ten VOCs--1,1,-trichloroethane, trichloroethylene, tetrachloroethylene, benzene, toluene, m,p-xylenes, o-xylene, ethylbenzene, p-dichlorobenzene, and limonene--in human subjects. Subjects were exposed to a variety of common consumer products and breath samples were collected post-exposure while the subjects spent up to 10 hr in a clean air environment. VOCs from breath samples were collected into canisters or onto Tenax GC cartridges and analyzed by gas chromatography-mass spectrometry. Exponential modeling of the decay data was performed to obtain kinetic parameters. The half-lives for trichloroethylene and 1,1,1-trichloroethane were approximately 5 to 8 hr for the four subjects. In general, the magnitude and range of variability was larger for toluene, limonene, and p-dichlorobenzene than for the other VOCs; the elimination rate spanning a few hours to a day or two. Thus, VOCs exhibit relatively short residence times in the body relative to other halo-carbons, such as polychlorinated biphenyls and dioxins.

  13. Indicator dilution measurements of lung volumes and alveolar air exchange during breathing.

    PubMed

    Hechtman, H B; Reid, M H; Dorn, B C; Weisel, R D

    1973-05-01

    A new triple tracer indicator dilution technique has been used to measure alveolar ventilation as well as air and tissue volumes in the lungs of experimental animals and man. The tracers indocyanine green, [(121)I]antipyrine and xenon-133 were rapidly injected into the right atrium, while sampling was carried out from a peripheral artery. Blood flow and tissue volumes were obtained by classical analysis of the indocyanine green and antipyrine concentration-time curves. A double exit-port, constant air flow model was used to analyze the xenon curves, because ventilatory loss led to incomplete recovery of the gas tracer in effluent blood. Uniform ventilation and perfusion were assumed. This analysis permitted calculation of alveolar ventilation (VA(Xe)) and functional residual capacity (FRC(Xe)) during normal breathing. In control studies, VA(Xe) was similar to VA(co2), obtained with the steady-state CO(2) method (r = 0.87), while in critically ill patients the xenon measurement was significantly lower, averaging 54% of VA(co2). In theory, underestimates in VA(Xe) and decrease in the ratio VA(Xe)/VA(co2) relate to nonuniformity in regional ventilation and perfusion. The effect is greatest for the slightly soluble gas, xenon. The significant inverse correlation between VA(Xe)/VA(co2) and the physiologic shunt is consistent with this postulate.FRC(Xe) was similar to the predicted FRC in animals but was 76% of the helium measured FRC in patients. FRC(Xe) was significantly lower than the xenon measured air volumes during breath-holding when nonuniformity of ventilation was not operative. Lung tissue volumes in animals were 83% of gravimetric lung weights, while in patients the volumes were much lower than predicted. Nonhomogeneous lung function, including failure to perfuse the entire capillary bed, with resultant incomplete penetration of tracers into all segments of lung air and tissue, may explain these findings. The resultant errors can be significant in sick

  14. Application of Novel Method to Measure Endogenous VOCs in Exhaled Breath Condensate Before and After Exposure to Diesel Exhaust

    EPA Science Inventory

    Polar volatile organic compounds (PVOCs) such as aldehydes, ketones, and alcohols are byproducts of normal human metabolism and are present in exhaled breath and blood. Environmental exposures, individual activities, and disease states can perturb normal metabolic processes and ...

  15. A mind you can count on: validating breath counting as a behavioral measure of mindfulness

    PubMed Central

    Levinson, Daniel B.; Stoll, Eli L.; Kindy, Sonam D.; Merry, Hillary L.; Davidson, Richard J.

    2014-01-01

    Mindfulness practice of present moment awareness promises many benefits, but has eluded rigorous behavioral measurement. To date, research has relied on self-reported mindfulness or heterogeneous mindfulness trainings to infer skillful mindfulness practice and its effects. In four independent studies with over 400 total participants, we present the first construct validation of a behavioral measure of mindfulness, breath counting. We found it was reliable, correlated with self-reported mindfulness, differentiated long-term meditators from age-matched controls, and was distinct from sustained attention and working memory measures. In addition, we employed breath counting to test the nomological network of mindfulness. As theorized, we found skill in breath counting associated with more meta-awareness, less mind wandering, better mood, and greater non-attachment (i.e., less attentional capture by distractors formerly paired with reward). We also found in a randomized online training study that 4 weeks of breath counting training improved mindfulness and decreased mind wandering relative to working memory training and no training controls. Together, these findings provide the first evidence for breath counting as a behavioral measure of mindfulness. PMID:25386148

  16. Sildenafil, nifedipine and acetazolamide do not allow for blood flow through intrapulmonary arteriovenous anastomoses during exercise while breathing 100% oxygen.

    PubMed

    Elliott, Jonathan E; Friedman, Jonathan M; Futral, Joel E; Goodman, Randall D; Lovering, Andrew T

    2014-12-01

    Blood flow through intrapulmonary arteriovenous anastomoses (IPAVAs) is known to increase in healthy humans during exercise while breathing room air, but is prevented or significantly reduced during exercise while breathing 100% O2, potentially due to vasoconstriction of IPAVAs. Thus, pharmacological interventions that target known pathways regulating the cardiopulmonary circulation may be able to prevent the hyperoxia-induced reduction in IPAVA blood flow (Q̇ IPAVA ) during exercise. In nine healthy human subjects, we investigated the effects of sildenafil (100 mg p.o.), nifedipine (20 mg p.o.) and acetazolamide (250 mg p.o. three times a day for 3 days) on Q̇ IPAVA at rest and during cycle ergometer exercise at 50, 100, 150, 200 and 250 W, while breathing room air (normoxia) and 100% O2 (hyperoxia). Transthoracic saline contrast echocardiography and a 0-5 bubble scoring system were used to detect and assess Q̇ IPAVA qualitatively; ultrasound was used to assess the blood flow velocity oftricuspid regurgitation and the left ventricular outflow tract blood flow to calculate pulmonary artery systolic pressure (PASP) and cardiac output, respectively. Without drugs, bubble scores increased significantly to ≥2 at 150 W in normoxia and to ≤2 at 200 W in hyperoxia. Only nifedipine consistently increased cardiac output at rest and during low-intensity exercise in normoxia and hyperoxia. However, there was no detectable effect of any drug on Q̇ IPAVA ; specifically, bubble scores were the same during exercise in either normoxia or hyperoxia. Accordingly, the reduction in Q̇ IPAVA during exercise while breathing 100% O2 is likely not to be due to the independent pharmacological mechanisms of action associated with sildenafil, nifedipine or acetazolamide.

  17. Direct measurement of ammonia in simulated human breath using an inkjet-printed polyaniline nanoparticle sensor.

    PubMed

    Hibbard, Troy; Crowley, Karl; Killard, Anthony J

    2013-05-24

    A sensor fabricated from the inkjet-printed deposition of polyaniline nanoparticles onto a screen-printed silver interdigitated electrode was developed for the detection of ammonia in simulated human breath samples. Impedance analysis showed that exposure to ammonia gas could be measured at 962 Hz at which changes in resistance dominate due to the deprotonation of the polymer film. Sensors required minimal calibration and demonstrated excellent intra-electrode baseline drift (≤1.67%). Gases typically present in breath did not interfere with the sensor. Temperature and humidity were shown to have characteristic impedimetric and temporal effects on the sensor that could be distinguished from the response to ammonia. While impedance responses to ammonia could be detected from a single simulated breath, quantification was improved after the cumulative measurement of multiple breaths. The measurement of ammonia after 16 simulated breaths was linear in the range of 40-2175 ppbv (27-1514 μg m(-3)) (r(2)=0.9963) with a theoretical limit of detection of 6.2 ppbv (4.1 μg m(-3)) (SN(-1)=3).

  18. Assessment of oxidative stress biomarkers in exhaled breath condensate and blood of dairy heifer calves from birth to weaning.

    PubMed

    Ranade, Rujuta; Talukder, Saranika; Muscatello, Gary; Celi, Pietro

    2014-12-01

    The balance between oxidants and antioxidants may be impaired in neonatal calves but only limited information is available on physiological changes in oxidative biomarkers in healthy calves. The aim of this study was to measure biomarkers of oxidative stress (OS) in calves from birth to weaning. Eighteen, healthy, female Holstein-Friesian calves were used in the study. Blood and exhaled breath condensate (EBC) samples were taken on the day of birth (Week 0) and then at Weeks 6, 12 and 18. Reactive oxygen metabolites (ROMs) and biological antioxidant potential (BAP) were determined on fresh blood and the degree of OS was expressed as an oxidative stress index (OSI), where OSI = ROMs/BAP × 100. Plasma concentrations of antioxidant barrier (OXY), thiol antioxidant barrier (SH), advanced oxidation protein products (AOPP), albumin, and non-esterified fatty acids (NEFA) were also measured, as was hydrogen peroxide (H2O2) concentration in EBC. Plasma concentrations of ROMs were relatively stable during the trial; AOPP concentration progressively decreased reaching its lowest values on Week 18. Albumin, SH and OXY concentrations progressively increased from birth to weaning. Concentrations of NEFA in plasma and H2O2 in EBC were relatively stable but peaked in Week 18. The results indicate that antioxidative defence not only increases with time in the plasma of new-born calves but also that it is related to protein oxidation processes. Furthermore, the data support the use EBC H2O2 as a novel biomarker to assess respiratory OS in calves.

  19. Measurement of Whole-Body CO2 Production in Birds Using Real-Time Laser-Derived Measurements of Hydrogen (δ(2)H) and Oxygen (δ(18)O) Isotope Concentrations in Water Vapor from Breath.

    PubMed

    Mitchell, G W; Guglielmo, C G; Hobson, K A

    2015-01-01

    The doubly labeled water (DLW) method is commonly used to measure energy expenditure in free-living wildlife and humans. However, DLW studies involving animals typically require three blood samples, which can affect behavior and well-being. Moreover, measurement of H (δ(2)H) and O (δ(18)O) isotope concentrations in H2O derived from blood using conventional isotope ratio mass spectrometry is technically demanding, time-consuming, and often expensive. A novel technique that would avoid these constraints is the real-time measurement of δ(2)H and δ(18)O in the H2O vapor of exhaled breath using cavity ring-down (CRD) spectrometry, provided that δ(2)H and δ(18)O from body H2O and breath were well correlated. Here, we conducted a validation study with CRD spectrometry involving five zebra finches (Taeniopygia guttata), five brown-headed cowbirds (Molothrus ater), and five European starlings (Sturnus vulgaris), where we compared δ(2)H, δ(18)O, and rCO2 (rate of CO2 production) estimates from breath with those from blood. Isotope concentrations from blood were validated by comparing dilution-space estimates with measurements of total body water (TBW) obtained from quantitative magnetic resonance. Isotope dilution-space estimates from δ(2)H and δ(18)O values in the blood were similar to and strongly correlated with TBW measurements (R(2) = 0.99). The (2)H and (18)O (ppm) in breath and blood were also highly correlated (R(2) = 0.99 and 0.98, respectively); however, isotope concentrations in breath were always less enriched than those in blood and slightly higher than expected, given assumed fractionation values between blood and breath. Overall, rCO2 measurements from breath were strongly correlated with those from the blood (R(2) = 0.90). We suggest that this technique will find wide application in studies of animal and human energetics in the field and laboratory. We also provide suggestions for ways this technique could be further improved.

  20. Measuring Breathing Rate Variability by a Microprocessor Based Instrument in Newborn Infants

    PubMed Central

    Dolcourt, Jack; Younger, Steve

    1984-01-01

    A microprocessor-based instrument was developed to measure apnea (cessation of breathing) of prematurity. This instrument analyzes real-time respiratory data obtrained from either a standard cardiorespiratory monitor or from an end-tidal CO2 analyzer. The time between successive breaths (apneic duration) is computed and recorded. These intervals are displayed as a histogram in real-time on a computer terminal screen. The effects of pharmacologic treatment and nervous system maturation as relating to respiratory instability in premature infants is demonstrated.

  1. Automatic blood pressure measuring system (M092)

    NASA Technical Reports Server (NTRS)

    Nolte, R. W.

    1977-01-01

    The Blood Pressure Measuring System is described. It measures blood pressure by the noninvasive Korotkoff sound technique on a continual basis as physical stress is imposed during experiment M092, Lower Body Negative Pressure, and experiment M171, Metabolic Activity.

  2. Electromagnetic inductance plethysmography to measure tidal breathing in preterm and term infants.

    PubMed

    Pickerd, N; Williams, E M; Kotecha, S

    2013-02-01

    Tidal breathing measurements which provide a non-invasive measure of lung function in preterm and term infants are particularly useful to guide respiratory support. We used a new technique of electromagnetic inductance plethysmography (EIP) to measure tidal breathing in infants between 32 and 42 weeks postconceptional age (PCA). Tidal breathing was measured in 49 healthy spontaneously breathing infants between 32 and 42 weeks PCA. The weight-corrected tidal volume (V(T) ) and minute volume (MV) decreased with advancing PCA (V(T) 6.5 ± 1.5 ml/kg and MV 0.44 ± 0.04 L/kg/min at 32-33 weeks, respectively; 6.3 ± 0.9 ml/kg and 0.38 ± 0.02 L/kg/min at 34-36 weeks; and 5.1 ± 1.1 ml/kg and 0.28 ± 0.02 L/kg/min at term, V(T) P < 0.001 and MV P < 0.01 for 32-33 weeks PCA vs. term; V(T) P = 0.016 and MV P = 0.015 for 34-36 weeks PCA vs. term). Respiratory frequency and the phase angle decreased significantly with advancing PCA but the flow parameter t(PTEF) /t(E) did not change significantly. Using a new technique to measure tidal breathing parameters in newborn infants, our data confirms its usability in clinical practice and establishes normative data which can guide future respiratory management of newborn infants.

  3. Additional Value of CH₄ Measurement in a Combined (13)C/H₂ Lactose Malabsorption Breath Test: A Retrospective Analysis.

    PubMed

    Houben, Els; De Preter, Vicky; Billen, Jaak; Van Ranst, Marc; Verbeke, Kristin

    2015-09-07

    The lactose hydrogen breath test is a commonly used, non-invasive method for the detection of lactose malabsorption and is based on an abnormal increase in breath hydrogen (H₂) excretion after an oral dose of lactose. We use a combined (13)C/H₂ lactose breath test that measures breath (13)CO₂ as a measure of lactose digestion in addition to H₂ and that has a better sensitivity and specificity than the standard test. The present retrospective study evaluated the results of 1051 (13)C/H₂ lactose breath tests to assess the impact on the diagnostic accuracy of measuring breath CH₄ in addition to H₂ and (13)CO₂. Based on the (13)C/H₂ breath test, 314 patients were diagnosed with lactase deficiency, 138 with lactose malabsorption or small bowel bacterial overgrowth (SIBO), and 599 with normal lactose digestion. Additional measurement of CH₄ further improved the accuracy of the test as 16% subjects with normal lactose digestion and no H₂-excretion were found to excrete CH₄. These subjects should have been classified as subjects with lactose malabsorption or SIBO. In conclusion, measuring CH₄-concentrations has an added value to the (13)C/H₂ breath test to identify methanogenic subjects with lactose malabsorption or SIBO.

  4. Additional Value of CH₄ Measurement in a Combined (13)C/H₂ Lactose Malabsorption Breath Test: A Retrospective Analysis.

    PubMed

    Houben, Els; De Preter, Vicky; Billen, Jaak; Van Ranst, Marc; Verbeke, Kristin

    2015-09-01

    The lactose hydrogen breath test is a commonly used, non-invasive method for the detection of lactose malabsorption and is based on an abnormal increase in breath hydrogen (H₂) excretion after an oral dose of lactose. We use a combined (13)C/H₂ lactose breath test that measures breath (13)CO₂ as a measure of lactose digestion in addition to H₂ and that has a better sensitivity and specificity than the standard test. The present retrospective study evaluated the results of 1051 (13)C/H₂ lactose breath tests to assess the impact on the diagnostic accuracy of measuring breath CH₄ in addition to H₂ and (13)CO₂. Based on the (13)C/H₂ breath test, 314 patients were diagnosed with lactase deficiency, 138 with lactose malabsorption or small bowel bacterial overgrowth (SIBO), and 599 with normal lactose digestion. Additional measurement of CH₄ further improved the accuracy of the test as 16% subjects with normal lactose digestion and no H₂-excretion were found to excrete CH₄. These subjects should have been classified as subjects with lactose malabsorption or SIBO. In conclusion, measuring CH₄-concentrations has an added value to the (13)C/H₂ breath test to identify methanogenic subjects with lactose malabsorption or SIBO. PMID:26371034

  5. The association of annual air pollution exposure with blood pressure among patients with sleep-disordered breathing.

    PubMed

    Liu, Wen-Te; Lee, Kang-Yun; Lee, Hsin-Chien; Chuang, Hsiao-Chi; Wu, Dean; Juang, Jer-Nan; Chuang, Kai-Jen

    2016-02-01

    While sleep-disordered breathing (SDB), high blood pressure (BP) and air pollution exposure have separately been associated with increased risk of cardiopulmonary mortality, the association linking air pollution exposure to BP among patients with sleep-disordered breathing is still unclear. We collected 3762 participants' data from the Taipei Medical University Hospital's Sleep Center and air pollution data from the Taiwan Environmental Protection Administration. Associations of 1-year mean criteria air pollutants [particulate matter with aerodynamic diameters ≤10 μm (PM10), particulate matter with aerodynamic diameters ≤2.5 μm (PM2.5), nitrogen dioxide (NO2) and ozone (O3)] with systolic BP (SBP) and diastolic BP (DBP) were investigated by generalized additive models. After controlling for age, sex, body mass index (BMI), temperature and relative humidity, we observed that increases in air pollution levels were associated with decreased SBP and increased DBP. We also found that patients with apnea-hypopnea index (AHI) ≥30 showed a stronger BP response to increased levels of air pollution exposure than those with AHI<30. Stronger effects of air pollution exposure on BP were found in overweight participants than in participants with normal BMI. We concluded that annual exposure to air pollution was associated with change of BP among patients with sleep-disordered breathing. The association between annual air pollution exposure and BP could be modified by AHI and BMI.

  6. Cuff for Blood-Vessel Pressure Measurements

    NASA Technical Reports Server (NTRS)

    Shimizu, M.

    1982-01-01

    Pressure within blood vessel is measured by new cufflike device without penetration of vessel. Device continuously monitors blood pressure for up to 6 months or longer without harming vessel. Is especially useful for vessels smaller than 4 or 5 millimeters in diameter. Invasive methods damage vessel wall, disturb blood flow, and cause clotting. They do not always give reliable pressure measurements over prolonged periods.

  7. Measurements of substrate oxidation using (13)CO 2-breath testing reveals shifts in fuel mix during starvation.

    PubMed

    McCue, Marshall D; Pollock, Erik D

    2013-12-01

    Most fasting animals are believed to sequentially switch from predominantly utilizing one metabolic substrate to another from carbohydrates, to lipids, then to proteins. The timing of these physiological transitions has been estimated using measures of substrate oxidation including changes in respiratory exchange ratios, blood metabolites, nitrogen excretion, or enzyme activities in tissues. Here, we demonstrate how (13)CO2-breath testing can be used to partition among the oxidation of distinct nutrient pools in the body (i.e., carbohydrates, lipids, and proteins) that have become artificially enriched in (13)C. Seventy-two Swiss Webster mice were raised to adulthood on diets supplemented with (13)C-1-L-leucine, (13)C-1-palmitic acid, (13)C-1-D-glucose, or no tracer. Mice were then fasted for 72 h during which [Formula: see text], [Formula: see text], δ(13)C of exhaled CO2, body temperature, body mass, and blood metabolites (i.e., glucose, ketone bodies, and triacylglycerols) were measured. The fasting mice exhibited reductions in body mass (29 %), body temperature (3.3 °C), minimum observed metabolic rates (24 %), and respiratory exchange ratio (0.18), as well as significant changes in blood metabolites; but these responses were not particularly indicative of changes in oxidative fuel mixture. Measurements of endogenous nutrient oxidation by way of (13)CO2-breath testing revealed a decrease in the rate of oxidation of carbohydrates from 61 to 10 % of the total energy expenditure during the first 6 h without food. This response was mirrored by a coincidental increase in rate of endogenous lipid oxidation from 18 to 64 %. A transient peak in carbohydrate oxidation occurred between 8 and 14 h, presumably during increased glycogen mobilization. A well-defined period of protein sparing between 8 and 12 h was observed where endogenous protein oxidation accounted for as little as 8 % of the total energy expenditure. Thereafter, protein oxidation continually

  8. Phase diagram and breathing dynamics of a single red blood cell and a biconcave capsule in dilute shear flow

    NASA Astrophysics Data System (ADS)

    Yazdani, Alireza Z. K.; Bagchi, Prosenjit

    2011-08-01

    We present phase diagrams of the single red blood cell and biconcave capsule dynamics in dilute suspension using three-dimensional numerical simulations. The computational geometry replicates an in vitro linear shear flow apparatus. Our model includes all essential properties of the cell membrane, namely, the resistance against shear deformation, area dilatation, and bending, as well as the viscosity difference between the cell interior and suspending fluids. By considering a wide range of shear rate and interior-to-exterior fluid viscosity ratio, it is shown that the cell dynamics is often more complex than the well-known tank-treading, tumbling, and swinging motion and is characterized by an extreme variation of the cell shape. As a result, it is often difficult to clearly establish whether the cell is swinging or tumbling. Identifying such complex shape dynamics, termed here as “breathing” dynamics, is the focus of this article. During the breathing motion at moderate bending rigidity, the cell either completely aligns with the flow direction and the membrane folds inward, forming two cusps, or it undergoes large swinging motion while deep, craterlike dimples periodically emerge and disappear. At lower bending rigidity, the breathing motion occurs over a wider range of shear rates, and is often characterized by the emergence of a quad-concave shape. The effect of the breathing dynamics on the tank-treading-to-tumbling transition is illustrated by detailed phase diagrams which appear to be more complex and richer than those of vesicles. In a remarkable departure from the vesicle dynamics, and from the classical theory of nondeformable cells, we find that there exists a critical viscosity ratio below which the transition is independent of the viscosity ratio, and dependent on shear rate only. Further, unlike the reduced-order models, the present simulations do not predict any intermittent dynamics of the red blood cells.

  9. Breath air measurement using wide-band frequency tuning IR laser photo-acoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Kistenev, Yury V.; Borisov, Alexey V.; Kuzmin, Dmitry A.; Bulanova, Anna A.; Boyko, Andrey A.; Kostyukova, Nadezhda Y.; Karapuzikov, Alexey A.

    2016-03-01

    The results of measuring of biomarkers in breath air of patients with broncho-pulmonary diseases using wide-band frequency tuning IR laser photo-acoustic spectroscopy and the methods of data mining are presented. We will discuss experimental equipment and various methods of intellectual analysis of the experimental spectra in context of above task. The work was carried out with partial financial support of the FCPIR contract No 14.578.21.0082 (ID RFMEFI57814X0082).

  10. H2S concentrations in the arterial blood during H2S administration in relation to its toxicity and effects on breathing

    PubMed Central

    Klingerman, Candice M.; Trushin, Neil; Prokopczyk, Bogdan

    2013-01-01

    Our aim was to establish in spontaneously breathing urethane-anesthetized rats, the relationship between the concentrations of H2S transported in the blood and the corresponding clinical manifestations, i.e., breathing stimulation and inhibition, during and following infusion of NaHS at increasing rates. The gaseous concentration of H2S (CgH2S, one-third of the total soluble form) was computed from the continuous determination of H2S partial pressure in the alveolar gas, while H2S, both dissolved and combined to hemoglobin, was measured at specific time points by sulfide complexation with monobromobimane (CMBBH2S). We found that using a potent reducing agent in vitro, H2S added to the whole blood had little interaction with the plasma proteins, as sulfide appeared to be primarily combined and then oxidized by hemoglobin. In vivo, H2S was undetectable in the blood in its soluble form in baseline conditions, while CMBBH2S averaged 0.7 ± 0.5 μM. During NaHS infusion, H2S was primarily present in nonsoluble form in the arterial blood: CMBBH2S was about 50 times higher than CgH2S at the lowest levels of exposure and 5 or 6 times at the levels wherein fatal apnea occurred. CgH2S averaged only 1.1 ± 0.7 μM when breathing increased, corresponding to a CMBBH2S of 11.1 ± 5.4 μM. Apnea occurred at CgH2S above 5.1 μM and CMBBH2S above 25.4 μM. At the cessation of exposure, CMBBH2S remained elevated, at about 3 times above baseline for at least 15 min. These data provide a frame of reference for studying the putative effects of endogenous H2S and for testing antidotes against its deadly effects. PMID:23904109

  11. Indirect Blood Pressure Measuring Device

    NASA Technical Reports Server (NTRS)

    Hum, L.; Cole, C. E.

    1973-01-01

    Design and performance of a blood pressure recording device for pediatric use are reported. A strain gage transducer with a copper-beryllium strip as force sensing element is used to monitor skin movements and to convert them into electrical signals proportional to those displacements. Experimental tests with this device in recording of force developed above the left femoral artery of a dog accurately produced a blood pressure curve.

  12. Measuring tidal breathing parameters using a volumetric vest in neonates with and without lung disease.

    PubMed

    Olden, C; Symes, E; Seddon, P

    2010-11-01

    Lung function measurement is difficult in unsedated infants; tidal breathing parameters are a useful non-invasive surrogate, but even these measurements cause disturbance from applying a facemask. We investigated a novel volumetric vest system (FloRight), which measures volume changes of the respiratory system from changes in the magnetic fields induced by current-carrying coils around the entire chest and abdomen. Using a facemask and ultrasonic flowmeter as comparator, we assessed the validity and repeatability of tidal breathing parameters measured by FloRight in 10 healthy newborn infants during natural sleep. We also assessed the effect of a facemask on tidal volume and tidal expiratory flow parameters. To assess the ability of the FloRight system to detect disease, we compared the healthy infants with 11 infants suffering from bronchopulmonary dysplasia. Tidal parameters with the FloRight vest corresponded closely with facemask measurements. Mean difference, mask minus vest, for tidal volume was 0.096 ml (P < 0.05), with limits of agreement +4.5 to -4.3 ml. Coefficient of repeatability was similar for mask and vest measurements. Tidal volume measured by FloRight with mask in place (20.6 ml) was significantly higher than without mask (16.1 ml), but tidal expiratory flow parameters were not altered. FloRight measurements of tidal parameters were markedly different between the two groups of infants, with tidal volume per Kg significantly higher and tidal expiratory flow parameters significantly lower. Our findings suggest that the FloRight system is able to measure tidal breathing parameters accurately, in healthy newborn infants, without prior calibration on the infant. It appears to have at least sufficient sensitivity to detect severe respiratory disease. PMID:20872815

  13. A New Differential Pressure Flow Meter for Measurement of Human Breath Flow: Simulation and Experimental Investigation

    PubMed Central

    Bridgeman, Devon; Tsow, Francis; Xian, Xiaojun; Forzani, Erica

    2016-01-01

    The development and performance characterization of a new differential pressure-based flow meter for human breath measurements is presented in this article. The device, called a “Confined Pitot Tube,” is comprised of a pipe with an elliptically shaped expansion cavity located in the pipe center, and an elliptical disk inside the expansion cavity. The elliptical disk, named Pitot Tube, is exchangeable, and has different diameters, which are smaller than the diameter of the elliptical cavity. The gap between the disk and the cavity allows the flow of human breath to pass through. The disk causes an obstruction in the flow inside the pipe, but the elliptical cavity provides an expansion for the flow to circulate around the disk, decreasing the overall flow resistance. We characterize the new sensor flow experimentally and theoretically, using Comsol Multiphysics® software with laminar and turbulent models. We also validate the sensor, using inhalation and exhalation tests and a reference method.

  14. A Medical Cloud-Based Platform for Respiration Rate Measurement and Hierarchical Classification of Breath Disorders

    PubMed Central

    Fekr, Atena Roshan; Janidarmian, Majid; Radecka, Katarzyna; Zilic, Zeljko

    2014-01-01

    The measurement of human respiratory signals is crucial in cyberbiological systems. A disordered breathing pattern can be the first symptom of different physiological, mechanical, or psychological dysfunctions. Therefore, a real-time monitoring of the respiration patterns, as well as respiration rate is a critical need in medical applications. There are several methods for respiration rate measurement. However, despite their accuracy, these methods are expensive and could not be integrated in a body sensor network. In this work, we present a real-time cloud-based platform for both monitoring the respiration rate and breath pattern classification, remotely. The proposed system is designed particularly for patients with breathing problems (e.g., respiratory complications after surgery) or sleep disorders. Our system includes calibrated accelerometer sensor, Bluetooth Low Energy (BLE) and cloud-computing model. We also suggest a procedure to improve the accuracy of respiration rate for patients at rest positions. The overall error in the respiration rate calculation is obtained 0.53% considering SPR-BTA spirometer as the reference. Five types of respiration disorders, Bradapnea, Tachypnea, Cheyn-stokes, Kaussmal, and Biot's breathing are classified based on hierarchical Support Vector Machine (SVM) with seven different features. We have evaluated the performance of the proposed classification while it is individualized to every subject (case 1) as well as considering all subjects (case 2). Since the selection of kernel function is a key factor to decide SVM's performance, in this paper three different kernel functions are evaluated. The experiments are conducted with 11 subjects and the average accuracy of 94.52% for case 1 and the accuracy of 81.29% for case 2 are achieved based on Radial Basis Function (RBF). Finally, a performance evaluation has been done for normal and impaired subjects considering sensitivity, specificity and G-mean parameters of different kernel

  15. A medical cloud-based platform for respiration rate measurement and hierarchical classification of breath disorders.

    PubMed

    Fekr, Atena Roshan; Janidarmian, Majid; Radecka, Katarzyna; Zilic, Zeljko

    2014-06-24

    The measurement of human respiratory signals is crucial in cyberbiological systems. A disordered breathing pattern can be the first symptom of different physiological, mechanical, or psychological dysfunctions. Therefore, a real-time monitoring of the respiration patterns, as well as respiration rate is a critical need in medical applications. There are several methods for respiration rate measurement. However, despite their accuracy, these methods are expensive and could not be integrated in a body sensor network. In this work, we present a real-time cloud-based platform for both monitoring the respiration rate and breath pattern classification, remotely. The proposed system is designed particularly for patients with breathing problems (e.g., respiratory complications after surgery) or sleep disorders. Our system includes calibrated accelerometer sensor, Bluetooth Low Energy (BLE) and cloud-computing model. We also suggest a procedure to improve the accuracy of respiration rate for patients at rest positions. The overall error in the respiration rate calculation is obtained 0.53% considering SPR-BTA spirometer as the reference. Five types of respiration disorders, Bradapnea, Tachypnea, Cheyn-stokes, Kaussmal, and Biot's breathing are classified based on hierarchical Support Vector Machine (SVM) with seven different features. We have evaluated the performance of the proposed classification while it is individualized to every subject (case 1) as well as considering all subjects (case 2). Since the selection of kernel function is a key factor to decide SVM's performance, in this paper three different kernel functions are evaluated. The experiments are conducted with 11 subjects and the average accuracy of 94.52% for case 1 and the accuracy of 81.29% for case 2 are achieved based on Radial Basis Function (RBF). Finally, a performance evaluation has been done for normal and impaired subjects considering sensitivity, specificity and G-mean parameters of different kernel

  16. Blood Pressure Measurements Taken by Patients are Similar to Home and Ambulatory Blood Pressure Measurements

    PubMed Central

    Pierin, Angela M. G.; Ignez, Edna C.; Filho, Wilson Jacob; Barbato, Alfonso Júlio Guedes; Mion, Décio

    2008-01-01

    OBJECTIVE To compare blood pressure measurements taken at home by physicians, nurses, and patients with office blood pressure measurement , ambulatory blood pressure monitoring and home blood pressure measurement. METHODS A total of 44 patients seen by a home care program were studied. Protocol 1 a) blood pressure was measured by the patient, a physician and a nurse during a regular home visit (Home1); b) home blood pressure measurement was measured for 4 days (HBPM1); c) office blood pressure measurement was measured by a physician, a nurse, and the patient; and by 24-hour ambulatory blood pressure monitoring. Protocol 2 blood pressure was measured by the patient, a physician, and a nurse during a special home visit in the presence of a physician and a nurse only (Home2); and b) home blood pressure measurement was taken for the second time (HBPM2). Echocardiography, guided by a two-dimensional echocardiograph, was performed. RESULTS Protocol 1: a) office blood pressure measurement and Home1 were significantly higher than ambulatory blood pressure monitoring, except for systolic and diastolic office blood pressure measurement taken by the patient or a family member, systolic blood pressure taken by a nurse, and diastolic blood pressure taken by a physician. b) ambulatory blood pressure monitoring and HBPM1 were similar. Protocol 2: a) HBPM2 and Home2 were similar. b) Home2 was significantly lower than Home1, except for diastolic blood pressure taken by a nurse or the patient. There were significant relationships between: a) diastolic blood pressure measured by the patient and the thickness of the interventricular septum, posterior wall, and left ventricular mass; and b) ambulatory and HBPM2 diastolic and systolic blood pressure taken by a physician (home2) and left ventricular mass. Therefore, the data indicate that home blood pressure measurement and ambulatory blood pressure monitoring had good prognostic values relative to “office measurement.” CONCLUSION

  17. Shortness of Breath

    MedlinePlus

    ... deep breath, which usually results in retention of carbon dioxide and not enough oxygen in blood (obesity hypoventilation ... for anemia), and oximetry or blood oxygen or carbon dioxide levels. Your doctor also may obtain a chest ...

  18. Normal breathing pattern and arterial blood gases in awake and sleeping goats after near total destruction of the presumed pre-Bötzinger complex and the surrounding region

    PubMed Central

    Krause, K. L.; Forster, H. V.; Kiner, T.; Davis, S. E.; Bonis, J. M.; Qian, B.; Pan, L. G.

    2009-01-01

    Abrupt neurotoxic destruction of >70% of the pre-Bötzinger complex (preBötzC) in awake goats results in respiratory and cardiac failure (Wenninger JM, Pan LG, Klum L, Leekley T, Bastastic J, Hodges MR, Feroah TR, Davis S, Forster HV. J Appl Physiol 97: 1629–1636, 2004). However, in reduced preparations, rhythmic respiratory activity has been found in other areas of the brain stem (Huang Q, St. John WM. J Appl Physiol 64: 1405–1411, 1988; Janczewski WA, Feldman JL. J Physiol 570: 407–420, 2006; Lieske SP, Thoby-Brisson M, Telgkamo P, Ramierz JM. Nature Neurosci 3: 600–607, 2000; St. John WM, Bledsoe TA. J Appl Physiol 59: 684–690, 1985); thus we hypothesized that, when the preBötzC is destroyed incrementally over weeks, time-dependent plasticity within the respiratory network will result in a respiratory rhythm capable of maintaining normal blood gases. Microtubules were bilaterally implanted into the presumed preBötzC of seven goats. After recovery from surgery, studies were completed to establish baseline values for respiratory parameters. At weekly intervals, increasing volumes (in order 0.5, 1, 5, and 10 μl) of ibotenic acid (IA; 50 mM) were then injected into the preBötzC. All IA injections resulted in an acute tachypnea and dysrhythmia featuring augmented breaths, apneas, and increased breath-to-breath variation in breathing. In studies at night, apneas were nearly all central and occurred in the awake state. Breath-to-breath variation in breathing was greater (P < 0.05) during wakefulness than during non-rapid eye movement sleep. However, one week after the final IA injection, the breathing pattern, breath-to-breath variation, and arterial blood gases and pH were unchanged from baseline, but there was a 20% decrease in respiratory frequency (f) and CO2 sensitivity (P < 0.05), as well as a 40% decrease in the ventilatory response to hypoxia (P < 0.001). In subsequent histological analysis of the presumed preBötzC region of lesioned goats, it

  19. Practical advice for home blood pressure measurement

    PubMed Central

    McKay, Donald W; Godwin, Marshall; Chockalingam, Arun

    2007-01-01

    Early diagnosis of hypertension is one benefit of home blood pressure monitoring. Home measurement may also be used for the detection of masked hypertension. Home blood pressure readings have a strong correlation with risk, and the method has many advantages over office measurement in the management of hypertension, especially in patients with chronic kidney disease or diabetes. The present article provides practical advice on incorporating home blood pressure monitoring into practice. Patient education and training are discussed, as are tips to aid in the selection of devices for blood pressure measurement at home. PMID:17534466

  20. Determination of endogenous ethanol in blood and breath by gas chromatography-mass spectrometry.

    PubMed

    Jones, A W; Mårdh, G; Anggård, E

    1983-01-01

    We describe methods for the determination of endogenous ethanol in biological specimens from healthy abstaining subjects. The analytical methods were headspace gas chromatography (GC) for plasma samples and gas chromatography-mass spectometry (GC/MS) with deuterium labelled species 2H3-ethanol and 2H5-ethanol as internal standards for breath analysis. Ethanol in rebreathed air was about 10% higher than in directly analysed end-expired alveolar air. Known volumes of rebreathed air were passed through a liquid-N2 freeze trap and the volatile constituents of breath were concentrated prior to analysis by GC or GC/MS. Besides endogenous ethanol, peaks were seen on the chromatograms for methanol, acetone and acetaldehyde as well as several as yet unidentified substances. The endogenous alcohols ethanol and methanol were confirmed from their mass chromatograms and the GC/MS profile also indicated the presence of endogenous propan-1-ol. The concentration of endogenous ethanol in plasma showed wide inter-subject variations ranging from below detection limits to 1.6 micrograms/ml (34.8 mumol/l) and with mean +/- SD of 0.39 +/- 0.45 micrograms/ml (8.5 +/- 9.8 mumol/l). We aim to characterise further the role of endogenous ethanol with the main focus on dynamic aspects such as the rate of formation and turnover.

  1. Relationship between Helicobacter pylori infection estimated by 14C-urea breath test and gender, blood groups and Rhesus factor.

    PubMed

    Petrović, Milorad; Artiko, Vera; Novosel, Slavica; Ille, Tanja; Šobić-Šaranović, Dragana; Pavlović, Smiljana; Jakšić, Emilija; Stojković, Mirjana; Antić, Andrija; Obradović, Vladimir

    2011-01-01

    The aim of this study was the detection of helicobacter pylori (HP) infection and estimation of this infection relationship with age, gender, blood groups and Rhesus factor, as well as the assessment of the accuracy of the method. A total of 227 patients with gastritis were examined. Blood ABO groups and Rh positivity were determined using standard tests. Infection by HP was proved by (14)C-urea breath test and gastric biopsy. Patients were aged 20-81 years (X=51.7 years) and the presence of HP was not related to the age (P>0.05). From the total number of patients, 25/69 males and 68/158 females were HP positive. There was no significant difference between genders and HP infection (P>0.05). From the 227 investigated patients, 69 (30%) belonged to blood group O, 96 (42%) to A, 40 (18%) to B and 22 (10%) to AB. HP was detected in 27/69 patients with blood group O, 45/96 patients with blood group A, 16/40 patients with blood group B and 5/22 patients with blood group AB. There was no statistically significant difference (P>0.05) in the incidence of HP infection between these groups (proving that HP infection did not depend upon the blood groups). Also, there was no significant correlation between the presence of particular blood group in HP+ patients related to the reported frequency of the blood groups in Serbian population (0--38%, A--42%, B--15%, AB--5%). HP was found in 16/36 Rh- and in 77/191 Rh+ patients without statistical difference (P>0.05). Also, there was no significant correlation of the presence of the Rh factor in the HP positive patients to the frequency of the Rh factor in the Serbian population (84% Rh+ and 16% Rh-). The basic value of the HP+ test was slightly, but not significantly lower in comparison to the HP- patients (P>0.05). On the contrary, test values showed a highly significant difference (P<0.01) in HP+ and HP- patients. In conclusion, in adults HP infection does not depend upon the patient's age, gender, blood group type or Rh factor. In

  2. [Effects of breathing high concentrations of oxygen on changes in blood indices during bicycle exercise].

    PubMed

    Nagata, A; Yoshida, M; Fuke, T; Miyazato, I; Shiba, K

    1990-01-01

    The purpose of this study is to examine effects of hyperoxic gas mixtures on changes of blood indices during bicycle exercise of human. Oxygen-enriched gases (30% O2) were inspired during the ramp load exercise of 25 watt/min. Changes of blood indices were analyzed with Sequential Multiple Analyzer with the computer (SMAC). The improvement of exercise performance were discussed about relationship between function of hyperoxic gas and physiological mechanism. Three experimental conditions were set as follows (I) 30% O2 +N2 gases balance, (II) air (21% O2), and (III) 30% O2 +2% CO2 +N2 gases balance. Arterial blood were sampled from the radial artery of the forearm in order to analyze following items; 1) pH level, PaO2, PaCO2, and HCO3 of these blood gases, 2) Blood sugar, TG, and F-CH of the blood contents, 3) red blood corpuscle, white blood corpuscle, Hb, and Ht values, 4) LDH, CK, GOT, and GPT of the blood enzymes, 5) TP, ALB, Na, K, Ca and Cl of the electric ions. In the case of inspiring hyperoxic gases, the recovery rate of blood indices increased after this ramp load exercise remarkably, and the whole exercise metabolism were removed from acidosis tendency to alkalosis value of the resting condition significantly. At hyperoxic experimental conditions, the blood sugar and oxygen consumption were much more decreased than these at normal oxygen content one during both states of exercise and recovery times. These data of the blood indices would support strongly to the hypothesis that improvement of oxygen delivery should be depended upon the enhanced performance with the hyperoxic gases. There might be effects of the hyperoxia on the cellular metabolism and on function of the vascular muscle during those aerobic exercise.

  3. Pancreatic islet blood flow and its measurement

    PubMed Central

    Jansson, Leif; Barbu, Andreea; Bodin, Birgitta; Drott, Carl Johan; Espes, Daniel; Gao, Xiang; Grapensparr, Liza; Källskog, Örjan; Lau, Joey; Liljebäck, Hanna; Palm, Fredrik; Quach, My; Sandberg, Monica; Strömberg, Victoria; Ullsten, Sara; Carlsson, Per-Ola

    2016-01-01

    Pancreatic islets are richly vascularized, and islet blood vessels are uniquely adapted to maintain and support the internal milieu of the islets favoring normal endocrine function. Islet blood flow is normally very high compared with that to the exocrine pancreas and is autonomously regulated through complex interactions between the nervous system, metabolites from insulin secreting β-cells, endothelium-derived mediators, and hormones. The islet blood flow is normally coupled to the needs for insulin release and is usually disturbed during glucose intolerance and overt diabetes. The present review provides a brief background on islet vascular function and especially focuses on available techniques to measure islet blood perfusion. The gold standard for islet blood flow measurements in experimental animals is the microsphere technique, and its advantages and disadvantages will be discussed. In humans there are still no methods to measure islet blood flow selectively, but new developments in radiological techniques hold great hopes for the future. PMID:27124642

  4. Principles and techniques of blood pressure measurement

    PubMed Central

    Ogedegbe, Gbenga; Pickering, Thomas

    2013-01-01

    Although the mercury sphygmomanometer is widely regarded as the “gold standard” for office blood pressure measurement, the ban on use of mercury devices continues to diminish their role in office and hospital settings. To date, mercury devices have largely been phased out in US hospitals. This has led to the proliferation of non-mercury devices and has changed (probably for ever) the preferable modality of blood pressure measurement in clinic and hospital settings. In this article, the basic techniques of blood pressure measurement and the technical issues associated with measurements in clinical practice are discussed. The devices currently available for hospital and clinic measurements and their important sources of error are presented. Practical advice is given on how the different devices and measurement techniques should be used. Blood pressure measurements in different circumstances and in special populations such as infants, children, pregnant women, elderly persons, and obese subjects are discussed. PMID:20937442

  5. Relationship between oxygen supply and cerebral blood flow assessed by transcranial Doppler and near – infrared spectroscopy in healthy subjects during breath – holding

    PubMed Central

    Molinari, Filippo; Liboni, William; Grippi, Gianfranco; Negri, Emanuela

    2006-01-01

    Background Breath – holding (BH) is a suitable method for inducing cerebral vasomotor reactivity (VMR). The assessment of VMR is of clinical importance for the early detection of risk conditions and for the follow-up of disabled patients. Transcranial Doppler ultrasonography (TCD) is used to measure cerebral blood flow velocity (CBFV) during BH, whereas near-infrared spectroscopy (NIRS) measures the concentrations of the oxygenated (O2Hb) and reduced (CO2Hb) hemoglobin. The two techniques provide circulatory and functional-related parameters. The aim of the study is the analysis of the relationship between oxygen supply and CBFV as detected by TCD and NIRS in healthy subjects performing BH. Methods 20 healthy subjects (15 males and 5 females, age 33 ± 4.5 years) underwent TCD and NIRS examination during voluntary breath – holding. VMR was quantified by means of the breath-holding index (BHI). We evaluated the BHI based on mean CBFV, O2Hb and CO2Hb concentrations, relating the baseline to post-stimulus values. To quantify VMR we also computed the slope of the linear regression line of the concentration signals during BH. From the NIRS signals we also derived the bidimensional representation of VMR, plotting the instantaneous O2Hb concentration vs the CO2Hb concentration during the BH phase. Two subjects, a 30 years old current smoker female and a 63 years old male with a ischemic stroke event at the left middle cerebral artery, were tested as case studies. Results The BHI for the CBFV was equal to 1.28 ± 0.71 %/s, the BHI for the O2Hb to 0.055 ± 0.037 μmol/l/s and the BHI for CO2Hb to 0.0006 ± 0.0019 μmol/l/s, the O2Hb slope was equal to 0.15 ± 0.09 μmol/l/s and the CO2Hb slope to 0.09 ± 0.04 μmol/l/s. There was a positive correlation between the CBFV and the O2Hb increments during BH (r = 0.865). The bidimensional VMR pattern shows common features among healthy subjects that are lost in the control studies. Conclusion We show that healthy subjects

  6. Alcohol breath test: gas exchange issues.

    PubMed

    Hlastala, Michael P; Anderson, Joseph C

    2016-08-01

    The alcohol breath test is reviewed with a focus on gas exchange factors affecting its accuracy. The basis of the alcohol breath test is the assumption that alveolar air reaches the mouth during exhalation with no change in alcohol concentration. Recent investigations have shown that alcohol concentration is altered during its transit to the mouth. The exhaled alcohol concentration is modified by interaction with the mucosa of the pulmonary airways. Exhaled alcohol concentration is not an accurate indicator of alveolar alcohol concentration. Measuring alcohol concentration in the breath is very different process than measuring a blood level from air equilibrated with a blood sample. Airway exchange of alcohol leads to a bias against certain individuals depending on the anatomic and physiologic characteristics. Methodological modifications are proposed to improve the accuracy of the alcohol breath test to become fair to all. PMID:27197859

  7. Measurement and interpretation of arterial blood gases.

    PubMed

    Syabbalo, N

    1997-01-01

    Arterial blood gases and pH are routinely being measured in clinical practice, both to provide diagnosis and to guide therapy in critically ill patients. Oximetry is clinically useful in establishing the presence of hypoxaemia in patients with respiratory diseases. Oximetry is also a simple and reliable method for monitoring patients undergoing anaesthesia, sleep studies and cardiopulmonary exercise testing. The search continues for new innovative techniques for continuous transcutaneous and intra-arterial blood gas monitoring. This is essential in the management of critically ill patients because blood analysers provide only intermittent monitoring of arterial blood gases. PMID:9293061

  8. Simultaneous measurement of breathing rate and heart rate using a microbend multimode fiber optic sensor

    NASA Astrophysics Data System (ADS)

    Chen, Zhihao; Lau, Doreen; Teo, Ju Teng; Ng, Soon Huat; Yang, Xiufeng; Kei, Pin Lin

    2014-05-01

    We propose and demonstrate the feasibility of using a highly sensitive microbend multimode fiber optic sensor for simultaneous measurement of breathing rate (BR) and heart rate (HR). The sensing system consists of a transceiver, microbend multimode fiber, and a computer. The transceiver is comprised of an optical transmitter, an optical receiver, and circuits for data communication with the computer via Bluetooth. Comparative experiments conducted between the sensor and predicate commercial physiologic devices showed an accuracy of ±2 bpm for both BR and HR measurement. Our preliminary study of simultaneous measurement of BR and HR in a clinical trial conducted on 11 healthy subjects during magnetic resonance imaging (MRI) also showed very good agreement with measurements obtained from conventional MR-compatible devices.

  9. Working meeting on blood pressure measurement: suggestions for measuring blood pressure to use in populations surveys.

    PubMed

    2003-11-01

    As part of the Pan American Hypertension Initiative (PAHI), the Pan American Health Organization and the National Heart, Lung, and Blood Institute of the National Institutes of Health of the United States of America conducted a working meeting to discuss blood pressure (BP) measurement methods used in various hypertension prevalence surveys and clinical trials, with the objective of developing a BP measurement protocol for use in hypertension prevalence surveys in the Americas. No such common protocol has existed in the Americas, so it has been difficult to compare hypertension prevention and intervention strategies. This piece describes a proposed standard method for measuring blood pressure for use in population surveys in the Region of the Americas. The piece covers: considerations for developing a common blood pressure measurement protocol, critical issues in measuring blood pressure in national surveys, minimum procedures for blood pressure measurement during surveillance, and quality assessment of blood pressure.

  10. Effects of focal cooling of the ventral medullary surface on breathing pattern and blood pressure in dogs.

    PubMed

    Chonan, T; Hida, W; Okabe, S; Izumiyama, T; Sakurai, M; Takishima, T

    1991-01-01

    We assessed the effect of focal graded cooling of the ventral medullary surface (VMS) on breathing pattern and blood pressure in 15 anesthetized, vagotomized and artificially ventilated dogs. Diaphragmatic electromyogram or phrenic neurogram, referred to as Ec, and blood pressure (BP) were obtained during localized (2 x 2 mm2) cooling of the VMS. Greatest depression of both Ec and BP was obtained by cooling in the areas located 4-9 mm caudal to the foramen cecum (Fc) and lateral to the pyramids. Mild cooling in these intermediate areas decreased both inspiratory duration (Ti) and the rate of rise of Ec (Ec/Ti), but respiratory rate was unchanged. Cooling of the rostral areas (0-3 mm from Fc) induced mild depression of Ec amplitude due to reduction in Ec/Ti without changing Ti, and prolonged expiratory duration (Te) significantly. Cooling of the caudal areas (12-18 mm from Fc) reduced Ec amplitude mildly due to reduction in Ti without affecting Ec/Ti, and shortened Te greatly. Cooling of the rostral areas produced mild fall in BP, but cooling of the caudal areas did not affect BP significantly. It is suggested that rostral and intermediate parts of the VMS participate in the shaping of inspiratory drive, whereas wide areas of the VMS including caudal part are involved in the determination of respiratory timing. It is also suggested that the rostral and intermediate parts, and not the caudal part, of the VMS are important in the regulation of vasomotor tone.

  11. Retinal blood flow during hyperoxia in humans revisited: concerted results using different measurement techniques.

    PubMed

    Kiss, Barbara; Polska, Elzbieta; Dorner, Guido; Polak, Kaija; Findl, Oliver; Mayrl, Gabriele Fuchsjäger; Eichler, Hans-Georg; Wolzt, Michael; Schmetterer, Leopold

    2002-07-01

    Retinal vasculature shows pronounced vasoconstriction in response to hyperoxia, which appears to be related to the constant oxygen demand of the retina. However, the exact amount of blood flow reduction and the exact time course of this phenomenon are still a matter of debate. We set out to investigate the retinal response to hyperoxia using innovative techniques for the assessment of retinal hemodynamics. In a total of 48 healthy volunteers we studied the effect of 100% O(2) breathing on retinal blood flow using two methods. Red blood cell movement in larger retinal veins was quantified with combined laser Doppler velocimetry and retinal vessel size measurement. Retinal white blood cell movement was quantified with the blue field entoptic technique. The time course of retinal vasoconstriction in response to hyperoxia was assessed by continuous vessel size determination using the Zeiss retinal vessel analyzer. The response to hyperoxia as measured with combined laser Doppler velocimetry and vessel size measurement was almost twice as high as that observed with the blue field technique. Vasoconstriction in response to 100% O(2) breathing occurred within the first 5 min and no counterregulatory or adaptive mechanisms were observed. Based on these results we hypothesize that hyperoxia-induced vasoconstriction differentially affects red and white blood cell movement in the human retina. This hypothesis is based on the complex interactions between red and white blood cells in microcirculation, which have been described in detail for other vascular beds.

  12. Bad Breath

    MedlinePlus

    ... habits, like brushing and flossing regularly, help fight bad breath. Mouthwashes, mints or chewing gum may make your breath fresher. If you have an underlying disorder, treating it may help eliminate the breath odor.

  13. Accuracy of noninvasive breath methane measurements using Fourier transform infrared methods on individual cows.

    PubMed

    Lassen, J; Løvendahl, P; Madsen, J

    2012-02-01

    Individual methane (CH(4)) production was recorded repeatedly on 93 dairy cows during milking in an automatic milking system (AMS), with the aim of estimating individual cow differences in CH(4) production. Methane and CO(2) were measured with a portable air sampler and analyzer unit based on Fourier transform infrared (FTIR) detection. The cows were 50 Holsteins and 43 Jerseys from mixed parities and at all stages of lactation (mean=156 d in milk). Breath was captured by the FTIR unit inlet nozzle, which was placed in front of the cow's head in each of the 2 AMS as an admixture to normal barn air. The FTIR unit was running continuously for 3 d in each of 2 AMS units, 1 with Holstein and another with Jersey cows. Air was analyzed every 20 s. From each visit of a cow to the AMS, CH(4) and CO(2) records were summarized into the mean, median, 75, and 90% quantiles. Furthermore, the ratio between CH(4) and CO(2) was used as a derived measure with the idea of using CO(2) in breath as a tracer gas to quantify the production of methane. Methane production records were analyzed with a mixed model, containing cow as random effect. Fixed effects of milk yield and daily intake of the total mixed ration and concentrates were also estimated. The repeatability of the CH(4)-to-CO(2) ratio was 0.39 for Holsteins and 0.34 for Jerseys. Both concentrate intake and total mixed ration intake were positively related to CH(4) production, whereas milk production level was not correlated with CH(4) production. In conclusion, the results from this study suggest that the CH(4)-to-CO(2) ratio measured using the noninvasive method is an asset of the individual cow and may be useful in both management and genetic evaluations. PMID:22281353

  14. Measurement of Human Blood and Plasma Volumes

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Szalkay, H. G. H.

    1987-01-01

    Report reviews techniques for measuring blood-plasma volume in humans. Common technique of using radioactive iodine isotope to label plasma albumin involves unwarranted risks from low-level radiation. Report emphasizes techniques using Evans-blue-dye (T-1824) labeling of albumin, hematocrit or hemoglobin/hematocrit measurements, or blood densitometry. In Evans-blue-dye technique, plasma volume determined from decrease in dye concentration occurring after small amount of dye solution injected into circulatory system. Subjection of Evans blue dye to test for carcinogenicity gave negative results.

  15. News from the Breath Analysis Summit 2011.

    PubMed

    Corradi, Massimo; Mutti, Antonio

    2012-05-23

    This special section highlights some of the important work presented at the Breath Analysis Summit 2011, which was held in Parma (Italy) from 11 to 14 September 2011. The meeting, which was jointly organized by the International Association for Breath Research and the University of Parma, was attended by more than 250 delegates from 33 countries, and offered 34 invited lectures and 64 unsolicited scientific contributions. The summit was organized to provide a forum to scientists, engineers and clinicians to present their latest findings and to meet industry executives and entrepreneurs to discuss key trends, future directions and technologies available for breath analysis. A major focus was on nitric oxide, exhaled breath condensate, electronic nose, mass spectrometry and newer sensor technologies. Medical applications ranged from asthma and other respiratory diseases to gastrointestinal disease, occupational diseases, critical care and cancer. Most people identify breath tests with breathalysers used by police to estimate ethanol concentration in blood. However, breath testing has far more sophisticated applications. Breath analysis is rapidly evolving as a new frontier in medical testing for disease states in the lung and beyond. Every individual has a breath fingerprint-or 'breathprint'-that can provide useful information about his or her state of health. This breathprint comprises the many thousands of molecules that are expelled with each breath we exhale. Breath research in the past few years has uncovered the scientific and molecular basis for such clinical observations. Relying on mass spectrometry, we have been able to identify many such unique substances in exhaled breath, including gases, such as nitric oxide (NO) and carbon monoxide (CO), and a wide array of volatile organic compounds. Exhaled breath also carries aerosolized droplets that can be collected as an exhaled breath condensate that contains endogenously produced non-volatile compounds. Breath

  16. Noninvasive methods of measuring bone blood perfusion

    PubMed Central

    Dyke, J.P.; Aaron, R.K.

    2010-01-01

    Measurement of bone blood flow and perfusion characteristics in a noninvasive and serial manner would be advantageous in assessing revascularization after trauma and the possible risk of avascular necrosis. Many disease states, including osteoporosis, osteoarthritis, and bone neoplasms, result in disturbed bone perfusion. A causal link between bone perfusion and remodeling has shown its importance in sustained healing and regrowth following injury. Measurement of perfusion and permeability within the bone was performed with small and macromolecular contrast media, using dynamic contrast-enhanced magnetic resonance imaging in models of osteoarthritis and the femoral head. Bone blood flow and remodeling was estimated using 18F-Fluoride positron emission tomography in fracture healing and osteoarthritis. Multimodality assessment of bone blood flow, permeability, and remodeling by using noninvasive imaging techniques may provide information essential in monitoring subsequent rates of healing and response to treatment as well as identifying candidates for additional therapeutic or surgical interventions. PMID:20392223

  17. Blood glucose measurement by infrared spectroscopy.

    PubMed

    Zeller, H; Novak, P; Landgraf, R

    1989-02-01

    For the development of an implantable artificial endocrine pancreas, a sensor for blood glucose measurement is needed providing a long-term stability. This goal can be achieved by the application of infrared spectroscopy which, unlike electrochemical sensors, responds directly to the glucose molecule. An investigation under physiological conditions revealed five glucose absorption bands in the near and middle infrared range. These are 1040, 1085, 1109, 1160 and 1365 cm-1. Only the 1040 cm-1 frequency coincides with none of the other infrared-active blood substances like proteins, lipids and urea. Nevertheless, the other absorption bands too, especially the 1109 cm-1 frequency, can be used for blood glucose measurement, if the superimposed absorptions are compensated. Methods for the compensation have been found. Technically feasible embodiments of an infrared glucose sensor are described.

  18. Clinical utility of breath ammonia for evaluation of ammonia physiology in healthy and cirrhotic adults.

    PubMed

    Spacek, Lisa A; Mudalel, Matthew; Tittel, Frank; Risby, Terence H; Solga, Steven F

    2015-12-14

    Blood ammonia is routinely used in clinical settings to assess systemic ammonia in hepatic encephalopathy and urea cycle disorders. Despite its drawbacks, blood measurement is often used as a comparator in breath studies because it is a standard clinical test. We sought to evaluate sources of measurement error and potential clinical utility of breath ammonia compared to blood ammonia. We measured breath ammonia in real time by quartz enhanced photoacoustic spectrometry and blood ammonia in 10 healthy and 10 cirrhotic participants. Each participant contributed 5 breath samples and blood for ammonia measurement within 1 h. We calculated the coefficient of variation (CV) for 5 breath ammonia values, reported medians of healthy and cirrhotic participants, and used scatterplots to display breath and blood ammonia. For healthy participants, mean age was 22 years (±4), 70% were men, and body mass index (BMI) was 27 (±5). For cirrhotic participants, mean age was 61 years (±8), 60% were men, and BMI was 31 (±7). Median blood ammonia for healthy participants was within normal range, 10 μmol L(-1) (interquartile range (IQR), 3-18) versus 46 μmol L(-1) (IQR, 23-66) for cirrhotic participants. Median breath ammonia was 379 pmol mL(-1) CO2 (IQR, 265-765) for healthy versus 350 pmol mL(-1) CO2 (IQR, 180-1013) for cirrhotic participants. CV was 17  ±  6%. There remains an important unmet need in the evaluation of systemic ammonia, and breath measurement continues to demonstrate promise to fulfill this need. Given the many differences between breath and blood ammonia measurement, we examined biological explanations for our findings in healthy and cirrhotic participants. We conclude that based upon these preliminary data breath may offer clinically important information this is not provided by blood ammonia.

  19. Clinical utility of breath ammonia for evaluation of ammonia physiology in healthy and cirrhotic adults

    PubMed Central

    Spacek, Lisa A; Mudalel, Matthew; Tittel, Frank; Risby, Terence H; Solga, Steven F

    2016-01-01

    Blood ammonia is routinely used in clinical settings to assess systemic ammonia in hepatic encephalopathy and urea cycle disorders. Despite its drawbacks, blood measurement is often used as a comparator in breath studies because it is a standard clinical test. We sought to evaluate sources of measurement error and potential clinical utility of breath ammonia compared to blood ammonia. We measured breath ammonia in real time by quartz enhanced photoacoustic spectrometry and blood ammonia in 10 healthy and 10 cirrhotic participants. Each participant contributed 5 breath samples and blood for ammonia measurement within 1 h. We calculated the coefficient of variation (CV) for 5 breath ammonia values, reported medians of healthy and cirrhotic participants, and used scatterplots to display breath and blood ammonia. For healthy participants, mean age was 22 years (±4), 70% were men, and body mass index (BMI) was 27 (±5). For cirrhotic participants, mean age was 61 years (±8), 60% were men, and BMI was 31 (±7). Median blood ammonia for healthy participants was within normal range, 10 μmol L−1 (interquartile range (IQR), 3–18) versus 46 μmol L−1 (IQR, 23–66) for cirrhotic participants. Median breath ammonia was 379 pmol mL−1 CO2 (IQR, 265–765) for healthy versus 350 pmol mL−1 CO2 (IQR, 180–1013) for cirrhotic participants. CV was 17 ± 6%. There remains an important unmet need in the evaluation of systemic ammonia, and breath measurement continues to demonstrate promise to fulfill this need. Given the many differences between breath and blood ammonia measurement, we examined biological explanations for our findings in healthy and cirrhotic participants. We conclude that based upon these preliminary data breath may offer clinically important information this is not provided by blood ammonia. PMID:26658550

  20. Multiplex analysis inflammatory cytokines in human blood, breath condensate, and urine matrices

    EPA Science Inventory

    Scientific evidence suggests that inflammation is associated with human health effects and health endpoints, yet most studies have focused on human populations that are already considered “unhealthy”.  As such, it is pertinent to measure inflammatory biomarkers in human biologica...

