Sample records for breathing exercises pranayama

  1. PRANAYAMA AND BRAIN CORRELATES

    PubMed Central

    Srinivasan, T. M.

    1991-01-01

    Many yogic methods emphasis control and suspension of breath as important components of the path to transcendence. However, the Pranayamas are varied and their role of both improve the physical aspects of breathing and for calming the mind, the latter being very important in the management of many phycosomatic disorders. Different types of Pranayama seem to influence the brain functioning in specific ways. Since the breath seems to link the body and the mind, it is possible to study this link by studying the effect of Pranayama on some brain functioning. This report document some of the recent observations of EEG changes during different types of Pranayama and their significance in health and diseases. PMID:22556548

  2. Immediate effect of slow pace bhastrika pranayama on blood pressure and heart rate.

    PubMed

    Pramanik, Tapas; Sharma, Hari Om; Mishra, Suchita; Mishra, Anurag; Prajapati, Rajesh; Singh, Smriti

    2009-03-01

    The objective of this study was to evaluate the immediate effect of slow pace bhastrika pranayama (respiratory rate 6/min) for 5 minutes on heart rate and blood pressure and the effect of the same breathing exercise for the same duration of time (5 minutes) following oral intake of hyoscine-N-butylbromide (Buscopan), a parasympathetic blocker drug. Heart rate and blood pressure of volunteers (n = 39, age = 25-40 years) was recorded following standard procedure. First, subjects had to sit comfortably in an easy and steady posture (sukhasana) on a fairly soft seat placed on the floor keeping head, neck, and trunk erect, eyes closed, and the other muscles reasonably loose. The subject is directed to inhale through both nostrils slowly up to the maximum for about 4 seconds and then exhale slowly up to the maximum through both nostrils for about 6 seconds. The breathing must not be abdominal. These steps complete one cycle of slow pace bhastrika pranayama (respiratory rate 6/min). During the practice the subject is asked not to think much about the inhalation and exhalation time, but rather was requested to imagine the open blue sky. The pranayama was conducted in a cool, well-ventilated room (18-20 degrees C). After 5 minutes of this breathing practice, the blood pressure and heart rate again were recorded in the aforesaid manner using the same instrument. The other group (n = 10) took part in another study where their blood pressure and heart rate were recorded following half an hour of oral intake of hyoscine-N-butylbromide 20 mg. Then they practiced the breathing exercise as stated above, and the abovementioned parameters were recorded again to study the effect of parasympathetic blockade on the same pranayama. It was noted that after slow bhastrika pranayamic breathing (respiratory rate 6/min) for 5 minutes, both the systolic and diastolic blood pressure decreased significantly with a slight fall in heart rate. No significant alteration in both blood pressure and

  3. Immediate effect of sukha pranayama on cardiovascular variables in patients of hypertension.

    PubMed

    Bhavanani, Ananda Balayogi; Sanjay, Zeena; Madanmohan

    2011-01-01

    Hypertension is one of the most common health disorders, and yoga has been shown to be an effective adjunct therapy in its management. Earlier studies have reported blood pressure (BP)-lowering effects of slow, deep breathing after 3 weeks and 3 months of training and beneficial immediate effects of slow, deep breathing in reducing premature ventricular complexes and lowering blood pressure. None of these immediate studies used the concept of pranayama, involving conscious internal awareness of the whole breathing process. This study was undertaken to determine the immediate cardiovascular effects of sukha pranayama in hypertensive patients. Twenty-three hypertensive patients attending the Yoga OPD at JIPMER were recruited for the study and instructed to perform sukha pranayama for 5 minutes at the rate of 6 breaths/min. This pranayama involves conscious, slow and deep breathing with equal duration for inhalation and exhalation. Heart rate (HR) and BP were recorded before and immediately after the intervention. Post-intervention statistical analysis revealed a significant (p < .05) reduction in HR and a highly significant (p < .001) reduction in systolic pressure, pulse pressure, mean arterial pressure, rate-pressure product, and double product with an insignificant fall in diastolic pressure. It is concluded that sukha pranayama at the rate of 6 breaths/minute can reduce HR and BP in hypertensive patients within 5 minutes of practice. This may be due to a normalization of autonomic cardiovascular rhythms as a result of increased vagal modulation and/or decreased sympathetic activity and improved baroreflex sensitivity. Further studies are required to understand possible mechanisms underlying this beneficial immediate effect and to determine how long such a beneficial effect persists.

  4. Reaction time following yoga bellows-type breathing and breath awareness.

    PubMed

    Telles, Shirley; Yadav, Arti; Gupta, Ram Kumar; Balkrishna, Acharya

    2013-08-01

    The reaction time (RT) was assessed in two groups of healthy males, yoga group (M age = 29.0 yr.) and non-yoga or control group (M age = 29.0 yr.), with 35 participants each. The yoga group had an average experience of 6 months, while the control group was yoga-naïve. The yoga group was assessed in two sessions, (i) bhastrika pranayama or bellows breathing and (ii) breath awareness, while the control group had a single control session. The two experimental sessions, one with each type of breathing, and the control session consisted of pre- (5 min.), during (18 min.), and post-session epochs (5 min.). Assessments were made in the pre- and post-session epochs using a Multi-Operational Apparatus for Reaction Time. Following 18 min. of bhastrika pranayama there was a statistically significant reduction in number of anticipatory responses compared to before the practice. This suggests that the immediate effect of bhastrika pranayama is to inhibit unnecessary responding to stimuli.

  5. Immediate effect of chandra nadi pranayama (left unilateral forced nostril breathing) on cardiovascular parameters in hypertensive patients.

    PubMed

    Bhavanani, Ananda Balayogi; Madanmohan; Sanjay, Zeena

    2012-07-01

    Recent studies have reported differential physiological and psychological effects produced by exclusive right and left nostril breathing and clinical research is required to prove immediate and sustained efficacy of these techniques in various psychosomatic conditions such as hypertension (HT). The present study was designed to determine immediate effects of 27 rounds of exclusive left nostril breathing, a yogic pranayama technique known as chandra nadi pranayama (CNP) on cardiovascular parameters in patients of essential HT. Twenty two patients of essential HT under regular standard medical management were individually taught to perform CNP by a qualified yoga instructor with a regularity of 6 breaths/min throughout a performance of 27 rounds of CNP. Pre and post intervention heart rate (HR) and blood pressure (BP) measurements were recorded using non-invasive semi-automatic BP monitor and Students t test for paired data used to determine significant differences. Twenty seven rounds of CNP produced an immediate decrease in all the measured cardiovascular parameters with the decrease in HR, systolic pressure (SP), pulse pressure, rate-pressure product and double product being statistically significant. Further, gender-based sub-analysis of our data revealed that our male participants evidenced significant reductions in HR and SP with an insignificant decrease in diastolic pressure, while in female participants only HR decreased significantly with an insignificant decrease in SP. It is concluded that CNP is effective in reducing HR and SP in hypertensive patients on regular standard medical management. To the best of our knowledge, there are no previously published reports on immediate effects of left UFNB in patients of HT and ours is the first to report on this beneficial clinical effect. This may be due to a normalization of autonomic cardiovascular rhythms with increased vagal modulation and/or decreased sympathetic activity along with improvement in baroreflex

  6. Effect of Various Eye Exercise Techniques along with Pranayama on Visual Reaction Time: A Case Control Study

    PubMed Central

    Gosewade, Nitin B.; Shende, Vinod S.; Kashalikar, Shriniwas J.

    2013-01-01

    Introduction: We depend on eyesight more than any other of our senses to maneuver through the space around us. In a fraction of a second, our eyes work with our brain to tell us the size, shape, colour, and texture of an object. Our eyes are body’s most highly developed sensory organs. The use of computers and television in the era of information technology has given new heights to the professional success rate and it saves time but on the other hand, it has led to an increase in the number of patients with ocular complaints. Aims: The objective of the study was to study the effect of eye exercise techniques along with kapalbhati pranayama on Visual Reaction Time (VRT). Material & Methods: Total 60 subjects in an age group of 18–30 were recruited in the study. All the subjects were divided into two equal groups (study group and control group) containing 30 subjects (18 male & 12 female) each. Both the male and female subjects were selected on the basis of their voluntary involvement. Visual reaction time for red and green light was recorded from all 60 subjects before the start of the study. Study group subjects were trained to practice various eye exercise techniques and kapalbhati pranayama for 8 weeks regularly whereas control group were busy with their routine activities. After 8 weeks, visual reaction time was measured for red and green light from all 60 subjects. Statistical Analysis: Data expressed as Mean ± S.D, Student t –test was applied for analysis of data, p value <0.05 is taken as statistically significant. Results: Statistical analysis of data shows that there is a significant decrease in the visual reaction time for red and green light after intervention in study group (p value <0.05). Whereas there is no significant decrease in VRT in control group (p value >0.05). Conclusion: The results of our study suggest that simple eye exercises along with pranayama helps in improvement of visual reaction time. PMID:24179885

  7. Breathing exercises for dysfunctional breathing/hyperventilation syndrome in adults.

    PubMed

    Jones, Mandy; Harvey, Alex; Marston, Louise; O'Connell, Neil E

    2013-05-31

    Dysfunctional breathing/hyperventilation syndrome (DB/HVS) is a respiratory disorder, psychologically or physiologically based, involving breathing too deeply and/or too rapidly (hyperventilation) or erratic breathing interspersed with breath-holding or sighing (DB). DB/HVS can result in significant patient morbidity and an array of symptoms including breathlessness, chest tightness, dizziness, tremor and paraesthesia. DB/HVS has an estimated prevalence of 9.5% in the general adult population, however, there is little consensus regarding the most effective management of this patient group. (1) To determine whether breathing exercises in patients with DB/HVS have beneficial effects as measured by quality of life indices (2) To determine whether there are any adverse effects of breathing exercises in patients with DB/HVS SEARCH METHODS: We identified trials for consideration using both electronic and manual search strategies. We searched CENTRAL, MEDLINE, EMBASE, and four other databases. The latest search was in February 2013. We planned to include randomised, quasi-randomised or cluster randomised controlled trials (RCTs) in which breathing exercises, or a combined intervention including breathing exercises as a key component, were compared with either no treatment or another therapy that did not include breathing exercises in patients with DB/HVS. Observational studies, case studies and studies utilising a cross-over design were not eligible for inclusion.We considered any type of breathing exercise for inclusion in this review, such as breathing control, diaphragmatic breathing, yoga breathing, Buteyko breathing, biofeedback-guided breathing modification, yawn/sigh suppression. Programs where exercises were either supervised or unsupervised were eligible as were relaxation techniques and acute-episode management, as long as it was clear that breathing exercises were a key component of the intervention.We excluded any intervention without breathing exercises or

  8. Does treadmill running performance, heart rate and breathing rate response during maximal graded exercise improve after volitional respiratory muscle training?

    PubMed

    Radhakrishnan, K; Sharma, V K; Subramanian, S K

    2017-05-10

    Maximal physical exertion in sports usually causes fatigue in the exercising muscles, but not in the respiratory muscles due to triggering of the Respiratory muscle metabo-reflex, a sympathetic vasoconstrictor response leading to preferential increment in blood flow to respiratory muscles. 1 We planned to investigate whether a six week yogic pranayama based Volitional Respiratory Muscle Training (VRMT) can improve maximal Graded Exercise Treadmill Test (GXTT) performance in healthy adult recreational sportspersons. Consecutive, consenting healthy adult recreational sportspersons aged 20.56±2.49 years (n=30), volunteered to 'baseline recording' of resting heart rate (HR), blood pressure (BP), respiratory rate (RR), and Bruce ramp protocol maximal GXTT until volitional exhaustion providing total test time (TTT), derived VO2max, Metabolic Equivalent of Task (METs), HR and BP response during maximal GXTT and drop in recovery HR data. After six weeks of observation, they underwent 'pre-intervention recording' followed by supervised VRMT intervention for 6 weeks (30 minutes a day; 5 days a week) and then 'post-intervention recording'. Repeated measures ANOVA with pairwise t statistical comparison was used to analyse the data. After supervised VRMT, we observed significant decrease in their resting supine RR (p<0.001), resting supine HR (p=0.001), HR after 5 minutes of assuming standing posture (p=0.003); significant increase in TTT (p<0.001), derived VO2max (p<0.001), METs (p<0.001) and drop in recovery HR (p=0.038); altered HR response and BP response during exercise. We hypothesize that these changes are probably due to VRMT induced learnt behaviour to control the breathing pattern that improves breathing economy, improvement in respiratory muscle aerobic capacity, attenuation of respiratory muscle metabo-reflex, increase in cardiac stroke volume and autonomic resetting towards parasympatho-dominance. Yogic Pranayama based VRMT can be used in sports conditioning

  9. The effects of inspiratory diaphragm breathing exercise and expiratory pursed-lip breathing exercise on chronic stroke patients' respiratory muscle activation.

    PubMed

    Seo, KyoChul; Hwan, Park Seung; Park, KwangYong

    2017-03-01

    [Purpose] The purpose of this study is to examine the effects of inspiratory diaphragm breathing exercise and expiratory pursed-lip breathing exercise on chronic stroke patients' respiratory muscle activation. [Subjects and Methods] All experimental subjects performed exercises five times per week for four weeks. Thirty chronic stroke patients were randomly assign to an experimental group of 15 patients and a control group of 15 patients. The experimental group underwent exercises consisting of basic exercise treatment for 15 minutes and inspiratory diaphragm breathing exercise and expiratory pursed-lip breathing exercise for 15 minutes and the control group underwent exercises consisting of basic exercise treatment for 15 minutes and auto-med exercise for 15 minutes. The activation levels of respiratory muscles were measured before and after the experiment using MP 150WSW to obtain the results of the experiment. [Results] In the present study, when the pulmonary functions of the experimental group and the control group before and after the experiment were compared, whereas the experimental group showed significant differences in all sections. In the verification of intergroup differences between the experimental group and the control group before and after the experiment. [Conclusion] The respiratory rehabilitation exercise is considered to be capable of inducing positive effects on stroke patients' respiratory muscles through diaphragm breathing exercise and lip puckering breathing exercise.

  10. Optimal technique for deep breathing exercises after cardiac surgery.

    PubMed

    Westerdahl, E

    2015-06-01

    Cardiac surgery patients often develop a restrictive pulmonary impairment and gas exchange abnormalities in the early postoperative period. Chest physiotherapy is routinely prescribed in order to reduce or prevent these complications. Besides early mobilization, positioning and shoulder girdle exercises, various breathing exercises have been implemented as a major component of postoperative care. A variety of deep breathing maneuvres are recommended to the spontaneously breathing patient to reduce atelectasis and to improve lung function in the early postoperative period. Different breathing exercises are recommended in different parts of the world, and there is no consensus about the most effective breathing technique after cardiac surgery. Arbitrary instructions are given, and recommendations on performance and duration vary between hospitals. Deep breathing exercises are a major part of this therapy, but scientific evidence for the efficacy has been lacking until recently, and there is a lack of trials describing how postoperative breathing exercises actually should be performed. The purpose of this review is to provide a brief overview of postoperative breathing exercises for patients undergoing cardiac surgery via sternotomy, and to discuss and suggest an optimal technique for the performance of deep breathing exercises.

  11. Effect of Pranayama on stress and cardiovascular autonomic function.

    PubMed

    Bhimani, N T; Kulkarni, N B; Kowale, A; Salvi, S

    2011-01-01

    The stress either physical or mental, leads to cardiovascular morbidity. Newly admitted medical students are likely to be exposed to various stresses like change of environment, demanding medical education and different teaching protocol in a medical college. Pranayama is known since ancient times to relieve stress and stabilize autonomic function of the body. Therefore it was decided to study effect of Pranayama on stress and cardiovascular autonomic function. The subjects were first M.B.B.S students and the sample size was 59 consisting of 27 males and 32 females. The group of students thus selected was briefed about the study. After the orientation session, informed written consent was taken, stress questionnaire was put and the autonomic function tests were done. This was followed by practice of Pranayama for 2 months, 1 hour/day for 5 days/week and again stress questionnaire was put and the autonomic function tests were performed on the study group. The above tests were done before and after the practice of Pranayama. The results obtained were analyzed using SPSS software. The stress level has reduced after 2 months of practicing various pranayama as evident by decrease in total stress score which is highly significant. VLF and LF in n.u have reduced significantly after practice of pranayama signifying reduction in sympathetic drive to heart. HF in n.u has increased significantly after practice of pranayama for 2 months showing the increase in parasympathetic output to the heart. LF/ HF ratio reduced significantly after 2 months of practice of pranayama indicating a better sympatho vagal balance with resting balance tilting toward better parasympathetic control.

  12. [Effects of breathing exercises on breathing pattern and thoracoabdominal motion after gastroplasty].

    PubMed

    Tomich, Georgia Miranda; França, Danielle Corrêa; Diniz, Marco Túlio Costa; Britto, Raquel Rodrigues; Sampaio, Rosana Ferreira; Parreira, Verônica Franco

    2010-01-01

    To evaluate breathing pattern and thoracoabdominal motion during breathing exercises. Twenty-four patients with class II or III obesity (18 women; 6 men) were studied on the second postoperative day after gastroplasty. The mean age was 37 +/- 11 years, and the mean BMI was 44 +/- 3 kg/m(2). Diaphragmatic breathing, incentive spirometry with a flow-oriented device and incentive spirometry with a volume-oriented device were performed in random order. Respiratory inductive plethysmography was used in order to measure respiratory variables and thoracoabdominal motion. Comparisons among the three exercises showed significant differences: tidal volume was higher during incentive spirometry (with the flow-oriented device or with the volume-oriented device) than during diaphragmatic breathing; the respiratory rate was lower during incentive spirometry with the volume-oriented device than during incentive spirometry with the flow-oriented device; and minute ventilation was higher during incentive spirometry (with the flow-oriented device or with the volume-oriented device) than during diaphragmatic breathing. Rib cage motion did not vary during breathing exercises, although there was an increase in thoracoabdominal asynchrony, especially during incentive spirometry with the flow-oriented device. Among the breathing exercises evaluated, incentive spirometry with the volume-oriented device provided the best results, because it allowed slower, deeper inhalation.

  13. Endoscopic evaluation of therapeutic effects of "Anuloma-Viloma Pranayama" in Pratishyaya w.s.r. to mucociliary clearance mechanism and Bernoulli's principle.

    PubMed

    Bhardwaj, Atul; Sharma, Mahendra Kumar; Gupta, Manoj

    2013-10-01

    The current endeavor intended to evaluate the effectiveness and mode of action of Anuloma-Viloma Pranayama (AVP), i.e., alternate nasal breathing exercise, in resolving clinical features of Pratishyaya, i.e., rhinosinusitis. The present study was directed to validate the use of classical "saccharin test" in measuring the nasal health by measuring mucociliary clearance time. This study also highlights the effects of AVP by application of Bernoulli principle in ventilation of paranasal sinuses and surface oxygenation of nasal and paranasal sinuses ciliary epithelium. Clinically, endoscopically and radiologically diagnosed patients of Pratishyaya, i.e., rhinosinusitis, satisfying the inclusion criteria were selected to perform AVP as a breathing exercise regularly for 30 min every day in order to evaluate the effectiveness of AVP in resolving features of rhinosinusitis. Saccharin test was performed before and after completion of 40 days trial to assess the nasal ciliary activity, which has been proved to be directly related to the health of ciliary epithelium and nasal health overall as well. AVP may be regarded as a catalyst to conspicuously enhance ventilation and oxygenation of the paranasal sinuses and the positively effect the nasal respiratory epithelium by increasing better surface availability of oxygen and negative pressure in the nasal cavity itself.

  14. Yoga and physical exercise - a review and comparison.

    PubMed

    Govindaraj, Ramajayam; Karmani, Sneha; Varambally, Shivarama; Gangadhar, B N

    2016-06-01

    Yoga is a multifaceted spiritual tool with enhanced health and well-being as one of its positive effects. The components of yoga which are very commonly applied for health benefits are asanas (physical postures), pranayama (regulated breathing) and meditation. In the context of asanas, yoga resembles more of a physical exercise, which may lead to the perception that yoga is another kind of physical exercise. This article aims at exploring the commonalities and differences between yoga and physical exercise in terms of concepts, possible mechanisms and effectiveness for health benefits. A narrative review is undertaken based on traditional and contemporary literature for yoga, along with scientific articles available on yoga and exercise including head-to-head comparative trials with healthy volunteers and patients with various disease conditions. Physical exercises and the physical components of yoga practices have several similarities, but also important differences. Evidence suggests that yoga interventions appear to be equal and/or superior to exercise in most outcome measures. Emphasis on breath regulation, mindfulness during practice, and importance given to maintenance of postures are some of the elements which differentiate yoga practices from physical exercises.

  15. Effect of pranayama on rate pressure product in mild hypertensives.

    PubMed

    Goyal, Rajni; Lata, Hem; Walia, Lily; Narula, Manjit K

    2014-07-01

    The modern living life-style is known to produce various physical and psychological stresses resulting in increased blood pressure (BP) and heart rate (HR). This can lead to increased myocardial oxygen demand (MVO2). MVO2 correlated best with rate pressure product (RPP). RPP is a product of HR and systolic BP. The present study was conducted to evaluate the effect of relaxation in the form of pranayama on RPP in mild hypertensives. Mild hypertensive patients were divided into two groups. Group A received antihypertensive drugs for 6 weeks and Group B received antihypertensive drugs along with pranayama training for 6 weeks. BP decreased significantly in Group B (148 ± 8.09-127 ± 12.10 mm of Hg) where pranayama was added. The decrease was significant as compared to Group A. HR decreased significantly in both the groups as compared to baseline, however the decrease was similar in both groups. RPP decreased significantly in both groups as compared to baseline, however the decrease was significantly more (P < 0.01) when pranayama was added to antihypertensive drugs (96.73 ± 20.53) when compared to antihypertensive drugs alone (114.66 ± 26.30). The pranayama produces relaxed state and in this state parasympathetic activity overrides sympathetic activity. Hence, addition of pranayama can be a useful addition to antihypertensive drugs for better control of hypertension in mild hypertensives.

  16. Influence of Very High Breathing Resistance on Exercise Tolerance, Part 1 - Dry Exercise

    DTIC Science & Technology

    2016-01-01

    Influence of Very High Breathing Resistance on Exercise Tolerance, Part 1 – Dry Exercise Authors...Tolerance, Part 1 – Dry Exercise 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Warkander D...exercise (60% of peak O2 consumption) on a cycle ergometer on dry land at sea level. R was such that the work of breathing per volume (volume-averaged

  17. Exercise changes volatiles in exhaled breath assessed by an electronic nose.

    PubMed

    Bikov, A; Lazar, Zs; Schandl, K; Antus, B M; Losonczy, G; Horvath, Ildiko

    2011-09-01

    Exercise-caused metabolic changes can be followed by monitoring exhaled volatiles; however it has not been previously reported if a spectrum of exhaled gases is modified after physical challenge. We have hypothesized that changes in volatile molecules assessed by an electronic nose may be the reason for the alkalization of the exhaled breath condensate (EBC) fluid following physical exercise.Ten healthy young subjects performed a 6-minute running test. Exhaled breath samples pre-exercise and post-exercise (0 min, 15 min, 30 min and 60 min) were collected for volatile pattern ("smellprint") determination and pH measurements (at 5.33 kPa CO2), respectively. Exhaled breath smellprints were analyzed using principal component analysis and were related to EBC pH.Smellprints (p=0.04) and EBC pH (p=0.01) were altered during exercise challenge. Compared to pre-exercise values, smellprints and pH differed at 15 min, 30 min and 60 min following exercise (p<0.05), while no difference was found at 0 min post-exercise. In addition, a significant correlation was found between volatile pattern of exhaled breath and EBC pH (p=0.01, r=-0.34).Physical exercise changes the pattern of exhaled volatiles together with an increase in pH of breath. Changes in volatiles may be responsible for increase in EBC pH.

  18. Deep-breathing exercises reduce atelectasis and improve pulmonary function after coronary artery bypass surgery.

    PubMed

    Westerdahl, Elisabeth; Lindmark, Birgitta; Eriksson, Tomas; Friberg, Orjan; Hedenstierna, Göran; Tenling, Arne

    2005-11-01

    To investigate the effects of deep-breathing exercises on pulmonary function, atelectasis, and arterial blood gas levels after coronary artery bypass graft (CABG) surgery. In a prospective, randomized trial, patients performing deep-breathing exercises (n = 48) were compared to a control group (n = 42) who performed no breathing exercises postoperatively. Patient management was similar in the groups in terms of assessment, positioning, and mobility. The patients in the deep-breathing group were instructed to perform breathing exercises hourly during daytime for the first 4 postoperative days. The exercises consisted of 30 slow, deep breaths performed with a positive expiratory pressure blow-bottle device (+ 10 cm H(2)O). Spirometric measurements, spiral CT (three transverse levels), arterial blood gas analysis, and scoring of subjective experience of the breathing exercises were performed on the fourth postoperative day. Atelectasis was only half the size in the deep-breathing group compared to the control group, amounting to 2.6 +/- 2.2% vs 4.7 +/- 5.7% (p = 0.045) at the basal level and 0.1 +/- 0.2% vs 0.3 +/- 0.5% (mean +/- SD) [p = 0.01] at the apical level. Compared to the control subjects, the patients in the deep-breathing group had a significantly smaller reduction in FVC (to 71 +/- 12%, vs 64 +/- 13% of the preoperative values; p = 0.01) and FEV(1) (to 71 +/- 11%, vs 65 +/- 13% of the preoperative values; p = 0.01). Arterial oxygen tension, carbon dioxide tension, fever, or length of ICU or hospital stay did not differ between the groups. In the deep-breathing group, 72% of the patients experienced a subjective benefit from the exercises. Patients performing deep-breathing exercises after CABG surgery had significantly smaller atelectatic areas and better pulmonary function on the fourth postoperative day compared to a control group performing no exercises.

  19. Breathing exercises with vagal biofeedback may benefit patients with functional dyspepsia.

    PubMed

    Hjelland, Ina E; Svebak, Sven; Berstad, Arnold; Flatabø, Geir; Hausken, Trygve

    2007-09-01

    Many patients with functional dyspepsia (FD) have postprandial symptoms, impaired gastric accommodation and low vagal tone. The aim of this study was to improve vagal tone, and thereby also drinking capacity, intragastric volume and quality of life, using breathing exercises with vagal biofeedback. Forty FD patients were randomized to either a biofeedback group or a control group. The patients received similar information and care. Patients in the biofeedback group were trained in breathing exercises, 6 breaths/min, 5 min each day for 4 weeks, using specially designed software for vagal biofeedback. Effect variables included maximal drinking capacity using a drink test (Toro clear meat soup 100 ml/min), intragastric volume at maximal drinking capacity, respiratory sinus arrhythmia (RSA), skin conductance (SC) and dyspepsia-related quality of life scores. Drinking capacity and quality of life improved significantly more in the biofeedback group than in the control group (p=0.02 and p=0.01) without any significant change in baseline autonomic activity (RSA and SC) or intragastric volume. After the treatment period, RSA during breathing exercises was significantly correlated to drinking capacity (r=0.6, p=0.008). Breathing exercises with vagal biofeedback increased drinking capacity and improved quality of life in FD patients, but did not improve baseline vagal tone.

  20. Effects of Cold Therapy on Pain and Breathing Exercises Among Median Sternotomy Patients.

    PubMed

    Zencir, Gülbanu; Eser, Ismet

    2016-12-01

    The most painful activities during the days following cardiac surgery are coughing and deep breathing exercises. Cold therapy is an effective nonpharmacological method that decreases the pain during coughing and mobilization. In this study, the effects of cold therapy on pain and breathing exercises among patients with median sternotomy following cardiac surgery were investigated in a randomized crossover clinical trial. Data were collected from patients with median sternotomy (N = 34) in the first two postoperative days. Because of the crossover design of the study, each patient was taken as a simultaneous control. Gel pack application was used as the cold therapy. Patients underwent four episodes of deep breathing and coughing exercises using an incentive spirometer (volumetric). Patients were evaluated according to the visual analogue scale for pain intensity before and after deep breathing and coughing exercise sessions. The pain score was 3.44 ± 2.45 at baseline for deep breathing and coughing exercises on the first day. The reported postoperative pain in the gel-pack group was not significantly different before and after the deep breathing and coughing exercises, but it significantly increased in the no-gel-pack group (p < .001). Although the interaction between the treatment and time was significant (partial eta-squared: .09), the gel-pack group had a lower change in average pain levels. This interaction was not significant in terms of spirometric values. In conclusion, cold therapy had a positive effect on pain management in the early period of post-cardiac surgery but was not effective for the pain associated with breathing exercises. Copyright © 2016 American Society for Pain Management Nursing. Published by Elsevier Inc. All rights reserved.

  1. Effects of guided breath exercise on complex behaviour of heart rate dynamics.

    PubMed

    Tavares, Bruna S; de Paula Vidigal, Giovanna; Garner, David M; Raimundo, Rodrigo D; de Abreu, Luiz Carlos; Valenti, Vitor E

    2017-11-01

    Cardiac autonomic regulation is influenced by changes in respiratory rate, which has been demonstrated by linear analysis of heart rate variability (HRV). Conversely, the complex behaviour is not well defined for HRV during this physiological state. In this sense, Higuchi Fractal Dimension is applied directly to the time series. It analyses the fractal dimension of discrete time sequences and is simpler and faster than correlation dimension and many other classical measures derived from chaos theory. We investigated chaotic behaviour of heart rate dynamics during guided breath exercises. We investigated 21 healthy male volunteers aged between 18 and 30 years. HRV was analysed 10 min before and 10 min during guided breath exercises. HRV was analysed in the time and frequency domain for linear analysis and through HFD for non-linear analysis. Linear analysis indicated that SDNN, pNN50, RMSSD, LF, HF and LF/HF increased during guided breath exercises. HFD analysis illustrated that between K max 20 to K max 120 intervals, was enhanced during guided breath exercises. Guided breath exercises acutely increased chaotic behaviour of HRV measured by HFD. © 2016 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  2. "Effect of pranayama and meditation as an add-on therapy in rehabilitation of patients with Guillain-Barré syndrome--a randomized control pilot study".

    PubMed

    Sendhilkumar, Ragupathy; Gupta, Anupam; Nagarathna, Raghuram; Taly, Arun B

    2013-01-01

    To study the add-on effects of pranayama and meditation in rehabilitation of patients with Guillain-Barré syndrome (GBS). This randomized control pilot study was conducted in neurological rehabilitation unit of university tertiary research hospital. Twenty-two GBS patients, who consented for the study and satisfied selection criteria, were randomly assigned to yoga and control groups. Ten patients in each group completed the study. The yoga group received 15 sessions in total over a period of 3 weeks (1 h/session), one session per day on 5 days per week that consisted of relaxation, Pranayama (breathing practices) and Guided meditation in addition to conventional rehabilitation therapeutics. The control group received usual rehabilitation care. All the patients were assessed using Pittsburgh Sleep Quality Index, Numeric pain rating scale, Hospital anxiety and Depression scale and Barthel index score. Mann-Whitney U test and Wilcoxon's signed rank test were used for statistical analysis. Quality of sleep improved significantly with reduction of PSQI score in the yoga group (p = 0.04). There was reduction of pain scores, anxiety and depression in both the groups without statistical significance between groups (pain p > 0.05, anxiety p > 0.05 and depression p > 0.05). Overall functional status improved in both groups without significant difference (p > 0.05). Significant improvement was observed in quality of sleep with yogic relaxation, pranayama, and meditation in GBS patients.

  3. Detection of nitric oxide in exhaled human breath: exercise and resting determinations.

    PubMed

    Mantione, Kirk J; Esch, Tobias; Stefano, George B

    2007-03-01

    Nitric oxide has become a vital indicator of health since many cells produce it constitutively. It is present in exhaled breath and can be measured. A Kiernan NO Breath analyzer (KNB) was used in the present study to determine nitric oxide (NO) levels in exhaled human breath. The KNB was calibrated via measuring NO gas in O2-free N2 obtained from Scott Specialty Gases. Human subjects aged 21 to 45 were instructed to place the KNB over their nose and mouth and to breathe normally before and after mild exercise (n=24) and relaxation (n=20). Mean exhaled NO measurements were compared before and after the protocols using paired t-tests. Regardless of the test, all subjects exhibited NO in their exhaled breath. Exhaled NO decreased significantly after exercise compared to the first reading just prior to the exercise protocol. The mean +/-SE of exhaled NO was 22.8+/-4 before and 13.0+/-2 ppb after exercise (n=24, P=0.003). In the resting experiment, exhaled NO was demonstrated to increase significantly after 10 min compared to the reading taken right after the individuals sat down. The present study demonstrates NO in exhaled human breath can vary, reflecting the activity state of the individual. Additionally, the study demonstrates that NO in exhaled human breath can be measured rapidly, with high sensitivity, and in real time via the KNB, representing an affordable means to achieve this determination.

  4. Deep breathing exercises performed 2 months following cardiac surgery: a randomized controlled trial.

    PubMed

    Westerdahl, Elisabeth; Urell, Charlotte; Jonsson, Marcus; Bryngelsson, Ing-Liss; Hedenström, Hans; Emtner, Margareta

    2014-01-01

    Postoperative breathing exercises are recommended to cardiac surgery patients. Instructions concerning how long patients should continue exercises after discharge vary, and the significance of treatment needs to be determined. Our aim was to assess the effects of home-based deep breathing exercises performed with a positive expiratory pressure device for 2 months following cardiac surgery. The study design was a prospective, single-blinded, parallel-group, randomized trial. Patients performing breathing exercises 2 months after cardiac surgery (n = 159) were compared with a control group (n = 154) performing no breathing exercises after discharge. The intervention consisted of 30 slow deep breaths performed with a positive expiratory pressure device (10-15 cm H2O), 5 times a day, during the first 2 months after surgery. The outcomes were lung function measurements, oxygen saturation, thoracic excursion mobility, subjective perception of breathing and pain, patient-perceived quality of recovery (40-Item Quality of Recovery score), health-related quality of life (36-Item Short Form Health Survey), and self-reported respiratory tract infection/pneumonia and antibiotic treatment. Two months postoperatively, the patients had significantly reduced lung function, with a mean decrease in forced expiratory volume in 1 second to 93 ± 12% (P< .001) of preoperative values. Oxygenation had returned to preoperative values, and 5 of 8 aspects in the 36-Item Short Form Health Survey were improved compared with preoperative values (P< .01). There were no significant differences between the groups in any of the measured outcomes. No significant differences in lung function, subjective perceptions, or quality of life were found between patients performing home-based deep breathing exercises and control patients 2 months after cardiac surgery.

  5. The Effect of Breathing Exercises on the Nocturnal Enuresis in the Children with the Sleep-Disordered Breathing

    PubMed Central

    Khaleghipour, Shahnaz; Masjedi, Mohsen; Kelishadi, Roya

    2013-01-01

    Background The nocturnal enuresis is one of the most common complaints of childhood. Upper airway obstruction and nocturnal snoring affect the nocturnal enuresis in children. Objectives The aim of this study was to investigate the effects of breathing exercises on the nocturnal enuresis in the children with the sleep-disordered breathing. Patients and Methods This study was conducted in year of 2011 by a semi-experimental design with the control group among 40 children, aged 6 - 12 years, who had the nocturnal enuresis. Participants were examined based on the criteria of nocturnal enuresis, oral breathing, and nocturnal snoring. Subsequently, they were randomly assigned to the case and control groups. In the case group, the breathing exercises were performed for 45 minutes, and were pursued for four weeks in the morning following and prior to sleeping, and subsequently the arterial blood gases were measured and the frequency of enuresis and the respiratory rates (RR) were recorded. Results After intervention the means of PaCO2 and RR in the control group were significantly higher than the case group (P < 0.0001). Likewise, O2sat, PaO2 in the case group were higher than the control group (P < 0.0001). The nocturnal enuresis decreased significantly in the case group, compared to the control group (P < 0.0001). Conclusions This study suggests that the breathing exercises may reduce the frequency of nocturnal enuresis in the patients with the oral breathing and nocturnal snore. The clinical implications of these findings should be verified in the future longitudinal studies. PMID:24719691

  6. The Use of Breathing Exercises in the Treatment of Chronic, Nonspecific Low Back Pain.

    PubMed

    Anderson, Barton E; Bliven, Kellie C Huxel

    2017-09-01

    Clinical Scenario: Research has shown a link between poor core stability and chronic, nonspecific low back pain, with data to suggest that alterations in core muscle activation patterns, breathing patterns, lung function, and diaphragm mechanics may occur. Traditional treatment approaches for chronic, nonspecific low back pain focus on exercise and manual therapy interventions, however it is not clear whether breathing exercises are effective in treating back pain. Focused Clinical Question: In adults with chronic, nonspecific low back pain, are breathing exercises effective in reducing pain, improving respiratory function, and/or health related quality of life? Summary of Key Findings: Following a literature search, 3 studies were identified for inclusion in the review. All reviewed studies were critically appraised at level 2 evidence and reported improvements in either low back pain or quality of life following breathing program intervention. Clinical Bottom Line: Exercise programs were shown to be effective in improving lung function, reducing back pain, and improving quality of life. Breathing program frequencies ranged from daily to 2-3 times per week, with durations ranging from 4 to 8 weeks. Based on these results, athletic trainers and physical therapists caring for patients with chronic, nonspecific low back pain should consider the inclusion of breathing exercises for the treatment of back pain when such treatments align with the clinician's own judgment and clinical expertise and the patient's preferences and values. Strength of Recommendation: Grade B evidence exists to support the use of breathing exercises in the treatment of chronic, nonspecific low back pain.

  7. Chest physiotherapy and breathing exercises for cardiac surgery patients in Sweden--a national survey of practice.

    PubMed

    Westerdahl, E; Olsén, M Fagevik

    2011-06-01

    Various chest physiotherapy techniques are recommended after cardiac surgery around the world. There is limited published data on what breathing exercises actually are recommended to patients after surgery in Europe. The aim of this national survey was to establish the current practice of chest physiotherapy and breathing exercises for adult patients following cardiac surgery in Sweden. A postal questionnaire was sent to a total population sample of 33 Swedish physiotherapists working at the departments of cardiothoracic surgery in December 2007 and January 2008. In total, 29 replies (88%) were received. Seven male and twenty two female physiotherapists completed the questionnaire. All physiotherapists instructed, on a regular basis, the cardiac surgery patients to perform post-operative breathing exercises. Positive expiratory pressure (PEP) breathing was routinely used as the first choice for treatment by 22 (83%) of the physiotherapists. Expiratory pressures used varied between 2 and 20 cm H2O. Recommended frequency and duration of the exercises varied from 4 to 30 breaths hourly during the daytime in the first post-operative days. All physiotherapists provided coughing support to the patients. Recommendations to continue breathing exercises after discharge varied from not at all up to 3 months after surgery. Breathing exercises are regularly prescribed during the initial post-operative days after cardiac surgery in Sweden. Hourly deep breathing exercises performed with or without a PEP device were reported to be first choice treatments during the hospital stay. Instructions concerning how long patients should continue the exercises after discharge varied notably.

  8. Deep breathing exercises with positive expiratory pressure in patients with multiple sclerosis - a randomized controlled trial.

    PubMed

    Westerdahl, Elisabeth; Wittrin, Anna; Kånåhols, Margareta; Gunnarsson, Martin; Nilsagård, Ylva

    2016-11-01

    Breathing exercises with positive expiratory pressure are often recommended to patients with advanced neurological deficits, but the potential benefit in multiple sclerosis (MS) patients with mild and moderate symptoms has not yet been investigated in randomized controlled trials. To study the effects of 2 months of home-based breathing exercises for patients with mild to moderate MS on respiratory muscle strength, lung function, and subjective breathing and health status outcomes. Forty-eight patients with MS according to the revised McDonald criteria were enrolled in a randomized controlled trial. Patients performing breathing exercises (n = 23) were compared with a control group (n = 25) performing no breathing exercises. The breathing exercises were performed with a positive expiratory pressure device (10-15 cmH 2 O) and consisted of 30 slow deep breaths performed twice a day for 2 months. Respiratory muscle strength (maximal inspiratory and expiratory pressure at the mouth), spirometry, oxygenation, thoracic excursion, subjective perceptions of breathing and self-reported health status were evaluated before and after the intervention period. Following the intervention, there was a significant difference between the breathing group and the control group regarding the relative change in lung function, favoring the breathing group (vital capacity: P < 0.043; forced vital capacity: P < 0.025). There were no other significant differences between the groups. Breathing exercises may be beneficial in patients with mild to moderate stages of MS. However, the clinical significance needs to be clarified, and it remains to be seen whether a sustainable effect in delaying the development of respiratory dysfunction in MS can be obtained. © 2015 The Authors. The Clinical Respiratory Journal published by John Wiley & Sons Ltd.

  9. Breathing exercises in upper abdominal surgery: a systematic review and meta-analysis.

    PubMed

    Grams, Samantha T; Ono, Lariane M; Noronha, Marcos A; Schivinski, Camila I S; Paulin, Elaine

    2012-01-01

    There is currently no consensus on the indication and benefits of breathing exercises for the prevention of postoperative pulmonary complications PPCs and for the recovery of pulmonary mechanics. To undertake a systematic review of randomized and quasi-randomized studies that assessed the effects of breathing exercises on the recovery of pulmonary function and prevention of PCCs after upper abdominal surgery UAS. We searched the Physiotherapy Evidence Database PEDro, Scientific Electronic Library Online SciELO, MEDLINE, and Cochrane Central Register of Controlled Trials. We included randomized controlled trials and quasi-randomized controlled trials on pre- and postoperative UAS patients, in which the primary intervention was breathing exercises without the use of incentive inspirometers. The methodological quality of the studies was rated according to the PEDro scale. Data on maximal respiratory pressures MIP and MEP, spirometry, diaphragm mobility, and postoperative complications were extracted and analyzed. Data were pooled in fixed-effect meta-analysis whenever possible. Six studies were used for analysis. Two meta-analyses including 66 participants each showed that, on the first day post-operative, the breathing exercises were likely to have induced MEP and MIP improvement treatment effects of 11.44 mmH2O (95%CI 0.88 to 22) and 11.78 mmH2O (95%CI 2.47 to 21.09), respectively. Breathing exercises are likely to have a beneficial effect on respiratory muscle strength in patients submitted to UAS, however the lack of good quality studies hinders a clear conclusion on the subject.

  10. Effect of dead space on breathing stability at exercise in hypoxia.

    PubMed

    Hermand, Eric; Lhuissier, François J; Richalet, Jean-Paul

    2017-12-01

    Recent studies have shown that normal subjects exhibit periodic breathing when submitted to concomitant environmental (hypoxia) and physiological (exercise) stresses. A mathematical model including mass balance equations confirmed the short period of ventilatory oscillations and pointed out an important role of dead space in the genesis of these phenomena. Ten healthy subjects performed mild exercise on a cycloergometer in different conditions: rest/exercise, normoxia/hypoxia and no added dead space/added dead space (aDS). Ventilatory oscillations (V˙E peak power) were augmented by exercise, hypoxia and aDS (P<0.001, P<0.001 and P<0.01, respectively) whereas V˙E period was only shortened by exercise (P<0.001), with an 11-s period. aDS also increased V˙E (P<0.001), tidal volume (VT, P<0.001), and slightly augmented PETCO 2 (P<0.05) and the respiratory frequency (P<0.05). These results confirmed our previous model, showing an exacerbation of breathing instability by increasing dead space. This underlines opposite effects observed in heart failure patients and normal subjects, in which added dead space drastically reduced periodic breathing and sleep apneas. It also points out that alveolar ventilation remains very close to metabolic needs and is not affected by an added dead space. Clinical Trial reg. n°: NCT02201875. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Effects of breathing exercises on breathing patterns in obese and non-obese subjects.

    PubMed

    Olsén, M F; Lönroth, H; Bake, B

    1999-05-01

    Chest physiotherapy in connection with abdominal surgery includes different deep-breathing exercises to prevent post-operative pulmonary complications. The therapy is effective in preventing pulmonary complications, especially in high-risk patients such as obese persons. The mechanisms behind the effect is unclear, but part of the effect may be explained by the changes in breathing patterns. The aim of this study was therefore to describe and to analyse the breathing patterns in obese and non-obese subjects during three different breathing techniques frequently used in the treatment of post-operative patients. Twenty-one severely obese [body mass index (BMI) > 40] and 21 non-obese (BMI 19-25) subjects were studied. All persons denied having any lung disease and were non-smokers. The breathing techniques investigated were: deep breaths without any resistance (DB), positive expiratory pressure (PEP) with an airway resistance of approximately +15 cmH2O (1.5 kPa) during expiration, inspiratory resistance positive expiratory pressure (IR-PEP) with a pressure of approximately -10 cmH2O (-1.0 kPa) during inspiration. Expiratory resistance as for PEP. Volume against time was monitored while the subjects were sitting in a body plethysmograph. Variables for volume and flow during the breathing cycle were determined. Tidal volume and alveolar ventilation were highest during DB, and peak inspiratory volume was significantly higher than during PEP and IR-PEP in the group of obese subjects. The breathing cycles were prolonged in all techniques but were most prolonged in PEP and IR-PEP. The functional residual capacity (FRC) was significantly lower during DB than during PEP and IR-PEP in the group of obese subjects. FRC as determined within 2 min of finishing each breathing technique was identical to before the breathing manoeuvres.

  12. Evaluating the Importance of the Carotid Chemoreceptors in Controlling Breathing during Exercise in Man

    PubMed Central

    Parkes, M. J.

    2013-01-01

    Only the carotid chemoreceptors stimulate breathing during hypoxia in Man. They are also ideally located to warn if the brain's oxygen supply falls, or if hypercapnia occurs. Since their discovery ~80 years ago stimulation, ablation, and recording experiments still leave 3 substantial difficulties in establishing how important the carotid chemoreceptors are in controlling breathing during exercise in Man: (i) they are in the wrong location to measure metabolic rate (but are ideally located to measure any mismatch), (ii) they receive no known signal during exercise linking them with metabolic rate and no overt mismatch signals occur and (iii) their denervation in Man fails to prevent breathing matching metabolic rate in exercise. New research is needed to enable recording from carotid chemoreceptors in Man to establish whether there is any factor that rises with metabolic rate and greatly increases carotid chemoreceptor activity during exercise. Available evidence so far in Man indicates that carotid chemoreceptors are either one of two mechanisms that explain breathing matching metabolic rate or have no importance. We still lack key experimental evidence to distinguish between these two possibilities. PMID:24236297

  13. [Evaluation of benefits of the course of positive pressure breathing training on exercise performance].

    PubMed

    Medvedev, D V; Gorbaneva, E P; Iumatova, S N; Kuznetsova, T Iu; Solopov, I N; Katuntsev, V P

    2007-01-01

    The purpose was to evaluate effects of muscle training combined with positive pressure breathing on exercise performance of 16 runners at the age of 18-20. All subjects had the first or second-class sport qualification. The 4-wk. training course for the experimental group (n=11) included 20-25% of exercises performed in an aperture mask creating an inspiration-expiration resistance of 8-10 mm H2O. The control group (n=5) worked on the same training course but w/o positive pressure breathing. The course began and ended with the PWC170 test in order to evaluate exercise performance. Indices of external respiration and gas exchange were determined on metabolograph Ergooxyscreen (Jaeger) and lung-tester Spirosift-3000 (Fukuda). Inspiration and expiration force of the breathing muscles (mm Hg) was measured isometrically with the help of a pneumomanometer. Heart rate was calculated from ECG R-R intervals. It was stated that positive pressure breathing during muscle training increases significantly sportsmen's exercise performance due to growth of the body spare capacities, and optimization of the body systems dependence structure and efficiency.

  14. Modeling of breath methane concentration profiles during exercise on an ergometer*

    PubMed Central

    Szabó, Anna; Unterkofler, Karl; Mochalski, Pawel; Jandacka, Martin; Ruzsanyi, Vera; Szabó, Gábor; Mohácsi, Árpád; Teschl, Susanne; Teschl, Gerald; King, Julian

    2016-01-01

    We develop a simple three compartment model based on mass balance equations which quantitatively describes the dynamics of breath methane concentration profiles during exercise on an ergometer. With the help of this model it is possible to estimate the endogenous production rate of methane in the large intestine by measuring breath gas concentrations of methane. PMID:26828421

  15. Dysfunctional breathing and reaching one’s physiological limit as causes of exercise-induced dyspnoea

    PubMed Central

    Everard, Mark L.

    2016-01-01

    Key points Excessive exercise-induced shortness of breath is a common complaint. For some, exercise-induced bronchoconstriction is the primary cause and for a small minority there may be an alternative organic pathology. However for many, the cause will be simply reaching their physiological limit or be due to a functional form of dysfunctional breathing, neither of which require drug therapy. The physiological limit category includes deconditioned individuals, such as those who have been through intensive care and require rehabilitation, as well as the unfit and the fit competitive athlete who has reached their limit with both of these latter groups requiring explanation and advice. Dysfunctional breathing is an umbrella term for an alteration in the normal biomechanical patterns of breathing that result in intermittent or chronic symptoms, which may be respiratory and/or nonrespiratory. This alteration may be due to structural causes or, much more commonly, be functional as exemplified by thoracic pattern disordered breathing (PDB) and extrathoracic paradoxical vocal fold motion disorder (pVFMD). Careful history and examination together with spirometry may identify those likely to have PDB and/or pVFMD. Where there is doubt about aetiology, cardiopulmonary exercise testing may be required to identify the deconditioned, unfit or fit individual reaching their physiological limit and PDB, while continuous laryngoscopy during exercise is increasingly becoming the benchmark for assessing extrathoracic causes. Accurate assessment and diagnosis can prevent excessive use of drug therapy and result in effective management of the cause of the individual’s complaint through cost-effective approaches such as reassurance, advice, breathing retraining and vocal exercises. This review provides an overview of the spectrum of conditions that can present as exercise-­induced breathlessness experienced by young subjects participating in sport and aims to promote understanding of

  16. Dyssynchronous breathing during arm but not leg exercise in patients with chronic airflow obstruction.

    PubMed

    Celli, B R; Rassulo, J; Make, B J

    1986-06-05

    Some patients with chronic airflow obstruction experience dyspnea with mild arm exercise but not with more-intense leg exercise. To investigate why these patients have limited endurance during arm exertion, we studied ventilatory responses to exercise with unsupported arms in 12 patients with chronic airflow obstruction (mean [+/- SD] forced expiratory volume in one second, 0.68 +/- 0.28 liters). Unloaded leg cycling was also studied for comparison. In the five patients who had the most severe airflow obstruction, arm exercise was limited by dyspnea after 3.3 +/- 0.7 minutes, and dyssynchronous thoracoabdominal breathing developed. In the other seven patients, arm exercise was limited by the sensation of muscle fatigue after 6.1 +/- 2.0 minutes (P less than 0.05), and dyssynchronous breathing did not occur. None of the 12 patients had dyssynchronous breathing during unloaded leg cycling. Maximal transdiaphragmatic pressure, a measure of diaphragmatic fatigue, declined similarly after arm and leg exercise in both groups. During unsupported arm work, the accessory muscles of inspiration help position the torso and arms. We hypothesize that the extra demand placed on these muscles during arm exertion leads to early fatigue, an increased load on the diaphragm, and dyssynchronous thoracoabdominal inspirations. This sequence may contribute to dyspnea and limited endurance during upper-extremity exercise.

  17. Improved oxygenation during standing performance of deep breathing exercises with positive expiratory pressure after cardiac surgery: A randomized controlled trial.

    PubMed

    Pettersson, Henrik; Faager, Gun; Westerdahl, Elisabeth

    2015-09-01

    Breathing exercises after cardiac surgery are often performed in a sitting position. It is unknown whether oxygenation would be better in the standing position. The aim of this study was to evaluate oxygenation and subjective breathing ability during sitting vs standing performance of deep breathing exercises on the second day after cardiac surgery. Patients undergoing coronary artery bypass grafting (n = 189) were randomized to sitting (controls) or standing. Both groups performed 3 × 10 deep breaths with a positive expiratory pressure device. Peripheral oxygen saturation was measured before, directly after, and 15 min after the intervention. Subjective breathing ability, blood pressure, heart rate, and pain were assessed. Oxygenation improved significantly in the standing group compared with controls directly after the breathing exercises (p < 0.001) and after 15 min rest (p = 0.027). The standing group reported better deep breathing ability compared with controls (p = 0.004). A slightly increased heart rate was found in the standing group (p = 0.047). After cardiac surgery, breathing exercises with positive expiratory pressure, performed in a standing position, significantly improved oxygenation and subjective breathing ability compared with sitting performance. Performance of breathing exercises in the standing position is feasible and could be a valuable treatment for patients with postoperative hypoxaemia.

  18. Effects of yoga breathing exercises on pulmonary function in patients with Duchenne muscular dystrophy: an exploratory analysis*, **

    PubMed Central

    Rodrigues, Marcos Rojo; Carvalho, Celso Ricardo Fernandes; Santaella, Danilo Forghieri; Lorenzi-Filho, Geraldo; Marie, Suely Kazue Nagahashi

    2014-01-01

    OBJECTIVE: Duchenne muscular dystrophy (DMD) is the most common form of muscular dystrophy in children, and children with DMD die prematurely because of respiratory failure. We sought to determine the efficacy and safety of yoga breathing exercises, as well as the effects of those exercises on respiratory function, in such children. METHODS: This was a prospective open-label study of patients with a confirmed diagnosis of DMD, recruited from among those followed at the neurology outpatient clinic of a university hospital in the city of São Paulo, Brazil. Participants were taught how to perform hatha yoga breathing exercises and were instructed to perform the exercises three times a day for 10 months. RESULTS: Of the 76 patients who entered the study, 35 dropped out and 15 were unable to perform the breathing exercises, 26 having therefore completed the study (mean age, 9.5 ± 2.3 years; body mass index, 18.2 ± 3.8 kg/m2). The yoga breathing exercises resulted in a significant increase in FVC (% of predicted: 82.3 ± 18.6% at baseline vs. 90.3 ± 22.5% at 10 months later; p = 0.02) and FEV1 (% of predicted: 83.8 ± 16.6% at baseline vs. 90.1 ± 17.4% at 10 months later; p = 0.04). CONCLUSIONS: Yoga breathing exercises can improve pulmonary function in patients with DMD. PMID:24831396

  19. The effect of CO2 on ventilation and breath-holding during exercise and while breathing through an added resistance.

    PubMed

    Clark, T J; Godfrey, S

    1969-05-01

    1. Ventilation was measured while subjects were made to rebreathe from a bag containing CO(2) and O(2) in order to expose them to a steadily rising CO(2) tension (P(CO2)). The object of the experiments was to determine the effect of a variety of stimuli upon the increase in ventilation and fall in breath-holding time which occurs in response to the rising P(CO2).2. Steady-state exercise at 200 kg.m/min resulted in a small fall in the slope of the ventilation-CO(2) response curve (S(V)) and a small, though not statistically significant, fall in the P(CO2) at which ventilation would be zero by extrapolation (B(V)). There was a marked fall in the slope of the breath-holding-CO(2) response curve (S(BH)) and an increase in the P(CO2) at which breath-holding time became zero by extrapolation (B(BH)).3. These results have been interpreted with the aid of a model of the control of breath-holding and it is suggested that there is no change in CO(2) sensitivity on exercise, either during rebreathing or breath-holding.4. An increase in the resistance to breathing caused a marked reduction in S(V) and B(V), but no change in the breath-holding-CO(2) response curve. These findings suggest that the flattening of the ventilation-CO(2) response curve is mechanical in origin and acute airway obstruction produces no change in CO(2) sensitivity.5. On the basis of these results, we suggest that more information about CO(2) sensitivity can be obtained by a combination of ventilation and breath-holding-CO(2) response curves.

  20. Metabolic and ventilatory responses to submaximal and maximal exercise using different breathing assemblies.

    PubMed

    Evans, B W; Potteiger, J A

    1995-06-01

    This study compared ventilatory and metabolic responses during exercise using three breathing assemblies: mouthpiece/noseclip (BV); mouth/face mask (MM); and facemask (FM). Ten male runners completed three maximal treadmill tests with breathing assembly randomly assigned. Metabolic and ventilatory data were recorded every 15s, and heart rate (HR) and rating of perceived exertion (RPE) each min. No significant differences were found for treadmill run time, HRmax, respiratory exchange ratio (RER), and RPE, indicating similar efforts on all trials. No significant differences were found at maximal exercise for VO2 minute ventilation (VE), tidal volume (VT), and breathing frequency (f). At ventilatory threshold (TVENT), VO2, VE, and f were not significantly different. However, peak flow (PF) was significantly higher for BV than FM, and VT was significantly higher for BV than MM and FM. Results indicate alterations in ventilatory mechanics occur at TVENT, but type of breathing assembly does not significantly affect maximal values.

  1. The effect of breathing an ambient low‐density, hyperoxic gas on the perceived effort of breathing and maximal performance of exercise in well‐trained athletes

    PubMed Central

    Ansley, L; Petersen, D; Thomas, A; Gibson, A St Clair; Robson‐Ansley, P; Noakes, T D

    2007-01-01

    Background The role of the perception of breathing effort in the regulation of performance of maximal exercise remains unclear. Aims To determine whether the perceived effort of ventilation is altered through substituting a less dense gas for normal ambient air and whether this substitution affects performance of maximal incremental exercise in trained athletes. Methods Eight highly trained cyclists (mean SD) maximal oxygen consumption (VO2max) = 69.9 (7.9) (mlO2/kg/min) performed two randomised maximal tests in a hyperbaric chamber breathing ambient air composed of either 35% O2/65% N2 (nitrox) or 35% O2/65% He (heliox). A ramp protocol was used in which power output was incremented at 0.5 W/s. The trials were separated by at least 48 h. The perceived effort of breathing was obtained via Borg Category Ratio Scales at 3‐min intervals and at fatigue. Oxygen consumption (VO2) and minute ventilation (VE) were monitored continuously. Results Breathing heliox did not change the sensation of dyspnoea: there were no differences between trials for the Borg scales at any time point. Exercise performance was not different between the nitrox and heliox trials (peak power output = 451 (58) and 453 (56) W), nor was VO2max (4.96 (0.61) and 4.88 (0.65) l/min) or maximal VE (157 (24) and 163 (22) l/min). Between‐trial variability in peak power output was less than either VO2max or maximal VE. Conclusion Breathing a less dense gas does not improve maximal performance of exercise or reduce the perception of breathing effort in highly trained athletes, although an attenuated submaximal tidal volume and VE with a concomitant reduction in VO2 suggests an improved gas exchange and reduced O2 cost of ventilation when breathing heliox. PMID:17062658

  2. Effect of physical therapy scoliosis specific exercises using breathing pattern on adolescent idiopathic scoliosis.

    PubMed

    Yoon, Sungyoung; Rhee, Min-Hyung

    2016-11-01

    [Purpose] This study was performed to confirm physical therapy scoliosis specific exercises on adolescent idiopathic scoliosis patients. [Subject and Methods] A 15-year-old male middle school student with scoliosis. Cobb's angle, angle of rotation of the spine, and breathing pattern were measured before and after 8 weeks training. [Results] After 8 weeks training, Cobb's angle, angle of rotation of the spine, and breathing pattern were improved better. [Conclusion] These results indicate that physical therapy scoliosis specific exercises improves scoliosis curves and could provide an effective intervention and management of scoliosis.

  3. Exercise training improves breathing strategy and performance during the six-minute walk test in obese adolescents.

    PubMed

    Mendelson, Monique; Michallet, Anne-Sophie; Perrin, Claudine; Levy, Patrick; Wuyam, Bernard; Flore, Patrice

    2014-08-15

    We aimed to examine ventilatory responses during the six-minute walk test in healthy-weight and obese adolescents before and after exercise training. Twenty obese adolescents (OB) (age: 14.5±1.7 years; BMI: 34.0±4.7kg·m(-2)) and 20 age and gender-matched healthy-weight adolescents (HW) (age: 15.5±1.5 years; BMI: 19.9±1.4kg·m(-2)) completed six-minute walk test during which breath-by-breath gas analysis and expiratory flow limitation (expFL) were measured. OB participated in a 12-week exercise-training program. Comparison between HW and OB participants showed lower distance achieved during the 6MWT in OB (-111.0m, 95%CI: -160.1 to 62.0, p<0.05) and exertional breathlessness was greater (+0.78 a.u., 95%CI: 0.091-3.27, p=0.039) when compared with HW. Obese adolescents breathed at lower lung volumes, as evidenced by lower end expiratory and end inspiratory lung volumes during exercise (p<0.05). Prevalence of expFL (8 OB vs 2 HW, p=0.028) and mean expFL (14.9±21.9 vs 5.32±14.6% VT, p=0.043, in OB and HW) were greater in OB. After exercise training, mean increase in the distance achieved during the 6MWT was 64.5 meters (95%CI: 28.1-100.9, p=0.014) and mean decrease in exertional breathlessness was 1.62 (95%CI: 0.47-2.71, p=0.05). Obese adolescents breathed at higher lung volumes, as evidenced by the increase in end inspiratory lung volume from rest to 6-min exercise (9.9±13.4 vs 20.0±13.6%TLC, p<0.05). Improved performance was associated with improved change in end inspiratory lung volume from rest to 6-min exercise (r=0.65, p=0.025). Our results suggest that exercise training can improve breathing strategy during submaximal exercise in obese adolescents and that this increase is associated with greater exercise performance. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Use of the single-breath method of estimating cardiac output during exercise-stress testing.

    NASA Technical Reports Server (NTRS)

    Buderer, M. C.; Rummel, J. A.; Sawin, C. F.; Mauldin, D. G.

    1973-01-01

    The single-breath cardiac output measurement technique of Kim et al. (1966) has been modified for use in obtaining cardiac output measurements during exercise-stress tests on Apollo astronauts. The modifications involve the use of a respiratory mass spectrometer for data acquisition and a digital computer program for data analysis. The variation of the modified method for triplicate steady-state cardiac output measurements was plus or minus 1 liter/min. The combined physiological and methodological variation seen during a set of three exercise tests on a series of subjects was 1 to 2.5 liter/min. Comparison of the modified method with the direct Fick technique showed that although the single-breath values were consistently low, the scatter of data was small and the correlation between the two methods was high. Possible reasons for the low single-breath cardiac output values are discussed.

  5. Increased respiratory neural drive and work of breathing in exercise-induced laryngeal obstruction.

    PubMed

    Walsted, Emil S; Faisal, Azmy; Jolley, Caroline J; Swanton, Laura L; Pavitt, Matthew J; Luo, Yuan-Ming; Backer, Vibeke; Polkey, Michael I; Hull, James H

    2018-02-01

    Exercise-induced laryngeal obstruction (EILO), a phenomenon in which the larynx closes inappropriately during physical activity, is a prevalent cause of exertional dyspnea in young individuals. The physiological ventilatory impact of EILO and its relationship to dyspnea are poorly understood. The objective of this study was to evaluate exercise-related changes in laryngeal aperture on ventilation, pulmonary mechanics, and respiratory neural drive. We prospectively evaluated 12 subjects (6 with EILO and 6 healthy age- and gender-matched controls). Subjects underwent baseline spirometry and a symptom-limited incremental exercise test with simultaneous and synchronized recording of endoscopic video and gastric, esophageal, and transdiaphragmatic pressures, diaphragm electromyography, and respiratory airflow. The EILO and control groups had similar peak work rates and minute ventilation (V̇e) (work rate: 227 ± 35 vs. 237 ± 35 W; V̇e: 103 ± 20 vs. 98 ± 23 l/min; P > 0.05). At submaximal work rates (140-240 W), subjects with EILO demonstrated increased work of breathing ( P < 0.05) and respiratory neural drive ( P < 0.05), developing in close temporal association with onset of endoscopic evidence of laryngeal closure ( P < 0.05). Unexpectedly, a ventilatory increase ( P < 0.05), driven by augmented tidal volume ( P < 0.05), was seen in subjects with EILO before the onset of laryngeal closure; there were however no differences in dyspnea intensity between groups. Using simultaneous measurements of respiratory mechanics and diaphragm electromyography with endoscopic video, we demonstrate, for the first time, increased work of breathing and respiratory neural drive in association with the development of EILO. Future detailed investigations are now needed to understand the role of upper airway closure in causing exertional dyspnea and exercise limitation. NEW & NOTEWORTHY Exercise-induced laryngeal obstruction is a prevalent cause of exertional dyspnea in young

  6. Exercise during Short-Term and Long-Term Continuous Exposure to Hypoxia Exacerbates Sleep-Related Periodic Breathing

    PubMed Central

    Tellez, Helio Fernandez; Morrison, Shawnda A.; Neyt, Xavier; Mairesse, Olivier; Piacentini, Maria Francesca; Macdonald-Nethercott, Eoin; Pangerc, Andrej; Dolenc-Groselj, Leja; Eiken, Ola; Pattyn, Nathalie; Mekjavic, Igor B.; Meeusen, Romain

    2016-01-01

    Study Objectives: Exposure to hypoxia elevates chemosensitivity, which can lead to periodic breathing. Exercise impacts gas exchange, altering chemosensitivity; however, interactions between sleep, exercise and chronic hypoxic exposure have not been examined. This study investigated whether exercise exacerbates sleep-related periodic breathing in hypoxia. Methods: Two experimental phases. Short-Term Phase: a laboratory controlled, group-design study in which 16 active, healthy men (age: 25 ± 3 y, height: 1.79 ± 0.06 m, mass: 74 ± 8 kg) were confined to a normobaric hypoxic environment (FIO2 = 0.139 ± 0.003, 4,000 m) for 10 days, after random assignment to a sedentary (control, CON) or cycle-exercise group (EX). Long-Term Phase: conducted at the Concordia Antarctic Research Station (3,800 m equivalent at the Equator) where 14 men (age: 36 ± 9 y, height: 1.77 ± 0.09 m, mass: 75 ± 10 kg) lived for 12–14 months, continuously confined. Participants were stratified post hoc based on self-reported physical activity levels. We quantified apnea-hypopnea index (AHI) and physical activity variables. Results: Short-Term Phase: mean AHI scores were significantly elevated in the EX group compared to CON (Night1 = CON: 39 ± 51, EX: 91 ± 59; Night10 = CON: 32 ± 32, EX: 92 ± 48; P = 0.046). Long-Term Phase: AHI was correlated to mean exercise time (R2 = 0.4857; P = 0.008) and the coefficient of variation in night oxyhemoglobin saturation (SpO2; R2 = 0.3062; P = 0.049). Conclusions: Data indicate that exercise (physical activity) per se affects night SpO2 concentrations and AHI after a minimum of two bouts of moderate-intensity hypoxic exercise, while habitual physical activity in hypobaric hypoxic confinement affects breathing during sleep, up to 13+ months' duration Citation: Tellez HF, Morrison SA, Neyt X, Mairesse O, Piacentini MF, Macdonald-Nethercott E, Pangerc A, Dolenc-Groselj L, Eiken O, Pattyn N, Mekjavic IB, Meeusen R. Exercise during short-term and long

  7. Pulmonary gas exchange efficiency during exercise breathing normoxic and hypoxic gas in adults born very preterm with low diffusion capacity.

    PubMed

    Duke, Joseph W; Elliott, Jonathan E; Laurie, Steven S; Beasley, Kara M; Mangum, Tyler S; Hawn, Jerold A; Gladstone, Igor M; Lovering, Andrew T

    2014-09-01

    Adults with a history of very preterm birth (<32 wk gestational age; PRET) have reduced lung function and significantly lower lung diffusion capacity for carbon monoxide (DLCO) relative to individuals born at term (CONT). Low DLCO may predispose PRET to diffusion limitation during exercise, particularly while breathing hypoxic gas because of a reduced O2 driving gradient and pulmonary capillary transit time. We hypothesized that PRET would have significantly worse pulmonary gas exchange efficiency [i.e., increased alveolar-to-arterial Po2 difference (AaDO2)] during exercise breathing room air or hypoxic gas (FiO2 = 0.12) compared with CONT. To test this hypothesis, we compared the AaDO2 in PRET (n = 13) with a clinically mild reduction in DLCO (72 ± 7% of predicted) and CONT (n = 14) with normal DLCO (105 ± 10% of predicted) pre- and during exercise breathing room air and hypoxic gas. Measurements of temperature-corrected arterial blood gases, and direct measure of O2 saturation (SaO2), were made prior to and during exercise at 25, 50, and 75% of peak oxygen consumption (V̇o2peak) while breathing room air and hypoxic gas. In addition to DLCO, pulmonary function and exercise capacity were significantly less in PRET. Despite PRET having low DLCO, no differences were observed in the AaDO2 or SaO2 pre- or during exercise breathing room air or hypoxic gas compared with CONT. Although our findings were unexpected, we conclude that reduced pulmonary function and low DLCO resulting from very preterm birth does not cause a measureable reduction in pulmonary gas exchange efficiency. Copyright © 2014 the American Physiological Society.

  8. Submaximal exercise with self-contained breathing apparatus: the effects of hyperoxia and inspired gas density.

    PubMed

    Eves, Neil D; Petersen, Stewart R; Jones, Richard L

    2003-10-01

    The self-contained breathing apparatus (SCBA) used by firefighters, and other working in dangerous environments, adds an external resistance to expiration, which increases expiratory work during heavy exercise. Compressed air is typically used with the SCBA and we hypothesized that changing the inspired oxygen concentration and/or gas density with helium would reduce the external expiratory resistance. On separate days, 15 men completed four 30-min bouts of treadmill exercise dressed in protective clothing and breathing the test gases through the SCBA. Four different gas mixtures were assigned in random order: [compressed air (NOX: 21% O2, 79% N2), hyperoxia (HOX: 40% O2, 60% N2), normoxic-helium (HE-OX: 21% O2, 79% He), and helium-hyperoxia (HE-HOX: 40% O2, 60% He)]. Compared with NOX, the two helium mixtures (but not HOX), decreased the external breathing resistance and all three gas mixtures decreased the peak expired mask pressure and the ventilatory mass moved. Both hyperoxic mixtures decreased blood lactate and the rating of perceived exertion was decreased at 30 min with HE-HOX. These results demonstrate that the helium-based gas mixtures, and to a lesser extent HOX, reduce the expiratory work associated with the SCBA during strenuous exercise.

  9. Exercise during Short-Term and Long-Term Continuous Exposure to Hypoxia Exacerbates Sleep-Related Periodic Breathing.

    PubMed

    Tellez, Helio Fernandez; Morrison, Shawnda A; Neyt, Xavier; Mairesse, Olivier; Piacentini, Maria Francesca; Macdonald-Nethercott, Eoin; Pangerc, Andrej; Dolenc-Groselj, Leja; Eiken, Ola; Pattyn, Nathalie; Mekjavic, Igor B; Meeusen, Romain

    2016-04-01

    Exposure to hypoxia elevates chemosensitivity, which can lead to periodic breathing. Exercise impacts gas exchange, altering chemosensitivity; however, interactions between sleep, exercise and chronic hypoxic exposure have not been examined. This study investigated whether exercise exacerbates sleep-related periodic breathing in hypoxia. Two experimental phases. Short-Term Phase: a laboratory controlled, group-design study in which 16 active, healthy men (age: 25 ± 3 y, height: 1.79 ± 0.06 m, mass: 74 ± 8 kg) were confined to a normobaric hypoxic environment (FIO2 = 0.139 ± 0.003, 4,000 m) for 10 days, after random assignment to a sedentary (control, CON) or cycle-exercise group (EX). Long-Term Phase: conducted at the Concordia Antarctic Research Station (3,800 m equivalent at the Equator) where 14 men (age: 36 ± 9 y, height: 1.77 ± 0.09 m, mass: 75 ± 10 kg) lived for 12-14 months, continuously confined. Participants were stratified post hoc based on self-reported physical activity levels. We quantified apnea-hypopnea index (AHI) and physical activity variables. Short-Term Phase: mean AHI scores were significantly elevated in the EX group compared to CON (Night1 = CON: 39 ± 51, EX: 91 ± 59; Night10 = CON: 32 ± 32, EX: 92 ± 48; P = 0.046). Long-Term Phase: AHI was correlated to mean exercise time (R(2) = 0.4857; P = 0.008) and the coefficient of variation in night oxyhemoglobin saturation (SpO2; R(2) = 0.3062; P = 0.049). Data indicate that exercise (physical activity) per se affects night SpO2 concentrations and AHI after a minimum of two bouts of moderate-intensity hypoxic exercise, while habitual physical activity in hypobaric hypoxic confinement affects breathing during sleep, up to 13+ months' duration. © 2016 Associated Professional Sleep Societies, LLC.

  10. Practice It: Deep Conscious Breathing Exercise

    Cancer.gov

    No time to sit and breathe? No problem; take your breathing practice with you! Deep conscious breathing can also be done with the eyes open wherever you happen to be—simply pause and take two to three full deep breaths (inhale deeply and exhale completely).

  11. Voice Function Differences Following Resting Breathing vs. Submaximal Exercise

    PubMed Central

    Sandage, Mary J.; Connor, Nadine P.; Pascoe, David D.

    2013-01-01

    Objectives/Hypothesis There is little known about how physical exercise may alter physiological parameters of voice production. In this investigation, vocal function and upper airway temperature were examined following a bout of submaximal exercise and compared with a resting breathing condition. It was hypothesized that phonation threshold pressure and perceived phonatory effort would increase, and pharyngeal temperature would decrease following an exercise bout. Study Design Using a within-participant repeated measures design, 18 consented participants (9 men, 9 women) completed the study. Methods A 20-minute equilibration task was immediately followed by 8 minutes of submaximal exercise on a stationary bike in a thermally neutral environment (25°C/40% RH). At the end of the equilibration trial and the exercise trial measures were taken in the following order: pharyngeal temperature, phonation threshold pressure, and perceived phonatory effort. Data were analyzed using paired t-tests with significance set at α<0.05. Results Significantly increased phonation threshold pressure and perceived phonatory effort and significantly decreased pharyngeal temperature (1.9°C) were found, supporting the initial hypotheses. Conclusions Findings from this investigation support the widely held belief that voice use associated with physical activity requires additional laryngeal effort and closure forces. The effect of the temperature reduction in the upper airway on voice function requires further study. PMID:23849683

  12. Essential Hypertension: Cardiovascular Response to Breath Hold Combined with Exercise.

    PubMed

    Hoffmann, U; Urban, P; Koschate, J; Drescher, U; Pfister, R; Michels, G

    2015-07-01

    Essential hypertension (EH) is a widespread disease and might be prevalent in apnea divers and master athletes. Little is known about the influence of EH and the antihypertensive drugs (AHD) on cardiovascular reactions to combined breath hold (BH) and exercise. In this pilot study, healthy divers (HCON) were compared with treated hypertensive divers with regard to heart rate (HR) and mean blood-pressure (MAP) responses to BH, exercise and the combination of both. Ten subjects with EH and ten healthy divers were tested. 3 different 20 s stimuli were applied: BH combined with 30 W or 150 W and 150 W without BH. The time-charts during the stress intervals and during recovery were compared. Subjects treated with an angiotensin-converting enzyme (ACE) inhibitor showed higher changes for MAP values if breath hold was performed. HR responses were obviously changed if a β-blocker was part of the medication. One subject showed extreme MAP responses to all stimuli and conspicuous HR if BH was involved. The modulation of HR-/MAP-response in EH subjects depends on the mechanisms of antihypertensive agents. The combination of an ACE inhibitor and a β-blocker may give the best protection. It is recommended to include short apnea tests in the fitness-to-dive examination to individually predict potential endangerment. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Effects of inhaled ipratropium bromide on breathing mechanics and gas exchange in exercising horses with chronic obstructive pulmonary disease.

    PubMed

    Bayly, W M; Duvivier, D H; Votion, D; Vandenput, S; Art, T; Lekeux, P

    2002-01-01

    Six Warmblood horses suffering an acute exacerbation of COPD were tested to investigate whether inhalation of ipratropium bromide (IB) dry powder (2,400 microg) 30 min preexercise would improve their exercise capacity. A cross-over protocol with an inert powder placebo (P) was used. Mechanics of breathing and arterial blood gases were determined before treatment, after treatment but pre-exercise, and during an incremental exercise test. Oxygen consumption (VO2) was also measured before and during exercise, and the time to fatigue recorded. Inhalation of IB reduced total pulmonary resistance (RL) and maximum intrapleural pressure changes (deltaPpl(max)) and increased dynamic compliance before exercise. The onset of exercise was associated with a marked decrease in RL in P-treated horses but not those receiving IB, so that RL during exercise was not affected by treatment. Although deltaPpl(max) was lower at 8,9 and 10 m/s with IB, there were no treatment-related changes in VO2, blood gases, time to fatigue or any other measurement of breathing mechanics. Therefore, although inhalation of IB prior to exercise may have improved deltaPpl(max), it had no apparent impact on the horses' capacity for exercise.

