Science.gov

Sample records for breeder reactor based

  1. Fast Breeder Reactor studies

    SciTech Connect

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts.

  2. Breeder Reactors, Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Mitchell, Walter, III; Turner, Stanley E.

    The theory of breeder reactors in relationship to a discussion of fission is presented. Different kinds of reactors are characterized by the cooling fluids used, such as liquid metal, gas, and molten salt. The historical development of breeder reactors over the past twenty-five years includes specific examples of reactors. The location and a brief…

  3. POWER BREEDER REACTOR

    DOEpatents

    Monson, H.O.

    1960-11-22

    An arrangement is offered for preventing or minimizing the contraction due to temperature rise, of a reactor core comprising vertical fuel rods in sodium. Temperature rise of the fuel rods would normally make them move closer together by inward bowing, with a resultant undesired increase in reactivity. According to the present invention, assemblies of the fuel rods are laterally restrained at the lower ends of their lower blanket sections and just above the middle of the fuel sections proper of the rods, and thus the fuel sections move apart, rather than together, with increase in temperature.

  4. NUCLEAR REACTOR FUEL-BREEDER FUEL ELEMENT

    DOEpatents

    Currier, E.L. Jr.; Nicklas, J.H.

    1962-08-14

    A fuel-breeder fuel element was developed for a nuclear reactor wherein discrete particles of fissionable material are dispersed in a matrix of fertile breeder material. The fuel element combines the advantages of a dispersion type and a breeder-type. (AEC)

  5. Fast breeder reactor protection system

    DOEpatents

    van Erp, J.B.

    1973-10-01

    Reactor protection is provided for a liquid-metal-fast breeder reactor core by measuring the coolant outflow temperature from each of the subassemblies of the core. The outputs of the temperature sensors from a subassembly region of the core containing a plurality of subassemblies are combined in a logic circuit which develops a scram alarm if a predetermined number of the sensors indicate an over temperature condition. The coolant outflow from a single subassembly can be mixed with the coolant outflow from adjacent subassemblies prior to the temperature sensing to increase the sensitivity of the protection system to a single subassembly failure. Coherence between the sensors can be required to discriminate against noise signals. (Official Gazette)

  6. ORNL breeder reactor safety quarterly technical progress report, July-September 1980

    SciTech Connect

    Fontana, M H; Wantland, J L

    1981-01-01

    Six tasks are reported upon: THORS (Thermal-Hydraulic Out-of-Reactor Safety) program, environmental assessment of alternate FBR fuels, model evaluation of breeder reactor radioactivity releases, nuclear safety information center activities, breeder reactor reliability data analysis center activities, and central data base for breeder reactor safety codes. (DLC)

  7. Light-Water Breeder Reactor

    DOEpatents

    Beaudoin, B. R.; Cohen, J. D.; Jones, D. H.; Marier, Jr, L. J.; Raab, H. F.

    1972-06-20

    Described is a light-water-moderated and -cooled nuclear breeder reactor of the seed-blanket type characterized by core modules comprising loosely packed blanket zones enriched with fissile fuel and axial zoning in the seed and blanket regions within each core module. Reactivity control over lifetime is achieved by axial displacement of movable seed zones without the use of poison rods in the embodiment illustrated. The seed is further characterized by a hydrogen-to-uranium-233 atom ratio in the range 10 to 200 and a uranium-233-to-thorium-232 atom ratio ranging from 0.012 to 0.200. The seed occupies from 10 to 35 percent of the core volume in the form of one or more individual islands or annuli. (NSA 26: 55130)

  8. Light-water breeder reactors: preliminary safety and environmental information document. Volume III

    SciTech Connect

    Not Available

    1980-01-01

    Information is presented concerning prebreeder and breeder reactors based on light-water-breeder (LWBR) Type 1 modules; light-water backfit prebreeder supplying advanced breeder; light-water backfit prebreeder/seed-blanket breeder system; and light-water backfit low-gain converter using medium-enrichment uranium, supplying a light-water backfit high-gain converter.

  9. Universal Fast Breeder Reactor Subassembly Counter manual

    SciTech Connect

    Menlove, H.O.; Eccleston, G.W.; Swansen, J.E.; Goris, P.; Abedin-Zadeh, R.; Ramalho, A.

    1984-08-01

    A neutron coincidence counter has been designed for the measurement of fast breeder reactor fuel assemblies. This assay system can accommodate the full range of geometries and masses found in fast breeder subassemblies under IAEA safeguards. The system's high-performance capability accommodates high plutonium loadings of up to 16 kg. This manual describes the system and its operation and gives performance and calibration parameters for typical applications.

  10. Experimental Breeder Reactor I Preservation Plan

    SciTech Connect

    Julie Braun

    2006-10-01

    Experimental Breeder Reactor I (EBR I) is a National Historic Landmark located at the Idaho National Laboratory, a Department of Energy laboratory in southeastern Idaho. The facility is significant for its association and contributions to the development of nuclear reactor testing and development. This Plan includes a structural assessment of the interior and exterior of the EBR I Reactor Building from a preservation, rather than an engineering stand point and recommendations for maintenance to ensure its continued protection.

  11. The materials of fast breeder reactors

    NASA Astrophysics Data System (ADS)

    Olander, Donald R.

    1980-02-01

    The most difficult problems affecting commercialization of the liquid-metal fast breeder reactor (LMFBR) concern the behavior of its materials of construction in the thermal and irradiation environment in which the device must operate. The responses which these conditions provoke in the fuel, cladding, and core structures depend upon complex interactions of many physical and chemical processes.

  12. Safety design of prototype fast breeder reactor

    SciTech Connect

    Bhoje, S.B.; Chetal, S.C.; Singh, Om Pal

    2004-07-01

    The basic design and safety design of Prototype Fast Breeder Reactor (PFBR) is presented. Design aspects covered include safety classification, seismic categorization, design basis conditions, design safety limits, core physics, core monitoring, shutdown system, decay heat removal system, protection against sodium leaks and tube leaks in steam generator, plant layout, radiation protection, event analysis, beyond design basis accidents, integrity of primary containment, reactor containment building and design pressure resulting from core disruptive accident. The measures provided in the design represent a robust case of the safety of the reactor. (authors)

  13. BREEDER: a microcomputer program for financial analysis of a large-scale prototype breeder reactor

    SciTech Connect

    Giese, R.F.

    1984-04-01

    This report describes a microcomputer-based, single-project financial analysis program: BREEDER. BREEDER is a user-friendly model designed to facilitate frequent and rapid analyses of the financial implications associated with alternative design and financing strategies for electric generating plants and large-scale prototype breeder (LSPB) reactors in particular. The model has proved to be a useful tool in establishing cost goals for LSPB reactors. The program is available on floppy disks for use on an IBM personal computer (or IBM look-a-like) running under PC-DOS or a Kaypro II transportable computer running under CP/M (and many other CP/M machines). The report documents version 1.5 of BREEDER and contains a user's guide. The report also includes a general overview of BREEDER, a summary of hardware requirements, a definition of all required program inputs, a description of all algorithms used in performing the construction-period and operation-period analyses, and a summary of all available reports. The appendixes contain a complete source-code listing, a cross-reference table, a sample interactive session, several sample runs, and additional documentation of the net-equity program option.

  14. Fast Breeder Reactors in Sweden: Vision and Reality.

    PubMed

    Fjaestad, Maja

    2015-01-01

    The fast breeder is a type of nuclear reactor that aroused much attention in the 1950s and '60s. Its ability to produce more nuclear fuel than it consumes offered promises of cheap and reliable energy. Sweden had advanced plans for a nuclear breeder program, but canceled them in the middle of the 1970s with the rise of nuclear skepticism. The article investigates the nuclear breeder as a technological vision. The nuclear breeder reactor is an example of a technological future that did not meet its industrial expectations. But that does not change the fact that the breeder was an influential technology. Decisions about the contemporary reactors were taken with the idea that in a foreseeable future they would be replaced with the efficient breeder. The article argues that general themes in the history of the breeder reactor can deepen our understanding of the mechanisms behind technological change.

  15. Feasibility study on the thorium fueled boiling water breeder reactor

    SciTech Connect

    PetrusTakaki, N.

    2012-07-01

    The feasibility of (Th,U)O 2 fueled, boiling water breeder reactor based on conventional BWR technology has been studied. In order to determine the potential use of water cooled thorium reactor as a competitive breeder, this study evaluated criticality, breeding and void reactivity coefficient in response to changes made in MFR and fissile enrichments. The result of the study shows that while using light water as moderator, low moderator to fuel volume ratio (MFR=0.5), it was possible to breed fissile fuel in negative void reactivity condition. However the burnup value was lower than the value of the current LWR. On the other hand, heavy water cooled reactor shows relatively wider feasible breeding region, which lead into possibility of designing a core having better neutronic and economic performance than light water with negative void reactivity coefficient. (authors)

  16. Analysis of UF6 breeder reactor power plants

    NASA Technical Reports Server (NTRS)

    Clement, J. D.; Rust, J. H.

    1976-01-01

    Gaseous UF6 fueled breeder reactor design and technical applications of such concepts are summarized. Special attention was given to application in nuclear power plants and to reactor efficiency and safety factors.

  17. A Fusion Breeder Reactor Based on a Catalyzed D-D Spherical Torus.

    DTIC Science & Technology

    1986-08-08

    cooling and fissile breeding. The need for tritium breeding is eliminated by the use of’ a catalyzed 0-0 fuel cycle. Analysis of this novel reactor...in heavy water which flows through the first wall and blanket providing both cooling and fissile breeding. The need I for tritium breeding is...studies in that: (1) a deuterium fuel cycle is used to eliminate the : need to breed tritium ; (2) a compact tokamak (spherical torus) is used as a

  18. Simulation and Design of an Automatic Controller for a Fast Breeder Nuclear Reactor Power Plant.

    DTIC Science & Technology

    BREEDER REACTORS, *REACTOR CONTROL, *REACTOR REACTIVITY, COMPUTER PROGRAMMING, NEUTRON TRANSPORT THEORY, REACTOR FUELS, REACTOR FUEL CLADDING , HEAT TRANSFER, COMPUTER PROGRAMS, LOGIC CIRCUITS, THESES.

  19. Water cooled breeder program summary report (LWBR (Light Water Breeder Reactor) development program)

    SciTech Connect

    Not Available

    1987-10-01

    The purpose of the Department of Energy Water Cooled Breeder Program was to demonstrate pratical breeding in a uranium-233/thorium fueled core while producing electrical energy in a commercial water reactor generating station. A demonstration Light Water Breeder Reactor (LWBR) was successfully operated for more than 29,000 effective full power hours in the Shippingport Atomic Power Station. The reactor operated with an availability factor of 76% and had a gross electrical output of 2,128,943,470 kilowatt hours. Following operation, the expended core was examined and no evidence of any fuel element defects was found. Nondestructive assay of 524 fuel rods determined that 1.39 percent more fissile fuel was present at the end of core life than at the beginning, proving that breeding had occurred. This demonstrates the existence of a vast source of electrical energy using plentiful domestic thorium potentially capable of supplying the entire national need for many centuries. To build on the successful design and operation of the Shippingport Breeder Core and to provide the technology to implement this concept, several reactor designs of large breeders and prebreeders were developed for commercial-sized plants of 900--1000 Mw(e) net. This report summarizes the Water Cooled Breeder Program from its inception in 1965 to its completion in 1987. Four hundred thirty-six technical reports are referenced which document the work conducted as part of this program. This work demonstrated that the Light Water Breeder Reactor is a viable alternative as a PWR replacement in the next generation of nuclear reactors. This transition would only require a minimum of change in design and fabrication of the reactor and operation of the plant.

  20. Deployment Scenario of Heavy Water Cooled Thorium Breeder Reactor

    SciTech Connect

    Mardiansah, Deby; Takaki, Naoyuki

    2010-06-22

    Deployment scenario of heavy water cooled thorium breeder reactor has been studied. We have assumed to use plutonium and thorium oxide fuel in water cooled reactor to produce {sup 233}U which will be used in thorium breeder reactor. The objective is to analysis the potential of water cooled Th-Pu reactor for replacing all of current LWRs especially in Japan. In this paper, the standard Pressurize Water Reactor (PWR) has been designed to produce 3423 MWt; (i) Th-Pu PWR, (ii) Th-Pu HWR (MFR = 1.0) and (iii) Th-Pu HWR (MFR 1.2). The properties and performance of the core were investigated by using cell and core calculation code. Th-Pu PWR or HWR produces {sup 233}U to introduce thorium breeder reactor. The result showed that to replace all (60 GWe) LWR by thorium breeder reactor within a period of one century, Th-Pu oxide fueled PWR has insufficient capability to produce necessary amount of {sup 233}U and Th-Pu oxide fueled HWR has almost enough potential to produce {sup 233}U but shows positive void reactivity coefficient.

  1. Shutdown and Closure of the Experimental Breeder Reactor - II

    SciTech Connect

    Michelbacher, John A.; Baily, Carl E.; Baird, Daniel K.; Henslee, S. Paul; Knight, Collin J.; Rosenberg, Kenneth E.

    2002-07-01

    The Department of Energy mandated the termination of the Integral Fast Reactor (IFR) Program, effective October 1, 1994. To comply with this decision, Argonne National Laboratory-West (ANL-W) prepared a plan providing detailed requirements to maintain the Experimental Breeder Reactor - II (EBR-II) in a radiologically and industrially safe condition, including removal of all irradiated fuel assemblies from the reactor plant, and removal and stabilization of the primary and secondary sodium, a liquid metal used to transfer heat within the reactor plant. The EBR-II is a pool-type reactor. The primary system contained approximately 325 m{sup 3} (86,000 gallons) of sodium and the secondary system contained 50 m{sup 3} (13,000 gallons). In order to properly dispose of the sodium in compliance with the Resource Conservation and Recovery Act (RCRA), a facility was built to react the sodium to a solid sodium hydroxide monolith for burial as a low level waste in a land disposal facility. Deactivation of a liquid metal fast breeder reactor (LMFBR) presents unique concerns. Residual amounts of sodium remaining in circuits and components must be passivated, inerted, or removed to preclude future concerns with sodium-air reactions that could generate potentially explosive mixtures of hydrogen and leave corrosive compounds. The passivation process being implemented utilizes a moist carbon dioxide gas that generates a passive layer of sodium carbonate/sodium bicarbonate over any quantities of residual sodium. Tests being conducted will determine the maximum depths of sodium that can be reacted using this method, defining the amount that must be dealt with later to achieve RCRA clean closure. Deactivation of the EBR-II complex is on schedule for a March, 2002, completion. Each system associated with EBR-II has an associated lay-up plan defining the system end state, as well as instructions for achieving the lay-up condition. A goal of system-by-system lay-up is to minimize

  2. Designing a SCADA system simulator for fast breeder reactor

    NASA Astrophysics Data System (ADS)

    Nugraha, E.; Abdullah, A. G.; Hakim, D. L.

    2016-04-01

    SCADA (Supervisory Control and Data Acquisition) system simulator is a Human Machine Interface-based software that is able to visualize the process of a plant. This study describes the results of the process of designing a SCADA system simulator that aims to facilitate the operator in monitoring, controlling, handling the alarm, accessing historical data and historical trend in Nuclear Power Plant (NPP) type Fast Breeder Reactor (FBR). This research used simulation to simulate NPP type FBR Kalpakkam in India. This simulator was developed using Wonderware Intouch software 10 and is equipped with main menu, plant overview, area graphics, control display, set point display, alarm system, real-time trending, historical trending and security system. This simulator can properly simulate the principle of energy flow and energy conversion process on NPP type FBR. This SCADA system simulator can be used as training media for NPP type FBR prospective operators.

  3. Clinch River Breeder Reactor Plant Project: construction schedule

    SciTech Connect

    Purcell, W.J.; Martin, E.M.; Shivley, J.M.

    1982-01-01

    The construction schedule for the Clinch River Breeder Reactor Plant and its evolution are described. The initial schedule basis, changes necessitated by the evaluation of the overall plant design, and constructability improvements that have been effected to assure adherence to the schedule are presented. The schedule structure and hierarchy are discussed, as are tools used to define, develop, and evaluate the schedule.

  4. Nuclear breeder reactor fuel element with silicon carbide getter

    DOEpatents

    Christiansen, David W.; Karnesky, Richard A.

    1987-01-01

    An improved cesium getter 28 is provided in a breeder reactor fuel element or pin in the form of an extended surface area, low density element formed in one embodiment as a helically wound foil 30 located with silicon carbide, and located at the upper end of the fertile material upper blanket 20.

  5. Fission-suppressed hybrid reactor: the fusion breeder

    SciTech Connect

    Moir, R.W.; Lee, J.D.; Coops, M.S.

    1982-12-01

    Results of a conceptual design study of a /sup 233/U-producing fusion breeder are presented. The majority of the study was devoted to conceptual design and evaluation of a fission-suppressed blanket and to fuel cycle issues such as fuel reprocessing, fuel handling, and fuel management. Studies in the areas of fusion engineering, reactor safety, and economics were also performed.

  6. Structural materials for breeder reactor cores and coolant circuits

    SciTech Connect

    Diercks, D.R.

    1984-02-01

    The structural components of principal interest in LMFBR cores and cooling circuits include the reactor vessel, primary and secondary piping, intermediate heat exchanger (IHX), and steam generator. Load-bearing components inside the vessel, among these the fuel cladding and duct, are also included. The operating conditions present in a fast-breeder nuclear reactor impose a number of requirements on the mechanical, physical, and neutronic properties of the materials used to construct these components.

  7. Fuel Summary Report: Shippingport Light Water Breeder Reactor - Rev. 2

    SciTech Connect

    Olson, Gail Lynn; Mc Cardell, Richard Keith; Illum, Douglas Brent

    2002-09-01

    The Shippingport Light Water Breeder Reactor (LWBR) was developed by Bettis Atomic Power Laboratory to demonstrate the potential of a water-cooled, thorium oxide fuel cycle breeder reactor. The LWBR core operated from 1977-82 without major incident. The fuel and fuel components suffered minimal damage during operation, and the reactor testing was deemed successful. Extensive destructive and nondestructive postirradiation examinations confirmed that the fuel was in good condition with minimal amounts of cladding deformities and fuel pellet cracks. Fuel was placed in wet storage upon arrival at the Expended Core Facility, then dried and sent to the Idaho Nuclear Technology and Engineering Center for underground dry storage. It is likely that the fuel remains in good condition at its current underground dry storage location at the Idaho Nuclear Technology and Engineering Center. Reports show no indication of damage to the core associated with shipping, loading, or storage.

  8. Mechanical properties of irradiated fast breeder reactor cladding and ducts

    SciTech Connect

    Johnson, G.D.; Hunter, C.W.

    1983-02-01

    Austenitic stainless steels are being used for various core components in Liquid Metal Fast Breeder Reactors. Twenty percent cold worked Type 316 stainless steel is being used for both fuel pin cladding and ducts in the Fast Flux Test Facility. Safe and reliable operation of breeder reactors requires a characterization of the effects of fast neutron irradiation and environment on the mechanical properties of the cladding and duct material. Nearly 1400 tests have been conducted on unirradiated and irradiated cladding and duct samples under conditions relevant to reactor operational and transient events. Six different types of tests conducted on cladding and duct samples are described and the effects of irradiation on the properties are discussed.

  9. COUPLED FAST-THERMAL POWER BREEDER REACTOR

    DOEpatents

    Avery, R.

    1961-07-18

    A nuclear reactor having a region operating predominantly on fast neutrons and another region operating predominantly on slow neutrons is described. The fast region is a plutonium core and the slow region is a natural uranium blanket around the core. Both of these regions are free of moderator. A moderating reflector surrounds the uranium blanket. The moderating material and thickness of the reflector are selected so that fissions in the uranium blanket make a substantial contribution to the reactivity of the reactor.

  10. Instrumentation and control improvements at Experimental Breeder Reactor II

    SciTech Connect

    Christensen, L.J.; Planchon, H.P.

    1993-03-01

    The purpose of this paper is to describe instrumentation and control (I&C) system improvements at Experimental Breeder Reactor 11 (EBR-11). The improvements are focused on three objectives; to keep the reactor and balance of plant (BOP) I&C systems at a high level of reliability, to provide diagnostic systems that can provide accurate information needed for analysis of fuel performance, and to provide systems that will be prototypic of I&C systems of the next generation of liquid metal reactor (LMR) plants.

  11. Instrumentation and control improvements at Experimental Breeder Reactor II

    SciTech Connect

    Christensen, L.J.; Planchon, H.P.

    1993-01-01

    The purpose of this paper is to describe instrumentation and control (I C) system improvements at Experimental Breeder Reactor 11 (EBR-11). The improvements are focused on three objectives; to keep the reactor and balance of plant (BOP) I C systems at a high level of reliability, to provide diagnostic systems that can provide accurate information needed for analysis of fuel performance, and to provide systems that will be prototypic of I C systems of the next generation of liquid metal reactor (LMR) plants.

  12. Gas core reactors for actinide transmutation and breeder applications

    NASA Technical Reports Server (NTRS)

    Clement, J. D.; Rust, J. H.

    1978-01-01

    This work consists of design power plant studies for four types of reactor systems: uranium plasma core breeder, uranium plasma core actinide transmuter, UF6 breeder and UF6 actinide transmuter. The plasma core systems can be coupled to MHD generators to obtain high efficiency electrical power generation. A 1074 MWt UF6 breeder reactor was designed with a breeding ratio of 1.002 to guard against diversion of fuel. Using molten salt technology and a superheated steam cycle, an efficiency of 39.2% was obtained for the plant and the U233 inventory in the core and heat exchangers was limited to 105 Kg. It was found that the UF6 reactor can produce high fluxes (10 to the 14th power n/sq cm-sec) necessary for efficient burnup of actinide. However, the buildup of fissile isotopes posed severe heat transfer problems. Therefore, the flux in the actinide region must be decreased with time. Consequently, only beginning-of-life conditions were considered for the power plant design. A 577 MWt UF6 actinide transmutation reactor power plant was designed to operate with 39.3% efficiency and 102 Kg of U233 in the core and heat exchanger for beginning-of-life conditions.

  13. MOLTEN PLUTONIUM FUELED FAST BREEDER REACTOR

    DOEpatents

    Kiehn, R.M.; King, L.D.P.; Peterson, R.E.; Swickard, E.O. Jr.

    1962-06-26

    A description is given of a nuclear fast reactor fueled with molten plutonium containing about 20 kg of plutonium in a tantalum container, cooled by circulating liquid sodium at about 600 to 650 deg C, having a large negative temperature coefficient of reactivity, and control rods and movable reflector for criticality control. (AEC)

  14. Steam generator for liquid metal fast breeder reactor

    DOEpatents

    Gillett, James E.; Garner, Daniel C.; Wineman, Arthur L.; Robey, Robert M.

    1985-01-01

    Improvements in the design of internal components of J-shaped steam generators for liquid metal fast breeder reactors. Complex design improvements have been made to the internals of J-shaped steam generators which improvements are intended to reduce tube vibration, tube jamming, flow problems in the upper portion of the steam generator, manufacturing complexities in tube spacer attachments, thermal stripping potentials and difficulties in the weld fabrication of certain components.

  15. Recommendations concerning models and parameters best suited to breeder reactor environmental radiological assessments

    SciTech Connect

    Miller, C.W.; Baes, C.F. III; Dunning, D.E. Jr.

    1980-05-01

    Recommendations are presented concerning the models and parameters best suited for assessing the impact of radionuclide releases to the environment by breeder reactor facilities. These recommendations are based on the model and parameter evaluations performed during this project to date. Seven different areas are covered in separate sections.

  16. Mechanical design of a light water breeder reactor

    DOEpatents

    Fauth, Jr., William L.; Jones, Daniel S.; Kolsun, George J.; Erbes, John G.; Brennan, John J.; Weissburg, James A.; Sharbaugh, John E.

    1976-01-01

    In a light water reactor system using the thorium-232 -- uranium-233 fuel system in a seed-blanket modular core configuration having the modules arranged in a symmetrical array surrounded by a reflector blanket region, the seed regions are disposed for a longitudinal movement between the fixed or stationary blanket region which surrounds each seed region. Control of the reactor is obtained by moving the inner seed region thus changing the geometry of the reactor, and thereby changing the leakage of neutrons from the relatively small seed region into the blanket region. The mechanical design of the Light Water Breeder Reactor (LWBR) core includes means for axially positioning of movable fuel assemblies to achieve the neutron economy required of a breeder reactor, a structure necessary to adequately support the fuel modules without imposing penalties on the breeding capability, a structure necessary to support fuel rods in a closely packed array and a structure necessary to direct and control the flow of coolant to regions in the core in accordance with the heat transfer requirements.

  17. Breeding nuclear fuels with accelerators: replacement for breeder reactors

    SciTech Connect

    Grand, P.; Takahashi, H.

    1984-01-01

    One application of high energy particle accelerators has been, and still is, the production of nuclear fuel for the nuclear energy industry; tantalizing because it would create a whole new industry. This approach to producing fissile from fertile material was first considered in the early 1950's in the context of the nuclear weapons program. A considerable development effort was expended before discovery of uranium ore in New Mexico put an end to the project. Later, US commitment to the Liquid Metal Fast Breeder Reactors (LMFBR) killed any further interest in pursuing accelerator breeder technology. Interest in the application of accelerators to breed nuclear fuels, and possibly burn nuclear wastes, revived in the late 1970's, when the LMFBR came under attack during the Carter administration. This period gave the opportunity to revisit the concept in view of the present state of the technology. This evaluation and the extensive calculational modeling of target designs that have been carried out are promising. In fact, a nuclear fuel cycle of Light Water Reactors and Accelerator Breeders is competitive to that of the LMFBR. At this time, however, the relative abundance of uranium reserves vs electricity demand and projected growth rate render this study purely academic. It will be for the next generation of accelerator builders to demonstate the competitiveness of this technology versus that of other nuclear fuel cycles, such as LMFBR's or Fusion Hybrid systems. 22 references, 1 figure, 5 tables.

  18. Fuel Summary Report: Shippingport Light Water Breeder Reactor

    SciTech Connect

    Illum, D.B.; Olson, G.L.; McCardell, R.K.

    1999-01-01

    The Shippingport Light Water Breeder Reactor (LWBR) was a small water cooled, U-233/Th-232 cycle breeder reactor developed by the Pittsburgh Naval Reactors to improve utilization of the nation's nuclear fuel resources in light water reactors. The LWBR was operated at Shippingport Atomic Power Station (APS), which was a Department of Energy (DOE) (formerly Atomic Energy Commission)-owned reactor plant. Shippingport APS was the first large-scale, central-station nuclear power plant in the United States and the first plant of such size in the world operated solely to produce electric power. The Shippingport LWBR was operated successfully from 1977 to 1982 at the APS. During the five years of operation, the LWBR generated more than 29,000 effective full power hours (EFPH) of energy. After final shutdown, the 39 core modules of the LWBR were shipped to the Expended Core Facility (ECF) at Naval Reactors Facility at the Idaho National Engineering and Environmental Laboratory (INEEL). At ECF, 12 of the 39 modules were dismantled and about 1000 of more than 17,000 rods were removed from the modules of proof-of-breeding and fuel performance testing. Some of the removed rods were kept at ECF, some were sent to Argonne National Laboratory-West (ANL-W) in Idaho and some to ANL-East in Chicago for a variety of physical, chemical and radiological examinations. All rods and rod sections remaining after the experiments were shipped back to ECF, where modules and loose rods were repackaged in liners for dry storage. In a series of shipments, the liners were transported from ECF to Idaho Nuclear Technology Engineering Center (INTEC), formerly the Idaho Chemical Processing Plant (ICPP). The 47 liners containing the fully-rodded and partially-derodded core modules, the loose rods, and the rod scraps, are now stored in underground dry wells at CPP-749.

  19. Liquid Metal Fast Breeder Reactors: a bibliography

    SciTech Connect

    Raleigh, H.D.

    1980-11-01

    This bibliogralphy includes 5465 selected citations on LMFBR development. The citations were compiled from the DOE Energy Data Base covering the period January 1978 (EDB File No. 78R1087) through August 1980 (EDB File No. 80C79142). The references are to reports from the Department of Energy and its contractors, reports from other government or private organizations, and journal articles, books, conference papers, and monographs from US originators. Report citations are arranged alphanumerically by report number; nonreport literature citations are arranged chronologically. Corporate, Personal Author, Subject, and Report Number Indexes are provided in Volume 2.

  20. Liquid Metal Fast Breeder Reactors: a bibliography

    SciTech Connect

    Raleigh, H.D.

    1980-11-01

    This bibliography includes 5465 selected citations on LMFBR development. The citations were compiled from the DOE Energy Data Base covering the period January 1978 (EDB File No. 78R1087) through August 1980 (EDB File No. 80C79142). The references are to reports from the Department of Energy and its contractors, reports from other government or private organizations, and journal articles, books, conference papers, and monographs from US originators. Report citations are arranged alphanumerically by report number; nonreport literature citations are arranged chronologically. Corporate, Personal Author, Subject, and Report Number Indexes are provided in Volume 2.

  1. Safety and core design of large liquid-metal cooled fast breeder reactors

    NASA Astrophysics Data System (ADS)

    Qvist, Staffan Alexander

    In light of the scientific evidence for changes in the climate caused by greenhouse-gas emissions from human activities, the world is in ever more desperate need of new, inexhaustible, safe and clean primary energy sources. A viable solution to this problem is the widespread adoption of nuclear breeder reactor technology. Innovative breeder reactor concepts using liquid-metal coolants such as sodium or lead will be able to utilize the waste produced by the current light water reactor fuel cycle to power the entire world for several centuries to come. Breed & burn (B&B) type fast reactor cores can unlock the energy potential of readily available fertile material such as depleted uranium without the need for chemical reprocessing. Using B&B technology, nuclear waste generation, uranium mining needs and proliferation concerns can be greatly reduced, and after a transitional period, enrichment facilities may no longer be needed. In this dissertation, new passively operating safety systems for fast reactors cores are presented. New analysis and optimization methods for B&B core design have been developed, along with a comprehensive computer code that couples neutronics, thermal-hydraulics and structural mechanics and enables a completely automated and optimized fast reactor core design process. In addition, an experiment that expands the knowledge-base of corrosion issues of lead-based coolants in nuclear reactors was designed and built. The motivation behind the work presented in this thesis is to help facilitate the widespread adoption of safe and efficient fast reactor technology.

  2. UF6 breeder reactor power plants for electric power generation

    NASA Technical Reports Server (NTRS)

    Rust, J. H.; Clement, J. D.; Hohl, F.

    1976-01-01

    The reactor concept analyzed is a U-233F6 core surrounded by a molten salt (Li(7)F, BeF2, ThF4) blanket. Nuclear survey calculations were carried out for both spherical and cylindrical geometries. Thermodynamic cycle calculations were performed for a variety of Rankine cycles. A conceptual design is presented along with a system layout for a 1000 MW stationary power plant. Advantages of the gas core breeder reactor (GCBR) are as follows: (1) high efficiency; (2) simplified on-line reprocessing; (3) inherent safety considerations; (4) high breeding ratio; (5) possibility of burning all or most of the long-lived nuclear waste actinides; and (6) possibility of extrapolating the technology to higher temperatures and MHD direct conversion.

  3. UF6 breeder reactor power plants for electric power generation

    NASA Technical Reports Server (NTRS)

    Rust, J. H.; Clement, J. D.; Hohl, F.

    1976-01-01

    The reactor concept analyzed is a U-233F6 core surrounded by a molten salt (Li(7)F, BeF2, ThF4) blanket. Nuclear survey calculations were carried out for both spherical and cylindrical geometries. Thermodynamic cycle calculations were performed for a variety of Rankine cycles. A conceptual design is presented along with a system layout for a 1000 MW stationary power plant. Advantages of the gas core breeder reactor (GCBR) are as follows: (1) high efficiency; (2) simplified on-line reprocessing; (3) inherent safety considerations; (4) high breeding ratio; (5) possibility of burning all or most of the long-lived nuclear waste actinides; and (6) possibility of extrapolating the technology to higher temperatures and MHD direct conversion.

  4. EBR-2 (Experimental Breeder Reactor-2) containment seismic analysis

    SciTech Connect

    Gale, J.G.; Lehto, W.K.

    1990-01-01

    The Experimental Breeder Reactor-2 (EBR-2) is a liquid metal reactor located at the Argonne National Laboratory near Idaho Falls, Idaho. At the time the EBR-2 was designed and constructed, there were no engineering society or federal guide lines specifically directed toward the seismic design of reactor containment structures; hence, static analysis techniques were used in the design. With the increased focus on safety of reactor and fuel reprocessing facilities, Argonne has initiated a program to analyze its existing facilities for seismic integrity using current Department of Energy guidelines and industry consensus standards. A seismic analysis of the EBR-2 containment building has been performed using finite-element analysis techniques. The containment building is essentially a vertical right cylindrical steel shell with heads on both ends. The structure is unique in that the interior of the steel shell is lined with reinforced concrete. The actual containment function of the building is served by the steel shell; whereas the function of the concrete liner is to serve as a missile shield and a thermal insulating shield to protect the steel containment shell from internally generated missiles and fires. Model development and structural evaluation of the EBR-2 containment building are discussed in this paper. 7 refs., 8 figs.

  5. Probabilistic risk analysis of HCDA scenarios in a pool-type breeder reactor

    SciTech Connect

    Page, R.J.; Mueller, C.J.; Rothman, A.B.; Chasanov, M.; Sevy, R.; Marchaterre, J.F.; Froehle, P.J.; Pedersen, D.R.; Farhadieh, R.

    1985-01-01

    One potential design for the future generation of nuclear reactors is that of the breeder reactor. As with present-day reactors there is the necessity for demonstrating that such a reactor will be operable with very small risk to the public. As a result, a probabilistic risk analysis (PRA) will be a valuable tool in the design of future nuclear plants. This paper presents a risk analysis performed to evaluate hypothetical core disruptive accidents (HCDAs) in a large, pool-type LMFBR, and how it was used to evaluate the reduction in risk brought about by the addition of various safety-related design options. It was shown that the base design met the NRC risk guidelines with some margin, and that a design option featuring emergency cooling of the reactor vessel greatly reduced the risk.