  1. Reliable noninvasive measurement of blood gases

    DOEpatents

    Thomas, Edward V.; Robinson, Mark R.; Haaland, David M.; Alam, Mary K.

    1994-01-01

    Methods and apparatus for, preferably, determining noninvasively and in vivo at least two of the five blood gas parameters (i.e., pH, PCO.sub.2, [HCO.sub.3.sup.- ], PO.sub.2, and O.sub.2 sat.) in a human. The non-invasive method includes the steps of: generating light at three or more different wavelengths in the range of 500 nm to 2500 nm; irradiating blood containing tissue; measuring the intensities of the wavelengths emerging from the blood containing tissue to obtain a set of at least three spectral intensities v. wavelengths; and determining the unknown values of at least two of pH, [HCO.sub.3.sup.- ], PCO.sub.2 and a measure of oxygen concentration. The determined values are within the physiological ranges observed in blood containing tissue. The method also includes the steps of providing calibration samples, determining if the spectral intensities v. wavelengths from the tissue represents an outlier, and determining if any of the calibration samples represents an outlier. The determination of the unknown values is performed by at least one multivariate algorithm using two or more variables and at least one calibration model. Preferably, there is a separate calibration for each blood gas parameter being determined. The method can be utilized in a pulse mode and can also be used invasively. The apparatus includes a tissue positioning device, a source, at least one detector, electronics, a microprocessor, memory, and apparatus for indicating the determined values.

  2. Method for measuring lead concentrations in blood

    DOEpatents

    Nogar, Nicholas S.

    2001-01-01

    Method for measuring lead concentrations in blood. The present invention includes the use of resonant laser ablation to analyze .ltoreq.1 .mu.L (or equivalent mass) samples of blood for lead content. A typical finger prick, for example, yields about 10 .mu.L. Solid samples may also readily be analyzed by resonant laser ablation. The sample is placed on a lead-free, electrically conducting substrate and irradiated with a single, focused laser beam which simultaneously vaporizes, atomizes, and resonantly ionizes an analyte of interest in a sample. The ions are then sorted, collected and detected using a mass spectrometer.

  3. Measuring vascular reactivity with breath-holds after stroke: a method to aid interpretation of group-level BOLD signal changes in longitudinal fMRI studies.

    PubMed

    Geranmayeh, Fatemeh; Wise, Richard J S; Leech, Robert; Murphy, Kevin

    2015-05-01

    Blood oxygenation level-dependent (BOLD) contrast functional magnetic resonance imaging (fMRI) is a widely used technique to map brain function, and to monitor its recovery after stroke. Since stroke has a vascular etiology, the neurovascular coupling between cerebral blood flow and neural activity may be altered, resulting in uncertainties when interpreting longitudinal BOLD signal changes. The purpose of this study was to demonstrate the feasibility of using a recently validated breath-hold task in patients with stroke, both to assess group level changes in cerebrovascular reactivity (CVR) and to determine if alterations in regional CVR over time will adversely affect interpretation of task-related BOLD signal changes. Three methods of analyzing the breath-hold data were evaluated. The CVR measures were compared over healthy tissue, infarcted tissue and the peri-infarct tissue, both sub-acutely (∼2 weeks) and chronically (∼4 months). In this cohort, a lack of CVR differences in healthy tissue between the patients and controls indicates that any group level BOLD signal change observed in these regions over time is unlikely to be related to vascular alterations. CVR was reduced in the peri-infarct tissue but remained unchanged over time. Therefore, although a lack of activation in this region compared with the controls may be confounded by a reduced CVR, longitudinal group-level BOLD changes may be more confidently attributed to neural activity changes in this cohort. By including this breath-hold-based CVR assessment protocol in future studies of stroke recovery, researchers can be more assured that longitudinal changes in BOLD signal reflect true alterations in neural activity.

  4. Use of short-term breath measures to estimate daily methane production by cattle.

    PubMed

    Velazco, J I; Mayer, D G; Zimmerman, S; Hegarty, R S

    2016-01-01

    Methods to measure enteric methane (CH4) emissions from individual ruminants in their production environment are required to validate emission inventories and verify mitigation claims. Estimates of daily methane production (DMP) based on consolidated short-term emission measurements are developing, but method verification is required. Two cattle experiments were undertaken to test the hypothesis that DMP estimated by averaging multiple short-term breath measures of methane emission rate did not differ from DMP measured in respiration chambers (RC). Short-term emission rates were obtained from a GreenFeed Emissions Monitoring (GEM) unit, which measured emission rate while cattle consumed a dispensed supplement. In experiment 1 (Expt. 1), four non-lactating cattle (LW=518 kg) were adapted for 18 days then measured for six consecutive periods. Each period consisted of 2 days of ad libitum intake and GEM emission measurement followed by 1 day in the RC. A prototype GEM unit releasing water as an attractant (GEM water) was also evaluated in Expt. 1. Experiment 2 (Expt. 2) was a larger study based on similar design with 10 cattle (LW=365 kg), adapted for 21 days and GEM measurement was extended to 3 days in each of the six periods. In Expt. 1, there was no difference in DMP estimated by the GEM unit relative to the RC (209.7 v. 215.1 g CH(4)/day) and no difference between these methods in methane yield (MY, 22.7 v. 23.7 g CH(4)/kg of dry matter intake, DMI). In Expt. 2, the correlation between GEM and RC measures of DMP and MY were assessed using 95% confidence intervals, with no difference in DMP or MY between methods and high correlations between GEM and RC measures for DMP (r=0.85; 215 v. 198 g CH(4)/day SEM=3.0) and for MY (r=0.60; 23.8 v. 22.1 g CH(4)/kg DMI SEM=0.42). When data from both experiments was combined neither DMP nor MY differed between GEM- and RC-based measures (P>0.05). GEM water-based estimates of DMP and MY were lower than RC and GEM (P<0

  5. Effect of tubing deposition, breathing pattern, and temperature on aerosol mass distribution measured by cascade impactor.

    PubMed

    Gurses, Burak K; Smaldone, Gerald C

    2003-01-01

    Aerosols produced by nebulizers are often characterized on the bench using cascade impactors. We studied the effects of connecting tubing, breathing pattern, and temperature on mass-weighted aerodynamic particle size aerosol distributions (APSD) measured by cascade impaction. Our experimental setup consisted of a piston ventilator, low-flow (1.0 L/min) cascade impactor, two commercially available nebulizers that produced large and small particles, and two "T"-shaped tubes called "Tconnector(cascade)" and "Tconnector(nebulizer)" placed above the impactor and the nebulizer, respectively. Radiolabeled normal saline was nebulized using an airtank at 50 PSIG; APSD, mass balance, and Tconnector(cascade) deposition were measured with a gamma camera and radioisotope calibrator. Flow through the circuit was defined by the air tank (standing cloud, 10 L/min) with or without a piston pump, which superimposed a sinusoidal flow on the flow from the air tank (tidal volume and frequency of breathing). Experiments were performed at room temperature and in a cooled environment. With increasing tidal volume and frequency, smaller particles entered the cascade impactor (decreasing MMAD; e.g., Misty-Neb, 4.2 +/- 0.9 microm at lowest ventilation and 2.7 +/- 0.1 microm at highest, p = 0.042). These effects were reduced in magnitude for the nebulizer that produced smaller particles (AeroTech II, MMAD 1.8 +/- 0.1 to 1.3 +/- 0.1 microm; p = 0.0044). Deposition on Tconnector(cascade) increased with ventilation but was independent of cascade impactor flow. Imaging of the Tconnector(cascade) revealed a pattern of deposition unaffected by cascade impactor flow. These measurements suggest that changes in MMAD with ventilation were not artifacts of tubing deposition in the Tconnector(cascade). At lower temperatures, APSD distributions were more polydisperse. Our data suggest that, during patient inhalation, changes in particle distribution occur that are related to conditions in the tubing and

  6. An underwater blood pressure measuring device.

    PubMed

    Sieber, Arne; Kuch, Benjamin; L'abbate, Antonio; Wagner, Matthias; Dario, Paolo; Bedini, Remo

    2008-09-01

    Measurement of arterial blood pressure is an important vital sign for monitoring the circulation. However, up to now no instrument has been available that enables the measurement of blood pressure underwater. The present paper details a novel, oscillometric, automatic digital blood pressure (BP) measurement device especially designed for this purpose. It consists mainly of analogue and digital electronics in a lexan housing that is rated to a depth of up to 200 metres' sea water, a cuff and a solenoid for inflation of the cuff with air supplied from a scuba tank. An integrated differential pressure sensor, exposed to the same ambient pressure as the cuff, allows accurate BP measurement. Calculation of systolic and diastolic pressures is based on the analysis of pressure oscillations recorded during the deflation. In hyperbaric chamber tests to pressures up to 405 kPa, BP measurements taken with the prototype were comparable to those obtained with established manual and automated methods. Swimming pool tests confirmed the correct functioning of the system underwater. The quality of the recorded pressure oscillations was very good even at 10 metres' fresh water, and allowed determination of diastolic and systolic pressure values. Based on these results we envisage that this device will lead to a better understanding of human cardiovascular physiology in underwater and hyperbaric environments.

  7. Modern approaches to blood pressure measurement

    PubMed Central

    Staessen, J.; O'Brien, E.; Thijs, L.; Fagard, R.

    2000-01-01

    BACKGROUND—Blood pressure (BP) is usually measured by conventional sphygmomanometry. Although apparently simple, this procedure is fraught with many potential sources of error. This review focuses on two alternative techniques of BP measurement: ambulatory monitoring and self measurement.
REVIEW—BP values obtained by ambulatory monitoring or self measurement are characterised by high reproducibility, are not subject to digit preference or observer bias, and minimise the transient rise of the blood pressure in response to the surroundings of the clinic or the presence of the observer, the so called white coat effect. For ambulatory monitoring, the upper limits of systolic/diastolic normotension in adults include 130/80 mm Hg for the 24 hour BP and 135/85 and 120/70 mm Hg for the daytime BP and night time BP, respectively. For the the self measured BP these thresholds include 135/85 mm Hg. Automated BP measurement is most useful to identify patients with white coat hypertension. Whether or not white coat hypertension predisposes to sustained hypertension remains debated. However, outcome is better correlated with the ambulatory BP than with the conventional BP. In patients with white coat hypertension, antihypertensive drugs lower the BP in the clinic, but not the ambulatory BP, and also do not improve prognosis. Ambulatory BP monitoring is also better than conventional BP measurement in assessing the effects of treatment. Ambulatory BP monitoring is necessary to diagnose nocturnal hypertension and is especially indicated in patients with borderline hypertension, elderly patients, pregnant women, patients with treatment resistant hypertension, and also in patients with symptoms suggestive of hypotension.
CONCLUSIONS—The newer techniques of BP measurement are now well established in clinical research, for diagnosis in clinical practice, and will increasingly make their appearance in occupational and environmental medicine.


Keywords: ambulatory blood

  8. Evaluation of breathing interplay effects during VMAT by using 3D gel measurements

    NASA Astrophysics Data System (ADS)

    Ceberg, S.; Ceberg, C.; Falk, M.; Rosenschöld, P. Munk af; Bäck, S. ÅJ

    2013-06-01

    Respiratory motion during dynamic radiotherapy may affect the absorbed dose distribution both by dose-reducing smoothing and by more complicated interplay effects. In this study we present a novel method to determine the relative importance of these two effects. For the two dynamic deliveries studied in this work, the expected target dose reduction due to the smoothing effect was estimated by measurements convolved by the motion function. Remaining absorbed dose differences were attributed to interplay effects between the motion of the gel phantom and the movement of the modulating MLC leaves during modulated arc radiotherapy. The total dosimetric effect due to breathing motion and dynamic MLC motion during VMAT delivery resulted in an average of about 4% target dose reduction. Comparing with only the smoothing effect, the average difference was decreased to around 1%, and the remaining distribution was attributed to interplay effects. Although the interplay effects were small compared to the smoothing effect, the standard deviations of 1.4-2.3% (1SD) were larger than the narrow distribution for repeated stationary measurement with a standard deviation between 0.5-0.9% (1SD).

  9. ENHANCED CONCENTRATION AND ANALYSIS METHOD FOR MEASURING WATER SOLUABLE ENDOGENOUS COMPOUNDS IN HUMAN BREATH

    EPA Science Inventory

    Exhaled human breath analysis has become a standard technique for assessing exposure to exogenous volatile organic compounds (VOCs) such as trihalomethanes from water chlorination; aromatics, hydrocarbons, and oxygenates from fuels usage; and various chlorinated solvents from i...

  10. Laboratory and field evaluation of a SAW microsensor array for measuring perchloroethylene in breath.

    PubMed

    Groves, William A; Achutan, Chandran

    2004-12-01

    This article describes the laboratory and field performance evaluation of a small prototype instrument employing an array of six polymer-coated surface acoustic wave (SAW) sensors and a thermal desorption preconcentration unit for rapid analysis of perchloroethylene in breath. Laboratory calibrations were performed using breath samples spiked with perchloroethylene to prepare calibration standards spanning a concentration range of 0.1-10 ppm. A sample volume of 250 mL was preconcentrated on 40 mg of Tenax GR at a flow rate of 100 mL/min, followed by a dry air purge and thermal desorption at a temperature of 200 degrees C. The resulting pulse of vapor was passed over the sensor array at a flow rate of 20 mL/min and sensor responses were recorded and displayed using a laptop computer. The total time per analysis was 4.5 min. SAW sensor responses were linear, and the instrument's limit of detection was estimated to be 50 ppb based on the criterion that four of the six sensors show a detectable response. Field performance was evaluated at a commercial dry-cleaning operation by comparing prototype instrument results for breath samples with those of a portable gas chromatograph (NIOSH 3704). Four breath samples were collected from a single subject over the course of the workday and analyzed using the portable gas chromatograph (GC) and SAW instruments. An additional seven spiked breath samples were prepared and analyzed so that a broader range of perchloroethylene concentrations could be examined. Linear regression analysis showed excellent agreement between prototype instrument and portable GC breath sample results with a correlation coefficient of 0.99 and a slope of 1.04. The average error for the prototype instrument over a perchloroethylene breath concentration range of 0.9-7.2 ppm was 2.6% relative to the portable GC. These results demonstrate the field capabilities of SAW microsensor arrays for rapid analysis of organic vapors in breath.

  11. Additional Value of CH4 Measurement in a Combined 13C/H2 Lactose Malabsorption Breath Test: A Retrospective Analysis

    PubMed Central

    Houben, Els; De Preter, Vicky; Billen, Jaak; Van Ranst, Marc; Verbeke, Kristin

    2015-01-01

    The lactose hydrogen breath test is a commonly used, non-invasive method for the detection of lactose malabsorption and is based on an abnormal increase in breath hydrogen (H2) excretion after an oral dose of lactose. We use a combined 13C/H2 lactose breath test that measures breath 13CO2 as a measure of lactose digestion in addition to H2 and that has a better sensitivity and specificity than the standard test. The present retrospective study evaluated the results of 1051 13C/H2 lactose breath tests to assess the impact on the diagnostic accuracy of measuring breath CH4 in addition to H2 and 13CO2. Based on the 13C/H2 breath test, 314 patients were diagnosed with lactase deficiency, 138 with lactose malabsorption or small bowel bacterial overgrowth (SIBO), and 599 with normal lactose digestion. Additional measurement of CH4 further improved the accuracy of the test as 16% subjects with normal lactose digestion and no H2-excretion were found to excrete CH4. These subjects should have been classified as subjects with lactose malabsorption or SIBO. In conclusion, measuring CH4-concentrations has an added value to the 13C/H2 breath test to identify methanogenic subjects with lactose malabsorption or SIBO. PMID:26371034

  12. A simultaneous single breath measurement of pulmonary diffusing capacity with nitric oxide and carbon monoxide.

    PubMed

    Borland, C D; Higenbottam, T W

    1989-01-01

    Pulmonary diffusing capacity (DL) for carbon monoxide (CO) and nitric oxide (NO) were simultaneously measured in man using the single breath method, by adding 4O ppm of NO to the inspired gas and analysing the expirate for NO by a chemiluminescent method. The mean ratio of DLNO to DLCO in thirteen subjects was 4.3 (SD 0.3), mean DLNO = 49 mmol.min-1.kPa-1 (SD 10) and mean DLCO = 11 mmol.min-1.kPa-1 (SD 2). An increase in alveolar oxygen concentration from a mean of 18 to 68% in five subjects was associated with a 54% fall in DLCO but no change in DLNO. A reduction of lung volume from total lung capacity (TLC) (mean of 7 l) to a mean volume of 3.9 l in five subjects caused a fall in both DLNO (by 34%) and DLCO (by 8%). With 175 watts cycle exercise in three subjects the DLCO rose by 45% and DLNO by 25%. Since NO reacts much faster with haemoglobin than CO, DLNO should be influenced much less by reaction with haemoglobin, and perhaps represents a better index for the diffusing capacity of the alveolar-capillary membrane (Dm) than DLCO.

  13. 21 CFR 864.5950 - Blood volume measuring device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Blood volume measuring device. 864.5950 Section... § 864.5950 Blood volume measuring device. (a) Identification. A blood volume measuring device is a..., and total blood volume. (b) Classification. Class II (performance standards)....

  14. 21 CFR 864.5950 - Blood volume measuring device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Blood volume measuring device. 864.5950 Section... § 864.5950 Blood volume measuring device. (a) Identification. A blood volume measuring device is a..., and total blood volume. (b) Classification. Class II (performance standards)....

  15. 21 CFR 864.5950 - Blood volume measuring device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Blood volume measuring device. 864.5950 Section... § 864.5950 Blood volume measuring device. (a) Identification. A blood volume measuring device is a..., and total blood volume. (b) Classification. Class II (performance standards)....

  16. 21 CFR 864.5950 - Blood volume measuring device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Blood volume measuring device. 864.5950 Section... § 864.5950 Blood volume measuring device. (a) Identification. A blood volume measuring device is a..., and total blood volume. (b) Classification. Class II (performance standards)....

  17. 21 CFR 864.5950 - Blood volume measuring device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Blood volume measuring device. 864.5950 Section... § 864.5950 Blood volume measuring device. (a) Identification. A blood volume measuring device is a..., and total blood volume. (b) Classification. Class II (performance standards)....

  18. Study of the correlations between fractional exhaled nitric oxide in exhaled breath and atopic status, blood eosinophils, FCER2 mutation, and asthma control in Vietnamese children

    PubMed Central

    Nguyen-Thi-Bich, Hanh; Duong-Thi-Ly, Huong; Thom, Vu Thi; Pham-Thi-Hong, Nhung; Dinh, Long Doan; Le-Thi-Minh, Huong; Craig, Timothy John; Duong-Quy, Sy

    2016-01-01

    Introduction Fractional exhaled nitric oxide (FENO) is a biomarker of airway inflammation in asthma. The measurement of FENO is utilized to assist in the diagnosis and treatment of children with asthma, especially for those treated with inhaled corticosteroids. Objectives The aims of this study were to evaluate the correlations between FENO and atopic status, blood eosinophil levels, FCER2 mutation, and asthma control in Vietnamese children. Subjects and methods This was a prospective and descriptive study approved by the local Ethical Board. All children with uncontrolled asthma, seen in the National Hospital of Pediatrics (Hanoi, Vietnam), were included. Exhaled breath FENO, blood eosinophils, skin prick test, total IgE, asthma control test (ACT), and FCER2 gene polymorphism were performed at inclusion. They were followed up at 3 months to evaluate clinical status, FENO levels, and ACT. Results Forty-two children with uncontrolled asthma with a mean age of 10±3 years (6–16 years) were included. The male/female ratio was 2.5/1. The mean FENO levels were 26±25 ppb. FENO was significantly higher in patients with a positive skin prick test for respiratory allergens (P<0.05). FENO was significantly correlated with blood eosinophil levels (r=0.5217; P=0.0004). Five of the 32 subjects (15.6%) had a mutation of FCER2 gene (rs28364072 SNP). In this group, the levels of FENO were highest (37±10 ppb; P<0.05). The levels of FENO were significantly decreased after 3 months of treatment (17±8 ppb vs 26±25 ppb; P<0.05). Significant correlations between inhaled corticosteroid doses and FENO levels occurred at 1 and 3 months (r=0.415, P=0.007; r=0.396, P=0.010; respectively). There were no correlations between FENO levels, ACT, and daily use of salbutamol. After 3 months, asthma remained uncontrolled in 22.2% of children. Conclusion The measurement of FENO levels is a useful and feasible tool to predict clinical, biological, and asthma control in Vietnamese children. PMID

  19. Study of the correlations between fractional exhaled nitric oxide in exhaled breath and atopic status, blood eosinophils, FCER2 mutation, and asthma control in Vietnamese children

    PubMed Central

    Nguyen-Thi-Bich, Hanh; Duong-Thi-Ly, Huong; Thom, Vu Thi; Pham-Thi-Hong, Nhung; Dinh, Long Doan; Le-Thi-Minh, Huong; Craig, Timothy John; Duong-Quy, Sy

    2016-01-01

    Introduction Fractional exhaled nitric oxide (FENO) is a biomarker of airway inflammation in asthma. The measurement of FENO is utilized to assist in the diagnosis and treatment of children with asthma, especially for those treated with inhaled corticosteroids. Objectives The aims of this study were to evaluate the correlations between FENO and atopic status, blood eosinophil levels, FCER2 mutation, and asthma control in Vietnamese children. Subjects and methods This was a prospective and descriptive study approved by the local Ethical Board. All children with uncontrolled asthma, seen in the National Hospital of Pediatrics (Hanoi, Vietnam), were included. Exhaled breath FENO, blood eosinophils, skin prick test, total IgE, asthma control test (ACT), and FCER2 gene polymorphism were performed at inclusion. They were followed up at 3 months to evaluate clinical status, FENO levels, and ACT. Results Forty-two children with uncontrolled asthma with a mean age of 10±3 years (6–16 years) were included. The male/female ratio was 2.5/1. The mean FENO levels were 26±25 ppb. FENO was significantly higher in patients with a positive skin prick test for respiratory allergens (P<0.05). FENO was significantly correlated with blood eosinophil levels (r=0.5217; P=0.0004). Five of the 32 subjects (15.6%) had a mutation of FCER2 gene (rs28364072 SNP). In this group, the levels of FENO were highest (37±10 ppb; P<0.05). The levels of FENO were significantly decreased after 3 months of treatment (17±8 ppb vs 26±25 ppb; P<0.05). Significant correlations between inhaled corticosteroid doses and FENO levels occurred at 1 and 3 months (r=0.415, P=0.007; r=0.396, P=0.010; respectively). There were no correlations between FENO levels, ACT, and daily use of salbutamol. After 3 months, asthma remained uncontrolled in 22.2% of children. Conclusion The measurement of FENO levels is a useful and feasible tool to predict clinical, biological, and asthma control in Vietnamese children.

  20. Personal exposures, indoor-outdoor relationships, and breath levels of toxic air pollutants measured for 355 persons in New Jersey

    NASA Astrophysics Data System (ADS)

    Wallace, Lance A.; Pellizzari, Edo D.; Hartwell, Ty D.; Sparacino, Charles M.; Sheldon, Linda S.; Zelon, Harvey

    EPA's TEAM Study has measured exposures to 20 volatile organic compounds in personal air, outdoor air, drinking water and the breath of 355 persons in NJ, in the fall of 1981. The NJ residents were selected by a probability sampling scheme to represent 128,000 inhabitants of Elizabeth and Bayonne. Participants carried a personal monitor to collect two 12-h air samples and gave a breath sample at the end of the day. Two consecutive 12-h outdoor air samples were also collected on identical Tenax cartridges in the back yards of 90 of the participants. About 3000 samples were collected, of which 1000 were quality control samples. Eleven compounds were often present in air. Personal exposures were consistently higher than outdoor concentrations for these chemicals, and were sometimes ten times the outdoor concentrations. Indoor sources appeared responsible for much of the difference. Breath concentrations also usually exceed outdoor concentrations, and correlated more strongly with personal exposures than with outdoor concentrations. Some activities (smoking, driving, visiting dry cleaners or service stations) and occupations (chemical, paint and plastics plants) were associated with significantly elevated exposures and breath levels for certain toxic chemicals.

  1. From breathing to respiration.

    PubMed

    Fitting, Jean-William

    2015-01-01

    The purpose of breathing remained an enigma for a long time. The Hippocratic school described breathing patterns but did not associate breathing with the lungs. Empedocles and Plato postulated that breathing was linked to the passage of air through pores of the skin. This was refuted by Aristotle who believed that the role of breathing was to cool the heart. In Alexandria, breakthroughs were accomplished in the anatomy and physiology of the respiratory system. Later, Galen proposed an accurate description of the respiratory muscles and the mechanics of breathing. However, his heart-lung model was hampered by the traditional view of two non-communicating vascular systems - veins and arteries. After a period of stagnation in the Middle Ages, knowledge progressed with the discovery of pulmonary circulation. The comprehension of the purpose of breathing progressed by steps thanks to Boyle and Mayow among others, and culminated with the contribution of Priestley and the discovery of oxygen by Lavoisier. Only then was breathing recognized as fulfilling the purpose of respiration, or gas exchange. A century later, a controversy emerged concerning the active or passive transfer of oxygen from alveoli to the blood. August and Marie Krogh settled the dispute, showing that passive diffusion was sufficient to meet the oxygen needs.

  2. From breathing to respiration.

    PubMed

    Fitting, Jean-William

    2015-01-01

    The purpose of breathing remained an enigma for a long time. The Hippocratic school described breathing patterns but did not associate breathing with the lungs. Empedocles and Plato postulated that breathing was linked to the passage of air through pores of the skin. This was refuted by Aristotle who believed that the role of breathing was to cool the heart. In Alexandria, breakthroughs were accomplished in the anatomy and physiology of the respiratory system. Later, Galen proposed an accurate description of the respiratory muscles and the mechanics of breathing. However, his heart-lung model was hampered by the traditional view of two non-communicating vascular systems - veins and arteries. After a period of stagnation in the Middle Ages, knowledge progressed with the discovery of pulmonary circulation. The comprehension of the purpose of breathing progressed by steps thanks to Boyle and Mayow among others, and culminated with the contribution of Priestley and the discovery of oxygen by Lavoisier. Only then was breathing recognized as fulfilling the purpose of respiration, or gas exchange. A century later, a controversy emerged concerning the active or passive transfer of oxygen from alveoli to the blood. August and Marie Krogh settled the dispute, showing that passive diffusion was sufficient to meet the oxygen needs. PMID:25532022

  3. Breathing Problems

    MedlinePlus

    ... re not getting enough air. Sometimes mild breathing problems are from a stuffy nose or hard exercise. ... emphysema or pneumonia cause breathing difficulties. So can problems with your trachea or bronchi, which are part ...

  4. Determination of breath acetone in 149 type 2 diabetic patients using a ringdown breath-acetone analyzer.

    PubMed

    Sun, Meixiu; Chen, Zhuying; Gong, Zhiyong; Zhao, Xiaomeng; Jiang, Chenyu; Yuan, Yuan; Wang, Zhennang; Li, Yingxin; Wang, Chuji

    2015-02-01

    Over 90% of diabetic patients have Type 2 diabetes. Although an elevated mean breath acetone concentration has been found to exist in Type 1 diabetes (T1D), information on breath acetone in Type 2 diabetes (T2D) has yet to be obtained. In this study, we first used gas chromatography-mass spectrometry (GC-MS) to validate a ringdown breath-acetone analyzer based on the cavity-ringdown-spectroscopy technique, through comparing breath acetone concentrations in the range 0.5-2.5 ppm measured using both methods. The linear fitting of R = 0.99 suggests that the acetone concentrations obtained using both methods are consistent with a largest standard deviation of ±0.4 ppm in the lowest concentration of the range. Next, 620 breath samples from 149 T2D patients and 42 healthy subjects were collected and tested using the breath analyzer. Four breath samples were taken from each subject under each of four different conditions: fasting, 2 h post-breakfast, 2 h post-lunch, and 2 h post-dinner. Simultaneous blood glucose levels were also measured using a standard diabetic-management blood-glucose meter. For the 149 T2D subjects, their exhaled breath acetone concentrations ranged from 0.1 to 19.8 ppm; four different ranges of breath acetone concentration, 0.1-19.8, 0.1-7.1, 0.1-6.3, and 0.1-9.5 ppm, were obtained for the subjects under the four different conditions, respectively. For the 42 healthy subjects, their breath acetone concentration ranged from 0.1 to 2.6 ppm; four different ranges of breath acetone concentration, 0.3-2.6, 0.1-2.6, 0.1-1.7, and 0.3-1.6 ppm, were obtained for the four different conditions. The mean breath acetone concentration of the 149 T2D subjects was determined to be 1.5 ± 1.5 ppm, which was 1.5 times that of 1.0 ± 0.6 ppm for the 42 healthy subjects. No correlation was found between the breath acetone concentration and the blood glucose level of the T2D subjects and the healthy volunteers. This study using a relatively large number of

  5. Response of Retinal Blood Flow to Systemic Hyperoxia as Measured with Dual-Beam Bidirectional Doppler Fourier-Domain Optical Coherence Tomography

    PubMed Central

    Werkmeister, René M.; Palkovits, Stefan; Told, Reinhard; Gröschl, Martin; Leitgeb, Rainer A.; Garhöfer, Gerhard; Schmetterer, Leopold

    2012-01-01

    Purpose There is a long-standing interest in the study of retinal blood flow in humans. In the recent years techniques have been established to measure retinal perfusion based on optical coherence tomography (OCT). In the present study we used a technique called dual-beam bidirectional Doppler Fourier-domain optical coherence tomography (FD-OCT) to characterize the effects of 100% oxygen breathing on retinal blood flow. These data were compared to data obtained with a laser Doppler velocimeter (LDV). Methods 10 healthy subjects were studied on 2 study days. On one study day the effect of 100% oxygen breathing on retinal blood velocities was studied using dual-beam bidirectional Doppler FD-OCT. On the second study day the effect of 100% oxygen breathing on retinal blood velocities was assessed by laser Doppler velocimetry (LDV). Retinal vessel diameters were measured on both study days using a commercially available Dynamic Vessel Analyzer. Retinal blood flow was calculated based on retinal vessel diameters and red blood cell velocity. Results As expected, breathing of pure oxygen induced a pronounced reduction in retinal vessel diameters, retinal blood velocities and retinal blood flow on both study days (p<0.001). Blood velocity data correlated well between the two methods applied under both baseline as well as under hyperoxic conditions (r = 0.98 and r = 0.75, respectively). Data as obtained with OCT were, however, slightly higher. Conclusion A good correlation was found between red blood cell velocity as measured with dual-beam bidirectional Doppler FD-OCT and red blood cell velocity assessed by the laser Doppler method. Dual-beam bidirectional Doppler FD-OCT is a promising approach for studying retinal blood velocities in vivo. PMID:23029289

  6. Measurement of Liver Blood Flow: A Review

    PubMed Central

    Stansby, G. P.; Hobbs, K. E. F.; Hawkes, D. J.; Colchester, A. C. F.

    1991-01-01

    The study of hepatic haemodynamics is of importance in understanding both hepatic physiology and disease processes as well as assessing the effects of portosystemic shunting and liver transplantation. The liver has the most complicated circulation of any organ and many physiological and pathological processes can affect it1,2. This review surveys the methods available for assessing liver blood flow, examines the different parameters being measured and outlines problems of applicability and interpretation for each technique. The classification of these techniques is to some extent arbitrary and several so called “different” methods may share certain common principles. The methods reviewed have been classified into two groups (Table 1): those primarily reflecting flow through discrete vessels or to the whole organ and those used to assess local microcirculatory blood flow. All techniques have their advantages and disadvantages and in some situations a combination may provide the most information. In addition, because of the many factors affecting liver blood flow and sinusoidal perfusion, readings in a single subject may vary depending on positioning, recent food intake, anxiety, anaesthesia and drug therapy. This must be borne in mind if different studies are to be meaningfully compared. PMID:1931785

  7. Blood Glucose Measurements in Critically Ill Patients

    PubMed Central

    Van Herpe, Tom; Mesotten, Dieter

    2012-01-01

    Studies on tight glycemic control by intensive insulin therapy abruptly changed the climate of limited interest in the problem of hyperglycemia in critically ill patients and reopened the discussion on accuracy and reliability of glucose sensor devices. This article describes important components of blood glucose measurements and their interferences with the focus on the intensive care unit setting. Typical methodologies, organized from analytical accuracy to clinical accuracy, to assess imprecision and bias of a glucose sensor are also discussed. Finally, a list of recommendations and requirements to be considered when evaluating (time-discrete) glucose sensor devices is given. PMID:22401319

  8. Design and optimization of a widely tunable semiconductor laser for blood oxygenation and blood flow measurements

    NASA Astrophysics Data System (ADS)

    Feng, Yafei; Deng, Haoyu; Song, Guangyi; He, Jian-Jun

    2014-11-01

    A method for measuring blood oxygenation and blood flow rate using a single widely tunable semiconductor laser is proposed and investigated. It is shown that a 700-nm-band tunable laser gives the highest sensitivity for blood oxygen measurement. The corresponding tunable laser is designed using the V-coupled cavity structure. The wavelength tuning range can reach 8 nm, which is sufficient for the blood oxygenation measurement in the 700-nm-band by using the Beer- Lambert law. In contrast to conventional blood oxygenation measurement method based on two LEDs, the laser can be used at the same time to measure the blood flow rate based on the Doppler principle.

  9. Automatic Blood Pressure Measurements During Exercise

    NASA Technical Reports Server (NTRS)

    Weaver, Charles S.

    1985-01-01

    Microprocessor circuits and a computer algorithm for automatically measuring blood pressure during ambulatory monitoring and exercise stress testing have been under development at SRI International. A system that records ECG, Korotkov sound, and arm cuff pressure for off-line calculation of blood pressure has been delivered to NASA, and an LSLE physiological monitoring system that performs the algorithm calculations in real-time is being constructed. The algorithm measures the time between the R-wave peaks and the corresponding Korotkov sound on-set (RK-interval). Since the curve of RK-interval versus cuff pressure during deflation is predictable and slowly varying, windows can be set around the curve to eliminate false Korotkov sound detections that result from noise. The slope of this curve, which will generally decrease during exercise, is the inverse of the systolic slope of the brachial artery pulse. In measurements taken during treadmill stress testing, the changes in slopes of subjects with coronary artery disease were markedly different from the changes in slopes of healthy subjects. Measurements of slope and O2 consumption were also made before and after ten days of bed rest during NASA/Ames Research Center bed rest studies. Typically, the maximum rate of O2 consumption during the post-bed rest test is less than the maximum rate during the pre-bed rest test. The post-bed rest slope changes differ from the pre-bed rest slope changes, and the differences are highly correlated with the drop in the maximum rate of O2 consumption. We speculate that the differences between pre- and post-bed rest slopes are due to a drop in heart contractility.

  10. Free-breathing respiratory motion of the heart measured from x-ray coronary angiograms (Second Place Student Paper Award)

    NASA Astrophysics Data System (ADS)

    Shechter, Guy; Ozturk, Cengizhan; Resar, Jon R.; McVeigh, Elliot R.

    2004-04-01

    Respiratory motion compensation for cardiac imaging requires knowledge of the heart's motion and deformation during breathing. We propose a method for measuring the natural tidal respiratory motion of the heart using free breathing coronary angiograms. A 3D deformation field describing the cardiac and respiratory motion of the coronary arteries is recovered from a biplane acquisition. Cardiac and respiratory phase are assigned to the images from an ECG signal synchronized to the image acquisition, and from the diaphragmatic displacement as observed in the images. The resulting motion field is decomposed into cardiac and respiratory components by fitting the field with periodic 2D parametric functions, where one dimension spans one cardiac cycle, and the second dimension spans one respiratory cycle. The method is applied to patient datasets, and an analysis of respiratory motion of the heart is presented.

  11. A breathing thorax phantom with independently programmable 6D tumour motion for dosimetric measurements in radiation therapy

    NASA Astrophysics Data System (ADS)

    Steidl, P.; Richter, D.; Schuy, C.; Schubert, E.; Haberer, Th; Durante, M.; Bert, C.

    2012-04-01

    Irradiation of moving targets using a scanned ion beam can cause clinically intolerable under- and overdosages within the target volume due to the interplay effect. Several motion mitigation techniques such as gating, beam tracking and rescanning are currently investigated to overcome this restriction. To enable detailed experimental studies of potential mitigation techniques a complex thorax phantom was developed. The phantom consists of an artificial thorax with ribs to introduce density changes. The contraction of the thorax can be controlled by a stepping motor. A robotic driven detector head positioned inside the thorax mimics e.g. a lung tumour. The detector head comprises 20 ionization chambers and 5 radiographic films for target dose measurements. The phantom’s breathing as well as the 6D tumour motion (3D translation, 3D rotation) can be programmed independently and adjusted online. This flexibility allows studying the dosimetric effects of correlation mismatches between internal and external motions, irregular breathing, or baseline drifts to name a few. Commercial motion detection systems, e.g. VisionRT or Anzai belt, can be mounted as they would be mounted in a patient case. They are used to control the 4D treatment delivery and to generate data for 4D dose calculation. To evaluate the phantom’s properties, measurements addressing reproducibility, stability, temporal behaviour and performance of dedicated breathing manoeuvres were performed. In addition, initial dosimetric tests for treatment with a scanned carbon beam are reported.

  12. A novel breath test to directly measure use of vaginal gel and condoms.

    PubMed

    van der Straten, Ariane; Cheng, Helen; Wasdo, Scott; Montgomery, Liz; Smith-McCune, Karen; Booth, Matthew; Gonzalez, Daniel; Derendorf, Hartmut; Morey, Timothy E; Dennis, Donn M

    2013-07-01

    We assessed the feasibility of a breath test to detect women's single or concurrent use of vaginal products by adding ester taggants to vaginal gel and condom lubricant. Healthy non-pregnant women were enrolled into a two-day cohort (N = 13) and a single-day cohort (N = 12) in San Francisco. Within each cohort, women were randomized (5:1) to tagged or untagged products, and inserted in a clinical setting: 4 mL of tenofovir placebo gel (ten tagged with 15 mg 2-pentyl acetate; three untagged), and an artificial phallus with a lubricated condom (11 tagged with 15 mg 2-butyl acetate; two untagged), on two separate days (two-day cohort) or concurrently (single-day cohort). Using a portable mini-gas chromatograph, the presence/absence of taggants was determined in breath specimens collected prior to, and at timed intervals following product exposure. Demographic, clinical and product use experience data were collected by structured interview. All participants completed all visits and inserted their assigned products. At 5 min post-insertion, the breath test was 100% accurate in identifying insertion of the tagged (or untagged) gel and/or condom. The half-life in breath of the two esters tested was <1 h with large variability between individuals, taggants and cohorts. Overall, among those receiving tagged product, six mild and two moderate product-related AEs were reported. All were transient and resolved spontaneously. Additional sensations included taste in mouth (N = 4) and scent (N = 5). The tagged products were well tolerated. This breath test has the potential to accurately and objectively monitor adherence to vaginal gel and condom used separately or concurrently. PMID:23321948

  13. Determination of breath isoprene allows the identification of the expiratory fraction of the propofol breath signal during real-time propofol breath monitoring.

    PubMed

    Hornuss, Cyrill; Dolch, Michael E; Janitza, Silke; Souza, Kimberly; Praun, Siegfried; Apfel, Christian C; Schelling, Gustav

    2013-10-01

    Real-time measurement of propofol in the breath may be used for routine clinical monitoring. However, this requires unequivocal identification of the expiratory phase of the respiratory propofol signal as only expiratory propofol reflects propofol blood concentrations. Determination of CO2 breath concentrations is the current gold standard for the identification of expiratory gas but usually requires additional equipment. Human breath also contains isoprene, a volatile organic compound with low inspiratory breath concentration and an expiratory concentration plateau. We investigated whether breath isoprene could be used similarly to CO2 to identify the expiratory fraction of the propofol breath signal. We investigated real-time breath data obtained from 40 study subjects during routine anesthesia. Propofol, isoprene, and CO2 breath concentrations were determined by a combined ion molecule reaction/electron impact mass spectrometry system. The expiratory propofol signal was identified according to breath CO2 and isoprene concentrations and presented as median of intervals of 30 s duration. Bland-Altman analysis was applied to detect differences (bias) in the expiratory propofol signal extracted by the two identification methods. We investigated propofol signals in a total of 3,590 observation intervals of 30 s duration in the 40 study subjects. In 51.4 % of the intervals (1,844/3,590) both methods extracted the same results for expiratory propofol signal. Overall bias between the two data extraction methods was -0.12 ppb. The lower and the upper limits of the 95 % CI were -0.69 and 0.45 ppb. Determination of isoprene breath concentrations allows the identification of the expiratory propofol signal during real-time breath monitoring.

  14. Numerical simulation of noninvasive blood pressure measurement.

    PubMed

    Hayashi, Satoru; Hayase, Toshiyuki; Shirai, Atsushi; Maruyama, Masaru

    2006-10-01

    In this paper, a simulation model based on the partially pressurized collapsible tube model for reproducing noninvasive blood pressure measurement is presented. The model consists of a collapsible tube, which models the pressurized part of the artery, rigid pipes connected to the collapsible tube, which model proximal and distal region far from the pressurized part, and the Windkessel model, which represents the capacitance and the resistance of the distal part of the circulation. The blood flow is simplified to a one-dimensional system. Collapse and expansion of the tube is represented by the change in the cross-sectional area of the tube considering the force balance acting on the tube membrane in the direction normal to the tube axis. They are solved using the Runge-Kutta method. This simple model can easily reproduce the oscillation of inner fluid and corresponding tube collapse typical for the Korotkoff sounds generated by the cuff pressure. The numerical result is compared with the experiment and shows good agreement. PMID:16995754

  15. Non-invasive glycaemia blood measurements by electromagnetic sensor: study in static and dynamic blood circulation.

    PubMed

    Gourzi, M; Rouane, A; Guelaz, R; Alavi, M S; McHugh, M B; Nadi, M; Roth, P

    2005-01-01

    In this paper, we present the results of non-invasive blood glycaemia measurements. The blood used in the measurements was calf blood. The measurement method uses an electromagnetic sensor based on eddy currents, which allows the detection of blood glycaemia levels through the variation of the dielectric parameters of the blood. A change in blood glucose concentration causes a variation in the dielectric parameters, in particular conductivity. Detection is only possible at a resonant frequency. The measurements were taken in a static and dynamic state (with and without circulation of blood). The blood is inside a plastic tube placed within the sensor and is surrounded by gelatine, which simulates muscular tissue. The plastic tube simulates the vein where blood circulation occurs. The in vitro results in both cases (static and dynamic) are provided. Under unfavourable conditions we can detect a change of +/- 2 g/l of glucose. We present and discuss these results.

  16. P2Y1 receptors expressed by C1 neurons determine peripheral chemoreceptor modulation of breathing, sympathetic activity, and blood pressure.

    PubMed

    Wenker, Ian C; Sobrinho, Cleyton R; Takakura, Ana C; Mulkey, Daniel K; Moreira, Thiago S

    2013-08-01

    Catecholaminergic C1 cells of the rostral ventrolateral medulla (RVLM) are key determinants of the sympathoexcitatory response to peripheral chemoreceptor activation. Overactivation of this reflex is thought to contribute to increased sympathetic activity and hypertension; however, molecular mechanisms linking peripheral chemoreceptor drive to hypertension remain poorly understood. We have recently determined that activation of P2Y1 receptors in the RVLM mimicked effects of peripheral chemoreceptor activation. Therefore, we hypothesize that P2Y1 receptors regulate peripheral chemoreceptor drive in this region. Here, we determine whether P2Y1 receptors are expressed by C1 neurons in the RVLM and contribute to peripheral chemoreceptor control of breathing, sympathetic activity, and blood pressure. We found that injection of a specific P2Y1 receptor agonist (MRS2365) into the RVLM of anesthetized adult rats increased phrenic nerve activity (≈55%), sympathetic nerve activity (38 ± 6%), and blood pressure (23 ± 1 mm Hg), whereas application of a specific P2Y1 receptor antagonist (MRS2179) decreased peripheral chemoreceptor-mediated activation of phrenic nerve activity, sympathetic nerve activity, and blood pressure. To establish that P2Y1 receptors are expressed by C1 cells, we determine in the brain slice preparation using cell-attached recording techniques that cells responsive to MRS2365 are immunoreactive for tyrosine hydroxylase (a marker of C1 cells), and we determine in vivo that C1-lesioned animals do not respond to RVLM injection of MRS2365. These data identify P2Y1 receptors as key determinants of peripheral chemoreceptor regulation of breathing, sympathetic nerve activity, and blood pressure.

  17. Factors Influencing Continuous Breath Signal in Intubated and Mechanically-Ventilated Intensive Care Unit Patients Measured by an Electronic Nose

    PubMed Central

    Leopold, Jan Hendrik; Abu-Hanna, Ameen; Colombo, Camilla; Sterk, Peter J.; Schultz, Marcus J.; Bos, Lieuwe D. J.

    2016-01-01

    Introduction: Continuous breath analysis by electronic nose (eNose) technology in the intensive care unit (ICU) may be useful in monitoring (patho) physiological changes. However, the application of breath monitoring in a non-controlled clinical setting introduces noise into the data. We hypothesized that the sensor signal is influenced by: (1) humidity in the side-stream; (2) patient-ventilator disconnections and the nebulization of medication; and (3) changes in ventilator settings and the amount of exhaled CO2. We aimed to explore whether the aforementioned factors introduce noise into the signal, and discuss several approaches to reduce this noise. Methods: Study in mechanically-ventilated ICU patients. Exhaled breath was monitored using a continuous eNose with metal oxide sensors. Linear (mixed) models were used to study hypothesized associations. Results: In total, 1251 h of eNose data were collected. First, the initial 15 min of the signal was discarded. There was a negative association between humidity and Sensor 1 (Fixed-effect β: −0.05 ± 0.002) and a positive association with Sensors 2–4 (Fixed-effect β: 0.12 ± 0.001); the signal was corrected for this noise. Outliers were most likely due to noise and therefore removed. Sensor values were positively associated with end-tidal CO2, tidal volume and the pressure variables. The signal was corrected for changes in these ventilator variables after which the associations disappeared. Conclusion: Variations in humidity, ventilator disconnections, nebulization of medication and changes of ventilator settings indeed influenced exhaled breath signals measured in ventilated patients by continuous eNose analysis. We discussed several approaches to reduce the effects of these noise inducing variables. PMID:27556467

  18. Sensitivity and specificity of an abbreviated 13C-mixed triglyceride breath test for measurement of pancreatic exocrine function

    PubMed Central

    Meier, Viola; Wolfram, Kristina U; Rosien, Ulrich; Layer, Peter

    2014-01-01

    Background A modified 13C-mixed triglyceride breath test (13C -MTGT) detects moderate pancreatic exocrine insufficiency noninvasively and reliably, but it requires prolonged breath sampling (6 hours (hr)). Objective We aimed to investigate whether 13C -MTGT can be abbreviated, to optimize clinical usability. Methods We analyzed the 13C-MTGT of 200 consecutive patients, retrospectively. Cumulative 1–5 hr 13C-exhalation values were compared with the standard parameter (6-hr cumulative 13C-exhalation). We determined the sensitivity and specificity of shortened breath sampling periods, by comparison with the normal values from 10 healthy volunteers, whom also underwent a secretin test to quantitate pancreatic secretion. Moreover, we evaluated the influence of gastric emptying (GE), using a 13C-octanoic acid breath test in a subset (N = 117). Results The 1–5 hr cumulative 13C-exhalation tests correlated highly and significantly with the standard parameter (p < 0.0001). Sensitivity for detection of impaired lipolysis was high (≥77%), but the specificity was low (≥38%) for the early measurements. Both parameters were high after 4 hrs (88% and 94%, respectively) and 5 hrs (98% and 91%, respectively). Multivariate linear correlation analysis confirmed that GE strongly influenced early postprandial 13C-exhalation during the 13C-MTGT. Conclusion Shortening of the 13C -MTGT from 6 to 4 hrs of duration was associated with similar diagnostic accuracy, yet increased clinical usability. The influence of GE on early postprandial results of the 13C-MTGT precluded further abbreviation of the test. PMID:25083286

  19. Fiber optic sensors for measuring angular position and rotational speed. [air breathing engines

    NASA Technical Reports Server (NTRS)

    Baumbick, R. J.

    1980-01-01

    Two optical sensors, a 360 deg rotary encoder and a tachometer, were built for operation with the light source and detectors located remotely from the sensors. The source and detectors were coupled to the passive sensing heads through 3.65 meter fiber optic cables. The rotary encoder and tachometer were subjected to limited environmental testing. They were installed on an air breathing engine during recent altitude tests. Over 100 hours of engine operation were accumulated without any failure of either device.

  20. Non-invasive blood pressure measurement in mice.

    PubMed

    Feng, Minjie; DiPetrillo, Keith

    2009-01-01

    Hypertension is a leading cause of heart attack, stroke, and kidney failure and represents a serious medical issue worldwide. The genetic basis of hypertension is well-established, but few causal genes have been identified thus far. Non-invasive blood pressure measurements are a critical component of high-throughput genetic studies to identify genes controlling blood pressure. Whereas this technique is fairly routine for blood pressure measurements in rats, non-invasive blood pressure measurement in mice has proven to be more challenging. This chapter describes an experimental protocol measuring blood pressure in mice using a CODA non-invasive blood pressure monitoring system. This method enables accurate blood pressure phenotyping in mice for linkage or mutagenesis studies, as well as for other experiments requiring high-throughput blood pressure measurement.

  1. 21 CFR 870.1130 - Noninvasive blood pressure measurement system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Noninvasive blood pressure measurement system. 870... SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1130 Noninvasive blood pressure measurement system. (a) Identification. A noninvasive blood pressure...

  2. 21 CFR 870.1130 - Noninvasive blood pressure measurement system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Noninvasive blood pressure measurement system. 870.1130 Section 870.1130 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Noninvasive blood pressure measurement system. (a) Identification. A noninvasive blood pressure...

  3. 21 CFR 870.1130 - Noninvasive blood pressure measurement system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Noninvasive blood pressure measurement system. 870.1130 Section 870.1130 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Noninvasive blood pressure measurement system. (a) Identification. A noninvasive blood pressure...

  4. 21 CFR 870.1130 - Noninvasive blood pressure measurement system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Noninvasive blood pressure measurement system. 870.1130 Section 870.1130 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Noninvasive blood pressure measurement system. (a) Identification. A noninvasive blood pressure...

  5. 21 CFR 870.1130 - Noninvasive blood pressure measurement system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Noninvasive blood pressure measurement system. 870.1130 Section 870.1130 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Noninvasive blood pressure measurement system. (a) Identification. A noninvasive blood pressure...

  6. Previous blood pressure measurement and associated factors in student adolescents

    PubMed Central

    Magalhães, Marina Gabriella Pereira de Andrada; Farah, Breno Quintella; de Barros, Mauro Virgilio Gomes; Ritti-Dias, Raphael Mendes

    2015-01-01

    Objective To identify prevalence of previous blood pressure measurement and analyze some associated factors in adolescents. Methods This cross-sectional study included 6,077 adolescents aged 14 to 19 years. Demographic characteristics included (sex, age, period of study, region of residence, work, skin color, and economic) status, history of blood pressure measurement within last 12 months, local of blood pressure measurement, and reading obtained. To assess associations between previous blood pressure measurement with demographic characteristics and high blood pressure we used descriptive statistics and logistic regression analysis. Results Out of the adolescents, 56.8% reported no blood pressure measurement within the last 12 months. The health centers and the physician’s office were most mentioned places for blood pressure measurement (28.3% and 36.9%, respectively). Boys (odds ratio of 1.64 95%CI: 1.46-1.84) aged 14 to 16 years (odds ratio of 1.12; 95%CI: 1.01-1.25), whose economic status was unfavorable (odds ratio of 1.48; 95%CI: 1.32-1.67) were significantly associated with no blood pressure measurement. Working was a protective factor for was not blood pressure measurement (odds ratio of 0.84; 95%CI: 0.73-0.97). Conclusion Most of adolescents did not have their blood pressure measured within the last 12 months. Boys aged 14 to 16 years and those with unfavorable economic status had higher chance of not having their blood pressure measured. PMID:26466061

  7. Challenges in blood pressure self-measurement.

    PubMed

    Wagner, Stefan; Toftegaard, Thomas Skjødeberg; Bertelsen, Olav W

    2012-01-01

    Blood pressure self-measurement (BPSM) requires patients to follow a range of recommendations in order to be considered reliable for diagnostic use. We investigated currently used BPSM interventions at four medical clinics combined with an online questionnaire targeting BPSM users. We found that the participating healthcare personnel perceived BPSM as a relevant and useful intervention method providing that the recommendations are followed. A total of six challenges were identified: (1) existing devices do not guarantee that the recommendations are followed, (2) healthcare providers cannot verify whether self-monitoring patients follow the recommendations, (3) patients are not aware of all recommendations and the need to follow them, (4) risk of patient induced reporting bias, (5) risk of healthcare provider induced data-transfer bias, and (6) risk of data being registered as belonging to the wrong patient. We conclude that existing BPSM interventions could be significantly affected by user-induced bias resulting in an indeterminable quality of the measurement data. Therefore, we suggest applying context-aware technological support tools to better detect and quantify user errors. This may allow us to develop solutions that could overcome or compensate for such errors in the future.

  8. How Accurate Are Blood (or Breath) Tests for Identifying Self-Reported Heavy Drinking Among People with Alcohol Dependence?

    PubMed Central

    Bertholet, Nicolas; Winter, Michael R.; Cheng, Debbie M.; Samet, Jeffrey H.; Saitz, Richard

    2014-01-01

    Aims Managing patients with alcohol dependence includes assessment for heavy drinking, typically by asking patients. Some recommend biomarkers to detect heavy drinking but evidence of accuracy is limited. Methods Among people with dependence, we assessed the performance of disialo-carbohydrate-deficient transferrin (%dCDT, ≥1.7%), gamma-glutamyltransferase (GGT, ≥66 U/l), either %dCDT or GGT positive, and breath alcohol (> 0) for identifying 3 self-reported heavy drinking levels: any heavy drinking (≥4 drinks/day or >7 drinks/week for women, ≥5 drinks/day or >14 drinks/week for men), recurrent (≥5 drinks/day on ≥5 days) and persistent heavy drinking (≥5 drinks/day on ≥7 consecutive days). Subjects (n = 402) with dependence and current heavy drinking were referred to primary care and assessed 6 months later with biomarkers and validated self-reported calendar method assessment of past 30-day alcohol use. Results The self-reported prevalence of any, recurrent and persistent heavy drinking was 54, 34 and 17%. Sensitivity of %dCDT for detecting any, recurrent and persistent self-reported heavy drinking was 41, 53 and 66%. Specificity was 96, 90 and 84%, respectively. %dCDT had higher sensitivity than GGT and breath test for each alcohol use level but was not adequately sensitive to detect heavy drinking (missing 34–59% of the cases). Either %dCDT or GGT positive improved sensitivity but not to satisfactory levels, and specificity decreased. Neither a breath test nor GGT was sufficiently sensitive (both tests missed 70–80% of cases). Conclusions Although biomarkers may provide some useful information, their sensitivity is low the incremental value over self-report in clinical settings is questionable. PMID:24740846

  9. [An integrated system of blood pressure measurement with bluetooth communication].

    PubMed

    Wang, Wei; Wang, Jing; Sun, Hongyang; Xu, Zuyang; Chai, Xinyu

    2012-07-01

    The development of the integrated blood pressure system with bluetooth communication function is introduced. Experimental results show that the system can complete blood pressure measurement and data transmission wireless effectively, which can be used in m-Health in future.

  10. Measurement of Retinal Blood Flow Using Fluorescently Labeled Red Blood Cells1,2,3

    PubMed Central

    Kornfield, Tess E.

    2015-01-01

    Abstract Blood flow is a useful indicator of the metabolic state of the retina. However, accurate measurement of retinal blood flow is difficult to achieve in practice. Most existing optical techniques used for measuring blood flow require complex assumptions and calculations. We describe here a simple and direct method for calculating absolute blood flow in vessels of all sizes in the rat retina. The method relies on ultrafast confocal line scans to track the passage of fluorescently labeled red blood cells (fRBCs). The accuracy of the blood flow measurements was verified by (1) comparing blood flow calculated independently using either flux or velocity combined with diameter measurements, (2) measuring total retinal blood flow in arterioles and venules, (3) measuring blood flow at vessel branch points, and (4) measuring changes in blood flow in response to hyperoxic and hypercapnic challenge. Confocal line scans oriented parallel and diagonal to vessels were used to compute fRBC velocity and to examine velocity profiles across the width of vessels. We demonstrate that these methods provide accurate measures of absolute blood flow and velocity in retinal vessels of all sizes. PMID:26082942

  11. [Measurement of blood pressure variability and the clinical value].

    PubMed

    Kékes, Ede; Kiss, István

    2014-10-19

    Authors have collected and analyzed literature data on blood pressure variability. They present the methods of blood pressure variability measurement, clinical value and relationships with target organ damages and risk of presence of cardiovascular events. They collect data about the prognostic value of blood pressure variability and the effects of different antihypertensive drugs on blood pressure variability. They underline that in addition to reduction of blood pressure to target value, it is essential to influence blood pressure fluctuation and decrease blood pressure variability, because blood pressure fluctuation presents a major threat for the hypertensive subjects. Data from national studies are also presented. They welcome that measurement of blood pressure variability has been included in international guidelines.

  12. Measurement Adherence in the Blood Pressure Self-Measurement Room

    PubMed Central

    Buus, Niels Henrik; Jespersen, Bente; Ahrendt, Peter; Bertelsen, Olav W.; Toftegaard, Thomas S.

    2013-01-01

    Abstract Background: Patients with hypertension or receiving blood pressure (BP)-lowering treatment are often required to self-measure their BP in a dedicated self-measurement room before consultation. Current praxis does not guarantee valid measurements, possibly leading to misdiagnoses or inappropriate antihypertensive medication. The aim of this study was to investigate patients' ability to correctly self-report and follow recommendations. Patients and Methods: We used a context-aware system to gather information on BP measurements and relevant context parameters. Patients were not informed that the system automatically collected behavior data and were instructed to self-report their measurements on a paper sheet as usual. We then compared the automatically recorded data with the self-reported data in order to detect any nonadherent reporting behavior. Also, we investigated the patients' ability to adhere to the measurement recommendations. Results: We found that (1) a third of all 113 participating patients failed to self-report measured BP data correctly and (2) none of the 642 measurements obtained adhered fully to the recommendations. Conclusions: Results indicate that context-aware technology may be useful for accurately modeling aspects of nonadherent patient behavior. This may be used to inform staff of the validity of the measurement and pinpoint patients in need of additional training or to design better aids to assist the patients. The developed system is generally applicable to other self-measurement environments, including the home setting and remote outpatient clinics, as it is built using telemedicine technology and thus well suited for remote monitoring and diagnosis. PMID:23631589

  13. Heat transfer analysis for peripheral blood flow measurement system

    NASA Astrophysics Data System (ADS)

    Nagata, Koji; Hattori, Hideharu; Sato, Nobuhiko; Ichige, Yukiko; Kiguchi, Masashi

    2009-06-01

    Some disorders such as circulatory disease and metabolic abnormality cause many problems to peripheral blood flow condition. Therefore, frequent measurement of the blood flow condition is bound to contribute to precaution against those disorders and to control of conditions of the diseases. We propose a convenient means of blood flow volume measurement at peripheral part, such as fingertips. Principle of this measurement is based on heat transfer characteristics of peripheral part containing the blood flow. Transition response analysis of skin surface temperature has provided measurement model of the peripheral blood flow volume. We developed the blood flow measurement system based on that model and evaluated it by using artificial finger under various temperature conditions of ambience and internal fluid. The evaluation results indicated that proposed method could estimate the volume of the fluid regardless of temperature condition of them. Finally we applied our system to real finger testing and have obtained results correlated well with laser Doppler blood flow meter values.

  14. Home blood pressure measurement with oscillometric upper-arm devices.

    PubMed

    Braam, R L; Thien, Th

    2003-10-01

    The market for automated blood pressure measuring devices is growing rapidly. Many patients want to buy a device for blood pressure measurement at home and ask their physician for advice about which one to choose. In this article an overview is given of the different devices available for blood pressure measurement and possible pitfalls in the interpretation of measurements taken at home are pointed out. A second article will specifically address those devices that are used to take blood pressure measurements at the wrist.

  15. Velocity measurements in whole blood using acoustic resolution photoacoustic Doppler.

    PubMed

    Brunker, Joanna; Beard, Paul

    2016-07-01

    Acoustic resolution photoacoustic Doppler velocimetry promises to overcome the spatial resolution and depth penetration limitations of current blood flow measuring methods. Despite successful implementation using blood-mimicking fluids, measurements in blood have proved challenging, thus preventing in vivo application. A common explanation for this difficulty is that whole blood is insufficiently heterogeneous relative to detector frequencies of tens of MHz compatible with deep tissue photoacoustic measurements. Through rigorous experimental measurements we provide new insight that refutes this assertion. We show for the first time that, by careful choice of the detector frequency and field-of-view, and by employing novel signal processing methods, it is possible to make velocity measurements in whole blood using transducers with frequencies in the tens of MHz range. These findings have important implications for the prospects of making deep tissue measurements of blood flow relevant to the study of microcirculatory abnormalities associated with cancer, diabetes, atherosclerosis and other conditions. PMID:27446707

  16. Velocity measurements in whole blood using acoustic resolution photoacoustic Doppler

    PubMed Central

    Brunker, Joanna; Beard, Paul

    2016-01-01

    Acoustic resolution photoacoustic Doppler velocimetry promises to overcome the spatial resolution and depth penetration limitations of current blood flow measuring methods. Despite successful implementation using blood-mimicking fluids, measurements in blood have proved challenging, thus preventing in vivo application. A common explanation for this difficulty is that whole blood is insufficiently heterogeneous relative to detector frequencies of tens of MHz compatible with deep tissue photoacoustic measurements. Through rigorous experimental measurements we provide new insight that refutes this assertion. We show for the first time that, by careful choice of the detector frequency and field-of-view, and by employing novel signal processing methods, it is possible to make velocity measurements in whole blood using transducers with frequencies in the tens of MHz range. These findings have important implications for the prospects of making deep tissue measurements of blood flow relevant to the study of microcirculatory abnormalities associated with cancer, diabetes, atherosclerosis and other conditions. PMID:27446707

  17. THE UNIQUE VALUE OF BREATH BIOMARKERS FOR ESTIMATING PHARMACOKINETIC RATE CONSTANTS AND BODY BURDEN FROM ENVIRONMENTAL EXPOSURES

    EPA Science Inventory

    Although detection of breath odor is the oldest of the medical diagnostic techniques, blood and urine biomarker measurements are the current "gold standard" for modern exposure and health assessments. Of late, it has been recognized that collecting exhaled breath is an attractiv...