  14. Facial immersion in cold water enhances cerebral blood velocity during breath-hold exercise in humans.

    PubMed

    Kjeld, Thomas; Pott, Frank C; Secher, Niels H

    2009-04-01

    The diving response is initiated by apnea and facial immersion in cold water and includes, besides bradycardia, peripheral vasoconstriction, while cerebral perfusion may be enhanced. This study evaluated whether facial immersion in 10 degrees C water has an independent influence on cerebral perfusion evaluated as the middle cerebral artery mean flow velocity (MCA V(mean)) during exercise in nine male subjects. At rest, a breath hold of maximum duration increased the arterial carbon dioxide tension (Pa(CO(2))) from 4.2 to 6.7 kPa and MCA V(mean) from 37 to 103 cm/s (mean; approximately 178%; P < 0.001). Similarly, during 100-W exercise, a breath hold increased Pa(CO(2)) from 5.9 to 8.2 kPa (P < 0.001) and MCA V(mean) from 55 to 113 cm/s ( approximately 105%), and facial immersion further increased MCA V(mean) to 122 cm/s ( approximately 88%; both P < 0.001). MCA V(mean) also increased during 180-W exercise (from 47 to 53 cm/s), and this increment became larger with facial immersion (76 cm/s, approximately 62%; P < 0.001), although Pa(CO(2)) did not significantly change. These results indicate that a breath hold diverts blood toward the brain with a >100% increase in MCA V(mean), largely because Pa(CO(2)) increases, but the increase in MCA V(mean) becomes larger when combined with facial immersion in cold water independent of Pa(CO(2)).

  15. Breathing mechanics during exercise with added dead space reflect mechanisms of ventilatory control.

    PubMed

    Wood, Helen E; Mitchell, Gordon S; Babb, Tony G

    2009-09-30

    Small increases in external dead space (V(D)) augment the exercise ventilatory response via a neural mechanism known as short-term modulation (STM). We hypothesized that breathing mechanics would differ during exercise, increased V(D) and STM. Men were studied at rest and during cycle exercise (10-50W) without (Control) and with added V(D) (200-600ml). With added V(D), V(T) increased via increased end-inspiratory lung volume (EILV), with no change in end-expiratory lung volume (EELV), indicating recruitment of inspiratory muscles only. With exercise, V(T) increased via both decreased EELV and increased EILV, indicating recruitment of both expiratory and inspiratory muscles. A significant interaction between the effects of exercise and V(D) on mean inspiratory flow indicated that the augmented exercise ventilatory response with added V(D) (i.e. STM) resulted from increased drive to the inspiratory muscles. These results reveal different patterns of respiratory muscle recruitment among experimental conditions. Hence, we conclude that fundamental differences exist in the neural control of ventilatory responses during exercise, increased V(D) and STM.

  16. Effects of Lung Volume Reduction Surgery on Gas Exchange and Breathing Pattern During Maximum Exercise

    PubMed Central

    Criner, Gerard J.; Belt, Patricia; Sternberg, Alice L.; Mosenifar, Zab; Make, Barry J.; Utz, James P.; Sciurba, Frank

    2009-01-01

    Background: The National Emphysema Treatment Trial studied lung volume reduction surgery (LVRS) for its effects on gas exchange, breathing pattern, and dyspnea during exercise in severe emphysema. Methods: Exercise testing was performed at baseline, and 6, 12, and 24 months. Minute ventilation (V̇e), tidal volume (Vt), carbon dioxide output (V̇co2), dyspnea rating, and workload were recorded at rest, 3 min of unloaded pedaling, and maximum exercise. Pao2, Paco2, pH, fraction of expired carbon dioxide, and bicarbonate were also collected in some subjects at these time points and each minute of testing. There were 1,218 patients enrolled in the study (mean [± SD] age, 66.6 ± 6.1 years; mean, 61%; mean FEV1, 0.77 ± 0.24 L), with 238 patients participating in this substudy (mean age, 66.1 ± 6.8 years; mean, 67%; mean FEV1, 0.78 ± 0.25 L). Results: At 6 months, LVRS patients had higher maximum V̇e (32.8 vs 29.6 L/min, respectively; p = 0.001), V̇co2, (0.923 vs 0.820 L/min, respectively; p = 0.0003), Vt (1.18 vs 1.07 L, respectively; p = 0.001), heart rate (124 vs 121 beats/min, respectively; p = 0.02), and workload (49.3 vs 45.1 W, respectively; p = 0.04), but less breathlessness (as measured by Borg dyspnea scale score) [4.4 vs 5.2, respectively; p = 0.0001] and exercise ventilatory limitation (49.5% vs 71.9%, respectively; p = 0.001) than medical patients. LVRS patients with upper-lobe emphysema showed a downward shift in Paco2 vs V̇co2 (p = 0.001). During exercise, LVRS patients breathed slower and deeper at 6 months (p = 0.01) and 12 months (p = 0.006), with reduced dead space at 6 months (p = 0.007) and 24 months (p = 0.006). Twelve months after patients underwent LVRS, dyspnea was less in patients with upper-lobe emphysema (p = 0.001) and non–upper-lobe emphysema (p = 0.007). Conclusion: During exercise following LVRS, patients with severe emphysema improve carbon dioxide elimination and dead space, breathe slower and deeper, and report less dyspnea

  17. Effects of Carbon Dioxide and UBA-Like Breathing Resistance on Exercise Endurance

    DTIC Science & Technology

    2010-04-01

    hemoglobin saturation in healthy subjects and dissolved oxygen at atmospheric pressure contributes little to total oxygen transport, anaerobic threshold and...resistance of their breathing circuit is minimal increase VE both at rest and during mild to moderate (below ventilatory threshold ) exercise.2–8...of fatigue for one hour, after which we stopped him. Data for Phase 2 also are reported for only ten of the twelve subjects. We disregarded all

  18. The effects of breathing exercise types on respiratory muscle activity and body function in patients with mild chronic obstructive pulmonary disease.

    PubMed

    Kang, Jeong-Il; Jeong, Dae-Keun; Choi, Hyun

    2016-01-01

    [Purpose] Fragmentary studies on characteristics of respiratory muscles are being done to increase respiratory capacity by classifying exercises into voluntary respiratory exercise which relieves symptoms and prevents COPD and exercise using breathing exercise equipment. But this study found changes on respiratory pattern through changes on the activity pattern of agonist and synergist respiratory muscles and studied what effect they can have on body function improvement. [Subjects and Methods] Fifteen subjects in experimental group I that respiratory exercise of diaphragm and 15 subjects in experimental group II that feedback respiratory exercise were randomly selected among COPD patients to find the effective intervention method for COPD patients. And intervention program was conducted for 5 weeks, three times a week, once a day and 30 minutes a session. They were measured with BODE index using respiratory muscle activity, pulmonary function, the six-minute walking test, dyspnea criteria and BMI Then the results obtained were compared and analyzed. [Results] There was a significant difference in sternocleidomastoid muscle and scalene muscle and in 6-minute walk and BODE index for body function. Thus the group performing feedback respiratory had more effective results for mild COPD patients. [Conclusion] Therefore, the improvement was significant regarding the activity of respiratory muscles synergists when breathing before doing breathing exercise. Although, it is valuable to reduce too much mobilization of respiratory muscles synergists through the proper intervention it is necessary to study body function regarding improvement of respiratory function for patients with COPD.

  19. The use of abdominal muscle training, breathing exercises and abdominal massage to treat paediatric chronic functional constipation.

    PubMed

    Silva, C A G; Motta, M E F A

    2013-05-01

    The effect of muscular training, abdominal massage and diaphragmatic breathing was compared with medical treatment in a prospective randomized trial of patients with chronic functional constipation. Patients aged 4-18 years old with functional constipation according to the Rome III criteria were randomized to physiotherapy or medical treatment. In the physiotherapy group, exercises (isometric training of the abdominal muscles, diaphragmatic breathing exercises and abdominal massage) were employed during 12 40-min sessions twice a week by a trained physiotherapist, with laxatives. Patients in the medication group were only given laxatives. Primary outcome measures were frequency of defaecation and faecal incontinence. The analysis was performed by intention-to-treat. After 6 weeks of treatment, the frequency of bowel movements was higher in the physiotherapy group [5.1 (2.1) days/week] than in the medication group [3.9 (2.0) days/week] (P = 0.01). The frequency of faecal incontinence was no different between the groups [3.6 (1.9) days/week vs 3.0 (2.1) days/week] (P = 0.31). The combined use of isometric training of abdominal muscles, breathing exercises and abdominal massage increased defaecation frequency after 6 weeks but faecal incontinence remained unchanged. Physiotherapy may be a useful treatment for constipation. Colorectal Disease © 2013 The Association of Coloproctology of Great Britain and Ireland.

  20. Effects of a Mindful Breathing Exercise during Reading Fluency Intervention for Students with Attentional Difficulties

    ERIC Educational Resources Information Center

    Idler, Alyssa M.; Mercer, Sterett H.; Starosta, Lindsay; Bartfai, Jamie M.

    2017-01-01

    Students with attentional difficulties are at greater risk for reading difficulties. To address this concern, we examined the extent to which adding a mindful breathing exercise to individual reading fluency interventions would improve gains in reading fluency, student-reported attention, and student-reported stress. In a restricted alternating…

  1. Comparison between deep breathing exercises and incentive spirometry after CABG surgery.

    PubMed

    Renault, Julia Alencar; Costa-Val, Ricardo; Rosseti, Márcia Braz; Houri Neto, Miguel

    2009-01-01

    To compare the effects of deep breathing exercises (DBE) and the flow-oriented incentive spirometry (IS) in patients undergone coronary artery bypass grafting (CABG) through the following variables: forced vital capacity - FVC, forced expiratory volume in 1 second - FEV(1), maximal respiratory pressures and oxygen saturation. Thirty six patients in CABG postoperative period underwent thirty minutes of non-invasive ventilation during the first 24 hours after extubation and were randomly shared into two groups as following: DBE (n=18) and IS (n=18). The spirometric variables were assessed on the preoperative period and seventh postoperative day (POD). The respiratory muscle strength and oxygen saturation were assessed on the preoperative period, first, second and seventh POD. The groups were considered homogeneous in relation to the demographic and surgical variables. It has been noted fall in the values of FVC and FEV(1) between the preoperative period and the seventh POD, but without significant differences between groups. The maximal respiratory pressures showed drop in the first POD but with and partial recovery until the seventh POD, also without significant differences between groups. The oxygen saturation was the only variable that was completely recovered on the seventh POD, also without significant differences between groups. There were not observed significant differences in maximal respiratory pressures, spirometric variables and oxygen saturation in patients undergone deep breathing exercises and flow-oriented incentive spirometry after coronary artery bypass grafting.

  2. Swimming in air-breathing fishes.

    PubMed

    Lefevre, S; Domenici, P; McKenzie, D J

    2014-03-01

    Fishes with bimodal respiration differ in the extent of their reliance on air breathing to support aerobic metabolism, which is reflected in their lifestyles and ecologies. Many freshwater species undertake seasonal and reproductive migrations that presumably involve sustained aerobic exercise. In the six species studied to date, aerobic exercise in swim flumes stimulated air-breathing behaviour, and there is evidence that surfacing frequency and oxygen uptake from air show an exponential increase with increasing swimming speed. In some species, this was associated with an increase in the proportion of aerobic metabolism met by aerial respiration, while in others the proportion remained relatively constant. The ecological significance of anaerobic swimming activities, such as sprinting and fast-start manoeuvres during predator-prey interactions, has been little studied in air-breathing fishes. Some species practise air breathing during recovery itself, while others prefer to increase aquatic respiration, possibly to promote branchial ion exchange to restore acid-base balance, and to remain quiescent and avoid being visible to predators. Overall, the diversity of air-breathing fishes is reflected in their swimming physiology as well, and further research is needed to increase the understanding of the differences and the mechanisms through which air breathing is controlled and used during exercise. © 2014 The Fisheries Society of the British Isles.

  3. [Evolution of breathing pattern and ventilation at maximal exercise during growth. Definition of reference values].

    PubMed

    Prioux, J; Mercier, J; Ramonatxo, M; Granier, P; Mercier, B; Prefaut, C

    1995-01-01

    The aim of the study was to define the changes of parameters of breathing pattern and ventilation (VE) as a function of age during maximal exercise in children. A multi-longitudinal survey was conducted in forty four untrained schoolboys, divided in three groups with initial age of 11.2 years for group I, 12.9 years for group II, and 14.9 for group III. These children were subsequently followed three years ago at the same period. The range age was thus 11.2 to 16.9 years. This study showed that, during growth, ventilation (VE max), tidal volume (VT max) and mean inspiratory flow (VT/TI max) increased significantly with age, that inspiratory frequency (f max) decreased, that inspiratory, expiratory and total time of the respiratory cycle (TI max, TE max, TTOT max) increased slightly and that the inspiration fraction (TI/TTOT max) was identical at 11 and 17 years. Furthermore we observed that the peak height velocity and peak tidal volume velocity took place at the same age, i.e., 14 years and that those of weight and VT/TI at the same age of 15 years. In conclusion, this study allowed us to define reference values for breathing pattern at maximal exercise in sedentary boys and to specify the relation between growth and parameters of breathing pattern in these children.

  4. Deep breathing exercises with positive expiratory pressure at a higher rate improve oxygenation in the early period after cardiac surgery--a randomised controlled trial.

    PubMed

    Urell, Charlotte; Emtner, Margareta; Hedenström, Hans; Tenling, Arne; Breidenskog, Marie; Westerdahl, Elisabeth

    2011-07-01

    In addition to early mobilisation, a variety of breathing exercises are used to prevent postoperative pulmonary complications after cardiac surgery. The optimal duration of the treatment is not well evaluated. The aim of this study was to determine the effect of 30 versus 10 deep breaths hourly, while awake, with positive expiratory pressure on oxygenation and pulmonary function the first days after cardiac surgery. A total of 181 patients, undergoing cardiac surgery, were randomised into a treatment group, performing 30 deep breaths hourly the first postoperative days, or into a control group performing 10 deep breaths hourly. The main outcome measurement arterial blood gases and the secondary outcome pulmonary function, evaluated with spirometry, were determined on the second postoperative day. Preoperatively, both study groups were similar in terms of age, SpO(2), forced expiratory volume in 1s and New York Heart Association classification. On the second postoperative day, arterial oxygen tension (PaO(2)) was 8.9 ± 1.7 kPa in the treatment group and 8.1 ± 1.4 kPa in the control group (p = 0.004). Arterial oxygen saturation (SaO(2)) was 92.7 ± 3.7% in the treatment group and 91.1 ± 3.8% in the control group (p = 0.016). There were no differences in measured lung function between the groups or in compliance to the breathing exercises. Compliance was 65% of possible breathing sessions. A significantly increased oxygenation was found in patients performing 30 deep breaths the first two postoperative days compared with control patients performing 10 deep breaths hourly. These results support the implementation of a higher rate of deep breathing exercises in the initial phase after cardiac surgery. Copyright © 2010 European Association for Cardio-Thoracic Surgery. Published by Elsevier B.V. All rights reserved.

  5. The application of exhaled breath analysis in racing Thoroughbreds and the influence of high intensity exercise and ambient temperature on the concentration of carbon monoxide and pH in exhaled breath.

    PubMed

    Cathcart, Michael P; Love, Sandy; Sutton, David G M; Reardon, Richard J M; Hughes, Kristopher J

    2013-08-01

    Analyses of exhaled breath (EB) and exhaled breath condensate (EBC) are non-invasive modalities for assessing the lower airways but these methods have not been applied to Thoroughbred racehorses in training. The aims of this study were to determine whether EB and EBC could be obtained from Thoroughbred racehorses in the field and to investigate the effects of exercise per se and during different ambient temperatures and humidity on exhaled concentrations of nitric oxide (eNO), carbon monoxide (eCO) and EBC pH. EB and EBC samples were obtained from 28 Thoroughbred racehorses pre- and post-exercise during warm (n=23) and/or cold (n=19) ambient temperatures. eNO was detected in 19/84 EB samples. eCO was measured in 39/42 EB samples pre-exercise (median 1.3 ppm) and concentrations decreased significantly post-exercise (median 0.8 ppm, P<0.005) and were associated with ambient temperature. EBC pH was 4.51 ± 0.23 pre-exercise and increased significantly post-exercise (4.79 ± 0.59, P=0.003). The study documented the collection of EB and EBC from Thoroughbred racehorses in a field setting. Alterations in concentrations of volatile gases and EBC pH occurred in response to exercise, and were likely to have been influenced by environmental factors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Electromyographic fatigue of orbicular oris muscles during exercises in mouth and nasal breathing children.

    PubMed

    Busanello-Stella, Angela Ruviaro; Blanco-Dutra, Ana Paula; Corrêa, Eliane Castilhos Rodrigues; Silva, Ana Maria Toniolo da

    2015-01-01

    To investigate the process of fatigue in orbicularis oris muscles by analyzing the median frequency of electromyographic signal and the referred fatigue time, according to the breathing mode and the facial pattern. The participants were 70 children, aged 6 to 12 years, who matched the established criteria. To be classified as 36 nasal-breathing and 34 mouth-breathing children, they underwent speech-language, otorhinolaryngologic, and cephalometric evaluation. For the electromyographic assessment, the children had to sustain lip dumbbells weighing 40, 60, and 100 g and a lip exerciser, until the feeling of fatigue. Median frequency was analyzed in 5, 10, 15, and 20 seconds of activity. The referred time of the feeling of fatigue was also recorded. Data were analyzed through the analysis of variance--repeated measures (post hoc Tukey's test), Kruskal-Wallis test, and Mann-Whitney U-test. A significant decrease in the median frequency from 5 seconds of activity was observed, independently from the comparison between the groups. On comparison, the muscles did not show significant decrease. The reported time for the feeling of fatigue was shorter for mouth-breathing individuals. This feeling occurred after the significant decrease in the median frequency. There were signals that indicated myoelectric fatigue for the orbicularis oris muscles, in both groups analyzed, from the first 5 seconds of activity. Myoelectric fatigue in the orbicularis oris muscles preceded the reported feeling of fatigue in all groups. The account for fatigue time was influenced by only the breathing pattern, occurring more precociously in mouth-breathing children.

  7. Breath acidification in adolescent runners exposed to atmospheric pollution: A prospective, repeated measures observational study

    PubMed Central

    Ferdinands, Jill M; Crawford, Carol A Gotway; Greenwald, Roby; Van Sickle, David; Hunter, Eric; Teague, W Gerald

    2008-01-01

    Background Vigorous outdoors exercise during an episode of air pollution might cause airway inflammation. The purpose of this study was to examine the effects of vigorous outdoor exercise during peak smog season on breath pH, a biomarker of airway inflammation, in adolescent athletes. Methods We measured breath pH both pre- and post-exercise on ten days during peak smog season in 16 high school athletes engaged in daily long-distance running in a downwind suburb of Atlanta. The association of post-exercise breath pH with ambient ozone and particulate matter concentrations was tested with linear regression. Results We collected 144 pre-exercise and 146 post-exercise breath samples from 16 runners (mean age 14.9 years, 56% male). Median pre-exercise breath pH was 7.58 (interquartile range: 6.90 to 7.86) and did not change significantly after exercise. We observed no significant association between ambient ozone or particulate matter and post-exercise breath pH. However both pre- and post-exercise breath pH were strikingly low in these athletes when compared to a control sample of 14 relatively sedentary healthy adults and to published values of breath pH in healthy subjects. Conclusion Although we did not observe an acute effect of air pollution exposure during exercise on breath pH, breath pH was surprisingly low in this sample of otherwise healthy long-distance runners. We speculate that repetitive vigorous exercise may induce airway acidification. PMID:18328105

  8. Effects of Inspiratory Muscle Training and Calisthenics-and-Breathing Exercises in COPD With and Without Respiratory Muscle Weakness.

    PubMed

    Basso-Vanelli, Renata P; Di Lorenzo, Valéria A Pires; Labadessa, Ivana G; Regueiro, Eloisa M G; Jamami, Mauricio; Gomes, Evelim L F D; Costa, Dirceu

    2016-01-01

    Patients with COPD may experience respiratory muscle weakness. Two therapeutic approaches to the respiratory muscles are inspiratory muscle training and calisthenics-and-breathing exercises. The aims of the study are to compare the effects of inspiratory muscle training and calisthenics-and-breathing exercises associated with physical training in subjects with COPD as an additional benefit of strength and endurance of the inspiratory muscles, thoracoabdominal mobility, physical exercise capacity, and reduction in dyspnea on exertion. In addition, these gains were compared between subjects with and without respiratory muscle weakness. 25 subjects completed the study: 13 composed the inspiratory muscle training group, and 12 composed the calisthenics-and-breathing exercises group. Subjects were assessed before and after training by spirometry, measurements of respiratory muscle strength and test of inspiratory muscle endurance, thoracoabdominal excursion measurements, and the 6-min walk test. Moreover, scores for the Modified Medical Research Council dyspnea scale were reported. After intervention, there was a significant improvement in both groups of respiratory muscle strength and endurance, thoracoabdominal mobility, and walking distance in the 6-min walk test. Additionally, there was a decrease of dyspnea in the 6-min walk test peak. A difference was found between groups, with higher values of respiratory muscle strength and thoracoabdominal mobility and lower values of dyspnea in the 6-min walk test peak and the Modified Medical Research Council dyspnea scale in the inspiratory muscle training group. In the inspiratory muscle training group, subjects with respiratory muscle weakness had greater gains in inspiratory muscle strength and endurance. Both interventions increased exercise capacity and decreased dyspnea during physical effort. However, inspiratory muscle training was more effective in increasing inspiratory muscle strength and endurance, which could

  9. Exercise in cold air and hydrogen peroxide release in exhaled breath condensate.

    PubMed

    Marek, E; Volke, J; Mückenhoff, K; Platen, P; Marek, W

    2013-01-01

    Athletes have changes in the lung epithelial cells caused by inhalation of cold and dry air. The exhaled breath condensate contains a number of mediators from the respiratory system and H(2)O(2) is described as a marker of airways inflammation. The aim of this study was to determine the influence of exercise combined with cold air on the H(2)O(2) release in the exhaled breath. Twelve males (23.1 ± 1.5 years) were randomly assigned at 2 different days (1 day rest) to perform a 50 min run (75-80% of their max. heart rate) under normal (N) laboratory (18.1 ± 1.1°C) or cold (C) field condition (-15.2 ± 3.1°C). Before and immediately after each run, the EBC was collected under laboratory conditions and was analyzed amperometrically. Prior to the two runs, H(2)O(2) concentrations were 145.0 ± 31.0 (N) and 160.0 ± 49.1 nmol/L (C) and theoretical release was 70.3 ± 37.1 (N) and 82.6 ± 27.1 pmol/min (C) (p > 0.05). After each run, H(2)O(2) concentration increased significantly to 388.0 ± 22.8 nmol/L (N) and 622.1 ± 44.2 nmol/L (C) (p < 0.05), along with an increase in the theoretical release: 249.2 ± 35.7 pmol/min (N) and 400.9 ± 35.7 pmol/min (C) (p < 0.05). We conclude that release of H(2)O(2) into the EBC takes place under both resting conditions and after exercise. The concentration and release of H(2)O(2) increased after exercise in cold air compared to resting and laboratory conditions, which points to an increase in inflammatory and oxidative stress.

  10. Breath-hold times in air compared to breath-hold times during cold water immersions.

    PubMed

    Taber, Michael J; MacKinnon, Scott N; Power, Jonathan; Walker, Robert

    2015-02-01

    Given the effects of cold water immersion on breath-hold (BH) capabilities, a practical training exercise was developed for military/paramilitary personnel completing a helicopter underwater egress training (HUET) program. The exercise was designed to provide firsth and experience of the effects of cold water exposure on BH time. After completing the required HUET, 47 subjects completed two BH testing sessions as well as a short questionnaire. The first BH was completed while standing on the pool deck. The second BH was completed while fully immersed (face down) in 2-3°C water. There were 40 of the volunteers who also breathed from an emergency breathing system (EBS) while in the cold water. Results demonstrated that BH capabilities in cold water were significantly lower than those in ambient air. A significant correlation was also found between BH in air and the difference in cold water vs. air BH capabilities, which suggests that subjects who can hold their breath the longest in air experienced the greatest decrease in BH when immersed. Results indicate that 92% of the subjects reported that the practical cold water immersion exercise had a high value. Finally, 58% of those who used the EBS reported that it was harder to breathe in cold water than while in the training pool (approximately 22°C). The BH times for this group were similar to those reported in previous cold water immersion studies. Based on the questionnaire results, it is possible, when carefully applied, to include a practical cold water immersion exercise into existing HUET programs.

  11. Patients' experiences of breathing retraining for asthma: a qualitative process analysis of participants in the intervention arms of the BREATHE trial.

    PubMed

    Arden-Close, Emily; Yardley, Lucy; Kirby, Sarah; Thomas, Mike; Bruton, Anne

    2017-10-05

    Poor symptom control and impaired quality of life are common in adults with asthma, and breathing retraining exercises may be an effective method of self-management. This study aimed to explore the experiences of participants in the intervention arms of the BREATHE trial, which investigated the effectiveness of breathing retraining as a mode of asthma management. Sixteen people with asthma (11 women, 8 per group) who had taken part in the intervention arms of the BREATHE trial (breathing retraining delivered by digital versatile disc (DVD) or face-to-face sessions with a respiratory physiotherapist) took part in semi-structured telephone interviews about their experiences. Interviews were analysed using thematic analysis. Breathing retraining was perceived positively as a method of asthma management. Motivations for taking part included being asked, to enhance progress in research, to feel better/reduce symptoms, and to reduce medication. Participants were positive about the physiotherapist, liked having the materials tailored, found meetings motivational, and liked the DVD and booklet. The impact of breathing retraining following regular practice included increased awareness of breathing and development of new habits. Benefits of breathing retraining included increased control over breathing, reduced need for medication, feeling more relaxed, and improved health and quality of life. Problems included finding time to practice the exercises, and difficulty mastering techniques. Breathing retraining was acceptable and valued by almost all participants, and many reported improved wellbeing. Face to face physiotherapy was well received. However, some participants in the DVD group mentioned being unable to master techniques. PATIENTS RECEPTIVE TO BREATHING RETRAINING: Patients with asthma taught how to change their unconscious breathing patterns generally like non-pharmacological interventions. Researchers in the UK, led by Mike Thomas from the University of Southampton

  12. Comparison of Diaphragmatic Breathing Exercise, Volume and Flow Incentive Spirometry, on Diaphragm Excursion and Pulmonary Function in Patients Undergoing Laparoscopic Surgery: A Randomized Controlled Trial

    PubMed Central

    Anand, R.

    2016-01-01

    Objective. To evaluate the effects of diaphragmatic breathing exercises and flow and volume-oriented incentive spirometry on pulmonary function and diaphragm excursion in patients undergoing laparoscopic abdominal surgery. Methodology. We selected 260 patients posted for laparoscopic abdominal surgery and they were block randomization as follows: 65 patients performed diaphragmatic breathing exercises, 65 patients performed flow incentive spirometry, 65 patients performed volume incentive spirometry, and 65 patients participated as a control group. All of them underwent evaluation of pulmonary function with measurement of Forced Vital Capacity (FVC), Forced Expiratory Volume in the first second (FEV1), Peak Expiratory Flow Rate (PEFR), and diaphragm excursion measurement by ultrasonography before the operation and on the first and second postoperative days. With the level of significance set at p < 0.05. Results. Pulmonary function and diaphragm excursion showed a significant decrease on the first postoperative day in all four groups (p < 0.001) but was evident more in the control group than in the experimental groups. On the second postoperative day pulmonary function (Forced Vital Capacity) and diaphragm excursion were found to be better preserved in volume incentive spirometry and diaphragmatic breathing exercise group than in the flow incentive spirometry group and the control group. Pulmonary function (Forced Vital Capacity) and diaphragm excursion showed statistically significant differences between volume incentive spirometry and diaphragmatic breathing exercise group (p < 0.05) as compared to that flow incentive spirometry group and the control group. Conclusion. Volume incentive spirometry and diaphragmatic breathing exercise can be recommended as an intervention for all patients pre- and postoperatively, over flow-oriented incentive spirometry for the generation and sustenance of pulmonary function and diaphragm excursion in the management of laparoscopic

  13. Comparison of Diaphragmatic Breathing Exercise, Volume and Flow Incentive Spirometry, on Diaphragm Excursion and Pulmonary Function in Patients Undergoing Laparoscopic Surgery: A Randomized Controlled Trial.

    PubMed

    Alaparthi, Gopala Krishna; Augustine, Alfred Joseph; Anand, R; Mahale, Ajith

    2016-01-01

    Objective. To evaluate the effects of diaphragmatic breathing exercises and flow and volume-oriented incentive spirometry on pulmonary function and diaphragm excursion in patients undergoing laparoscopic abdominal surgery. Methodology. We selected 260 patients posted for laparoscopic abdominal surgery and they were block randomization as follows: 65 patients performed diaphragmatic breathing exercises, 65 patients performed flow incentive spirometry, 65 patients performed volume incentive spirometry, and 65 patients participated as a control group. All of them underwent evaluation of pulmonary function with measurement of Forced Vital Capacity (FVC), Forced Expiratory Volume in the first second (FEV1), Peak Expiratory Flow Rate (PEFR), and diaphragm excursion measurement by ultrasonography before the operation and on the first and second postoperative days. With the level of significance set at p < 0.05. Results. Pulmonary function and diaphragm excursion showed a significant decrease on the first postoperative day in all four groups (p < 0.001) but was evident more in the control group than in the experimental groups. On the second postoperative day pulmonary function (Forced Vital Capacity) and diaphragm excursion were found to be better preserved in volume incentive spirometry and diaphragmatic breathing exercise group than in the flow incentive spirometry group and the control group. Pulmonary function (Forced Vital Capacity) and diaphragm excursion showed statistically significant differences between volume incentive spirometry and diaphragmatic breathing exercise group (p < 0.05) as compared to that flow incentive spirometry group and the control group. Conclusion. Volume incentive spirometry and diaphragmatic breathing exercise can be recommended as an intervention for all patients pre- and postoperatively, over flow-oriented incentive spirometry for the generation and sustenance of pulmonary function and diaphragm excursion in the management of laparoscopic

  14. Effects of breathing exercises on lung capacity and muscle activities of elderly smokers.

    PubMed

    Jun, Hyun-Ju; Kim, Ki-Jong; Nam, Ki-Won; Kim, Chang-Heon

    2016-06-01

    [Purpose] Elderly smokers have a reduced chest diameter due to weakening of the respiratory muscles, and this results in decreased ventilation, leading to a vicious circle. Therefore, the present study investigated the effects of an intervention program to enhance the pulmonary function and muscle activity of elderly smokers. [Subjects and Methods] Participants were randomly assigned to one of two experimental groups or a control (CG) group. The experimental groups performed exercises three times per week for six weeks, whereas the CG performed no exercises. One of the experimental groups performed a Feedback Breathing Exercise (FBE) for 15 minutes, and the other repeated three sets of Balloon-Blowing Exercises (BBE) with sufficient rest of more than one minute between sets. [Results] In the experimental groups, FVC, FEV1/FVC, PEF and muscle activity of the rectus abdominis significantly improved after four weeks, but no significant differences were observed in FEV1 or VC after six weeks. [Conclusion] The results show that FBE and BBE improved the pulmonary functions of elderly smokers, demonstrating the potential benefits of the development of various training methods using balloons, and group programs, including recreational factors, for increasing respiratory muscles strength.

  15. Effects of breathing exercises on lung capacity and muscle activities of elderly smokers

    PubMed Central

    Jun, Hyun-Ju; Kim, Ki-Jong; Nam, Ki-Won; Kim, Chang-Heon

    2016-01-01

    [Purpose] Elderly smokers have a reduced chest diameter due to weakening of the respiratory muscles, and this results in decreased ventilation, leading to a vicious circle. Therefore, the present study investigated the effects of an intervention program to enhance the pulmonary function and muscle activity of elderly smokers. [Subjects and Methods] Participants were randomly assigned to one of two experimental groups or a control (CG) group. The experimental groups performed exercises three times per week for six weeks, whereas the CG performed no exercises. One of the experimental groups performed a Feedback Breathing Exercise (FBE) for 15 minutes, and the other repeated three sets of Balloon-Blowing Exercises (BBE) with sufficient rest of more than one minute between sets. [Results] In the experimental groups, FVC, FEV1/FVC, PEF and muscle activity of the rectus abdominis significantly improved after four weeks, but no significant differences were observed in FEV1 or VC after six weeks. [Conclusion] The results show that FBE and BBE improved the pulmonary functions of elderly smokers, demonstrating the potential benefits of the development of various training methods using balloons, and group programs, including recreational factors, for increasing respiratory muscles strength. PMID:27390394

  16. The effect of climbing Mount Everest on spleen contraction and increase in hemoglobin concentration during breath holding and exercise.

    PubMed

    Engan, Harald K; Lodin-Sundström, Angelica; Schagatay, Fanny; Schagatay, Erika

    2014-04-01

    Release of stored red blood cells resulting from spleen contraction improves human performance in various hypoxic situations. This study determined spleen volume resulting from two contraction-evoking stimuli: breath holding and exercise before and after altitude acclimatization during a Mount Everest ascent (8848 m). Eight climbers performed the following protocol before and after the climb: 5 min ambient air respiration at 1370 m during rest, 20 min oxygen respiration, 20 min ambient air respiration at 1370 m, three maximal-effort breath holds spaced by 2 min, 10 min ambient air respiration, 5 min of cycling at 100 W, and finally 10 min ambient air respiration. We measured spleen volume by ultrasound and capillary hemoglobin (HB) concentration after each exposure, and heart rate (HR) and arterial oxygen saturation (Sao2) continuously. Mean (SD) baseline spleen volume was unchanged at 213 (101) mL before and 206 (52) mL after the climb. Before the climb, spleen volume was reduced to 184 (83) mL after three breath holds, and after the climb three breath holds resulted in a spleen volume of 132 (26) mL (p=0.032). After exercise, the preclimb spleen volume was 186 (89) mL vs. 112 (389) mL) after the climb (p=0.003). Breath hold duration and cardiovascular responses were unchanged after the climb. We concluded that spleen contraction may be enhanced by altitude acclimatization, probably reflecting both the acclimatization to chronic hypoxic exposure and acute hypoxia during physical work.

  17. Decreased exercise capacity and sleep-disordered breathing in patients with hypertrophic cardiomyopathy.

    PubMed

    Konecny, Tomas; Geske, Jeffrey B; Ludka, Ondrej; Orban, Marek; Brady, Peter A; Abudiab, Muaz M; Albuquerque, Felipe N; Placek, Alexander; Kara, Tomas; Sahakyan, Karine R; Gersh, Bernard J; Tajik, A Jamil; Allison, Thomas G; Ommen, Steve R; Somers, Virend K

    2015-06-01

    Mechanisms of decreased exercise capacity in patients with hypertrophic cardiomyopathy (HCM) are not well understood. Sleep-disordered breathing (SDB) is a highly prevalent but treatable disorder in patients with HCM. The role of comorbid SDB in the attenuated exercise capacity in HCM has not been studied previously. Overnight oximetry, cardiopulmonary exercise testing, and echocardiographic studies were performed in consecutive patients with HCM seen at the Mayo Clinic. SDB was considered present if the oxygen desaturation index (number of ≥ 4% desaturations/h) was ≥ 10. Peak oxygen consumption (VO2 peak) (the most reproducible and prognostic measure of cardiovascular fitness) was then correlated with the presence and severity of SDB. A total of 198 patients with HCM were studied (age, 53 ± 16 years; 122 men), of whom 32% met the criteria for the SDB diagnosis. Patients with SDB had decreased VO2 peak compared with those without SDB (16 mL O2/kg/min vs 21 mL O2/kg/min, P < .001). SDB remained significantly associated with VO2 peak after accounting for confounding clinical variables (P < .001) including age, sex, BMI, atrial fibrillation, and coronary artery disease. In patients with HCM, the presence of SDB is associated with decreased VO2 peak. SDB may represent an important and potentially modifiable contributor to impaired exercise tolerance in this unique population.

  18. Effect of wearing personal protective clothing and self-contained breathing apparatus on heart rate, temperature and oxygen consumption during stepping exercise and live fire training exercises.

    PubMed

    Bruce-Low, S S; Cotterrell, D; Jones, G E

    2007-01-15

    Fire fighter breathing apparatus instructors (BAIs) must possess the ability to respond to both the extrinsic stress of a high temperature environment and the intrinsic stress from wearing personal protective equipment (PPE) and self-contained breathing apparatus (SCBA), repeatedly and regularly, whilst training recruits in live fire training exercises (LFTEs). There are few previous investigations on BAIs in hot environments such as LFTEs, since the main research focus has been on regular fire fighters undertaking exercises in temperate or fire conditions at a moderate to high exercise intensity. In this study, the intrinsic cardiovascular stress effects of wearing PPE + SCBA were first investigated using a step test whilst wearing gym kit (control), weighted gym kit (a rucksack weighted to the equivalent of PPE + SCBA) and full PPE + SCBA (weight plus the effects of protective clothing). The extrinsic effects of the very hot environment were investigated in BIAs in LFTEs compared to mock fire training exercises (MFTEs), where the fire was not ignited. There was an increase in heart rate due to the modest workload imposed on the BAIs through carrying out the MFTEs (25.0 (18.7)%) compared to resting. However, when exposed to fire during the LFTEs, heat storage appears to be significant as the heart rate increased by up to 39.8 (+/-20.1)% over that of the mock LFTEs at temperate conditions. Thus, being able to dissipate heat from the PPE is particularly important in reducing the cardiovascular responses for BAIs during LFTEs.

  19. Health Impacts of Yoga and Pranayama: A State-of-the-Art Review

    PubMed Central

    Sengupta, Pallav

    2012-01-01

    Thousands of years ago yoga originated in India, and in present day and age, an alarming awareness was observed in health and natural remedies among people by yoga and pranayama which has been proven an effective method for improving health in addition to prevention and management of diseases. With increasing scientific research in yoga, its therapeutic aspects are also being explored. Yoga is reported to reduce stress and anxiety, improves autonomic functions by triggering neurohormonal mechanisms by the suppression of sympathetic activity, and even, now-a-days, several reports suggested yoga is beneficial for physical health of cancer patients. Such global recognition of yoga also testifies to India's growing cultural influence. PMID:22891145

  20. Influence of forward leaning and incentive spirometry on inspired volumes and inspiratory electromyographic activity during breathing exercises in healthy subjects.

    PubMed

    Santos, Thalita Vilaboim; Ruas, Gualberto; Sande de Souza, Luciane Aparecida Pascucci; Volpe, Marcia Souza

    2012-12-01

    Breathing exercises (BE), incentive spirometry and positioning are considered treatment modalities to achieve lung re-expansion. This study evaluated the influence of incentive spirometry and forward leaning on inspired tidal volumes (V(T)) and electromyographic activity of inspiratory muscles during BE. Four modalities of exercises were investigated: deep breathing, spirometry using both flow and volume-oriented devices, and volume-oriented spirometry after modified verbal instruction. Twelve healthy subjects aged 22.7 ± 2.1 years were studied. Surface electromyography activity of diaphragm, external intercostals, sternocleidomastoid and scalenes was recorded. Comparisons among the three types of exercises, without considering spirometry after modified instruction, showed that electromyographic activity and V(T) were lower during volume-oriented spirometry (p = 0.000, p = 0.054, respectively). Forward leaning resulted in a lower V(T) when compared to upright sitting (p = 0.000), but electromyographic activity was not different (p = 0.606). Inspired V(T) and electromyographic activity were higher during volume-oriented spirometry performed after modified instruction when compared with the flow-oriented device (p = 0.027, p = 0.052, respectively). In conclusion BE using volume-oriented spirometry before modified instruction resulted in a lower work of breathing as a result of a lower V(T) and was not a consequence of the device type used. Forward leaning might not be assumed by healthy subjects during situations of augmented respiratory demand. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Decreased Exercise Capacity and Sleep-Disordered Breathing in Patients With Hypertrophic Cardiomyopathy

    PubMed Central

    Konecny, Tomas; Geske, Jeffrey B.; Ludka, Ondrej; Orban, Marek; Brady, Peter A.; Abudiab, Muaz M.; Albuquerque, Felipe N.; Placek, Alexander; Kara, Tomas; Sahakyan, Karine R.; Gersh, Bernard J.; Tajik, A. Jamil; Allison, Thomas G.; Ommen, Steve R.

    2015-01-01

    BACKGROUND: Mechanisms of decreased exercise capacity in patients with hypertrophic cardiomyopathy (HCM) are not well understood. Sleep-disordered breathing (SDB) is a highly prevalent but treatable disorder in patients with HCM. The role of comorbid SDB in the attenuated exercise capacity in HCM has not been studied previously. METHODS: Overnight oximetry, cardiopulmonary exercise testing, and echocardiographic studies were performed in consecutive patients with HCM seen at the Mayo Clinic. SDB was considered present if the oxygen desaturation index (number of ≥ 4% desaturations/h) was ≥ 10. Peak oxygen consumption (V.o2peak) (the most reproducible and prognostic measure of cardiovascular fitness) was then correlated with the presence and severity of SDB. RESULTS: A total of 198 patients with HCM were studied (age, 53 ± 16 years; 122 men), of whom 32% met the criteria for the SDB diagnosis. Patients with SDB had decreased V.o2peak compared with those without SDB (16 mL O2/kg/min vs 21 mL O2/kg/min, P < .001). SDB remained significantly associated with V.o2peak after accounting for confounding clinical variables (P < .001) including age, sex, BMI, atrial fibrillation, and coronary artery disease. CONCLUSIONS: In patients with HCM, the presence of SDB is associated with decreased V.o2peak. SDB may represent an important and potentially modifiable contributor to impaired exercise tolerance in this unique population. PMID:25633371

  2. Calculation algorithms for breath-by-breath alveolar gas exchange: the unknowns!

    PubMed

    Golja, Petra; Cettolo, Valentina; Francescato, Maria Pia

    2018-06-25

    Several papers (algorithm papers) describe computational algorithms that assess alveolar breath-by-breath gas exchange by accounting for changes in lung gas stores. It is unclear, however, if the effects of the latter are actually considered in literature. We evaluated dissemination of algorithm papers and the relevant provided information. The list of documents investigating exercise transients (in 1998-2017) was extracted from Scopus database. Documents citing the algorithm papers in the same period were analyzed in full text to check consistency of the relevant information provided. Less than 8% (121/1522) of documents dealing with exercise transients cited at least one algorithm paper; the paper of Beaver et al. (J Appl Physiol 51:1662-1675, 1981) was cited most often, with others being cited tenfold less. Among the documents citing the algorithm paper of Beaver et al. (J Appl Physiol 51:1662-1675, 1981) (N = 251), only 176 cited it for the application of their algorithm/s; in turn, 61% (107/176) of them stated the alveolar breath-by-breath gas exchange measurement, but only 1% (1/107) of the latter also reported the assessment of volunteers' functional residual capacity, a crucial parameter for the application of the algorithm. Information related to gas exchange was provided consistently in the methods and in the results in 1 of the 107 documents. Dissemination of algorithm papers in literature investigating exercise transients is by far narrower than expected. The information provided about the actual application of gas exchange algorithms is often inadequate and/or ambiguous. Some guidelines are provided that can help to improve the quality of future publications in the field.

  3. Oral Breathing Challenge in Participants with Vocal Attrition

    ERIC Educational Resources Information Center

    Sivasankar, Mahalakshmi; Fisher, Kimberly V.

    2003-01-01

    Vocal folds undergo osmotic challenge by mouth breathing during singing, exercising, and loud speaking. Just 15 min of obligatory oral breathing, to dry the vocal folds, increases phonation threshold pressure (P[subscript th]) and expiratory vocal effort in healthy speakers (M. Sivasankar & K. Fisher, 2002). We questioned whether oral breathing is…

  4. Changes in cardiac output during swimming and aquatic hypoxia in the air-breathing Pacific tarpon.

    PubMed

    Clark, T D; Seymour, R S; Christian, K; Wells, R M G; Baldwin, J; Farrell, A P

    2007-11-01

    Pacific tarpon (Megalops cyprinoides) use a modified gas bladder as an air-breathing organ (ABO). We examined changes in cardiac output (V(b)) associated with increases in air-breathing that accompany exercise and aquatic hypoxia. Juvenile (0.49 kg) and adult (1.21 kg) tarpon were allowed to recover in a swim flume at 27 degrees C after being instrumented with a Doppler flow probe around the ventral aorta to monitor V(b) and with a fibre-optic oxygen sensor in the ABO to monitor air-breathing frequency. Under normoxic conditions and in both juveniles and adults, routine air-breathing frequency was 0.03 breaths min(-1) and V(b) was about 15 mL min(-1) kg(-1). Normoxic exercise (swimming at about 1.1 body lengths s(-1)) increased air-breathing frequency by 8-fold in both groups (reaching 0.23 breaths min(-1)) and increased V(b) by 3-fold for juveniles and 2-fold for adults. Hypoxic exposure (2 kPa O2) at rest increased air-breathing frequency 19-fold (to around 0.53 breaths min(-1)) in both groups, and while V(b) again increased 3-fold in resting juvenile fish, V(b) was unchanged in resting adult fish. Exercise in hypoxia increased air-breathing frequency 35-fold (to 0.95 breaths min(-1)) in comparison with resting normoxic fish. While juvenile fish increased V(b) nearly 2-fold with exercise in hypoxia, adult fish maintained the same V(b) irrespective of exercise state and became agitated in comparison. These results imply that air-breathing during exercise and hypoxia can benefit oxygen delivery, but to differing degrees in juvenile and adult tarpon. We discuss this difference in the context of myocardial oxygen supply.

  5. The effect of mouth breathing on exercise induced fall in lung function in children with allergic asthma and rhinitis.

    PubMed

    Turkalj, Mirjana; Živković, Jelena; Lipej, Marcel; Bulat Lokas, Sandra; Erceg, Damir; Anzić, Srđan Ante; Magdić, Robert; Plavec, Davor

    2016-07-01

    Exercise induced bronchospasm (EIB) represents a common feature of childhood asthma which is most commonly revealed during free running. On the other hand aerobic exercise shows significant beneficial effects in asthmatics especially on the reduction of the level of systemic inflammation and is recommended as part of its treatment. The aim of this study was to test how mandatory mouth breathing influences the exercise induced level of decrease in lung function according to the level of severity of allergic rhinitis (AR). Free 6-minute running test preceded and followed by spirometry done with and without a nose clip a day apart was conducted in 55 children with moderate persistent asthma and AR. Children were divided into two groups according to the severity of nasal symptoms. There was a greater fall in forced expiratory volume in one second after exercise with a nose clip in children with less nasal symptoms than in children with more nasal symptoms (mean ± SD; -5.28 (7.91) vs. -0.08 (4.58), p = 0.0228) compared to testing without the nose clip (mean ± SD; LNS, -1.31 ± 3.89%, p = 0.2408; MNS, -1.47 ± 3.68%, p = 0.2883). Our results show that regular mouth breathing due to nasal congestion may lessen the degree of EIB in patients with persistent AR and allergic asthma. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Effect of continuous negative-pressure breathing on skin blood flow during exercise in a hot environment.

    PubMed

    Nagashima, K; Nose, H; Takamata, A; Morimoto, T

    1998-06-01

    To assess the impact of continuous negative-pressure breathing (CNPB) on the regulation of skin blood flow, we measured forearm blood flow (FBF) by venous-occlusion plethysmography and laser-Doppler flow (LDF) at the anterior chest during exercise in a hot environment (ambient temperature = 30 degreesC, relative humidity = approximately 30%). Seven male subjects exercised in the upright position at an intensity of 60% peak oxygen consumption rate for 40 min with and without CNPB after 20 min of exercise. The esophageal temperature (Tes) in both conditions increased to 38.1 degreesC by the end of exercise, without any significant differences between the two trials. Mean arterial pressure (MAP) increased by approximately 15 mmHg by 8 min of exercise, without any significant difference between the two trials before CNPB. However, CNPB reduced MAP by approximately 10 mmHg after 24 min of exercise (P < 0.05). The increase in FBF and LDF in the control condition leveled off after 18 min of exercise above a Tes of 37.7 degreesC, whereas in the CNPB trial the increase continued, with a rise in Tes despite the decrease in MAP. These results suggest that CNPB enhances vasodilation of skin above a Tes of approximately 38 degrees C by stretching intrathoracic baroreceptors such as cardiopulmonary baroreceptors.

  7. Neural control of breathing and CO2 homeostasis

    PubMed Central

    Guyenet, P.G.; Bayliss, D.A

    2015-01-01

    Summary Recent advances have clarified how the brain detects CO2 to regulate breathing (central respiratory chemoreception). These mechanisms are reviewed and their significance is presented in the general context of CO2/pH homeostasis through breathing. At rest, respiratory chemoreflexes initiated at peripheral and central sites mediate rapid stabilization of arterial PCO2 and pH. Specific brainstem neurons (e.g., retrotrapezoid nucleus, RTN; serotonergic) are activated by PCO2 and stimulate breathing. RTN neurons detect CO2 via intrinsic proton receptors (TASK-2, GPR4), synaptic input from peripheral chemoreceptors and signals from astrocytes. Respiratory chemoreflexes are arousal state-dependent whereas chemoreceptor stimulation produces arousal. When abnormal, these interactions lead to sleep-disordered breathing. During exercise, “central command” and reflexes from exercising muscles produce the breathing stimulation required to maintain arterial PCO2 and pH despite elevated metabolic activity. The neural circuits underlying central command and muscle afferent control of breathing remain elusive and represent a fertile area for future investigation. PMID:26335642

  8. Effect of breathing oxygen-enriched air on exercise performance in patients with precapillary pulmonary hypertension: randomized, sham-controlled cross-over trial.

    PubMed

    Ulrich, Silvia; Hasler, Elisabeth D; Saxer, Stéphanie; Furian, Michael; Müller-Mottet, Séverine; Keusch, Stephan; Bloch, Konrad E

    2017-04-14

    The purpose of the current trial was to test the hypothesis that breathing oxygen-enriched air increases exercise performance of patients with pulmonary arterial or chronic thrombo-embolic pulmonary hypertension (PAH/CTEPH) and to investigate involved mechanisms. Twenty-two patients with PAH/CTEPH, eight women, means ± SD 61 ± 14 years, resting mPAP 35 ± 9mmHg, PaO2 ambient air >7.3 kPa, underwent four bicycle ergospirometries to exhaustion on different days, while breathing oxygen-enriched (FiO2 0.50, hyperoxia) or ambient air (FiO2 0.21, normoxia) using progressively increased or constant load protocols (with 75% maximal work rate under FiO2 0.21), according to a randomized, sham-controlled, single-blind, cross-over design. ECG, pulmonary gas-exchange, arterial blood gases, cerebral and quadriceps muscle tissue oxygenation (CTO and QMTO) by near-infrared spectroscopy were measured. In ramp exercise, maximal work rate increased from 113 ± 38 W with normoxia to 132 ± 48 W with hyperoxia, mean difference 19.7 (95% CI 10.5-28.9) W, P < 0.001. Constant load exercise endurance increased from 571 ± 443 to 1242 ± 514 s, mean difference 671 (95% CI 392-951) s, P < 0.001. At end-exercise with hyperoxia PaO2, CTO, QMTO, and PaCO2 were increased, and ventilatory equivalents for CO2 were reduced while the physiological dead space/tidal volume ratio remained unchanged. In patients with PAH/CTEPH, breathing oxygen-enriched air provides major increases in exercise performance. This is related to an improved arterial oxygenation that promotes oxygen availability in muscles and brain and to a reduction of the excessive ventilatory response to exercise thereby enhancing ventilatory efficiency. Patients with PAH/CTEPH may therefore benefit from oxygen therapy during daily physical activities and training. clinicaltrials.gov Identifier: NCT01748474. Published on behalf of the European Society of Cardiology. All rights reserved. © The

  9. Immune cell response to strenuous resistive breathing: comparison with whole body exercise and the effects of antioxidants

    PubMed Central

    Karatza, Maria-Helena; Vasileiou, Spyridoula; Katsaounou, Paraskevi; Mastora, Zafeiria

    2018-01-01

    Background/hypothesis Whole body exercise (WBE) changes lymphocyte subset percentages in peripheral blood. Resistive breathing, a hallmark of diseases of airway obstruction, is a form of exercise for the inspiratory muscles. Strenuous muscle contractions induce oxidative stress that may mediate immune alterations following exercise. We hypothesized that inspiratory resistive breathing (IRB) alters peripheral blood lymphocyte subsets and that oxidative stress mediates lymphocyte subpopulation alterations following both WBE and IRB. Patients and methods Six healthy nonathletes performed two WBE and two IRB sessions for 45 minutes at 70% of VO2 maximum and 70% of maximum inspiratory pressure (Pimax), respectively, before and after the administration of antioxidants (vitamins E, A, and C for 75 days, allopurinol for 30 days, and N-acetylcysteine for 3 days). Blood was drawn at baseline, at the end of each session, and 2 hours into recovery. Lymphocyte subsets were determined by flow cytometry. Results Before antioxidant supplementation at both WBE end and IRB end, the natural killer cell percentage increased, the T helper cell (CD3+ CD4+) percentage was reduced, and the CD4/CD8 ratio was depressed, a response which was abolished by antioxidants only after IRB. Furthermore, at IRB end, antioxidants promoted CD8+ CD38+ and blunted cytotoxic T-cell percentage increase. CD8+ CD45RA+ cell percentage changes were blunted after antioxidant supplementation in both WBE and IRB. Conclusion We conclude that IRB produces (as WBE) changes in peripheral blood lymphocyte subsets and that oxidative stress is a major stimulus predominantly for IRB-induced lymphocyte subset alterations. PMID:29445271

  10. Immune cell response to strenuous resistive breathing: comparison with whole body exercise and the effects of antioxidants.

    PubMed

    Asimakos, Andreas; Toumpanakis, Dimitrios; Karatza, Maria-Helena; Vasileiou, Spyridoula; Katsaounou, Paraskevi; Mastora, Zafeiria; Vassilakopoulos, Theodoros

    2018-01-01

    Whole body exercise (WBE) changes lymphocyte subset percentages in peripheral blood. Resistive breathing, a hallmark of diseases of airway obstruction, is a form of exercise for the inspiratory muscles. Strenuous muscle contractions induce oxidative stress that may mediate immune alterations following exercise. We hypothesized that inspiratory resistive breathing (IRB) alters peripheral blood lymphocyte subsets and that oxidative stress mediates lymphocyte subpopulation alterations following both WBE and IRB. Six healthy nonathletes performed two WBE and two IRB sessions for 45 minutes at 70% of VO 2 maximum and 70% of maximum inspiratory pressure (Pi max ), respectively, before and after the administration of antioxidants (vitamins E, A, and C for 75 days, allopurinol for 30 days, and N-acetylcysteine for 3 days). Blood was drawn at baseline, at the end of each session, and 2 hours into recovery. Lymphocyte subsets were determined by flow cytometry. Before antioxidant supplementation at both WBE end and IRB end, the natural killer cell percentage increased, the T helper cell (CD3+ CD4+) percentage was reduced, and the CD4/CD8 ratio was depressed, a response which was abolished by antioxidants only after IRB. Furthermore, at IRB end, antioxidants promoted CD8+ CD38+ and blunted cytotoxic T-cell percentage increase. CD8+ CD45RA+ cell percentage changes were blunted after antioxidant supplementation in both WBE and IRB. We conclude that IRB produces (as WBE) changes in peripheral blood lymphocyte subsets and that oxidative stress is a major stimulus predominantly for IRB-induced lymphocyte subset alterations.

  11. The effect of consistent practice of yogic breathing exercises on the human cardiorespiratory system.

    PubMed

    McKay, Joshua A A; McCulloch, Cara L; Querido, Jordan S; Foster, Glen E; Koehle, Michael S; Sheel, A William

    2016-11-01

    The purpose of this investigation was to quantify the cardiovascular, respiratory, and cerebrovascular effects of two common yogic breathing exercises (YBE): bhastrika and chaturbhuj; and to determine the effect of their consistent practice on chemosensitivity. The first study was cross-sectional and compared experienced yogic breathers (YB) with matched controls; whereas the second was a 10-week longitudinal training study. The results support four major findings. First chaturbhuj resulted in a hypoxic stimulus in experienced YB compared to control [end-tidal oxygen tension (P ET O 2 ), YB: 77.5±5.7mmHg, P<0.05; control: 94.3±12.0mmHg]. Second, performance of chaturbhuj resulted in cyclic oscillations of mean arterial pressure (MAP), heart rate (HR), and middle cerebral artery velocity (MCAv) consistent with the phases of respiration. Third, post training, performance of bhastrika reduced P ET O 2 (end breath-hold: 90.8 8±12.1mmHg) compared to rest (100.1±7.4, P<0.05); it also resulted in significantly increased MAP at end breath-hold (96.7±13.0mmHg) compared to rest (83.0±6.6mmHg, P<0.05) and significantly increased mean MCAv (end breath-hold: 87.4±23.0cm/s, P<0.05; rest: 55.8±26.3cm/s). Fourth, experienced YB had lower central chemosensitivity than controls (YB: 3.4±0.4; control: 4.6±1.2L/min/mmHg; P<0.05). In conclusion, YBE significantly alter end-tidal gases, resulting in complex oscillations of cardiovascular and cerebrovascular variables, and if practiced consistently, may reduce chemosensitivity. Copyright © 2016. Published by Elsevier B.V.

  12. Slow loaded breathing training improves blood pressure, lung capacity and arm exercise endurance for older people with treated and stable isolated systolic hypertension.

    PubMed

    Ublosakka-Jones, Chulee; Tongdee, Phailin; Pachirat, Orathai; Jones, David A

    2018-03-28

    Hypertension and reduced lung function are important features of aging. Slow loaded breathing training reduces resting blood pressure and the question is whether this can also improve lung function. Thirty-two people (67 ± 5 years, 16 male) with controlled isolated systolic hypertension undertook an eight weeks randomised controlled training trial with an inspiratory load of 25% maximum inspiratory pressure (MIP) at 6 breaths per minute (slow loaded breathing; SLB) or deep breathing control (CON). Outcome measures were resting blood pressure (BP) and heart rate; MIP; lung capacity; chest and abdominal expansion; arm cranking exercise endurance at 50% heart rate reserve. Home based measurement of resting systolic BP decreased by 20 mm Hg (15 to 25) (Mean and 95%CI) for SLB and by 5 mm Hg (1 to 7) for CON. Heart rate and diastolic BP also decreased significantly for SLB but not CON. MIP increased by 15.8 cm H 2 O (11.8 to 19.8) and slow vital capacity by 0.21 L (0.15 to 0.27) for SLB but not for CON. Chest and abdominal expansion increased by 2.3 cm (2.05 to 2.55) and 2.5 cm (2.15 to 2.85), respectively for SLB and by 0.5 cm (0.26 to 0.74) and 1.7 cm (1.32 to 2.08) for CON. Arm exercise time increased by 4.9 min (3.65 to 5.15) for SLB with no significant change for CON. Slow inspiratory muscle training is not only effective in reducing resting BP, even in older people with well controlled isolated systolic hypertension but also increases inspiratory muscle strength, lung capacity and arm exercise duration. Copyright © 2018. Published by Elsevier Inc.

  13. Validation of a new mixing chamber system for breath-by-breath indirect calorimetry.

    PubMed

    Kim, Do-Yeon; Robergs, Robert Andrew

    2012-02-01

    Limited validation research exists for applications of breath-by-breath systems of expired gas analysis indirect calorimetry (EGAIC) during exercise. We developed improved hardware and software for breath-by-breath indirect calorimetry (NEW) and validated this system as well as a commercial system (COM) against 2 methods: (i) mechanical ventilation with known calibration gas, and (ii) human subjects testing for 5 min each at rest and cycle ergometer exercise at 100 and 175 W. Mechanical calibration consisted of medical grade and certified calibration gas ((4.95% CO(2), 12.01% O(2), balance N(2)), room air (20.95% O(2), 0.03% CO(2), balance N(2)), and 100% nitrogen), and an air flow turbine calibrated with a 3-L calibration syringe. Ventilation was mimicked manually using complete 3-L calibration syringe manouvers at a rate of 10·min(-1) from a Douglas bag reservoir of calibration gas. The testing of human subjects was completed in a counterbalanced sequence based on 5 repeated tests of all conditions for a single subject. Rest periods of 5 and 10 min followed the 100 and 175 W conditions, respectively. COM and NEW had similar accuracy when tested with known ventilation and gas fractions. However, during human subjects testing COM significantly under-measured carbon dioxide gas fractions, over-measured oxygen gas fractions and minute ventilation, and resulted in errors to each of oxygen uptake, carbon dioxide output, and respiratory exchange ratio. These discrepant findings reveal that controlled ventilation and gas fractions are insufficient to validate breath-by-breath, and perhaps even time-averaged, systems of EGAIC. The errors of the COM system reveal the need for concern over the validity of commercial systems of EGAIC.

  14. Effect of Yogic Breathing on Accommodate Braille Version of Six-letter Cancellation Test in Students with Visual Impairment.

    PubMed

    Pradhan, Balaram; Mohanty, Soubhagyalaxmi; Hankey, Alex

    2018-01-01

    Attentional processes tend to be less well developed in the visually impaired, who require special training to develop them fully. Yogic breathing which alters the patterns of respiration has been shown to enhance attention skills. Letter cancellation tests are well-established tools to measure attention and attention span. Here, a modified Braille version of the six-letter cancellation test (SLCT) was used for students with visual impairment (VI). This study aimed to assess the immediate effects of Bhramari Pranayama (BhPr) and breath awareness (BA) on students with VI. This study was a self-as-control study held on 2 consecutive days, on 19 participants (8 males, 11 females), with a mean age of 15.89 ± 1.59 years, randomized into two groups. On the 1 st day, Group 1 performed 10 min breath awareness and Group 2 performed Bhramari ; on the 2 nd day, practices were reversed. Assessments used a SLCT specially adapted for the visually impaired before and after each session. The Braille letter cancellation test was successfully taken by 19 students. Scores significantly improved after both techniques for each student following practices on both days ( P < 0.001). BhPr may have more effect on attention performance than BA as wrong scores significantly increased following BA ( P < 0.05), but the increase in the score after Bhramari was not significant. Despite the small sample size improvement in attentional processes by both yoga breathing techniques was robust. Attentional skills were definitely enhanced. Long-term practice should be studied.

  15. Effect of Yogic Breathing on Accommodate Braille Version of Six-letter Cancellation Test in Students with Visual Impairment

    PubMed Central

    Pradhan, Balaram; Mohanty, Soubhagyalaxmi; Hankey, Alex

    2018-01-01

    Context: Attentional processes tend to be less well developed in the visually impaired, who require special training to develop them fully. Yogic breathing which alters the patterns of respiration has been shown to enhance attention skills. Letter cancellation tests are well-established tools to measure attention and attention span. Here, a modified Braille version of the six-letter cancellation test (SLCT) was used for students with visual impairment (VI). Aim: This study aimed to assess the immediate effects of Bhramari Pranayama (BhPr) and breath awareness (BA) on students with VI. Methods: This study was a self-as-control study held on 2 consecutive days, on 19 participants (8 males, 11 females), with a mean age of 15.89 ± 1.59 years, randomized into two groups. On the 1st day, Group 1 performed 10 min breath awareness and Group 2 performed Bhramari; on the 2nd day, practices were reversed. Assessments used a SLCT specially adapted for the visually impaired before and after each session. Results: The Braille letter cancellation test was successfully taken by 19 students. Scores significantly improved after both techniques for each student following practices on both days (P < 0.001). BhPr may have more effect on attention performance than BA as wrong scores significantly increased following BA (P < 0.05), but the increase in the score after Bhramari was not significant. Conclusions: Despite the small sample size improvement in attentional processes by both yoga breathing techniques was robust. Attentional skills were definitely enhanced. Long-term practice should be studied. PMID:29755219

  16. Relationship between Musical Characteristics and Temporal Breathing Pattern in Piano Performance.

    PubMed

    Sakaguchi, Yutaka; Aiba, Eriko

    2016-01-01

    Although there is growing evidence that breathing is modulated by various motor and cognitive activities, the nature of breathing in musical performance has been little explored. The present study examined the temporal breath pattern in piano performance, aiming to elucidate how breath timing is related to musical organization/events and performance. In the experiments, the respiration of 15 professional and amateur pianists, playing 10 music excerpts in total (from four-octave C major scale, Hanon's exercise, J. S. Bach's Invention, Mozart's Sonatas, and Debussy's Clair de lune), was monitored by capnography. The relationship between breathing and musical characteristics was analyzed. Five major results were obtained. (1) Mean breath interval was shortened for excerpts in faster tempi. (2) Fluctuation of breath intervals was reduced for the pieces for finger exercise and those in faster tempi. Pianists showing large within-trial fluctuation also exhibited large inter-excerpt difference. (3) Inter-trial consistency of the breath patterns depended on the excerpts. Consistency was generally reduced for the excerpts that could be performed mechanically (i.e., pieces for finger exercise), but interestingly, one third of the participant showed consistent patterns for the simple scale, correlated with the ascending/descending sequences. (4) Pianists tended to exhale just after the music onsets, inhale at the rests, and inhibit inhale during the slur parts. There was correlation between breathing pattern and two-voice polyphonic structure for several participants. (5) Respiratory patterns were notably different among the pianists. Every pianist showed his or her own characteristic features commonly for various musical works. These findings suggest that breathing in piano performance depends not only on musical parameters and organization written in the score but also some pianist-dependent factors which might be ingrained to individual pianists.

  17. Relationship between Musical Characteristics and Temporal Breathing Pattern in Piano Performance

    PubMed Central

    Sakaguchi, Yutaka; Aiba, Eriko

    2016-01-01

    Although there is growing evidence that breathing is modulated by various motor and cognitive activities, the nature of breathing in musical performance has been little explored. The present study examined the temporal breath pattern in piano performance, aiming to elucidate how breath timing is related to musical organization/events and performance. In the experiments, the respiration of 15 professional and amateur pianists, playing 10 music excerpts in total (from four-octave C major scale, Hanon's exercise, J. S. Bach's Invention, Mozart's Sonatas, and Debussy's Clair de lune), was monitored by capnography. The relationship between breathing and musical characteristics was analyzed. Five major results were obtained. (1) Mean breath interval was shortened for excerpts in faster tempi. (2) Fluctuation of breath intervals was reduced for the pieces for finger exercise and those in faster tempi. Pianists showing large within-trial fluctuation also exhibited large inter-excerpt difference. (3) Inter-trial consistency of the breath patterns depended on the excerpts. Consistency was generally reduced for the excerpts that could be performed mechanically (i.e., pieces for finger exercise), but interestingly, one third of the participant showed consistent patterns for the simple scale, correlated with the ascending/descending sequences. (4) Pianists tended to exhale just after the music onsets, inhale at the rests, and inhibit inhale during the slur parts. There was correlation between breathing pattern and two-voice polyphonic structure for several participants. (5) Respiratory patterns were notably different among the pianists. Every pianist showed his or her own characteristic features commonly for various musical works. These findings suggest that breathing in piano performance depends not only on musical parameters and organization written in the score but also some pianist-dependent factors which might be ingrained to individual pianists. PMID:27516736

  18. Does the addition of deep breathing exercises to physiotherapy-directed early mobilisation alter patient outcomes following high-risk open upper abdominal surgery? Cluster randomised controlled trial.

    PubMed

    Silva, Y R; Li, S K; Rickard, M J F X

    2013-09-01

    To investigate whether the inclusion of deep breathing exercises in physiotherapy-directed early mobilisation confers any additional benefit in reducing postoperative pulmonary complications (PPCs) when patients are treated once daily after elective open upper abdominal surgery. This study also compared postoperative outcomes following early and delayed mobilisation. Cluster randomised controlled trial. Single-centre study in a teaching hospital. Eighty-six high-risk patients undergoing elective open upper abdominal surgery. Three groups: early mobilisation (Group A), early mobilisation plus breathing exercises (Group B), and delayed mobilisation (mobilised from third postoperative day) plus breathing exercises (Group C). PPCs and postoperative outcomes [number of days until discharge from physiotherapy, physiotherapy input and length of stay (LOS)]. There was no significant difference in PPCs between Groups A and B. The LOS for Group A {mean 10.7 [standard deviation (SD) 5.0] days} was significantly shorter than the LOS for Groups B [mean 16.7 (SD 9.7) days] and C [mean 15.2 (SD 9.8) days; P=0.036]. The greatest difference was between Groups A and B (mean difference -5.93, 95% confidence interval -10.22 to -1.65; P=0.008). Group C had fewer smokers (26%) and patients with chronic obstructive pulmonary disease (0%) compared with Group B (53% and 14%, respectively). This may have led to fewer PPCs in Group C, but the difference was not significant. Despite Group C having fewer PPCs and less physiotherapy input, the number of days until discharge from physiotherapy and LOS were similar to Group B. The addition of deep breathing exercises to physiotherapy-directed early mobilisation did not further reduce PPCs compared with mobility alone. PPCs can be reduced with once-daily physiotherapy if the patients are mobilised to a moderate level of exertion. Delayed mobilisation tended to increase physiotherapy input and the number of days until discharge from physiotherapy

  19. Exercise oscillatory breathing and increased ventilation to carbon dioxide production slope in heart failure: an unfavorable combination with high prognostic value.

    PubMed

    Guazzi, Marco; Arena, Ross; Ascione, Aniello; Piepoli, Massimo; Guazzi, Maurizio D

    2007-05-01

    Increased slope of exercise ventilation to carbon dioxide production (VE/VCO2) is an established prognosticator in patients with heart failure. Recently, the occurrence of exercise oscillatory breathing (EOB) has emerged as an additional strong indicator of survival. The aim of this study is to define the respective prognostic significance of these variables and whether excess risk may be identified when either respiratory disorder is present. In 288 stable chronic HF patients (average left ventricular ejection fraction, 33 +/- 13%) who underwent cardiopulmonary exercise testing, the prognostic relevance of VE/VCO2 slope, EOB, and peak VO2 was evaluated by multivariate Cox regression. During a mean interval of 28 +/- 13 months, 62 patients died of cardiac reasons. Thirty-five percent presented with EOB. Among patients exhibiting EOB, 54% had an elevated VE/VCO2 slope. The optimal threshold value for the VE/VCO2 slope identified by receiver operating characteristic analysis was < 36.2 or > or = 36.2 (sensitivity, 77%; specificity, 64%; P < .001). Univariate predictors of death included low left ventricular ejection fraction, low peak VO2, high VE/VCO2 slope, and EOB presence. Multivariate analysis selected EOB as the strongest predictor (chi2, 46.5; P < .001). The VE/VCO2 slope (threshold, < 36.2 or > or = 36.2) was the only other exercise test variable retained in the regression (residual chi2, 5.9; P = .02). The hazard ratio for subjects with EOB and a VE/VCO2 slope > or = 36.2 was 11.4 (95% confidence interval, 4.9-26.5; P < .001). These findings identify EOB as a strong survival predictor even more powerful than VE/VCO2 slope. Exercise oscillatory breathing presence does not necessarily imply an elevated VE/VCO2 slope, but combination of either both yields to a burden of risk remarkably high.

  20. A Disorder of Qi: Breathing Exercise as a Cure for Neurasthenia in Japan, 1900–1945

    PubMed Central

    Wu, Yu-Chuan

    2016-01-01

    Neurasthenia became a common disease and caused widespread concern in Japan at the turn of the twentieth century, whereas only a couple of decades earlier the term “nerve” had been unfamiliar, if not unknown, to many Japanese. By exploring the theories and practices of breathing exercise—one of the most popular treatments for neurasthenia at the time—this paper attempts to understand how people who practiced breathing exercises for their nervous ills perceived, conceived, and accordingly cared for their nerves. It argues that they understood “nerve” based on their existing conceptions of qi. Neurasthenia was for them a disorder of qi, although the qi had assumed modern appearances as blood and nervous current. The paper hopes to contribute to the understanding of how the concept of nerves has been accepted and assimilated in East Asia. It also points out the need to understand the varied cultures of nerves not only at the level of concept and metaphor, but also at the level of perception and experience. PMID:26363046

  1. Breathing pattern and chest wall volumes during exercise in patients with cystic fibrosis, pulmonary fibrosis and COPD before and after lung transplantation.

    PubMed

    Wilkens, H; Weingard, B; Lo Mauro, A; Schena, E; Pedotti, A; Sybrecht, G W; Aliverti, A

    2010-09-01

    Pulmonary fibrosis (PF), cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) often cause chronic respiratory failure (CRF). In order to investigate if there are different patterns of adaptation of the ventilatory pump in CRF, in three groups of lung transplant candidates with PF (n=9, forced expiratory volume in 1 s (FEV(1))=37+/-3% predicted, forced vital capacity (FVC)=32+/-2% predicted), CF (n=9, FEV(1)=22+/-3% predicted, FVC=30+/-3% predicted) and COPD (n=21, FEV(1)=21+/-1% predicted, FVC=46+/-2% predicted), 10 healthy controls and 16 transplanted patients, total and compartmental chest wall volumes were measured by opto-electronic plethysmography during rest and exercise. Three different breathing patterns were found during CRF in PF, CF and COPD. Patients with COPD were characterised by a reduced duty cycle at rest and maximal exercise (34+/-1%, p<0.001), while patients with PF and CF showed an increased breathing frequency (49+/-6 and 34+/-2/min, respectively) and decreased tidal volume (0.75+/-0.10 and 0.79+/-0.07 litres) (p<0.05). During exercise, end-expiratory chest wall and rib cage volumes increased significantly in patients with COPD and CF but not in those with PF. End-inspiratory volumes did not increase in CF and PF. The breathing pattern of transplanted patients was similar to that of healthy controls. There are three distinct patterns of CRF in patients with PF, CF and COPD adopted by the ventilatory pump to cope with the underlying lung disease that may explain why patients with PF and CF are prone to respiratory failure earlier than patients with COPD. After lung transplantation the chronic adaptations of the ventilatory pattern to advanced lung diseases are reversible and indicate that the main contributing factor is the lung itself rather than systemic effects of the disease.

  2. On the modeling of breath-by-breath oxygen uptake kinetics at the onset of high-intensity exercises: simulated annealing vs. GRG2 method.

    PubMed

    Bernard, Olivier; Alata, Olivier; Francaux, Marc

    2006-03-01

    Modeling in the time domain, the non-steady-state O2 uptake on-kinetics of high-intensity exercises with empirical models is commonly performed with gradient-descent-based methods. However, these procedures may impair the confidence of the parameter estimation when the modeling functions are not continuously differentiable and when the estimation corresponds to an ill-posed problem. To cope with these problems, an implementation of simulated annealing (SA) methods was compared with the GRG2 algorithm (a gradient-descent method known for its robustness). Forty simulated Vo2 on-responses were generated to mimic the real time course for transitions from light- to high-intensity exercises, with a signal-to-noise ratio equal to 20 dB. They were modeled twice with a discontinuous double-exponential function using both estimation methods. GRG2 significantly biased two estimated kinetic parameters of the first exponential (the time delay td1 and the time constant tau1) and impaired the precision (i.e., standard deviation) of the baseline A0, td1, and tau1 compared with SA. SA significantly improved the precision of the three parameters of the second exponential (the asymptotic increment A2, the time delay td2, and the time constant tau2). Nevertheless, td2 was significantly biased by both procedures, and the large confidence intervals of the whole second component parameters limit their interpretation. To compare both algorithms on experimental data, 26 subjects each performed two transitions from 80 W to 80% maximal O2 uptake on a cycle ergometer and O2 uptake was measured breath by breath. More than 88% of the kinetic parameter estimations done with the SA algorithm produced the lowest residual sum of squares between the experimental data points and the model. Repeatability coefficients were better with GRG2 for A1 although better with SA for A2 and tau2. Our results demonstrate that the implementation of SA improves significantly the estimation of most of these kinetic

  3. A wireless breathing-training support system for kinesitherapy.

    PubMed

    Tawa, Hiroki; Yonezawa, Yoshiharu; Maki, Hiromichi; Ogawa, Hidekuni; Ninomiya, Ishio; Sada, Kouji; Hamada, Shingo; Caldwell, W Morton

    2009-01-01

    We have developed a new wireless breathing-training support system for kinesitherapy. The system consists of an optical sensor, an accelerometer, a microcontroller, a Bluetooth module and a laptop computer. The optical sensor, which is attached to the patient's chest, measures chest circumference. The low frequency components of circumference are mainly generated by breathing. The optical sensor outputs the circumference as serial digital data. The accelerometer measures the dynamic acceleration force produced by exercise, such as walking. The microcontroller sequentially samples this force. The acceleration force and chest circumference are sent sequentially via Bluetooth to a physical therapist's laptop computer, which receives and stores the data. The computer simultaneously displays these data so that the physical therapist can monitor the patient's breathing and acceleration waveforms and give instructions to the patient in real time during exercise. Moreover, the system enables a quantitative training evaluation and calculation the volume of air inspired and expired by the lungs.