  6. Accident analysis of heavy water cooled thorium breeder reactor

    SciTech Connect

    Yulianti, Yanti; Su’ud, Zaki; Takaki, Naoyuki

    2015-04-16

    Thorium has lately attracted considerable attention because it is accumulating as a by-product of large scale rare earth mining. The objective of research is to analyze transient behavior of a heavy water cooled thorium breeder that is designed by Tokai University and Tokyo Institute of Technology. That is oxide fueled, PWR type reactor with heavy water as primary coolant. An example of the optimized core has relatively small moderator to fuel volume ratio (MFR) of 0.6 and the characteristics of the core are burn-up of 67 GWd/t, breeding ratio of 1.08, burn-up reactivity loss during cycles of < 0.2% dk/k, and negative coolant reactivity coefficient. One of the nuclear reactor accidents types examined here is Unprotected Transient over Power (UTOP) due to withdrawing of the control rod that result in the positive reactivity insertion so that the reactor power will increase rapidly. Another accident type is Unprotected Loss of Flow (ULOF) that caused by failure of coolant pumps. To analyze the reactor accidents, neutron distribution calculation in the nuclear reactor is the most important factor. The best expression for the neutron distribution is the Boltzmann transport equation. However, solving this equation is very difficult so that the space-time diffusion equation is commonly used. Usually, space-time diffusion equation is solved by employing a point kinetics approach. However, this approach is less accurate for a spatially heterogeneous nuclear reactor and the nuclear reactor with quite large reactivity input. Direct method is therefore used to solve space-time diffusion equation which consider spatial factor in detail during nuclear reactor accident simulation. Set of equations that obtained from full implicit finite-difference method is solved by using iterative methods. The indication of UTOP accident is decreasing macroscopic absorption cross-section that results large external reactivity, and ULOF accident is indicated by decreasing coolant flow. The

  7. Accident analysis of heavy water cooled thorium breeder reactor

    NASA Astrophysics Data System (ADS)

    Yulianti, Yanti; Su'ud, Zaki; Takaki, Naoyuki

    2015-04-01

    Thorium has lately attracted considerable attention because it is accumulating as a by-product of large scale rare earth mining. The objective of research is to analyze transient behavior of a heavy water cooled thorium breeder that is designed by Tokai University and Tokyo Institute of Technology. That is oxide fueled, PWR type reactor with heavy water as primary coolant. An example of the optimized core has relatively small moderator to fuel volume ratio (MFR) of 0.6 and the characteristics of the core are burn-up of 67 GWd/t, breeding ratio of 1.08, burn-up reactivity loss during cycles of < 0.2% dk/k, and negative coolant reactivity coefficient. One of the nuclear reactor accidents types examined here is Unprotected Transient over Power (UTOP) due to withdrawing of the control rod that result in the positive reactivity insertion so that the reactor power will increase rapidly. Another accident type is Unprotected Loss of Flow (ULOF) that caused by failure of coolant pumps. To analyze the reactor accidents, neutron distribution calculation in the nuclear reactor is the most important factor. The best expression for the neutron distribution is the Boltzmann transport equation. However, solving this equation is very difficult so that the space-time diffusion equation is commonly used. Usually, space-time diffusion equation is solved by employing a point kinetics approach. However, this approach is less accurate for a spatially heterogeneous nuclear reactor and the nuclear reactor with quite large reactivity input. Direct method is therefore used to solve space-time diffusion equation which consider spatial factor in detail during nuclear reactor accident simulation. Set of equations that obtained from full implicit finite-difference method is solved by using iterative methods. The indication of UTOP accident is decreasing macroscopic absorption cross-section that results large external reactivity, and ULOF accident is indicated by decreasing coolant flow. The

  8. Optimization of fast breeder reactors employing innovative liquid metal coolants

    SciTech Connect

    Pilarski, Stevan

    2007-07-01

    In this paper we propose a comparative assessment of fast breeder reactor core concepts employing Pb, Pb- Mg and Pb-{sup 7}Li as primary coolants and oxide and nitride fuels. Starting from a common reference core to make the comparison relevant, each coolant candidate is associated to an optimized design that takes into account its specific physical properties. For each core, we perform a neutronic analysis and an assessment of its safety potential. In comparison with the case of Pb, the use of Pb-Mg and Pb-{sup 7}Li increases the void reactivity effect. On the other hand, the breeding gain also increases, and the Doppler effect is enhanced, leading to a favorable behaviour concerning safety. (author)

  9. Light-water breeder reactor (LWBR Development Program)

    DOEpatents

    Beaudoin, B.R.; Cohen, J.D.; Jones, D.H.; Marier, L.J. Jr.; Raab, H.F.

    1972-06-20

    Described is a light-water-moderated and -cooled nuclear breeder reactor of the seed-blanket type characterized by core modules comprising loosely packed blanket zones enriched with fissile fuel and axial zoning in the seed and blanket regions within each core module. Reactivity control over lifetime is achieved by axial displacement of movable seed zones without the use of poison rods in the embodiment illustrated. The seed is further characterized by a hydrogen-to-uranium-233 atom ratio in the range 10 to 200 and a uranium-233-to-thorium-232 atom ratio ranging from 0.012 to 0.200. The seed occupies from 10 to 35 percent of the core volume in the form of one or more individual islands or annuli. (NSA 26: 55130)

  10. Comparative assessment of nuclear fuel cycles. Light-water reactor once-through, classical fast breeder reactor, and symbiotic fast breeder reactor cycles

    SciTech Connect

    Hardie, R.W.; Barrett, R.J.; Freiwald, J.G.

    1980-06-01

    The object of the Alternative Nuclear Fuel Cycle Study is to perform comparative assessments of nuclear power systems. There are two important features of this study. First, this evaluation attempts to encompass the complete, integrated fuel cycle from mining of uranium ore to disposal of waste rather than isolated components. Second, it compares several aspects of each cycle - energy use, economics, technological status, proliferation, public safety, and commercial potential - instead of concentrating on one or two assessment areas. This report presents assessment results for three fuel cycles. These are the light-water reactor once-through cycle, the fast breeder reactor on the classical plutonium cycle, and the fast breeder reactor on a symbiotic cycle using plutonium and /sup 233/U as fissile fuels. The report also contains a description of the methodology used in this assessment. Subsequent reports will present results for additional fuel cycles.

  11. Impact of Solid Breeder Materials on Tritium Breeding in a Hybrid Reactor

    NASA Astrophysics Data System (ADS)

    Übeyli, Mustafa

    2006-06-01

    Tritium breeding ratio (TBR) is one of the important parameters in design of a Deuterium-Tritium (DT) driven hybrid reactor. Therefore, selection of tritium breeder materials to be used in the blanket is very crucial. In this study, tritium breeding potential of the solid breeders, namely, or in a (DT) fusion driven hybrid reactor fuelled with or was investigated. For this purpose in addition to these solid breeders, different types of liquid breeders, namely natural lithium, Flibe, Flinabe and were used to examine the tritium breeding behavior of liquid-solid breeder couple combinations. Numerical calculations were carried out by using Scale 4.3. According to numerical results, the blanket with fuel using natural lithium as coolant and as solid breeder had the highest TBR value.

  12. Special topics reports for the reference tandem mirror fusion breeder. Volume 2. Reactor safety assessment

    SciTech Connect

    Maya, I.; Hoot, C.G.; Wong, C.P.C.; Schultz, K.R.; Garner, J.K.; Bradbury, S.J.; Steele, W.G.; Berwald, D.H.

    1984-09-01

    The safety features of the reference fission suppressed fusion breeder reactor are presented. These include redundancy and overcapacity in primary coolant system components to minimize failure probability, an improved valve location logic to provide for failed component isolation, and double-walled coolant piping and steel guard vessel protection to further limit the extent of any leak. In addition to the primary coolant and decay heat removal system, reactor safety systems also include an independent shield cooling system, the module safety/fuel transfer coolant system, an auxiliary first wall cooling system, a psssive dump tank cooling system based on the use of heat pipes, and several lithium fire suppression systems. Safety system specifications are justified based on the results of thermal analysis, event tree construction, consequence calculations, and risk analysis. The result is a reactor design concept with an acceptably low probability of a major radioactivity release. Dose consequences of maximum credible accidents appear to be below 10CFR100 regulatory limits.

  13. The Case Against the Fast Breeder Reactor: An Anti-Nuclear Establishment View.

    ERIC Educational Resources Information Center

    Lovins, Amory B.

    1973-01-01

    Environmentalists lobby points out that hazards which may result from mistakes in proposed fast breeder reactor for additional energy can be detrimental for mankind. Such projects must be carefully planned and cautiously executed. (PS)

  14. Preliminary study on nano- and micro-composite sol-gel based alumina coatings on structural components of lead-bismuth eutectic cooled fast breeder reactors

    NASA Astrophysics Data System (ADS)

    Dou, Peng; Kasada, Ryuta

    2011-02-01

    In order to protect the structural components of lead-bismuth eutectic cooled fast breeder reactors from liquid metal corrosion, Al 2O 3 nano- and micro-composite coatings were developed using an improved sol-gel process, which includes dipping specimens in a sol-gel solution dispersed with fine α-Al 2O 3 powders prepared by mechanical milling. Accelerated corrosion tests were conducted on coated specimens in liquid lead-bismuth eutectic at 500 °C under dynamic conditions. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses revealed that the coatings are composed of α-Al 2O 3 and they are about 10 μm thick. After the corrosion tests, no spallation occurred on the coatings, and neither Pb nor Bi penetrated into the coatings, which indicates that the coatings possess an enhanced dynamic LBE corrosion resistance to lead-bismuth eutectic corrosion. The nano-structured composite particles integrated into the coatings play an important role in achieving such superior lead-bismuth eutectic corrosion resistance.

  15. Alloys for a liquid metal fast breeder reactor

    DOEpatents

    Rowcliffe, Arthur F.; Bleiberg, Melvin L.; Diamond, Sidney; Bajaj, Ram

    1979-01-01

    An essentially gamma-prime precipitation-hardened iron-chromium-nickel alloy has been designed with emphasis on minimum nickel and chromium contents to reduce the swelling tendencies of these alloys when used in liquid metal fast breeder reactors. The precipitation-hardening components have been designed for phase stability and such residual elements as silicon and boron, also have been selected to minimize swelling. Using the properties of these alloys in one design would result in an increased breeding ratio over 20% cold worked stainless steel, a reference material, of 1.239 to 1.310 and a reduced doubling time from 15.8 to 11.4 years. The gross stoichiometry of the alloying composition comprises from about 0.04% to about 0.06% carbon, from about 0.05% to about 1.0% silicon, up to about 0.1% zirconium, up to about 0.5% vanadium, from about 24% to about 31% nickel, from 8% to about 11% chromium, from about 1.7% to about 3.5% titanium, from about 1.0% to about 1.8% aluminum, from about 0.9% to about 3.7% molybdenum, from about 0.04% to about 0.8% boron, and the balance iron with incidental impurities.

  16. Decommissioning of Experimental Breeder Reactor - II Complex, Post Sodium Draining

    SciTech Connect

    J. A. Michelbacher; S. Paul Henslee; Collin J. Knight; Steven R. sherman

    2005-09-01

    The Experimental Breeder Reactor - II (EBR-II) was shutdown in September 1994 as mandated by the United States Department of Energy. This sodium-cooled reactor had been in service since 1964. The bulk sodium was drained from the primary and secondary systems and processed. Residual sodium remaining in the systems after draining was converted into sodium bicarbonate using humid carbon dioxide. This technique was tested at Argonne National Laboratory in Illinois under controlled conditions, then demonstrated on a larger scale by treating residual sodium within the EBR-II secondary cooling system, followed by the primary tank. This process, terminated in 2002, was used to place a layer of sodium bicarbonate over all exposed surfaces of sodium. Treatment of the remaining EBR-II sodium is governed by the Resource Conservation and Recovery Act (RCRA). The Idaho Department of Environmental Quality issued a RCRA Operating Permit in 2002, mandating that all hazardous materials be removed from EBR-II within a 10 year period, with the ability to extend the permit and treatment period for another 10 years. A preliminary plan has been formulated to remove the remaining sodium and NaK from the primary and secondary systems using moist carbon dioxide, steam and nitrogen, and a water flush. The moist carbon dioxide treatment was resumed in May 2004. As of August 2005, approximately 60% of the residual sodium within the EBR-II primary tank had been treated. This process will continue through the end of 2005, when it is forecast that the process will become increasingly ineffective. At that time, subsequent treatment processes will be planned and initiated. It should be noted that the processes and anticipated costs associated with these processes are preliminary. Detailed engineering has not been performed, and approval for these methods has not been obtained from the regulator or the sponsors.

  17. Installation of the Light-Water Breeder Reactor at the Shippingport Atomic Power Station (LWBR Development Program)

    SciTech Connect

    Massimino, R.J.; Williams, D.A.

    1983-05-01

    This report summarizes the refueling operations performed to install a Light Water Breeder Reactor (LWBR) core into the existing pressurized water reactor vessel at the Shippingport Atomic Power Station. Detailed descriptions of the major installation operations (e.g., primary system preconditioning, fuel installation, pressure boundary seal welding) are included as appendices to this report; these operations are of technical interest to any reactor servicing operation, whether the reactor is a breeder or a conventional light water non-breeder core.

  18. Pattern recognition techniques applied to acoustic detection of liquid-metal fast breeder reactor cooling defects

    SciTech Connect

    Brunet, M.; Dubuisson, B.

    1983-08-01

    In the event of a partial or total blockage of a liquid-metal fast breeder reactor core subassembly, a boiling zone may be created. Acoustic signals from such a zone could provide a means of early detection of accident conditions. A three-step method, based on pattern recognition techniques, is described and used to analyze data from three experiments that simulate core cooling fault conditions. This method is shown to be capable of detecting the abnormal situation in each of the experiments analyzed.

  19. Nuclear breeder reactor fuel element with axial tandem stacking and getter

    DOEpatents

    Gibby, Ronald L.; Lawrence, Leo A.; Woodley, Robert E.; Wilson, Charles N.; Weber, Edward T.; Johnson, Carl E.

    1981-01-01

    A breeder reactor fuel element having a tandem arrangement of fissile and fertile fuel with a getter for fission product cesium disposed between the fissile and fertile sections. The getter is effective at reactor operating temperatures to isolate the cesium generated by the fissile material from reacting with the fertile fuel section.

  20. Theory, design, and operation of liquid metal fast breeder reactors, including operational health physics

    SciTech Connect

    Adams, S.R.

    1985-10-01

    A comprehensive evaluation was conducted of the radiation protection practices and programs at prototype LMFBRs with long operational experience. Installations evaluated were the Fast Flux Test Facility (FFTF), Richland, Washington; Experimental Breeder Reactor II (EBR-II), Idaho Falls, Idaho; Prototype Fast Reactor (PFR) Dounreay, Scotland; Phenix, Marcoule, France; and Kompakte Natriumgekuhlte Kernreak Toranlange (KNK II), Karlsruhe, Federal Republic of Germany. The evaluation included external and internal exposure control, respiratory protection procedures, radiation surveillance practices, radioactive waste management, and engineering controls for confining radiation contamination. The theory, design, and operating experience at LMFBRs is described. Aspects of LMFBR health physics different from the LWR experience in the United States are identified. Suggestions are made for modifications to the NRC Standard Review Plan based on the differences.

  1. Review of uncertainty estimates associated with models for assessing the impact of breeder reactor radioactivity releases

    SciTech Connect

    Miller, C.; Little, C.A.

    1982-08-01

    The purpose is to summarize estimates based on currently available data of the uncertainty associated with radiological assessment models. The models being examined herein are those recommended previously for use in breeder reactor assessments. Uncertainty estimates are presented for models of atmospheric and hydrologic transport, terrestrial and aquatic food-chain bioaccumulation, and internal and external dosimetry. Both long-term and short-term release conditions are discussed. The uncertainty estimates presented in this report indicate that, for many sites, generic models and representative parameter values may be used to calculate doses from annual average radionuclide releases when these calculated doses are on the order of one-tenth or less of a relevant dose limit. For short-term, accidental releases, especially those from breeder reactors located in sites dominated by complex terrain and/or coastal meteorology, the uncertainty in the dose calculations may be much larger than an order of magnitude. As a result, it may be necessary to incorporate site-specific information into the dose calculation under these circumstances to reduce this uncertainty. However, even using site-specific information, natural variability and the uncertainties in the dose conversion factor will likely result in an overall uncertainty of greater than an order of magnitude for predictions of dose or concentration in environmental media following shortterm releases.

  2. Liquid metal reactor deactivation as applied to the experimental breeder reactor - II.

    SciTech Connect

    Earle, O. K.; Michelbacher, J. A.; Pfannenstiel, D. F.; Wells, P. B.

    1999-05-28

    The Experimental Breeder Reactor-II (EBR-II) at Argonne National Laboratory-West (ANL-W) was shutdown in September, 1994. This sodium cooled reactor had been in service since 1964, and by the US Department of Energy (DOE) mandate, was to be placed in an industrially and radiologically safe condition for ultimate decommissioning. The deactivation of a liquid metal reactor presents unique concerns. The first major task associated with the project was the removal of all fueled assemblies. In addition, sodium must be drained from systems and processed for ultimate disposal. Residual quantities of sodium remaining in systems must be deactivated or inerted to preclude future hazards associated with pyrophoricity and generation of potentially explosive hydrogen gas. A Sodium Process Facility (SPF) was designed and constructed to react the elemental sodium from the EBR-II primary and secondary systems to sodium hydroxide for disposal. This facility has a design capacity to allow the reaction of the complete inventory of sodium at ANL-W in less than two years. Additional quantities of sodium from the Fermi-1 reactor are also being treated at the SPF.

  3. Water storage of liquid-metal fast-breeder-reactor fuel

    SciTech Connect

    Meacham, S.A.

    1982-01-01

    The purpose of this paper is to present a general overview of a concept proposed for receiving and storing liquid metal fast breeder reactor (LMFBR) spent fuel. This work was done as part of the Consolidated Fuel Reprocessing Program (CFRP) at the Oak Ridge National Laboratory (ORNL). The CFRP has as its major objective the development of technology for reprocessing advanced nuclear reactor fuels. The program plans that research and development will be carried through to a sufficient scale, using irradiated spent fuel under plant operating conditions, to establish a basis for confident projection of reprocessing capability to support a breeder industry.

  4. Method of locating a leaking fuel element in a fast breeder power reactor

    DOEpatents

    Honekamp, John R.; Fryer, Richard M.

    1978-01-01

    Leaking fuel elements in a fast reactor are identified by measuring the ratio of .sup.134 Xe to .sup.133 Xe in the reactor cover gas following detection of a fuel element leak, this ratio being indicative of the power and burnup of the failed fuel element. This procedure can be used to identify leaking fuel elements in a power breeder reactor while continuing operation of the reactor since the ratio measured is that of the gases stored in the plenum of the failed fuel element. Thus, use of a cleanup system for the cover gas makes it possible to identify sequentially a multiplicity of leaking fuel elements without shutting the reactor down.

  5. Lithium ceramics as the solid breeder material in fusion reactors

    SciTech Connect

    Hollenberg, G. W.; Reuther, T. C.; Johnson, C. E.

    1982-03-01

    Fusion blanket designs have for almost a decade considered the use of a solid breeder relying on available data and assumed performance. The conclusion from these studies is that acceptable neutronic and thermal hydraulic performance can be achieved. In the future, it will be necessary to establish that a particular material can tolerate the thermal and irradiation environment of the fusion blanket while still providing the required functions of tritium recovery, power production and neutron shielding.

  6. Corrosion-resistant fuel cladding allow for liquid metal fast breeder reactors

    DOEpatents

    Brehm, Jr., William F.; Colburn, Richard P.

    1982-01-01

    An aluminide coating for a fuel cladding tube for LMFBRs (liquid metal fast breeder reactors) such as those using liquid sodium as a heat transfer agent. The coating comprises a mixture of nickel-aluminum intermetallic phases and presents good corrosion resistance to liquid sodium at temperatures up to 700.degree. C. while additionally presenting a barrier to outward diffusion of .sup.54 Mn.

  7. Atoms in Appalachia. Historical report on the Clinch River Breeder Reactor site

    SciTech Connect

    Schaffer, D

    1982-01-01

    The background information concerning the acquisition of the land for siting the Clinch River Breeder Reactor is presented. Historical information is also presented concerning the land acquisition for the Oak Ridge facilities known as the Manhattan Project during World War II.

  8. Nuclear Engineering Computer Modules, Thermal-Hydraulics, TH-2: Liquid Metal Fast Breeder Reactors.

    ERIC Educational Resources Information Center

    Reihman, Thomas C.

    This learning module is concerned with the temperature field, the heat transfer rates, and the coolant pressure drop in typical liquid metal fast breeder reactor (LMFBR) fuel assemblies. As in all of the modules of this series, emphasis is placed on developing the theory and demonstrating the use with a simplified model. The heart of the module is…

  9. Plant control of a fast breeder reactor cooled by supercritical light water

    SciTech Connect

    Nakatsuka, T.; Oka, Y.; Koshizuka, S.

    1997-12-01

    Supercritical water does not exhibit a change of phase. The plant system of the supercritical water cooled reactor is the once-through, direct-cycle where the steam-water separator and coolant recirculation systems are eliminated. It is different from those of BWR and PWR. The reactor is sensitive to the perturbations of the feedwater flow rate, since the whole core coolant driven by the feedwater pumps flows to the turbines. The axial coolant density change is larger than that of a BWR. Pressure control by the feedwater like the supercritical fossil-fired power plant (FPP) is not appropriate because the change of feedwater flow rate largely affects the core power through the coolant density feedback. It is necessary to analyze the controllability of the plant against coolant flow and pressure perturbations for assessing the technical feasibility of the reactor. The plant behaviors of a fast breeder reactor cooled by supercritical water (SCFBR) are analyzed for three principal perturbations: the change of the control rod position, the feedwater flow rate and the turbine control valve opening. Based on the step responses to the perturbations, the plant control system is designed: the pressure is controlled by the turbine control valves, the main steam temperature is controlled by the feedwater flow rate and the core power is controlled by the control rods. Parameters of the control system are selected by the test calculations to satisfy both fast convergence and stability criteria. The plant behaviors with the designed plant control system are stable against the perturbations. The reactor cooled by supercritical light water is controllable with the plant control system designed here. 7 refs., 11 figs., 6 tabs.

  10. A FAST BREEDER REACTOR SPENT FUEL MEASUREMENTS PROGRAM FOR BN-350 REACTOR

    SciTech Connect

    P. STAPLES; J. HALBIG; ET AL

    1999-04-01

    A project to verify the fissile content of fast breeder reactor spent nuclear fuel is underway in the Republic of Kasakhstan. There are a variety of assembly types with different irradiation histories and profiles in the reactor that require a variety of measurement and analysis procedures. These procedures will be discussed and compared as will the general process that has been designed to resolve any potential measurement discrepancies. The underwater counter is part of a system that is designed to assist the International Atomic Energy Agency (IAEA) in maintaining continuity of knowledge from the time of measurement until the measured item is placed in a welded container with a unique identification. In addition to satisfying IAEA requirements for the spent nuclear fuel, this measurement program is able to satisfy some of the measurement requirements for the Kasakhstan Atomic Energy Agency concerning the repackaging of the spent nuclear fuel into a standard canister. The project is currently operational in a mode requiring the IAEA's continuous presence.

  11. Helium Leak Detection of Vessels in Fuel Transfer Cell (FTC) of Prototype Fast Breeder Reactor (PFBR)

    NASA Astrophysics Data System (ADS)

    Dutta, N. G.

    2012-11-01

    Bharatiya Nabhikiya Vidyut Nigam (BHAVINI) is engaged in construction of 500MW Prototype Fast Breeder Reactor (PFBR) at Kalpak am, Chennai. In this very important and prestigious national programme Special Product Division (SPD) of M/s Kay Bouvet Engg.pvt. ltd. (M/s KBEPL) Satara is contributing in a major way by supplying many important sub-assemblies like- Under Water trolley (UWT), Airlocks (PAL, EAL) Container and Storage Rack (CSR) Vessels in Fuel Transfer Cell (FTC) etc for PFBR. SPD of KBEPL caters to the requirements of Government departments like - Department of Atomic Energy (DAE), BARC, Defense, and Government undertakings like NPCIL, BHAVINI, BHEL etc. and other precision Heavy Engg. Industries. SPD is equipped with large size Horizontal Boring Machines, Vertical Boring Machines, Planno milling, Vertical Turret Lathe (VTL) & Radial drilling Machine, different types of welding machines etc. PFBR is 500 MWE sodium cooled pool type reactor in which energy is produced by fissions of mixed oxides of Uranium and Plutonium pellets by fast neutrons and it also breeds uranium by conversion of thorium, put along with fuel rod in the reactor. In the long run, the breeder reactor produces more fuel then it consumes. India has taken the lead to go ahead with Fast Breeder Reactor Programme to produce electricity primarily because India has large reserve of Thorium. To use Thorium as further fuel in future, thorium has to be converted in Uranium by PFBR Technology.

  12. Preliminary Study of Gas Cooled Fast Breeder Reactor with Heterogen Percentage of Uranium–Plutonium Carbide based fuel and 300 MWt Power

    NASA Astrophysics Data System (ADS)

    Clief Pattipawaej, Sandro; Su’ud, Zaki

    2017-01-01

    A preliminary design study of GFR with helium gas-cooled has been performed. In this study used natural uranium and plutonium results LWR waste as fuel. Fuel with a small percentage of plutonium are arranged on the inside of the core area, and the fuel with a greater percentage set on the outside of the core area. The configuration of such fuel is deliberately set to increase breeding in this part of the central core and reduce the leakage of neutrons on the outer side of the core, in order to get long-lived reactor with a small reactivity. Configuration of fuel as it is also useful to generate a peak power reactors with relatively low in both the direction of axial or radial. Optimization has been done to fuel fraction 45.0% was found that the reactor may be operating in more than 10 year time with excess reactivity less than 1%.

  13. Clinch River Breeder Reactor Plant Project. Summary edition. 1980 technical progress report, October 1979-September 1980

    SciTech Connect

    Not Available

    1980-01-01

    This technical progress report on the CRBRP Project describes the objectives, design decisions, and major accomplishments achieved in the planning, organizing, design, and execution of the Project during the period October 1, 1979, through September 30, 1980. It is a summary of the 1980 CRBRP Technical Progress Report, which was prepared by the Advanced Reactors Division of Westinghouse Electric Corporation, the Lead Reactor Manufacturer for the Clinch River Breeder Reactor Plant Project, in fulfillment of contract requirements with the United States Department of Energy. It includes inputs from the CRBRP Architect-Engineer (Burns and Roe, Inc.), from the Constructor (Stone and Webster Engineering Corporation), and from the supporting Reactor Manufacturers (Atomics International Division of the Energy Systems Group of Rockwell International Corporation, the Advanced Reactor Systems Department of General Electric Company, and the Advanced Reactors Division of Westinghouse Electric Corporation).

  14. FUEL-BREEDER FUEL ELEMENT FOR NUCLEAR REACTOR

    DOEpatents

    Abbott, W.E.; Balent, R.

    1958-09-16

    A fuel element design to facilitate breeding reactor fuel is described. The fuel element is comprised of a coatainer, a central core of fertile material in the container, a first bonding material surrounding the core, a sheet of fissionable material immediately surrounding the first bonding material, and a second bonding material surrounding the fissionable material and being in coniact with said container.

  15. End-of-life nondestructive examination of Light Water Breeder Reactor fuel rods (LWBR Development Program)

    SciTech Connect

    Gorscak, D.A.; Campbell, W.R.; Clayton, J.C.

    1987-10-01

    In-bundle and out-of-bundle (single rod) nondestructive examinations of Light Water Breeder Reactor fuel rods were performed. In-bundle examinations included visual examination and measurement of rod bow, rod-to-rod gaps, and rod removal forces. Out-of-bundle examinations included rod visuals and measurement of fuel rod length, diameter and ovality, cladding oxide and crud thickness, support grid induced cladding wear mark depth and volume, and fuel rod free hanging bow. The out-of-bundle examination also included ultrasonic inspection for cladding defects, neutron radiography for pellet integrity and plenum gap measurements, and gamma scans for instack axial gap screening and binary fuel stack length measurements. The measurements confirmed design predictions of fuel rod performance and provided evidence of excellent fuel rod performance for operation of Light Water Breeder Reactor to 29,047 effective full power hours (EFPH).

  16. Conceptual design of the Clinch River Breeder Reactor spent-fuel shipping cask

    SciTech Connect

    Pope, R B; Diggs, J M

    1982-04-01

    Details of a baseline conceptual design of a spent fuel shipping cask for the Clinch River Breeder Reactor (CRBR) are presented including an assessment of shielding, structural, thermal, fabrication and cask/plant interfacing problems. A basis for continued cask development and for new technological development is established. Alternates to the baseline design are briefly presented. Estimates of development schedules, cask utilization and cost schedules, and of personnel dose commitments during CRBR in-plant handling of the cask are also presented.

  17. Measurements of thermal-hydraulic parameters in liquid-metal-cooled fast-breeder reactors

    SciTech Connect

    Sackett, J.I.

    1983-01-01

    This paper discusses instrumentation for liquid-metal-cooled fast breeder reactors (LMFBR's). Included is instrumentation to measure sodium flow, pressure, temperature, acoustic noise, sodium purity, and leakage. The paper identifies the overall instrumentation requirements for LMFBR's and those aspects of instrumentation which are unique or of special concern to LMFBR systems. It also gives an overview of the status of instrument design and performance.

  18. Irradiation behavior of experimental Mark-II Experimental Breeder Reactor II driver fuel

    SciTech Connect

    Hofman, G.L.

    1980-01-01

    Prototypic driver-fuel elements using metallic fuel and stainless-steel cladding, designed to achieve a high burnup, were tested in the Experimental Breeder Reactor II. The irradiation results showed that burnup of up to 10 at.% can be attained without cladding failure and that cladding deformation can be kept to acceptable values if Type 316 stainless steel is used as the cladding material.

  19. End-of-life destructive examination of light water breeder reactor fuel rods (LWBR Development Program)

    SciTech Connect

    Richardson, K.D.

    1987-10-01

    Destructive examination of 12 representative Light Water Breeder Reactor fuel rods was performed following successful operation in the Shippingport Atomic Power Station for 29,047 effective full power hours, about five years. Light Water Breeder Reactor fuel rods were unique in that the thorium oxide and uranium-233 oxide fuel was contained within Zircaloy-4 cladding. Destructive examinations included analysis of released fission gas; chemical analysis of the fuel to determine depletion, iodine, and cesium levels; chemical analysis of the cladding to determine hydrogen, iodine, and cesium levels; metallographic examination of the cladding, fuel, and other rod components to determine microstructural features and cladding corrosion features; and tensile testing of the irradiated cladding to determine mechanical strength. The examinations confirmed that Light Water Breeder Reactor fuel rod performance was excellent. No evidence of fuel rod failure was observed, and the fuel operating temperature was low (below 2580/sup 0/F at which an increased percentage of fission gas is released). 21 refs., 80 figs., 20 tabs.

  20. Status of EC solid breeder blanket designs and R&D for DEMO fusion reactors

    SciTech Connect

    Dalle Donne, M.; Anziedi, L.A.; Kwast, H.

    1994-12-31

    In the framework of the European Community Fusion Technology Program four blanket concepts for a DEMO reactor are being investigated. DEMO is the next step after ITER. It should ensure tritium self-sufficiency and operate at coolant temperatures high enough to have a reasonable plant efficiency. Further requirements have been specified for the four concepts, namely an average neutron wall load of 2.2 MW/m{sup 2}, a blanket lifetime of 20000 hours and the capability of the blanket segment to withstand the forces caused by a rapid distribution of the plasma current (20 MA to zero in 20 ms), so that after the disruption the segment can still allow a comparison of the various options, in view of reducing this number to two in 1995 and to design and develop modules and articles representative of the chosen blankets to be tested in ITER. The present paper deals with two solid breeder concepts. They have many features in common: both use high pressure helium as coolant and helium to purge the tritium from the breeder material, martensitic steel as structural material and beryllium as neutron multiplier. The configuration of the two blankets are however different: in the B.I.T. (Breeder Inside Tube) concept the breeder material is LiAlO{sub 2} or LiZrO{sub 3} in the form of annular pellets contained in tubes surrounded by beryllium blocks, the coolant helium being outside the tubes, whereas in the B.O.T. (Breeder out of Tube) the breeder and multiplier material are Li{sub 4}SiO{sub 4} and beryllium pebbles forming a mixed bed placed outside the tubes containing the coolant helium.

  1. Moon base reactor system

    NASA Technical Reports Server (NTRS)

    Chavez, H.; Flores, J.; Nguyen, M.; Carsen, K.

    1989-01-01

    The objective of our reactor design is to supply a lunar-based research facility with 20 MW(e). The fundamental layout of this lunar-based system includes the reactor, power conversion devices, and a radiator. The additional aim of this reactor is a longevity of 12 to 15 years. The reactor is a liquid metal fast breeder that has a breeding ratio very close to 1.0. The geometry of the core is cylindrical. The metallic fuel rods are of beryllium oxide enriched with varying degrees of uranium, with a beryllium core reflector. The liquid metal coolant chosen was natural lithium. After the liquid metal coolant leaves the reactor, it goes directly into the power conversion devices. The power conversion devices are Stirling engines. The heated coolant acts as a hot reservoir to the device. It then enters the radiator to be cooled and reenters the Stirling engine acting as a cold reservoir. The engines' operating fluid is helium, a highly conductive gas. These Stirling engines are hermetically sealed. Although natural lithium produces a lower breeding ratio, it does have a larger temperature range than sodium. It is also corrosive to steel. This is why the container material must be carefully chosen. One option is to use an expensive alloy of cerbium and zirconium. The radiator must be made of a highly conductive material whose melting point temperature is not exceeded in the reactor and whose structural strength can withstand meteor showers.

  2. Moon base reactor system

    NASA Technical Reports Server (NTRS)

    Chavez, H.; Flores, J.; Nguyen, M.; Carsen, K.

    1989-01-01

    The objective of our reactor design is to supply a lunar-based research facility with 20 MW(e). The fundamental layout of this lunar-based system includes the reactor, power conversion devices, and a radiator. The additional aim of this reactor is a longevity of 12 to 15 years. The reactor is a liquid metal fast breeder that has a breeding ratio very close to 1.0. The geometry of the core is cylindrical. The metallic fuel rods are of beryllium oxide enriched with varying degrees of uranium, with a beryllium core reflector. The liquid metal coolant chosen was natural lithium. After the liquid metal coolant leaves the reactor, it goes directly into the power conversion devices. The power conversion devices are Stirling engines. The heated coolant acts as a hot reservoir to the device. It then enters the radiator to be cooled and reenters the Stirling engine acting as a cold reservoir. The engines' operating fluid is helium, a highly conductive gas. These Stirling engines are hermetically sealed. Although natural lithium produces a lower breeding ratio, it does have a larger temperature range than sodium. It is also corrosive to steel. This is why the container material must be carefully chosen. One option is to use an expensive alloy of cerbium and zirconium. The radiator must be made of a highly conductive material whose melting point temperature is not exceeded in the reactor and whose structural strength can withstand meteor showers.

  3. Civilian nuclear power on the drawing board: the development of Experimental Breeder Reactor-II.

    SciTech Connect

    Westfall, C.