  18. Measuring blood delivery to solitary pulmonary nodules using perfusion magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Zheng, Wei; Wang, Zhifeng; Shen, Li; Gao, Ling; Ford, James C.; Makedon, Fillia S.; Pearlman, Justin D.

    2006-03-01

    With perfusion magnetic resonance imaging (pMRI), perfusion describes the amount of blood passing through a block of tissue in a certain period of time. In pMRI, the tissue having more blood passing through will show higher intensity value as more contrast-labeled blood arrives. Perfusion reflects the delivery of essential nutrients to a block of tissue, and is an important parameter for the tissue status. Considering solitary pulmonary nodules (SPN), perfusion differences between malignant and benign nodules have been studied by different techniques. Much effort has been put into its characterization. In this paper, we proposed and implemented extraction of the SPN time intensity profile to measure blood delivery to solitary pulmonary nodules, describing their perfusion effects. In this method, a SPN time intensity profile is created based on intensity values of the solitary pulmonary nodule in lung pMRI images over time. This method has two steps: nodule tracking and profile clustering. Nodule tracking aligns the solitary pulmonary nodule in pMRI images taken at different time points, dealing with nodule movement resulted from breathing and body movement. Profile clustering implements segmentation of the nodule region and extraction of the time intensity profile of a solitary pulmonary nodule. SPN time intensity profiles reflect patterns of blood delivery to solitary pulmonary nodules, giving us a description of perfusion effect and indirect evidence of tumor angiogenesis. Analysis on SPN time intensity profiles will help the diagnosis of malignant nodules for early lung cancer detection.

  19. Measurement of Lung Phosphatidylcholines in Exhaled Breath Particles by a Convenient Collection Procedure.

    PubMed

    Ullah, Shahid; Sandqvist, Sören; Beck, Olof

    2015-11-17

    An analytical method based on high-performance liquid chromatography coupled to quadrupole tandem mass spectrometry was developed for the quantitative determination of four phosphatidylcholines (PCs) in human exhaled breath particles. Analytes were conveniently collected on an electrostatic polymer filter and extracted with methanol prior to analysis. Chromatographic separation was performed on an ultraperformance liquid chromatographic ethylene bridged hybrid phenyl column using a mobile phase consisting of water and methanol containing 4 mM ammonium formate and 0.1% ammonia. The mass spectrometer operated in positive electrospray ionization and selected reaction monitoring mode. Detection limits for PC 16:0/16:0 (dipalmitoylphosphatidylcholine, DPPC), PC 16:0/18:1, PC 16:0/18:2, and PC 18:0/18:2 were <0.01 ng/filter. Method recoveries at concentration levels of 0.1 and 10 ng/filter were 100-110% and 101-121%, respectively. Acceptable precision with coefficients of variation <20% and accuracies of 100% ± 20% were achieved. Identification of the individual PCs was performed on the basis of two product ions with correct ion ratios and chromatographic retention times. The highest amount in exhaled breath was found for DPPC with median concentration 1.14 ng/filter (range 0.6-21 ng/filter), and median molar ratios of DPPC/PC (16:0/18:1) of 1.98 (range 0.48-2.75). A different pattern with lower molar ratio (∼0.15) was found for oral fluid. The most significant element of this study was to use a precolumn in the LC system and to collecting exhaled particles in an electret polymer filter. Due to chromatographic interference by background contamination, an isolator column (PFC kit) was installed in between eluent mixer and injector to reduce contamination. This is the first LC/MS study where the method was successfully applied to analyze PCs in human exhaled breath by using a simple and convenient collection procedure. PMID:26505278

  20. Methods of Blood Pressure Measurement in the ICU

    PubMed Central

    Lehman, Li-wei H.; Saeed, Mohammed; Talmor, Daniel; Mark, Roger; Malhotra, Atul

    2013-01-01

    Objective Minimal clinical research has investigated the significance of different blood pressure monitoring techniques in the ICU and whether systolic vs. mean blood pressures should be targeted in therapeutic protocols and in defining clinical study cohorts. The objectives of this study are to compare real-world invasive arterial blood pressure with noninvasive blood pressure, and to determine if differences between the two techniques have clinical implications. Design We conducted a retrospective study comparing invasive arterial blood pressure and noninvasive blood pressure measurements using a large ICU database. We performed pairwise comparison between concurrent measures of invasive arterial blood pressure and noninvasive blood pressure. We studied the association of systolic and mean invasive arterial blood pressure and noninvasive blood pressure with acute kidney injury, and with ICU mortality. Setting Adult intensive care units at a tertiary care hospital. Patients Adult patients admitted to intensive care units between 2001 and 2007. Interventions None. Measurements and Main Results Pairwise analysis of 27,022 simultaneously measured invasive arterial blood pressure/noninvasive blood pressure pairs indicated that noninvasive blood pressure overestimated systolic invasive arterial blood pressure during hypotension. Analysis of acute kidney injury and ICU mortality involved 1,633 and 4,957 patients, respectively. Our results indicated that hypotensive systolic noninvasive blood pressure readings were associated with a higher acute kidney injury prevalence (p = 0.008) and ICU mortality (p < 0.001) than systolic invasive arterial blood pressure in the same range (≤70 mm Hg). Noninvasive blood pressure and invasive arterial blood pressure mean arterial pressures showed better agreement; acute kidney injury prevalence (p = 0.28) and ICU mortality (p = 0.76) associated with hypotensive mean arterial pressure readings (≤60 mm Hg) were independent of

  1. Bad Breath

    MedlinePlus

    ... hygiene leads to bad breath because when food particles are left in your mouth, they can rot ... Flossing once a day helps get rid of particles wedged between your teeth. Also, visit your dentist ...

  2. High-resolution breath-hold cardiac magnetic resonance imaging

    SciTech Connect

    Liu, Yu.

    1993-01-01

    This dissertation work is composed of investigations of three methods for fast cardiac magnetic resonance imaging (MRI). These methods include (1) 2D breath-hold magnetization prepared gradient echo and fast spin-echo (FSE) cardiac imaging, (2) 3D breath-hold magnetization prepared gradient echo cardiac imaging, and (3) real-time monitoring, feedback, and triggering for breath-hold MRI. The hypothesis of this work is that high resolution 2D and 3D magnetic resonance data sets for the heart can be acquired with the combination of magnetization prepared blood suppression for gradient echo techniques and accurate breath-holding methods. The 2D method included development of magnetic resonance data acquisition for cardiac imaging. The acquisition time is within a single breath-hold of 16 seconds (assuming heart 60/min). The data acquisition is synchronized with the electrocardiogram signal. Based on consistent observations of specific small cardiac structures like the papillary muscle, trabeculae, moderator band, and coronary vessels in studies of normal volunteers, the image quality represents a significant improvement over that obtained with fast imaging methods previously. To further improve the image quality provided by the 2D method, the first 3D cardiac MRI technique was developed. This method provides even better spatial resolution for cardiac images, with a voxel size of 1.09 [times] 2.19 [times] 4 mm[sup 3]. A 3D acquisition is completed in 8 breath-holds. The data acquisition for 3D cardiac imaging requires a consistent breath-hold position to avoid respiratory artifacts. To improve the reliability of the 3DFT acquisition, a new technique called MR breath-hold feedback was developed to provide reproducible breathholding. The diaphragm location is used as the index for breath-hold reproducibility measurement. The range of the diaphragm displacement in different breath-hold is reduced from 8.3 mm without the technique, to 1.3 mm with the technique.

  3. Reliable noninvasive measurement of blood gases

    DOEpatents

    Thomas, Edward V.; Robinson, Mark R.; Haaland, David M.; Alam, Mary K.

    1997-05-20

    This invention relates to methods and apparatus for, preferably, determining non-invasively and in vivo at least two of the five blood gas parameters (i.e., pH, [HCO.sub.3.sup.- ], PCO.sub.2, PO.sub.2, and O.sub.2 sat.) in a human.

  4. The effect of adding CO2 to hypoxic inspired gas on cerebral blood flow velocity and breathing during incremental exercise.

    PubMed

    Fan, Jui-Lin; Kayser, Bengt

    2013-01-01

    Hypoxia increases the ventilatory response to exercise, which leads to hyperventilation-induced hypocapnia and subsequent reduction in cerebral blood flow (CBF). We studied the effects of adding CO2 to a hypoxic inspired gas on CBF during heavy exercise in an altitude naïve population. We hypothesized that augmented inspired CO2 and hypoxia would exert synergistic effects on increasing CBF during exercise, which would improve exercise capacity compared to hypocapnic hypoxia. We also examined the responsiveness of CO2 and O2 chemoreception on the regulation ventilation ([Formula: see text]E) during incremental exercise. We measured middle cerebral artery velocity (MCAv; index of CBF), [Formula: see text]E, end-tidal PCO2, respiratory compensation threshold (RC) and ventilatory response to exercise ([Formula: see text]E slope) in ten healthy men during incremental cycling to exhaustion in normoxia and hypoxia (FIO2 = 0.10) with and without augmenting the fraction of inspired CO2 (FICO2). During exercise in normoxia, augmenting FICO2 elevated MCAv throughout exercise and lowered both RC onset and[Formula: see text]E slope below RC (P<0.05). In hypoxia, MCAv and [Formula: see text]E slope below RC during exercise were elevated, while the onset of RC occurred at lower exercise intensity (P<0.05). Augmenting FICO2 in hypoxia increased [Formula: see text]E at RC (P<0.05) but no difference was observed in RC onset, MCAv, or [Formula: see text]E slope below RC (P>0.05). The [Formula: see text]E slope above RC was unchanged with either hypoxia or augmented FICO2 (P>0.05). We found augmenting FICO2 increased CBF during sub-maximal exercise in normoxia, but not in hypoxia, indicating that the 'normal' cerebrovascular response to hypercapnia is blunted during exercise in hypoxia, possibly due to an exhaustion of cerebral vasodilatory reserve. This finding may explain the lack of improvement of exercise capacity in hypoxia with augmented CO2. Our data further indicate that

  5. Employing components-of-variance to evaluate forensic breath test instruments.

    PubMed

    Gullberg, Rod G

    2008-03-01

    The evaluation of breath alcohol instruments for forensic suitability generally includes the assessment of accuracy, precision, linearity, blood/breath comparisons, etc. Although relevant and important, these methods fail to evaluate other important analytical and biological components related to measurement variability. An experimental design comparing different instruments measuring replicate breath samples from several subjects is presented here. Three volunteers provided n = 10 breath samples into each of six different instruments within an 18 minute time period. Two-way analysis of variance was employed which quantified the between-instrument effect and the subject/instrument interaction. Variance contributions were also determined for the analytical and biological components. Significant between-instrument and subject/instrument interaction were observed. The biological component of total variance ranged from 56% to 98% among all subject instrument combinations. Such a design can help quantify the influence of and optimize breath sampling parameters that will reduce total measurement variability and enhance overall forensic confidence.

  6. Off-axis integrated cavity output spectroscopy with a mid-infrared interband cascade laser for real-time breath ethane measurements.

    PubMed

    Parameswaran, Krishnan R; Rosen, David I; Allen, Mark G; Ganz, Alan M; Risby, Terence H

    2009-02-01

    Cavity-enhanced tunable diode laser absorption spectroscopy is an attractive method for measuring small concentrations of gaseous species. Ethane is a breath biomarker of lipid peroxidation initiated by reactive oxygen species. A noninvasive means of quickly quantifying oxidative stress status has the potential for broad clinical application. We present a simple, compact system using off-axis integrated cavity output spectroscopy with an interband cascade laser and demonstrate its use in real-time measurements of breath ethane. We demonstrate a detection sensitivity of 0.48 ppb/Hz(1/2).

  7. How to breathe when you are short of breath

    MedlinePlus

    Pursed lip breathing; COPD - pursed lip breathing; Emphysema - pursed lip breathing; Chronic bronchitis - pursed lip breathing; Pulmonary fibrosis - pursed lip breathing; Interstitial lung disease - pursed lip breathing; Hypoxia - pursed lip breathing; ...

  8. Use of breath hydrogen measurement to evaluate orocecal transit time in cats before and after treatment for hyperthyroidism.

    PubMed Central

    Schlesinger, D P; Rubin, S I; Papich, M G; Hamilton, D L

    1993-01-01

    Orocecal transit time was evaluated in 13 cats diagnosed with hyperthyroidism. Transit was determined by measuring the change in breath hydrogen and methane concentrations following oral administration of a nonabsorbable carbohydrate (lactulose). Transit times before and three to four weeks after treatment of the hyperthyroidism with radioactive iodine were compared. There was a significant prolongation of transit time, as determined by a change in hydrogen concentration, following correction of the hyperthyroidism (p = 0.034). Average transit times and standard errors were 27.7 +/- 3.7 minutes before treatment and 56.5 +/- 12.1 minutes after treatment. Methane was not detected in any of the samples. Hyperthyroidism appears to be associated with an accelerated small intestinal transit time in cats. PMID:8490812

  9. A comparison of two methods of blood pressure measurement.

    PubMed

    Jones, Soraya; Simpson, Heidi; Ahmed, Hafez

    In current practice, a two-stage approach to measuring blood pressure (BP) has been widely accepted as the most accurate and reliable method. However, by changing the local haemodynamics, this procedure might alter the blood pressure. In a study of 39 subjects, blood pressure was measured using two indirect methods (two-stage and one-stage approaches). Results showed no statistically significant difference in values for systolic blood pressure obtained from the two methods. Statistically significant lower diastolic blood pressure values were obtained using the two-stage compared to the one-stage approach. It is proposed that initial inflation of the cuff to estimate systolic blood pressure in the two-stage approach might lead to reactive hyperaemia and, therefore, a lower diastolic value. This two-stage approach might not provide the accurate readings it claims, and in addition it requires more time and subjects the patient to longer periods of stress.

  10. Quantitative blood flux measurement using MUSIC

    NASA Astrophysics Data System (ADS)

    Yousefi, Siavash; Qin, Jia; Wang, Ruikang K.

    2014-03-01

    In this paper, we propose a method to quantify red blood cell (RBC) flow through capillary loops and microvessels using optical microangiography (OMAG). Current existing methods of capillary flow quantification either require a very long scanning time (~few minutes) or a large acquisition number per location (+100 scans per location) to form a highresolution spectral estimation. We utilize a model-based super-resolution spectral estimation technique based on principle of orthogonality to quantify moving RBCs within a voxel. The scanning protocol required for our method is very similar to 3D ultrahigh sensitive OMAG that requires few scans per location (8) and can be performed in few seconds that makes it applicable for in vivo experiments. This method is analogous to power Doppler in ultrasonography and estimates the number of red blood cells passing through the beam as opposed to the velocity of the particles. The technique is tested both qualitatively and quantitatively by using OMAG to image microcirculation within mouse ear flap in vivo.

  11. Metabolic breath analyzer

    NASA Technical Reports Server (NTRS)

    Perry, C. L.

    1971-01-01

    Instrument measures metabolic breathing rate and dynamics of human beings in atmospheres ranging from normal air to 100 percent oxygen at ambient pressures from 14.7 to 3.0 psia. Measurements are made at rest or performing tasks up to maximum physical capacity under either zero or normal gravity.

  12. Surfacers change their dive tactics depending on the aim of the dive: evidence from simultaneous measurements of breaths and energy expenditure

    PubMed Central

    Okuyama, Junichi; Tabata, Runa; Nakajima, Kana; Arai, Nobuaki; Kobayashi, Masato; Kagawa, Shiro

    2014-01-01

    Air-breathing divers are assumed to have evolved to apportion their time between surface and underwater periods to maximize the benefit gained from diving activities. However, whether they change their time allocation depending on the aim of the dive is still unknown. This may be particularly crucial for ‘surfacers’ because they dive for various purposes in addition to foraging. In this study, we counted breath events at the surface and estimated oxygen consumption during resting, foraging and other dives in 11 green turtles (Chelonia mydas) in the wild. Breath events were counted by a head-mounted acceleration logger or direct observation based on an animal-borne video logger, and oxygen consumption was estimated by measuring overall dynamic body acceleration. Our results indicate that green turtles maximized their submerged time, following this with five to seven breaths to replenish oxygen for resting dives. However, they changed their dive tactic during foraging and other dives; they surfaced without depleting their estimated stores of oxygen, followed by only a few breaths for effective foraging and locomotion. These dichotomous surfacing tactics would be the result of behavioural modifications by turtles depending on the aim of each dive. PMID:25297856

  13. Surfacers change their dive tactics depending on the aim of the dive: evidence from simultaneous measurements of breaths and energy expenditure.

    PubMed

    Okuyama, Junichi; Tabata, Runa; Nakajima, Kana; Arai, Nobuaki; Kobayashi, Masato; Kagawa, Shiro

    2014-11-22

    Air-breathing divers are assumed to have evolved to apportion their time between surface and underwater periods to maximize the benefit gained from diving activities. However, whether they change their time allocation depending on the aim of the dive is still unknown. This may be particularly crucial for 'surfacers' because they dive for various purposes in addition to foraging. In this study, we counted breath events at the surface and estimated oxygen consumption during resting, foraging and other dives in 11 green turtles (Chelonia mydas) in the wild. Breath events were counted by a head-mounted acceleration logger or direct observation based on an animal-borne video logger, and oxygen consumption was estimated by measuring overall dynamic body acceleration. Our results indicate that green turtles maximized their submerged time, following this with five to seven breaths to replenish oxygen for resting dives. However, they changed their dive tactic during foraging and other dives; they surfaced without depleting their estimated stores of oxygen, followed by only a few breaths for effective foraging and locomotion. These dichotomous surfacing tactics would be the result of behavioural modifications by turtles depending on the aim of each dive. PMID:25297856

  14. State of the market for devices for blood pressure measurement.

    PubMed

    O'Brien, E

    2001-12-01

    There is a large market for blood pressure measuring devices, not only in clinical medicine, but also with the public where the demand for self-measurement of blood pressure is growing rapidly. For the consumer, whether medical or lay, device accuracy should be of prime importance in selecting a blood pressure measuring device. However, the majority of devices available have not been evaluated independently for accuracy. In this paper the published evidence for independent validation is reviewed and it is recommended that such reviews should be undertaken regularly by international bodies, such as the European Society of Hypertension. PMID:12055402

  15. Optoacoustic measurements of human placenta and umbilical blood oxygenation

    NASA Astrophysics Data System (ADS)

    Nanovskaya, T. N.; Petrov, I. Y.; Petrov, Y.; Patrikeeva, S. L.; Ahmed, M. S.; Hankins, G. D. V.; Prough, D. S.; Esenaliev, R. O.

    2016-03-01

    Adequate oxygenation is essential for normal embryogenesis and fetal growth. Perturbations in the intrauterine oxidative environment during pregnancy are associated with several pathophysiological disorders such as pregnancy loss, preeclampsia, and intrauterine growth restriction. We proposed to use optoacoustic technology for monitoring placental and fetal umbilical blood oxygenation. In this work, we studied optoacoustic monitoring of oxygenation in placenta and umbilical cord blood ex vivo using technique of placenta perfusion. We used a medical grade, nearinfrared, tunable, optoacoustic system developed and built for oxygenation monitoring in blood vessels and in tissues. First, we calibrated the system for cord blood oxygenation measurements by using a CO-Oximeter (gold standard). Then we performed validation in cord blood circulating through the catheters localized on the fetal side of an isolated placental lobule. Finally, the oxygenation measurements were performed in the perfused placental tissue. To increase or decrease blood oxygenation, we used infusion of a gas mixture of 95% O2 + 5% CO2 and 95% N2 + 5% CO2, respectively. In placental tissue, up to four cycles of changes in oxygenation were performed. The optoacoustically measured oxygenation in circulating cord blood and in placental lobule closely correlated with the actual oxygenation data measured by CO-Oximeter. We plan to further test the placental and cord blood oxygenation monitoring with optoacoustics in animal and clinical studies.

  16. Automated measurement of retinal blood vessel tortuosity

    NASA Astrophysics Data System (ADS)

    Joshi, Vinayak; Reinhardt, Joseph M.; Abramoff, Michael D.

    2010-03-01

    Abnormalities in the vascular pattern of the retina are associated with retinal diseases and are also risk factors for systemic diseases, especially cardiovascular diseases. The three-dimensional retinal vascular pattern is mostly formed congenitally, but is then modified over life, in response to aging, vessel wall dystrophies and long term changes in blood flow and pressure. A characteristic of the vascular pattern that is appreciated by clinicians is vascular tortuosity, i.e. how curved or kinked a blood vessel, either vein or artery, appears along its course. We developed a new quantitative metric for vascular tortuosity, based on the vessel's angle of curvature, length of the curved vessel over its chord length (arc to chord ratio), number of curvature sign changes, and combined these into a unidimensional metric, Tortuosity Index (TI). In comparison to other published methods this method can estimate appropriate TI for vessels with constant curvature sign and vessels with equal arc to chord ratios, as well. We applied this method to a dataset of 15 digital fundus images of 8 patients with Facioscapulohumeral muscular dystrophy (FSHD), and to the other publically available dataset of 60 fundus images of normal cases and patients with hypertensive retinopathy, of which the arterial and venous tortuosities have also been graded by masked experts (ophthalmologists). The method produced exactly the same rank-ordered list of vessel tortuosity (TI) values as obtained by averaging the tortuosity grading given by 3 ophthalmologists for FSHD dataset and a list of TI values with high ranking correlation with the ophthalmologist's grading for the other dataset. Our results show that TI has potential to detect and evaluate abnormal retinal vascular structure in early diagnosis and prognosis of retinopathies.

  17. Simultaneous measurement of red blood cell aggregation and whole blood coagulation using high-frequency ultrasound.

    PubMed

    Nam, Kweon-Ho; Yeom, Eunseop; Ha, Hojin; Lee, Sang Joon

    2012-03-01

    This study aims to investigate the feasibility of using high-frequency ultrasound (HFUS) for simultaneous monitoring of blood coagulation and red blood cell (RBC) aggregation. Using a 35-MHz ultrasound scanner, ultrasound speckle data were acquired from whole blood samples of three experimental groups of rats, including 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS)-treated, noncoagulation and normal control groups. The variations of blood echogenicity, the shape parameters of probability distribution of speckle intensity (skewness and kurtosis) and the correlation coefficient between two consecutive speckle data were calculated as a function of time starting from immediately after taking blood. The blood echogenicity increases rapidly to plateaus at the early stage of measurement for all the experimental groups caused by the formation of RBC aggregates. The DIDS-treated group exhibits the lowest echogenicity level due to the inhibitory effect of DIDS on RBC aggregation. The correlation analysis between consecutive speckle patterns seems to be useful to examine the variation of blood fluidity and the progress of clot formation. Whole blood coagulation is observed to be accelerated by DIDS treatment. In addition, the results of skewness and kurtosis analysis indicated that RBC aggregates may be disrupted during blood coagulation. The present study suggests that HFUS has good potential for simultaneous monitoring of RBC aggregation and blood coagulation to examine the relationship between them.

  18. A cross-sectional study of breath acetone based on diabetic metabolic disorders.

    PubMed

    Li, Wenwen; Liu, Yong; Lu, Xiaoyong; Huang, Yanping; Liu, Yu; Cheng, Shouquan; Duan, Yixiang

    2015-02-26

    Breath acetone is a known biomarker for diabetes mellitus in breath analysis. In this work, a cross-sectional study of breath acetone based on clinical metabolic disorders of type 2 diabetes mellitus (T2DM) was carried out. Breath acetone concentrations of 113 T2DM patients and 56 apparently healthy individuals were measured at a single time point. Concentrations varied from 0.22 to 9.41 ppmv (mean 1.75 ppmv) for T2DM, which were significantly higher than those for normal controls (ranged from 0.32 to 1.96 ppmv, mean 0.72 ppmv, p = 0.008). Observations in our work revealed that breath acetone concentrations elevated to different degrees, along with the abnormality of blood glucose, glycated hemoglobin (HbA1c), triglyceride and cholesterol. Breath acetone showed obviously positive correlations with blood ketone and urine ketone. Possible metabolic relations between breath acetone and diabetic disorders were also discussed. This work aimed at giving an overall assessment of breath acetone from the perspective of clinical parameters for type 2 diabetes.

  19. Viscosity measurements on very small capillary blood samples.

    PubMed

    Eugster, M; Häusler, K; Reinhart, W H

    2007-01-01

    Viscosity measurements on very small capillary blood samples could be of considerable clinical interest. We have developed an oscillating viscometer for very small volumes, which consists of a glass capillary containing 7 mul of blood, which is part of an oscillating torsional resonator. The damping of the sinusoidal oscillations depends on the density and viscosity of the fluid, which allows blood viscosity measurements. The instrument was first evaluated in comparison with a standard blood viscometer (Contraves LS 30). Blood from healthy volunteers anticoagulated with EDTA was adjusted to hematocrit levels of 20, 30, 40, 50, and 60%, respectively. A strong correlation was found between hematocrit and oscillating viscosity (y=0.17x-2.05, r=0.969, p<0.0001) and between oscillating and conventional high shear viscosity (y=1.11x-0.62, r=0.971, p<0.0001). Blood viscosity measured in venous or capillary blood of normal subjects was similar (p=0.63). Bedside viscosity measurements on capillary blood drawn from a finger prick during routine blood glucose measurements in patients with diabetes mellitus showed lower blood viscosity than controls (3.62+/-0.87 vs 4.79+/-0.59 mPa.s, p=0.0007), which is in contrast to earlier publications, and may be explained by the lower hematocrit in our diabetic patients (34.7+/-6.0% vs. 43.1+/-1.9%, p<0.0001). Blood viscosity was independent of the actual glucose level (range 3-17 mmol/l). Capillary blood anticoagulated with EDTA was drawn by heel prick from 23 newborns. Blood viscosity was higher (5.66 +/-2.47 mPa.s) than in adult controls (see above), which could be explained by the dependence on the higher hematocrit (46.4 +/-8.6%). We conclude that viscosity measurements can be made on very small samples such as capillary blood from diabetic patients or newborn babies with this new oscillating viscometer. It remains to be determined if such new informations have clinical implications.

  20. Automated analysis of blood pressure measurements (Korotkov sound)

    NASA Technical Reports Server (NTRS)

    Golden, D. P.; Hoffler, G. W.; Wolthuis, R. A.

    1972-01-01

    Automatic system for noninvasive measurements of arterial blood pressure is described. System uses Korotkov sound processor logic ratios to identify Korotkov sounds. Schematic diagram of system is provided to show components and method of operation.

  1. Detection and measurement of retinal blood vessel pulsatile motion

    NASA Astrophysics Data System (ADS)

    Xiao, Di; Frost, Shaun; Vignarajan, Janardhan; An, Dong; Tay-Kearney, Mei-Ling; Kanagasingam, Yogi

    2016-03-01

    Retinal photography is a non-invasive and well-accepted clinical diagnosis of ocular diseases. Qualitative and quantitative assessment of retinal images is crucial in ocular diseases related clinical application. Pulsatile properties caused by cardiac rhythm, such as spontaneous venous pulsation (SVP) and pulsatile motion of small arterioles, can be visualized by dynamic retinal imaging techniques and provide clinical significance. In this paper, we aim at vessel pulsatile motion detection and measurement. We proposed a novel approach for pulsatile motion measurement of retinal blood vessels by applying retinal image registration, blood vessel detection and blood vessel motion detection and measurement on infrared retinal image sequences. The performance of the proposed methods was evaluated on 8 image sequences with 240 images. A preliminary result has demonstrated the good performance of the method for blood vessel pulsatile motion observation and measurement.

  2. Tidal breathing parameters in young children: comparison of measurement by respiratory inductance plethysmography to a facemask pneumotachograph system.

    PubMed

    Manczur, T; Greenough, A; Hooper, R; Allen, K; Latham, S; Price, J F; Rafferty, G F

    1999-12-01

    The ratio of expiratory time at tidal peak flow to total expiratory time (t(ptef)/t(e)) correlates with conventional measures of airway obstruction. It is usually assessed using a facemask and pneumotachograph system which may be poorly tolerated in young children and hence limits the usefulness of this technique. We therefore determined in young asthmatic children the accuracy of t(ptef)/t(e), using an uncalibrated respiratory inductance plethysmograph (RIP), and compared the results with those from a facemask-pneumotachograph system. We also assessed whether age influenced the agreement between measurements using the two devices. Forty-seven children aged between 1 month and 12 years were recruited: 39 were inpatients recovering from an acute wheezy episode, and 8 were recruited from the asthma clinic. All were receiving bronchodilators. Tidal breathing parameters t(ptef)/t(e), the duty cycle (t(i)/t(tot)), and respiratory rate were initially measured using the Respitrace alone and then simultaneously with both the Respitrace and the facemask-pneumotachograph system. Eight children did not tolerate the facemask, and in two others it was impossible to analyze the Respitrace trace due to artefacts. In the remaining 37 children, the reliability coefficients and coefficients of variation of the two techniques were similar. Similar values of t(i)/t(tot) and respiratory rate were obtained using the two devices. The mean t(ptef)/t(e) obtained using the Respitrace was lower than with the facemask-pneumotachograph system (P < 0.01), although this was age group-dependent (P < 0.05), as the difference was less apparent in the 1 to 2-year-old children than in other age groups. Application of the facemask-pneumotachograph system did not significantly influence the results obtained using the Respitrace. We conclude that uncalibrated respiratory inductance plethysmography can measure tidal breathing parameters as reliably as a facemask-pneumotachograph system in young asthmatic

  3. Measurement of retinal blood flow in the rat by combining Doppler Fourier-domain optical coherence tomography with fundus imaging

    NASA Astrophysics Data System (ADS)

    Werkmeister, René M.; Vietauer, Martin; Knopf, Corinna; Fürnsinn, Clemens; Leitgeb, Rainer A.; Reitsamer, Herbert; Gröschl, Martin; Garhöfer, Gerhard; Vilser, Walthard; Schmetterer, Leopold

    2014-10-01

    A wide variety of ocular diseases are associated with abnormalities in ocular circulation. As such, there is considerable interest in techniques for quantifying retinal blood flow, among which Doppler optical coherence tomography (OCT) may be the most promising. We present an approach to measure retinal blood flow in the rat using a new optical system that combines the measurement of blood flow velocities via Doppler Fourier-domain optical coherence tomography and the measurement of vessel diameters using a fundus camera-based technique. Relying on fundus images for extraction of retinal vessel diameters instead of OCT images improves the reliability of the technique. The system was operated with an 841-nm superluminescent diode and a charge-coupled device camera that could be operated at a line rate of 20 kHz. We show that the system is capable of quantifying the response of 100% oxygen breathing on the retinal blood flow. In six rats, we observed a decrease in retinal vessel diameters of 13.2% and a decrease in retinal blood velocity of 42.6%, leading to a decrease in retinal blood flow of 56.7%. Furthermore, in four rats, the response of retinal blood flow during stimulation with diffuse flicker light was assessed. Retinal vessel diameter and blood velocity increased by 3.4% and 28.1%, respectively, leading to a relative increase in blood flow of 36.2%;. The presented technique shows much promise to quantify early changes in retinal blood flow during provocation with various stimuli in rodent models of ocular diseases in rats.

  4. Measurement and Comparison of Organic Compound Concentrations in Plasma, Whole Blood, and Dried Blood Spot Samples

    PubMed Central

    Batterman, Stuart A.; Chernyak, Sergey; Su, Feng-Chiao

    2016-01-01

    The preferred sampling medium for measuring human exposures of persistent organic compounds (POPs) is blood, and relevant sample types include whole blood, plasma, and dried blood spots (DBS). Because information regarding the performance and comparability of measurements across these sample types is limited, it is difficult to compare across studies. This study evaluates the performance of POP measurements in plasma, whole blood and DBS, and presents the distribution coefficients needed to convert concentrations among the three sample types. Blood samples were collected from adult volunteers, along with demographic and smoking information, and analyzed by GC/MS for organochlorine pesticides (OCPs), chlorinated hydrocarbons (CHCs), polychlorinated biphenyls (PCBs), and brominated diphenyl ethers (PBDEs). Regression models were used to evaluate the relationships between the sample types and possible effects of personal covariates. Distribution coefficients also were calculated using physically-based models. Across all compounds, concentrations in plasma were consistently the highest; concentrations in whole blood and DBS samples were comparable. Distribution coefficients for plasma to whole blood concentrations ranged from 1.74 to 2.26 for pesticides/CHCs, averaged 1.69 ± 0.06 for the PCBs, and averaged 1.65 ± 0.03 for the PBDEs. Regression models closely fit most chemicals (R2 > 0.80), and whole blood and DBS samples generally showed very good agreement. Distribution coefficients estimated using biologically-based models were near one and did not explain the observed distribution. Among the study population, median concentrations of several pesticides/CHCs and PBDEs exceeded levels reported in the 2007–2008 National Health and Nutrition Examination Survey, while levels of other OCPs and PBDEs were comparable or lower. Race and smoking status appeared to slightly affect plasma/blood concentration ratios for several POPs. The experimentally

  5. Measuring tissue blood flow using ultrasound modulated diffused light

    NASA Astrophysics Data System (ADS)

    Ron, A.; Racheli, N.; Breskin, I.; Metzger, Y.; Silman, Z.; Kamar, M.; Nini, A.; Shechter, R.; Balberg, M.

    2012-02-01

    We demonstrate the ability of a novel device employing ultrasound modulation of near infrared light (referred as "Ultrasound tagged light" or UTL) to perform non-invasive monitoring of blood flow in the microvascular level in tissue. Monitoring microcirculatory blood flow is critical in clinical situations affecting flow to different organs, such as the brain or the limbs. . However, currently there are no non-invasive devices that measure microcirculatory blood flow in deep tissue continuously. Our prototype device (Ornim Medical, Israel) was used to monitor tissue blood flow on anesthetized swine during controlled manipulations of increased and decreased blood flow. Measurements were done on the calf muscle and forehead of the animal and compared with Laser Doppler (LD). ROC analysis of the sensitivity and specificity for detecting an increase in blood flow on the calf muscle, demonstrated AUC = 0.951 for 23 systemic manipulations of cardiac output by Epinephrine injection, which is comparable to AUC = 0.943 using laser Doppler. Some examples of cerebral blood flow monitoring are presented, along with their individual ROC curves. UTL flowmetry is shown to be effective in detecting changes in cerebral and muscle blood flow in swine, and has merit in clinical applications.

  6. BREATH MEASUREMENT AND MODELS TO ASSESS VOC DERMAL ABSORPTION IN WATER

    EPA Science Inventory

    Dermal exposure to volatile organic compounds (VOCs) in water results from environmental contamination of surface, ground-, and drinking waters. This exposure occurs both in occupational and residential settings. Compartmental models incorporating body burden measurements have ...

  7. Shot-noise Limited Faraday Rotation Spectroscopy for Detection of Nitric Oxide Isotopes in Breath, Urine, and Blood

    NASA Astrophysics Data System (ADS)

    Wang, Yin; Nikodem, Michal; Zhang, Eric; Cikach, Frank; Barnes, Jarrod; Comhair, Suzy; Dweik, Raed A.; Kao, Christina; Wysocki, Gerard

    2015-03-01

    Measurement of NO and/or its metabolites in the various body compartments has transformed our understanding of biology. The inability of the current NO measurement methods to account for naturally occurring and experimental NO isotopes, however, has prevented the scientific community from fully understating NO metabolism in vivo. Here we present a mid-IR Faraday rotation spectrometer (FRS) for detection of NO isotopes. The instrument utilizes a novel dual modulation/demodulation (DM) FRS method which exhibits noise performance at only 2 times the fundamental quantum shot-noise level and provides the record sensitivity in its class. This is achieved with a system that is fully autonomous, robust, transportable, and does not require cryogenic cooling. The DM-FRS enables continuous monitoring of nitric oxide isotopes with the detection limits of 3.72 ppbv/Hz1/2 to14NO and 0.53 ppbv/Hz1/2 to15NO using only 45 cm active optical path. This DM-FRS measurement method can be used to improve the performance of conventional FRS sensors targeting other radical species. The feasibility of the instrument to perform measurements relevant to studies of NO metabolism in humans is demonstrated.

  8. Shot-noise limited Faraday rotation spectroscopy for detection of nitric oxide isotopes in breath, urine, and blood.

    PubMed

    Wang, Yin; Nikodem, Michal; Zhang, Eric; Cikach, Frank; Barnes, Jarrod; Comhair, Suzy; Dweik, Raed A; Kao, Christina; Wysocki, Gerard

    2015-03-13

    Measurement of NO and/or its metabolites in the various body compartments has transformed our understanding of biology. The inability of the current NO measurement methods to account for naturally occurring and experimental NO isotopes, however, has prevented the scientific community from fully understating NO metabolism in vivo. Here we present a mid-IR Faraday rotation spectrometer (FRS) for detection of NO isotopes. The instrument utilizes a novel dual modulation/demodulation (DM) FRS method which exhibits noise performance at only 2 times the fundamental quantum shot-noise level and provides the record sensitivity in its class. This is achieved with a system that is fully autonomous, robust, transportable, and does not require cryogenic cooling. The DM-FRS enables continuous monitoring of nitric oxide isotopes with the detection limits of 3.72 ppbv/Hz(1/2) to(14)NO and 0.53 ppbv/Hz(1/2) to(15)NO using only 45 cm active optical path. This DM-FRS measurement method can be used to improve the performance of conventional FRS sensors targeting other radical species. The feasibility of the instrument to perform measurements relevant to studies of NO metabolism in humans is demonstrated.

  9. Shot-noise Limited Faraday Rotation Spectroscopy for Detection of Nitric Oxide Isotopes in Breath, Urine, and Blood

    PubMed Central

    Wang, Yin; Nikodem, Michal; Zhang, Eric; Cikach, Frank; Barnes, Jarrod; Comhair, Suzy; Dweik, Raed A.; Kao, Christina; Wysocki, Gerard

    2015-01-01

    Measurement of NO and/or its metabolites in the various body compartments has transformed our understanding of biology. The inability of the current NO measurement methods to account for naturally occurring and experimental NO isotopes, however, has prevented the scientific community from fully understating NO metabolism in vivo. Here we present a mid-IR Faraday rotation spectrometer (FRS) for detection of NO isotopes. The instrument utilizes a novel dual modulation/demodulation (DM) FRS method which exhibits noise performance at only 2 times the fundamental quantum shot-noise level and provides the record sensitivity in its class. This is achieved with a system that is fully autonomous, robust, transportable, and does not require cryogenic cooling. The DM-FRS enables continuous monitoring of nitric oxide isotopes with the detection limits of 3.72 ppbv/Hz1/2 to14NO and 0.53 ppbv/Hz1/2 to15NO using only 45 cm active optical path. This DM-FRS measurement method can be used to improve the performance of conventional FRS sensors targeting other radical species. The feasibility of the instrument to perform measurements relevant to studies of NO metabolism in humans is demonstrated. PMID:25767064

  10. Finger temperature controller for non-invasive blood glucose measurement

    NASA Astrophysics Data System (ADS)

    Zhang, Xiqin; Ting, Choon Meng; Yeo, Joon Hock

    2010-11-01

    Blood glucose level is an important parameter for doctors to diagnose and treat diabetes. The Near-Infra-Red (NIR) spectroscopy method is the most promising approach and this involves measurement on the body skin. However it is noted that the skin temperature does fluctuate with the environmental and physiological conditions and we found that temperature has important influences on the glucose measurement. In-vitro and in-vivo investigations on the temperature influence on blood glucose measurement have been carried out. The in-vitro results show that water temperature has significant influence on water absorption. Since 90% of blood components are water, skin temperature of measurement site has significant influence on blood glucose measurement. Also the skin temperature is related to the blood volume, blood volume inside capillary vessels changes with skin temperature. In this paper the relationship of skin temperature and signal from the skin and inside tissue was studied at different finger temperatures. Our OGTT (oral glucose tolerance test) trials results show the laser signals follow the skin temperature trend and the correlation of signal and skin temperature is much stronger than the correlation of signal and glucose concentration. A finger heater device is designed to heat and maintain the skin temperature of measurement site. The heater is controlled by an electronic circuit according to the skin temperature sensed by a thermocouple that is put close to the measurement site. In vivo trials were carried out and the results show that the skin temperature significantly influences the signal fluctuations caused by pulsate blood and the average signal value.

  11. Measurement of the Raman scattering cross section of the breathing mode in KDP and DKDP crystals.

    PubMed

    Demos, Stavros G; Raman, Rajesh N; Yang, Steven T; Negres, Raluca A; Schaffers, Kathleen I; Henesian, Mark A

    2011-10-10

    The spontaneous Raman scattering cross sections of the main peaks (related to the A1 vibrational mode) in rapid and conventional grown potassium dihydrogen phosphate and deuterated crystals are measured at 532 nm, 355 nm, and 266 nm. The measurement involves the use of the Raman line of water centered at 3400 cm-1 as a reference to obtain relative values of the cross sections which are subsequently normalized against the known absolute value for water as a function of excitation wavelength. This measurement enables the estimation of the transverse stimulated Raman scattering gain of these nonlinear optical materials in various configurations suitable for frequency conversion and beam control in high-power, large-aperture laser systems.

  12. Fiber sensor design and application on blood lead measurement

    NASA Astrophysics Data System (ADS)

    Kang, Juan; Feng, Aiming; Li, Chenxia; Xu, Shiqing

    2008-12-01

    Blood lead detecting can make certain valuation to human being health and environment problem. Traditional blood lead detecting instrument used only in laboratory analysis with long time and relatively expensive cost disadvantage. Based on small volume and strong anti-interference of fiber sensor, the paper designed fiber system, including fiber sensor and demodulate system, which can be used in blood lead measurement. Using compound environment fixed in fiber sensor, fiber transferred the reflected light with Pb consistency information, then the impatt diode receives modulated light intensity and demodulates to corresponding lead thickness. with designed fiber system, the paper measured some blood samples with 2.67% precision and 0.231 variance. The designed fiber system is very considerable and usable.

  13. Outdoor, indoor, and human breath content measurements of ammonia by tunable diode laser spectroscopy technique

    SciTech Connect

    Moskalenko, C.L.; Nadezhdinskii, A.I.

    1996-12-31

    Trace contents of ammonia in outdoor, indoor and exhaled air were measured on the base of high resolution absorption spectra. Tunable Diode Laser (TDL) system developed for this purpose possesses: {approximately}one second time constant, {approximately}200 cm{sup 3} sample volume, 5 ppb-sensitivity. The calibration of unit was based on measurements of relative intensities of sQ(3,1){hor_ellipsis}sQ(3,3) absorption lines of {nu}{sub 2S} and following calculation on the base of a priori data on strength and broadening coefficients of detected lines. Measured indoor contents (20--50 ppb) of ammonia was in 5--10 times higher than outdoor contents ({approximately}5 ppb). Approximately two times drop in NH{sub 3} room content after 6 p.m. was detected. Obtained behavior of ammonia content in respiration right after the smoking demonstrates that the removing of ammonia from lungs has the ventilation character. Measured contents of NH{sub 3} in human respiration was ranged between 120 and 220 ppb. The absence of ammonia content differences from respiration of smoking and non-smoking persons demonstrates that the accumulation of NH{sub 3} by humans seems to be rather negligible for a short time exposure, e.g., like smoking.

  14. Application of end-expired breath sampling to estimate carboxyhemoglobin levels in community air pollution exposure assessments

    NASA Astrophysics Data System (ADS)

    Lambert, William E.; Colome, Steven D.; Wojciechowski, Sandra L.

    Measurement of carbon monoxide (CO) in end-expired air after breath-holding permits the estimation of blood carboxyhemoglobin (COHb) levels. Some literature suggests that the precision of the method decreases at low COHb levels. As part of a community exposure and health study, the end-expired breath method was applied to estimate COHb levels in 28 men with ischemic heart disease. Paired samples of blood and breath were collected at the beginning and end of the 24-h CO monitoring periods. The aggregate regression of all subjects' COHb on breath CO displayed high variability. However, the variability was substantially reduced for any particular subject, promoting the use of individualized blood-breath standard curves to improve the precision of COHb estimates made from breath CO. The ultimate accuracy of the blood-breath relationship could not be resolved by our data. Two major sources of error are identified. The observed person-to-person variability may be caused by physiologic factors or differences in ability to deliver an end-expired breath sample representative of alveolar air. This variation may also be due to instrumentation factors, specifically the accuracy of the IL282 CO-Oximeter at 0-3% levels. Further research into the sources of variability in the end-expired breath method is recommended. Epidemiologists using similar end-expired breath measurements to predict COHb levels should be cognizant of the magnitude and probable direction of the error in COHb estimates. This non-invasive method should continue to allow evaluation of the success of personal monitoring efforts and pharmacokinetic modeling of CO uptake in community exposure research.

  15. Direct measurement of capillary blood pressure in the human lip

    NASA Technical Reports Server (NTRS)

    Parazynski, S. E.; Tucker, B. J.; Aratow, M.; Crenshaw, A.; Hargens, A. R.

    1993-01-01

    In this study, we developed and tested a new procedure for measuring microcirculatory blood pressures above heart level in humans. Capillary and postcapillary venule blood pressures were measured directly in 13 human subjects by use of the servonulling micropressure technique adapted for micropuncture of lip capillaries. Pressure waveforms were recorded in 40 separate capillary vessels and 14 separate postcapillary venules over periods ranging from 5 to 64 s. Localization and determination of capillary and postcapillary vessels were ascertained anatomically before pressure measurements. Capillary pressure was 33.2 +/- 1.5 (SE) mm Hg in lips of subjects seated upright. Repeated micropunctures of the same vessel gave an average coefficient of variation of 0.072. Postcapillary venule pressure was 18.9 +/- 1.6 mm Hg. This procedure produces a direct and reproducible means of measuring microvascular blood pressures in a vascular bed above heart level in humans.

  16. Temperature influence on non-invasive blood glucose measurement

    NASA Astrophysics Data System (ADS)

    Zhang, Xiqin; Yeo, Joon Hock

    2009-02-01

    Regular monitoring of blood sugar level is important for the management of diabetes. The Near-Infra-Red (NIR) spectroscopy method is a promising approach and this involves some form of contact with the body skin. It is noted that the skin temperature does fluctuate with the environment and physiological conditions and the temperature has an influence on the glucose measurement. In this paper, in-vitro and in-vivo investigations on the temperature influence on blood glucose measurement were studied. The in-vitro results from FTIR spectrometer show that sample temperature has significant influence on water absorption, which significantly affects the glucose absorption measurement. The in-vivo results show that when skin temperature around the measurement site is taken into consideration, the prediction of blood glucose level greatly improves.

  17. Estimating the measurement uncertainty in forensic blood alcohol analysis.

    PubMed

    Gullberg, Rod G

    2012-04-01

    For many reasons, forensic toxicologists are being asked to determine and report their measurement uncertainty in blood alcohol analysis. While understood conceptually, the elements and computations involved in determining measurement uncertainty are generally foreign to most forensic toxicologists. Several established and well-documented methods are available to determine and report the uncertainty in blood alcohol measurement. A straightforward bottom-up approach is presented that includes: (1) specifying the measurand, (2) identifying the major components of uncertainty, (3) quantifying the components, (4) statistically combining the components and (5) reporting the results. A hypothetical example is presented that employs reasonable estimates for forensic blood alcohol analysis assuming headspace gas chromatography. These computations are easily employed in spreadsheet programs as well. Determining and reporting measurement uncertainty is an important element in establishing fitness-for-purpose. Indeed, the demand for such computations and information from the forensic toxicologist will continue to increase.

  18. Measurement of Uncertainty for Aqueous Ethanol Wet-Bath Simulator Solutions Used with Evidential Breath Testing Instruments.

    PubMed

    Hwang, Rong-Jen; Beltran, Jada; Rogers, Craig; Barlow, Jeremy; Razatos, Gerasimos

    2016-09-01

    Aqueous ethanol wet-bath simulator solutions are used to perform calibration adjustments, calibration checks, proficiency testing, and inspection of breath alcohol instruments. The Toxicology Bureau of the New Mexico Department of Health has conducted a study to estimate a measurement of uncertainty for the preparation and testing of these wet-bath simulator solutions. The measurand is identified as the mass concentration of ethanol (g/100 mL) determined through dual capillary column headspace gas chromatography with flame ionization detector analysis. Three groups were used in the estimation of the aqueous ethanol wet-bath simulator solutions uncertainty: GC calibration adjustment, GC analytical, and certified reference material. The standard uncertainties for these uncertainty sources were combined using the method of root-sum-squares to give uc = 0.8598%. The combined standard uncertainty was expanded to U = 1.7% to reflect a confidence level of 95% using a coverage factor of 2. This estimation applies to all aqueous ethanol wet-bath simulator solution concentrations produced by this laboratory.

  19. Measuring Arterial Blood Pressure. A Self-Contained Instructional Module.

    ERIC Educational Resources Information Center

    Schultz, Chris Ellen

    This self-contained instructional module is designed to help adult caregivers learn how to measure arterial blood pressure in the home. The module includes the following parts: objectives; pretest (with answers); four sections of instructional material covering (1) equipment, (2) cuff placement and locating the brachial artery, (3) measuring blood…

  20. 21 CFR 862.3050 - Breath-alcohol test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Breath-alcohol test system. 862.3050 Section 862....3050 Breath-alcohol test system. (a) Identification. A breath-alcohol test system is a device intened to measure alcohol in the human breath. Measurements obtained by this device are used in...

  1. 21 CFR 862.3050 - Breath-alcohol test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Breath-alcohol test system. 862.3050 Section 862....3050 Breath-alcohol test system. (a) Identification. A breath-alcohol test system is a device intened to measure alcohol in the human breath. Measurements obtained by this device are used in...

  2. 21 CFR 862.3050 - Breath-alcohol test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Breath-alcohol test system. 862.3050 Section 862....3050 Breath-alcohol test system. (a) Identification. A breath-alcohol test system is a device intened to measure alcohol in the human breath. Measurements obtained by this device are used in...

  3. 21 CFR 862.3050 - Breath-alcohol test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Breath-alcohol test system. 862.3050 Section 862....3050 Breath-alcohol test system. (a) Identification. A breath-alcohol test system is a device intened to measure alcohol in the human breath. Measurements obtained by this device are used in...

  4. 21 CFR 862.3050 - Breath-alcohol test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breath-alcohol test system. 862.3050 Section 862....3050 Breath-alcohol test system. (a) Identification. A breath-alcohol test system is a device intened to measure alcohol in the human breath. Measurements obtained by this device are used in...

  5. Blood oxygenation level-dependent magnetic resonance imaging during carbogen breathing: differentiation between prostate cancer and benign prostate hyperplasia and correlation with vessel maturity

    PubMed Central

    Di, Ningning; Mao, Ning; Cheng, Wenna; Pang, Haopeng; Ren, Yan; Wang, Ning; Liu, Xinjiang; Wang, Bin

    2016-01-01

    Objective The aim of this study was to investigate whether the blood oxygenation level-dependent (BOLD) contrast magnetic resonance imaging (MRI) can evaluate tumor maturity and preoperatively differentiate prostate cancer (PCa) from benign prostate hyperplasia (BPH). Patients and methods BOLD MRI based on transverse relaxation time*-weighted echo planar imaging was performed to assess PCa (19) and BPH (22) responses to carbogen (95% O2 and 5% CO2). The average signal values of PCa and BPH before and after carbogen breathing and the relative increased signal values were computed, respectively. The endothelial-cell marker, CD31, and the pericyte marker, α-smooth muscle actin (mature vessels), were detected with immunofluorescence, and were assessed by microvessel density (MVD) and microvessel pericyte density (MPD). The microvessel pericyte coverage index (MPI) was used to evaluate the degree of vascular maturity. The changed signal from BOLD MRI was correlated with MVD, MPD, and MPI. Results After inhaling carbogen, both PCa and BPH showed an increased signal, but a lower slope was found in PCa than that in BPH (P<0.05). PCa had a higher MPD and MVD but a lower MPI than BPH. The increased signal intensity was positively correlated with MPI in PCa and that in BPH (r=0.616, P=0.011; r=0.658, P=0.002); however, there was no correlation between the increased signal intensity and MPD or MVD in PCa than that in BPH (P>0.05). Conclusion Our results confirmed that the increased signal values induced by BOLD MRI well differentiated PCa from BPH and had a positive correlation with vessel maturity in both of them. BOLD MRI can be utilized as a surrogate marker for the noninvasive assessment of the degree of vessel maturity. PMID:27462169

  6. How Cities Breathe: Ground-Referenced, Airborne Hyperspectral Imaging Precursor Measurements To Space-Based Monitoring

    NASA Technical Reports Server (NTRS)

    Leifer, Ira; Tratt, David; Quattrochi, Dale; Bovensmann, Heinrich; Gerilowski, Konstantin; Buchwitz, Michael; Burrows, John

    2013-01-01

    the complex and often aerosol laden, humid, urban microclimates, atmospheric transport and profile monitoring, spatial resolution, temporal cycles (diurnal and seasonal which involve interactions with the surrounding environment diurnal and seasonal cycles) and representative measurement approaches given traffic realities. Promising approaches incorporate contemporaneous airborne remote sensing and in situ measurements, nocturnal surface surveys, with ground station measurement

  7. An exploratory comparative study of volatile compounds in exhaled breath and emitted by skin using selected ion flow tube mass spectrometry.

    PubMed

    Turner, Claire; Parekh, Bhavin; Walton, Christopher; Spanel, Patrik; Smith, David; Evans, Mark

    2008-01-01

    Selected ion flow tube mass spectrometry (SIFT-MS) has been used to carry out a pilot parallel study on five volunteers to determine changes occurring in several trace compounds present in exhaled breath and emitted from skin into a collection bag surrounding part of the arm, before and after ingesting 75 g of glucose in the fasting state. SIFT-MS enabled real-time quantification of ammonia, methanol, ethanol, propanol, formaldehyde, acetaldehyde, isoprene and acetone. Following glucose ingestion, blood glucose and trace compound levels were measured every 30 min for 2 h. All the above compounds, except formaldehyde, were detected at the expected levels in exhaled breath of all volunteers; all the above compounds, except isoprene, were detected in the collection bag. Ammonia, methanol and ethanol were present at lower levels in the bag than in the breath. The aldehydes were present at higher levels in the bag than in breath. The blood glucose increased to a peak about 1 h post-ingestion, but this change was not obviously correlated with temporal changes in any of the compounds in breath or emitted by skin, except for acetone. The decrease in breath acetone was closely mirrored by skin-emitted acetone in three volunteers. Breath and skin acetone also clearly change with blood glucose and further work may ultimately enable inferences to be drawn of the blood glucose concentration from skin or breath measurements in type 1 diabetes. PMID:18215004

  8. Dynamic response of the Initial Systolic Time Interval to a breathing stimulus measured with impedance cardiography

    NASA Astrophysics Data System (ADS)

    Meijer, Jan H.; Hoekstra, Femke; Habers, Esther; Verdaasdonk, Ruud M.; Janssen, Thomas W. J.

    2010-04-01

    The Initial Systolic Time Interval (ISTI) is a measure for the time delay between the electrical and mechanical activity of the heart. The present study reports about the dynamic response of ISTI to a Valsalva manoeuvre. This response was investigated in 22 young healthy volunteers, having different levels of training in sports. The time course of the ISTI during the Valsalva manoeuvre was found to follow a distinct pattern and to be analogous to the course of the Pre-Ejection Period (PEP), also obtained from ECG and ICG signals, reported earlier. The recordings show a definite influence of the Frank-Starling mechanism and are to some extent consistent with reports on the time course of sympathetic activation. The highly trained subjects showed an ISTI that was systematically longer at all moments of the manoeuvre.

  9. Development of a cuffless blood pressure measurement system.

    PubMed

    Shyu, Liang-Yu; Kao, Yao-Lin; Tsai, Wen-Ya; Hu, Weichih

    2012-01-01

    This study constructs a novel blood pressure measurement device without the air cuff to overcome the problem of discomfort and portability. The proposed device measures the blood pressure through a mechanism that is made of silicon rubber and pressure transducer. The system uses a microcontroller to control the measurement procedure and to perform the necessary computation. To verify the feasibility of the constructed device, ten young volunteers were recruited. Ten blood pressure readings were obtained using the new system and were compared with ten blood pressure readings from bedside monitor (Spacelabs Medical, model 90367). The results indicated that, when all the readings were included, the mean pressure, systolic pressure and diastolic pressure from the new system were all higher than those from bedside monitor. The correlation coefficients between these two were 0.15, 0.18 and 0.29, for mean, systolic and diastolic pressures, respectively. After excluding irregular apparatus utilization, the correlation coefficient increased to 0.71, 0.60 and 0.41 for diastolic pressure, mean pressure and systolic pressure, respectively. We can conclude from these results that the accuracy can be improved effectively by defining the user regulation more precisely. The above mentioned irregular apparatus utilization factors can be identified and eliminated by the microprocessor to provide a reliable blood pressure measurement in practical applications in the future. PMID:23366320

  10. Effects of breathing patterns and light exercise on linear and nonlinear heart rate variability.

    PubMed

    Weippert, Matthias; Behrens, Kristin; Rieger, Annika; Kumar, Mohit; Behrens, Martin

    2015-08-01

    Despite their use in cardiac risk stratification, the physiological meaning of nonlinear heart rate variability (HRV) measures is not well understood. The aim of this study was to elucidate effects of breathing frequency, tidal volume, and light exercise on nonlinear HRV and to determine associations with traditional HRV indices. R-R intervals, blood pressure, minute ventilation, breathing frequency, and respiratory gas concentrations were measured in 24 healthy male volunteers during 7 conditions: voluntary breathing at rest, and metronome guided breathing (0.1, 0.2 and 0.4 Hz) during rest, and cycling, respectively. The effect of physical load was significant for heart rate (HR; p < 0.001) and traditional HRV indices SDNN, RMSSD, lnLFP, and lnHFP (p < 0.01 for all). It approached significance for sample entropy (SampEn) and correlation dimension (D2) (p < 0.1 for both), while HRV detrended fluctuation analysis (DFA) measures DFAα1 and DFAα2 were not affected by load condition. Breathing did not affect HR but affected all traditional HRV measures. D2 was not affected by breathing; DFAα1 was moderately affected by breathing; and DFAα2, approximate entropy (ApEn), and SampEn were strongly affected by breathing. DFAα1 was strongly increased, whereas DFAα2, ApEn, and SampEn were decreased by slow breathing. No interaction effect of load and breathing pattern was evident. Correlations to traditional HRV indices were modest (r from -0.14 to -0.67, p < 0.05 to <0.01). In conclusion, while light exercise does not significantly affect short-time HRV nonlinear indices, respiratory activity has to be considered as a potential contributor at rest and during light dynamic exercise.

  11. Effects of breathing patterns and light exercise on linear and nonlinear heart rate variability.

    PubMed

    Weippert, Matthias; Behrens, Kristin; Rieger, Annika; Kumar, Mohit; Behrens, Martin

    2015-08-01

    Despite their use in cardiac risk stratification, the physiological meaning of nonlinear heart rate variability (HRV) measures is not well understood. The aim of this study was to elucidate effects of breathing frequency, tidal volume, and light exercise on nonlinear HRV and to determine associations with traditional HRV indices. R-R intervals, blood pressure, minute ventilation, breathing frequency, and respiratory gas concentrations were measured in 24 healthy male volunteers during 7 conditions: voluntary breathing at rest, and metronome guided breathing (0.1, 0.2 and 0.4 Hz) during rest, and cycling, respectively. The effect of physical load was significant for heart rate (HR; p < 0.001) and traditional HRV indices SDNN, RMSSD, lnLFP, and lnHFP (p < 0.01 for all). It approached significance for sample entropy (SampEn) and correlation dimension (D2) (p < 0.1 for both), while HRV detrended fluctuation analysis (DFA) measures DFAα1 and DFAα2 were not affected by load condition. Breathing did not affect HR but affected all traditional HRV measures. D2 was not affected by breathing; DFAα1 was moderately affected by breathing; and DFAα2, approximate entropy (ApEn), and SampEn were strongly affected by breathing. DFAα1 was strongly increased, whereas DFAα2, ApEn, and SampEn were decreased by slow breathing. No interaction effect of load and breathing pattern was evident. Correlations to traditional HRV indices were modest (r from -0.14 to -0.67, p < 0.05 to <0.01). In conclusion, while light exercise does not significantly affect short-time HRV nonlinear indices, respiratory activity has to be considered as a potential contributor at rest and during light dynamic exercise. PMID:26187271

  12. A computational physiology approach to personalized treatment models: the beneficial effects of slow breathing on the human cardiovascular system.

    PubMed

    Fonoberova, Maria; Mezić, Igor; Buckman, Jennifer F; Fonoberov, Vladimir A; Mezić, Adriana; Vaschillo, Evgeny G; Mun, Eun-Young; Vaschillo, Bronya; Bates, Marsha E

    2014-10-01

    Heart rate variability biofeedback intervention involves slow breathing at a rate of ∼6 breaths/min (resonance breathing) to maximize respiratory and baroreflex effects on heart period oscillations. This intervention has wide-ranging clinical benefits and is gaining empirical support as an adjunct therapy for biobehavioral disorders, including asthma and depression. Yet, little is known about the system-level cardiovascular changes that occur during resonance breathing or the extent to which individuals differ in cardiovascular benefit. This study used a computational physiology approach to dynamically model the human cardiovascular system at rest and during resonance breathing. Noninvasive measurements of heart period, beat-to-beat systolic and diastolic blood pressure, and respiration period were obtained from 24 healthy young men and women. A model with respiration as input was parameterized to better understand how the cardiovascular processes that control variability in heart period and blood pressure change from rest to resonance breathing. The cost function used in model calibration corresponded to the difference between the experimental data and model outputs. A good match was observed between the data and model outputs (heart period, blood pressure, and corresponding power spectral densities). Significant improvements in several modeled cardiovascular functions (e.g., blood flow to internal organs, sensitivity of the sympathetic component of the baroreflex, ventricular elastance) were observed during resonance breathing. Individual differences in the magnitude and nature of these dynamic responses suggest that computational physiology may be clinically useful for tailoring heart rate variability biofeedback interventions for the needs of individual patients.

  13. Microprobes For Blood Flow Measurements In Tissue And Small Vessels

    NASA Astrophysics Data System (ADS)

    Oberg, P. A.; Salerud, E. G.