  4. With age a lower individual breathing reserve is associated with a higher maximal heart rate.

    PubMed

    Burtscher, Martin; Gatterer, Hannes; Faulhaber, Martin; Burtscher, Johannes

    2018-01-01

    Maximal heart rate (HRmax) is linearly declining with increasing age. Regular exercise training is supposed to partly prevent this decline, whereas sex and habitual physical activity do not. High exercise capacity is associated with a high cardiac output (HR x stroke volume) and high ventilatory requirements. Due to the close cardiorespiratory coupling, we hypothesized that the individual ventilatory response to maximal exercise might be associated with the age-related HRmax. Retrospective analyses have been conducted on the results of 129 consecutively performed routine cardiopulmonary exercise tests. The study sample comprised healthy subjects of both sexes of a broad range of age (20-86 years). Maximal values of power output, minute ventilation, oxygen uptake and heart rate were assessed by the use of incremental cycle spiroergometry. Linear multivariate regression analysis revealed that in addition to age the individual breathing reserve at maximal exercise was independently predictive for HRmax. A lower breathing reserve due to a high ventilatory demand and/or a low ventilatory capacity, which is more pronounced at a higher age, was associated with higher HRmax. Age explained the observed variance in HRmax by 72% and was improved to 83% when the variable "breathing reserve" was entered. The presented findings indicate an independent association between the breathing reserve at maximal exercise and maximal heart rate, i.e. a low individual breathing reserve is associated with a higher age-related HRmax. A deeper understanding of this association has to be investigated in a more physiological scenario. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Dysanapsis and the resistive work of breathing during exercise in healthy men and women.

    PubMed

    Dominelli, Paolo B; Molgat-Seon, Yannick; Bingham, Derek; Swartz, Philippa M; Road, Jeremy D; Foster, Glen E; Sheel, A William

    2015-11-15

    We asked if the higher work of breathing (Wb) during exercise in women compared with men is explained by biological sex. We created a statistical model that accounts for both the viscoelastic and the resistive components of the total Wb and independently compares the effects of biological sex. We applied the model to esophageal pressure-derived Wb values obtained during an incremental cycle test to exhaustion. Subjects were healthy men (n = 17) and women (n = 18) with a range of maximal aerobic capacities (V̇o2 max range: men = 40-68 and women = 39-60 ml·kg(-1)·min(-1)). We also calculated the dysanapsis ratio using measures of lung recoil and forced expiratory flow as index of airway caliber. By applying the model we found that the differences in the total Wb during exercise in women are due to a higher resistive Wb rather than viscoelastic Wb. We also found that the higher resistive Wb is independently explained by biological sex. To account for the known effect of lung volumes on the dysanapsis ratio we compared the sexes with an analysis of covariance procedures and found that when vital capacity was accounted for the adjusted mean dysanapsis ratio is statistically lower in women (0.17 vs. 0.25 arbitrary units; P < 0.05). Our collective findings suggest that innate sex-based differences may exist in human airways, which result in significant male-female differences in the Wb during exercise in healthy subjects. Copyright © 2015 the American Physiological Society.

  6. Double blind randomised controlled trial of two different breathing techniques in the management of asthma.

    PubMed

    Slader, C A; Reddel, H K; Spencer, L M; Belousova, E G; Armour, C L; Bosnic-Anticevich, S Z; Thien, F C K; Jenkins, C R

    2006-08-01

    Previous studies have shown that breathing techniques reduce short acting beta(2) agonist use and improve quality of life (QoL) in asthma. The primary aim of this double blind study was to compare the effects of breathing exercises focusing on shallow nasal breathing with those of non-specific upper body exercises on asthma symptoms, QoL, other measures of disease control, and inhaled corticosteroid (ICS) dose. This study also assessed the effect of peak flow monitoring on outcomes in patients using breathing techniques. After a 2 week run in period, 57 subjects were randomised to one of two breathing techniques learned from instructional videos. During the following 30 weeks subjects practised their exercises twice daily and as needed for relief of symptoms. After week 16, two successive ICS downtitration steps were attempted. The primary outcome variables were QoL score and daily symptom score at week 12. Overall there were no clinically important differences between the groups in primary or secondary outcomes at weeks 12 or 28. The QoL score remained unchanged (0.7 at baseline v 0.5 at week 28, p = 0.11 both groups combined), as did lung function and airway responsiveness. However, across both groups, reliever use decreased by 86% (p<0.0001) and ICS dose was reduced by 50% (p<0.0001; p>0.10 between groups). Peak flow monitoring did not have a detrimental effect on asthma outcomes. Breathing techniques may be useful in the management of patients with mild asthma symptoms who use a reliever frequently, but there is no evidence to favour shallow nasal breathing over non-specific upper body exercises.

  7. Implementing the awakening and breathing coordination, delirium monitoring/management, and early exercise/mobility bundle into everyday care: opportunities, challenges, and lessons learned for implementing the ICU Pain, Agitation, and Delirium Guidelines.

    PubMed

    Balas, Michele C; Burke, William J; Gannon, David; Cohen, Marlene Z; Colburn, Lois; Bevil, Catherine; Franz, Doug; Olsen, Keith M; Ely, E Wesley; Vasilevskis, Eduard E

    2013-09-01

    The awakening and breathing coordination, delirium monitoring/management, and early exercise/mobility bundle is an evidence-based interprofessional multicomponent strategy for minimizing sedative exposure, reducing duration of mechanical ventilation, and managing ICU-acquired delirium and weakness. The purpose of this study was to identify facilitators and barriers to awakening and breathing coordination, delirium monitoring/management, and early exercise/mobility bundle adoption and to evaluate the extent to which bundle implementation was effective, sustainable, and conducive to dissemination. Prospective, before-after, mixed-methods study. Five adult ICUs, one step-down unit, and a special care unit located in a 624-bed academic medical center : Interprofessional ICU team members at participating institution. In collaboration with the participating institution, we developed, implemented, and refined an awakening and breathing coordination, delirium monitoring/management, and early exercise/mobility bundle policy. Over the course of an 18-month period, all ICU team members were offered the opportunity to participate in numerous multimodal educational efforts. Three focus group sessions, three online surveys, and one educational evaluation were administered in an attempt to identify facilitators and barriers to bundle adoption. Factors believed to facilitate bundle implementation included: 1) the performance of daily, interdisciplinary, rounds; 2) engagement of key implementation leaders; 3) sustained and diverse educational efforts; and 4) the bundle's quality and strength. Barriers identified included: 1) intervention-related issues (e.g., timing of trials, fear of adverse events), 2) communication and care coordination challenges, 3) knowledge deficits, 4) workload concerns, and 5) documentation burden. Despite these challenges, participants believed implementation ultimately benefited patients, improved interdisciplinary communication, and empowered nurses and

  8. Nasal Contribution to Breathing and Fine Particle Deposition in Children Versus Adults

    EPA Science Inventory

    Both the route of breathing, nasal versus oral, and the effectiveness of the nose to filter inhaled, fine particles may differ between children and adults. This study compared (1) the nasal contribution to breathing at rest and during mild to moderate exercise in children (age 6–...

  9. Sports-related lung injury during breath-hold diving.

    PubMed

    Mijacika, Tanja; Dujic, Zeljko

    2016-12-01

    The number of people practising recreational breath-hold diving is constantly growing, thereby increasing the need for knowledge of the acute and chronic effects such a sport could have on the health of participants. Breath-hold diving is potentially dangerous, mainly because of associated extreme environmental factors such as increased hydrostatic pressure, hypoxia, hypercapnia, hypothermia and strenuous exercise.In this article we focus on the effects of breath-hold diving on pulmonary function. Respiratory symptoms have been reported in almost 25% of breath-hold divers after repetitive diving sessions. Acutely, repetitive breath-hold diving may result in increased transpulmonary capillary pressure, leading to noncardiogenic oedema and/or alveolar haemorrhage. Furthermore, during a breath-hold dive, the chest and lungs are compressed by the increasing pressure of water. Rapid changes in lung air volume during descent or ascent can result in a lung injury known as pulmonary barotrauma. Factors that may influence individual susceptibility to breath-hold diving-induced lung injury range from underlying pulmonary or cardiac dysfunction to genetic predisposition.According to the available data, breath-holding does not result in chronic lung injury. However, studies of large populations of breath-hold divers are necessary to firmly exclude long-term lung damage. Copyright ©ERS 2016.

  10. Double blind randomised controlled trial of two different breathing techniques in the management of asthma

    PubMed Central

    Slader, C A; Reddel, H K; Spencer, L M; Belousova, E G; Armour, C L; Bosnic‐Anticevich, S Z; Thien, F C K; Jenkins, C R

    2006-01-01

    Background Previous studies have shown that breathing techniques reduce short acting β2 agonist use and improve quality of life (QoL) in asthma. The primary aim of this double blind study was to compare the effects of breathing exercises focusing on shallow nasal breathing with those of non‐specific upper body exercises on asthma symptoms, QoL, other measures of disease control, and inhaled corticosteroid (ICS) dose. This study also assessed the effect of peak flow monitoring on outcomes in patients using breathing techniques. Methods After a 2 week run in period, 57 subjects were randomised to one of two breathing techniques learned from instructional videos. During the following 30 weeks subjects practised their exercises twice daily and as needed for relief of symptoms. After week 16, two successive ICS downtitration steps were attempted. The primary outcome variables were QoL score and daily symptom score at week 12. Results Overall there were no clinically important differences between the groups in primary or secondary outcomes at weeks 12 or 28. The QoL score remained unchanged (0.7 at baseline v 0.5 at week 28, p = 0.11 both groups combined), as did lung function and airway responsiveness. However, across both groups, reliever use decreased by 86% (p<0.0001) and ICS dose was reduced by 50% (p<0.0001; p>0.10 between groups). Peak flow monitoring did not have a detrimental effect on asthma outcomes. Conclusion Breathing techniques may be useful in the management of patients with mild asthma symptoms who use a reliever frequently, but there is no evidence to favour shallow nasal breathing over non‐specific upper body exercises. PMID:16517572

  11. Benefits of supplemental oxygen in exercise training in nonhypoxemic chronic obstructive pulmonary disease patients.

    PubMed

    Emtner, Margareta; Porszasz, Janos; Burns, Mary; Somfay, Attila; Casaburi, Richard

    2003-11-01

    Supplemental oxygen improves exercise tolerance of normoxemic and hypoxemic chronic obstructive pulmonary disease (COPD) patients. We determined whether nonhypoxemic COPD patients undergoing exercise training while breathing supplemental oxygen achieve higher intensity and therefore improve exercise capacity more than patients breathing air. A double-blinded trial was performed involving 29 nonhypoxemic patients (67 years, exercise SaO2 > 88%) with COPD (FEV1 = 36% predicted). All exercised on cycle ergometers for 45 minutes, 3 times per week for 7 weeks at high-intensity targets. During exercise, they received oxygen (3 L/minute) (n = 14) or compressed air (3 L/minute) (n = 15). Both groups had a higher exercise tolerance after training and when breathing oxygen. However, the oxygen-trained group increased the training work rate more rapidly than the air-trained group. The mean +/- SD work rate during the last week was 62 +/- 19 W (oxygen-trained group) and 52 +/- 22 W (air-trained group) (p < 0.01). After training, endurance in constant work rate tests increased more in the oxygen-trained group (14.5 minutes) than in the air-trained group (10.5 minutes) (p < 0.05). At isotime, the breathing rate decreased four breaths per minute in the oxygen-trained group and one breath per minute in the air-trained group (p = 0.001). We conclude that supplemental oxygen provided during high-intensity training yields higher training intensity and evidence of gains in exercise tolerance in laboratory testing.

  12. Does air-breathing meet metabolic demands of the juvenile snakehead, Channa argus, in multiple conditions

    PubMed Central

    Li, Yongli; Lv, Xiao; Zhou, Jing; Shi, Chenchen; Duan, Ting

    2017-01-01

    ABSTRACT The objective of this study was to examine how the respiratory metabolism of the snakehead Channa argus changed when it shifted from breathing water to breathing air, and how increased metabolic demands caused by temperature, feeding, and exhaustive exercise affect its survival in air. The results demonstrated that the oxygen consumption rate (MO2) of the snakehead was lower for aerial respiration than aquatic respiration by 12.1, 24.5 and 20.4% at 20, 25, and 30°C, respectively. Survival time was significantly shortened with increasing temperature and was negatively correlated with the resting MO2 in air (MO2Air). No obvious feeding metabolic response was observed in the snakeheads fed at 1% and 3% body mass levels while breathing air. The maximum MO2Air of the snakehead after exhaustive exercise was significantly higher than the resting MO2Air of the control group. The results suggest that the snakehead could survive out of water by breathing air for varying lengths of time, depending on ambient temperature and metabolic demand. Additionally, some degree of metabolic depression occurs in the snakehead when breathing air. The metabolic demand associated with exercise in the snakehead, but not that associated with feeding, can be supported by its capacity for breathing air to some extent. PMID:28396489

  13. Time course of ozone-induced changes in breathing pattern in healthy exercising humans.

    PubMed

    Schelegle, Edward S; Walby, William F; Adams, William C

    2007-02-01

    We examined the time course of O3-induced changes in breathing pattern in 97 healthy human subjects (70 men and 27 women). One- to five-minute averages of breathing frequency (f(B)) and minute ventilation (Ve) were used to generate plots of cumulative breaths and cumulative exposure volume vs. time and cumulative exposure volume vs. cumulative breaths. Analysis revealed a three-phase response; delay, no response detected; onset, f(B) began to increase; response, f(B) stabilized. Regression analysis was used to identify four parameters: time to onset, number of breaths at onset, cumulative inhaled dose of ozone at onset of O3-induced tachypnea, and the percent change in f(B). The effect of altering O3 concentration, Ve, atropine treatment, and indomethacin treatment were examined. We found that the lower the O3 concentration, the greater the number of breaths at onset of tachypnea at a fixed ventilation, whereas number of breaths at onset of tachypnea remains unchanged when Ve is altered and O3 concentration is fixed. The cumulative inhaled dose of O3 at onset of tachypnea remained constant and showed no relationship with the magnitude of percent change in f(B). Atropine did not affect any of the derived parameters, whereas indomethacin did not affect time to onset, number of breaths at onset, or cumulative inhaled dose of O3 at onset of tachypnea but did attenuate percent change in f(B). The results are discussed in the context of dose response and intrinsic mechanisms of action.

  14. Endoscopic evaluation of therapeutic effects of “Anuloma-Viloma Pranayama” in Pratishyaya w.s.r. to mucociliary clearance mechanism and Bernoulli's principle

    PubMed Central

    Bhardwaj, Atul; Sharma, Mahendra Kumar; Gupta, Manoj

    2013-01-01

    The current endeavor intended to evaluate the effectiveness and mode of action of Anuloma-Viloma Pranayama (AVP), i.e., alternate nasal breathing exercise, in resolving clinical features of Pratishyaya, i.e., rhinosinusitis. The present study was directed to validate the use of classical “saccharin test” in measuring the nasal health by measuring mucociliary clearance time. This study also highlights the effects of AVP by application of Bernoulli principle in ventilation of paranasal sinuses and surface oxygenation of nasal and paranasal sinuses ciliary epithelium. Clinically, endoscopically and radiologically diagnosed patients of Pratishyaya, i.e., rhinosinusitis, satisfying the inclusion criteria were selected to perform AVP as a breathing exercise regularly for 30 min every day in order to evaluate the effectiveness of AVP in resolving features of rhinosinusitis. Saccharin test was performed before and after completion of 40 days trial to assess the nasal ciliary activity, which has been proved to be directly related to the health of ciliary epithelium and nasal health overall as well. AVP may be regarded as a catalyst to conspicuously enhance ventilation and oxygenation of the paranasal sinuses and the positively effect the nasal respiratory epithelium by increasing better surface availability of oxygen and negative pressure in the nasal cavity itself. PMID:24696572

  15. A reservoir nasal cannula improves protection given by oxygen during muscular exercise in COPD.

    PubMed

    Arlati, S; Rolo, J; Micallef, E; Sacerdoti, C; Brambilla, I

    1988-06-01

    We verified the utility of an oxygen economizer (Pendant Oxymizer) in assuring greater protection than nasal prongs against worsening of oxyhemoglobin resting desaturation (delta SaO2) induced by muscular exercise in 16 patients (ten with chronic obstructive pulmonary disease [COPD] and six with restrictive pulmonary disease). This worsening was quantified as desaturation surface accumulated within five minutes of exercise and was expressed in arbitrary units (au). Each patient carried out the same exercise three times, in a randomized fashion (breathing air or breathing supplemental oxygen [3 L/min] delivered by either nasal prongs or by oxygen economizer). In patients with obstructive disease, delta SaO2 was reduced from 38 +/- 12.0 au when they were breathing air to 18.1 +/- 11.7 au when breathing oxygen by nasal prongs (p less than 0.001) and to 10.1 +/- 9.5 au when breathing oxygen by economizer (p less than 0.001). In patients with restrictive disease, delta SaO2 was reduced from 35.6 +/- 9.9 au when breathing air to 14.9 +/- 10.2 au breathing oxygen by nasal prongs (p less than 0.01) and to 13.7 +/- 10.3 au breathing oxygen by economizer (p less than 0.01). The difference between breathing by economizer and nasal prongs was significant (paired t-test; p less than 0.01) only in patients with COPD. One explanation could lie in the different values of the respiratory rate, which was significantly greater in patients with restrictive disease (20.7 +/- 1.2 breaths per minute at rest and 25.8 +/- 1.5 with exercise) than in patients with obstructive disease (15.3 +/- 1.2 breaths per minute at rest and 20.8 +/- 1.4 with exercise).

  16. Learned vocal and breathing behavior in an enculturated gorilla.

    PubMed

    Perlman, Marcus; Clark, Nathaniel

    2015-09-01

    We describe the repertoire of learned vocal and breathing-related behaviors (VBBs) performed by the enculturated gorilla Koko. We examined a large video corpus of Koko and observed 439 VBBs spread across 161 bouts. Our analysis shows that Koko exercises voluntary control over the performance of nine distinctive VBBs, which involve variable coordination of her breathing, larynx, and supralaryngeal articulators like the tongue and lips. Each of these behaviors is performed in the context of particular manual action routines and gestures. Based on these and other findings, we suggest that vocal learning and the ability to exercise volitional control over vocalization, particularly in a multimodal context, might have figured relatively early into the evolution of language, with some rudimentary capacity in place at the time of our last common ancestor with great apes.

  17. Ventilatory response to the onset of passive and active exercise in human subjects.

    PubMed

    Miyamura, M; Ishida, K; Yasuda, Y

    1992-01-01

    Ventilatory responses at the onset of passive and active exercise with different amount of exercising muscle mass were studied in 10 healthy male subjects. Four exercise tests were performed for each subject with appropriate intervals on the same day, i.e., two voluntary exercises of one leg or both legs and two passive exercises of one leg or both legs. Inspiratory minute volume (VI), end-tidal CO2 and O2 partial pressures (PETCO2, PETO2) were measured breath-by-breath using a hot-wire flowmeter, infrared CO2 analyzer, and a rapid O2 analyzer. Average values of VI were obtained from 5 breaths at rest preceding exercise and the first and second breaths after the onset of exercise. The ventilatory response to exercise was calculated as the difference (delta) between the mean of exercise VI and mean of resting VI. In this study, the PETCO2 decreased by about 0.5 Torr in four exercise tests, though the decrement of PETCO2 was not statistically significant. The average values and standard deviation of delta VI were 4.22 +/- 1.63 l/min for the one leg and 6.46 +/- 1.80 l/min for the two legs in the active exercise, and were 2.46 +/- 1.12 l/min for the one leg and 3.44 +/- 1.55 l/min for the two legs in the passive exercise, respectively. These results suggest that in awake conditions, the ventilatory response at the onset of passive or active exercise does not increase additively with the increasing amount of muscle mass being exercised.

  18. Active cycle of breathing technique for cystic fibrosis.

    PubMed

    Mckoy, Naomi A; Wilson, Lisa M; Saldanha, Ian J; Odelola, Olaide A; Robinson, Karen A

    2016-07-05

    People with cystic fibrosis experience chronic airway infections as a result of mucus build up within the lungs. Repeated infections often cause lung damage and disease. Airway clearance therapies aim to improve mucus clearance, increase sputum production, and improve airway function. The active cycle of breathing technique (also known as ACBT) is an airway clearance method that uses a cycle of techniques to loosen airway secretions including breathing control, thoracic expansion exercises, and the forced expiration technique. This is an update of a previously published review. To compare the clinical effectiveness of the active cycle of breathing technique with other airway clearance therapies in cystic fibrosis. We searched the Cochrane Cystic Fibrosis Trials Register, compiled from electronic database searches and handsearching of journals and conference abstract books. We also searched the reference lists of relevant articles and reviews.Date of last search: 25 April 2016. Randomised or quasi-randomised controlled clinical studies, including cross-over studies, comparing the active cycle of breathing technique with other airway clearance therapies in cystic fibrosis. Two review authors independently screened each article, abstracted data and assessed the risk of bias of each study. Our search identified 62 studies, of which 19 (440 participants) met the inclusion criteria. Five randomised controlled studies (192 participants) were included in the meta-analysis; three were of cross-over design. The 14 remaining studies were cross-over studies with inadequate reports for complete assessment. The study size ranged from seven to 65 participants. The age of the participants ranged from six to 63 years (mean age 22.33 years). In 13 studies, follow up lasted a single day. However, there were two long-term randomised controlled studies with follow up of one to three years. Most of the studies did not report on key quality items, and therefore, have an unclear risk of

  19. Equine Welfare during Exercise: An Evaluation of Breathing, Breathlessness and Bridles

    PubMed Central

    Mellor, David J.; Beausoleil, Ngaio J.

    2017-01-01

    Simple Summary Horses have superior athletic capabilities due largely to their exceptional cardiorespiratory responses during exercise. This has particular relevance to horses’ potential to experience breathlessness, especially when their athletic performance is reduced by impaired respiratory function. Breathlessness, incorporating three types of unpleasant experiences, has been noted as of significant animal welfare concern in other mammals. However, the potential for breathlessness to occur in horses as usually ridden wearing bitted bridles has not yet been evaluated in detail. Accordingly, key physiological responses to exercise and the consequences of impaired respiratory function are outlined. Then the physiological control of breathing and the generation of the aversive experiences of breathlessness are explained. Finally, the potential for horses with unimpaired and impaired respiratory function to experience the different types of breathlessness is evaluated. This information provides a basis for considering the circumstances in which breathlessness may have significant negative welfare impacts on horses as currently ridden wearing bitted bridles. Potential beneficial impacts on respiratory function of using bitless bridles are then discussed with emphasis on the underlying mechanisms and their relevance to breathlessness. It is noted that direct comparisons of cardiorespiratory responses to exercise in horses wearing bitless and bitted bridles are not available and it is recommended that such studies be undertaken. Abstract Horses engaged in strenuous exercise display physiological responses that approach the upper functional limits of key organ systems, in particular their cardiorespiratory systems. Maximum athletic performance is therefore vulnerable to factors that diminish these functional capacities, and such impairment might also lead to horses experiencing unpleasant respiratory sensations, i.e., breathlessness. The aim of this review is to use

  20. Effect of Alternate Nostril Breathing Exercise on Experimentally Induced Anxiety in Healthy Volunteers Using the Simulated Public Speaking Model: A Randomized Controlled Pilot Study.

    PubMed

    Kamath, Ashwin; Urval, Rathnakar P; Shenoy, Ashok K

    2017-01-01

    A randomized controlled pilot study was carried out to determine the effect of a 15-minute practice of ANB exercise on experimentally induced anxiety using the simulated public speaking model in yoga-naïve healthy young adults. Thirty consenting medical students were equally divided into test and control groups. The test group performed alternate nostril breathing exercise for 15 minutes, while the control group sat in a quiet room before participating in the simulated public speaking test (SPST). Visual Analog Mood Scale and Self-Statements during Public Speaking scale were used to measure the mood state at different phases of the SPST. The psychometric scores of both groups were comparable at baseline. Repeated-measures ANOVA showed a significant effect of phase ( p < 0.05), but group and gender did not have statistically significant influence on the mean anxiety scores. However, the test group showed a trend towards lower mean scores for the anxiety factor when compared with the control group. Considering the limitations of this pilot study and the trend seen towards lower anxiety in the test group, alternate nostril breathing may have potential anxiolytic effect in acute stressful situations. A study with larger sample size is therefore warranted. This trial is registered with CTRI/2014/03/004460.

  1. Effect of Alternate Nostril Breathing Exercise on Experimentally Induced Anxiety in Healthy Volunteers Using the Simulated Public Speaking Model: A Randomized Controlled Pilot Study

    PubMed Central

    Urval, Rathnakar P.; Shenoy, Ashok K.

    2017-01-01

    A randomized controlled pilot study was carried out to determine the effect of a 15-minute practice of ANB exercise on experimentally induced anxiety using the simulated public speaking model in yoga-naïve healthy young adults. Thirty consenting medical students were equally divided into test and control groups. The test group performed alternate nostril breathing exercise for 15 minutes, while the control group sat in a quiet room before participating in the simulated public speaking test (SPST). Visual Analog Mood Scale and Self-Statements during Public Speaking scale were used to measure the mood state at different phases of the SPST. The psychometric scores of both groups were comparable at baseline. Repeated-measures ANOVA showed a significant effect of phase (p < 0.05), but group and gender did not have statistically significant influence on the mean anxiety scores. However, the test group showed a trend towards lower mean scores for the anxiety factor when compared with the control group. Considering the limitations of this pilot study and the trend seen towards lower anxiety in the test group, alternate nostril breathing may have potential anxiolytic effect in acute stressful situations. A study with larger sample size is therefore warranted. This trial is registered with CTRI/2014/03/004460. PMID:29159176

  2. Dyspnea on exertion in obese women: association with an increased oxygen cost of breathing.

    PubMed

    Babb, Tony G; Ranasinghe, Kamalini G; Comeau, Laurie A; Semon, Trisha L; Schwartz, Belinda

    2008-07-15

    Although exertional dyspnea in obesity is an important and prolific clinical concern, the underlying mechanism remains unclear. To investigate whether dyspnea on exertion in otherwise healthy obese women was associated with an increase in the oxygen cost of breathing or cardiovascular deconditioning. Obese women with and without dyspnea on exertion participated in two independent experiments (n = 16 and n = 14). All participants underwent pulmonary function testing, hydrostatic weighing, ratings of perceived breathlessness during cycling at 60 W, and determination of the oxygen cost of breathing during eucapnic voluntary hyperpnea at 40 and 60 L/min. Cardiovascular exercise capacity, fat distribution, and respiratory mechanics were determined in 14 women in experiment 2. Data were analyzed between groups by independent t test, and the relationship between the variables was determined by regression analysis. In both experiments, breathlessness during 60 W cycling was markedly increased in over 37% of the obese women (P < 0.01). Age, height, weight, lung function, and %body fat were not different between the groups in either experiment. In contrast, the oxygen cost of breathing was significantly (P < 0.01) and markedly (38-70%) greater in the obese women with dyspnea on exertion. The oxygen cost of breathing was significantly (P < 0.001) correlated with the rating of perceived breathlessness obtained during the 60 W exercise in experiment 1 (r(2) = 0.57) and experiment 2 (r(2) = 0.72). Peak cardiovascular exercise capacity, fat distribution, and respiratory mechanics were not different between groups in experiment 2. Dyspnea on exertion is prevalent in otherwise healthy obese women, which seems to be strongly associated with an increased oxygen cost of breathing. Exercise capacity is not reduced in obese women with dyspnea on exertion.

  3. Oral breathing challenge in participants with vocal attrition.

    PubMed

    Sivasankar, Mahalakshmi; Fisher, Kimberly V

    2003-12-01

    Vocal folds undergo osmotic challenge by mouth breathing during singing, exercising, and loud speaking. Just 15 min of obligatory oral breathing, to dry the vocal folds, increases phonation threshold pressure (Pth) and expiratory vocal effort in healthy speakers (M. Sivasankar & K. Fisher, 2002). We questioned whether oral breathing is more detrimental to phonation in healthy participants with a history of temporary vocal attrition. The effects of a 15-min oral or nasal breathing challenge on Pth and perceived expiratory vocal effort were compared for participants reporting symptoms of vocal attrition (N = 18, ages 19-38 years) and normal controls (N = 20, ages 19-33 years). Post-challenge-prechallenge differences in Pth (deltaPth) and effort (deltaEffort) revealed that oral breathing, but not nasal breathing, increased Pth (p < .001 ) and effort (p < .001) at low, comfortable, and high pitch. deltaPth was significantly greater in participants with vocal attrition than in normal controls (p < .001). Nasal breathing reduced Pth for all controls but not for all participants reporting vocal attrition. deltaPth was significantly and linearly correlated with deltaEffort (rvocal attrition = .81, p < .001; rcontrol = .84, p < .001). We speculate that the greater increases in Pth in participants reporting vocal attrition may result from delayed or inadequate compensatory response to superficial laryngeal dehydration. Obligatory oral breathing may place voice users at risk for exacerbating vocal attrition. That sol layer depletion by obligatory oral breathing increased Pth and vocal effort provides support for the role of superficial hydration in maintaining ease of phonation.

  4. The immediate effects of deep breathing exercises on atelectasis and oxygenation after cardiac surgery.

    PubMed

    Westerdahl, Elisabeth; Lindmark, Birgitta; Eriksson, Tomas; Hedenstierna, Göran; Tenling, Arne

    2003-12-01

    Objective--To investigate the effects of deep breathing performed on the second postoperative day after coronary artery bypass graft surgery. Design--The immediate effects of 30 deep breaths performed without a mechanical device (n = 21), with a blow bottle device (n = 20) and with an inspiratory resistance-positive expiratory pressure mask (n = 20) were studied. Spiral computed tomography and arterial blood gas analyses were performed immediately before and after the intervention. Results--Deep breathing caused a significant decrease in atelectatic area from 12.3 +/- 7.3% to 10.2 +/- 6.7% (p < 0.0001) of total lung area 1 cm above the diaphragm and from 3.9 +/- 3.5% to 3.3 +/- 3.1% (p < 0.05) 5 cm above the diaphragm. No difference between the breathing techniques was found. The aerated lung area increased by 5% (p < 0.001). The PaO (2) increased by 0.2 kPa (p < 0.05), while PaCO (2) was unchanged in the three groups. Conclusion--A significant decrease of atelectatic area, increase in aerated lung area and a small increase in PaO (2) were found after performance of 30 deep breaths. No difference between the three breathing techniques was found.

  5. Voluntary suppression of hyperthermia-induced hyperventilation mitigates the reduction in cerebral blood flow velocity during exercise in the heat.

    PubMed

    Tsuji, Bun; Honda, Yasushi; Ikebe, Yusuke; Fujii, Naoto; Kondo, Narihiko; Nishiyasu, Takeshi

    2015-04-15

    Hyperthermia during prolonged exercise leads to hyperventilation, which can reduce arterial CO2 pressure (PaCO2 ) and, in turn, cerebral blood flow (CBF) and thermoregulatory response. We investigated 1) whether humans can voluntarily suppress hyperthermic hyperventilation during prolonged exercise and 2) the effects of voluntary breathing control on PaCO2 , CBF, sweating, and skin blood flow. Twelve male subjects performed two exercise trials at 50% of peak oxygen uptake in the heat (37°C, 50% relative humidity) for up to 60 min. Throughout the exercise, subjects breathed normally (normal-breathing trial) or they tried to control their minute ventilation (respiratory frequency was timed with a metronome, and target tidal volumes were displayed on a monitor) to the level reached after 5 min of exercise (controlled-breathing trial). Plotting ventilatory and cerebrovascular responses against esophageal temperature (Tes) showed that minute ventilation increased linearly with rising Tes during normal breathing, whereas controlled breathing attenuated the increased ventilation (increase in minute ventilation from the onset of controlled breathing: 7.4 vs. 1.6 l/min at +1.1°C Tes; P < 0.001). Normal breathing led to decreases in estimated PaCO2 and middle cerebral artery blood flow velocity (MCAV) with rising Tes, but controlled breathing attenuated those reductions (estimated PaCO2 -3.4 vs. -0.8 mmHg; MCAV -10.4 vs. -3.9 cm/s at +1.1°C Tes; P = 0.002 and 0.011, respectively). Controlled breathing had no significant effect on chest sweating or forearm vascular conductance (P = 0.67 and 0.91, respectively). Our results indicate that humans can voluntarily suppress hyperthermic hyperventilation during prolonged exercise, and this suppression mitigates changes in PaCO2 and CBF. Copyright © 2015 the American Physiological Society.

  6. Voluntary suppression of hyperthermia-induced hyperventilation mitigates the reduction in cerebral blood flow velocity during exercise in the heat

    PubMed Central

    Tsuji, Bun; Honda, Yasushi; Ikebe, Yusuke; Fujii, Naoto; Kondo, Narihiko

    2015-01-01

    Hyperthermia during prolonged exercise leads to hyperventilation, which can reduce arterial CO2 pressure (PaCO2) and, in turn, cerebral blood flow (CBF) and thermoregulatory response. We investigated 1) whether humans can voluntarily suppress hyperthermic hyperventilation during prolonged exercise and 2) the effects of voluntary breathing control on PaCO2, CBF, sweating, and skin blood flow. Twelve male subjects performed two exercise trials at 50% of peak oxygen uptake in the heat (37°C, 50% relative humidity) for up to 60 min. Throughout the exercise, subjects breathed normally (normal-breathing trial) or they tried to control their minute ventilation (respiratory frequency was timed with a metronome, and target tidal volumes were displayed on a monitor) to the level reached after 5 min of exercise (controlled-breathing trial). Plotting ventilatory and cerebrovascular responses against esophageal temperature (Tes) showed that minute ventilation increased linearly with rising Tes during normal breathing, whereas controlled breathing attenuated the increased ventilation (increase in minute ventilation from the onset of controlled breathing: 7.4 vs. 1.6 l/min at +1.1°C Tes; P < 0.001). Normal breathing led to decreases in estimated PaCO2 and middle cerebral artery blood flow velocity (MCAV) with rising Tes, but controlled breathing attenuated those reductions (estimated PaCO2 −3.4 vs. −0.8 mmHg; MCAV −10.4 vs. −3.9 cm/s at +1.1°C Tes; P = 0.002 and 0.011, respectively). Controlled breathing had no significant effect on chest sweating or forearm vascular conductance (P = 0.67 and 0.91, respectively). Our results indicate that humans can voluntarily suppress hyperthermic hyperventilation during prolonged exercise, and this suppression mitigates changes in PaCO2 and CBF. PMID:25632021

  7. Aspirin does not affect exercise performance.

    PubMed

    Roi, G S; Garagiola, U; Verza, P; Spadari, G; Radice, D; Zecca, L; Cerretelli, P

    1994-07-01

    A single-blind, cross-over study was carried out to evaluate the effects of acetylsalicylic acid (ASA) on cardiorespiratory performance during exercise. Eighteen young men, 9 athletes and 9 untrained but active subjects, performed a progressive maximal exercise test on a cycle ergometer (30 watt, 3 min steps, starting at 60 watt) on three different occasions, after a single administration of plain aspirin (1000mg of ASA), chewable buffered aspirin (1000mg of ASA and 600 mg of calcium carbonate) and placebo. Continuous measurement of breath-by-breath ventilation, oxygen consumption, carbon dioxide output, respiratory frequency and heart rate was carried-out at rest and during the exercise test. Blood lactate concentration was measured just before the start of exercise and at the third minute of each step in order to detect the anaerobic threshold. The pharmacokinetics of aspirin during exercise was also investigated in ten of the eighteen participants. The analysis of all investigated variables did not show any statistically significant difference between treatments, suggesting that a single dose of 1000mg of aspirin does not affect physical performance during submaximal and maximal exercise.

  8. Tolerance to external breathing resistance with particular reference to high inspiratory resistance

    NASA Technical Reports Server (NTRS)

    Bentley, R. A.; Griffin, O. G.; Love, R. G.; Muir, D. C. F.; Sweetland, K. F.

    1972-01-01

    The ability of men to exercise while breathing through graded inspiratory resistances was studied in order to define acceptable respiratory mouthpiece assembly standards. Experimental results with subjects wearing breathing masks and walking for 30 min on treadmills were used to calculate expiratory work rates. It is concluded that the airflow must be appropriate to the upper limit of minute ventilation likely to be encountered in the men wearing the apparatus.

  9. Use of a turbine in a breath-by-breath computer-based respiratory measurement system.

    PubMed

    Venkateswaran, R S; Gallagher, R R

    1997-01-01

    The Computer-Based Respiratory Measurement System (CBRMS) is capable of analyzing individual breaths to monitor the kinetics of oxygen uptake, carbon dioxide production, tidal volumes, pulmonary ventilation, and other respiratory parameters during rest, exercise, and recovery. Respiratory gas volumes are measured by a calibrated turbine transducer while the respiratory gas concentrations are measured by a calibrated, fast-responding medical gas analyzer. To improve accuracy of the results, the inspiratory volumes and gas concentrations are measured and not assumed to be equal to expiratory volumes or ambient concentrations respectively. The respiratory gas volumes and concentration signals are digitized and stored in arrays. The gas volumes are converted to flow signals by software differentiation. These digitized data arrays are stored as files in a personal computer. Time alignment of the flow and gas concentration signals is performed at each breath for maximum accuracy in analysis. For system verification, data were obtained under resting conditions and under constant load exercises at 50 W, 100 W, and 150 W. These workloads were performed by a healthy, male subject on a bicycle ergometer. A strong correlation existed between the CBRMS steady-state results and the standard end-expirate bag collection technique. Thus, there is reason to believe that the CBRMS is capable of calculating respiratory transient responses accurately, a significant contribution to an understanding of total respiratory system function.

  10. Running and Breathing in Mammals

    NASA Astrophysics Data System (ADS)

    Bramble, Dennis M.; Carrier, David R.

    1983-01-01

    Mechanical constraints appear to require that locomotion and breathing be synchronized in running mammals. Phase locking of limb and respiratory frequency has now been recorded during treadmill running in jackrabbits and during locomotion on solid ground in dogs, horses, and humans. Quadrupedal species normally synchronize the locomotor and respiratory cycles at a constant ratio of 1:1 (strides per breath) in both the trot and gallop. Human runners differ from quadrupeds in that while running they employ several phase-locked patterns (4:1, 3:1, 2:1, 1:1, 5:2, and 3:2), although a 2:1 coupling ratio appears to be favored. Even though the evolution of bipedal gait has reduced the mechanical constraints on respiration in man, thereby permitting greater flexibility in breathing pattern, it has seemingly not eliminated the need for the synchronization of respiration and body motion during sustained running. Flying birds have independently achieved phase-locked locomotor and respiratory cycles. This hints that strict locomotor-respiratory coupling may be a vital factor in the sustained aerobic exercise of endothermic vertebrates, especially those in which the stresses of locomotion tend to deform the thoracic complex.

  11. The effects of locomotor-respiratory coupling on the pattern of breathing in horses.

    PubMed Central

    Lafortuna, C L; Reinach, E; Saibene, F

    1996-01-01

    1. To investigate the effect of locomotor activity on the pattern of breathing in quadrupeds, ventilatory response was studied in four healthy horses during horizontal and inclined (7%) treadmill exercise at different velocities (1.4-6.9 m s(-1)) and during chemical stimulation with a rebreathing method. Stride frequency (f(s)) and locomotor-respiratory coupling (LRC) were also simultaneously determined by means of video recordings synchronized with respiratory events. 2. Tidal volume (V(T)) was positively correlated with pulmonary ventilation (V(E)) but significantly different linear regression equations were found between the experimental conditions (P < 0.0001), since the chemical hyperventilation was mainly due to increases in V(T), whereas the major contribution to exercise hyperpnoea came from changes in respiratory frequency (f(R)). 3. The average f(R) at each exercise level was not significantly different from f(S), although there was not always a tight 1:1 LRC. At constant speeds, f(S) was independent of the treadmill slope and hence the greater V(E) during inclined exercise was due to increased V(T). 4. At any ventilatory level, the differences in breathing patterns between locomotion and rebreathing or locomotion at different slopes derived from different set points of the inspiratory off-switch mechanism. 5. The percentage of single breaths entrained with locomotor rhythm rose progressively and significantly with treadmill speed (P < 0.0001) up to a 1:1 LRC and was significantly affected by treadmill slope (P < 0.001). 6. A LRC of 1:1 was systematically observed at canter (10 out of 10 trials) and sometimes at trot (5 out of 14) and it entailed (i) a 4- to 5-fold reduction in both V(T) and f(R) variability, and (ii) a gait-specific phase locking of inspiratory onset during the locomotor cycle. 7. It is concluded that different patterns of breathing are employed during locomotion and rebreathing due to the interference between locomotor and respiratory

  12. Exercise-induced quadriceps muscle fatigue in men and women: effects of arterial oxygen content and respiratory muscle work.

    PubMed

    Dominelli, Paolo B; Molgat-Seon, Yannick; Griesdale, Donald E G; Peters, Carli M; Blouin, Jean-Sébastien; Sekhon, Mypinder; Dominelli, Giulio S; Henderson, William R; Foster, Glen E; Romer, Lee M; Koehle, Michael S; Sheel, A William

    2017-08-01

    High work of breathing and exercise-induced arterial hypoxaemia (EIAH) can decrease O 2 delivery and exacerbate exercise-induced quadriceps fatigue in healthy men. Women have a higher work of breathing during exercise, dedicate a greater fraction of whole-body V̇O2 towards their respiratory muscles and develop EIAH. Despite a greater reduction in men's work of breathing, the attenuation of quadriceps fatigue was similar between the sexes. The degree of EIAH was similar between sexes, and regardless of sex, those who developed the greatest hypoxaemia during exercise demonstrated the most attenuation of quadriceps fatigue. Based on our previous finding that women have a greater relative oxygen cost of breathing, women appear to be especially susceptible to work of breathing-related changes in quadriceps muscle fatigue. Reducing the work of breathing or eliminating exercise-induced arterial hypoxaemia (EIAH) during exercise decreases the severity of quadriceps fatigue in men. Women have a greater work of breathing during exercise, dedicate a greater fraction of whole-body V̇O2 towards their respiratory muscles, and demonstrate EIAH, suggesting women may be especially susceptible to quadriceps fatigue. Healthy subjects (8 male, 8 female) completed three constant load exercise tests over 4 days. During the first (control) test, subjects exercised at ∼85% of maximum while arterial blood gases and work of breathing were assessed. Subsequent constant load exercise tests were iso-time and iso-work rate, but with EIAH prevented by inspiring hyperoxic gas or work of breathing reduced via a proportional assist ventilator (PAV). Quadriceps fatigue was assessed by measuring force in response to femoral nerve stimulation. For both sexes, quadriceps force was equally reduced after the control trial (-27 ± 2% baseline) and was attenuated with hyperoxia and PAV (-18 ± 1 and -17 ± 2% baseline, P < 0.01, respectively), with no sex difference. EIAH was similar between

  13. Measuring breath acetone for monitoring fat loss: Review

    PubMed Central

    2015-01-01

    Objective Endogenous acetone production is a by‐product of the fat metabolism process. Because of its small size, acetone appears in exhaled breath. Historically, endogenous acetone has been measured in exhaled breath to monitor ketosis in healthy and diabetic subjects. Recently, breath acetone concentration (BrAce) has been shown to correlate with the rate of fat loss in healthy individuals. In this review, the measurement of breath acetone in healthy subjects is evaluated for its utility in predicting fat loss and its sensitivity to changes in physiologic parameters. Results BrAce can range from 1 ppm in healthy non‐dieting subjects to 1,250 ppm in diabetic ketoacidosis. A strong correlation exists between increased BrAce and the rate of fat loss. Multiple metabolic and respiratory factors affect the measurement of BrAce. BrAce is most affected by changes in the following factors (in descending order): dietary macronutrient composition, caloric restriction, exercise, pulmonary factors, and other assorted factors that increase fat metabolism or inhibit acetone metabolism. Pulmonary factors affecting acetone exchange in the lung should be controlled to optimize the breath sample for measurement. Conclusions When biologic factors are controlled, BrAce measurement provides a non‐invasive tool for monitoring the rate of fat loss in healthy subjects. PMID:26524104

  14. Effect of Aerobic Exercise Training on Ventilatory Efficiency and Respiratory Drive in Obese Subjects.

    PubMed

    Chlif, Mehdi; Chaouachi, Anis; Ahmaidi, Said

    2017-07-01

    Obese patients show a decline in exercise capacity and diverse degrees of dyspnea in association with mechanical abnormalities, increased ventilatory requirements secondary to the increased metabolic load, and a greater work of breathing. Consequently, obese patients may be particularly predisposed to the development of respiratory muscle fatigue during exercise. The aim of this study was to assess inspiratory muscle performance during incremental exercise in 19 obese male subjects (body mass index 41 ± 6 kg/m 2 ) after aerobic exercise training using the noninvasive, inspiratory muscle tension-time index (T T0.1 ). Measurements performed included anthropometric parameters, lung function assessed by spirometry, rate of perceived breathlessness with the modified Borg dyspnea scale (0-10), breathing pattern, maximal exercise capacity, and inspiratory muscle performance with a breath-by-breath automated exercise metabolic system during an incremental exercise test. T T0.1 was calculated using the equation, T T0.1 = P 0.1 /P Imax × T I /T tot (where P 0.1 represents mouth occlusion pressure, P Imax is maximal inspiratory pressure, and T I /T tot is the duty cycle). At rest, there was no statistically significant difference for spirometric parameters and cardiorespiratory parameters between pre- and post-training. At maximal exercise, the minute ventilation, the rate of exchange ratio, the rate of perceived breathlessness, and the respiratory muscle performance parameters were not significantly different pre- and post-training; in contrast, tidal volume ( P = .037, effect size = 1.51), breathing frequency ( P = .049, effect size = 0.97), power output ( P = .048, effect size = 0.79), peak oxygen uptake ( P = .02, effect size = 0.92) were significantly higher after training. At comparable work load, training induces lower minute ventilation, mouth occlusion pressure, ratio of occlusion pressure to maximal inspiratory pressure, T T0.1 , and rate of perceived

  15. Effect of air breathing on acid-base and ion regulation after exhaustive exercise and during low pH exposure in the bowfin, Amia calva.

    PubMed

    Gonzalez, R J; Milligan, L; Pagnotta, A; McDonald, D G

    2001-01-01

    To explore a potential conflict between air breathing and acid-base regulation in the bowfin (Amia calva), we examined how individuals with access to air differed from fish without air access in their response to acidosis. After exhaustive exercise, bowfin with access to air recovered significantly more slowly from the acidosis than fish without air access. While arterial blood pH (pH(a)) of fish without air access recovered to resting levels by 8 h, pH(a) was still significantly depressed in fish having access to air. In addition, Pco(2) was slightly more elevated in fish having air access than those without it. Fish with access to air still had a significant metabolic acid load after 8-h recovery, while those without air access completely cleared the load within 4 h. These results suggest that bowfin with access to air were breathing air and, consequently, were less able to excrete CO(2) and H(+) and experienced a delayed recovery. In contrast, during exposure to low pH, air breathing seemed to have a protective effect on acid-base status in bowfin. During exposure to low pH water, bowfin with access to air developed a much milder acidosis than bowfin without air access. The more severe acidosis in fish without air access was caused by an increased rate of lactic acid production. It appears that enhanced O(2) delivery allowed air-breathing bowfin to avoid acidosis-induced anaerobic metabolism and lactic acid production. In addition, during low pH exposure, plasma Na(+) and Cl(-) concentrations of fish without air access fell slightly more rapidly than those in fish with air access, indicating that the branchial ventilatory changes associated with air breathing limited, to some degree, ion losses associated with low pH exposure.

  16. Ventilatory Responses at Peak Exercise in Endurance-Trained Obese Adults

    PubMed Central

    Lorenzo, Santiago

    2013-01-01

    Background: Alterations in respiratory mechanics predispose healthy obese individuals to low lung volume breathing, which places them at risk of developing expiratory flow limitation (EFL). The high ventilatory demand in endurance-trained obese adults further increases their risk of developing EFL and increases their work of breathing. The objective of this study was to investigate the prevalence and magnitude of EFL in fit obese (FO) adults via measurements of breathing mechanics and ventilatory dynamics during exercise. Methods: Ten (seven women and three men) FO (mean ± SD, 38 ± 5 years, 38% ± 5% body fat) and 10 (seven women and three men) control obese (CO) (38 ± 5 years, 39% ± 5% body fat) subjects underwent hydrostatic weighing, pulmonary function testing, cycle exercise testing, and the determination of the oxygen cost of breathing during eucapnic voluntary hyperpnea. Results: There were no differences in functional residual capacity (43% ± 6% vs 40% ± 9% total lung capacity [TLC]), residual volume (21% ± 4% vs 21% ± 4% TLC), or FVC (111% ± 13% vs 104% ± 15% predicted) between FO and CO subjects, respectively. FO subjects had higher FEV1 (111% ± 13% vs 99% ± 11% predicted), TLC (106% ± 14% vs 94% ± 7% predicted), peak expiratory flow (123% ± 14% vs 106% ± 13% predicted), and maximal voluntary ventilation (128% ± 15% vs 106% ± 13% predicted) than did CO subjects. Peak oxygen uptake (129% ± 16% vs 86% ± 15% predicted), minute ventilation (128 ± 35 L/min vs 92 ± 25 L/min), and work rate (229 ± 54 W vs 166 ± 55 W) were higher in FO subjects. Mean inspiratory (4.65 ± 1.09 L/s vs 3.06 ± 1.21 L/s) and expiratory (4.15 ± 0.95 L/s vs 2.98 ± 0.76L/s) flows were greater in FO subjects, which yielded a greater breathing frequency (51 ± 8 breaths/min vs 41 ± 10 breaths/min) at peak exercise in FO subjects. Mechanical ventilatory constraints in FO subjects were similar to those in CO subjects despite the greater ventilatory demand in FO

  17. Ventilatory responses at peak exercise in endurance-trained obese adults.

    PubMed

    Lorenzo, Santiago; Babb, Tony G

    2013-10-01

    Alterations in respiratory mechanics predispose healthy obese individuals to low lung volume breathing, which places them at risk of developing expiratory flow limitation (EFL). The high ventilatory demand in endurance-trained obese adults further increases their risk of developing EFL and increases their work of breathing. The objective of this study was to investigate the prevalence and magnitude of EFL in fit obese (FO) adults via measurements of breathing mechanics and ventilatory dynamics during exercise. Ten (seven women and three men) FO (mean ± SD, 38 ± 5 years, 38% ± 5% body fat) and 10 (seven women and three men) control obese (CO) (38 ± 5 years, 39% ± 5% body fat) subjects underwent hydrostatic weighing, pulmonary function testing, cycle exercise testing, and the determination of the oxygen cost of breathing during eucapnic voluntary hyperpnea. There were no differences in functional residual capacity (43% ± 6% vs 40% ± 9% total lung capacity [TLC]), residual volume (21% ± 4% vs 21% ± 4% TLC), or FVC (111% ± 13% vs 104% ± 15% predicted) between FO and CO subjects, respectively. FO subjects had higher FEV1 (111% ± 13% vs 99% ± 11% predicted), TLC (106% ± 14% vs 94% ± 7% predicted), peak expiratory flow (123% ± 14% vs 106% ± 13% predicted), and maximal voluntary ventilation (128% ± 15% vs 106% ± 13% predicted) than did CO subjects. Peak oxygen uptake (129% ± 16% vs 86% ± 15% predicted), minute ventilation (128 ± 35 L/min vs 92 ± 25 L/min), and work rate (229 ± 54 W vs 166 ± 55 W) were higher in FO subjects. Mean inspiratory (4.65 ± 1.09 L/s vs 3.06 ± 1.21 L/s) and expiratory (4.15 ± 0.95 L/s vs 2.98 ± 0.76 L/s) flows were greater in FO subjects, which yielded a greater breathing frequency (51 ± 8 breaths/min vs 41 ± 10 breaths/min) at peak exercise in FO subjects. Mechanical ventilatory constraints in FO subjects were similar to those in CO subjects despite the greater ventilatory demand in FO subjects. FO individuals achieve

  18. The importance of a normal breathing pattern for an effective abdominal-hollowing maneuver in healthy people: an experimental study.

    PubMed

    Ha, Sung-min; Kwon, Oh-yun; Kim, Su-jung; Choung, Sung-dae

    2014-02-01

    A normal breathing pattern while performing the abdominal-hollowing (AH) maneuver or spinal-stabilization exercise is essential for the success of rehabilitation programs and exercises. In previous studies, subjects were given standardized instructions to control the influence of respiration during the AH maneuver. However, the effect of breathing pattern on abdominal-muscle thickness during the AH maneuver has not been investigated. To compare abdominal-muscle thickness in subjects performing the AH maneuver under normal and abnormal breathing-pattern conditions and to investigate the effect of breathing pattern on the preferential contraction ratio (PCR) of the transverse abdominis. Comparative, repeated-measures experimental study. University research laboratory. 16 healthy subjects (8 male, 8 female) from a university population. A real-time ultrasound scanner was used to measure abdominal-muscle thickness during normal and abnormal breathing patterns. A paired t test was used to assess the effect of breathing pattern on abdominal-muscle thickness and PCR. Muscle thickness in the transverse abdominis and internal oblique muscles was significantly greater under the normal breathing pattern than under the abnormal pattern (P < .05). The PCR of the transverse abdominis was significantly higher under the normal breathing pattern compared with the abnormal pattern (P < .05). The results indicate that a normal breathing pattern is essential for performance of an effective AH maneuver. Thus, clinicians should ensure that patients adopt a normal breathing pattern before performing the AH maneuver and monitor transverse abdominis activation during the maneuver.

  19. Smart sensor systems for human health breath monitoring applications.

    PubMed

    Hunter, G W; Xu, J C; Biaggi-Labiosa, A M; Laskowski, D; Dutta, P K; Mondal, S P; Ward, B J; Makel, D B; Liu, C C; Chang, C W; Dweik, R A

    2011-09-01

    Breath analysis techniques offer a potential revolution in health care diagnostics, especially if these techniques can be brought into standard use in the clinic and at home. The advent of microsensors combined with smart sensor system technology enables a new generation of sensor systems with significantly enhanced capabilities and minimal size, weight and power consumption. This paper discusses the microsensor/smart sensor system approach and provides a summary of efforts to migrate this technology into human health breath monitoring applications. First, the basic capability of this approach to measure exhaled breath associated with exercise physiology is demonstrated. Building from this foundation, the development of a system for a portable asthma home health care system is described. A solid-state nitric oxide (NO) sensor for asthma monitoring has been identified, and efforts are underway to miniaturize this NO sensor technology and integrate it into a smart sensor system. It is concluded that base platform microsensor technology combined with smart sensor systems can address the needs of a range of breath monitoring applications and enable new capabilities for healthcare.

  20. Physiological coherence in healthy volunteers during laboratory-induced stress and controlled breathing.

    PubMed

    Mejía-Mejía, Elisa; Torres, Robinson; Restrepo, Diana

    2018-06-01

    Physiological coherence has been related with a general sense of well-being and improvements in health and physical, social, and cognitive performance. The aim of this study was to evaluate the relationship between acute stress, controlled breathing, and physiological coherence, and the degree of body systems synchronization during a coherence-generation exercise. Thirty-four university employees were evaluated during a 20-min test consisting of four stages of 5-min duration each, during which basal measurements were obtained (Stage 1), acute stress was induced using validated mental stressors (Stroop test and mental arithmetic task, during Stage 2 and 3, respectively), and coherence states were generated using a controlled breathing technique (Stage 4). Physiological coherence and cardiorespiratory synchronization were assessed during each stage from heart rate variability, pulse transit time, and respiration. Coherence measurements derived from the three analyzed variables increased during controlled respiration. Moreover, signals synchronized during the controlled breathing stage, implying a cardiorespiratory synchronization was achieved by most participants. Hence, physiological coherence and cardiopulmonary synchronization, which could lead to improvements in health and better life quality, can be achieved using slow, controlled breathing exercises. Meanwhile, coherence measured during basal state and stressful situations did not show relevant differences using heart rate variability and pulse transit time. More studies are needed to evaluate the ability of coherence ratio to reflect acute stress. © 2017 Society for Psychophysiological Research.

  1. A two-year follow-up case of chronic fatigue syndrome: substantial improvement in personality following a yoga-based lifestyle intervention.

    PubMed

    Yadav, Raj Kumar; Sarvottam, Kumar; Magan, Dipti; Yadav, Rashmi

    2015-04-01

    Chronic Fatigue Syndrome (CFS) is characterized by excessive fatigue after minimal physical or mental exertion, muscle and joint pain, poor concentration, dizziness, and sleep disturbances. We report here the effect of a yoga-based lifestyle intervention in a 30-year old male patient with a documented diagnosis of CFS with compromised quality of life (QoL) and altered personality. The patient initially attended a short-term yoga-based lifestyle intervention program that consisted of yoga-postures, breathing exercises (pranayama), meditation, group discussions, and individualized advice on stress management, diet and physical activity besides group support. Thereafter, patient attended 5 more such programs. There was a notable and consistent improvement in his clinical profile, positive aspects of personality and subjective well-being, and reduction in anxiety following this yoga-based lifestyle intervention. Overall, the results suggest that lifestyle intervention may improve clinical condition and personality in patients with CFS.

  2. Yoga for Exceptional Parents

    ERIC Educational Resources Information Center

    Kuhn, Jackie

    2008-01-01

    In this article, the author shares how Yoga can help make life easier for parents. The author started practicing with a Hatha Yoga teacher once a week at the local church community center. The breath (Pranayama) leads to self-discovery, Yoga poses (asanas) lead to quieting of the mind and self-connection. That was seven years ago, and since then,…

  3. Surgical treatment is effective in severe cases of exercise-induced laryngeal obstruction: A follow-up study.

    PubMed

    Norlander, Katarina; Johansson, Henrik; Jansson, Christer; Nordvall, Lennart; Nordang, Leif

    2015-01-01

    Surgery is an effective treatment in severe cases of supraglottic exercise-induced laryngeal obstruction (E-ILO). Conservatively treated subjects and subjects tested negative for E-ILO, who still experience breathing problems 1-3 years after diagnosis, tend to adjust their physical activity to a greater extent than surgically treated subjects. To investigate how symptoms and level of physical activity change over time in patients with E-ILO who have undergone surgery, patients with E-ILO treated conservatively and patients who tested negative for laryngeal obstruction at continuous laryngoscopy exercise-test (CLE-test). Patients referred for exercise-induced breathing difficulties answered questionnaires at diagnostic CLE-test and at follow-up. Questions regarded exercise-induced breathing problems, current physical activity level, and medical history of asthma and perennial allergy. Out of 84 invited subjects, 59 (70%) answered both questionnaires. Surgically treated subjects had less breathing problems at follow-up compared with conservatively treated subjects and subjects who tested negative (p < 0.001). None of the surgically treated subjects were less physically active or had changed sport due to exercise-induced dyspnoea, whereas 41.7% of the conservatively treated subjects had made such adjustments (p < 0.001).

  4. Measuring breath acetone for monitoring fat loss: Review.

    PubMed

    Anderson, Joseph C

    2015-12-01

    Endogenous acetone production is a by-product of the fat metabolism process. Because of its small size, acetone appears in exhaled breath. Historically, endogenous acetone has been measured in exhaled breath to monitor ketosis in healthy and diabetic subjects. Recently, breath acetone concentration (BrAce) has been shown to correlate with the rate of fat loss in healthy individuals. In this review, the measurement of breath acetone in healthy subjects is evaluated for its utility in predicting fat loss and its sensitivity to changes in physiologic parameters. BrAce can range from 1 ppm in healthy non-dieting subjects to 1,250 ppm in diabetic ketoacidosis. A strong correlation exists between increased BrAce and the rate of fat loss. Multiple metabolic and respiratory factors affect the measurement of BrAce. BrAce is most affected by changes in the following factors (in descending order): dietary macronutrient composition, caloric restriction, exercise, pulmonary factors, and other assorted factors that increase fat metabolism or inhibit acetone metabolism. Pulmonary factors affecting acetone exchange in the lung should be controlled to optimize the breath sample for measurement. When biologic factors are controlled, BrAce measurement provides a non-invasive tool for monitoring the rate of fat loss in healthy subjects. © 2015 The Authors Obesity published by Wiley Periodicals, Inc. on behalf of The Obesity Society (TOS).

  5. A prototype portable breath acetone analyzer for monitoring fat loss.

    PubMed

    Toyooka, Tsuguyoshi; Hiyama, Satoshi; Yamada, Yuki

    2013-09-01

    Acetone contained in our exhaled breath is a metabolic product of the breakdown of body fat and is expected to be a good indicator of fat-burning. Typically, gas chromatography or mass spectrometry are used to measure low-concentration compounds in breath but such large instruments are not suitable for daily use by diet-conscious people. Here, we prototype a portable breath acetone analyzer that has two types of semiconductor-based gas sensors with different sensitivity characteristics, enabling the acetone concentration to be calculated while taking into account the presence of ethanol, hydrogen, and humidity. To investigate the accuracy of our prototype and its application in diet support, experiments were conducted on healthy adult volunteers. Breath acetone concentrations obtained from our prototype and from gas chromatography showed a strong correlation throughout the experiments. Moreover, body fat in subjects with a controlled caloric intake and taking exercise decreased significantly, whereas breath acetone concentrations in those subjects increased significantly. These results prove that our prototype is practical and useful for self-monitoring of fat-burning at home or outside. Our prototype will help to prevent and alleviate obesity and diabetes.

  6. Effectiveness and Safety of the Awakening and Breathing Coordination, Delirium Monitoring/Management, and Early Exercise/Mobility (ABCDE) Bundle

    PubMed Central

    Balas, Michele C.; Vasilevskis, Eduard E.; Olsen, Keith M.; Schmid, Kendra K.; Shostrom, Valerie; Cohen, Marlene Z.; Peitz, Gregory; Gannon, David E.; Sisson, Joseph; Sullivan, James; Stothert, Joseph C.; Lazure, Julie; Nuss, Suzanne L.; Jawa, Randeep S.; Freihaut, Frank; Ely, E. Wesley; Burke, William J.

    2014-01-01

    Objective The debilitating and persistent effects of intensive care unit (ICU)-acquired delirium and weakness warrant testing of prevention strategies. The purpose of this study was to evaluate the effectiveness and safety of implementing the Awakening and Breathing Coordination, Delirium monitoring/management, and Early exercise/mobility (ABCDE) bundle into everyday practice. Design Eighteen-month, prospective, cohort, before-after study conducted between November 2010 and May 2012. Setting Five adult ICUs, one step-down unit, and one oncology/hematology special care unit located in a 624-bed tertiary medical center. Patients Two hundred ninety-six patients (146 pre- and 150 post-bundle implementation), age ≥ 19 years, managed by the institutions’ medical or surgical critical care service. Interventions ABCDE bundle. Measurements For mechanically ventilated patients (n = 187), we examined the association between bundle implementation and ventilator-free days. For all patients, we used regression models to quantify the relationship between ABCDE bundle implementation and the prevalence/duration of delirium and coma, early mobilization, mortality, time to discharge, and change in residence. Safety outcomes and bundle adherence were monitored. Main Results Patients in the post-implementation period spent three more days breathing without mechanical assistance than did those in the pre-implementation period (median [IQR], 24 [7 to 26] vs. 21 [0 to 25]; p = 0.04). After adjusting for age, sex, severity of illness, comorbidity, and mechanical ventilation status, patients managed with the ABCDE bundle experienced a near halving of the odds of delirium (odds ratio [OR], 0.55; 95% confidence interval [CI], 0.33–0.93; p = 0.03) and increased odds of mobilizing out of bed at least once during an ICU stay (OR, 2.11; 95% CI, 1.29–3.45; p = 0.003). No significant differences were noted in self-extubation or reintubation rates. Conclusions Critically ill patients managed

  7. Air-breathing during activity in the fishes amia calva and lepisosteus oculatus

    PubMed

    Farmer; d

    1998-04-01

    Many osteichthyan fishes obtain oxygen from both air, using a lung, and water, using gills. Although it is commonly thought that fishes air-breathe to survive hypoxic aquatic habitats, other reasons may be more important in many species. This study was undertaken to determine the significance of air-breathing in two fish species while exercising in oxygen-rich water. Oxygen consumption from air and water was measured during mild activity in bowfin (Amia calva) and spotted gar (Lepisosteus oculatus) by sealing a fish in an acrylic flume that contained an air-hole. At 19-23 degreesC, the rate of oxygen consumption from air in both species was modest at rest. During low-level exercise, more than 50 % of the oxygen consumed by both species was from the air (53.0+/-22.9 % L. oculatus; 66.4+/-8.3 % A. calva).

  8. Measurements of lactate in exhaled breath condensate at rest and after maximal exercise in young and healthy subjects.

    PubMed

    Marek, E M; Volke, J; Hawener, I; Platen, P; Mückenhoff, K; Marek, W

    2010-03-01

    Arterial lactate concentrations, taken as indicators of physical fitness, in athletes as well as in patients with cardio-respiratory or metabolic diseases, are measured invasively from arterialized ear lobe blood. Currently developed micro enzyme detectors permit a non-invasive measurement of hypoxia-related metabolites such as lactate in exhaled breath condensate (EBC). The aim of our study is to prove whether this technology will replace the traditional measurement of lactate in arterialized blood. Therefore, we determined the functional relation between lactate release in EBC and lactate concentration in blood in young and healthy subjects at rest and after exhausting bicycle exercise. During resting conditions as well as after exhausting bicycle exercise, 100 L of exhaled air along with blood samples from the ear lobe was collected after stationary load conditions in 16 healthy subjects. EBC was obtained by cooling the expired air volume with an ECoScreen I (FILT GmbH, Berlin) condenser. The analysis was performed within 90 min using an ECoCheck ampere meter (FILT GmbH, Berlin). Lactate measurements were performed using a bi-enzyme sensor after lactate oxidase-induced oxidation of lactate to pyruvate and H2O2. The rates of lactate release via the exhaled air were calculated from the lactate concentration, the volume and the collection time of the EBC. The functional relation of lactate release in exhaled air and lactate concentration of arterial blood was computed. At rest, the mean lactate concentration in arterialized blood was 0.93 ± 0.30 mmol L(-1). At a resting ventilation of 11.5 ± 3.4 L min(-1), the collection time for 100 L of exhaled air, Ts, was 8.4 ± 2.9 min, and 1.68 ± 0.40 mL EBC was obtained. In EBC, the lactate concentration was 21.4 ± 7.7 µmol L(-1), and the rate of lactate release rate in collected EBC was 4.5 ± 1.7 nmol min(-1). After maximal exercise load (220 ± 20 W), the blood lactate concentration increased to 10.9 ± 1.8 mmol L(-1

  9. Purine metabolism in response to hypoxic conditions associated with breath-hold diving and exercise in erythrocytes and plasma from bottlenose dolphins (Tursiops truncatus).

    PubMed

    Del Castillo Velasco-Martínez, Iris; Hernández-Camacho, Claudia J; Méndez-Rodríguez, Lía C; Zenteno-Savín, Tania

    2016-01-01

    In mammalian tissues under hypoxic conditions, ATP degradation results in accumulation of purine metabolites. During exercise, muscle energetic demand increases and oxygen consumption can exceed its supply. During breath-hold diving, oxygen supply is reduced and, although oxygen utilization is regulated by bradycardia (low heart rate) and peripheral vasoconstriction, tissues with low blood flow (ischemia) may become hypoxic. The goal of this study was to evaluate potential differences in the circulating levels of purine metabolism components between diving and exercise in bottlenose dolphins (Tursiops truncatus). Blood samples were taken from captive dolphins following a swimming routine (n=8) and after a 2min dive (n=8). Activity of enzymes involved in purine metabolism (hypoxanthine guanine phosphoribosyl transferase (HGPRT), inosine monophosphate deshydrogenase (IMPDH), xanthine oxidase (XO), purine nucleoside phosphorylase (PNP)), and purine metabolite (hypoxanthine (HX), xanthine (X), uric acid (UA), inosine monophosphate (IMP), inosine, nicotinamide adenine dinucleotide (NAD(+)), adenosine, adenosine monophosphate (AMP), adenosine diphosphate (ADP), ATP, guanosine diphosphate (GDP), guanosine triphosphate (GTP)) concentrations were quantified in erythrocyte and plasma samples. Enzymatic activity and purine metabolite concentrations involved in purine synthesis and degradation, were not significantly different between diving and exercise. Plasma adenosine concentration was higher after diving than exercise (p=0.03); this may be related to dive-induced ischemia. In erythrocytes, HGPRT activity was higher after diving than exercise (p=0.007), suggesting an increased capacity for purine recycling and ATP synthesis from IMP in ischemic tissues of bottlenose dolphins during diving. Purine recycling and physiological adaptations may maintain the ATP concentrations in bottlenose dolphins after diving and exercise. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Correlational analysis of electroencephalographic and end-tidal carbon dioxide signals during breath-hold exercise.

    PubMed

    Morelli, Maria Sole; Vanello, Nicola; Giannoni, Alberto; Frijia, Francesca; Hartwig, Valentina; Maestri, Michelangelo; Bonanni, Enrica; Carnicelli, Luca; Positano, Vincenzo; Passino, Claudio; Emdin, Michele; Landini, Luigi

    2015-01-01

    The central mechanism of breathing control is not totally understood. Several studies evaluated the correlation between electroencephalographic (EEG) power spectra and respiratory signals by performing resting state tasks or adopting hypercapnic/hypoxic stimuli. The observation of brain activity during voluntary breath hold tasks, might be an useful approach to highlight the areas involved in mechanism of breath regulation. Nevertheless, studies of brain activity with EEG could present some limitations due to presence of severe artifacts. When artifact rejection methods, as independent component analysis, cannot reliably clean EEG data, it is necessary to exclude noisy segments. In this study, global field power in the delta band and end-tidal CO2 were derived from EEG and CO2 signals respectively in 4 healthy subjects during a breath-hold task. The cross correlation function between the two signals was estimated taking into account the presence of missing samples. The statistical significance of the correlation coefficients at different time lags was assessed using surrogate data. Some simulations are introduced to evaluate the effect of missing data on the correlational analysis and their results are discussed. Results obtained on subjects show a significant correlation between changes in EEG power in the delta band and end-tidal CO2. Moreover, the changes in end-tidal CO2 were found to precede those of global field power. These results might help to better understand the cortical mechanisms involved in the control of breathing.

  11. Measurement of fatigue following 18 msw dry chamber dives breathing air or enriched air nitrox.

    PubMed

    Harris, R J D; Doolette, D J; Wilkinson, D C; Williams, D J

    2003-01-01

    Many divers report less fatigue following diving breathing oxygen rich N2-O2 mixtures compared with breathing air. In this double blinded, randomized controlled study 11 divers breathed either air or Enriched Air Nitrox 36% (oxygen 36%, nitrogen 64%) during an 18 msw (281 kPa(a)) dry chamber dive for a bottom time of 40 minutes. Two periods of exercise were performed during the dive. Divers were assessed before and after each dive using the Multidimensional Fatigue Inventory-20, a visual analogue scale, Digit Span Tests, Stroop Tests, and Divers Health Survey (DHS). Diving to 18m produced no measurable difference in fatigue, attention levels, ability to concentrate or DHS scores, following dives using either breathing gas.

  12. Small Airway Dysfunction and Abnormal Exercise Responses

    PubMed Central

    Petsonk, Edward L.; Stansbury, Robert C.; Beeckman-Wagner, Lu-Ann; Long, Joshua L.; Wang, Mei Lin

    2016-01-01

    Rationale Coal mine dust exposure can cause symptoms and loss of lung function from multiple mechanisms, but the roles of each disease process are not fully understood. Objectives We investigated the implications of small airway dysfunction for exercise physiology among a group of workers exposed to coal mine dust. Methods Twenty coal miners performed spirometry, first breathing air and then helium-oxygen, single-breath diffusing capacity, and computerized chest tomography, and then completed cardiopulmonary exercise testing. Measurements and Main Results Six participants meeting criteria for small airway dysfunction were compared with 14 coal miners who did not. At submaximal workload, miners with small airway dysfunction used a higher proportion of their maximum voluntary ventilation and had higher ventilatory equivalents for both O2 and CO2. Regression modeling indicated that inefficient ventilation was significantly related to small airway dysfunction but not to FEV1 or diffusing capacity. At the end of exercise, miners with small airway dysfunction had 27% lower O2 consumption. Conclusions Small airway abnormalities may be associated with important inefficiency of exercise ventilation. In dust-exposed individuals with only mild abnormalities on resting lung function tests or chest radiographs, cardiopulmonary exercise testing may be important in defining causes of exercise intolerance. PMID:27073987

  13. Exercise on-transition uncoupling of ventilatory, gas exchange and cardiac hemodynamic kinetics accompany pulmonary oxygen stores depletion to impact exercise intolerance in human heart failure.

    PubMed

    Van Iterson, E H; Smith, J R; Olson, T P

    2018-03-25

    In contrast to knowledge that heart failure (HF) patients demonstrate peak exercise uncoupling across ventilation, gas exchange and cardiac haemodynamics, whether this dyssynchrony follows that at the exercise on-transition is unclear. This study tested whether exercise on-transition temporal lag for ventilation relative to gas exchange and oxygen pulse (O 2 pulse) couples with effects from abnormal pulmonary gaseous oxygen store (O 2store ) contributions to V˙O 2 to interdependently precipitate persistently elevated ventilatory demand and low oxidative metabolic capacity in HF. Beat-to-beat HR and breath-to-breath ventilation and gas exchange were continuously acquired in HF (N = 9, ejection fraction = 30 ± 9%) and matched controls (N = 10) during square-wave ergometry at 60% V˙O 2peak (46 ± 14 vs 125 ± 54-W, P < .001). Temporal responses across V˙ E , V˙O 2 and O 2 pulse were assessed for the exercise on-transition using single exponential model Phase II on-kinetic time constants (τ = time to reach 63% steady-state rise). Breath-to-breath gas fractions and respiratory flows were used to determine O 2stores . HF vs controls: τ for V˙ E (137 ± 93 vs 74 ± 40-seconds, P = .03), V˙O 2 (60 ± 40 vs 23 ± 5-seconds, P = .03) and O 2 pulse (28 ± 18 vs 23 ± 15-seconds, P = .59). Within HF, τ for V˙ E differed from O 2 pulse (P < .02), but not V˙O 2 . Exercise V˙ E rise (workload indexed) differed in HF vs controls (545 ± 139 vs 309 ± 88-mL min -1 W -1 , P < .001). Exercise on-transition O 2store depletion in HF exceeded controls, generally persisting to end-exercise. These data suggest HF demonstrated exercise on-transition O 2store depletion (high O 2store contribution to V˙O 2 ) coupled with dyssynchronous V˙ E , V˙O 2 and O 2 pulse kinetics-not attributable to prolonged cardiac haemodynamics. Persistent high ventilatory demand and low oxidative metabolic capacity in HF may be precipitated by physiological uncoupling occurring within the exercise

  14. TR-BREATH: Time-Reversal Breathing Rate Estimation and Detection.

    PubMed

    Chen, Chen; Han, Yi; Chen, Yan; Lai, Hung-Quoc; Zhang, Feng; Wang, Beibei; Liu, K J Ray

    2018-03-01

    In this paper, we introduce TR-BREATH, a time-reversal (TR)-based contact-free breathing monitoring system. It is capable of breathing detection and multiperson breathing rate estimation within a short period of time using off-the-shelf WiFi devices. The proposed system exploits the channel state information (CSI) to capture the miniature variations in the environment caused by breathing. To magnify the CSI variations, TR-BREATH projects CSIs into the TR resonating strength (TRRS) feature space and analyzes the TRRS by the Root-MUSIC and affinity propagation algorithms. Extensive experiment results indoor demonstrate a perfect detection rate of breathing. With only 10 s of measurement, a mean accuracy of can be obtained for single-person breathing rate estimation under the non-line-of-sight (NLOS) scenario. Furthermore, it achieves a mean accuracy of in breathing rate estimation for a dozen people under the line-of-sight scenario and a mean accuracy of in breathing rate estimation of nine people under the NLOS scenario, both with 63 s of measurement. Moreover, TR-BREATH can estimate the number of people with an error around 1. We also demonstrate that TR-BREATH is robust against packet loss and motions. With the prevailing of WiFi, TR-BREATH can be applied for in-home and real-time breathing monitoring.