    2003-02-20

    On September 28, 2001 a symposium was held at Argonne National Laboratory as part of the festivities to mark the 100th birthday of Enrico Fermi. The symposium celebrated Fermi's ''contribution to the development of nuclear power'' and focused on one particular ''line of development'' resulting from Fermi's interest in power reactors: Argonne's fast reactor program. Symposium participants made many references to the ways in which the program was linked to Fermi, who led the team which created the world's first self-sustaining nuclear chain reaction. For example, one presentation featured an April, 1944 memo that described a meeting attended by Fermi and others. The memo came from the time when research on plutonium and the nuclear chain reaction at Chicago's WWII Metallurgical Laboratory was nearing its end. Even as other parts of the Manhattan Engineering Project were building on this effort to create the bombs that would end the war, Fermi and his colleagues were taking the first steps to plan the use of nuclear energy in the postwar era. After noting that Fermi ''viewed the use of [nuclear] power for the heating of cities with sympathy,'' the group outlined several power reactor designs. In the course of discussion, Fermi and his colleagues took the first steps in conjuring the vision that would later be brought to life with Experimental Breeder Reactor I (EBR-I) and Experimental Breeder Reactor II (EBR-II), the celebrated achievements of the Argonne fast reactor program. Group members considered various schemes for a breeder reactor in which the relatively abundant U-238 would be placed near a core of fissionable material. The reactor would be a fast reactor; that is, neutrons would not be moderated, as were most wartime reactors. Thus, the large number of neutrons emitted in fast neutron fission would hit the U-238 and create ''extra'' fissionable material, that is, more than ''invested,'' and at the same time produce power. The group identified the problem of

  4. Experimental studies of U-Pu-Zr fast reactor fuel pins in EBR-II (Experimental Breeder Reactor)

    SciTech Connect

    Pahl, R.G.; Porter, D.L.; Lahm, C.E.; Hofman, G.L.

    1988-01-01

    The Integral Fast Reactor (IFR) is a generic reactor concept under development by Argonne National Laboratory. Much of the technology for the IFR is being demonstrated at the Experimental Breeder Reactor II (EBR-II) on the Department of Energy site near Idaho Falls, Idaho. The IFR concept relies on four technical features to achieve breakthroughs in nuclear power economics and safety: (1) a pool-type reactor configuration, (2) liquid sodium cooling, (3) metallic fuel, and (4) an integral fuel cycle with on-site reprocessing. The purpose of this paper will be to summarize our latest results of irradiation testing uranium-plutonium-zirconium (U-Pu-Zr) fuel in the EBR-II. 10 refs., 13 figs., 2 tabs.

  5. Ceramics for fusion reactors: The role of the lithium orthosilicate as breeder

    NASA Astrophysics Data System (ADS)

    Carella, Elisabetta; Hernández, Teresa

    2012-11-01

    Lithium-based oxide ceramics are studied as breeder blanket materials for the controlled thermonuclear reactors (CTR). Lithium orthosilicate (Li4SiO4) is one of the most promising candidates because of its lithium concentration (0.54 g/cm3), its high melting temperature (1523 K) and its excellent tritium release behavior. It is reported that the diffusion of tritium is closely related to that of lithium, so it is possible to find an indirect measure of the trend of tritium studying the diffusivity of Li+. In the present work, the synthesis of the Li4SiO4 is carried out by Spray drying followed by pyrolysis. The study of the Li+ ion diffusion on the sintered bodies, is investigated by means of electrical conductivity measurements. The effect of the γ-ray irradiation is evaluated by the impedance spectroscopy method (EIS) from room temperature to 1173 K. The results indicate that the síntesis process employed can produce Li4SiO4 in the form of pebbles, finally the best ion species for the electrical conduction is the Li+ and is shown that the g-irradiation to a dose of 5MGy, facilitate its mobility through the creation of defects, without change in its conduction process.

  6. Final report for the Light Water Breeder Reactor proof-of-breeding analytical support project

    SciTech Connect

    Graczyk, D.G.; Hoh, J.C.; Martino, F.J.; Nelson, R.E.; Osudar, J.; Levitz, N.M.

    1987-05-01

    The technology of breeding /sup 233/U from /sup 232/Th in a light water reactor is being developed and evaluated by the Westinghouse Bettis Atomic Power Laboratory (BAPL) through operation and examination of the Shippingport Light Water Breeder Reactor (LWBR). Bettis is determining the end-of-life (EOL) inventory of fissile uranium in the LWBR core by nondestructive assay of a statistical sample comprising approximately 500 EOL fuel rods. This determination is being made with an irradiated-fuel assay gauge based on neutron interrogation and detection of delayed neutrons from each rod. The EOL fissile inventory will be compared with the beginning-of-life fissile loading of the LWBR to determine the extent of breeding. In support of the BAPL proof-of-breeding (POB) effort, Argonne National Laboratory (ANL) carried out destructive physical, chemical, and radiometric analyses on 17 EOL LWBR fuel rods that were previously assayed with the nondestructive gauge. The ANL work included measurements on the intact rods; shearing of the rods into pre-designated contiguous segments; separate dissolution of each of the more than 150 segments; and analysis of the dissolver solutions to determine each segment's uranium content, uranium isotopic composition, and loading of selected fission products. This report describes the facilities in which this work was carried out, details operations involved in processing each rod, and presents a comprehensive discussion of uncertainties associated with each result of the ANL measurements. Most operations were carried out remotely in shielded cells. Automated equipment and procedures, controlled by a computer system, provided error-free data acquisition and processing, as well as full replication of operations with each rod. Despite difficulties that arose during processing of a few rod segments, the ANL destructive-assay results satisfied the demanding needs of the parent LWBR-POB program.

  7. Review of ORNL-TSF shielding experiments for the gas-cooled Fast Breeder Reactor Program

    SciTech Connect

    Abbott, L.S.; Ingersoll, D.T.; Muckenthaler, F.J.; Slater, C.O.

    1982-01-01

    During the period between 1975 and 1980 a series of experiments was performed at the ORNL Tower Shielding Facility in support of the shield design for a 300-MW(e) Gas Cooled Fast Breeder Demonstration Plant. This report reviews the experiments and calculations, which included studies of: (1) neutron streaming in the helium coolant passageways in the GCFR core; (2) the effectiveness of the shield designed to protect the reactor grid plate from radiation damage; (3) the adequacy of the radial shield in protecting the PCRV (prestressed concrete reactor vessel) from radiation damage; (4) neutron streaming between abutting sections of the radial shield; and (5) the effectiveness of the exit shield in reducing the neutron fluxes in the upper plenum region of the reactor.

  8. Implementation of multivariable control techniques with application to Experimental Breeder Reactor II

    SciTech Connect

    Berkan, R.C. . Dept. of Nuclear Engineering); Upadhyaya, B.R.; Kisner, R.A. )

    1990-06-01

    After several successful applications to aerospace industry, the modern control theory methods have recently attracted many control engineers from other engineering disciplines. For advanced nuclear reactors, the modern control theory may provide major advantages in safety, availability, and economic aspects. This report is intended to illustrate the feasibility of applying the linear quadratic Gaussian (LQG) compensator in nuclear reactor applications. The LQG design is compared with the existing classical control schemes. Both approaches are tested using the Experimental Breeder Reactor 2 (EBR-2) as the system. The experiments are performed using a mathematical model of the EBR-2 plant. Despite the fact that the controller and plant models do not include all known physical constraints, the results are encouraging. This preliminary study provides an informative, introductory picture for future considerations of using modern control theory methods in nuclear industry. 10 refs., 25 figs.

  9. Conjugate heat transfer analysis of multiple enclosures in prototype fast breeder reactor

    SciTech Connect

    Velusamy, K.; Balaubramanian, V.; Vaidyanathan, G.; Chetal, S.C.

    1995-09-01

    Prototype Fast Breeder Reactor (PFBR) is a 500 MWe sodium cooled reactor under design. The main vessel of the reactor serves as the primary boundary. It is surrounded by a safety vessel which in turn is surrounded by biological shield. The gaps between them are filled with nitrogen. Knowledge of temperature distribution prevailing under various operating conditions is essential for the assessment of structural integrity. Due to the presence of cover gas over sodium free level within the main vessel, there are sharp gradients in temperatures. Also cover gas height reduces during station blackout conditions due to sodium level rise in main vessel caused by temperature rise. This paper describes the model used to analyse the natural convection in nitrogen, conduction in structures and radiation interaction among them. Results obtained from parametric studies for PFBR are also presented.

  10. Diversion analysis and safeguards measures for liquid metal fast breeder reactors

    SciTech Connect

    Persiani, P.J.

    1981-10-01

    The general objective of the study is to perform a diversion analysis and an assessment of the available safeguards methods and systems for verifying inventory and flow of nuclear material in accessible and inaccessible areas of liquid-metal fast breeder reactor, LMFBR, systems. The study focuses primarily on the assembly-handling operations, assembly storage facilities, and reactor operations facilities relating to existing and/or near-term planned experimental, demonstration and prototypal reactor plants. The safeguards systems and methods presented are considered to be feasible for development and for implementation within the resource limitation of the IAEA and are considered to be consistent with the objectives, requirements, and constraints of the IAEA as outlined in the IAEA documents INFCIRC/153 and INFCIRC/66-Rev-2.

  11. Development of variable width ribbon heating elements for liquid metal and gas-cooled fast breeder reactor fuel rod simulators

    SciTech Connect

    McCulloch, R.W.; Lovell, R.T.; Post, D.W.; Snyder, S.D.

    1980-01-01

    Variable width ribbon heating elements have been fabricated which provide a chopped cosine, variable heat flux profile for fuel rod simulators used in test loops by the Breeder Reactor Program Thermal Hydraulic Out-of-Reactor Safety test facility and the Gas-Cooled Fast Breeder Reactor Core Flow Test Loop. Thermal, mechanical, and electrical design considerations result in the derivation of an analytical expression for the ribbon contours. From this, the ribbons are machined and wound on numerically controlled equipment. Postprocessing and inspection results in a wound, variable width ribbon with the precise dimensional, electrical, and mechanical properties needed for use in fuel pin simulators.

  12. End-of-life irradiation performance of core structural components in the Shippingport Light Water Breeder Reactor

    SciTech Connect

    Clayton, J.C.; Smith, B.C.

    1991-12-31

    Nondestructive and destructive end-of-life examinations of Light Water Breeder Reactor (LWBR) core structural components were performed following operation in the Shippingport Atomic Power Station for 29,047 effective full power hours. The Shippingport LWBR demonstrated that breeding can be achieved in a light water reactor with thorium and uranium-233 oxide fuel pellets contained in Zircaloy-4 tubes. The purpose of this presentation is to report results of LWBR core structural component examinations that were carried out to assess the effects of irradiation on support structure and to provide a data base for the evaluation of design procedures. The postirradiation nondestructive examinations included visual inspection and, in some cases, dye penetrant testing to assess structural integrity and surface conditions of the components. Destructive metallography was performed to assess cracking, corrosion buildup, and microstructural condition.

  13. Experimental studies of U-Pu-Zr fast reactor fuel pins in the Experimental Breeder Reactor 2

    SciTech Connect

    Pahl, R.G.; Porter, D.L.; Lahm, C.E. ); Hofman, G.L. )

    1990-07-01

    Argonne National Laboratory's Integral Fast Reactor (IFR) concept has been under demonstration in the Experimental Breeder Reactor II (EBR-II) since February 1985. Irradiation tests of U-Zr and U-Pu-Zr fuel pins to {gt}15 at. pct burnup have demonstrated their viability as driver fuel prototypes in innovative design liquid metal reactors. A number of technically challenging irradiation effects have been observed and are now under study. Microstructural changes in the fuel are dominated early in exposure by grain boundary cavitation and fission gas bubble growth, producing large amounts of swelling. Irradiation creep and swelling of the austenitic (D9) and martensitic (HT-9) candidate cladding alloys have been measured and correlate well with property modeling efforts. Chemical interaction between the fuel and cladding alloys has been characterized to assess the magnitude of cladding wastage during steady-state irradiation. Significant interdiffusion of the uranium and zirconium occurs producing metallurgically distinct zones in the fuel.

  14. Wireless, in-vessel neutron monitor for initial core-loading of advanced breeder reactors

    NASA Technical Reports Server (NTRS)

    Delorenzo, J. T.; Kennedy, E. J.; Blalock, T. V.; Rochelle, J. M.; Chiles, M. M.; Valentine, K. H.

    1981-01-01

    An experimental wireless, in-vessel neutron monitor was developed to measure the reactivity of an advanced breeder reactor as the core is loaded for the first time to preclude an accidental critically incident. The environment is liquid sodium at a temperature of approx. 220 C, with negligible gamma or neutron radiation. With ultrasonic transmission of neutron data, no fundamental limitation was observed after tests at 230 C for 2000 h. The neutron sensitivity was approx. 1 count/s-nv, and the potential data transmission rate was approx. 10,000 counts/s.

  15. Control rod heterogeneity effects in liquid-metal fast breeder reactors: Method developments and experimental validation

    SciTech Connect

    Carta, M.; Granget, G.; Palmiotti, G.; Salvatores, M.; Soule, R.

    1988-11-01

    The control rod worth assessment in a large liquid-metal fast breeder reactor is strongly dependent on the actual arrangement of the absorber pins inside the control rod subassemblies. The so-called heterogeneity effects (i.e., the effects on the rod reactivity of the actual rod internal geometry versus homogenization of the absorber atoms over all the subassembly volume) have been evaluated, using explicit and variational methods to derive appropriate cross sections. An experimental program performed at the MASURCA facility has been used to validate these methods.

  16. Current status of experimental breeder reactor-II [EBR-II] shutdown planning

    SciTech Connect

    McDermott, M. D.; Griffin, C. D.; Michelbacher, J. A.; Earle, O. K.

    2000-05-08

    The Experimental Breeder Reactor--II (EBR-II) at Argonne National Laboratory--West (ANL-W) in Idaho, was shutdown in September, 1994 as mandated by the US Department of Energy. This sodium cooled reactor had been in service since 1964, and was to be placed in an industrially and radiologically safe condition for ultimate decommissioning. The deactivation of a liquid metal reactor presents unique concerns. The first major task associated with the project was the removal of all fueled assemblies. In addition, sodium must be drained from systems and processed for ultimate disposal. Residual quantities of sodium remaining in systems must be deactivated or inerted to preclude future hazards associated with pyrophoricity and generation of potentially explosive hydrogen gas. A Sodium Process Facility was designed and constructed to react the elemental sodium from the EBR-II primary and secondary systems to sodium hydroxide for disposal. This facility has a design capacity to allow the reaction of the complete inventory of sodium at ANL-W in less than two years. Additional quantities of sodium from the Fermi-1 reactor are also being treated at the Sodium Process Facility. The sodium environment and the EBR-II configuration, combined with the radiation and contamination associated with thirty years of reactor operation, posed problems specific to liquid metal reactor deactivation. The methods being developed and implemented at EBR-II can be applied to other similar situations in the US and abroad.

  17. Transport of breeder reactor-fire-generated sodium oxide aerosols for building-wake-dominated meteorology

    SciTech Connect

    Fields, D.E.; Cooper, A.C.; Miller, C.W.

    1987-02-01

    This report describes the methodology used and results obtained in efforts to estimate the sodium aerosol concentrations at air intake ports of a liquid-metal cooled, fast-breeder nuclear reactor. An earlier version of this methodology has been previously discussed (Fields and Miller, 1985). A range of wind speeds from 2 to 10 m/s is assumed, and an effort is made to include building wake effects which, in many cases, dominate the dispersal of aerosols near buildings. For relatively small release rates, on the order of 1 to 10 kg/s, the plume rise is small and estimates of aerosol concentrations are derived using the methodology of Wilson and Britter (1982), which describes releases from surface vents. For release rates on the order of 100 kg/s much higher release velocities are expected, and plume rise is considered. An effective increase in release height is computed using the Split-H methodology with a parameterization suggested by Ramsdell (1983), and the release source strength is transformed to rooftop level. Evaluation of the acute release aerosol concentration is then based on the methodology for releases from a surface release of this transformed source strength. For a horizontal release, a methodology is developed to chart the plume path as a function of release and site meteorology parameters. Results described herein must be regarded as maximum aerosol concentrations, based on models derived from generic wind tunnel studies. More accurate and site-specific results may be obtained through wind tunnel simulations and through simulating emissions from release points other than those assumed here.

  18. The long-term future for civilian nuclear power generation in France: The case for breeder reactors. Breeder reactors: The physical and physical chemistry parameters, associate material thermodynamics and mechanical engineering: Novelties and issues

    NASA Astrophysics Data System (ADS)

    Dautray, Robert

    2011-06-01

    The author firstly gives a summary overview of the knowledge base acquired since the first breeder reactors became operational in the 1950s. "Neutronics", thermal phenomena, reactor core cooling, various coolants used and envisioned for this function, fuel fabrication from separated materials, main equipment (pumps, valves, taps, waste cock, safety circuits, heat exchange units, etc.) have now attained maturity, sufficient to implement sodium cooling circuits. Notwithstanding, the use of metallic sodium still raises certain severe questions in terms of safe handling (i.e. inflammability) and other important security considerations. The structural components, both inside the reactor core and outside (i.e. heat exchange devices) are undergoing in-depth research so as to last longer. The fuel cycle, notably the refabrication of fuel elements and fertile elements, the case of transuranic elements, etc., call for studies into radiation induced phenomena, chemistry separation, separate or otherwise treatments for materials that have different radioactive, physical, thermodynamical, chemical and biological properties. The concerns that surround the definitive disposal of certain radioactive wastes could be qualitatively improved with respect to the pressurized water reactors (PWRs) in service today. Lastly, the author notes that breeder reactors eliminate the need for an isotope separation facility, and this constitutes a significant contribution to contain nuclear proliferation. Among the priorities for a fully operational system (power station - the fuel cycle - operation-maintenance - the spent fuel pool and its cooling system-emergency cooling system-emergency electric power-transportation movements-equipment handling - final disposal of radioactive matter, independent safety barriers), the author includes materials (fabrication of targets, an irradiation and inspection instrument), the chemistry of all sorting processes, equipment "refabrication" or rehabilitation

  19. Cold Trap Dismantling and Sodium Removal at a Fast Breeder Reactor - 12327

    SciTech Connect

    Graf, A.; Petrick, H.; Stutz, U.; Hosking, P.

    2012-07-01

    The first German prototype Fast Breeder Nuclear Reactor (KNK) is currently being dismantled after being the only operating Fast Breeder-type reactor in Germany. As this reactor type used sodium as a coolant in its primary and secondary circuit, seven cold traps containing various amounts of partially activated sodium needed to be disposed of as part of the dismantling. The resulting combined difficulties of radioactive contamination and high chemical reactivity were handled by treating the cold traps differently depending on their size and the amount of sodium contained inside. Six small cold traps were processed onsite by cutting them up into small parts using a band saw under a protective atmosphere. The sodium was then converted to sodium hydroxide by using water. The remaining large cold trap could not be handled in the same way due to its dimensions (2.9 m x 1.1 m) and the declared amount of sodium inside (1,700 kg). It was therefore manually dismantled inside a large box filled with a protective atmosphere, while the resulting pieces were packaged for later burning in a special facility. The experiences gained by KNK during this process may be advantageous for future dismantling projects in similar sodium-cooled reactors worldwide. The dismantling of a prototype fast breeder reactor provides the challenge not only to dismantle radioactive materials but also to handle sodium-contaminated or sodium-containing components. The treatment of sodium requires additional equipment and installations to ensure a safe handling. Since it is not permitted to bring sodium into a repository, all sodium has to be neutralized either through a controlled reaction with water or by incinerating. The resulting components can be disposed of as normal radioactive waste with no further conditions. The handling of sodium needs skilled and experienced workers to minimize the inherent risks. And the example of the disposal of the large KNK cold trap shows the interaction with others and

  20. Frequency response testing at Experimental Breeder Reactor II using discrete-level periodic signals

    SciTech Connect

    Rhodes, W.D.; Larson, H.A. . Coll. of Engineering); Dean, E.M. )

    1990-01-01

    The Experimental Breeder Reactor 2 (EBR-2) reactivity-to-power frequency-response function was measured with pseudo-random, discrete-level, periodic signals. The reactor power deviation was small with insignificant perturbation of normal operation and in-place irradiation experiments. Comparison of results with measured rod oscillator data and with theoretical predictions show good agreement. Moreover, measures of input signal quality (autocorrelation function and energy spectra) confirm the ability to enable this type of frequency response determination at EBR-2. Measurements were made with the pseudo-random binary sequence, quadratic residue binary sequence, pseudo-random ternary sequence, and the multifrequency binary sequence. 10 refs., 7 figs., 3 tabs.

  1. Low-order dynamic modeling of the Experimental Breeder Reactor II

    SciTech Connect

    Berkan, R.C. . Dept. of Nuclear Engineering); Upadhyaya, B.R.; Kisner, R.A. )

    1990-07-01

    This report describes the development of a low-order, linear model of the Experimental Breeder Reactor II (EBR-II), including the primary system, intermediate heat exchanger, and steam generator subsystems. The linear model is developed to represent full-power steady state dynamics for low-level perturbations. Transient simulations are performed using model building and simulation capabilities of the computer software Matrix{sub x}. The inherently safe characteristics of the EBR-II are verified through the simulation studies. The results presented in this report also indicate an agreement between the linear model and the actual dynamics of the plant for several transients. Such models play a major role in the learning and in the improvement of nuclear reactor dynamics for control and signal validation studies. This research and development is sponsored by the Advanced Controls Program in the Instrumentation and Controls Division of the Oak Ridge National Laboratory. 17 refs., 67 figs., 15 tabs.

  2. Shippingport operations with the Light Water Breeder Reactor core. (LWBR Development Program)

    SciTech Connect

    Budd, W.A.

    1986-03-01

    This report describes the operation of the Shippingport Atomic Power Station during the LWBR (Light Water Breeder Reactor) Core lifetime. It also summarizes the plant-oriented operations during the period preceding LWBR startup, which include the defueling of The Pressurized Water Reactor Core 2 (PWR-2) and the installation of the LWBR Core, and the operations associated with the defueling of LWBR. The intent of this report is to examine LWBR experience in retrospect and present pertinent and significant aspects of LWBR operations that relate primarily to the nuclear portion of the Station. The nonnuclear portion of the Station is discussed only as it relates to overall plant operation or to unusual problems which result from the use of conventional equipment in radioactive environments. 30 refs., 69 figs., 27 tabs.

  3. Optimization of a variable flow allocation scheme in heterogeneous liquid-metal fast breeder reactors

    SciTech Connect

    Tzanos, C.P.

    1981-12-01

    Maximum cladding temperatures in heterogeneous liquid-metal fast breeder reactors (LMFBRs) can be reduced if the flow allocation between core and blanket assemblies is continuously varied during burnup. An analytical model has been developed that optimizes the time variation of the flow such that the reduction in maximum cladding temperatures is maximized. In addition, the concept of continuously varying the flow allocation between core and blanket assemblies has been evaluated for different fuel management schemes in a low sodium void reactivity 3000-MW heterogeneous LMFBR. This evaluation shows that the reduction in maximum cladding midwall temperatures is small ( about 10/sup 0/C) if the reactor is partially refueled at the end of each burnup cycle (cycle length of one year), and this reduction is increased to 20/sup 0/C if a straight burn fuel scheme is used with a core and internal blanket fuel residence time of two years.

  4. Passive compact molten salt reactor (PCMSR), modular thermal breeder reactor with totally passive safety system

    NASA Astrophysics Data System (ADS)

    Harto, Andang Widi

    2012-06-01

    Design Study Passive Compact Molten Salt Reactor (PCMSR) with totally passive safety system has been performed. The term of Compact in the PCMSR name means that the reactor system is designed to have relatively small volume per unit power output by using modular and integral concept. In term of modular, the reactor system consists of three modules, i.e. reactor module, turbine module and fuel management module. The reactor module is an integral design that consists of reactor, primary and intermediate heat exchangers and passive post shutdown cooling system. The turbine module is an integral design of a multi heating, multi cooling, regenerative gas turbine. The fuel management module consists of all equipments related to fuel preparation, fuel reprocessing and radioactive handling. The preliminary calculations show that the PCMSR has negative temperature and void reactivity coefficient, passive shutdown characteristic related to fuel pump failure and possibility of using natural circulation for post shutdown cooling system.

  5. Passive compact molten salt reactor (PCMSR), modular thermal breeder reactor with totally passive safety system

    SciTech Connect

    Harto, Andang Widi

    2012-06-06

    Design Study Passive Compact Molten Salt Reactor (PCMSR) with totally passive safety system has been performed. The term of Compact in the PCMSR name means that the reactor system is designed to have relatively small volume per unit power output by using modular and integral concept. In term of modular, the reactor system consists of three modules, i.e. reactor module, turbine module and fuel management module. The reactor module is an integral design that consists of reactor, primary and intermediate heat exchangers and passive post shutdown cooling system. The turbine module is an integral design of a multi heating, multi cooling, regenerative gas turbine. The fuel management module consists of all equipments related to fuel preparation, fuel reprocessing and radioactive handling. The preliminary calculations show that the PCMSR has negative temperature and void reactivity coefficient, passive shutdown characteristic related to fuel pump failure and possibility of using natural circulation for post shutdown cooling system.

  6. Tritium trapping in silicon carbide in contact with solid breeder under high flux isotope reactor irradiation

    SciTech Connect

    H. Katsui; Y. Katoh; A. Hasegawa; M. Shimada; Y. Hatano; T. Hinoki; S. Nogami; T. Tanaka; S. Nagata; T. Shikama

    2013-11-01

    The trapping of tritium in silicon carbide (SiC) injected from ceramic breeding materials was examined via tritium measurements using imaging plate (IP) techniques. Monolithic SiC in contact with ternary lithium oxide (lithium titanate and lithium aluminate) as a ceramic breeder was irradiated in the High Flux Isotope Reactor (HFIR) in Oak Ridge, Tennessee, USA. The distribution of photo-stimulated luminescence (PSL) of tritium in SiC was successfully obtained, which separated the contribution of 14C ß-rays to the PSL. The tritium incident from ceramic breeders was retained in the vicinity of the SiC surface even after irradiation at 1073 K over the duration of ~3000 h, while trapping of tritium was not observed in the bulk region. The PSL intensity near the SiC surface in contact with lithium titanate was higher than that obtained with lithium aluminate. The amount of the incident tritium and/or the formation of a Li2SiO3 phase on SiC due to the reaction with lithium aluminate under irradiation likely were responsible for this observation.

  7. Statement of the Executive Committee of the Scientists' Institute for Public Information--Comments on the Breeder Reactor

    ERIC Educational Resources Information Center

    Environment, 1975

    1975-01-01

    Inheritance of the Atomic Energy Commission's Draft Environmental Impact Statement for the Liquid Metal Fast Breeder Reactor Program by the Energy Research and Development Administration has caused much concern among members of the Scientists' Institute for Public Information (SIPI). SIPI members are concerned about the inadequacy and economic…

  8. Statement of the Executive Committee of the Scientists' Institute for Public Information--Comments on the Breeder Reactor

    ERIC Educational Resources Information Center

    Environment, 1975

    1975-01-01

    Inheritance of the Atomic Energy Commission's Draft Environmental Impact Statement for the Liquid Metal Fast Breeder Reactor Program by the Energy Research and Development Administration has caused much concern among members of the Scientists' Institute for Public Information (SIPI). SIPI members are concerned about the inadequacy and economic…

  9. Recommended practices in elevated temperature design: A compendium of breeder reactor experiences (1970-1986): An overview

    SciTech Connect

    Wei, B.C.; Cooper, W.L. Jr.; Dhalla, A.K.

    1987-09-01

    Significant experiences have been accumulated in the establishment of design methods and criteria applicable to the design of Liquid Metal Fast Breeder Reactor (LMFBR) components. The Subcommittee of the Elevated Temperature Design under the Pressure Vessel Research Council (PVRC) has undertaken to collect, on an international basis, design experience gained, and the lessons learned, to provide guidelines for next generation advanced reactor designs. This paper shall present an overview and describe the highlights of the work.

  10. Comments on a plan for obtaining private financing for the Clinch River Breeder Reactor

    SciTech Connect

    1983-08-22

    This review compares the latest CRBR financing plan, released to the Congress on August 1, 1983, with the private financing framework established by Department of Energy and Breeder Reactor Corporation task force reports in March 1983. We discussed these documents and our interpretation of the documents with DOE officials and members of the BRC task force. We also discussed them with representatives of one of the investment banking firms that participated in formulating the plan. We did not solicit DOE's review and comments on a draft of this report because of the short time frame involved in conducting our work. This is also in keeping with the agreement reached regarding agency comments on our May 12, 1983, report. We have discussed the report's contents with managers of the project in an effort to include DOE's views and ensure the report's accuracy.

  11. Recommendations concerning research and model evaluation needs to support breeder reactor environmental radiological assessments

    SciTech Connect

    Miller, C. W.; Dunning, Jr., D. E.; Etnier, E. L.; Kocher, D. C.; McDowell-Boyer, L. M.; Meyer, H. R.; Rohwer, P. S.

    1980-12-01

    Purpose of this report is to present recommendations concerning needs for model evaluations, environmental research, and biomedical research to support breeder reactor environmental radiological assessments. More data are needed to specify dry deposition velocities and to validate plume depletion models. More atmospheric dispersion data are required to characterize flow near buildings, in complex terrain, and for travel distances at 100 km or more. Field data are needed for terrestrial food chain transport models, especially those used to assess the impact of acute radionuclide releases. Efforts are needed to develop models for the estimation of dose from external exposure to photons from a finite, elevated plume resulting from an acute radionuclide release to the atmosphere. Estimates of doses to man from internally deposited radionuclides require scrutiny. Further study of tritium is needed to determine its dependence on dose and dose rate and to specify the relative toxicity of various physiochemical forms of tritium in the environment.

  12. Primary disassembly of Light Water Breeder Reactor modules for core evaluation (LWBR Development Program)

    SciTech Connect

    Greenberger, R.J.; Miller, E.L.

    1987-10-01

    After successfully operating for 29,047 effective full power hours, the Light Water Breeder Reactor (LWBR) core was defueled prior to total decommissioning of the Shippingport Atomic Power Station. All nuclear fuel and much of the reactor internal hardware was removed from the reactor vessel. Non-fuel components were prepared for shipment to disposal sites, and the fuel assemblies were partially disassembled and shipped to the Expended Core Facility (ECF) in Idaho. At ECF, the fuel modules underwent further disassembly to provide fuel rods for nondestructive testing to establish the core's breeding efficiency and to provide core components for examinations to assess their performance characteristics. This report presents a basic description of the processes and equipment used to disassemble LWBR fuel modules for subsequent proof-of-breeding (POB) and core examination operations. Included are discussions of module handling fixtures and equipment, the underwater milling machine and bandsaw assemblies, and the associated design and operation of this equipment for LWBR fuel module disassembly.

  13. Advanced automation concepts applied to Experimental Breeder Reactor-II startup

    SciTech Connect

    Berkan, R.C.; Upadhyaya, B.R.; Bywater, R.L. . Dept. of Nuclear Engineering); Kisner, R.A. )

    1991-08-01

    The major objective of this work is to demonstrate through simulations that advanced liquid-metal reactor plants can be operated from low power by computer control. Development of an automatic control system with this objective will help resolve specific issues and provide proof through demonstration that automatic control for plant startup is feasible. This paper presents an advanced control system design for startup of the Experimental Breeder Reactor-2 (EBR-2) located at Idaho Falls, Idaho. The design incorporates recent methods in nonlinear control with advanced diagnostics techniques such as neural networks to form an integrated architecture. The preliminary evaluations are obtained in a simulated environment by a low-order, valid nonlinear model. Within the framework of phase 1 research, the design includes an inverse dynamics controller, a fuzzy controller, and an artificial neural network controller. These three nonlinear control modules are designed to follow the EBR-2 startup trajectories in a multi-input/output regime. They are coordinated by a supervisory routine to yield a fault-tolerant, parallel operation. The control system operates in three modes: manual, semiautomatic, and fully automatic control. The simulation results of the EBR-2 startup transients proved the effectiveness of the advanced concepts. The work presented in this paper is a preliminary feasibility analysis and does not constitute a final design of an automated startup control system for EBR-2. 14 refs., 43 figs.

  14. Diversion analysis and safeguards measures for liquid-metal fast-breeder reactors. Paper IAEA-SM-260/6

    SciTech Connect

    Persiani, P.J.; Ermakov, S.V.

    1982-01-01

    The objective of the study is to perform a diversion analysis and an assessment of the available safeguards methods and systems for verifying inventory and flow of nuclear material in accessible and inaccessible areas of liquid-metal fast breeder reactor, LMFBR, systems. The study focuses primarily on the assembly-handling operations, assembly storage facilities, and reactor operations facilities relating to experimental, demonstration and prototypal reactor plants. The safeguards systems and methods presented are considered to be feasible for development and implementation within the resource limitation of the IAEA and are considered to be consistent with the objectives, requirements, and constraints of the IAEA documents INFCIRC/153 and INFCIRC/66-Rev-2.

  15. Fusion breeder

    SciTech Connect

    Moir, R.W.

    1982-04-20

    The fusion breeder is a fusion reactor designed with special blankets to maximize the transmutation by 14 MeV neutrons of uranium-238 to plutonium or thorium to uranium-233 for use as a fuel for fission reactors. Breeding fissile fuels has not been a goal of the US fusion energy program. This paper suggests it is time for a policy change to make the fusion breeder a goal of the US fusion program and the US nuclear energy program. The purpose of this paper is to suggest this policy change be made and tell why it should be made, and to outline specific research and development goals so that the fusion breeder will be developed in time to meet fissile fuel needs.

  16. Fusion breeder

    SciTech Connect

    Moir, R.W.

    1982-02-22

    The fusion breeder is a fusion reactor designed with special blankets to maximize the transmutation by 14 MeV neutrons of uranium-238 to plutonium or thorium to uranium-233 for use as a fuel for fission reactors. Breeding fissile fuels has not been a goal of the US fusion energy program. This paper suggests it is time for a policy change to make the fusion breeder a goal of the US fusion program and the US nuclear energy program. The purpose of this paper is to suggest this policy change be made and tell why it should be made, and to outline specific research and development goals so that the fusion breeder will be developed in time to meet fissile fuel needs.

  17. Analysis of the conceptual shielding design for the upflow Gas-Cooled Fast Breeder Reactor

    SciTech Connect

    Slater, C.O.; Reed, D.A.; Cramer, S.N.; Emmett, M.B.; Tomlinson, E.T.

    1981-01-01

    Conceptual Shielding Configuration III for the Gas-Cooled Fast Breeder Reactor (GCFR) was analyzed by performing global calculations of neutron and gamma-ray fluences and correcting the results as appropriate with bias factors from localized calculations. Included among the localized calculations were the radial and axial cell streaming calculations, plus extensive preliminary calculations and three final confirmation calculations of the plenum flow-through shields. The global calculations were performed on the GCFR mid-level and the lower and upper plenum regions. Calculated activities were examined with respect to the design constraint, if any, imposed on the particular activity. The spatial distributions of several activities of interest were examined with the aid of isoplots (i.e., symbols are used to describe a surface on which the activity level is everywhere the same). In general the results showed that most activities were below the respective design constraints. Only the total neutron fluence in the core barrel appeared to be marginal with the present reactor design. Since similar results were obtained for an earlier design, it has been proposed that the core barrel be cooled with inlet plenum gas to maintain it at a temperature low enough that it can withstand a higher fluence limit. Radiation levels in the prestressed concrete reactor vessel (PCRV) and liner appeared to be sufficiently below the design constraint that expected results from the Radial Shield Heterogeneity Experiment should not force any levels above the design constraint. A list was also made of a number of issues which should be examined before completion of the final shielding design.