    1988-04-01

    Laser Doppler flowmetry is a method for the continuous and non-invasive recording of tissue blood flow. The method has already proved to be advantageous in a number of clinical as well as theoretical medical disciplines. In dermatology, plastic- and gastrointestinal surgery laser Doppler measurements have substantially contributed to increase knowledge of microvascular perfusion. In experimental medicine, the method has been used in the study of a great variety of microvascular problems. Spontaneous rhythmical variations, spatial and temporal fluctuations in human skin blood flow are mentioned as examples of problem areas in which new knowledge has been generated. The method has facilitated further investigations of the nature of spongeous bone blood flow, testis and kidney cortex blood flow. Recently we have showed that a variant of the laser Doppler method principle, using a single optical fiber, can be advantageous in deep tissue measurements. With this method laser light is transmitted bidirectionally in a single fiber. The tissue trauma which affects blood flow can be minimized by introducing small diameter fibers (0.1-0.5 mm). A special set-up utilizing the same basic principle has been used for the recording of blood flow in small vessels.

  14. EXHALED BREATH ANALYSIS FOR HUMAN EXPOSURE RESEARCH

    EPA Science Inventory

    Exhaled breath collection and analysis has historically been used in environmental research studies to characterize exposures to volatile organic compounds. The use of this approach is based on the fact that many compounds present in blood are reflected in the breath, and that...

  15. Breath-hold duration in man and the diving response induced by face immersion.

    PubMed

    Sterba, J A; Lundgren, C E

    1988-09-01

    The objective of this study in 5 selected volunteer subjects was to see whether the circulatory diving response which is elicited by breath holding and by cold water on the face would affect the duration of maximal-effort breath holds. Compared to control measurements (breath holding during resting, breathing with 35 degrees C water on the face) breath holding with the face cooled by 20 degrees C water caused a 12% reduction of heart rate, 6% reduction of cardiac output, 33% reduction in [corrected] forearm blood flow, and 9% rise in mean arterial blood pressure, but there was no difference in breath-hold duration (control and experimental both 94 s). There were also no differences in time of appearance of the first involuntary respiratory efforts during breath holding, in alveolar gas exchange, or in breaking-point alveolar O2 and CO2 tensions. When the diving response was magnified by a brief bout of exercise so that there was a 19% [corrected] reduction in heart rate, 23% reduction in cardiac output, and 48% reduction in forearm blood flow, breath-hold duration was still unaffected by face cooling. Compared to intermittent immersions, continuous exposure of the face to cold water abolished the diving response, probably by a cold adaptation of facial thermal receptors. These results with cooling of the face only are consistent with our earlier finding that there was a negative correlation between the duration of a maximal-effort breath hold and the diving response during whole-body submersion in cold water.

  16. Endogenous CO dynamics monitoring in breath by tunable diode laser

    NASA Astrophysics Data System (ADS)

    Kouznetsov, Andrian I.; Stepanov, Eugene V.; Shulagin, Yurii A.; Skrupskii, Vladimir A.

    1996-04-01

    High sensitive CO gas analyzer based on tunable diode laser (TDL) was used as a real time monitor of endogenous carbon monoxide in a set of breath physiology experiments. The measurements of the CO content dynamics in exhaled air with 10 ppb sensitivity were attended with detection of carbon dioxide and O2 in breath, lung ventilation parameters, heart rate and blood analysis using conventional techniques. Variations of endogenous CO in human breath caused by hyperoxia, hypoxia, hyperventilation as well as sport loading were studied in real time. Scattering of the CO variation time constants was observed for different tested persons. Possible reasons for this scattering related with the organisms' physiology peculiarities are discussed.

  17. [The landmarks of the measurement of cerebral blood flow].

    PubMed

    István, Nyáry

    2008-01-30

    History of the measurement of local cerebral blood flow may cover a period of one and a half centuries. Parallel forthcoming of both theoretical and technical development were the key elements of ensuing progress resulting in the present state, when by the aid of in vivo blood flow and metabolic maps, we can visualize locales of brain functioning and their interconnections. Two theoretical landmarks should be mentioned in this historic process. First, the work of Adolf Fick, as the starter of quantitative measurements in this field, and Seymour Kety's model of a single, homogenously perfused tissue element. The solution of this model, in the form of Kety's equation is still fundamental to present day blood flow mapping techniques. Among the numerous investigators over the past years, two Hungarian scientist can be named as major contributors. Kálmán Sántha made substantial studies with continuous registration of local cerebral blood flow by the aid of thermocouples, while Emil P6sztor invented the hydrogen clearance method for the measurement of local cerebral blood flow both in human and in animal studies.

  18. Methods for blood flow measurements using ultrasound contrast agents

    NASA Astrophysics Data System (ADS)

    Fowlkes, J. Brian

    2003-10-01

    Blood flow measurements using ultrasound contrast agents are being investigated for myocardial perfusion and more recently in other organ systems. The methods are based largely on the relative increase in echogenicity due to the concentration of bubbles present in the ultrasound beam. In the simplest form, regional differences in blood volume can be inferred but the possibility exists to extract perfusion from the transit of contrast agent through tissue. Perfusion measurements rely on determining the flux of blood through a tissue volume and as such require knowledge of the fractional blood volume (FBV), i.e., ml blood/g tissue and the rate of exchange, commonly measured as the mean transit time (MTT). This presentation will discuss methods of determining each of these values and their combination to estimate tissue perfusion. Underlying principles of indicator-dilution theory will be provided in the context of ultrasound contrast agents. Current methods for determining MTT will include imaging of the intravenous bolus, in-plane contrast disruption with interval and real-time contrast recovery imaging, and control of contrast agent flow using arterial disruption (contrast interruption). The advantages and limitations of the methods will be examined along with current applications. [Work supported in part by NIH.

  19. Whole blood metal ion measurement reproducibility between different laboratories.

    PubMed

    Rahmé, Michel; Lavigne, Martin; Barry, Janie; Cirtiu, Ciprian Mihai; Bélanger, Patrick; Vendittoli, Pascal-André

    2014-11-01

    Monitoring patients' metal ion blood concentrations can be useful in cases of problematic metal on metal hip implants. Our objective was to evaluate the reproducibility of metal ion level values measured by two different laboratories. Whole blood samples were collected in 46 patients with metal on metal hip arthroplasty. For each patients, two whole blood samples were collected and analyzed by two laboratories. Laboratory 1 had higher results than laboratory 2. There was a clinically significant absolute difference between the two laboratories, above the predetermined threshold, 35% of Cr samples and 38% of Co samples. All laboratories do not use the same technologies for their measurements. Therefore, decision to revise a metal on metal hip arthroplasty should rely on metal ion trends and have to be done in the same laboratory.

  20. A Portable Real-Time Ringdown Breath Acetone Analyzer: Toward Potential Diabetic Screening and Management.

    PubMed

    Jiang, Chenyu; Sun, Meixiu; Wang, Zhennan; Chen, Zhuying; Zhao, Xiaomeng; Yuan, Yuan; Li, Yingxin; Wang, Chuji

    2016-07-30

    Breath analysis has been considered a suitable tool to evaluate diseases of the respiratory system and those that involve metabolic changes, such as diabetes. Breath acetone has long been known as a biomarker for diabetes. However, the results from published data by far have been inconclusive regarding whether breath acetone is a reliable index of diabetic screening. Large variations exist among the results of different studies because there has been no "best-practice method" for breath-acetone measurements as a result of technical problems of sampling and analysis. In this mini-review, we update the current status of our development of a laser-based breath acetone analyzer toward real-time, one-line diabetic screening and a point-of-care instrument for diabetic management. An integrated standalone breath acetone analyzer based on the cavity ringdown spectroscopy technique has been developed. The instrument was validated by using the certificated gas chromatography-mass spectrometry. The linear fittings suggest that the obtained acetone concentrations via both methods are consistent. Breath samples from each individual subject under various conditions in total, 1257 breath samples were taken from 22 Type 1 diabetic (T1D) patients, 312 Type 2 diabetic (T2D) patients, which is one of the largest numbers of T2D subjects ever used in a single study, and 52 non-diabetic healthy subjects. Simultaneous blood glucose (BG) levels were also tested using a standard diabetic management BG meter. The mean breath acetone concentrations were determined to be 4.9 ± 16 ppm (22 T1D), and 1.5 ± 1.3 ppm (312 T2D), which are about 4.5 and 1.4 times of the one in the 42 non-diabetic healthy subjects, 1.1 ± 0.5 ppm, respectively. A preliminary quantitative correlation (R = 0.56, p < 0.05) between the mean individual breath acetone concentration and the mean individual BG levels does exist in 20 T1D subjects with no ketoacidosis. No direct correlation is observed in T1D subjects, T2D

  1. A Portable Real-Time Ringdown Breath Acetone Analyzer: Toward Potential Diabetic Screening and Management.

    PubMed

    Jiang, Chenyu; Sun, Meixiu; Wang, Zhennan; Chen, Zhuying; Zhao, Xiaomeng; Yuan, Yuan; Li, Yingxin; Wang, Chuji

    2016-01-01

    Breath analysis has been considered a suitable tool to evaluate diseases of the respiratory system and those that involve metabolic changes, such as diabetes. Breath acetone has long been known as a biomarker for diabetes. However, the results from published data by far have been inconclusive regarding whether breath acetone is a reliable index of diabetic screening. Large variations exist among the results of different studies because there has been no "best-practice method" for breath-acetone measurements as a result of technical problems of sampling and analysis. In this mini-review, we update the current status of our development of a laser-based breath acetone analyzer toward real-time, one-line diabetic screening and a point-of-care instrument for diabetic management. An integrated standalone breath acetone analyzer based on the cavity ringdown spectroscopy technique has been developed. The instrument was validated by using the certificated gas chromatography-mass spectrometry. The linear fittings suggest that the obtained acetone concentrations via both methods are consistent. Breath samples from each individual subject under various conditions in total, 1257 breath samples were taken from 22 Type 1 diabetic (T1D) patients, 312 Type 2 diabetic (T2D) patients, which is one of the largest numbers of T2D subjects ever used in a single study, and 52 non-diabetic healthy subjects. Simultaneous blood glucose (BG) levels were also tested using a standard diabetic management BG meter. The mean breath acetone concentrations were determined to be 4.9 ± 16 ppm (22 T1D), and 1.5 ± 1.3 ppm (312 T2D), which are about 4.5 and 1.4 times of the one in the 42 non-diabetic healthy subjects, 1.1 ± 0.5 ppm, respectively. A preliminary quantitative correlation (R = 0.56, p < 0.05) between the mean individual breath acetone concentration and the mean individual BG levels does exist in 20 T1D subjects with no ketoacidosis. No direct correlation is observed in T1D subjects, T2D

  2. A Portable Real-Time Ringdown Breath Acetone Analyzer: Toward Potential Diabetic Screening and Management

    PubMed Central

    Jiang, Chenyu; Sun, Meixiu; Wang, Zhennan; Chen, Zhuying; Zhao, Xiaomeng; Yuan, Yuan; Li, Yingxin; Wang, Chuji

    2016-01-01

    Breath analysis has been considered a suitable tool to evaluate diseases of the respiratory system and those that involve metabolic changes, such as diabetes. Breath acetone has long been known as a biomarker for diabetes. However, the results from published data by far have been inconclusive regarding whether breath acetone is a reliable index of diabetic screening. Large variations exist among the results of different studies because there has been no “best-practice method” for breath-acetone measurements as a result of technical problems of sampling and analysis. In this mini-review, we update the current status of our development of a laser-based breath acetone analyzer toward real-time, one-line diabetic screening and a point-of-care instrument for diabetic management. An integrated standalone breath acetone analyzer based on the cavity ringdown spectroscopy technique has been developed. The instrument was validated by using the certificated gas chromatography-mass spectrometry. The linear fittings suggest that the obtained acetone concentrations via both methods are consistent. Breath samples from each individual subject under various conditions in total, 1257 breath samples were taken from 22 Type 1 diabetic (T1D) patients, 312 Type 2 diabetic (T2D) patients, which is one of the largest numbers of T2D subjects ever used in a single study, and 52 non-diabetic healthy subjects. Simultaneous blood glucose (BG) levels were also tested using a standard diabetic management BG meter. The mean breath acetone concentrations were determined to be 4.9 ± 16 ppm (22 T1D), and 1.5 ± 1.3 ppm (312 T2D), which are about 4.5 and 1.4 times of the one in the 42 non-diabetic healthy subjects, 1.1 ± 0.5 ppm, respectively. A preliminary quantitative correlation (R = 0.56, p < 0.05) between the mean individual breath acetone concentration and the mean individual BG levels does exist in 20 T1D subjects with no ketoacidosis. No direct correlation is observed in T1D subjects, T

  3. Breath alcohol test

    MedlinePlus

    Alcohol test - breath ... There are various brands of breath alcohol tests. Each one uses a different method to test the level of alcohol in the breath. The machine may be electronic or manual. One ...

  4. Breath-Holding Spells

    MedlinePlus

    ... less than a minute before a child regains consciousness and resumes breathing normally. Breath-holding spells can ... spells cause kids to stop breathing and lose consciousness for up to a minute. In the most ...

  5. Can the single-breath helium dilution method predict lung volumes as measured by whole-body plethysmography?*

    PubMed Central

    Coertjens, Patrícia Chaves; Knorst, Marli Maria; Dumke, Anelise; Pasqualoto, Adriane Schmidt; Riboldi, João; Barreto, Sérgio Saldanha Menna

    2013-01-01

    OBJECTIVE: To compare TLC and RV values obtained by the single-breath helium dilution (SBHD) method with those obtained by whole-body plethysmography (WBP) in patients with normal lung function, patients with obstructive lung disease (OLD), and patients with restrictive lung disease (RLD), varying in severity, and to devise equations to estimate the SBHD results. METHODS: This was a retrospective cross-sectional study involving 169 individuals, of whom 93 and 49 presented with OLD and RLD, respectively, the remaining 27 having normal lung function. All patients underwent spirometry and lung volume measurement by both methods. RESULTS: TLC and RV were higher by WBP than by SBHD. The discrepancy between the methods was more pronounced in the OLD group, correlating with the severity of airflow obstruction. In the OLD group, the correlation coefficient of the comparison between the two methods was 0.57 and 0.56 for TLC and RV, respectively (p < 0.001 for both). We used regression equations, adjusted for the groups studied, in order to predict the WBP values of TLC and RV, using the corresponding SBHD values. It was possible to create regression equations to predict differences in TLC and RV between the two methods only for the OLD group. The TLC and RV equations were, respectively, ∆TLCWBP-SBHD in L = 5.264 − 0.060 × FEV1/FVC (r2 = 0.33; adjusted r2 = 0.32) and ∆RVWBP-SBHD in L = 4.862 − 0.055 × FEV1/FVC (r2 = 0.31; adjusted r2 = 0.30). CONCLUSIONS: The correction of TLC and RV results obtained by SBHD can improve the accuracy of this method for assessing lung volumes in patients with OLD. However, additional studies are needed in order to validate these equations. PMID:24473761

  6. NEW METHODOLOGY FOR IDENTIFYING POTENTIAL HUMAN BIOMARKERS BY COLLECTION AND CONCENTRATION OF EXHALED BREATH CONDENSATE

    EPA Science Inventory

    In many studies of human exposure, the measurement of pollutant chemicals in the environment (air, water, food, soil, etc.) is being supplemented by their additional measurement in biological media such as human breath, blood, and urine. This allows an unambiguous confirmation...

  7. Doppler instrumentation for measuring blood velocity and flow

    NASA Technical Reports Server (NTRS)

    Gill, R. W.; Hottinger, C. F.; Meindl, J. D.

    1975-01-01

    Doppler ultrasonic blood flowmeters are reviewed in detail. The importance of measurement accuracy for transcutaneous flowmeters and their clinical application is stressed. Doppler imaging was combined with conventional pulse echo imaging, and diagnostic information was extracted from flow signals. The range and extent of applications of Doppler instruments was also presented.

  8. Analysis of Exhaled Breath for Disease Detection

    NASA Astrophysics Data System (ADS)

    Amann, Anton; Miekisch, Wolfram; Schubert, Jochen; Buszewski, Bogusław; Ligor, Tomasz; Jezierski, Tadeusz; Pleil, Joachim; Risby, Terence

    2014-06-01

    Breath analysis is a young field of research with great clinical potential. As a result of this interest, researchers have developed new analytical techniques that permit real-time analysis of exhaled breath with breath-to-breath resolution in addition to the conventional central laboratory methods using gas chromatography-mass spectrometry. Breath tests are based on endogenously produced volatiles, metabolites of ingested precursors, metabolites produced by bacteria in the gut or the airways, or volatiles appearing after environmental exposure. The composition of exhaled breath may contain valuable information for patients presenting with asthma, renal and liver diseases, lung cancer, chronic obstructive pulmonary disease, inflammatory lung disease, or metabolic disorders. In addition, oxidative stress status may be monitored via volatile products of lipid peroxidation. Measurement of enzyme activity provides phenotypic information important in personalized medicine, whereas breath measurements provide insight into perturbations of the human exposome and can be interpreted as preclinical signals of adverse outcome pathways.

  9. Real-time analysis of breath for carbon tetrachloride and its metabolites

    SciTech Connect

    Kenny, D.V.; Callahan, P.J.; Thrall, K.D.

    1995-12-31

    Real-time breath analysis offers a non-invasive method to detect exposure to toxic air pollutants. Breath measurements are useful in environmental exposure studies, and may provide evidence about previous long-term or repeated exposures in environments that are not easy to monitor. If breath samples are collected during or immediately following a short term exposure, breath measurements can be used to predict the peak exposure. Previous breath sampling methodologies have been to collect repeated 1-minute breath samples at 5 minute intervals. Although this method can aid in describing the rapid exponential emptying of the blood compartment that occurs following peak exposure, sampling 5 minute intervals still forces an approximation of the true shape of the clearance kinetics. The authors have developed a methodology to quantitively measure the concentration of exhaled volatile compounds in real-time using laboratory rats. Continuously monitoring breath for a parent toxicant and its metabolite(s) provides input into physiologically based pharmacokinetic (PBPK) models to describe the bio-kinetics of a chemical in the body. Real-time analyses are better than batch sampling methods because of the rapidly changing kinetics of elimination of some volatile chemicals from the body.

  10. Nonlinear photoacoustic measurements of oxygen saturation levels in blood

    NASA Astrophysics Data System (ADS)

    Kamanzi, Albert

    Oxygen is necessary for metabolism. It is carried from lungs to the rest of the body by hemoglobin in blood. As each hemoglobin molecule can carry a maximum of four oxygen molecules, oxygen saturation (sO2) is the measure of percentage of oxygen content in blood. For a normal person sO2 is 95% - 100%. Point-of-care testing of sO2 in blood is important in medicine. It enables doctors and caregivers for monitoring a wide variety of chronic illnesses. On the other hand, mapping of sO2 values by performing a raster scan across the region of interest in vivo is also essential in clinical and research settings, such as to evaluate the therapeutic effects of a treatment, monitoring healing of wounds, etc. Several non-invasive methods have been developed for this purpose. In this thesis, I measured the nonlinear absorption coefficient (beta) of blood samples using photoacoustic Z-scan technique. Results depict linear dependency between beta and blood oxygenation levels.

  11. Breathing difficulty - lying down

    MedlinePlus

    ... Paroxysmal nocturnal dyspnea; PND; Difficulty breathing while lying down; Orthopnea ... does not directly cause difficulty breathing while lying down but often worsens other conditions that lead to ...

  12. The increase of breath ammonia induced by niacin ingestion quantified by selected ion flow tube mass spectrometry.

    PubMed

    Smith, David; Wang, Tianshu; Spanel, Patrik; Bloor, Roger

    2006-06-01

    The ingestion of relatively large doses of the vitamin niacin by healthy volunteers results in a reddening of the skin, a skin 'flush'. Thus, we have carried out a study of the breath metabolites of two healthy volunteers following (i) the ingestion of 200 mg of immediate-release niacin, (ii) as (i) but preceded by the ingestion of 325 mg of aspirin that diminishes the skin 'flush', (iii) ingestion of 500 mg of slow-release niacin. On-line breath analysis was carried out using selected ion flow tube mass spectrometry, SIFT-MS. The interesting new observation is that the breath ammonia levels of both volunteers clearly increased following (i) and (ii), and an obvious skin flush did occur following (i) but not following (ii). The slow-release niacin (iii) did not result in a flush and the breath ammonia levels increased more slowly and did not reach the higher levels produced by (i) and (ii). The results of these experiments demonstrate that breath ammonia levels are dependent on the blood/plasma levels of niacin, but are not directly related to the flushing phenomenon, and that the observed increases in blood/breath ammonia levels are consistent with current knowledge of the metabolic pathways of niacin. The parallel measurements of breath isoprene are presented, which demonstrate the quality of breath analyses that can be achieved using SIFT-MS. PMID:16603796

  13. Intravital video microscopy measurements of retinal blood flow in mice.

    PubMed

    Harris, Norman R; Watts, Megan N; Leskova, Wendy

    2013-01-01

    Alterations in retinal blood flow can contribute to, or be a consequence of, ocular disease and visual dysfunction. Therefore, quantitation of altered perfusion can aid research into the mechanisms of retinal pathologies. Intravital video microscopy of fluorescent tracers can be used to measure vascular diameters and bloodstream velocities of the retinal vasculature, specifically the arterioles branching from the central retinal artery and of the venules leading into the central retinal vein. Blood flow rates can be calculated from the diameters and velocities, with the summation of arteriolar flow, and separately venular flow, providing values of total retinal blood flow. This paper and associated video describe the methods for applying this technique to mice, which includes 1) the preparation of the eye for intravital microscopy of the anesthetized animal, 2) the intravenous infusion of fluorescent microspheres to measure bloodstream velocity, 3) the intravenous infusion of a high molecular weight fluorescent dextran, to aid the microscopic visualization of the retinal microvasculature, 4) the use of a digital microscope camera to obtain videos of the perfused retina, and 5) the use of image processing software to analyze the video. The same techniques can be used for measuring retinal blood flow rates in rats. PMID:24429840

  14. Simplified, noninvasive PET measurement of blood-brain barrier permeability

    SciTech Connect

    Iannotti, F.; Fieschi, C.; Alfano, B.; Picozzi, P.; Mansi, L.; Pozzilli, C.; Punzo, A.; Del Vecchio, G.; Lenzi, G.L.; Salvatore, M.

    1987-05-01

    Blood-brain barrier (BBB) permeability to (/sup 68/Ga)EDTA was measured by positron emission tomography (PET) in four normal volunteers and in 11 patients with brain tumors. A unidirectional transfer constant, Ki, was calculated applying multiple-time graphical analysis (MTGA). This method allows the detection of backflux from brain to blood and, by generalization, the measurement of the constant Kb (brain to blood). Furthermore, the need for an independent measurement of the intravascular tracer is obviated: MTGA itself provides an estimate of the cerebral plasma volume (Vp). In the four normal volunteers the Ki was 3.0 +/- 0.8 X 10(-4) ml g-1 min-1 (mean +/- SD) and the Vp 0.034 +/- 0.007 ml g-1. A net increase in Ki up to a maximum of 121.0 X 10(-4) ml g-1 min-1 (correspondent value of Kb = 0.025 min-1) as well as an increase of Vp was observed in malignant tumors. The input function was calculated using both the (/sup 68/Ga)EDTA concentration in sequential arterial blood samples and, noninvasively, the activity derived from the superior sagittal sinus image. The values of Ki and Vp from these two calculations were in good agreement. The application of MTGA to PET permits the evaluation of passage of substances across the BBB without making assumptions about the compartments in which the tracer distributes.

  15. Blood biomarkers for brain injury: What are we measuring?

    PubMed Central

    Kawata, Keisuke; Liu, Charles Y.; Merkel, Steven F.; Ramirez, Servio H.; Tierney, Ryan T.; Langford, Dianne

    2016-01-01

    Accurate diagnosis for mild traumatic brain injury (mTBI) remains challenging, as prognosis and return-to-play/work decisions are based largely on patient reports. Numerous investigations have identified and characterized cellular factors in the blood as potential biomarkers for TBI, in the hope that these factors may be used to gauge the severity of brain injury. None of these potential biomarkers have advanced to use in the clinical setting. Some of the most extensively studied blood biomarkers for TBI include S100β, neuron-specific enolase, glial fibrillary acidic protein, and Tau. Understanding the biological function of each of these factors may be imperative to achieve progress in the field. We address the basic question: what are we measuring? This review will discuss blood biomarkers in terms of cellular origin, normal and pathological function, and possible reasons for increased blood levels. Considerations in the selection, evaluation, and validation of potential biomarkers will also be addressed, along with mechanisms that allow brain-derived proteins to enter the bloodstream after TBI. Lastly, we will highlight perspectives and implications for repetitive neurotrauma in the field of blood biomarkers for brain injury. PMID:27181909

  16. Blood biomarkers for brain injury: What are we measuring?

    PubMed

    Kawata, Keisuke; Liu, Charles Y; Merkel, Steven F; Ramirez, Servio H; Tierney, Ryan T; Langford, Dianne

    2016-09-01

    Accurate diagnosis for mild traumatic brain injury (mTBI) remains challenging, as prognosis and return-to-play/work decisions are based largely on patient reports. Numerous investigations have identified and characterized cellular factors in the blood as potential biomarkers for TBI, in the hope that these factors may be used to gauge the severity of brain injury. None of these potential biomarkers have advanced to use in the clinical setting. Some of the most extensively studied blood biomarkers for TBI include S100β, neuron-specific enolase, glial fibrillary acidic protein, and Tau. Understanding the biological function of each of these factors may be imperative to achieve progress in the field. We address the basic question: what are we measuring? This review will discuss blood biomarkers in terms of cellular origin, normal and pathological function, and possible reasons for increased blood levels. Considerations in the selection, evaluation, and validation of potential biomarkers will also be addressed, along with mechanisms that allow brain-derived proteins to enter the bloodstream after TBI. Lastly, we will highlight perspectives and implications for repetitive neurotrauma in the field of blood biomarkers for brain injury.

  17. Breathing Maneuvers as a Vasoactive Stimulus for Detecting Inducible Myocardial Ischemia – An Experimental Cardiovascular Magnetic Resonance Study

    PubMed Central

    Fischer, Kady; Guensch, Dominik P; Shie, Nancy; Lebel, Julie; Friedrich, Matthias G

    2016-01-01

    Background Breathing maneuvers can elicit a similar vascular response as vasodilatory agents like adenosine; yet, their potential diagnostic utility in the presence of coronary artery stenosis is unknown. The objective of the study is to investigate if breathing maneuvers can non-invasively detect inducible ischemia in an experimental animal model when the myocardium is imaged with oxygenation-sensitive cardiovascular magnetic resonance (OS-CMR). Methods and Findings In 11 anesthetised swine with experimentally induced significant stenosis (fractional flow reserve <0.75) of the left anterior descending coronary artery (LAD) and 9 control animals, OS-CMR at 3T was performed during two different breathing maneuvers, a long breath-hold; and a combined maneuver of 60s of hyperventilation followed by a long breath-hold. The resulting change of myocardial oxygenation was compared to the invasive measurements of coronary blood flow, blood gases, and oxygen extraction. In control animals, all breathing maneuvers could significantly alter coronary blood flow as hyperventilation decreased coronary blood flow by 34±23%. A long breath-hold alone led to an increase of 97±88%, while the increase was 346±327% (p<0.001), when the long breath-hold was performed after hyperventilation. In stenosis animals, the coronary blood flow response was attenuated after both hyperventilation and the following breath-hold. This was matched by the observed oxygenation response as breath-holds following hyperventilation consistently yielded a significant difference in the signal of the MRI images between the perfusion territory of the stenosis LAD and remote myocardium. There was no difference between the coronary territories during the other breathing maneuvers or in the control group at any point. Conclusion In an experimental animal model, the response to a combined breathing maneuver of hyperventilation with subsequent breath-holding is blunted in myocardium subject to significant coronary

  18. In vivo measurement of blood flow in the vitelline network

    NASA Astrophysics Data System (ADS)

    Poelma, Christian; Vennemann, Peter; Lindken, Ralph; Westerweel, Jerry

    2007-11-01

    The growth and adaptation of blood vessels is studied in vivo in the so-called vitelline network of a chick embryo. The vitelline network, a system of extra-embryonic blood vessels that transports nutrients from the yolk sac to the chick embryo, is an easily accessible model system for the study of human cardiovascular development and functioning. We present measurements obtained by means of scanning microscopic Particle Image Velocimetry. Using phase-locking, we can reconstruct the full three-dimensional flow as a function of the cardiac cycle. Typical reconstructed volumes are 0.4x0.5x0.2 mm^3 with a spatial resolution (i.e. vector spacing) of 6 μm. These hemodynamic measurements allow a study of the coupling between form and functioning of the blood vessels. Special attention is given to the local wall shear stress (WSS), an important physiological parameter that is thought to determine - to great extent - the adaptation of the vessels to changing conditions. The WSS can be estimated directly from the velocity gradient at the wall or from a fit to the blood velocity profile. The former method slightly underestimates the WSS (most likely due to lack of resolution) but is significantly easier to apply in the complex geometries under consideration.

  19. Optically measured microvascular blood flow contrast of malignant breast tumors.

    PubMed

    Choe, Regine; Putt, Mary E; Carlile, Peter M; Durduran, Turgut; Giammarco, Joseph M; Busch, David R; Jung, Ki Won; Czerniecki, Brian J; Tchou, Julia; Feldman, Michael D; Mies, Carolyn; Rosen, Mark A; Schnall, Mitchell D; DeMichele, Angela; Yodh, Arjun G

    2014-01-01

    Microvascular blood flow contrast is an important hemodynamic and metabolic parameter with potential to enhance in vivo breast cancer detection and therapy monitoring. Here we report on non-invasive line-scan measurements of malignant breast tumors with a hand-held optical probe in the remission geometry. The probe employs diffuse correlation spectroscopy (DCS), a near-infrared optical method that quantifies deep tissue microvascular blood flow. Tumor-to-normal perfusion ratios are derived from thirty-two human subjects. Mean (95% confidence interval) tumor-to-normal ratio using surrounding normal tissue was 2.25 (1.92-2.63); tumor-to-normal ratio using normal tissues at the corresponding tumor location in the contralateral breast was 2.27 (1.94-2.66), and using normal tissue in the contralateral breast was 2.27 (1.90-2.70). Thus, the mean tumor-to-normal ratios were significantly different from unity irrespective of the normal tissue chosen, implying that tumors have significantly higher blood flow than normal tissues. Therefore, the study demonstrates existence of breast cancer contrast in blood flow measured by DCS. The new, optically accessible cancer contrast holds potential for cancer detection and therapy monitoring applications, and it is likely to be especially useful when combined with diffuse optical spectroscopy/tomography. PMID:24967878

  20. Blood-Pressure Measuring System Gives Accurate Graphic Output

    NASA Technical Reports Server (NTRS)

    1965-01-01

    The problem: To develop an instrument that will provide an external (indirect) measurement of arterial blood pressure in the form of an easily interpreted graphic trace that can be correlated with standard clinical blood-pressure measurements. From sphygmograms produced by conventional sphygmographs, it is very difficult to differentiate the systolic and diastolic blood-pressure pulses and to correlate these indices with the standard clinical values. It is nearly impossible to determine these indices when the subject is under physical or emotional stress. The solution: An electronic blood-pressure system, basically similar to conventional ausculatory sphygmomanometers, employing a standard occluding cuff, a gas-pressure source, and a gas-pressure regulator and valve. An electrical output transducer senses cuff pressure, and a microphone positioned on the brachial artery under the occluding cuff monitors the Korotkoff sounds from this artery. The output signals present the conventional systolic and diastolic indices in a clear, graphical display. The complete system also includes an electronic timer and cycle-control circuit.

  1. Accurate blood flow measurements: are artificial tracers necessary?

    PubMed

    Poelma, Christian; Kloosterman, Astrid; Hierck, Beerend P; Westerweel, Jerry

    2012-01-01

    Imaging-based blood flow measurement techniques, such as particle image velocimetry, have become an important tool in cardiovascular research. They provide quantitative information about blood flow, which benefits applications ranging from developmental biology to tumor perfusion studies. Studies using these methods can be classified based on whether they use artificial tracers or red blood cells to visualize the fluid motion. We here present the first direct comparison in vivo of both methods. For high magnification cases, the experiments using red blood cells strongly underestimate the flow (up to 50% in the present case), as compared to the tracer results. For medium magnification cases, the results from both methods are indistinguishable as they give the same underestimation of the real velocities (approximately 33%, based on in vitro reference measurements). These results suggest that flow characteristics reported in literature cannot be compared without a careful evaluation of the imaging characteristics. A method to predict the expected flow averaging behavior for a particular facility is presented.

  2. Slow Breathing and Hypoxic Challenge: Cardiorespiratory Consequences and Their Central Neural Substrates

    PubMed Central

    Critchley, Hugo D.; Nicotra, Alessia; Chiesa, Patrizia A.; Nagai, Yoko; Gray, Marcus A.; Minati, Ludovico; Bernardi, Luciano

    2015-01-01

    Controlled slow breathing (at 6/min, a rate frequently adopted during yoga practice) can benefit cardiovascular function, including responses to hypoxia. We tested the neural substrates of cardiorespiratory control in humans during volitional controlled breathing and hypoxic challenge using functional magnetic resonance imaging (fMRI). Twenty healthy volunteers were scanned during paced (slow and normal rate) breathing and during spontaneous breathing of normoxic and hypoxic (13% inspired O2) air. Cardiovascular and respiratory measures were acquired concurrently, including beat-to-beat blood pressure from a subset of participants (N = 7). Slow breathing was associated with increased tidal ventilatory volume. Induced hypoxia raised heart rate and suppressed heart rate variability. Within the brain, slow breathing activated dorsal pons, periaqueductal grey matter, cerebellum, hypothalamus, thalamus and lateral and anterior insular cortices. Blocks of hypoxia activated mid pons, bilateral amygdalae, anterior insular and occipitotemporal cortices. Interaction between slow breathing and hypoxia was expressed in ventral striatal and frontal polar activity. Across conditions, within brainstem, dorsal medullary and pontine activity correlated with tidal volume and inversely with heart rate. Activity in rostroventral medulla correlated with beat-to-beat blood pressure and heart rate variability. Widespread insula and striatal activity tracked decreases in heart rate, while subregions of insular cortex correlated with momentary increases in tidal volume. Our findings define slow breathing effects on central and cardiovascular responses to hypoxic challenge. They highlight the recruitment of discrete brainstem nuclei to cardiorespiratory control, and the engagement of corticostriatal circuitry in support of physiological responses that accompany breathing regulation during hypoxic challenge. PMID:25973923

  3. Kidney motion during free breathing and breath hold for MR-guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Stam, Mette K.; van Vulpen, Marco; Barendrecht, Maurits M.; Zonnenberg, Bernard A.; Intven, Martijn; Crijns, Sjoerd P. M.; Lagendijk, Jan J. W.; Raaymakers, Bas W.

    2013-04-01

    Current treatments for renal cell carcinoma have a high complication rate due to the invasiveness of the treatment. With the MRI-linac it may be possible to treat renal tumours non-invasively with high-precision radiotherapy. This is expected to reduce complications. To deliver a static dose distribution, radiation gating will be used. In this study the reproducibility and efficiency of free breathing gating and a breath hold treatment of the kidney was investigated. For 15 patients with a renal lesion the kidney motion during 2 min of free breathing and 10 consecutive expiration breath holds was studied with 2D cine MRI. The variability in kidney expiration position and treatment efficiency for gating windows of 1 to 20 mm was measured for both breathing patterns. Additionally the time trend in free breathing and the variation in expiration breath hold kidney position with baseline shift correction was determined. In 80% of the patients the variation in expiration position during free breathing is smaller than 2 mm. No clinically relevant time trends were detected. The variation in expiration breath hold is for all patients larger than the free breathing expiration variation. Gating on free breathing is, for gating windows of 1 to 5 mm more efficient than breath hold without baseline correction. When applying a baseline correction to the breath hold it increases the treatment efficiency. The kidney position is more reproducible in expiration free breathing than non-guided expiration breath hold. For small gating windows it is also more time efficient. Since free breathing also seems more comfortable for the patients it is the preferred breathing pattern for MRI-Linac treatments of the kidney.

  4. Contrast enhanced computerized tomography measurement of vascular blood flow

    NASA Astrophysics Data System (ADS)

    Sixou, B.; Boissel, L.; Sigovan, M.

    2016-10-01

    In this work, we study the measurement of blood velocity with contrast enhanced computed tomography. The transport equation is used as a constraint to obtain stable solutions. The inverse problem is formulated as an optimal control problem. The density of the contrast agent is reconstructed together with the flow field. The inversion scheme is tested on a simple phantom. The reconstruction of the velocity is improved but the convergence of the method is slow.

  5. Ultrasonic Doppler measurement of renal artery blood flow

    NASA Technical Reports Server (NTRS)

    Freund, W. R.; Meindl, J. D.

    1975-01-01

    An extensive evaluation of the practical and theoretical limitations encountered in the use of totally implantable CW Doppler flowmeters is provided. Theoretical analyses, computer models, in-vitro and in-vivo calibration studies describe the sources and magnitudes of potential errors in the measurement of blood flow through the renal artery, as well as larger vessels in the circulatory system. The evaluation of new flowmeter/transducer systems and their use in physiological investigations is reported.

  6. Transcutaneous Measurement of Blood Analyte Concentration Using Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Barman, Ishan; Singh, Gajendra P.; Dasari, Ramachandra R.; Feld, Michael S.

    2008-11-01

    Diabetes mellitus is a chronic disorder, affecting nearly 200 million people worldwide. Acute complications, such as hypoglycemia, cardiovascular disease and retinal damage, may occur if the disease is not adequately controlled. As diabetes has no known cure, tight control of glucose levels is critical for the prevention of such complications. Given the necessity for regular monitoring of blood glucose, development of non-invasive glucose detection devices is essential to improve the quality of life in diabetic patients. The commercially available glucose sensors measure the interstitial fluid glucose by electrochemical detection. However, these sensors have severe limitations, primarily related to their invasive nature and lack of stability. This necessitates the development of a truly non-invasive glucose detection technique. NIR Raman Spectroscopy, which combines the substantial penetration depth of NIR light with the excellent chemical specificity of Raman spectroscopy, provides an excellent tool to meet the challenges involved. Additionally, it enables simultaneous determination of multiple blood analytes. Our laboratory has pioneered the use of Raman spectroscopy for blood analytes' detection in biological media. The preliminary success of our non-invasive glucose measurements both in vitro (such as in serum and blood) and in vivo has provided the foundation for the development of feasible clinical systems. However, successful application of this technology still faces a few hurdles, highlighted by the problems of tissue luminescence and selection of appropriate reference concentration. In this article we explore possible avenues to overcome these challenges so that prospective prediction accuracy of blood analytes can be brought to clinically acceptable levels.

  7. Single-cell measurement of red blood cell oxygen affinity

    PubMed Central

    Di Caprio, Giuseppe; Stokes, Chris; Higgins, John M.; Schonbrun, Ethan

    2015-01-01

    Oxygen is transported throughout the body by hemoglobin (Hb) in red blood cells (RBCs). Although the oxygen affinity of blood is well-understood and routinely assessed in patients by pulse oximetry, variability at the single-cell level has not been previously measured. In contrast, single-cell measurements of RBC volume and Hb concentration are taken millions of times per day by clinical hematology analyzers, and they are important factors in determining the health of the hematologic system. To better understand the variability and determinants of oxygen affinity on a cellular level, we have developed a system that quantifies the oxygen saturation, cell volume, and Hb concentration for individual RBCs in high throughput. We find that the variability in single-cell saturation peaks at an oxygen partial pressure of 2.9%, which corresponds to the maximum slope of the oxygen–Hb dissociation curve. In addition, single-cell oxygen affinity is positively correlated with Hb concentration but independent of osmolarity, which suggests variation in the Hb to 2,3-diphosphoglycerate (2–3 DPG) ratio on a cellular level. By quantifying the functional behavior of a cellular population, our system adds a dimension to blood cell analysis and other measurements of single-cell variability. PMID:26216973

  8. Near-infrared spectral methods for noninvasively measuring blood glucose

    NASA Astrophysics Data System (ADS)

    Fei, Sun; Kong, Deyi; Mei, Tao; Tao, Yongchun

    2004-05-01

    Determination of blood glucose concentrations in diabetic patients is a frequently occurring procedure and an important tool for diabetes management. Use of noninvasive detection techniques can relieve patients from the pain of frequent finger pokes and avoid the infection of disease via blood. This thesis discusses current research and analyzes the advantages and shortages of different measurement methods, including: optical methods (Transmission, Polarimetry and scattering), then, we give emphasis to analyze the technology of near-infrared (NIR) spectra. NIR spectral range 700 nm ~2300 nm was used because of its good transparency for biological tissue and presence of glucose absorption band. In this work, we present an outline of noninvasive blood glucose measurement. A near-infrared light beam is passed through the finger, and the spectral components of the emergent beam are measured using spectroscopic techniques. The device includes light sources having the wavelengths of 600 nm - 1800 nm to illuminate the tissue. Receptors associated with the light sources for receiving light and generating a transmission signal representing the light transmitted are also provided. Once a transmission signal is received by receptors, and the high and low values from each of the signals are stored in the device. The averaged values are then analyzed to determine the glucose concentration, which is displayed on the device.

  9. Blood

    MedlinePlus

    ... solid part of your blood contains red blood cells, white blood cells, and platelets. Red blood cells (RBC) deliver oxygen from your lungs to your tissues and organs. White blood cells (WBC) fight infection and are part of your ...

  10. Breath Analysis in Pulmonary Arterial Hypertension

    PubMed Central

    Cikach, Frank S.; Tonelli, Adriano R.; Barnes, Jarrod; Paschke, Kelly; Newman, Jennie; Grove, David; Dababneh, Luma; Wang, Sihe

    2014-01-01

    Background: Pulmonary arterial hypertension (PAH) is a progressive and devastating condition characterized by vascular cell proliferation and is associated with several metabolic derangements. We hypothesized that metabolic derangements in PAH can be detected by measuring metabolic by-products in exhaled breath. Methods: We collected breath and blood samples from patients with PAH at the time of right-sided heart catheterization (n = 31) and from healthy control subjects (n = 34). Breath was analyzed by selected ion flow tube-mass spectrometry in predetermined training and validation cohorts. Results: Patients with PAH were 51.5 ± 14 years old, and 27 were women (85%). Control subjects were 38 ± 13 years old, and 22 were women (65%). Discriminant analysis in the training set identified three ion peaks (H3O+29+, NO+56+, and O2+98+) and the variable age that correctly classified 88.9% of the individuals. In an independent validation cohort, 82.8% of the individuals were classified correctly. The concentrations of the volatile organic compounds 2-propanol, acetaldehyde, ammonia, ethanol, pentane, 1-decene, 1-octene, and 2-nonene were different in patients with PAH compared with control subjects. Exhaled ammonia was higher in patients with PAH (median [interquartile range]: 94.7 parts per billion (ppb) [70-129 ppb] vs 60.9 ppb [46-77 ppb], P < .001) and was associated with right atrial pressure (ρ = 0.57, P < .001), mean pulmonary artery pressure (ρ = 0.43, P = .015), cardiac index by thermodilution (ρ = −0.39, P = .03), pulmonary vascular resistance (ρ = 0.40, P = .04), mixed venous oxygen (ρ = −0.59, P < .001), and right ventricular dilation (ρ = 0.42, P = .03). Conclusions: Breathprint is different between patients with PAH and healthy control subjects. Several specific compounds, including ammonia, were elevated in the breath of patients with PAH. Exhaled ammonia levels correlated with severity of disease. PMID:24091389

  11. SU-E-J-236: Audiovisual Biofeedback Improves Breath-Hold Lung Tumor Position Reproducibility Measured with 4D MRI

    SciTech Connect

    Lee, D; Pollock, S; Keall, P; Greer, P; Lapuz, C; Ludbrook, J; Kim, T

    2015-06-15

    Purpose: Audiovisual biofeedback breath-hold (AVBH) was employed to reproduce tumor position on inhale and exhale breath-holds for 4D tumor information. We hypothesize that lung tumor position will be more consistent using AVBH compared with conventional breath-hold (CBH). Methods: Lung tumor positions were determined for seven lung cancer patients (age: 25 – 74) during to two separate 3T MRI sessions. A breathhold training session was performed prior to the MRI sessions to allow patients to become comfortable with AVBH and their exhale and inhale target positions. CBH and AVBH 4D image datasets were obtained in the first MRI session (pre-treatment) and the second MRI session (midtreatment) within six weeks of the first session. Audio-instruction (MRI: Siemens Skyra) in CBH and verbal-instruction (radiographer) in AVBH were used. A radiation oncologist contoured the lung tumor using Eclipse (Varian Medical Systems); tumor position was quantified as the centroid of the contoured tumor after rigid registration based on vertebral anatomy across two MRI sessions. CBH and AVBH were compared in terms of the reproducibility assessed via (1) the difference between the two exhale positions for the two sessions and the two inhale positions for the sessions. (2) The difference in amplitude (exhale to inhale) between the two sessions. Results: Compared to CBH, AVBH improved the reproducibility of two exhale (or inhale) lung tumor positions relative to each other by 33%, from 6.4±5.3 mm to 4.3±3.0 mm (p=0.005). Compared to CBH, AVBH improved the reproducibility of exhale and inhale amplitude by 66%, from 5.6±5.9 mm to 1.9±1.4 mm (p=0.005). Conclusions: This study demonstrated that audiovisual biofeedback can be utilized for improving the reproducibility of breath-hold lung tumor position. These results are advantageous towards achieving more accurate emerging radiation treatment planning methods, in addition to imaging and treatment modalities utilizing breath

  12. The lung cancer breath signature: a comparative analysis of exhaled breath and air sampled from inside the lungs

    PubMed Central

    Capuano, Rosamaria; Santonico, Marco; Pennazza, Giorgio; Ghezzi, Silvia; Martinelli, Eugenio; Roscioni, Claudio; Lucantoni, Gabriele; Galluccio, Giovanni; Paolesse, Roberto; Di Natale, Corrado; D’Amico, Arnaldo

    2015-01-01

    Results collected in more than 20 years of studies suggest a relationship between the volatile organic compounds exhaled in breath and lung cancer. However, the origin of these compounds is still not completely elucidated. In spite of the simplistic vision that cancerous tissues in lungs directly emit the volatile metabolites into the airways, some papers point out that metabolites are collected by the blood and then exchanged at the air-blood interface in the lung. To shed light on this subject we performed an experiment collecting both the breath and the air inside both the lungs with a modified bronchoscopic probe. The samples were measured with a gas chromatography-mass spectrometer (GC-MS) and an electronic nose. We found that the diagnostic capability of the electronic nose does not depend on the presence of cancer in the sampled lung, reaching in both cases an above 90% correct classification rate between cancer and non-cancer samples. On the other hand, multivariate analysis of GC-MS achieved a correct classification rate between the two lungs of only 76%. GC-MS analysis of breath and air sampled from the lungs demonstrates a substantial preservation of the VOCs pattern from inside the lung to the exhaled breath. PMID:26559776

  13. The lung cancer breath signature: a comparative analysis of exhaled breath and air sampled from inside the lungs

    NASA Astrophysics Data System (ADS)

    Capuano, Rosamaria; Santonico, Marco; Pennazza, Giorgio; Ghezzi, Silvia; Martinelli, Eugenio; Roscioni, Claudio; Lucantoni, Gabriele; Galluccio, Giovanni; Paolesse, Roberto; di Natale, Corrado; D'Amico, Arnaldo

    2015-11-01

    Results collected in more than 20 years of studies suggest a relationship between the volatile organic compounds exhaled in breath and lung cancer. However, the origin of these compounds is still not completely elucidated. In spite of the simplistic vision that cancerous tissues in lungs directly emit the volatile metabolites into the airways, some papers point out that metabolites are collected by the blood and then exchanged at the air-blood interface in the lung. To shed light on this subject we performed an experiment collecting both the breath and the air inside both the lungs with a modified bronchoscopic probe. The samples were measured with a gas chromatography-mass spectrometer (GC-MS) and an electronic nose. We found that the diagnostic capability of the electronic nose does not depend on the presence of cancer in the sampled lung, reaching in both cases an above 90% correct classification rate between cancer and non-cancer samples. On the other hand, multivariate analysis of GC-MS achieved a correct classification rate between the two lungs of only 76%. GC-MS analysis of breath and air sampled from the lungs demonstrates a substantial preservation of the VOCs pattern from inside the lung to the exhaled breath.

  14. Mixing problems in using indicators for measuring regional blood flow

    SciTech Connect

    Ushioda, E.; Nuwayhid, B.; Tabsh, K.; Erkkola, R.; Brinkman, C.R.; Assali, N.S.

    1982-01-01

    A basic requirement for using indicators for measuring blood flow is adequate mixing of the indicator with blood prior to sampling the site. This requirement has been met by depositing the indicator in the heart and sampling from an artery. Recently, authors have injected microspheres into veins and sampled from venous sites. The present studies were designed to investigate the mixing problems in sheep and rabbits by means of Cardio-Green and labeled microspheres. The indicators were injected at different points in the circulatory system, and blood was sampled at different levels of the venous and arterial systems. Results show the following: (a) When an indicator of small molecular size (Cardio-Green) is allowed to pass through the heart chambers, adequate mixing is achieved, yielding accurate and reproducible results. (b) When any indicator (Cardio-Green or microspheres) is injected into veins, and sampling is done at any point in the venous system, mixing is inadequate, yielding flow results which are inconsistent and erratic. (c) For an indicator or large molecular size (microspheres), injecting into the left side of the heart and sampling from arterial sites yield accurate and reproducible results regardless of whether blood is sampled continuously or intermittently.

  15. Effects of Electromagnetic Fields on Automated Blood Cell Measurements.

    PubMed

    Vagdatli, Eleni; Konstandinidou, Vasiliki; Adrianakis, Nikolaos; Tsikopoulos, Ioannis; Tsikopoulos, Alexios; Mitsopoulou, Kyriaki

    2014-08-01

    The aim of this study is to investigate whether the electromagnetic fields associated with mobile phones and/or laptops interfere with blood cell counts of hematology analyzers. Random blood samples were analyzed on an Aperture Impedance hematology analyzer. The analysis was performed in four ways: (A) without the presence of any mobile phone or portable computer in use, (B) with mobile phones in use (B1: one mobile, B4: four mobiles), (C) with portable computers (laptops) in use (C1: one laptop, C3: three laptops), and (D) with four mobile phones and three laptops in use simultaneously. The results obtained demonstrated a statistically significant decrease in neutrophil, erythrocyte, and platelet count and an increase in lymphocyte count, mean corpuscular volume, and red blood cell distribution width, notably in the B4 group. Despite this statistical significance, in clinical practice, only the red blood cell reduction could be taken into account, as the mean difference between the A and B4 group was 60,000 cells/µL. In group D, the analyzer gave odd results after 11 measurements and finally stopped working. The combined and multiple use of mobile phones and computers affects the function of hematology analyzers, leading to false results. Consequently, the use of such electronic devices must be avoided.

  16. Chronic intestinal ischaemia: measurement of the total splanchnic blood flow.

    PubMed

    Zacho, Helle D

    2013-04-01

    A redundant collateral network between the intestinal arteries is present at all times. In case of ischaemia in the gastrointestinal tract, the collateral blood supply can develop further, thus accommodating the demand for oxygen even in the presence of significant stenosis or occlusion of the intestinal arteries without clinical symptoms of intestinal ischaemia. Symptoms of ischemia develop when the genuine and collateral blood supply no longer can accommodate the need for oxygen. Atherosclerosis is the most common cause of obliteration in the intestinal arteries. In chronic intestinal ischaemia (CII), the fasting splanchnic blood flow (SBF) is sufficient, but the postprandial increase in SBF is inadequate and abdominal pain will therefore develop in relation to food intake causing the patient to eat smaller meals at larger intervals with a resulting weight loss. Traditionally, the CII-diagnosis has exclusively been based upon morphology (angiography) of the intestinal arteries; however, substantial discrepancies between CII-symptoms and the presence of atherosclerosis/stenosis in the intestinal arteries have been described repeatedly in the literature impeding the diagnosis of CII. This PhD thesis explores a method to determine the total SBF and its potential use as a diagnostic tool in patients suspected to suffer from CII. The SBF can be measured using a continuous infusion of a tracer and catheterisation of a hepatic vein and an artery. By measuring the SBF before and after a standard meal it is possible to assess the ability or inability to enhance the SBF and thereby diagnosing CII. In Study I, measurement of SBF was tested against angiography in a group of patients suspected to suffer from CII due to pain and weight loss. A very good agreement between the postprandial increase in SBF and angiography was found. The method was validated against a well-established method independent of the hepatic extraction of tracer using pAH in a porcine model (study II

  17. Common Genetic Polymorphisms Influence Blood Biomarker Measurements in COPD

    PubMed Central

    Drummond, M. Bradley; Hawkins, Gregory A.; Yang, Jenny; Chen, Ting-huei; Quibrera, Pedro Miguel; Anderson, Wayne; Barr, R. Graham; Bleecker, Eugene R.; Beaty, Terri; Casaburi, Richard; Castaldi, Peter; Cho, Michael H.; Comellas, Alejandro; Crapo, James D.; Criner, Gerard; Demeo, Dawn; Christenson, Stephanie A.; Couper, David J.; Doerschuk, Claire M.; Freeman, Christine M.; Gouskova, Natalia A.; Han, MeiLan K.; Hanania, Nicola A.; Hansel, Nadia N.; Hersh, Craig P.; Hoffman, Eric A.; Kaner, Robert J.; Kanner, Richard E.; Kleerup, Eric C.; Lutz, Sharon; Martinez, Fernando J.; Meyers, Deborah A.; Peters, Stephen P.; Regan, Elizabeth A.; Rennard, Stephen I.; Scholand, Mary Beth; Silverman, Edwin K.; Woodruff, Prescott G.; O’Neal, Wanda K.; Bowler, Russell P.

    2016-01-01

    Implementing precision medicine for complex diseases such as chronic obstructive lung disease (COPD) will require extensive use of biomarkers and an in-depth understanding of how genetic, epigenetic, and environmental variations contribute to phenotypic diversity and disease progression. A meta-analysis from two large cohorts of current and former smokers with and without COPD [SPIROMICS (N = 750); COPDGene (N = 590)] was used to identify single nucleotide polymorphisms (SNPs) associated with measurement of 88 blood proteins (protein quantitative trait loci; pQTLs). PQTLs consistently replicated between the two cohorts. Features of pQTLs were compared to previously reported expression QTLs (eQTLs). Inference of causal relations of pQTL genotypes, biomarker measurements, and four clinical COPD phenotypes (airflow obstruction, emphysema, exacerbation history, and chronic bronchitis) were explored using conditional independence tests. We identified 527 highly significant (p < 8 X 10−10) pQTLs in 38 (43%) of blood proteins tested. Most pQTL SNPs were novel with low overlap to eQTL SNPs. The pQTL SNPs explained >10% of measured variation in 13 protein biomarkers, with a single SNP (rs7041; p = 10−392) explaining 71%-75% of the measured variation in vitamin D binding protein (gene = GC). Some of these pQTLs [e.g., pQTLs for VDBP, sRAGE (gene = AGER), surfactant protein D (gene = SFTPD), and TNFRSF10C] have been previously associated with COPD phenotypes. Most pQTLs were local (cis), but distant (trans) pQTL SNPs in the ABO blood group locus were the top pQTL SNPs for five proteins. The inclusion of pQTL SNPs improved the clinical predictive value for the established association of sRAGE and emphysema, and the explanation of variance (R2) for emphysema improved from 0.3 to 0.4 when the pQTL SNP was included in the model along with clinical covariates. Causal modeling provided insight into specific pQTL-disease relationships for airflow obstruction and emphysema. In

  18. Common Genetic Polymorphisms Influence Blood Biomarker Measurements in COPD.

    PubMed

    Sun, Wei; Kechris, Katerina; Jacobson, Sean; Drummond, M Bradley; Hawkins, Gregory A; Yang, Jenny; Chen, Ting-Huei; Quibrera, Pedro Miguel; Anderson, Wayne; Barr, R Graham; Basta, Patricia V; Bleecker, Eugene R; Beaty, Terri; Casaburi, Richard; Castaldi, Peter; Cho, Michael H; Comellas, Alejandro; Crapo, James D; Criner, Gerard; Demeo, Dawn; Christenson, Stephanie A; Couper, David J; Curtis, Jeffrey L; Doerschuk, Claire M; Freeman, Christine M; Gouskova, Natalia A; Han, MeiLan K; Hanania, Nicola A; Hansel, Nadia N; Hersh, Craig P; Hoffman, Eric A; Kaner, Robert J; Kanner, Richard E; Kleerup, Eric C; Lutz, Sharon; Martinez, Fernando J; Meyers, Deborah A; Peters, Stephen P; Regan, Elizabeth A; Rennard, Stephen I; Scholand, Mary Beth; Silverman, Edwin K; Woodruff, Prescott G; O'Neal, Wanda K; Bowler, Russell P

    2016-08-01

    Implementing precision medicine for complex diseases such as chronic obstructive lung disease (COPD) will require extensive use of biomarkers and an in-depth understanding of how genetic, epigenetic, and environmental variations contribute to phenotypic diversity and disease progression. A meta-analysis from two large cohorts of current and former smokers with and without COPD [SPIROMICS (N = 750); COPDGene (N = 590)] was used to identify single nucleotide polymorphisms (SNPs) associated with measurement of 88 blood proteins (protein quantitative trait loci; pQTLs). PQTLs consistently replicated between the two cohorts. Features of pQTLs were compared to previously reported expression QTLs (eQTLs). Inference of causal relations of pQTL genotypes, biomarker measurements, and four clinical COPD phenotypes (airflow obstruction, emphysema, exacerbation history, and chronic bronchitis) were explored using conditional independence tests. We identified 527 highly significant (p < 8 X 10-10) pQTLs in 38 (43%) of blood proteins tested. Most pQTL SNPs were novel with low overlap to eQTL SNPs. The pQTL SNPs explained >10% of measured variation in 13 protein biomarkers, with a single SNP (rs7041; p = 10-392) explaining 71%-75% of the measured variation in vitamin D binding protein (gene = GC). Some of these pQTLs [e.g., pQTLs for VDBP, sRAGE (gene = AGER), surfactant protein D (gene = SFTPD), and TNFRSF10C] have been previously associated with COPD phenotypes. Most pQTLs were local (cis), but distant (trans) pQTL SNPs in the ABO blood group locus were the top pQTL SNPs for five proteins. The inclusion of pQTL SNPs improved the clinical predictive value for the established association of sRAGE and emphysema, and the explanation of variance (R2) for emphysema improved from 0.3 to 0.4 when the pQTL SNP was included in the model along with clinical covariates. Causal modeling provided insight into specific pQTL-disease relationships for airflow obstruction and emphysema. In

  19. Blood pressure measurement: lessons learned from our ancestors.

    PubMed

    Karamanou, Marianna; Papaioannou, Theodore G; Tsoucalas, Gregory; Tousoulis, Dimitris; Stefanadis, Christodoulos; Androutsos, George

    2015-01-01

    The profound observations of William Harvey (1578-1657), in blood circulation and the progress of physical science laid the foundation for the development of the Iatrophysical School that contributed to the evolution of clinical sphygmomanometry. The pioneer work of Reverend Stephen Hales (1677-1761) demonstrated the dynamics of the vascular system. One century later the French physician Jean-Léonard-Marie Poiseuille (1797-1867) invented a U-tube mercury manometer and in 1860 the physiologist Etienne- Jules Marey (1830-1904) devised the first portable sphygmograph for recording the pulse wave. The non-invasive techniques of blood pressure measurement were completed by Scipione Riva-Rocci (1896-1937) sphygmomanometer and the description of "Korotkov sounds" by the Russian surgeon Nikolai- Sergeyevich Korotkov (1874-1920). PMID:25341864

  20. Pressure Gradient Estimation Based on Ultrasonic Blood Flow Measurement

    NASA Astrophysics Data System (ADS)

    Nitta, Naotaka; Homma, Kazuhiro; Shiina, Tsuyoshi

    2006-05-01

    Mechanical load to the blood vessel wall, such as shear stress and pressure, which occurs in blood flow dynamics, contribute greatly to plaque rupture in arteriosclerosis and to biochemical activation of endothelial cells. Therefore, noninvasive estimations of these mechanical loads are able to provide useful information for the prevention of vascular diseases. Although the pressure is the dominant component of mechanical load, for practical purposes, the pressure gradient is also often important. So far, we have investigated the estimation of the kinematic viscosity coefficient using a combination of the Navier-Stokes equations and ultrasonic velocity measurement. In this paper, a method for pressure gradient estimation using the estimated kinematic viscosity coefficient is proposed. The validity of the proposed method was investigated on the basis of the analysis with the data obtained by computer simulation and a flow phantom experiment. These results revealed that the proposed method can provide a valid estimation of the pressure gradient.

  1. Measurement of Blood Thiamine Metabolites for Alzheimer's Disease Diagnosis

    PubMed Central

    Pan, Xiaoli; Fei, Guoqiang; Lu, Jingwen; Jin, Lirong; Pan, Shumei; Chen, Zhichun; Wang, Changpeng; Sang, Shaoming; Liu, Huimin; Hu, Weihong; Zhang, Hua; Wang, Hui; Wang, Zhiliang; Tan, Qiong; Qin, Yan; Zhang, Qunying; Xie, Xueping; Ji, Yong; Cui, Donghong; Gu, Xiaohua; Xu, Jun; Yu, Yuguo; Zhong, Chunjiu

    2015-01-01

    Background Brain glucose hypometabolism is an invariant feature and has significant diagnostic value for Alzheimer's disease. Thiamine diphosphate (TDP) is a critical coenzyme for glucose metabolism and significantly reduced in brain and blood samples of patients with Alzheimer's disease (AD). Aims To explore the diagnostic value of the measurement of blood thiamine metabolites for AD. Methods Blood TDP, thiamine monophosphate, and thiamine levels were detected using high performance liquid chromatography (HPLC). The study included the exploration and validation phases. In the exploration phase, the samples of 338 control subjects and 43 AD patients were utilized to establish the models for AD diagnosis assayed by receiver operating characteristic (ROC) curve, including the variable γ that represents the best combination of thiamine metabolites and age to predict the possibility of AD. In the validation phase, the values of models were further tested for AD diagnosis using samples of 861 control subjects, 81 AD patients, 70 vascular dementia patients, and 13 frontotemporal dementia patients. Results TDP and the γ exhibited significant and consistent values for AD diagnosis in both exploration and validation phases. TDP had 0.843 and 0.837 of the areas under ROC curve (AUCs), 77.4% and 81.5% of sensitivities, and 78.1% and 77.2% of specificities respectively in the exploration and validation phases. The γ had 0.938 and 0.910 of AUCs, 81.4% and 80.2% of sensitivities, and 90.5% and 87.2% of specificities respectively in the exploration and validation phases. TDP and the γ can effectively distinguish AD from vascular dementia (64.3% for TDP, 67.1% for γ) and frontotemporal dementia (84.6% for TDP, 100.0% for γ). Interpretation. The measurement of blood thiamine metabolites by HPLC is an ideal diagnostic test for AD with inexpensive, easy to perform, noninvasive merits. PMID:26870826

  2. Noninvasive blood glucose measurement using multiple laser diodes

    NASA Astrophysics Data System (ADS)

    Ooi, E. T.; Zhang, X. Q.; Chen, J. H.; Soh, P. H.; Ng, K.; Yeo, J. H.