  15. Oxygen cost of exercise hyperpnoea is greater in women compared with men

    PubMed Central

    Dominelli, Paolo B; Render, Jacqueline N; Molgat-Seon, Yannick; Foster, Glen E; Romer, Lee M; Sheel, A William

    2015-01-01

    We compared the oxygen cost of breathing () in healthy men and women over a wide range of exercise ventilations (). Eighteen subjects (nine women) completed 4 days of testing. First, a step-wise maximal cycle exercise test was completed for the assessment of spontaneous breathing patterns. Next, subjects were familiarized with the voluntary hyperpnoea protocol used to estimate . During the final two visits, subjects mimicked multiple times (four to six) the breathing patterns associated with five or six different exercise stages. Each trial lasted 5 min, and on-line pressure–volume and flow–volume loops were superimposed on target loops obtained during exercise to replicate the work of breathing accurately. At ∼55 l min−1 , was significantly greater in women. At maximal ventilation, the absolute was not different (P > 0.05) between the sexes, but represented a significantly greater fraction of whole-body in women (13.8 ± 1.5 vs. 9.4 ± 1.1% ). During heavy exercise at 92 and 100% , the unit cost of was +0.7 and +1.1 ml O2 l−1 greater in women (P < 0.05). At , men and women who developed expiratory flow limitation had a significantly greater than those who did not (435 ± 44 vs. 331 ± 30 ml O2 min−1). In conclusion, women have a greater for a given , and this represents a greater fraction of whole-body . The greater in women may have implications for the integrated physiological response to exercise. PMID:25652549

  16. Effects of Diaphragmatic Breathing Patterns on Balance: A Preliminary Clinical Trial.

    PubMed

    Stephens, Rylee J; Haas, Mitchell; Moore, William L; Emmil, Jordan R; Sipress, Jayson A; Williams, Alex

    The purpose of this study was to determine the feasibility of performing a larger study to determine if training in diaphragmatic breathing influences static and dynamic balance. A group of 13 healthy persons (8 men, 5 women), who were staff, faculty, or students at the University of Western States participated in an 8-week breathing and balance study using an uncontrolled clinical trial design. Participants were given a series of breathing exercises to perform weekly in the clinic and at home. Balance and breathing were assessed at the weekly clinic sessions. Breathing was evaluated with Liebenson's breathing assessment, static balance with the Modified Balance Error Scoring System, and dynamic balance with OptoGait's March in Place protocol. Improvement was noted in mean diaphragmatic breathing scores (1.3 to 2.6, P < .001), number of single-leg stance balance errors (7.1 to 3.8, P = .001), and tandem stance balance errors (3.2 to 0.9, P = .039). A decreasing error rate in single-leg stance was associated with improvement in breathing score within participants over the 8 weeks of the study (-1.4 errors/unit breathing score change, P < .001). Tandem stance performance did not reach statistical significance (-0.5 error/unit change, P = .118). Dynamic balance was insensitive to balance change, being error free for all participants throughout the study. This proof-of-concept study indicated that promotion of a costal-diaphragmatic breathing pattern may be associated with improvement in balance and suggests that a study of this phenomenon using an experimental design is feasible. Copyright © 2017. Published by Elsevier Inc.

  17. Mobile selected ion flow tube mass spectrometry (SIFT-MS) devices and their use for pollution exposure monitoring in breath and ambient air-pilot study.

    PubMed

    Storer, Malina; Salmond, Jennifer; Dirks, Kim N; Kingham, Simon; Epton, Michael

    2014-09-01

    Studies of health effects of air pollution exposure are limited by inability to accurately determine dose and exposure of air pollution in field trials. We explored the feasibility of using a mobile selected ion flow tube mass spectrometry (SIFT-MS) device, housed in a van, to determine ambient air and breath levels of benzene, xylene and toluene following exercise in areas of high motor vehicle traffic. The breath toluene, xylene and benzene concentration of healthy subjects were measured before and after exercising close to a busy road. The concentration of the volatile organic compounds (VOCs), in ambient air were also analysed in real time. Exercise close to traffic pollution is associated with a two-fold increase in breath VOCs (benzene, xylene and toluene) with levels returning to baseline within 20 min. This effect is not seen when exercising away from traffic pollution sources. Situating the testing device 50 m from the road reduced any confounding due to VOCs in the inspired air prior to the breath testing manoeuvre itself. Real-time field testing for air pollution exposure is possible using a mobile SIFT-MS device. This device is suitable for exploring exposure and dose relationships in a number of large scale field test scenarios.

  18. Investigation of Yoga Pranayama and Vedic Mathematics on Mindfulness, Aggression and Emotion Regulation.

    PubMed

    Shastri, Vasant Venkatraman; Hankey, Alex; Sharma, Bhawna; Patra, Sanjib

    2017-01-01

    Competitive examinations, particularly in mathematics, have made emotional stress a major problem for preuniversity students, emotions like aggression toward fellow students and teachers increase. Mindfulness is a quality that reduces both emotional stress and aggression, so increasing mindfulness should be helpful. To study the effects of Yoga Pranayama (YP) and Vedic Mathematics (VM) on mindfulness, aggression, and emotion regulation. Participants were 12 th graders attending a preuniversity college in Chikkamagaluru, India, of both genders. Exclusion criteria included major psychological problems. Three classes were arbitrarily assigned to one of three interventions, which consisted of 15 days each of 30 min daily instruction in YP, Group 1, VM, Group 2, or 30 min ordinary class work, Group 3, the control group. Assessments were made using the Mindfulness Attention Awareness Scale, the Nonphysical Aggression Scale from Pittsburgh Youth Study, and the Emotion Regulation Questionnaire. SPSS 19.0. Mindfulness, aggression, and negative emotional regulation changed significantly for the YP group, while mindfulness alone improved significantly for the VM group. No group changed on positive emotion regulation. Controls apparently improved on aggression. An interesting post hoc correlation analysis is also reported, among other things directly linking increased mindfulness to decreased aggression. The study showed positive effects of traditional methods of decreasing emotional pressure on students facing preuniversity mathematics examinations. Increasing mindfulness is considered a way of increasing emotion regulation, so the failure of this study to provide evidence for that is of interest.

  19. Effect of maximal dynamic exercise on exhaled ethane and carbon monoxide levels in human, equine, and canine athletes.

    PubMed

    Wyse, Cathy; Cathcart, Andy; Sutherland, Rona; Ward, Susan; McMillan, Lesley; Gibson, Graham; Padgett, Miles; Skeldon, Kenneth

    2005-06-01

    Exercise-induced oxidative stress (EIOS) refers to a condition where the balance of free radical production and antioxidant systems is disturbed during exercise in favour of pro-oxidant free radicals. Breath ethane is a product of free radical-mediated oxidation of cell membrane lipids and is considered to be a reliable marker of oxidative stress. The heatshock protein, haem oxygenase, is induced by oxidative stress and degrades haemoglobin to bilirubin, with concurrent production of carbon monoxide (CO). The aim of this study was to investigate the effect of maximal exercise on exhaled ethane and CO in human, canine, and equine athletes. Human athletes (n = 8) performed a maximal exercise test on a treadmill, and canine (n = 12) and equine (n = 11) athletes exercised at gallop on a sand racetrack. Breath samples were taken at regular intervals during exercise in the human athletes, and immediately before and after exercise in the canine and equine athletes. Breath samples were stored in gas-impermeable bags for analysis of ethane by laser spectroscopy, and CO was measured directly using an electrochemical CO monitor. Maximal exercise was associated with significant increases in exhaled ethane in the human, equine, and canine athletes. Decreased concentrations of exhaled CO were detected after maximal exercise in the human athletes, but CO was rarely detectable in the canine and equine athletes. The ethane breath test allows non-invasive and real-time detection of oxidative stress, and this method will facilitate further investigation of the processes mediating EIOS in human and animal athletes.

  20. An acetone bio-sniffer (gas phase biosensor) enabling assessment of lipid metabolism from exhaled breath.

    PubMed

    Ye, Ming; Chien, Po-Jen; Toma, Koji; Arakawa, Takahiro; Mitsubayashi, Kohji

    2015-11-15

    Several volatile organic compounds (VOCs) are released from human breath or skin. Like chemical substances in blood or urine, some of these vapors can provide valuable information regarding the state of the human body. A highly sensitive acetone biochemical gas sensor (bio-sniffer) was developed and used to measure exhaled breath acetone concentration, and assess lipid metabolism based on breath acetone analysis. A fiber-optic biochemical gas sensing system was constructed by attaching a flow-cell with nicotinamide adenine dinucleotide (NADH)-dependent secondary alcohol dehydrogenase (S-ADH) immobilized membrane onto a fiber-optic NADH measurement system. The NADH measurement system utilizes an ultraviolet-light emitting diode with peak emission of 335 nm as an excitation light source. NADH is consumed by the enzymatic reaction of S-ADH, and the consumption is proportional to the concentration of acetone vapor. Phosphate buffer which contained NADH was circulated into the flow-cell to rinse products and the excessive substrates from the optode. The change of fluorescent emitted from NADH is analyzed by the PMT. Hence, fluorescence intensity decreased as the acetone concentration increased. The relationship between fluorescence intensity and acetone concentration was identified from 20 ppb to 5300 ppb. This interval included the concentration of acetone vapor in the breath of healthy people and those suffering from disorders of carbohydrate metabolism. Finally, the acetone bio-sniffer was used to measure breath acetone during an exercise stress test on an ergometer after a period of fasting. The concentration of acetone in breath was shown to significantly increase after exercise. This biosensor allows rapid, highly sensitive and selective measurement of lipid metabolism. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. OBESITY: CHALLENGES TO VENTILATORY CONTROL DURING EXERCISE A BRIEF REVIEW

    PubMed Central

    Babb, Tony G.

    2013-01-01

    Obesity is a national health issue in the US. Among the many physiological changes induced by obesity, it also presents a unique challenge to ventilatory control during exercise due to increased metabolic demand of moving larger limbs, increased work of breathing due to extra weight on the chest wall, and changes in breathing mechanics. These challenges to ventilatory control in obesity can be inconspicuous or overt among obese adults but for the most part adaptation of ventilatory control during exercise in obesity appears remarkably unnoticed in the majority of obese people. In this brief review, the changes to ventilatory control required for maintaining normal ventilation during exercise will be examined, especially the interaction between respiratory neural drive and ventilation. Also, gaps in our current knowledge will be discussed. PMID:23707540

  2. An acetone breath analyzer using cavity ringdown spectroscopy: an initial test with human subjects under various situations

    NASA Astrophysics Data System (ADS)

    Wang, Chuji; Surampudi, Anand B.

    2008-10-01

    We have developed a portable breath acetone analyzer using cavity ringdown spectroscopy (CRDS). The instrument was initially tested by measuring the absorbance of breath gases at a single wavelength (266 nm) from 32 human subjects under various conditions. A background subtraction method, implemented to obtain absorbance differences, from which an upper limit of breath acetone concentration was obtained, is described. The upper limits of breath acetone concentration in the four Type 1 diabetes (T1D) subjects, tested after a 14 h overnight fast, range from 0.80 to 3.97 parts per million by volume (ppmv), higher than the mean acetone concentration (0.49 ppmv) in non-diabetic healthy breath reported in the literature. The preliminary results show that the instrument can tell distinctive differences between the breath from individuals who are healthy and those with T1D. On-line monitoring of breath gases in healthy people post-exercise, post-meals and post-alcohol-consumption was also conducted. This exploratory study demonstrates the first CRDS-based acetone breath analyzer and its potential application for point-of-care, non-invasive, diabetic monitoring.

  3. Theme and variations: amphibious air-breathing intertidal fishes.

    PubMed

    Martin, K L

    2014-03-01

    Over 70 species of intertidal fishes from 12 families breathe air while emerging from water. Amphibious intertidal fishes generally have no specialized air-breathing organ but rely on vascularized mucosae and cutaneous surfaces in air to exchange both oxygen and carbon dioxide. They differ from air-breathing freshwater fishes in morphology, physiology, ecology and behaviour. Air breathing and terrestrial activity are present to varying degrees in intertidal fish species, correlated with the tidal height of their habitat. The gradient of amphibious lifestyle includes passive remainers that stay in the intertidal zone as tides ebb, active emergers that deliberately leave water in response to poor aquatic conditions and highly mobile amphibious skipper fishes that may spend more time out of water than in it. Normal terrestrial activity is usually aerobic and metabolic rates in air and water are similar. Anaerobic metabolism may be employed during forced exercise or when exposed to aquatic hypoxia. Adaptations for amphibious life include reductions in gill surface area, increased reliance on the skin for respiration and ion exchange, high affinity of haemoglobin for oxygen and adjustments to ventilation and metabolism while in air. Intertidal fishes remain close to water and do not travel far terrestrially, and are unlikely to migrate or colonize new habitats at present, although in the past this may have happened. Many fish species spawn in the intertidal zone, including some that do not breathe air, as eggs and embryos that develop in the intertidal zone benefit from tidal air emergence. With air breathing, amphibious intertidal fishes survive in a variable habitat with minimal adjustments to existing structures. Closely related species in different microhabitats provide unique opportunities for comparative studies. © 2013 The Fisheries Society of the British Isles.

  4. Effects of yoga on brain waves and structural activation: A review.

    PubMed

    Desai, Radhika; Tailor, Anisha; Bhatt, Tanvi

    2015-05-01

    Previous research has shown the vast mental and physical health benefits associated with yoga. Yoga practice can be divided into subcategories that include posture-holding exercise (asana), breathing (pranayama, Kriya), and meditation (Sahaj) practice. Studies measuring mental health outcomes have shown decreases in anxiety, and increases in cognitive performance after yoga interventions. Similar studies have also shown cognitive advantages amongst yoga practitioners versus non-practitioners. The mental health and cognitive benefits of yoga are evident, but the physiological and structural changes in the brain that lead to this remain a topic that lacks consensus. Therefore, the purpose of this study was to examine and review existing literature on the effects of yoga on brain waves and structural changes and activation. After a narrowed search through a set of specific inclusion and exclusion criteria, 15 articles were used in this review. It was concluded that breathing, meditation, and posture-based yoga increased overall brain wave activity. Increases in graygray matter along with increases in amygdala and frontal cortex activation were evident after a yoga intervention. Yoga practice may be an effective adjunctive treatment for a clinical and healthy aging population. Further research can examine the effects of specific branches of yoga on a designated clinical population. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Breath-collection device for delayed breath-alcohol analysis

    DOT National Transportation Integrated Search

    1980-12-01

    The report includes the details of a study to develop, evaluate, and validate a breath collection device (BCD) for delayed breath-alcohol analysis. Primary applications of the BCD include collection of breath-alcohol samples for field surveys or for ...

  6. Validation and application of single breath cardiac output determinations in man

    NASA Technical Reports Server (NTRS)

    Loeppky, J. A.; Fletcher, E. R.; Myhre, L. G.; Luft, U. C.

    1986-01-01

    The results of a procedure for estimating cardiac output by a single-breath technique (Qsb), obtained in healthy males during supine rest and during exercise on a bicycle ergometer, were compared with the results on cardiac output obtained by the direct Fick method (QF). The single breath maneuver consisted of a slow exhalation to near residual volume following an inspiration somewhat deeper than normal. The Qsb calculations incorporated an equation of the CO2 dissociation curve and a 'moving spline' sequential curve-fitting technique to calculate the instantaneous R from points on the original expirogram. The resulting linear regression equation indicated a 24-percent underestimation of QF by the Qsb technique. After applying a correction, the Qsb-QF relationship was improved. A subsequent study during upright rest and exercise to 80 percent of VO2(max) in 6 subjects indicated a close linear relationship between Qsb and VO2 for all 95 values obtained, with slope and intercept close to those in published studies in which invasive cardiac output measurements were used.

  7. Reduced exercise capacity in genetic haemochromatosis.

    PubMed

    Davidsen, Einar Skulstad; Liseth, Knut; Omvik, Per; Hervig, Tor; Gerdts, Eva

    2007-06-01

    Many patients with genetic haemochromatosis complain about fatigue and reduced physical capacity. Exercise capacity, however, has not been evaluated in larger series of haemochromatosis patients treated with repeated phlebotomy. We performed exercise echocardiography in 152 treated haemochromatosis patients (48+/-13 years, 26% women) and 50 healthy blood donors (49+/-13 years, 30% women), who served as controls. Echocardiography was performed at rest and during exercise in a semiupright position on a chair bicycle, starting from 20 W, increasing by 20 W/min. Transmitral early and atrial velocity and isovolumic relaxation time were measured at each step. Ventilatory gas exchange was measured by the breath-to-breath-technique. Compared with healthy controls, haemochromatosis patients were more obese and less trained. More of them smoked, and 17% had a history of cardiovascular or pulmonary disease. Adjusted for training, the left ventricular function and dimensions at rest did not differ between the groups. During exercise the haemochromatosis patients obtained a significantly lower peak oxygen (O2) uptake (28.1 vs. 34.4 ml/kg per min, P<0.001). In a multiple regression analysis haemochromatosis predicted lower peak O2 uptake independently of significant contributions of sex, age, and height, as well as of systolic blood pressure and log-transformed isovolumic relaxation time at peak exercise, whereas no independent association was found with weight or physical activity (multiple R=0.74, P<0.001). Adding genotype, s-ferritin, prevalence of smoking, or history of cardiopulmonary disease among the covariates in subsequent models did not change the results. Genetic haemochromatosis, even when treated with regular phlebotomy, is associated with lower exercise capacity independently of other covariates of exercise capacity.

  8. Activity of Lower Limb Muscles During Squat With and Without Abdominal Drawing-in and Pilates Breathing.

    PubMed

    Barbosa, Alexandre C; Martins, Fábio M; Silva, Angélica F; Coelho, Ana C; Intelangelo, Leonardo; Vieira, Edgar R

    2017-11-01

    Barbosa, AC, Martins, FM, Silva, AF, Coelho, AC, Intelangelo, L, and Vieira, ER. Activity of lower limb muscles during squat with and without abdominal drawing-in and Pilates breathing. J Strength Cond Res 31(11): 3018-3023, 2017-The purpose of this study was to assess the effects of abdominal drawing-in and Pilates breathing on the activity of lower limb muscles during squats. Adults (n = 13, 22 ± 3 years old) with some Pilates experience performed three 60° squats under each of the following conditions in a random order: (I) normal breathing, (II) drawing-in maneuver with normal breathing, and (III) drawing-in maneuver with Pilates breathing. Peak-normalized surface electromyography of the rectus femoris, biceps femoris, gastrocnemius medialis, and tibialis anterior during the knee flexion and extension phases of squat exercises was analyzed. There were significant differences among the conditions during the knee flexion phase for the rectus femoris (p = 0.001), biceps femoris (p = 0.038), and tibialis anterior (p = 0.001), with increasing activation from conditions I to III. For the gastrocnemius medialis, there were significant differences among the conditions during the knee extension phase (p = 0.023), with increased activity under condition I. The rectus and biceps femoris activity was higher during the extension vs. flexion phase under conditions I and II. The tibialis anterior activity was higher during the flexion compared with the extension phase under all conditions, and the medial gastrocnemius activity was higher during the extension phase under condition I. Doing squats with abdominal drawing-in and Pilates breathing resulted in increased rectus, biceps femoris, and tibialis anterior activity during the flexion phase, increasing movement stability during squat exercises.

  9. Measuring Breath Alcohol Concentrations with an FTIR Spectrometer

    NASA Astrophysics Data System (ADS)

    Kneisel, Adam; Bellamy, Michael K.

    2003-12-01

    An FTIR spectrometer equipped with a long-path gas cell can be used to measure breath alcohol concentrations in an instrumental analysis laboratory course. Students use aqueous ethanol solutions to make a calibration curve that relates absorbance signals of breath samples with blood alcohol concentrations. Students use their calibration curve to determine the time needed for their calculated blood alcohol levels to drop below the legal limit following use of a commercial mouthwash. They also calculate their blood alcohol levels immediately after chewing bread. The main goal of the experiment is to provide the students with an interesting laboratory exercise that teaches them about infrared spectrometers. While the results are meant to be only semiquantitative, they have compared well with results from other published studies. A reference is included that describes how to fabricate a long-path gas cell.

  10. (13)C-Breath testing in animals: theory, applications, and future directions.

    PubMed

    McCue, Marshall D; Welch, Kenneth C

    2016-04-01

    The carbon isotope values in the exhaled breath of an animal mirror the carbon isotope values of the metabolic fuels being oxidized. The measurement of stable carbon isotopes in carbon dioxide is called (13)C-breath testing and offers a minimally invasive method to study substrate oxidation in vivo. (13)C-breath testing has been broadly used to study human exercise, nutrition, and pathologies since the 1970s. Owing to reduced use of radioactive isotopes and the increased convenience and affordability of (13)C-analyzers, the past decade has witnessed a sharp increase in the use of breath testing throughout comparative physiology--especially to answer questions about how and when animals oxidize particular nutrients. Here, we review the practical aspects of (13)C-breath testing and identify the strengths and weaknesses of different methodological approaches including the use of natural abundance versus artificially-enriched (13)C tracers. We critically compare the information that can be obtained using different experimental protocols such as diet-switching versus fuel-switching. We also discuss several factors that should be considered when designing breath testing experiments including extrinsic versus intrinsic (13)C-labelling and different approaches to model nutrient oxidation. We use case studies to highlight the myriad applications of (13)C-breath testing in basic and clinical human studies as well as comparative studies of fuel use, energetics, and carbon turnover in multiple vertebrate and invertebrate groups. Lastly, we call for increased and rigorous use of (13)C-breath testing to explore a variety of new research areas and potentially answer long standing questions related to thermobiology, locomotion, and nutrition.

  11. Hydrogen peroxide release and acid-base status in exhaled breath condensate at rest and after maximal exercise in young, healthy subjects.

    PubMed

    Marek, E; Platen, P; Volke, J; Mückenhoff, K; Marek, W

    2009-12-07

    Exhaled breath condensate (EBC) contains among a large number of mediators hydrogen peroxide (H2O2) as a marker of airway inflammation and oxidative stress. Similarly EBC pH also changes in respiratory diseases. It was the aim of our investigation to prove if hydrogen peroxide release and changes in pH of EBC changes with exercise. EBC was collected from 100 litres exhaled air along with samples of arterialized blood of 16 healthy subjects (9 males, 7 females, age 23 +/- 1 years). EBC hydrogen peroxide was analyzed with EcoCheck amperometer (FILT, Berlin). The rate of H(2)O(2) release was calculated from the concentration and collection time. pH and PCO(2) in blood and in EBC were measured with the Radiometer blood gas analyzer, EBC was equilibrated with a gas mixture (5% CO(2) in O(2)). The bicarbonate concentration was calculated according to the law of mass action for CO(2) and HCO(3)(-) (pK = 6.1). H(2)O(2) concentration in EBC was 190 +/- 109 nmol/l, and H (2)O(2) release at rest was 31.0 +/- 18.3 pmol/min. At maximal exercise, the H(2)O(2) concentration in EBC increased to 250 +/- 120 nmol/l, and H(2)O(2) release significantly increased at maximal exercise to 84.4 +/- 39.9 pmol/min (P<0.01). At rest pH of the CO(2) equilibrated EBC was at 6.08 +/- 0.23 and the [HCO(3)(-)] was 1.03 +/- 0.40 mmol/l. At maximum exercise, pH 6.18 +/- 0.17 and [HCO(3)(-)] 1.23 +/- 0.30 mmol/l remained almost unaltered. The rate of H(2)O(2) release in EBC increased during exhausting exercise (external load: 300 Watt) by a factor of 2, whereas the pH and the bicarbonate concentration of the EBC, equilibrated with 5% CO(2) at 37 degrees C were not significantly altered. It has to be proven by further experiments whether there is a linear relationship between the rates of H(2)O(2) release in EBC in graded submaximal exercise.

  12. Investigation of Yoga Pranayama and Vedic Mathematics on Mindfulness, Aggression and Emotion Regulation

    PubMed Central

    Shastri, Vasant Venkatraman; Hankey, Alex; Sharma, Bhawna; Patra, Sanjib

    2017-01-01

    Background: Competitive examinations, particularly in mathematics, have made emotional stress a major problem for preuniversity students, emotions like aggression toward fellow students and teachers increase. Mindfulness is a quality that reduces both emotional stress and aggression, so increasing mindfulness should be helpful. Aims: To study the effects of Yoga Pranayama (YP) and Vedic Mathematics (VM) on mindfulness, aggression, and emotion regulation. Methods: Participants were 12th graders attending a preuniversity college in Chikkamagaluru, India, of both genders. Exclusion criteria included major psychological problems. Three classes were arbitrarily assigned to one of three interventions, which consisted of 15 days each of 30 min daily instruction in YP, Group 1, VM, Group 2, or 30 min ordinary class work, Group 3, the control group. Assessments were made using the Mindfulness Attention Awareness Scale, the Nonphysical Aggression Scale from Pittsburgh Youth Study, and the Emotion Regulation Questionnaire. Statistical Analysis Used: SPSS 19.0. Results: Mindfulness, aggression, and negative emotional regulation changed significantly for the YP group, while mindfulness alone improved significantly for the VM group. No group changed on positive emotion regulation. Controls apparently improved on aggression. An interesting post hoc correlation analysis is also reported, among other things directly linking increased mindfulness to decreased aggression. Conclusions: The study showed positive effects of traditional methods of decreasing emotional pressure on students facing preuniversity mathematics examinations. Increasing mindfulness is considered a way of increasing emotion regulation, so the failure of this study to provide evidence for that is of interest. PMID:29422744

  13. Obesity: challenges to ventilatory control during exercise--a brief review.

    PubMed

    Babb, Tony G

    2013-11-01

    Obesity is a national health issue in the US. Among the many physiological changes induced by obesity, it also presents a unique challenge to ventilatory control during exercise due to increased metabolic demand of moving larger limbs, increased work of breathing due to extra weight on the chest wall, and changes in breathing mechanics. These challenges to ventilatory control in obesity can be inconspicuous or overt among obese adults but for the most part adaptation of ventilatory control during exercise in obesity appears remarkably unnoticed in the majority of obese people. In this brief review, the changes to ventilatory control required for maintaining normal ventilation during exercise will be examined, especially the interaction between respiratory neural drive and ventilation. Also, gaps in our current knowledge will be discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Breath-hold duration in man and the diving response induced by face immersion.

    PubMed

    Sterba, J A; Lundgren, C E

    1988-09-01

    The objective of this study in 5 selected volunteer subjects was to see whether the circulatory diving response which is elicited by breath holding and by cold water on the face would affect the duration of maximal-effort breath holds. Compared to control measurements (breath holding during resting, breathing with 35 degrees C water on the face) breath holding with the face cooled by 20 degrees C water caused a 12% reduction of heart rate, 6% reduction of cardiac output, 33% reduction in [corrected] forearm blood flow, and 9% rise in mean arterial blood pressure, but there was no difference in breath-hold duration (control and experimental both 94 s). There were also no differences in time of appearance of the first involuntary respiratory efforts during breath holding, in alveolar gas exchange, or in breaking-point alveolar O2 and CO2 tensions. When the diving response was magnified by a brief bout of exercise so that there was a 19% [corrected] reduction in heart rate, 23% reduction in cardiac output, and 48% reduction in forearm blood flow, breath-hold duration was still unaffected by face cooling. Compared to intermittent immersions, continuous exposure of the face to cold water abolished the diving response, probably by a cold adaptation of facial thermal receptors. These results with cooling of the face only are consistent with our earlier finding that there was a negative correlation between the duration of a maximal-effort breath hold and the diving response during whole-body submersion in cold water.

  15. How to breathe when you are short of breath

    MedlinePlus

    ... pursed lip breathing; Hypoxia - pursed lip breathing; Chronic respiratory failure - pursed lip breathing ... et al, eds. Murray and Nadel's Textbook of Respiratory Medicine . 6th ed. Philadelphia, PA: Elsevier Saunders; 2016: ...

  16. Controlled-frequency breath swimming improves swimming performance and running economy.

    PubMed

    Lavin, K M; Guenette, J A; Smoliga, J M; Zavorsky, G S

    2015-02-01

    Respiratory muscle fatigue can negatively impact athletic performance, but swimming has beneficial effects on the respiratory system and may reduce susceptibility to fatigue. Limiting breath frequency during swimming further stresses the respiratory system through hypercapnia and mechanical loading and may lead to appreciable improvements in respiratory muscle strength. This study assessed the effects of controlled-frequency breath (CFB) swimming on pulmonary function. Eighteen subjects (10 men), average (standard deviation) age 25 (6) years, body mass index 24.4 (3.7) kg/m(2), underwent baseline testing to assess pulmonary function, running economy, aerobic capacity, and swimming performance. Subjects were then randomized to either CFB or stroke-matched (SM) condition. Subjects completed 12 training sessions, in which CFB subjects took two breaths per length and SM subjects took seven. Post-training, maximum expiratory pressure improved by 11% (15) for all 18 subjects (P < 0.05) while maximum inspiratory pressure was unchanged. Running economy improved by 6 (9)% in CFB following training (P < 0.05). Forced vital capacity increased by 4% (4) in SM (P < 0.05) and was unchanged in CFB. These findings suggest that limiting breath frequency during swimming may improve muscular oxygen utilization during terrestrial exercise in novice swimmers. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Shortness of breath in clinical practice: A case for left atrial function and exercise stress testing for a comprehensive diastolic heart failure workup

    PubMed Central

    Iyngkaran, Pupalan; Anavekar, Nagesh S; Neil, Christopher; Thomas, Liza; Hare, David L

    2017-01-01

    The symptom cluster of shortness of breath (SOB) contributes significantly to the outpatient workload of cardiology services. The workup of these patients includes blood chemistry and biomarkers, imaging and functional testing of the heart and lungs. A diagnosis of diastolic heart failure is inferred through the exclusion of systolic abnormalities, a normal pulmonary function test and normal hemoglobin, coupled with diastolic abnormalities on echocardiography. Differentiating confounders such as obesity or deconditioning in a patient with diastolic abnormalities is difficult. While the most recent guidelines provide more avenues for diagnosis, such as incorporating the left atrial size, little emphasis is given to understanding left atrial function, which contributes to at least 25% of diastolic left ventricular filling; additionally, exercise stress testing to elicit symptoms and test the dynamics of diastolic parameters, especially when access to the “gold standard” invasive tests is lacking, presents clinical translational gaps. It is thus important in diastolic heart failure work up to understand left atrial mechanics and the role of exercise testing to build a comprehensive argument for the diagnosis of diastolic heart failure in a patient presenting with SOB. PMID:29354484

  18. Exercise induced asthma and endogenous opioids.

    PubMed Central

    Gaillard, R C; Bachman, M; Rochat, T; Egger, D; de Haller, R; Junod, A F

    1986-01-01

    Concentrations of endogenous opioid peptides in the plasma are increased during exercise and these substances have been implicated in the pathogenesis of asthma induced by chloropropramide and alcohol in diabetic patients. This work was undertaken to determine whether exercise induced asthma might be mediated by endogenous opioids. Plasma beta endorphin, met-enkephalin, and adrenocorticotrophic hormone (ACTH) concentrations were measured in five asthmatic patients and five normal volunteers breathing cold air during exercise. In four of the patients the effect of an infusion of naloxone on FEV1 was also measured during exercise induced asthma. Exercise produced acute bronchoconstriction in all asthmatics, characterised by a fall in FEV1; whereas no change occurred in normal subjects. There was no difference in plasma met-enkephalin, beta endorphin, and ACTH concentration between the two groups. Infusion of naloxone neither prevented nor worsened exercise induced asthma. These data suggest that endogenous opioids probably do not play a part in the development of exercise induced asthma. PMID:2944240

  19. The effects of exercise on dose and dose distribution of inhaled automotive pollutants.

    PubMed

    Kleinman, M T; Mautz, W J

    1991-10-01

    The purpose of this study was to determine how changes in ventilation rate and in the entry route of air pollutants into the respiratory tract (nose versus mouth breathing) affected the respiratory tract uptake and penetration of inhaled gaseous and particulate pollutants associated with automobile emissions. Experiments were performed with female beagle dogs exposed while standing at rest or while exercising on a treadmill at 5 km/hour and a 7.5 percent grade. Dogs were exposed to nitrogen dioxide at concentrations of 1 and 5 parts per million (ppm), to formaldehyde at 2 and 10 ppm, and to an aerosol of ammonium nitrate particles (0.3 micron mass median aerodynamic diameter) at 1 mg/m3. Total respiratory system uptake and effects on breath time, expired tidal volume, fractional expiration time, minute ventilation, respiratory gas exchange, ventilation equivalents for oxygen and carbon dioxide, and dynamic pulmonary resistance and compliance were measured in exercising and resting dogs exposed for two hours to 5 ppm nitrogen dioxide and 10 ppm formaldehyde in combination with 1 mg/m3 of ammonium nitrate particles. Regional penetration of pollutants through oral and nasal airways and pollutant uptake in the lung were measured in a separate group of six tracheostomized dogs standing at rest while being exposed to nitrogen dioxide, formaldehyde, and ammonium nitrate particles. Hypercapnic stimulation was used to modify ventilation rates in the tracheostomized dogs while pollutant penetration and uptake were measured. Dogs exposed to 5 ppm of nitrogen dioxide at rest tended to breathe more rapidly (p less than 0.05) and more shallowly (a nonsignificant trend) than dogs exposed to purified air. The changes observed were similar in direction, but of smaller magnitude, to changes observed when the same dogs were exposed during exercise to ozone at 0.6 ppm in a separate study. Rapid-shallow breathing was not observed when the dogs were exposed during exercise to 5 ppm

  20. Exercise training improves characteristics of exercise oscillatory ventilation in chronic heart failure.

    PubMed

    Panagopoulou, Niki; Karatzanos, Eleftherios; Dimopoulos, Stavros; Tasoulis, Athanasios; Tachliabouris, Ioannis; Vakrou, Styliani; Sideris, Antonios; Gratziou, Christina; Nanas, Serafim

    2017-05-01

    Background Exercise oscillatory ventilation in chronic heart failure has been suggested as a factor related to adverse cardiac events, aggravated prognosis and higher mortality. Exercise training is well known to affect exercise capacity and mechanisms of pathophysiology beneficially in chronic heart failure. Little is known, however, about the exercise training effects on characteristics of exercise oscillatory ventilation in chronic heart failure patients. Design and methods Twenty (out of 38) stable chronic heart failure patients exhibited exercise oscillatory ventilation (age 54 ± 11 years, peak oxygen uptake 15.0 ± 5.0 ml/kg per minute). Patients attended 36 sessions of high intensity interval exercise. All patients underwent cardiopulmonary exercise testing before and after the programme. Assessment of exercise oscillatory ventilation was based on the amplitude of cyclic fluctuations in breathing during rest and exercise. All values are mean ± SD. Results Exercise training reduced ( P < 0.05) the percentage of exercise oscillatory ventilation duration (79.0 ± 13.0 to 50.0 ± 25.0%), while average amplitude (5.2 ± 2.0 to 4.9 ± 1.6 L/minute) and length (44.0 ± 10.9 to 41.0 ± 6.7 seconds) did not change ( P > 0.05). Exercise oscillatory ventilation patients also increased exercise capacity ( P < 0.05). Conclusions A rehabilitation programme based on high intensity interval training improved exercise oscillatory ventilation observed in chronic heart failure patients, as well as cardiopulmonary efficiency and functional capacity.

  1. Exercise Ventilatory Limitation: The Role Of Expiratory Flow Limitation

    PubMed Central

    Babb, Tony G.

    2012-01-01

    Ventilatory limitation to exercise remains an important unresolved clinical issue; as a result, many individuals misinterpret the effects of expiratory flow limitation as an all-or-nothing phenomenon. Expiratory flow limitation is not all-or-none; approaching maximal expiratory flow can have important effects not only on ventilatory capacity but also on breathing mechanics, ventilatory control, and possibly exertional dyspnea and exercise intolerance. PMID:23038244

  2. Temporal characteristics of exercise-induced diaphragmatic fatigue.

    PubMed

    Archiza, Bruno; Welch, Joseph F; Geary, Caitlin M; Allen, Grayson P; Borghi-Silva, Audrey; Sheel, A William

    2018-04-01

    There is evidence suggesting diaphragmatic fatigue (DF) occurs relatively early during high-intensity exercise; however, studies investigating the temporal characteristics of exercise-induced DF are limited by incongruent methodology. Eight healthy adult males (25 ± 5 yr) performed a maximal incremental exercise test on a cycle ergometer on day 1. A constant-load time-to-exhaustion (TTE) exercise test was conducted on day 2 at 60% delta between the calculated gas exchange threshold and peak work rate. Two additional constant-load exercise tests were performed at the same intensity on days 3 and 4 in a random order to either 50 or 75% TTE. DF was assessed on days 2, 3, and 4 by measuring transdiaphragmatic twitch pressure (P di,tw ) in response to cervical magnetic stimulation. DF was present after 75 and 100% TTE (≥20% decrease in P di,tw ). The magnitude of fatigue was 15.5 ± 5.7%, 23.6 ± 6.4%, and 35.0 ± 12.1% at 50, 75, and 100% TTE, respectively. Significant differences were found between 100 to 75 and 50% TTE (both P < 0.01), and 75 to 50% TTE ( P < 0.01). There was a significant relationship between the magnitude of fatigue and cumulative diaphragm force output ( r = 0.785; P < 0.001). Ventilation, the mechanical work of breathing (WOB), and pressure-time products were not different between trials ( P > 0.05). Our data indicate that exercise-induced DF presents a relatively late onset and is proportional to the cumulative WOB; thus the ability of the diaphragm to generate pressure progressively declines throughout exercise. NEW & NOTEWORTHY The notion that diaphragmatic fatigue (DF) occurs relatively early during exercise is equivocal. Our results indicate that DF occurs during high-intensity endurance exercise in healthy men and its magnitude is strongly related to the amount of pressure and work generated by respiratory muscles. Thus we conclude that the work of breathing is the major determinant of exercise-induced DF.

  3. Effects of elevated core temperature and normoxic 30% nitrous oxide on human ventilation during short duration, high intensity exercise.

    PubMed

    Yogev, A; Hall, A M; Jay, O; White, M D

    2015-01-15

    It was hypothesized that normoxic 30% nitrous oxide (N2O) would suppress and hyperthermia would increase exercise ventilation during short duration, high intensity exercise. Thirteen males (24.2±0.8y; mean±SE), of normal physique (BMI, 23.8±1.0kgm(-2)), performed 4 separate 30s Wingate tests on a cycle ergometer. Exercise ventilation and its components, as well as mean skin and esophageal temperature (TES), were assessed in 2 way experimental design with factors of Thermal State (Normothermia or Hyperthermia) and Gas Type (Air or 30% Normomoxic N2O). In the 2 hyperthermic tests TES was elevated to ∼38.5°C in a 40°C bath. The main results indicated a significant interaction (F=7.14, P=0.02) between Gas Type and Thermal state for the exercise-induced increase in ventilation (ΔV˙E). During both the normothermia and hyperthermia conditions with AIR breathing, the exercise ΔV˙E was ∼80Lmin(-1) and it was significantly decreased to 73.1±24.1Lmin(-1) in the normothermia condition with N2O breathing relative to that of 92.0±25.0Lmin(-1) in the hyperthermia condition with N2O breathing. In conclusion, normoxic N2O breathing suppressed high intensity exercise ventilation during normothermia relative to that during hyperthermia on account of decreases in the tidal volume and this led CO2 retention. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. A respiratory mask for resting and exercising dogs.

    PubMed

    Stavert, D M; Reischl, P; O'Loughlin, B J

    1982-02-01

    A respiratory face mask has been developed for use with unsedated beagles trained to run on a treadmill. The latex rubber mask, shaped to fit the animal's muzzle, incorporates two modified, commercially available, pulmonary valves for separating inspiratory and expiratory flows. The mask has a dead space of 30 cm3 and a flow resistance below 1 cmH2O . 1(-1) . s. The flexible mask is used to measure breath-by-breath respiratory variables over extended periods of time during rest and exercise.

  5. Effects of inspiratory and expiratory resistance in divers' breathing apparatus.

    PubMed

    Warkander, D E; Nagasawa, G K; Lundgren, C E

    2001-01-01

    This study was performed to determine if inspiratory breathing resistance causes greater or smaller changes than expiratory resistance. Unacceptable inspiratory resistances were also determined. Five subjects exercised at 60% of their VO2max while immersed in a hyperbaric chamber. The chamber was pressurized to either 147 kPa (1.45 atm abs, 4.5 msw, 15 fsw) or 690 kPa (6.8 atm abs, 57 msw, 190 fsw). Breathing resistance was imposed on the inspiratory or expiratory side and was as high as 0.8-1.2 kPa liter(-1) x s(-1) (8-12 cm H2O x liter(-1) x s(-1)) at a flow of 2-3 liter x s(-1) at 1 atm abs., the other side being unloaded. The subjects reacted to the imposed load by prolonging the phase of breathing that was loaded. Inspiratory breathing resistance caused greater changes than expiratory resistance in end-tidal CO2, dyspnea scores, maximum voluntary ventilation, and respiratory duty cycle. Using previously published criteria for acceptable levels of dyspnea scores and the CO2 levels, we found that an inspiratory resistance inducing a volume-averaged pressure of 1.5 kPa is not acceptable. Similarly, an expiratory resistance should not induce a volume-averaged pressure exceeding 2.0 kPa

  6. Role of Parafacial Nuclei in Control of Breathing in Adult Rats

    PubMed Central

    Huckstepp, Robert T.R.; Cardoza, Kathryn P.; Henderson, Lauren E.

    2015-01-01

    Contiguous brain regions associated with a given behavior are increasingly being divided into subregions associated with distinct aspects of that behavior. Using recently developed neuronal hyperpolarizing technologies, we functionally dissect the parafacial region in the medulla, which contains key elements of the central pattern generator for breathing that are important in central CO2-chemoreception and for gating active expiration. By transfecting different populations of neighboring neurons with allatostatin or HM4D Gi/o-coupled receptors, we analyzed the effect of their hyperpolarization on respiration in spontaneously breathing vagotomized urethane-anesthetized rats. We identify two functionally separate parafacial nuclei: ventral (pFV) and lateral (pFL). Disinhibition of the pFL with bicuculline and strychnine led to active expiration. Hyperpolarizing pFL neurons had no effect on breathing at rest, or changes in inspiratory activity induced by hypoxia and hypercapnia; however, hyperpolarizing pFL neurons attenuated active expiration when it was induced by hypercapnia, hypoxia, or disinhibition of the pFL. In contrast, hyperpolarizing pFV neurons affected breathing at rest by decreasing inspiratory-related activity, attenuating the hypoxia- and hypercapnia-induced increase in inspiratory activity, and when present, reducing expiratory-related abdominal activity. Together with previous observations, we conclude that the pFV provides a generic excitatory drive to breathe, even at rest, whereas the pFL is a conditional oscillator quiet at rest that, when activated, e.g., during exercise, drives active expiration. PMID:25609622

  7. Acute effects on cardiovascular oscillations during controlled slow yogic breathing.

    PubMed

    Bhagat, Om Lata; Kharya, Chhaya; Jaryal, Ashok; Deepak, Kishore Kumar

    2017-04-01

    Breathing exercises are believed to modulate the cardiovascular oscillations in the body. To assess the validity of the assumption and understand the underlying mechanism, the key autonomic regulatory parameters such as heart rate variability (HRV), blood pressure variability (BPV) and baroreflex sensitivity (BRS) were recorded during controlled slow yogic breathing. Alternate nostril breathing (ANB) was selected as the yogic manoeuvre. Twelve healthy volunteers (age 30±3.8 yr) participated in the study. ANB was performed at a breathing frequency of 5 breaths per minute (bpm). In each participant, the electrocardiogram, respiratory movements, beat-to-beat BP and end-tidal carbon dioxide were recorded for five minutes each: before, during and after ANB. The records were analyzed for HRV, BPV and BRS. During ANB, HRV analysis showed significant increase in the standard deviation of all NN intervals, low-frequency (LF) component, LF/HF (low frequency/high frequency) ratio and significant decrease in the HF component. BPV analysis showed a significant increase in total power in systolic BPV (SBPV), diastolic BPV (DBPV) and mean BPV. BRS analysis showed a significant increase in the total number of sequences in SBPV and DBPV and significant augmentation of α-LF and reduction in α-HF. The power spectrum showed a dominant peak in HRV at 0.08 Hz (LF component) similar to the respiratory frequency. The acute short-term change in circulatory control system declined immediately after the cessation of slow yogic breathing (ANB) and remained elevated in post-ANB stage as compared to the pre-ANB. Significant increase in cardiovascular oscillations and baroreflex recruitments during-ANB suggested a dynamic interaction between respiratory and cardiovascular system. Enhanced phasic relationship with some delay indicated the complexity of the system. It indicated that respiratory and cardiovascular oscillations were coupled through multiple regulatory mechanisms, such as

  8. High Oxygen Delivery to Preserve Exercise Capacity in Patients with Idiopathic Pulmonary Fibrosis Treated with Nintedanib. Methodology of the HOPE-IPF Study.

    PubMed

    Ryerson, Christopher J; Camp, Pat G; Eves, Neil D; Schaeffer, Michele; Syed, Nafeez; Dhillon, Satvir; Jensen, Dennis; Maltais, Francois; O'Donnell, Denis E; Raghavan, Natya; Roman, Michael; Stickland, Michael K; Assayag, Deborah; Bourbeau, Jean; Dion, Genevieve; Fell, Charlene D; Hambly, Nathan; Johannson, Kerri A; Kalluri, Meena; Khalil, Nasreen; Kolb, Martin; Manganas, Helene; Morán-Mendoza, Onofre; Provencher, Steve; Ramesh, Warren; Rolf, J Douglass; Wilcox, Pearce G; Guenette, Jordan A

    2016-09-01

    Pulmonary rehabilitation improves dyspnea and exercise capacity in idiopathic pulmonary fibrosis (IPF); however, it is unknown whether breathing high amounts of oxygen during exercise training leads to further benefits. Herein, we describe the design of the High Oxygen Delivery to Preserve Exercise Capacity in IPF Patients Treated with Nintedanib study (the HOPE-IPF study). The primary objective of this study is to determine the physiological and perceptual impact of breathing high levels of oxygen during exercise training in patients with IPF who are receiving antifibrotic therapy. HOPE-IPF is a two-arm double-blind multicenter randomized placebo-controlled trial of 88 patients with IPF treated with nintedanib. Patients will undergo 8 weeks of three times weekly aerobic cycle exercise training, breathing a hyperoxic gas mixture with a constant fraction of 60% inhaled oxygen, or breathing up to 40% oxygen as required to maintain an oxygen saturation level of at least 88%. End points will be assessed at baseline, postintervention (Week 8), and follow-up (Week 26). The primary analysis will compare the between-group baseline with post-training change in endurance time during constant work rate cycle exercise tests. Additional analyses will evaluate the impact of training with high oxygen delivery on 6-minute walk distance, dyspnea, physical activity, and quality of life. The HOPE-IPF study will lead to a comprehensive understanding of IPF exercise physiology, with the potential to change clinical practice by indicating the need for increased delivery of supplemental oxygen during pulmonary rehabilitation in patients with IPF. Clinical trial registered with www.clinicaltrials.gov (NCT02551068).

  9. Breathing metabolic simulator

    NASA Technical Reports Server (NTRS)

    Bartlett, R. G.; Hendricks, C. M.; Morison, W. B.

    1972-01-01

    The development of a breathing metabolic simulator (BMS) is reported. This BMS simulates all of the breathing and metabolic parameters required for complete evaluation and test of life support and resuscitation equipment. It is also useful for calibrating and validating mechanical and gaseous pulmonary function test procedures. Breathing rate, breathing depth, breath velocity contour, oxygen uptake, and carbon dioxide release are all variable over wide ranges simulating conditions from sleep to hard work with respiratory exchange ratios covering the range from hypoventilation. In addition, all of these parameters are remotely controllable to facilitate use of the device in hostile or remote environments. The exhaled breath is also maintained at body temperature and a high humidity. The simulation is accurate to the extent of having a variable functional residual capacity independent of other parameters.

  10. Human breath metabolomics using an optimized noninvasive exhaled breath condensate sampler

    PubMed Central

    Zamuruyev, Konstantin O.; Aksenov, Alexander A.; Pasamontes, Alberto; Brown, Joshua F.; Pettit, Dayna R.; Foutouhi, Soraya; Weimer, Bart C.; Schivo, Michael; Kenyon, Nicholas J.; Delplanque, Jean-Pierre; Davis, Cristina E.

    2017-01-01

    Exhaled breath condensate (EBC) analysis is a developing field with tremendous promise to advance personalized, non-invasive health diagnostics as new analytical instrumentation platforms and detection methods are developed. Multiple commercially-available and researcher-built experimental samplers are reported in the literature. However, there is very limited information available to determine an effective breath sampling approach, especially regarding the dependence of breath sample metabolomic content on the collection device design and sampling methodology. This lack of an optimal standard procedure results in a range of reported results that are sometimes contradictory. Here, we present a design of a portable human EBC sampler optimized for collection and preservation of the rich metabolomic content of breath. The performance of the engineered device is compared to two commercially available breath collection devices: the RTube™ and TurboDECCS. A number of design and performance parameters are considered, including: condenser temperature stability during sampling, collection efficiency, condenser material choice, and saliva contamination in the collected breath samples. The significance of the biological content of breath samples, collected with each device, is evaluated with a set of mass spectrometry methods and was the primary factor for evaluating device performance. The design includes an adjustable mass-size threshold for aerodynamic filtering of saliva droplets from the breath flow. Engineering an inexpensive device that allows efficient collection of metalomic-rich breath samples is intended to aid further advancement in the field of breath analysis for non-invasive health diagnostic. EBC sampling from human volunteers was performed under UC Davis IRB protocol 63701-3 (09/30/2014-07/07/2017). PMID:28004639

  11. The Effects of Game-Based Breathing Exercise on Pulmonary Function in Stroke Patients: A Preliminary Study.

    PubMed

    Joo, Sunghee; Shin, Doochul; Song, Changho

    2015-06-22

    Reduction of respiratory function along with hemiparesis leads to decreased endurance, dyspnea, and increased sedentary behavior, as well as to an increased risk of stroke. The main purpose of this study was to investigate the preliminary effects of game-based breathing exercise (GBE) on pulmonary function in stroke patients. Thirty-eight in-patients with stroke (22 men, 16 women) were recruited for the study. Participants were randomly allocated into 2 groups: patients assigned to the GBE group (n=19), and the control group (n=19). The GBE group participated in a GBE program for 25 minutes a day, 3 days a week, during a 5 week period. For the same period, both groups participated in a conventional stroke rehabilitation program. Forced vital capacity (FVC), forced expiratory volume at 1 second (FEV1), FEV1/FVC, and maximum voluntary ventilation (MVV) were measured by a spirometer in pre- and post-testing. The GBE group had significantly improved FVC, FEV1, and MVV values compared with the control group (p<0.05), although there was no significant difference in FEV1/FVC value between groups. Significant short-term effects of the GBE program on pulmonary function in stroke patients were recorded in this study. These findings gave some indications that it may be feasible to include GBE in rehabilitation interventions with this population.

  12. The diving paradox: new insights into the role of the dive response in air-breathing vertebrates.

    PubMed

    Davis, Randall W; Polasek, Lori; Watson, Rebecca; Fuson, Amanda; Williams, Terrie M; Kanatous, Shane B

    2004-07-01

    When aquatic reptiles, birds and mammals submerge, they typically exhibit a dive response in which breathing ceases, heart rate slows, and blood flow to peripheral tissues is reduced. The profound dive response that occurs during forced submergence sequesters blood oxygen for the brain and heart while allowing peripheral tissues to become anaerobic, thus protecting the animal from immediate asphyxiation. However, the decrease in peripheral blood flow is in direct conflict with the exercise response necessary for supporting muscle metabolism during submerged swimming. In free diving animals, a dive response still occurs, but it is less intense than during forced submergence, and whole-body metabolism remains aerobic. If blood oxygen is not sequestered for brain and heart metabolism during normal diving, then what is the purpose of the dive response? Here, we show that its primary role may be to regulate the degree of hypoxia in skeletal muscle so that blood and muscle oxygen stores can be efficiently used. Paradoxically, the muscles of diving vertebrates must become hypoxic to maximize aerobic dive duration. At the same time, morphological and enzymatic adaptations enhance intracellular oxygen diffusion at low partial pressures of oxygen. Optimizing the use of blood and muscle oxygen stores allows aquatic, air-breathing vertebrates to exercise for prolonged periods while holding their breath.

  13. Turbine flowmeter vs. Fleisch pneumotachometer: a comparative study for exercise testing.

    PubMed

    Yeh, M P; Adams, T D; Gardner, R M; Yanowitz, F G

    1987-09-01

    The purpose of this study was to investigate the characteristics of a newly developed turbine flowmeter (Alpha Technologies, model VMM-2) for use in an exercise testing system by comparing its measurement of expiratory flow (VE), O2 uptake (VO2), and CO2 output (VCO2) with the Fleisch pneumotachometer. An IBM PC/AT-based breath-by-breath system was developed, with turbine flowmeter and dual-Fleisch pneumotachometers connected in series. A normal subject was tested twice at rest, 100-W, and 175-W of exercise. Expired gas of 24-32 breaths was collected in a Douglas bag. VE was within 4% accuracy for both flowmeter systems. The Fleisch pneumotachometer system had 5% accuracy for VO2 and VCO2 at rest and exercise. The turbine flowmeter system had up to 20% error for VO2 and VCO2 at rest. Errors decreased as work load increased. Visual observations of the flow curves revealed the turbine signal always lagged the Fleisch signal at the beginning of inspiration or expiration. At the end of inspiration or expiration, the turbine signal continued after the Fleisch signal had returned to zero. The "lag-before-start" and "spin-after-stop" effects of the turbine flowmeter resulted in larger than acceptable error for the VO2 and VCO2 measurements at low flow rates.

  14. An Improved Dynamic Model for the Respiratory Response to Exercise

    PubMed Central

    Serna, Leidy Y.; Mañanas, Miguel A.; Hernández, Alher M.; Rabinovich, Roberto A.

    2018-01-01

    Respiratory system modeling has been extensively studied in steady-state conditions to simulate sleep disorders, to predict its behavior under ventilatory diseases or stimuli and to simulate its interaction with mechanical ventilation. Nevertheless, the studies focused on the instantaneous response are limited, which restricts its application in clinical practice. The aim of this study is double: firstly, to analyze both dynamic and static responses of two known respiratory models under exercise stimuli by using an incremental exercise stimulus sequence (to analyze the model responses when step inputs are applied) and experimental data (to assess prediction capability of each model). Secondly, to propose changes in the models' structures to improve their transient and stationary responses. The versatility of the resulting model vs. the other two is shown according to the ability to simulate ventilatory stimuli, like exercise, with a proper regulation of the arterial blood gases, suitable constant times and a better adjustment to experimental data. The proposed model adjusts the breathing pattern every respiratory cycle using an optimization criterion based on minimization of work of breathing through regulation of respiratory frequency. PMID:29467674

  15. Hypnosis for exercise-induced asthma.

    PubMed

    Ben-Zvi, Z; Spohn, W A; Young, S H; Kattan, M

    1982-04-01

    Hypnosis has been used for many years in the treatment of asthma, but studies of its usefulness have been controversial. We assessed the efficacy of hypnosis in attenuating exercise-induced asthma (EIA) in 10 stable asthmatics. The subjects ran on a treadmill while mouth breathing for 6 min on 5 different days. Pulmonary mechanics were measured before and after each challenge. Two control exercise challenges resulted in a reproducible decrease in forced expiratory volume in one second (FEV1). On 2 other days, saline or cromolyn by nebulization was given in a double-blind manner with the suggestion that these agents would prevent EIA. Hypnosis prior to exercise resulted in a 15.9% decrease in FEV1 compared with a 31.8% decrease on the control days (p less than 0.001). Pretreatment with cromolyn resulted in a 7.6% decrease in FEV1. We conclude that hypnosis can alter the magnitude of a pathophysiologic process, namely, the bronchospasm after exercise in patients with asthma.

  16. Hatha Yoga Practices: Energy Expenditure, Respiratory Changes and Intensity of Exercise

    PubMed Central

    Ray, Uday Sankar; Pathak, Anjana; Tomer, Omveer Singh

    2011-01-01

    The aim of this study was to critically observe the energy expenditure, exercise intensity and respiratory changes during a full yoga practice session. Oxygen consumption (V˙O2), carbon dioxide output (V˙CO2), pulmonary ventilation (V˙E), respiratory rate (Fr) and tidal volume (VT), were measured in 16 physical posture (asanas), five yoga breathing maneuvers (BM) and two types of meditation. Twenty male (age 27.3 ± 3.5 years, height 166.6 ± 5.4 cm and body weight 58.8 ± 9.6 kg) yoga instructors were studied. Their maximal oxygen consumption (V˙O2max) was recorded. The exercise intensity in asanas was expressed in percentage V˙O2max . In asanas, exercise intensity varied from 9.9 to 26.5% of V˙O2max . Highest energy cost was 3.02 kcal min−1. In BM highest V˙E was 53.7 ± 15.5 l min−1. VT was 0.97 ± 0.59, 1.41 ± 1.27 and 1.28 ± l/breath with corresponding Fr of 14.0 ± 5.3, 10.0 ± 6.35, 10.0 ± 5.8 breaths/min. Average energy expenditure in asanas, BM and meditation were 2.29, 1.91 and 1.37 kcal min−1, respectively. Metabolic rate was generally in the range of 1-2 metabolic equivalents (MET) except in three asanas where it was >2 MET. V˙O2 was 0.27 ± 0.05 and 0.24 ± 0.04 l min−1 in meditation and Shavasana, respectively. Although yogic practices are low intensity exercises within lactate threshold, physical performance improvement is possible owing to both better economy of breathing by BM and also by improvement in cardiovascular reserve. Other factors such as psycho-physiological and better relaxation may contribute to it. PMID:21799675

  17. Efficacy of a heat exchanger mask in cold exercise-induced asthma.

    PubMed

    Beuther, David A; Martin, Richard J

    2006-05-01

    To determine the efficacy of a novel mask device in limiting cold air exercise-induced decline in lung function in subjects with a history of exercise-induced asthma (EIA). In spite of appropriate medical therapy, many asthma patients are limited in cold weather activities. In study 1, 13 asthmatic subjects performed two randomized, single-blind treadmill exercise tests while breathing cold air (- 25 to - 15 degrees C) through a placebo or active heat exchanger mask. In study 2, five subjects with EIA performed three treadmill exercise tests while breathing cold air: one test using the heat exchanger mask, one test without the mask but with albuterol pretreatment, and one test with neither the mask nor albuterol pretreatment (unprotected exercise). For all studies, spirometry was performed before and at 5, 15, and 30 min after exercise challenge. For both studies, a total of 15 subjects with a history of asthma symptoms during cold air exercise were recruited. In study 1, the mean decrease (+/- SE) in FEV1 was 19 +/- 4.9% with placebo, and 4.3 +/- 1.6% with the active device (p = 0.0002). The mean decrease in maximum mid-expiratory flow (FEF(25-75)) was 31 +/- 5.7% with placebo and 4.7 +/- 1.7% with the active device (p = 0.0002). In study 2, the mean decrease in FEV1 was 6.3 +/- 3.9%, 11 +/- 3.7%, and 28 +/- 10% for the heat exchanger mask, albuterol pretreatment, and unprotected exercises, respectively (p = 0.4375 for mask vs albuterol, p = 0.0625 for mask vs unprotected exercise). The mean decrease in FEF(25-75) was 10 +/- 4.8%, 23 +/- 6.0%, and 36 +/- 11%, respectively (p = 0.0625 for mask vs albuterol, p = 0.0625 for mask vs unprotected exercise). This heat exchanger mask blocks cold exercise-induced decline in lung function at least as effectively as albuterol pretreatment.

  18. Application of LaserBreath-001 for breath acetone measurement in subjects with diabetes mellitus

    NASA Astrophysics Data System (ADS)

    Wang, Zhennan; Sun, Meixiu; Chen, Zhuying; Zhao, Xiaomeng; Li, Yingxin; Wang, Chuji

    2016-11-01

    Breath acetone is a promising biomarker of diabetes mellitus. With an integrated standalone, on-site cavity ringdown breath acetone analyzer, LaserBreath-001, we tested breath samples from 23 type 1 diabetic (T1D) patients, 312 type 2 diabetic (T2D) patients, 52 healthy subjects. In the cross-sectional studies, the obtained breath acetone concentrations were higher in the diabetic subjects compared with those in the control group. No correlation between breath acetone and simultaneous BG was observed in the T1D, T2D, and healthy subjects. A moderate positive correlation between the mean individual breath acetone concentrations and the mean individual BG levels was observed in the 20 T1D patients without ketoacidosis. In a longitudinal study, the breath acetone concentrations in a T1D patient with ketoacidosis decreased significantly and remained stable during the 5-day hospitalization. The results from a relatively large number of subjects tested indicate that an elevated mean breath acetone concentration exists in diabetic patients in general. Although many physiological parameters affect breath acetone concentrations, fast (<1 min) and on site breath acetone measurement can be used for diabetic screening and management under a specifically controlled condition.

  19. Human breath metabolomics using an optimized non-invasive exhaled breath condensate sampler.

    PubMed

    Zamuruyev, Konstantin O; Aksenov, Alexander A; Pasamontes, Alberto; Brown, Joshua F; Pettit, Dayna R; Foutouhi, Soraya; Weimer, Bart C; Schivo, Michael; Kenyon, Nicholas J; Delplanque, Jean-Pierre; Davis, Cristina E

    2016-12-22

    Exhaled breath condensate (EBC) analysis is a developing field with tremendous promise to advance personalized, non-invasive health diagnostics as new analytical instrumentation platforms and detection methods are developed. Multiple commercially-available and researcher-built experimental samplers are reported in the literature. However, there is very limited information available to determine an effective breath sampling approach, especially regarding the dependence of breath sample metabolomic content on the collection device design and sampling methodology. This lack of an optimal standard procedure results in a range of reported results that are sometimes contradictory. Here, we present a design of a portable human EBC sampler optimized for collection and preservation of the rich metabolomic content of breath. The performance of the engineered device is compared to two commercially available breath collection devices: the RTube ™ and TurboDECCS. A number of design and performance parameters are considered, including: condenser temperature stability during sampling, collection efficiency, condenser material choice, and saliva contamination in the collected breath samples. The significance of the biological content of breath samples, collected with each device, is evaluated with a set of mass spectrometry methods and was the primary factor for evaluating device performance. The design includes an adjustable mass-size threshold for aerodynamic filtering of saliva droplets from the breath flow. Engineering an inexpensive device that allows efficient collection of metalomic-rich breath samples is intended to aid further advancement in the field of breath analysis for non-invasive health diagnostic. EBC sampling from human volunteers was performed under UC Davis IRB protocol 63701-3 (09/30/2014-07/07/2017).

  20. Diaphragmatic Breathing Reduces Belching and Proton Pump Inhibitor Refractory Gastroesophageal Reflux Symptoms.

    PubMed

    Ong, Andrew Ming-Liang; Chua, Laura Teng-Teng; Khor, Christopher Jen-Lock; Asokkumar, Ravishankar; S/O Namasivayam, Vikneswaran; Wang, Yu-Tien

    2018-03-01

    In patients with gastroesophageal reflux disease (GERD) and excessive belching, most belches are supragastric, and can induce reflux episodes and worsen GERD. Supragastric belching (SGB) might be reduced with diaphragmatic breathing exercises. We investigated whether diaphragmatic breathing therapy is effective in reducing belching and proton pump inhibitor (PPI)-refractory gastroesophageal reflux symptoms. We performed a prospective study of 36 consecutive patients with GERD refractory to PPI therapy and a belching visual analogue scale (VAS) score of 6 or more, seen at a gastroenterology clinic at a tertiary hospital in Singapore from April 2015 through October 2016. Patients underwent high-resolution manometry and 24-hour pH-impedance studies while they were off PPIs. Fifteen patients were placed on a standardized diaphragmatic breathing exercise protocol (treatment group) and completed questionnaires at baseline, after diaphragmatic breathing therapy, and 4 months after the therapy ended. Twenty-one patients were placed on a waitlist (control subjects), completed the same questionnaires with an additional questionnaire after their waitlist period, and eventually received diaphragmatic breathing therapy. The primary outcome was reduction in belching VAS by 50% or more after treatment. Secondary outcomes included GERD symptoms (evaluated using the reflux disease questionnaire) and quality of life (QoL) scores, determined from the Reflux-Qual Short Form and EuroQoL-VAS. Nine of the 15 patients in the treatment group (60%) and none of the 21 control subjects achieved the primary outcome (P < .001). In the treatment group, the mean belching VAS score decreased from 7.1 ± 1.5 at baseline to 3.5 ± 2.0 after diaphragmatic breathing therapy; in the control group, the mean VAS score was 7.6 ± 1.1 at baseline and 7.4 ± 1.3 after the waitlist period. Eighty percent of patients in the treatment group significantly reduced belching frequency compared with 19% in control

  1. Three-Hour Dives with Exercise While Breathing Oxygen Partial Pressure of 1.3 ATM

    DTIC Science & Technology

    2007-10-01

    after the breath hold. Adjustments were made for carboxyhemoglobin and hemoglobin concentrations,9 and the samples were chosen to ensure that the...CO and 0.3% methane. A CO oximeter (Instrumentation Laboratory; Lexington, MA) determined the pretest carboxyhemoglobin and hemoglobin concentrations

  2. Gas exchange kinetics following concentric-eccentric isokinetic arm and leg exercise.

    PubMed

    Drescher, U; Mookerjee, S; Steegmanns, A; Knicker, A; Hoffmann, U

    2017-06-01

    To evaluate the effects of exercise velocity (60, 150, 240deg∙s -1 ) and muscle mass (arm vs leg) on changes in gas exchange and arterio-venous oxygen content difference (avDO 2 ) following high-intensity concentric-eccentric isokinetic exercise. Fourteen subjects (26.9±3.1years) performed a 3×20-repetition isokinetic exercise protocol. Recovery beat-to-beat cardiac output (CO) and breath-by-breath gas exchange were recorded to determine post-exercise half-time (t 1/2 ) for oxygen uptake (V˙O 2 pulm), carbon dioxide output (V˙CO 2 pulm), and ventilation (V˙ E ). Significant differences of the t 1/2 values were identified between 60 and 150deg∙s -1 . Significant differences in the t 1/2 values were observed between V˙O 2 pulm and V˙CO 2 pulm and between V˙CO 2 pulm and V˙ E . The time to attain the first avDO 2 -peak showed significant differences between arm and leg exercise. The present study illustrates, that V˙O 2 pulm kinetics are distorted due to non-linear CO dynamics. Therefore, it has to be taken into account, that V˙O 2 pulm may not be a valuable surrogate for muscular oxygen uptake kinetics in the recovery phases. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The effect of vocal and instrumental music on cardio respiratory variables, energy expenditure and exertion levels during sub maximal treadmill exercise.

    PubMed

    Savitha, D; Sejil, T V; Rao, Shwetha; Roshan, C J; Roshan, C J

    2013-01-01

    The purpose of the study was to investigate the effect of vocal and instrumental music on various physiological parameters during submaximal exercise. Each subject underwent three sessions of exercise protocol without music, with vocal music, and instrumental versions of same piece of music. The protocol consisted of 10 min treadmill exercise at 70% HR(max) and 20 min of recovery. Minute to minute heart rate and breath by breath recording of respiratory parameters, rate of energy expenditure and perceived exertion levels were measured. Music, irrespective of the presence or absence of lyrics, enabled the subjects to exercise at a significantly lower heart rate and oxygen consumption, reduced the metabolic cost and perceived exertion levels of exercise (P < 0.05). There was faster recovery of systolic and diastolic blood pressures and exertion levels during the post exercise period. Music having a relaxant effect could have probably increased the parasympathetic activation leading to these effects.

  4. Breathing and Relaxation

    MedlinePlus

    ... Programs Health Information Doctors & Departments Clinical Research & Science Education & Training Home Health Insights Stress & Relaxation Breathing and Relaxation Breathing and Relaxation Make ...

  5. Effects of Mat Pilates training and habitual physical activity on thoracoabdominal expansion during quiet and vital capacity breathing in healthy women.

    PubMed

    Campos, Jeniffer L; Vancini, Rodrigo L; Zanoni, Graziely R; Barbosa DE Lira, Claudio A; Santos Andrade, Marilia; Sarro, Karine J

    2017-10-27

    Pilates is a body/mind method that requires different types of exercise (balance, endurance, strength, and flexibility) and attention to muscle control, posture, and breathing. The aim of the present study was to investigate the effects of 12 weeks of Mat Pilates training and habitual physical activity on thoracoabdominal motion of healthy and physically active women. Thirty-five women without experience in Pilates exercise, aged between 18 and 35 years, participated in the study (habitual physical activity group, n=14; and Mat Pilates group, n=21). Three- dimensional kinematic analysis was used to evaluate total and separate thoracoabdominal compartments' expansion (superior and inferior thorax and abdomen), contribution of each compartment to total thoracoabdominal expansion, and coordination between thoracoabdominal compartments. After 12 weeks of Mat Pilates training, thoracoabdominal expansion during quiet breathing was improved by increasing the expansion of abdomen by about 33% (P=0.01). Moreover, expansion of superior (P=0.04) and inferior thorax (P=0.02) and abdomen (P=0.01) was also improved in Pilates (35%, 33% and 37%, respectively) compared to the habitual physical activity group, after the experimental protocol. Finally, the habitual physical activity group presented a decrease of 13% in the expansion of abdomen (P = 0.002). The results suggest the capability of Mat Pilates in improving the action of respiratory and abdominal muscles during breathing and, thus, its benefits to breathing mechanics.

  6. Deep breathing after surgery

    MedlinePlus

    ... and taking big breaths can be uncomfortable. A device called an incentive spirometer can help you take deep breaths correctly. If you do not have this device, you can still practice deep breathing on your ...

  7. Respiratory Deposition of Fine and Coarse Particles during Moderate Exercise

    EPA Science Inventory

    During exercise breathing patterns change by increasing ventilation rate and this has a direct impact on risk to exposure to ambient pollutants. Although the number of people increases participating in more active life styles, specific data for lung deposition of particulate matt...

  8. The effect of breath freshener strips on two types of breath alcohol testing instruments.

    PubMed

    Moore, Ronald L; Guillen, Jennifer

    2004-07-01

    The potential for breath freshener strips to interfere with the accuracy of a breath alcohol test was studied. Twelve varieties of breath freshener strips from five manufacturers were examined. Breath tests were conducted using the infrared based BAC DataMaster or the fuel cell based Alco-Sensor IV-XL, 30 and 150 seconds after placing a breath strip on the tongue. No effect was observed using the Alco-Sensor system. Some of the strips gave a small reading at 30 seconds (less than or equal to 0.010 g/210 L apparent alcohol) using the DataMaster. Readings on the DataMaster returned to zero by the 150 second test. A proper pre-test observation and deprivation period should prevent any interference from breath freshener strips on breath alcohol testing.

  9. From breathing to respiration.

    PubMed

    Fitting, Jean-William

    2015-01-01

    The purpose of breathing remained an enigma for a long time. The Hippocratic school described breathing patterns but did not associate breathing with the lungs. Empedocles and Plato postulated that breathing was linked to the passage of air through pores of the skin. This was refuted by Aristotle who believed that the role of breathing was to cool the heart. In Alexandria, breakthroughs were accomplished in the anatomy and physiology of the respiratory system. Later, Galen proposed an accurate description of the respiratory muscles and the mechanics of breathing. However, his heart-lung model was hampered by the traditional view of two non-communicating vascular systems - veins and arteries. After a period of stagnation in the Middle Ages, knowledge progressed with the discovery of pulmonary circulation. The comprehension of the purpose of breathing progressed by steps thanks to Boyle and Mayow among others, and culminated with the contribution of Priestley and the discovery of oxygen by Lavoisier. Only then was breathing recognized as fulfilling the purpose of respiration, or gas exchange. A century later, a controversy emerged concerning the active or passive transfer of oxygen from alveoli to the blood. August and Marie Krogh settled the dispute, showing that passive diffusion was sufficient to meet the oxygen needs. © 2014 S. Karger AG, Basel.

  10. Breath-to-breath hypercapnic response in neonatal rats: temperature dependency of the chemoreflexes and potential implications for breathing stability.

    PubMed

    Cummings, Kevin J; Frappell, Peter B

    2009-07-01

    The breathing of newborns is destabilized by warm temperatures. We hypothesized that in unanesthetized, intact newborn rats, body temperature (T(B)) influences the peripheral chemoreflex response (PCR response) to hypercapnia. To test this, we delivered square-wave challenges of 8% CO(2) in air to postnatal day 4-5 (P4-P5) rats held at a T(B) of 30 degrees C (Cold group, n = 11), 33 degrees C (Cool group, n = 10), and 35 degrees C thermoneutral zone group [thermoneutral zone (TNZ) group, n = 11], while measuring ventilation (Ve) directly with a pneumotach and mask. Cool animals were challenged with 8% CO(2) balanced in either air or hyperoxia (n = 10) to identify the PCR response. Breath-to-breath analysis was performed on 30 room air breaths and every breath of the 1-min CO(2) challenge. As expected, warmer T(B) was associated with an unstable breathing pattern in room air: TNZ animals had a coefficient of variation in Ve (Ve CV%) that was double that of animals held at cooler T(B) (P < 0.001). Hyperoxia markedly suppressed the hypercapnic ventilatory response over the first 10 breaths (or approximately 4 s), suggesting that this domain is dominated by the PCR response. The PCR response (P = 0.03) and total response (P = 0.04) were significantly greater in TNZ animals compared with hypothermic animals. The total response had a significant, negative relationship with Vco(2) (R(2) = 0.53; P < 0.001). Breathing stability was positively related to the total response (R(2) = 0.36; P < 0.001) and to a lesser extent, the PCR response (R(2) = 0.19; P = 0.01) and was negatively related to Vco(2) (R(2) = 0.34; P < 0.001). ANCOVA confirmed a significant effect of T(B) alone on breathing stability (P < 0.01), with no independent effects of Vco(2) (P = 0.41), the PCR response (P = 0.82), or the total Ve response (P = 0.08). Our data suggest that in early postnatal life, the chemoreflex responses to CO(2) are highly influenced by T(B), and while related to breathing stability

  11. Is breath acetone a biomarker of diabetes? A historical review on breath acetone measurements.

    PubMed

    Wang, Zhennan; Wang, Chuji

    2013-09-01

    Since the ancient discovery of the 'sweet odor' in human breath gas, pursuits of the breath analysis-based disease diagnostics have never stopped. Actually, the 'smell' of the breath, as one of three key disease diagnostic techniques, has been used in Eastern-Medicine for more than three thousand years. With advancement of measuring technologies in sensitivity and selectivity, more specific breath gas species have been identified and established as a biomarker of a particular disease. Acetone is one of the breath gases and its concentration in exhaled breath can now be determined with high accuracy using various techniques and methods. With the worldwide prevalence of diabetes that is typically diagnosed through blood testing, human desire to achieve non-blood based diabetic diagnostics and monitoring has never been quenched. Questions, such as is breath acetone a biomarker of diabetes and how is the breath acetone related to the blood glucose (BG) level (the golden criterion currently used in clinic for diabetes diagnostic, monitoring, and management), remain to be answered. A majority of current research efforts in breath acetone measurements and its technology developments focus on addressing the first question. The effort to tackle the second question has begun recently. The earliest breath acetone measurement in clearly defined diabetic patients was reported more than 60 years ago. For more than a half-century, as reviewed in this paper, there have been more than 41 independent studies of breath acetone using various techniques and methods, and more than 3211 human subjects, including 1581 healthy people, 242 Type 1 diabetic patients, 384 Type 2 diabetic patients, 174 unspecified diabetic patients, and 830 non-diabetic patients or healthy subjects who are under various physiological conditions, have been used in the studies. The results of the breath acetone measurements collected in this review support that many conditions might cause changes to breath

  12. Do interindividual differences in cardiac output during submaximal exercise explain differences in exercising muscle oxygenation and ratings of perceived exertion?

    PubMed

    Bentley, Robert F; Jones, Joshua H; Hirai, Daniel M; Zelt, Joel T; Giles, Matthew D; Raleigh, James P; Quadrilatero, Joe; Gurd, Brendon J; Neder, J Alberto; Tschakovsky, Michael E

    2018-01-01

    Considerable interindividual differences in the Q˙-V˙O2 relationship during exercise have been documented but implications for submaximal exercise tolerance have not been considered. We tested the hypothesis that these interindividual differences were associated with differences in exercising muscle deoxygenation and ratings of perceived exertion (RPE) across a range of submaximal exercise intensities. A total of 31 (21 ± 3 years) healthy recreationally active males performed an incremental exercise test to exhaustion 24 h following a resting muscle biopsy. Cardiac output (Q˙ L/min; inert gas rebreathe), oxygen uptake (V˙O2 L/min; breath-by-breath pulmonary gas exchange), quadriceps saturation (near infrared spectroscopy) and exercise tolerance (6-20; Borg Scale RPE) were measured. The Q˙-V˙O2 relationship from 40 to 160 W was used to partition individuals post hoc into higher (n = 10; 6.3 ± 0.4) versus lower (n = 10; 3.7 ± 0.4, P < 0.001) responders. The Q˙-V˙O2 difference between responder types was not explained by arterial oxygen content differences (P = 0.5) or peripheral skeletal muscle characteristics (P from 0.1 to 0.8) but was strongly associated with stroke volume (P < 0.05). Despite considerable Q˙-V˙O2 difference between groups, no difference in quadriceps deoxygenation was observed during exercise (all P > 0.4). Lower cardiac responders had greater leg (P = 0.027) and whole body (P = 0.03) RPE only at 185 W, but this represented a higher %peak V˙O2 in lower cardiac responders (87 ± 15% vs. 66 ± 12%, P = 0.005). Substantially lower Q˙-V˙O2 in the lower responder group did not result in altered RPE or exercising muscle deoxygenation. This suggests substantial recruitment of blood flow redistribution in the lower responder group as part of protecting matching of exercising muscle oxygen delivery to demand. © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The

  13. Metabolic responses to the seated calf press exercise performed against inertial resistance.

    PubMed

    Caruso, John F; Herron, Jacquelyn C; Hernandez, Daniel A; Porter, Aaron; Schweickert, Torrey; Manning, Tommy F

    2005-11-01

    Future in-flight strength training devices may use inertial resistance to abate mass and strength losses to muscle groups such as the triceps surae, which incurs pronounced deficits from space travel. Yet little data exist regarding physiological outcomes to triceps surae exercise performed against inertial resistance. Two sets of subjects were employed to note either blood lactate (La-) or net caloric cost responses to seated calf presses done on an inertial resistance ergometer. Both sets of subjects performed 3 identical 3-set 10-repetition workouts. Blood La- measurements were made pre- and 5 min post-exercise. During workouts, breath-by-breath O2 uptake values were also recorded to help determine the net caloric cost of exercise. Compared to pre-exercise (mean +/- SEM) blood La- (2.01 +/- 0.08 mmol x L(-1)) values, post-exercise (4.73 +/- 0.24 mmol x L(-1)) measurements showed a significant increase. Delta (post/pre differences) La- correlated significantly (r = 0.31-0.34) to several workout performance measures. Net caloric cost averaged 52.82 +/- 3.26 kcals for workouts; multivariate regression showed a subject's height, body mass, and body surface area described the variance associated with energy expenditure. Workouts evoked minimal energy expenditure, though anaerobic glycolysis likely played a major role in ATP resynthesis. Metabolic and exercise performance measures were likely influenced by series elastic element involvement of the triceps surae-Achilles tendon complex. Ergometer calf presses provided a high-intensity workout stimulus with a minimal metabolic cost.