  18. Completion of Experimental Breeder Reactor-II Sodium Processing at Argonne National Laboratory

    SciTech Connect

    McDermott, Mary D.; Griffin, Charles D.; Baird, Daniel K.; Baily, Carl E.; Michelbacher, John A.; Rosenberg, Kenneth E.; Henslee, S. Paul

    2002-07-01

    The Experimental Breeder Reactor - II (EBR-II) at Argonne National Laboratory - West (ANL-W) was shutdown in September 1994 as mandated by the United States Department of Energy. Located in eastern Idaho, this sodium-cooled reactor had been in service since 1964, and was a test facility for fuels development, materials irradiation, system and control theory tests, and hardware development. The EBR-II termination activities began in October 1994, with the reactor being maintained in an industrially and radiologically safe condition for decommissioning. With the shutdown of EBR-II, its sodium coolant became a waste necessitating its reaction to a disposal form. A Sodium Process Facility (SPF), designed to convert sodium to 50 wt% sodium hydroxide, existed at the ANL-W site, but had never been operated. The SPF was upgraded to current standards and codes, and then modified in 1998 to convert the sodium to 70 wt% sodium hydroxide, a substance that solidifies at 65 deg. C (150 deg. F) and is acceptable for burial as low level radioactive waste in Idaho. In December 1998, the SPF began operations. Working with sodium and highly concentrated sodium hydroxide presented some unique operating and maintenance conditions. Several lessons were learned throughout the operating period. Processing of the 330 m{sup 3} (87,000 gallons) of EBR-II primary sodium, 50 m{sup 3} (13,000 gallons) of EBR-II secondary sodium, and 290 m{sup 3} (77,000 gallons) of Fermi-1 primary sodium was successfully completed in March 2001, ahead of schedule and within budget. (authors)

  19. Coated ceramic breeder materials

    DOEpatents

    Tam, Shiu-Wing; Johnson, Carl E.

    1987-01-01

    A breeder material for use in a breeder blanket of a nuclear reactor is disclosed. The breeder material comprises a core material of lithium containing ceramic particles which has been coated with a neutron multiplier such as Be or BeO, which coating has a higher thermal conductivity than the core material.

  20. Coated ceramic breeder materials

    DOEpatents

    Tam, Shiu-Wing; Johnson, Carl E.

    1987-04-07

    A breeder material for use in a breeder blanket of a nuclear reactor is disclosed. The breeder material comprises a core material of lithium containing ceramic particles which has been coated with a neutron multiplier such as Be or BeO, which coating has a higher thermal conductivity than the core material.

  1. Multiple lead seal assembly for a liquid-metal-cooled fast-breeder nuclear reactor

    DOEpatents

    Hutter, Ernest; Pardini, John A.

    1977-03-15

    A reusable multiple lead seal assembly provides leak-free passage of stainless-steel-clad instrument leads through the cover on the primary tank of a liquid-metal-cooled fast-breeder nuclear reactor. The seal isolates radioactive argon cover gas and sodium vapor within the primary tank from the exterior atmosphere and permits reuse of the assembly and the stainless-steel-clad instrument leads. Leads are placed in flutes in a seal body, and a seal shell is then placed around the seal body. Circumferential channels in the body and inner surface of the shell are contiguous and together form a conduit which intersects each of the flutes, placing them in communication with a port through the wall of the seal shell. Liquid silicone rubber sealant is injected into the flutes through the port and conduit; the sealant fills the space in the flutes not occupied by the leads themselves and dries to a rubbery hardness. A nut, threaded onto a portion of the seal body not covered by the seal shell, jacks the body out of the shell and shears the sealant without damage to the body, shell, or leads. The leads may then be removed from the body. The sheared sealant is cleaned from the body, leads, and shell and the assembly may then be reused with the same or different leads.

  2. Removal of Zirconium in Electrometallurgical Treatment of Experimental Breeder Reactor II Spent Fuel

    SciTech Connect

    Ahluwalia, Rajesh K.; Hua, Thanh Q.; Geyer, Howard K.

    2001-01-15

    During electrorefining of irradiated, binary U-Zr Experimental Breeder Reactor II fuel, a portion of zirconium is found to dissolve along with uranium. It accumulates in the cadmium pool both as dissolved zirconium and as a zirconium-cadmium intermetallic precipitate. Two electrochemical methods of removing zirconium from the electrorefiner have been evaluated. The first is a three-step method consisting of chemical oxidation of zirconium by CdCl{sub 2} addition, depletion of zirconium from the cadmium pool by electrotransport, and drawdown of zirconium from the LiCl-KCl eutectic salt by using a different electrorefiner configuration. A transport model is employed to determine the cell operating conditions for growing pure zirconium deposits and the throughput rate. The second method eliminates the chemical oxidation step and permits codeposition of uranium and zirconium onto the solid cathode. The transport model is used to assess the level of uranium impurity in the cathode product; an additional step is proposed to reoxidize uranium in the deposit. The two methods are compared from the standpoints of throughput, deposit composition, deposit adherence to a solid cathode mandrel, and the underlying uncertainties. A brief review is given of the related past laboratory work on removal of zirconium from the electrorefiner.

  3. The Potential of Different Concepts of Fast Breeder Reactor for the French Fleet Renewal

    SciTech Connect

    Massara, Simone; Tetart, Philippe; Lecarpentier, David; Garzenne, Claude; Mourogov, Alexandre

    2006-07-01

    The performances of different concepts of Fast Breeder Reactor (Na-cooled, He-cooled and Pb-cooled FBR) for the current French fleet renewal are analyzed in the framework of a transition scenario to a 100% FBR fleet at the end of the 21. century. Firstly, the modeling of these three FBR types by means of a semi-analytical approach in TIRELIRE - STRATEGIE, the EDF fuel cycle simulation code, is presented, together with some validation elements against ERANOS, the French reference code system for neutronic FBR analysis (CEA). Afterwards, performances comparisons are made in terms of maximum deployable power, natural uranium consumption and waste production. The results show that the FBR maximum deployable capacity, independently from the FBR technology, is highly sensitive to the fuel cycle options, like the spent nuclear fuel cooling time or the Minor Actinides management strategy. Thus, some of the key parameters defining the dynamic of FBR deployment are highlighted, to inform the orientation of R and D in the development and optimization of these systems. (authors)

  4. The development of a cavitation free sodium pump for the breeder reactor

    SciTech Connect

    Baladi, J.Y.; Nyilas, C.P.

    1986-12-01

    The sodium pumps for a liquid metal fast breeder reactor must be designed for exceptionally high reliability and long life. The principal adverse factor which tends to limit the primary pump life is cavitation which becomes potentially severe under off-design flow conditions caused by the requirement of two loop operations which resulted in a large operating flow range. This problem prompted an extensive study which included experimental investigations of scaled down and full size pumps. The investigations involved visual observations, acoustic signature recordings, and physical characteristic measurements of the model and full size impellers. The blade configuration of the model was modified several times. After each modification intensive testing was conducted with feedback to established design criteria. The results obtained from the final configuration showed excellent cavitation performance. This configuration was then machined on the full scale impeller and tested. The results confirmed acceptable performance in the entire range of operating conditions. This paper describes the test facilities erected for this study, discusses the experimental techniques employed, and presents the experimental techniques employed, and presents a sample of the experimental results.

  5. Experiments on liquid-metal fast breeder reactor aerosol source terms after severe accidents

    SciTech Connect

    Berthoud, G.; Longest, A.W.; Wright, A.L.; Schutz, W.P.

    1988-05-01

    In the extremely unlikely event of a liquid-metal fast breeder reactor core disruptive accident, expanding core material or sodium vapor inside the sodium pool may cause leaks in the vessel head and transport of radioactive material, mostly aerosols, in one large bubble or several smaller bubbles under energetic conditions to the cover gas and through leaks to the inner containment (''instantaneous source term''). Out-of-pile experiments on bubble expansion from a pressurized source inside a liquid (water or sodium) and related phenomena like heat transfer, condensation, entrainment, rise, and aerosol transport were carried out in France and the United States and are continuing in the Federal Republic of Germany. Parameters and results of these experiments are described and discussed, mainly concerning the aerosol problem. It appears that several mechanisms exist for a very efficient removal of particles from the bubble. Retention factors larger than 10,000 were found in most cases. In addition, a short survey is given of French and German experiments on fuel and fission product release from evaporating or burning sodium pools (delayed source term).

  6. Effect of yttrium additions on void swelling in Liquid Metal Fast Breeder Reactor candidate cladding alloys

    SciTech Connect

    Hopson, R.D.

    1981-10-01

    Candidate Liquid Metal Fast Breeder Reactor cladding alloys AL1 (Fe-26% Ni-9% Cr) and AL2 (Fe-35% Ni-12% Cr) without and with the addition of 0.1% yttrium were bombarded by 4 MeV/sup 56/Fe/sup 2 +/ ions without and with simultaneous bombardment by 0.4 MeV /sup 4/He/sup +/ ions. These bombardments were conducted at various irradiation temperatures to determine the effect of yttrium on void swelling. The addition of yttrium decreased peak swelling for 4 MeV /sup 56/Fe/sup 2 +/ ion bombarded AL1 and AL2 by 28% and 20%, respectively. In all cases where similar sample comparisons were made (i.e., undoped with undoped and doped with doped) and where bombardment conditions were similar (i.e., single with single beam and dual with dual beam), AL1 showed less peak swelling than did AL2. Simultaneously implanting helium during heavy-ion bombardment increased peak swelling in undoped and doped AL1 by factors of 2.3 and 2.6, respectively.

  7. Estimated recurrence frequencies for initiating accident categories associated with the Clinch River Breeder Reactor Plant design

    SciTech Connect

    Copus, E R

    1982-04-01

    Estimated recurrence frequencies for each of twenty-five generic LMFBR initiating accident categories were quantified using the Clinch River Breeder Reactor Plant (CRBRP) design. These estimates were obtained using simplified systems fault trees and functional event tree models from the Accident Delineation Study Phase I Final Report coupled with order-of-magnitude estimates for the initiator-dependent failure probabilities of the individual CRBRP engineered safety systems. Twelve distinct protected accident categories where SCRAM is assumed to be successful are estimated to occur at a combined rate of 10/sup -3/ times per year while thirteen unprotected accident categories in which SCRAM fails are estimated to occur at a combined rate on the order of 10/sup -5/ times per year. These estimates are thought to be representative despite the fact that human performance factors, maintenance and repair, as well as input common cause uncertainties, were not treated explicitly. The overall results indicate that for the CRBRP design no single accident category appears to be dominant, nor can any be totally eliminated from further investigation in the areas of accident phenomenology for in-core events and post-accident phenomenology for containment.

  8. Potential of duplex fuel in prebreeder, breeder, and power reactor designs: tests and analyses (AWBA Development Program)

    SciTech Connect

    Chao, T.L.; Brennan, J.J.; Duncombe, E.; Schneider, M.J.; Johnson, R.G.R.

    1982-09-01

    Dual region fuel pellets, called duplex pellets, are comprised of an outer annular region of relatively high uranium fuel enrichment and a center pellet of fertile material with no enrichment. UO/sub 2/ and ThO/sub 2/ are the fissile and fertile materials of interest. Both prebreeders and breeders are discussed as are the performance advantages of duplex pellets over solid pellets in these two pressurized water reactor types. Advantages of duplex pellets for commercial reactor fuel rods are also discussed. Both irradiation test data and analytical results are used in comparisons. Manufacturing of duplex fuel is discussed.

  9. Development of fast breeder reactor fuel reprocessing technology at the Power Reactor and Nuclear Fuel Development Corporation

    SciTech Connect

    Kawata, T.; Takeda, H.; Togashi, A.; Hayashi, S. . Tokai Works); Stradley, J.G. )

    1991-01-01

    For the past two decades, a broad range of research development (R D) programs to establish fast breeder reactor (FBR) system and its associated fuel cycle technology have been pursued by the Power Reactor and Nuclear Fuel Development Corporation (PNC). Developmental activities for FBR fuel reprocessing technology have been primarily conducted at PNC Tokai Works where many important R D facilities for nuclear fuel cycle are located. These include cold and uranium tests for process equipment development in the Engineering Demonstration Facilities (EDF)-I and II, and laboratory-scale hot tests in the Chemical Processing Facility (CPF) where fuel dissolution and solvent extraction characteristics are being investigated with irradiated FBR fuel pins whose burn-up ranges up to 100,000 MWd/t. An extensive effort has also been made at EDF-III to develop advanced remote technology which enables to increase plant availability and to decrease radiation exposures to the workers in future reprocessing plants. The PNC and the United States Department of Energy (USDOE) entered into the joint collaboration in which the US shares the R Ds to support FBR fuel reprocessing program at the PNC. Several important R Ds on advanced process equipment such as a rotary dissolver and a centrifugal contactor system are in progress in a joint effort with the Oak Ridge National Laboratory (ORNL) Consolidated Fuel Reprocessing Program (CFRP). In order to facilitate hot testing on advanced processes and equipment, the design of a new engineering-scale hot test facility is now in progress aiming at the start of hot operation in late 90's. 31 refs., 2 tabs.

  10. Analysis of Sodium Fire in the Containment Building of Prototype Fast Breeder Reactor Under the Scenario of Core Disruptive Accident

    SciTech Connect

    Rao, P.M.; Kasinathan, N.; Kannan, S.E.

    2006-07-01

    The potential for sodium release to reactor containment building from reactor assembly during Core Disruptive Accident (CDA) in Fast Breeder Reactors (FBR) is an important safety issue with reference to the structural integrity of Reactor Containment Building (RCB). For Prototype Fast Breeder Reactor (PFBR), the estimated sodium release under a CDA of 100 MJ energy release is 350 kg. The ejected sodium reacts easily with air in RCB and causes temperature and pressure rise in the RCB. For estimating the severe thermal consequences in RCB, different modes of sodium fires like pool and spray fires were analyzed by using SOFIRE -- II and NACOM sodium fire computer codes. Effects of important parameters like amount of sodium, area of pool, containment air volume and oxygen concentration have been investigated. A peak pressure rise of 7.32 kPa is predicted by SOFIRE II code for 350 kg sodium pool fire in 86,000 m{sup 3} RCB volume. Under sodium release as spray followed by unburnt sodium as pool fire mode analysis, the estimated pressure rise is 5.85 kPa in the RCB. In the mode of instantaneous combustion of sodium, the estimated peak pressure rise is 13 kPa. (authors)

  11. Evaluation of the Initial Isothermal Physics Measurements at the Fast Flux Test Facility, a Prototypic Liquid Metal Fast Breeder Reactor

    SciTech Connect

    John D. Bess

    2010-03-01

    The Fast Flux Test Facility (FFTF) was a 400-MWt, sodium-cooled, low-pressure, high-temperature, fast-neutron flux, nuclear fission reactor plant designed for the irradiation testing of nuclear reactor fuels and materials for the development of liquid metal fast breeder reactors (LMFBRs). The FFTF was fueled with plutonium-uranium mixed oxide (MOX) and reflected by Inconel-600. Westinghouse Hanford Company operated the FFTF as part of the Hanford Engineering Development Laboratory (HEDL) for the U.S. Department of Energy on the Hanford Site near Richland, Washington. Although the FFTF was a testing facility not specifically designed to breed fuel or produce electricity, it did provide valuable information for LMFBR projects and base technology programs in the areas of plant system and component design, component fabrication, prototype testing, and site construction. The major objectives of the FFTF were to provide a strong, disciplined engineering base for the LMFBR program, provide fast flux testing for other U.S. programs, and contribute to the development of a viable self-sustaining competitive U.S. LMFBR industry. During its ten years of operation, the FFTF acted as a national research facility to test advanced nuclear fuels, materials, components, systems, nuclear power plant operating and maintenance procedures, and active and passive reactor safety technologies; it also produced a large number of isotopes for medical and industrial users, generated tritium for the U.S. fusion research program, and participated in cooperative, international research work. Prior to the implementation of the reactor characterization program, a series of isothermal physics measurements were performed; this acceptance testing program consisted of a series of control rod worths, critical rod positions, subcriticality measurements, maximum reactivity addition rates, shutdown margins, excess reactivity, and isothermal temperature coefficient reactivity. The results of these

  12. Level monitoring system with pulsating sensor—Application to online level monitoring of dashpots in a fast breeder reactor

    NASA Astrophysics Data System (ADS)

    Malathi, N.; Sahoo, P.; Ananthanarayanan, R.; Murali, N.

    2015-02-01

    An innovative continuous type liquid level monitoring system constructed by using a new class of sensor, viz., pulsating sensor, is presented. This device is of industrial grade and it is exclusively used for level monitoring of any non conducting liquid. This instrument of unique design is suitable for high resolution online monitoring of oil level in dashpots of a sodium-cooled fast breeder reactor. The sensing probe is of capacitance type robust probe consisting of a number of rectangular mirror polished stainless steel (SS-304) plates separated with uniform gaps. The performance of this novel instrument has been thoroughly investigated. The precision, sensitivity, response time, and the lowest detection limit in measurement using this device are <0.01 mm, ˜100 Hz/mm, ˜1 s, and ˜0.03 mm, respectively. The influence of temperature on liquid level is studied and the temperature compensation is provided in the instrument. The instrument qualified all recommended tests, such as environmental, electromagnetic interference and electromagnetic compatibility, and seismic tests prior to its deployment in nuclear reactor. With the evolution of this level measurement approach, it is possible to provide dashpot oil level sensors in fast breeder reactor for the first time for continuous measurement of oil level in dashpots of Control & Safety Rod Drive Mechanism during reactor operation.

  13. Level monitoring system with pulsating sensor—Application to online level monitoring of dashpots in a fast breeder reactor

    SciTech Connect

    Malathi, N.; Sahoo, P. Ananthanarayanan, R.; Murali, N.

    2015-02-15

    An innovative continuous type liquid level monitoring system constructed by using a new class of sensor, viz., pulsating sensor, is presented. This device is of industrial grade and it is exclusively used for level monitoring of any non conducting liquid. This instrument of unique design is suitable for high resolution online monitoring of oil level in dashpots of a sodium-cooled fast breeder reactor. The sensing probe is of capacitance type robust probe consisting of a number of rectangular mirror polished stainless steel (SS-304) plates separated with uniform gaps. The performance of this novel instrument has been thoroughly investigated. The precision, sensitivity, response time, and the lowest detection limit in measurement using this device are <0.01 mm, ∼100 Hz/mm, ∼1 s, and ∼0.03 mm, respectively. The influence of temperature on liquid level is studied and the temperature compensation is provided in the instrument. The instrument qualified all recommended tests, such as environmental, electromagnetic interference and electromagnetic compatibility, and seismic tests prior to its deployment in nuclear reactor. With the evolution of this level measurement approach, it is possible to provide dashpot oil level sensors in fast breeder reactor for the first time for continuous measurement of oil level in dashpots of Control and Safety Rod Drive Mechanism during reactor operation.

  14. Level monitoring system with pulsating sensor--application to online level monitoring of dashpots in a fast breeder reactor.

    PubMed

    Malathi, N; Sahoo, P; Ananthanarayanan, R; Murali, N

    2015-02-01

    An innovative continuous type liquid level monitoring system constructed by using a new class of sensor, viz., pulsating sensor, is presented. This device is of industrial grade and it is exclusively used for level monitoring of any non conducting liquid. This instrument of unique design is suitable for high resolution online monitoring of oil level in dashpots of a sodium-cooled fast breeder reactor. The sensing probe is of capacitance type robust probe consisting of a number of rectangular mirror polished stainless steel (SS-304) plates separated with uniform gaps. The performance of this novel instrument has been thoroughly investigated. The precision, sensitivity, response time, and the lowest detection limit in measurement using this device are <0.01 mm, ∼100 Hz/mm, ∼1 s, and ∼0.03 mm, respectively. The influence of temperature on liquid level is studied and the temperature compensation is provided in the instrument. The instrument qualified all recommended tests, such as environmental, electromagnetic interference and electromagnetic compatibility, and seismic tests prior to its deployment in nuclear reactor. With the evolution of this level measurement approach, it is possible to provide dashpot oil level sensors in fast breeder reactor for the first time for continuous measurement of oil level in dashpots of Control & Safety Rod Drive Mechanism during reactor operation.

  15. Evaluation of high plutonia (44% PuO 2) MOX as a fuel for fast breeder test reactor

    NASA Astrophysics Data System (ADS)

    Sengupta, A. K.; Khan, K. B.; Panakkal, Jose; Kamath, H. S.; Banerjee, S.

    2009-03-01

    Uranium plutonium mixed oxide (MOX) containing up to 30% plutonia is the conventional fuel for liquid metal cooled fast breeder reactor (LMFBR). Use of high plutonia (>30%) MOX fuel in LMFBR had been of interest but not pursued. Of late, it has regained importance for faster disposition of plutonium and also for making compact fast reactors. Some of the issues of high plutonia MOX fuels which are of concern are its chemical compatibility with liquid sodium coolant, dimensional stability and low thermal conductivity. Available literature information for MOX fuel is limited to a plutonium content of 30%. Thermodynamic assessment of mixed oxide fuels indicate that with increasing plutonia oxygen potential of the fuel increases and the fuel become more prone to chemical attack by liquid sodium coolant in case of a clad breach. In the present investigation, some of these issues of MOX fuel have been studied to evaluate this fuel for its use in fast reactor. Extensive work on the out-of-pile thermo-physical properties and fuel-coolant chemical compatibility under different simulated reactor conditions has been carried out. Results of these studies were compared with the available literature information on low plutonia MOX fuel and critically analyzed to predict in reactor behaviour of this fuel containing 44% PuO 2. The results of these out-of-pile studies have been very encouraging and helped in arriving at a suitable and achievable fuel specification for utilization of this fuel in fast breeder test reactor (FBTR). As a first step of test pin irradiation programme in FBTR, eight subassemblies of the MOX fuel are undergoing irradiation in FBTR.

  16. Assessment of the performance potential of the martensitic alloy HT-9 for liquid-metal fast-breeder-reactor applications

    SciTech Connect

    Straalsund, J.L.; Gelles, D.S.

    1983-05-01

    Martensitic stainless steels appear to provide attractive alternatives to austenitic stainless steels for liquid metal fast breeder reactors (LMFBR). The United States National Cladding/Duct (NCD) Materials Development Program has selected Sandvik alloy HT-9 (12CrMoW) as one of six prime candidate alloys for advanced in-core structural materials having very high peak burnup capabilities. The NCD program, since 1974, has been accumulating engineering data for HT-9. Properties include swelling, irradiation creep and microstructure as a function of fluence, postirradiation mechanical properties, thermal creep, sodium compatibility and hardware fabrication technology. Tests results are presented.

  17. Power and power-to-flow reactivity transfer functions in EBR-II (Experimental Breeder Reactor II) fuel

    SciTech Connect

    Grimm, K.N.; Meneghetti, D. )

    1989-11-01

    Reactivity transfer functions are important in determining the reactivity history during a power transient. Overall nodal transfer functions have been calculated for different subassembly types in the Experimental Breeder Reactor II (EBR-II). Steady-state calculations for temperature changes and, hence, reactivities for power changes have been separated into power and power-to-flow-dependent terms. Axial nodal transfer functions separated into power and power-to-flow-dependent components are reported in this paper for a typical EBR-II fuel pin. This provides an improved understanding of the time dependence of these components in transient situations.

  18. Update of cost information contained in a previous GAO report on specific aspects of the Clinch River Breeder Reactor Project

    SciTech Connect

    Not Available

    1981-06-26

    As part of our June 23, 1977, report, the Energy Research and Development Administration (ERDA)--now part of the Department of Energy (DOE)--provided us with some cost and schedule information for the Clinch River Breeder Reactor Project as it related to three different licensing cases. At the time, the administration was attempting to terminate the Clinch River Project. And then, as now, it was a topic of heated debate within the Congress and between the Congress and the executive branch. Consequently, it was against this backdrop that we asked ERDA officials to provide us with specific cost and schedule data for the Clinch River Project, assuming it would be terminated and then restarted about 4 months later, after the Congress had an opportunity to fully consider whether to go ahead with the entire breeder reactor program. At the time, we used the 4-month lapse as an estimate that would provide an indication of the impact the project termination would have on the Clinch River Project's cost and schedule.

  19. Respiratory diseases and allergic sensitization in swine breeders: a population-based cross-sectional study.

    PubMed

    Galli, Luigina; Facchetti, Susanna; Raffetti, Elena; Donato, Francesco; D'Anna, Mauro

    2015-11-01

    The daily occupation as a swine breeder involves exposure to several bacterial components and organic dusts and inhalation of a large amount of allergens. To investigate the risk of respiratory diseases and atopy in swine breeders compared with the general population living in the same area. A population-based cross-sectional study was conducted in an agricultural area of northern Italy that enrolled a random sample of resident male breeders and non-breeders. Demographic features, comorbidities, and presence of allergic respiratory disease were retrieved through interview. Prick tests for common allergens were performed. An evaluation of pollen and mold in air samples taken inside and outside some swine confinement buildings also was performed. One hundred one male breeders (78 native-born, mean age ± SD 43.0 ± 11.1 years) and 82 non-breeders (43.0 ± 11.1 years) were enrolled. When restricting the analysis to native-born subjects, breeders vs non-breeders showed a lower prevalence of respiratory allergy (12.8% vs 31.1%, respectively, P = .002), asthma (6.4% vs 15.8%, P = .059), rhinitis (16.7% vs 51.2%, P < .001), persistent cough (5.1% vs 15.9%, P = .028), and sensitization to grass (7.7% vs 25.6%, P = .002). There was no difference in prick test positivity, polysensitization, nasal cytologic pattern, forced expiratory volume in 1 second, and the ratio of forced expiratory volume in 1 second to forced vital capacity between breeders and non-breeders. Air concentration of molds and pollens was lower inside than outside the swine buildings investigated, particularly when the pigs were inside vs outside the buildings. This study suggests that swine breeding does not increase, and might decrease, the risk of pollen sensitization and allergic disease. Copyright © 2015 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  20. Cost/performance comparison between pulse columns and centrifugal contactors designed to process Clinch River Breeder Reactor fuel

    SciTech Connect

    Ciucci, J.A. Jr.

    1983-12-01

    A comparison between pulse columns and centrifugal contactors was made to determine which type of equipment was more advantageous for use in the primary decontamination cycle of a remotely operated fuel reprocessing plant. Clinch River Breeder Reactor (CRBR) fuel was chosen as the fuel to be processed in the proposed 1 metric tonne/day reprocessing facility. The pulse columns and centrifugal contactors were compared on a performance and total cost basis. From this comparison, either the pulse columns or the centrifugal contactors will be recommended for use in a fuel reprocessing plant built to reprocess CRBR fuel. The reliability, solvent exposure to radiation, required time to reach steady state, and the total costs were the primary areas of concern for the comparison. The pulse column units were determined to be more reliable than the centrifugal contactors. When a centrifugal contactor motor fails, it can be remotely changed in less than one eight hour shift. Pulse columns expose the solvent to approximately five times as much radiation dose as the centrifugal contactor units; however, the proposed solvent recovery system adequately cleans the solvent for either case. The time required for pulse columns to reach steady state is many times longer than the time required for centrifugal contactors to reach steady state. The cost comparison between the two types of contacting equipment resulted in centrifugal contactors costing 85% of the total cost of pulse columns when the contactors were stacked on three levels in the module. If the centrifugal contactors were all positioned on the top level of a module with the unoccupied volume in the module occupied by other equipment, the centrifugal contactors cost is 66% of the total cost of pulse columns. Based on these results, centrifugal contactors are recommended for use in a remotely operated reprocessing plant built to reprocess CRBR fuel.

  1. Study of safeguards system on dry reprocessing for fast breeder reactor

    SciTech Connect

    Li, T. K.; Burr, Tom; Menlove, Howard O.; Thomas, K. E.; Fukushima, M.; Hori, M.

    2002-01-01

    A 'Feasibility Study on the Commercialized Fast Breeder Reactor (FBR) Cycle System' is underway at Japan Nuclear Cycle Development Institute (JNC). Concepts to commercialize the FBR fuel cycle are being created together with their necessary research and development (R&D) tasks. 'Dry,' non-aqueous, processes are candidates for FBR fuel reprocessing. Dry reprocessing technology takes advantage of proliferation barriers, due to the lower decontamination factors achievable by the simple pyrochemical processes proposed. The concentration o f highly radioactive impurities and non-fissile materials in products from a dry reprocess is generally significantly larger than the normal aqueous (Purex) process. However, the safeguards of dry reprocesses have not been widely analyzed. In 2000, JNC and Los Alamos National Laboratoiy (LANL) initiated a joint research program to study the safeguards aspects of dry reprocessing. In this study, the safeguardability of the three options: metal electrorefining, oxide electrowinning, and fluoride volatility processes, are assessed. FBR spent fuels are decladded and powdered into mixed oxides (MOX) at the Head-End process either by oxidation-reduction reactions (metal electrorefining and fluoride volatility) or mechanically (oxide electrowinning). At the oxide electrowinning process, the spent MOX he1 powder is transferred to chloride in molten salt and nuclear materials are extracted onto cathode as oxides. For metal electrorefining process, on the other hand, the MOX fuel is converted to chloride in molten salt, and nuclear materials are extracted onto cathode as a metal fomi. At lhe fluoride volatility process, the MOX fuel powder is converted to U&/PuF6 (gaseous form) in a fluidized bed; plutonium and uranium fluorides are separated by volatilization properties and then are converted to oxides. Since the conceptual design of a dry reprocessing plant is incomplete, the operational mode, vessel capacities, residence times, and campaigns

  2. Deterministic and Monte Carlo Neutron Transport Calculations of the Dounreay Fast Breeder Reactor

    SciTech Connect

    Ziver, A. Kemal; Shahdatullah, Sabu; Eaton, Matthew D.; Oliviera, Cassiano R.E. de; Ackroyd, Ron T.; Umpleby, Adrian P.; Pain, Christopher C.; Goddard, Antony J. H.; Fitzpatrick, James

    2004-12-15

    A homogenized whole-reactor cylindrical model of the Dounreay Fast Reactor has been constructed using both deterministic and Monte Carlo codes to determine neutron flux distributions inside the core and at various out-of-core components. The principal aim is to predict neutron-induced activation levels using both methods and make comparisons against the measured thermal reaction rates. Neutron transport calculations have been performed for a fixed source using a spatially lumped fission neutron distribution, which has been derived from measurements. The deterministic code used is based on the finite element approximation to the multigroup second-order even-parity neutron transport equation, which is implemented in the EVENT code. The Monte Carlo solutions were obtained using the MCNP4C code, in which neutron cross sections are represented in pointwise (or continuous) form. We have compared neutron spectra at various locations not only to show differences between using multigroup deterministic and continuous energy (point nuclear data) Monte Carlo methods but also to assess neutron-induced activation levels calculated using the spectra obtained from both methods. Results were also compared against experiments that were carried out to determine neutron-induced reaction rates. To determine activation levels, we employed the European Activation Code System FISPACT. We have found that the neutron spectra calculated at various in-core and out-of-core components show some differences, which mainly reflect the use of multigroup and point energy nuclear data libraries and methods employed, but these differences have not resulted in large errors on the calculated activation levels of materials that are important (such as steel components) for decommissioning studies of the reactor. The agreement of calculated reaction rates of thermal neutron detectors such as the {sup 55}Mn(n,{gamma}){sup 56}Mn against measurements was satisfactory.

  3. Study on laser welding of fuel clad tubes and end plugs made of modified 9Cr-1Mo steel for metallic fuel of Fast Breeder Reactors

    NASA Astrophysics Data System (ADS)

    Harinath, Y. V.; Gopal, K. A.; Murugan, S.; Albert, S. K.

    2013-04-01

    A procedure for Pulsed Laser Beam Welding (PLBW) has been developed for fabrication of fuel pins made of modified 9Cr-1Mo steel for metallic fuel proposed to be used in future in India's Fast Breeder Reactor (FBR) programme. Initial welding trials of the samples were carried out with different average power using Nd-YAG based PLBW process. After analyzing the welds, average power for the weld was optimized for the required depth of penetration and weld quality. Subsequently, keeping the average power constant, the effect of various other welding parameters like laser peak power, pulse frequency, pulse duration and energy per pulse on weld joint integrity were studied and a procedure that would ensure welds of acceptable quality with required depth of penetration, minimum size of fusion zone and Heat Affected Zone (HAZ) were finalized. This procedure is also found to reduce the volume fraction delta-ferrite in the fusion zone.

  4. Core loading pattern optimization of thorium fueled heavy water breeder reactor using genetic algorithm

    SciTech Connect

    Soewono, C. N.; Takaki, N.

    2012-07-01

    In this work genetic algorithm was proposed to solve fuel loading pattern optimization problem in thorium fueled heavy water reactor. The objective function of optimization was to maximize the conversion ratio and minimize power peaking factor. Those objectives were simultaneously optimized using non-dominated Pareto-based population ranking optimal method. Members of non-dominated population were assigned selection probabilities based on their rankings in a manner similar to Baker's single criterion ranking selection procedure. A selected non-dominated member was bred through simple mutation or one-point crossover process to produce a new member. The genetic algorithm program was developed in FORTRAN 90 while neutronic calculation and analysis was done by COREBN code, a module of core burn-up calculation for SRAC. (authors)

  5. Computerized operating procedures for shearing and dissolution of segments from LWBR (Light Water Breeder Reactor) fuel rods

    SciTech Connect

    Osudar, J.; Deeken, P.G.; Graczyk, D.G.; Fagan, J.E.; Martino, F.J.; Parks, J.E.; Levitz, N.M.; Kessie, R.W.; Leddin, J.M.

    1987-05-01

    This report presents two detailed computerized operating procedures developed to assist and control the shearing and dissolution of irradiated fuel rods. The procedures were employed in the destructive analysis of end-of-life fuel rods from the Light Water Breeder Reactor (LWBR) that was designed by the Westinghouse Electric Corporation Bettis Atomic Power Laboratory. Seventeen entire fuel rods from the end-of-life core of the LWBR were sheared into 169 precisely characterized segments, and more than 150 of these segments were dissolved during execution of the LWBR Proof-of-Breeding (LWBR-POB) Analytical Support Project at Argonne National Laboratory. The procedures illustrate our approaches to process monitoring, data reduction, and quality assurance during the LWBR-POB work.

  6. Modeling and analysis of the unprotected loss-of-flow accident in the Clinch River Breeder Reactor

    SciTech Connect

    Morris, E.E.; Dunn, F.E.; Simms, R.; Gruber, E.E.

    1985-01-01

    The influence of fission-gas-driven fuel compaction on the energetics resulting from a loss-of-flow accident was estimated with the aid of the SAS3D accident analysis code. The analysis was carried out as part of the Clinch River Breeder Reactor licensing process. The TREAT tests L6, L7, and R8 were analyzed to assist in the modeling of fuel motion and the effects of plenum fission-gas release on coolant and clad dynamics. Special, conservative modeling was introduced to evaluate the effect of fission-gas pressure on the motion of the upper fuel pin segment following disruption. For the nominal sodium-void worth, fission-gas-driven fuel compaction did not adversely affect the outcome of the transient. When uncertainties in the sodium-void worth were considered, however, it was found that if fuel compaction occurs, loss-of-flow driven transient overpower phenomenology could not be precluded.