    2007-02-01

    In the event of diabetes clinicians have advocated that frequent monitoring of a diabetic's blood glucose level is the key to avoid future complications (kidney failure, blindness, amputations, premature death, etc.,) associated with the disease. While the test-strip glucose meters available in current consumer markets allow for frequent monitoring, a more convenient technique that is accurate, painless and sample-free is preferable in a diabetic's daily routine. This paper presents a non-invasive blood glucose measurement technique using diffuse reflectance near infrared (NIR) signals. This technique uses a set of laser diodes, each operating at fixed wavelengths in the first overtone region. The NIR signals from the laser diodes are channeled to the measurement site viz., the nail-bed by means of optical fibers. A series of in vivo experiments have been performed on eight normal human subjects using a standard Oral Glucose Tolerance Test (OGTT) protocol. The reflected NIR signals are inputs to a Partial Least Squares (PLS) algorithm for calibration and future predictions. The calibration models used are developed using in vivo datasets and are unique to a particular individual. The 1218 paired points collected from the eight test subjects plotted on the Clarke Error Grid, revealed that 87.3% of these points fall within the A zone while the remainder, within the B zone, both of which, are clinically accepted. The standard error of prediction was +/-13.14mg/dL for the best calibration model. A Bland-Altman analysis of the 1218 paired points yields a 76.3% confidence level for a measurement accuracy of +/-20mg/dL. These results demonstrate the initial potential of the technique for non-invasive blood glucose measurements in vivo.

  3. Quantifying the image quality and dose reduction of respiratory triggered 4D cone-beam computed tomography with patient-measured breathing

    NASA Astrophysics Data System (ADS)

    Cooper, Benjamin J.; O'Brien, Ricky T.; Kipritidis, John; Shieh, Chun-Chien; Keall, Paul J.

    2015-12-01

    Respiratory triggered four dimensional cone-beam computed tomography (RT 4D CBCT) is a novel technique that uses a patient’s respiratory signal to drive the image acquisition with the goal of imaging dose reduction without degrading image quality. This work investigates image quality and dose using patient-measured respiratory signals for RT 4D CBCT simulations. Studies were performed that simulate a 4D CBCT image acquisition using both the novel RT 4D CBCT technique and a conventional 4D CBCT technique. A set containing 111 free breathing lung cancer patient respiratory signal files was used to create 111 pairs of RT 4D CBCT and conventional 4D CBCT image sets from realistic simulations of a 4D CBCT system using a Rando phantom and the digital phantom, XCAT. Each of these image sets were compared to a ground truth dataset from which a mean absolute pixel difference (MAPD) metric was calculated to quantify the degradation of image quality. The number of projections used in each simulation was counted and was assumed as a surrogate for imaging dose. Based on 111 breathing traces, when comparing RT 4D CBCT with conventional 4D CBCT, the average image quality was reduced by 7.6% (Rando study) and 11.1% (XCAT study). However, the average imaging dose reduction was 53% based on needing fewer projections (617 on average) than conventional 4D CBCT (1320 projections). The simulation studies have demonstrated that the RT 4D CBCT method can potentially offer a 53% saving in imaging dose on average compared to conventional 4D CBCT in simulation studies using a wide range of patient-measured breathing traces with a minimal impact on image quality.

  4. Measurement of regional pulmonary blood volume in patients with increased pulmonary blood flow or pulmonary arterial hypertension

    SciTech Connect

    Wollmer, P.; Rozcovek, A.; Rhodes, C.G.; Allan, R.M.; Maseri, A.

    1984-01-01

    The effects of chronic increase in pulmonary blood flow and chronic pulmonary hypertension on regional pulmonary blood volume was measured in two groups of patients. One group of patients had intracardiac, left-to-right shunts without appreciable pulmonary hypertension, and the other consisted of patients with Eisenmenger's syndrome or primary pulmonary hypertension, i.e. patients with normal or reduced blood flow and severe pulmonary hypertension. A technique based on positron tomography was used to measure lung density (by transmission scanning) and regional pulmonary blood volume (after inhalation of /sup 11/CO). The distribution of pulmonary blood volume was more uniform in patients with chronic increase in pulmonary blood flow than in normal subjects. There were also indications of an absolute increase in intrapulmonary blood volume by about 15%. In patients with chronic pulmonary arterial hypertension, the distribution of pulmonary blood volume was also abnormally uniform. There was, however, no indication that overall intrapulmonary blood volume was substantially different from normal subjects. The abnormally uniform distribution of pulmonary blood volume can be explained by recruitment and/or dilatation of vascular beds. Intrapulmonary blood volume appears to be increased in patients with intracardiac, left-to-right shunts. With the development of pulmonary hypertension, intrapulmonary blood volume falls, which may be explained by reactive changes in the vasculature and/or obliteration of capillaries.

  5. Comprehensive Data Scientific Procedure for Enhanced Analysis and Interpretation of Real-Time Breath Measurements in In Vivo Aroma-Release Studies.

    PubMed

    Szymańska, Ewa; Brown, Phil A; Ziere, Aldo; Martins, Sara; Batenburg, Max; Harren, Frans J M; Buydens, Lutgarde M C

    2015-10-20

    Real-time measurements of many low-abundance volatile organic compounds (VOCs) in breath and air samples are already feasible due to progress in analytical technologies, such as proton transfer reaction mass spectrometry (PTR-MS). Nevertheless, the information content of real-time measurements is not fully exploited, due to the lack of suitable data handling methods. This study develops a data scientific procedure to enhance data analysis and interpretation of longitudinal, multivariate data sets from real-time, in vivo, aroma-release studies. The developed procedure includes an automated data preprocessing and a multivariate assessment of the test panel performance. A large multifactorial PTR-MS data set is investigated that includes four experimental protocols, two tested food products, four aroma compounds, and eight panelists. Real-time measurements are converted into standardized breath profiles by preprocessing, and 10 kinetic parameters are derived. Next to this, panel performance is evaluated per experimental protocol and food product. Comprehensive information about panel performance, individual panelists, studied products, aroma compounds, and kinetic parameters is extracted, demonstrating the great value of the developed approach.

  6. Nephron blood flow dynamics measured by laser speckle contrast imaging.

    PubMed

    Holstein-Rathlou, Niels-Henrik; Sosnovtseva, Olga V; Pavlov, Alexey N; Cupples, William A; Sorensen, Charlotte Mehlin; Marsh, Donald J

    2011-02-01

    Tubuloglomerular feedback (TGF) has an important role in autoregulation of renal blood flow and glomerular filtration rate (GFR). Because of the characteristics of signal transmission in the feedback loop, the TGF undergoes self-sustained oscillations in single-nephron blood flow, GFR, and tubular pressure and flow. Nephrons interact by exchanging electrical signals conducted electrotonically through cells of the vascular wall, leading to synchronization of the TGF-mediated oscillations. Experimental studies of these interactions have been limited to observations on two or at most three nephrons simultaneously. The interacting nephron fields are likely to be more extensive. We have turned to laser speckle contrast imaging to measure the blood flow dynamics of 50-100 nephrons simultaneously on the renal surface of anesthetized rats. We report the application of this method and describe analytic techniques for extracting the desired data and for examining them for evidence of nephron synchronization. Synchronized TGF oscillations were detected in pairs or triplets of nephrons. The amplitude and the frequency of the oscillations changed with time, as did the patterns of synchronization. Synchronization may take place among nephrons not immediately adjacent on the surface of the kidney.

  7. Engineering studies of vectorcardiographs in blood pressure measuring systems

    NASA Technical Reports Server (NTRS)

    Mark, R. G.

    1975-01-01

    The following projects involving cardiovascular instrumentation were conducted: (1) the development and fabrication of a three-dimensional display measurement system for vectorcardiograms, (2) the development and fabrication of a cardiovascular monitoring system to noninvasively monitor beat-by-beat the blood pressure and heart rate using aortic pulse wave velocity, (3) the development of software for an interactive system to analyze systolic time interval data, and (4) the development of microprocessor-based physiologic instrumentation, focussing initially on EKG rhythm analysis. Brief descriptions of these projects were given.

  8. Stephen Hales and the measurement of blood pressure.

    PubMed

    Lewis, O

    1994-12-01

    Natural philosopher and inventor, Stephen Hales (1677-1761), undertook a lengthy series of experiments on animals described in Haemastaticks (1733) which led to the first direct measurement of blood pressure. Hales retained his interest in health and disease throughout his life, and this prompted what he regarded as his most important work: the invention of ventilation systems for use in ships or prisons. Hales was the 'perpetual curate' of Teddington, Middlesex, and he combined a mechanistic, quantitative approach to his experimental work with a need and, as he saw it, a duty to discover and wonder at the wisdom and goodness of God by studying His creation. PMID:7884783

  9. Measurement of Blood Volume in Adult Rhesus Macaques (Macaca mulatta)

    PubMed Central

    Hobbs, Theodore R; Blue, Steven W; Park, Byung S; Greisel, Jennifer J; Conn, P Michael; Pau, Francis K-Y

    2015-01-01

    Most biomedical facilities that use rhesus macaques (Macaca mulatta) limit the amount of blood that may be collected for experimental purposes. These limits typically are expressed as a percentage of blood volume (BV), estimated by using a fixed ratio of blood (mL) per body weight (kg). BV estimation ratios vary widely among facilities and typically do not factor in variables known to influence BV in humans: sex, age, and body condition. We used indicator dilution methodology to determine the BV of 20 adult rhesus macaques (10 male, 10 female) that varied widely in body condition. We measured body composition by using dual-energy X-ray absorptiometry, weight, crown-to-rump length, and body condition score. Two indicators, FITC-labeled hydroxyethyl starch (FITC–HES) and radioiodinated rhesus serum albumin (125I-RhSA), were injected simultaneously, followed by serial blood collection. Plasma volume at time 0 was determined by linear regression. BV was calculated from the plasma volume and Hct. We found that BV calculated by using FITC–HES was consistently lower than BV calculated by using 125I-RhSA. Sex and age did not significantly affect BV. Percentage body fat was significantly associated with BV. Subjects categorized as having ‘optimal’ body condition score had 18% body fat and 62.1 mL/kg BV (by FITC–HES; 74.5 mL/kg by 125I-RhSA). Each 1% increase in body fat corresponded to approximately 1 mL/kg decrease in BV. Body condition score correlated with the body fat percentage (R2 = 0.7469). We provide an equation for calculating BV from weight and body condition score. PMID:26632777

  10. Automatic Office Blood Pressure Measured without Doctors or Nurses Present

    PubMed Central

    Ishikawa, Joji; Nasothimiou, Efthimia G; Karpettas, Nikos; McDoniel, Scott; Feltheimer, Seth D; Stergiou, George S; Pickering, Thomas G; Schwartz, Joseph E

    2012-01-01

    Backgrounds We evaluated the agreement between office blood pressure (OBP) measured by mercury sphygmomanometer (Sphyg) and automatic (Auto) device without any observers, and compared Auto and Sphyg OBP to ambulatory (ABP) and home blood pressure (HBP). Methods OBP was measured in 75 hypertensive patients at 2 sites using an automatic monitor without a doctor or nurse present and by Sphyg during 3 clinic visits. Between visits, ABP and HBP monitoring were also performed. Results Mean Auto OBP was similar to Sphyg OBP and they were closely correlated (ICC=0.84 for systolic and 0.91 for diastolic OBPs); however, the difference between Auto and Sphyg systolic OBP (1.6±8.2 mmHg) varied by the first office visit, gender, and the site. Auto systolic OBP was lower than both systolic awake ABP (137.1±14.7 mmHg) and HBP (139.2±15.6 mmHg). Auto systolic OBP and Sphyg OBP were similarly correlated with systolic awake ABP (both r=0.59, P<0.001). Mean Auto diastolic OBP was similar to Sphyg OBP (81.1±11.3 vs. 80.3±13.3 mmHg, P=0.20, ICC=0.91), diastolic awake ABP and HBP. Auto diastolic OBP and Sphyg OBP were related to diastolic awake ABP (both r>0.68, P<0.001). In multivariable analyses, neither OBP measure was a significantly stronger predictor of out-of-office BP than the other. Conclusion Auto systolic OBP measured without a doctor or nurse present was lower than systolic awake ABP and HBP. Auto and rigorously assessed Sphyg OBP had similar means and were similarly related to awake ABP. Auto OBP might be an advantageous alternative to Sphyg measurements in the usual clinic setting. PMID:22425703

  11. SU-E-J-183: Quantifying the Image Quality and Dose Reduction of Respiratory Triggered 4D Cone-Beam Computed Tomography with Patient- Measured Breathing

    SciTech Connect

    Cooper, B; OBrien, R; Kipritidis, J; Keall, P

    2014-06-01

    Purpose: Respiratory triggered four dimensional cone-beam computed tomography (RT 4D CBCT) is a novel technique that uses a patient's respiratory signal to drive the image acquisition with the goal of imaging dose reduction without degrading image quality. This work investigates image quality and dose using patient-measured respiratory signals for RT 4D CBCT simulations instead of synthetic sinusoidal signals used in previous work. Methods: Studies were performed that simulate a 4D CBCT image acquisition using both the novel RT 4D CBCT technique and a conventional 4D CBCT technique from a database of oversampled Rando phantom CBCT projections. A database containing 111 free breathing lung cancer patient respiratory signal files was used to create 111 RT 4D CBCT and 111 conventional 4D CBCT image datasets from realistic simulations of a 4D RT CBCT system. Each of these image datasets were compared to a ground truth dataset from which a root mean square error (RMSE) metric was calculated to quantify the degradation of image quality. The number of projections used in each simulation is counted and was assumed as a surrogate for imaging dose. Results: Based on 111 breathing traces, when comparing RT 4D CBCT with conventional 4D CBCT the average image quality was reduced by 7.6%. However, the average imaging dose reduction was 53% based on needing fewer projections (617 on average) than conventional 4D CBCT (1320 projections). Conclusion: The simulation studies using a wide range of patient breathing traces have demonstrated that the RT 4D CBCT method can potentially offer a substantial saving of imaging dose of 53% on average compared to conventional 4D CBCT in simulation studies with a minimal impact on image quality. A patent application (PCT/US2012/048693) has been filed which is related to this work.

  12. Blood Density Is Nearly Equal to Water Density: A Validation Study of the Gravimetric Method of Measuring Intraoperative Blood Loss.

    PubMed

    Vitello, Dominic J; Ripper, Richard M; Fettiplace, Michael R; Weinberg, Guy L; Vitello, Joseph M

    2015-01-01

    Purpose. The gravimetric method of weighing surgical sponges is used to quantify intraoperative blood loss. The dry mass minus the wet mass of the gauze equals the volume of blood lost. This method assumes that the density of blood is equivalent to water (1 gm/mL). This study's purpose was to validate the assumption that the density of blood is equivalent to water and to correlate density with hematocrit. Methods. 50 µL of whole blood was weighed from eighteen rats. A distilled water control was weighed for each blood sample. The averages of the blood and water were compared utilizing a Student's unpaired, one-tailed t-test. The masses of the blood samples and the hematocrits were compared using a linear regression. Results. The average mass of the eighteen blood samples was 0.0489 g and that of the distilled water controls was 0.0492 g. The t-test showed P = 0.2269 and R (2) = 0.03154. The hematocrit values ranged from 24% to 48%. The linear regression R (2) value was 0.1767. Conclusions. The R (2) value comparing the blood and distilled water masses suggests high correlation between the two populations. Linear regression showed the hematocrit was not proportional to the mass of the blood. The study confirmed that the measured density of blood is similar to water.

  13. Minimizing Shortness of Breath

    MedlinePlus

    ... Top Doctors in the Nation Departments & Divisions Home Health Insights Stress & Relaxation Breathing and Relaxation Minimizing Shortness of Breath ... Management Assess Your Stress Coping Strategies Identifying ... & Programs Health Insights Doctors & Departments Research & Science Education & Training Make ...

  14. Breathing and Relaxation

    MedlinePlus

    ... Top Doctors in the Nation Departments & Divisions Home Health Insights Stress & Relaxation Breathing and Relaxation Breathing and Relaxation Make ... Management Assess Your Stress Coping Strategies Identifying ... & Programs Health Insights Doctors & Departments Research & Science Education & Training Make ...

  15. Quantitative photoacoustic blood oxygenation measurement of whole porcine blood samples using a multi-wavelength semiconductor laser system

    NASA Astrophysics Data System (ADS)

    Friedrich, Claus-Stefan; Mienkina, Martin P.; Brenner, Carsten; Gerhardt, Nils C.; Jörger, Manfred; Strauß, Andreas; Beckmann, Martin F.; Schmitz, Georg; Hofmann, Martin R.

    2011-07-01

    We present a photoacoustic measurement system based on semiconductor lasers for blood oxygenation measurements. It permits to use four different optical wavelengths (650nm, 808nm, 850nm, 905nm) to generate photoacoustic signals. As the optical extinction coefficient of oxygenated hemoglobin and deoxygenated hemoglobin is different at specific wavelengths, a blood oxygenation measurement by a multi-wavelength photoacoustic laser system is feasible. Especially at 650nm, the clear difference between the extinction coefficients of the two hemoglobin derivates permits to determine the blood oxygenation in combination with other near infrared wavelengths. A linear model based on tabulated values of extinction coefficients for fully oxygenated and fully deoxygenated hemoglobin is presented. We used heparin stabilized whole porcine blood samples to model the optical behavior of human blood, as the optical absorption behavior of porcine hemoglobin does not differ significantly from human hemoglobin. To determine the real oxygen saturation values of the blood samples, we measured the partial oxygen pressure with an IRMA Trupoint Blood Analysis System. The oxygen saturation values were calculated from a dissociation curve for porcine blood. The results of the photoacoustic measurement are in qualitatively good agreement with the predicted linear model. Further, we analyze the abilities and the limitations of quantitative oxygenation measurements.

  16. Optimizing dynamic T2* MR imaging for measurement of cerebral blood flow using infusions for cerebral blood volume.

    PubMed

    Newman, G C; Hospod, F E; Fain, S B; Cook, T D

    2006-01-01

    We describe an approach to measuring cerebral blood flow (CBF) based on independent measurements of cerebral blood volume (CBV) and mean transit time (MTT) with calculation of CBF by using the central volume theorem: CBF = CBV / MTT. This permits optimization of the individual acquisitions and analyses. In particular, measurement of CBV during contrast infusion, rather than simultaneously with MTT from a single bolus, yields values more consistent with those of other methods.

  17. BREATHING PATTERN DISORDERS AND FUNCTIONAL MOVEMENT

    PubMed Central

    Dr. Esformes, Joseph

    2014-01-01

    Study Design: Experimental design Background: Normal breathing mechanics play a key role in posture and spinal stabilization. Breathing Pattern Disorders (BPD) have been shown to contribute to pain and motor control deficits, which can result in dysfunctional movement patterns. The Functional Movement Screen™ (FMS™) has been shown to accurately predict injury in individuals who demonstrate poor movement patterns. The role BPD play on functional movement is not well established. Furthermore, there is currently no single test to clinically diagnose BPD. A variety of methods are used, but correlations between them are poor. Purpose: To examine the relationship between BPD and functional movement and identify correlations between different measures of BPD. Methods: Breathing was assessed in 34 healthy individuals using a multi‐dimensional approach that included biomechanical, biochemical, breathing related symptoms, and breathing functionality measures. Movement was assessed using the FMS™. Analysis, involving independent t‐tests and Pearson correlation were performed to identify associations between measures. Results: Individuals who exhibited biochemical and biomechanical signs of BPD were significantly more likely to score poorly on the FMS™. These studied measures of BPD correlated highly with each other. Conclusion: These results demonstrate the importance of diaphragmatic breathing on functional movement. Inefficient breathing could result in muscular imbalance, motor control alterations, and physiological adaptations that are capable of modifying movement. These findings provide evidence for improved breathing evaluations by clinicians. Level of Evidence: 2B PMID:24567853

  18. Breath Tests to Assess Alcoholic Liver Disease.

    PubMed

    Furnari, Manuele; Ahmed, Iftikhar; Erpecum, Karel J van; Savarino, Vincenzo; Giannini, Edoardo G

    2016-01-01

    The prevalence of Alcohol related Liver Disease (ALD) continues to rise all over the world due to changing drinking behaviour of the population. Liver disease due to excessive alcohol consumption causes significant morbidity and mortality, and poses a substantial economic burden to the health care resources. Early diagnosis and treatment of ALD may help prevent progression to cirrhosis and hepatocellular carcinoma. The last decade has seen a rising interest in potential use of non-invasive tests in clinical practice, including diagnosis and monitoring of chronic liver diseases. Over the past few decades, breath testing has been investigated extensively in the diagnosis of ALD, and has shown promising results in predicting the early stages of ALD. A variety of breath tests have been utilised in this regard including the13Clabelled breath tests, aminopyrine breath test , galactose breath test , methacetin breath test, and keto-isocaproic acid breath test. These tests have demonstrated good results in identification of both significant and severe liver disease among patients with ALD. Volatile Organic Compounds (VOC) are chemicals, which can be quantified in breath and other biological fluids, and represent physio-pathological activities within an individual. Alteration in the pattern of breath VOCs can be correlated with a number of diseases including ALD. Early stages of ALD can be detected using these breath tests, which can lead to adoption of preventive measures to reduce the progression of liver disease. This review focuses on the clinical utility of current and future breath tests, including breath VOC, as a non-invasive means of predicting early stages of ALD. PMID:27515960

  19. Effect of non-drug interventions on arterial properties determined from 24-h ambulatory blood pressure measurements.

    PubMed

    Gavish, Benjamin; Alter, Ariela; Barkai, Yael; Rachima-Maoz, Carmit; Peleg, Edna; Rosenthal, Talma

    2011-11-01

    Measures derived from the slope of the linear relationship between systolic and diastolic pressures obtained by 24-h ambulatory blood pressure (ABP) measurements incorporate clinical and prognostic information, and are believed to be vascular markers. Using post hoc analysis, we investigated potential changes of these 'slope-related measures' in three different studies conducted in hypertensive patients with before and after 24-h ABP measurements, and also evaluated the sensitivity of the results to the analysis method. Two interventional studies included 8-week device-guided breathing (DGB) exercised by 13 patients with uncontrolled blood pressure (BP), and a 6-month mineral potassium chloride-enriched diet administered to 20 elderly patients. One study was observational and involved winter-to-summer change experienced by 13 patients with controlled BP. Slope-related measures included systolic-on-diastolic slope and its equivalent 1-(diastolic-on-systolic slope) called Ambulatory Arterial Stiffness Index, and were determined using three different BP-averaging methods and two types of regression procedures. Results demonstrated sensitivity of slope-related measures to the analysis method, the most significant changes were found when the before and after 24-h ABP profiles included hourly averaged BP further averaged over the patient population, and slope-related measures were determined using symmetric (and not standard) regression. DGB was found to reduce significantly all these measures. The changes in the slope-related variables for individual patients correlated negatively with its baseline value and positively with the observed pulse pressure changes. In conclusion, the study provides evidence that DGB can affect positively vascular markers associated with cardiovascular risk, and suggests improved analysis methods for the determination of slope-related measures in interventional studies.

  20. [Personal protection measures against blood-sucking insects and ticks].

    PubMed

    Orshan, Laor; Wilamowski, Amos; Pener, Hedva

    2010-09-01

    Blood-sucking arthropods are major vectors of various pathogens like viruses, bacteria, protozoa and nematodes. Preventing exposure to the vector is imperative especially when vaccine and prophylactic treatments are not available. Personal protection measures (PPM) are essential and often the only means available when dealing with blood-sucking disease transmitting arthropods. Awareness of the risk in the specific areas of travel is the first step to be taken before and while traveling. PPM include preventive personal behavior, suitable clothing, application of insect repellents to the skin, the use of space repellents, impregnation of clothing, camping gear and bed nets and, when necessary, ground spraying of insecticides. The registered and recommended active ingredients for skin application are Deet, picaridin (icaridin), p-menthane-3,8-diol (PMD) and IR3535. Volatile pyrethrins are used as space repellents while pyrethroids, especially permethrin, are employed for impregnation and for ground spraying. It is recommended to purchase only products registered in Israel or other developed countries. These products should have a detailed label specifying the concentration of the active ingredient, application instructions and the duration of protection.

  1. Novel laser Doppler flowmeter for pulpal blood flow measurements

    NASA Astrophysics Data System (ADS)

    Zang, De Yu; Millerd, James E.; Wilder-Smith, Petra B. B.; Arrastia-Jitosho, Anna-Marie A.

    1996-04-01

    We have proposed and experimentally demonstrated a new configuration of laser Doppler flowmetry for dental pulpal blood flow measurements. To date, the vitality of a tooth can be determined only by subjective thermal or electric tests, which are of questionable reliability and may induced pain in patient. Non-invasive techniques for determining pulpal vascular reactions to injury, treatment, and medication are in great demand. The laser Doppler flowmetry technique is non-invasive; however, clinical studies have shown that when used to measure pulpal blood flow the conventional back-scattering Doppler method suffers from low signal-to-noise ratio (SNR) and unreliable flux readings rendering it impossible to calibrate. A simplified theoretical model indicates that by using a forward scattered geometry the detected signal has a much higher SNR and can be calibrated. The forward scattered signal is readily detectable due to the fact that teeth are relatively thin organs with moderate optical loss. A preliminary experiment comparing forward scattered detection with conventional back- scattered detection was carried out using an extracted human molar. The results validated the findings of the simple theoretical model and clearly showed the utility of the forward scattering geometry. The back-scattering method had readings that fluctuated by as much as 187% in response to small changes in sensor position relative to the tooth. The forward scattered method had consistent readings (within 10%) that were independent of the sensor position, a signal-to-noise ratio that was at least 5.6 times higher than the back-scattering method, and a linear response to flow rate.

  2. Measuring and communicating blood loss during obstetric hemorrhage.

    PubMed

    Gabel, Kristi T; Weeber, Tracy A

    2012-01-01

    Accurate quantification of blood loss is an essential skill necessary to prevent maternal morbidity and mortality associated with obstetric hemorrhage. Visual estimation of blood has been consistently shown to be extremely inaccurate. The nurse plays a pivotal role in quantifying blood loss after birth, recognizing triggers, mobilizing needed interventions, and providing essential communication. PMID:22548283

  3. Blood viscoelasticity measurement using steady and transient flow controls of blood in a microfluidic analogue of Wheastone-bridge channel

    PubMed Central

    Jun Kang, Yang; Lee, Sang-Joon

    2013-01-01

    Accurate measurement of blood viscoelasticity including viscosity and elasticity is essential in estimating blood flows in arteries, arterials, and capillaries and in investigating sub-lethal damage of RBCs. Furthermore, the blood viscoelasticity could be clinically used as key indices in monitoring patients with cardiovascular diseases. In this study, we propose a new method to simultaneously measure the viscosity and elasticity of blood by simply controlling the steady and transient blood flows in a microfluidic analogue of Wheastone-bridge channel, without fully integrated sensors and labelling operations. The microfluidic device is designed to have two inlets and outlets, two side channels, and one bridge channel connecting the two side channels. Blood and PBS solution are simultaneously delivered into the microfluidic device as test fluid and reference fluid, respectively. Using a fluidic-circuit model for the microfluidic device, the analytical formula is derived by applying the linear viscoelasticity model for rheological representation of blood. First, in the steady blood flow, the relationship between the viscosity of blood and that of PBS solution (μBlood/μPBS) is obtained by monitoring the reverse flows in the bridge channel at a specific flow-rate rate (QPBSSS/QBloodL). Next, in the transient blood flow, a sudden increase in the blood flow-rate induces the transient behaviors of the blood flow in the bridge channel. Here, the elasticity (or characteristic time) of blood can be quantitatively measured by analyzing the dynamic movement of blood in the bridge channel. The regression formula (ABlood (t) = Aα + Aβ exp [−(t − t0)/λBlood]) is selected based on the pressure difference (ΔP = PA − PB) at each junction (A, B) of both side channels. The characteristic time of bloodBlood) is measured by analyzing the area (ABlood) filled with blood in the bridge channel by selecting an appropriate detection window in the

  4. Blood viscoelasticity measurement using steady and transient flow controls of blood in a microfluidic analogue of Wheastone-bridge channel.

    PubMed

    Jun Kang, Yang; Lee, Sang-Joon

    2013-01-01

    Accurate measurement of blood viscoelasticity including viscosity and elasticity is essential in estimating blood flows in arteries, arterials, and capillaries and in investigating sub-lethal damage of RBCs. Furthermore, the blood viscoelasticity could be clinically used as key indices in monitoring patients with cardiovascular diseases. In this study, we propose a new method to simultaneously measure the viscosity and elasticity of blood by simply controlling the steady and transient blood flows in a microfluidic analogue of Wheastone-bridge channel, without fully integrated sensors and labelling operations. The microfluidic device is designed to have two inlets and outlets, two side channels, and one bridge channel connecting the two side channels. Blood and PBS solution are simultaneously delivered into the microfluidic device as test fluid and reference fluid, respectively. Using a fluidic-circuit model for the microfluidic device, the analytical formula is derived by applying the linear viscoelasticity model for rheological representation of blood. First, in the steady blood flow, the relationship between the viscosity of blood and that of PBS solution (μBlood /μPBS ) is obtained by monitoring the reverse flows in the bridge channel at a specific flow-rate rate (QPBS (SS) /QBlood (L) ). Next, in the transient blood flow, a sudden increase in the blood flow-rate induces the transient behaviors of the blood flow in the bridge channel. Here, the elasticity (or characteristic time) of blood can be quantitatively measured by analyzing the dynamic movement of blood in the bridge channel. The regression formula (ABlood (t) = A α  + A β exp [-(t - t 0 )/λBlood ]) is selected based on the pressure difference (ΔP = PA  - PB ) at each junction (A, B) of both side channels. The characteristic time of bloodBlood ) is measured by analyzing the area (ABlood ) filled with blood in the bridge channel by selecting an appropriate detection window in

  5. Submarines, Spacecraft, and Exhaled Breath

    EPA Science Inventory

    The International Association of Breath Research (IABR) meetings are an eclectic gathering of researchers in the medical, environmental and instrumentation fields; our focus is on human health as assessed by the measurement and interpretation of trace chemicals in human exhaled b...

  6. No effect of 85 mT permanent magnets on laser-Doppler measured blood flow response to inspiratory gasps.

    PubMed

    Mayrovitz, Harvey N; Groseclose, Edye E; King, David

    2005-05-01

    Although no effects of permanent magnets on resting skin blood flow (SBF) in humans have yet been demonstrated, the possibility that magnet related effects might modify dynamic SBF changes has not been previously studied. We hypothesized that magnets may alter local neurovascular mechanisms to cause changes in normal SBF vasoactive responses. To test this, we studied the effects of a magnet on SBF reductions induced by sympathetic reflexes associated with deep inspirations. SBF was continuously monitored by a dual channel laser-Doppler flowmeter with probes on the middle finger dorsum of both hands of 24 healthy subjects. In the first of two successive intervals, each of the fingers rested on sham ceramic magnets (control interval). Subsequently, one finger rested on an active magnet and the other finger on a sham (experimental interval). Skin temperatures were also measured. The magnet was a 37 mm diameter x 14 mm thick ceramic magnet with a surface field strength of 85 mT measured in the geometrical center of the magnet. Field strength at the finger dorsum, 13 mm above magnet, was 31.5 mT. During each interval, three deep breaths were used to elicit SBF reductions. Responses were calculated as the percent reduction in SBF from its prior 20 s average. Breaths in each interval were spaced 3 min apart to permit full recovery between responses. The experimental interval started after an active magnet was in place for 20 min. Results showed no significant difference in either vasoconstrictive responses or skin temperature due to the magnet. We conclude that magnets of the type, strength and duration used, have no significant effect on vasoconstrictive processes associated with this sympathetic reflex in this group of healthy subjects.

  7. 42 CFR 84.91 - Breathing resistance test; exhalation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Breathing resistance test; exhalation. 84.91...-Contained Breathing Apparatus § 84.91 Breathing resistance test; exhalation. (a) Resistance to exhalation airflow will be measured in the facepiece or mouthpiece of open-circuit apparatus with air flowing at...

  8. 42 CFR 84.91 - Breathing resistance test; exhalation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Breathing resistance test; exhalation. 84.91...-Contained Breathing Apparatus § 84.91 Breathing resistance test; exhalation. (a) Resistance to exhalation airflow will be measured in the facepiece or mouthpiece of open-circuit apparatus with air flowing at...

  9. 42 CFR 84.91 - Breathing resistance test; exhalation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Breathing resistance test; exhalation. 84.91...-Contained Breathing Apparatus § 84.91 Breathing resistance test; exhalation. (a) Resistance to exhalation airflow will be measured in the facepiece or mouthpiece of open-circuit apparatus with air flowing at...

  10. 42 CFR 84.91 - Breathing resistance test; exhalation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Breathing resistance test; exhalation. 84.91...-Contained Breathing Apparatus § 84.91 Breathing resistance test; exhalation. (a) Resistance to exhalation airflow will be measured in the facepiece or mouthpiece of open-circuit apparatus with air flowing at...

  11. Extreme human breath-hold diving.

    PubMed

    Ferretti, G

    2001-04-01

    In this paper, the respiratory, circulatory and metabolic adjustments to human extreme breath-hold diving are reviewed. A survey of the literature reveals that in extreme divers, adaptive mechanisms take place that allow prolongation of apnoea beyond the limits attained by non-diving subjects, and preservation of oxygen stores during the dives. The occurrence of a diving response, including peripheral vasoconstriction, increased arterial blood pressure, bradycardia and lowered cardiac output, is strongly implicated. Some peripheral regions may be excluded from perfusion, with consequent reliance on anaerobic metabolism. In addition, extreme breath-hold divers show a blunted ventilatory response to carbon dioxide breathing, possibly as a consequence of frequent exposure to high carbon dioxide partial pressures during the dives. These mechanisms allow the attainment of particularly low alveolar oxygen (< 30 mmHg) and high alveolar carbon dioxide (> 50 mmHg) partial pressures at the end of maximal dry breath-holds, and reduce oxygen consumption during the dive at the expense of increased anaerobic glycolysis (rate of blood lactate accumulation > 0.04 mM.s-1). The current absolute world record for depth in breath-hold diving is 150 m. Its further improvement depends upon how far the equilibrium between starting oxygen stores, the overall rate of energy expenditure, the fraction of energy provided by anaerobic metabolism and the diving speed can be pushed, with consciousness upon emersion. The ultimate limit to breath-hold diving records may indeed be imposed by an energetic constraint. PMID:11374109

  12. Outcome-Driven Thresholds for Home Blood Pressure Measurement

    PubMed Central

    Niiranen, Teemu J.; Asayama, Kei; Thijs, Lutgarde; Johansson, Jouni K.; Ohkubo, Takayoshi; Kikuya, Masahiro; Boggia, José; Hozawa, Atsushi; Sandoya, Edgardo; Stergiou, George S.; Tsuji, Ichiro; Jula, Antti M.; Imai, Yutaka; Staessen, Jan A.

    2013-01-01

    The lack of outcome-driven operational thresholds limits the clinical application of home blood pressure (BP) measurement. Our objective was to determine an outcome-driven reference frame for home BP measurement. We measured home and clinic BP in 6470 participants (mean age, 59.3 years; 56.9% women; 22.4% on antihypertensive treatment) recruited in Ohasama, Japan (n=2520); Montevideo, Uruguay (n=399); Tsurugaya, Japan (n=811); Didima, Greece (n=665); and nationwide in Finland (n=2075). In multivariable-adjusted analyses of individual subject data, we determined home BP thresholds, which yielded 10-year cardiovascular risks similar to those associated with stages 1 (120/80 mm Hg) and 2 (130/85 mm Hg) prehypertension, and stages 1 (140/90 mm Hg) and 2 (160/100 mm Hg) hypertension on clinic measurement. During 8.3 years of follow-up (median), 716 cardiovascular end points, 294 cardiovascular deaths, 393 strokes, and 336 cardiac events occurred in the whole cohort; in untreated participants these numbers were 414, 158, 225, and 194, respectively. In the whole cohort, outcome-driven systolic/diastolic thresholds for the home BP corresponding with stages 1 and 2 prehypertension and stages 1 and 2 hypertension were 121.4/77.7, 127.4/79.9, 133.4/82.2, and 145.4/86.8 mm Hg; in 5018 untreated participants, these thresholds were 118.5/76.9, 125.2/79.7, 131.9/82.4, and 145.3/87.9 mm Hg, respectively. Rounded thresholds for stages 1 and 2 prehypertension and stages 1 and 2 hypertension amounted to 120/75, 125/80, 130/85, and 145/90 mm Hg, respectively. Population-based outcome-driven thresholds for home BP are slightly lower than those currently proposed in hypertension guidelines. Our current findings could inform guidelines and help clinicians in diagnosing and managing patients. PMID:23129700

  13. Immediate effects of breath holding maneuvers onto composition of exhaled breath.

    PubMed

    Sukul, Pritam; Trefz, Phillip; Schubert, Jochen K; Miekisch, Wolfram

    2014-09-01

    Rapid concentration changes due to physiological or pathophysiological effects rather than appearance of unique disease biomarkers are important for clinical application of breath research. Simple maneuvers such as breath holding may significantly affect breath biomarker concentrations. In this study, exhaled volatile organic compound (VOC) concentrations were assessed in real time before and after different breath holding maneuvers. Continuous breath-resolved measurements (PTR-ToF-MS-8000) were performed in 31 healthy human subjects in a side-stream sampling mode. After 1 min of tidal breathing participants held their breath for 10, 20, 40, 60 s and as long as possible. Afterwards they continued to breathe normally for another minute. VOC profiles could be monitored in real time by assigning online PTR-ToF-MS data to alveolar or inspired phases of breath. Sudden and profound changes of exhaled VOC concentrations were recorded after different breath holding maneuvers. VOC concentrations returned to base line levels 10-20 s after breath holding. Breath holding induced concentration changes depended on physico-chemical properties of the substances. When substance concentrations were normalized onto end-tidal CO2 content, variation of acetone concentrations decreased, whereas variations of isoprene concentrations were not affected. As the effects of breathing patterns on exhaled substance concentrations depend on individual substance properties, sampling procedures have to be validated for each compound by means of appropriate real-time analysis. Normalization of exhaled concentrations onto exhaled CO2 is only valid for substances having similar physico-chemical properties as CO2.

  14. Development of automatic blood extraction device with a micro-needle for blood-sugar level measurement

    NASA Astrophysics Data System (ADS)

    Kawanaka, Kaichiro; Uetsuji, Yasutomo; Tsuchiya, Kazuyoshi; Nakamachi, Eiji

    2008-12-01

    In this study, a portable type HMS (Health Monitoring System) device is newly developed. It has features 1) puncturing a blood vessel by using a minimally invasive micro-needle, 2) extracting and transferring human blood and 3) measuring blood glucose level. This miniature SMBG (Self-Monitoring of Blood Glucose) device employs a syringe reciprocal blood extraction system equipped with an electro-mechanical control unit for accurate and steady operations. The device consists of a) a disposable syringe unit, b) a non-disposable body unit, and c) a glucose enzyme sensor. The syringe unit consists of a syringe itself, its cover, a piston and a titanium alloy micro-needle, whose inner diameter is about 100µm. The body unit consists of a linear driven-type stepping motor, a piston jig, which connects directly to the shaft of the stepping motor, and a syringe jig, which is driven by combining with the piston jig and slider, which fixes the syringe jig. The required thrust to drive the slider is designed to be greater than the value of the blood extraction force. Because of this driving mechanism, the automatic blood extraction and discharging processes are completed by only one linear driven-type stepping motor. The experimental results using our miniature SMBG device was confirmed to output more than 90% volumetric efficiency under the driving speed of the piston, 1.0mm/s. Further, the blood sugar level was measured successfully by using the glucose enzyme sensor.

  15. [A model of blood pressure measurement which based on NN with raised accuracy].

    PubMed

    Zhang, Weiqi

    2011-07-01

    To address the accuracy problem of the oscillometric method in electronic blood pressure monitor, this paper introduces a more accurate new blood pressure measurement model, which based on ANN. And simulation checking method is put forward.

  16. Development of a wireless sensor for the measurement of chicken blood flow using the laser Doppler blood flow meter technique.

    PubMed

    Nishihara, Kei; Iwasaki, Wataru; Nakamura, Masaki; Higurashi, Eiji; Soh, Tomoki; Itoh, Toshihiro; Okada, Hironao; Maeda, Ryutaro; Sawada, Renshi

    2013-06-01

    Here, we report the development of an integrated laser Doppler blood flow micrometer for chickens. This sensor weighs only 18 g and is one of the smallest-sized blood flow meters, with no wired line, these are features necessary for attaching the sensor to the chicken. The structure of the sensor chip consists of two silicon cavities with a photo diode and a laser diode, which was achieved using the microelectromechanical systems technique, resulting in its small size and significantly low power consumption. In addition, we introduced an intermittent measuring arrangement in the measuring system to reduce power consumption and to enable the sensor to work longer. We were successfully able to measure chicken blood flow for five consecutive days, and discovered that chicken blood flow shows daily fluctuations.

  17. Cerebrovascular Reactivity Measured with Arterial Spin Labeling and Blood Oxygen Level Dependent Techniques

    PubMed Central

    Zhou, Yongxia; Rodgers, Zachary B.; Kuo, Anderson H.

    2015-01-01

    Purpose To compare cerebrovascular reactivity (CVR) quantified with pseudo-continuous arterial spin labeling (pCASL) and blood oxygen level dependent (BOLD) fMRI techniques. Materials and Methods Sixteen healthy volunteers (age: 37.8±14.3 years; 6 women and 10 men; education attainment: 17+2.1 years) were recruited and completed a 5% CO2 gas-mixture breathing paradigm at 3T field strength. ASL and BOLD images were acquired for CVR determination assuming that mild hypercapnia does not affect the cerebral metabolic rate of oxygen. Both CVR quantifications were derived as the ratio of the fractional cerebral blood flow (CBF) or BOLD signal change over the change in end-tidal CO2 pressure. Results The absolute CBF, BOLD and CVR measures were consistent with literature values. CBF derived CVR was 5.11 ± 0.87%/mmHg in gray matter (GM) and 4.64 ± 0.37%/mmHg in parenchyma. BOLD CVR was 0.23±0.04 %/mmHg and 0.22±0.04 %/mmHg for GM and parenchyma respectively. The most significant correlations between BOLD and CBF-based CVRs were also in GM structures, with greater vascular response in occipital cortex than in frontal and parietal lobes (6.8 %/mmHg versus 4.5 %/mmHg, 50% greater). Parenchymal BOLD CVR correlated significantly with the fractional change in CBF in response to hypercapnia (r=0.61, P=0.01), suggesting the BOLD response to be significantly flow driven. GM CBF decreased with age in room air (-5.58 mL/100g/min per decade for GM; r=-0.51, P=0.05), but there was no association of CBF with age during hypercapnia. A trend toward increased pCASL CVR with age was observed, scaling as 0.64 %/mmHg per decade for GM. Conclusion Consistent with previously reported CVR values, our results suggest that BOLD and CBF CVR techniques are complementary to each other in evaluating neuronal and vascular underpinning of hemodynamic processes. PMID:25708263

  18. Measuring red blood cell aggregation forces using double optical tweezers.

    PubMed

    Fernandes, Heloise P; Fontes, Adriana; Thomaz, André; Castro, Vagner; Cesar, Carlos L; Barjas-Castro, Maria L

    2013-04-01

    Classic immunohematology approaches, based on agglutination techniques, have been used in manual and automated immunohematology laboratory routines. Red blood cell (RBC) agglutination depends on intermolecular attractive forces (hydrophobic bonds, Van der Walls, electrostatic forces and hydrogen bonds) and repulsive interactions (zeta potential). The aim of this study was to measure the force involved in RBC aggregation using double optical tweezers, in normal serum, in the presence of erythrocyte antibodies and associated to agglutination potentiator solutions (Dextran, low ionic strength solution [LISS] and enzymes). The optical tweezers consisted of a neodymium:yattrium aluminium garnet (Nd:YAG) laser beam focused through a microscope equipped with a minicam, which registered the trapped cell image in a computer where they could be analyzed using a software. For measuring RBC aggregation, a silica bead attached to RBCs was trapped and the force needed to slide one RBC over the other, as a function of the velocities, was determined. The median of the RBC aggregation force measured in normal serum (control) was 1 × 10(-3) (0.1-2.5) poise.cm. The samples analyzed with anti-D showed 2 × 10(-3) (1.0-4.0) poise.cm (p < 0.001). RBC diluted in potentiator solutions (Dextran 0.15%, Bromelain and LISS) in the absence of erythrocyte antibodies, did not present agglutination. High adherence was observed when RBCs were treated with papain. Results are in agreement with the imunohematological routine, in which non-specific results are not observed when using LISS, Dextran and Bromelain. Nevertheless, false positive results are frequently observed in manual and automated microplate analyzer using papain enzyme. The methodology proposed is simple and could provide specific information with the possibility of meansuration regarding RBC interaction.

  19. Measuring skewness of red blood cell deformability distribution by laser ektacytometry

    SciTech Connect

    Nikitin, S Yu; Priezzhev, A V; Lugovtsov, A E; Ustinov, V D

    2014-08-31

    An algorithm is proposed for measuring the parameters of red blood cell deformability distribution based on laser diffractometry of red blood cells in shear flow (ektacytometry). The algorithm is tested on specially prepared samples of rat blood. In these experiments we succeeded in measuring the mean deformability, deformability variance and skewness of red blood cell deformability distribution with errors of 10%, 15% and 35%, respectively. (laser biophotonics)

  20. Breathing evaluation and retraining in manual therapy.

    PubMed

    McLaughlin, Laurie

    2009-07-01

    Patients with back and neck pain commonly seek body work yet there are some who do not experience full recovery with the typical tool kit of manual therapy, education and exercise, suggesting the need for additional clinical approaches. Epidemiological literature linking back pain with breathing difficulties suggests one possibility. Altered motor control associated with back and neck pain appears to negatively impact breathing mechanics, which may have negative consequences on respiratory chemistry. Changes in respiratory chemistry can have profound effects on body system function. Altered breathing has been recognized for many years as a potential source of a wide variety of unexplained symptoms. There has been controversy around accurate diagnosis with symptoms and questionnaires often being the only methods used. Capnography, which is routinely used in critical care settings, offers an objective measure of respiratory chemistry providing physiological data on which to base a diagnosis of poor breathing. Capnography can also be used as biofeedback to guide breathing retraining.

  1. [Modification of Alcomat breath alcohol measurements by various substances of routine use (mouthwash, perfume, after-shave lotion etc].

    PubMed

    Grüner, O; Bilzer, N

    1990-03-01

    This paper presents the reliability of the "BAC-values" (AAKB) at the application and consumption of substances of daily usage, ascertained with the help of the "Alcomat". Hereby it was found that especially at the application of preparations for the mouth- and throat-hygiene like toilet lotion values of max. 0.30% had to be taken into consideration, even if there was no "alimentary" alcohol existing in the blood.

  2. Measurement and modeling of coronary blood flow.

    PubMed

    Sinclair, Matthew D; Lee, Jack; Cookson, Andrew N; Rivolo, Simone; Hyde, Eoin R; Smith, Nicolas P

    2015-01-01

    Ischemic heart disease that comprises both coronary artery disease and microvascular disease is the single greatest cause of death globally. In this context, enhancing our understanding of the interaction of coronary structure and function is not only fundamental for advancing basic physiology but also crucial for identifying new targets for treating these diseases. A central challenge for understanding coronary blood flow is that coronary structure and function exhibit different behaviors across a range of spatial and temporal scales. While experimental studies have sought to understand this feature by isolating specific mechanisms, in tandem, computational modeling is increasingly also providing a unique framework to integrate mechanistic behaviors across different scales. In addition, clinical methods for assessing coronary disease severity are continuously being informed and updated by findings in basic physiology. Coupling these technologies, computational modeling of the coronary circulation is emerging as a bridge between the experimental and clinical domains, providing a framework to integrate imaging and measurements from multiple sources with mathematical descriptions of governing physical laws. State-of-the-art computational modeling is being used to combine mechanistic models with data to provide new insight into coronary physiology, optimization of medical technologies, and new applications to guide clinical practice. PMID:26123867

  3. Seeking a blood pressure-independent measure of vascular properties.

    PubMed

    Steppan, Jochen; Sikka, Gautam; Hori, Daijiro; Nyhan, Daniel; Berkowitz, Dan E; Gottschalk, Allan; Barodka, Viachaslau

    2016-01-01

    Pulse wave velocity (PWV) and pulse pressure (PP) are blood pressure (BP)-dependent surrogates for vascular stiffness. Considering that there are no clinically useful markers for arterial stiffness that are BP-independent, our objective was to identify novel indices of arterial stiffness and compare them with previously described markers. PWV and PP were measured in young and old male Fisher rats and in young and old male spontaneously hypertensive rats (SHR) over a wide range of BPs. The BP dependence of these and several other indices of vascular stiffness were evaluated. An index incorporating PWV and PP was also constructed. Both PWV and PP increase in a non-linear manner with rising BP for both strains of animals (Fisher and SHRs). Age markedly changes the relationship between PWV or PP and BP. The previously described Ambulatory Arterial Stiffness Index (AASI) was able to differentiate between young and old vasculature, whereas the Cardio-Ankle Vascular Index (CAVI) did not reliably differentiate between the two. The novel Arterial Stiffness Index (ASI) differentiated stiffer from more compliant vasculature. Considering the limitations of the currently available indices of arterial stiffness, we propose a novel index of intrinsic arterial stiffness, the ASI, which is robust over a range of BPs and allows one to distinguish between compliant and stiff vasculature in both Fisher rats and SHRs. Further studies are necessary to validate this index in other settings.

  4. Seeking a blood pressure-independent measure of vascular properties.

    PubMed

    Steppan, Jochen; Sikka, Gautam; Hori, Daijiro; Nyhan, Daniel; Berkowitz, Dan E; Gottschalk, Allan; Barodka, Viachaslau

    2016-01-01

    Pulse wave velocity (PWV) and pulse pressure (PP) are blood pressure (BP)-dependent surrogates for vascular stiffness. Considering that there are no clinically useful markers for arterial stiffness that are BP-independent, our objective was to identify novel indices of arterial stiffness and compare them with previously described markers. PWV and PP were measured in young and old male Fisher rats and in young and old male spontaneously hypertensive rats (SHR) over a wide range of BPs. The BP dependence of these and several other indices of vascular stiffness were evaluated. An index incorporating PWV and PP was also constructed. Both PWV and PP increase in a non-linear manner with rising BP for both strains of animals (Fisher and SHRs). Age markedly changes the relationship between PWV or PP and BP. The previously described Ambulatory Arterial Stiffness Index (AASI) was able to differentiate between young and old vasculature, whereas the Cardio-Ankle Vascular Index (CAVI) did not reliably differentiate between the two. The novel Arterial Stiffness Index (ASI) differentiated stiffer from more compliant vasculature. Considering the limitations of the currently available indices of arterial stiffness, we propose a novel index of intrinsic arterial stiffness, the ASI, which is robust over a range of BPs and allows one to distinguish between compliant and stiff vasculature in both Fisher rats and SHRs. Further studies are necessary to validate this index in other settings. PMID:26490088

  5. Introduction to Non-Invasive Glucose Measurement - A Physicist's Perspective

    NASA Astrophysics Data System (ADS)

    Blakley, Daniel; Simske, Steven; Vadgama, Pankaj

    2011-10-01

    The Quest, The Elusive Art and Science, Many Efforts and Investments, Physiology of Blood and Epidermal Regions, Some Methods including Eyes, Breath, Skin Coupling using Spectroscopy, Ring-down Spectroscopy, IR Measurement, Florescence - all as General Introductory Material.

  6. Measuring the antioxidant capacity of blood plasma using potentiometry.

    PubMed

    Tessutti, L S; Macedo, D V; Kubota, L T; Alves, A A

    2013-10-15

    The use of potentiometry to measure plasma antioxidant capacity to contribute to oxidative stress evaluation is presented. In this assay, plasma (n=60) diluted (0.3 to 1 ml) in phosphate buffer, pH 7.4, NaCl 9%, was submitted to potentiometry. A platinum wire was the working electrode and saturated calomel the reference. The results are presented as the difference between sample and buffer potential (ΔE). ΔE presented a good inverse correlation with added increasing concentrations of ascorbate (2.5-75 μmol/L; R=-0.99), urate (9.0-150 μmol/L; R=-0.99), and bilirubin (0.78-13 μmol/L; R=-0.99). Increase in the antioxidant capacity decreased ΔE. Depletion of the antioxidant capacity by tert-butylhydroperoxide (6.5-50 μmol/L) presented a direct correlation (0.97) with ΔE. Furthermore, ΔE presented an inverse correlation (R=-0.99) with increased antioxidant capacity of plasma (FRAP) induced by the addition of ascorbate (2.5-75 μmol/L). The response of the potentiometric method proved be adequate for measuring the plasma antioxidant depletion induced by acute exhaustive exercise in rats (control, n=15; exercised, n=15). This exercise decreased the concentration of urate (p<0.05), decreased FRAP (p<0.5), increased TBARS (p<0.5), and decreased the potentiometer sensor response (p=6.5×10⁻³). These results demonstrate the adequacy of potentiometry for evaluating the antioxidant capacity of blood plasma samples.

  7. RECENT DEVELOPMENTS IN EXHALED BREATH ANALYSIS AND HUMAN EXPOSURE RESEARCH

    EPA Science Inventory

    Exhaled breath collection and analysis has historically been used in environmental research studies to characterize exposures to volatile organic compounds. The use of this approach is based on the fact that many compounds present in blood are reflected in the breath, and that u...

  8. Canine bone blood flow measurements using serial microsphere injections.

    PubMed

    McGrory, B J; Moran, C G; Bronk, J; Weaver, A L; Wood, M B

    1994-06-01

    The objective of this study was to determine the reproducibility of serial bone blood flow (BBF) quantitation using multiple microsphere injections. Three consecutive estimates of BBF were obtained, using 15-mu radionuclide-labeled microspheres from 21 anesthetized adult dogs. A dose of 3 million spheres/kg was used in seven dogs (Cohort 1); a dose of 0.5 million spheres/kg was used in the remaining 14 dogs (Cohorts 2 and 3). Estimates of BBF were made at an average of 129, 153, and 175 minutes after the animals had been anesthetized in the first two cohorts and 179, 203, and 225 minutes in Cohort 3. The dogs in Cohort 1 had no surgical intervention; the dogs in Cohorts 2 and 3 had increasingly complex surgical interventions. Despite stabilization of cardiovascular status, BBF was found to vary by 33.4% in Cohort 1, 25.7% in Cohort 2, and 42.5% in Cohort 3 over the three injections. Cortical BBF fell by 13.9%, 12.1%, and 12.4% between the first and second, and by 31.0%, 11.2%, and 29.9% between the second and third estimates for Cohorts 1, 2, and 3, respectively. Variation in right to left blood flow was used as an overall measure of error caused by technique and did not consistently increase between the first, second, or third BBF estimates in any cohort. Cortical BBF data were found to be significantly more reliable than cancellous data (p < 0.01); error caused by technique was least in the midshaft femoral or midshaft humeral cortical samples. Increasing the dose of spheres administered from 0.5 to 3 million/kg for three serial microsphere injections increased the number of reliable samples and did not lead to increased technical error or shunting. This study demonstrates that there is a significant decrease in BBF over time in the anesthetized dog; therefore, serial estimates of BBF can only be interpreted if the results are normalized or if a control group of animals is included.

  9. Rapid shallow breathing index

    PubMed Central

    Karthika, Manjush; Al Enezi, Farhan A.; Pillai, Lalitha V.; Arabi, Yaseen M.

    2016-01-01

    Predicting successful liberation of patients from mechanical ventilation has been a focus of interest to clinicians practicing in intensive care. Various weaning indices have been investigated to identify an optimal weaning window. Among them, the rapid shallow breathing index (RSBI) has gained wide use due to its simple technique and avoidance of calculation of complex pulmonary mechanics. Since its first description, several modifications have been suggested, such as the serial measurements and the rate of change of RSBI, to further improve its predictive value. The objective of this paper is to review the utility of RSBI in predicting weaning success. In addition, the use of RSBI in specific patient populations and the reported modifications of RSBI technique that attempt to improve the utility of RSBI are also reviewed. PMID:27512505

  10. Rapid shallow breathing index.

    PubMed

    Karthika, Manjush; Al Enezi, Farhan A; Pillai, Lalitha V; Arabi, Yaseen M

    2016-01-01

    Predicting successful liberation of patients from mechanical ventilation has been a focus of interest to clinicians practicing in intensive care. Various weaning indices have been investigated to identify an optimal weaning window. Among them, the rapid shallow breathing index (RSBI) has gained wide use due to its simple technique and avoidance of calculation of complex pulmonary mechanics. Since its first description, several modifications have been suggested, such as the serial measurements and the rate of change of RSBI, to further improve its predictive value. The objective of this paper is to review the utility of RSBI in predicting weaning success. In addition, the use of RSBI in specific patient populations and the reported modifications of RSBI technique that attempt to improve the utility of RSBI are also reviewed. PMID:27512505

  11. Growth of breath figures

    NASA Astrophysics Data System (ADS)

    Beysens, D.; Knobler, C. M.

    1986-09-01

    Measurements are reported of the growth of breath figures, the patterns that form when a vapor is condensed onto a cold surface. Water vapor was condensed on glass slides and the pattern was studied by direct observation and light scattering as a function of the contact angle theta, flux F, degree of supersaturation ΔT, and time t. When theta=0°, a uniform layer forms whose thickness grows as t at constant F and ΔT. For theta=90°, droplets are formed; at constant F and T, the radius of an isolated droplet grows as t0.23, but, as a result of coalescences, the average droplet radius grows as t0.75. The droplet growth process is self-similar-coalescences simply rescale the distances and leave the basic droplet pattern unaltered.

  12. Monitoring of endogenous carbon monoxide dynamics in human breath by tunable diode laser

    NASA Astrophysics Data System (ADS)

    Stepanov, Eugene V.; Daraselia, Mikhail V.; Zyrianov, Pavel V.; Shulagin, Yurii A.; Skrupskii, Vladimir A.

    1996-01-01

    High sensitive CO gas analyzer based on tunable diode laser (TDL) was used as a real time monitor of endogenous carbon monoxide in a set of breath physiology experiments. The measurements of the CO content dynamics in exhaled air with 10 ppb sensitivity were attended with detection of carbon dioxide and O2 in breath, lung ventilation parameters, heart rate and blood analysis using conventional techniques. Temporal variations of endogenous CO in human breath caused by hyperoxia, hypoxia, hyperventilation and sport loading were first studied in real time. Scattering of the CO variation time constants was observed for different tested persons. Possible reasons for this scattering related with the organisms' physiology peculiarities are discussed.

  13. Ultrasonic Doppler measurement of renal artery blood flow

    NASA Technical Reports Server (NTRS)

    Freund, W. R.; Beaver, W. L.; Meindl, J. D.

    1976-01-01

    Studies were made of (1) blood flow redistribution during lower body negative pressure (LBNP), (2) the profile of blood flow across the mitral annulus of the heart (both perpendicular and parallel to the commissures), (3) testing and evaluation of a number of pulsed Doppler systems, (4) acute calibration of perivascular Doppler transducers, (5) redesign of the mitral flow transducers to improve reliability and ease of construction, and (6) a frequency offset generator designed for use in distinguishing forward and reverse components of blood flow by producing frequencies above and below the offset frequency. Finally methodology was developed and initial results were obtained from a computer analysis of time-varying Doppler spectra.

  14. Simulation of oxygen saturation measurement in a single blood vein.

    PubMed

    Duadi, Hamootal; Nitzan, Meir; Fixler, Dror

    2016-09-15

    The value of oxygen saturation in venous blood, SvO2, has important clinical significance since it is related to the tissue oxygen utilization, which is related to the blood flow to the tissue and to its metabolism rate. However, existing pulse oximetry techniques are not suitable for blood in veins. In the current study we examine the feasibility of difference oximetry to assess SvO2 by using two near-infrared wavelengths and collecting the backscattered light from two photodetectors located at different distances from the light source. PMID:27628385

  15. Substitution of Fingertip Blood for Venous Blood in the Measurement of Hematocrit and Hemoglobin Following Exercise

    ERIC Educational Resources Information Center

    Fahey, Thomas D.; And Others

    1977-01-01

    Results from comparative testing indicate that fingertip blood is a valid indicator of antecubital venous hematocrit (hct) and hemoglobin (hgb), and that hct ratios determined on the Coulter counter are comparable to those found by the microhematocrit method. (MB)

  16. [Mobile Health: IEEE Standard for Wearable Cuffless Blood Pressure Measuring Devices].

    PubMed

    Zhou, Xia; Wu, Wenli; Bao, Shudi

    2015-07-01

    IEEE Std 1708-2014 breaks through the traditional standards of cuff based blood pressure measuring devices and establishes a normative definition of wearable cuffless blood pressure measuring devices and the objective performance evaluation of this kind of devices. This study firstly introduces the background of the new standard. Then, the standard details will be described, and the impact of cuffless blood pressure measuring devices with the new standard on manufacturers and end users will be addressed.

  17. Efficiency measurement and uncertainty discussion of an electric engine powered by a "self-breathing" and "self-humidified" proton exchange membrane fuel cell.

    PubMed

    Schiavetti, Pierluigi; Del Prete, Zaccaria

    2007-08-01

    The efficiency of an automotive engine based on a "self-breathing" and "self-humidified" proton exchange membrane fuel cell stack (PEM FC) connected to a dc brushless electrical motor was measured under variable power load conditions. Experiments have been carried out on a small scale 150 W engine model. After determining the fuel cell static polarization curve and the time response to power steps, the system was driven to copy on the test bench a "standard urban load cycle" and its instantaneous efficiencies were measured at an acquisition rate of 5 Hz. The integral system efficiency over the entire urban load cycle, comprising the losses of the unavoidable auxiliary components of the engine, was then calculated. The fuel cell stack was operated mainly in "partial" dead-end mode, with a periodic anode flow channel purging, and one test was carried out in "pure" dead-end mode, with no anode channel purging. An uncertainty analysis of the efficiencies was carried out, taking into account either type A and type B evaluation methods, strengthening the discussion about the outcomes obtained for a system based on this novel simplified FC type. For our small scale engine we measured over the standard urban cycle, on the basis of the H(2) high heating value (HHV), a tank-to-wheel integral efficiency of (18.2+/-0.8)%, when the fuel cell was operated with periodic flow channel purging, and of (21.5+/-1.3)% in complete dead-end operation mode.