  14. Inducible laryngeal obstruction during exercise: moving beyond vocal cords with new insights.

    PubMed

    Olin, James Tod; Clary, Matthew S; Deardorff, Emily H; Johnston, Kristina; Morris, Michael J; Sokoya, Mofiyinfolu; Staudenmayer, Herman; Christopher, Kent L

    2015-02-01

    Exercise as an important part of life for the health and wellness of children and adults. Inducible laryngeal obstruction (ILO) is a consensus term used to describe a group of disorders previously called vocal cord dysfunction, paradoxical vocal fold motion, and numerous other terms. Exercise-ILO can impair one's ability to exercise, can be confused with asthma, leading to unnecessary prescription of asthma controller and rescue medication, and results in increased healthcare resource utilization including (rarely) emergency care. It is characterized by episodic shortness of breath and noisy breathing that generally occurs at high work rates. The present diagnostic gold standard for all types of ILO is laryngoscopic visualization of inappropriate glottic or supraglottic movement resulting in airway narrowing during a spontaneous event or provocation challenge. A number of different behavioral techniques, including speech therapy, biofeedback, and cognitive-behavioral psychotherapy, may be appropriate to treat individual patients. A consensus nomenclature, which will allow for better characterization of patients, coupled with new diagnostic techniques, may further define the epidemiology and etiology of ILO as well as enable objective evaluation of therapeutic modalities.

  15. Standardization of exhaled breath condensate (EBC) collection using a feedback regulated breathing pattern

    EPA Science Inventory

    Collection of exhaled breath condensate (EBC) fluid by cooling of expired breath is a potentially valuable approach for the detection of biomarkers associated with disease or exposure to xenobiotics. EBC is generally collected using unregulated breathing patterns, perceived to el...

  16. Breath biomarkers in toxicology.

    PubMed

    Pleil, Joachim D

    2016-11-01

    Exhaled breath has joined blood and urine as a valuable resource for sampling and analyzing biomarkers in human media for assessing exposure, uptake metabolism, and elimination of toxic chemicals. This article focuses current use of exhaled gas, aerosols, and vapor in human breath, the methods for collection, and ultimately the use of the resulting data. Some advantages of breath are the noninvasive and self-administered nature of collection, the essentially inexhaustible supply, and that breath sampling does not produce potentially infectious waste such as needles, wipes, bandages, and glassware. In contrast to blood and urine, breath samples can be collected on demand in rapid succession and so allow toxicokinetic observations of uptake and elimination in any time frame. Furthermore, new technologies now allow capturing condensed breath vapor directly, or just the aerosol fraction alone, to gain access to inorganic species, lung pH, proteins and protein fragments, cellular DNA, and whole microorganisms from the pulmonary microbiome. Future applications are discussed, especially the use of isotopically labeled probes, non-targeted (discovery) analysis, cellular level toxicity testing, and ultimately assessing "crowd breath" of groups of people and the relation to dose of airborne and other environmental chemicals at the population level.

  17. Hydrogen breath test in schoolchildren.

    PubMed Central

    Douwes, A C; Schaap, C; van der Klei-van Moorsel, J M

    1985-01-01

    The frequency of negative hydrogen breath tests due to colonic bacterial flora which are unable to produce hydrogen was determined after oral lactulose challenge in 98 healthy Dutch schoolchildren. There was a negative result in 9.2%. The probability of a false normal lactose breath test (1:77) was calculated from these results together with those from a separate group of children with lactose malabsorption (also determined by hydrogen breath test). A study of siblings and mothers of subjects with a negative breath test did not show familial clustering of this condition. Faecal incubation tests with various sugars showed an increase in breath hydrogen greater than 100 parts per million in those with a positive breath test while subjects with a negative breath test also had a negative faecal incubation test. The frequency of a false negative hydrogen breath test was higher than previously reported, but this does not affect the superiority of this method of testing over the conventional blood glucose determination. PMID:4004310

  18. Guiding curve based on the normal breathing as monitored by thermocouple for regular breathing.

    PubMed

    Lim, Sangwook; Park, Sung Ho; Ahn, Seung Do; Suh, Yelin; Shin, Seong Soo; Lee, Sang-wook; Kim, Jong Hoon; Choi, Eun Kyoung; Yi, Byong Yong; Kwon, Soo Il; Kim, Sookil; Jeung, Tae Sig

    2007-11-01

    Adapting radiation fields to a moving target requires information continuously on the location of internal target by detecting it directly or indirectly. The aim of this study is to make the breathing regular effectively with minimizing stress to the patient. A system for regulating patient's breath consists of a respiratory monitoring mask (ReMM), a thermocouple module, a screen, inner earphones, and a personal computer. A ReMM with thermocouple was developed previously to measure the patient's respiration. A software was written in LabView 7.0 (National Instruments, TX), which acquires respiration signal and displays its pattern. Two curves are displayed on the screen: One is a curve indicating the patient's current breathing pattern; the other is a guiding curve, which is iterated with one period of the patient's normal breathing curve. The guiding curves were acquired for each volunteer before they breathed with guidance. Ten volunteers participated in this study to evaluate this system. A cycle of the representative guiding curve was acquired by monitoring each volunteer's free breathing with ReMM and was then generated iteratively. The regularity was compared between a free breath curve and a guided breath curve by measuring standard deviations of amplitudes and periods of two groups of breathing. When the breathing was guided, the standard deviation of amplitudes and periods on average were reduced from 0.0029 to 0.00139 (arbitrary units) and from 0.359 s to 0.202 s, respectively. And the correlation coefficients between breathing curves and guiding curves were greater than 0.99 for all volunteers. The regularity was improved statistically when the guiding curve was used.

  19. 42 CFR 84.81 - Compressed breathing gas and liquefied breathing gas containers; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing Apparatus § 84.81 Compressed breathing... the container. (d) Compressed breathing gas contained valves or a separate charging system or adapter...

  20. 42 CFR 84.81 - Compressed breathing gas and liquefied breathing gas containers; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing Apparatus § 84.81 Compressed breathing... the container. (d) Compressed breathing gas contained valves or a separate charging system or adapter...

  1. 42 CFR 84.81 - Compressed breathing gas and liquefied breathing gas containers; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing Apparatus § 84.81 Compressed breathing... the container. (d) Compressed breathing gas contained valves or a separate charging system or adapter...

  2. 42 CFR 84.81 - Compressed breathing gas and liquefied breathing gas containers; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing Apparatus § 84.81 Compressed breathing... the container. (d) Compressed breathing gas contained valves or a separate charging system or adapter...

  3. 42 CFR 84.81 - Compressed breathing gas and liquefied breathing gas containers; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing Apparatus § 84.81 Compressed breathing... the container. (d) Compressed breathing gas contained valves or a separate charging system or adapter...

  4. Anaerobic Threshold and Salivary α-amylase during Incremental Exercise.

    PubMed

    Akizuki, Kazunori; Yazaki, Syouichirou; Echizenya, Yuki; Ohashi, Yukari

    2014-07-01

    [Purpose] The purpose of this study was to clarify the validity of salivary α-amylase as a method of quickly estimating anaerobic threshold and to establish the relationship between salivary α-amylase and double-product breakpoint in order to create a way to adjust exercise intensity to a safe and effective range. [Subjects and Methods] Eleven healthy young adults performed an incremental exercise test using a cycle ergometer. During the incremental exercise test, oxygen consumption, carbon dioxide production, and ventilatory equivalent were measured using a breath-by-breath gas analyzer. Systolic blood pressure and heart rate were measured to calculate the double product, from which double-product breakpoint was determined. Salivary α-amylase was measured to calculate the salivary threshold. [Results] One-way ANOVA revealed no significant differences among workloads at the anaerobic threshold, double-product breakpoint, and salivary threshold. Significant correlations were found between anaerobic threshold and salivary threshold and between anaerobic threshold and double-product breakpoint. [Conclusion] As a method for estimating anaerobic threshold, salivary threshold was as good as or better than determination of double-product breakpoint because the correlation between anaerobic threshold and salivary threshold was higher than the correlation between anaerobic threshold and double-product breakpoint. Therefore, salivary threshold is a useful index of anaerobic threshold during an incremental workload.

  5. Slow Breathing Can Be Operantly Conditioned in the Rat and May Reduce Sensitivity to Experimental Stressors

    PubMed Central

    Noble, Donald J.; Goolsby, William N.; Garraway, Sandra M.; Martin, Karmarcha K.; Hochman, Shawn

    2017-01-01

    In humans, exercises involving slowed respiratory rate (SRR) counter autonomic sympathetic bias and reduce responses to stressors, including in individuals with various degrees of autonomic dysfunction. In the rat, we examined whether operant conditioning could lead to reductions in respiratory rate (RR) and performed preliminary studies to assess whether conditioned SRR was sufficient to decrease physiological and behavioral responsiveness to stressors. RR was continuously monitored during 20 2-h sessions using whole body plethysmography. SRR conditioned, but not yoked control rats, were able to turn off aversive visual stimulation (intermittent bright light) by slowing their breathing below a preset target of 80 breaths/min. SRR conditioned rats greatly increased the incidence of breaths below the target RR over training, with average resting RR decreasing from 92 to 81 breaths/min. These effects were significant as a group and vs. yoked controls. Preliminary studies in a subset of conditioned rats revealed behavioral changes suggestive of reduced reactivity to stressful and nociceptive stimuli. In these same rats, intermittent sessions without visual reinforcement and a post-training priming stressor (acute restraint) demonstrated that conditioned rats retained reduced RR vs. controls in the absence of conditioning. In conclusion, we present the first successful attempt to operantly condition reduced RR in an animal model. Although further studies are needed to clarify the physio-behavioral concomitants of slowed breathing, the developed model may aid subsequent neurophysiological inquiries on the role of slow breathing in stress reduction. PMID:29163199

  6. Ventilatory responses to dynamic exercise elicited by intramuscular sensors

    NASA Technical Reports Server (NTRS)

    Smith, S. A.; Gallagher, K. M.; Norton, K. H.; Querry, R. G.; Welch-O'Connor, R. M.; Raven, P. B.

    1999-01-01

    PURPOSE: Eight subjects, aged 27.0+/-1.6 yr, performed incremental workload cycling to investigate the contribution of skeletal muscle mechano- and metaboreceptors to ventilatory control during dynamic exercise. METHODS: Each subject performed four bouts of exercise: exercise with no intervention (CON); exercise with bilateral thigh cuffs inflated to 90 mm Hg (CUFF); exercise with application of lower-body positive pressure (LBPP) to 45 torr (PP); and exercise with 90 mm Hg thigh cuff inflation and 45 torr LBPP (CUFF+PP). Ventilatory responses and pulmonary gas exchange variables were collected breath-by-breath with concomitant measurement of leg intramuscular pressure. RESULTS: Ventilation (VE) was significantly elevated from CON during PP and CUFF+PP at workloads corresponding to > or = 60% CON peak oxygen uptake (VO2peak) and during CUFF at workloads > or = 80% CON VO2peak, P < 0.05. The VO2 at which ventilatory threshold occurred was significantly reduced from CON (2.17+/-0.28 L x min(-1)) to 1.60+/-0.19 L x min(-1), 1.45+/-0.15 L x min(-1), and 1.15+/-0.11 L x min(-1) during CUFF, PP, and CUFF+PP, respectively. The slope of the linear regression describing the VE/CO2 output relationship was increased from CON by approximately 22% during CUFF, 40% during PP, and 41% during CUFF+PP. CONCLUSIONS: As intramuscular pressure was significantly elevated immediately upon application of LBPP during PP and CUFF+PP without a concomitant increase in VE, it seems unlikely that LBPP-induced increases in VE can be attributed to activation of the mechanoreflex. These findings suggest that LBPP-induced reductions in perfusion pressure and decreases in venous outflow resulting from inflation of bilateral thigh cuffs may generate a metabolite sensitive intramuscular ventilatory stimulus.

  7. Evaluation of noninvasive cardiac output methods during exercise

    NASA Technical Reports Server (NTRS)

    Moore, Alan D.; Barrows, Linda H.; Rashid, Michael; Siconolfi, Steven F.

    1992-01-01

    Noninvasive techniques to estimate cardiac output (Qc) will be used during future space flight. This retrospective literature survey compared the Qc techniques of carbon dioxide rebreathing (CO2-R), CO2 single breath (CO2-S), Doppler (DOP), impedance (IM), and inert gas (IG: acetylene or nitrous oxide) to direct (DIR) assessments measured at rest and during exercise.

  8. A Systematic Review of the Literature on Screening for Exercise-Induced Asthma: Considerations for School Nurses

    ERIC Educational Resources Information Center

    Worrell, Kelly; Shaw, Michele R.; Postma, Julie; Katz, Janet R.

    2015-01-01

    Asthma is a major cause of illness, missed school days, and hospitalization in children. One type of asthma common in children is exercise-induced asthma (EIA). EIA causes airway narrowing with symptoms of cough and shortness of breath during exercise. The purpose of this article is to review the literature relevant to screening children and…

  9. Rapid shallow breathing

    MedlinePlus

    Tachypnea; Breathing - rapid and shallow; Fast shallow breathing; Respiratory rate - rapid and shallow ... Kraft M. Approach to the patient with respiratory disease. In: ... Elsevier Saunders; 2016:chap 83. McGee S. Respiratory rate and ...

  10. Pranayama Meditation (Yoga Breathing) for Stress Relief: Is It Beneficial for Teachers?

    ERIC Educational Resources Information Center

    Hepburn, Stevie-Jae; McMahon, Mary

    2017-01-01

    The effects of stress can have a significant impact on an individual's personal life, relationship with colleagues, job satisfaction and career prospects. If unmanaged, stress can be the trigger that drives talented, motivated teachers out of our classrooms and into other professions. Yoga and meditation have been prescribed as a form of…

  11. Breath in the technoscientific imaginary

    PubMed Central

    Rose, Arthur

    2016-01-01

    Breath has a realist function in most artistic media. It serves to remind the reader, the viewer or the spectator of the exigencies of the body. In science fiction (SF) literature and films, breath is often a plot device for human encounters with otherness, either with alien peoples, who may not breathe oxygen, or environments, where there may not be oxygen to breathe. But while there is a technoscientific quality to breath in SF, especially in its attention to physiological systems, concentrating on the technoscientific threatens to occlude other, more affective aspects raised by the literature. In order to supplement the tendency to read SF as a succession of technoscientific accounts of bodily experience, this paper recalls how SF texts draw attention to the affective, non-scientific qualities of breath, both as a metonym for life and as a metaphor for anticipation. Through an engagement with diverse examples from SF literature and films, this article considers the tension between technoscientific and affective responses to breath in order to demonstrate breath's co-determinacy in SF's blending of scientific and artistic discourses. PMID:27542677

  12. Comparing dynamic hyperinflation and associated dyspnea induced by metronome-paced tachypnea versus incremental exercise.

    PubMed

    Calligaro, Gregory L; Raine, Richard I; Bateman, Mary E; Bateman, Eric D; Cooper, Christopher B

    2014-02-01

    Dynamic hyperinflation (DH) during exercise is associated with both dyspnea and exercise limitation in COPD. Metronome-paced tachypnoea (MPT) is a simple alternative for studying DH. We compared MPT with exercise testing (XT) as methods of provoking DH, and assessed their relationship with dyspnea. We studied 24 patients with moderate COPD (FEV1 59 ± 9% predicted) after inhalation of ipratropium/salbutamol combination or placebo in a double-blind, crossover design. Inspiratory capacity (IC) was measured at baseline and after 30 seconds of MPT with breathing frequencies (fR) of 20, 30 and 40 breaths/min and metronome-defined I:E ratios of 1:1 and 1:2, in random sequence, followed by incremental cycle ergometry with interval determinations of IC. DH was defined as a decline in IC from baseline (∆IC) for both methods. Dyspnea was assessed using a Borg CR-10 scale. ∆IC during MPT was greater with higher fR and I:E ratio of 1:1 versus 1:2, and less when patients were treated with bronchodilator rather than placebo (P = 0.032). DH occurred during 19 (40%) XTs, and during 35 (73%) tests using MPT. Eleven of 18 (61%) non-congruent XTs (where DH occurred on MPT but not XT) terminated before fR of 40 breaths/min was reached. Although greater during XT, the intensity of dyspnea bore no relationship to DH during either MPT and XT. MPT at 40 breaths/min and I:E of 1:1 elicits the greatest ∆IC, and is a more sensitive method for demonstrating DH. The relationship between DH and dyspnea is complex and not determined by DH alone.

  13. Recovery of Percent Vital Capacity by Breathing Training in Patients With Panic Disorder and Impaired Diaphragmatic Breathing.

    PubMed

    Yamada, Tatsuji; Inoue, Akiomi; Mafune, Kosuke; Hiro, Hisanori; Nagata, Shoji

    2017-09-01

    Slow diaphragmatic breathing is one of the therapeutic methods used in behavioral therapy for panic disorder. In practice, we have noticed that some of these patients could not perform diaphragmatic breathing and their percent vital capacity was initially reduced but could be recovered through breathing training. We conducted a comparative study with healthy controls to investigate the relationship between diaphragmatic breathing ability and percent vital capacity in patients with panic disorder. Our findings suggest that percent vital capacity in patients with impaired diaphragmatic breathing was significantly reduced compared with those with normal diaphragmatic breathing and that diaphragmatic breathing could be restored by breathing training. Percent vital capacity of the healthy controls was equivalent to that of the patients who had completed breathing training. This article provides preliminary findings regarding reduced vital capacity in relation to abnormal respiratory movements found in patients with panic disorder, potentially offering alternative perspectives for verifying the significance of breathing training for panic disorder.

  14. Breathing metabolic simulator.

    NASA Technical Reports Server (NTRS)

    Bartlett, R. G., Jr.; Hendricks, C. M.; Morison, W. B.

    1971-01-01

    Description of a device for simulation of the human breathing and metabolic parameters required for the evaluation of respiratory diagnostic, monitoring, support and resuscitation equipment. The remotely controlled device allows wide variations in breathing rate and depth, breath velocity contour, oxygen uptake and carbon dioxide release to simulate conditions from sleep to hard work, with respiration exchange ratios ranging from hypoventilation to hyperventilation. It also reduces the cost of prolonged testing when simulation chambers with human subjects require three shifts of crews and standby physicians. Several block diagrams of the device and subsystems are given.

  15. Quantification of the thorax-to-abdomen breathing ratio for breathing motion modeling.

    PubMed

    White, Benjamin M; Zhao, Tianyu; Lamb, James; Bradley, Jeffrey D; Low, Daniel A

    2013-06-01

    The purpose of this study was to develop a methodology to quantitatively measure the thorax-to-abdomen breathing ratio from a 4DCT dataset for breathing motion modeling and breathing motion studies. The thorax-to-abdomen breathing ratio was quantified by measuring the rate of cross-sectional volume increase throughout the thorax and abdomen as a function of tidal volume. Twenty-six 16-slice 4DCT patient datasets were acquired during quiet respiration using a protocol that acquired 25 ciné scans at each couch position. Fifteen datasets included data from the neck through the pelvis. Tidal volume, measured using a spirometer and abdominal pneumatic bellows, was used as breathing-cycle surrogates. The cross-sectional volume encompassed by the skin contour when compared for each CT slice against the tidal volume exhibited a nearly linear relationship. A robust iteratively reweighted least squares regression analysis was used to determine η(i), defined as the amount of cross-sectional volume expansion at each slice i per unit tidal volume. The sum Ση(i) throughout all slices was predicted to be the ratio of the geometric expansion of the lung and the tidal volume; 1.11. The Xiphoid process was selected as the boundary between the thorax and abdomen. The Xiphoid process slice was identified in a scan acquired at mid-inhalation. The imaging protocol had not originally been designed for purposes of measuring the thorax-to-abdomen breathing ratio so the scans did not extend to the anatomy with η(i) = 0. Extrapolation of η(i)-η(i) = 0 was used to include the entire breathing volume. The thorax and abdomen regions were individually analyzed to determine the thorax-to-abdomen breathing ratios. There were 11 image datasets that had been scanned only through the thorax. For these cases, the abdomen breathing component was equal to 1.11 - Ση(i) where the sum was taken throughout the thorax. The average Ση(i) for thorax and abdomen image datasets was found to be 1.20

  16. ECG authentication in post-exercise situation.

    PubMed

    Dongsuk Sung; Jeehoon Kim; Myungjun Koh; Kwangsuk Park

    2017-07-01

    Human authentication based on electrocardiogram (ECG) has been a remarkable issue for recent ten years. This paper proposed an authentication technology with the ECG data recorded after the harsh exercise. 55 subjects voluntarily attended to this experiment. A stepper was used as an exercise equipment. The subjects are asked to do stepper for 5 minutes and their ECG signals are acquired before and after the exercise in rest, sitting posture. Linear discriminant analysis (LDA) was used for both feature extraction and classification. Even though, within the first 1 minute recording, the subject recognition accuracy was 59.64%, which is too low to utilize, after one minute the accuracy was higher than 90% and it increased up to 96.22% within 5 minutes, which is plausible to use in authentication circumstances. Therefore, we have concluded that ECG authentication techniques will be able to be used after 1 minute of catching breath.

  17. Exhaled methane concentration profiles during exercise on an ergometer

    PubMed Central

    Szabó, A; Ruzsanyi, V; Unterkofler, K; Mohácsi, Á; Tuboly, E; Boros, M; Szabó, G; Hinterhuber, H; Amann, A

    2016-01-01

    Exhaled methane concentration measurements are extensively used in medical investigation of certain gastrointestinal conditions. However, the dynamics of endogenous methane release is largely unknown. Breath methane profiles during ergometer tests were measured by means of a photoacoustic spectroscopy based sensor. Five methane-producing volunteers (with exhaled methane level being at least 1 ppm higher than room air) were measured. The experimental protocol consisted of 5 min rest—15 min pedalling (at a workload of 75 W)—5 min rest. In addition, hemodynamic and respiratory parameters were determined and compared to the estimated alveolar methane concentration. The alveolar breath methane level decreased considerably, by a factor of 3–4 within 1.5 min, while the estimated ventilation-perfusion ratio increased by a factor of 2–3. Mean pre-exercise and exercise methane concentrations were 11.4 ppm (SD:7.3) and 2.8 ppm (SD:1.9), respectively. The changes can be described by the high sensitivity of exhaled methane to ventilationperfusion ratio and are in line with the Farhi equation. PMID:25749807

  18. Whole-heart magnetic resonance coronary angiography with multiple breath-holds and automatic breathing-level tracking

    NASA Astrophysics Data System (ADS)

    Kuhara, Shigehide; Ninomiya, Ayako; Okada, Tomohisa; Kanao, Shotaro; Kamae, Toshikazu; Togashi, Kaori

    2010-05-01

    Whole-heart (WH) magnetic resonance coronary angiography (MRCA) studies are usually performed during free breathing while monitoring the position of the diaphragm with real-time motion correction. However, this results in a long scan time and the patient's breathing pattern may change, causing the study to be aborted. Alternatively, WH MRCA can be performed with multiple breath-holds (mBH). However, one problem in the mBH method is that patients cannot hold their breath at the same position every time, leading to image degradation. We have developed a new WH MRCA imaging method that employs both the mBH method and automatic breathing-level tracking to permit automatic tracking of the changes in breathing or breath-hold levels. Evaluation of its effects on WH MRCA image quality showed that this method can provide high-quality images within a shorter scan time. This proposed method is expected to be very useful in clinical WH MRCA studies.

  19. Ventilatory oscillations at exercise: effects of hyperoxia, hypercapnia, and acetazolamide.

    PubMed

    Hermand, Eric; Lhuissier, François J; Larribaut, Julie; Pichon, Aurélien; Richalet, Jean-Paul

    2015-06-01

    Periodic breathing has been found in patients with heart failure and sleep apneas, and in healthy subjects in hypoxia, during sleep and wakefulness, at rest and, recently, at exercise. To unravel the cardiorespiratory parameters liable to modulate the amplitude and period of ventilatory oscillations, 26 healthy subjects were tested under physiological (exercise) and environmental (hypoxia, hyperoxia, hyperoxic hypercapnia) stresses, and under acetazolamide (ACZ) treatment. A fast Fourier transform spectral analysis of breath-by-breath ventilation (V˙E) evidenced an increase in V˙E peak power under hypercapnia (vs. normoxia and hyperoxia, P < 0.001) and a decrease under ACZ (vs. placebo, P < 0.001), whereas it was not modified in hyperoxia. V˙E period was shortened by exercise in all conditions (vs. rest, P < 0.01) and by hypercapnia (vs. normoxia, P < 0.05) but remained unchanged under ACZ (vs. placebo). V˙E peak power was positively related to cardiac output (Q˙c) and V˙E in hyperoxia (P < 0.01), in hypercapnia (P < 0.001) and under ACZ (P < 0.001). V˙E period was negatively related to Q˙c and V˙E in hyperoxia (P < 0.01 and P < 0.001, respectively), in hypercapnia (P < 0.05 and P < 0.01, respectively) and under ACZ (P < 0.05 and P < 0.01, respectively). Total respiratory cycle time was the main factor responsible for changes in V˙E period. In conclusion, exercise, hypoxia, and hypercapnia increase ventilatory oscillations by increasing Q˙c and V˙E, whereas ACZ decreases ventilatory instability in part by a contrasting action on O2 and CO2 sensing. An intrinsic oscillator might modulate ventilation through a complex system where peripheral chemoreflex would play a key role. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  20. Prevalence of exercise-induced bronchoconstriction and exercise-induced laryngeal obstruction in a general adolescent population.

    PubMed

    Johansson, Henrik; Norlander, Katarina; Berglund, Lars; Janson, Christer; Malinovschi, Andrei; Nordvall, Lennart; Nordang, Leif; Emtner, Margareta

    2015-01-01

    Exercise-induced respiratory symptoms are common among adolescents. Exercise is a known stimulus for transient narrowing of the airways, such as exercise-induced bronchoconstriction (EIB) and exercise-induced laryngeal obstruction (EILO). Our aim was to investigate the prevalence of EIB and EILO in a general population of adolescents. In this cross-sectional study, a questionnaire on exercise-induced dyspnoea was sent to all adolescents born in 1997 and 1998 in Uppsala, Sweden (n=3838). A random subsample of 146 adolescents (99 with self-reported exercise-induced dyspnoea and 47 without this condition) underwent standardised treadmill exercise tests for EIB and EILO. The exercise test for EIB was performed while breathing dry air; a positive test was defined as a decrease of ≥10% in FEV1 from baseline. EILO was investigated using continuous laryngoscopy during exercise. The estimated prevalence of EIB and EILO in the total population was 19.2% and 5.7%, respectively. No gender differences were found. In adolescents with exercise-induced dyspnoea, 39.8% had EIB, 6% had EILO and 4.8% had both conditions. In this group, significantly more boys than girls had neither EIB nor EILO (64.7% vs 38.8%; p=0.026). There were no significant differences in body mass index, lung function, diagnosed asthma or medication between the participants with exercise-induced dyspnoea who had or did not have a positive EIB or EILO test result. Both EIB and EILO are common causes of exercise-induced dyspnoea in adolescents. EILO is equally common among girls and boys and can coexist with EIB. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  1. Effect of Surgical Curve Correction on Exercise Tolerance and Physical Capacities in Patients of Severe Spinal Deformity.

    PubMed

    Patil, Prateek C; Rathod, Ashok K; Borde, Mandar; Singh, Vishwajeet; Singh, Hemant U

    2016-12-01

    Traditionally, surgical intervention for patients with a spinal deformity has been considered for cosmetic benefits, but surgical intervention can alter the lung physiology or volumes and in turn leads to increase in physical capacity and exercise tolerance. Therefore, we conducted this to determine whether a surgical correction would restore the lung physiology, physical capacity and exercise tolerance in patients with kyphoscoliosis. To evaluate the usage of six-minute walk test scores and modified Borg scores as tools/measures for exercise tolerance in patients with spinal deformity and to study the effects of surgical correction of spinal deformity on exercise tolerance with above parameters as the measures. Thirty patients with spinal deformity, who had undergone surgery for deformity correction, were evaluated. All patients were investigated pre-operatively with x-rays of the spine (anteroposterior and lateral views). Clinical tests like breath holding time (after full inspiration) in number of seconds, modified Borg scores, six-minute walk test scores (heart rate, respiratory rate, maximum distance walked); were recorded as measures of exercise tolerance. The patients were followed up on the first, third, sixth and twelfth month post-operatively and tested clinically for breath holding time, modified Borg scores, six-minute walk test scores (heart rate, respiratory rate, maximum distance walked) and x-rays of the spine (anteroposterior and lateral views). In our study, breath holding time (p-value = 0.001) and modified Borg scores (p-value = 0.012) showed a significant improvement at 12 months post-operatively. We noted similar findings with heart rate, respiratory rate and maximum distance walked after a six-minute walk test. Improvements were noted in all the parameters, especially in the group of patients with greater than 60 degrees of cobb angle. However, the differences between the two groups (pre-operative cobb angle less than 60 degrees and pre

  2. Effects of respiratory muscle work on respiratory and locomotor blood flow during exercise.

    PubMed

    Dominelli, Paolo B; Archiza, Bruno; Ramsook, Andrew H; Mitchell, Reid A; Peters, Carli M; Molgat-Seon, Yannick; Henderson, William R; Koehle, Michael S; Boushel, Robert; Sheel, A William

    2017-11-01

    What is the central question of this study? Does manipulation of the work of breathing during high-intensity exercise alter respiratory and locomotor muscle blood flow? What is the main finding and its importance? We found that when the work of breathing was reduced during exercise, respiratory muscle blood flow decreased, while locomotor muscle blood flow increased. Conversely, when the work of breathing was increased, respiratory muscle blood flow increased, while locomotor muscle blood flow decreased. Our findings support the theory of a competitive relationship between locomotor and respiratory muscles during intense exercise. Manipulation of the work of breathing (WOB) during near-maximal exercise influences leg blood flow, but the effects on respiratory muscle blood flow are equivocal. We sought to assess leg and respiratory muscle blood flow simultaneously during intense exercise while manipulating WOB. Our hypotheses were as follows: (i) increasing the WOB would increase respiratory muscle blood flow and decrease leg blood flow; and (ii) decreasing the WOB would decrease respiratory muscle blood flow and increase leg blood flow. Eight healthy subjects (n = 5 men, n = 3 women) performed a maximal cycle test (day 1) and a series of constant-load exercise trials at 90% of peak work rate (day 2). On day 2, WOB was assessed with oesophageal balloon catheters and was increased (via resistors), decreased (via proportional assist ventilation) or unchanged (control) during the trials. Blood flow was assessed using near-infrared spectroscopy optodes placed over quadriceps and the sternocleidomastoid muscles, coupled with a venous Indocyanine Green dye injection. Changes in WOB were significantly and positively related to changes in respiratory muscle blood flow (r = 0.73), whereby increasing the WOB increased blood flow. Conversely, changes in WOB were significantly and inversely related to changes in locomotor blood flow (r = 0.57), whereby decreasing the

  3. A proportional assist ventilator to unload respiratory muscles experimentally during exercise in humans.

    PubMed

    Dominelli, Paolo B; Henderson, William R; Sheel, A William

    2016-06-01

    What is the central question of this study? Can a modern proportional assist ventilator (PAV) function sufficiently well to unload the respiratory muscles during exercise? What is the main finding and its importance? A PAV can be constructed with contemporary hardware and software and be used at all exercise intensities to unload the respiratory muscles by up to 70%. Previously, PAVs have allowed researchers to address many fundamental physiological problems in clinical and healthy populations, but those versions are no longer functional or available. We describe the creation of a PAV that permits researchers to use it as an experimental tool. Manipulation of the normally occurring work of breathing (WOB) during exercise can provide insights into whole-body regulatory mechanisms in clinical patients and healthy subjects. One method to reduce the WOB uses a proportional assist ventilator (PAV). Suitable commercially available units are not capable of being used during heavy exercise. This investigation was undertaken in order to create a PAV and assess the degree to which the WOB could be reduced during exercise. A PAV works by creating a positive mouth pressure (Pm ) during inspiration, which consequently reduces the WOB. Spontaneous breathing patterns can be maintained, and the amplitude of Pm is calculated using the equation of motion and predetermined proportionality constants. We generated positive Pm using a breathing apparatus consisting of rigid tubing, solenoid valves to control the airflow direction and a proportional valve connected to compressed gas. Healthy male and female subjects were able to use the PAV successfully while performing cycling exercise over a range of intensities (50-100% of maximal workload) for different durations (from 30 s to 20 min) and different protocols (constant versus progressive workload). Inspiratory WOB was reduced up to 90%, while total WOB was reduced by 70%. The greatest reduction in WOB (50-75%) occurred during

  4. Breath in the technoscientific imaginary.

    PubMed

    Rose, Arthur

    2016-12-01

    Breath has a realist function in most artistic media. It serves to remind the reader, the viewer or the spectator of the exigencies of the body. In science fiction (SF) literature and films, breath is often a plot device for human encounters with otherness, either with alien peoples, who may not breathe oxygen, or environments, where there may not be oxygen to breathe. But while there is a technoscientific quality to breath in SF, especially in its attention to physiological systems, concentrating on the technoscientific threatens to occlude other, more affective aspects raised by the literature. In order to supplement the tendency to read SF as a succession of technoscientific accounts of bodily experience, this paper recalls how SF texts draw attention to the affective, non-scientific qualities of breath, both as a metonym for life and as a metaphor for anticipation. Through an engagement with diverse examples from SF literature and films, this article considers the tension between technoscientific and affective responses to breath in order to demonstrate breath's co-determinacy in SF's blending of scientific and artistic discourses. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  5. Are Interferential Electrical Stimulation and Diaphragmatic Breathing Exercises Beneficial in Children With Bladder and Bowel Dysfunction?

    PubMed

    Zivkovic, Vesna D; Stankovic, Ivona; Dimitrijevic, Lidija; Kocic, Mirjana; Colovic, Hristina; Vlajkovic, Marina; Slavkovic, Andjelka; Lazovic, Milica

    2017-04-01

    To evaluate the effects of interferential current (IC) stimulation and diaphragmatic breathing exercises (DBEs) in children with bladder and bowel dysfunction. Seventy-nine children with dysfunctional voiding and chronic constipation who were failures of primary care interventions were included in the prospective clinical study. All the children were checked for their medical history regarding lower urinary tract symptoms and bowel habits. Physical examination, including abdominal and anorectal digital examination, was performed. Children kept a bladder and bowel diary, and underwent urinalyses and urine culture, ultrasound examination of bladder and kidneys, and uroflowmetry with pelvic floor electromyography. Eligible children were divided into 3 groups (A, B, and C). All groups were assigned education and behavioral modifications. Additionally, group A underwent DBEs and IC stimulation, whereas group B received only DBEs. The treatment was conducted for 2 weeks in the clinic in all 3 groups,. The behavioral modifications and DBEs were continued at home for 1 month. Clinical manifestations, uroflowmetry parameters, and postvoided residual urine were analyzed before and after 6 weeks of therapy. After the treatment, significant improvement in defecation frequency and fecal incontinence was noticed only in group A (P < .001 and P < .05, respectively). These children demonstrated significant improvement in lower urinary tract symptoms and postvoided residual urine (P < .001 and P < .05, respectively). Bell-shaped uroflowmetry curve was observed in 73.3% of group A patients (P < .001). IC stimulation and DBEs are beneficial in chronically constipated dysfunctional voiders. Further trials are needed to define the long-term effects of this program. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Inefficient skeletal muscle oxidative function flanks impaired motor neuron recruitment in Amyotrophic Lateral Sclerosis during exercise.

    PubMed

    Lanfranconi, F; Ferri, A; Corna, G; Bonazzi, R; Lunetta, C; Silani, V; Riva, N; Rigamonti, A; Maggiani, A; Ferrarese, C; Tremolizzo, L

    2017-06-07

    This study aimed to evaluate muscle oxidative function during exercise in amyotrophic lateral sclerosis patients (pALS) with non-invasive methods in order to assess if determinants of reduced exercise tolerance might match ALS clinical heterogeneity. 17 pALS, who were followed for 4 months, were compared with 13 healthy controls (CTRL). Exercise tolerance was assessed by an incremental exercise test on cycle ergometer measuring peak O 2 uptake ([Formula: see text]O 2peak ), vastus lateralis oxidative function by near infrared spectroscopy (NIRS) and breathing pattern ([Formula: see text]E peak ). pALS displayed: (1) 44% lower [Formula: see text]O 2peak vs. CTRL (p < 0.0001), paralleled by a 43% decreased peak skeletal muscle oxidative function (p < 0.01), with a linear regression between these two variables (r 2  = 0.64, p < 0.0001); (2) 46% reduced [Formula: see text]E peak vs. CTRL (p < 0.0001), achieved by using an inefficient breathing pattern (increasing respiratory frequency) from the onset until the end of exercise. Inefficient skeletal muscle O 2 function, when flanking the impaired motor units recruitment, is a major determinant of pALS clinical heterogeneity and working capacity exercise tolerance. CPET and NIRS are useful tools for detecting early stages of oxidative deficiency in skeletal muscles, disclosing individual impairments in the O 2 transport and utilization chain.

  7. Decompression Sickness During Simulated Low Pressure Exposure is Increased with Mild Ambulation Exercise

    NASA Technical Reports Server (NTRS)

    Pollock, N. W.; Natoli, M. J.; Martina, S. D.; Conkin, J.; Wessel, J. H., III; Gernhardt, M. L.

    2016-01-01

    Musculoskeletal activity accelerates inert gas elimination during oxygen breathing prior to decompression (prebreathe), but may also promote bubble formation (nucleation) and increase the risk of decompression sickness (DCS). The timing, pattern and intensity of musculoskeletal activity are likely critical to the net effect. The NASA Prebreathe Reduction Program (PRP) combined oxygen prebreathe and exercise preceding a 4.3 psia exposure in non-ambulatory subjects (a microgravity analog) to produce two protocols now used by astronauts preparing for extravehicular activity - one employing cycling and non-cycling exercise (CEVIS: 'cycle ergometer vibration isolation system') and one relying on non-cycling exercise only (ISLE: 'in-suit light exercise'). Current efforts investigate whether light exercise normal to 1 G environments increases the risk of DCS over microgravity simulation.

  8. Chemical sensors for breath gas analysis: the latest developments at the Breath Analysis Summit 2013.

    PubMed

    Tisch, Ulrike; Haick, Hossam

    2014-06-01

    Profiling the body chemistry by means of volatile organic compounds (VOCs) in the breath opens exciting new avenues in medical diagnostics. Gas sensors could provide ideal platforms for realizing portable, hand-held breath testing devices in the near future. This review summarizes the latest developments and applications in the field of chemical sensors for diagnostic breath testing that were presented at the Breath Analysis Summit 2013 in Wallerfangen, Germany. Considerable progress has been made towards clinically applicable breath testing devices, especially by utilizing chemo-sensitive nanomaterials. Examples of several specialized breath testing applications are presented that are either based on stand-alone nanomaterial-based sensors being highly sensitive and specific to individual breath compounds over others, or on combinations of several highly specific sensors, or on experimental nanomaterial-based sensors arrays. Other interesting approaches include the adaption of a commercially available MOx-based sensor array to indirect breath testing applications, using a sample pre-concentration method, and the development of compact integrated GC-sensor systems. The recent trend towards device integration has led to the development of fully integrated prototypes of point-of-care devices. We describe and compare the performance of several prototypes that are based on different sensing technologies and evaluate their potential as low-cost and readily available next-generation medical devices.

  9. Air breathing in the Arctic: influence of temperature, hypoxia, activity and restricted air access on respiratory physiology of the Alaska blackfish Dallia pectoralis

    PubMed Central

    Lefevre, Sjannie; Damsgaard, Christian; Pascale, Desirae R.; Nilsson, Göran E.; Stecyk, Jonathan A. W.

    2014-01-01

    The Alaska blackfish (Dallia pectoralis) is an air-breathing fish native to Alaska and the Bering Sea islands, where it inhabits lakes that are ice-covered in the winter, but enters warm and hypoxic waters in the summer to forage and reproduce. To understand the respiratory physiology of this species under these conditions and the selective pressures that maintain the ability to breathe air, we acclimated fish to 5°C and 15°C and used respirometry to measure: standard oxygen uptake () in normoxia (19.8 kPa PO2) and hypoxia (2.5 kPa), with and without access to air; partitioning of standard in normoxia and hypoxia; maximum and partitioning after exercise; and critical oxygen tension (Pcrit). Additionally, the effects of temperature acclimation on haematocrit, haemoglobin oxygen affinity and gill morphology were assessed. Standard was higher, but air breathing was not increased, at 15°C or after exercise at both temperatures. Fish acclimated to 5°C or 15°C increased air breathing to compensate and fully maintain standard in hypoxia. Fish were able to maintain through aquatic respiration when air was denied in normoxia, but when air was denied in hypoxia, standard was reduced by ∼30–50%. Pcrit was relatively high (5 kPa) and there were no differences in Pcrit, gill morphology, haematocrit or haemoglobin oxygen affinity at the two temperatures. Therefore, Alaska blackfish depends on air breathing in hypoxia and additional mechanisms must thus be utilised to survive hypoxic submergence during the winter, such as hypoxia-induced enhancement in the capacities for carrying and binding blood oxygen, behavioural avoidance of hypoxia and suppression of metabolic rate. PMID:25394628

  10. Dosimetric comparison of moderate deep inspiration breath-hold and free-breathing intensity-modulated radiotherapy for left-sided breast cancer.

    PubMed

    Chi, F; Wu, S; Zhou, J; Li, F; Sun, J; Lin, Q; Lin, H; Guan, X; He, Z

    2015-05-01

    This study determined the dosimetric comparison of moderate deep inspiration breath-hold using active breathing control and free-breathing intensity-modulated radiotherapy (IMRT) after breast-conserving surgery for left-sided breast cancer. Thirty-one patients were enrolled. One free breathe and two moderate deep inspiration breath-hold images were obtained. A field-in-field-IMRT free-breathing plan and two field-in-field-IMRT moderate deep inspiration breath-holding plans were compared in the dosimetry to target volume coverage of the glandular breast tissue and organs at risks for each patient. The breath-holding time under moderate deep inspiration extended significantly after breathing training (P<0.05). There was no significant difference between the free-breathing and moderate deep inspiration breath-holding in the target volume coverage. The volume of the ipsilateral lung in the free-breathing technique were significantly smaller than the moderate deep inspiration breath-holding techniques (P<0.05); however, there was no significant difference between the two moderate deep inspiration breath-holding plans. There were no significant differences in target volume coverage between the three plans for the field-in-field-IMRT (all P>0.05). The dose to ipsilateral lung, coronary artery and heart in the field-in-field-IMRT were significantly lower for the free-breathing plan than for the two moderate deep inspiration breath-holding plans (all P<0.05); however, there was no significant difference between the two moderate deep inspiration breath-holding plans. The whole-breast field-in-field-IMRT under moderate deep inspiration breath-hold with active breathing control after breast-conserving surgery in left-sided breast cancer can reduce the irradiation volume and dose to organs at risks. There are no significant differences between various moderate deep inspiration breath-holding states in the dosimetry of irradiation to the field-in-field-IMRT target volume

  11. Effect of oxygenation on breath-by-breath response of the genioglossus muscle during occlusion.

    PubMed

    Gauda, E B; Carroll, J L; McColley, S; Smith, P L

    1991-10-01

    We investigated the effect of different levels of O2 tension (hypoxia, normoxia, and hyperoxia) on the breath-by-breath onset and peak electromyographic (EMG) activity of the genioglossus (GG) muscle during a five-breath end-expiratory tracheal occlusion of 20- to 30-s duration. GG and diaphragmatic (DIA) EMG activity were measured with needle electrodes in eight anesthetized tracheotomized adult cats. In response to occlusion, the increase in the number of animals with GG EMG activity was different during hypoxia, normoxia, and hyperoxia (P = 0.003, Friedman). During hypoxia, eight of eight of the animals had GG EMG activity by the third occluded effort. In contrast, during normoxia, only four of eight and, during hyperoxia, only three of eight animals had GG EMG activity throughout the entire five-breath occlusion. Similarly, at release of the occlusion, more animals had persistent GG EMG activity on the postocclusion breaths during hypoxia than during normoxia or hyperoxia. Breath-by-breath augmentation of peak amplitude of the GG and DIA EMGs on each occluded effort was accentuated during hypoxia (P less than 0.01) and abolished during hyperoxia (P = 0.10). These results suggest that hypoxemia is a major determinant of the rapidity of onset, magnitude, and sustained activity of upper airway muscles during airway occlusion.

  12. Determination of breath acetone in 149 type 2 diabetic patients using a ringdown breath-acetone analyzer.

    PubMed

    Sun, Meixiu; Chen, Zhuying; Gong, Zhiyong; Zhao, Xiaomeng; Jiang, Chenyu; Yuan, Yuan; Wang, Zhennang; Li, Yingxin; Wang, Chuji

    2015-02-01

    Over 90% of diabetic patients have Type 2 diabetes. Although an elevated mean breath acetone concentration has been found to exist in Type 1 diabetes (T1D), information on breath acetone in Type 2 diabetes (T2D) has yet to be obtained. In this study, we first used gas chromatography-mass spectrometry (GC-MS) to validate a ringdown breath-acetone analyzer based on the cavity-ringdown-spectroscopy technique, through comparing breath acetone concentrations in the range 0.5-2.5 ppm measured using both methods. The linear fitting of R = 0.99 suggests that the acetone concentrations obtained using both methods are consistent with a largest standard deviation of ±0.4 ppm in the lowest concentration of the range. Next, 620 breath samples from 149 T2D patients and 42 healthy subjects were collected and tested using the breath analyzer. Four breath samples were taken from each subject under each of four different conditions: fasting, 2 h post-breakfast, 2 h post-lunch, and 2 h post-dinner. Simultaneous blood glucose levels were also measured using a standard diabetic-management blood-glucose meter. For the 149 T2D subjects, their exhaled breath acetone concentrations ranged from 0.1 to 19.8 ppm; four different ranges of breath acetone concentration, 0.1-19.8, 0.1-7.1, 0.1-6.3, and 0.1-9.5 ppm, were obtained for the subjects under the four different conditions, respectively. For the 42 healthy subjects, their breath acetone concentration ranged from 0.1 to 2.6 ppm; four different ranges of breath acetone concentration, 0.3-2.6, 0.1-2.6, 0.1-1.7, and 0.3-1.6 ppm, were obtained for the four different conditions. The mean breath acetone concentration of the 149 T2D subjects was determined to be 1.5 ± 1.5 ppm, which was 1.5 times that of 1.0 ± 0.6 ppm for the 42 healthy subjects. No correlation was found between the breath acetone concentration and the blood glucose level of the T2D subjects and the healthy volunteers. This study using a relatively large number of

  13. Social relations and breath odour.

    PubMed

    McKeown, L

    2003-11-01

    In this retrospective qualitative study, the researcher reviewed 55 client records of The Breath Odour Clinic. The purpose was to determine if individuals attended a clinic specialised in treating oral malodour for medical or social reasons. The study focused on the psychosocial and breath odour history. Clients had agreed to the use of information for research purposes. Society uses odour as a means to define and interact with the world. The olfactory, smelling experience is intimate, emotionally charged and connects us with the world. It follows that the smell from mouth breath odour can connect or disconnect a person from their social environment and intimate relationships. How one experiences one's own body is very personal and private but also very public. Breath odour is public as it occurs within a social and cultural context and personal as it affects one's body image and self-confidence. Body image, self-image and social relations mesh, interact and impact upon each other. Breath odour is a dynamic and interactive aspect of the self-image. In addition, breath odour may be value-coded as 'bad'. In 75% of the cases reviewed, decreased self-confidence and insecurity in social and intimate relations led clients to seek treatment at the specialised breath odour clinic. Their doctor, dental hygienist or dentist had treated medical and oral conditions but not resolved their breath odour problem. When a person perceives a constant bad breath problem, she/he uses defence techniques, and may avoid social situations and social relations. This affects a person's well-being.

  14. Anoxia and Acidosis Tolerance of the Heart in an Air-Breathing Fish (Pangasianodon hypophthalmus).

    PubMed

    Joyce, William; Gesser, Hans; Bayley, Mark; Wang, Tobias

    2015-01-01

    Air breathing has evolved repeatedly in fishes and may protect the heart during stress. We investigated myocardial performance in the air-breathing catfish Pangasianodon hypophthalmus, a species that can withstand prolonged exposure to severe hypoxia and acidosis. Isometric ventricular preparations were exposed to anoxia, lactic acidosis, hypercapnic acidosis, and combinations of these treatments. Ventricular preparations were remarkably tolerant to anoxia, exhibiting an inotropic reduction of only 40%, which fully recovered during reoxygenation. Myocardial anoxia tolerance was unaffected by physiologically relevant elevations of bicarbonate concentration, in contrast to previous results in other fishes. Both lactic acidosis (5 mM; pH 7.10) and hypercapnic acidosis (10% CO2; pH 6.70) elicited a biphasic response, with an initial and transient decrease in force followed by overcompensation above control values. Spongy myocardial preparations were significantly more tolerant to hypercapnic acidosis than compact myocardial preparations. While ventricular preparations were tolerant to the isolated effects of anoxia and acidosis, their combination severely impaired myocardial performance and contraction kinetics. This suggests that air breathing may be a particularly important myocardial oxygen source during combined anoxia and acidosis, which may occur during exercise or environmental stress.

  15. Breath Analysis Using Laser Spectroscopic Techniques: Breath Biomarkers, Spectral Fingerprints, and Detection Limits

    PubMed Central

    Wang, Chuji; Sahay, Peeyush

    2009-01-01

    Breath analysis, a promising new field of medicine and medical instrumentation, potentially offers noninvasive, real-time, and point-of-care (POC) disease diagnostics and metabolic status monitoring. Numerous breath biomarkers have been detected and quantified so far by using the GC-MS technique. Recent advances in laser spectroscopic techniques and laser sources have driven breath analysis to new heights, moving from laboratory research to commercial reality. Laser spectroscopic detection techniques not only have high-sensitivity and high-selectivity, as equivalently offered by the MS-based techniques, but also have the advantageous features of near real-time response, low instrument costs, and POC function. Of the approximately 35 established breath biomarkers, such as acetone, ammonia, carbon dioxide, ethane, methane, and nitric oxide, 14 species in exhaled human breath have been analyzed by high-sensitivity laser spectroscopic techniques, namely, tunable diode laser absorption spectroscopy (TDLAS), cavity ringdown spectroscopy (CRDS), integrated cavity output spectroscopy (ICOS), cavity enhanced absorption spectroscopy (CEAS), cavity leak-out spectroscopy (CALOS), photoacoustic spectroscopy (PAS), quartz-enhanced photoacoustic spectroscopy (QEPAS), and optical frequency comb cavity-enhanced absorption spectroscopy (OFC-CEAS). Spectral fingerprints of the measured biomarkers span from the UV to the mid-IR spectral regions and the detection limits achieved by the laser techniques range from parts per million to parts per billion levels. Sensors using the laser spectroscopic techniques for a few breath biomarkers, e.g., carbon dioxide, nitric oxide, etc. are commercially available. This review presents an update on the latest developments in laser-based breath analysis. PMID:22408503

  16. Influence of the viscoelastic properties of the respiratory system on the energetically optimum breathing frequency.

    PubMed

    Bates, J H; Milic-Emili, J

    1993-01-01

    We hypothesized that the viscoelastic properties of the respiratory system should have significant implications for the energetically optimal frequency of breathing, in view of the fact that these properties cause marked dependencies of overall system resistance and elastance on frequency. To test our hypothesis we simulated two models of canine and human respiratory system mechanics during sinusoidal breathing and calculated the inspiratory work (WI) and pressure-time integral (PTI) per minute under both resting and exercise conditions. The two models were a two-compartment viscoelastic model and a single-compartment model. Requiring minute alveolar ventilation to be fixed, we found that both models predicted almost identical optimum breathing frequencies. The calculated PTI was very insensitive to increases in breathing frequency above the optimal frequencies, while WI was found to increase slowly with frequency above its optimum. In contrast, both WI and PTI increased sharply as frequency decreased below their respective optima. A sensitivity analysis showed that the model predictions were very insensitive to the elastance and resistance values chosen to characterize tissue viscoelasticity. We conclude that the WI criterion for choosing the frequency of breathing is compatible with observations in nature, whereas the optimal frequency predictions of the PTI are rather too high. Both criteria allow for a fairly wide margin of choice in frequency above the optimum values without incurring excessive additional energy expenditure. Furthermore, contrary to our expectations, the viscoelastic properties of the respiratory system tissues do not pose a noticeable problem to the respiratory controller in terms of energy expenditure.

  17. Minimizing Shortness of Breath

    MedlinePlus

    ... and hyperventilation as well as factors like emotional stress, overexertion, habitual postures and exposure to environmental irritants. Pursed-Lip Breathing One focus of occupational therapy is to teach pursed-lip breathing. This ...

  18. Role of creatine supplementation on exercise-induced cardiovascular function and oxidative stress

    PubMed Central

    Cunningham, Daniel; Mason, Laura; Kilduff, Liam P; McEneny, Jane

    2009-01-01

    Many degenerative diseases are associated with increased oxidative stress. Creatine has the potential to act as an indirect and direct antioxidant; however, limited data exist to evaluate the antioxidant capabilities of creatine supplementation within in vivo human systems. This study aimed to investigate the effects of oral creatine supplementation on markers of oxidative stress and antioxidant defenses following exhaustive cycling exercise. Following preliminary testing and two additional familiarization sessions, 18 active males repeated two exhaustive incremental cycling trials (T1 and T2) separated by exactly 7 days. The subjects were assigned, in a double-blind manner, to receive either 20 g of creatine (Cr) or a placebo (P) for the 5 days preceding T2. Breath-by-breath respiratory data and heart rate were continually recorded throughout the exercise protocol and blood samples were obtained at rest (preexercise), at the end of exercise (postexercise), and the day following exercise (post24 h). Serum hypdroperoxide concentrations were elevated at postexercise by 17 ± 5% above preexercise values (p = 0.030). However, supplementation did not influence lipid peroxidation (serum hypdroperoxide concentrations), resistance of low density lipoprotein to oxidative stress (t1/2max LDL oxidation) and plasma concentrations of non-enzymatic antioxidants (retinol, α-carotene, β-carotene, α-tocopherol, γ-tocopherol, lycopene and vitamin C). Heart rate and oxygen uptake responses to exercise were not affected by supplementation. These findings suggest that short-term creatine supplementation does not enhance non-enzymatic antioxidant defence or protect against lipid peroxidation induced by exhaustive cycling in healthy males. PMID:20716911

  19. Worldwide Survey of the "Assessing Pain, Both Spontaneous Awakening and Breathing Trials, Choice of Drugs, Delirium Monitoring/Management, Early Exercise/Mobility, and Family Empowerment" (ABCDEF) Bundle.

    PubMed

    Morandi, Alessandro; Piva, Simone; Ely, E Wesley; Myatra, Sheila Nainan; Salluh, Jorge I F; Amare, Dawit; Azoulay, Elie; Bellelli, Giuseppe; Csomos, Akos; Fan, Eddy; Fagoni, Nazzareno; Girard, Timothy D; Heras La Calle, Gabriel; Inoue, Shigeaki; Lim, Chae-Man; Kaps, Rafael; Kotfis, Katarzyna; Koh, Younsuck; Misango, David; Pandharipande, Pratik P; Permpikul, Chairat; Cheng Tan, Cheng; Wang, Dong-Xin; Sharshar, Tarek; Shehabi, Yahya; Skrobik, Yoanna; Singh, Jeffrey M; Slooter, Arjen; Smith, Martin; Tsuruta, Ryosuke; Latronico, Nicola

    2017-11-01

    To assess the knowledge and use of the Assessment, prevention, and management of pain; spontaneous awakening and breathing trials; Choice of analgesia and sedation; Delirium assessment; Early mobility and exercise; and Family engagement and empowerment (ABCDEF) bundle to implement the Pain, Agitation, Delirium guidelines. Worldwide online survey. Intensive care. A cross-sectional online survey using the Delphi method was administered to intensivists worldwide, to assess the knowledge and use of all aspects of the ABCDEF bundle. There were 1,521 respondents from 47 countries, 57% had implemented the ABCDEF bundle, with varying degrees of compliance across continents. Most of the respondents (83%) used a scale to evaluate pain. Spontaneous awakening trials and spontaneous breathing trials are performed in 66% and 67% of the responder ICUs, respectively. Sedation scale was used in 89% of ICUs. Delirium monitoring was implemented in 70% of ICUs, but only 42% used a validated delirium tool. Likewise, early mobilization was "prescribed" by most, but 69% had no mobility team and 79% used no formal mobility scale. Only 36% of the respondents assessed ICU-acquired weakness. Family members were actively involved in 67% of ICUs; however, only 33% used dedicated staff to support families and only 35% reported that their unit was open 24 hr/d for family visits. The current implementation of the ABCDEF bundle varies across individual components and regions. We identified specific targets for quality improvement and adoption of the ABCDEF bundle. Our data reflect a significant but incomplete shift toward patient- and family-centered ICU care in accordance with the Pain, Agitation, Delirium guidelines.

  20. Variability of breath condensate pH may contribute to the better understanding of non-allergic seasonal respiratory diseases

    NASA Astrophysics Data System (ADS)

    Kullmann, Tamás; Szipőcs, Annamária

    2017-09-01

    The seasonal variability of certain non-allergic respiratory diseases is not clearly understood. Analysis of the breath condensate, the liquid that can be collected by breathing into a cold tube, has been proposed to bring closer to the understanding of airway pathologies. It has been assumed, that (1) airway lining fluid was a stable body liquid and (2) the breath condensate samples were representative of the airway lining fluid. Research was focussed on the identification of biomarkers indicative of respiratory pathologies. Despite 30 years of extended investigations breath condensate analysis has not gained any clinical implementation so far. The pH of the condensate is the characteristic that can be determined with the highest reproducibility. The present paper shows, that contrary to the initial assumptions, breath condensate is not a representative of the airway lining fluid, and the airway lining fluid is not a stable body liquid. Condensate pH shows baseline variability and it is influenced by drinking and by the ambient temperature. The changes in condensate pH are linked to changes in airway lining fluid pH. The variability of airway lining fluid pH may explain seasonal incidence of certain non-allergic respiratory diseases such as the catching of a common cold and the increased incidence of COPD exacerbations and exercise-induced bronchoconstriction in cold periods.

  1. The effects of actors vocal exercises for relaxation on fluency: A preliminary study.

    PubMed

    Monteagudo, Emily; Sawyer, Jean; Sivek-Eskra, Alyssa

    2017-12-01

    To determine the efficacy of treatment based on Kristin Linklater's technique for vocal preparation for performance for use with people who stutter. A protocol for a treatment for stuttering involving breathing exercises, relaxation techniques, and focus on awareness was designed by the first author from Linklater's published exercises in her book Freeing the Natural Voice (2006). Four adults who stutter participated in a 12-week, single-case reversal design study. Treatment efficacy was determined by baseline and post-treatment measures on the OASES, self-report naturalness, tension and severity scale, and percentage of stuttering-like disfluency (SLD). Qualitative measures included a daily tension and practice log, a program completion questionnaire, and accounts from the clinicians administering the treatment protocol. Three of four participants scored lower on the OASES post-treatment, suggesting that the impact of stuttering on their daily lives had decreased. All four experienced a reduction in the number of SLD counted throughout treatment sessions compared to baseline data. A treatment for stuttering based on Linklater's work including regulation of breathing, relaxation, and awareness of breath may be effective in improving fluency and decreasing the impact of stuttering and warrants further study. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Morning-to-evening differences in oxygen uptake kinetics in short-duration cycling exercise.

    PubMed

    Brisswalter, Jeanick; Bieuzen, François; Giacomoni, Magali; Tricot, Véronique; Falgairette, Guy

    2007-01-01

    This study analyzed diurnal variations in oxygen (O(2)) uptake kinetics and efficiency during a moderate cycle ergometer exercise. Fourteen physically active diurnally active male subjects (age 23+/-5 yrs) not specifically trained at cycling first completed a test to determine their ventilatory threshold (T(vent)) and maximal oxygen consumption (VO(2max)); one week later, they completed four bouts of testing in the morning and evening in a random order, each separated by at least 24 h. For each period of the day (07:00-08:30 h and 19:00-20:30 h), subjects performed two bouts. Each bout was composed of a 5 min cycling exercise at 45 W, followed after 5 min rest by a 10 min cycling exercise at 80% of the power output associated with T(vent). Gas exchanges were analyzed breath-by-breath and fitted using a mono-exponential function. During moderate exercise, the time constant and amplitude of VO(2) kinetics were significantly higher in the morning compared to the evening. The net efficiency increased from the morning to evening (17.3+/-4 vs. 20.5+/-2%; p<0.05), and the variability of cycling cadence was greater during the morning than evening (+34%; p<0.05). These findings suggest that VO(2) responses are affected by the time of day and could be related to variability in muscle activity pattern.

  3. Traveling with breathing problems

    MedlinePlus

    ... obstructive lung disease - travel; Chronic bronchitis - travel; Emphysema - travel ... you: Are short of breath most of the time Get short of breath ... doctor if you plan to travel in a place at a high altitude (such ...

  4. Air breathing in the Arctic: influence of temperature, hypoxia, activity and restricted air access on respiratory physiology of the Alaska blackfish Dallia pectoralis.

    PubMed

    Lefevre, Sjannie; Damsgaard, Christian; Pascale, Desirae R; Nilsson, Göran E; Stecyk, Jonathan A W

    2014-12-15

    The Alaska blackfish (Dallia pectoralis) is an air-breathing fish native to Alaska and the Bering Sea islands, where it inhabits lakes that are ice-covered in the winter, but enters warm and hypoxic waters in the summer to forage and reproduce. To understand the respiratory physiology of this species under these conditions and the selective pressures that maintain the ability to breathe air, we acclimated fish to 5°C and 15°C and used respirometry to measure: standard oxygen uptake (Ṁ(O₂)) in normoxia (19.8 kPa P(O₂)) and hypoxia (2.5 kPa), with and without access to air; partitioning of standard Ṁ(O₂) in normoxia and hypoxia; maximum Ṁ(O₂) and partitioning after exercise; and critical oxygen tension (P(crit)). Additionally, the effects of temperature acclimation on haematocrit, haemoglobin oxygen affinity and gill morphology were assessed. Standard Ṁ(O₂) was higher, but air breathing was not increased, at 15°C or after exercise at both temperatures. Fish acclimated to 5°C or 15°C increased air breathing to compensate and fully maintain standard Ṁ(O₂) in hypoxia. Fish were able to maintain Ṁ(O₂) through aquatic respiration when air was denied in normoxia, but when air was denied in hypoxia, standard Ṁ(O₂) was reduced by ∼30-50%. P(crit) was relatively high (5 kPa) and there were no differences in P(crit), gill morphology, haematocrit or haemoglobin oxygen affinity at the two temperatures. Therefore, Alaska blackfish depends on air breathing in hypoxia and additional mechanisms must thus be utilised to survive hypoxic submergence during the winter, such as hypoxia-induced enhancement in the capacities for carrying and binding blood oxygen, behavioural avoidance of hypoxia and suppression of metabolic rate. © 2014. Published by The Company of Biologists Ltd.

  5. A comprehensive yoga programs improves pain, anxiety and depression in chronic low back pain patients more than exercise: an RCT.

    PubMed

    Tekur, P; Nagarathna, R; Chametcha, S; Hankey, Alex; Nagendra, H R

    2012-06-01

    Previously, outpatient Yoga programs for patients with chronic low back pain (CLBP) lasting several months have been found to reduce pain, analgesic requirement and disability, and improve spinal mobility. This study evaluated changes in pain, anxiety, depression and spinal mobility for CLBP patients on short-term, residential Yoga and physical exercise programs, including comprehensive yoga lifestyle modifications. A seven day randomized control single blind active study in an residential Holistic Health Centre in Bangalore, India, assigned 80 patients (37 female, 43 male) with CLBP to yoga and physical exercise groups. The Yoga program consisted of specific asanas and pranayamas for back pain, meditation, yogic counselling, and lectures on yoga philosophy. The control group program included physical therapy exercises for back pain, and matching counselling and education sessions. Group×time interactions (p<0.05) and between group differences (p<0.05) were significant in all variables. Both groups' scores on the numerical rating scale for pain reduced significantly, 49% in Yoga (p<0.001, ES=1.62), 17.5% in controls (p=0.005, ES=0.67). State anxiety (STAI) reduced 20.4% (p<0.001, ES=0.72) and trait anxiety 16% (p<0.001, ES=1.09) in the yoga group. Depression (BDI) decreased in both groups, 47% in yoga (p<0.001, ES=0.96,) and 19.9% in controls (p<0.001, ES=0.59). Spinal mobility ('Sit and Reach' instrument) improved in both groups, 50%, in yoga (p<0.001, ES=2.99) and 34.6% in controls (p<0.001, ES=0.81). Seven days intensive residential Yoga program reduces pain, anxiety, and depression, and improves spinal mobility in patients with CLBP more effectively than physiotherapy exercises. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Probing plasmonic breathing modes optically

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krug, Markus K., E-mail: markus.krug@uni-graz.at; Reisecker, Michael; Hohenau, Andreas

    2014-10-27

    The confinement of surface plasmon modes in flat nanoparticles gives rise to plasmonic breathing modes. With a vanishing net dipole moment, breathing modes do not radiate, i.e., they are optically dark. Having thus escaped optical detection, breathing modes were only recently revealed in silver nanodisks with electron energy loss spectroscopy in an electron microscope. We show that for disk diameters >200 nm, retardation induced by oblique optical illumination relaxes the optically dark character. This makes breathing modes and thus the full plasmonic mode spectrum accessible to optical spectroscopy. The experimental spectroscopy data are in excellent agreement with numerical simulations.

  7. Psychological predictors of the antihypertensive effects of music-guided slow breathing.

    PubMed

    Modesti, Pietro Amedeo; Ferrari, Antonella; Bazzini, Cristina; Costanzo, Giusi; Simonetti, Ignazio; Taddei, Stefano; Biggeri, Annibale; Parati, Gianfranco; Gensini, Gian Franco; Sirigatti, Saulo

    2010-05-01

    The possibility that daily sessions of music-guided slow breathing may reduce 24-h ambulatory blood pressure (ABP), and predictors of efficacy were explored in a randomized, placebo-controlled trial with parallel design. Age-matched and sex-matched hypertensive patients were randomized to music-guided slow breathing exercises (4-6 breaths/min; 1: 2 ratio of inspiration: expiration duration) (Intervention; n = 29) or to control groups who were thought to relax while either listening to slow music (Control-M; n = 26) or reading a book (Control-R; n = 31). At baseline and at follow-up visits (1 week and 1, 3 and 6 months), ABP monitoring was performed. At mixed model analysis, intervention was associated with a significant reduction of 24-h (P = 0.001) and night-time (0100-0600 h) (P < 0.0001) systolic ABP. The average reduction of systolic 24-h ABP at 6 months was 4.6 mmHg [confidence limits at 95% 1.93-7.35] and 4.1 mmHg (95% confidence limits 1.59-6.67) vs. Control-M and Control-R groups, respectively, (P < 0.001 for both). Antihypertensive treatment was selected as negative predictor of BP reduction at multivariate stepwise analysis. When antihypertensive treatment was inserted as covariate in a generalized linear model, psychological subscales assessed at baseline by the Mental Health Inventory questionnaire were found to affect systolic blood pressure reduction at 6-month follow-up (general positive affect P < 0.001; emotional ties, P < 0.001; loss of behavioral control, P = 0.035). In particular, a level of general positive affect higher than the 75th percentiles was found to be significantly associated with low treatment efficacy (odds ratio 0.09; 95% confidence limits 0.01-0.93). Daily sessions of voluntary music-guided slow breathing significantly reduce 24-h systolic ABP, and psychological predictors of efficacy can be identified.

  8. News from the Breath Analysis Summit 2011.

    PubMed

    Corradi, Massimo; Mutti, Antonio

    2012-06-01

    This special section highlights some of the important work presented at the Breath Analysis Summit 2011, which was held in Parma (Italy) from 11 to 14 September 2011. The meeting, which was jointly organized by the International Association for Breath Research and the University of Parma, was attended by more than 250 delegates from 33 countries, and offered 34 invited lectures and 64 unsolicited scientific contributions. The summit was organized to provide a forum to scientists, engineers and clinicians to present their latest findings and to meet industry executives and entrepreneurs to discuss key trends, future directions and technologies available for breath analysis. A major focus was on nitric oxide, exhaled breath condensate, electronic nose, mass spectrometry and newer sensor technologies. Medical applications ranged from asthma and other respiratory diseases to gastrointestinal disease, occupational diseases, critical care and cancer. Most people identify breath tests with breathalysers used by police to estimate ethanol concentration in blood. However, breath testing has far more sophisticated applications. Breath analysis is rapidly evolving as a new frontier in medical testing for disease states in the lung and beyond. Every individual has a breath fingerprint-or 'breathprint'-that can provide useful information about his or her state of health. This breathprint comprises the many thousands of molecules that are expelled with each breath we exhale. Breath research in the past few years has uncovered the scientific and molecular basis for such clinical observations. Relying on mass spectrometry, we have been able to identify many such unique substances in exhaled breath, including gases, such as nitric oxide (NO) and carbon monoxide (CO), and a wide array of volatile organic compounds. Exhaled breath also carries aerosolized droplets that can be collected as an exhaled breath condensate that contains endogenously produced non-volatile compounds. Breath

  9. A Ringdown Breath Analyzer for Diabetes Monitoring: Breath Acetone in Diabetic Patients.

    NASA Astrophysics Data System (ADS)

    Wang, Chuji; Mbi, Armstrong; Shepherd, Mark

    2008-03-01

    It is highly desirable for millions of diabetic patients to have a non-blood, non-invasive, point-of-care device for monitoring daily blood glucose (BG) levels and the adequacy of diabetic treatment and control. Cavity ringdown spectroscopy, due to its unique capability of high sensitivity, fast-response, and relatively low cost for instrumentation, has the potential for medical application through non-invasive analysis of breath biomarkers. We report the first ringdown acetone breath analyzer for clinic testing with diabetic outpatients. The instrument was set in a clinic center and 34 outpatients (24 T1D and 10 T2D) were tested during a four-day period. 10 T1D subjects and 15 nondiabetic persons were tested in our laboratory. Three juvenile-onset T1D subjects were selected for a 24-hr monitoring on the variations of breath acetone and simultaneous BG level. In this talk, we present our research findings including the correlations of breath acetone with BG level and A1C.

  10. A computer-based instrumentation system for measurement of breath-by-breath oxygen consumption and carbon dioxide production.

    PubMed

    Sharma, C; Gallagher, R R

    1994-01-01

    Improvements are implemented (Version 4) in a Computer-Based Respiratory Measurement System (CBRMS) identified as Version 3. The programming language has been changed from Pascal to C. A Gateway 2000 desktop computer with 486 DX2/50MHz CPU and a plug-in data I/O board (KEITHLEY METRABYTE/ASYST/DAC's DAS-HRES 16-bit Analog and Digital I/O board) replaces an HP 9836 system used in Version 3. The breath-by-breath system consists of a mass spectrometer for measuring fractional concentrations of oxygen and carbon dioxide and the accommodation of a turbine or pneumotachometer for measuring inspiratory and expiratory flows. The temperature of the inspiratory and expiratory gases can be monitored if temperature corrections are necessary for the flow measurement device. These signals are presented to the PC via the data acquisition module. To compare the two Versions, ten significant respiratory parameters were investigated and compared for physiological resting states and steady states obtained during an exercise forcing. Both graphical and statistical (analysis of variance, regression, and correlation) tests were carried out on the data. The results from the two versions compared well for all ten parameters. Also, no evidence of a statistically significant difference was found between the resting and steady-state results of the present CBRMS (Version 4) and the previous CBRMS (Version 3). This evidence suggests that Version 3 (Pascal) has been successfully converted to Version 4 (C). Implementation of the CBRMS in C on a PC has several advantages.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. NICMOS Focus and HST Breathing

    NASA Astrophysics Data System (ADS)

    Suchkov, A.; Hershey, J.

    1998-09-01

    The program 7608 monitored on a biweekly basis NICMOS camera foci from June 9, 1997, through February 18, 1998. Each of the biweekly observations included 17 measurements of focus position (focus sweeps), individually for each of the three cameras. The measurements for camera 1 and camera 3 foci covered one or two HST orbital periods. Comparison of these measurements with the predictions of the three OTA focus breathing models has shown the following. (1). Focus variations seen in NICMOS focus sweeps correlate well with the OTA focus thermal breathing as predicted by breathing models (“4- temperature”, “full-temperature”, and “attitude” models). Thus they can be attributed mostly to the HST orbital temperature variation. (2). The amount of breathing (breathing amplitude) has been found to be on average larger in the first orbit after a telescope slew to a new target. This is explained as being due to additional thermal perturbations caused by the change in the HST attitude as the telescope repoints to a new target. (3). In the first orbit, the amount of focus change predicted by the 4-temperature model is about the same as that seen in the focus sweeps data (breathing scale factor ~1). However the full-temperature model predicts a two times smaller breathing amplitude (breathing scale factor ~1.7). This suggests that the light shield temperatures are more responsive to the attitude change than temperatures from the other temperature sensors. The results of this study may help to better understand the HST thermal cycles and to improve the models describing the impact of those on both the OTA and NICMOS focus.

  12. Calculating rhythmicity of infant breathing using wavelets

    NASA Astrophysics Data System (ADS)

    Macey, Katherine E.; Page, Wyatt H.; Harper, Ronald M.; Macey, Paul M.; Ford, Rodney P. K.

    2000-12-01

    Breathing signals are one set of physiological data that may provide information regarding the mechanisms that cause SIDS. Isolated breathing pauses have been implicated in fatal events. Other features of interest include slow amplitude modulation of the breathing signal, a phenomenon whose origin is unclear, and periodic breathing. The latter describes a repetitive series of apnea, and may be considered an extreme manifestation of amplitude modulation with successive cessations of breathing. Rhythmicity is defined to assess the impact of amplitude modulation on breathing signals and describes the extent to which frequency components remain constant for the duration of the signal. The wavelet transform was used to identify sections of constant frequency components within signals. Rhythmicity can be evaluated for all the frequency components in a signal, for individual frequencies. The rhythmicity of eight breathing epochs from sleeping infants at high and low risk for SIDS was calculated. Initial results show breathing from infants at high risk for SIDS exhibits greater rhythmicity of modulating frequencies than breathing from low risk infants.

  13. Drinking influences exhaled breath condensate acidity.

    PubMed

    Kullmann, Tamás; Barta, Imre; Antus, Balázs; Horváth, Ildikó

    2008-01-01

    Exhaled breath condensate analysis is a developing method for investigating airway pathology. Impact of food and drink on breath condensate composition has not been systematically addressed. The aim of the study was to follow exhaled breath condensate pH after drinking an acidic and a neutral beverage. Breath condensate, capillary blood, and urine of 12 healthy volunteers were collected before and after drinking either 1 l of coke or 1 l of mineral water. The pH of each sample was determined with a blood gas analyzer. The mean difference between the pH of two breath condensate samples collected within 15 min before drinking was 0.13+/-0.03. Condensate pH decreased significantly from 6.29+/-0.02 to 6.24+/-0.02 (p<0.03) after drinking coke and from 6.37+/-0.03 to 6.22+/-0.04 (p<0.003) after drinking water. Drinking coke induced significant changes in blood and urine pH as well. Drinking influences exhaled breath condensate composition and may contribute to the variability of exhaled breath condensate pH.