  7. Comparison of oxide- and metal-core behavior during CRBRP (Clinch River Breeder Reactor Plant) station blackout

    SciTech Connect

    Polkinghorne, S T; Atkinson, S A

    1986-01-01

    A resurrected concept that could significantly improve the inherently safe response of Liquid-Metal cooled Reactors (LMRs) during severe undercooling transients is the use of metallic fuel. Analytical studies have been reported on for the transient behavior of metal-fuel cores in innovative, inherently safe LMR designs. This paper reports on an analysis done, instead, for the Clinch River Breeder Reactor Plant (CRBRP) design with the only innovative change being the incorporation of a metal-fuel core. The SSC-L code was used to simulate a protected station blackout accident in the CRBRP with a 943 MWt Integral Fast Reactor (IFR) metal-fuel core. The results, compared with those for the oxide-fueled CRBRP, show that the margin to boiling is greater for the IFR core. However, the cooldown transient is more severe due to the faster thermal response time of metallic fuel. Some additional calculations to assess possible LMR design improvements (reduced primary system pressure losses, extended flow coastdown) are also discussed. 8 refs., 13 figs., 2 tabs.

  8. Investigations on natural circulation in reactor models and shutdown heat removal systems for LMFBRs (liquid metal fast breeder reactors)

    SciTech Connect

    Hoffmann, H.; Weinberg, D.; Marten, K. ); Ieda, Yoshiaki )

    1989-11-01

    For sodium-cooled pool-type reactors, studies have been undertaken to remove the decay heat by natural convection alone, as in the case of failure of all power supplies. For this purpose, four immersion coolers (ICs), two each installed at a 180-deg circumferential position with respect to the others, are arranged within the reactor tank. They are connected with natural-drift air coolers through independent intermediate circuits. The primary sodium in the tank as well as the secondary sodium in the intermediate loop circulate by natural convection. The general functioning of this passive shutdown decay heat removal (DHR) system is demonstrated in 1:20 and 1:5 scale test models using water as a simulant fluid for sodium. The model design is based on the thermohydraulics similarity criteria. In the RAMONA three-dimensional 1:20 scale model, experiments were carried out to clarify the steady-state in-vessel thermohydraulics for different parameter combinations (core power, radial power distribution across the core, DHR by 2 or 4 ICs in operation, above-core structure geometry and position, different IC designs). For all mentioned parameters, temperatures and their fluctuations were measured and used to indicate isotherms and lines of identical temperature fluctuations. The flow patterns were observed visually. The experiments were recalculated by an updated version of the single-phase three-dimensional thermohydraulics code COMMIX.

  9. Development of variable-width ribbon heating elements for liquid-metal and gas-cooled fast breeder reactor fuel-pin simulators

    SciTech Connect

    McCulloch, R.W.; Post, D.W.; Lovell, R.T.; Snyder, S.D.

    1981-04-01

    Variable-width ribbon heating elements that provide a chopped-cosine variable heat flux profile have been fabricated for fuel pin simulators used in test loops by the Breeder Reactor Program Thermal-Hydraulic Out-of-Reactor Safety test facility and the Gas-Cooled Fast Breeder Reactor-Core Flow Test Loop. Thermal, mechanical, and electrical design considerations are used to derive an analytical expression that precisely describes ribbon contour in terms of the major fabrication parameters. These parameters are used to generate numerical control tapes that control ribbon cutting and winding machines. Infrared scanning techniques are developed to determine the optimum transient thermal profile of the coils and relate this profile to that generated by the coils in completed fuel pin simulators.

  10. Time constants and feedback transfer functions of EBR-II (Experimental Breeder Reactor) subassembly types

    SciTech Connect

    Grimm, K.N.; Meneghetti, D.

    1986-09-01

    Time constants, feedback reactivity transfer functions and power coefficients are calculated for stereotypical subassemblies in the EBR-II reactor. These quantities are calculated from nodal reactivities obtained from a reactor kinetic code analysis for a step change in power. Due to the multiplicity of eigenvalues, there are several time constants for each nodal position in a subassembly. Compared with these calculated values are analytically derived values for the initial node of a given channel.

  11. Advanced In-Service Inspection Approaches Applied to the Phenix Fast Breeder Reactor

    SciTech Connect

    Guidez, J.; Martin, L.; Dupraz, R.

    2006-07-01

    The safety upgrading of the Phenix plant undertaken between 1994 and 1997 involved a vast inspection programme of the reactor, the external storage drum and the secondary sodium circuits in order to meet the requirements of the defence-in-depth safety approach. The three lines of defence were analysed for every safety related component: demonstration of the quality of design and construction, appropriate in-service inspection and controlling the consequences of an accident. The in-service reactor block inspection programme consisted in controlling the core support structures and the high-temperature elements. Despite the fact that limited consideration had been given to inspection constraints during the design stage of the reactor in the 1960's, as compared to more recent reactor projects such as the European Fast Reactor (EFR), all the core support line elements were able to be inspected. The three following main operations are described: Ultrasonic inspection of the upper hangers of the main vessel, using small transducers able to withstand temperatures of 130 deg. C, Inspection of the conical shell supporting the core dia-grid. A specific ultrasonic method and a special implementation technique were used to control the under sodium structure welds, located up to several meters away from the scan surface. Remote inspection of the hot pool structures, particularly the core cover plug after partial sodium drainage of the reactor vessel. Other inspections are also summarized: control of secondary sodium circuit piping, intermediate heat exchangers, primary sodium pumps, steam generator units and external storage drum. The pool type reactor concept, developed in France since the 1960's, presents several favourable safety and operational features. The feedback from the Phenix plant also shows real potential for in-service inspection. The design of future generation IV sodium fast reactors will benefit from the experience acquired from the Phenix plant. (authors)

  12. Experimental Breeder Reactor II (EBR-II): Instrumentation for core surveillance

    SciTech Connect

    Christensen, L.J.

    1989-01-01

    EBR-II has operated for 25 years in support of several major programs. During this time period, several of the original, non-replaceable, flow sensors, RDT sensors and thermocouples have failed in the primary system. This has led to the development of new sensors and the use of calculated values using computer models of the plant. It is important for the next generation of LMR reactors to minimize or eliminate the use of non-replaceable sensors. EBR-II is perhaps the best modeled reactor in the world, thanks to a dedicated T-H analysis program. The success of this program relied on excellent measurements of temperature and flow in subassemblies in the core. The instrumented subassemblies of the XX series provided that measurement capability. From this test series, EBR-II calculations showed that the core could withstand a loss-of-flow without scram accident and a loss-of-heat sink without scram accident from full reactor power without core damage. From this, reactor designers can now design with confidence, inherently safe reactors. 11 refs., 8 figs.

  13. Displacement damage parameters for fusion breeder blanket materials based on BCA computer simulations

    NASA Astrophysics Data System (ADS)

    Leichtle, Dieter

    2002-12-01

    Based on the MARLOWE code, a refined binary collision approximation (BCA) simulation model has been developed which is particularly suited for light mass and polyatomic ionic solids in a fusion environment. Main features of the model are described, including appropriate extensions of the kinematical procedure and the ion-solid interactions. Defect yields from the simulated collision cascades are used for deriving displacement cross sections in Be, Li 2O, Li 2SiO 3, Li 2SiO 4 and Li 2TiO 3. Comparisons with standard results show that there is an energy dependence which is strongly correlated with the spectrum of primary knock-on atoms. In particular, for lithium ceramics the contribution of damage induced by secondary helium and tritium is remarkable even in a fast neutron flux. The total displacements per atom in a fusion demonstration reactor blanket obtained by means of BCA-simulation results is in general lower than NRT-values by about 30% for the lithium breeder materials, but higher by around 90% for beryllium. These differences can be attributed to differences of binding properties and crystalline structure of the respective material, which also influence the defect composition.

  14. Fabrication, properties, and tritium recovery from solid breeder materials

    SciTech Connect

    Johnson, C.E. ); Kondo, T. ); Roux, N. ); Tanaka, S. ); Vollath, D. )

    1991-01-01

    The breeding blanket is a key component of the fusion reactor because it directly involves tritium breeding and energy extraction, both of which are critical to development of fusion power. The lithium ceramics continue to show promise as candidate breeder materials. This promise was recognized by the International Thermonuclear Experimental Reactor (ITER) design team in its selection of ceramics as the first option for the ITER breeder material. Blanket design studies have indicated properties in the candidate materials data base that need further investigation. Current studies are focusing on tritium release behavior at high burnup, changes in thermophysical properties with burnup, compatibility between the ceramic breeder and beryllium multiplier, and phase changes with burnup. Laboratory and in-reactor tests, some as part of an international collaboration for development of ceramic breeder materials, are underway. 133 refs., 1 fig.

  15. A study of passive safety features by utilizing intra-subassembly-equipped self-actuated shutdown mechanism for future large fast breeder reactors

    SciTech Connect

    Uto, N.; Niwa, H.; Ieda, Y.; Satoh, K.

    1996-08-01

    Passive prevention of core disruptive accidents (CDAs) is desired in terms of enhancement of safety for future fast breeder reactors. In addition, mitigation of CDA`s consequences should be required because mitigation measures have a potential of applying to all accidents, while prevention measures are prepared for specific accident initiators. In this paper, the Intra-Subassembly-equipped Self-Actuated Shutdown System (IS-SASS) , which is considered effective on passive prevention and mitigation of CDAs, is described. The IS-SASS is introduced in a fuel subassembly and consists of absorber materials at the top of the active core and an inner duct through which molten fuel can be excluded out of the core. The determination of the appropriate number of the IS-SASS units, their arrangement in the core and their suitable structure are found to be suited to prevention and mitigation of CDAs for liquid metal-cooled large fast breeder reactors.

  16. TOKOPS: Tokamak Reactor Operations Study: The influence of reactor operations on the design and performance of tokamaks with solid-breeder blankets: Final report

    SciTech Connect

    Conn, R.W.; Ghoniem, N.M.; Firestone, M.A.

    1986-09-01

    Reactor system operation and procedures have a profound impact on the conception and design of power plants. These issues are studied here using a model tokamak system employing a solid-breeder blanket. The model blanket is one which has evolved from the STARFIRE and BCSS studies. The reactor parameters are similar to those characterizing near-term fusion engineering reactors such as INTOR or NET (Next European Tokamak). Plasma startup, burn analysis, and methods for operation at various levels of output power are studied. A critical, and complicating, element is found to be the self-consistent electromagnetic response of the system, including the presence of the blanket and the resulting forces and loadings. Fractional power operation, and the strategy for burn control, is found to vary depending on the scaling law for energy confinement, and an extensive study is reported. Full-power reactor operation is at a neutron wall loading pf 5 MW/m/sup 2/ and a surface heat flux of 1 MW/m/sup 2/. The blanket is a pressurized steel module with bare beryllium rods and low-activation HT-9-(9-C-) clad LiAlO/sub 2/ rods. The helium coolant pressure is 5 MPa, entering the module at 297/sup 0/C and exiting at 550/sup 0/C. The system power output is rated at 1000 MW(e). In this report, we present our findings on various operational scenarios and their impact on system design. We first start with the salient aspects of operational physics. Time-dependent analyses of the blanket and balance of plant are then presented. Separate abstracts are included for each chapter.

  17. Automated operator procedure prompting for startup of Experimental Breeder Reactor-2

    SciTech Connect

    Renshaw, A.W.; Ball, S.J.; Ford, C.E.

    1990-11-01

    This report describes the development of an operator procedure prompting aid for startup of a nuclear reactor. This operator aid is a preliminary design for a similar aid that eventually will be used with the Advanced Liquid Metal Reactor (ALMR) presently in the design stage. Two approaches were used to develop this operator procedure prompting aid. One method uses an expert system software shell, and the other method uses database software. The preliminary requirements strongly pointed toward features traditionally associated with both database and expert systems software. Database software usually provides data manipulation flexibility and user interface tools, and expert systems tools offer sophisticated data representation and reasoning capabilities. Both methods, including software and associated hardware, are described in this report. Proposals for future enhancements to improve the expert system approach to procedure prompting and for developing other operator aids are also offered. 25 refs., 14 figs.

  18. Optimization of a heterogeneous fast breeder reactor core with improved behavior during unprotected transients

    SciTech Connect

    Poumerouly, S.; Schmitt, D.; Massara, S.; Maliverney, B.

    2012-07-01

    Innovative Sodium-cooled Fast Reactors (SFRs) are currently being investigated by CEA, AREVA and EDF in the framework of a joint French collaboration, and the construction of a GEN IV prototype, ASTRID (Advanced Sodium Technical Reactor for Industrial Demonstration), is scheduled in the years 2020. Significant improvements are expected so as to improve the reactor safety: the goal is to achieve a robust safety demonstration of the mastering of the consequences of a Core Disruptive Accident (CDA), whether by means of prevention or mitigation features. In this framework, an innovative design was proposed by CEA in 2010. It aims at strongly reducing the sodium void effect, thereby improving the core behavior during unprotected loss of coolant transients. This design is strongly heterogeneous and includes, amongst others, a fertile plate, a sodium plenum associated with a B{sub 4}C upper blanket and a stepwise modulation of the fissile height of the core (onwards referred to as the 'diabolo shape'). In this paper, studies which were entirely carried out at EDF are presented: the full potential of this heterogeneous concept is thoroughly investigated using the SDDS methodology. (authors)

  19. Simulation of Radioactive Corrosion Product in Primary Cooling System of Japanese Sodium-Cooled Fast Breeder Reactor

    NASA Astrophysics Data System (ADS)

    Matuo, Youichirou; Miyahara, Shinya; Izumi, Yoshinobu

    Radioactive Corrosion Product (CP) is a main cause of personal radiation exposure during maintenance with no breached fuel in fast breeder reactor (FBR) plants. The most important CP is 54Mn and 60Co. In order to establish techniques of radiation dose estimation for radiation workers in radiation-controlled areas of the FBR, the PSYCHE (Program SYstem for Corrosion Hazard Evaluation) code was developed. We add the Particle Model to the conventional PSYCHE analytical model. In this paper, we performed calculation of CP transfer in JOYO using an improved calculation code in which the Particle Model was added to the PSYCHE. The C/E (calculated / experimentally observed) value for CP deposition was improved through use of this improved PSYCHE incorporating the Particle Model. Moreover, among the percentage of total radioactive deposition accounted for by CP in particle form, 54Mn was estimated to constitute approximately 20 % and 60Co approximately 40 % in the cold-leg region. These calculation results are consistent with the measured results for the actual cold-leg piping in the JOYO.

  20. Some computations in planning reconstitution of a 500-MW(electric) fast breeder reactor (metallic) fuel by electrorefining

    SciTech Connect

    Nawada, H.P.; Bhat, N.P.; Balasubramanian, G.R.

    1996-04-01

    To compare and evaluate various fuel cycle options for a 500-MW(electric) fast breeder reactor, the electrorefining process has been examined for reprocessing spent fuel. Making use of an improved thermochemical model, optimum process conditions for electrorefining have been worked out. These conditions are the following: capacity of the electrorefining cell, number of cells, batch size, feed adjustments, sequential operations for recovery of uranium and co-recovery of uranium and plutonium, number of cycles, and time frame to meet the refueling schedule. The spent fuel is envisaged to undergo reprocessing in three campaigns: (a) the inner core campaign, (b) the outer core campaign, and (c) the blanket and the leftover campaign. Feed adjustments are done by mixing either the spent inner core or the outer core fuels with the blankets. Three product streams with required fuel composition for direct refabrication of the inner core, the outer core, and the blanket fuel subassemblies, respectively, are obtained by certain sequential electrorefiing operations. These calculations made for a mixed-oxide fuel core can be easily extended to the metallic core.

  1. Parametric studies on heterogeneous cores for fast breeder reactors: The Pre-Racine and Racine experimental programs

    SciTech Connect

    Humbert, G.; Kappler, F.; Martini, M.; Norvez, G.; Rimpault, G.; Ruelle, B.; Scholtyssek, W.; Stanculescu, A.

    1984-07-01

    The Pre-Racine and Racine experimental programs, which have been performed on the Masurca critical assembly at Cadarache since 1976, were designed for the study of the neutron physics characteristics of heterogeneous fast reactor cores. Geometrically simple configurations were chosen in which parameters, being typical for heterogeneous cores, were varied in a systematic manner while the basic fissile composition was kept the same. Measurements were made especially of the critical mass, the distributions of reaction rates and the spectral indices, the reactivity of sodium voiding, and control rod worths. Analyses were made independently by Commissariat a l'Energie Atomique (CEA) and DEBENE using their own calculational techniques and cross sections. No bias for core heterogeneity was found on critical mass predictions. The CEA calculations for void reactivities are consistent in heterogeneous and homogeneous configurations. For the calculation of local parameters, e.g., reaction rates and spectral indices, more sophisticated methods must be applied in heterogeneous cores, as transport effects also become more important in fissile zones with increasing fertile volume fraction. It was found at CEA that the ratio of the calculated reactivity of a central control rod to the experimental value does not change with the core size or with the presence of internal breeder zones.

  2. Microstructure analysis for chemical interaction between cesium and SUS 316 steel in fast breeder reactor application

    SciTech Connect

    Sasaki, K.; Fukumoto, K. I.; Oshima, T.; Tanigaki, T.; Masayoshi, U.

    2012-07-01

    In this study the corrosion products on a surface after cesium corrosion examination at 650 deg. C for 100 hrs were characterized by TEM observation around the corroded area on the surface in order to understand the corrosion mechanism of cesium fission product for cladding materials in fast reactor. The experimental results suggest the main corrosion mechanism occurred in the process of the separation of cesium chromate and metal (Fe, Ni). The main reaction of corrosion process was considered to be equation, 2Cs + 7/2 O{sub 2} + 2Cr {yields} Cs{sub 2}Cr{sub 2}O{sub 7}(L). (authors)

  3. Materials data base and design equations for the UCLA solid breeder blanket

    SciTech Connect

    Sharafat, S.; Amodeo, R.; Ghoniem, N.M.

    1986-02-01

    The materials and properties investigated for this blanket study are listed. The phenomenological equations and mathematical fits for all materials and properties considered are given. Efforts to develop a swelling equation based on the few experimental data points available for breeder materials are described. The sintering phenomena for ceramics is investigated.

  4. Occurence and prediction of sigma phase in fuel cladding alloys for breeder reactors. [LMFBR

    SciTech Connect

    Anantatmula, R.P.

    1982-01-01

    In sodium-cooled fast reactor systems, fuel cladding materials will be exposed for several thousand hours to liquid sodium. Satisfactory performance of the materials depends in part on the sodium compatibility and phase stability of the materials. This paper mainly deals with the phase stability aspect, with particular emphasis on sigma phase formation of the cladding materials upon extended exposures to liquid sodium. A new method of predicting sigma phase formation is proposed for austenitic stainless steels and predictions are compared with the experimental results on fuel cladding materials. Excellent agreement is obtained between theory and experiment. The new method is different from the empirical methods suggested for superalloys and does not suffer from the same drawbacks. The present method uses the Fe-Cr-Ni ternary phase diagram for predicting the sigma-forming tendencies and exhibits a wide range of applicability to austenitic stainless steels and heat-resistant Fe-Cr-Ni alloys.

  5. Shipment of the Light Water Breeder Reactor fuel assemblies from the Shippingport Atomic Power Station to the extended core facility (Idaho) (LWBR Development Program)

    SciTech Connect

    Selsley, I.A.

    1987-10-01

    After successfully operating for 29,047 effective full power hours, the Light Water Breeder Reactor (LWBR) core was defueled prior to total decommissioning of the Shippingport Atomic Power Station. All nuclear fuel and much of the reactor internal hardware was removed from the reactor vessel and prepared for shipment to disposal sites or to the Naval Reactors Expended Core Facility in Idaho for testing or further disassembly. Three M-130 shipping containers were modified to accept LWBR seed, blanket, and reflector fuel modules for rail shipment to the Expended Core Facility. Thirty-nine LWBR fuel modules were transferred in 10 shipments. All shipments were completed successfully, without significant problems. Radiation and personnel exposure levels were carefully controlled.

  6. Materials accounting in a fast-breeder-reactor fuels-reprocessing facility: optimal allocation of measurement uncertainties

    SciTech Connect

    Dayem, H.A.; Ostenak, C.A.; Gutmacher, R.G.; Kern, E.A.; Markin, J.T.; Martinez, D.P.; Thomas, C.C. Jr.

    1982-07-01

    This report describes the conceptual design of a materials accounting system for the feed preparation and chemical separations processes of a fast breeder reactor spent-fuel reprocessing facility. For the proposed accounting system, optimization techniques are used to calculate instrument measurement uncertainties that meet four different accounting performance goals while minimizing the total development cost of instrument systems. We identify instruments that require development to meet performance goals and measurement uncertainty components that dominate the materials balance variance. Materials accounting in the feed preparation process is complicated by large in-process inventories and spent-fuel assembly inputs that are difficult to measure. To meet 8 kg of plutonium abrupt and 40 kg of plutonium protracted loss-detection goals, materials accounting in the chemical separations process requires: process tank volume and concentration measurements having a precision less than or equal to 1%; accountability and plutonium sample tank volume measurements having a precision less than or equal to 0.3%, a shortterm correlated error less than or equal to 0.04%, and a long-term correlated error less than or equal to 0.04%; and accountability and plutonium sample tank concentration measurements having a precision less than or equal to 0.4%, a short-term correlated error less than or equal to 0.1%, and a long-term correlated error less than or equal to 0.05%. The effects of process design on materials accounting are identified. Major areas of concern include the voloxidizer, the continuous dissolver, and the accountability tank.

  7. Heat resistant reduced activation 12% Cr steel of 16Cr12W2VTaB type-advanced structural material for fusion and fast breeder power reactors

    NASA Astrophysics Data System (ADS)

    Ioltukhovskiy, A. G.; Leonteva-Smirnova, M. V.; Solonin, M. I.; Chernov, V. M.; Golovanov, V. N.; Shamardin, V. K.; Bulanova, T. M.; Povstyanko, A. V.; Fedoseev, A. E.

    2002-12-01

    Heat resistant 12% Cr steels of the 16Cr12W2VTaB type (12Cr-2W-V-Ta-B-0.16C) provide a reduced activation material that can be used as a structural material for fusion and fast breeder reactors. The composition under study meets scientific and engineering requirements and has an optimal base element composition to provide a δ-ferrite content of no more than 20%. It also has a minimum quantity of low melting impurity elements and non-metallic inclusions. Short-term tensile properties for the steel tested to 700 °C are provided after the standard heat treatment (normalization, temper). Rupture strength and creep properties for the steel depending on the initial heat treatment conditions are also given. The microstructural stability of the 16Cr12W2VTaB type steel at temperatures up to 650 °C is predicted to be good, and the properties of the steel after irradiation in BOR-60 are demonstrated.

  8. Development of a Fast Breeder Reactor Fuel Bundle Deformation Analysis Code - BAMBOO: Development of a Pin Dispersion Model and Verification by the Out-of-Pile Compression Test

    SciTech Connect

    Uwaba, Tomoyuki; Ito, Masahiro; Ukai, Shigeharu

    2004-02-15

    To analyze the wire-wrapped fast breeder reactor fuel pin bundle deformation under bundle/duct interaction conditions, the Japan Nuclear Cycle Development Institute has developed the BAMBOO computer code. This code uses the three-dimensional beam element to calculate fuel pin bowing and cladding oval distortion as the primary deformation mechanisms in a fuel pin bundle. The pin dispersion, which is disarrangement of pins in a bundle and would occur during irradiation, was modeled in this code to evaluate its effect on bundle deformation. By applying the contact analysis method commonly used in the finite element method, this model considers the contact conditions at various axial positions as well as the nodal points and can analyze the irregular arrangement of fuel pins with the deviation of the wire configuration.The dispersion model was introduced in the BAMBOO code and verified by using the results of the out-of-pile compression test of the bundle, where the dispersion was caused by the deviation of the wire position. And the effect of the dispersion on the bundle deformation was evaluated based on the analysis results of the code.

  9. RELAP5/MOD3 Analysis of Transient Steam-Generator Behavior During Turbine Trip Test of a Prototype Fast Breeder Reactor MONJU

    SciTech Connect

    Yoshihisa Shindo; Hiroshi Endo; Tomoko Ishizu; Kazuo Haga

    2006-07-01

    In order to develop a thermal-hydraulic model of the steam-generator (SG) to simulate transient phenomena in the sodium cooled fast breeder reactor (FBR) MONJU, Japan Nuclear Energy Safety Organization (JNES) verified the SG model using the RELAP5/MOD3 code against the results of the turbine trip test at a 40% power load of MONJU. The modeling by using RELAP5 was considered to explain the significant observed behaviors of the pressure and the temperature of the EV steam outlet, and the temperature of water supply distributing piping till 600 seconds after the turbine trip. The analysis results of these behaviors showed good agreement with the test results based on results of parameter study as the blow efficiency (release coef.) and heat transferred from the helical coil region to the down-comer (temperature heating down-comer tubes). It was found that the RELAP5/MOD3 code with a two-fluids model can predict well the physical situation: the gas-phase of steam generated by the decompression boiling moves upward in the down-comer tubes accompanied by the enthalpy increase of the water supply chambers; and that the pressure change of a 'shoulder' like shape is induced by the mass balance between the steam mass generated in the down-comer tubes and the steam mass blown from the SG. The applicability of RELAP5/MOD3 to SG modeling was confirmed by simulating the actual FBR system. (authors)

  10. Mechanical properties test data of Alloy 718 for liquid metal fast breeder reactor applications

    SciTech Connect

    Korth, G.E.

    1983-01-01

    Mechanical property test data are reported for Alloy 718 with two heat treatments: conventional heat treatment (CHT) for base metal and Idaho National Engineering Laboratory (INEL) heat treatment (IHT) for base and weld metal. Tests were conducted in air from 24 to 704{degree}C and include elastic properties (Young's modulus, shear modulus, Poisson's ratio), tensile properties, creep-rupture properties, fatigue properties, creep-fatigue properties, and Charpy impact behavior. Effects of long term thermal aging at 538, 593, 649, and 704{degree}C for times to 25,000 h are also reported for CHT material (tensile, creep-rupture, fatigue, and Charpy), and IHT material (tensile, and Charpy). 18 refs., 63 figs., 36 tabs.

  11. AB INITIO STUDY OF ADVANCED METALLIC NUCLEAR FUELS FOR FAST BREEDER REACTORS

    SciTech Connect

    Landa, A; Soderlind, P; Grabowski, B; Turchi, P A; Ruban, A V; Vitos, L

    2012-04-23

    Density-functional formalism is applied to study the ground state properties of {gamma}-U-Zr and {gamma}-U-Mo solid solutions. Calculated heats of formation are compared with CALPHAD assessments. We discuss how the heat of formation in both alloys correlates with the charge transfer between the alloy components. The decomposition curves for {gamma}-based U-Zr and U-Mo solid solutions are derived from Ising-type Monte Carlo simulations. We explore the idea of stabilization of the {delta}-UZr{sub 2} compound against the {alpha}-Zr (hcp) structure due to increase of Zr d-band occupancy by the addition of U to Zr. We discuss how the specific behavior of the electronic density of states in the vicinity of the Fermi level promotes the stabilization of the U{sub 2}Mo compound. The mechanism of possible Am redistribution in the U-Zr and U-Mo fuels is also discussed.

  12. Contribution of Clinch River Breeder Reactor plant design and development to the LMFBR fuel cycle

    SciTech Connect

    Riley, D.R.; Dickson, P.W.

    1981-01-01

    This paper describes how the CRBRP development and CRBRP focus of the LMFBR base technology program have led to advances in the state of the art in physics, thermal-hydraulics, structural analysis, core restraint, seismic analysis, and analysis of hypothetical core-disruptive accident energetics, all of which have been incorporated through disciplined engineering into the final CRBRP design. The total development in the US of fuels and materials, the analytical advances made on CRBRP design, and the incorporation of the latest experimental results into that design have put the US technology in general and the CRBRP design in particular at the forefront of technology. This has placed the US in a position to develop the most favorable LMFBR fuel cycle.

  13. Localized corrosion studies on materials proposed for a safety-grade sodium-to- air decay-heat removal system for fast breeder reactors

    NASA Astrophysics Data System (ADS)

    Kamachi Mudali, U.; Khatak, H. S.; Dayal, R. K.; Gnanamoorthy, J. B.

    1993-02-01

    The present investigation was carried out to assess the localized corrosion resistance of materials proposed for the construction of the safety-grade sodium-to-air decay-heat removal system for fast breeder reactors. The materials, such as Alloy 800,9Cr-lMo steel, and type 316LN stainless steel, in different microstructural conditions were assessed for pitting and stress-corrosion cracking resistances in a chloride medium. The results indicated that 9Cr-lMo steel in the normalized and tempered condition can be considered for the above application from the standpoint of corrosion resistance.

  14. Localized corrosion studies on materials proposed for a safety-grade sodium-to-air decay-heat removal system for fast breeder reactors

    SciTech Connect

    Mudali, U.K.; Khatak, H.S.; Dayal, R.K.; Gnanamoorthy, J.B. )

    1993-02-01

    The present investigation was carried out to assess the localized corrosion resistance of materials proposed for the construction of the safety-grade sodium-to-air decay-heat removal system for fast breeder reactors. The materials, such as Alloy 800, 9Cr-1 Mo steel, and type 316LN stainless steel, in different microstructural conditions were assessed for pitting and stress-corrosion cracking resistances in a chloride medium. The results indicated that 9Cr-1Mo steel in the normalized and tempered condition can be considered for the above application from the standpoint of corrosion resistance.

  15. Electromagnetic analysis of the plasma chamber of an ECR-based charge breeder

    SciTech Connect

    Galatà, A. Patti, G.; Celona, L.; Mascali, D.; Neri, L.; Torrisi, G.

    2016-02-15

    The optimization of the efficiency of an ECR-based charge breeder is a twofold task: efforts must be paid to maximize the capture of the injected 1+ ions by the confined plasma and to produce high charge states to allow post-acceleration at high energies. Both tasks must be faced by studying in detail the electrons heating dynamics, influenced by the microwave-to-plasma coupling mechanism. Numerical simulations are a powerful tools for obtaining quantitative information about the wave-to-plasma interaction process: this paper presents a numerical study of the microwaves propagation and absorption inside the plasma chamber of the PHOENIX charge breeder, which the selective production of exotic species project, under construction at Legnaro National Laboratories, will adopt as charge breeder. Calculations were carried out with a commercial 3D FEM solver: first, all the resonant frequencies were determined by considering a simplified plasma chamber; then, the realistic geometry was taken into account, including a cold plasma model of increasing complexity. The results gave important information about the power absorption and losses and will allow the improvement of the plasma model to be used in a refined step of calculation reproducing the breeding process itself.

  16. Electromagnetic analysis of the plasma chamber of an ECR-based charge breeder

    NASA Astrophysics Data System (ADS)

    Galatà, A.; Patti, G.; Celona, L.; Mascali, D.; Neri, L.; Torrisi, G.

    2016-02-01

    The optimization of the efficiency of an ECR-based charge breeder is a twofold task: efforts must be paid to maximize the capture of the injected 1+ ions by the confined plasma and to produce high charge states to allow post-acceleration at high energies. Both tasks must be faced by studying in detail the electrons heating dynamics, influenced by the microwave-to-plasma coupling mechanism. Numerical simulations are a powerful tools for obtaining quantitative information about the wave-to-plasma interaction process: this paper presents a numerical study of the microwaves propagation and absorption inside the plasma chamber of the PHOENIX charge breeder, which the selective production of exotic species project, under construction at Legnaro National Laboratories, will adopt as charge breeder. Calculations were carried out with a commercial 3D FEM solver: first, all the resonant frequencies were determined by considering a simplified plasma chamber; then, the realistic geometry was taken into account, including a cold plasma model of increasing complexity. The results gave important information about the power absorption and losses and will allow the improvement of the plasma model to be used in a refined step of calculation reproducing the breeding process itself.

  17. Laser fusion driven breeder design study. Final report

    SciTech Connect

    Berwald, D.H.; Massey, J.V.

    1980-12-01

    The results of the Laser Fusion Breeder Design Study are given. This information primarily relates to the conceptual design of an inertial confinement fusion (ICF) breeder reactor (or fusion-fission hybrid) based upon the HYLIFE liquid metal wall protection concept developed at Lawrence Livermore National Laboratory. The blanket design for this breeder is optimized to both reduce fissions and maximize the production of fissile fuel for subsequent use in conventional light water reactors (LWRs). When the suppressed fission blanket is compared with its fast fission counterparts, a minimal fission rate in the blanket results in a unique reactor safety advantage for this concept with respect to reduced radioactive inventory and reduced fission product decay afterheat in the event of a loss-of-coolant-accident.

  18. REACTOR

    DOEpatents

    Szilard, L.

    1963-09-10

    A breeder reactor is described, including a mass of fissionable material that is less than critical with respect to unmoderated neutrons and greater than critical with respect to neutrons of average energies substantially greater than thermal, a coolant selected from sodium or sodium--potassium alloys, a control liquid selected from lead or lead--bismuth alloys, and means for varying the quantity of control liquid in the reactor. (AEC)

  19. Accelerator based fusion reactor

    NASA Astrophysics Data System (ADS)

    Liu, Keh-Fei; Chao, Alexander Wu

    2017-08-01

    A feasibility study of fusion reactors based on accelerators is carried out. We consider a novel scheme where a beam from the accelerator hits the target plasma on the resonance of the fusion reaction and establish characteristic criteria for a workable reactor. We consider the reactions d+t\\to n+α,d+{{}3}{{H}\\text{e}}\\to p+α , and p+{{}11}B\\to 3α in this study. The critical temperature of the plasma is determined from overcoming the stopping power of the beam with the fusion energy gain. The needed plasma lifetime is determined from the width of the resonance, the beam velocity and the plasma density. We estimate the critical beam flux by balancing the energy of fusion production against the plasma thermo-energy and the loss due to stopping power for the case of an inert plasma. The product of critical flux and plasma lifetime is independent of plasma density and has a weak dependence on temperature. Even though the critical temperatures for these reactions are lower than those for the thermonuclear reactors, the critical flux is in the range of {{10}22}-{{10}24}~\\text{c}{{\\text{m}}-2}~{{\\text{s}}-1} for the plasma density {ρt}={{10}15}~\\text{c}{{\\text{m}}-3} in the case of an inert plasma. Several approaches to control the growth of the two-stream instability are discussed. We have also considered several scenarios for practical implementation which will require further studies. Finally, we consider the case where the injected beam at the resonance energy maintains the plasma temperature and prolongs its lifetime to reach a steady state. The equations for power balance and particle number conservation are given for this case.

  20. Summary of the radiological assessment of the fuel cycle for a thorium-uranium carbide-fueled fast breeder reactor

    SciTech Connect

    Tennery, V.J.; Bomar, E.S.; Bond, W.D.; Meyer, H.R.; Morse, L.E.; Till, J.E.; Yalcintas, M.G.

    1980-01-01

    A large fraction of the potential fuel for nuclear power reactors employing fissionable materials exists as ores of thorium. In addition, certain characteristics of a fuel system based on breeding of the fissionable isotope {sup 233}U from thorium offer the possibility of a greater resistance to the diversion of fissionable material for the fabrication of nuclear weapons. This report consolidates into a single source the principal content of two previous reports which assess the radiological environmental impact of mining and milling of thorium ore and of the reprocessing and refabrication of spent FBR thorium-uranium carbide fuel.