  18. Synchrotron microimaging technique for measuring the velocity fields of real blood flows

    SciTech Connect

    Lee, Sang-Joon; Kim, Guk Bae

    2005-03-15

    Angiography and Doppler methods used for diagnosing vascular diseases give information on the shape of blood vessels and pointwise blood speed but do not provide detailed information on the flow fields inside the blood vessels. In this study, we developed a method for visualizing blood flow by using coherent synchrotron x rays. This method, which does not require the addition of any contrast agent or tracer particles, visualizes the flow pattern of blood by enhancing the diffraction and interference characteristics of the blood cells. This was achieved by optimizing the sample- (blood) to-detector (charge-coupled device camera) distance and the sample thickness. The proposed method was used to extract quantitative velocity field information from blood flowing inside an opaque microchannel by applying a two-frame particle image velocimetry algorithm to enhanced x-ray images of the blood flow. The measured velocity field data showed a flow structure typical of flow in a macrochannel.

  19. Cerebral blood flow measured by NMR indicator dilution in cats.

    PubMed

    Ewing, J R; Branch, C A; Helpern, J A; Smith, M B; Butt, S M; Welch, K M

    1989-02-01

    We developed techniques to assess the utility of a nuclear magnetic resonance (NMR) indicator for cerebral blood flow studies in cats, using Freon-22 for the first candidate. A PIN-diode-switched NMR experiment allowed the acquisition of an arterial as well as a cerebral fluorine-19 signal proportional to concentration vs. time in a 1.89 T magnet. Mean +/- SD blood:brain partition coefficients for Freon-22 were estimated at 0.93 +/- 0.08 for gray matter and 0.77 +/- 0.12 for white matter. Using maximum-likelihood curve fitting, estimates of mean +/- SD resting cerebral blood flow were 50 +/- 19 ml/100 g-min for gray matter and 5.0 +/- 2.0 ml/100 g-min for white matter. Hypercapnia produced the expected increases in gray and white matter blood flow. The physiologic effects of Freon-22, including an increase in cerebral blood flow itself with administration of 40% by volume, may limit its use as an indicator. Nevertheless, the NMR techniques described demonstrate the feasibility of fluorine-19-labeled compounds as cerebral blood flow indicators and the promise for their use in humans.

  20. Cerebral blood flow measured by NMR indicator dilution in cats

    SciTech Connect

    Ewing, J.R.; Branch, C.A.; Helpern, J.A.; Smith, M.B.; Butt, S.M.; Welch, K.M.

    1989-02-01

    We developed techniques to assess the utility of a nuclear magnetic resonance (NMR) indicator for cerebral blood flow studies in cats, using Freon-22 for the first candidate. A PIN-diode-switched NMR experiment allowed the acquisition of an arterial as well as a cerebral fluorine-19 signal proportional to concentration vs. time in a 1.89 T magnet. Mean +/- SD blood:brain partition coefficients for Freon-22 were estimated at 0.93 +/- 0.08 for gray matter and 0.77 +/- 0.12 for white matter. Using maximum-likelihood curve fitting, estimates of mean +/- SD resting cerebral blood flow were 50 +/- 19 ml/100 g-min for gray matter and 5.0 +/- 2.0 ml/100 g-min for white matter. Hypercapnia produced the expected increases in gray and white matter blood flow. The physiologic effects of Freon-22, including an increase in cerebral blood flow itself with administration of 40% by volume, may limit its use as an indicator. Nevertheless, the NMR techniques described demonstrate the feasibility of fluorine-19-labeled compounds as cerebral blood flow indicators and the promise for their use in humans.

  1. Cerebral blood flow measured by NMR indicator dilution in cats.

    PubMed

    Ewing, J R; Branch, C A; Helpern, J A; Smith, M B; Butt, S M; Welch, K M

    1989-02-01

    We developed techniques to assess the utility of a nuclear magnetic resonance (NMR) indicator for cerebral blood flow studies in cats, using Freon-22 for the first candidate. A PIN-diode-switched NMR experiment allowed the acquisition of an arterial as well as a cerebral fluorine-19 signal proportional to concentration vs. time in a 1.89 T magnet. Mean +/- SD blood:brain partition coefficients for Freon-22 were estimated at 0.93 +/- 0.08 for gray matter and 0.77 +/- 0.12 for white matter. Using maximum-likelihood curve fitting, estimates of mean +/- SD resting cerebral blood flow were 50 +/- 19 ml/100 g-min for gray matter and 5.0 +/- 2.0 ml/100 g-min for white matter. Hypercapnia produced the expected increases in gray and white matter blood flow. The physiologic effects of Freon-22, including an increase in cerebral blood flow itself with administration of 40% by volume, may limit its use as an indicator. Nevertheless, the NMR techniques described demonstrate the feasibility of fluorine-19-labeled compounds as cerebral blood flow indicators and the promise for their use in humans. PMID:2645693

  2. Simulated breath waveform control

    NASA Technical Reports Server (NTRS)

    Bartlett, R. G.; Hendricks, C. M.; Morison, W. B.

    1972-01-01

    Subsystem was developed which provides twelve waveform controls to breath drive mechanism. Twelve position, magnetically actuated rotary switch is connected to one end of crankshaft drive, such that it makes one complete revolution for each simulated breath. Connections with common wired point are included in modifications made to standard motor speed controller.

  3. Applications of breath gas analysis in medicine

    NASA Astrophysics Data System (ADS)

    Amann, Anton; Poupart, Guy; Telser, Stefan; Ledochowski, Maximilian; Schmid, Alex; Mechtcheriakov, Sergei

    2004-12-01

    Volatile organic compounds (VOCs) in exhaled breath gas provide valuable information about the subjects' physiological and pathophysiological condition. Proton-transfer-reaction mass spectrometry (PTR-MS) allows rapid and online measurements of these substances. We present results of three studies illustrating the potential of breath gas analysis by PTR-MS in various contexts: long-time online monitoring of VOCs in sleeping subjects suggests that VOC profiles are related to sleep stages. Analysis of VOC concentrations in the breath of carbohydrate malabsorbers emphasizes the role played by bacteria in the gut. Finally, we demonstrate the large intra- and intersubject concentration variability of VOCs by considering one particular mass.

  4. An acetone bio-sniffer (gas phase biosensor) enabling assessment of lipid metabolism from exhaled breath.

    PubMed

    Ye, Ming; Chien, Po-Jen; Toma, Koji; Arakawa, Takahiro; Mitsubayashi, Kohji

    2015-11-15

    Several volatile organic compounds (VOCs) are released from human breath or skin. Like chemical substances in blood or urine, some of these vapors can provide valuable information regarding the state of the human body. A highly sensitive acetone biochemical gas sensor (bio-sniffer) was developed and used to measure exhaled breath acetone concentration, and assess lipid metabolism based on breath acetone analysis. A fiber-optic biochemical gas sensing system was constructed by attaching a flow-cell with nicotinamide adenine dinucleotide (NADH)-dependent secondary alcohol dehydrogenase (S-ADH) immobilized membrane onto a fiber-optic NADH measurement system. The NADH measurement system utilizes an ultraviolet-light emitting diode with peak emission of 335 nm as an excitation light source. NADH is consumed by the enzymatic reaction of S-ADH, and the consumption is proportional to the concentration of acetone vapor. Phosphate buffer which contained NADH was circulated into the flow-cell to rinse products and the excessive substrates from the optode. The change of fluorescent emitted from NADH is analyzed by the PMT. Hence, fluorescence intensity decreased as the acetone concentration increased. The relationship between fluorescence intensity and acetone concentration was identified from 20 ppb to 5300 ppb. This interval included the concentration of acetone vapor in the breath of healthy people and those suffering from disorders of carbohydrate metabolism. Finally, the acetone bio-sniffer was used to measure breath acetone during an exercise stress test on an ergometer after a period of fasting. The concentration of acetone in breath was shown to significantly increase after exercise. This biosensor allows rapid, highly sensitive and selective measurement of lipid metabolism.

  5. An acetone bio-sniffer (gas phase biosensor) enabling assessment of lipid metabolism from exhaled breath.

    PubMed

    Ye, Ming; Chien, Po-Jen; Toma, Koji; Arakawa, Takahiro; Mitsubayashi, Kohji

    2015-11-15

    Several volatile organic compounds (VOCs) are released from human breath or skin. Like chemical substances in blood or urine, some of these vapors can provide valuable information regarding the state of the human body. A highly sensitive acetone biochemical gas sensor (bio-sniffer) was developed and used to measure exhaled breath acetone concentration, and assess lipid metabolism based on breath acetone analysis. A fiber-optic biochemical gas sensing system was constructed by attaching a flow-cell with nicotinamide adenine dinucleotide (NADH)-dependent secondary alcohol dehydrogenase (S-ADH) immobilized membrane onto a fiber-optic NADH measurement system. The NADH measurement system utilizes an ultraviolet-light emitting diode with peak emission of 335 nm as an excitation light source. NADH is consumed by the enzymatic reaction of S-ADH, and the consumption is proportional to the concentration of acetone vapor. Phosphate buffer which contained NADH was circulated into the flow-cell to rinse products and the excessive substrates from the optode. The change of fluorescent emitted from NADH is analyzed by the PMT. Hence, fluorescence intensity decreased as the acetone concentration increased. The relationship between fluorescence intensity and acetone concentration was identified from 20 ppb to 5300 ppb. This interval included the concentration of acetone vapor in the breath of healthy people and those suffering from disorders of carbohydrate metabolism. Finally, the acetone bio-sniffer was used to measure breath acetone during an exercise stress test on an ergometer after a period of fasting. The concentration of acetone in breath was shown to significantly increase after exercise. This biosensor allows rapid, highly sensitive and selective measurement of lipid metabolism. PMID:26079672

  6. Validation of thermal techniques for measurement of pelvic organ blood flows in the nonpregnant sheep: comparison with transit-time ultrasonic and microsphere measurements of blood flow

    SciTech Connect

    Randall, N.J.; Beard, R.W.; Sutherland, I.A.; Figueroa, J.P.; Drost, C.J.; Nathanielsz, P.W.

    1988-03-01

    Data obtained from a thermal system capable of measuring changes in organ temperature as well as tissue thermal clearance in the uterus and vagina have been compared with blood flow measured continuously with a transit-time ultrasound volume-flow sensor placed around the common internal iliac artery and intermittently with radioactive microspheres in the chronically instrumented nonpregnant sheep. Temperature changes in both the uterus and the vagina correlated well with blood flow changes measured by both techniques after intravenous administration of estradiol or norepinephrine. Thermal clearance did not correlate well with blood flow in the vagina or uterus. These methods may have value in the investigation of blood flow patterns in various clinical situations such as the pelvic pain syndrome and early pregnancy.

  7. Ultrasonic Measurement of Fluid Viscosity for Blood Characterization

    NASA Astrophysics Data System (ADS)

    Nitta, Naotaka; Homma, Kazuhiro

    2005-06-01

    Although plaque rupture in arteriosclerosis is affected by not only its strength but also by hemodynamic factors, such as blood pressure and shear stress, in particular, the viscous coefficient which directly controls the magnitude of shear stress might be a risk factor in plaque rupture. Therefore, if the viscous coefficient can be assessed noninvasively, it can be a useful index for prediction of a plaque rupture and assessment of various diseases. In this work, an ultrasonic methodology to estimate the viscous coefficient was investigated by numerical simulation and flow-phantom experiment as the fundamental investigation for noninvasively assessing the viscous characteristics of blood. These results show that the proposed method is useful for estimating the kinematic viscosity coefficient in the viscous evaluation of blood.

  8. Measurement of the Doppler power of flowing blood using ultrasound Doppler devices.

    PubMed

    Huang, Chih-Chung; Chou, Hung-Lung; Chen, Pay-Yu

    2015-02-01

    Measurement of the Doppler power of signals backscattered from flowing blood (henceforth referred to as the Doppler power of flowing blood) and the echogenicity of flowing blood have been used widely to assess the degree of red blood cell (RBC) aggregation for more than 20 y. Many studies have used Doppler flowmeters based on an analogue circuit design to obtain the Doppler shifts in the signals backscattered from flowing blood; however, some recent studies have mentioned that the analogue Doppler flowmeter exhibits a frequency-response problem whereby the backscattered energy is lost at higher Doppler shift frequencies. Therefore, the measured Doppler power of flowing blood and evaluations of RBC aggregation obtained using an analogue Doppler device may be inaccurate. To overcome this problem, the present study implemented a field-programmable gate array-based digital pulsed-wave Doppler flowmeter to measure the Doppler power of flowing blood, in the aim of providing more accurate assessments of RBC aggregation. A clinical duplex ultrasound imaging system that can acquire pulsed-wave Doppler spectrograms is now available, but its usefulness for estimating the ultrasound scattering properties of blood is still in doubt. Therefore, the echogenicity and Doppler power of flowing blood under the same flow conditions were measured using a laboratory pulser-receiver system and a clinical ultrasound system, respectively, for comparisons. The experiments were carried out using porcine blood under steady laminar flow with both RBC suspensions and whole blood. The experimental results indicated that a clinical ultrasound system used to measure the Doppler spectrograms is not suitable for quantifying Doppler power. However, the Doppler power measured using a digital Doppler flowmeter can reveal the relationship between backscattering signals and the properties of blood cells because the effects of frequency response are eliminated. The measurements of the Doppler power and

  9. Aortic blood pressure measured via EIT: investigation of different measurement settings.

    PubMed

    Braun, Fabian; Proença, Martin; Rapin, Michael; Lemay, Mathieu; Adler, Andy; Grychtol, Bartłomiej; Solà, Josep; Thiran, Jean-Philippe

    2015-06-01

    Electrical impedance tomography (EIT) allows the measurement of intra-thoracic impedance changes related to cardiovascular activity. As a safe and low-cost imaging modality, EIT is an appealing candidate for non-invasive and continuous haemodynamic monitoring. EIT has recently been shown to allow the assessment of aortic blood pressure via the estimation of the aortic pulse arrival time (PAT). However, finding the aortic signal within EIT image sequences is a challenging task: the signal has a small amplitude and is difficult to locate due to the small size of the aorta and the inherent low spatial resolution of EIT. In order to most reliably detect the aortic signal, our objective was to understand the effect of EIT measurement settings (electrode belt placement, reconstruction algorithm). This paper investigates the influence of three transversal belt placements and two commonly-used difference reconstruction algorithms (Gauss-Newton and GREIT) on the measurement of aortic signals in view of aortic blood pressure estimation via EIT. A magnetic resonance imaging based three-dimensional finite element model of the haemodynamic bio-impedance properties of the human thorax was created. Two simulation experiments were performed with the aim to (1) evaluate the timing error in aortic PAT estimation and (2) quantify the strength of the aortic signal in each pixel of the EIT image sequences. Both experiments reveal better performance for images reconstructed with Gauss-Newton (with a noise figure of 0.5 or above) and a belt placement at the height of the heart or higher. According to the noise-free scenarios simulated, the uncertainty in the analysis of the aortic EIT signal is expected to induce blood pressure errors of at least ± 1.4 mmHg.

  10. Evaluation of the appropriateness of using glucometers for measuring the blood glucose levels in mice.

    PubMed

    Togashi, Yu; Shirakawa, Jun; Okuyama, Tomoko; Yamazaki, Shunsuke; Kyohara, Mayu; Miyazawa, Ayumi; Suzuki, Takafumi; Hamada, Mari; Terauchi, Yasuo

    2016-01-01

    Glucometers are also widely used in diabetes research conducted using animal models. However, the appropriateness of measuring blood glucose levels using glucometers in animal models remains unclear. In this study, we evaluated the consistency between the blood glucose levels measured by 11 models of glucometers and plasma glucose levels measured by a laboratory biochemical test in blood samples collected by retro-orbital sinus puncture or tail-tip amputation. In both blood samples obtained by retro-orbital sinus puncture and those obtained by tail-tip amputation, 10 of the 11 models of glucometers yielded higher glucose values, while 1 yielded lower glucose values, than the plasma glucose values yielded by the laboratory test, the differences being in direct proportion to the plasma glucose values. Most glucometers recorded higher blood glucose levels after glucose loading and lower blood glucose levels after insulin loading in retro-orbital sinus blood as compared to tail vein blood. Our data suggest that the blood glucose levels measured by glucometers in mice tended to be higher than the plasma glucose levels yielded by the biochemical test under the hyperglycemic state, and that differences in the measured levels were observed according to the blood collection method depending on the glycemia status. PMID:27151424

  11. Evaluation of the appropriateness of using glucometers for measuring the blood glucose levels in mice

    PubMed Central

    Togashi, Yu; Shirakawa, Jun; Okuyama, Tomoko; Yamazaki, Shunsuke; Kyohara, Mayu; Miyazawa, Ayumi; Suzuki, Takafumi; Hamada, Mari; Terauchi, Yasuo

    2016-01-01

    Glucometers are also widely used in diabetes research conducted using animal models. However, the appropriateness of measuring blood glucose levels using glucometers in animal models remains unclear. In this study, we evaluated the consistency between the blood glucose levels measured by 11 models of glucometers and plasma glucose levels measured by a laboratory biochemical test in blood samples collected by retro-orbital sinus puncture or tail-tip amputation. In both blood samples obtained by retro-orbital sinus puncture and those obtained by tail-tip amputation, 10 of the 11 models of glucometers yielded higher glucose values, while 1 yielded lower glucose values, than the plasma glucose values yielded by the laboratory test, the differences being in direct proportion to the plasma glucose values. Most glucometers recorded higher blood glucose levels after glucose loading and lower blood glucose levels after insulin loading in retro-orbital sinus blood as compared to tail vein blood. Our data suggest that the blood glucose levels measured by glucometers in mice tended to be higher than the plasma glucose levels yielded by the biochemical test under the hyperglycemic state, and that differences in the measured levels were observed according to the blood collection method depending on the glycemia status. PMID:27151424

  12. An ultrasonic contactless sensor for breathing monitoring.

    PubMed

    Arlotto, Philippe; Grimaldi, Michel; Naeck, Roomila; Ginoux, Jean-Marc

    2014-01-01

    The monitoring of human breathing activity during a long period has multiple fundamental applications in medicine. In breathing sleep disorders such as apnea, the diagnosis is based on events during which the person stops breathing for several periods during sleep. In polysomnography, the standard for sleep disordered breathing analysis, chest movement and airflow are used to monitor the respiratory activity. However, this method has serious drawbacks. Indeed, as the subject should sleep overnight in a laboratory and because of sensors being in direct contact with him, artifacts modifying sleep quality are often observed. This work investigates an analysis of the viability of an ultrasonic device to quantify the breathing activity, without contact and without any perception by the subject. Based on a low power ultrasonic active source and transducer, the device measures the frequency shift produced by the velocity difference between the exhaled air flow and the ambient environment, i.e., the Doppler effect. After acquisition and digitization, a specific signal processing is applied to separate the effects of breath from those due to subject movements from the Doppler signal. The distance between the source and the sensor, about 50 cm, and the use of ultrasound frequency well above audible frequencies, 40 kHz, allow monitoring the breathing activity without any perception by the subject, and therefore without any modification of the sleep quality which is very important for sleep disorders diagnostic applications. This work is patented (patent pending 2013-7-31 number FR.13/57569). PMID:25140632

  13. Prediction of blood:air and fat:air partition coefficients of volatile organic compounds for the interpretation of data in breath gas analysis6

    PubMed Central

    Kramer, Christian; Mochalski, Paweł; Unterkofler, Karl; Agapiou, Agapios; Ruzsanyi, Veronika; Liedl, Klaus R

    2016-01-01

    In this article, a database of blood:air and fat:air partition coefficients (λb:a and λf:a) is reported for estimating 1678 volatile organic compounds recently reported to appear in the volatilome of the healthy human. For this purpose, a quantitative structure-property relationship (QSPR) approach was applied and a novel method for Henry’s law constants prediction developed. A random forest model based on Molecular Operating Environment 2D (MOE2D) descriptors based on 2619 literature-reported Henry’s constant values was built. The calculated Henry’s law constants correlate very well (R2test = 0.967) with the available experimental data. Blood:air and fat:air partition coefficients were calculated according to the method proposed by Poulin and Krishnan using the estimated Henry’s constant values. The obtained values correlate reasonably well with the experimentally determined ones for a test set of 90 VOCs (R2 = 0.95). The provided data aim to fill in the literature data gap and further assist the interpretation of results in studies of the human volatilome. PMID:26815030

  14. A critical evaluation of automated blood gas measurements in comparative respiratory physiology.

    PubMed

    Malte, Christian Lind; Jakobsen, Sashia Lindhøj; Wang, Tobias

    2014-12-01

    Precise measurements of blood gases and pH are of pivotal importance to respiratory physiology. However, the traditional electrodes that could be calibrated and maintained at the same temperature as the experimental animal are increasingly being replaced by new automated blood gas analyzers. These are typically designed for clinical use and automatically heat the blood sample to 37°C for measurements. While most blood gas analyzers allow for temperature corrections of the measurements, the underlying algorithms are based on temperature-effects for human blood, and any discrepancies in the temperature dependency between the blood sample from a given species and human samples will bias measurements. In this study we review the effects of temperature on blood gases and pH and evaluate the performance of an automated blood gas analyzer (GEM Premier 3500). Whole blood obtained from pythons and freshwater turtles was equilibrated in rotating Eschweiler tonometers to a variety of known P(O2)'s and P(CO2)'s in gas mixtures prepared by Wösthoff gas mixing pumps and blood samples were measured immediately on the GEM Premier 3500. The pH measurements were compared to measurements using a Radiometer BMS glass capillary pH electrode kept and calibrated at the experimental temperature. We show that while the blood gas analyzer provides reliable temperature-corrections for P(CO2) and pH, P(O2) measurements were substantially biased. This was in agreement with the theoretical considerations and emphasizes the need for critical calibrations/corrections when using automated blood gas analyzers.

  15. Measurement of interaction forces between red blood cells in aggregates by optical tweezers

    SciTech Connect

    Maklygin, A Yu; Priezzhev, A V; Karmenian, A; Nikitin, Sergei Yu; Obolenskii, I S; Lugovtsov, Andrei E; Kisun Li

    2012-06-30

    We have fabricated double-beam optical tweezers and demonstrated the possibility of their use for measuring the interaction forces between red blood cells (erythrocytes). It has been established experimentally that prolonged trapping of red blood cells in a tightly focused laser beam does not cause any visible changes in their shape or size. We have measured the interaction between red blood cells in the aggregate, deformed by optical tweezers.

  16. A critical evaluation of automated blood gas measurements in comparative respiratory physiology.

    PubMed

    Malte, Christian Lind; Jakobsen, Sashia Lindhøj; Wang, Tobias

    2014-12-01

    Precise measurements of blood gases and pH are of pivotal importance to respiratory physiology. However, the traditional electrodes that could be calibrated and maintained at the same temperature as the experimental animal are increasingly being replaced by new automated blood gas analyzers. These are typically designed for clinical use and automatically heat the blood sample to 37°C for measurements. While most blood gas analyzers allow for temperature corrections of the measurements, the underlying algorithms are based on temperature-effects for human blood, and any discrepancies in the temperature dependency between the blood sample from a given species and human samples will bias measurements. In this study we review the effects of temperature on blood gases and pH and evaluate the performance of an automated blood gas analyzer (GEM Premier 3500). Whole blood obtained from pythons and freshwater turtles was equilibrated in rotating Eschweiler tonometers to a variety of known P(O2)'s and P(CO2)'s in gas mixtures prepared by Wösthoff gas mixing pumps and blood samples were measured immediately on the GEM Premier 3500. The pH measurements were compared to measurements using a Radiometer BMS glass capillary pH electrode kept and calibrated at the experimental temperature. We show that while the blood gas analyzer provides reliable temperature-corrections for P(CO2) and pH, P(O2) measurements were substantially biased. This was in agreement with the theoretical considerations and emphasizes the need for critical calibrations/corrections when using automated blood gas analyzers. PMID:25088182

  17. A critical assessment of uncalibrated respiratory inductance plethysmography (Respitrace) for the measurement of tidal breathing parameters in newborns and infants.

    PubMed

    Jackson, E; Stocks, J; Pilgrim, L; Dundas, I; Dezateux, C

    1995-08-01

    We have compared results obtained with an uncalibrated respiratory inductance plethysmograph (RIP) with those of a face mask and pneumotachograph (PNT) for the computerized measurement of the time to reach peak tidal expiratory flow as a ratio of total expiratory time (tPTEF:tE). Simultaneous measurements were made in 32 healthy neonates aged 0-3 weeks, 35 healthy infants aged 5-82 weeks, and 28 infants aged 15-94 weeks with physician diagnosed recurrent wheeze. The group mean (+/- SD) values of tPTEF:TE determined using a PNT were 0.455 (+/- 0.129), 0.263 (+/- 0.077), and 0.232 (+/- 0.089) for the neonates, healthy infants and infants with recurrent wheeze respectively. RIP gave mean (+/- SD) values that were 0.055 (+/- 0.044) and 0.025 (+/- 0.104) lower than the PNT in healthy neonates and infants with recurrent wheeze respectively; RIP values were 0.002 (+/- 0.073) higher in the healthy infants over 4 weeks of age than measurements by PNT. Although the difference between the two measurements was not related to the thoracoabdominal phase angle, as measured from Lissajous figures, examination of the RIP ribcage and abdominal signals revealed that many healthy subjects, while appearing clinically in phase, had ribcage and abdominal signals that differed markedly from each other in terms of convexity/concavity during early expiration. This may explain the lack of agreement between the two methods. We conclude that uncalibrated RIP should be used with caution for the determination of tPTEF:tE, even in subjects whose ribcage and abdomen appear to move synchronously. The measurement of tPTEF:tE did not differentiate between the healthy infants and infants with recurrent wheezing.

  18. FEV manoeuvre induced changes in breath VOC compositions: an unconventional view on lung function tests.

    PubMed

    Sukul, Pritam; Schubert, Jochen K; Oertel, Peter; Kamysek, Svend; Taunk, Khushman; Trefz, Phillip; Miekisch, Wolfram

    2016-01-01

    Breath volatile organic compound (VOC) analysis can open a non-invasive window onto pathological and metabolic processes in the body. Decades of clinical breath-gas analysis have revealed that changes in exhaled VOC concentrations are important rather than disease specific biomarkers. As physiological parameters, such as respiratory rate or cardiac output, have profound effects on exhaled VOCs, here we investigated VOC exhalation under respiratory manoeuvres. Breath VOCs were monitored by means of real-time mass-spectrometry during conventional FEV manoeuvres in 50 healthy humans. Simultaneously, we measured respiratory and hemodynamic parameters noninvasively. Tidal volume and minute ventilation increased by 292 and 171% during the manoeuvre. FEV manoeuvre induced substance specific changes in VOC concentrations. pET-CO2 and alveolar isoprene increased by 6 and 21% during maximum exhalation. Then they decreased by 18 and 37% at forced expiration mirroring cardiac output. Acetone concentrations rose by 4.5% despite increasing minute ventilation. Blood-borne furan and dimethyl-sulphide mimicked isoprene profile. Exogenous acetonitrile, sulphides, and most aliphatic and aromatic VOCs changed minimally. Reliable breath tests must avoid forced breathing. As isoprene exhalations mirrored FEV performances, endogenous VOCs might assure quality of lung function tests. Analysis of exhaled VOC concentrations can provide additional information on physiology of respiration and gas exchange. PMID:27311826

  19. FEV manoeuvre induced changes in breath VOC compositions: an unconventional view on lung function tests

    PubMed Central

    Sukul, Pritam; Schubert, Jochen K.; Oertel, Peter; Kamysek, Svend; Taunk, Khushman; Trefz, Phillip; Miekisch, Wolfram

    2016-01-01

    Breath volatile organic compound (VOC) analysis can open a non-invasive window onto pathological and metabolic processes in the body. Decades of clinical breath-gas analysis have revealed that changes in exhaled VOC concentrations are important rather than disease specific biomarkers. As physiological parameters, such as respiratory rate or cardiac output, have profound effects on exhaled VOCs, here we investigated VOC exhalation under respiratory manoeuvres. Breath VOCs were monitored by means of real-time mass-spectrometry during conventional FEV manoeuvres in 50 healthy humans. Simultaneously, we measured respiratory and hemodynamic parameters noninvasively. Tidal volume and minute ventilation increased by 292 and 171% during the manoeuvre. FEV manoeuvre induced substance specific changes in VOC concentrations. pET-CO2 and alveolar isoprene increased by 6 and 21% during maximum exhalation. Then they decreased by 18 and 37% at forced expiration mirroring cardiac output. Acetone concentrations rose by 4.5% despite increasing minute ventilation. Blood-borne furan and dimethyl-sulphide mimicked isoprene profile. Exogenous acetonitrile, sulphides, and most aliphatic and aromatic VOCs changed minimally. Reliable breath tests must avoid forced breathing. As isoprene exhalations mirrored FEV performances, endogenous VOCs might assure quality of lung function tests. Analysis of exhaled VOC concentrations can provide additional information on physiology of respiration and gas exchange. PMID:27311826

  20. FEV manoeuvre induced changes in breath VOC compositions: an unconventional view on lung function tests

    NASA Astrophysics Data System (ADS)

    Sukul, Pritam; Schubert, Jochen K.; Oertel, Peter; Kamysek, Svend; Taunk, Khushman; Trefz, Phillip; Miekisch, Wolfram

    2016-06-01

    Breath volatile organic compound (VOC) analysis can open a non-invasive window onto pathological and metabolic processes in the body. Decades of clinical breath-gas analysis have revealed that changes in exhaled VOC concentrations are important rather than disease specific biomarkers. As physiological parameters, such as respiratory rate or cardiac output, have profound effects on exhaled VOCs, here we investigated VOC exhalation under respiratory manoeuvres. Breath VOCs were monitored by means of real-time mass-spectrometry during conventional FEV manoeuvres in 50 healthy humans. Simultaneously, we measured respiratory and hemodynamic parameters noninvasively. Tidal volume and minute ventilation increased by 292 and 171% during the manoeuvre. FEV manoeuvre induced substance specific changes in VOC concentrations. pET-CO2 and alveolar isoprene increased by 6 and 21% during maximum exhalation. Then they decreased by 18 and 37% at forced expiration mirroring cardiac output. Acetone concentrations rose by 4.5% despite increasing minute ventilation. Blood-borne furan and dimethyl-sulphide mimicked isoprene profile. Exogenous acetonitrile, sulphides, and most aliphatic and aromatic VOCs changed minimally. Reliable breath tests must avoid forced breathing. As isoprene exhalations mirrored FEV performances, endogenous VOCs might assure quality of lung function tests. Analysis of exhaled VOC concentrations can provide additional information on physiology of respiration and gas exchange.

  1. Engineering studies of vectorcardiographs in blood pressure measuring systems, appendix 2

    NASA Technical Reports Server (NTRS)

    Mark, R. G.

    1975-01-01

    The development of a cardiovascular monitoring system to noninvasively monitor the blood pressure and heart rate using pulse wave velocity was described. The following topics were covered: (1) pulse wave velocity as a measure of arterial blood pressure, (2) diastolic blood pressure and pulse wave velocity in humans, (3) transducer development for blood pressure measuring device, and (4) cardiovascular monitoring system. It was found, in experiments on dogs, that the pulse wave velocity is linearly related to diastolic blood pressure over a wide range of blood pressure and in the presence of many physiological perturbations. A similar relationship was observed in normal, young human males over a moderate range of pressures. Past methods for monitoring blood pressure and a new method based on pulse wave velocity determination were described. Two systems were tested: a Doppler ultrasonic transducer and a photoelectric plethysmograph. A cardiovascular monitoring system was described, including operating instructions.

  2. Horses Auto-Recruit Their Lungs by Inspiratory Breath Holding Following Recovery from General Anaesthesia

    PubMed Central

    Mosing, Martina; Waldmann, Andreas D.; MacFarlane, Paul; Iff, Samuel; Auer, Ulrike; Bohm, Stephan H.; Bettschart-Wolfensberger, Regula; Bardell, David

    2016-01-01

    This study evaluated the breathing pattern and distribution of ventilation in horses prior to and following recovery from general anaesthesia using electrical impedance tomography (EIT). Six horses were anaesthetised for 6 hours in dorsal recumbency. Arterial blood gas and EIT measurements were performed 24 hours before (baseline) and 1, 2, 3, 4, 5 and 6 hours after horses stood following anaesthesia. At each time point 4 representative spontaneous breaths were analysed. The percentage of the total breath length during which impedance remained greater than 50% of the maximum inspiratory impedance change (breath holding), the fraction of total tidal ventilation within each of four stacked regions of interest (ROI) (distribution of ventilation) and the filling time and inflation period of seven ROI evenly distributed over the dorso-ventral height of the lungs were calculated. Mixed effects multi-linear regression and linear regression were used and significance was set at p<0.05. All horses demonstrated inspiratory breath holding until 5 hours after standing. No change from baseline was seen for the distribution of ventilation during inspiration. Filling time and inflation period were more rapid and shorter in ventral and slower and longer in most dorsal ROI compared to baseline, respectively. In a mixed effects multi-linear regression, breath holding was significantly correlated with PaCO2 in both the univariate and multivariate regression. Following recovery from anaesthesia, horses showed inspiratory breath holding during which gas redistributed from ventral into dorsal regions of the lungs. This suggests auto-recruitment of lung tissue which would have been dependent and likely atelectic during anaesthesia. PMID:27331910

  3. Measures of blood pressure and cognition in dialysis patients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are few reports on the relationship of blood pressure with cognitive function in maintenance dialysis patients. The Cognition and Dialysis Study is an ongoing investigation of cognitive function and its risk factors in six Boston area hemodialysis units. In this analysis, we evaluated the rela...

  4. The Chronic and Acute Effects of Exercise Upon Selected Blood Measures.

    ERIC Educational Resources Information Center

    Roitman, J. L.; Brewer, J. P.

    This study investigated the effects of chronic and acute exercise upon selected blood measures and indices. Nine male cross-country runners were studied. Red blood count, hemoglobin, and hematocrit were measured using standard laboratory techniques; mean corpuscular volume (MCV), mean corpuscular hemoglobin, and mean corpuscular hemoglobin…

  5. Measurement of T1 of human arterial and venous blood at 7T

    PubMed Central

    Rane, S.; Gore, J.C.

    2012-01-01

    Techniques for measuring cerebral perfusion require accurate longitudinal relaxation (T1) of blood, a MRI parameter that is field dependent. T1 of arterial and venous human blood was measured at 7T using three different sources – pathology laboratory, blood bank and in vivo. The T1 of venous blood was measured from sealed samples from a pathology lab and in vivo. Samples from a blood bank were oxygenated and mixed to obtain different physiological concentrations of hematocrit and oxygenation. T1 relaxation times were estimated using a three-point fit to a simple inversion recovery equation. At 37° C, the T1 of blood at arterial pO2was 2.29 ± 0.1 s and 2.07 ± 0.12 at venous pO2. The in vivo T1 of venous blood, in three subjects, was slightly longer at 2.45 ± 0.11s. T1 of arterial and venous blood at 7T was measured and found to be significantly different. The T1 values were longer in vivo than in vitro. While the exact cause for the discrepancy is unknown, the additives in the blood samples, degradation during experiment, oxygenation differences, and the non-stagnant nature of blood in vivo could be potential contributors to the lower values of T1 in the venous samples. PMID:23102945

  6. Assessment of the impact of collection temperature and sampler design on the measurement of exhaled breath condensate pH in healthy horses.

    PubMed

    Whittaker, Andrew G; Love, Sandy; Parkin, Timothy D H; Duz, Marco; Cathcart, Michael; Hughes, Kristopher J

    2012-02-01

    The pH measurement of exhaled breath condensate (EBC) may provide a non-invasive method of assessing the lower airways of horses but the methodology used may influence findings. The aim of this study was to investigate the effect of two sampling devices and three methods of condensation surface cooling (ethanol slush, -100°C; dry ice, -75°C; water ice, 0°C) on EBC pH. Each method was tested 30 times using six healthy ponies. Sample pH was determined before and after de-aeration with argon for 10 min. Sampler design was found to significantly affect pH. Samples collected as a liquid had a significantly higher pH than samples frozen during collection (P<0.05). De-aeration resulted in significantly higher pH (P<0.05) with less variation. This study has shown that device design and condensation surface temperature will influence EBC pH, which will prevent a direct comparison of results when different methodologies are used. PMID:21251858

  7. Continuous blood pressure measurement using the pulse transit time: Comparison to intra-arterial measurement.

    PubMed

    Patzak, Andreas; Mendoza, Yuri; Gesche, Heiko; Konermann, Martin

    2015-01-01

    Continuous blood pressure (BP) measurement allows the investigation of transient changes in BP and thus may give insights into mechanisms of BP control. We validated a continuous, non-invasive BP measurement based on the pulse transit time (PTT), i.e., BP(PTT), by comparing it with the intra-arterial BP (BP(i.a.)) measurement. Twelve subjects (five females and seven males) were included. BP(i.a.) was obtained from the radial artery using a system from ReCor Medical. Systolic and diastolic BP were calculated using the PTT (BP(PTT), SOMNOscreen). (PTT) was determined from the electrocardiogram and the peripheral pulse wave. The BP was modulated by application of increasing doses of dobutamine (5, 10, 20 μg/kg body mass). Systolic BP(PTT) and systolic BP(i.a.) correlated significantly (R = 0.94). The limits of agreement in the Bland-Altman plot were ± 19 mmHg; the mean values differed by 1 mmHg. The correlation coefficient for the diastolic BP measurements was R = 0.42. The limits of agreement in the Bland-Altman plot were ± 18 mmHg, with a mean difference of 5 mmHg in favour of the BP(PTT). The study demonstrates a significant correlation between the measurement methods for systolic BP. The results encourage the application of PTT-based BP measurement for the evaluation of BP dynamics and pathological BP changes.

  8. Targeting of blood safety measures to affected areas with ongoing local transmission of malaria.

    PubMed

    Domanović, D; Kitchen, A; Politis, C; Panagiotopoulos, T; Bluemel, J; Van Bortel, W; Overbosch, D; Lieshout-Krikke, R; Fabra, C; Facco, G; Zeller, H

    2016-06-01

    An outbreak of locally acquired Plasmodium vivax malaria in Greece started in 2009 and peaked in 2011. Targeting of blood safety measures to affected areas with ongoing transmission of malaria raised questions of how to define spatial boundaries of such an area and when to trigger any specific blood safety measures, including whether and which blood donation screening strategy to apply. To provide scientific advice the European Centre for Disease Prevention and Control (ECDC) organised expert meetings in 2013. The outcomes of these consultations are expert opinions covering spatial targeting of blood safety measures to affected areas with ongoing local transmission of malaria and blood donation screening strategy for evidence of malaria infection in these areas. Opinions could help EU national blood safety authorities in developing a preventive strategy during malaria outbreaks. PMID:27238883

  9. [Assessment of blood pressure measurement for the diagnosis and therapeutic monitoring of hypertension (author's transl)].

    PubMed

    Krönig, B

    1978-03-31

    Blood pressure readings are the central parameter in the diagnosis and therapeutic monitoring of arterial hypertension. Frequent measurements are therefore necessary because the blood pressures of healthy people, and in particular of patients with hypertension, are subject to considerable variability. Emotional factors, physical strain and diurnal differences have a modifying effect. Attempts to standardize a single measurement such as has been tried in the determination of the basic blood pressure or the diastolic levels have proved of little relevance for information on the daily blood pressure profile. The frequent determination of a random blood pressure after 2 to 3 minutes rest is a logical alternative. Regular monitoring is almost ideally obtained, especially under antihypertensive drug therapy, by the patient measuring his own blood pressure.

  10. Regional cerebral blood flow changes associated with ethanol intoxication

    SciTech Connect

    Mathew, R.J.; Wilson, W.H.

    1986-11-01

    Regional cerebral blood flow (CBF) was measured via the 133Xenon inhalation technique in 26 healthy volunteers before and 60 minutes after the oral administration of ethyl alcohol or placebo on a double-blind basis. The cerebral blood flow values, corrected for test-retest differences in carbon dioxide showed a significant bilateral increase after ethanol administration. Blood levels of ethanol, estimated with a breath analyser, did not correlate with the CBF changes.

  11. Smartphone-based Continuous Blood Pressure Measurement Using Pulse Transit Time.

    PubMed

    Gholamhosseini, Hamid; Meintjes, Andries; Baig, Mirza; Linden, Maria

    2016-01-01

    The increasing availability of low cost and easy to use personalized medical monitoring devices has opened the door for new and innovative methods of health monitoring to emerge. Cuff-less and continuous methods of measuring blood pressure are particularly attractive as blood pressure is one of the most important measurements of long term cardiovascular health. Current methods of noninvasive blood pressure measurement are based on inflation and deflation of a cuff with some effects on arteries where blood pressure is being measured. This inflation can also cause patient discomfort and alter the measurement results. In this work, a mobile application was developed to collate the PhotoPlethysmoGramm (PPG) waveform provided by a pulse oximeter and the electrocardiogram (ECG) for calculating the pulse transit time. This information is then indirectly related to the user's systolic blood pressure. The developed application successfully connects to the PPG and ECG monitoring devices using Bluetooth wireless connection and stores the data onto an online server. The pulse transit time is estimated in real time and the user's systolic blood pressure can be estimated after the system has been calibrated. The synchronization between the two devices was found to pose a challenge to this method of continuous blood pressure monitoring. However, the implemented continuous blood pressure monitoring system effectively serves as a proof of concept. This combined with the massive benefits that an accurate and robust continuous blood pressure monitoring system would provide indicates that it is certainly worthwhile to further develop this system.

  12. Smartphone-based Continuous Blood Pressure Measurement Using Pulse Transit Time.

    PubMed

    Gholamhosseini, Hamid; Meintjes, Andries; Baig, Mirza; Linden, Maria

    2016-01-01

    The increasing availability of low cost and easy to use personalized medical monitoring devices has opened the door for new and innovative methods of health monitoring to emerge. Cuff-less and continuous methods of measuring blood pressure are particularly attractive as blood pressure is one of the most important measurements of long term cardiovascular health. Current methods of noninvasive blood pressure measurement are based on inflation and deflation of a cuff with some effects on arteries where blood pressure is being measured. This inflation can also cause patient discomfort and alter the measurement results. In this work, a mobile application was developed to collate the PhotoPlethysmoGramm (PPG) waveform provided by a pulse oximeter and the electrocardiogram (ECG) for calculating the pulse transit time. This information is then indirectly related to the user's systolic blood pressure. The developed application successfully connects to the PPG and ECG monitoring devices using Bluetooth wireless connection and stores the data onto an online server. The pulse transit time is estimated in real time and the user's systolic blood pressure can be estimated after the system has been calibrated. The synchronization between the two devices was found to pose a challenge to this method of continuous blood pressure monitoring. However, the implemented continuous blood pressure monitoring system effectively serves as a proof of concept. This combined with the massive benefits that an accurate and robust continuous blood pressure monitoring system would provide indicates that it is certainly worthwhile to further develop this system. PMID:27225558

  13. Blood pressure measurement in hemodialysis: The importance of the measurement technique.

    PubMed

    Kubrusly, M; de Oliveira, Claudia Maria Costa; Silva, R P; Pinheiro, M A; Rocha, M B C; Magalhães, R M

    2016-03-01

    Systemic arterial hypertension contributes to the high cardiovascular morbidity in hemodialysis (HD) patients, but the accuracy of blood pressure (BP) measurement in this population has not been well studied. To evaluate the agreement between BP measurement using the routine measurement technique (usual method) and the technique recommended by the VII Joint (standard method). This cross-sectional study enrolled 124 patients in a single center who had undergone dialysis for more than three months and were 18 years of age or older. The BP was verified at the start of dialysis by the nursing team (usual method) and by the researchers (standard method). The agreement between the systolic and diastolic BP (SBP and DBP) measurements was tested by the Bland-Altman analysis. A difference in BP measurement higher than ±5 mm Hg was considered clinically significant. The studied group had a mean age of 53.2 years. The average difference between routine and standard BP measurement was -6 mm Hg for SBP (limits of agreement: -40.1-28 mm Hg; P <0.001) and -5.6 mm Hg for DBP (limits of agreement: -33.1-21.8 mm Hg; P <0.001). A clinically significant difference in BP measured by both methods was observed in 69.4% of the patients for SBP and in 61.3% for DBP. The disagreement between the results of different BP measurement methods in HD patients was significant and the BP was underestimated using the usual BP method. BP measurement standardization should be encouraged to avoid errors in diagnosis and therapy.

  14. Efficiency measurement and uncertainty discussion of an electric engine powered by a ``self-breathing'' and ``self-humidified'' proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Schiavetti, Pierluigi; Del Prete, Zaccaria

    2007-08-01

    The efficiency of an automotive engine based on a "self-breathing" and "self-humidified" proton exchange membrane fuel cell stack (PEM FC) connected to a dc brushless electrical motor was measured under variable power load conditions. Experiments have been carried out on a small scale 150W engine model. After determining the fuel cell static polarization curve and the time response to power steps, the system was driven to copy on the test bench a "standard urban load cycle" and its instantaneous efficiencies were measured at an acquisition rate of 5Hz. The integral system efficiency over the entire urban load cycle, comprising the losses of the unavoidable auxiliary components of the engine, was then calculated. The fuel cell stack was operated mainly in "partial" dead-end mode, with a periodic anode flow channel purging, and one test was carried out in "pure" dead-end mode, with no anode channel purging. An uncertainty analysis of the efficiencies was carried out, taking into account either type A and type B evaluation methods, strengthening the discussion about the outcomes obtained for a system based on this novel simplified FC type. For our small scale engine we measured over the standard urban cycle, on the basis of the H2 high heating value (HHV), a tank-to-wheel integral efficiency of (18.2±0.8)%, when the fuel cell was operated with periodic flow channel purging, and of (21.5±1.3)% in complete dead-end operation mode.

  15. Controlled breathing protocols probe human autonomic cardiovascular rhythms

    NASA Technical Reports Server (NTRS)

    Cooke, W. H.; Cox, J. F.; Diedrich, A. M.; Taylor, J. A.; Beightol, L. A.; Ames, J. E. 4th; Hoag, J. B.; Seidel, H.; Eckberg, D. L.

    1998-01-01

    The purpose of this study was to determine how breathing protocols requiring varying degrees of control affect cardiovascular dynamics. We measured inspiratory volume, end-tidal CO2, R-R interval, and arterial pressure spectral power in 10 volunteers who followed the following 5 breathing protocols: 1) uncontrolled breathing for 5 min; 2) stepwise frequency breathing (at 0.3, 0.25, 0.2, 0.15, 0.1, and 0.05 Hz for 2 min each); 3) stepwise frequency breathing as above, but with prescribed tidal volumes; 4) random-frequency breathing (approximately 0.5-0.05 Hz) for 6 min; and 5) fixed-frequency breathing (0.25 Hz) for 5 min. During stepwise breathing, R-R interval and arterial pressure spectral power increased as breathing frequency decreased. Control of inspired volume reduced R-R interval spectral power during 0.1 Hz breathing (P < 0.05). Stepwise and random-breathing protocols yielded comparable coherence and transfer functions between respiration and R-R intervals and systolic pressure and R-R intervals. Random- and fixed-frequency breathing reduced end-tidal CO2 modestly (P < 0.05). Our data suggest that stringent tidal volume control attenuates low-frequency R-R interval oscillations and that fixed- and random-rate breathing may decrease CO2 chemoreceptor stimulation. We conclude that autonomic rhythms measured during different breathing protocols have much in common but that a stepwise protocol without stringent control of inspired volume may allow for the most efficient assessment of short-term respiratory-mediated autonomic oscillations.

  16. Ocular Blood Flow Measured Noninvasively in Zero Gravity

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Manuel, Francis K.; Geiser, Martial; Moret, Fabrice; Messer, Russell K.; King, James F.; Suh, Kwang I.

    2003-01-01

    In spaceflight or a reduced-gravity environment, bodily fluids shift to the upper extremities of the body. The pressure inside the eye, or intraocular pressure, changes significantly. A significant number of astronauts report changes in visual acuity during orbital flight. To date this remains of unknown etiology. Could choroidal engorgement be the primary mechanism and a change in the curvature or shape of the cornea or lens be the secondary mechanism for this change in visual acuity? Perfused blood flow in the dense meshwork of capillaries of the choroidal tissue (see the preceding illustration) provides necessary nutrients to the outer layers of the retina (photoreceptors) to keep it healthy and maintain good vision. Unlike the vascular system, the choroid has no baroreceptors to autoregulate fluid shifts, so it can remain engorged, pushing the macula forward and causing a hyperopic (farsighted) shift of the eye. Experiments by researchers at the NASA Glenn Research Center could help answer this question and facilitate planning for long-duration missions. We are investigating the effects of zero gravity on the choroidal blood flow of volunteer subjects. This pilot project plans to determine if choroidal blood flow is autoregulated in a reduced-gravity environment.

  17. Mechanical ventilation with heated humidifiers: measurements of condensed water mass within the breathing circuit according to ventilatory settings.

    PubMed

    Schena, E; Saccomandi, P; Cappelli, S; Silvestri, S

    2013-07-01

    Heated wire humidifiers (HWHs) are widely used to heat and humidify gases during mechanical ventilation. The control strategy implemented on commercial HWHs, based on maintaining constant gas temperature at the chamber outlet, shows weaknesses: humidifying performances depend on environmental temperature and ventilatory settings, and often condensation occurs. Herein, we analyzed in vitro HWH performances focusing on the condensation amount according to ventilatory settings. We used a physical model to define the parameters which mainly influence the HWH performances. In order to investigate the influence of minute volume (MV) and frequency rate (fr) on condensation, the other influencing parameters were kept constant during experiments, and we introduced a novel approach to estimate the condensation. The method, based on measuring the condensed vapor mass (Δm), provided more objective information than the visual-based scale used in previous studies. Thanks to both the control of other influencing factors and the accurate Δm measures, the investigation showed the Δm increase with MV and fr. Substantial condensation after 7 h of ventilation and the influence of MV and fr on Δm (i.e., Δm = 3 g at MV = 1.5 L min(-1) and fr = 8 bpm and Δm = 9.4 g at MV = 8 L min(-1) and fr = 20 bpm) confirm the weaknesses of `single-point temperature' control strategies.

  18. Shortness-of-Breath

    MedlinePlus

    ... can lead to shortness of breath include anxiety, panic attacks, anemia and even constipation. The experience of shortness ... are used to treat patients with anxiety or panic attacks. Other commonly used drugs include bronchodilators to widen ...

  19. Stop, Breathe & Think app.

    PubMed

    Shaw, Natalie

    2014-07-15

    The Stop, Breathe & Think app is free, thanks to underwriting from Tools for Peace, the non-profit organisation that teaches people of all ages how to develop and apply kindness and compassion in their daily lives.

  20. Breath holding spell

    MedlinePlus

    ... such as Riley-Day syndrome or Rett syndrome Iron deficiency anemia A family history of breath holding spells ( ... tests may be done to check for an iron deficiency. Other tests that may be done include: EKG ...

  1. The mathematical analysis of breath alcohol profiles generated during breath exhalation.

    PubMed

    Gullberg, R G

    1990-01-01

    The mathematical analysis of time domain data provides a useful tool for evaluating biological and instrumental systems. Breath alcohol profile measurements generated during exhalation constitute biological signals that can be subjected to a variety of mathematical treatments. The present paper discusses the application of a variety of mathematical procedures to breath alcohol profiles. These mathematical procedures include model approximation, data smoothing, integration, differentiation, and fourier transformation. The different mathematical procedures provide insight into the physiology of breath alcohol measurement and suggest forensic as well as instrumental applications.

  2. Psychophysiological effects of breathing instructions for stress management.

    PubMed

    Conrad, Ansgar; Müller, Anett; Doberenz, Sigrun; Kim, Sunyoung; Meuret, Alicia E; Wollburg, Eileen; Roth, Walton T

    2007-06-01

    Stressed and tense individuals often are recommended to change the way they breathe. However, psychophysiological effects of breathing instructions on respiration are rarely measured. We tested the immediate effects of short and simple breathing instructions in 13 people seeking treatment for panic disorder, 15 people complaining of daily tension, and 15 controls. Participants underwent a 3-hour laboratory session during which instructions to direct attention to breathing and anti-hyperventilation instructions to breathe more slowly, shallowly, or both were given. Respiratory, cardiac, and electrodermal measures were recorded. The anti-hyperventilation instructions failed to raise end-tidal pCO(2) above initial baseline levels for any of the groups because changes in respiratory rate were compensated for by changes in tidal volume and vice versa. Paying attention to breathing significantly reduced respiratory rate and decreased tidal volume instability compared to the other instructions. Shallow breathing made all groups more anxious than did other instructions. Heart rate and skin conductance were not differentially affected by instructions. We conclude that simple and short instructions to alter breathing do not change respiratory or autonomic measures in the direction of relaxation, except for attention to breathing, which increases respiratory stability. To understand the results of breathing instructions for stress and anxiety management, respiration needs to be monitored physiologically.

  3. Near-infrared measurements of hemodynamic and oxygenation changes on the frontal cortex during breath holding, hyperventilation, and natural sleep

    NASA Astrophysics Data System (ADS)

    Noponen, Tommi E.; Kotilahti, Kalle; Toppila, Jussi; Nissila, Ilkka T.; Salmi, Tapani; Kajava, Timo T.; Katila, Toivo E.

    2003-07-01

    We have developed a frequency-domain near-infrared device suitable for physiological studies in human. In this work, a four-channel configuration of the instrument is applied to monitor hemodynamic and oxygenation changes in the frontal cortex of volunteers during different ventilation tasks. We use four different source-receiver separations (2, 3, 4, and 5 cm) and three wavelengths (760, 808, and 830 nm) to test the sensitivity of these parameters to cardiovascular and metabolic changes. Low-frequency oscillations (~ 0.02 Hz) and variations in heart rate during different ventilation tasks are investigated as well. We also study physiological changes during natural sleep using the frequency-domain instrument simultaneously with a polysomnography system containing a pulse oximeter. Our results indicate that hemodynamic and oxygenation changes in the frontal cortex during natural sleep can be detected using near-infrared measurements.

  4. Spectroscopic imaging of blood vessels only near the skin surface for non-invasive blood glucose measurement

    NASA Astrophysics Data System (ADS)

    Fujiwara, Masaru; Sato, Shun; Abeygunawardhana, Pradeep K. W.; Suzuki, Satoru; Nishiyama, Akira; Wada, Kenji; Ishimaru, Ichiro

    2015-07-01

    To realize the non-invasive blood glucose measurement, it will be effective to acquire the spectroscopic imaging of blood vessels only near the skin surface for eliminating other biological-component's disturbances. Our proposed imaging-type 2-dimensional Fourier spectroscopic imaging can limit the measuring depth into focal plane with high light detection sensitivity. Thus, the proposed method will be suitable for measuring only near the skin surface with detecting weak reflected light from inner biomembrane. But reflectance of skin surface is more than 1000 times larger than inner skin's reflectance. Paying attention on Fresnel reflection, fingers what were illuminated by p-polarized beam from Brewster's angle were observed with crossed-Nicol dark field optics. We successfully acquired spectroscopic characteristics of hemoglobin at vein area near the skin surface.

  5. Hydrogen clearance: Assessment of technique for measurement of skin-flap blood flow in pigs

    SciTech Connect

    Thomson, J.G.; Kerrigan, C.L. )

    1991-10-01

    The hydrogen clearance technique has been used for many years by investigators to determine brain blood flow and has been partially validated in this setting using other methods of blood flow measurement. The method has been modified to allow blood flow measurements in skin, but the accuracy of H2 clearance for measuring skin blood flow has not been determined. Multiple blood flow measurements were performed using H2 clearance and radioactive microspheres on skin flaps and control skin in pigs. On 12 pigs, a total of 117 flap and 42 control skin measurements were available for analysis. There was no significant difference between the two techniques in measuring mean control skin blood flow. In skin flaps, H2 clearance was significantly correlated to microsphere-measured blood flow, but it consistently gave an overestimate. Sources of error may include injury to the tissues by insertion of electrodes, consumption of H2 by the electrodes, or diffusion of H2 from the relatively ischemic flap to its well-vascularized bed. Further studies are necessary to determine the cause of this error and to measure the technique's accuracy in skeletal muscle and other flaps.

  6. Effects of breathing sulfur dioxide and an acidic sulfate aerosol during exercise on selected pulmonary function measurements

    SciTech Connect

    Jones, D.L.

    1985-01-01

    This study was undertaken to determine the effects of ambient air, acidic sulfate aerosol, sulfur dioxide, and the combination of sulfur dioxide and aerosol on selected pulmonary function measurements after 20 minutes of exercise at 75%-80% maximal heart rate in a hot (36-19/sup 0/C) and humid (70-90% RH) environment. Six male subjects between the ages 26 and 33 years with no pre-existing pulmonary or cardiovascular problems rode a stationary bicycle for 20 minutes during each exposure condition at a workload pre-set to assure that each subject would attain an average minute ventilation of 50-60 1/min (BTPS). Exposure to 2.5 ppm sulfur dioxide alone led to a significant lowering of FVC, FEV1, and FEF50. Exposure to sulfur dioxide plus aerosol led to a significant decrease of FVC. Baseline comparisons reflected a significant decline in FVC, FEV1, FEF25, FEF50, FEF75, and FEF25-75 between the pre-ambient and post-exposure. This decline suggests a residual effect of the air pollutant exposures. Significant differences were also observed between the pre-aerosol and pre-sulfur dioxide exposures for FVC, FEV1, FEF50, and FEF25-75.

  7. Changes in cytochrome P4501A activity during development in common tern chicks fed polychlorinated biphenyls, as measured by the caffeine breath test

    SciTech Connect

    Feyk, L.A.; Giesy, J.P.; Bosveld, A.T.C.; Van den Berg, M.

    2000-03-01

    Cytochrome P4501A (CYPIA) activity is often used as a biomarker of exposure of wildlife to polyhalogenated diaromatic hydrocarbons and is usually measured ex vivo in liver tissue. A caffeine breath test (CBT) with radiolabeled substrate ({sup 14}C-caffeine) was used to measure in vivo CYP1A activity twice during development in 14 common tern (Sterna hirundo) chicks treated with polyhalogenated diaromatic hydrocarbons. Tern hatchlings were fed fish spiked with 3,3{prime}, 4,4{prime},5-pentachlorobiphenyl (PCB 126) and 2,2{prime},4,4{prime},5,5{prime}-hexachlorobiphenyl (PCB 153) such that the diet contained an average of 23, 99, or 561 pg of 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents per gram of fish for 21 d. Sixteen additional common tern chicks were similarly dosed with polyhalogenated diaromatic hydrocarbons but were not subjected to the CBT procedure. In weeks 1 and 2, caffeine N-demethylation and ethoxyresorufin-O-deethylation activity on day 21 were elevated in birds that received the greatest PCB dose. There was less constitutive and greater induction of ethoxyresorufin-O-deethylation activity than caffeine N-demethylation. The {sup 14}C-CBT was less invasive than the ethoxyresorufin-O-deethylase assay. Only one morphological parameter differed significantly between CBT subjects and no-CBT subjects fed the same level of PCBs. Bursa weight was significantly less in control CBT subjects than in control no-CBT subjects, but bursa weights did not differ among CBT and no-CBT birds from the two PCB treatment groups. No alterations of survival or growth occurred in CBT subjects compared with no-CBT subjects.

  8. Clinical implications of non-invasive measurement of central aortic blood pressure.

    PubMed

    Stepień, Mariusz; Banach, Maciej; Jankowski, Piotr; Rysz, Jacek

    2010-11-01

    Central arterial systolic blood pressure is a very important factor in the pathophysiology of cardiovascular diseases. Central arterial pressure is a better predictor of cardiovascular risk than peripheral brachial blood pressure. Measurement of central blood pressure is useful for a diagnosis of spurious systolic hypertension in young people. Antihypertensive drugs have a different impact on central blood pressure, for example angiotensin converting enzyme inhibitors, antagonists of angiotensin II receptors, calcium channel blockers more effectively lower central blood pressure than betablockers, despite all of those drugs (including beta-blockers) having a similar impact on peripheral pressure. This mechanism may be responsible for the beneficial effect of some antihypertensive drugs on cardiovascular end points observed in clinical trials, despite a low peripheral hypotensive effect. However, further clinical trials are required to provide more evidence for the prognostic and therapeutic implications of the measurement of central blood pressure before adopting its routine application in clinical practice.

  9. Measurement of human blood viscosity by an electromagnetic spinning sphere viscometer.

    PubMed

    Furukawa, Koji; Abumiya, Takeo; Sakai, Keiji; Hirano, Miki; Osanai, Toshiya; Shichinohe, Hideo; Nakayama, Naoki; Kazumata, Ken; Aida, Toshimitsu; Houkin, Kiyohiro

    2016-08-01

    We herein applied an electromagnetic spinning sphere (EMS) viscometer to the measurement of human blood viscosity for the first time. We collected blood samples from 100 healthy outpatient volunteers in order to analyse viscosity dependence on blood cell parameters and on the shear rate with a simple approximation formula [ηi (γ)\\, = Ai γ(- pi) + η0]. Viscosity dependence on blood cell parameters was relatively high at a high shear rate, but became lower as the shear rate decreased. The approximation formula with appropriate parameters of Ai and pi nearly faithfully reproduced actual blood rheological behaviour with a standard deviation of 1.5%. The distributions of Ai and pi values were broad, suggesting that the pattern of viscosity dependence on the shear rate varied with individual differences. The results obtained using the EMS viscometer suggest that blood viscosity values are individual-specific and actual individual measurements are important for understanding rheological conditions.