  14. 'Diving reflex' in man - Its relation to isometric and dynamic exercise.

    NASA Technical Reports Server (NTRS)

    Bergman, S. A., Jr.; Campbell, J. K.; Wildenthal, K.

    1972-01-01

    To test the influence of physical activity on the diving reflex, 10 normal men held their breath with their faces immersed in 15 C water during rest, bicycle exercise, and sustained isometric handgrip contraction. At all conditions, a slight but statistically significant elevation of blood pressure and a marked decrease in heart rate occurred during each dive. During moderate bicycle exercise heart rate fell more rapidly than at rest and the final level of bradycardia approached that achieved at rest, despite the fact that predive heart rates were much higher during exercise. When diving occurred in combination with isometric exercise, bradycardia was less severe than during resting dives and final heart rates could be represented as the sum of the expected responses to each intervention alone. In all conditions apnea without face immersion caused bradycardia that was less severe than during wet dives.

  15. SU-E-T-326: The Oxygen Saturation (SO2) and Breath-Holding Time Variation Applied Active Breathing Control (ABC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, G; Yin, Y

    Purpose: To study the oxygen saturation (SO2) and breath-holding time variation applied active breathing control (ABC) in radiotherapy of tumor. Methods: 24 volunteers were involved in our trials, and they all did breath-holding motion assisted by ELEKTA Active Breathing Coordinator 2.0 for 10 times respectively. And the patient monitor was used to observe the oxygen saturation (SO2) variation. The variation of SO2, and length of breath-holding time and the time for recovering to the initial value of SO2 were recorded and analyzed. Results: (1) The volunteers were divided into two groups according to the SO2 variation in breath-holding: A group,more » 14 cases whose SO2 reduction were more than 2% (initial value was 97% to 99%, while termination value was 91% to 96%); B group, 10 cases were less than 2% in breath-holding without inhaling oxygen. (2) The interfraction breath holding time varied from 8 to 20s for A group compared to the first breath-holding time, and for B group varied from 4 to 14s. (3) The breathing holding time of B group prolonged mean 8s, compared to A group. (4) The time for restoring to the initial value of SO2 was from 10s to 30s. And the breath-holding time shortened obviously for patients whose SO2 did not recover to normal. Conclusion: It is very obvious that the SO2 reduction in breath-holding associated with ABC for partial people. It is necessary to check the SO2 variation in breath training, and enough time should be given to recover SO2.« less

  16. Effect of combined psycho-physiological stretching and breathing therapy on sexual satisfaction

    PubMed Central

    2013-01-01

    Background During the last few decades, marital tensions and stresses have influenced various dimensions of life. The objective of the current study was to examine the effects of combined psycho-physiological therapy (stretching therapy combined with breathing exercise) on sexual satisfaction among heterosexual men. Methods For this research, we used “convenience sampling” to select 80 males, who were then split equally into two groups, the intervention group and the control group, both groups containing men who had voiced a desire to be in the experimental group. For collection of data, we used an identical quasi-experimental design called the “nonequivalent control group.” Therapy sessions, each lasting 90 to 120 min, were carried out on the same 3 days of the week (Sunday, Tuesday, and Thursday) for a total of 20 sessions. The volunteers were selected from heterosexual men with stable relationships, who had been married a minimum of 6 months and were ages 20 to 55 years of age. Pre-tests, post-tests, and follow-up tests were conducted in a clinic at the Hospital Universiti Sains Malaysia (HUSM [1] ). For assessment, we used the sexual satisfaction subscale of the ENRICH [2] questionnaire. Results The intervention group had better post-test scores than the control group. Also, follow-up test scores for the intervention group were marginally better than those for the control group, but the difference did not reach statistical significance. Conclusions Combined psycho-physiological therapy including stretching and breathing exercise leads to improved sexual satisfaction. PMID:23522405

  17. Plasma electrolytes, pH, and ECG during and after exhaustive exercise.

    NASA Technical Reports Server (NTRS)

    Coester, N.; Elliott, J. C.; Luft, U. C.

    1973-01-01

    Ten men worked on a bicycle ergometer at increasing work loads to exhaustion in 15 min. Each performed one test breathing air and another with added CO2 in random sequence. ECG was recorded during exercise and for 30 min of recovery. Arterial samples for blood gases, pH, and electrolytes were drawn at rest, in the last minute of exercise and at 1, 4, 10, 20, and 30 min thereafter. A striking increase in the amplitude of T and P waves was observed reaching a maximum in the first 2 min after exercise. All electrolytes measured were increased at the end of exercise, most markedly potassium (60%) and phosphorus (53%). Potassium dropped faster than all others to below resting values in 4 min coinciding with the lowest levels in plasma bicarbonate. ECG alterations were not closely related in time with any single factor such as potassium, but appeared to reflect an interaction of the transient mineral and acid-base imbalance during and immediately following exhaustive exercise.

  18. Respiratory diseases and their effects on respiratory function and exercise capacity.

    PubMed

    Van Erck-Westergren, E; Franklin, S H; Bayly, W M

    2013-05-01

    Given that aerobic metabolism is the predominant energy pathway for most sports, the respiratory system can be a rate-limiting factor in the exercise capacity of fit and healthy horses. Consequently, respiratory diseases, even in mild forms, are potentially deleterious to any athletic performance. The functional impairment associated with a respiratory condition depends on the degree of severity of the disease and the equestrian discipline involved. Respiratory abnormalities generally result in an increase in respiratory impedance and work of breathing and a reduced level of ventilation that can be detected objectively by deterioration in breathing mechanics and arterial blood gas tensions and/or lactataemia. The overall prevalence of airway diseases is comparatively high in equine athletes and may affect the upper airways, lower airways or both. Diseases of the airways have been associated with a wide variety of anatomical and/or inflammatory conditions. In some instances, the diagnosis is challenging because conditions can be subclinical in horses at rest and become clinically relevant only during exercise. In such cases, an exercise test may be warranted in the evaluation of the patient. The design of the exercise test is critical to inducing the clinical signs of the problem and establishing an accurate diagnosis. Additional diagnostic techniques, such as airway sampling, can be valuable in the diagnosis of subclinical lower airway problems that have the capacity to impair performance. As all these techniques become more widely used in practice, they should inevitably enhance veterinarians' diagnostic capabilities and improve their assessment of treatment effectiveness and the long-term management of equine athletes. © 2013 EVJ Ltd.

  19. Optimising diffusion-weighted MR imaging for demonstrating pancreatic cancer: a comparison of respiratory-triggered, free-breathing and breath-hold techniques.

    PubMed

    Kartalis, Nikolaos; Loizou, Louiza; Edsborg, Nick; Segersvärd, Ralf; Albiin, Nils

    2012-10-01

    To compare respiratory-triggered, free-breathing, and breath-hold DWI techniques regarding (1) image quality, and (2) signal intensity (SI) and ADC measurements in pancreatic ductal adenocarcinoma (PDAC). Fifteen patients with histopathologically proven PDAC underwent DWI prospectively at 1.5 T (b = 0, 50, 300, 600 and 1,000 s/mm(2)) with the three techniques. Two radiologists, independently and blindly, assigned total image quality scores [sum of rating diffusion images (lesion detection, anatomy, presence of artefacts) and ADC maps (lesion characterisation, overall image quality)] per technique and ranked them. The lesion SI, signal-to-noise ratio, mean ADC and coefficient of variation (CV) were compared. Total image quality scores for respiratory-triggered, free-breathing and breath-hold techniques were 17.9, 16.5 and 17.1 respectively (respiratory-triggered was significantly higher than free-breathing but not breath-hold). The respiratory-triggered technique had a significantly higher ranking. Lesion SI on all b-values and signal-to-noise ratio on b300 and b600 were significantly higher for the respiratory-triggered technique. For respiratory-triggered, free-breathing and breath-hold techniques the mean ADCs were 1.201, 1.132 and 1.253 × 10(-3) mm(2)/s, and mean CVs were 8.9, 10.8 and 14.1 % respectively (respiratory-triggered and free-breathing techniques had a significantly lower mean CV than the breath-hold technique). In both analyses, respiratory-triggered DWI showed superiority and seems the optimal DWI technique for demonstrating PDAC. • Diffusion-weighted magnetic resonance imaging is increasingly used to detect pancreatic cancer • Images are acquired using various breathing techniques and multiple b-values • Breathing techniques used: respiratory-triggering, free-breathing and breath-hold • Respiratory-triggering seems the optimal breathing technique for demonstrating pancreatic cancer.

  20. Exercise Tolerance Testing in a Prospective Cohort of Adolescents with Chronic Fatigue Syndrome and Recovered Controls Following Infectious Mononucleosis

    PubMed Central

    Katz, Ben Z.; Boas, Steven; Shiraishi, Yukiko; Mears, Cynthia J.; Taylor, Renee

    2010-01-01

    Objective Six months following acute infectious mononucleosis (IM), 13%, of adolescents meet criteria for chronic fatigue syndrome (CFS). We measured exercise tolerance in adolescents with CFS and controls 6 months following IM. Study design 21 adolescents with CFS 6 months following IM and 21 recovered controls performed a maximal incremental exercise tolerance test with breath-by-breath gas analysis. Values expressed are mean ± standard deviation. Results The adolescents diagnosed with CFS and controls did not differ in age, weight, body-mass index or peak work capacity. Lower VO2 (oxygen consumption) peak percent of predicted was seen in adolescents with CFS compared with controls (CFS 99.3 ± 16.6 vs control 110.7 ± 19.9, p = 0.05). Peak oxygen pulse also was lower in adolescents with CFS compared with recovered controls (CFS 12.4 ± 2.9 vs controls 14.9 ± 4.3, p = 0.03). Conclusions Adolescents with CFS 6 months following IM have a lower degree of fitness and efficiency of exercise than recovered adolescents. Whether these abnormal exercise findings are a cause or effect of CFS is unknown. IM can lead to both fatigue and measurable changes in exercise testing in a subset of adolescents. PMID:20447647

  1. 46 CFR 197.456 - Breathing supply hoses.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Breathing supply hoses. 197.456 Section 197.456 Shipping....456 Breathing supply hoses. (a) The diving supervisor shall insure that— (1) Each breathing supply....5 times its maximum working pressure; (2) Each breathing supply hose assembly, prior to being placed...

  2. Visualizing Breath using Digital Holography

    NASA Astrophysics Data System (ADS)

    Hobson, P. R.; Reid, I. D.; Wilton, J. B.

    2013-02-01

    Artist Jayne Wilton and physicists Peter Hobson and Ivan Reid of Brunel University are collaborating at Brunel University on a project which aims to use a range of techniques to make visible the normally invisible dynamics of the breath and the verbal and non-verbal communication it facilitates. The breath is a source of a wide range of chemical, auditory and physical exchanges with the direct environment. Digital Holography is being investigated to enable a visually stimulating articulation of the physical trajectory of the breath as it leaves the mouth. Initial findings of this research are presented. Real time digital hologram replay allows the audience to move through holographs of breath-born particles.

  3. Intervention program in college instrumental musicians, with kinematics analysis of cello and flute playing: a combined program of yogic breathing and muscle strengthening-flexibility exercises.

    PubMed

    Lee, Sang-Hie; Carey, Stephanie; Dubey, Rajiv; Matz, Rachel

    2012-06-01

    College musicians encounter health risks not dissimilar to those of professional musicians. Fifteen collegiate instrumental musicians participated in the intervention program of yogic-breathing and muscle-strengthening and flexibility exercises for 8 weeks. Pre- and post-intervention data from the Health-Pain-Injury Inventory (HPI) and the Physical & Musical-Performance Efficacy Assessment Survey (PME) were analyzed for the effects of the program on the musicians' physical and musical-performance efficacy. HPI results showed that the majority of our sample had healthy lifestyles and minimal pain and injuries but irregular eating and exercise habits. The pre-intervention PME data showed a high level of musical efficacy (i.e., awareness of music technique, tone, and flow) but a low-level of physical efficacy (i.e., awareness of posture, tension, and movement flexibility). Post-intervention data showed that the program improved physical efficacy by increased awareness of posture and tension. In 2 volunteer musicians, kinematics motion analysis was conducted for exploratory purposes. Our cellist played the scale using a larger range of motion (ROM) in right shoulder flexion and abduction and slightly increased rotation while keeping decreased right elbow ROM after the intervention program. The flutist shifted the body weight from one foot to the other more in the second playing post-intervention. These changes can be attributed to the increased physical efficacy that allowed freedom to express musicality. Findings from these case scenarios provide empirically based hypotheses for further study. We share our experience so that others may use our model and instruments to develop studies with larger samples.

  4. Breath-Hold Diving.

    PubMed

    Fitz-Clarke, John R

    2018-03-25

    Breath-hold diving is practiced by recreational divers, seafood divers, military divers, and competitive athletes. It involves highly integrated physiology and extreme responses. This article reviews human breath-hold diving physiology beginning with an historical overview followed by a summary of foundational research and a survey of some contemporary issues. Immersion and cardiovascular adjustments promote a blood shift into the heart and chest vasculature. Autonomic responses include diving bradycardia, peripheral vasoconstriction, and splenic contraction, which help conserve oxygen. Competitive divers use a technique of lung hyperinflation that raises initial volume and airway pressure to facilitate longer apnea times and greater depths. Gas compression at depth leads to sequential alveolar collapse. Airway pressure decreases with depth and becomes negative relative to ambient due to limited chest compliance at low lung volumes, raising the risk of pulmonary injury called "squeeze," characterized by postdive coughing, wheezing, and hemoptysis. Hypoxia and hypercapnia influence the terminal breakpoint beyond which voluntary apnea cannot be sustained. Ascent blackout due to hypoxia is a danger during long breath-holds, and has become common amongst high-level competitors who can suppress their urge to breathe. Decompression sickness due to nitrogen accumulation causing bubble formation can occur after multiple repetitive dives, or after single deep dives during depth record attempts. Humans experience responses similar to those seen in diving mammals, but to a lesser degree. The deepest sled-assisted breath-hold dive was to 214 m. Factors that might determine ultimate human depth capabilities are discussed. © 2018 American Physiological Society. Compr Physiol 8:585-630, 2018. Copyright © 2018 American Physiological Society. All rights reserved.

  5. The Measurement of Ammonia in Human Breath and its Potential in Clinical Diagnostics.

    PubMed

    Brannelly, N T; Hamilton-Shield, J P; Killard, A J

    2016-11-01

    Ammonia is an important component of metabolism and is involved in many physiological processes. During normal physiology, levels of blood ammonia are between 11 and 50 µM. Elevated blood ammonia levels are associated with a variety of pathological conditions such as liver and kidney dysfunction, Reye's syndrome and a variety of inborn errors of metabolism including urea cycle disorders (UCD), organic acidaemias and hyperinsulinism/hyperammonaemia syndrome in which ammonia may reach levels in excess of 1 mM. It is highly neurotoxic and so effective measurement is critical for assessing and monitoring disease severity and treatment. Ammonia is also a potential biomarker in exercise physiology and studies of drug metabolism. Current ammonia testing is based on blood sampling, which is inconvenient and can be subject to significant analytical errors due to the quality of the sample draw, its handling and preparation for analysis. Blood ammonia is in gaseous equilibrium with the lungs. Recent research has demonstrated the potential use of breath ammonia as a non-invasive means of measuring systemic ammonia. This requires measurement of ammonia in real breath samples with associated temperature, humidity and gas characteristics at concentrations between 50 and several thousand parts per billion. This review explores the diagnostic applications of ammonia measurement and the impact that the move from blood to breath analysis could have on how these processes and diseases are studied and managed.

  6. Controlled breathing protocols probe human autonomic cardiovascular rhythms

    NASA Technical Reports Server (NTRS)

    Cooke, W. H.; Cox, J. F.; Diedrich, A. M.; Taylor, J. A.; Beightol, L. A.; Ames, J. E. 4th; Hoag, J. B.; Seidel, H.; Eckberg, D. L.

    1998-01-01

    The purpose of this study was to determine how breathing protocols requiring varying degrees of control affect cardiovascular dynamics. We measured inspiratory volume, end-tidal CO2, R-R interval, and arterial pressure spectral power in 10 volunteers who followed the following 5 breathing protocols: 1) uncontrolled breathing for 5 min; 2) stepwise frequency breathing (at 0.3, 0.25, 0.2, 0.15, 0.1, and 0.05 Hz for 2 min each); 3) stepwise frequency breathing as above, but with prescribed tidal volumes; 4) random-frequency breathing (approximately 0.5-0.05 Hz) for 6 min; and 5) fixed-frequency breathing (0.25 Hz) for 5 min. During stepwise breathing, R-R interval and arterial pressure spectral power increased as breathing frequency decreased. Control of inspired volume reduced R-R interval spectral power during 0.1 Hz breathing (P < 0.05). Stepwise and random-breathing protocols yielded comparable coherence and transfer functions between respiration and R-R intervals and systolic pressure and R-R intervals. Random- and fixed-frequency breathing reduced end-tidal CO2 modestly (P < 0.05). Our data suggest that stringent tidal volume control attenuates low-frequency R-R interval oscillations and that fixed- and random-rate breathing may decrease CO2 chemoreceptor stimulation. We conclude that autonomic rhythms measured during different breathing protocols have much in common but that a stepwise protocol without stringent control of inspired volume may allow for the most efficient assessment of short-term respiratory-mediated autonomic oscillations.

  7. The role of arterial chemoreceptors in the breath-by-breath augmentation of inspiratory effort in rabbits during airway occlusion or elastic loading.

    PubMed

    Callanan, D; Read, D J

    1974-08-01

    1. The breath-by-breath augmentation of inspiratory effort in the five breaths following airway occlusion or elastic loading was assessed in anaesthetized rabbits from changes of airway pressure, diaphragm e.m.g. and lung volume.2. When the airway was occluded in animals breathing air, arterial O(2) tension fell by 20 mmHg and CO(2) tension rose by 7 mmHg within the time of the first five loaded breaths.3. Inhalation of 100% O(2) or carotid denervation markedly reduced the breath-by-breath progression but had little or no effect on the responses at the first loaded breath.4. These results indicate that the breath-by-breath augmentation of inspiratory effort following addition of a load is mainly due to asphyxial stimulation of the carotid bodies, rather than to the gradual emergence of a powerful load-compensating reflex originating in the chest-wall, as postulated by some workers.5. The small residual progression seen in animals breathing 100% O(2) or following carotid denervation was not eliminated (a) by combining these procedures or (b) by addition of gas to the lungs to prevent the progressive lung deflation which occurred during airway occlusion.6. Bilateral vagotomy, when combined with carotid denervation, abolished the residual breath-by-breath progression of inspiratory effort.

  8. Analysis of Exhaled Breath for Disease Detection

    NASA Astrophysics Data System (ADS)

    Amann, Anton; Miekisch, Wolfram; Schubert, Jochen; Buszewski, Bogusław; Ligor, Tomasz; Jezierski, Tadeusz; Pleil, Joachim; Risby, Terence

    2014-06-01

    Breath analysis is a young field of research with great clinical potential. As a result of this interest, researchers have developed new analytical techniques that permit real-time analysis of exhaled breath with breath-to-breath resolution in addition to the conventional central laboratory methods using gas chromatography-mass spectrometry. Breath tests are based on endogenously produced volatiles, metabolites of ingested precursors, metabolites produced by bacteria in the gut or the airways, or volatiles appearing after environmental exposure. The composition of exhaled breath may contain valuable information for patients presenting with asthma, renal and liver diseases, lung cancer, chronic obstructive pulmonary disease, inflammatory lung disease, or metabolic disorders. In addition, oxidative stress status may be monitored via volatile products of lipid peroxidation. Measurement of enzyme activity provides phenotypic information important in personalized medicine, whereas breath measurements provide insight into perturbations of the human exposome and can be interpreted as preclinical signals of adverse outcome pathways.

  9. Air sampling unit for breath analyzers

    NASA Astrophysics Data System (ADS)

    Szabra, Dariusz; Prokopiuk, Artur; Mikołajczyk, Janusz; Ligor, Tomasz; Buszewski, Bogusław; Bielecki, Zbigniew

    2017-11-01

    The paper presents a portable breath sampling unit (BSU) for human breath analyzers. The developed unit can be used to probe air from the upper airway and alveolar for clinical and science studies. The BSU is able to operate as a patient interface device for most types of breath analyzers. Its main task is to separate and to collect the selected phases of the exhaled air. To monitor the so-called I, II, or III phase and to identify the airflow from the upper and lower parts of the human respiratory system, the unit performs measurements of the exhaled CO2 (ECO2) in the concentration range of 0%-20% (0-150 mm Hg). It can work in both on-line and off-line modes according to American Thoracic Society/European Respiratory Society standards. A Tedlar bag with a volume of 5 dm3 is mounted as a BSU sample container. This volume allows us to collect ca. 1-25 selected breath phases. At the user panel, each step of the unit operation is visualized by LED indicators. This helps us to regulate the natural breathing cycle of the patient. There is also an operator's panel to ensure monitoring and configuration setup of the unit parameters. The operation of the breath sampling unit was preliminarily verified using the gas chromatography/mass spectrometry (GC/MS) laboratory setup. At this setup, volatile organic compounds were extracted by solid phase microextraction. The tests were performed by the comparison of GC/MS signals from both exhaled nitric oxide and isoprene analyses for three breath phases. The functionality of the unit was proven because there was an observed increase in the signal level in the case of the III phase (approximately 40%). The described work made it possible to construct a prototype of a very efficient breath sampling unit dedicated to breath sample analyzers.

  10. Shaolin Dan Tian Breathing Fosters Relaxed and Attentive Mind: A Randomized Controlled Neuro-Electrophysiological Study

    PubMed Central

    Chan, Agnes S.; Cheung, Mei-Chun; Sze, Sophia L.; Leung, Winnie Wing-Man; Shi, Dejian

    2011-01-01

    Neuro-electrophysiological studies on meditative breathing revealed its association with either a relaxed or an attentive state. The present study aimed to investigate whether the Shaolin Dan Tian Breathing (DTB) technique, which consists of the Passive and Active subtypes and can be considered as a relaxation exercise and Qigong, would induce both relaxed and attentive states. Twenty-two adults and 22 age-, gender- and education-matched controls received training on the Shaolin DTB (experimental group) and the progressive muscle relaxation respectively for one month. Eyes-closed resting EEG data before and immediately after each type of breathing were obtained individually at baseline and after one-month training. At baseline, the EEG changes after the Shaolin DTB between both groups were comparable. After one-month training, participants in the experimental, but not the control, group showed enhanced temporal alpha asymmetry (an index of relaxation and positive mood) after performing the Passive DTB for five minutes, and enhanced intra- and inter-hemispheric theta coherence (an index of attention and alertness) after performing the Active DTB. The present findings suggested a positive effect of the Shaolin DTB technique on enhancing human neural activity and connectivity, which may possibly enhance mood state and cognitive functions. PMID:20976126

  11. Effects of regular exercise on asthma control in young adults.

    PubMed

    Heikkinen, Sirpa A M; Mäkikyrö, Elina M S; Hugg, Timo T; Jaakkola, Maritta S; Jaakkola, Jouni J K

    2017-08-28

    According to our systematic literature review, no previous study has assessed potential effects of regular exercise on asthma control among young adults. We hypothesized that regular exercise improves asthma control among young adults. We studied 162 subjects with current asthma recruited from a population-based cohort study of 1,623 young adults 20-27 years of age. Asthma control was assessed by the occurrence of asthma-related symptoms, including wheezing, shortness of breath, cough, and phlegm production, during the past 12 months. Asthma symptom score was calculated based on reported frequencies of these symptoms (range: 0-12). Exercise was assessed as hours/week. In Poisson regression, adjusting for gender, age, smoking, environmental tobacco smoke exposure, and education, the asthma symptom score reduced by 0.09 points per 1 hour of exercise/week (95% CI: 0.00 to 0.17). Applying the "Low exercise" quartile as the reference, "Medium exercise" reduced the asthma symptom score by 0.66 (-0.39 to 1.72), and "High exercise" reduced it significantly by 1.13 (0.03 to 2.22). The effect was strongest among overweight subjects. Our results provide new evidence that regular exercising among young adults improves their asthma control. Thus, advising about exercise should be included as an important part of asthma self-management in clinical practice.

  12. A prototype gas exchange monitor for exercise stress testing aboard NASA Space Station

    NASA Technical Reports Server (NTRS)

    Orr, Joseph A.; Westenskow, Dwayne R.; Bauer, Anne

    1989-01-01

    This paper describes an easy-to-use monitor developed to track the weightlessness deconditioning aboard the NASA Space Station, together with the results of testing of a prototype instrument. The monitor measures the O2 uptake and CO2 production, and calculates the maximum O2 uptake and anaerobic threshold during an exercise stress test. The system uses two flowmeters in series to achieve a completely automatic calibration, and uses breath-by-breath compensation for sample line-transport delay. The monitor was evaluated using two laboratory methods and was shown to be accurate. The system's block diagram and the bench test setup diagram are included.

  13. Acute recovery from exercise in people with multiple sclerosis: an exploratory study on the effect of exercise intensities.

    PubMed

    Collett, Johnny; Meaney, Andy; Howells, Ken; Dawes, Helen

    2017-03-01

    Purpose A better understanding of how people with multiple sclerosis (pwMS) recover from exercise may help inform interventions. Methods We explored physiological and perceptual responses following exercise of different intensities, using a crossover exposure-response design, in 14 adults with multiple sclerosis (MS) and 9 controls. A cycling exercise test determined maximum capacity (Wpeak). Participants then performed 20-min exercise sessions relative to Wpeak (random order separated by 7 days): (1) 45% and (2) 60% continuous cycling and (3) 90% intermittent cycling (30 s cycling, 30 s rest). During a 45-min recovery period, tympanic temperature (Temp°C), exertion in breathing (RPEbr) and legs (RPEleg), and cortical excitability (MEParea) were measured. Results Eleven pwMS and eight controls completed the study. Controls performed better on the exercise test (p < 0.05), thus more absolute work during subsequent sessions. PwMS took longer to recover RPEleg with recovery time increasing with intensity (45%-6 min; 60%-15 min; 90%-35 min) and correlating with Temp°C. MEParea was significantly depressed in both groups at 45% and 60% (p < 0.001), in the MS group this also correlated with RPEleg. Conclusions Feelings of leg exertion may persist after exercise in some pwMS, especially at high intensities. This may relate to body temperature and, after continuous exercise, cortical excitability. These results support considering the recovery period post exercise and provide an insight into potential correlates of post-exercise fatigue. Implications for Rehabilitation A better understanding of how pwMS recover following exercise may help inform exercise prescription a long side fatigue management. This study showed that, in pwMS, the time taken to recover from feelings of leg fatigue increased with the intensity of the exercise session rather that total work performed and was related to increase in body temperature. The results of this relatively small

  14. Fluorometric biosniffer (biochemical gas sensor) for breath acetone as a volatile indicator of lipid metabolism

    NASA Astrophysics Data System (ADS)

    Mitsubayashi, Kohji; Chien, Po-Jen; Ye, Ming; Suzuki, Takuma; Toma, Koji; Arakawa, Takahiro

    2016-11-01

    A fluorometric acetone biosniffer (biochemical gas sensor) for assessment of lipid metabolism utilizing reverse reaction of secondary alcohol dehydrogenase was constructed and evaluated. The biosniffer showed highly sensitivity and selectivity for continuous monitoring of gaseous acetone. The measurement of breath acetone concentration during fasting and aerobic exercise were also investigated. The acetone biosniffer provides a novel analytical tool for noninvasive evaluation of human lipid metabolism and it is also expected to use for the clinical and physiological applications such as monitoring the progression of diabetes.

  15. BREATHE to Understand©

    ERIC Educational Resources Information Center

    Swisa, Maxine

    2015-01-01

    BREATHE is an acronym for Breathe, Reflect, Empathize, Accept, Thank, Hearten, Engage. The addition of Understand allows for a holistic approach to living a healthy and balanced life both inside and outside the classroom. This paper took form as a result of my personal, spiritual journey, as well as my teaching practice. I noticed that the…

  16. Quiet breathing in hindlimb casted mice.

    PubMed

    Receno, Candace N; Roffo, Katelynn E; Mickey, Marisa C; DeRuisseau, Keith C; DeRuisseau, Lara R

    2018-06-07

    The hindlimb casting model was developed to study skeletal muscle reloading following a period of unloading. It is unknown if ventilation parameters of mice are affected by the casting model. We tested the hypothesis that hindlimb casted mice have similar ventilatory patterns compared to mice with the casts removed. Male CD-1 mice underwent 14 days of hindlimb immobilization via plaster casting. Breathing parameters were obtained utilizing unrestrained barometric plethysmography (UBP). Breathing traces were analyzed with Ponemah software for breathing frequency, tidal volume (TV), and minute ventilation (MV). Frequency, TV and MV did not show any differences in quiet breathing patterns during or post-casting in mice. Thus, the hindlimb casting model does not complicate breathing during and after casting and should not interfere with the unloading and reloading of skeletal muscle. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Exercise and physical therapy help restore body and self in clients with severe anorexia nervosa.

    PubMed

    Kolnes, Liv-Jorunn

    2017-07-01

    Exercise in the context of anorexia nervosa is a multifaceted endeavour surrounded by controversy and uncertainty. A broader comprehension of this poorly understood phenomenon is required. Informed by the findings of a body examination of six individuals with anorexia nervosa, as well as exercise science, phenomenology and neurocognition, the purpose of this article is to elaborate on the potential role of exercise and physical therapy in the treatment of anorexia nervosa. The findings of the body assessment include constriction of posture, muscles and pattern of breathing. These bodily restraints are not necessarily merely associated with high levels of exercise, they may also reflect psychological strain accompanying the illness. The restricted breathing in particular is assumed to be associated with difficult thoughts and suppressed feelings. Based on the results of the body examination, as well as medical and psychological considerations accompanying the illness, it is suggested that interventions should focus on improving postural stability and restoring related muscular function. Integral to engaging in these activities, the potential to integrate proprioceptive information in this process may generate a more coherent experience of the body, as well as of the self, in these clients. Accordingly, constrictions of the body may have a vital role in constraining the experience of the self. As such, addressing bodily restraints in these clients may facilitate the experience of being the subject causing and controlling the movements. This is in marked contrast to clients' previous exercise experiences, which were associated with compulsion, rigidity and the absence of coherence and control. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Breath-based biomarkers for tuberculosis

    NASA Astrophysics Data System (ADS)

    Kolk, Arend H. J.; van Berkel, Joep J. B. N.; Claassens, Mareli M.; Walters, Elisabeth; Kuijper, Sjoukje; Dallinga, Jan W.; van Schooten, Fredrik-Jan

    2012-06-01

    We investigated the potential of breath analysis by gas chromatography - mass spectrometry (GC-MS) to discriminate between samples collected prospectively from patients with suspected tuberculosis (TB). Samples were obtained in a TB endemic setting in South Africa where 28% of the culture proven TB patients had a Ziehl-Neelsen (ZN) negative sputum smear. A training set of breath samples from 50 sputum culture proven TB patients and 50 culture negative non-TB patients was analyzed by GC-MS. A classification model with 7 compounds resulted in a training set with a sensitivity of 72%, specificity of 86% and accuracy of 79% compared with culture. The classification model was validated with an independent set of breath samples from 21 TB and 50 non-TB patients. A sensitivity of 62%, specificity of 84% and accuracy of 77% was found. We conclude that the 7 volatile organic compounds (VOCs) that discriminate breath samples from TB and non-TB patients in our study population are probably host-response related VOCs and are not derived from the VOCs secreted by M. tuberculosis. It is concluded that at present GC-MS breath analysis is able to differentiate between TB and non-TB breath samples even among patients with a negative ZN sputum smear but a positive culture for M. tuberculosis. Further research is required to improve the sensitivity and specificity before this method can be used in routine laboratories.

  19. Exercise Limitation Imposed by an Approved Air Purifying Respirator (APR)

    DTIC Science & Technology

    2010-05-01

    mentioned that they did not have enough time to inhale, that inspiratory muscles were fatigued , that they got out of rhythm with their breathing and...with APR decreased with time during APR use, a decrease suggesting fatigue of respiratory muscles . Another two subjects did not continue long enough... muscle fatigue , the difference they noted may have been caused by the increase in VE during endurance exercise. The other investigators compared at

  20. Optoacoustic 13C-breath test analyzer

    NASA Astrophysics Data System (ADS)

    Harde, Hermann; Helmrich, Günther; Wolff, Marcus

    2010-02-01

    The composition and concentration of exhaled volatile gases reflects the physical ability of a patient. Therefore, a breath analysis allows to recognize an infectious disease in an organ or even to identify a tumor. One of the most prominent breath tests is the 13C-urea-breath test, applied to ascertain the presence of the bacterium helicobacter pylori in the stomach wall as an indication of a gastric ulcer. In this contribution we present a new optical analyzer that employs a compact and simple set-up based on photoacoustic spectroscopy. It consists of two identical photoacoustic cells containing two breath samples, one taken before and one after capturing an isotope-marked substrate, where the most common isotope 12C is replaced to a large extent by 13C. The analyzer measures simultaneously the relative CO2 isotopologue concentrations in both samples by exciting the molecules on specially selected absorption lines with a semiconductor laser operating at a wavelength of 2.744 μm. For a reliable diagnosis changes of the 13CO2 concentration of 1% in the exhaled breath have to be detected at a concentration level of this isotope in the breath of about 500 ppm.

  1. Recognition and Management of Sleep-Disordered Breathing in Chronic Heart Failure

    PubMed Central

    Kikta, Donald; Khayat, Rami

    2013-01-01

    It is increasingly recognized that sleep-disordered breathing (SDB) is a common modifiable risk factor for cardiovascular disease with significant impact on morbidity and potentially mortality. SDB is highly prevalent in patients with systolic or diastolic heart failure. A high index of suspicion is necessary to diagnose SDB in patients with heart failure because the vast majority of affected patients do not report daytime symptoms. Recent clinical trials have demonstrated improvement in heart function, exercise tolerance, and quality of life after treatment of SDB in patients with heart failure. Accumulating evidence suggests that treatment of SDB should complement the established pharmacologic therapy for chronic heart failure. However, mortality benefit has yet to be demonstrated. PMID:21086079

  2. The influence of prior exercise at anaerobic threshold on decompression sickness

    NASA Technical Reports Server (NTRS)

    Kumar, K. V.; Waligora, James M.; Gilbert, John H., III

    1992-01-01

    This study was conducted to examine the effects of exercise prior to decompression on the incidence of altitude decompression sickness (DCS). In a balanced, two-period, crossover trial, 39 healthy individuals were each exposed twice, without denitrogenation, to an altitude of 6400 m in a hypobaric chamber. Under the experimental condition, subjects exercised at their predetermined anaerobic threshold levels for 30 min each day for 3 d prior to altitude exposure; the other condition was a non-exercise control. Under both conditions, subjects performed exercise simulating space extravehicular activities at altitude for a period of 3 h, while breathing 100 percent oxygen. There were nine preferences (untied responses) for DCS, four under control and five under experimental conditions; all were Type I, pain-only bends. No carry-over effects between exposures was detected, and the test for treatment differences showed p = 0.56 for symptoms. No significant difference in DCS preferences was found after subjects exercised up to their anaerobic threshold levels during the days prior to decompression.

  3. New breathing functions for the transverse breathing crack of the cracked rotor system: Approach for critical and subcritical harmonic analysis

    NASA Astrophysics Data System (ADS)

    Al-Shudeifat, Mohammad A.; Butcher, Eric A.

    2011-01-01

    The actual breathing mechanism of the transverse breathing crack in the cracked rotor system that appears due to the shaft weight is addressed here. As a result, the correct time-varying area moments of inertia for the cracked element cross-section during shaft rotation are also determined. Hence, two new breathing functions are identified to represent the actual breathing effect on the cracked element stiffness matrix. The new breathing functions are used in formulating the time-varying finite element stiffness matrix of the cracked element. The finite element equations of motion are then formulated for the cracked rotor system and solved via harmonic balance method for response, whirl orbits and the shift in the critical and subcritical speeds. The analytical results of this approach are compared with some previously published results obtained using approximate formulas for the breathing mechanism. The comparison shows that the previously used breathing function is a weak model for the breathing mechanism in the cracked rotor even for small crack depths. The new breathing functions give more accurate results for the dynamic behavior of the cracked rotor system for a wide range of the crack depths. The current approach is found to be efficient for crack detection since the critical and subcritical shaft speeds, the unique vibration signature in the neighborhood of the subcritical speeds and the sensitivity to the unbalance force direction all together can be utilized to detect the breathing crack before further damage occurs.

  4. Effects of Pressure Support Ventilation May Be Lost at High Exercise Intensities in People with COPD.

    PubMed

    Anekwe, David; de Marchie, Michel; Spahija, Jadranka

    2017-06-01

    Pressure support ventilation (PSV) may be used for exercise training in chronic obstructive pulmonary disease (COPD), but its acute effect on maximum exercise capacity is not fully known. The objective of this study was to evaluate the effect of 10 cm H 2 O PSV and a fixed PSV level titrated to patient comfort at rest on maximum exercise workload (WLmax), breathing pattern and metabolic parameters during a symptom-limited incremental bicycle test in individuals with COPD. Eleven individuals with COPD (forced expiratory volume in one second: 49 ± 16%; age: 64 ± 7 years) performed three exercise tests: without a ventilator, with 10 cm H 2 O of PSV and with a fixed level titrated to comfort at rest, using a SERVO-i ventilator. Tests were performed in randomized order and at least 48 hours apart. The WLmax, breathing pattern, metabolic parameters, and mouth pressure (Pmo) were compared using repeated measures analysis of variance. Mean PSV during titration was 8.2 ± 4.5 cm H 2 O. There was no difference in the WLmax achieved during the three tests. At rest, PSV increased the tidal volume, minute ventilation, and mean inspiratory flow with a lower end-tidal CO 2 ; this was not sustained at peak exercise. Pmo decreased progressively (decreased unloading) with PSV at workloads close to peak, suggesting the ventilator was unable to keep up with the increased ventilatory demand at high workloads. In conclusion, with a Servo-i ventilator, 10 cm H 2 O of PSV and a fixed level of PSV established by titration to comfort at rest, is ineffective for the purpose of achieving higher exercise workloads as the acute physiological effects may not be sustained at peak exercise.

  5. Effect of yoga practices on pulmonary function tests including transfer factor of lung for carbon monoxide (TLCO) in asthma patients.

    PubMed

    Singh, Savita; Soni, Ritu; Singh, K P; Tandon, O P

    2012-01-01

    Prana is the energy, when the self-energizing force embraces the body with extension and expansion and control, it is pranayama. It may affect the milieu at the bronchioles and the alveoli particularly at the alveolo-capillary membrane to facilitate diffusion and transport of gases. It may also increase oxygenation at tissue level. Aim of our study is to compare pulmonary functions and diffusion capacity in patients of bronchial asthma before and after yogic intervention of 2 months. Sixty stable asthmatic-patients were randomized into two groups i.e group 1 (Yoga training group) and group 2 (control group). Each group included thirty patients. Lung functions were recorded on all patients at baseline, and then after two months. Group 1 subjects showed a statistically significant improvement (P<0.001) in Transfer factor of the lung for carbon monoxide (TLCO), forced vital capacity (FVC), forced expiratory volume in 1st sec (FEV1), peak expiratory flow rate (PEFR), maximum voluntary ventilation (MVV) and slow vital capacity (SVC) after yoga practice. Quality of life also increased significantly. It was concluded that pranayama & yoga breathing and stretching postures are used to increase respiratory stamina, relax the chest muscles, expand the lungs, raise energy levels, and calm the body.

  6. Cardiorespiratory interactions during resistive load breathing.

    PubMed

    Calabrese, P; Perrault, H; Dinh, T P; Eberhard, A; Benchetrit, G

    2000-12-01

    The addition to the respiratory system of a resistive load results in breathing pattern changes and in negative intrathoracic pressure increases. The aim of this study was to use resistive load breathing as a stimulus to the cardiorespiratory interaction and to examine the extent of the changes in heart rate variability (HRV) and respiratory sinus arrhythmia (RSA) in relation to the breathing pattern changes. HRV and RSA were studied in seven healthy subjects where four resistive loads were applied in a random order during the breath and 8-min recording made in each condition. The HRV spectral power components were computed from the R-R interval sequences, and the RSA amplitude and phase were computed from the sinusoid fitting the instantaneous heart rate within each breath. Adding resistive loads resulted in 1) increasing respiratory period, 2) unchanging heart rate, and 3) increasing HRV and changing RSA characteristics. HRV and RSA characteristics are linearly correlated to the respiratory period. These modifications appear to be linked to load-induced changes in the respiratory period in each individual, because HRV and RSA characteristics are similar at a respiratory period obtained either by loading or by imposed frequency breathing. The present results are discussed with regard to the importance of the breathing cycle duration in these cardiorespiratory interactions, suggesting that these interactions may depend on the time necessary for activation and dissipation of neurotransmitters involved in RSA.

  7. The effects of breathing a helium-oxygen gas mixture on maximal pulmonary ventilation and maximal oxygen consumption during exercise in acute moderate hypobaric hypoxia.

    PubMed

    Ogawa, Takeshi; Calbet, Jose A L; Honda, Yasushi; Fujii, Naoto; Nishiyasu, Takeshi

    2010-11-01

    To test the hypothesis that maximal exercise pulmonary ventilation (VE max) is a limiting factor affecting maximal oxygen uptake (VO2 max) in moderate hypobaric hypoxia (H), we examined the effect of breathing a helium-oxygen gas mixture (He-O(2); 20.9% O(2)), which would reduce air density and would be expected to increase VE max. Fourteen healthy young male subjects performed incremental treadmill running tests to exhaustion in normobaric normoxia (N; sea level) and in H (atmospheric pressure equivalent to 2,500 m above sea level). These exercise tests were carried out under three conditions [H with He-O(2), H with normal air and N] in random order. VO2 max and arterial oxy-hemoglobin saturation (SaO(2)) were, respectively, 15.2, 7.5 and 4.0% higher (all p < 0.05) with He-O(2) than with normal air (VE max, 171.9 ± 16.1 vs. 150.1 ± 16.9 L/min; VO2 max, 52.50 ± 9.13 vs. 48.72 ± 5.35 mL/kg/min; arterial oxyhemoglobin saturation (SaO(2)), 79 ± 3 vs. 76 ± 3%). There was a linear relationship between the increment in VE max and the increment in VO2 max in H (r = 0.77; p < 0.05). When subjects were divided into two groups based on their VO2 max, both groups showed increased VE max and SaO(2) in H with He-O(2), but VO2 max was increased only in the high VO2 max group. These findings suggest that in acute moderate hypobaric hypoxia, air-flow resistance can be a limiting factor affecting VE max; consequently, VO2 max is limited in part by VE max especially in subjects with high VO2 max.

  8. 21 CFR 862.3050 - Breath-alcohol test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breath-alcohol test system. 862.3050 Section 862....3050 Breath-alcohol test system. (a) Identification. A breath-alcohol test system is a device intened to measure alcohol in the human breath. Measurements obtained by this device are used in the...

  9. 21 CFR 862.3050 - Breath-alcohol test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Breath-alcohol test system. 862.3050 Section 862....3050 Breath-alcohol test system. (a) Identification. A breath-alcohol test system is a device intened to measure alcohol in the human breath. Measurements obtained by this device are used in the...

  10. Metabolic and hormonal changes during aerobic exercise in distance runners.

    PubMed

    Fernández-Pastor, V J; Ruiz, M; Diego-Acosta, A M; Avila, C; García, J C; Pérez, F; Guirado, F; Noguer, N

    1999-03-01

    A group of long-distance runners is studied in order to clarify aspects concerning neuroendocrine mechanisms regulating organic adaptation to maximum effort, with special interest in the function of the growth hormone in fat metabolism and the possible use of ketone bodies as an alternative source of energy. A test is designed on a treadmill with a gradient of 3% and progressive increases in speed of 2 Km/h every 10 min, starting at 6 Km/h, and continuing until exhaustion. Masks are worn to enable the breath by breath measurement of expired gases and the subjects are monitored electrocardiographically using V5. For blood sample collection an antecubital vein is catheterized with a system enabling the replacement of the blood volume extracted by means of perfusion with physiological saline solution, and the increasing concentration of hormones in the blood is evaluated. The results obtained, indicate that epinephrine as well as GH hormones increase significatively from 20 min of exercise in runners promoting changes from carbohydrates to lipids as fuels to carry out exercise. The concomitant variations in energy substrates support the former hypothesis of work. Moreover, the muscle could employ acetylCoA originating from acetoacetate as an alternative metabolic source of fuel during maximum effort.

  11. Physiological and perceptual responses to incremental exercise testing in healthy men: effect of exercise test modality.

    PubMed

    Muscat, Kristina M; Kotrach, Houssam G; Wilkinson-Maitland, Courtney A; Schaeffer, Michele R; Mendonca, Cassandra T; Jensen, Dennis

    2015-11-01

    In a randomized cross-over study of 15 healthy men aged 20-30 years, we compared physiological and perceptual responses during treadmill and cycle exercise test protocols matched for increments in work rate - the source of increased locomotor muscle metabolic and contractile demands. The rates of O2 consumption and CO2 production were higher at the peak of treadmill versus cycle testing (p ≤ 0.05). Nevertheless, work rate, minute ventilation, tidal volume (VT), breathing frequency (fR), inspiratory capacity (IC), inspiratory reserve volume (IRV), tidal esophageal (Pes,tidal) and transdiaphragmatic pressure swings (Pdi,tidal), peak expiratory gastric pressures (Pga,peak), the root mean square of the diaphragm electromyogram (EMGdi,rms) expressed as a percentage of maximum EMGdi,rms (EMGdi,rms%max), and dyspnea ratings were similar at the peak of treadmill versus cycle testing (p > 0.05). Ratings of leg discomfort were higher at the peak of cycle versus treadmill exercise (p ≤ 0.05), even though peak O2 consumption was lower during cycling. Oxygen consumption, CO2 production, minute ventilation, fR, Pes,tidal, Pdi,tidal and Pga,peak were higher (p ≤ 0.05), while VT, IC, IRV, EMGdi,rms%max, and ratings of dyspnea and leg discomfort were similar (p > 0.05) at all or most submaximal work rates during treadmill versus cycle exercise. Our findings highlight important differences (and similarities) in physiological and perceptual responses at maximal and submaximal work rates during incremental treadmill and cycle exercise testing protocols. The lack of effect of exercise test modality on peak work rate advocates for the use of this readily available parameter to optimize training intensity determination, regardless of exercise training mode.

  12. Breathing simulator of workers for respirator performance test

    PubMed Central

    YUASA, Hisashi; KUMITA, Mikio; HONDA, Takeshi; KIMURA, Kazushi; NOZAKI, Kosuke; EMI, Hitoshi; OTANI, Yoshio

    2014-01-01

    Breathing machines are widely used to evaluate respirator performance but they are capable of generating only limited air flow patterns, such as, sine, triangular and square waves. In order to evaluate the respirator performance in practical use, it is desirable to test the respirator using the actual breathing patterns of wearers. However, it has been a difficult task for a breathing machine to generate such complicated flow patterns, since the human respiratory volume changes depending on the human activities and workload. In this study, we have developed an electromechanical breathing simulator and a respiration sampling device to record and reproduce worker’s respiration. It is capable of generating various flow patterns by inputting breathing pattern signals recorded by a computer, as well as the fixed air flow patterns. The device is equipped with a self-control program to compensate the difference in inhalation and exhalation volume and the measurement errors on the breathing flow rate. The system was successfully applied to record the breathing patterns of workers engaging in welding and reproduced the breathing patterns. PMID:25382381

  13. Breathing simulator of workers for respirator performance test.

    PubMed

    Yuasa, Hisashi; Kumita, Mikio; Honda, Takeshi; Kimura, Kazushi; Nozaki, Kosuke; Emi, Hitoshi; Otani, Yoshio

    2015-01-01

    Breathing machines are widely used to evaluate respirator performance but they are capable of generating only limited air flow patterns, such as, sine, triangular and square waves. In order to evaluate the respirator performance in practical use, it is desirable to test the respirator using the actual breathing patterns of wearers. However, it has been a difficult task for a breathing machine to generate such complicated flow patterns, since the human respiratory volume changes depending on the human activities and workload. In this study, we have developed an electromechanical breathing simulator and a respiration sampling device to record and reproduce worker's respiration. It is capable of generating various flow patterns by inputting breathing pattern signals recorded by a computer, as well as the fixed air flow patterns. The device is equipped with a self-control program to compensate the difference in inhalation and exhalation volume and the measurement errors on the breathing flow rate. The system was successfully applied to record the breathing patterns of workers engaging in welding and reproduced the breathing patterns.

  14. Influence of breathing resistance of heat and moisture exchangers on tracheal climate and breathing pattern in laryngectomized individuals.

    PubMed

    Scheenstra, Renske J; Muller, Sara H; Vincent, Andrew; Sinaasappel, Michiel; Hilgers, Frans J M

    2010-08-01

    The aim of this study was to determine the influence of breathing resistance of heat and moisture exchangers (HMEs) on endotracheal climate and breathing pattern. Endotracheal temperature and humidity and tidal volumes were measured in 11 laryngectomized patients with a regularly used HME with "standard" breathing resistance (Provox Normal HME; R-HME), a low breathing-resistance HME (Provox HiFlow HME; L-HME), and without HME. Both R-HME and L-HME increased end-inspiratory humidity (+5.8 and 4.7 mgH(2)O/L, respectively), decreased end-inspiratory temperature (-1.6 and -1.0 degrees C, respectively), and prolonged the exhalation breath length to approximately 0.5 seconds. The R-HME significantly enlarged tidal volumes (0.07 L; p < .05). Both HMEs significantly improve tracheal climate. The R-HME has better moistening properties and a small but significant positive effect on tidal volume. Therefore, if the higher resistance is tolerated, the R-HME is the preferred pulmonary rehabilitation device. The L-HME is indicated if lower breathing resistance is required. 2009 Wiley Periodicals, Inc. Head Neck, 2010.

  15. A Gaussian method to improve work-of-breathing calculations.

    PubMed

    Petrini, M F; Evans, J N; Wall, M A; Norman, J R

    1995-01-01

    The work of breathing is a calculated index of pulmonary function in ventilated patients that may be useful in deciding when to wean and when to extubate. However, the accuracy of the calculated work of breathing of the patient (WOBp) can suffer from artifacts introduced by coughing, swallowing, and other non-breathing maneuvers. The WOBp in this case will include not only the usual work of inspiration, but also the work of performing these non-breathing maneuvers. The authors developed a method to objectively eliminate the calculated work of these movements from the work of breathing, based on fitting to a Gaussian curve the variable P, which is obtained from the difference between the esophageal pressure change and the airway pressure change during each breath. In spontaneously breathing adults the normal breaths fit the Gaussian curve, while breaths that contain non-breathing maneuvers do not. In this Gaussian breath-elimination method (GM), breaths that are two standard deviations from that mean obtained by the fit are eliminated. For normally breathing control adult subjects, GM had little effect on WOBp, reducing it from 0.49 to 0.47 J/L (n = 8), while there was a 40% reduction in the coefficient of variation. Non-breathing maneuvers were simulated by coughing, which increased WOBp to 0.88 (n = 6); with the GM correction, WOBp was 0.50 J/L, a value not significantly different from that of normal breathing. Occlusion also increased WOBp to 0.60 J/L, but GM-corrected WOBp was 0.51 J/L, a normal value. As predicted, doubling the respiratory rate did not change the WOBp before or after the GM correction.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Breathing SPACE-a practical approach to the breathless patient.

    PubMed

    Hopkinson, Nicholas S; Baxter, Noel

    2017-01-30

    Breathlessness is a common symptom that may have multiple causes in any one individual and causes that may change over time. Breathlessness campaigns encourage people to see their General Practitioner if they are unduly breathless. Members of the London Respiratory Network collaborated to develop a tool that would encourage a holistic approach to breathlessness, which was applicable both at the time of diagnosis and during ongoing management. This has led to the development of the aide memoire "Breathing SPACE", which encompasses five key themes-smoking, pulmonary disease, anxiety/psychosocial factors, cardiac disease, and exercise/fitness. A particular concern was to ensure that high-value interventions (smoking cessation and exercise interventions) are prioritised across the life-course and throughout the course of disease management. The approach is relevant both to well people and in those with an underling diagnosis or diagnoses. The inclusion of anxiety draws attention to the importance of mental health issues. Parity of esteem requires the physical health problems of people with mental illness to be addressed. The SPACE mnemonic also addresses the problem of underdiagnosis of heart disease in people with lung disease and vice versa, as well as the systematic undertreatment of these conditions where they do co-occur.

  17. High-intensity Interval Training in Different Exercise Modes: Lessons from Time to Exhaustion.

    PubMed

    Sousa, Ana Catarina; Fernandes, Ricardo J; Boas, Joao Paulo Vilas; Figueiredo, Pedro

    2018-06-20

    To provide information for high-intensity interval training (HIIT) load, we compared the temporal variables of VO 2 response at, and after, a time sustained at the exercise intensity corresponding to VO 2max (Tlim) in different exercise modes. Forty-five trained male swimmers (11), rowers (13), runners (10) and cyclists (11) completed an incremental protocol to determine the velocity (vVO 2max ) or power (wVO 2max ) at VO 2max and a square wave exercise from rest to 100% of vVO 2max /wVO 2max . The temporal variables of VO 2 response were examined using a breath-by-breath gas analyzer. VO 2 responses were not different between exercise modes, except for the percentage of VO 2max at 50% of Tlim, which was ~6% higher in rowing compared to cycling (97.70±2.90 vs 92.40±5.69%, p =0.013). During the recovery period, both swimmers and rowers evidenced higher percentages of VO 2max compared to cyclists at 30 s (65.1±10.4 and 65.7±5.6 vs 52.7±5.6%) and 60 s (41.7±10.8 and 38.4±5.4 vs 30.4±1.8%) time periods, all for p< 0.01. Furthermore, swimmers presented higher time values to reach 50% VO 2max compared to runners and cyclists (51.1±15.6 vs 38.1±6.7 and 33.8±4.7%; p <0.001). When training at 100% of VO 2max intensity, fixed intervals for HIIT could be set freely. However, recovery periods based on time or intensity are exercise-mode dependent. © Georg Thieme Verlag KG Stuttgart · New York.

  18. 46 CFR 154.1852 - Air breathing equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Air breathing equipment. 154.1852 Section 154.1852... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1852 Air breathing equipment. (a) The master shall ensure that a licensed officer inspects the compressed air breathing...

  19. 46 CFR 154.1852 - Air breathing equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Air breathing equipment. 154.1852 Section 154.1852... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1852 Air breathing equipment. (a) The master shall ensure that a licensed officer inspects the compressed air breathing...

  20. 46 CFR 154.1852 - Air breathing equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Air breathing equipment. 154.1852 Section 154.1852... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1852 Air breathing equipment. (a) The master shall ensure that a licensed officer inspects the compressed air breathing...

  1. 46 CFR 154.1852 - Air breathing equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Air breathing equipment. 154.1852 Section 154.1852... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1852 Air breathing equipment. (a) The master shall ensure that a licensed officer inspects the compressed air breathing...

  2. 21 CFR 868.5240 - Anesthesia breathing circuit.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Anesthesia breathing circuit. 868.5240 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5240 Anesthesia breathing circuit. (a) Identification. An anesthesia breathing circuit is a device that is intended to administer medical gases to a...

  3. 21 CFR 868.5240 - Anesthesia breathing circuit.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Anesthesia breathing circuit. 868.5240 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5240 Anesthesia breathing circuit. (a) Identification. An anesthesia breathing circuit is a device that is intended to administer medical gases to a...

  4. 21 CFR 868.2375 - Breathing frequency monitor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breathing frequency monitor. 868.2375 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2375 Breathing frequency monitor. (a) Identification. A breathing (ventilatory) frequency monitor is a device intended to measure or monitor a patient...

  5. 21 CFR 868.5240 - Anesthesia breathing circuit.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Anesthesia breathing circuit. 868.5240 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5240 Anesthesia breathing circuit. (a) Identification. An anesthesia breathing circuit is a device that is intended to administer medical gases to a...

  6. Exercise program design considerations for head and neck cancer survivors.

    PubMed

    Midgley, Adrian W; Lowe, Derek; Levy, Andrew R; Mepani, Vishal; Rogers, Simon N

    2018-01-01

    The present study aimed to establish exercise preferences, barriers, and perceived benefits among head and neck cancer survivors, as well as their level of interest in participating in an exercise program. Patients treated for primary squamous cell carcinoma of the head and neck between 2010 and 2014 were identified from the hospital database and sent a postal questionnaire pack to establish exercise preferences, barriers, perceived benefits, current physical activity levels, and quality of life. A postal reminder was sent to non-responders 4 weeks later. The survey comprised 1021 eligible patients of which 437 (43%) responded [74% male, median (interquartile range) age, 66 (60-73) years]. Of the respondents, 30% said 'Yes' they would be interested in participating in an exercise program and 34% said 'Maybe'. The most common exercise preferences were a frequency of three times per week, moderate-intensity, and 15-29 min per bout. The most popular exercise types were walking (68%), flexibility exercises (35%), water activites/swimming (33%), cycling (31%), and weight machines (19%). Home (55%), outdoors (46%) and health club/gym (33%) were the most common preferred choices for where to regularly exercise. Percieved exercise benefits relating to improved physical attributes were commonly cited, whereas potential social and work-related benefits were less well-acknowledged. The most commonly cited exercise barriers were dry mouth or throat (40%), fatigue (37%), shortness of breath (30%), muscle weakness (28%) difficulty swallowing (25%), and shoulder weakness and pain (24%). The present findings inform the design of exercise programs for head and neck cancer survivors.

  7. ABA-Cloud: support for collaborative breath research

    PubMed Central

    Elsayed, Ibrahim; Ludescher, Thomas; King, Julian; Ager, Clemens; Trosin, Michael; Senocak, Uygar; Brezany, Peter; Feilhauer, Thomas; Amann, Anton

    2016-01-01

    This paper introduces the advanced breath analysis (ABA) platform, an innovative scientific research platform for the entire breath research domain. Within the ABA project, we are investigating novel data management concepts and semantic web technologies to document breath analysis studies for the long run as well as to enable their full automatic reproducibility. We propose several concept taxonomies (a hierarchical order of terms from a glossary of terms), which can be seen as a first step toward the definition of conceptualized terms commonly used by the international community of breath researchers. They build the basis for the development of an ontology (a concept from computer science used for communication between machines and/or humans and representation and reuse of knowledge) dedicated to breath research. PMID:23619467

  8. ABA-Cloud: support for collaborative breath research.

    PubMed

    Elsayed, Ibrahim; Ludescher, Thomas; King, Julian; Ager, Clemens; Trosin, Michael; Senocak, Uygar; Brezany, Peter; Feilhauer, Thomas; Amann, Anton

    2013-06-01

    This paper introduces the advanced breath analysis (ABA) platform, an innovative scientific research platform for the entire breath research domain. Within the ABA project, we are investigating novel data management concepts and semantic web technologies to document breath analysis studies for the long run as well as to enable their full automatic reproducibility. We propose several concept taxonomies (a hierarchical order of terms from a glossary of terms), which can be seen as a first step toward the definition of conceptualized terms commonly used by the international community of breath researchers. They build the basis for the development of an ontology (a concept from computer science used for communication between machines and/or humans and representation and reuse of knowledge) dedicated to breath research.

  9. Breath condensate levels of 8-isoprostane and leukotriene B4 after ozone inhalation are greater in sensitive versus nonsensitive subjects.

    PubMed

    Alfaro, Mario F; Walby, William F; Adams, William C; Schelegle, Edward S

    2007-01-01

    Ozone (O3) inhalation induces pulmonary function decrements and inflammation. The present study was designed to determine if a relationship exists between O3 induced pulmonary function changes and the presence of inflammatory markers as measured in exhaled breath condensates (EBCs) obtained from O3-sensitive and nonsensitive human subjects. Eight healthy adult volunteers (4 males/4 females, age 18 to 30 years) were studied, characterized as to their ozone sensitivity and placed into 2 groups (sensitive and nonsensitive) with each group having 2 males and 2 females. Subjects completed a 20-minute EBC collection and pulmonary function test (PFT) prior to a single 60-minute bout of cycle ergometer exercise (V(E) = 50-55 L/min) while breathing filtered air (FA) or 0.35 ppm O3. Subjective symptom scores (SSSs) were collected at 6, 20, 40, and 60 minutes during exposure. An immediate postexposure PFT was performed followed by an EBC collection. Subjective symptom scores, EBCs, and PFTs were collected at 1, 4 and 8 hours post exposure. EBCs were analyzed for prostaglandin E2 (PGE2), leukotriene B4 (LTB4), 8-isoprostane, and total nitric oxide (NO) metabolites (nitrate + nitrite content). Sensitive subjects, breathing O3, had significantly greater functional decrements in PFTs, increased SSSs, and increased rapid shallow breathing as well as elevated levels of 8-isoprostane and LTB4 in EBCs compared to those breathing FA. In addition, there were significant increases in nitrate + nitrite content in both sensitive and nonsensitive subjects breathing O3 compared to FA. These results indicate that sensitive subjects have elevated arachidonic acid metabolites in EBCs compared to nonsensitive subjects after O3 inhalation.

  10. Optimal ventilatory patterns in periodic breathing.

    PubMed

    Ghazanshahi, S D; Khoo, M C

    1993-01-01

    The goal of this study was to determine whether periodic breathing (PB), which is highly prevalent during sleep at high altitudes, imposes physiological penalties on the respiratory system in the absence of any accompanying disease. Using a computer model of respiratory gas exchange, we compared the effects of a variety of PB patterns on the chemical and mechanical costs of breathing to those resulting from regular tidal breathing. Although PB produced considerable fluctuation in arterial blood gas tensions, for the same cycle-averaged ventilation, higher arterial oxygen saturation and lower arterial carbon dioxide levels were achieved. This result can be explained by the fact that the combination of large breaths and apnea in PB leads to a substantial reduction in dead space ventilation. At the same time, the savings in mechanical cost achieved by the respiratory muscles during apnea partially offset the increase during the breathing phase. Consequently, the "pressure cost," a criterion based on mean inspiratory pressure, was elevated only slightly, although the average work rate of breathing increased significantly. We found that, at extreme altitudes, PB patterns with clusters of 2 to 4 large breaths that alternate with apnea produce the highest arterial oxygenation levels and lowest pressure costs. The common occurrence of PB patterns with closely similar features has been reported in sleeping healthy sojourners at extreme altitudes. Taken together, these findings suggest that PB favors a reduction in the oxygen demands of the respiratory muscles and therefore may not be as detrimental as it is generally believed to be.

  11. Breath analysis in disease diagnosis: methodological considerations and applications.

    PubMed

    Lourenço, Célia; Turner, Claire

    2014-06-20

    Breath analysis is a promising field with great potential for non-invasive diagnosis of a number of disease states. Analysis of the concentrations of volatile organic compounds (VOCs) in breath with an acceptable accuracy are assessed by means of using analytical techniques with high sensitivity, accuracy, precision, low response time, and low detection limit, which are desirable characteristics for the detection of VOCs in human breath. "Breath fingerprinting", indicative of a specific clinical status, relies on the use of multivariate statistics methods with powerful in-built algorithms. The need for standardisation of sample collection and analysis is the main issue concerning breath analysis, blocking the introduction of breath tests into clinical practice. This review describes recent scientific developments in basic research and clinical applications, namely issues concerning sampling and biochemistry, highlighting the diagnostic potential of breath analysis for disease diagnosis. Several considerations that need to be taken into account in breath analysis are documented here, including the growing need for metabolomics to deal with breath profiles.

  12. Hyperinflation and intrinsic positive end-expiratory pressure: less room to breathe.

    PubMed

    Krieger, Bruce P

    2009-01-01

    Clinically, the symptoms and limited exercise capabilities of patients with chronic obstructive pulmonary disease (COPD) correlate better with changes in lung volumes than with airflow measurements. The realization of the clinical importance of hyperinflation has been overshadowed for decades by the use of forced expiratory volume during 1 s (FEV(1)) and the ratio of the FEV(1) to the forced expiratory vital capacity (FEV(1)/FVC) to categorize the severity and progression of COPD. Hyperinflation is defined as an elevation in the end-expiratory lung volume or functional residual capacity. When severe hyperinflation encroaches upon inspiratory capacity and limits vital capacity, it results in elevated intrinsic positive end-expiratory pressure (PEEPi) that places the diaphragm at a mechanical disadvantage and increases the work of breathing. Severe hyperinflation is the major physiologic cause of the resulting hypercarbic respiratory failure and patients' inability to transition (i.e. wean) from mechanical ventilatory support to spontaneous breathing. This paper reviews the basic physiologic principles of hyperinflation and its clinical manifestations as demonstrated by PEEPi. Also reviewed are the adverse effects of hyperinflation and PEEPi in critically ill patients with COPD, and methods for minimizing or counterbalancing these effects. Copyright 2009 S. Karger AG, Basel.

  13. 21 CFR 868.2375 - Breathing frequency monitor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Breathing frequency monitor. 868.2375 Section 868.2375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2375 Breathing frequency monitor. (a) Identification. A breathing (ventilatory)...

  14. 46 CFR 197.340 - Breathing gas supply.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Breathing gas supply. 197.340 Section 197.340 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.340 Breathing gas supply. (a) A primary breathing gas supply for surface-supplied diving must be sufficient to support the following for the...

  15. 46 CFR 197.340 - Breathing gas supply.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Breathing gas supply. 197.340 Section 197.340 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.340 Breathing gas supply. (a) A primary breathing gas supply for surface-supplied diving must be sufficient to support the following for the...

  16. 46 CFR 197.340 - Breathing gas supply.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Breathing gas supply. 197.340 Section 197.340 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.340 Breathing gas supply. (a) A primary breathing gas supply for surface-supplied diving must be sufficient to support the following for the...

  17. 46 CFR 197.340 - Breathing gas supply.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Breathing gas supply. 197.340 Section 197.340 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.340 Breathing gas supply. (a) A primary breathing gas supply for surface-supplied diving must be sufficient to support the following for the...

  18. Bad Breath

    MedlinePlus

    ... cabbage. And of course smoking causes its own bad smell. Some diseases and medicines can cause a specific breath odor. Having good dental habits, like brushing and flossing regularly, help fight bad ...

  19. Deletion polymorphisms in the angiotensin converting enzyme gene are associated with pulmonary hypertension evoked by exercise challenge in patients with chronic obstructive pulmonary disease.

    PubMed

    Kanazawa, H; Okamoto, T; Hirata, K; Yoshikawa, J

    2000-10-01

    Angiotensin converting enzyme (ACE) plays an important role in the pathogenesis of pulmonary hypertension. In this study we determined whether the deletion (D)/insertion (I) polymorphism in the ACE gene may be associated with pulmonary hypertension evoked by exercise challenge in patients with chronic obstructive pulmonary disease (COPD). ACE genotypes were determined in 19 patients with COPD. All patients underwent right heart catheterization followed by a constant-load exercise test while breathing room air or oxygen. Subgroups were created of seven patients with the II genotype, six with the ID genotype, and six with the DD genotype who were well-matched with respect to age, blood gas data at rest or after exercise, baseline lung function, results of incremental exercise testing, and hemodynamic data at rest. The mean pulmonary arterial pressure (Ppa) and pulmonary vascular resistance (Rpv) at rest in the three subgrpoups did not differ significantly during breathing of either room air or oxygen. However, the Ppa after exercise challenge in patients with the DD genotype (55.7 +/- 4.9 mm Hg [mean +/- SD]) was significantly higher than in patients with the II genotype (42.6 +/- 7.1 mm Hg, p = 0.008). The Rpv after exercise in patients with the DD genotype was also significantly higher than in patients with the ID and II genotypes. During breathing of oxygen to diminish acute hypoxic pulmonary vasoconstriction, the Ppa in patients with the DD genotype (52.3 +/- 3.1 mm Hg) was higher than in patients with the ID genotype (40.5 +/- 5.9 mm Hg, p = 0.0049) or the II genotype (37.7 +/- 5.9 mm Hg, p = 0.0027). In addition, the Rpv in patients with the DD genotype was higher than in patients with the ID and II genotypes. These results suggest that D-I polymorphism in the ACE gene may be associated with pulmonary hypertension evoked by exercise challenge in patients with COPD. However, the number of patients in this study was very small for a genetic association study, and

  20. Oxygen Uptake Efficiency Slope and Breathing Reserve, Not Anaerobic Threshold, Discriminate Between Patients With Cardiovascular Disease Over Chronic Obstructive Pulmonary Disease.

    PubMed

    Barron, Anthony; Francis, Darrel P; Mayet, Jamil; Ewert, Ralf; Obst, Anne; Mason, Mark; Elkin, Sarah; Hughes, Alun D; Wensel, Roland

    2016-04-01

    The study sought to compare the relative discrimination of various cardiopulmonary exercise testing (CPX) variables between cardiac and respiratory disease. CPX testing is used in many cardiorespiratory diseases. However, discrimination of cardiac and respiratory dysfunction can be problematic. Anaerobic threshold (AT) and oxygen-uptake to work-rate relationship (VO2/WR slope) have been proposed as diagnostic of cardiac dysfunction, but multiple variables have not been compared. A total of 73 patients with chronic obstructive pulmonary disease (COPD) (n = 25), heart failure with reduced ejection fraction (HFrEF) (n = 40), or combined COPD and HFrEF (n = 8) were recruited and underwent CPX testing on a bicycle ergometer. Following a familiarization test, each patient underwent a personalized second test aiming for maximal exercise after ∼10 min. Measurements from this test were used to calculate area under the receiver-operator characteristic curve (AUC). Peak VO2 was similar between the 2 principal groups (COPD 17.1 ± 4.6 ml/min/kg; HFrEF 16.4 ± 3.6 ml/min/kg). Breathing reserve (AUC: 0.91) and percent predicted oxygen uptake efficiency slope (OUES) (AUC: 0.87) had the greatest ability to discriminate between COPD and HFrEF. VO2/WR slope performed significantly worse (AUC: 0.68). VO2 at the AT did not discriminate (AUC for AT as percent predicted peak VO2: 0.56). OUES and breathing reserve remained strong discriminators when compared with an external cohort of healthy matched controls, and were comparable to B-type natriuretic peptide. Breathing reserve and OUES discriminate heart failure from COPD. Despite it being considered an important determinant of cardiac dysfunction, the AT could not discriminate these typical clinical populations while the VO2/WR slope showed poor to moderate discriminant ability. (Identifying an Ideal Cardiopulmonary Exercise Test Parameter [PVA]; NCT01162083). Copyright © 2016 American College of Cardiology Foundation. Published by

  1. Empowering: the experiences of exercise among heart transplantation patients in Taiwan.

    PubMed

    Jeng, Chii; Chu, Fu-Ling; Tsao, Lee-Ing

    2002-12-01

    To explore the experiences of exercise among Taiwanese heart transplant patients on the basis of a grounded theory. Although studies conducted around the world have proven how important exercise is to heart transplant patients, little information was found about heart transplant patients' exercise experience. In addition, because of different cultural backgrounds, people in Taiwan do not care about 'regular exercise' as much as Americans and Europeans do. Therefore, it is very important to find ways so that they can value 'regular exercise.' In-depth interviews were undertaken with a purposive sample of eight heart transplant patients. Data was analysed by repeated verification. Eight valid cases were separately and thoroughly interviewed while they were exercising at a sports medical centre. The results revealed that 'empowering the new heart' is the core reason for their exercise. During the exercise training process, every participant felt that his or her new heart was filled with power or energy. The 'hardness and endurance' in terms of feeling discomfort in the body was identified at the beginning of post-surgical exercise training. Throughout the process of empowerment, patients experienced the following five interactive behaviour categories: 'self-protection', 'sharing', 'being watched and cared for', 'being aware of the benefits', and 'strengthening the new heart'. Exercise can empower the new heart. After the exercise training, all patients felt that their new hearts were empowered with energy and vigour, and thus were willing to continue exercising. They even expanded their regimen to include folk therapies such as Tai Chi and breathing exercises.

  2. Use of 'ideal' alveolar air equations and corrected end-tidal PCO2 to estimate arterial PCO2 and physiological dead space during exercise in patients with heart failure.

    PubMed

    Van Iterson, Erik H; Olson, Thomas P

    2018-01-01

    Arterial CO 2 tension (PaCO 2 ) and physiological dead space (V D ) are not routinely measured during clinical cardiopulmonary exercise testing (CPET). Abnormal changes in PaCO 2 accompanied by increased V D directly contribute to impaired exercise ventilatory function in heart failure (HF). Because arterial catheterization is not standard practice during CPET, this study tested the construct validity of PaCO 2 and V D prediction models using 'ideal' alveolar air equations and basic ventilation and gas-exchangegas exchange measurements during CPET in HF. Forty-seven NYHA class II/III HF (LVEF=21±7%; age=55±9years; male=89%; BMI=28±5kg/m 2 ) performed step-wise cycle ergometry CPET to volitional fatigue. Breath-by-breath ventilation and gas exchange were measured continuously. Steady-state PaCO 2 was measured at rest and peak exercise via radial arterial catheterization. Criterion V D was calculated via 'ideal' alveolar equations, whereas PaCO 2 or V D models were based on end-tidal CO 2 tension (P ET CO 2 ), tidal volume (V T ), and/or weight. Criterion measurements of PaCO 2 (38±5 vs. 33±5mmHg, P<0.01) and V D (0.26±0.07 vs. 0.41±0.15L, P<0.01) differed at rest vs. peak exercise, respectively. The equation, 5.5+0.90×P ET CO 2 -0.0021×V T , was the strongest predictor of PaCO 2 at rest and peak exercise (bias±95%LOA=-3.24±6.63 and -0.98±5.76mmHg; R 2 =0.57 and 0.75, P<0.001, respectively). This equation closely predicted V D at rest and peak exercise (bias±95%LOA=-0.03±0.06 and -0.02±0.13L; R 2 =0.86 and 0.83, P<0.001, respectively). These data suggest predicted PaCO 2 and V D based on breath-by-breath gas exchange and ventilatory responses demonstrate acceptable agreement with criterion measurements at peak exercise in HF patients. Routine assessment of PaCO 2 and V D can be used to improve interpretability of exercise ventilatory responses in HF. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  3. Functional Analysis and Intervention for Breath Holding.

    ERIC Educational Resources Information Center

    Kern, Lee; And Others

    1995-01-01

    A functional analysis of breath-holding episodes in a 7-year-old girl with severe mental retardation and Cornelia-de-Lange syndrome indicated that breath holding served an operant function, primarily to gain access to attention. Use of extinction, scheduled attention, and a picture card communication system decreased breath holding. (Author/SW)

  4. The effect of mouth breathing on chewing efficiency.

    PubMed

    Nagaiwa, Miho; Gunjigake, Kaori; Yamaguchi, Kazunori

    2016-03-01

    To examine the effect of mouth breathing on chewing efficiency by evaluating masticatory variables. Ten adult nasal breathers with normal occlusion and no temporomandibular dysfunction were selected. Subjects were instructed to bite the chewing gum on the habitual side. While breathing through the mouth and nose, the glucide elution from the chewing gum, number of chewing strokes, duration of chewing, and electromyography (EMG) activity of the masseter muscle were evaluated as variables of masticatory efficiency. The durations required for the chewing of 30, 60, 90, 120, 180, and 250 strokes were significantly (P < .05) longer while breathing through the mouth. There was no significant difference in the glucide elution rate (%) for each chewing stroke between nose and mouth breathings. The glucide elution rates for 1- and 3-minute chewing were significantly (P < .05) lower while breathing through the mouth. However, there was no significant difference in the glucide elution rate for 5-minute chewing between nose and mouth breathings. While chewing for 1, 3, and 5 minutes, the chewing stroke and EMG activity of the masseter muscle were significantly (P < .05) lower during mouth breathing. It takes a longer amount of time to complete chewing to obtain higher masticatory efficiency when breathing through the mouth. Therefore, mouth breathing will decrease the masticatory efficiency if the duration of chewing is restricted in everyday life.

  5. Breath odor

    MedlinePlus

    ... drain their stomach. The breath may have an ammonia-like odor (also described as urine-like or " ... Is there a specific odor (such as fish, ammonia, fruit, feces, or alcohol)? Have you recently eaten ...

  6. Breath sounds

    MedlinePlus

    The lung sounds are best heard with a stethoscope. This is called auscultation. Normal lung sounds occur ... the bottom of the rib cage. Using a stethoscope, the doctor may hear normal breathing sounds, decreased ...

  7. Bad Breath

    MedlinePlus

    ... a lot, you may need to visit your dentist or doctor . What Causes Bad Breath? Here are ... particles wedged between your teeth. Also, visit your dentist twice a year for regular checkups and cleanings. ...

  8. Real-time 3D visualization of the thoraco-abdominal surface during breathing with body movement and deformation extraction.