  1. REACTOR BASE, SOUTHEAST CORNER. INTERIOR WILL CONTAIN REACTOR TANK, COOLING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    REACTOR BASE, SOUTHEAST CORNER. INTERIOR WILL CONTAIN REACTOR TANK, COOLING WATER PIPES, COOLING AIR DUCTS, AND SHIELDING. INL NEGATIVE NO. 776. Unknown Photographer, 10/1950 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  2. Three-dimensional finite-element analysis of the cellular convection phenomena in the Clinch River Breeder Reactor Plant prototype pump

    SciTech Connect

    Silver, A.H.; Lee, J.Y.

    1983-01-01

    Cellular convection was studied rigorously during the development of the Clinch River Breeder Reactor Plant (CRBRP) Program Pumps. This paper presents the development of a three-dimensional finite-element heat transfer model which accounts for the cellular convection phenomena. A buoyancy driven cellular convection flow pattern is introduced in the annulus region between the upper inner structure and the pump tank. Steady-state thermal data were obtained for several test conditions for argon gas pressures up to 93 psig (741 kPa) and sodium operating temperatures to 1000/sup 0/F (811/sup 0/K). Test temperature distributions on the pump tank and inner structure were correlated with numerical results and excellent agreement was obtained.

  3. Development of a Fast Breeder Reactor Fuel Bundle-Duct Interaction Analysis Code - BAMBOO: Analysis Model and Validation by the Out-of-Pile Compression Test

    SciTech Connect

    Uwaba, Tomoyuki; Tanaka, Kosuke

    2001-10-15

    To analyze the wire-wrapped fast breeder reactor (FBR) fuel pin bundle deformation under bundle-duct interaction (BDI) conditions, the Japan Nuclear Cycle Development Institute has developed the BAMBOO computer code. A three-dimensional beam element model is used in this code to calculate fuel pin bowing and cladding oval distortion, which are the dominant deformation mechanisms in a fuel pin bundle. In this work, the property of the cladding oval distortion considering the wire-pitch was evaluated experimentally and introduced in the code analysis.The BAMBOO code was validated in this study by using an out-of-pile bundle compression testing apparatus and comparing these results with the code results. It is concluded that BAMBOO reasonably predicts the pin-to-duct clearances in the compression tests by treating the cladding oval distortion as the suppression mechanism to BDI.

  4. Prediction of stainless steel activation in experimental breeder reactor 2 (EBR-II) reflector and blanket subassemblies

    SciTech Connect

    Bunde, K.A.

    1996-12-31

    Stainless steel structural components in nuclear reactors become radioactive wastes when no longer useful. Prior to disposal, certain physical attributes must be analyzed. These attributes include structural integrity, chemical stability, and the radioactive material content among others. The focus of this work is the estimation of the radioactive material content of stainless steel wastes from a research reactor operated by Argonne National Laboratory.

  5. Validation Work to Support the Idaho National Engineering and Environmental Laboratory Calculational Burnup Methodology Using Shippingport Light Water Breeder Reactor (LWBR) Spent Fuel Assay Data

    SciTech Connect

    J. W. Sterbentz

    1999-08-01

    Six uranium isotopes and fourteen fission product isotopes were calculated on a mass basis at end-of-life (EOL) conditions for three fuel rods from different Light Water Breeder Reactor (LWBR) measurements. The three fuel rods evaluated here were taken from an LWBR seed module, a standard blanket module, and a reflector (Type IV) module. The calculated results were derived using a depletion methodology previously employed to evaluate many of the radionuclide inventories for spent nuclear fuels at the Idaho National Engineering and Environmental Laboratory. The primary goal of the calculational task was to further support the validation of this particular calculational methodology and its application to diverse reactor types and fuels. Result comparisons between the calculated and measured mass concentrations in the three rods indicate good agreement for the three major uranium isotopes (U-233, U-234, U-235) with differences of less than 20%. For the seed and standard blanket rod, the U-233 and U-234 differences were within 5% of the measured values (these two isotopes alone represent greater than 97% of the EOL total uranium mass). For the major krypton and xenon fission product isotopes, differences of less than 20% and less than 30% were observed, respectively. In general, good agreement was obtained for nearly all the measured isotopes. For these isotopes exhibiting significant differences, possible explanations are discussed in terms of measurement uncertainty, complex transmutations, etc.

  6. Ceramic breeder materials

    SciTech Connect

    Johnson, C.E.; Kummerer, K.R.; Roth, E.

    1987-01-01

    Ceramic materials are under investigation as potential breeder material in fusion reactors. This paper will review candidate materials with respect to fabrication routes and characterization, properties in as-fabricated and irradiated condition, and experimental results from laboratory and inpile investigations on tritium transport and release. Also discussed are the resources of beryllium, which is being considered as a neutron multiplier. The comparison of ceramic properties that is attempted here aims at the identification of the most-promising material for use in a tritium breeding blanket. 82 refs., 12 figs., 5 tabs.

  7. Oxidation of SUS-316 stainless steel for fast breeder reactor fuel cladding under oxygen pressure controlled by Ni/NiO oxygen buffer

    NASA Astrophysics Data System (ADS)

    Saito, Minoru; Furuya, Hirotaka; Sugisaki, Masayasu

    1985-09-01

    Oxidation of SUS-316 stainless steel for a fast breeder reactor fuel cladding was examined in the temperature range of 843-1010 K under the oxygen pressure of 1017 t - 10 t-13 Pa hy use of an experimental technique of a Ni/NiO oxygen buffer. The formation of the duplex oxide layer, i.e. an outer Fe 3O 4 layer and an inner (Fe, Cr, Ni)-spinel layer, was observed and the oxidation kinetics was found to obey the parabolic rate law. The oxygen pressure and temperature dependence of the parabolic rate constant kp( PO2, T) was determined as follows: kp( PO2, T)/ kg2 · m-1 · s-1 = 0.170( PO2/ Pa) 0.141exp[-114 × 10 3/( RT/ J)]. On the basis of the oxidation kinetics and the metallographic information, the outward diffusion of Fe in the outer oxide layer was assigned to be the rate-determining process.

  8. Fusion Breeder Program interim report

    SciTech Connect

    Moir, R.; Lee, J.D.; Neef, W.

    1982-06-11

    This interim report for the FY82 Fusion Breeder Program covers work performed during the scoping phase of the study, December, 1981-February 1982. The goals for the FY82 study are the identification and development of a reference blanket concept using the fission suppression concept and the definition of a development plan to further the fusion breeder application. The context of the study is the tandem mirror reactor, but emphasis is placed upon blanket engineering. A tokamak driver and blanket concept will be selected and studied in more detail during FY83.

  9. Superphenix: Is the fast breeder dream over -- or over yonder?

    SciTech Connect

    1997-03-01

    A detailed history of France`s Superphenix commercial fast breeder reactor project is presented. Important project milestones are discussed from the project`s conception in 1971 to its current status. Recommendations of the Castaing Commission on the project and future plans for use of the reactor are outlined. In addition, world wide fast breeder projects are listed and discussed.

  10. EBIS charge breeder for CARIBU

    NASA Astrophysics Data System (ADS)

    Kondrashev, S.; Barcikowski, A.; Dickerson, C.; Fischer, R.; Ostroumov, P. N.; Vondrasek, R.; Pikin, A.

    2014-02-01

    A high-efficiency charge breeder based on an Electron Beam Ion Source (EBIS) is being developed by the ANL Physics Division to increase the intensity and improve the purity of accelerated radioactive ion beams. A wide variety of low-energy neutron-rich ion beams are produced by the Californium Rare Isotope Breeder Upgrade (CARIBU) for the Argonne Tandem Linac Accelerator System (ATLAS). These beams will be charge-bred by an EBIS charge breeder to a charge-to-mass ratio (q/A) ≥ 1/7 and accelerated by ATLAS to energies of about 10 MeV/u. The assembly of the CARIBU EBIS charge breeder except the injection/extraction beam lines has been completed. This summer we started electron beam commissioning of the EBIS. The first results on electron beam extraction, transport from the electron gun to a high power electron collector are presented and discussed.

  11. NERVA Reactor Based on NRX A1

    NASA Technical Reports Server (NTRS)

    1963-01-01

    This artist's concept from 1963 shows a proposed NERVA (Nuclear Engine for Rocket Vehicle Application) incorporating the NRX-A1, the first NERVA-type cold flow reactor. The NERVA engine, based on Kiwi nuclear reactor technology, was intended to power a RIFT (Reactor-In-Flight-Test) nuclear stage, for which Marshall Space Flight Center had development responsibility.

  12. IEC-^3He Breeder for D-^3He Satellite Systems.

    NASA Astrophysics Data System (ADS)

    Chacon, L.; Miley, G. H.

    1996-11-01

    D-^3He fusion minimizes neutrons and maximizes charged fusion products, enabling increased energy recovery efficiency by direct conversion. However, scarce ^3He terrestrial resources have deterred R&D on this alternative. Here, we explore ^3He production through Inertial Electrostatic Confinement^1 (IEC) D-breeders, which supply ^3He to FRC D-^3He satellite reactors.^2 Favorable features for the IEC breeder include simplicity, low cost, easy extraction of fusion products, and compatibility with direct conversion. The breeder-satellite system energy balance is analyzed taking the net energy gain of the overall system, Q_N, as the figure of merit. Breeding is applicable for systems where the satellite Q-value, Q_S, > the breeder Q-value, Q_B. For improved performance, i.e., for high Q_N, QS >= QB >> 1 is needed; however, lower QB values (typical of the IEC) are permissible and still offer sufficient Q_N. An economic study determined breeding produces ^3He at a cost comparable to lunar ^3He, already shown to lead to competitive power.^3 The cost of electricity (COE) for the breeder-satellite complex was compared with the ARTEMIS COE,^4 using lunar ^3He fuel: assuming one satellite (1000 MWe)/breeder (170 MWe), the ratio of the breeding system COE to the lunar mining base COE is ~ 1.2. However, economic breeding is driven by large IEC breeder powers, i.e., increased ^3He breeding rates. Thus, the COE ratio approaches unity with two or three satellites/breeder, requiring increased breeder size and power (340 MWe for 2 satellites, 510 MWe for 3 satellites). Such systems potentially provide a ``bridge'' to a future lunar ^3He economy. 1. G.H. Miley et al., Dense Z-pinches, AIP Conf. 299, AIP Press, 675-689 (1994). 2. G.H. Miley, Nucl. Instrum. Methods, A271, 197-202 (1988). 3. L.J. Wittenberg et al., Fusion Technol., 10, 167-178 (1986). 4. H. Momota et al., Fusion Technol., 21, 2307-2323 (1992).

  13. Thermal breeder fuel enrichment zoning

    DOEpatents

    Capossela, Harry J.; Dwyer, Joseph R.; Luce, Robert G.; McCoy, Daniel F.; Merriman, Floyd C.

    1992-01-01

    A method and apparatus for improving the performance of a thermal breeder reactor having regions of higher than average moderator concentration are disclosed. The fuel modules of the reactor core contain at least two different types of fuel elements, a high enrichment fuel element and a low enrichment fuel element. The two types of fuel elements are arranged in the fuel module with the low enrichment fuel elements located between the high moderator regions and the high enrichment fuel elements. Preferably, shim rods made of a fertile material are provided in selective regions for controlling the reactivity of the reactor by movement of the shim rods into and out of the reactor core. The moderation of neutrons adjacent the high enrichment fuel elements is preferably minimized as by reducing the spacing of the high enrichment fuel elements and/or using a moderator having a reduced moderating effect.

  14. Breeder Spent Fuel Handling (BSFH) cask study for FY83. Final report

    SciTech Connect

    Diggs, J M

    1985-01-01

    This report documents a study conducted to investigate the applicability of existing LWR casks to shipment of long-cooled LMFBR fuel from the Clinch River Breeder Reactor Plant (CRBRP) to the Breeder Reprocessing Engineering Test (BRET) Facility. This study considered a base case of physical constraints of plants and casks, handling capabilities of plants, through-put requirements, shielding requirements due to transportation regulation, and heat transfer capabilities of the cask designs. Each cask design was measured relative to the base case. 15 references, 4 figures, 6 tables.

  15. A three-dimensional numerical modelling of the PHOENIX-SPES charge breeder based on the Langevin formalism

    NASA Astrophysics Data System (ADS)

    Galatà, A.; Mascali, D.; Neri, L.; Torrisi, G.; Celona, L.

    2016-02-01

    A Charge Breeder (CB) is a crucial device of an ISOL facility, allowing post-acceleration of radioactive ions: it accepts an incoming 1+ beam, then multiplying its charge with a highly charged q+ beam as an output. The overall performances of the facility (intensity and attainable final energy) critically depend on the charge breeder optimization. Experimental results collected along the years confirm that the breeding process is still not fully understood and room for improvements still exists: a new numerical approach has been therefore developed and applied to the description of a 85Rb1+ beam capture by the plasma of the 14.5 GHz PHOENIX ECR-based CB, installed at the Laboratoire de Physique Subatomique et de Cosmologie (LPSC), and adopted for the Selective Production of Exotic Species project under construction at Laboratori Nazionali di Legnaro. The results of the numerical simulations, obtained implementing a plasma-target model of increasing accuracy and different values for the plasma potential, will be described along the paper: results very well agree with the theoretical predictions and with the experimental results obtained on the LPSC test bench.

  16. A three-dimensional numerical modelling of the PHOENIX-SPES charge breeder based on the Langevin formalism

    SciTech Connect

    Galatà, A.; Mascali, D.; Neri, L.; Torrisi, G.; Celona, L.

    2016-02-15

    A Charge Breeder (CB) is a crucial device of an ISOL facility, allowing post-acceleration of radioactive ions: it accepts an incoming 1+ beam, then multiplying its charge with a highly charged q+ beam as an output. The overall performances of the facility (intensity and attainable final energy) critically depend on the charge breeder optimization. Experimental results collected along the years confirm that the breeding process is still not fully understood and room for improvements still exists: a new numerical approach has been therefore developed and applied to the description of a {sup 85}Rb{sup 1+} beam capture by the plasma of the 14.5 GHz PHOENIX ECR-based CB, installed at the Laboratoire de Physique Subatomique et de Cosmologie (LPSC), and adopted for the Selective Production of Exotic Species project under construction at Laboratori Nazionali di Legnaro. The results of the numerical simulations, obtained implementing a plasma-target model of increasing accuracy and different values for the plasma potential, will be described along the paper: results very well agree with the theoretical predictions and with the experimental results obtained on the LPSC test bench.

  17. Influence of the injected beam parameters on the capture efficiency of an electron cyclotron resonance based charge breeder

    NASA Astrophysics Data System (ADS)

    Galatà, A.; Mascali, D.; Torrisi, G.; Neri, L.; Celona, L.; Angot, J.

    2017-06-01

    Electron cyclotron resonance ion sources based charge breeders (ECR-CB) are fundamental devices for Isotope Separation On Line (ISOL) facilities aiming at postaccelerating radioactive ion beams (RIBs). Presently, low intensity RIBs do not allow a conventional tuning of the ECR-CB: as a consequence, it has to be set with a stable 1+ pilot beam first, switching then to the radioactive one without changing any parameter; this procedure is usually called "blind tuning." Besides having different masses, pilot and radioactive beams can also differ in terms of the rms transverse emittance ɛrms and/or longitudinal energy spread Δ E , so the choice of a given pilot beam can determine the overall performances of the final breeding stage. This paper shows a numerical study of how the capture efficiency of the PHOENIX charge breeder is affected by the aforementioned beam paramaters: the analysis reveals the two-step nature of the process, highlighting the role of the injection optics and the plasma capture capability in the overall performances of this device. The simulations predict highest efficiency for ɛrms<5 π mm mrad and Δ E <5 eV in a optimum energy range between 2 and 6 eV, thus giving important information on the possibility of blindly tuning an ECR-CB. No isotopical effects were observed, while it clearly came out the necessity to improve the 1 + beam characteristics with a rf beam cooler prior to the injection into an ECR-CB.

  18. Special Analysis for the Disposal of the Idaho National Laboratory Unirradiated Light Water Breeder Reactor Rods and Pellets Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    SciTech Connect

    2014-08-31

    The purpose of this special analysis (SA) is to determine if the Idaho National Laboratory (INL) Unirradiated Light Water Breeder Reactor (LWBR) Rods and Pellets waste stream (INEL103597TR2, Revision 2) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS). The INL Unirradiated LWBR Rods and Pellets waste stream consists of 24 containers with unirradiated fabricated rods and pellets composed of uranium oxide (UO2) and thorium oxide (ThO2) fuel in zirconium cladding. The INL Unirradiated LWBR Rods and Pellets waste stream requires an SA because the 229Th, 230Th, 232U, 233U, and 234U activity concentrations exceed the Nevada National Security Site (NNSS) Waste Acceptance Criteria (WAC) Action Levels.

  19. Analysis on Reactor Criticality Condition and Fuel Conversion Capability Based on Different Loaded Plutonium Composition in FBR Core

    NASA Astrophysics Data System (ADS)

    Permana, Sidik; Saputra, Geby; Suzuki, Mitsutoshi; Saito, Masaki

    2017-01-01

    Reactor criticality condition and fuel conversion capability are depending on the fuel arrangement schemes, reactor core geometry and fuel burnup process as well as the effect of different fuel cycle and fuel composition. Criticality condition of reactor core and breeding ratio capability have been investigated in this present study based on fast breeder reactor (FBR) type for different loaded fuel compositions of plutonium in the fuel core regions. Loaded fuel of Plutonium compositions are based on spent nuclear fuel (SNF) of light water reactor (LWR) for different fuel burnup process and cooling time conditions of the reactors. Obtained results show that different initial fuels of plutonium gives a significant chance in criticality conditions and fuel conversion capability. Loaded plutonium based on higher burnup process gives a reduction value of criticality condition or less excess reactivity. It also obtains more fuel breeding ratio capability or more breeding gain. Some loaded plutonium based on longer cooling time of LWR gives less excess reactivity and in the same time, it gives higher breeding ratio capability of the reactors. More composition of even mass plutonium isotopes gives more absorption neutron which affects to decresing criticality or less excess reactivity in the core. Similar condition that more absorption neutron by fertile material or even mass plutonium will produce more fissile material or odd mass plutonium isotopes to increase the breeding gain of the reactor.

  20. Helium-cooled molten-salt fusion breeder

    SciTech Connect

    Moir, R.W.; Lee, J.D.; Fulton, F.J.; Huegel, F.; Neef, W.S. Jr.; Sherwood, A.E.; Berwald, D.H.; Whitley, R.H.; Wong, C.P.C.; Devan, J.H.

    1984-12-01

    We present a new conceptual design for a fusion reactor blanket that is intended to produce fissile material for fission power plants. Fast fission is suppressed by using beryllium instead of uranium to multiply neutrons. Thermal fission is suppressed by minimizing the fissile inventory. The molten-salt breeding medium (LiF + BeF/sub 2/ + ThF/sub 4/) is circulated through the blanket and to the on-line processing system where /sup 233/U and tritium are continuously removed. Helium cools the blanket and the austenitic steel tubes that contain the molten salt. Austenitic steel was chosen because of its ease of fabrication, adequate radiation-damage lifetime, and low corrosion by molten salt. We estimate that a breeder having 3000 MW of fusion power will produce 6500 kg of /sup 233/U per year. This amount is enough to provide makeup for 20 GWe of light-water reactors per year or twice that many high-temperature gas-cooled reactors or Canadian heavy-water reactors. Safety is enhanced because the afterheat is low and blanket materials do not react with air or water. The fusion breeder based on a pre-MARS tandem mirror is estimated to cost $4.9B or 2.35 times a light-water reactor of the same power. The estimated cost of the /sup 233/U produced is $40/g for fusion plants costing 2.35 times that of a light-water reactor if utility owned or $16/g if government owned.

  1. Effect of broiler breeder feeding programme and feeder space change at photostimulation using maize- or wheat-based diets on broiler progeny growth performance and leg health.

    PubMed

    Eusebio-Balcazar, P; Oviedo-Rondón, E O; Wineland, M J; Osborne, J; Brake, J

    2015-01-01

    1. The aim of this study was to evaluate the effects of diet type, maternal feeding programme at 29 weeks of age and breeder feeder space change at photostimulation on broiler progeny performance and leg health at 6 weeks of age. 2. Fast-feathering Cobb 500 broiler breeders were fed on either maize- or wheat-based diets that had been formulated to have similar nutrient composition during growing and layer phases. Two feeding programmes, fast or flow, were used from 14 to 29 weeks of age. At 22 weeks, 69 females from each pen were placed in a layer house where feeder space was either similar to that in rearing (6.3 to 6.5 cm/female) or was increased from 6.3 to 8.4 cm/female. Eggs produced at 32 and 44 weeks of age were collected and incubated for two broiler experiments. A total of 16 male and 16 female one-d-old chicks were placed in floor pens in two experiments, respectively, with 6 and 4 replicate pens. Broiler gait scores and leg problem prevalence were evaluated at 6 weeks of age. 3. Data were analysed as a 2 × 2 × 2 factorial design with diet type, feeding programme and feeder space change as main factors. 4. The wheat diet increased the probability of observing crooked toes in broiler progeny compared to the use of maize, but only when breeders were fed according to the fast feeding programme and given similar feeder space as during rearing. 5. Breeders given more feeder space in the laying period produced progeny with more locomotion problems compared with those provided similar feeder space, but only when maize was used and the slow feeding programme was applied to the breeders. 6. The maternal feeding programme interacted with other factors to influence progeny leg health, but it did not solely influence walking ability or leg problems of progeny. 7. In conclusion, an increased probability of observing walking impairment of broiler progeny was detected when breeders were given greater feeder space at photostimulation rather than no change and fed

  2. Accelerator breeder with uranium, thorium target

    SciTech Connect

    Takahashi, H.; Powell, J.; Kouts, H.

    1983-01-01

    An accelerator breeder, that uses a low-enriched fuel as the target material, can produce substantial amounts of fissile material and electric power. A study of H/sub 2/O- and D/sub 2/O-cooled, UO/sub 2/, U, (depleted U), or thorium indicates that U-metal fuel produces a good fissile production rate and electrical power of about 60% higher than UO/sub 2/ fuel. Thorium fuel has the same order of magnitude as UO/sub 2/ fuel for fissile-fuel production, but the generating electric power is substantially lower than in a UO/sub 2/ reactor. Enriched UO/sub 2/ fuel increases the generating electric power but not the fissile-material production rate. The Na-cooled breeder target has many advantages over the H/sub 2/O-cooled breeder target.

  3. Accelerator breeders: will they replace liquid metal fast breeders

    SciTech Connect

    Grand, P.; Powell, J.R.; Steinberg, M.; Takahashi, H.

    1983-06-01

    Investigation of accelerator breeders at Brookhaven National Laboratory indicate that the AB-LWR fuel cycle is economically competitive with the LMFBR fuel cycle. The same can be said about the accelerator breeder-High Temperature Gas Reactor symbiosis. This system appears to be very competitive with the added real advantage of superior safety and proliferation resistance. This discussion would be incomplete if the real competitor to accelerator breeding was not mentioned, namely Fusion Hybrid Breeding (FHB). Fusion Hybrid Breeding is a nearer option than pure fusion, as the breakeven Q value requirements are much more modest. Fusion Hybrid Breeding, if successful and practical, has the potential for highly efficient fissile fuel breeding, leading to cheaper fuel. The system, however, has yet to be demonstrated scientifically and to be shown commercially feasible. This is in contrast with the AB system which is an extension of proven, state-of-the-art technology with implementation possible within twenty years. 25 references, 4 figures, 5 tables.

  4. A simple calculation of control assembly effectiveness in a liquid-metal fast breeder reactor by a transport-diffusion equivalence method

    SciTech Connect

    Benoist, P. ); Carta, M. ); Palmiotti, G. ); Salvatores, M. )

    1989-11-01

    A method to calculate the effectiveness of the control assembly in a fast neutron reactor is proposed. For each type of heterogeneous assembly (control or follower), a polar parameter, taking into account the assembly absorption and the axial leakage of neutrons inside the assembly, is defined. In a similar way, a bipolar parameter, taking into account the reaction of the assembly to a transverse flux gradient, is also defined. These two parameters, deduced from transport theory, are used to determine the absorption cross section and the diffusion coefficient of an equivalent homogeneous control or follower assembly. These new parameters are introduced in a one-group diffusion code, calculating the reactor as a whole with any number of control and follower assemblies. An approximate generalization to multigroup theory is proposed. Numerical comparisons show that this equivalent diffusion method gives results that are much closer to transport results than those obtained by the classical diffusion theory.

  5. Solid breeder materials

    SciTech Connect

    Johnson, C.E.; Clemmer, R.G.; Hollenber, G.w.

    1981-01-01

    Increased attention is being given to the consideration of lithium-containing ceramic materials for use as breeder blankets in fusion devices. These materials, e.g., Li/sub 2/O, ..gamma..-LiAlO/sub 2/, Li/sub 4/SiO/sub 4/, Li/sub 2/ZrO/sub 3/, etc., are attractive because of their inherent safety advantages. At present, there is a broad scope of laboratory and irradiation activities in force to provide the requisite data enabling selection of th prime-candidate solid breeder material.

  6. Final Safety Analysis Addenda to Hazards Summary Report, Experimental Breeder Reactor II (EBR-II): upgrading of plant protection system. Volume II

    SciTech Connect

    Allen, N. L.; Keeton, J. M.; Sackett, J. I.

    1980-06-01

    This report is the second in a series of compilations of the formal Final Safety Analysis Addenda (FSAA`s) to the EBR-II Hazard Summary Report and Addendum. Sections 2 and 3 are edited versions of the original FSAA`s prepared in support of certain modifications to the reactor-shutdown-system portion of the EBR-II plant-protection system. Section 4 is an edited version of the original FSAA prepared in support of certain modifications to a system classified as an engineered safety feature. These sections describe the pre- and postmodification system, the rationale for the modification, and required supporting safety analysis. Section 5 provides an updated description and analysis of the EBR-II emergency power system. Section 6 summarizes all significant modifications to the EBR-II plant-protection system to date.

  7. APPLICATIONS OF LASERS AND OTHER TOPICS IN LASER PHYSICS AND TECHNOLOGY: Hybrid reactor based on laser thermonuclear fusion

    NASA Astrophysics Data System (ADS)

    Basov, N. G.; Belousov, N. I.; Grishunin, P. A.; Kalmykov, Yu K.; Lebo, I. G.; Rozanov, Vladislav B.; Sklizkov, G. V.; Subbotin, V. I.; Finkel'shteĭn, K. I.; Kharitonov, V. V.; Sherstnev, K. B.

    1987-10-01

    A physicotechnical and parametric analysis is used as the basis for a conceptual design of a thermonuclear inertial-confinement hybrid reactor as a breeder of fuel for fission nuclear power stations. It is proposed to use a laser as a driver in this reactor.

  8. Preliminary Study of 20 MWth Experiment Power Reactor based on Pebble Bed Reactor

    NASA Astrophysics Data System (ADS)

    Irwanto, Dwi; Permana, Sidik; Pramuditya, Syeilendra

    2017-07-01

    In this study, preliminary design calculations for experimental small power reactor (20 MWt) based on Pebble Bed Reactor (PBR) are performed. PBR technology chosen due to its advantages in neutronic and safety aspects. Several important parameters, such as fissile enrichment, number of fuel passes, burnup and effective multiplication factor are taken into account in the calculation to find neutronic characteristics of the present reactor design.

  9. Thermal baffle for fast-breeder reacton

    DOEpatents

    Rylatt, John A.

    1977-01-01

    A liquid-metal-cooled fast-breeder reactor includes a bridge structure for separating hot outlet coolant from relatively cool inlet coolant consisting of an annular stainless steel baffle plate extending between the core barrel surrounding the core and the thermal liner associated with the reactor vessel and resting on ledges thereon, there being inner and outer circumferential webs on the lower surface of the baffle plate and radial webs extending between the circumferential webs, a stainless steel insulating plate completely covering the upper surface of the baffle plate and flex seals between the baffle plate and the ledges on which the baffle plate rests to prevent coolant from washing through the gaps therebetween. The baffle plate is keyed to the core barrel for movement therewith and floating with respect to the thermal liner and reactor vessel.

  10. A tritium permeation model for conceptual fusion reactor designs

    NASA Astrophysics Data System (ADS)

    Hanchar, D. R.; Kazimi, M. S.

    1983-02-01

    A transient tritium permeation model is developed based on a simplified conceptual DT-fueled fusion reactor design. The major design features described in the model are a solid breeder blanket, a low pressure purge gas in the blanket, and a high pressure helium primary coolant. Tritium inventory in the breeder is considered to be due to diffusive hold-up and solubility effects. It is assumed that diffusive hold-up is the dominant factor in order to separate the solution for the breeder tritium concentration. The model was applied to the STARFIRE-Interim Reference Design, whose system parameters yielded a breeder tritium inventory on the order of grams, based on an average pellet radius of 10-3 cm. The breeder pellets reach their steady-state tritium content in approximately 1.4×104 s from system start-up, assuming continuous full power operation. Both the steady-state breeder tritium concentration and the time to reach that steady-state are proportional to the pellet radius squared. Other candidate solid breeders were considered, and their effect on the blanket tritium inventory was noted. The addition of oxygen to the primary coolant loop was required in order to keep the tritium losses through the heat exchanger to within the design goal of 0.1 Ci/day.

  11. Lithium Ceramic Blankets for Russian Fusion Reactors and Influence of Breeding Operation Mode on Parameters of Reactor Tritium Systems

    SciTech Connect

    Kapyshev, Victor K.; Chernetsov, Mikhail Yu.; Zhevotov, Sergej I.; Kersnovskij, Alexandr Yu.; Kolbasov, Boris N.; Kovalenko, Victor G.; Paltusov, Nikolaj P.; Sernyaev, Georgeij A.; Sterebkov, Juri S.; Zyryanov, Alexej P.

    2005-07-15

    Russian controlled fusion program supposes development of a DEMO reactor design and participation in ITER Project. A solid breeder blanket of DEMO contains a ceramic lithium orthosilicate breeder and a beryllium multiplier. Test modules of the blanket are developed within the scope of ITER activities. Experimental models of module tritium breeding zones (TBZ), materials and fabrication technology of the TBZ, tritium reactor systems to analyse and process gas released from lithium ceramics are being developed. Two models of tritium breeding and neutron multiplying elements of the TBZ have been designed, manufactured and tested in IVV-2M nuclear reactor. Initial results of the in-pile experiments and outcome of lithium ceramics irradiation in a water-graphite nuclear reactor are considered to be a data base for development of the test modules and initial requirements for DEMO tritium system design. Influence of the tritium release parameters and hydrogen concentration in a purge gas on parameters of reactor system are discussed.

  12. Design of a helium-cooled molten salt fusion breeder

    SciTech Connect

    Moir, R.W.; Lee, J.D.; Fulton, F.J.; Huegel, F.; Neef, W.S. Jr.; Sherwood, A.E.; Berwald, D.H.; Whitley, R.H.; Wong, C.P.C.; DeVan, J.H.

    1985-02-01

    A new conceptual blanket design for a fusion reactor produces fissile material for fission power plants. Fission is suppressed by using beryllium, rather than uranium, to multiply neutrons and also by minimizing the fissile inventory. The molten-salt breeding media (LiF + BeF/sub 2/ + TghF/sub 4/) is circulated through the blanket and on to the online processing system where /sup 233/U and tritium are continuously removed. Helium cools the blanket including the steel pipes containing the molten salt. Austenitic steel was chosen because of its ease of fabrication, adequate radiation-damage lifetime, and low corrosion rate by molten salt. We estimate the breeder, having 3000 MW of fusion power, produces 6400 kg of /sup 233/U per year, which is enough to provide make up for 20 GWe of LWR per year (or 14 LWR plants of 4440 MWt) or twice that many HTGRs or CANDUs. Safety is enhanced because the afterheat is low and the blanket materials do not react with air or water. The fusion breeder based on a pre-MARS tandem mirror is estimated to cost $4.9B or 2.35 times an LWR of the same power. The estimated present value cost of the /sup 2/anumber/sup 3/U produced is $40/g if utility financed or $16/g if government financed.

  13. Breeder Spent Fuel Handling Program multipurpose cask design basis document

    SciTech Connect

    Duckett, A.J.; Sorenson, K.B.

    1985-09-01

    The Breeder Spent Fuel Handling (BSFH) Program multipurpose cask Design Basis Document defines the performance requirements essential to the development of a legal weight truck cask to transport FFTF spent fuel from reactor to a reprocessing facility and the resultant High Level Waste (HLW) to a repository. 1 ref.

  14. ITER solid breeder blanket materials database

    SciTech Connect

    Billone, M.C.; Dienst, W.; Flament, T.; Lorenzetto, P.; Noda, K.; Roux, N.

    1993-11-01

    The databases for solid breeder ceramics (Li{sub 2},O, Li{sub 4}SiO{sub 4}, Li{sub 2}ZrO{sub 3} and LiAlO{sub 2}) and beryllium multiplier material are critically reviewed and evaluated. Emphasis is placed on physical, thermal, mechanical, chemical stability/compatibility, tritium, and radiation stability properties which are needed to assess the performance of these materials in a fusion reactor environment. Correlations are selected for design analysis and compared to the database. Areas for future research and development in blanket materials technology are highlighted and prioritized.

  15. ITER R & D on breeder blanket materials*1

    NASA Astrophysics Data System (ADS)

    Smith, D. L.; Daenner, W.; Kalinin, G.; Yoshida, H.

    1991-03-01

    The International Thermonuclear Experimental Reactor (ITER) activity includes specific R&D in critical areas to support the ITER design. Several of the critical tasks defined as part of the ITER validating R&D are materials related. This paper presents a summary of the breeder/blanket materials related R&D conducted by the four participating parties; viz., European Community, Japan, Soviet Union and the United States. The current effort includes several subtasks in each of the following four task areas: (1) ceramic breeder materials, (2) lead-lithium breeder, (3) aqueous salt solutions, (4) neutron multiplier materials. The objective and scope of each subtask is stated. Although this work was initiated in late 1988, important results have been obtained in all four areas. The work on ceramic breeders includes properties measurements, compatibility studies, and tritium recovery experiments with Li 2O and selected ternary ceramics. Investigations on the lead-lithium breeder have focused primarily on properties, compatibility, and tritium extraction from the 17Li-83Pb eutectic alloy. The work on the aqueous salt breeders includes corrosion, solution chemistry, and radiolysis effects in a radiation environment. Investigations defined under the neutron multiplier task are focused on beryllium; however, lead in the lithium lead alloy also serves as a neutron multiplier. The schedule and planned future work in each area are summarized.