  10. Measurement of human blood viscosity by an electromagnetic spinning sphere viscometer.

    PubMed

    Furukawa, Koji; Abumiya, Takeo; Sakai, Keiji; Hirano, Miki; Osanai, Toshiya; Shichinohe, Hideo; Nakayama, Naoki; Kazumata, Ken; Aida, Toshimitsu; Houkin, Kiyohiro

    2016-08-01

    We herein applied an electromagnetic spinning sphere (EMS) viscometer to the measurement of human blood viscosity for the first time. We collected blood samples from 100 healthy outpatient volunteers in order to analyse viscosity dependence on blood cell parameters and on the shear rate with a simple approximation formula [ηi (γ)\\, = Ai γ(- pi) + η0]. Viscosity dependence on blood cell parameters was relatively high at a high shear rate, but became lower as the shear rate decreased. The approximation formula with appropriate parameters of Ai and pi nearly faithfully reproduced actual blood rheological behaviour with a standard deviation of 1.5%. The distributions of Ai and pi values were broad, suggesting that the pattern of viscosity dependence on the shear rate varied with individual differences. The results obtained using the EMS viscometer suggest that blood viscosity values are individual-specific and actual individual measurements are important for understanding rheological conditions. PMID:27167739

  11. Effects of combined xenon and hypothermia on cerebral blood flow and oxygen consumption in newborn piglets measured with a time-resolved near-infrared technique

    NASA Astrophysics Data System (ADS)

    Fazel Bakhsheshi, Mohammad; Hadway, Jennifer; Morrison, Laura B.; Diop, Mamadou; St. Lawrence, Keith; Lee, Ting-Yim

    2013-02-01

    Mild hypothermia (HT), in which the brain is cooled to 32-33°C, has been shown to be neuroprotective for neurological emergencies such as head trauma and neonatal asphyxia. Xenon (Xe), a scarce and expensive anesthetic gas, has also shown great promise as a neuroprotectant, particularly when combined with HT. The purpose of the present study was to investigate the combined effect of Xe and HT on the cerebral metabolic rate of oxygen (CMRO2) and cerebral blood flow (CBF). A closed circuit re-breathing system was used to deliver the Xe in order to make the treatment efficient and economical. A bolus-tracking method using indocyanine green (ICG) as a flow tracer with time-resolved near-infrared (TR-NIR) technique was used to measure CBF and CMRO2 in newborn piglets.

  12. Anxiety and cerebral blood flow during behavioral challenge. Dissociation of central from peripheral and subjective measures

    SciTech Connect

    Zohar, J.; Insel, T.R.; Berman, K.F.; Foa, E.B.; Hill, J.L.; Weinberger, D.R.

    1989-06-01

    To investigate the relationship between anxiety and regional cerebral blood flow, we administered behavioral challenges to 10 patients with obsessive-compulsive disorder while measuring regional cerebral blood flow with the xenon 133 inhalation technique. Each patient was studied under three conditions: relaxation, imaginal flooding, and in vivo (actual) exposure to the phobic stimulus. Subjective anxiety, obsessive-compulsive ratings, and autonomic measures (heart rate, blood pressure) increased significantly, but respiratory rate and PCO/sub 2/ did not change across the three conditions. Regional cerebral blood flow increased slightly (in the temporal region) during imaginal flooding, but decreased markedly in several cortical regions during in vivo exposure, when anxiety was highest by subjective and peripheral autonomic measures. These results demonstrate that intense anxiety can be associated with decreased rather than increased cortical perfusion and that ostensibly related states of anxiety (eg, anticipatory and obsessional anxiety) may be associated with opposite effects on regional cerebral blood flow.

  13. Blood flow measurements in the ears of patients receiving cochlear implants.

    PubMed

    Nakashima, Tsutomu; Hattori, Taku; Sone, Michihiko; Sato, Eisuke; Tominaga, Mitsuo

    2002-11-01

    We measured cochlear blood flow in 12 patients who received cochlear implants, using a laser-Doppler probe with an outer diameter of 0.8 mm. The subjects had congenital deafness, idiopathic progressive sensorineural hearing loss, Waardenburg's syndrome, narrow internal auditory canal, or sudden deafness. Putting the probe tip to the site of drilling for cochlear implantation, we measured blood flow before, during, and after the cochlear bony wall was opened. The laser-Doppler output was confirmed even after the tip of the probe was inserted into the perilymphatic space in all cases. Our results revealed that blood flow was maintained in all cochleas, although there was a probability of reduction in blood flow volume. We conclude that laser-Doppler flowmetry is both relatively safe and useful for measuring blood flow in the ears during cochlear implantation procedures.

  14. Breath acetone analyzer: diagnostic tool to monitor dietary fat loss.

    PubMed

    Kundu, S K; Bruzek, J A; Nair, R; Judilla, A M

    1993-01-01

    Acetone, a metabolite of fat catabolism, is produced in excessive amounts in subjects on restricted-calorie weight-loss programs. Breath acetone measurements are useful as a motivational tool during dieting and for monitoring the effectiveness of weight-loss programs. We have developed a simple, easy-to-read method that quantifies the amount of acetone in a defined volume of exhaled breath after trapping the sample in a gas-analyzer column. The concentration of acetone, as measured by the length of a blue color zone in the analyzer column, correlates with results obtained by gas chromatography. Using the breath acetone analyzer to quantify breath acetone concentrations of dieting subjects, we established a correlation between breath acetone concentration and rate of fat loss (slope 52.2 nmol/L per gram per day, intercept 15.3 nmol/L, n = 78, r = 0.81). We also discussed the possibility of using breath acetone in diabetes management.

  15. Ultrasonic Doppler measurement of renal artery blood flow

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Implantable pulsed Doppler ultrasonic flowmeter development has resulted in designs for application to the aortas of dogs and humans, and to human renal and coronary arteries. A figure of merit was derived for each design, indicating the degree of its precision. An H-array design for transcutaneous observation of blood flow was developed and tested in vitro. Two other simplified designs for the same purpose obviate the need to determine vessel orientation. One of these will be developed in the next time period. Techniques for intraoperative use and for implantation have had mixed success. While satisfactory on large vessels, higher ultrasonic frequencies and alteration of transducer design are required for satisfactory operation of pulsed Doppler flowmeters with small vessels.

  16. Wearable PWV technologies to measure Blood Pressure: eliminating brachial cuffs.

    PubMed

    Solá, J; Proença, M; Chételat, O

    2013-01-01

    The clinical demand for technologies to monitor Blood Pressure (BP) in ambulatory scenarios with minimal use of inflation cuffs is strong: new generation of BP monitors are expected to be not only accurate, but also non-occlusive. In this paper we review recent advances on the use of the so-called Pulse Wave Velocity (PWV) technologies to estimate BP in a beat-by-beat basis. After introducing the working principle and underlying methodological limitations, two implementation examples are provided. Pilot studies have demonstrated that novel PWV-based BP monitors depict accuracy scores falling within the limits of the British Hypertensive Society (BHS) Grade A standard. The reported techniques pave the way towards ambulatory-compliant, continuous and non-occlusive BP monitoring devices, where the use of inflation cuffs is drastically reduced. PMID:24110633

  17. Development of portable health monitoring system for automatic self-blood glucose measurement

    NASA Astrophysics Data System (ADS)

    Kim, Huijun; Mizuno, Yoshihumi; Nakamachi, Eiji; Morita, Yusuke

    2010-02-01

    In this study, a new HMS (Health Monitoring System) device is developed for diabetic patient. This device mainly consists of I) 3D blood vessel searching unit and II) automatic blood glucose measurement (ABGM) unit. This device has features such as 1)3D blood vessel location search 2) laptop type, 3) puncturing a blood vessel by using a minimally invasive micro-needle, 4) very little blood sampling (10μl), and 5) automatic blood extraction and blood glucose measurement. In this study, ABGM unit is described in detail. It employs a syringe type's blood extraction mechanism because of its high accuracy. And it consists of the syringe component and the driving component. The syringe component consists of a syringe itself, a piston, a magnet, a ratchet and a micro-needle whose inner diameter is about 80μm. And the syringe component is disposable. The driving component consists of body parts, a linear stepping motor, a glucose enzyme sensor and a slider for accurate positioning control. The driving component has the all-in-one mechanism with a glucose enzyme sensor for compact size and stable blood transfer. On designing, required thrust force to drive the slider is designed to be greater than the value of the blood extraction force. Further, only one linear stepping motor is employed for blood extraction and transportation processes. The experimental result showed more than 80% of volume ratio under the piston speed 2.4mm/s. Further, the blood glucose was measured successfully by using the prototype unit. Finally, the availability of our ABGM unit was confirmed.

  18. Student Nurses' Knowledge in Relation to Blood Pressure Measurement by Sphygmomanometry and Auscultation.

    ERIC Educational Resources Information Center

    Torrance, Colin; Serginson, Eve

    1996-01-01

    British nursing students (78 of 93) completed a questionnaire about blood pressure; 90% were not familiar with Korotkoff sounds or auscultary gap; most thought blood pressure was the same in both arms; 63% knew resting was essential before measurement; 59% assessed the arm for cuff size; only 25% thought the cuff should be placed at heart level.…

  19. Predicting stroke outcome using DCE-CT measured blood velocity

    NASA Astrophysics Data System (ADS)

    Oosterbroek, Jaap; Bennink, Edwin; Dankbaar, Jan Willem; Horsch, Alexander D.; Viergever, Max A.; Velthuis, Birgitta K.; de Jong, Hugo W. A. M.

    2015-03-01

    CT plays an important role in the diagnosis of acute stroke patients. Dynamic contrast enhanced CT (DCE-CT) can estimate local tissue perfusion and extent of ischemia. However, hemodynamic information of the large intracranial vessels may also be obtained from DCE-CT data and may contain valuable diagnostic information. We describe a novel method to estimate intravascular blood velocity (IBV) in large cerebral vessels using DCE-CT data, which may be useful to help predict stroke outcome. DCE-CT scans from 34 patients with isolated M1 occlusions were included from a large prospective multi-center cohort study of patients with acute ischemic stroke. Gaussians fitted to the intravascular data yielded the time-to-peak (TTP) and cerebral-blood-volume (CBV). IBV was computed by taking the inverse of the TTP gradient magnitude. Voxels with a CBV of at least 10% of the CBV found in the arterial input function were considered part of a vessel. Mid-sagittal planes were drawn manually and averages of the IBV over all vessel-voxels (arterial and venous) were computed for each hemisphere. Mean-hemisphere IBV differences, mean-hemisphere TTP differences, and hemisphere vessel volume differences were used to differentiate between patients with good and bad outcome (modified Rankin Scale score <3 versus ≥3 at 90 days) using ROC analysis. AUCs from the ROC for IBV, TTP, and vessel volume were 0.80, 0.67 and 0.62 respectively. In conclusion, IBV was found to be a better predictor of patient outcome than the parameters used to compute it and may be a promising new parameter for stroke outcome prediction.

  20. Hydrogen breath tests in gastrointestinal diseases.

    PubMed

    Rana, Satya Vati; Malik, Aastha

    2014-10-01

    Hydrogen breath tests are widely used to explore pathophysiology of functional gastrointestinal (GI) disorders. Small intestinal bacterial overgrowth (SIBO) and carbohydrate malabsorption are disorders detected by these tests that have been proposed to be of great importance for symptoms of GI diseases. Glucose hydrogen breath test is more acceptable for diagnosis of SIBO whereas lactose and fructose hydrogen breath tests are used for detection of lactose and fructose maldigestion respectively. Lactulose hydrogen breath test is also used widely to measure the orocecal transit time for GI motility. These methods are noninvasive and inexpensive. Many patients with functional gut disorders are unaware of the relationship between diet and GI symptoms they present. In particular, patients with chronic symptoms may regard their condition as normal and may not be aware that their symptoms can be effectively managed following a proper diagnosis. Patients with symptoms of abdominal pain, bloating, flatulence and altered bowel movements (diarrhea and constipation), or with a medical diagnosis of irritable bowel syndrome or celiac disease, may have undiagnosed carbohydrate malabsorption or SIBO. Hydrogen breath tests are specific and sensitive diagnostic tests that can be used to either confirm or eliminate the possibility of carbohydrate malabsorption or SIBO in such patients. Breath tests, though valuable tools, are underutilized in evaluating dyspepsia and functional bloating and diarrhea as well as suspected malabsorption. However, because of their simplicity, reproducibility and safety of procedure they are now being substituted to more uncomfortable and expensive techniques that were traditionally used in gastroenterology. PMID:25298621

  1. Optoacoustic 13C-breath test analyzer

    NASA Astrophysics Data System (ADS)

    Harde, Hermann; Helmrich, Günther; Wolff, Marcus

    2010-02-01

    The composition and concentration of exhaled volatile gases reflects the physical ability of a patient. Therefore, a breath analysis allows to recognize an infectious disease in an organ or even to identify a tumor. One of the most prominent breath tests is the 13C-urea-breath test, applied to ascertain the presence of the bacterium helicobacter pylori in the stomach wall as an indication of a gastric ulcer. In this contribution we present a new optical analyzer that employs a compact and simple set-up based on photoacoustic spectroscopy. It consists of two identical photoacoustic cells containing two breath samples, one taken before and one after capturing an isotope-marked substrate, where the most common isotope 12C is replaced to a large extent by 13C. The analyzer measures simultaneously the relative CO2 isotopologue concentrations in both samples by exciting the molecules on specially selected absorption lines with a semiconductor laser operating at a wavelength of 2.744 μm. For a reliable diagnosis changes of the 13CO2 concentration of 1% in the exhaled breath have to be detected at a concentration level of this isotope in the breath of about 500 ppm.

  2. Prevalence of pseudoresistant hypertension due to inaccurate blood pressure measurement.

    PubMed

    Bhatt, Hemal; Siddiqui, Mohammed; Judd, Eric; Oparil, Suzanne; Calhoun, David

    2016-06-01

    The prevalence of pseudoresistant hypertension (HTN) due to inaccurate BP measurement remains unknown. Triage BP measurements and measurements obtained at the same clinic visit by trained physicians were compared in consecutive adult patients referred for uncontrolled resistant HTN (RHTN). Triage BP measurements were taken by the clinic staff during normal intake procedures. BP measurements were obtained by trained physicians using the BpTRU (VSM Med Tech Ltd. Coquitlam, Canada) device. The prevalence of uncontrolled RHTN and differences in BP measurements were compared. Of 130 patients with uncontrolled RHTN, 33.1% (n = 43) were falsely identified as having uncontrolled RHTN based on triage BP measurements. The median (inter-quartile range) of differences in systolic BP between pseudoresistant and true resistant groups were 23 (17-33) mm Hg and 13 (6-21) mm Hg, respectively (P = .0001). The median (inter-quartile range) of differences in diastolic BP between the two groups were 12 (7-18) mm Hg and 8 (4-11) mm Hg, respectively (P = .001). Triage BP technique overestimated the prevalence of uncontrolled RHTN in approximately 33% of the patients emphasizing the importance of obtaining accurate BP measurements. PMID:27129931

  3. Study on optical measurement conditions for noninvasive blood glucose sensing

    NASA Astrophysics Data System (ADS)

    Xu, Kexin; Chen, Wenliang; Jiang, Jingying; Qiu, Qingjun

    2004-05-01

    Utilizing Near-infrared Spectroscopy for non-invasive glucose concentration sensing has been a focusing topic in biomedical optics applications. In this paper study on measuring conditions of spectroscopy on human body is carried out and a series of experiments on glucose concentration sensing are conducted. First, Monte Carlo method is applied to simulate and calculate photons" penetration depth within skin tissues at 1600 nm. The simulation results indicate that applying our designed optical probe, the detected photons can penetrate epidermis of the palm and meet the glucose sensing requirements within the dermis. Second, we analyze the influence of the measured position variations and the contact pressure between the optical fiber probe and the measured position on the measured spectrum during spectroscopic measurement of a human body. And, a measurement conditions reproduction system is introduced to enhance the measurement repeatability. Furthermore, through a series of transmittance experiments on glucose aqueous solutions sensing from simple to complex we found that though some absorption variation information of glucose can be obtained from measurements using NIR spectroscopy, while under the same measuring conditions and with the same modeling method, choices toward measured components reduce when complication degree of components increases, and this causes a decreased prediction accuracy. Finally, OGTT experiments were performed, and a PLS (Partial Least Square) mathematical model for a single experiment was built. We can easily get a prediction expressed as RMSEP (Root Mean Square Error of Prediction) with a value of 0.5-0.8mmol/dl. But the model"s extended application and reliability need more investigation.

  4. Near-infrared spectroscopy measurement of blood oxygenation content and its application in sports practice

    NASA Astrophysics Data System (ADS)

    Xu, Guodong; Gong, Hui; Ge, Xinfa; Luo, Qingming

    2003-12-01

    To research the change characteristics of blood oxygenation content in skeletal muscle, the change regularity between blood oxygenation content and exercise intensity as well as HbO2 and blood lactate acid while taking incremental exercises, we took an in vivo, real-time and continuous measurement on the blood oxygenation content of eight sportsmen when they did incremental exercises of five degrees on a power bicycle using a portable tissue oximeter which is based on the principle of near-infrared spectroscopy(NIRS), simultaneously, we detected the blood lactate acid of subjects after each degree of incremental physical load instantly using a blood lactate analysis equipment. The results showed that the content of HbO2 descended regularly while that of Hb ascended; blood volume decreased; and the density of lactate increased as the intensity of exercises was heightened. The statistics analyses showed that the relationship between HbO2 and blood lactate is rather close (correlation coefficient r=-0.918). With this discovery, a theoretical basis in measuring the relative change of blood oxygenation content non-invasively was evidenced, and a novel technology for assessing the physical situation of sportsman, grasping sports density and evaluating the training effect could be imported.

  5. Measurement of temperature decrease caused by blood flow in focused ultrasound irradiation by thermal imaging method

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Takenobu; Hatano, Yuichi; Mori, Yashunori; Shen, Rakushin; Endoh, Nobuyuki

    2016-07-01

    In this study, to estimate the local temperature changes caused by a thick blood vessel, the temperature distribution in a tissue phantom with a thick blood vessel during focused ultrasound irradiation was measured by a thermal imaging method. The blood flow rate in the simulated blood vessel was varied and the relationship between flow rate and temperature decrease was examined. The phantom using the thermal imaging method is divided into two parts, and the increases in temperature distribution as a function of blood flow rate are measured using a thermocamera under constant ultrasound irradiation. The irradiation conditions of ultrasound waves were a central frequency of 1 MHz, a wave number length of 200 cycles, and a duty ratio of 0.2. The irradiation duration was 5 min, and the ultrasound intensity I SPTA was 36 W/cm2. The amount of temperature decrease caused by the cooling effect of blood flow increased with the blood flow rate and it became constant at a certain threshold of blood flow rate. The threshold of blood flow rate is about 250 ml/min.

  6. Photoacoustic spectroscopy of gaseous biomarker in simulated breath

    NASA Astrophysics Data System (ADS)

    Le, Hanh N. D.; U-Thainual, Paweena; Kim, Do-Hyun

    2015-03-01

    In this study, a photoacoustic detector integrated with Fourier-transform infrared spectroscopy was used to measure biomarkers in gas samples independently. Simulated exhaled breath samples were created by mixing varying concentrations of acetone, ammonia and ethane. The results of these measurements demonstrate the potential of photoacoustic spectroscopy to detect biomarkers from human breath.

  7. Measurement of blood flow through surgical anastomosis using the radioactive microsphere technique

    SciTech Connect

    Hummel, S.J.; Delgado, G.; Butterfield, A.; Dritschilo, A.; Harbert, J.

    1985-10-01

    Two different radioactive microspheres ( U Ce and UWSc) were used to measure blood flow to an area of the large intestine in dogs before and after a surgical resection was performed with surgical staples. The healing of an anastomosis is theoretically related to the blood flow to the anastomotic site. Blood flow studies were conducted in three dogs using this technique. The average blood flow preoperatively was 0.558 mL/minute per gram and 1.04 mL/minute per gram postoperatively. These results indicate a statistically significant increase in blood flow at the anastomotic site six days after anastomosis when compared with the blood flow to the same area before any surgical procedures.

  8. Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography.

    PubMed

    Wang, Yimin; Bower, Bradley A; Izatt, Joseph A; Tan, Ou; Huang, David

    2008-01-01

    We present in vivo human total retinal blood flow measurements using Doppler Fourier domain optical coherence tomography (OCT). The scan pattern consisted of two concentric circles around the optic nerve head, transecting all retinal branch arteries and veins. The relative positions of each blood vessel in the two OCT conic cross sections were measured and used to determine the angle between the OCT beam and the vessel. The measured angle and the Doppler shift profile were used to compute blood flow in the blood vessel. The flows in the branch veins was summed to give the total retinal blood flow at one time point. Each measurement of total retinal blood flow was completed within 2 s and averaged. The total retinal venous flow was measured in one eye each of two volunteers. The results were 52.90+/-2.75 and 45.23+/-3.18 microlmin, respectively. Volumetric flow rate positively correlated with vessel diameter. This new technique may be useful in the diagnosis and treatment of optic nerve and retinal diseases that are associated with poor blood flow, such as glaucoma and diabetic retinopathy.

  9. Carbon sequestration and estimated carbon credit values as measured using 13C labelling and analysis by means of an optical breath test analyser.

    PubMed

    Hood, R C; Khan, M; Haque, A; Khadir, M; Bonetto, J P; Syamsul, R; Mayr, L; Heiling, M

    2004-05-01

    Recent developments in optical systems (isotope-selective non-dispersive infrared spectrometry) for breath testing have provided a robust, low-cost option for undertaking (13)C analysis. Although these systems were initially developed for breath testing for Helicobacter pylori, they have an enormous potential as a soil science research tool. The relatively low cost of the equipment, US$15,000-25,000, is within the research budgets of most institutes or universities. The simplicity of the mechanisms and optical nature mean that the equipment requires relatively low maintenance and minimal training. Thus methods were developed to prepare soil and plant materials for analysis using the breath test analyser. Results that compare conventional mass spectrometric methods with the breath test analyser will be presented. In combination with simple (13)C-plant-labeling techniques it is possible to devise methods for estimating carbon sequestration under different agronomic management practices within a short time frame. This enables assessment of the carbon credit value of a particular agronomic practice, which can in turn be used by policy makers for decision-making purposes. For global understanding of the effect of agricultural practices on the carbon cycle, data are required from a range of cropping systems and agro-ecological zones. The method and the approach described will enable collection of hard data within a reasonable time.

  10. Ghost Cell Suspensions as Blood Analogue Fluid for Macroscopic Particle Image Velocimetry Measurements.

    PubMed

    Jansen, Sebastian V; Müller, Indra; Nachtsheim, Max; Schmitz-Rode, Thomas; Steinseifer, Ulrich

    2016-02-01

    Spatially resolved measurement of blood flow is of great interest in the development of artificial blood-carrying devices such as blood pumps, heart valve prostheses, and oxygenators. Particle image velocimetry (PIV) is able to measure instantaneous velocity fields in a plane with high accuracy and is being used more frequently for the development of such devices. However, as this measurement technique is based on optical access, blood flow at physiological hematocrit values is difficult to measure due to its low transparency and multiscattering properties. So far, only very small dimensions (in the range of 400 μm) can be measured using PIV. A suspension of ghost cells (GCs) offers a higher optical transparency than blood while having a similar rheological behavior. In this study, a procedure for the production of GC suspensions containing a very low intracellular hemoglobin concentration is presented. With the help of multiple rounds of controlled cell lysis, the intracellular hemoglobin concentration could be decreased to a point where a standard macroscopic PIV measurement was possible. A velocity profile of a 44% GC suspension in a circular channel with a diameter of 9.5 mm was measured with high spatial resolution. Meanwhile, the rheological behavior was found to be comparable with blood.

  11. Development of a fluorescent method for simultaneous measurement of glucose concentrations in interstitial fluid and blood

    NASA Astrophysics Data System (ADS)

    Shi, Ting; Li, Dachao; Li, Guoqing; Chen, Limin; Lin, Yuan; Xu, Kexin; Lu, Luo

    2013-12-01

    Continuous blood glucose monitoring is of great clinical significance to patients with diabetes. One of the effective methods to monitor blood glucose is to measure glucose concentrations of interstitial fluid (ISF). However, a time-delay problem exists between ISF and blood glucose concentrations, which results in difficulty in indicating real-time blood glucose concentrations. Therefore, we developed a fluorescent method to verify the accuracy and reliability of simultaneous ISF and blood glucose measurement, especially incorporating it into research on the delay relationship between blood and ISF glucose changes. This method is based on a competitive reaction among borate polymer, alizarin and glucose. When glucose molecules combine with borate polymers in alizarin-borate polymer competitively, changes in fluorescence intensity demonstrate changes in glucose concentrations. By applying the measured results to the blood and ISF glucose delay relationship, we were able to calculate the time delay as an average of 2.16 ± 2.05 min for ISF glucose changes with reference to blood glucose concentrations.

  12. Adaptive Blood Glucose Monitoring and Insulin Measurement Devices for Visually Impaired Persons.

    ERIC Educational Resources Information Center

    Petzinger, R. A.

    1993-01-01

    This article describes devices that people with visual impairments and diabetes can use to monitor blood glucose levels and measure insulin. A table lists devices, their manufacturers (including address and telephone number), and comments about the devices. (DB)

  13. Arterial blood pressure measurement in a population of healthy geriatric dogs.

    PubMed

    Meurs, K M; Miller, M W; Slater, M R; Glaze, K

    2000-01-01

    The purpose of this study was to evaluate healthy geriatric dogs for the presence of systemic hypertension. Thirty-three geriatric dogs (i.e., dogs exceeding the geriatric age range for their weight group) and 22 control dogs (i.e., dogs less than six years of age) were evaluated by measuring blood pressure with an oscillometric monitor. Five consecutive blood pressure measurements were taken in each dog, averaged, and compared. Diastolic and mean blood pressure measurements were significantly lower in the geriatric group as compared to the control group. Systolic blood pressure measurements were not significantly different between the two groups. Systemic hypertension does not appear to be a common clinical problem in the healthy geriatric dog.

  14. Quantitative blood flow measurements in the small animal cardiopulmonary system using digital subtraction angiography

    SciTech Connect

    Lin Mingde; Marshall, Craig T.; Qi, Yi; Johnston, Samuel M.; Badea, Cristian T.; Piantadosi, Claude A.; Johnson, G. Allan

    2009-11-15

    Purpose: The use of preclinical rodent models of disease continues to grow because these models help elucidate pathogenic mechanisms and provide robust test beds for drug development. Among the major anatomic and physiologic indicators of disease progression and genetic or drug modification of responses are measurements of blood vessel caliber and flow. Moreover, cardiopulmonary blood flow is a critical indicator of gas exchange. Current methods of measuring cardiopulmonary blood flow suffer from some or all of the following limitations--they produce relative values, are limited to global measurements, do not provide vasculature visualization, are not able to measure acute changes, are invasive, or require euthanasia. Methods: In this study, high-spatial and high-temporal resolution x-ray digital subtraction angiography (DSA) was used to obtain vasculature visualization, quantitative blood flow in absolute metrics (ml/min instead of arbitrary units or velocity), and relative blood volume dynamics from discrete regions of interest on a pixel-by-pixel basis (100x100 {mu}m{sup 2}). Results: A series of calibrations linked the DSA flow measurements to standard physiological measurement using thermodilution and Fick's method for cardiac output (CO), which in eight anesthetized Fischer-344 rats was found to be 37.0{+-}5.1 ml/min. Phantom experiments were conducted to calibrate the radiographic density to vessel thickness, allowing a link of DSA cardiac output measurements to cardiopulmonary blood flow measurements in discrete regions of interest. The scaling factor linking relative DSA cardiac output measurements to the Fick's absolute measurements was found to be 18.90xCO{sub DSA}=CO{sub Fick}. Conclusions: This calibrated DSA approach allows repeated simultaneous visualization of vasculature and measurement of blood flow dynamics on a regional level in the living rat.

  15. Poor Reliability of Wrist Blood Pressure Self-Measurement at Home: A Population-Based Study.

    PubMed

    Casiglia, Edoardo; Tikhonoff, Valérie; Albertini, Federica; Palatini, Paolo

    2016-10-01

    The reliability of blood pressure measurement with wrist devices, which has not previously been assessed under real-life circumstances in general population, is dependent on correct positioning of the wrist device at heart level. We determined whether an error was present when blood pressure was self-measured at the wrist in 721 unselected subjects from the general population. After training, blood pressure was measured in the office and self-measured at home with an upper-arm device (the UA-767 Plus) and a wrist device (the UB-542, not provided with a position sensor). The upper-arm-wrist blood pressure difference detected in the office was used as the reference measurement. The discrepancy between office and home differences was the home measurement error. In the office, systolic blood pressure was 2.5% lower at wrist than at arm (P=0.002), whereas at home, systolic and diastolic blood pressures were higher at wrist than at arm (+5.6% and +5.4%, respectively; P<0.0001 for both); 621 subjects had home measurement error of at least ±5 mm Hg and 455 of at least ±10 mm Hg (bad measurers). In multivariable linear regression, a lower cognitive pattern independently determined both the systolic and the diastolic home measurement error and a longer forearm the systolic error only. This was confirmed by logistic regression having bad measurers as dependent variable. The use of wrist devices for home self-measurement, therefore, leads to frequent detection of falsely elevated blood pressure values likely because of a poor memory and rendition of the instructions, leading to the wrong position of the wrist.

  16. Breathing: Rhythmicity, Plasticity, Chemosensitivity

    PubMed Central

    Feldman, Jack L.; Mitchell, Gordon S.; Nattie, Eugene E.

    2010-01-01

    Breathing is a vital behavior that is particularly amenable to experimental investigation. We review recent progress on three problems of broad interest. (i) Where and how is respiratory rhythm generated? The preBötzinger Complex is a critical site, whereas pacemaker neurons may not be essential. The possibility that coupled oscillators are involved is considered. (ii) What are the mechanisms that underlie the plasticity necessary for adaptive changes in breathing? Serotonin-dependent long-term facilitation following intermittent hypoxia is an important example of such plasticity, and a model that can account for this adaptive behavior is discussed. (iii) Where and how are the regulated variables CO2 and pH sensed? These sensors are essential if breathing is to be appropriate for metabolism. Neurons with appropriate chemosensitivity are spread throughout the brainstem; their individual properties and collective role are just beginning to be understood. PMID:12598679

  17. Improved blood velocity measurements with a hybrid image filtering and iterative Radon transform algorithm

    PubMed Central

    Chhatbar, Pratik Y.; Kara, Prakash

    2013-01-01

    Neural activity leads to hemodynamic changes which can be detected by functional magnetic resonance imaging (fMRI). The determination of blood flow changes in individual vessels is an important aspect of understanding these hemodynamic signals. Blood flow can be calculated from the measurements of vessel diameter and blood velocity. When using line-scan imaging, the movement of blood in the vessel leads to streaks in space-time images, where streak angle is a function of the blood velocity. A variety of methods have been proposed to determine blood velocity from such space-time image sequences. Of these, the Radon transform is relatively easy to implement and has fast data processing. However, the precision of the velocity measurements is dependent on the number of Radon transforms performed, which creates a trade-off between the processing speed and measurement precision. In addition, factors like image contrast, imaging depth, image acquisition speed, and movement artifacts especially in large mammals, can potentially lead to data acquisition that results in erroneous velocity measurements. Here we show that pre-processing the data with a Sobel filter and iterative application of Radon transforms address these issues and provide more accurate blood velocity measurements. Improved signal quality of the image as a result of Sobel filtering increases the accuracy and the iterative Radon transform offers both increased precision and an order of magnitude faster implementation of velocity measurements. This algorithm does not use a priori knowledge of angle information and therefore is sensitive to sudden changes in blood flow. It can be applied on any set of space-time images with red blood cell (RBC) streaks, commonly acquired through line-scan imaging or reconstructed from full-frame, time-lapse images of the vasculature. PMID:23807877

  18. Simple Radiowave-Based Method For Measuring Peripheral Blood Flow Project

    NASA Technical Reports Server (NTRS)

    Oliva-Buisson, Yvette J.

    2014-01-01

    Project objective is to design small radio frequency based flow probes for the measurement of blood flow velocity in peripheral arteries such as the femoral artery and middle cerebral artery. The result will be the technological capability to measure peripheral blood flow rates and flow changes during various environmental stressors such as microgravity without contact to the individual being monitored. This technology may also lead to an easier method of detecting venous gas emboli during extravehicular activities.

  19. Measuring cell surface area and deformability of individual human red blood cells over blood storage using quantitative phase imaging

    NASA Astrophysics Data System (ADS)

    Park, Hyunjoo; Lee, Sangyun; Ji, Misuk; Kim, Kyoohyun; Son, Yonghak; Jang, Seongsoo; Park, Yongkeun

    2016-10-01

    The functionality and viability of stored human red blood cells (RBCs) is an important clinical issue in transfusions. To systematically investigate changes in stored whole blood, the hematological properties of individual RBCs were quantified in blood samples stored for various periods with and without a preservation solution called citrate phosphate dextrose adenine-1 (CPDA-1). With 3-D quantitative phase imaging techniques, the optical measurements for 3-D refractive index (RI) distributions and membrane fluctuations were done at the individual cell level. From the optical measurements, the morphological (volume, surface area and sphericity), biochemical (hemoglobin content and concentration), and mechanical parameters (dynamic membrane fluctuation) were simultaneously quantified to investigate the functionalities and progressive alterations of stored RBCs. Our results show that stored RBCs without CPDA-1 had a dramatic morphological transformation from discocytes to spherocytes within two weeks which was accompanied by significant decreases in cell deformability and cell surface area, and increases in sphericity. However, the stored RBCs with CPDA-1 maintained their morphology and deformability for up to 6 weeks.

  20. Measuring cell surface area and deformability of individual human red blood cells over blood storage using quantitative phase imaging

    PubMed Central

    Park, HyunJoo; Lee, SangYun; Ji, Misuk; Kim, Kyoohyun; Son, YongHak; Jang, Seongsoo; Park, YongKeun

    2016-01-01

    The functionality and viability of stored human red blood cells (RBCs) is an important clinical issue in transfusions. To systematically investigate changes in stored whole blood, the hematological properties of individual RBCs were quantified in blood samples stored for various periods with and without a preservation solution called citrate phosphate dextrose adenine-1 (CPDA-1). With 3-D quantitative phase imaging techniques, the optical measurements for 3-D refractive index (RI) distributions and membrane fluctuations were done at the individual cell level. From the optical measurements, the morphological (volume, surface area and sphericity), biochemical (hemoglobin content and concentration), and mechanical parameters (dynamic membrane fluctuation) were simultaneously quantified to investigate the functionalities and progressive alterations of stored RBCs. Our results show that stored RBCs without CPDA-1 had a dramatic morphological transformation from discocytes to spherocytes within two weeks which was accompanied by significant decreases in cell deformability and cell surface area, and increases in sphericity. However, the stored RBCs with CPDA-1 maintained their morphology and deformability for up to 6 weeks. PMID:27698484

  1. Blood flow in major cerebral arteries measured by phase-contrast cine MR

    SciTech Connect

    Enzmann, D.R.; Ross, M.R.; Marks, M.P.; Pelc, N.J. )

    1994-01-01

    To measure mean blood flow in individual cerebral arteries (carotid, basilar, anterior cerebral, middle cerebral, and posterior cerebral) using a cine phase contrast MR pulse sequence. Ten healthy volunteers (22 to 38 years of age) were studied. The cine phase-contrast section was positioned perpendicular to the vessel of interest using oblique scanning planes. This pulse sequence used a velocity encoding range of 60 to 250 cm/sec. From the velocity and area measurements on the cine images, mean blood flow was calculated in millimeters per minute and milliliters per cardiac cycle. In the same subjects, transcranial Doppler measurements of blood velocity in these same vessels were also obtained. There was no difference in blood flow in the paired cerebral arteries. Carotid arteries had mean blood flow in the range of 4.8 [+-] 0.4 ml/cycle, the basilar artery 2.4 [+-] 0.2 ml/cycle, the middle cerebral artery 1.8 [+-] 0.2 ml/cycle, the distal anterior cerebral artery 0.6 [+-] 0.1 ml/cycle, and the posterior cerebral artery 0.8 [+-] 0.1 ml/cycle. Overall, there was poor correlation between MR-measured and transcranial Doppler-measured peak velocity. Although careful attention to technical detail is required, mean blood flow measurements in individual cerebral vessels is feasible using a cine phase-contrast MR pulse sequence. 22 refs., 5 figs., 2 tabs.

  2. SU-C-210-04: Considerable Pancreatic Tumor Motion During Breath-Hold Measured Using Intratumoral Fiducials On Fluoroscopic Movies

    SciTech Connect

    Lens, E; Horst, A van der; Versteijne, E; Tienhoven, G van; Bel, A

    2015-06-15

    Purpose: Using a breath hold (BH) technique during radiotherapy of pancreatic tumors is expected to reduce intra-fractional motion. The aim of this study was to evaluate the tumor motion during BH. Methods: In this pilot study, we included 8 consecutive pancreatic cancer patients. All had 2– 4 intratumoral gold fiducials. Patients were asked to perform 3 consecutive 30-second end-inhale BHs on day 5, 10 and 15 of their three-week treatment. During BH, airflow through a mouthpiece was measured using a spirometer. Any inadvertent flow of air during BH was monitored for all patients. We measured tumor motion on lateral fluoroscopic movies (57 in total) made during BH. In each movie the fiducials as a group were tracked over time in superior-inferior (SI) and anterior-posterior (AP) direction using 2-D image correlation between consecutive frames. We determined for each patient the range of intra-BH motion over all movies; we also determined the absolute means and standard deviations (SDs) for the entire patient group. Additionally, we investigated the relation between inadvertent airflow during BH and the intra-BH motion. Results: We found intra-BH tumor motion of up to 12.5 mm (range, 1.0–12.5 mm) in SI direction and up to 8.0 mm (range, 1.0–8.0 mm) in AP direction. The absolute mean motion over the patient population was 4.7 (SD: 3.0) mm and 2.8 (SD: 1.2) mm in the SI and AP direction, respectively. Patients were able to perform stable consecutive BHs; during only 20% of the movies we found very small airflows (≤ 65 ml). These were mostly stepwise in nature and could not explain the continuous tumor motions we observed. Conclusion: We found substantial (up to 12.5 mm) pancreatic tumor motion during BHs. We found minimal inadvertent airflow, seen only during a minority of BHs, and this did not explain the obtained results. This work was supported by the foundation Bergh in het Zadel through the Dutch Cancer Society (KWF Kankerbestrijding) project No. UVA 2011-5271.

  3. Cerebral blood volume measured with inhaled C/sup 15/O and positron emission tomography

    SciTech Connect

    Martin, W.R.; Powers, W.J.; Raichle, M.E.

    1987-08-01

    Local cerebral blood volume (CBV) has been measured previously with inhaled /sup 11/CO and positron emission tomography (PET). The model used assumes that equilibrium in tracer concentration has occurred between arterial and systemic venous blood before the PET measurement is made. To verify that this model may be used with the much shorter half-lived C/sup 15/O, we have simultaneously measured arterial and venous blood radioactivity following C/sup 15/O inhalation. Equilibrium occurred 95 +/- 39 s after inhalation (n = 7). If the PET measurement is commenced prior to arteriovenous equilibrium, significant errors occur in calculated CBV. These data indicate that C/sup 15/O may be used as a tracer for CBV measurement provided that emission data collection commences at approximately 120 s after inhalation. Strict quality control measures must be maintained to minimize the contamination of administered C/sup 15/O with /sup 15/O-labeled CO/sub 2/.

  4. Blood Contamination in Saliva: Impact on the Measurement of Salivary Oxidative Stress Markers.

    PubMed

    Kamodyová, Natália; Baňasová, Lenka; Janšáková, Katarína; Koborová, Ivana; Tóthová, Ľubomíra; Stanko, Peter; Celec, Peter

    2015-01-01

    Salivary oxidative stress markers represent a promising tool for monitoring of oral diseases. Saliva can often be contaminated by blood, especially in patients with periodontitis. The aim of our study was to examine the impact of blood contamination on the measurement of salivary oxidative stress markers. Saliva samples were collected from 10 healthy volunteers and were artificially contaminated with blood (final concentration 0.001-10%). Next, saliva was collected from 12 gingivitis and 10 control patients before and after dental hygiene treatment. Markers of oxidative stress were measured in all collected saliva samples. Advanced oxidation protein products (AOPP), advanced glycation end products (AGEs), and antioxidant status were changed in 1% blood-contaminated saliva. Salivary AOPP were increased in control and patients after dental treatment (by 45.7% and 34.1%, p < 0.01). Salivary AGEs were decreased in patients after microinjury (by 69.3%, p < 0.001). Salivary antioxidant status markers were decreased in both control and patients after dental treatment (p < 0.05 and p < 0.01). One % blood contamination biased concentrations of salivary oxidative stress markers. Saliva samples with 1% blood contamination are visibly discolored and can be excluded from analyses without any specific biochemic detection of blood constituents. Salivary markers of oxidative stress were significantly altered in blood-contaminated saliva in control and patients with gingivitis after dental hygiene treatment.

  5. Simultaneous blood flow and blood oxygenation measurements using a combination of diffuse speckle contrast analysis and near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Seong, Myeongsu; Phillips, Zephaniah; Mai, Phuong Minh; Yeo, Chaebeom; Song, Cheol; Lee, Kijoon; Kim, Jae Gwan

    2016-02-01

    A combined diffuse speckle contrast analysis (DSCA)-near-infrared spectroscopy (NIRS) system is proposed to simultaneously measure qualitative blood flow and blood oxygenation changes in human tissue. The system employs an optical switch to alternate two laser sources at two different wavelengths and a CCD camera to capture the speckle image. Therefore, an optical density can be measured from two wavelengths for NIRS measurements and a speckle contrast can be calculated for DSCA measurements. In order to validate the system, a flow phantom test and an arm occlusion protocol for arterial and venous occlusion were performed. Shorter exposure times (<1 ms) show a higher drop (between 50% and 66%) and recovery of 1/KS2 values after occlusion (approximately 150%), but longer exposure time (3 ms) shows more consistent hemodynamic changes. For four subjects, the 1/KS2 values dropped to an average of 82.1±4.0% during the occlusion period and the average recovery of 1/KS2 values after occlusion was 109.1±0.8%. There was also an approximately equivalent amplitude change in oxyhemoglobin (OHb) and deoxyhemoglobin (RHb) during arterial occlusion (max RHb=0.0085±0.0024 mM/DPF, min OHb=-0.0057±0.0044 mM/DPF). The sensitivity of the system makes it a suitable modality to observe qualitative hemodynamic trends during induced physiological changes.

  6. Changes in partial pressures of respiratory gases during submerged voluntary breath hold across odontocetes: is body mass important?

    PubMed

    Noren, S R; Williams, T M; Ramirez, K; Boehm, J; Glenn, M; Cornell, L

    2012-02-01

    Odontocetes have an exceptional range in body mass spanning 10(3) kg across species. Because, size influences oxygen utilization and carbon dioxide production rates in mammals, this lineage likely displays an extraordinary variation in oxygen store management compared to other marine mammal groups. To examine this, we measured changes in the partial pressures of respiratory gases ([Formula: see text], [Formula: see text]), pH, and lactate in the blood during voluntary, quiescent, submerged breath holds in Pacific white-sided dolphins (Lagenorhynchus obliquidens), bottlenose dolphins (Tursiops truncatus), and a killer whale (Orcinus orca) representing a mass range of 96-3,850 kg. These measurements provided an empirical determination of the effect of body size on the variability in blood biochemistry during breath hold and experimentally determined aerobic dive limits (ADL) within one taxonomic group (odontocetes). For the species in this study, maximum voluntary breath-hold duration was positively correlated with body mass, ranging from 3.5 min in white-sided dolphins to 13.3 min for the killer whale. Variation in breath-hold duration was associated with differences in the rate of change for [Formula: see text] throughout breath hold; [Formula: see text] decreased twice as fast for the two smaller species (-0.6 mmHg O(2) min(-1)) compared to the largest species (-0.3 mmHg O(2) min(-1)). In contrast, the rate of increase in [Formula: see text] during breath hold was similar across species. These results demonstrate that large body size in odontocetes facilitates increased aerobic breath-hold capacity as mediated by decreased mass-specific metabolic rates (rates of change in [Formula: see text] served as a proxy for oxygen utilization). Indeed the experimentally determined 5 min ADL for bottlenose dolphins was surpassed by the 13.3 min maximum breath hold of the killer whale, which did not end in a rise in lactate. Rather, breath hold ended voluntarily as respiratory

  7. The switching point from nasal to oronasal breathing.

    PubMed

    Niinimaa, V; Cole, P; Mintz, S; Shephard, R J

    1980-10-01

    The switching point from nasal to oronasal breathing during incrementally graded submaximal exercise was determined in 30 (14 M, 16 F) healthy adult volunteers. Nasal airflow was measured by a pneumotachograph attached to a nasal mask. Oral airflow was determined as the difference between nasal airflow and total pulmonary airflow, the latter being measured by a head-out exercise body plethysmograph. The airflow and pressure signals were sampled every 20 msec by a micropressor, which calculated respiratory volumes and nasal work of breathing, and produced an on-line print-out. Twenty of the 30 subjects (normal augmenters) switched from nasal to oronasal breathing at submaximal exercise of 105.0 W (SD = 30.1), four subjects (mouth breathers) breathed habitually oronasally, five subjects (nose breathers) persistently breathed through the nose only, and one subject showed no consistent nose/mouth breathing pattern. In normal augmenters, the onset of oronasal breathing (VE 35.3 +/- 10.81 . min-1) was quite consistent individually, but varied considerably between inividuals without showing a significant sex difference. The factors most closely related to the switching point were rating of perceived exertion of breathing and nasal work of breathing. PMID:7444224

  8. Evaluating measurement error in readings of blood pressure for adolescents and young adults.

    PubMed

    Bauldry, Shawn; Bollen, Kenneth A; Adair, Linda S

    2015-04-01

    Readings of blood pressure are known to be subject to measurement error, but the optimal method for combining multiple readings is unknown. This study assesses different sources of measurement error in blood pressure readings and assesses methods for combining multiple readings using data from a sample of adolescents/young adults who were part of a longitudinal epidemiological study based in Cebu, Philippines. Three sets of blood pressure readings were collected at 2-year intervals for 2127 adolescents and young adults as part of the Cebu National Longitudinal Health and Nutrition Study. Multi-trait, multi-method (MTMM) structural equation models in different groups were used to decompose measurement error in the blood pressure readings into systematic and random components and to examine patterns in the measurement across males and females and over time. The results reveal differences in the measurement properties of blood pressure readings by sex and over time that suggest the combination of multiple readings should be handled separately for these groups at different time points. The results indicate that an average (mean) of the blood pressure readings has high validity relative to a more complicated factor-score-based linear combination of the readings. PMID:25548966

  9. Effect of Safety Measures on Bacterial Contamination Rates of Blood Components in Germany

    PubMed Central

    Walther-Wenke, Gabriele; Däubener, Walter; Heiden, Margarethe; Hoch, Jochen; Hornei, Britt; Volkers, Peter; von König, Carl Heinz Wirsing

    2011-01-01

    Summary Requirements for bacterial testing of blood components on a defined quantity as part of routine quality control were introduced in Germany by the National Advisory Committee Blood of the German Federal Ministry of Health in 1997. The philosophy was to establish standardized methods for bacterial testing. Numerous measures to reduce the risk of bacterial contamination were implemented into the blood donation and manufacturing processes between 1999 and 2002. German Blood establishments performed culture-based bacterial testing on random samples of platelet concentrates (PCs), red blood cells (RBCs) and fresh frozen plasma (FFP) and reported data out of the production periods 1998, 2001 and 2005/2006. While the bacterial contamination rate of apheresis PCs remained nearly unchanged, it decreased by 70% for pooled PCs to a rate of 0.158% in the last observation period. Leukocyte-depleted RBCs with diversion of the initial blood volume showed a contamination rate of 0.029% which is significantly lower than that of RBCs without leukocyte depletion and diversion (0.157%). The contamination rate of plasma decreased by 80%. Preventive measures resulted in a significant reduction of bacterial contamination of blood components. Long-term monitoring with standardized methods for bacteria testing supports evaluation of the cumulative effect of contamination reducing measures. PMID:22016691

  10. Impact of manakin motion on particle transport in the breathing zone

    EPA Science Inventory

    The current experimental investigation is focused on particle measurements using Phase Doppler Anemometry (PDA) in the breathing zone of a seated, breathing, thermal manikin under stationary and rotational conditions. Particle size, concentration, flux, and velocity data were co...

  11. Diagnosing lactose malabsorption in children: difficulties in interpreting hydrogen breath test results.

    PubMed

    Ruzsanyi, Veronika; Heinz-Erian, Peter; Entenmann, Andreas; Karall, Daniela; Müller, Thomas; Schimkowitsch, Alexander; Amann, Anton; Scholl-Bürgi, Sabine

    2016-03-01

    Lactose malabsorption (LM) is caused by insufficient enzymatic degradation of the disaccharide by intestinal lactase. Although hydrogen (H2) breath tests (HBTs) are routinely applied to diagnose LM, false-negative results are not uncommon. Thirty-two pediatric patients (19 females, 13 males) were included in this prospective study. After oral lactose administration (1 g kg(-1) bodyweight to a maximum of 25 g), breath H2 was measured by electrochemical detection. HBT was considered positive if H2 concentration exceeded an increase of  ⩾20 ppm from baseline. In addition to H2, exhaled methane (CH4), blood glucose concentrations and clinical symptoms (flatulence, abdominal pain, diarrhea) were monitored. A positive HBT indicating LM was found in 12/32 (37.5%) patients. Only five (41.7%, 5/12) of these had clinical symptoms during HBT indicating lactose intolerance (LI). Decreased blood glucose concentration increments (⩽20 mg dL(-1) (⩽1.1 mmol L(-1))) were found in 3/5 of these patients. CH4 concentrations  ⩾10 ppm at any time during the test were observed in 5/32 (15.6%) patients and in 9/32 (28.1%) between 1 ppm and 9 ppm above baseline after lactose ingestion. In patients with positive HBT 10/12 (83.3%) showed elevated CH4 (>1 ppm) above baseline in breath gas, whereas in patients with negative HBT this figure was only 4/17 (23.5%). In addition to determining H2 in exhaled air, documentation of clinical symptoms, measurement of blood glucose and breath CH4 concentrations may be helpful in deciding whether in a given case an HBT correctly identifies patients with clinically relevant LM.

  12. Diagnosing lactose malabsorption in children: difficulties in interpreting hydrogen breath test results.

    PubMed

    Ruzsanyi, Veronika; Heinz-Erian, Peter; Entenmann, Andreas; Karall, Daniela; Müller, Thomas; Schimkowitsch, Alexander; Amann, Anton; Scholl-Bürgi, Sabine

    2016-03-01

    Lactose malabsorption (LM) is caused by insufficient enzymatic degradation of the disaccharide by intestinal lactase. Although hydrogen (H2) breath tests (HBTs) are routinely applied to diagnose LM, false-negative results are not uncommon. Thirty-two pediatric patients (19 females, 13 males) were included in this prospective study. After oral lactose administration (1 g kg(-1) bodyweight to a maximum of 25 g), breath H2 was measured by electrochemical detection. HBT was considered positive if H2 concentration exceeded an increase of  ⩾20 ppm from baseline. In addition to H2, exhaled methane (CH4), blood glucose concentrations and clinical symptoms (flatulence, abdominal pain, diarrhea) were monitored. A positive HBT indicating LM was found in 12/32 (37.5%) patients. Only five (41.7%, 5/12) of these had clinical symptoms during HBT indicating lactose intolerance (LI). Decreased blood glucose concentration increments (⩽20 mg dL(-1) (⩽1.1 mmol L(-1))) were found in 3/5 of these patients. CH4 concentrations  ⩾10 ppm at any time during the test were observed in 5/32 (15.6%) patients and in 9/32 (28.1%) between 1 ppm and 9 ppm above baseline after lactose ingestion. In patients with positive HBT 10/12 (83.3%) showed elevated CH4 (>1 ppm) above baseline in breath gas, whereas in patients with negative HBT this figure was only 4/17 (23.5%). In addition to determining H2 in exhaled air, documentation of clinical symptoms, measurement of blood glucose and breath CH4 concentrations may be helpful in deciding whether in a given case an HBT correctly identifies patients with clinically relevant LM. PMID:26934035

  13. High-frequency attenuation and backscatter measurements of rat blood between 30 and 60 MHz

    NASA Astrophysics Data System (ADS)

    Huang, Chih-Chung

    2010-10-01

    There has recently been a great deal of interest in noninvasive high-frequency ultrasound imaging of small animals such as rats due to their being the preferred animal model for gene therapy and cancer research. Improving the interpretation of the obtained images and furthering the development of the imaging devices require a detailed knowledge of the ultrasound attenuation and backscattering of biological tissue (e.g. blood) at high frequencies. In the present study, the attenuation and backscattering coefficients of the rat red blood cell (RBC) suspensions and whole blood with hematocrits ranging from 6% to 40% were measured between 30 and 60 MHz using a modified substitution approach. The acoustic parameters of porcine blood under the same conditions were also measured in order to compare differences in the blood properties between these two animals. For porcine blood, both whole blood and RBC suspension were stirred at a rotation speed of 200 rpm. Three different rotation speeds of 100, 200 and 300 rpm were carried out for rat blood experiments. The attenuation coefficients of both rat and porcine blood were found to increase linearly with frequency and hematocrit (the values of coefficients of determination (r2) are around 0.82-0.97 for all cases). The average attenuation coefficient of rat whole blood with a hematocrit of 40% increased from 0.26 Nepers mm-1 at 30 MHz to 0.47 Nepers mm-1 at 60 MHz. The maximum backscattering coefficients of both rat and porcine RBC suspensions were between 10% and 15% hematocrits at all frequencies. The fourth-power dependence of backscatter on frequency was approximately valid for rat RBC suspensions with hematocrits between 6% and 40%. However, the frequency dependence of the backscatter estimate deviates from a fourth-power law for porcine RBC suspension with hematocrit higher than 20%. The backscattering coefficient plateaued for hematocrits higher than 15% in porcine blood, but for rat blood it was maximal around a

  14. VOLATILE ORGANIC COMPOUNDS AS BREATH BIOMARKERS FOR ACTIVE AND PASSIVE SMOKING

    EPA Science Inventory

    Real-time breath measurement technology was used to investigate the suitability of some volatile organic compounds (VOCs) to serve as breath biomarkers for active and passive smoking and to measure actual exposures and resulting breath concentrations for persons exposed to toba...

  15. Life and Breath

    ERIC Educational Resources Information Center

    Ellis, Helen D.

    1974-01-01

    This article describes a public education program combining the screening process and a follow-up program for teaching victims of emphysema and other respiratory diseases how to better their living condition through proper breathing, avoidance of air pollutants and cigarette smoking, and taking better care of themselves physically. (PD)

  16. Breathing Like a Fish

    ERIC Educational Resources Information Center

    Katsioloudis, Petros J.

    2010-01-01

    Being able to dive and breathe underwater has been a challenge for thousands of years. In 1980, Fuji Systems of Tokyo developed a series of prototype gills for divers as a way of demonstrating just how good its membranes are. Even though gill technology has not yet reached the point where recipients can efficiently use implants to dive underwater,…

  17. Breathing metabolic simulator

    NASA Technical Reports Server (NTRS)

    Bartlett, R. G., Jr.; Hendricks, C. M.; Morison, W. B.

    1972-01-01

    A description is given of an automatic computer controlled second generation breathing metabolic simulator (BMS). The simulator is used for evaluating and testing respiratory diagnostic, monitoring, support, and resuscitation equipment. Any desired sequence of metabolic activities can be simulated on the device for up to 15 hours. The computer monitors test procedures and provides printouts of test results.

  18. Tunable laser diode system for noninvasive blood glucose measurements.

    PubMed

    Olesberg, Jonathon T; Arnold, Mark A; Mermelstein, Carmen; Schmitz, Johannes; Wagner, Joachim

    2005-12-01

    Optical sensing of glucose would allow more frequent monitoring and tighter glucose control for people with diabetes. The key to a successful optical noninvasive measurement of glucose is the collection of an optical spectrum with a very high signal-to-noise ratio in a spectral region with significant glucose absorption. Unfortunately, the optical throughput of skin is low due to absorption and scattering. To overcome these difficulties, we have developed a high-brightness tunable laser system for measurements in the 2.0-2.5 microm wavelength range. The system is based on a 2.3 microm wavelength, strained quantum-well laser diode incorporating GaInAsSb wells and AlGaAsSb barrier and cladding layers. Wavelength control is provided by coupling the laser diode to an external cavity that includes an acousto-optic tunable filter. Tuning ranges of greater than 110 nm have been obtained. Because the tunable filter has no moving parts, scans can be completed very quickly, typically in less than 10 ms. We describe the performance of the present laser system and avenues for extending the tuning range beyond 400 nm. PMID:16390586

  19. Comparison of two generalized transfer functions for measuring central systolic blood pressure by an oscillometric blood pressure monitor.

    PubMed

    Shih, Y-T; Cheng, H-M; Sung, S-H; Hu, W-C; Chen, C-H

    2013-03-01

    Central aortic systolic blood pressure (SBP-C) can be estimated from a cuff oscillometric waveform derived during the pulse volume plethysmography (PVP) by applying a device-specific aortic pressure-to-PVP waveform-generalized transfer function (A2P(GTF)). The present study compared the performance of an aortic-to-brachial pressure waveforms generalized transfer function (A2B(GTF)), which is independent of any PVP devices, with an A2P(GTF). Generalized transfer function of aortic-to-brachial (A2B(GTF)) and aortic-to-PVP (A2P(GTF)) were generated from the simultaneously obtained central aortic and brachial pressure waveforms recorded by a high-fidelity dual pressure sensor catheter, and the PVP waveform recorded by a customized noninvasive blood pressure monitor during cardiac catheterization in 40 patients, and were then applied in another 100 patients with simultaneously recorded invasive aortic pressure and noninvasively calibrated (using cuff SBP and diastolic blood pressures) PVP waveforms. The mean difference±s.d. between the noninvasively estimated and invasively recorded SBP-C was -2.1±7.7 mm Hg for A2B(GTF), which was not greater than that of -3.0±7.7 mm Hg for A2P(GTF) (P<0.01). In conclusion, SBP-C can be measured reliably using a noninvasive blood pressure monitor by applying either an A2P(GTF) or A2B(GTF) to a noninvasively calibrated PVP waveform. The performance of an A2B(GTF) is not inferior to that of an A2P(GTF).

  20. Frequent use of blood-saving measures in elective orthopaedic surgery: a 2012 Dutch blood management survey

    PubMed Central

    2013-01-01

    Background Blood loss in hip and knee arthroplasties may necessitate allogeneic blood transfusions. Different blood-saving measures (BSMs) were introduced to reduce these transfusions. Purpose of the present study was to assess the frequency of BSM use, stratified by type and hospital setting of orthopaedic departments in the Netherlands. Methods An internet-based questionnaire was sent to all heads of orthopaedic departments of Dutch hospitals and private clinics (n = 99). Questions were asked on how often BSMs were used, reported on a 5-point Likert scale (never, almost never, regularly, almost always, always). In addition there were questions about discontinuation of anticoagulants preoperatively, the number of annually performed arthroplasties (size) and hospital setting. Results The survey was completed by 81 (82%) departments. BSMs used frequently (regularly, almost always, always) were erythropoietine (EPO), with 55 (68%) departments being frequent users; acute normovolemic hemodilution, used frequently in 26 (32%) departments; cell saver in 25 (31%) and postoperative drainage and re-infusion in 56 (69%) departments. When compared by size, frequent EPO use was more common in large departments (with 22 (88%) large departments being frequent users versus 13 (63%) small departments and 16 (55%) intermediate departments, p = 0.03). No differences by size or type were observed for other BSMs. Conclusions Compared with previous survey’s there is a tremendous increase in use of BSMs. EPO and autologous blood salvage techniques are the most often used modalities. Costs might be saved if use of non-cost-effective BSMs is stopped. PMID:23915322

  1. Measurement of cerebral blood flow rate and its relationship with brain function using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Wang, Yi; Zhao, Yuqian; Dou, Shidan; Ma, Yushu; Ma, Zhenhe

    2016-03-01

    Activity of brain neurons will lead to changes in local blood flow rate (BFR). Thus, it is important to measure the local BFR of cerebral cortex on research of neuron activity in vivo, such as rehabilitation evaluation after stroke, etc. Currently, laser Doppler flowmetry is commonly used for blood flow measurement, however, relatively low resolution limits its application. Optical coherence tomography (OCT) is a powerful noninvasive 3D imaging modality with high temporal and spatial resolutions. Furthermore, OCT can provide flow distribution image by calculating Doppler frequency shift which makes it possible for blood flow rate measurement. In this paper, we applied OCT to measure the blood flow rate of the primary motor cortex in rats. The animal was immobilized and anesthetized with isoflurane, an incision was made along the sagittal suture, and bone was exposed. A skull window was opened on the primary motor cortex. Then, blood flow rate changes in the primary motor cortex were monitored by our homemade spectral domain OCT with a stimulation of the passive movement of the front legs. Finally, we established the relationship between blood flow rate and the test design. The aim is to demonstrate the potential of OCT in the evaluation of cerebral cortex function.

  2. [A model study on noninvasive blood glucose measurement with multi-wavelength infrared array].