    PubMed

    Povšič, K; Jezeršek, M; Možina, J

    2015-07-01

    Real-time 3D visualization of the breathing displacements can be a useful diagnostic tool in order to immediately observe the most active regions on the thoraco-abdominal surface. The developed method is capable of separating non-relevant torso movement and deformations from the deformations that are solely related to breathing. This makes it possible to visualize only the breathing displacements. The system is based on the structured laser triangulation principle, with simultaneous spatial and color data acquisition of the thoraco-abdominal region. Based on the tracking of the attached passive markers, the torso movement and deformation is compensated using rigid and non-rigid transformation models on the three-dimensional (3D) data. The total time of 3D data processing together with visualization equals 20 ms per cycle.In vitro verification of the rigid movement extraction was performed using the iterative closest point algorithm as a reference. Furthermore, a volumetric evaluation on a live subject was performed to establish the accuracy of the rigid and non-rigid model. The root mean square deviation between the measured and the reference volumes shows an error of  ±0.08 dm(3) for rigid movement extraction. Similarly, the error was calculated to be  ±0.02 dm(3) for torsional deformation extraction and  ±0.11 dm(3) for lateral bending deformation extraction. The results confirm that during the torso movement and deformation, the proposed method is sufficiently accurate to visualize only the displacements related to breathing. The method can be used, for example, during the breathing exercise on an indoor bicycle or a treadmill.

  9. Effect of physical therapy management of nonspecific low back pain with exercise addiction behaviors: A case series.

    PubMed

    Anandkumar, Sudarshan; Manivasagam, Murugavel; Kee, Vivian Tie Suk; Meyding-Lamade, Uta

    2018-04-01

    This case series describes two patients, aged 35 and 45 years, respectively, who presented with chronic nonspecific low back pain (NSLBP) having exercise addiction (EA) behaviors. Diagnosis of EA was based on clinical findings, exercising patterns and withdrawal symptoms along with high scores in the EA inventory. This report is a potential first-time description of the successful physical therapy management of NSLBP associated with EA utilizing pain neuroscience education (with individualized curriculum), mindfulness, breathing, quota-based reduction in exercises and modification of exercises into social participation, pleasure activities and hobbies. Both the patients were seen once a week, for 8 weeks. At discharge, they were pain-free and fully functional, which was maintained at a six-month follow-up.

  10. Exhaled breath analysis for lung cancer

    PubMed Central

    Sutedja, Tom G.; Zimmerman, Paul V.

    2013-01-01

    Early diagnosis of lung cancer results in improved survival compared to diagnosis with more advanced disease. Early disease is not reliably indicated by symptoms. Because investigations such as bronchoscopy and needle biopsy have associated risks and substantial costs, they are not suitable for population screening. Hence new easily applicable tests, which can be used to screen individuals at risk, are required. Biomarker testing in exhaled breath samples is a simple, relatively inexpensive, non-invasive approach. Exhaled breath contains volatile and non-volatile organic compounds produced as end-products of metabolic processes and the composition of such compounds varies between healthy subjects and subjects with lung cancer. Many studies have analysed the patterns of these compounds in exhaled breath. In addition studies have also reported that the exhaled breath condensate (EBC) can reveal gene mutations or DNA abnormalities in patients with lung cancer. This review has summarised the scientific evidence demonstrating that lung cancer has distinct chemical profiles in exhaled breath and characteristic genetic changes in EBC. It is not yet possible to accurately identify individuals with lung cancer in at risk populations by any of these techniques. However, analysis of both volatile organic compounds in exhaled breath and of EBC have great potential to become clinically useful diagnostic and screening tools for early stage lung cancer detection. PMID:24163746

  11. Breath condenser coatings affect measurement of biomarkers in exhaled breath condensate.

    PubMed

    Rosias, P P; Robroeks, C M; Niemarkt, H J; Kester, A D; Vernooy, J H; Suykerbuyk, J; Teunissen, J; Heynens, J; Hendriks, H J; Jöbsis, Q; Dompeling, E

    2006-11-01

    Exhaled breath condensate collection is not yet standardised and biomarker measurements are often close to lower detection limits. In the current study, it was hypothesised that adhesive properties of different condenser coatings interfere with measurements of eicosanoids and proteins in breath condensate. In vitro, condensate was derived from a collection model using two test solutions (8-isoprostane and albumin) and five condenser coatings (silicone, glass, aluminium, polypropylene and Teflon). In vivo, condensate was collected using these five coatings and the EcoScreen condenser to measure 8-isoprostane, and three coatings (silicone, glass, EcoScreen) to measure albumin. In vitro, silicone and glass coatings had significantly higher albumin recovery compared with the other coatings. A similar trend was observed for 8-isoprostane recovery. In vivo, median (interquartile range) 8-isoprostane concentrations were significantly higher using silicone (9.2 (18.8) pg.mL(-1)) or glass (3.0 (4.5) pg.mL(-1)) coating, compared with aluminium (0.5 (2.4) pg.mL(-1)), polypropylene (0.5 (0.5) pg.mL(-1)), Teflon (0.5 (0.0) pg.mL(-1)), and EcoScreen (0.5 (2.0) pg.mL(-1)). Albumin in vivo was mainly detectable using glass coating. In conclusion, a condenser with silicone or glass coating is more efficient for measurement of 8-isoprostane or albumin in exhaled breath condensate, than EcoScreen, aluminium, polypropylene or Teflon. Guidelines for exhaled breath condensate standardisation should include the most valid condenser coating to measure a specific biomarker.

  12. Breath Analysis in Disease Diagnosis: Methodological Considerations and Applications

    PubMed Central

    Lourenço, Célia; Turner, Claire

    2014-01-01

    Breath analysis is a promising field with great potential for non-invasive diagnosis of a number of disease states. Analysis of the concentrations of volatile organic compounds (VOCs) in breath with an acceptable accuracy are assessed by means of using analytical techniques with high sensitivity, accuracy, precision, low response time, and low detection limit, which are desirable characteristics for the detection of VOCs in human breath. “Breath fingerprinting”, indicative of a specific clinical status, relies on the use of multivariate statistics methods with powerful in-built algorithms. The need for standardisation of sample collection and analysis is the main issue concerning breath analysis, blocking the introduction of breath tests into clinical practice. This review describes recent scientific developments in basic research and clinical applications, namely issues concerning sampling and biochemistry, highlighting the diagnostic potential of breath analysis for disease diagnosis. Several considerations that need to be taken into account in breath analysis are documented here, including the growing need for metabolomics to deal with breath profiles. PMID:24957037

  13. Breathing difficulty

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003075.htm Breathing difficulty To use the sharing features on this page, ... Duplication for commercial use must be authorized in writing by ADAM Health Solutions. About MedlinePlus Site Map ...

  14. 42 CFR 84.88 - Breathing bag test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Apparatus § 84.88 Breathing bag test. (a) Breathing bags will be tested in an air atmosphere saturated with... Institute upon request. (d) The air within the bag(s) shall not contain more than 100 parts per million of... 42 Public Health 1 2014-10-01 2014-10-01 false Breathing bag test. 84.88 Section 84.88 Public...

  15. Transcriptomic Analysis of Compromise Between Air-Breathing and Nutrient Uptake of Posterior Intestine in Loach (Misgurnus anguillicaudatus), an Air-Breathing Fish.

    PubMed

    Huang, Songqian; Cao, Xiaojuan; Tian, Xianchang

    2016-08-01

    Dojo loach (Misgurnus anguillicaudatus) is an air-breathing fish species by using its posterior intestine to breathe on water surface. So far, the molecular mechanism about accessory air-breathing in fish is seldom addressed. Five cDNA libraries were constructed here for loach posterior intestines form T01 (the initial stage group), T02 (mid-stage of normal group), T03 (end stage of normal group), T04 (mid-stage of air-breathing inhibited group), and T05 (the end stage of air-breathing inhibited group) and subjected to perform RNA-seq to compare their transcriptomic profilings. A total of 92,962 unigenes were assembled, while 37,905 (40.77 %) unigenes were successfully annotated. 2298, 1091, and 3275 differentially expressed genes (fn1, ACE, EGFR, Pxdn, SDF, HIF, VEGF, SLC2A1, SLC5A8 etc.) were observed in T04/T02, T05/T03, and T05/T04, respectively. Expression levels of many genes associated with air-breathing and nutrient uptake varied significantly between normal and intestinal air-breathing inhibited group. Intraepithelial capillaries in posterior intestines of loaches from T05 were broken, while red blood cells were enriched at the surface of intestinal epithelial lining with 241 ± 39 cells per millimeter. There were periodic acid-schiff (PAS)-positive epithelial mucous cells in posterior intestines from both normal and air-breathing inhibited groups. Results obtained here suggested an overlap of air-breathing and nutrient uptake function of posterior intestine in loach. Intestinal air-breathing inhibition in loach would influence the posterior intestine's nutrient uptake ability and endothelial capillary structure stability. This study will contribute to our understanding on the molecular regulatory mechanisms of intestinal air-breathing in loach.

  16. 42 CFR 84.70 - Self-contained breathing apparatus; description.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Self-contained breathing apparatus; description. 84...-Contained Breathing Apparatus § 84.70 Self-contained breathing apparatus; description. (a) Self-contained breathing apparatus, including all completely assembled, portable, self-contained devices designed for use...

  17. 42 CFR 84.70 - Self-contained breathing apparatus; description.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Self-contained breathing apparatus; description. 84...-Contained Breathing Apparatus § 84.70 Self-contained breathing apparatus; description. (a) Self-contained breathing apparatus, including all completely assembled, portable, self-contained devices designed for use...

  18. Technologies for Clinical Diagnosis Using Expired Human Breath Analysis

    PubMed Central

    Mathew, Thalakkotur Lazar; Pownraj, Prabhahari; Abdulla, Sukhananazerin; Pullithadathil, Biji

    2015-01-01

    This review elucidates the technologies in the field of exhaled breath analysis. Exhaled breath gas analysis offers an inexpensive, noninvasive and rapid method for detecting a large number of compounds under various conditions for health and disease states. There are various techniques to analyze some exhaled breath gases, including spectrometry, gas chromatography and spectroscopy. This review places emphasis on some of the critical biomarkers present in exhaled human breath, and its related effects. Additionally, various medical monitoring techniques used for breath analysis have been discussed. It also includes the current scenario of breath analysis with nanotechnology-oriented techniques. PMID:26854142

  19. Breathing Difficulties

    MedlinePlus

    ... frequently during the night (insomnia) Difficulty lying flat ALS and your lungs Breathing in and out is ... improve effective coughing. Techniques are explained in The ALS Association’s Living with ALS manual #6 “Adapting to ...

  20. Off-line breath acetone analysis in critical illness.

    PubMed

    Sturney, S C; Storer, M K; Shaw, G M; Shaw, D E; Epton, M J

    2013-09-01

    Analysis of breath acetone could be useful in the Intensive Care Unit (ICU) setting to monitor evidence of starvation and metabolic stress. The aims of this study were to examine the relationship between acetone concentrations in breath and blood in critical illness, to explore any changes in breath acetone concentration over time and correlate these with clinical features. Consecutive patients, ventilated on controlled modes in a mixed ICU, with stress hyperglycaemia requiring insulin therapy and/or new pulmonary infiltrates on chest radiograph were recruited. Once daily, triplicate end-tidal breath samples were collected and analysed off-line by selected ion flow tube mass spectrometry (SIFT-MS). Thirty-two patients were recruited (20 males), median age 61.5 years (range 26-85 years). The median breath acetone concentration of all samples was 853 ppb (range 162-11 375 ppb) collected over a median of 3 days (range 1-8). There was a trend towards a reduction in breath acetone concentration over time. Relationships were seen between breath acetone and arterial acetone (rs = 0.64, p < 0.0001) and arterial beta-hydroxybutyrate (rs = 0.52, p < 0.0001) concentrations. Changes in breath acetone concentration over time corresponded to changes in arterial acetone concentration. Some patients remained ketotic despite insulin therapy and normal arterial glucose concentrations. This is the first study to look at breath acetone concentration in ICU patients for up to 8 days. Breath acetone concentration may be used as a surrogate for arterial acetone concentration, which may in future have a role in the modulation of insulin and feeding in critical illness.

  1. Yogic exercises and health--a psycho-neuro immunological approach.

    PubMed

    Kulkarni, D D; Bera, T K

    2009-01-01

    Relaxation potential of yogic exercises seems to play a vital role in establishing psycho-physical health in reversing the psycho-immunology of emotions under stress based on breath and body awareness. However, mechanism of yogic exercises for restoring health and fitness components operating through psycho-neuro-immunological pathways is unknown. Therefore, a hybrid model of human information processing-psycho-neuroendocrine (HIP-PNE) network has been proposed to reveal the importance of yogic information processing. This study focuses on two major pathways of information processing involving cortical and hypothalamo-pituitary-adrenal axis (HPA) interactions with a deep reach molecular action on cellular, neuro-humoral and immune system in reversing stress mediated diseases. Further, the proposed HIP-PNE model has ample of experimental potential for objective evaluation of yogic view of health and fitness.

  2. Sleep-disordered Breathing in Cardiac Rehabilitation: Prevalence, Predictors, and Influence on the Six-Minute Walk Test.

    PubMed

    Loo, Germaine; Chua, Ai-Ping; Tay, Hung-Yong; Poh, Ruth; Tai, Bee-Choo; Lee, Chi-Hang

    2016-06-01

    Identification of non-traditional risk factors is an important component of cardiac rehabilitation (CR). However, the prevalence and predictors of sleep-disordered breathing (SDB) and its influence on exercise performance in patients attending CR remain poorly described. Patients enrolled in a national CR centre were eligible for a comprehensive SDB screening program. Screening questionnaires for SDB, overnight sleep study, and the 6-minute walk test (6MWT) were conducted. We recruited 332 patients (mean age 62±10 years, 62.4% male) attending CR for primary (29.2%) or secondary (70.8%) prevention, of which 209 successfully completed the overnight sleep study. Sleep-disordered breathing group patients (n=68, 32.5%) were older and had a higher body mass index (BMI) and neck and waist circumferences than the non-SDB group patients. After adjusting for neck and waist circumference, age (OR=1.06; 95% CI 1.02-1.10; p=0.001) and BMI (OR=1.19; 95% CI 1.10-1.30; p<0.001) remained independent predictors of SDB. A high risk of SDB based on the Berlin Questionnaire (43.4% versus 35.5%, p=0.277) or STOP-BANG questionnaire (63.2% versus 53.2%, p=0.170) and excessive daytime sleepiness (Epworth Sleepiness Scale >10, 23.9% versus 17.7%, p=0.297) were similar between the groups. The 6MWT scores were significantly lower in the SDB than non-SDB group (mean difference -32 m; 95% CI -57-7; p=0.013). The relationship was no longer significant after adjusting for age, sex, and waist circumference. Sleep-disordered breathing is prevalent in CR patients and is independently predicted by ageing and obesity. The association between SDB and poorer exercise performance may be explained by age, sex, and waist circumference. Copyright © 2015 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  3. Dynamic model inversion techniques for breath-by-breath measurement of carbon dioxide from low bandwidth sensors.

    PubMed

    Sivaramakrishnan, Shyam; Rajamani, Rajesh; Johnson, Bruce D

    2009-01-01

    Respiratory CO(2) measurement (capnography) is an important diagnosis tool that lacks inexpensive and wearable sensors. This paper develops techniques to enable use of inexpensive but slow CO(2) sensors for breath-by-breath tracking of CO(2) concentration. This is achieved by mathematically modeling the dynamic response and using model-inversion techniques to predict input CO(2) concentration from the slow-varying output. Experiments are designed to identify model-dynamics and extract relevant model-parameters for a solidstate room monitoring CO(2) sensor. A second-order model that accounts for flow through the sensor's filter and casing is found to be accurate in describing the sensor's slow response. The resulting estimate is compared with a standard-of-care respiratory CO(2) analyzer and shown to effectively track variation in breath-by-breath CO(2) concentration. This methodology is potentially useful for measuring fast-varying inputs to any slow sensor.

  4. Oxygen Uptake Efficiency Slope and Breathing Reserve, Not Anaerobic Threshold, Discriminate Between Patients With Cardiovascular Disease Over Chronic Obstructive Pulmonary Disease

    PubMed Central

    Barron, Anthony; Francis, Darrel P.; Mayet, Jamil; Ewert, Ralf; Obst, Anne; Mason, Mark; Elkin, Sarah; Hughes, Alun D.; Wensel, Roland

    2016-01-01

    Objectives The study sought to compare the relative discrimination of various cardiopulmonary exercise testing (CPX) variables between cardiac and respiratory disease. Background CPX testing is used in many cardiorespiratory diseases. However, discrimination of cardiac and respiratory dysfunction can be problematic. Anaerobic threshold (AT) and oxygen-uptake to work-rate relationship (VO2/WR slope) have been proposed as diagnostic of cardiac dysfunction, but multiple variables have not been compared. Methods A total of 73 patients with chronic obstructive pulmonary disease (COPD) (n = 25), heart failure with reduced ejection fraction (HFrEF) (n = 40), or combined COPD and HFrEF (n = 8) were recruited and underwent CPX testing on a bicycle ergometer. Following a familiarization test, each patient underwent a personalized second test aiming for maximal exercise after ∼10 min. Measurements from this test were used to calculate area under the receiver-operator characteristic curve (AUC). Results Peak VO2 was similar between the 2 principal groups (COPD 17.1 ± 4.6 ml/min/kg; HFrEF 16.4 ± 3.6 ml/min/kg). Breathing reserve (AUC: 0.91) and percent predicted oxygen uptake efficiency slope (OUES) (AUC: 0.87) had the greatest ability to discriminate between COPD and HFrEF. VO2/WR slope performed significantly worse (AUC: 0.68). VO2 at the AT did not discriminate (AUC for AT as percent predicted peak VO2: 0.56). OUES and breathing reserve remained strong discriminators when compared with an external cohort of healthy matched controls, and were comparable to B-type natriuretic peptide. Conclusions Breathing reserve and OUES discriminate heart failure from COPD. Despite it being considered an important determinant of cardiac dysfunction, the AT could not discriminate these typical clinical populations while the VO2/WR slope showed poor to moderate discriminant ability. (Identifying an Ideal Cardiopulmonary Exercise Test Parameter [PVA]; NCT01162083) PMID:26874378

  5. Bad Breath

    MedlinePlus

    ... for lunch. But certain strong-smelling foods like onions and garlic can cause bad breath. So can ... leave behind strong smells, like cabbage, garlic, raw onions, and coffee. If you’re trying to lose ...

  6. Evaluation of carbon dioxide rebreathing during exercise assisted by noninvasive ventilation with plateau exhalation valve

    PubMed Central

    Ou, Yong-er; Lin, Zhi-min; Hua, Dong-ming; Jiang, Ying; Huo, Ya-ting; Luo, Qun; Chen, Rong-Chang

    2017-01-01

    Noninvasive ventilation with a plateau exhalation valve (PEV) is often used as an adjunct to exercise to achieve a physiologic training effect in severe chronic obstructive pulmonary disease (COPD) patients. However, during exercise, with the increase of exhalation flow and respiratory rate and limited capability of PEV to exhale gases out of the circuit, it is still unknown whether CO2 rebreathing occurs in COPD patients ventilated during exercise assisted by single-limb circuit with a PEV. A maximal symptom-limited cycle exercise test was performed while ventilated on pressure support (inspiratory:expiratory pressure 14:4 cmH2O) in 18 male patients with stable severe COPD (mean ± standard deviation, forced expiratory volume in 1 s: 29.5%±6.9% predicted). At rest and during exercise, breathing pattern, mean expiratory flow, mean expiratory flow of PEV, and the mean inspiratory fraction of CO2 (tidal fractional concentration of inspired CO2 [FiCO2]) reinsufflated from the circuit was measured for each breath. In comparison with rest, with the significant increase of mean expiratory flow (0.39±0.15 vs 0.82±0.27 L/s), fractional concentration of end-tidal CO2 (2.6%±0.7% vs 5.5%±0.6%), and the significant decrease of mean expiratory flow of PEV (0.41±0.02 vs 0.39±0.03 L/s), tidal FiCO2 significantly increased at peak exercise (0.48%±0.19% vs 1.8%±0.6%) in patients with stable severe COPD. The inflection point of obvious CO2 rebreathing was 0.67±0.09 L/s (95% confidence interval 0.60–0.73 L/s). Ventilated by a single-limb tubing with PEV caused CO2 rebreathing to COPD patients during exercise. Patients with mean expiratory flow >0.60–0.73 L/s may be predisposed to a higher risk of CO2 rebreathing. PMID:28144134

  7. Dynamics of chest wall volume regulation during constant work rate exercise in patients with chronic obstructive pulmonary disease

    PubMed Central

    Takara, L.S.; Cunha, T.M.; Barbosa, P.; Rodrigues, M.K.; Oliveira, M.F.; Nery, L.E.; Neder, J.A.

    2012-01-01

    This study evaluated the dynamic behavior of total and compartmental chest wall volumes [(VCW) = rib cage (VRC) + abdomen (VAB)] as measured breath-by-breath by optoelectronic plethysmography during constant-load exercise in patients with stable chronic obstructive pulmonary disease. Thirty males (GOLD stages II-III) underwent a cardiopulmonary exercise test to the limit of tolerance (Tlim) at 75% of peak work rate on an electronically braked cycle ergometer. Exercise-induced dynamic hyperinflation was considered to be present when end-expiratory (EE) VCW increased in relation to resting values. There was a noticeable heterogeneity in the patterns of VCW regulation as EEVCW increased non-linearly in 17/30 “hyperinflators” and decreased in 13/30 “non-hyperinflators” (P < 0.05). EEVAB decreased slightly in 8 of the “hyperinflators”, thereby reducing and slowing the rate of increase in end-inspiratory (EI) VCW (P < 0.05). In contrast, decreases in EEVCW in the “non-hyperinflators” were due to the combination of stable EEVRC with marked reductions in EEVAB. These patients showed lower EIVCW and end-exercise dyspnea scores but longer Tlim than their counterparts (P < 0.05). Dyspnea increased and Tlim decreased non-linearly with a faster rate of increase in EIVCW regardless of the presence or absence of dynamic hyperinflation (P < 0.001). However, no significant between-group differences were observed in metabolic, pulmonary gas exchange and cardiovascular responses to exercise. Chest wall volumes are continuously regulated during exercise in order to postpone (or even avoid) their migration to higher operating volumes in patients with COPD, a dynamic process that is strongly dependent on the behavior of the abdominal compartment. PMID:23250012

  8. Exhaled breath temperature in children: reproducibility and influencing factors.

    PubMed

    Vermeulen, S; Barreto, M; La Penna, F; Prete, A; Martella, S; Biagiarelli, F; Villa, M P

    2014-09-01

    This study will investigate the reproducibility and influencing factors of exhaled breath temperature measured with the tidal breathing technique in asthmatic patients and healthy children. Exhaled breath temperature, fractional exhaled nitric oxide, and spirometry were assessed in 124 children (63 healthy and 61 asthmatic), aged 11.2 ± 2.5 year, M/F 73/51. A modified version of the American Thoracic Society questionnaire on the child's present and past respiratory history was obtained from parents. Parents were also asked to provide detailed information on their child's medication use during the previous 4 weeks. Ear temperature, ambient temperature, and relative-ambient humidity were also recorded. Exhaled breath temperature measurements were highly reproducible; the second measurement was higher than the first measurement, consistent with a test-retest situation. In 13 subjects, between-session within-day reproducibility of exhaled breath temperature was still high. Exhaled breath temperature increased with age and relative-ambient humidity. Exhaled breath temperature was comparable in healthy and asthmatic children; when adjusted for potential confounders (i.e. ambient conditions and subject characteristics), thermal values of asthmatic patients exceeded those of the healthy children by 1.1 °C. Normalized exhaled breath temperature, by subtracting ambient temperature, was lower in asthmatic patients treated with inhaled corticosteroids than in those who were corticosteroid-naive. Measurements of exhaled breath temperature are highly reproducible, yet influenced by several factors. Corrected values, i.e. normalized exhaled breath temperature, could help us to assess the effect of therapy with inhaled corticosteroids. More studies are needed to improve the usefulness of the exhaled breath temperature measured with the tidal breathing technique in children.

  9. Clinical applications of breath testing

    PubMed Central

    Paschke, Kelly M; Mashir, Alquam

    2010-01-01

    Breath testing has the potential to benefit the medical field as a cost-effective, non-invasive diagnostic tool for diseases of the lung and beyond. With growing evidence of clinical worth, standardization of methods, and new sensor and detection technologies the stage is set for breath testing to gain considerable attention and wider application in upcoming years. PMID:21173863

  10. Upper airway sleep-disordered breathing in women.

    PubMed

    Guilleminault, C; Stoohs, R; Kim, Y D; Chervin, R; Black, J; Clerk, A

    1995-04-01

    To investigate the various clinical presentations of sleep-disordered breathing in women. A retrospective case-control study. A sleep disorders clinic. 334 women, aged 18 years and older, seen between 1988 and 1993, who were diagnosed with upper airway sleep-disordered breathing. Controls were 60 women with insomnia and 100 men with sleep-disordered breathing. Clinical, anatomic, and polygraphic information. The mean lag time (+/- SD) in women between the appearance of symptoms and a positive diagnosis was 9.7 +/- 3.1 years; among participants 30 to 60 years of age, the duration of untreated symptoms differed (P < 0.001) between women and men. Sleep-disordered breathing was blamed for divorce or social isolation by 40% of the case patients. Abnormal maxillomandibular features were noted in 45% of the women with disordered breathing. Dysmenorrhea and amenorrhea (which disappeared after treatment with nasal continuous positive airway pressure) were reported in 43% of premenopausal women compared with 13% of persons in the control group of women with insomnia. Thirty-eight women (11.4%) with upper airway sleep-disordered breathing had a respiratory disturbance index of less than 5 and were significantly younger, had a smaller neck circumference, and had a lower body mass index than women with a respiratory disturbance index of 5 or more. Physicians should revise their understanding of upper airway sleep-disordered breathing so that they notice women with certain craniofacial features, a low body mass index, a small neck circumference, and a respiratory disturbance index of less than 5. These revisions may enable more rapid diagnosis and treatment of women with sleep-disordered breathing.

  11. Breath stacking in children with neuromuscular disorders.

    PubMed

    Jenkins, H M; Stocki, A; Kriellaars, D; Pasterkamp, H

    2014-06-01

    Respiratory muscle weakness in neuromuscular disorders (NMD) can lead to shallow breathing and respiratory insufficiency over time. Children with NMD often cannot perform maneuvers to recruit lung volume. In adults, breath stacking with a mask and one-way valve can achieve significantly increased lung volumes. To evaluate involuntary breath stacking (IBS) in NMD, we studied 23 children of whom 15 were cognitively aware and able to communicate verbally. For IBS, a one-way valve and pneumotachograph were attached to a face mask. Tidal volumes (Vt) and minute ventilation (VE ) were calculated from airflow over 30 sec before and after 15 sec of expiratory valve closure. Six cooperative male subjects with Duchenne muscular dystrophy (DMD) participated in a subsequent comparison of IBS with voluntary breath stacking (VBS) and supported breath stacking (SBS). The average Vt in those studied with IBS was 277 ml (range 29-598 ml). The average increase in volume by stacking was 599 ml (range -140 to 2,916 ml) above Vt . The average number of stacked breaths was 4.5 (range 0-17). VE increased on average by 18% after stacking (P < 0.05, paired t-test). Oxygen saturation did not change after stacking. Four of the 23 children did not breath stack. Compared to IBS, VBS achieved similar volumes in the six subjects with DMD but SBS was more successful in those with greatest muscle weakness. IBS may achieve breath volumes of approximately three times Vt and may be particularly useful in non-cooperative subjects with milder degrees of respiratory muscle weakness. © 2013 Wiley Periodicals, Inc.

  12. 46 CFR 78.47-27 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Markings for Fire and Emergency Equipment, Etc. § 78.47-27 Self-contained breathing apparatus. Lockers or spaces containing self-contained breathing apparatus shall be marked “SELF-CONTAINED BREATHING APPARATUS... 46 Shipping 3 2010-10-01 2010-10-01 false Self-contained breathing apparatus. 78.47-27 Section 78...

  13. 46 CFR 78.47-27 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Markings for Fire and Emergency Equipment, Etc. § 78.47-27 Self-contained breathing apparatus. Lockers or spaces containing self-contained breathing apparatus shall be marked “SELF-CONTAINED BREATHING APPARATUS... 46 Shipping 3 2011-10-01 2011-10-01 false Self-contained breathing apparatus. 78.47-27 Section 78...

  14. Benefits of pulmonary rehabilitation in patients with COPD and normal exercise capacity.

    PubMed

    Lan, Chou-Chin; Chu, Wen-Hua; Yang, Mei-Chen; Lee, Chih-Hsin; Wu, Yao-Kuang; Wu, Chin-Pyng

    2013-09-01

    Pulmonary rehabilitation (PR) is beneficial for patients with COPD, with improvement in exercise capacity and health-related quality of life. Despite these overall benefits, the responses to PR vary significantly among different individuals. It is not clear if PR is beneficial for patients with COPD and normal exercise capacity. We aimed to investigate the effects of PR in patients with normal exercise capacity on health-related quality of life and exercise capacity. Twenty-six subjects with COPD and normal exercise capacity were studied. All subjects participated in 12-week, 2 sessions per week, hospital-based, out-patient PR. Baseline and post-PR status were evaluated by spirometry, the St George's Respiratory Questionnaire, cardiopulmonary exercise test, respiratory muscle strength, and dyspnea scores. The mean FEV1 in the subjects was 1.29 ± 0.47 L/min, 64.8 ± 23.0% of predicted. After PR there was significant improvement in maximal oxygen uptake and work rate. Improvements in St George's Respiratory Questionnaire scores of total, symptoms, activity, and impact were accompanied by improvements of exercise capacity, respiratory muscle strength, maximum oxygen pulse, and exertional dyspnea scores (all P < .05). There were no significant changes in pulmonary function test results (FEV1, FVC, and FEV1/FVC), minute ventilation, breathing frequency, or tidal volume at rest or exercise after PR. Exercise training can result in significant improvement in health-related quality of life, exercise capacity, respiratory muscle strength, and exertional dyspnea in subjects with COPD and normal exercise capacity. Exercise training is still indicated for patients with normal exercise capacity.

  15. Breathing and Singing: Objective Characterization of Breathing Patterns in Classical Singers

    PubMed Central

    Salomoni, Sauro; van den Hoorn, Wolbert; Hodges, Paul

    2016-01-01

    Singing involves distinct respiratory kinematics (i.e. movements of rib cage and abdomen) to quiet breathing because of different demands on the respiratory system. Professional classical singers often advocate for the advantages of an active control of the abdomen on singing performance. This is presumed to prevent shortening of the diaphragm, elevate the rib cage, and thus promote efficient generation of subglottal pressure during phonation. However, few studies have investigated these patterns quantitatively and inter-subject variability has hindered the identification of stereotypical patterns of respiratory kinematics. Here, seven professional classical singers and four untrained individuals were assessed during quiet breathing, and when singing both a standard song and a piece of choice. Several parameters were extracted from respiratory kinematics and airflow, and principal component analysis was used to identify typical patterns of respiratory kinematics. No group differences were observed during quiet breathing. During singing, both groups adapted to rhythmical constraints with decreased time of inspiration and increased peak airflow. In contrast to untrained individuals, classical singers used greater percentage of abdominal contribution to lung volume during singing and greater asynchrony between movements of rib cage and abdomen. Classical singers substantially altered the coordination of rib cage and abdomen during singing from that used for quiet breathing. Despite variations between participants, principal component analysis revealed consistent pre-phonatory inward movements of the abdominal wall during singing. This contrasted with untrained individuals, who demonstrated synchronous respiratory movements during all tasks. The inward abdominal movements observed in classical singers elevates intra-abdominal pressure and may increase the length and the pressure-generating capacity of rib cage expiratory muscles for potential improvements in voice

  16. Breathing and Singing: Objective Characterization of Breathing Patterns in Classical Singers.

    PubMed

    Salomoni, Sauro; van den Hoorn, Wolbert; Hodges, Paul

    2016-01-01

    Singing involves distinct respiratory kinematics (i.e. movements of rib cage and abdomen) to quiet breathing because of different demands on the respiratory system. Professional classical singers often advocate for the advantages of an active control of the abdomen on singing performance. This is presumed to prevent shortening of the diaphragm, elevate the rib cage, and thus promote efficient generation of subglottal pressure during phonation. However, few studies have investigated these patterns quantitatively and inter-subject variability has hindered the identification of stereotypical patterns of respiratory kinematics. Here, seven professional classical singers and four untrained individuals were assessed during quiet breathing, and when singing both a standard song and a piece of choice. Several parameters were extracted from respiratory kinematics and airflow, and principal component analysis was used to identify typical patterns of respiratory kinematics. No group differences were observed during quiet breathing. During singing, both groups adapted to rhythmical constraints with decreased time of inspiration and increased peak airflow. In contrast to untrained individuals, classical singers used greater percentage of abdominal contribution to lung volume during singing and greater asynchrony between movements of rib cage and abdomen. Classical singers substantially altered the coordination of rib cage and abdomen during singing from that used for quiet breathing. Despite variations between participants, principal component analysis revealed consistent pre-phonatory inward movements of the abdominal wall during singing. This contrasted with untrained individuals, who demonstrated synchronous respiratory movements during all tasks. The inward abdominal movements observed in classical singers elevates intra-abdominal pressure and may increase the length and the pressure-generating capacity of rib cage expiratory muscles for potential improvements in voice

  17. Yoga and sexual functioning: a review.

    PubMed

    Brotto, Lori A; Mehak, Lisa; Kit, Cassandra

    2009-01-01

    Yoga is an ancient practice with Eastern roots that involves both physical postures (asanas) and breathing techniques (pranayamas). There is also a cognitive component focusing on meditation and concentration, which aids in achieving the goal of union between the self and the spiritual. Although numerous empirical studies have found a beneficial effect of yoga on different aspects of physical and psychological functioning, claims of yoga's beneficial effects on sexuality derive from a rich but nonempirical literature. The goal of this article is to review the philosophy and forms of yoga, to review the nonempirical and (limited) empirical literatures linking yoga with enhanced sexuality, and to propose some future research avenues focusinging on yoga as a treatment for sexual complaints.

  18. 75 FR 61386 - Emergency Escape Breathing Apparatus Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-05

    ...-0044, Notice No. 1] RIN 2130-AC14 Emergency Escape Breathing Apparatus Standards AGENCY: Federal... breathing apparatus (EEBA) to the members of the train crew and certain other employees while they are... EEBA--emergency escape breathing apparatus FRA--Federal Railroad Administration FRSA--the former...

  19. Noninvasive detection of lung cancer using exhaled breath

    PubMed Central

    Fu, Xiao-An; Li, Mingxiao; Knipp, Ralph J; Nantz, Michael H; Bousamra, Michael

    2014-01-01

    Early detection of lung cancer is a key factor for increasing the survival rates of lung cancer patients. The analysis of exhaled breath is promising as a noninvasive diagnostic tool for diagnosis of lung cancer. We demonstrate the quantitative analysis of carbonyl volatile organic compounds (VOCs) and identification of lung cancer VOC markers in exhaled breath using unique silicon microreactor technology. The microreactor consists of thousands of micropillars coated with an ammonium aminooxy salt for capture of carbonyl VOCs in exhaled breath by means of oximation reactions. Captured aminooxy-VOC adducts are analyzed by nanoelectrospray Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometry (MS). The concentrations of 2-butanone, 2-hydroxyacetaldehyde, 3-hydroxy-2-butanone, and 4-hydroxyhexenal (4-HHE) in the exhaled breath of lung cancer patients (n = 97) were significantly higher than in the exhaled breath of healthy smoker and nonsmoker controls (n = 88) and patients with benign pulmonary nodules (n = 32). The concentration of 2-butanone in exhaled breath of patients (n = 51) with stages II though IV non–small cell lung cancer (NSCLC) was significantly higher than in exhaled breath of patients with stage I (n = 34). The carbonyl VOC profile in exhaled breath determined using this new silicon microreactor technology provides for the noninvasive detection of lung cancer. PMID:24402867

  20. Defining the neurocircuitry of exercise hyperpnoea

    PubMed Central

    Paterson, David J

    2014-01-01

    One hundred years ago in this journal, Krogh and Lindhard published a seminal paper highlighting the importance of the brain in the control of breathing during exercise. This symposium report reviews the historical developments that have taken place since 1913, and attempts to place the detailed neurocircuitry thought to underpin exercise hyperpnoea into context by focusing on key structures that might form the command network. With the advent of enhanced neuroimaging and functional neurosurgical techniques, a unique window of opportunity has recently arisen to target potential circuits in humans. Animal studies have identified a priori sites of interest in mid-brain structures, in particular the subthalamic locomotor region (subthalamic nucleus, STN) and the periaqueductal grey (PAG), which have now been recorded from in humans during exercise. When all data are viewed in an integrative manner, the PAG, in particular the lateral PAG, and aspects of the dorsal lateral PAG, appear to be key communicating circuitry for ‘central command’. Moreover, the PAG also fulfils many requirements of a command centre. It has functional connectivity to higher centres (dorsal lateral prefrontal cortex) and the basal ganglia (in particular, the STN), and receives a sensory input from contracting muscle, but, importantly, it sends efferent information to brainstem nuclei involved in cardiorespiratory control. PMID:23918772

  1. Patient's breath controls comfort devices

    NASA Technical Reports Server (NTRS)

    Schrader, M.; Carpenter, B.; Nichols, C. D.

    1972-01-01

    Patient assist system for totally disabled persons was developed which permits a person, so paralyzed as to be unable to move, to activate by breathing, a call system to summon assistance, turn the page of a book, ajust his bed, or do any one of a number of other things. System consists of patient assist control and breath actuated switch.

  2. 46 CFR 108.635 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... DESIGN AND EQUIPMENT Equipment Markings and Instructions § 108.635 Self-contained breathing apparatus. Each locker or space containing self-contained breathing apparatus must be marked: “SELF CONTAINED... 46 Shipping 4 2011-10-01 2011-10-01 false Self-contained breathing apparatus. 108.635 Section 108...

  3. 46 CFR 108.635 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... DESIGN AND EQUIPMENT Equipment Markings and Instructions § 108.635 Self-contained breathing apparatus. Each locker or space containing self-contained breathing apparatus must be marked: “SELF CONTAINED... 46 Shipping 4 2010-10-01 2010-10-01 false Self-contained breathing apparatus. 108.635 Section 108...

  4. Breathing Monitor Using Dye-Doped Optical Fiber

    NASA Astrophysics Data System (ADS)

    Muto, Shinzo; Fukasawa, Akihiko; Ogawa, Takayuki; Morisawa, Masayuki; Ito, Hiroshi

    1990-08-01

    A new monitoring system of human breathing using umbelliferon dye-doped plastic fiber has been studied. Under UV light pumping, the fiber which was used as a sensor head generates blue fluorescence depending on human expiration. By converting the light signal to electronic pulses, the counting of breathing and real-time monitoring of abnormal breathing such as a heavy cough or a cloggy sputum have easily been obtained.

  5. Leukotriene-B4 concentrations in exhaled breath condensate and lung function after thirty minutes of breathing technically dried compressed air.

    PubMed

    Neubauer, Birger; Struck, Niclas; Mutzbauer, Till S; Schotte, Ulrich; Langfeldt, Norbert; Tetzlaff, Kay

    2002-01-01

    In previous studies it had been shown that leukotriene-B4 [LTB4] concentrations in the exhaled breath mirror the inflammatory activity of the airways if the respiratory tract has been exposed to occupational hazards. In diving the respiratory tract is exposed to cold and dry air and the nasopharynx, as the site of breathing-gas warming and humidification, is bypassed. The aim of the present study was to obtain LTB4-concentrations in the exhaled breath and spirometric data of 17 healthy subjects before and after thirty minutes of technically dried air breathing at normobar ambient pressure. The exhaled breath was collected non-invasively, via a permanently cooled expiration tube. The condensate was measured by a standard enzyme immunoassay for LTB4. Lung function values (FVC, FEV1, MEF 25, MEF 50) were simultaneously obtained by spirometry. The measured pre- and post-exposure LTB4- concentrations as well as the lung function values were in the normal range. The present data gave no evidence for any inflammatory activity in the subjects' airways after thirty minutes breathing technically dried air.

  6. Syllable-related breathing in infants in the second year of life.

    PubMed

    Parham, Douglas F; Buder, Eugene H; Oller, D Kimbrough; Boliek, Carol A

    2011-08-01

    This study explored whether breathing behaviors of infants within the 2nd year of life differ between tidal breathing and breathing supporting single unarticulated syllables and canonical/articulated syllables. Vocalizations and breathing kinematics of 9 infants between 53 and 90 weeks of age were recorded. A strict selection protocol was used to identify analyzable breath cycles. Syllables were categorized on the basis of consensus coding. Inspiratory and expiratory durations, excursions, and slopes were calculated for the 3 breath cycle types and were normalized using mean tidal breath measures. Tidal breathing cycles were significantly different from syllable-related cycles on all breathing measures. There were no significant differences between unarticulated syllable cycles and canonical syllable cycles, even after controlling for utterance duration and sound pressure level. Infants in the 2nd year of life exhibit clear differences between tidal breathing and speech-related breathing, but categorically distinct breath support for syllable types with varying articulatory demands was not evident in the present findings. Speech development introduces increasingly complex utterances, so older infants may produce detectable articulation-related adaptations of breathing kinematics. For younger infants, breath support may vary systematically among utterance types, due more to phonatory variations than to articulatory demands.

  7. Syllable-Related Breathing in Infants in the Second Year of Life

    PubMed Central

    Parham, Douglas F.; Buder, Eugene H.; Oller, D. Kimbrough; Boliek, Carol A.

    2010-01-01

    Purpose This study explored whether breathing behaviors of infants within the second year of life differ between tidal breathing and breathing supporting single unarticulated syllables and canonical/articulated syllables. Method Vocalizations and breathing kinematics of nine infants between 53 and 90 weeks of age were recorded. A strict selection protocol was used to identify analyzable breath cycles. Syllables were categorized based on consensus coding. Inspiratory and expiratory durations, excursions, and slopes were calculated for the three breath cycle types and normalized using mean tidal breath measures. Results Tidal breathing cycles were significantly different from syllable-related cycles on all breathing measures. There were no significant differences between unarticulated syllable cycles and canonical syllable cycles, even after controlling for utterance duration and sound pressure level. Conclusions Infants in the second year of life exhibit clear differences between tidal breathing and speech-related breathing, but categorically distinct breath support for syllable types with varying articulatory demands was not evident in the current findings. Speech development introduces increasingly complex utterances, so older infants may produce detectable articulation-related adaptations of breathing kinematics. For younger infants, breath support may vary systematically among utterance types, due more to phonatory variations than to articulatory demands. PMID:21173390

  8. In Situ Assembly of Well-Dispersed Ag Nanoparticles throughout Electrospun Alginate Nanofibers for Monitoring Human Breath-Smart Fabrics.

    PubMed

    Zhang, Jun; Wang, Xiao-Xiong; Zhang, Bin; Ramakrishna, Seeram; Yu, Miao; Ma, Jian-Wei; Long, Yun-Ze

    2018-05-31

    Alginate nanofibers assembled with silver nanoparticles throughout the whole nanofiber were fabricated by three steps including electrospinning of Na-alginate nanofibers, ion exchange between the sodium and silver ions, and in situ reduction of silver nanoparticles. The content, distribution, and size of the nanoparticles are controllable by tuning reaction conditions. Ag/alginate nanofibers exhibit good humidity sensitivity in a wide humidity range from 20% ambient relative humidity (RH) to 85% RH. Interestingly, these humidity sensors can be attached to a 3M-9001V mask for monitoring human breath during exercise and emotion changes, and this smart mask exhibits accurate and continuous human breath tracking, no matter how fast or slow as well as how deep or shallow is the human breathing. The obtained frequencies of respiration during normal, running, delight, and sadness conditions were 16, 13, 14, and 8 times per minute, respectively. Moreover, the signal waveform obtained under emotion changes is distinguishable, implying its potential applications in lie detection and interrogation. Thanks to this smart mask, it could accurately capture the rate and depth of respiration, providing an effective, low-cost, and convenient approach for tracking respiration, and it was utilized as smart fabrics in avoiding sleep apnea.

  9. Breath isoprene: Muscle dystrophy patients support the concept of a pool of isoprene in the periphery of the human body

    PubMed Central

    King, J.; Mochalski, P.; Unterkofler, K.; Teschl, G.; Klieber, M.; Stein, M.; Amann, A.; Baumann, M.

    2016-01-01

    Breath isoprene accounts for most of the hydrocarbon removal via exhalation and is thought to serve as a non-invasive indicator for assaying several metabolic effects in the human body. The primary objective of this paper is to introduce a novel working hypothesis with respect to the endogenous source of this compound in humans: the idea that muscle tissue acts as an extrahepatic production site of substantial amounts of isoprene. This new perspective has its roots in quantitative modeling studies of breath isoprene dynamics under exercise conditions and is further investigated here by presenting pilot data from a small cohort of late stage Duchenne muscle dystrophy patients (median age 21, 4 male, 1 female). For these prototypic test subjects isoprene concentrations in end-tidal breath and peripheral venous blood range between 0.09–0.47 and 0.11–0.72 nmol/l, respectively, amounting to a reduction by a factor of 8 and more as compared to established nominal levels in normal healthy adults. While it remains unclear whether isoprene can be ascribed a direct physiological mechanism of action, some indications are given as to why isoprene production might have evolved in muscle. PMID:22683640

  10. 46 CFR 169.736 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Self-contained breathing apparatus. 169.736 Section 169... VESSELS Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.736 Self-contained breathing apparatus. Each locker or space containing self-contained breathing apparatus must be marked “SELF-CONTAINED...

  11. 46 CFR 169.736 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Self-contained breathing apparatus. 169.736 Section 169... VESSELS Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.736 Self-contained breathing apparatus. Each locker or space containing self-contained breathing apparatus must be marked “SELF-CONTAINED...

  12. Dirty breathing

    NASA Astrophysics Data System (ADS)

    Wisham, M.

    2017-12-01

    Breathing issues befall most asthmatics. However, the symptoms are not caused randomly. Particulate matter is a cause that has been collected and sampled at several bus stops. The following experiment provides the results of collected particulate matter in several locations around LSU.

  13. Imposed Work of Breathing for Flow Meters with In-Line versus Flow-Through Technique during Simulated Neonatal Breathing.

    PubMed

    Donaldsson, Snorri; Falk, Markus; Jonsson, Baldvin; Drevhammar, Thomas

    2015-01-01

    The ability to determine airflow during nasal CPAP (NCPAP) treatment without adding dead space or resistance would be useful when investigating the physiologic effects of different NCPAP systems on breathing. The aim of this study was to investigate the effect on pressure stability of different flow measuring devices at the in-line and flow-through position, using simulated neonatal breathing. Six different flow measure devices were evaluated by recording pressure changes and imposed work of breathing for breaths with 16 and 32 ml tidal volumes. The tests were performed initially with the devices in an in line position and with 5 and 10 L/min using flow through technique, without CPAP. The flow meters were then subsequently tested with an Infant Flow CPAP system at 3, 5 and 8 cm H2O pressure using flow through technique. The quality of the recorded signals was compared graphically. The resistance of the measuring devices generated pressure swings and imposed work of breathing. With bias flow, the resistance also generated CPAP pressure. Three of the devices had low resistance and generated no changes in pressure stability or CPAP pressure. The two devices intended for neonatal use had the highest measured resistance. The importance of pressure stability and increased work of breathing during non-invasive respiratory support are insufficiently studied. Clinical trials using flow-through technique have not focused on pressure stability. Our results indicate that a flow-through technique might be a way forward in obtaining a sufficiently high signal quality without the added effects of rebreathing and increased work of breathing. The results should stimulate further research and the development of equipment for dynamic flow measurements in neonates.

  14. NASA firefighters breathing system program report

    NASA Technical Reports Server (NTRS)

    Wood, W. B.

    1977-01-01

    Because of the rising incidence of respiratory injury to firefighters, local governments expressed the need for improved breathing apparatus. A review of the NASA firefighters breathing system program, including concept definition, design, development, regulatory agency approval, in-house testing, and program conclusion is presented.

  15. Voluntary control of breathing does not alter vagal modulation of heart rate

    NASA Technical Reports Server (NTRS)

    Patwardhan, A. R.; Evans, J. M.; Bruce, E. N.; Eckberg, D. L.; Knapp, C. F.

    1995-01-01

    Variations in respiratory pattern influence the heart rate spectrum. It has been suggested, hence, that metronomic respiration should be used to correctly assess vagal modulation of heart rate by using spectral analysis. On the other hand, breathing to a metronome has been reported to increase heart rate spectral power in the high- or respiratory frequency region; this finding has led to the suggestion that metronomic respiration enhances vagal tone or alters vagal modulation of heart rate. To investigate whether metronomic breathing complicates the interpretation of heart rate spectra by altering vagal modulation, we recorded the electrocardiogram and respiration from eight volunteers during three breathing trials of 10 min each: 1) spontaneous breathing (mean rate of 14.4 breaths/min); 2) breathing to a metronome at the rate of 15, 18, and 21 breaths/min for 2, 6, and 2 min, respectively; and 3) breathing to a metronome at the rate of 18 breaths/min for 10 min. Data were also collected from eight volunteers who breathed spontaneously for 20 min and breathed metronomically at each subject's mean spontaneous breathing frequency for 20 min. Results from the three 10-min breathing trials showed that heart rate power in the respiratory frequency region was smaller during metronomic breathing than during spontaneous breathing. This decrease could be explained fully by the higher breathing frequencies used during trials 2 and 3 of metronomic breathing. When the subjects breathed metronomically at each subject's mean breathing frequency, the heart rate powers during metronomic breathing were similar to those during spontaneous breathing. Our results suggest that vagal modulation of heart rate is not altered and vagal tone is not enhanced during metronomic breathing.

  16. Timing of the breath analyzer: does it make a difference?

    PubMed

    Cherpitel, C J

    1993-09-01

    The purpose of this article is to examine in an emergency room (ER) population the concordance of self-reports of no alcohol consumption prior to injury with breath-analyzer readings in two groups: (1) those patients from whom reports were obtained after they were breath analyzed compared to (2) patients from whom reports were obtained prior to obtaining the breath-analyzer reading. Data were collected on a probability sample of patients attending three health maintenance organization ERs. Among those sampled were 159 patients admitted for initial treatment of an injury, who were breath analyzed within 6 hours of the event and reported no drinking following the event that lead to injury. Of these, 119 were breath analyzed prior to the interview, and none who reported not drinking were positive on the breath analyzer, while of the 37 breath analyzed after the interview, only one was positive who had reported not drinking. Obtaining the breath-analyzer reading following the interview was not found to affect the rate of refusal to provide a breath-analyzer reading; however, it was found to adversely affect obtaining the breath-analyzer reading for other reasons. The data suggest that the concordance of negative self-reports of consumption with breath-analyzer readings remains high in ER populations regardless of when the breath-analyzer reading is obtained; however, it appears best to obtain the reading prior to interviewing the patient for reasons explained below.

  17. The Effect of Tongue Exercise on Serotonergic Input to the Hypoglossal Nucleus in Young and Old Rats

    ERIC Educational Resources Information Center

    Behan, Mary; Moeser, Adam E.; Thomas, Cathy F.; Russell, John A.; Wang, Hao; Leverson, Glen E.; Connor, Nadine P.

    2012-01-01

    Purpose: Breathing and swallowing problems affect elderly people and may be related to age-associated tongue dysfunction. Hypoglossal motoneurons that innervate the tongue receive a robust, excitatory serotonergic (5HT) input and may be affected by aging. We used a rat model of aging and progressive resistance tongue exercise to determine whether…

  18. 46 CFR 108.703 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... DESIGN AND EQUIPMENT Miscellaneous Equipment § 108.703 Self-contained breathing apparatus. (a) Each unit must be equipped with a self-contained breathing apparatus described in § 108.497(a) to use as... 46 Shipping 4 2011-10-01 2011-10-01 false Self-contained breathing apparatus. 108.703 Section 108...

  19. 46 CFR 108.703 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... DESIGN AND EQUIPMENT Miscellaneous Equipment § 108.703 Self-contained breathing apparatus. (a) Each unit must be equipped with a self-contained breathing apparatus described in § 108.497(a) to use as... 46 Shipping 4 2010-10-01 2010-10-01 false Self-contained breathing apparatus. 108.703 Section 108...

  20. Acute Effects of Cannabis on Breath-Holding Duration

    PubMed Central

    Farris, Samantha G.; Metrik, Jane

    2016-01-01

    Distress intolerance (an individual’s perceived or actual inability to tolerate distressing psychological or physiological states) is associated with cannabis use. It is unknown whether a bio-behavioral index of distress intolerance, breath-holding duration, is acutely influenced (increased or decreased) by cannabis. Such information may further inform understanding of the expression of psychological or physiological distress post-cannabis use. This within-subjects study examined whether smoked marijuana with 2.7–3.0 % delta-9-tetrahydrocannabinol (THC), relative to placebo, acutely changed duration of breath-holding. Participants (n = 88; 65.9% male) were non-treatment seeking frequent cannabis users who smoked placebo or active THC cigarette on two separate study days and completed breath-holding task. Controlling for baseline breath-holding duration and participant sex, THC produced significantly lower breath-holding durations relative to placebo. There was a significant interaction of drug administration x frequency of cannabis use, such that THC decreased breath-holding time among less frequent but not among more frequent users. Findings indicate that cannabis may be exacerbating distress intolerance (via breath-holding duration). As compared to less frequent cannabis users, frequent users display tolerance to cannabis’ acute effects including increased ability to tolerate respiratory distress when holding breath. Objective measures of distress intolerance are sensitive to contextual factors such as acute drug intoxication, and may inform the link between cannabis use and the expression of psychological distress. PMID:27454678

  1. BreathDx - molecular analysis of exhaled breath as a diagnostic test for ventilator-associated pneumonia: protocol for a European multicentre observational study.

    PubMed

    van Oort, Pouline M P; Nijsen, Tamara; Weda, Hans; Knobel, Hugo; Dark, Paul; Felton, Timothy; Rattray, Nicholas J W; Lawal, Oluwasola; Ahmed, Waqar; Portsmouth, Craig; Sterk, Peter J; Schultz, Marcus J; Zakharkina, Tetyana; Artigas, Antonio; Povoa, Pedro; Martin-Loeches, Ignacio; Fowler, Stephen J; Bos, Lieuwe D J

    2017-01-03

    The diagnosis of ventilator-associated pneumonia (VAP) remains time-consuming and costly, the clinical tools lack specificity and a bedside test to exclude infection in suspected patients is unavailable. Breath contains hundreds to thousands of volatile organic compounds (VOCs) that result from host and microbial metabolism as well as the environment. The present study aims to use breath VOC analysis to develop a model that can discriminate between patients who have positive cultures and who have negative cultures with a high sensitivity. The Molecular Analysis of Exhaled Breath as Diagnostic Test for Ventilator-Associated Pneumonia (BreathDx) study is a multicentre observational study. Breath and bronchial lavage samples will be collected from 100 and 53 intubated and ventilated patients suspected of VAP. Breath will be analysed using Thermal Desorption - Gas Chromatography - Mass Spectrometry (TD-GC-MS). The primary endpoint is the accuracy of cross-validated prediction for positive respiratory cultures in patients that are suspected of VAP, with a sensitivity of at least 99% (high negative predictive value). To our knowledge, BreathDx is the first study powered to investigate whether molecular analysis of breath can be used to classify suspected VAP patients with and without positive microbiological cultures with 99% sensitivity. UKCRN ID number 19086, registered May 2015; as well as registration at www.trialregister.nl under the acronym 'BreathDx' with trial ID number NTR 6114 (retrospectively registered on 28 October 2016).

  2. Affective brain areas and sleep disordered breathing

    PubMed Central

    Harper, Ronald M.; Kumar, Rajesh; Macey, Paul M.; Woo, Mary A.; Ogren, Jennifer A.

    2014-01-01

    The neural damage accompanying the hypoxia, reduced perfusion, and other consequences of sleep-disordered breathing found in obstructive sleep apnea, heart failure (HF), and congenital central hypoventilation syndrome (CCHS), appears in areas that serve multiple functions, including emotional drives to breathe, and involve systems that serve affective, cardiovascular, and breathing roles. The damage, assessed with structural magnetic resonance imaging (MRI) procedures, shows tissue loss or water content and diffusion changes indicative of injury, and impaired axonal integrity between structures; damage is preferentially unilateral. Functional MRI responses in affected areas also are time- or amplitude- distorted to ventilatory or autonomic challenges. Among the structures injured are the insular, cingulate, and ventral medial prefrontal cortices, as well as cerebellar deep nuclei and cortex, anterior hypothalamus, raphé, ventrolateral medulla, basal ganglia and, in CCHS, the locus coeruleus. Raphé and locus coeruleus injury may modify serotonergic and adrenergic modulation of upper airway and arousal characteristics. Since both axons and gray matter show injury, the consequences to function, especially to autonomic, cognitive, and mood regulation, are major. Several affected rostral sites, including the insular and cingulate cortices and hippocampus, mediate aspects of dyspnea, especially in CCHS, while others, including the anterior cingulate and thalamus, participate in initiation of inspiration after central breathing pauses, and the medullary injury can impair baroreflex and breathing control. The ancillary injury associated with sleep-disordered breathing to central structures can elicit multiple other distortions in cardiovascular, cognitive, and emotional functions in addition to effects on breathing regulation. PMID:24746053

  3. An Ultrasonic Contactless Sensor for Breathing Monitoring

    PubMed Central

    Arlotto, Philippe; Grimaldi, Michel; Naeck, Roomila; Ginoux, Jean-Marc

    2014-01-01

    The monitoring of human breathing activity during a long period has multiple fundamental applications in medicine. In breathing sleep disorders such as apnea, the diagnosis is based on events during which the person stops breathing for several periods during sleep. In polysomnography, the standard for sleep disordered breathing analysis, chest movement and airflow are used to monitor the respiratory activity. However, this method has serious drawbacks. Indeed, as the subject should sleep overnight in a laboratory and because of sensors being in direct contact with him, artifacts modifying sleep quality are often observed. This work investigates an analysis of the viability of an ultrasonic device to quantify the breathing activity, without contact and without any perception by the subject. Based on a low power ultrasonic active source and transducer, the device measures the frequency shift produced by the velocity difference between the exhaled air flow and the ambient environment, i.e., the Doppler effect. After acquisition and digitization, a specific signal processing is applied to separate the effects of breath from those due to subject movements from the Doppler signal. The distance between the source and the sensor, about 50 cm, and the use of ultrasound frequency well above audible frequencies, 40 kHz, allow monitoring the breathing activity without any perception by the subject, and therefore without any modification of the sleep quality which is very important for sleep disorders diagnostic applications. This work is patented (patent pending 2013-7-31 number FR.13/57569). PMID:25140632

  4. Afternoon serum-melatonin in sleep disordered breathing.

    PubMed

    Ulfberg, J; Micic, S; Strøm, J

    1998-08-01

    To study afternoon serum-melatonin values in patients with sleep disordered breathing. Melatonin has a strong circadian rhythm with high values during the night-time and low values in the afternoon. Sleep disordered breathing may change the circadian rhythm of melatonin which may have diagnostic implications. The Sleep Laboratory, The Department of Internal Medicine, Avesta Hospital, Sweden, and the Department of Anaesthesiology, Glostrup University Hospital, Copenhagen, Denmark. We examined 60 consecutive patients admitted for sleep disordered breathing and 10 healthy non snoring controls. The patients underwent a sleep apnoea screening test having a specificity of 100% for the obstructive sleep apnoea syndrome (OSAS) using a combination of static charge sensitive bed and oximetry. Obstructive sleep apnoea syndrome was found in 49 patients, eight patients had borderline sleep disordered breathing (BSDB) and three patients were excluded due to interfering disease. Patients and controls had an afternoon determination of serum-melatonin. The Epworth Sleepiness Scale was used to score day-time sleepiness. In comparison with normal controls patients suffering from OSAS had significantly higher serum-melatonin levels in the afternoon. However, as a diagnostic test for OSAS in patients with sleep disordered breathing serum-melatonin showed a low sensitivity but a high specificity. The results indicate that breathing disorders during sleep in general affect pineal function. Sleep disordered breathing seems to disturb pineal function. Determination of afternoon serum-melatonin alone or together with a scoring of daytime sleepiness does not identify OSAS-patients in a heterogeneous population of patients complaining of heavy snoring and excessive daytime sleepiness.

  5. O2 uptake kinetics during exercise at peak O2 uptake.

    PubMed

    Scheuermann, Barry W; Barstow, Thomas J

    2003-11-01

    Compared with moderate- and heavy-intensity exercise, the adjustment of O2 uptake (VO2) to exercise intensities that elicit peak VO2 has received relatively little attention. This study examined the VO2 response of 21 young, healthy subjects (25 +/- 6 yr; mean +/- SD) during cycle ergometer exercise to step transitions in work rate (WR) corresponding to 90, 100, and 110% of the peak WR achieved during a preliminary ramp protocol (15-30 W/min). Gas exchange was measured breath by breath and interpolated to 1-s values. VO2 kinetics were determined by use of a two- or three-component exponential model to isolate the time constant (tau2) as representative of VO2 kinetics and the amplitude (Amp) of the primary fast component independent of the appearance of any VO2 slow component. No difference in VO2 kinetics was observed between WRs (tau90 = 24.7 +/- 9.0; tau100 = 22.8 +/- 6.7; tau110 = 21.5 +/- 9.2 s, where subscripts denote percent of peak WR; P > 0.05); nor in a subgroup of eight subjects was tau2 different from the value for moderate-intensity (exercise (tau2 = 25 +/- 12 s, P > 0.05). As expected, the Amp increased with increasing WRs (Amp90 = 2,089 +/- 548; Amp100 = 2,165 +/- 517; Amp110 = 2,225 +/- 559 ml/min; Amp90 vs. Amp110, P < 0.05). However, the gain (G) of the VO2 response (deltaVO2/deltaWR) decreased with increasing WRs (G90 = 8.5 +/- 0.6; G100 = 7.9 +/- 0.6; G110 = 7.3 +/- 0.6 ml.min-1.W-1; P < 0.05). The Amp of the primary component approximated 85, 88, and 89% of peak Vo2 during 90, 100, and 110% WR transitions, respectively. The results of the present study demonstrate that, compared with moderate- and heavy-intensity exercise, the gain of the Vo2 response (as deltaVO2/DeltaWR) is reduced for exercise transitions in the severe-intensity domain, but the approach to this gain is well described by a common time constant that is invariant across work intensities. The lower deltaVO2/deltaWR may be due to an insufficient adjustment of

  6. Air-breathing adaptation in a marine Devonian lungfish.

    PubMed

    Clement, Alice M; Long, John A

    2010-08-23

    Recent discoveries of tetrapod trackways in 395 Myr old tidal zone deposits of Poland (Niedźwiedzki et al. 2010 Nature 463, 43-48 (doi:10.1038/nature.08623)) indicate that vertebrates had already ventured out of the water and might already have developed some air-breathing capacity by the Middle Devonian. Air-breathing in lungfishes is not considered to be a shared specialization with tetrapods, but evolved independently. Air-breathing in lungfishes has been postulated as starting in Middle Devonian times (ca 385 Ma) in freshwater habitats, based on a set of skeletal characters involved in air-breathing in extant lungfishes. New discoveries described herein of the lungfish Rhinodipterus from marine limestones of Australia identifies the node in dipnoan phylogeny where air-breathing begins, and confirms that lungfishes living in marine habitats had also developed specializations to breathe air by the start of the Late Devonian (ca 375 Ma). While invasion of freshwater habitats from the marine realm was previously suggested to be the prime cause of aerial respiration developing in lungfishes, we believe that global decline in oxygen levels during the Middle Devonian combined with higher metabolic costs is a more likely driver of air-breathing ability, which developed in both marine and freshwater lungfishes and tetrapodomorph fishes such as Gogonasus.

  7. Air-breathing adaptation in a marine Devonian lungfish

    PubMed Central

    Clement, Alice M.; Long, John A.

    2010-01-01

    Recent discoveries of tetrapod trackways in 395 Myr old tidal zone deposits of Poland (Niedźwiedzki et al. 2010 Nature 463, 43–48 (doi:10.1038/nature.08623)) indicate that vertebrates had already ventured out of the water and might already have developed some air-breathing capacity by the Middle Devonian. Air-breathing in lungfishes is not considered to be a shared specialization with tetrapods, but evolved independently. Air-breathing in lungfishes has been postulated as starting in Middle Devonian times (ca 385 Ma) in freshwater habitats, based on a set of skeletal characters involved in air-breathing in extant lungfishes. New discoveries described herein of the lungfish Rhinodipterus from marine limestones of Australia identifies the node in dipnoan phylogeny where air-breathing begins, and confirms that lungfishes living in marine habitats had also developed specializations to breathe air by the start of the Late Devonian (ca 375 Ma). While invasion of freshwater habitats from the marine realm was previously suggested to be the prime cause of aerial respiration developing in lungfishes, we believe that global decline in oxygen levels during the Middle Devonian combined with higher metabolic costs is a more likely driver of air-breathing ability, which developed in both marine and freshwater lungfishes and tetrapodomorph fishes such as Gogonasus. PMID:20147310

  8. Treatment options for the management of exercise-induced asthma and bronchoconstriction.

    PubMed

    Millward, David T; Tanner, Lindsay G; Brown, Mark A

    2010-12-01

    Treatment for exercise-induced bronchospasm and exercise-induced asthma includes both pharmacologic and nonpharmacologic options. Pharmacologic agents that have been proven to be effective for treating these conditions include short- and long-acting β2-adrenoceptor agonists, mast cell-stabilizing agents, anticholinergics, leukotriene receptor antagonists, and inhaled corticosteroids (ICS). When selecting the most appropriate medication, factors to consider include the effectiveness of each, the duration of action, frequency of administration, potential side effects, and tolerance level. Long-acting β2-adrenoceptor agonists should not be used without ICS. Nonpharmacologic treatments include physical conditioning, incorporating a warm-up before and a cool-down period after exercise, performing nasal breathing, avoiding cold weather or environmental allergens, using a face mask or other aid to warm and humidify inhaled air, and modifying dietary intake. The data to support nonpharmacologic treatments are limited; however, they are routinely recommended because of the low risk associated with their use. This article highlights the advantages and limitations of each treatment option.

  9. Toward Anatomical Simulation for Breath Training in Mind/Body Medicine

    NASA Astrophysics Data System (ADS)

    Sanders, Benjamin; Dilorenzo, Paul; Zordan, Victor; Bakal, Donald

    The use of breath in healing is poorly understood by patients and professionals alike. Dysfunctional breathing is a characteristic of many unexplained symptoms and mind/body medical professionals seek methods for breath training to alleviate such problems. Our approach is to re-purpose and evolve a recently developed anatomically inspired respiration simulation which was created for synthesizing motion in entertainment for the use of visualization in breath training. In mind/body medicine, problems are often created from patients being advised to breathe according to some standard based on pace or volume. However, a breathing pattern that is comfortable and effortless for one person may not have the same benefits for the next person. The breathing rhythm which is most effortless for each person needs to be dynamically identified. To this end, in this chapter, we employ optimization to modify a generic model of respiration to fit the breath patterns of specific individuals. In practice, the corresponding visualization which is specific to individual patients could be used to train proper breath behavior, both by showing specific (abnormal) practice and recommended modification(s).

  10. Oxygen consumption and heart rate during repeated squatting exercises with or without whole-body vibration in the elderly.

    PubMed

    Avelar, Núbia Cp; Simão, Adriano P; Tossige-Gomes, Rosalina; Neves, Camila Dc; Mezencio, Bruno; Szmuchrowski, Leszek; Coimbra, Cândido C; Lacerda, Ana Cr

    2011-12-01

    Avelar, NCP, Simão, AP, Tossige-Gomes, R, Neves, CDC, Mezencio, B, Szmuchrowski, L, Coimbra, CC, and Lacerda, ACR. Oxygen consumption and heart rate during repeated squatting exercises with or without whole-body vibration in the elderly. J Strength Cond Res 25(12): 3495-3500, 2011-The aim of this study was to investigate whether vibration plus squatting would increase cardiovascular demand to the optimal exercise limits needed for the prescription of cardiovascular training. Oxygen consumption, measured breath by breath by a portable gas analysis system, and heart rate (HR), measured using an HR monitor, were evaluated in 18 elderly individuals, 15 women and 3 men with a mean age of 72 ± 6 years. These variables were measured simultaneously and at the same time points in each subject during rest and randomly during the performance of squatting exercises (8 series of 40 seconds, with 40 seconds of rest between series of performing squats in 3-second cycles with 10-60° of flexion, a total of 5 repetitions for 40 seconds) with or without vibration at a frequency of 40 Hz and amplitude of 4 mm, separated by at least 1 day. Associating whole-body vibration with squatting exercise resulted in an additional increase of around 20% in oxygen consumption and 7.5% in the HR recorded during exercise. However, during squatting exercise with vibration, the increase achieved in oxygen consumption was limited to around 2 metabolic equivalents, and mean HR represented around 56% of the predicted maximum HR for age. The results of this study show that, despite the fact that vibration increased oxygen consumption and HR during the performance of squatting exercise, the minimum standards of intensity for the prescription of physical exercise with the specific objective of improving cardiorespiratory fitness were not achieved. Therefore, a protocol such as that used in the study does not meet the threshold for cardiovascular training prescription.

  11. Ventilatory Responses During Submaximal Exercise in Children With Prader-Willi Syndrome.

    PubMed

    Hyde, Adam M; McMurray, Robert G; Chavoya, Frank A; Rubin, Daniela A

    2018-02-27

    Prader-Willi syndrome (PWS) is a genetic neurobehavioral disorder presenting hypothalamic dysfunction and adiposity. At rest, PWS exhibits hypoventilation with hypercapnia. We characterized ventilatory responses in children with PWS during exercise. Participants were children aged 7-12 years with PWS (n = 8) and without PWS with normal weight (NW; n = 9, body mass index ≤ 85th percentile) or obesity (n = 9, body mass index ≥ 95th percentile). Participants completed three 5-minute ambulatory bouts at 3.2, 4.0, and 4.8 km/h. Oxygen uptake, carbon dioxide output, ventilation, breathing frequency, and tidal volume were recorded. PWS had slightly higher oxygen uptake (L/min) at 3.2 km/h [0.65 (0.46-1.01) vs 0.49 (0.34-0.83)] and at 4.8 km/h [0.89 (0.62-1.20) vs 0.63 (0.45-0.97)] than NW. PWS had higher ventilation (L/min) at 3.2 km/h [16.2 (13.0-26.5) vs 11.5 (8.4-17.5)], at 4.0 km/h [16.4 (13.9-27.9) vs 12.7 (10.3-19.5)], and at 4.8 km/h [19.7 (17.4-31.8) vs 15.2 (9.5-21.6)] than NW. PWS had greater breathing frequency (breaths/min) at 3.2 km/h [38 (29-53) vs 29 (22-35)], at 4.0 km/h [39 (29-58) vs 29 (23-39)], and at 4.8 km/h [39 (33-58) vs 32 (23-42)], but similar tidal volume and ventilation/carbon dioxide output to NW. PWS did not show impaired ventilatory responses to exercise. Hyperventilation in PWS may relate to excessive neural stimulation and metabolic cost.

  12. Influence of angular velocity on vastus lateralis and rectus femoris oxygenation dynamics during knee extension exercises.

    PubMed

    Denis, Romain; Wilkinson, Jennifer; De Vito, Giuseppe

    2011-09-01

    The purpose of this study was to investigate whether changes in angular velocity would alter vastus lateralis (VL) and rectus femoris (RF) oxygenation status during maximal isokinetic knee extension exercises. Eleven recreationally active male participants randomly performed ten maximal knee extensions at 30, 60, 120 and 240° s(-1). Tissue oxygenation index (TOI) and total haemoglobin concentration ([tHb]) were acquired from the VL and RF muscles by means of near-infrared spectroscopy (NIRS). Breath-by-breath pulmonary oxygen consumption (VO(2p)) was recorded throughout the tests. Peak torque and VO(2p) significantly decreased as a function of velocity (P<0·05). Interestingly, RF and VL TOI significantly increased as a function of velocity (P<0·05), whereas [tHb] significantly decreased as a function of velocity (P<0·05). A greater number of muscle fibre recruited at slow velocity, where the torque and VO(2p) were the highest, might explain the lower VL and RF TOI observed herein. Furthermore, the increase in local blood flow (suggested by [tHb] changes) during isokinetic knee extension exercises performed at slow angular velocity might have been induced by a higher intramuscular pressure during the contraction phases as well as a greater microcirculatory vasodilatation during relaxation phases. Implementing slow-velocity isokinetic exercises in rehabilitation or other training programmes could delay the short-term anoxia generated by such exercises and result in muscle metabolism enhancement. © 2011 The Authors. Clinical Physiology and Functional Imaging © 2011 Scandinavian Society of Clinical Physiology and Nuclear Medicine.

  13. Effects of a prior high-intensity knee-extension exercise on muscle recruitment and energy cost: a combined local and global investigation in humans.

    PubMed

    Layec, Gwenael; Bringard, Aurélien; Le Fur, Yann; Vilmen, Christophe; Micallef, Jean-Paul; Perrey, Stéphane; Cozzone, Patrick J; Bendahan, David

    2009-06-01

    The effects of a priming exercise bout on both muscle energy production and the pattern of muscle fibre recruitment during a subsequent exercise bout are poorly understood. The purpose of the present study was to determine whether a prior exercise bout which is known to increase O(2) supply and to induce a residual acidosis could alter energy cost and muscle fibre recruitment during a subsequent heavy-intensity knee-extension exercise. Fifteen healthy subjects performed two 6 min bouts of heavy exercise separated by a 6 min resting period. Rates of oxidative and anaerobic ATP production, determined with (31)P-magnetic resonance spectroscopy, and breath-by-breath measurements of pulmonary oxygen uptake were obtained simultaneously. Changes in muscle oxygenation and muscle fibre recruitment occurring within the quadriceps were measured using near-infrared spectroscopy and surface electromyography. The priming heavy-intensity exercise increased motor unit recruitment (P < 0.05) in the early part of the subsequent exercise bout but did not alter muscle energy cost. We also observed a reduced deoxygenation time delay, whereas the deoxygenation amplitude was increased (P < 0.01). These changes were associated with an increased oxidative ATP cost after approximately 50 s (P < 0.05) and a slight reduction in the overall anaerobic rate of ATP production (0.11 +/- 0.04 mM min(-1) W(-1) for bout 1 and 0.06 +/- 0.11 mM min(-1) W(-1) for bout 2; P < 0.05). We showed that a priming bout of heavy exercise led to an increased recruitment of motor units in the early part of the second bout of heavy exercise. Considering the increased oxidative cost and the unaltered energy cost, one could suggest that our results illustrate a reduced metabolic strain per fibre.

  14. Bad-breath: Perceptions and misconceptions of Nigerian adults.

    PubMed

    Nwhator, S O; Isiekwe, G I; Soroye, M O; Agbaje, M O

    2015-01-01

    To provide baseline data about bad-breath perception and misconceptions among Nigerian adults. Multi-center cross-sectional study of individuals aged 18-64 years using examiner-administered questionnaires. Age comparisons were based on the model of emerging adults versus full adults. Data were recoded for statistical analyses and univariate and secondary log-linear statistics applied. Participants had lopsided perceptions about bad-breath. While 730 (90.8%) identified the dentist as the expert on halitosis and 719 (89.4%) knew that bad-breath is not contagious, only 4.4% and 2.5% associated bad-breath with tooth decay and gum disease respectively. There were no significant sex differences but the older adults showed better knowledge in a few instances. Most respondents (747, 92.9%) would tell a spouse about their bad-breath and 683 (85%) would tell a friend. Participants had lop-sided knowledge and perceptions about bad-breath. Most Nigerian adults are their "brothers' keepers" who would tell a spouse or friend about their halitosis so they could seek treatment.

  15. Imposed Work of Breathing for Flow Meters with In-Line versus Flow-Through Technique during Simulated Neonatal Breathing

    PubMed Central

    2015-01-01

    Background The ability to determine airflow during nasal CPAP (NCPAP) treatment without adding dead space or resistance would be useful when investigating the physiologic effects of different NCPAP systems on breathing. The aim of this study was to investigate the effect on pressure stability of different flow measuring devices at the in-line and flow-through position, using simulated neonatal breathing. Methods Six different flow measure devices were evaluated by recording pressure changes and imposed work of breathing for breaths with 16 and 32 ml tidal volumes. The tests were performed initially with the devices in an in line position and with 5 and 10 L/min using flow through technique, without CPAP. The flow meters were then subsequently tested with an Infant Flow CPAP system at 3, 5 and 8 cm H2O pressure using flow through technique. The quality of the recorded signals was compared graphically. Results The resistance of the measuring devices generated pressure swings and imposed work of breathing. With bias flow, the resistance also generated CPAP pressure. Three of the devices had low resistance and generated no changes in pressure stability or CPAP pressure. The two devices intended for neonatal use had the highest measured resistance. Conclusion The importance of pressure stability and increased work of breathing during non-invasive respiratory support are insufficiently studied. Clinical trials using flow-through technique have not focused on pressure stability. Our results indicate that a flow-through technique might be a way forward in obtaining a sufficiently high signal quality without the added effects of rebreathing and increased work of breathing. The results should stimulate further research and the development of equipment for dynamic flow measurements in neonates. PMID:26192188

  16. 21 CFR 868.5270 - Breathing system heater.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Identification. A breathing system heater is a device that is intended to warm breathing gases before they enter a patient's airway. The device may include a temperature controller. (b) Classification. Class II...