  16. Experimental study on corrosion and precipitation in non-isothermal Pb-17Li system for development of liquid breeder blanket of fusion reactor

    NASA Astrophysics Data System (ADS)

    Kondo, Masatoshi; Ishii, Masaomi; Norimatsu, Takayoshi; Muroga, Takeo

    2017-07-01

    The corrosion characteristics of RAFM steel JLF-1 in a non-isothermal Pb-17Li flowing system were investigated by means of the corrosion test using a non-isothermal mixing pot. The corrosion test was performed at 739K with a temperature gradient of 14K for 500 hours. The corrosion tests at a static and a flowing conditions in an isothermal Pb-17Li system were also performed at the same temperature for the same duration with the non-isothermal test. Then, the effect of mass transfer both by the flow and the temperature gradient on the corrosion behaviors was featured by the comparison of these results. The corrosion was caused by the dissolution of Fe and Cr from the steel surface into the flowing Pb-17Li. The specimen surface revealed a fine granular microstructure after the corrosion tests. A large number of pebbleshaped protrusions were observed on the specimen surface. This microstructure was different from the original martensite microstructure of the steel, and might be formed by the influence of the reaction with Li component in the alloy. The formation of the granular microstructure was accelerated by the flow and the temperature gradient. Some pebble-shaped protrusions had gaps at their bases. The removal of these pebble-shaped granules by the flowing Pb-17Li might cause a small-scale corrosion-erosion. The results of metallurgical analysis indicated that a large-scale corrosion-erosion was also caused by their destruction of the corroded layer on the surface. The non-isothermal mixing pot equipped a cold trap by a metal mesh in the low temperature region. The metal elements of Fe and Cr were recovered as they precipitated on the surface of the metal mesh. It was found that a Fe-Cr binary intermetallic compound was formed in the precipitation procedure. The overall mass transfer coefficient for the dissolution type corrosion in the non-isothermal system was much bigger than that in the isothermal system. This model evaluation indicated that the temperature

  17. Design of a 25-kWe Surface Reactor System Based on SNAP Reactor Technologies

    SciTech Connect

    Dixon, David D.; Hiatt, Matthew T.; Poston, David I.; Kapernick, Richard J.

    2006-01-20

    A Hastelloy-X clad, sodium-potassium (NaK-78) cooled, moderated spectrum reactor using uranium zirconium hydride (UZrH) fuel based on the SNAP program reactors is a promising design for use in surface power systems. This paper presents a 98 kWth reactor for a power system the uses multiple Stirling engines to produce 25 kWe-net for 5 years. The design utilizes a pin type geometry containing UZrHx fuel clad with Hastelloy-X and NaK-78 flowing around the pins as coolant. A compelling feature of this design is its use of 49.9% enriched U, allowing it to be classified as a category III-D attractiveness and reducing facility costs relative to highly-enriched space reactor concepts. Presented below are both the design and an analysis of this reactor's criticality under various safety and operations scenarios.

  18. Design of a 25-kWe Surface Reactor System Based on SNAP Reactor Technologies

    NASA Astrophysics Data System (ADS)

    Dixon, David D.; Hiatt, Matthew T.; Poston, David I.; Kapernick, Richard J.

    2006-01-01

    A Hastelloy-X clad, sodium-potassium (NaK-78) cooled, moderated spectrum reactor using uranium zirconium hydride (UZrH) fuel based on the SNAP program reactors is a promising design for use in surface power systems. This paper presents a 98 kWth reactor for a power system the uses multiple Stirling engines to produce 25 kWe-net for 5 years. The design utilizes a pin type geometry containing UZrHx fuel clad with Hastelloy-X and NaK-78 flowing around the pins as coolant. A compelling feature of this design is its use of 49.9% enriched U, allowing it to be classified as a category III-D attractiveness and reducing facility costs relative to highly-enriched space reactor concepts. Presented below are both the design and an analysis of this reactor's criticality under various safety and operations scenarios.

  19. DNA-Based Enzyme Reactors and Systems.

    PubMed

    Linko, Veikko; Nummelin, Sami; Aarnos, Laura; Tapio, Kosti; Toppari, J Jussi; Kostiainen, Mauri A

    2016-07-27

    During recent years, the possibility to create custom biocompatible nanoshapes using DNA as a building material has rapidly emerged. Further, these rationally designed DNA structures could be exploited in positioning pivotal molecules, such as enzymes, with nanometer-level precision. This feature could be used in the fabrication of artificial biochemical machinery that is able to mimic the complex reactions found in living cells. Currently, DNA-enzyme hybrids can be used to control (multi-enzyme) cascade reactions and to regulate the enzyme functions and the reaction pathways. Moreover, sophisticated DNA structures can be utilized in encapsulating active enzymes and delivering the molecular cargo into cells. In this review, we focus on the latest enzyme systems based on novel DNA nanostructures: enzyme reactors, regulatory devices and carriers that can find uses in various biotechnological and nanomedical applications.

  20. DNA-Based Enzyme Reactors and Systems

    PubMed Central

    Linko, Veikko; Nummelin, Sami; Aarnos, Laura; Tapio, Kosti; Toppari, J. Jussi; Kostiainen, Mauri A.

    2016-01-01

    During recent years, the possibility to create custom biocompatible nanoshapes using DNA as a building material has rapidly emerged. Further, these rationally designed DNA structures could be exploited in positioning pivotal molecules, such as enzymes, with nanometer-level precision. This feature could be used in the fabrication of artificial biochemical machinery that is able to mimic the complex reactions found in living cells. Currently, DNA-enzyme hybrids can be used to control (multi-enzyme) cascade reactions and to regulate the enzyme functions and the reaction pathways. Moreover, sophisticated DNA structures can be utilized in encapsulating active enzymes and delivering the molecular cargo into cells. In this review, we focus on the latest enzyme systems based on novel DNA nanostructures: enzyme reactors, regulatory devices and carriers that can find uses in various biotechnological and nanomedical applications. PMID:28335267

  1. Thermohydraulic modeling and simulation of breeder reactors

    SciTech Connect

    Agrawal, A.K.; Khatib-Rahbar, M.; Curtis, R.T.; Hetrick, D.L.; Girijashankar, P.V.

    1982-01-01

    This paper deals with the modeling and simulation of system-wide transients in LMFBRs. Unprotected events (i.e., the presumption of failure of the plant protection system) leading to core-melt are not considered in this paper. The existing computational capabilities in the area of protected transients in the US are noted. Various physical and numerical approximations that are made in these codes are discussed. Finally, the future direction in the area of model verification and improvements is discussed.

  2. Fast breeder reactor fuel pins: Revision 1984

    SciTech Connect

    Not Available

    1984-01-01

    This standard establishes the requirements for fuel pins to be used in FBR fuel assemblies. Fuel pins consist of mixed uranium-plutonium oxide fuel pellets clad with Type 316 stainless steel or other purchaser specified alloy steel.

  3. EAST FACE OF REACTOR BASE. COMING TOWARD CAMERA IS EXCAVATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST FACE OF REACTOR BASE. COMING TOWARD CAMERA IS EXCAVATION FOR MTR CANAL. CAISSONS FLANK EACH SIDE. COUNTERFORT (SUPPORT PERPENDICULAR TO WHAT WILL BE THE LONG WALL OF THE CANAL) RESTS ATOP LEFT CAISSON. IN LOWER PART OF VIEW, DRILLERS PREPARE TRENCHES FOR SUPPORT BEAMS THAT WILL LIE BENEATH CANAL FLOOR. INL NEGATIVE NO. 739. Unknown Photographer, 10/6/1950 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  4. Generating unstructured nuclear reactor core meshes in parallel

    DOE PAGES

    Jain, Rajeev; Tautges, Timothy J.

    2014-10-24

    Recent advances in supercomputers and parallel solver techniques have enabled users to run large simulations problems using millions of processors. Techniques for multiphysics nuclear reactor core simulations are under active development in several countries. Most of these techniques require large unstructured meshes that can be hard to generate in a standalone desktop computers because of high memory requirements, limited processing power, and other complexities. We have previously reported on a hierarchical lattice-based approach for generating reactor core meshes. Here, we describe efforts to exploit coarse-grained parallelism during reactor assembly and reactor core mesh generation processes. We highlight several reactor coremore » examples including a very high temperature reactor, a full-core model of the Korean MONJU reactor, a ¼ pressurized water reactor core, the fast reactor Experimental Breeder Reactor-II core with a XX09 assembly, and an advanced breeder test reactor core. The times required to generate large mesh models, along with speedups obtained from running these problems in parallel, are reported. A graphical user interface to the tools described here has also been developed.« less

  5. Generating unstructured nuclear reactor core meshes in parallel

    SciTech Connect

    Jain, Rajeev; Tautges, Timothy J.

    2014-10-24

    Recent advances in supercomputers and parallel solver techniques have enabled users to run large simulations problems using millions of processors. Techniques for multiphysics nuclear reactor core simulations are under active development in several countries. Most of these techniques require large unstructured meshes that can be hard to generate in a standalone desktop computers because of high memory requirements, limited processing power, and other complexities. We have previously reported on a hierarchical lattice-based approach for generating reactor core meshes. Here, we describe efforts to exploit coarse-grained parallelism during reactor assembly and reactor core mesh generation processes. We highlight several reactor core examples including a very high temperature reactor, a full-core model of the Korean MONJU reactor, a ¼ pressurized water reactor core, the fast reactor Experimental Breeder Reactor-II core with a XX09 assembly, and an advanced breeder test reactor core. The times required to generate large mesh models, along with speedups obtained from running these problems in parallel, are reported. A graphical user interface to the tools described here has also been developed.

  6. TR-EDB: Test Reactor Embrittlement Data Base, Version 1

    SciTech Connect

    Stallmann, F.W.; Wang, J.A.; Kam, F.B.K.

    1994-01-01

    The Test Reactor Embrittlement Data Base (TR-EDB) is a collection of results from irradiation in materials test reactors. It complements the Power Reactor Embrittlement Data Base (PR-EDB), whose data are restricted to the results from the analysis of surveillance capsules in commercial power reactors. The rationale behind their restriction was the assumption that the results of test reactor experiments may not be applicable to power reactors and could, therefore, be challenged if such data were included. For this very reason the embrittlement predictions in the Reg. Guide 1.99, Rev. 2, were based exclusively on power reactor data. However, test reactor experiments are able to cover a much wider range of materials and irradiation conditions that are needed to explore more fully a variety of models for the prediction of irradiation embrittlement. These data are also needed for the study of effects of annealing for life extension of reactor pressure vessels that are difficult to obtain from surveillance capsule results.

  7. Fusion-breeder program

    SciTech Connect

    Moir, R.W.

    1982-11-19

    The various approaches to a combined fusion-fission reactor for the purpose of breeding /sup 239/Pu and /sup 233/U are described. Design aspects and cost estimates for fuel production and electricity generation are discussed. (MOW)

  8. Factors influencing pregnancy per artificial insemination in repeat-breeder cows induced to ovulate with a CIDR-based protocol.

    PubMed

    Mellado, M; Zuñiga, A; Veliz, F G; de Santiago, A; Garcia, J E; Mellado, J

    2012-10-01

    The aim of this study was to determine, using multiple logistic models, factors affecting pregnancy per AI (P/AI) following fixed-time artificial insemination (FTAI) in repeat breeders cows (RBC) treated with rbST throughout lactation. 498 RBC received a CIDR device and 100μg of GnRH on day 0. CIDR removal and PGF(2α) (25mg) treatment were done concurrently on day 7. Estradiol benzoate (EB, 1mg) was injected on day 8 and GnRH on day 9; cows were inseminated 16-20h later. Cows with an average milk protein <3% were 43% more likely (P<0.05) to become pregnant at FTAI than cows with milk protein ≥3%. Cows with <6 services had significantly increased chances of becoming pregnant than cows with ≥6 services at FTAI (P/AI 36 vs. 27%; P<0.05). CIDR-treated cows with less than three lactations were 1.7 times more likely (P/AI 35 vs. 21%; P<0.05) to become pregnant than cows in third or greater lactation. Cows with peak milk yields lower than 55kg were 1.5 times more likely to get pregnant than cows with peak milk yields greater than 55kg (P/AI 37 vs. 28%; P<0.05). P/AI was lower (30 vs. 35%; P<0.01) for cows with dry periods <62 days than cows with dry periods ≥62 days. Cows subjected to FTAI with a temperature-humidity index (THI) <76 were 45% more likely (P<0.05) to become pregnant than cows inseminated at a THI≥76. It was concluded that an acceptable proportion (32%) of RBC can become pregnant with the protocol used in the present study. Also, subfertility in CIDR-treated cows was associated with high peak yields, high milk protein, increased service, increased lactation, high THI at AI and short dry periods.

  9. Tokamak reactor cost model based on STARFIRE/WILDCAT costing

    SciTech Connect

    Evans, K. Jr.

    1983-03-01

    A cost model is presented which is useful for survey and comparative studies of tokamak reactors. The model is heavily based on STARFIRE and WILDCAT costing guidelines, philosophies, and procedures and reproduces the costing for these devices quite accurately.

  10. REACTOR

    DOEpatents

    Christy, R.F.

    1961-07-25

    A means is described for co-relating the essential physical requirements of a fission chain reaction in order that practical, compact, and easily controllable reactors can be built. These objects are obtained by employing a composition of fissionsble isotope and moderator in fluid form in which the amount of fissionsble isotcpe present governs the reaction. The size of the reactor is no longer a critical factor, the new criterion being the concentration of the fissionable isotope.

  11. Current experimental activities for solid breeder development

    SciTech Connect

    Johnson, C.E.; Hollenberg, G.W.; Roux, N.; Watanabe, H.

    1988-01-01

    The current data base for ceramic breeder materials does not exhibit any negative features as regards to thermophysical, mechanical, and irradiation behavior. All candidate materials show excellent stability for irradiation testing to 3% burnup. In-situ tritium recovery tests show very low tritium inventories for all candidates. Theoretical models are being developed to accurately predict real time release rates. Fabrication of kilogram quantities of materials has been achieved and technology is available for further scale-up.

  12. Neutronic optimization of solid breeder blankets for STARFIRE design

    SciTech Connect

    Gohar, Y.; Abdou, M.A.

    1980-01-01

    Extensive neutronic tradeoff studies were carried out to define and optimize the neutronic performance of the different solid breeder options for the STARFIRE blanket design. A set of criteria were employed to select the potential blanket materials. The basic criteria include the neutronic performance, tritium-release characteristics, material compatibility, and chemical stability. Three blanket options were analyzed. The first option is based on separate zones for each basic blanket function where the neutron multiplier is kept in a separate zone. The second option is a heterogeneous blanket type with two tritium breeder zones. In the first zone the tritium breeder is assembled in a neutron multiplier matrix behind the first wall while the second zone has a neutron moderator matrix instead of the neutron multiplier. The third blanket option is similar to the second concept except the tritium breeder and the neutron multiplier form a homogeneous mixture.

  13. Shield Design for a Space Based Vapor Core Reactor

    SciTech Connect

    Knight, Travis; Anghaie, Samim

    2002-07-01

    Innovative shielding strategies were sought to reduce the mass of the required shielding for a space based vapor core reactor system with magnetohydrodynamic energy conversion. Gamma-rays directly resultant from fission were found to play no role in the dose rate, while secondary gamma-rays from fission neutron interactions were the dominant contributor to the dose rate. Hydrogen containing materials such as polyethylene were utilized to provide shielding of both radiation from the reactor complex and also solar and galactic cosmic radiation. This shield design was found to contribute 0.125 kg/kWe to the baseline vapor core reactor system specific mass. (authors)

  14. Building on knowledge base of sodium cooled fast spectrum reactors to develop materials technology for fusion reactors

    NASA Astrophysics Data System (ADS)

    Raj, Baldev; Rao, K. Bhanu Sankara

    2009-04-01

    The alloys 316L(N) and Mod. 9Cr-1Mo steel are the major structural materials for fabrication of structural components in sodium cooled fast reactors (SFRs). Various factors influencing the mechanical behaviour of these alloys and different modes of deformation and failure in SFR systems, their analysis and the simulated tests performed on components for assessment of structural integrity and the applicability of RCC-MR code for the design and validation of components are highlighted. The procedures followed for optimal design of die and punch for the near net shape forming of petals of main vessel of 500 MWe prototype fast breeder reactor (PFBR); the safe temperature and strain rate domains established using dynamic materials model for forming of 316L(N) and 9Cr-1Mo steels components by various industrial processes are illustrated. Weldability problems associated with 316L(N) and Mo. 9Cr-1Mo are briefly discussed. The utilization of artificial neural network models for prediction of creep rupture life and delta-ferrite in austenitic stainless steel welds is described. The usage of non-destructive examination techniques in characterization of deformation, fracture and various microstructural features in SFR materials is briefly discussed. Most of the experience gained on SFR systems could be utilized in developing science and technology for fusion reactors. Summary of the current status of knowledge on various aspects of fission and fusion systems with emphasis on cross fertilization of research is presented.

  15. Solid breeder/structure mechanical interaction and thermal stability

    SciTech Connect

    Liu, Y.Y.; Billone, M.C.; Taghavi, K.

    1985-04-01

    Solid breeder/structure mechanical interaction (BSMI) during fusion reactor blanket operation is a potential failure mode which could limit the lifetime of the blanket. The severity of BSMI will generally depend on the materials, specific blanket designs, and blanket operating conditions. Thermomechanical analyses performed for a helium-cooled blanket employing Li/sub 2/O/HT-9 plates indicate that BSMI could be a serious concern for this blanket.

  16. Energy: towards nuclear breeder installations before the end of this century?

    NASA Astrophysics Data System (ADS)

    Dautray, Robert; Friedel, Jacques

    2007-01-01

    To play an essential role in the energy crisis, the civilian nuclear fission industry urgently requires a large and safe underground deposit for irradiated materials. Breeder reactors should be required to extract more energy, not to eventually reduce the radioactivity of dangerous materials. These two aims still require much work, from the fundamental issue of the mechanics of materials, to large industrial parks for breeder development on an international basis. To cite this article: R. Dautray, J. Friedel, C. R. Mecanique 335 (2007).

  17. Breeder development in Europe and the United States: similar goals, different approaches

    SciTech Connect

    Marth, W.

    1985-11-01

    Breeder reactor development in Europe is a more pressing issue than in the United States. In both regions, however, the general goals for breeder development are similar, although the approaches for reaching them are currently rather different. This paper deals briefly with this ambiguity by discussing research and planning considerations in the US and the design and construction on-going in the European countries.

  18. US solid breeder blanket design for ITER

    SciTech Connect

    Gohar, Y.; Attaya, H.; Billone, M.; Lin, C.; Johnson, C.; Majumdar, S.; Smith, D. ); Goranson, P.; Nelson, B.; Williamson, D.; Baker, C. ); Raffray, A.; Badawi, A.; Gorbis, Z.; Ying, A.; Abdou, M. ); Sviatoslavsky, I.; Blanchard, J.; Mogahed, E.; Sawan, M.; Kulcinski, G. )

    1990-09-01

    The US blanket design activity has focused on the developments and the analyses of a solid breeder blanket concept for ITER. The main function of this blanket is to produce the necessary tritium required for the ITER operation and the test program. Safety, power reactor relevance, low tritium inventory, and design flexibility are the main reasons for the blanket selection. The blanket is designed to operate satisfactorily in the physics and the technology phases of ITER without the need for hardware changes. Mechanical simplicity, predictability, performance, minimum cost, and minimum R D requirements are the other criteria used to guide the design process. The design aspects of the blanket are summarized in this paper. 2 refs., 7 figs., 3 tabs.

  19. Introduction to Chemical Engineering Reactor Analysis: A Web-Based Reactor Design Game

    ERIC Educational Resources Information Center

    Orbey, Nese; Clay, Molly; Russell, T.W. Fraser

    2014-01-01

    An approach to explain chemical engineering through a Web-based interactive game design was developed and used with college freshman and junior/senior high school students. The goal of this approach was to demonstrate how to model a lab-scale experiment, and use the results to design and operate a chemical reactor. The game incorporates both…

  20. Introduction to Chemical Engineering Reactor Analysis: A Web-Based Reactor Design Game

    ERIC Educational Resources Information Center

    Orbey, Nese; Clay, Molly; Russell, T.W. Fraser

    2014-01-01

    An approach to explain chemical engineering through a Web-based interactive game design was developed and used with college freshman and junior/senior high school students. The goal of this approach was to demonstrate how to model a lab-scale experiment, and use the results to design and operate a chemical reactor. The game incorporates both…

  1. REACTOR

    DOEpatents

    Roman, W.G.

    1961-06-27

    A pressurized water reactor in which automatic control is achieved by varying the average density of the liquid moderator-cooiant is patented. Density is controlled by the temperature and power level of the reactor ftself. This control can be effected by the use of either plate, pellet, or tubular fuel elements. The fuel elements are disposed between upper and lower coolant plenum chambers and are designed to permit unrestricted coolant flow. The control chamber has an inlet opening communicating with the lower coolant plenum chamber and a restricted vapor vent communicating with the upper coolant plenum chamber. Thus, a variation in temperature of the fuel elements will cause a variation in the average moderator density in the chamber which directly affects the power level of the reactor.

  2. REACTORS

    DOEpatents

    Spitzer, L. Jr.

    1961-10-01

    Thermonuclear reactors, methods, and apparatus are described for controlling and confining high temperature plasma. Main axial confining coils in combination with helical windings provide a rotational transform that avoids the necessity of a figure-eight shaped reactor tube. The helical windings provide a multipolar helical magnetic field transverse to the axis of the main axial confining coils so as to improve the effectiveness of the confining field by counteracting the tendency of the more central lines of force in the stellarator tube to exchange positions with the magnetic lines of force nearer the walls of the tube. (AEC)

  3. Vanadium-base alloys for fusion reactor applications

    SciTech Connect

    Smith, D.L.; Loomis, B.A.; Diercks, D.R.

    1984-10-01

    Vanadium-base alloys offer potentially significant advantages over other candidate alloys as a structural material for fusion reactor first wall/blanket applications. Although the data base is more limited than that for the other leading candidate structural materials, viz., austenitic and ferritic steels, vanadium-base alloys exhibit several properties that make them particularly attractive for the fusion reactor environment. This paper presents a review of the structural material requirements, a summary of the materials data base for selected vanadium-base alloys, and a comparison of projected performance characteristics compared to other candidate alloys. Also, critical research and development (R and D) needs are defined.

  4. Pyroprocessing of Light Water Reactor Spent Fuels Based on an Electrochemical Reduction Technology

    SciTech Connect

    Ohta, Hirokazu; Inoue, Tadashi; Sakamura, Yoshiharu; Kinoshita, Kensuke

    2005-05-15

    A concept of pyroprocessing light water reactor (LWR) spent fuels based on an electrochemical reduction technology is proposed, and the material balance of the processing of mixed oxide (MOX) or high-burnup uranium oxide (UO{sub 2}) spent fuel is evaluated. Furthermore, a burnup analysis for metal fuel fast breeder reactors (FBRs) is conducted on low-decontamination materials recovered by pyroprocessing. In the case of processing MOX spent fuel (40 GWd/t), UO{sub 2} is separately collected for {approx}60 wt% of the spent fuel in advance of the electrochemical reduction step, and the product recovered through the rare earth (RE) removal step, which has the composition uranium:plutonium:minor actinides:fission products (FPs) = 76.4:18.4:1.7:3.5, can be applied as an ingredient of FBR metal fuel without a further decontamination process. On the other hand, the electroreduced alloy of high-burnup UO{sub 2} spent fuel (48 GWd/t) requires further decontamination of residual FPs by an additional process such as electrorefining even if RE FPs are removed from the alloy because the recovered plutonium (Pu) is accompanied by almost the same amount of FPs in addition to RE. However, the amount of treated materials in the electrorefining step is reduced to {approx}10 wt% of the total spent fuel owing to the prior UO{sub 2} recovery step. These results reveal that the application of electrochemical reduction technology to LWR spent oxide fuel is a promising concept for providing FBR metal fuel by a rationalized process.

  5. Development of electron beam ion source charge breeder for rare isotopes at Californium Rare Isotope Breeder Upgrade.

    PubMed

    Kondrashev, S; Dickerson, C; Levand, A; Ostroumov, P N; Pardo, R C; Savard, G; Vondrasek, R; Alessi, J; Beebe, E; Pikin, A; Kuznetsov, G I; Batazova, M A

    2012-02-01

    Recently, the Californium Rare Isotope Breeder Upgrade (CARIBU) to the Argonne Tandem Linac Accelerator System (ATLAS) was commissioned and became available for production of rare isotopes. Currently, an electron cyclotron resonance ion source is used as a charge breeder for CARIBU beams. To further increase the intensity and improve the purity of neutron-rich ion beams accelerated by ATLAS, we are developing a high-efficiency charge breeder for CARIBU based on an electron beam ion source (EBIS). The CARIBU EBIS charge breeder will utilize the state-of-the-art EBIS technology recently developed at Brookhaven National Laboratory (BNL). The electron beam current density in the CARIBU EBIS trap will be significantly higher than that in existing operational charge-state breeders based on the EBIS concept. The design of the CARIBU EBIS charge breeder is nearly complete. Long-lead components of the EBIS such as a 6-T superconducting solenoid and an electron gun have been ordered with the delivery schedule in the fall of 2011. Measurements of expected breeding efficiency using the BNL Test EBIS have been performed using a Cs(+) surface ionization ion source for external injection in pulsed mode. In these experiments we have achieved ∼70% injection∕extraction efficiency and breeding efficiency into the most abundant charge state of ∼17%.

  6. Development of electron beam ion source charge breeder for rare isotopes at Californium Rare Isotope Breeder Upgradea)

    NASA Astrophysics Data System (ADS)

    Kondrashev, S.; Dickerson, C.; Levand, A.; Ostroumov, P. N.; Pardo, R. C.; Savard, G.; Vondrasek, R.; Alessi, J.; Beebe, E.; Pikin, A.; Kuznetsov, G. I.; Batazova, M. A.

    2012-02-01

    Recently, the Californium Rare Isotope Breeder Upgrade (CARIBU) to the Argonne Tandem Linac Accelerator System (ATLAS) was commissioned and became available for production of rare isotopes. Currently, an electron cyclotron resonance ion source is used as a charge breeder for CARIBU beams. To further increase the intensity and improve the purity of neutron-rich ion beams accelerated by ATLAS, we are developing a high-efficiency charge breeder for CARIBU based on an electron beam ion source (EBIS). The CARIBU EBIS charge breeder will utilize the state-of-the-art EBIS technology recently developed at Brookhaven National Laboratory (BNL). The electron beam current density in the CARIBU EBIS trap will be significantly higher than that in existing operational charge-state breeders based on the EBIS concept. The design of the CARIBU EBIS charge breeder is nearly complete. Long-lead components of the EBIS such as a 6-T superconducting solenoid and an electron gun have been ordered with the delivery schedule in the fall of 2011. Measurements of expected breeding efficiency using the BNL Test EBIS have been performed using a Cs+ surface ionization ion source for external injection in pulsed mode. In these experiments we have achieved ˜70% injection/extraction efficiency and breeding efficiency into the most abundant charge state of ˜17%.

  7. Development of electron beam ion source charge breeder for rare isotopes at Californium Rare Isotope Breeder Upgrade

    SciTech Connect

    Kondrashev S.; Alessi J.; Dickerson, C.; Levand, A.; Ostroumov, P.N.; Pardo, R.C.; Savard, G.; Vondrasek, R.; Beebe, E.; Pikin, A.; Kuznetsov, G.I.; Batazova, M.A.

    2012-02-03

    Recently, the Californium Rare Isotope Breeder Upgrade (CARIBU) to the Argonne Tandem Linac Accelerator System (ATLAS) was commissioned and became available for production of rare isotopes. Currently, an electron cyclotron resonance ion source is used as a charge breeder for CARIBU beams. To further increase the intensity and improve the purity of neutron-rich ion beams accelerated by ATLAS, we are developing a high-efficiency charge breeder for CARIBU based on an electron beam ion source (EBIS). The CARIBU EBIS charge breeder will utilize the state-of-the-art EBIS technology recently developed at Brookhaven National Laboratory (BNL). The electron beam current density in the CARIBU EBIS trap will be significantly higher than that in existing operational charge-state breeders based on the EBIS concept. The design of the CARIBU EBIS charge breeder is nearly complete. Long-lead components of the EBIS such as a 6-T superconducting solenoid and an electron gun have been ordered with the delivery schedule in the fall of 2011. Measurements of expected breeding efficiency using the BNL Test EBIS have been performed using a Cs{sup +} surface ionization ion source for external injection in pulsed mode. In these experiments we have achieved {approx}70% injection/extraction efficiency and breeding efficiency into the most abundant charge state of {approx}17%.

  8. Development of electron beam ion source charge breeder for rare isotopes at Californium Rare Isotope Breeder Upgrade

    SciTech Connect

    Kondrashev, S.; Dickerson, C.; Levand, A.; Ostroumov, P. N.; Pardo, R. C.; Savard, G.; Vondrasek, R.; Alessi, J.; Beebe, E.; Pikin, A.; Kuznetsov, G. I.; Batazova, M. A.

    2012-02-15

    Recently, the Californium Rare Isotope Breeder Upgrade (CARIBU) to the Argonne Tandem Linac Accelerator System (ATLAS) was commissioned and became available for production of rare isotopes. Currently, an electron cyclotron resonance ion source is used as a charge breeder for CARIBU beams. To further increase the intensity and improve the purity of neutron-rich ion beams accelerated by ATLAS, we are developing a high-efficiency charge breeder for CARIBU based on an electron beam ion source (EBIS). The CARIBU EBIS charge breeder will utilize the state-of-the-art EBIS technology recently developed at Brookhaven National Laboratory (BNL). The electron beam current density in the CARIBU EBIS trap will be significantly higher than that in existing operational charge-state breeders based on the EBIS concept. The design of the CARIBU EBIS charge breeder is nearly complete. Long-lead components of the EBIS such as a 6-T superconducting solenoid and an electron gun have been ordered with the delivery schedule in the fall of 2011. Measurements of expected breeding efficiency using the BNL Test EBIS have been performed using a Cs{sup +} surface ionization ion source for external injection in pulsed mode. In these experiments we have achieved {approx}70% injection/extraction efficiency and breeding efficiency into the most abundant charge state of {approx}17%.

  9. Advantages of liquid fluoride thorium reactor in comparison with light water reactor

    NASA Astrophysics Data System (ADS)

    Bahri, Che Nor Aniza Che Zainul; Majid, Amran Ab.; Al-Areqi, Wadeeah M.

    2015-04-01

    Liquid Fluoride Thorium Reactor (LFTR) is an innovative design for the thermal breeder reactor that has important potential benefits over the traditional reactor design. LFTR is fluoride based liquid fuel, that use the thorium dissolved in salt mixture of lithium fluoride and beryllium fluoride. Therefore, LFTR technology is fundamentally different from the solid fuel technology currently in use. Although the traditional nuclear reactor technology has been proven, it has perceptual problems with safety and nuclear waste products. The aim of this paper is to discuss the potential advantages of LFTR in three aspects such as safety, fuel efficiency and nuclear waste as an alternative energy generator in the future. Comparisons between LFTR and Light Water Reactor (LWR), on general principles of fuel cycle, resource availability, radiotoxicity and nuclear weapon proliferation shall be elaborated.

  10. Advantages of liquid fluoride thorium reactor in comparison with light water reactor

    SciTech Connect

    Bahri, Che Nor Aniza Che Zainul Majid, Amran Ab.; Al-Areqi, Wadeeah M.

    2015-04-29

    Liquid Fluoride Thorium Reactor (LFTR) is an innovative design for the thermal breeder reactor that has important potential benefits over the traditional reactor design. LFTR is fluoride based liquid fuel, that use the thorium dissolved in salt mixture of lithium fluoride and beryllium fluoride. Therefore, LFTR technology is fundamentally different from the solid fuel technology currently in use. Although the traditional nuclear reactor technology has been proven, it has perceptual problems with safety and nuclear waste products. The aim of this paper is to discuss the potential advantages of LFTR in three aspects such as safety, fuel efficiency and nuclear waste as an alternative energy generator in the future. Comparisons between LFTR and Light Water Reactor (LWR), on general principles of fuel cycle, resource availability, radiotoxicity and nuclear weapon proliferation shall be elaborated.

  11. Evaluation of tritium release properties of advanced tritium breeders

    SciTech Connect

    Hoshino, T.; Ochiai, K.; Edao, Y.; Kawamura, Y.

    2015-03-15

    Demonstration power plant (DEMO) fusion reactors require advanced tritium breeders with high thermal stability. Lithium titanate (Li{sub 2}TiO{sub 3}) advanced tritium breeders with excess Li (Li{sub 2+x}TiO{sub 3+y}) are stable in a reducing atmosphere at high temperatures. Although the tritium release properties of tritium breeders are documented in databases for DEMO blanket design, no in situ examination under fusion neutron (DT neutron) irradiation has been performed. In this study, a preliminary examination of the tritium release properties of advanced tritium breeders was performed, and DT neutron irradiation experiments were performed at the fusion neutronics source (FNS) facility in JAEA. Considering the tritium release characteristics, the optimum grain size after sintering is <5 μm. From the results of the optimization of granulation conditions, prototype Li{sub 2+x}TiO{sub 3+y} pebbles with optimum grain size (<5 μm) were successfully fabricated. The Li{sub 2+x}TiO{sub 3+y} pebbles exhibited good tritium release properties similar to the Li{sub 2}TiO{sub 3} pebbles. In particular, the released amount of HT gas for easier tritium handling was higher than that of HTO water. (authors)

  12. Advanced reactor safety research quarterly report, October-December 1982. Volume 24

    SciTech Connect

    1984-04-01

    This report describes progress in a number of activities dealing with current safety issues relevant to both light water reactors (LWRs) and breeder reactors. The work includes a broad range of experiments to simulate accidental conditions to provide the required data base to understand important accident sequences and to serve as a basis for development and verification of the complex computer simulation models and codes used in accident analysis and licensing reviews. Such a program must include the development of analytical models, verified by experiment, which can be used to predict reactor and safety system performance under a broad variety of abnormal conditions. Current major emphasis is focused on providing information to NRC relevant to (1) its deliberations and decisions dealing with severe LWR accidents and (2) its safety evaluation of the proposed Clinch River Breeder Reactor.

  13. UCLA program in reactor studies: The ARIES tokamak reactor study

    SciTech Connect

    Not Available

    1991-01-01

    The ARIES research program is a multi-institutional effort to develop several visions of tokamak reactors with enhanced economic, safety, and environmental features. The aims are to determine the potential economics, safety, and environmental features of a range of possible tokamak reactors, and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Four ARIES visions are currently planned for the ARIES program. The ARIES-1 design is a DT-burning reactor based on modest'' extrapolations from the present tokamak physics database and relies on either existing technology or technology for which trends are already in place, often in programs outside fusion. ARIES-2 and ARIES-4 are DT-burning reactors which will employ potential advances in physics. The ARIES-2 and ARIES-4 designs employ the same plasma core but have two distinct fusion power core designs; ARIES-2 utilize the lithium as the coolant and breeder and vanadium alloys as the structural material while ARIES-4 utilizes helium is the coolant, solid tritium breeders, and SiC composite as the structural material. Lastly, the ARIES-3 is a conceptual D-{sup 3}He reactor. During the period Dec. 1, 1990 to Nov. 31, 1991, most of the ARIES activity has been directed toward completing the technical work for the ARIES-3 design and documenting the results and findings. We have also completed the documentation for the ARIES-1 design and presented the results in various meetings and conferences. During the last quarter, we have initiated the scoping phase for ARIES-2 and ARIES-4 designs.

  14. Ceramic breeder materials: Status and needs

    NASA Astrophysics Data System (ADS)

    Johnson, C. E.; Noda, K.; Roux, N.