    PubMed

    Wang, Wei; Bian, Zhengzhong; Zhang, Dalong

    2003-12-01

    The concentration of glucose in the blood may soon be measured noninvasively by near infrared multi-wavelength sensor array without the painful puncture for obtaining a drop of blood. For overcoming the limitation of low measuring accurate degree and unstable working state, according to the Lambert-Beer Law, the authors analyzed the feature of blood adsorption spectroscopy and designed an infrared multi-wavelength blood glucose measuring sensor array to surmount the difficulties in noninvasive blood glucose measurement. The key technique, most suitable for detecting site and the influencing factors from human body were discussed, and the Mixture of Expert(ME) algorithm was adopted in building calibration model with multiple parameters of human body. It can overcome the existing problems and get more exact blood glucose information from the weak changes in spectral signals. Also presented and addressed in this paper are the detailed implementing steps of ME and the system, as well as the problems need to be solved. PMID:14716885

  3. Optical microangiography of retina and choroid and measurement of total retinal blood flow in mice

    PubMed Central

    Zhi, Zhongwei; Yin, Xin; Dziennis, Suzan; Wietecha, Tomasz; Hudkins, Kelly L.; Alpers, Charles E.; Wang, Ruikang K

    2012-01-01

    We present a novel application of optical microangiography (OMAG) imaging technique for visualization of depth-resolved vascular network within retina and choroid as well as measurement of total retinal blood flow in mice. A fast speed spectral domain OCT imaging system at 820nm with a line scan rate of 140 kHz was developed to image the posterior segment of eyes in mice. By applying an OMAG algorithm to extract the moving blood flow signals out of the background tissue, we are able to provide true capillary level imaging of the retinal and choroidal vasculature. The microvascular patterns within different retinal layers are presented. An en face Doppler OCT approach [Srinivasan et al., Opt Express 18, 2477 (2010)] was adopted for retinal blood flow measurement. The flow is calculated by integrating the axial blood flow velocity over the vessel area measured in an en face plane without knowing the blood vessel angle. Total retinal blood flow can be measured from both retinal arteries and veins. The results indicate that OMAG has the potential for qualitative and quantitative evaluation of the microcirculation in posterior eye compartments in mouse models of retinopathy and neovascularization. PMID:23162733

  4. Rapid measurement of fibrinogen concentration in whole blood using a steel ball coagulometer

    PubMed Central

    Schlimp, Christoph J.; Khadem, Anna; Klotz, Anton; Solomon, Cristina; Hochleitner, Gerald; Ponschab, Martin; Redl, Heinz; Schöchl, Herbert

    2015-01-01

    BACKGROUND Fibrinogen plays a key role in hemostasis and is the first coagulation factor to reach critical levels in bleeding patients. Current European guidelines on the management of traumatic or perioperative bleeding recommend fibrinogen supplementation at specific threshold levels. Whole blood viscoelastic tests provide fast evaluation of fibrin deficits. Fast measurement of plasma fibrinogen concentration is not yet available. We investigated a method to rapidly determine whole blood fibrinogen concentration using standard Clauss assays and a steel ball coagulometer and provide an estimate of the “plasma-equivalent” fibrinogen concentration within minutes by adjustment of the measured whole blood fibrinogen concentration with a quickly measureable hemoglobin-derived hematocrit. METHODS The feasibility of this approach was tested with a Clauss assay using multiple porcine fresh blood samples obtained during in vivo bleeding, hemodilution, and after treatment with hemostatic therapy. Two different Clauss assays were then tested using multiple human volunteers’ blood samples diluted in vitro and supplemented with fibrinogen concentrate. Comparative measurements with fibrin-based thromboelastometry tests were performed. RESULTS Regression and Bland-Altman analyses of derived “plasma-equivalent” fibrinogen and measured plasma fibrinogen concentration was excellent in porcine and human blood samples, especially in the ranges relevant to traumatic or perioperative bleeding. CONCLUSION Fast whole blood fibrinogen measurements could be considered as an alternative to plasma fibrinogen measurement for acute bleeding management in trauma and perioperative care settings. Further studies are needed to prove this concept and determine the turnaround times for its clinical application in emergency departments and operating theaters. PMID:25742256

  5. The applicability of home blood pressure measurement in clinical practice: A review of literature

    PubMed Central

    Verberk, Willem J; Kroon, Abraham A; Jongen-Vancraybex, Heidi A; de Leeuw, Peter W

    2007-01-01

    Purpose To review the literature on home blood pressure measurement (HBPM), to examine its validity and applicability for clinical practice and to provide recommendations regarding HBPM assessment. Findings HBPM can eliminate the white coat effect and offers the possibility to obtain multiple measurements under standardized conditions, which increases knowledge of overall blood pressure value. Although it is not entirely capable of replacing ambulatory blood pressure measurement (ABPM), HBPM correlates better with target organ damage and cardiovascular mortality than office blood pressure measurement (OBPM), it enables prediction of sustained hypertension in patients with borderline hypertension, and proves to be an appropriate tool for assessing drug efficacy. Additional advantages of HBPM are that it may increase drug compliance and patient’s awareness of hypertension. Overall, OBPM yield higher blood pressure values than HBPM. Differences between OBPM and HBPM tend to increase with age and are generally higher in patients without antihypertensive treatment than in patients with antihypertensive treatment. Recommendations Measurements should be performed according to accepted guidelines and recordings should be performed with a memory equipped automatic validated device. From the data reviewed here, we recommend that HBPM be assessed monthly by taking two measurements in the morning within 1 hour after awakening and two in the evening for three consecutive days, the data from the first day should be dismissed. A subject should be labeled hypertensive if his/her HBPM value is equal to or greater than 137 mmHg systolic and/or 84 mmHg diastolic. PMID:18200814

  6. Modeling and Measurement of Correlation between Blood and Interstitial Glucose Changes.

    PubMed

    Shi, Ting; Li, Dachao; Li, Guoqing; Zhang, Yiming; Xu, Kexin; Lu, Luo

    2016-01-01

    One of the most effective methods for continuous blood glucose monitoring is to continuously measure glucose in the interstitial fluid (ISF). However, multiple physiological factors can modulate glucose concentrations and affect the lag phase between blood and ISF glucose changes. This study aims to develop a compensatory tool for measuring the delay in ISF glucose variations in reference to blood glucose changes. A theoretical model was developed based on biophysics and physiology of glucose transport in the microcirculation system. Blood and interstitial fluid glucose changes were measured in mice and rats by fluorescent and isotope methods, respectively. Computer simulation mimicked curves were fitted with data resulting from fluorescent measurements of mice and isotope measurements of rats, indicating that there were lag times for ISF glucose changes. It also showed that there was a required diffusion distance for glucose to travel from center of capillaries to interstitial space in both mouse and rat models. We conclude that it is feasible with the developed model to continuously monitor dynamic changes of blood glucose concentration through measuring glucose changes in ISF with high accuracy, which requires correct parameters for determining and compensating for the delay time of glucose changes in ISF.

  7. Modeling and Measurement of Correlation between Blood and Interstitial Glucose Changes.

    PubMed

    Shi, Ting; Li, Dachao; Li, Guoqing; Zhang, Yiming; Xu, Kexin; Lu, Luo

    2016-01-01

    One of the most effective methods for continuous blood glucose monitoring is to continuously measure glucose in the interstitial fluid (ISF). However, multiple physiological factors can modulate glucose concentrations and affect the lag phase between blood and ISF glucose changes. This study aims to develop a compensatory tool for measuring the delay in ISF glucose variations in reference to blood glucose changes. A theoretical model was developed based on biophysics and physiology of glucose transport in the microcirculation system. Blood and interstitial fluid glucose changes were measured in mice and rats by fluorescent and isotope methods, respectively. Computer simulation mimicked curves were fitted with data resulting from fluorescent measurements of mice and isotope measurements of rats, indicating that there were lag times for ISF glucose changes. It also showed that there was a required diffusion distance for glucose to travel from center of capillaries to interstitial space in both mouse and rat models. We conclude that it is feasible with the developed model to continuously monitor dynamic changes of blood glucose concentration through measuring glucose changes in ISF with high accuracy, which requires correct parameters for determining and compensating for the delay time of glucose changes in ISF. PMID:27239479

  8. Modeling and Measurement of Correlation between Blood and Interstitial Glucose Changes

    PubMed Central

    Shi, Ting; Li, Dachao; Li, Guoqing; Zhang, Yiming; Xu, Kexin; Lu, Luo

    2016-01-01

    One of the most effective methods for continuous blood glucose monitoring is to continuously measure glucose in the interstitial fluid (ISF). However, multiple physiological factors can modulate glucose concentrations and affect the lag phase between blood and ISF glucose changes. This study aims to develop a compensatory tool for measuring the delay in ISF glucose variations in reference to blood glucose changes. A theoretical model was developed based on biophysics and physiology of glucose transport in the microcirculation system. Blood and interstitial fluid glucose changes were measured in mice and rats by fluorescent and isotope methods, respectively. Computer simulation mimicked curves were fitted with data resulting from fluorescent measurements of mice and isotope measurements of rats, indicating that there were lag times for ISF glucose changes. It also showed that there was a required diffusion distance for glucose to travel from center of capillaries to interstitial space in both mouse and rat models. We conclude that it is feasible with the developed model to continuously monitor dynamic changes of blood glucose concentration through measuring glucose changes in ISF with high accuracy, which requires correct parameters for determining and compensating for the delay time of glucose changes in ISF. PMID:27239479

  9. Recommendations for blood pressure measurement in humans and experimental animals: part 1: blood pressure measurement in humans: a statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research.

    PubMed

    Pickering, Thomas G; Hall, John E; Appel, Lawrence J; Falkner, Bonita E; Graves, John; Hill, Martha N; Jones, Daniel W; Kurtz, Theodore; Sheps, Sheldon G; Roccella, Edward J

    2005-02-01

    Accurate measurement of blood pressure is essential to classify individuals, to ascertain blood pressure-related risk, and to guide management. The auscultatory technique with a trained observer and mercury sphygmomanometer continues to be the method of choice for measurement in the office, using the first and fifth phases of the Korotkoff sounds, including in pregnant women. The use of mercury is declining, and alternatives are needed. Aneroid devices are suitable, but they require frequent calibration. Hybrid devices that use electronic transducers instead of mercury have promise. The oscillometric method can be used for office measurement, but only devices independently validated according to standard protocols should be used, and individual calibration is recommended. They have the advantage of being able to take multiple measurements. Proper training of observers, positioning of the patient, and selection of cuff size are all essential. It is increasingly recognized that office measurements correlate poorly with blood pressure measured in other settings, and that they can be supplemented by self-measured readings taken with validated devices at home. There is increasing evidence that home readings predict cardiovascular events and are particularly useful for monitoring the effects of treatment. Twenty-four-hour ambulatory monitoring gives a better prediction of risk than office measurements and is useful for diagnosing white-coat hypertension. There is increasing evidence that a failure of blood pressure to fall during the night may be associated with increased risk. In obese patients and children, the use of an appropriate cuff size is of paramount importance.

  10. Recommendations for blood pressure measurement in humans and experimental animals: Part 1: blood pressure measurement in humans: a statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research.

    PubMed

    Pickering, Thomas G; Hall, John E; Appel, Lawrence J; Falkner, Bonita E; Graves, John; Hill, Martha N; Jones, Daniel W; Kurtz, Theodore; Sheps, Sheldon G; Roccella, Edward J

    2005-01-01

    Accurate measurement of blood pressure is essential to classify individuals, to ascertain blood pressure-related risk, and to guide management. The auscultatory technique with a trained observer and mercury sphygmomanometer continues to be the method of choice for measurement in the office, using the first and fifth phases of the Korotkoff sounds, including in pregnant women. The use of mercury is declining, and alternatives are needed. Aneroid devices are suitable, but they require frequent calibration. Hybrid devices that use electronic transducers instead of mercury have promise. The oscillometric method can be used for office measurement, but only devices independently validated according to standard protocols should be used, and individual calibration is recommended. They have the advantage of being able to take multiple measurements. Proper training of observers, positioning of the patient, and selection of cuff size are all essential. It is increasingly recognized that office measurements correlate poorly with blood pressure measured in other settings, and that they can be supplemented by self-measured readings taken with validated devices at home. There is increasing evidence that home readings predict cardiovascular events and are particularly useful for monitoring the effects of treatment. Twenty-four-hour ambulatory monitoring gives a better prediction of risk than office measurements and is useful for diagnosing white-coat hypertension. There is increasing evidence that a failure of blood pressure to fall during the night may be associated with increased risk. In obese patients and children, the use of an appropriate cuff size is of paramount importance.

  11. Integration of acoustic radiation force and optical imaging for blood plasma clot stiffness measurement.

    PubMed

    Wang, Caroline W; Perez, Matthew J; Helmke, Brian P; Viola, Francesco; Lawrence, Michael B

    2015-01-01

    Despite the life-preserving function blood clotting serves in the body, inadequate or excessive blood clot stiffness has been associated with life-threatening diseases such as stroke, hemorrhage, and heart attack. The relationship between blood clot stiffness and vascular diseases underscores the importance of quantifying the magnitude and kinetics of blood's transformation from a fluid to a viscoelastic solid. To measure blood plasma clot stiffness, we have developed a method that uses ultrasound acoustic radiation force (ARF) to induce micron-scaled displacements (1-500 μm) on microbeads suspended in blood plasma. The displacements were detected by optical microscopy and took place within a micro-liter sized clot region formed within a larger volume (2 mL sample) to minimize container surface effects. Modulation of the ultrasound generated acoustic radiation force allowed stiffness measurements to be made in blood plasma from before its gel point to the stage where it was a fully developed viscoelastic solid. A 0.5 wt % agarose hydrogel was 9.8-fold stiffer than the plasma (platelet-rich) clot at 1 h post-kaolin stimulus. The acoustic radiation force microbead method was sensitive to the presence of platelets and strength of coagulation stimulus. Platelet depletion reduced clot stiffness 6.9 fold relative to platelet rich plasma. The sensitivity of acoustic radiation force based stiffness assessment may allow for studying platelet regulation of both incipient and mature clot mechanical properties. PMID:26042775

  12. Measuring retinal blood flow in rats using Doppler optical coherence tomography without knowing eyeball axial length

    PubMed Central

    Liu, Wenzhong; Yi, Ji; Chen, Siyu; Jiao, Shuliang; Zhang, Hao F.

    2015-01-01

    Purpose: Doppler optical coherence tomography (OCT) is widely used for measuring retinal blood flow. Existing Doppler OCT methods require the eyeball axial length, in which empirical values are usually used. However, variations in the axial length can create a bias unaccounted for in the retinal blood flow measurement. The authors plan to develop a Doppler OCT method that can measure the total retinal blood flow rate without requiring the eyeball axial length. Methods: The authors measured the retinal blood flow rate using a dual-ring scanning protocol. The small and large scanning rings entered the eye at different incident angles (small ring: 4°; large ring: 6°), focused on different locations on the retina, and detected the projected velocities/phase shifts along the probing beams. The authors calculated the ratio of the projected velocities between the two rings, and then used this ratio to estimate absolute flow velocity. The authors tested this method in both Intralipid phantoms and in vivo rats. Results: In the Intralipid flow phantom experiments, the preset and measured flow rates were consistent with the coefficient of determination as 0.97. Linear fitting between preset and measured flow rates determined the fitting slope as 1.07 and the intercept as −0.28. In in vivo rat experiments, the measured average total retinal blood flow was 7.02 ± 0.31μl/min among four wild-type rats. The authors’ measured flow rates were consistent with results in the literature. Conclusions: By using a dual-ring scanning protocol with carefully controlled incident angle difference between the two scanning rings in Doppler OCT, the authors demonstrated that it is feasible to measure the absolute retinal blood flow without knowing the eyeball axial length. PMID:26328984

  13. Improving estimation of cardiac vagal tone during spontaneous breathing using a paced breathing calibration.

    PubMed

    Wilhelm, Frank H; Grossman, Paul; Coyle, Michael A

    2004-01-01

    Respiratory sinus arrhythmia (RSA) is a commonly employed non-invasive measure of cardiac vagal control. It has been demonstrated that respiratory parameters such as tidal volume and respiratory frequency can change RSA without altering tonic vagal activity. Thus, within-individual comparisons of cardiac vagal control across different behavioral tasks might benefit from an adjustment for respiratory confounds. We tested an adjustment method using transfer function analysis and paced breathing at 3 different respiratory frequencies as the basis for regressing out respiratory related RSA changes in a task where breathing was not controlled. Electrocardiogram and calibrated respiration were recorded with the LifeShirt system from 15 young adult participants. Time series of RR intervals and lung volume change were computed and the respiration-to-RR-interval transfer-function magnitude (RSA-TF, in ms/liter) estimated. Mean (SD) of RSA-TF was 142 (68) at 9 breaths/min, 78 (52) at 13.5 breaths/min, 57 (43) at 18 breaths/min, and 121 (56) during baseline, with a respiratory frequency of 12.5 (3.8) breaths/min. At baseline, measured and predicted RSA-TF values (mean 94 +/- 82) differed significantly and correlated only moderately (r = 0.67). Factors contributing to a less than perfect correlation included slightly elevated subjective anxiety levels and hyperventilation during paced breathing, both of which may have affected cardiac vagal tone. This study demonstrates a novel procedure for computing a respiratory unrelated RSA index. Results provide some support for the utility of this adjustment method for improving the estimation of cardiac vagal tone from RSA, but also indicate that the paced breathing procedure may need to be further refined.

  14. Comparison of three methods of sampling trout blood for measurements of hematocrit

    USGS Publications Warehouse

    Steucke, Erwin W., Jr.; Schoettger, Richard A.

    1967-01-01

    Trout blood is frequently collected for hematocrit measurements by excising the caudal fin (Snieszko, 1960), but this technique is impractical if valuable fish are to be sampled or if repeated observations are desired. Schiffman (1959) and Snieszko (1960) collected blood from the dorsal aorta and the heart, but these methods are relatively slow and require the preparation of needles and syringes. The use of pointed capillary tubes for cardiac punctures increases the speed of sampling, but body fluids may dilute the blood (Perkins, 1957; Larsen and Snieszko, 1961; and Normandau, 1962). There is need for methods of sampling which are rapid and which neither influence hematological determinations nor harm the fish.

  15. Correlation of Insulin Resistance with Anthropometric Measures and Blood Pressure in Adolescents

    PubMed Central

    de Morais, Polyana Resende Silva; Sousa, Ana Luiza Lima; Jardim, Thiago de Souza Veiga; Nascente, Flávia Miquetichuc Nogueira; Mendonça, Karla Lorena; Povoa, Thaís Inácio Rolim; Carneiro, Carolina de Souza; Ferreira, Vanessa Roriz; de Souza, Weimar Kunz Sebba Barroso; Jardim, Paulo César Brandão Veiga

    2016-01-01

    Background Blood pressure is directly related to body mass index, and individuals with increased waist circumference have higher risk of developing hypertension, insulin resistance, and other metabolic changes, since adolescence. Objective to evaluate the correlation of blood pressure with insulin resistance, waist circumference and body mass index in adolescents. Methods Cross-section study on a representative sample of adolescent students. One group of adolescents with altered blood pressure detected by casual blood pressure and/or home blood pressure monitoring (blood pressure > 90th percentile) and one group of normotensive adolescents were studied. Body mass index, waist circumference were measured, and fasting glucose and plasma insulin levels were determined, using the HOMA-IR index to identify insulin resistance. Results A total of 162 adolescents (35 with normal blood pressure and 127 with altered blood pressure) were studied; 61% (n = 99) of them were boys and the mean age was 14.9 ± 1.62 years. Thirty-eight (23.5%) adolescents had altered HOMA-IR. The group with altered blood pressure had higher values of waist circumference, body mass index and HOMA-IR (p<0.05). Waist circumference was higher among boys in both groups (p<0.05) and girls with altered blood pressure had higher HOMA-IR than boys (p<0.05). There was a significant moderate correlation between body mass index and HOMA-IR in the group with altered blood pressure (ρ = 0.394; p < 0.001), and such correlation was stronger than in the normotensive group. There was also a significant moderate correlation between waist circumference and HOMA-IR in both groups (ρ = 0.345; p < 0.05). Logistic regression showed that HOMA-IR was as predictor of altered blood pressure (odds ratio - OR = 2.0; p = 0.001). Conclusion There was a significant association of insulin resistance with blood pressure and the impact of insulin resistance on blood pressure since childhood. The correlation and association between

  16. A fully integrated standalone portable cavity ringdown breath acetone analyzer

    NASA Astrophysics Data System (ADS)

    Sun, Meixiu; Jiang, Chenyu; Gong, Zhiyong; Zhao, Xiaomeng; Chen, Zhuying; Wang, Zhennan; Kang, Meiling; Li, Yingxin; Wang, Chuji

    2015-09-01

    Breath analysis is a promising new technique for nonintrusive disease diagnosis and metabolic status monitoring. One challenging issue in using a breath biomarker for potential particular disease screening is to find a quantitative relationship between the concentration of the breath biomarker and clinical diagnostic parameters of the specific disease. In order to address this issue, we need a new instrument that is capable of conducting real-time, online breath analysis with high data throughput, so that a large scale of clinical test (more subjects) can be achieved in a short period of time. In this work, we report a fully integrated, standalone, portable analyzer based on the cavity ringdown spectroscopy technique for near-real time, online breath acetone measurements. The performance of the portable analyzer in measurements of breath acetone was interrogated and validated by using the certificated gas chromatography-mass spectrometry. The results show that this new analyzer is useful for reliable online (online introduction of a breath sample without pre-treatment) breath acetone analysis with high sensitivity (57 ppb) and high data throughput (one data per second). Subsequently, the validated breath analyzer was employed for acetone measurements in 119 human subjects under various situations. The instrument design, packaging, specifications, and future improvements were also described. From an optical ringdown cavity operated by the lab-set electronics reported previously to this fully integrated standalone new instrument, we have enabled a new scientific tool suited for large scales of breath acetone analysis and created an instrument platform that can even be adopted for study of other breath biomarkers by using different lasers and ringdown mirrors covering corresponding spectral fingerprints.

  17. A fully integrated standalone portable cavity ringdown breath acetone analyzer.

    PubMed

    Sun, Meixiu; Jiang, Chenyu; Gong, Zhiyong; Zhao, Xiaomeng; Chen, Zhuying; Wang, Zhennan; Kang, Meiling; Li, Yingxin; Wang, Chuji

    2015-09-01

    Breath analysis is a promising new technique for nonintrusive disease diagnosis and metabolic status monitoring. One challenging issue in using a breath biomarker for potential particular disease screening is to find a quantitative relationship between the concentration of the breath biomarker and clinical diagnostic parameters of the specific disease. In order to address this issue, we need a new instrument that is capable of conducting real-time, online breath analysis with high data throughput, so that a large scale of clinical test (more subjects) can be achieved in a short period of time. In this work, we report a fully integrated, standalone, portable analyzer based on the cavity ringdown spectroscopy technique for near-real time, online breath acetone measurements. The performance of the portable analyzer in measurements of breath acetone was interrogated and validated by using the certificated gas chromatography-mass spectrometry. The results show that this new analyzer is useful for reliable online (online introduction of a breath sample without pre-treatment) breath acetone analysis with high sensitivity (57 ppb) and high data throughput (one data per second). Subsequently, the validated breath analyzer was employed for acetone measurements in 119 human subjects under various situations. The instrument design, packaging, specifications, and future improvements were also described. From an optical ringdown cavity operated by the lab-set electronics reported previously to this fully integrated standalone new instrument, we have enabled a new scientific tool suited for large scales of breath acetone analysis and created an instrument platform that can even be adopted for study of other breath biomarkers by using different lasers and ringdown mirrors covering corresponding spectral fingerprints.

  18. Blood Glucose Measurement in the Intensive Care Unit: What Is the Best Method?

    PubMed Central

    Le, Huong T.; Harris, Neil S.; Estilong, Abby J.; Olson, Arvid; Rice, Mark J.

    2013-01-01

    Abnormal glucose measurements are common among intensive care unit (ICU) patients for numerous reasons and hypoglycemia is especially dangerous because these patients are often sedated and unable to relate the associated symptoms. Additionally, wide swings in blood glucose have been closely tied to increased mortality. Therefore, accurate and timely glucose measurement in this population is critical. Clinicians have several choices available to assess blood glucose values in the ICU, including central laboratory devices, blood gas analyzers, and point-of-care meters. In this review, the method of glucose measurement will be reviewed for each device, and the important characteristics, including accuracy, cost, speed of result, and sample volume, will be reviewed, specifically as these are used in the ICU environment. Following evaluation of the individual measurement devices and after considering the many features of each, recommendations are made for optimal ICU glucose determination. PMID:23567008

  19. In vivo μPIV measurements of blood velocity in small vessels of a rat model

    NASA Astrophysics Data System (ADS)

    Leong, Chia Min; Russell, John; Connor, Nadine; Honkanen, Markus; Wei, Timothy

    2009-11-01

    Aging-related muscular changes have been shown to affect voice production. There is correlation between muscular changes and changes in capillary hemodynamics and structure with aging. Alterations in oxygen transport to cells and tissues at the capillary level has been hypothesized as one of the key factors that causes muscular changes thus voice production. Since oxygen transport is related to hemodynamics, we start by measuring blood velocity in capillaries of cremaster muscle of a living rat. The μPIV technique is adapted for measuring blood velocity where red blood cells are used as `seeding particles'. The accuracy of the μPIV measurements are determined by comparison with results obtained using other techniques such as particle tracking velocimetry (PTV). Finally, challenges in measuring flow through three-dimensional larynx geometry will be discussed.

  20. Repeated Blood Pressure Measurements in Childhood in Prediction of Hypertension in Adulthood.

    PubMed

    Oikonen, Mervi; Nuotio, Joel; Magnussen, Costan G; Viikari, Jorma S A; Taittonen, Leena; Laitinen, Tomi; Hutri-Kähönen, Nina; Jokinen, Eero; Jula, Antti; Cheung, Michael; Sabin, Matthew A; Daniels, Stephen R; Raitakari, Olli T; Juonala, Markus

    2016-01-01

    Hypertension may be predicted from childhood risk factors. Repeated observations of abnormal blood pressure in childhood may enhance prediction of hypertension and subclinical atherosclerosis in adulthood compared with a single observation. Participants (1927, 54% women) from the Cardiovascular Risk in Young Finns Study had systolic and diastolic blood pressure measurements performed when aged 3 to 24 years. Childhood/youth abnormal blood pressure was defined as above 90th or 95th percentile. After a 21- to 31-year follow-up, at the age of 30 to 45 years, hypertension (>140/90 mm Hg or antihypertensive medication) prevalence was found to be 19%. Carotid intima-media thickness was examined, and high-risk intima-media was defined as intima-media thickness >90th percentile or carotid plaques. Prediction of adulthood hypertension and high-risk intima-media was compared between one observation of abnormal blood pressure in childhood/youth and multiple observations by improved Pearson correlation coefficients and area under the receiver operating curve. When compared with a single measurement, 2 childhood/youth observations improved the correlation for adult systolic (r=0.44 versus 0.35, P<0.001) and diastolic (r=0.35 versus 0.17, P<0.001) blood pressure. In addition, 2 abnormal childhood/youth blood pressure observations increased the prediction of hypertension in adulthood (0.63 for 2 versus 0.60 for 1 observation, P=0.003). When compared with 2 measurements, third observation did not provide any significant improvement for correlation or prediction (P always >0.05). A higher number of childhood/youth observations of abnormal blood pressure did not enhance prediction of adult high-risk intima-media thickness. Compared with a single measurement, the prediction of adult hypertension was enhanced by 2 observations of abnormal blood pressure in childhood/youth.

  1. Multiple electrode aggregometry: a new device to measure platelet aggregation in whole blood.

    PubMed

    Tóth, Orsolya; Calatzis, Andreas; Penz, Sandra; Losonczy, Hajna; Siess, Wolfgang

    2006-12-01

    Several methods are used to analyse platelet function in whole blood. A new device to measure whole blood platelet aggregation has been developed, called multiple electrode platelet aggregometry (MEA). Our aim was to evaluate MEA in comparison with the single platelet counting (SPC) method for the measurement of platelet aggregation and platelet inhibition by aspirin or apyrase in diluted whole blood. Platelet aggregation induced by different concentrations of ADP, collagen and TRAP-6 and platelet inhibition by apyrase or aspirin were determined in citrateor hirudin-anticoagulated blood by MEA and SPC. MEA indicated that spontaneous platelet aggregation was lower, and stimulated platelet aggregation was higher in hirudin- than citrate-anticoagulated blood. In hirudin-anticoagulated, but not citrate-anticoagulated blood, spontaneous platelet aggregation measured by MEA was inhibited by apyrase. For MEA compared with SPC the dose response-curves of agonist-induced platelet aggregation in citrate- and hirudin-blood showed similar EC50 values for TRAP, and higher EC50 values for ADP (non-significant) and collagen (p < 0.05). MEA and the SPC method gave similar results concerning platelet-inhibition by apyrase and aspirin. MEA was more sensitive than SPC to the inhibitory effect of aspirin in collagen-induced aggregation. In conclusion, MEA is an easy, reproducible and sensitive method for measuring spontaneous and stimulated platelet aggregation, and evaluating antiplatelet drugs in diluted whole blood. The use of hirudin as an anticoagulant is preferable to the use of citrate. MEA is a promising technique for experimental and clinical applications. PMID:17139373

  2. Reproducibility of measurements of regional resting and hyperemic myocardial blood flow assessed with PET

    SciTech Connect

    Nagamachi, S.; Czernin, J.; Kim, A.S.

    1996-10-01

    PET with {sup 13}N-ammonia permits the noninvasive quantification of myocardial blood flow (MBF) in humans. The present study was done to assess the reproducibility of quantitative blood flow measurements at rest and during pharmacologically induced hyperemia in healthy individuals. Thirty healthy volunteers (26 men, 4 women) were studied. Paired measurements of MBF at rest (n = 21), during adenosine (n = 15) and during dipyridamole (n = 7) were performed using a two-compartment model for {sup 13}N-ammonia PET. The mean difference between baseline and follow-up blood flow (% difference) was calculated to assess reproducibility. No significant difference was observed between resting blood flow at baseline or follow-up (15.8% {plus_minus} 15.8%; p = ns). Baseline and follow-up resting blood flow were linearly correlated (r = 0.63, p < 0.005). Normalization of resting blood flow to the rate pressure product improved the reproducibility significantly (15.8% {plus_minus} 15.8% versus 10.1% {plus_minus} 10.5%, p < 0.05). Baseline and follow-up hyperemic myocardial blood flow did not differ (11.8% {plus_minus} 9.4%; p = ns) and were linearly correlated (r = 0.69, p < 0.0005). MBF at rest can be measured reproducibly with {sup 13}N-ammonia PET. The individual response to pharmacologic stress appears to be relatively consistent. Thus, serial blood flow measurements with {sup 13}N-ammonia PET can be used to quantify the effect of various interventions on MBF and vasodilatory reserve. 41 refs., 3 figs., 4 tabs.

  3. Total retinal blood flow measurement by three beam Doppler optical coherence tomography

    PubMed Central

    Haindl, Richard; Trasischker, Wolfgang; Wartak, Andreas; Baumann, Bernhard; Pircher, Michael; Hitzenberger, Christoph K.

    2016-01-01

    We present measurements of total retinal blood flow in healthy volunteers using a three beam Doppler optical coherence tomography (D-OCT) technique. This technology has the advantage of a precise determination of the flow vector without the use of any a-priori information on the vessel geometry. Circular D-OCT scans around the optic disc were recorded and venous as well as arterial total blood flow was determined and compared for each subject. The reproducibility of the method was assessed in 6 subjects by repeated measurements. Only small deviations of around 6% between the measurements were found which indicates the high precision of the proposed method. PMID:26977340

  4. Breath tests in diagnosis of pulmonary tuberculosis.

    PubMed

    Cheepsattayakorn, Attapon; Cheepsattayakorn, Ruangrong

    2014-01-01

    Since the time of Hippocrates, physicians have known that the odour of human breath can provide clues to diagnosis. In the past, hydrogen peroxide which is a marker of inflammatory diseases and oxidative stress was the most studied substance in the exhaled breath which was detectable in the liquid that obtained by condensing or cooling. The advantages of breath analysis are that it is convenient, non-invasive, and could be performed with children as well as mechanically ventilated patients. Today, exhaled nitric oxide has been studied extensively, especially in relation to asthma. More than a thousand different volatile organic compounds have been observed in low concentrations in normal human breath. Alkanes and methylalkanes have been increasingly used by physicians as a novel method to diagnose many diseases without discomforts of invasive procedures. Although the limitations of measurement of exhaled nitric oxide in direct diagnosis of infectious pulmonary TB, it may have potential development as a cost-effective replacement of chest radiological examination in screening algorithms. None of the individual exhaled volatile organic compound alone is specific for disease. Exhaled breath analysis techniques may be available to diagnose and monitor the diseases in home setting when their sensitivity and specificity are expected to improve in the future. Here, we also discussed some patents related to the topic. PMID:25185981

  5. Heart rate variability and stroke volume variability to detect central hypovolemia during spontaneous breathing and supported ventilation in young, healthy volunteers.

    PubMed

    Elstad, Maja; Walløe, Lars

    2015-04-01

    Cardiovascular oscillations exist in many different variables and may give important diagnostic and prognostic information in patients. Variability in cardiac stroke volume (SVV) is used in clinical practice for diagnosis of hypovolemia, but currently is limited to patients on mechanical ventilation. We investigated if SVV and heart rate variability (HRV) could detect central hypovolemia in spontaneously breathing humans: We also compared cardiovascular variability during spontaneous breathing with supported mechanical ventilation.Ten subjects underwent simulated central hypovolemia by lower body negative pressure (LBNP) with >10% reduction of cardiac stroke volume. The subjects breathed spontaneously and with supported mechanical ventilation. Heart rate, respiratory frequency and mean arterial blood pressure were measured. Stroke volume (SV) was estimated by ModelFlow (Finometer). Respiratory SVV was calculated by: 1) SVV% = (SVmax - SVmin)/SVmean during one respiratory cycle, 2) SVIntegral from the power spectra (Fourier transform) at 0.15-0.4 Hz and 3) SVV_norm = (√SVIntegral)/SVmean. HRV was calculated by the same methods.During spontaneous breathing two measures of SVV and all three measures of HRV were reduced during hypovolemia compared to baseline. During spontaneous breathing SVIntegral and HRV% were best to detect hypovolemia (area under receiver operating curve 0.81). HRV% ≤ 11% and SVIntegral ≤ 12 ml(2) differentiated between hypovolemia and baseline during spontaneous breathing.During supported mechanical ventilation, none of the three measures of SVV changed and two of the HRV measures were reduced during hypovolemia. Neither measures of SVV nor HRV were classified as a good detector of hypovolemia.We conclude that HRV% and SVIntegral detect hypovolemia during spontaneous breathing and both are candidates for further clinical testing. PMID:25799094

  6. Endoscopic measurements of canine colonic mucosal blood flow using hydrogen gas clearance

    SciTech Connect

    Soybel, D.I.; Wan, Y.L.; Ashley, S.W.; Yan, Z.Y.; Ordway, F.S.; Cheung, L.Y.

    1987-04-01

    We have examined the feasibility of hydrogen (H/sub 2/) clearance for endoscopic measurements of colonic mucosal blood flow in anesthetized dogs. In 6 animals, measurements of H2 clearance did not differ significantly in different regions of the sigmoid colon and they were highly reproducible on different days. In a total of 12 dogs, measurements of H2 clearance correlated closely with those obtained using radioactive microspheres under resting conditions and, in 4 dogs, during infusion of vasopressin. In 8 dogs, ligation of the major arteries supplying the sigmoid colon resulted in an acute 60% decrease in sigmoid mucosal blood flow; however, in 5 animals that survived the procedure, mucosal blood flow returned nearly to control levels as early as 3 days after operation. Endoscopic H/sub 2/ clearance thus appears to be feasible for measuring mucosal blood flow in the colon. Serial measurements of H/sub 2/ clearance may prove useful in characterizing the role of mucosal blood flow in the pathogenesis of various forms of human colonic disease.

  7. The human volatilome: volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva.

    PubMed

    Amann, Anton; Costello, Ben de Lacy; Miekisch, Wolfram; Schubert, Jochen; Buszewski, Bogusław; Pleil, Joachim; Ratcliffe, Norman; Risby, Terence

    2014-09-01

    Breath analysis is a young field of research with its roots in antiquity. Antoine Lavoisier discovered carbon dioxide in exhaled breath during the period 1777-1783, Wilhelm (Vilém) Petters discovered acetone in breath in 1857 and Johannes Müller reported the first quantitative measurements of acetone in 1898. A recent review reported 1765 volatile compounds appearing in exhaled breath, skin emanations, urine, saliva, human breast milk, blood and feces. For a large number of compounds, real-time analysis of exhaled breath or skin emanations has been performed, e.g., during exertion of effort on a stationary bicycle or during sleep. Volatile compounds in exhaled breath, which record historical exposure, are called the 'exposome'. Changes in biogenic volatile organic compound concentrations can be used to mirror metabolic or (patho)physiological processes in the whole body or blood concentrations of drugs (e.g. propofol) in clinical settings-even during artificial ventilation or during surgery. Also compounds released by bacterial strains like Pseudomonas aeruginosa or Streptococcus pneumonia could be very interesting. Methyl methacrylate (CAS 80-62-6), for example, was observed in the headspace of Streptococcus pneumonia in concentrations up to 1420 ppb. Fecal volatiles have been implicated in differentiating certain infectious bowel diseases such as Clostridium difficile, Campylobacter, Salmonella and Cholera. They have also been used to differentiate other non-infectious conditions such as irritable bowel syndrome and inflammatory bowel disease. In addition, alterations in urine volatiles have been used to detect urinary tract infections, bladder, prostate and other cancers. Peroxidation of lipids and other biomolecules by reactive oxygen species produce volatile compounds like ethane and 1-pentane. Noninvasive detection and therapeutic monitoring of oxidative stress would be highly desirable in autoimmunological, neurological, inflammatory diseases and cancer

  8. The human volatilome: volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva.

    PubMed

    Amann, Anton; Costello, Ben de Lacy; Miekisch, Wolfram; Schubert, Jochen; Buszewski, Bogusław; Pleil, Joachim; Ratcliffe, Norman; Risby, Terence

    2014-09-01

    Breath analysis is a young field of research with its roots in antiquity. Antoine Lavoisier discovered carbon dioxide in exhaled breath during the period 1777-1783, Wilhelm (Vilém) Petters discovered acetone in breath in 1857 and Johannes Müller reported the first quantitative measurements of acetone in 1898. A recent review reported 1765 volatile compounds appearing in exhaled breath, skin emanations, urine, saliva, human breast milk, blood and feces. For a large number of compounds, real-time analysis of exhaled breath or skin emanations has been performed, e.g., during exertion of effort on a stationary bicycle or during sleep. Volatile compounds in exhaled breath, which record historical exposure, are called the 'exposome'. Changes in biogenic volatile organic compound concentrations can be used to mirror metabolic or (patho)physiological processes in the whole body or blood concentrations of drugs (e.g. propofol) in clinical settings-even during artificial ventilation or during surgery. Also compounds released by bacterial strains like Pseudomonas aeruginosa or Streptococcus pneumonia could be very interesting. Methyl methacrylate (CAS 80-62-6), for example, was observed in the headspace of Streptococcus pneumonia in concentrations up to 1420 ppb. Fecal volatiles have been implicated in differentiating certain infectious bowel diseases such as Clostridium difficile, Campylobacter, Salmonella and Cholera. They have also been used to differentiate other non-infectious conditions such as irritable bowel syndrome and inflammatory bowel disease. In addition, alterations in urine volatiles have been used to detect urinary tract infections, bladder, prostate and other cancers. Peroxidation of lipids and other biomolecules by reactive oxygen species produce volatile compounds like ethane and 1-pentane. Noninvasive detection and therapeutic monitoring of oxidative stress would be highly desirable in autoimmunological, neurological, inflammatory diseases and cancer

  9. The Methodology of Doppler-Derived Central Blood Flow Measurements in Newborn Infants

    PubMed Central

    de Waal, Koert A.

    2012-01-01

    Central blood flow (CBF) measurements are measurements in and around the heart. It incorporates cardiac output, but also measurements of cardiac input and assessment of intra- and extracardiac shunts. CBF can be measured in the central circulation as right or left ventricular output (RVO or LVO) and/or as cardiac input measured at the superior vena cava (SVC flow). Assessment of shunts incorporates evaluation of the ductus arteriosus and the foramen ovale. This paper describes the methodology of CBF measurements in newborn infants. It provides a brief overview of the evolution of Doppler ultrasound blood flow measurements, basic principles of Doppler ultrasound, and an overview of all used methodology in the literature. A general guide for interpretation and normal values with suggested cutoffs of CBFs are provided for clinical use. PMID:22291718

  10. Understanding the rhythm of breathing: so near yet so far

    PubMed Central

    Feldman, Jack L.; Del Negro, Christopher A.; Gray, Paul A.

    2013-01-01

    Understanding the mechanisms leading from DNA to molecules to neurons to networks to behavior is a major goal for neuroscience, but largely out of reach for many fundamental and interesting behaviors. The neural control of breathing may be a rare exception, presenting a unique opportunity to understand how the nervous system functions normally, how it balances inherent robustness with a highly regulated lability, how it adapts to rapidly and slowly changing conditions, and how particular dysfunctions result in disease. Why can we assert this? First and foremost, the functions of breathing are clearly definable, starting with its regulatory job of maintaining blood (and brain) O2, CO2 and pH; failure is not an option. Breathing is also an essential component of many vocal and emotive behaviors including, e.g., crying, laughing, singing, and sniffing, and must be coordinated with such vital behaviors as suckling and swallowing, even at birth. Second, the regulated variables, O2, CO2 and pH (and temperature in non-primate mammals), are continuous and are readily and precisely quantifiable, as is ventilation itself along with the underlying rhythmic motor activity, i.e., respiratory muscle EMGs. Third, we breathe all the time, except for short breaks as during breath-holding (which can be especially long in diving or hibernating mammals) or sleep apnea. Mammals (including humans) breathe in all behavioral states, e.g., sleep-wake, rest, exercise, panic, or fear, during anesthesia and even following decerebration. Moreover, essential aspects of the neural mechanisms driving breathing, including rhythmicity, are present at levels of reduction down to a medullary slice. Fourth, the relevant circuits exhibit a remarkable combination of extraordinary reliability, starting ex utero with the first air breath – intermittent breathing movements actually start in utero during the third trimester – and continuing for as many as ~109 breaths, as well as considerable lability

  11. When tight blood pressure control is not for everyone: a model for performance measurement in hypertension

    PubMed Central

    Steinman, Michael A.; Goldstein, Mary K.

    2010-01-01

    Background Many patients with hypertension have legitimate reasons to forego standard blood pressure targets yet are nonetheless included in performance measurement systems. An approach to performance measurement that incorporates clinical reasoning was developed to determine which patients to include in a performance measure for blood pressure control. Design A 10-member multispecialty advisory panel refined a taxonomy of situations in which the balance of benefits and harms of anti-hypertensive treatment do not clearly favor tight blood pressure control (blood pressure < 140/90). Results The panel identified several broad categories of reasons that could reasonably exempt a patient from performance measurement for blood pressure control. These included (1) patients who have suffered adverse effects from multiple classes of antihypertensive medications;(2) patients already taking ≥ 4 antihypertensive medications; (3) patients with terminal disease, moderate to severe dementia, or other conditions that overwhelmingly dominate the patient’s clinical status; and (4) other patient factors, including comfort care orientation and poor medication adherence despite attempts to remedy adherence difficulties. Several general principles also emerged. Performance measurement should focus on patients for whom the benefits of treatment clearly outweigh the harms and incorporate a longitudinal approach whereby clinicians are given a reasonable period of time to intervene on their patients with high blood pressure. In addition, the criteria for exempting a patient from performance measurement should be more strict in patients at higher risk of adverse health outcomes from hypertension, and more lenient for patients at lower risk. Conclusions Incorporating “real world” clinical principles and judgment into performance measurement systems may improve targeting of care and, by accounting for patient case-mix, allow for better comparison of performance between institutions

  12. Accuracy of Point-of-Care Blood Glucose Measurements in Critically Ill Patients in Shock

    PubMed Central

    Buenaluz-Sedurante, Myrna; Jimeno, Cecilia Alegado

    2014-01-01

    A widely used method in monitoring glycemic status of ICU patients is point-of-care (POC) monitoring devices. A possible limitation to this method is altered peripheral blood flow in patients in shock, which may result in over/underestimations of their true glycemic status. This study aims to determine the accuracy of blood glucose measurements with a POC meter compared to laboratory methods in critically ill patients in shock. POC blood glucose was measured with a glucose-1-dehydrogenase-based reflectometric meter. The reference method was venous plasma glucose measured by a clinical chemistry analyzer (glucose oxidase-based). Outcomes assessed were concordance to ISO 15197:2003 minimum accuracy criteria for glucose meters, bias in glucose measurements obtained by the 2 methods using Bland–Altman analysis, and clinical accuracy through modified error grid analysis. A total of 186 paired glucose measurements were obtained. ISO 2003 accuracy criteria were met in 95.7% and 79.8% of POC glucose values in the normotensive and hypotensive group, respectively. Mean bias for the normotensive group was –12.4 mg/dL, while mean bias in the hypotensive group was –34.9 mg/dL. POC glucose measurements within the target zone for clinical accuracy were 90.2% and 79.8% for the normotensive and hypotensive group, respectively. POC blood glucose measurements were significantly less accurate in the hypotensive subgroup of ICU patients compared to the normotensive group. We recommend a lower threshold in confirming POC blood glucose with a central laboratory method if clinically incompatible. In light of recently updated accuracy standards, we also recommend alternative methods of glucose monitoring for the ICU population as a whole regardless of blood pressure status. PMID:25172876

  13. Absolute Retinal Blood Flow Measurement With a Dual-Beam Doppler Optical Coherence Tomography

    PubMed Central

    Dai, Cuixia; Liu, Xiaojing; Zhang, Hao F.; Puliafito, Carmen A.; Jiao, Shuliang

    2013-01-01

    Purpose. To test the capability of a novel dual-beam Doppler optical coherence tomography (OCT) technique for simultaneous in vivo measurement of the Doppler angle and, thus, the absolute retinal blood velocity and the retinal flow rate, without the influence of motion artifacts. Methods. A novel dual-beam Doppler spectral domain OCT (SD-OCT) was developed. The two probing beams are separated with a controllable distance along an arbitrary direction, both of which are controlled by two independent 2D optical scanners. Two sets of optical Doppler tomography (ODT) images are acquired simultaneously. The Doppler angle of each blood vessel segment is calculated from the relative coordinates of the centers of the blood vessel in the two corresponding ODT images. The absolute blood flow velocity and the volumetric blood flow rate can then be calculated. To measure the total retinal blood flow, we used a circular scan pattern centered at the optic disc to obtain two sets of concentric OCT/ODT images simultaneously. Results. We imaged two normal human subjects at ages of 48 and 34 years. The total retinal blood flow rates of the two human subjects were calculated to be 47.01 μL/min (older subject) and 51.37 μL/min (younger subject), respectively. Results showed that the performance of this imaging system is immune to eye movement, since the two sets of ODT images were acquired simultaneously. Conclusions. The dual-beam OCT/ODT system is successful in measuring the absolute retinal blood velocity and the volumetric flow rate. The advantage of the technique is that the two sets of ODT images used for the calculation are acquired simultaneously, which eliminates the influence of eye motion and ensures the accuracy of the calculated hemodynamic parameters. PMID:24222303

  14. Quantitative Absorption Cytometry for Measuring Red Blood Cell Hemoglobin Mass and Volume

    PubMed Central

    Schonbrun, Ethan; Malka, Roy; Di Caprio, Giuseppe; Schaak, Diane; Higgins, John M.

    2015-01-01

    We present an optical system, called the quantitative absorption cytometer (QAC), to measure the volume and hemoglobin mass of red blood cells flowing through a microfluidic channel. In contrast to clinical hematology analyzers, where cells are sphered in order for both volume and hemoglobin to be measured accurately, the QAC measures cells in their normal physiological shape. Human red blood cells are suspended in a refractive index-matching absorbing buffer, driven through a microfluidic channel, and imaged using a transmission light microscope onto a color camera. A red and a blue LED illuminate cells and images at each color are used to independently retrieve cell volume and hemoglobin mass. This system shows good agreement with red blood cell indices retrieved by a clinical hematology analyzer and in fact measures a smaller coefficient of variation of hemoglobin concentration. In addition to cell indices, the QAC returns height and mass maps of each measured cell. These quantitative images are valuable for analyzing the detailed morphology of individual cells as well as statistical outliers found in the data. We also measured red blood cells in hypertonic and hypotonic buffers to quantify the correlation between volume and hemoglobin mass under osmotic stress. Because this method is invariant to cell shape, even extremely nonspherical cells in hypertonic buffers can be measured accurately. PMID:24677669

  15. Image-guided optical measurement of blood oxygen saturation within capillary vessels (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Akons, Kfir; Zeidan, Adel; Yeheskely-Hayon, Daniella; Minai, Limor; Yelin, Dvir

    2016-03-01

    Values of blood oxygenation levels are useful for assessing heart and lung conditions, and are frequently monitored during routine patient care. Independent measurement of the oxygen saturation in capillary blood, which is significantly different from that of arterial blood, is important for diagnosing tissue hypoxia and for increasing the accuracy of existing techniques that measure arterial oxygen saturation. Here, we developed a simple, non-invasive technique for measuring the reflected spectra from individual capillary vessels within a human lip, allowing local measurement of the blood oxygen saturation. The optical setup includes a spatially incoherent broadband light that was focused onto a specific vessel below the lip surface. Backscattered light was imaged by a camera for identifying a target vessel and pointing the illumination beam to its cross section. Scattered light from the vessel was then collected by a single-mode fiber and analyzed by a fast spectrometer. Spectra acquired from small capillary vessels within a volunteer lip showed the characteristic oxyhemoglobin absorption bands in real time and with a high signal-to-noise ratio. Measuring capillary oxygen saturation using this technique would potentially be more accurate compared to existing pulse oximetry techniques due to its insensitivity to the patient's skin color, pulse rate, motion, and medical condition. It could be used as a standalone endoscopic technique for measuring tissue hypoxia or in conjunction with conventional pulse oximetry for a more accurate measurement of oxygen transport in the body.

  16. A Ringdown Breath Analyzer for Diabetes Monitoring: Breath Acetone in Diabetic Patients.

    NASA Astrophysics Data System (ADS)

    Wang, Chuji; Mbi, Armstrong; Shepherd, Mark

    2008-03-01

    It is highly desirable for millions of diabetic patients to have a non-blood, non-invasive, point-of-care device for monitoring daily blood glucose (BG) levels and the adequacy of diabetic treatment and control. Cavity ringdown spectroscopy, due to its unique capability of high sensitivity, fast-response, and relatively low cost for instrumentation, has the potential for medical application through non-invasive analysis of breath biomarkers. We report the first ringdown acetone breath analyzer for clinic testing with diabetic outpatients. The instrument was set in a clinic center and 34 outpatients (24 T1D and 10 T2D) were tested during a four-day period. 10 T1D subjects and 15 nondiabetic persons were tested in our laboratory. Three juvenile-onset T1D subjects were selected for a 24-hr monitoring on the variations of breath acetone and simultaneous BG level. In this talk, we present our research findings including the correlations of breath acetone with BG level and A1C.

  17. Emergency Response Breathing Apparatus

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Aerospace Design & Development, Inc.'s (ADD's) SCAMP was developed under an SBIR contract through Kennedy Space Center. SCAMP stands for Supercritical Air Mobility Pack. The technology came from the life support fuel cell support systems used for the Apollo and Space Shuttle programs. It uses supercritical cryogenic air and is able to function in microgravity environments. SCAMP's self-contained breathing apparatus(SCBA) systems are also ground-based and can provide twice as much air than traditional SCBA's due to its high-density capacity. The SCAMP system was designed for use in launch pad emergency rescues. ADD also developed a protective suit for use with SCAMP that is smaller and lighter system than the old ones. ADD's SCAMP allows for body cooling and breathing from the supercritical cryogenic air, requiring no extra systems. The improvement over the traditional SCBA allows for a reduction of injuries, such as heat stress, and makes it easier for rescuers to save lives.

  18. Classification of diabetes and measurement of blood glucose concentration noninvasively using near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Zhe; Li, Gang; Yan, Wen-Juan; Lin, Ling

    2014-11-01

    Developing noninvasive blood glucose monitoring method is an to immense need to alleviate the pain and suffering of diabetics associated with the frequent pricking of skin for taking blood sample. A hybrid algorithm for multivariate calibration is proposed to improve the prediction performance of classification of diabetes and measurement of blood glucose concentration by near infrared (NIR) spectroscopy noninvasively. The algorithm is based on wavelet prism modified uninformative variable elimination approach (WP-mUVE) combined with least squares support vector machine (LSSVM), named as WP-mUVE-LSSVM. The method is successfully applied to diabetic classification experiment (in vivo) and blood glucose concentration measurement experiment (in vivo) respectively. Human tongue is selected as the measuring site in this study. To evaluate effectiveness of pretreatment method and quality of calibration models, several usually used pretreatment methods and kernel functions of LSSVM are introduced comparing with our method. Higher quality data is obtained by our pretreatment method owing to the elimination of varying background and noise of spectra data simultaneously. Better prediction accuracy and adaptability are obtained by LSSVM model with radial basis kernel function. The results indicate that WP-mUVE-LSSVM holds promise for the classification of diabetes and measurement of blood glucose concentration noninvasively based on human tongue using NIR spectroscopy.

  19. Factors affecting radioactive microsphere measurement of blood flow in pregnant guinea pigs

    SciTech Connect

    Myers, S.; Sparks, J.W.; Makowski, E.L.

    1986-10-01

    Comparative blood flow studies were performed in pregnant guinea pigs using radioactive microspheres to test the effects of different sphere sizes on blood flow measurements and the relationship between flows obtained intraoperatively and those performed after 5 days of recovery from anesthesia and surgery. We observed that 1.5% of the cardiac output was shunted through the microcirculation of the carcass, gut, skin and endomyometrium when 15 mu microspheres were used. Intraoperative measurements of heart rate, cardiac output and placental blood flow are significantly lower than measurements made after 5 days recovery. These reductions were ameliorated with the addition of a continuous infusion of isoproterenol and the deletion of atropine from the anesthetic.

  20. Insulin-like growth factor I measurement on filter paper blood spots.

    PubMed

    Jones, J S

    2001-01-01

    The measurement of insulin-like growth factor I (IGF-I) from extracted whole dried blood spots on filter paper is a simple method allowing sample collection to be carried out by the patient at home. One drop of blood is applied to a filter card, air dried and posted to the laboratory. The IGF-I is dissociated from its binding protein by an acidification and neutralization procedure, and IGF-I is then measured by an enzyme-linked immunosorbent assay. Results from the analysis of IGF-I using blood spots on filter paper compared favourably with those from conventional methods, thus showing it to be an ideal and cost-effective technique for the measurement of IGF-I in both adults and children.

  1. Integration of Acoustic Radiation Force and Optical Imaging for Blood Plasma Clot Stiffness Measurement

    PubMed Central

    Wang, Caroline W.; Perez, Matthew J.; Helmke, Brian P.; Viola, Francesco; Lawrence, Michael B.

    2015-01-01

    Despite the life-preserving function blood clotting serves in the body, inadequate or excessive blood clot stiffness has been associated with life-threatening diseases such as stroke, hemorrhage, and heart attack. The relationship between blood clot stiffness and vascular diseases underscores the importance of quantifying the magnitude and kinetics of blood’s transformation from a fluid to a viscoelastic solid. To measure blood plasma clot stiffness, we have developed a method that uses ultrasound acoustic radiation force (ARF) to induce micron-scaled displacements (1-500 μm) on microbeads suspended in blood plasma. The displacements were detected by optical microscopy and took place within a micro-liter sized clot region formed within a larger volume (2 mL sample) to minimize container surface effects. Modulation of the ultrasound generated acoustic radiation force allowed stiffness measurements to be made in blood plasma from before its gel point to the stage where it was a fully developed viscoelastic solid. A 0.5 wt % agarose hydrogel was 9.8-fold stiffer than the plasma (platelet-rich) clot at 1 h post-kaolin stimulus. The acoustic radiation force microbead method was sensitive to the presence of platelets and strength of coagulation stimulus. Platelet depletion reduced clot stiffness 6.9 fold relative to platelet rich plasma. The sensitivity of acoustic radiation force based stiffness assessment may allow for studying platelet regulation of both incipient and mature clot mechanical properties. PMID:26042775

  2. Blood flow measurement system for fetoscopic laser photocoagulation of chorionic plate anastomosing vessels (FLPC).

    PubMed

    Seki, Takeshi; Oka, Kiyoshi; Naganawa, Akihiro; Yamashita, Hiromasa; Kim, Keri; Chiba, Toshio

    2009-01-01

    Fetoscopic laser photocoagulation of chorionic plate anastomosing vessels (FLPC) applies to the treatment of previable fetuses with severe twin-twin transfusion syndrome (TTTS). The ultimate goal of FLPC is selective blood flow interruption of anastomotic communicating vessels on the placenta fetoscopically. However, there has not been an established method to confirm that the blood flow is blocked, thus, it depends on the operator's experience or intuition to evaluate whether the FLPC was performed successfully or not. For this issue, we have developed a composite-type optical fiberscope (2.2 mm in diameter), which has centrally-located cautery laser fiber and surrounding located fiberglasses for viewing. This fiberscope enables transmission of 50 W Yb fiber laser which can be focused to 10 mm focal length using two lenses on the fiberscope tip. In this study, we combined the fiberscope and a laser blood-flow meter, and irradiated cautery laser to porcine mesenteric vein with measuring blood flow at the same time. From the experimental results, we could quantitatively measure the blood flow before and after laser irradiation, and confirm the blood flow blocking with our system. PMID:19929297

  3. Simultaneous pulmonary and systemic blood pressure and ECG Interval measurement in conscious, freely moving rats.

    PubMed

    Rey, Markus; Weber, Edgar W; Hess, Patrick D

    2012-03-01

    Here we evaluated the ability of a new, dual blood-pressure telemetry transmitter to simultaneously measure pulmonary and systemic blood pressure and the electrocardiogram in rats. The transmitter was implanted in normotensive and monocrotaline-induced pulmonary hypertensive Wistar rats, with sensing catheters placed in the pulmonary artery (channel 1) and descending aorta (channel 2). Biopotential electrodes were positioned to record an apex-based lead II electrocardiogram. Pulmonary and systemic arterial blood pressure and electrocardiographic waveforms were recorded between 2 and 12 wk after implantation of the transmitter. During this period, pulmonary arterial pressure progressively increased in monocrotaline-treated compared with saline-treated rats. The pharmacologic response of rats to reference compounds was measured by using the transmitter to validate the technique and to evaluate the ability of the device to transmit changes in blood pressure and the electrocardiogram. Validation against 2 Millar high-fidelity blood-pressure catheters confirmed the accuracy of the blood pressure data recorded with the transmitter. In addition, local tolerance of the associated catheters was confirmed by histologic examination. PMID:22776124

  4. [TMJ, eating and breathing].

    PubMed

    Cheynet, F

    2016-09-01

    The study of the relationship between temporomandibular joints (TMJ), mastication and ventilation and the involvement of these two functions in the genesis of primary Temporomandibular Disorders (TMD) and in some dentofacial deformities, was initiated in France, more than 30years, by Professor Raymond Gola. Once criticized the weakness of the scientific literature in this domain, the originality of the TMJ within the masticatory system is recalled with its huge adaptation potential to very different biomechanical constraints according to the age and masticatory activities during the day. But the biomechanics of the masticatory system does not stop at night and the positions of the mandible and head during sleep should be studied carefully. In case of nocturnal mouth breathing with open mouth, the predominant sleeping position (generating small but long-term strengths) may be deleterious to the condyle-disc complex, to the surrounding muscles and the occlusal relationships. Some condyle-disc displacements and asymmetric malocclusions occur in this long portion of life what sleep, especially as oral breathing leads to a lot of dysfunctions (low position of the tongue, labio-lingual dysfunctions, exacerbation of bruxism sleep…). The aim of this work was to share our multidisciplinary experience of the biomechanical consequences of the nocturnal mouth breathing on the face involving orthodontists, maxillofacial surgeons, ENT, allergists, speech therapists, physiotherapists and radiologists.

  5. [TMJ, eating and breathing].

    PubMed

    Cheynet, F

    2016-09-01

    The study of the relationship between temporomandibular joints (TMJ), mastication and ventilation and the involvement of these two functions in the genesis of primary Temporomandibular Disorders (TMD) and in some dentofacial deformities, was initiated in France, more than 30years, by Professor Raymond Gola. Once criticized the weakness of the scientific literature in this domain, the originality of the TMJ within the masticatory system is recalled with its huge adaptation potential to very different biomechanical constraints according to the age and masticatory activities during the day. But the biomechanics of the masticatory system does not stop at night and the positions of the mandible and head during sleep should be studied carefully. In case of nocturnal mouth breathing with open mouth, the predominant sleeping position (generating small but long-term strengths) may be deleterious to the condyle-disc complex, to the surrounding muscles and the occlusal relationships. Some condyle-disc displacements and asymmetric malocclusions occur in this long portion of life what sleep, especially as oral breathing leads to a lot of dysfunctions (low position of the tongue, labio-lingual dysfunctions, exacerbation of bruxism sleep…). The aim of this work was to share our multidisciplinary experience of the biomechanical consequences of the nocturnal mouth breathing on the face involving orthodontists, maxillofacial surgeons, ENT, allergists, speech therapists, physiotherapists and radiologists. PMID:27554491

  6. Laser Doppler flowmetry for measurement of laminar capillary blood flow in the horse

    NASA Astrophysics Data System (ADS)

    Adair, Henry S., III

    1998-07-01

    Current methods for in vivo evaluation of digital hemodynamics in the horse include angiography, scintigraphy, Doppler ultrasound, electromagnetic flow and isolated extracorporeal pump perfused digit preparations. These techniques are either non-quantifiable, do not allow for continuous measurement, require destruction of the horse orare invasive, inducing non- physiologic variables. In vitro techniques have also been reported for the evaluation of the effects of vasoactive agents on the digital vessels. The in vitro techniques are non-physiologic and have evaluated the vasculature proximal to the coronary band. Lastly, many of these techniques require general anesthesia or euthanasia of the animal. Laser Doppler flowmetry is a non-invasive, continuous measure of capillary blood flow. Laser Doppler flowmetry has been used to measure capillary blood flow in many tissues. The principle of this method is to measure the Doppler shift, that is, the frequency change that light undergoes when reflected by moving objects, such as red blood cells. Laser Doppler flowmetry records a continuous measurement of the red cell motion in the outer layer of the tissue under study, with little or no influence on physiologic blood flow. This output value constitutes the flux of red cells and is reported as capillary perfusion units. No direct information concerning oxygen, nutrient or waste metabolite exchange in the surrounding tissue is obtained. The relationship between the flowmeter output signal and the flux of red blood cells is linear. The principles of laser Doppler flowmetry will be discussed and the technique for laminar capillary blood flow measurements will be presented.

  7. Model for validation of radioimmunoassay kit reagents: measurement of follitropin and lutropin in blood and urine

    SciTech Connect

    Santner, S.J.; Santen, R.J.; Kulin, H.E.; Demers, L.M.

    1981-11-01

    We measured lutropin and follitropin in blood and urine with radioimmunoassay kits from Diagnostic Products Corporation and compared the results with those obtained by use of re agents from the National Institutes of health (NIH) and the World Health Organization (WHO). The urine standard (second IRP-HMG) from WHO, the blood standard (LER-907) from NIH, and the commercial standards all effected similar displacement of trace material when the commercial gonadotropin kit reagents were used. Highly significant correlations were achieved for these hormones in blood or urine on comparing commercial and NIH/WHO reagents. Serial dilutions of urine samples produced similar relative potencies with the commercial reagents. Conversion factors are presented to relate results for LER-907, second IRP, or commercial standards. Commercially available reagents can provide a practical and reliable means of gonadotropin radioimmunoassay in blood or urine.