  17. 42 CFR 84.71 - Self-contained breathing apparatus; required components.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Self-contained breathing apparatus; required...-Contained Breathing Apparatus § 84.71 Self-contained breathing apparatus; required components. (a) Each self-contained breathing apparatus described in § 84.70 shall, where its design requires, contain the following...

  18. 42 CFR 84.71 - Self-contained breathing apparatus; required components.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Self-contained breathing apparatus; required...-Contained Breathing Apparatus § 84.71 Self-contained breathing apparatus; required components. (a) Each self-contained breathing apparatus described in § 84.70 shall, where its design requires, contain the following...

  19. Study of the detectability of controlled substances on breath

    DOT National Transportation Integrated Search

    1975-07-01

    The University of Missouri used high pressure liquid chromatography plus mass spectrometry for a quantitative analysis of marijuana metabolites in blood and breath. A breath collector was developed for road-side sampling of human breath and subsequen...

  20. Investigation of Exhaled Breath Samples from Patients with Alzheimer's Disease Using Gas Chromatography-Mass Spectrometry and an Exhaled Breath Sensor System.

    PubMed

    Lau, Hui-Chong; Yu, Joon-Boo; Lee, Ho-Won; Huh, Jeung-Soo; Lim, Jeong-Ok

    2017-08-03

    Exhaled breath is a body secretion, and the sampling process of this is simple and cost effective. It can be non-invasively collected for diagnostic procedures. Variations in the chemical composition of exhaled breath resulting from gaseous exchange in the extensive capillary network of the body are proposed to be associated with pathophysiological changes. In light of the foreseeable potential of exhaled breath as a diagnostic specimen, we used gas chromatography and mass spectrometry (GC-MS) to study the chemical compounds present in exhaled breath samples from patients with Alzheimer's disease (AD), Parkinson's disease (PD), and from healthy individuals as a control group. In addition, we also designed and developed a chemical-based exhaled breath sensor system to examine the distribution pattern in the patient and control groups. The results of our study showed that several chemical compounds, such as 1-phenantherol and ethyl 3-cyano-2,3-bis (2,5,-dimethyl-3-thienyl)-acrylate, had a higher percentage area in the AD group than in the PD and control groups. These results may indicate an association of these chemical components in exhaled breath with the progression of disease. In addition, in-house fabricated exhaled breath sensor systems, containing several types of gas sensors, showed significant differences in terms of the normalized response of the sensitivity characteristics between the patient and control groups. A subsequent clustering analysis was able to distinguish between the AD patients, PD patients, and healthy individuals using principal component analysis, Sammon's mapping, and a combination of both methods, in particular when using the exhaled breath sensor array system A consisting of eight sensors. With this in mind, the exhaled breath sensor system could provide alternative option for diagnosis and be applied as a useful, effective tool for the screening and diagnosis of AD in the near future.

  1. Qualitative assessment of contrast-enhanced magnetic resonance angiography using breath-hold and non-breath-hold techniques in the portal venous system

    NASA Astrophysics Data System (ADS)

    Goo, Eun-Hoe; Kim, Sun-Ju; Dong, Kyung-Rae; Kim, Kwang-Choul; Chung, Woon-Kwan

    2016-09-01

    The purpose of this study is to evaluate the image quality in delineation of the portal venous systems with two different methods, breath-hold and non-breath-hold by using the 3D FLASH sequence. We used a 1.5 T system to obtain magnetic resonance(MR)images. Arterial and portal phase 3D FLASH images were obtained with breath-hold after a bolus injection of GD-DOTA. The detection of PVS on the MR angiograms was classified into three grades. First, the angiograms of the breath-hold method showed well the portal vein, the splenic vein and the superior mesenteric vein systems in 13 of 15 patients (86%) and the inferior mesenteric vein system in 6 of 15 patients (40%), Second, MR angiograms of the non-breath-hold method demonstrated the PVS and the SMV in 12 of 15 patients (80%) and the IMV in 5 of 15 patients (33%). Our study showed contrast-enhanced 3D FLASH MR angiography, together with the breath-hold technique, may provide reliable and accurate information on the portal venous system.

  2. Breathing pattern and head posture: changes in craniocervical angles.

    PubMed

    Sabatucci, A; Raffaeli, F; Mastrovincenzo, M; Luchetta, A; Giannone, A; Ciavarella, D

    2015-04-01

    The aim of this study was to observe the influence of oral breathing on head posture and to establish possible postural changes observing the variation of craniocervical angles NSL/OPT and NSL/CVT between oral breathing subjects and physiological breathing subjects. A cross-sectional study was conducted. The sample included 115 subject, 56 boys and 59 girls, 5-22-year-old. Among these, 80 were classified as oral breathers and 35 as physiological breathers. The diagnosis of oral breathing was carried out thanks to characteristic signs and symptoms evaluated on clinical examination, the analysis of characteristic X-ray images, ENT examination with active anterior rhinomanometric (AAR) test. The structural and postural analysis was carried out, calculating the craniofacial angles NSL/OPT and NSL/CVT. Both NSL/OPT and NSL/CVT appear to be significantly greater to those observed in physiological breathing patients. This means that patients who tend to breathe through the mouth rather than exclusively through the nose show a reduction of cervical lordosis and a proinclination of the head. Our study confirms that the oral breathing modifies head position. The significant increase of the craniocervical angles NSL/OPT and NSL/CVT in patients with this altered breathing pattern suggests an elevation of the head and a greater extension of the head compared with the cervical spine. So, to correct the breathing pattern early, either during childhood or during adolescence, can lead to a progressive normalization of craniofacial morphology and head posture.

  3. Physical exercise program for children with bronchial asthma.

    PubMed

    Szentágothai, K; Gyene, I; Szócska, M; Osváth, P

    1987-01-01

    A long-term physical exercise program was established for a large number of children with bronchial asthma. Asthmatic children were first taught to swim on their backs to prevent breathing problems customary for beginners using other strokes. They concurrently participated in gymnasium exercises, and the program was later completed with outdoor running. Program effectiveness was evaluated by monitoring asthmatic symptoms, changes in medication, and changes in the activity and physical fitness of the children. Data collected from 121 children showed that during the first year in the program the number of days with asthmatic symptoms decreased in a large majority of the patients while medication was decreased. School absenteeism and hospitalization dropped markedly. Parental evaluation of the children indicated much improvement in 51.2%, improvement in 40.5%, unchanged condition in 7.4%, and deterioration of general health was only reported in one child (0.8%). The same extent of improvement continued during the second year. The Cooper test was applied for the first time to such an exercise program and indicated that the participating asthmatic children performed as well as a control group of nonasthmatic children, and the cardiovascular efficiency of the asthmatics was actually better.

  4. Sensing the effects of mouth breathing by using 3-tesla MRI

    NASA Astrophysics Data System (ADS)

    Park, Chan-A.; Kang, Chang-Ki

    2017-06-01

    We investigated the effects of mouth breathing and typical nasal breathing on brain function by using blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging (fMRI). The study had two parts: the first test was a simple contrast between mouth and nasal breathing, and the second test involved combined breathing modes, e.g., mouth inspiration and nasal expiration. Eleven healthy participants performed the combined breathing task while undergoing 3T fMRI. In the group-level analysis, contrast images acquired by using an individual participantlevel analysis were processed using the one-sample t test. We also conducted a region-of-interest analysis comparing signal intensity changes between the breathing modes; the region was selected using an automated anatomical labeling map. The results demonstrated that the BOLD signal in the hippocampus and brainstem was significantly decreased in mouth breathing relative to nasal breathing. On the other hand, both the precentral and postcentral gyri showed activation that was more significant in mouth breathing compared to nasal breathing. This study suggests that the BOLD activity patterns between mouth and nasal breathing may be induced differently, especially in the hippocampus, which could provide clues to explain the effects on brain cognitive function due to mouth breathing.

  5. Comparison of V-4 and V-5 Exercise/Oxygen Prebreathe Protocols to Support Extravehicular Activity in Microgravity

    NASA Technical Reports Server (NTRS)

    Pollock, N. W.; Natoli, M. J.; Vann, R. D.; Gernhardt, M. L.; Conkin, Johnny

    2007-01-01

    The Prebreathe Reduction Program (PRP) used exercise during oxygen prebreathe to reduce necessary prebreathe time prior to depressurizing to work in a 4.3 psi suit during extravehicular activity (EVA). Initial testing produced a two-hour protocol incorporating ergometry exercise and a 30 min cycle of depress/repress to 10.2 psi where subjects breathed 26.5% oxygen/balance nitrogen (Phase II - 10 min at 75% peak oxygen consumption [VO2 peak] followed by 40 min intermittent light exercise [ILE] [approx. 5.8 mL-per kilogram- per minute], then 50 min of rest). The Phase II protocol (0/45 DCS) was approved for operations and has been used on 40 EVAs, providing significant time savings compared to the standard 4 h resting oxygen prebreathe. The Phase V effort focused on performing all light in-suit exercise. Two oxygen prebreathe protocols were tested sequentially: V-4) 160 min prebreathe with 150 min of continuous ILE. The entire protocol was completed at 14.7 psi. All exercise involved upper body effort. Exercise continued until decompression. V-5) 160 min prebreathe with 140 min of ILE - first 40 min at 14.7 psi, then 30 min at 10.2 psi (breathing 26.5% oxygen) after a 20 min depress, simulating a suit donning period. Subjects were then repressed to 14.7 psi and performed another 50 min of lower body ILE, followed by 50 min rest before decompression. The V-4 protocol was rejected with 3 DCS/6 person-exposures. Initial V-5 testing has produced 0 DCS/11 person-exposures (ongoing trials). The difference in DCS rate was significant (Fisher Exact p=0.029). The observations of DCS were significantly lower in early V-5 trials than in V-4 trials. Additional studies are required to evaluate the relative contribution of the variables in exercise distribution, the 10.2 psi depress/repress component, pre-decompression rest, or possible variation in total oxygen consumption.

  6. The effect of incentive spirometry on chest expansion and breathing work in patients with chronic obstructive airway diseases: comparison of two methods.

    PubMed

    Ho, S C; Chiang, L L; Cheng, H F; Lin, H C; Sheng, D F; Kuo, H P; Lin, H C

    2000-02-01

    Chronic obstructive airway diseases (COAD), characterized by mucus hypersecretion, lead to exercise intolerance. Incentive spirometry has been used to prevent postoperative pulmonary atelectasis. To compare the efficacy of two incentive spirometers, Coach (volume-oriented) and Triflo (flow-oriented), in the work of breathing in COAD patients, 22 patients were randomized in this study: 12 patients (Triflo-II group) initially used Triflo-II for 10 minutes and then Coach for the same period. In contrast, the Coach group, including 10 patients, started with Coach followed by Triflo-II. After receiving incentive spirometry, lung expansion and work of breathing were assessed. Patients in the Coach group significantly increased chest wall expansion (p = 0.041), as compared with patients using Triflo-II. Similarly, there was also a significantly increased abdominal wall expansion in the Coach group (p = 0.0056), compared with that in the Triflo-II group. The need of accessory muscle assistance for breathing in the Coach group was significantly less than in the Triflo-II group (p = 0.047). It was easier for patients in the Coach group to start a breath (p = 0.0058) than for those in the Triflo-II group. For the entire group, 17 patients (77.3%) preferred Coach to assist their breathing, and only 4 patients (18.2%) favored Triflo-II. COAD patients achieved a larger expansion of the chest and abdomen with a Coach device. Our data provide a good rationale for an outcome study on the use of incentive spirometer in COAD patients.

  7. Development of an anaesthetized-rat model of exercise hyperpnoea: an integrative model of respiratory control using an equilibrium diagram.

    PubMed

    Miyamoto, Tadayoshi; Manabe, Kou; Ueda, Shinya; Nakahara, Hidehiro

    2018-05-01

    What is the central question of this study? The lack of useful small-animal models for studying exercise hyperpnoea makes it difficult to investigate the underlying mechanisms of exercise-induced ventilatory abnormalities in various disease states. What is the main finding and its importance? We developed an anaesthetized-rat model for studying exercise hyperpnoea, using a respiratory equilibrium diagram for quantitative characterization of the respiratory chemoreflex feedback system. This experimental model will provide an opportunity to clarify the major determinant mechanisms of exercise hyperpnoea, and will be useful for understanding the mechanisms responsible for abnormal ventilatory responses to exercise in disease models. Exercise-induced ventilatory abnormalities in various disease states seem to arise from pathological changes of respiratory regulation. Although experimental studies in small animals are essential to investigate the pathophysiological basis of various disease models, the lack of an integrated framework for quantitatively characterizing respiratory regulation during exercise prevents us from resolving these problems. The purpose of this study was to develop an anaesthetized-rat model for studying exercise hyperpnoea for quantitative characterization of the respiratory chemoreflex feedback system. In 24 anaesthetized rats, we induced muscle contraction by stimulating bilateral distal sciatic nerves at low and high voltage to mimic exercise. We recorded breath-by-breath respiratory gas analysis data and cardiorespiratory responses while running two protocols to characterize the controller and plant of the respiratory chemoreflex. The controller was characterized by determining the linear relationship between end-tidal CO 2 pressure (P ETC O2) and minute ventilation (V̇E), and the plant by the hyperbolic relationship between V̇E and P ETC O2. During exercise, the controller curve shifted upward without change in controller gain, accompanying

  8. The prefrontal oxygenation and ventilatory responses at start of one-legged cycling exercise have relation to central command.

    PubMed

    Asahara, Ryota; Matsukawa, Kanji; Ishii, Kei; Liang, Nan; Endo, Kana

    2016-11-01

    When performing exercise arbitrarily, activation of central command should start before the onset of exercise, but when exercise is forced to start with cue, activation of central command should be delayed. We examined whether the in-advance activation of central command influenced the ventilatory response and reflected in the prefrontal oxygenation, by comparing the responses during exercise with arbitrary and cued start. The breath-by-breath respiratory variables and the prefrontal oxygenated-hemoglobin concentration (Oxy-Hb) were measured during one-legged cycling. Minute ventilation (V̇e) at the onset of arbitrary one-legged cycling was augmented to a greater extent than cued cycling, while end-tidal carbon dioxide tension (ETco 2 ) decreased irrespective of arbitrary or cued start. Symmetric increase in the bilateral prefrontal Oxy-Hb occurred before and at the onset of arbitrary one-legged cycling, whereas such an increase was absent with cued start. The time course and magnitude of the increased prefrontal oxygenation were not influenced by the extent of subjective rating of perceived exertion and were the same as those of the prefrontal oxygenation during two-legged cycling previously reported. Mental imagery or passive performance of the one-legged cycling increased V̇e and decreased ETco 2 Neither intervention, however, augmented the prefrontal Oxy-Hb. The changes in ETco 2 could not explain the prefrontal oxygenation response during voluntary or passive one-legged cycling. Taken together, it is likely that the in-advance activation of central command influenced the ventilatory response by enhancing minute ventilation at the onset of one-legged cycling exercise and reflected in the preexercise increase in the prefrontal oxygenation. Copyright © 2016 the American Physiological Society.

  9. Aspiration tests in aqueous foam using a breathing simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archuleta, M.M.

    1995-12-01

    Non-toxic aqueous foams are being developed by Sandia National Laboratories (SNL) for the National Institute of Justice (NIJ) for use in crowd control, cell extractions, and group disturbances in the criminal justice prison systems. The potential for aspiration of aqueous foam during its use and the resulting adverse effects associated with complete immersion in aqueous foam is of major concern to the NIJ when examining the effectiveness and safety of using this technology as a Less-Than-Lethal weapon. This preliminary study was designed to evaluate the maximum quantity of foam that might be aspirated by an individual following total immersion inmore » an SNL-developed aqueous foam. A.T.W. Reed Breathing simulator equipped with a 622 Silverman cam was used to simulate the aspiration of an ammonium laureth sulfate aqueous foam developed by SNL and generated at expansion ratios in the range of 500:1 to 1000:1. Although the natural instinct of an individual immersed in foam is to cover their nose and mouth with a hand or cloth, thus breaking the bubbles and decreasing the potential for aspiration, this study was performed to examine a worst case scenario where mouth breathing only was examined, and no attempt was made to block foam entry into the breathing port. Two breathing rates were examined: one that simulated a sedentary individual with a mean breathing rate of 6.27 breaths/minute, and one that simulated an agitated or heavily breathing individual with a mean breathing rate of 23.7 breaths/minute. The results of this study indicate that, if breathing in aqueous foam without movement, an air pocket forms around the nose and mouth within one minute of immersion.« less

  10. Individuality of breathing during volitional moderate hyperventilation.

    PubMed

    Besleaga, Tudor; Blum, Michaël; Briot, Raphaël; Vovc, Victor; Moldovanu, Ion; Calabrese, Pascale

    2016-01-01

    The aim of this study is to investigate the individuality of airflow shapes during volitional hyperventilation. Ventilation was recorded on 18 healthy subjects following two protocols: (1) spontaneous breathing (SP1) followed by a volitional hyperventilation at each subject's spontaneous (HVSP) breathing rate, (2) spontaneous breathing (SP2) followed by hyperventilation at 20/min (HV20). HVSP and HV20 were performed at the same level of hypocapnia: end tidal CO2 (FETCO2) was maintained at 1% below the spontaneous level. At each breath, the tidal volume (VT), the breath (TTOT), the inspiratory (TI) and expiratory durations, the minute ventilation, VT/TI, TI/TTOT and the airflow shape were quantified by harmonic analysis. Under different conditions of breathing, we test if the airflow profiles of the same individual are more similar than airflow profiles between individuals. Minute ventilation was not significantly different between SP1 (6.71 ± 1.64 l·min(-1)) and SP2 (6.57 ± 1.31 l·min(-1)) nor between HVSP (15.88 ± 4.92 l·min(-1)) and HV20 (15.87 ± 4.16 l·min(-1)). Similar results were obtained for FETCO2 between SP1 (5.06 ± 0.54 %) and SP2 (5.00 ± 0.51%), and HVSP (4.07 ± 0.51%) and HV20 (3.88 ± 0.42%). Only TI/TTOT remained unchanged in all four conditions. Airflow shapes were similar when comparing SP1-SP2, HVSP-HV20, and SP1-HVSP but not similar when comparing SP2-HV20. These results suggest the existence of an individuality of airflow shape during volitional hyperventilation. We conclude that volitional ventilation alike automatic breathing follows inherent properties of the ventilatory system. Registered by Pascale Calabrese on ClinicalTrials.gov, # NCT01881945.

  11. Shortness of Breath

    MedlinePlus

    ... with blood clots in the legs or pelvis (deep venous thrombosis), debilitating medical conditions, immobility, or inherited ... it hard for a person to take a deep breath, which usually results in retention of carbon ...

  12. Volatile Biomarkers in Breath Associated With Liver Cirrhosis — Comparisons of Pre- and Post-liver Transplant Breath Samples

    PubMed Central

    Fernández del Río, R.; O'Hara, M.E.; Holt, A.; Pemberton, P.; Shah, T.; Whitehouse, T.; Mayhew, C.A.

    2015-01-01

    Background The burden of liver disease in the UK has risen dramatically and there is a need for improved diagnostics. Aims To determine which breath volatiles are associated with the cirrhotic liver and hence diagnostically useful. Methods A two-stage biomarker discovery procedure was used. Alveolar breath samples of 31 patients with cirrhosis and 30 healthy controls were mass spectrometrically analysed and compared (stage 1). 12 of these patients had their breath analysed after liver transplant (stage 2). Five patients were followed longitudinally as in-patients in the post-transplant period. Results Seven volatiles were elevated in the breath of patients versus controls. Of these, five showed statistically significant decrease post-transplant: limonene, methanol, 2-pentanone, 2-butanone and carbon disulfide. On an individual basis limonene has the best diagnostic capability (the area under a receiver operating characteristic curve (AUROC) is 0.91), but this is improved by combining methanol, 2-pentanone and limonene (AUROC curve 0.95). Following transplant, limonene shows wash-out characteristics. Conclusions Limonene, methanol and 2-pentanone are breath markers for a cirrhotic liver. This study raises the potential to investigate these volatiles as markers for early-stage liver disease. By monitoring the wash-out of limonene following transplant, graft liver function can be non-invasively assessed. PMID:26501124

  13. Lack of desensitization of the cough reflex in ovalbumin-sensitized rabbits during exercise.

    PubMed

    Tiotiu, Angelica; Chenuel, Bruno; Foucaud, Laurent; Demoulin, Bruno; Demoulin-Alexikova, Silvia; Christov, Christo; Poussel, Mathias

    2017-01-01

    Cough is a major symptom of asthma frequently experienced during exercise but little is known about interactions between cough and exercise. The goal of our study was to clarify the potential modulation of the cough reflex (CR) by exercise in a spontaneously breathing anaesthetized animal model of airway eosinophilic inflammation. Ten ovalbumin (OVA) sensitized adult rabbits and 8 controls were studied. The ventilatory response to direct tracheal stimulation, performed both at rest and during exercise was determined to quantify the incidence and the sensitivity of the CR. Broncho-alveolar lavages (BAL) and cell counts were performed to assess the level of the airway inflammation following OVA-induced sensitization. Exercise was mimicked by Electrically induced hindlimb Muscular Contractions (EMC). Among 494 tracheal stimulations, 261 were performed at rest and 233 at exercise. OVA challenges in sensitized rabbits caused a significant increase in the percentage of eosinophils (p = 0.008) in BAL. EMC increased minute ventilation by 36% and 35% in OVA and control rabbits respectively, compared to rest values. The sensitivity of the CR decreased during exercise compared to baseline in control rabbits (p = 0.0313) while it remained unchanged in OVA rabbits. The desensitization of the CR during exercise in control rabbits was abolished in OVA rabbits. The precise role of airway inflammation in this lack of CR desensitization needs to be further investigated but it might contribute to the exercise-induced cough in asthmatics.

  14. How Does a Hopping Kangaroo Breathe?

    ERIC Educational Resources Information Center

    Giuliodori, Mauricio J.; Lujan, Heidi L.; Janbaih, Hussein; DiCarlo, Stephen E.

    2010-01-01

    We developed a model to demonstrate how a hopping kangaroo breathes. Interestingly, a kangaroo uses less energy to breathe while hopping than while standing still. This occurs, in part, because rather than using muscle power to move air into and out of the lungs, air is pulled into (inspiration) and pushed out of (expiration) the lungs as the…

  15. Mapleson's Breathing Systems.

    PubMed

    Kaul, Tej K; Mittal, Geeta

    2013-09-01

    Mapleson breathing systems are used for delivering oxygen and anaesthetic agents and to eliminate carbon dioxide during anaesthesia. They consist of different components: Fresh gas flow, reservoir bag, breathing tubes, expiratory valve, and patient connection. There are five basic types of Mapleson system: A, B, C, D and E depending upon the different arrangements of these components. Mapleson F was added later. For adults, Mapleson A is the circuit of choice for spontaneous respiration where as Mapleson D and its Bains modifications are best available circuits for controlled ventilation. For neonates and paediatric patients Mapleson E and F (Jackson Rees modification) are the best circuits. In this review article, we will discuss the structure of the circuits and functional analysis of various types of Mapleson systems and their advantages and disadvantages.

  16. Exercise tolerance during VO2max testing is a multifactorial psychobiological phenomenon.

    PubMed

    Midgley, Adrian W; Earle, Keith; McNaughton, Lars R; Siegler, Jason C; Clough, Peter; Earle, Fiona

    2017-01-01

    Fifty-nine men completed a VO 2max test and a questionnaire to establish reasons for test termination, perceived exercise reserve (difference between actual test duration and the duration the individual perceived could have been achieved if continued until physical limitation), and perception of verbal encouragement. Participants gave between 1 and 11 factors as reasons for test termination, including leg fatigue, various perceptions of physical discomfort, safety concerns, and achievement of spontaneously set goals. The two most common main reasons were leg fatigue and breathing discomfort, which were predicted by pre-to-post test changes in pulmonary function (p = 0.038) and explosive leg strength (p = 0.042; R 2  = 0.40). Median (interquartile range) perceived exercise reserve, was 45 (50) s. Two-thirds of participants viewed verbal encouragement positively, whereas one-third had a neutral or negative perception. This study highlights the complexity of exercise tolerance during VO 2max testing and more research should explore these novel findings.

  17. A fully integrated standalone portable cavity ringdown breath acetone analyzer.

    PubMed

    Sun, Meixiu; Jiang, Chenyu; Gong, Zhiyong; Zhao, Xiaomeng; Chen, Zhuying; Wang, Zhennan; Kang, Meiling; Li, Yingxin; Wang, Chuji

    2015-09-01

    Breath analysis is a promising new technique for nonintrusive disease diagnosis and metabolic status monitoring. One challenging issue in using a breath biomarker for potential particular disease screening is to find a quantitative relationship between the concentration of the breath biomarker and clinical diagnostic parameters of the specific disease. In order to address this issue, we need a new instrument that is capable of conducting real-time, online breath analysis with high data throughput, so that a large scale of clinical test (more subjects) can be achieved in a short period of time. In this work, we report a fully integrated, standalone, portable analyzer based on the cavity ringdown spectroscopy technique for near-real time, online breath acetone measurements. The performance of the portable analyzer in measurements of breath acetone was interrogated and validated by using the certificated gas chromatography-mass spectrometry. The results show that this new analyzer is useful for reliable online (online introduction of a breath sample without pre-treatment) breath acetone analysis with high sensitivity (57 ppb) and high data throughput (one data per second). Subsequently, the validated breath analyzer was employed for acetone measurements in 119 human subjects under various situations. The instrument design, packaging, specifications, and future improvements were also described. From an optical ringdown cavity operated by the lab-set electronics reported previously to this fully integrated standalone new instrument, we have enabled a new scientific tool suited for large scales of breath acetone analysis and created an instrument platform that can even be adopted for study of other breath biomarkers by using different lasers and ringdown mirrors covering corresponding spectral fingerprints.

  18. A fully integrated standalone portable cavity ringdown breath acetone analyzer

    NASA Astrophysics Data System (ADS)

    Sun, Meixiu; Jiang, Chenyu; Gong, Zhiyong; Zhao, Xiaomeng; Chen, Zhuying; Wang, Zhennan; Kang, Meiling; Li, Yingxin; Wang, Chuji

    2015-09-01

    Breath analysis is a promising new technique for nonintrusive disease diagnosis and metabolic status monitoring. One challenging issue in using a breath biomarker for potential particular disease screening is to find a quantitative relationship between the concentration of the breath biomarker and clinical diagnostic parameters of the specific disease. In order to address this issue, we need a new instrument that is capable of conducting real-time, online breath analysis with high data throughput, so that a large scale of clinical test (more subjects) can be achieved in a short period of time. In this work, we report a fully integrated, standalone, portable analyzer based on the cavity ringdown spectroscopy technique for near-real time, online breath acetone measurements. The performance of the portable analyzer in measurements of breath acetone was interrogated and validated by using the certificated gas chromatography-mass spectrometry. The results show that this new analyzer is useful for reliable online (online introduction of a breath sample without pre-treatment) breath acetone analysis with high sensitivity (57 ppb) and high data throughput (one data per second). Subsequently, the validated breath analyzer was employed for acetone measurements in 119 human subjects under various situations. The instrument design, packaging, specifications, and future improvements were also described. From an optical ringdown cavity operated by the lab-set electronics reported previously to this fully integrated standalone new instrument, we have enabled a new scientific tool suited for large scales of breath acetone analysis and created an instrument platform that can even be adopted for study of other breath biomarkers by using different lasers and ringdown mirrors covering corresponding spectral fingerprints.

  19. 46 CFR 195.30-15 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Self-contained breathing apparatus. 195.30-15 Section... VESSELS VESSEL CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Protection From Refrigerants § 195.30-15 Self-contained breathing apparatus. (a) Each vessel must have a self-contained breathing apparatus for...

  20. 46 CFR 195.30-15 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Self-contained breathing apparatus. 195.30-15 Section... VESSELS VESSEL CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Protection From Refrigerants § 195.30-15 Self-contained breathing apparatus. (a) Each vessel must have a self-contained breathing apparatus for...

  1. 46 CFR 96.30-15 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Self-contained breathing apparatus. 96.30-15 Section 96... VESSELS VESSEL CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Protection From Refrigerants § 96.30-15 Self-contained breathing apparatus. (a) Each vessel must have a self-contained breathing apparatus for...

  2. 46 CFR 96.30-15 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Self-contained breathing apparatus. 96.30-15 Section 96... VESSELS VESSEL CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Protection From Refrigerants § 96.30-15 Self-contained breathing apparatus. (a) Each vessel must have a self-contained breathing apparatus for...

  3. Shortness-of-Breath

    MedlinePlus

    ... can lead to shortness of breath include anxiety, panic attacks, anemia and even constipation. The experience of shortness ... are used to treat patients with anxiety or panic attacks. Other commonly used drugs include bronchodilators to widen ...

  4. Breath holding spell

    MedlinePlus

    ... such as Riley-Day syndrome or Rett syndrome Iron deficiency anemia A family history of breath holding spells ( ... tests may be done to check for an iron deficiency. Other tests that may be done include: EKG ...

  5. EXHALED BREATH ANALYSIS FOR HUMAN EXPOSURE RESEARCH

    EPA Science Inventory

    Exhaled breath collection and analysis has historically been used in environmental research studies to characterize exposures to volatile organic compounds. The use of this approach is based on the fact that many compounds present in blood are reflected in the breath, and that...

  6. Aerobic exercise before diving reduces venous gas bubble formation in humans

    PubMed Central

    Dujić, Željko; Duplančic, Darko; Marinovic-Terzić, Ivana; Baković, Darija; Ivančev, Vladimir; Valic, Zoran; Eterović, Davor; Petri, Nadan M; Wisløff, Ulrik; Brubakk, Alf O

    2004-01-01

    We have previously shown in a rat model that a single bout of high-intensity aerobic exercise 20h before a simulated dive reduces bubble formation and after the dive protects from lethal decompression sickness. The present study investigated the importance of these findings in man. Twelve healthy male divers were compressed in a hyperbaric chamber to 280kPa at a rate of 100kPamin−1 breathing air and remaining at pressure for 80min. The ascent rate was 9mmin−1 with a 7min stop at 130kPa. Each diver underwent two randomly assigned simulated dives, with or without preceding exercise. A single interval exercise performed 24h before the dive consisted of treadmill running at 90% of maximum heart rate for 3min, followed by exercise at 50% of maximum heart rate for 2min; this was repeated eight times for a total exercise period of 40min. Venous gas bubbles were monitored with an ultrasonic scanner every 20min for 80min after reaching surface pressure. The study demonstrated that a single bout of strenuous exercise 24h before a dive to 18 m of seawater significantly reduced the average number of bubbles in the pulmonary artery from 0.98 to 0.22 bubbles cm−2(P= 0.006) compared to dives without preceding exercise. The maximum bubble grade was decreased from 3 to 1.5 (P= 0.002) by pre-dive exercise, thereby increasing safety. This is the first report to indicate that pre-dive exercise may form the basis for a new way of preventing serious decompression sickness. PMID:14755001

  7. Control of Breathing During Mechanical Ventilation: Who Is the Boss?

    PubMed Central

    Williams, Kathleen; Hinojosa-Kurtzberg, Marina; Parthasarathy, Sairam

    2011-01-01

    Over the past decade, concepts of control of breathing have increasingly moved from being theoretical concepts to “real world” applied science. The purpose of this review is to examine the basics of control of breathing, discuss the bidirectional relationship between control of breathing and mechanical ventilation, and critically assess the application of this knowledge at the patient’s bedside. The principles of control of breathing remain under-represented in the training curriculum of respiratory therapists and pulmonologists, whereas the day-to-day bedside application of the principles of control of breathing continues to suffer from a lack of outcomes-based research in the intensive care unit. In contrast, the bedside application of the principles of control of breathing to ambulatory subjects with sleep-disordered breathing has out-stripped that in critically ill patients. The evolution of newer technologies, faster real-time computing abilities, and miniaturization of ventilator technology can bring the concepts of control of breathing to the bedside and benefit the critically ill patient. However, market forces, lack of scientific data, lack of research funding, and regulatory obstacles need to be surmounted. PMID:21333174

  8. 46 CFR 97.37-20 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Self-contained breathing apparatus. 97.37-20 Section 97... VESSELS OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 97.37-20 Self-contained breathing apparatus. (a) Lockers or spaces containing self-contained breathing apparatus shall be marked “SELF...

  9. 46 CFR 97.37-20 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Self-contained breathing apparatus. 97.37-20 Section 97... VESSELS OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 97.37-20 Self-contained breathing apparatus. (a) Lockers or spaces containing self-contained breathing apparatus shall be marked “SELF...

  10. Hyperbaric nitrogen prolongs breath-holding time in humans.

    PubMed

    Morooka, H; Wakasugi, Y; Shimamoto, H; Shibata, O; Sumikawa, K

    2000-09-01

    Either an increase in PaCO(2) or a decrease in PaO(2), can affect respiratory stimulation through respiratory centers, thus influencing breath-holding time (BHT). This study was designed to determine whether and how hyperbaric air could influence BHT in comparison with hyperbaric oxygen in humans. We studied 36 healthy volunteers in a multiplace hyperbaric chamber. BHT, pulse oximeter, and transcutaneous carbon dioxide tension were measured at 1 and 2.8 atmosphere absolute (ATA) in two groups. Group A (n = 20) breathed air. Group O (n = 16) breathed oxygen with a face mask (5 L/min). BHTs were 108 +/- 28 s at 1.0 ATA and 230 +/- 71 s at 2.8 ATA in Group A, and 137 +/- 48 s at 1.0 ATA and 180 +/- 52 s at 2.8 ATA in Group O. Transcutaneous carbon dioxide tension in Group A (59 +/- 2 mm Hg) was higher than that in Group O (54 +/- 2 mm Hg) at the end of maximal breath-holding at 2.8 ATA. The prolongation of BHT in hyperbaric air is significantly greater than that in hyperbaric oxygen. Breath-holding time is significantly prolonged in hyperbaric air than it is in hyperbaric oxygen. The mechanism involves the anesthetic effect of nitrogen suppressing the suffocating feeling during breath-holding.

  11. Breath-Holding Spells

    MedlinePlus

    ... reviewed: October 2016 More on this topic for: Parents Is It Normal for Children to Hold Their Breath? Taming Tempers Disciplining Your Child Disciplining Your Toddler Temper Tantrums Separation Anxiety View more About Us Contact Us Partners ...

  12. Psychophysiological effects of audiovisual stimuli during cycle exercise.

    PubMed

    Barreto-Silva, Vinícius; Bigliassi, Marcelo; Chierotti, Priscila; Altimari, Leandro R

    2018-05-01

    Immersive environments induced by audiovisual stimuli are hypothesised to facilitate the control of movements and ameliorate fatigue-related symptoms during exercise. The objective of the present study was to investigate the effects of pleasant and unpleasant audiovisual stimuli on perceptual and psychophysiological responses during moderate-intensity exercises performed on an electromagnetically braked cycle ergometer. Twenty young adults were administered three experimental conditions in a randomised and counterbalanced order: unpleasant stimulus (US; e.g. images depicting laboured breathing); pleasant stimulus (PS; e.g. images depicting pleasant emotions); and neutral stimulus (NS; e.g. neutral facial expressions). The exercise had 10 min of duration (2 min of warm-up + 6 min of exercise + 2 min of warm-down). During all conditions, the rate of perceived exertion and heart rate variability were monitored to further understanding of the moderating influence of audiovisual stimuli on perceptual and psychophysiological responses, respectively. The results of the present study indicate that PS ameliorated fatigue-related symptoms and reduced the physiological stress imposed by the exercise bout. Conversely, US increased the global activity of the autonomic nervous system and increased exertional responses to a greater degree when compared to PS. Accordingly, audiovisual stimuli appear to induce a psychophysiological response in which individuals visualise themselves within the story presented in the video. In such instances, individuals appear to copy the behaviour observed in the videos as if the situation was real. This mirroring mechanism has the potential to up-/down-regulate the cardiac work as if in fact the exercise intensities were different in each condition.

  13. Progress of air-breathing cathode in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Zejie; Mahadevan, Gurumurthy Dummi; Wu, Yicheng; Zhao, Feng

    2017-07-01

    Microbial fuel cell (MFC) is an emerging technology to produce green energy and vanquish the effects of environmental contaminants. Cathodic reactions are vital for high electrical power density generated from MFCs. Recently tremendous attentions were paid towards developing high performance air-breathing cathodes. A typical air-breathing cathode comprises of electrode substrate, catalyst layer, and air-diffusion layer. Prior researches demonstrated that each component influenced the performance of air-breathing cathode MFCs. This review summarized the progress in development of the individual component and elaborated main factors to the performance of air-breathing cathode.

  14. Does rhinoplasty improve nasal breathing?

    PubMed

    Xavier, Rui

    2010-08-01

    Rhinoplasty is a surgical procedure that aims to improve nasal aesthetics and nasal breathing. The aesthetic improvement of the nose is usually judged subjectively by the patient and the surgeon, but the degree of improvement of nasal obstruction is difficult to assess by clinical examination only. The measurement of peak nasal inspiratory flow (PNIF) is a reliable tool that has been shown to correlate with other objective methods of assessing nasal breathing and with patients' symptoms of nasal obstruction. Twenty-three consecutive patients undergoing rhinoplasty have been evaluated by measurement of PNIF before and after surgery. All but three patients had an increase in PNIF after surgery. The mean preoperative PNIF was 86.5 L/min and the mean postoperative PNIF was 123.0 L/min ( P < 0.001). Not surprisingly, the greatest improvement in PNIF was achieved when bilateral spreader grafts were used. This study suggests that rhinoplasty does improve nasal breathing. (c) Thieme Medical Publishers

  15. Effect of Time-of-Flight Information on PET/MR Reconstruction Artifacts: Comparison of Free-breathing versus Breath-hold MR-based Attenuation Correction.

    PubMed

    Delso, Gaspar; Khalighi, Mohammed; Ter Voert, Edwin; Barbosa, Felipe; Sekine, Tetsuro; Hüllner, Martin; Veit-Haibach, Patrick

    2017-01-01

    Purpose To evaluate the magnitude and anatomic extent of the artifacts introduced on positron emission tomographic (PET)/magnetic resonance (MR) images by respiratory state mismatch in the attenuation map. Materials and Methods The method was tested on 14 patients referred for an oncologic examination who underwent PET/MR imaging. The acquisition included standard PET and MR series for each patient, and an additional attenuation correction series was acquired by using breath hold. PET data were reconstructed with and without time-of-flight (TOF) information, first by using the standard free-breathing attenuation map and then again by using the additional breath-hold map. Two-tailed paired t testing and linear regression with 0 intercept was performed on TOF versus non-TOF and free-breathing versus breath-hold data for all detected lesions. Results Fluorodeoxyglucose-avid lesions were found in eight of the 14 patients included in the study. The uptake differences (maximum standardized uptake values) between PET reconstructions with free-breathing versus breath-hold attenuation ranged, for non-TOF reconstructions, from -18% to 26%. The corresponding TOF reconstructions yielded differences from -15% to 18%. Conclusion TOF information was shown to reduce the artifacts caused at PET/MR by respiratory mismatch between emission and attenuation data. © RSNA, 2016 Online supplemental material is available for this article.

  16. Medical Issues: Breathing

    MedlinePlus

    ... Funding Opportunities Research Conference Recruit for Clinical Trials Research Publications Spinraza Support & Care For Newly Diagnosed Care Packages Information Packets Equipment Pool Living With SMA Medical Issues Palliative Breathing Orthopedics Nutrition Equipment Daily Life At School At Home ...

  17. Breath test refusals

    DOT National Transportation Integrated Search

    2007-11-01

    The National Highway Traffic Safety Administration has found that the percentage of people who refuse to provide breath samples when arrested for Driving While Intoxicated (DWI) varies considerably across States, and this creates a concern in the cri...

  18. Increased Prevalence of Sleep-Disordered Breathing in Adults

    PubMed Central

    Peppard, Paul E.; Young, Terry; Barnet, Jodi H.; Palta, Mari; Hagen, Erika W.; Hla, Khin Mae

    2013-01-01

    Sleep-disordered breathing is a common disorder with a range of harmful sequelae. Obesity is a strong causal factor for sleep-disordered breathing, and because of the ongoing obesity epidemic, previous estimates of sleep-disordered breathing prevalence require updating. We estimated the prevalence of sleep-disordered breathing in the United States for the periods of 1988–1994 and 2007–2010 using data from the Wisconsin Sleep Cohort Study, an ongoing community-based study that was established in 1988 with participants randomly selected from an employed population of Wisconsin adults. A total of 1,520 participants who were 30–70 years of age had baseline polysomnography studies to assess the presence of sleep-disordered breathing. Participants were invited for repeat studies at 4-year intervals. The prevalence of sleep-disordered breathing was modeled as a function of age, sex, and body mass index, and estimates were extrapolated to US body mass index distributions estimated using data from the National Health and Nutrition Examination Survey. The current prevalence estimates of moderate to severe sleep-disordered breathing (apnea-hypopnea index, measured as events/hour, ≥15) are 10% (95% confidence interval (CI): 7, 12) among 30–49-year-old men; 17% (95% CI: 15, 21) among 50–70-year-old men; 3% (95% CI: 2, 4) among 30–49-year-old women; and 9% (95% CI: 7, 11) among 50–70 year-old women. These estimated prevalence rates represent substantial increases over the last 2 decades (relative increases of between 14% and 55% depending on the subgroup). PMID:23589584

  19. Influence of exercise on visceral pain: an explorative study in healthy volunteers

    PubMed Central

    van Weerdenburg, Laura JGM; Brock, Christina; Drewes, Asbjørn Mohr; van Goor, Harry; de Vries, Marjan; Wilder-Smith, Oliver HG

    2017-01-01

    Background and objectives Contradictory results have been found about the effect of different exercise modalities on pain. The aim of this study was to investigate the early effects of aerobic and isometric exercise on different types of experimental pain, including visceral pain, compared to an active control condition. Methods Fifteen healthy subjects (6 women, mean [standard deviation] age 25 [6.5] years) completed 3 interventions consisting of 20 minutes of aerobic cycling, 12 minutes of isometric knee extension and a deep breathing procedure as active control. At baseline and after each intervention, psychophysical tests were performed, including electrical stimulation of the esophagus, pressure pain thresholds and the cold pressor test as a measure for conditioned pain modulation. Participants completed the Medical Outcome Study Short-Form 36 and State-Trait Anxiety Inventory prior to the experiments. Data were analyzed using two-way repeated measures analysis of variance. Results No significant differences were found for the psychophysical tests after the interventions, compared to baseline pain tests and the control condition. Conclusion No hypoalgesic effect of aerobic and isometric exercise was found. The evidence for exercise-induced hypoalgesia appears to be not as consistent as initially thought, and caution is recommended when interpreting the effects of exercise on pain. PMID:28096689

  20. Carbon monoxide levels in athletes during exercise in an urban environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honigman, B.; Cromer, R.; Kurt, T.L.

    Thirty-six nonsmoking adults were tested on 7 days of different ambient CO pollution between December 1978 and March 1979. Only runners who jogged daily for longer than 6 months and averaged 21 miles/week were chosen. It was found that submaximal exercise can proceed safely with a net loss of expired breath CO at ambient CO levels of 6.5 ppM and below, while ambient levels above 6.5 ppM result in a net gain of biologically acquired CO. Further study was recommended. (JMT)

  1. Effects of respiratory alkalosis on human skeletal muscle metabolism at the onset of submaximal exercise.

    PubMed

    LeBlanc, P J; Parolin, M L; Jones, N L; Heigenhauser, G J F

    2002-10-01

    The purpose of this study was to examine the effects of respiratory alkalosis on human skeletal muscle metabolism at rest and during submaximal exercise. Subjects exercised on two occasions for 15 min at 55 % of their maximal oxygen uptake while either hyperventilating (R-Alk) or breathing normally (Con). Muscle biopsies were taken at rest and after 1 and 15 min of exercise. At rest, no effects on muscle metabolism were observed in response to R-Alk. In the first minute of exercise, there was a delayed activation of pyruvate dehydrogenase (PDH) in R-Alk compared with Con, resulting in a reduced rate of pyruvate oxidation. Also, glycogenolysis was higher in R-Alk compared with Con, which was attributed to a higher availability of the monoprotonated form of inorganic phosphate (P(i)), resulting in an elevated rate of pyruvate production. The mismatch between pyruvate production and its oxidation resulted in net lactate accumulation. These effects were not seen after 15 min of exercise, with no further differences in muscle metabolism between conditions. The results from the present study suggest that respiratory alkalosis may play an important role in lactate accumulation during the transition from rest to exercise in acute hypoxic conditions, but that other factors mediate lactate accumulation during steady-state exercise.

  2. Effects of respiratory alkalosis on human skeletal muscle metabolism at the onset of submaximal exercise

    PubMed Central

    LeBlanc, P J; Parolin, M L; Jones, N L; Heigenhauser, G J F

    2002-01-01

    The purpose of this study was to examine the effects of respiratory alkalosis on human skeletal muscle metabolism at rest and during submaximal exercise. Subjects exercised on two occasions for 15 min at 55 % of their maximal oxygen uptake while either hyperventilating (R-Alk) or breathing normally (Con). Muscle biopsies were taken at rest and after 1 and 15 min of exercise. At rest, no effects on muscle metabolism were observed in response to R-Alk. In the first minute of exercise, there was a delayed activation of pyruvate dehydrogenase (PDH) in R-Alk compared with Con, resulting in a reduced rate of pyruvate oxidation. Also, glycogenolysis was higher in R-Alk compared with Con, which was attributed to a higher availability of the monoprotonated form of inorganic phosphate (Pi), resulting in an elevated rate of pyruvate production. The mismatch between pyruvate production and its oxidation resulted in net lactate accumulation. These effects were not seen after 15 min of exercise, with no further differences in muscle metabolism between conditions. The results from the present study suggest that respiratory alkalosis may play an important role in lactate accumulation during the transition from rest to exercise in acute hypoxic conditions, but that other factors mediate lactate accumulation during steady-state exercise. PMID:12356901

  3. 46 CFR 154.1852 - Air breathing equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Air breathing equipment. 154.1852 Section 154.1852 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1852 Air breathing...

  4. 21 CFR 868.5280 - Breathing tube support.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Breathing tube support. 868.5280 Section 868.5280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5280 Breathing tube support. (a...

  5. 21 CFR 868.5280 - Breathing tube support.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Breathing tube support. 868.5280 Section 868.5280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5280 Breathing tube support. (a...

  6. 21 CFR 868.5240 - Anesthesia breathing circuit.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Anesthesia breathing circuit. 868.5240 Section 868.5240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5240 Anesthesia breathing circuit. (a...

  7. 21 CFR 868.5270 - Breathing system heater.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Breathing system heater. 868.5270 Section 868.5270 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5270 Breathing system heater. (a...

  8. 21 CFR 868.5250 - Breathing circuit circulator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Breathing circuit circulator. 868.5250 Section 868.5250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5250 Breathing circuit circulator. (a...

  9. 21 CFR 868.5270 - Breathing system heater.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Breathing system heater. 868.5270 Section 868.5270 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5270 Breathing system heater. (a...

  10. 21 CFR 868.5250 - Breathing circuit circulator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Breathing circuit circulator. 868.5250 Section 868.5250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5250 Breathing circuit circulator. (a...

  11. 21 CFR 868.5330 - Breathing gas mixer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Breathing gas mixer. 868.5330 Section 868.5330 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5330 Breathing gas mixer. (a...

  12. 21 CFR 868.5240 - Anesthesia breathing circuit.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Anesthesia breathing circuit. 868.5240 Section 868.5240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5240 Anesthesia breathing circuit. (a...

  13. 21 CFR 868.5280 - Breathing tube support.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breathing tube support. 868.5280 Section 868.5280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5280 Breathing tube support. (a...

  14. 21 CFR 868.5330 - Breathing gas mixer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breathing gas mixer. 868.5330 Section 868.5330 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5330 Breathing gas mixer. (a...

  15. 42 CFR 84.88 - Breathing bag test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Breathing bag test. 84.88 Section 84.88 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing...

  16. 42 CFR 84.88 - Breathing bag test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Breathing bag test. 84.88 Section 84.88 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing...

  17. 42 CFR 84.88 - Breathing bag test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Breathing bag test. 84.88 Section 84.88 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing...

  18. 42 CFR 84.88 - Breathing bag test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Breathing bag test. 84.88 Section 84.88 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing...

  19. Usefulness of Guided Breathing for Dose Rate-Regulated Tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han-Oh, Sarah; Department of Radiation Oncology, University of Maryland Medical System, Baltimore, MD; Yi, Byong Yong

    2009-02-01

    Purpose: To evaluate the usefulness of guided breathing for dose rate-regulated tracking (DRRT), a new technique to compensate for intrafraction tumor motion. Methods and Materials: DRRT uses a preprogrammed multileaf collimator sequence that tracks the tumor motion derived from four-dimensional computed tomography and the corresponding breathing signals measured before treatment. Because the multileaf collimator speed can be controlled by adjusting the dose rate, the multileaf collimator positions are adjusted in real time during treatment by dose rate regulation, thereby maintaining synchrony with the tumor motion. DRRT treatment was simulated with free, audio-guided, and audiovisual-guided breathing signals acquired from 23 lungmore » cancer patients. The tracking error and duty cycle for each patient were determined as a function of the system time delay (range, 0-1.0 s). Results: The tracking error and duty cycle averaged for all 23 patients was 1.9 {+-} 0.8 mm and 92% {+-} 5%, 1.9 {+-} 1.0 mm and 93% {+-} 6%, and 1.8 {+-} 0.7 mm and 92% {+-} 6% for the free, audio-guided, and audiovisual-guided breathing, respectively, for a time delay of 0.35 s. The small differences in both the tracking error and the duty cycle with guided breathing were not statistically significant. Conclusion: DRRT by its nature adapts well to variations in breathing frequency, which is also the motivation for guided-breathing techniques. Because of this redundancy, guided breathing does not result in significant improvements for either the tracking error or the duty cycle when DRRT is used for real-time tumor tracking.« less

  20. Syllable-Related Breathing in Infants in the Second Year of Life

    ERIC Educational Resources Information Center

    Parham, Douglas F.; Buder, Eugene H.; Oller, D. Kimbrough; Boliek, Carol A.

    2011-01-01

    Purpose: This study explored whether breathing behaviors of infants within the 2nd year of life differ between tidal breathing and breathing supporting single unarticulated syllables and canonical/articulated syllables. Method: Vocalizations and breathing kinematics of 9 infants between 53 and 90 weeks of age were recorded. A strict selection…

  1. Exercise Intensity Thresholds: Identifying the Boundaries of Sustainable Performance.

    PubMed

    Keir, Daniel A; Fontana, Federico Y; Robertson, Taylor C; Murias, Juan M; Paterson, Donald H; Kowalchuk, John M; Pogliaghi, Silvia

    2015-09-01

    Critical power (CP), respiratory compensation point (RCP), maximal lactate steady state (MLSS), and deoxyhemoglobin breakpoint ([HHb]BP) are alternative functional indices that are thought to demarcate the highest exercise intensity that can be tolerated for long durations. We tested the hypothesis that CP, RCP, MLSS, and [HHb]BP occur at the same metabolic intensity by examining the pulmonary oxygen uptake (V˙)O2p and power output (PO) associated with each "threshold." Twelve healthy men (mean ± SD age, 27 ± 3 yr) performed the following tests on a cycle ergometer: i) four to five exhaustive tests for determination of CP, ii) two to three 30-min constant-power trials for MLSS determination, and iii) a ramp incremental exercise test from which the V˙O2p and PO at RCP and [HHb]BP were determined. During each trial, breath-by-breath V˙O2p and ventilatory variables were measured with a metabolic cart and flowmeter turbine; near-infrared spectroscopy-derived [HHb] was monitored using a frequency domain multidistance system, and arterialized capillary blood lactate was sampled at regular intervals. There were no differences (P > 0.05) among the V˙O2p values associated with CP, RCP, MLSS, and [HHb]BP (CP, 3.29 ± 0.48; RCP, 3.34 ± 0.45; MLSS, 3.27 ± 0.44; [HHb]BP, 3.41 ± 0.46 L·min(-1)); however, the PO associated with RCP (262 ± 48 W) and [HHb]BP (273 ± 41 W) were greater (P < 0.05) than both CP (226 ± 45 W) and MLSS (223 ± 39 W), which, themselves, were not different (P > 0.05). Although the standard methods for determination of CP, RCP, MLSS, and [HHb]BP are different, these indices occur at the same V˙O2p, suggesting that i) they may manifest as a result of similar physiological phenomenon and ii) each provides a valid delineation between tolerable and intolerable constant-power exercise.

  2. 46 CFR 197.450 - Breathing gas tests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... taken at the connection point to the distribution system— (1) Every 6 months; and (2) After every repair or modification. (b) Purchased supplies of breathing mixtures supplied to a diver are checked before... commencement of diving operations, at the umbilical or underwater breathing apparatus connection point for the...

  3. Breathing efficiency during inspiratory threshold loading in patients with chronic obstructive pulmonary disease.

    PubMed

    Baarends, E M; Schols, A M; Nusmeier, C M; van der Grinten, C P; Wouters, E F

    1998-05-01

    Patients with chronic obstructive pulmonary disease (COPD) demonstrate an increased oxygen cost of breathing. It is as yet unclear whether this is related to a decreased breathing efficiency. The aim of the present study was to compare breathing efficiency in 16 patients with COPD (11 men, five women) and 16 healthy elderly subjects (seven men, nine women), and to investigate a possible relationship between breathing efficiency and resting energy expenditure (REE). REE was measured using a ventilated hood system. Breathing efficiency was assessed by measuring oxygen consumption (V'O2), mean inspiratory mouth pressure (MIP) and flow during breathing at rest and subsequently during breathing against an inspiratory threshold (40% of maximal inspiratory pressure). During loaded breathing there was a significant increase in V'O2, MIP, and external work of breathing compared with unloaded breathing in both groups. As intended, ventilation did not increase significantly during the breathing efficiency test in the patients with COPD. The breathing efficiency (median, range) of the patients with COPD was similar (3.7%, 1.4-8.7%) to that of the healthy elderly subjects (3.2%, 1.7-8.3%). Breathing efficiency was not correlated with REE in either group. In the present study, in which dynamic hyperinflation was probably prevented, no difference in breathing efficiency was found between healthy elderly subjects and COPD patients when breathing against an external inspiratory threshold. Furthermore, breathing efficiency was not related to REE in both groups.

  4. Breathing training on lower esophageal sphincter as a complementary treatment of gastroesophageal reflux disease (GERD): a systematic review.

    PubMed

    Casale, M; Sabatino, L; Moffa, A; Capuano, F; Luccarelli, V; Vitali, M; Ribolsi, M; Cicala, M; Salvinelli, F

    2016-11-01

    Gastroesophageal reflux disease (GERD) represents one of the most common gastrointestinal disorders, but is still a challenge to cure. Proton pump inhibitors (PPIs) are currently the GERD's standard treatment, although not successful in all patients; some concerns have been raised regarding their long term consumption. Recently, some studies showed the benefits of inspiratory muscle training in increasing the lower esophageal sphincter pressure in patients affected by GERD, thereby reducing their symptoms. Relevant published studies were searched in Pubmed, Google Scholar, Ovid or Medical Subject Headings using the following keywords: "GERD" and physiotherapy", "GERD" and "exercise", "GERD" and "breathing", "GERD and "training". At the end of our selection process, four publications have been included for systematic review. All of them were prospective controlled studies, mainly based on the training of the diaphragm muscle. GERD symptoms, pH-manometry values and PPIs usage were assessed. Among the non-surgical, non-pharmacological treatment modalities, the breathing training on diaphragm could play an important role in selected patients to manage the symptoms of GERD.

  5. Sleep-disordered breathing in epilepsy: epidemiology, mechanisms, and treatment.

    PubMed

    Sivathamboo, Shobi; Perucca, Piero; Velakoulis, Dennis; Jones, Nigel C; Goldin, Jeremy; Kwan, Patrick; O'Brien, Terence J

    2018-04-01

    Epilepsy is a group of neurological conditions in which there is a pathological and enduring predisposition to generate recurrent seizures. Evidence over the last few decades suggests that epilepsy may be associated with increased sleep-disordered breathing, which may contribute towards sleep fragmentation, daytime somnolence, reduced seizure control, and cardiovascular-related morbidity and mortality. Chronic sleep-disordered breathing can result in loss of gray matter and cause deficits to memory and global cognitive function. Sleep-disordered breathing is a novel and independent predictor of sudden cardiac death and, as such, may be involved in the mechanisms leading to sudden unexpected death in epilepsy. Despite this, the long-term consequences of sleep-disordered breathing in epilepsy remain unknown, and there are no guidelines for screening or treating this population. There is currently insufficient evidence to indicate continuous positive airway pressure (CPAP) for the primary or secondary prevention of cardiovascular disease, and recent evidence has failed to show any reduction of fatal or nonfatal cardiovascular endpoints. Treatment of sleep-disordered breathing may potentially improve seizure control, daytime somnolence, and neurocognitive outcomes, but few studies have examined this relationship. In this review, we examine sleep-disordered breathing in epilepsy, and discuss the potential effect of epilepsy treatments. We consider the role of CPAP and other interventions for sleep-disordered breathing and discuss their implications for epilepsy management.

  6. A chlorate candle/lithium hydroxide personal breathing apparatus

    NASA Technical Reports Server (NTRS)

    Martin, F. E.

    1972-01-01

    A portable coal mine rescue and survival equipment is reported that consists of a chlorate candle with a lithium hydroxide carbon-dioxide absorbent for oxygen generation, a breathing bag and tubing to conduct breathing to and from the man. A plastic hood incorporating a mouth piece for communication provides also eye protection and prevents inhalation through the nose. Manned testing of a prototype system demonstrated the feasibility of this closed circuit no-maintenance breathing apparatus that provides for good voice communication.

  7. Applications of breath gas analysis in medicine

    NASA Astrophysics Data System (ADS)

    Amann, Anton; Poupart, Guy; Telser, Stefan; Ledochowski, Maximilian; Schmid, Alex; Mechtcheriakov, Sergei

    2004-12-01

    Volatile organic compounds (VOCs) in exhaled breath gas provide valuable information about the subjects' physiological and pathophysiological condition. Proton-transfer-reaction mass spectrometry (PTR-MS) allows rapid and online measurements of these substances. We present results of three studies illustrating the potential of breath gas analysis by PTR-MS in various contexts: long-time online monitoring of VOCs in sleeping subjects suggests that VOC profiles are related to sleep stages. Analysis of VOC concentrations in the breath of carbohydrate malabsorbers emphasizes the role played by bacteria in the gut. Finally, we demonstrate the large intra- and intersubject concentration variability of VOCs by considering one particular mass.

  8. Does nebulized fentanyl relieve dyspnea during exercise in healthy man?

    PubMed Central

    Kotrach, Houssam G.; Bourbeau, Jean

    2015-01-01

    Few therapies exist for the relief of dyspnea in restrictive lung disorders. Accumulating evidence suggests that nebulized opioids selective for the mu-receptor subtype may relieve dyspnea by modulating intrapulmonary opioid receptor activity. Our respective primary and secondary objectives were to test the hypothesis that nebulized fentanyl (a mu-opioid receptor agonist) relieves dyspnea during exercise in the presence of abnormal restrictive ventilatory constraints and to identify the physiological mechanisms of this improvement. In a randomized, double-blind, placebo-controlled crossover study, we examined the effect of 250 μg nebulized fentanyl, chest wall strapping (CWS), and their interaction on detailed physiological and perceptual responses to constant work rate cycle exercise (85% of maximum incremental work rate) in 14 healthy, fit young men. By design, CWS decreased vital capacity by ∼20% and mimicked the negative consequences of a mild restrictive lung disorder on exercise endurance time and on dyspnea, breathing pattern, dynamic operating lung volumes, and diaphragmatic electromyographic and respiratory muscle function during exercise. Compared with placebo under both unrestricted control and CWS conditions, nebulized fentanyl had no effect on exercise endurance time, integrated physiological response to exercise, sensory intensity, unpleasantness ratings of exertional dyspnea. Our results do not support a role for intrapulmonary opioids in the neuromodulation of exertional dyspnea in health nor do they provide a physiological rationale for the use of nebulized fentanyl in the management of dyspnea due to mild restrictive lung disorders, specifically those arising from abnormalities of the chest wall and not affiliated with airway inflammation. PMID:26031762

  9. Cerebral blood flow and metabolism during exercise: implications for fatigue.

    PubMed

    Secher, Neils H; Seifert, Thomas; Van Lieshout, Johannes J

    2008-01-01

    During exercise: the Kety-Schmidt-determined cerebral blood flow (CBF) does not change because the jugular vein is collapsed in the upright position. In contrast, when CBF is evaluated by (133)Xe clearance, by flow in the internal carotid artery, or by flow velocity in basal cerebral arteries, a approximately 25% increase is detected with a parallel increase in metabolism. During activation, an increase in cerebral O(2) supply is required because there is no capillary recruitment within the brain and increased metabolism becomes dependent on an enhanced gradient for oxygen diffusion. During maximal whole body exercise, however, cerebral oxygenation decreases because of eventual arterial desaturation and marked hyperventilation-related hypocapnia of consequence for CBF. Reduced cerebral oxygenation affects recruitment of motor units, and supplemental O(2) enhances cerebral oxygenation and work capacity without effects on muscle oxygenation. Also, the work of breathing and the increasing temperature of the brain during exercise are of importance for the development of so-called central fatigue. During prolonged exercise, the perceived exertion is related to accumulation of ammonia in the brain, and data support the theory that glycogen depletion in astrocytes limits the ability of the brain to accelerate its metabolism during activation. The release of interleukin-6 from the brain when exercise is prolonged may represent a signaling pathway in matching the metabolic response of the brain. Preliminary data suggest a coupling between the circulatory and metabolic perturbations in the brain during strenuous exercise and the ability of the brain to access slow-twitch muscle fiber populations.

  10. 21 CFR 868.5250 - Breathing circuit circulator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breathing circuit circulator. 868.5250 Section 868.5250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... valves in an open position and reducing mechanical dead space and resistance in the breathing circuit. (b...

  11. 21 CFR 868.5250 - Breathing circuit circulator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Breathing circuit circulator. 868.5250 Section 868.5250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... valves in an open position and reducing mechanical dead space and resistance in the breathing circuit. (b...

  12. Postoperative inspiratory muscle training in addition to breathing exercises and early mobilization improves oxygenation in high-risk patients after lung cancer surgery: a randomized controlled trial.

    PubMed

    Brocki, Barbara Cristina; Andreasen, Jan Jesper; Langer, Daniel; Souza, Domingos Savio R; Westerdahl, Elisabeth

    2016-05-01

    The aim was to investigate whether 2 weeks of inspiratory muscle training (IMT) could preserve respiratory muscle strength in high-risk patients referred for pulmonary resection on the suspicion of or confirmed lung cancer. Secondarily, we investigated the effect of the intervention on the incidence of postoperative pulmonary complications. The study was a single-centre, parallel-group, randomized trial with assessor blinding and intention-to-treat analysis. The intervention group (IG, n = 34) underwent 2 weeks of postoperative IMT twice daily with 2 × 30 breaths on a target intensity of 30% of maximal inspiratory pressure, in addition to standard postoperative physiotherapy. Standard physiotherapy in the control group (CG, n = 34) consisted of breathing exercises, coughing techniques and early mobilization. We measured respiratory muscle strength (maximal inspiratory/expiratory pressure, MIP/MEP), functional performance (6-min walk test), spirometry and peripheral oxygen saturation (SpO2), assessed the day before surgery and again 3-5 days and 2 weeks postoperatively. Postoperative pulmonary complications were evaluated 2 weeks after surgery. The mean age was 70 ± 8 years and 57.5% were males. Thoracotomy was performed in 48.5% (n = 33) of cases. No effect of the intervention was found regarding MIP, MEP, lung volumes or functional performance at any time point. The overall incidence of pneumonia was 13% (n = 9), with no significant difference between groups [IG 6% (n = 2), CG 21% (n = 7), P = 0.14]. An improved SpO2 was found in the IG on the third and fourth postoperative days (Day 3: IG 93.8 ± 3.4 vs CG 91.9 ± 4.1%, P = 0.058; Day 4: IG 93.5 ± 3.5 vs CG 91 ± 3.9%, P = 0.02). We found no association between surgical procedure (thoracotomy versus thoracoscopy) and respiratory muscle strength, which was recovered in both groups 2 weeks after surgery. Two weeks of additional postoperative IMT, compared with standard physiotherapy alone, did not preserve

  13. Control of gill ventilation and air-breathing in the bowfin amia calva

    PubMed

    Hedrick; Jones

    1999-01-01

    The purpose of this study was to investigate the roles of branchial and gas bladder reflex pathways in the control of gill ventilation and air-breathing in the bowfin Amia calva. We have previously determined that bowfin use two distinct air-breathing mechanisms to ventilate the gas bladder: type I air breaths are characterized by exhalation followed by inhalation, are stimulated by aquatic or aerial hypoxia and appear to regulate O2 gas exchange; type II air breaths are characterized by inhalation alone and possibly regulate gas bladder volume and buoyancy. In the present study, we test the hypotheses (1) that gill ventilation and type I air breaths are controlled by O2-sensitive chemoreceptors located in the branchial region, and (2) that type II air breaths are controlled by gas bladder mechanosensitive stretch receptors. Hypothesis 1 was tested by examining the effects of partial or complete branchial denervation of cranial nerves IX and X to the gill arches on gill ventilation frequency (fg) and the proportion of type I air breaths during normoxia and hypoxia; hypothesis II was tested by gas bladder inflation and deflation. Following complete bilateral branchial denervation, fg did not differ from that of sham-operated control fish; in addition, fg was not significantly affected by aquatic hypoxia in sham-operated or denervated fish. In sham-operated fish, aquatic hypoxia significantly increased overall air-breathing frequency (fab) and the percentage of type I breaths. In fish with complete IX-X branchial denervation, fab was also significantly increased during aquatic hypoxia, but there were equal percentages of type I and type II air breaths. Branchial denervation did not affect the frequency of type I air breaths during aquatic hypoxia. Gas bladder deflation via an indwelling catheter resulted in type II breaths almost exclusively; furthermore, fab was significantly correlated with the volume removed from the gas bladder, suggesting a volume

  14. The physiological effects of slow breathing in the healthy human

    PubMed Central

    Russo, Marc A.; Santarelli, Danielle M.; O’Rourke, Dean

    2017-01-01

    Slow breathing practices have been adopted in the modern world across the globe due to their claimed health benefits. This has piqued the interest of researchers and clinicians who have initiated investigations into the physiological (and psychological) effects of slow breathing techniques and attempted to uncover the underlying mechanisms. The aim of this article is to provide a comprehensive overview of normal respiratory physiology and the documented physiological effects of slow breathing techniques according to research in healthy humans. The review focuses on the physiological implications to the respiratory, cardiovascular, cardiorespiratory and autonomic nervous systems, with particular focus on diaphragm activity, ventilation efficiency, haemodynamics, heart rate variability, cardiorespiratory coupling, respiratory sinus arrhythmia and sympathovagal balance. The review ends with a brief discussion of the potential clinical implications of slow breathing techniques. This is a topic that warrants further research, understanding and discussion. Key points Slow breathing practices have gained popularity in the western world due to their claimed health benefits, yet remain relatively untouched by the medical community. Investigations into the physiological effects of slow breathing have uncovered significant effects on the respiratory, cardiovascular, cardiorespiratory and autonomic nervous systems. Key findings include effects on respiratory muscle activity, ventilation efficiency, chemoreflex and baroreflex sensitivity, heart rate variability, blood flow dynamics, respiratory sinus arrhythmia, cardiorespiratory coupling, and sympathovagal balance. There appears to be potential for use of controlled slow breathing techniques as a means of optimising physiological parameters that appear to be associated with health and longevity, and that may extend to disease states; however, there is a dire need for further research into the area. Educational aims To provide

  15. Are questionnaires reliable in diagnosing sleep-disordered breathing in university students?

    PubMed

    Migacz, E; Wichniak, A; Kukwa, W

    2017-11-01

    This study aimed to screen young adults for sleep-disordered breathing, and compare those with high and low risk for sleep-disordered breathing. A survey based on the Berlin questionnaire was completed by 330 university students, and the results were used to divide them into sleep-disordered breathing positive and sleep-disordered breathing negative groups. A representative group was selected from each cohort (positive group, n = 16; negative group, n = 21), and assessed with sleep study, ENT examination, the Nose Obstruction Symptom Evaluation scale, and the Epworth Sleepiness Scale. Sleep-disordered breathing prevalence was 11.2 per cent in the questionnaire and 24 per cent according to the sleep study. The sleep-disordered breathing positive and negative groups significantly differed in terms of coexisting sleep-disordered breathing symptoms. There were no significant differences between the positive and negative groups with regard to sleep study parameters (apnoea/hypopnoea index, respiratory disturbance index, oxygen desaturation index, snoring intensity) and the Epworth Sleepiness Scale. Subjective and objective diagnostic tools revealed that sleep-disordered breathing is a common problem among young adults.

  16. Sleep-Disordered Breathing and Mortality: A Prospective Cohort Study

    PubMed Central

    Punjabi, Naresh M.; Caffo, Brian S.; Goodwin, James L.; Gottlieb, Daniel J.; Newman, Anne B.; O'Connor, George T.; Rapoport, David M.; Redline, Susan; Resnick, Helaine E.; Robbins, John A.; Shahar, Eyal; Unruh, Mark L.; Samet, Jonathan M.

    2009-01-01

    Background Sleep-disordered breathing is a common condition associated with adverse health outcomes including hypertension and cardiovascular disease. The overall objective of this study was to determine whether sleep-disordered breathing and its sequelae of intermittent hypoxemia and recurrent arousals are associated with mortality in a community sample of adults aged 40 years or older. Methods and Findings We prospectively examined whether sleep-disordered breathing was associated with an increased risk of death from any cause in 6,441 men and women participating in the Sleep Heart Health Study. Sleep-disordered breathing was assessed with the apnea–hypopnea index (AHI) based on an in-home polysomnogram. Survival analysis and proportional hazards regression models were used to calculate hazard ratios for mortality after adjusting for age, sex, race, smoking status, body mass index, and prevalent medical conditions. The average follow-up period for the cohort was 8.2 y during which 1,047 participants (587 men and 460 women) died. Compared to those without sleep-disordered breathing (AHI: <5 events/h), the fully adjusted hazard ratios for all-cause mortality in those with mild (AHI: 5.0–14.9 events/h), moderate (AHI: 15.0–29.9 events/h), and severe (AHI: ≥30.0 events/h) sleep-disordered breathing were 0.93 (95% CI: 0.80–1.08), 1.17 (95% CI: 0.97–1.42), and 1.46 (95% CI: 1.14–1.86), respectively. Stratified analyses by sex and age showed that the increased risk of death associated with severe sleep-disordered breathing was statistically significant in men aged 40–70 y (hazard ratio: 2.09; 95% CI: 1.31–3.33). Measures of sleep-related intermittent hypoxemia, but not sleep fragmentation, were independently associated with all-cause mortality. Coronary artery disease–related mortality associated with sleep-disordered breathing showed a pattern of association similar to all-cause mortality. Conclusions Sleep-disordered breathing is associated with

  17. 46 CFR 197.450 - Breathing gas tests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Breathing gas tests. 197.450 Section 197.450 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE OCCUPATIONAL SAFETY AND HEALTH STANDARDS GENERAL PROVISIONS Commercial Diving Operations Periodic Tests and Inspections of Diving Equipment § 197.450 Breathing gas tests. The diving...

  18. Energy metabolism of medium-chain triglycerides versus carbohydrates during exercise.

    PubMed

    Décombaz, J; Arnaud, M J; Milon, H; Moesch, H; Philippossian, G; Thélin, A L; Howald, H

    1983-01-01

    Medium-chain triglycerides (MCT) are known to be rapidly digested and oxidized. Their potential value as a source of dietary energy during exercise was compared with that of maltodextrins (MD). Twelve subjects exercised for 1 h on a bicycle ergometer (60% VO2 max), 1 h after the test meal (1MJ). The metabolism of MCT was followed using 1-13C-octanoate (Oc) as tracer and U-13C-glucose (G) was added to the 13C-naturally enriched MD. After MCT ingestion no insulin peak was observed with some accumulation of ketone bodies (KB), blood levels not exceeding 1 mM. Total losses of KB during exercise in urine, sweat and as breath acetone were small (less than 0.2 mmol X h-1). Hence, the influence of KB loss and storage on gas exchange data was negligible. The partition of fat and carbohydrate utilization during exercise as obtained by indirect calorimetry was practically the same after the MCT and the CHO meals. Oxidation over the 2-h period was 30% of dose for Oc and 45% for G. Glycogen decrements in the Vastus lateralis muscle were equal. It appears that with normal carbohydrate stores, a single meal of MCT or CHO did not alter the contribution of carbohydrates during 1 h of high submaximal exercise. The moderate ketonemia after MCT, despite substantial oxidation of this fat, led to no difference in muscle glycogen sparing between the diets.

  19. Cardiorespiratory responses during underwater and land treadmill exercise in college athletes.

    PubMed

    Brubaker, Peter; Ozemek, Cemal; Gonzalez, Alimer; Wiley, Stephen; Collins, Gregory

    2011-08-01

    Underwater treadmill (UTM) exercise is being used with increased frequency for rehabilitation of injured athletes, yet there has been little research conducted on this modality. To determine the cardiorespiratory responses of UTM vs land treadmill (LTM) exercise, particularly with respect to the relationship between heart rate (HR) and oxygen consumption (VO2). This quantitative original research took place in sports medicine and athletic training facilities at Wake Forest University. 11 Wake Forest University student athletes (20.8 ± 0.6 y, 6 women and 5 men). All participants completed the UTM and LTM exercise-testing protocols in random order. After 5 min of standing rest, both UTM and LTM protocols had 4 stages of increasing belt speed (2.3, 4.9, 7.3, and 9.6 km/h) followed by 3 exercise stages at 9.6 km/h with increasing water-jet resistance (30%, 40%, and 50% of jet capacity) or inclines (1%, 2%, and 4% grade). A Cosmed K4b2 device with Polar monitor was used to collect HR, ventilation (Ve), tidal volume (TV), breathing frequency (Bf), and VO2 every minute. Ratings of perceived exertion (RPE) were also obtained each minute. There was no significant difference between UTM and LTM for VO2 at rest or during any stage of exercise except stage 3. Furthermore, there were no significant differences between UTM and LTM for HR, Ve, Bf, and RPE on any exercise stage. Linear regression of HR vs VO2, across all stages of exercise, indicates a similar relationship in these variables during UTM (r = .94, y = .269x - 10.86) and LTM (r = .95, y = .291x - 12.98). These data indicate that UTM and LTM exercise elicits similar cardiorespiratory responses and that HR can be used to guide appropriate exercise intensity for college athletes during UTM.

  20. Effects of hypercapnia and hypoxemia on fetal breathing after decortication.

    PubMed

    Ioffe, S; Jansen, A H; Chernick, V

    1986-09-01

    The effects of hypercapnia and hypoxemia on breathing movements were studied in 12 chronically decorticated fetal sheep, 127-140 days gestation. The fetal state of consciousness was defined in terms of activity of the lateral rectus and nuchal muscles. Arterial blood pressure was monitored. Fetal breathing was determined by integrated diaphragmatic electromyogram (EMG) and analyzed in terms of inspiratory time (TI), expiratory time (TE), electrical equivalent of tidal volume (EVT), breath interval (TT), duty cycle (TI/TT), mean inspiratory flow equivalent (EVT/TI), and instantaneous ventilation equivalent (EVT/TT). Fetal breathing occurred only during episodes of rapid-eye movements, and the response to hypercapnia consisted of an increase in EVT, TI, EVE, and EVT/TI and a decrease in the coefficient of variation of all measured parameters. Induction of hypoxia during episodes of spontaneous fetal breathing produced a decrease in the rate of breathing and an increase in EVT and TI with no change in the variability of all parameters studied. Since similar responses to hypercapnia and hypoxemia are seen in the intact fetus, we conclude that the cerebral cortex has no obvious effect on the chemical control of fetal breathing.