    1998-10-01

    The tritium breeding blanket is one of the most important components of a fusion reactor because it directly involves both energy extraction and tritium production, both of which are critical to fusion power. Because of their overall desirable properties, lithium-containing ceramic solids are recognized as attractive tritium breeding materials for fusion reactor blankets. Indeed, their inherent thermal stability and chemical inertness are significant safety advantages. In numerous in-pile experiments, these materials have performed well, showing good thermal stability and good tritium release characteristics. Tritium release is particularly facile when an argon or helium purge gas containing hydrogen, typically at levels of about 0.1%, is used. However, the addition of hydrogen to the purge gas imposes a penalty when it comes to recovery of the tritium produced in the blanket. In particular, a large amount of hydrogen in the purge gas will necessitate a large multiple-stage tritium purification unit, which could translate into higher costs. Optimizing tritium, release while minimizing the amount of hydrogen necessary in the purge gas requires a deeper understanding of the tritium release process, especially the interactions of hydrogen with the surface of the lithium ceramic. This paper reviews the status of ceramic breeder research and highlights several issues and data needs.

  15. Fusion breeder: its potential role and prospects

    SciTech Connect

    Lee, J.D.

    1981-01-01

    The fusion breeder is a concept that utilizes 14 MeV neutrons from D + T ..-->.. n(14.1 MeV) + ..cap alpha..(3.5 MeV) fusion reactions to produce more fuel than the tritium (T) needed to sustain the fusion process. This excess fuel production capacity is used to produce fissile material (Pu-239 or U-233) for subsequent use in fission reactors. We are concentrating on a class of blankets we call fission suppressed. The blanket is the region surrounding the fusion plasma in which fusion neutrons interact to produce fuel and heat. The fission-suppressed blanket uses non-fission reactions (mainly (n,2n) or (n,n't)) to generate excess neutrons for the production of net fuel. This is in contrast to the fast fission class of blankets which use (n,fiss) reactions to generate excess neutrons. Fusion reactors with fast fission blankets are commony known as fusion-fission hybrids because they combine fusion and fission in the same device.

  16. Feeding practices of dog breeders in the United States and Canada.

    PubMed

    Connolly, Kevin M; Heinze, Cailin R; Freeman, Lisa M

    2014-09-15

    To determine the proportion of dog breeders who fed diets meeting the Association of American Feed Control Officials regulations for nutritional adequacy for reproduction and growth and to investigate factors that influenced feeding practices of breeders. Web-based cross-sectional survey. 2,067 dog breeders from the United States and Canada. A self-administered, anonymous, Web-based questionnaire was used to collect information on breeder demographics and feeding practices during 3 life stages of dogs: adult maintenance for nonpregnant dogs, gestation-lactation, and puppy growth. Appropriateness of commercial diets for each life stage was determined by respondent-reported nutritional adequacy statements on product labels. Data were also collected regarding breeder criteria for diet selection and sources of nutrition information. A substantial number of breeders reported feeding commercial diets not intended for that life stage during gestation-lactation (126/746 [16.9%]) and puppy growth (57/652 [8.7%]). Additionally, approximately one-seventh of breeders reported feeding home-prepared diets for ≥ 1 life stage. Unsubstantiated health and marketing information influenced diet selection of many breeders. Veterinarians, although generally viewed as a trusted source of nutrition information, were consulted by only 823 of 1,669 (49.3%) breeders and were viewed less favorably by breeders feeding home-prepared diets, compared with the opinion of breeders feeding commercial diets. Veterinarians should consider taking a more proactive role in directing dog breeders and other pet owners toward scientifically substantiated sources of diet information and in explaining the importance of current nutritional standards for reproduction and early development of dogs.

  17. CANDU in-reactor quantitative visual-based inspection techniques

    NASA Astrophysics Data System (ADS)

    Rochefort, P. A.

    2009-02-01

    This paper describes two separate visual-based inspection procedures used at CANDU nuclear power generating stations. The techniques are quantitative in nature and are delivered and operated in highly radioactive environments with access that is restrictive, and in one case is submerged. Visual-based inspections at stations are typically qualitative in nature. For example a video system will be used to search for a missing component, inspect for a broken fixture, or locate areas of excessive corrosion in a pipe. In contrast, the methods described here are used to measure characteristic component dimensions that in one case ensure ongoing safe operation of the reactor and in the other support reactor refurbishment. CANDU reactors are Pressurized Heavy Water Reactors (PHWR). The reactor vessel is a horizontal cylindrical low-pressure calandria tank approximately 6 m in diameter and length, containing heavy water as a neutron moderator. Inside the calandria, 380 horizontal fuel channels (FC) are supported at each end by integral end-shields. Each FC holds 12 fuel bundles. The heavy water primary heat transport water flows through the FC pressure tube, removing the heat from the fuel bundles and delivering it to the steam generator. The general design of the reactor governs both the type of measurements that are required and the methods to perform the measurements. The first inspection procedure is a method to remotely measure the gap between FC and other in-core horizontal components. The technique involves delivering vertically a module with a high-radiation-resistant camera and lighting into the core of a shutdown but fuelled reactor. The measurement is done using a line-of-sight technique between the components. Compensation for image perspective and viewing elevation to the measurement is required. The second inspection procedure measures flaws within the reactor's end shield FC calandria tube rolled joint area. The FC calandria tube (the outer shell of the FC) is

  18. System and method for air temperature control in an oxygen transport membrane based reactor

    DOEpatents

    Kelly, Sean M

    2016-09-27

    A system and method for air temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  19. System and method for temperature control in an oxygen transport membrane based reactor

    DOEpatents

    Kelly, Sean M.

    2017-02-21

    A system and method for temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  20. Feasibility study of a fission-suppressed tokamak fusion breeder

    SciTech Connect

    Moir, R.W.; Lee, J.D.; Neef, W.S.; Berwald, D.H.; Garner, J.K.; Whitley, R.H.; Ghoniem, N.; Wong, C.P.C.; Maya, I.; Schultz, K.R.

    1984-12-01

    The preliminary conceptual design of a tokamak fissile fuel producer is described. The blanket technology is based on the fission suppressed breeding concept where neutron multiplication occurs in a bed of 2 cm diameter beryllium pebbles which are cooled by helium at 50 atmospheres pressure. Uranium-233 is bred in thorium metal fuel elements which are in the form of snap rings attached to each beryllium pebble. Tritium is bred in lithium bearing material contained in tubes immersed in the pebble bed and is recovered by a purge flow of helium. The neutron wall load is 3 MW/m/sup 2/ and the blanket material is ferritic steel. The net fissile breeding ratio is 0.54 +- 30% per fusion reaction. This results in the production of 4900 kg of /sup 233/U per year from 3000 MW of fusion power. This quantity of fuel will provide makeup fuel for about 12 LWRs of equal thermal power or about 18 1 GW/sub e/ LWRs. The calculated cost of the produced uranium-233 is between $23/g and $53/g or equivalent to $10/kg to $90/kg of U/sub 3/O/sub 8/ depending on government financing or utility financing assumptions. Additional topics discussed in the report include the tokamak operating mode (both steady state and long pulse considered), the design and breeding implications of using a poloidal divertor for impurity control, reactor safety, the choice of a tritium breeder, and fuel management.

  1. Solid breeder blanket option for the ITER conceptual design

    SciTech Connect

    Gohar, Y.; Attaya, H.; Billone, M.C.; Finn, P.; Majumdar, S.; Turner, L.R.; Baker, C.C.; Nelson, B.E.; Raffray, R.; Oak Ridge National Lab., TN; California Univ., Los Angeles, CA )

    1989-10-01

    A solid-breeder water-cooled blanket option was developed for ITER based on a multilayer configuration. The blanket uses beryllium for neutron multiplication and lithium oxide for tritium breeding. The material forms are sintered products for both material with 0.8 density factor. The lithium-6 enrichment is 90%. This blanket has the capability to accommodate a factor of two change in the neutron wall loading without violating the different design guidelines. The design philosophy adopted for the blanket is to produce the necessary tritium required for the ITER operation and to operate at power reactor conditions as much as possible. At the same time, the reliability and the safety aspects of the blanket are enhanced by the use of a low-pressure coolant and the separation of the tritium purge lines from the coolant system. The blanket modules are made by hot vacuum forming and diffusion bonding a double wall structure with integral cooling channels. The different aspects of the blanket design including tritium breeding, nuclear heat deposition, activation analyses, thermal-hydraulics, tritium inventory, structural analyses, and water coolant conditions are summarized in this paper. 12 refs., 2 figs., 1 tab.

  2. Small reactor power systems for manned planetary surface bases

    SciTech Connect

    Bloomfield, H.S.

    1987-12-01

    A preliminary feasibility study of the potential application of small nuclear reactor space power systems to manned planetary surface base missions was conducted. The purpose of the study was to identify and assess the technology, performance, and safety issues associated with integration of reactor power systems with an evolutionary manned planetary surface exploration scenario. The requirements and characteristics of a variety of human-rated modular reactor power system configurations selected for a range of power levels from 25 kWe to hundreds of kilowatts is described. Trade-off analyses for reactor power systems utilizing both man-made and indigenous shielding materials are provided to examine performance, installation and operational safety feasibility issues. The results of this study have confirmed the preliminary feasibility of a wide variety of small reactor power plant configurations for growth oriented manned planetary surface exploration missions. The capability for power level growth with increasing manned presence, while maintaining safe radiation levels, was favorably assessed for nominal 25 to 100 kWe modular configurations. No feasibility limitations or technical barriers were identified and the use of both distance and indigenous planetary soil material for human rated radiation shielding were shown to be viable and attractive options.

  3. Small reactor power systems for manned planetary surface bases

    NASA Technical Reports Server (NTRS)

    Bloomfield, Harvey S.

    1987-01-01

    A preliminary feasibility study of the potential application of small nuclear reactor space power systems to manned planetary surface base missions was conducted. The purpose of the study was to identify and assess the technology, performance, and safety issues associated with integration of reactor power systems with an evolutionary manned planetary surface exploration scenario. The requirements and characteristics of a variety of human-rated modular reactor power system configurations selected for a range of power levels from 25 kWe to hundreds of kilowatts is described. Trade-off analyses for reactor power systems utilizing both man-made and indigenous shielding materials are provided to examine performance, installation and operational safety feasibility issues. The results of this study have confirmed the preliminary feasibility of a wide variety of small reactor power plant configurations for growth oriented manned planetary surface exploration missions. The capability for power level growth with increasing manned presence, while maintaining safe radiation levels, was favorably assessed for nominal 25 to 100 kWe modular configurations. No feasibility limitations or technical barriers were identified and the use of both distance and indigenous planetary soil material for human rated radiation shielding were shown to be viable and attractive options.

  4. Gamma thermometer based reactor core liquid level detector

    DOEpatents

    Burns, Thomas J.

    1983-01-01

    A system is provided which employs a modified gamma thermometer for determining the liquid coolant level within a nuclear reactor core. The gamma thermometer which normally is employed to monitor local core heat generation rate (reactor power), is modified by thermocouple junctions and leads to obtain an unambiguous indication of the presence or absence of coolant liquid at the gamma thermometer location. A signal processor generates a signal based on the thermometer surface heat transfer coefficient by comparing the signals from the thermocouples at the thermometer location. The generated signal is a direct indication of loss of coolant due to the change in surface heat transfer when coolant liquid drops below the thermometer location. The loss of coolant indication is independent of reactor power at the thermometer location. Further, the same thermometer may still be used for the normal power monitoring function.

  5. Gamma thermometer based reactor core liquid level detector

    SciTech Connect

    Burns, T.J.

    1983-09-20

    A system is provided which employs a modified gamma thermometer for determining the liquid coolant level within a nuclear reactor core. The gamma thermometer which normally is employed to monitor local core heat generation rate (reactor power), is midified by thermocouple junctions and leads to obtain an unambiguous indication of the presence or absence of coolant liquid at the gamma thermometer location. A signal processor generates a signal based on the thermometer surface heat transfer coefficient by comparing the signals from the thermocouples at the thermometer location. The generated signal is a direct indication of loss of coolant due to the change in surface heat transfer when coolant liquid drops below the thermometer location. The loss of coolant indication is independent of reactor power at the thermometer location. Further, the same thermometer may still be used for the normal power monitoring function.

  6. High power density reactors based on direct cooled particle beds

    SciTech Connect

    Powell, J.R.; Horn, F.L.

    1985-01-01

    Reactors based on direct cooled HTGR type particle fuel are described. The small diameter particle fuel is packed between concentric porous cylinders to make annular fuel elements, with the inlet coolant gas flowing inwards. Hot exit gas flows out long the central channel of each element. Because of the very large heat transfer area in the packed beds, power densities in particle bed reactors (PBR's) are extremely high resulting in compact, lightweight systems. Coolant exit temperatures are high, because of the ceramic fuel temperature capabilities, and the reactors can be ramped to full power and temperature very rapidly. PBR systems can generate very high burst power levels using open cycle hydrogen coolant, or high continuous powers using closed cycle helium coolant. PBR technology is described and development requirements assessed. 12 figs.

  7. Testing of a nuclear-reactor-based positron beam

    NASA Astrophysics Data System (ADS)

    van Veen, A.; Labohm, F.; Schut, H.; de Roode, J.; Heijenga, T.; Mijnarends, P. E.

    1997-05-01

    This paper describes the testing of a positron beam which is primarily based on copper activation near the core of a nuclear reactor and extraction of the positrons through a beam guide tube. An out-of-core test with a 22Na source and an in-core test with the reactor at reduced power have been performed. Both tests indicated a high reflectivity of moderated positrons at the tungsten surfaces of the moderation discs which enhanced the expected yield. Secondary electrons generated in the source materials during the in-core test caused electrical field distortions in the electrode system of the system by charging of the insulators. At 100 kW reactor power during one hour, positrons were observed with an intensity of 4.4 × 10 4 e + s -1 of which 90% was due to positrons created by pair formation and 10% by copper activation.

  8. Reactor

    DOEpatents

    Evans, Robert M.

    1976-10-05

    1. A neutronic reactor having a moderator, coolant tubes traversing the moderator from an inlet end to an outlet end, bodies of material fissionable by neutrons of thermal energy disposed within the coolant tubes, and means for circulating water through said coolant tubes characterized by the improved construction wherein the coolant tubes are constructed of aluminum having an outer diameter of 1.729 inches and a wall thickness of 0.059 inch, and the means for circulating a liquid coolant through the tubes includes a source of water at a pressure of approximately 350 pounds per square inch connected to the inlet end of the tubes, and said construction including a pressure reducing orifice disposed at the inlet ends of the tubes reducing the pressure of the water by approximately 150 pounds per square inch.

  9. Recent Advances in Pd-Based Membranes for Membrane Reactors.

    PubMed

    Arratibel Plazaola, Alba; Pacheco Tanaka, David Alfredo; Van Sint Annaland, Martin; Gallucci, Fausto

    2017-01-01

    Palladium-based membranes for hydrogen separation have been studied by several research groups during the last 40 years. Much effort has been dedicated to improving the hydrogen flux of these membranes employing different alloys, supports, deposition/production techniques, etc. High flux and cheap membranes, yet stable at different operating conditions are required for their exploitation at industrial scale. The integration of membranes in multifunctional reactors (membrane reactors) poses additional demands on the membranes as interactions at different levels between the catalyst and the membrane surface can occur. Particularly, when employing the membranes in fluidized bed reactors, the selective layer should be resistant to or protected against erosion. In this review we will also describe a novel kind of membranes, the pore-filled type membranes prepared by Pacheco Tanaka and coworkers that represent a possible solution to integrate thin selective membranes into membrane reactors while protecting the selective layer. This work is focused on recent advances on metallic supports, materials used as an intermetallic diffusion layer when metallic supports are used and the most recent advances on Pd-based composite membranes. Particular attention is paid to improvements on sulfur resistance of Pd based membranes, resistance to hydrogen embrittlement and stability at high temperature.

  10. ADVANCED SEISMIC BASE ISOLATION METHODS FOR MODULAR REACTORS

    SciTech Connect

    E. Blanford; E. Keldrauk; M. Laufer; M. Mieler; J. Wei; B. Stojadinovic; P.F. Peterson

    2010-09-20

    Advanced technologies for structural design and construction have the potential for major impact not only on nuclear power plant construction time and cost, but also on the design process and on the safety, security and reliability of next generation of nuclear power plants. In future Generation IV (Gen IV) reactors, structural and seismic design should be much more closely integrated with the design of nuclear and industrial safety systems, physical security systems, and international safeguards systems. Overall reliability will be increased, through the use of replaceable and modular equipment, and through design to facilitate on-line monitoring, in-service inspection, maintenance, replacement, and decommissioning. Economics will also receive high design priority, through integrated engineering efforts to optimize building arrangements to minimize building heights and footprints. Finally, the licensing approach will be transformed by becoming increasingly performance based and technology neutral, using best-estimate simulation methods with uncertainty and margin quantification. In this context, two structural engineering technologies, seismic base isolation and modular steel-plate/concrete composite structural walls, are investigated. These technologies have major potential to (1) enable standardized reactor designs to be deployed across a wider range of sites, (2) reduce the impact of uncertainties related to site-specific seismic conditions, and (3) alleviate reactor equipment qualification requirements. For Gen IV reactors the potential for deliberate crashes of large aircraft must also be considered in design. This report concludes that base-isolated structures should be decoupled from the reactor external event exclusion system. As an example, a scoping analysis is performed for a rectangular, decoupled external event shell designed as a grillage. This report also reviews modular construction technology, particularly steel-plate/concrete construction using

  11. Analysis of Time-Dependent Tritium Breeding Capability of Water Cooled Ceramic Breeder Blanket for CFETR

    NASA Astrophysics Data System (ADS)

    Gao, Fangfang; Zhang, Xiaokang; Pu, Yong; Zhu, Qingjun; Liu, Songlin

    2016-08-01

    Attaining tritium self-sufficiency is an important mission for the Chinese Fusion Engineering Testing Reactor (CFETR) operating on a Deuterium-Tritium (D-T) fuel cycle. It is necessary to study the tritium breeding ratio (TBR) and breeding tritium inventory variation with operation time so as to provide an accurate data for dynamic modeling and analysis of the tritium fuel cycle. A water cooled ceramic breeder (WCCB) blanket is one candidate of blanket concepts for the CFETR. Based on the detailed 3D neutronics model of CFETR with the WCCB blanket, the time-dependent TBR and tritium surplus were evaluated by a coupling calculation of the Monte Carlo N-Particle Transport Code (MCNP) and the fusion activation code FISPACT-2007. The results indicated that the TBR and tritium surplus of the WCCB blanket were a function of operation time and fusion power due to the Li consumption in breeder and material activation. In addition, by comparison with the results calculated by using the 3D neutronics model and employing the transfer factor constant from 1D to 3D, it is noted that 1D analysis leads to an over-estimation for the time-dependent tritium breeding capability when fusion power is larger than 1000 MW. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB108004, 2015GB108002, and 2014GB119000), and by National Natural Science Foundation of China (No. 11175207)

  12. Neutronic analysis of graphite-moderated solid breeder design for INTOR

    SciTech Connect

    Jung, J.; Abdou, M.A.

    1981-01-01

    An in-depth analysis of the INTOR tritium-production-blanket design is presented. A ternary system of solid silicate breeder, lead neutron multiplier, and graphite moderator is explored primary from safety and blanket tritium-inventory considerations. Lithium-silicate (Li/sub 2/SiO/sub 3/) breeder systems are studied along with water (H/sub 2/O/D/sub 2/O) and Type 316 stainless steel as coolant and structural material, respectively. The analysis examines the neutronics effects on tritium-production regarding: (1) coolant choice; (2) moderator choice; (3) moderator location; (4) multiplier thickness; (5) /sup 6/Li enrichment; and (6) /sup 6/Li burnup. The tritium-breeding-blanket modules are located at the top, outboard, and bottom (outer) parts of the torus, resulting in a breeding coverage of approx. 60% at the first-wall surface. It is found that the reference INTOR design yields, based on a three-dimensional analysis, a net tritium breeding ratio (BR) of approx. 0.65 at the beginning of reactor operation, satisfying the design criterion of BR > 0.6.

  13. Research and development work for the lithium orthosilicate pebbles for the Karlsruhe ceramic breeder blanket

    NASA Astrophysics Data System (ADS)

    Donne, M. Dalle; Günther, E.; Schumacher, G.; Sordon, G.; Vollath, D.; Wedemeyer, H.; Werle, H.

    1991-03-01

    The Karlsruhe ceramic breeder blanket design for a demo reactor and for the test objects to be tested in NET is based on lithium orthosilicate (Li 4SiO 4) in form of 0.5 mm diameter pebbles contained in 6 mm wide gaps between beryllium plates. Two methods have been used to fabricate the pebbles: at KfK the pebbles were manufactured by extrusion, spheroidizing, and subsequent sintering using a fluidized bed, while at Schott Glaswerke, Mainz they were obtained by melting followed by spraying of the melt. Various tests have been performed with pebbles, namely: (a) measurements of the compressive forces which single pebbles can substain, (b) thermal cycling tests of Li 4SiO 4 pebbles in steel containers, (c) measurements of the effective thermal conductivity of Li 4SiO 4 beds, (d) in situ tritium extraction experiments using helium as purge flow.

  14. Nuclear reactor composite fuel assembly

    DOEpatents

    Burgess, Donn M.; Marr, Duane R.; Cappiello, Michael W.; Omberg, Ronald P.

    1980-01-01

    A core and composite fuel assembly for a liquid-cooled breeder nuclear reactor including a plurality of elongated coextending driver and breeder fuel elements arranged to form a generally polygonal bundle within a thin-walled duct. The breeder elements are larger in cross section than the driver elements, and each breeder element is laterally bounded by a number of the driver elements. Each driver element further includes structure for spacing the driver elements from adjacent fuel elements and, where adjacent, the thin-walled duct. A core made up of the fuel elements can advantageously include fissile fuel of only one enrichment, while varying the effective enrichment of any given assembly or core region, merely by varying the relative number and size of the driver and breeder elements.

  15. Breeder design for enhanced performance and safety characteristics

    SciTech Connect

    Fischer, G J; Atefi, B; Yang, J W; Galperin, A; Segev, M

    1980-01-01

    A fast breeder reactor design has been created which offers a considerably extended fuel cycle and excellent performance characteristics. An example of a core designed to operate on a ten-year fuel cycle is described in some detail. Use of metal fuel along with a moderator such as beryllium oxide dispersed throughout the core provides both design flexibility and safety advantages such as a strong Doppler feedback and limited sodium void reactivity gain. Local power variations are small for the entire cycle; control requirements are also modest, and fuel cycle costs are low.

  16. EBIS charge breeder for radioactive ion beams at ATLAS.

    SciTech Connect

    Ostroumov, P.; Kondrashev, S.; Pardo, R.; Savard, G.; Vondrasek, R.; Alessi, J.; Beebe, E.; Pikin, A.

    2010-07-01

    The construction of the Californium Rare Isotope Breeder Upgrade (CARIBU) for the Argonne National Laboratory ATLAS facility is completed and its commissioning is being performed. In its full capacity, the CARIBU facility will use fission fragments from a 1 Curie (Ci) {sup 252}Cf source. The ions will be thermalized and collected into a low-energy ion beam by a helium gas catcher, mass analyzed by an isobar separator, and charge bred to higher charge states for acceleration in ATLAS. To reach energies E/A 10 MeV/u, one should inject ions with charge-to-mass ratio (q/A) {ge} 1/7 into the ATLAS linac. In the first stage, the existing Electron Cyclotron Resonance (ECR) ion source will be used as a charge breeder. The maximum intensity of radioactive ion beams at the output of the gas catcher will not exceed 10{sup 7} ions per second. A charge breeder based on an Electron Beam Ion Source (EBIS) has significant advantages over the ECR option for ion beam intensities up to about 10{sup 9} ions per second, providing 3-4 times higher efficiency and significantly better purity of highly charged radioactive ion beams for further acceleration. The proposed EBIS project for CARIBU will heavily utilize state-of-the-art EBIS technology recently developed at Brookhaven National Laboratory. This will allow us to reduce both the project cost and timescale, simultaneously insuring reliable technical realization of the cutting-edge technology. Several parameters of the CARIBU EBIS charge breeder (EBIS-CB) will be relaxed with respect to the BNL EBIS in favor of higher reliability and lower cost. Technical performance of the CARIBU charge breeder will not suffer from such a relaxation and will provide high efficiency for a whole range of radioactive ion beams. The goal of this paper is to present the initial design of the EBIS charge breeder for radioactive ion beams at ATLAS.

  17. EBIS charge breeder for radioactive ion beams at ATLAS

    NASA Astrophysics Data System (ADS)

    Ostroumov, P.; Kondrashev, S.; Pardo, R.; Savard, G.; Vondrasek, R.; Alessi, J.; Beebe, E.; Pikin, A.

    2010-07-01

    The construction of the Californium Rare Isotope Breeder Upgrade (CARIBU) for the Argonne National Laboratory ATLAS facility is completed and its commissioning is being performed. In its full capacity, the CARIBU facility will use fission fragments from a 1 Curie (Ci) 252Cf source. The ions will be thermalized and collected into a low-energy ion beam by a helium gas catcher, mass analyzed by an isobar separator, and charge bred to higher charge states for acceleration in ATLAS. To reach energies E/A 10 MeV/u, one should inject ions with charge-to-mass ratio (q/A) >= 1/7 into the ATLAS linac. In the first stage, the existing Electron Cyclotron Resonance (ECR) ion source will be used as a charge breeder. The maximum intensity of radioactive ion beams at the output of the gas catcher will not exceed 107 ions per second. A charge breeder based on an Electron Beam Ion Source (EBIS) has significant advantages over the ECR option for ion beam intensities up to about 109 ions per second, providing 3-4 times higher efficiency and significantly better purity of highly charged radioactive ion beams for further acceleration. The proposed EBIS project for CARIBU will heavily utilize state-of-the-art EBIS technology recently developed at Brookhaven National Laboratory. This will allow us to reduce both the project cost and timescale, simultaneously insuring reliable technical realization of the cutting-edge technology. Several parameters of the CARIBU EBIS charge breeder (EBIS-CB) will be relaxed with respect to the BNL EBIS in favor of higher reliability and lower cost. Technical performance of the CARIBU charge breeder will not suffer from such a relaxation and will provide high efficiency for a whole range of radioactive ion beams. The goal of this paper is to present the initial design of the EBIS charge breeder for radioactive ion beams at ATLAS.

  18. EBIS charge breeder for radioactive ion beams at ATLAS

    SciTech Connect

    Ostroumov, P.; Alessi, J.; Kondrashev, S.; Pardo, R.; Savard, G.; Vondrasek, R.; Beebe, E.; Pikin, A.

    2010-07-20

    The construction of the Californium Rare Isotope Breeder Upgrade (CARIBU) for the Argonne National Laboratory ATLAS facility is completed and its commissioning is being performed. In its full capacity, the CARIBU facility will use fission fragments from a 1 Curie (Ci) {sup 252}Cf source. The ions will be thermalized and collected into a low-energy ion beam by a helium gas catcher, mass analyzed by an isobar separator, and charge bred to higher charge states for acceleration in ATLAS. To reach energies E/A 10 MeV/u, one should inject ions with charge-to-mass ratio (q/A) {ge} 1/7 into the ATLAS linac. In the first stage, the existing Electron Cyclotron Resonance (ECR) ion source will be used as a charge breeder. The maximum intensity of radioactive ion beams at the output of the gas catcher will not exceed 10{sup 7} ions per second. A charge breeder based on an Electron Beam Ion Source (EBIS) has significant advantages over the ECR option for ion beam intensities up to about 10{sup 9} ions per second, providing 3-4 times higher efficiency and significantly better purity of highly charged radioactive ion beams for further acceleration. The proposed EBIS project for CARIBU will heavily utilize state-of-the-art EBIS technology recently developed at Brookhaven National Laboratory. This will allow us to reduce both the project cost and timescale, simultaneously insuring reliable technical realization of the cutting-edge technology. Several parameters of the CARIBU EBIS charge breeder (EBIS-CB) will be relaxed with respect to the BNL EBIS in favor of higher reliability and lower cost. Technical performance of the CARIBU charge breeder will not suffer from such a relaxation and will provide high efficiency for a whole range of radioactive ion beams. The goal of this paper is to present the initial design of the EBIS charge breeder for radioactive ion beams at ATLAS.

  19. Development of pyro-processing technology for thorium-fuelled molten salt reactor

    SciTech Connect

    Uhlir, J.; Straka, M.; Szatmary, L.

    2012-07-01

    The Molten Salt Reactor (MSR) is classified as the non-classical nuclear reactor type based on the specific features coming out from the use of liquid fuel circulating in the MSR primary circuit. Other uniqueness of the reactor type is based on the fact that the primary circuit of the reactor is directly connected with the on-line reprocessing technology, necessary for keeping the reactor in operation for a long run. MSR is the only reactor system, which can be effectively operated within the {sup 232}Th- {sup 233}U fuel cycle as thorium breeder with the breeding factor significantly higher than one. The fuel cycle technologies proposed as ford the fresh thorium fuel processing as for the primary circuit fuel reprocessing are pyrochemical and mainly fluoride. Although these pyrochemical processes were never previously fully verified, the present-day development anticipates an assumption for the successful future deployment of the thorium-fuelled MSR technology. (authors)

  20. [Methicillin-resistant Staphylococcus aureus in pig breeders and cattle breeders].

    PubMed

    Vandenbroucke-Grauls, C M J E; Beaujean, D J M A

    2006-08-05

    It was recently observed that pig breeders in The Netherlands often carry methicillin-resistant Staphylococus aureus (MRSA). These MRSA strains are related to MRSA strains found in pigs. A case-control study showed that not only pig breeders but also cattle breeders are at risk of carrying MRSA. It is advised to keep pig breeders, if they are admitted to a hospital, in isolation until surveillance cultures are proven negative. This also applies to veterinarians and slaughterhouse personnel. For cattle breeders screening without isolation on admission to a hospital is sufficient.

  1. High flux research reactors based on particulate fuel

    SciTech Connect

    Powell, J.R.; Takahashi, H.; Horn, F.L.

    1986-02-01

    High Flux Particle Bed Reactor (HFPBR) designs based on High Temperature Gas Reactors (HTGR) particular fuel are described. The coated fuel particles, approx.500 microns in diameter, are packed between porous metal frits, and directly cooled by flowing D/sub 2/O. The large heat transfer surface area in the packed bed, approx.100 cm/sup 2//cm/sup 3/ of volume, allows high power densities, typically 10 MW/liter. Peak thermal fluxes in the HFPBR are 1 to 2 x 1/sup 16/ n/c/sup 2/ sec., depending on configuration and moderator choice with beryllium and D/sub 2/O Moderators yielding the best flux performance. Spent fuel particles can be hydraulically unloaded every day or two and fresh fuel reloaded. The short fuel cycle allows HFPBR fuel loading to be very low, approx.2 kg of /sup 235/U, with a fission product inventory one-tenth of that in present high flux research reactors. The HFPBR can use partially enriched fuel, 20% /sup 235/U, without degradation in flux reactivity. 8 refs., 12 figs., 2 tabs.

  2. Discrete ordinate quadrature selection for reactor-based Eigenvalue problems

    SciTech Connect

    Jarrell, J. J.; Evans, T. M.; Davidson, G. G.

    2013-07-01

    In this paper we analyze the effect of various quadrature sets on the eigenvalues of several reactor-based problems, including a two-dimensional (2D) fuel pin, a 2D lattice of fuel pins, and a three-dimensional (3D) reactor core problem. While many quadrature sets have been applied to neutral particle discrete ordinate transport calculations, the Level Symmetric (LS) and the Gauss-Chebyshev product (GC) sets are the most widely used in production-level reactor simulations. Other quadrature sets, such as Quadruple Range (QR) sets, have been shown to be more accurate in shielding applications. In this paper, we compare the LS, GC, QR, and the recently developed linear-discontinuous finite element (LDFE) sets, as well as give a brief overview of other proposed quadrature sets. We show that, for a given number of angles, the QR sets are more accurate than the LS and GC in all types of reactor problems analyzed (2D and 3D). We also show that the LDFE sets are more accurate than the LS and GC sets for these problems. We conclude that, for problems where tens to hundreds of quadrature points (directions) per octant are appropriate, QR sets should regularly be used because they have similar integration properties as the LS and GC sets, have no noticeable impact on the speed of convergence of the solution when compared with other quadrature sets, and yield more accurate results. We note that, for very high-order scattering problems, the QR sets exactly integrate fewer angular flux moments over the unit sphere than the GC sets. The effects of those inexact integrations have yet to be analyzed. We also note that the LDFE sets only exactly integrate the zeroth and first angular flux moments. Pin power comparisons and analyses are not included in this paper and are left for future work. (authors)

  3. An Integrated Chemical Reactor-Heat Exchanger Based on Ammonium Carbamate (POSTPRINT)

    DTIC Science & Technology

    2012-10-01

    display, or disclose the work. 14. ABSTRACT In this work we present our recent effort in developing a novel heat exchanger based on endothermic ...conditions. 15. SUBJECT TERMS aircraft thermal management, ammonium carbamate, chemical reactor heat exchanger, endothermic decomposition 16... endothermic chemical reaction (HEX reactor). The proposed HEX reactor is designed to provide additional heat sink capability for aircraft thermal management

  4. BDDR, a new CEA technological and operating reactor database

    SciTech Connect

    Soldevilla, M.; Salmons, S.; Espinosa, B.

    2013-07-01

    The new application BDDR (Reactor database) has been developed at CEA in order to manage nuclear reactors technological and operating data. This application is a knowledge management tool which meets several internal needs: -) to facilitate scenario studies for any set of reactors, e.g. non-proliferation assessments; -) to make core physics studies easier, whatever the reactor design (PWR-Pressurized Water Reactor-, BWR-Boiling Water Reactor-, MAGNOX- Magnesium Oxide reactor-, CANDU - CANada Deuterium Uranium-, FBR - Fast Breeder Reactor -, etc.); -) to preserve the technological data of all reactors (past and present, power generating or experimental, naval propulsion,...) in a unique repository. Within the application database are enclosed location data and operating history data as well as a tree-like structure containing numerous technological data. These data address all kinds of reactors features and components. A few neutronics data are also included (neutrons fluxes). The BDDR application is based on open-source technologies and thin client/server architecture. The software architecture has been made flexible enough to allow for any change. (authors)

  5. Proceedings of the NEACRP/IAEA Specialists meeting on the international comparison calculation of a large sodium-cooled fast breeder reactor at Argonne National Laboratory on February 7-9, 1978

    SciTech Connect

    LeSage, L.G.; McKnight, R.D.; Wade, D.C.; Freese, K.E.; Collins, P.J.

    1980-08-01

    The results of an international comparison calculation of a large (1250 MWe) LMFBR benchmark model are presented and discussed. Eight reactor configurations were calculated. Parameters included with the comparison were: eigenvalue, k/sub infinity/, neutron balance data, breeding reaction rate ratios, reactivity worths, central control rod worth, regional sodium void reactivity, core Doppler and effective delayed neutron fraction. Ten countries participated in the comparison, and sixteen solutions were contributed. The discussion focuses on the variation in parameter values, the degree of consistency among the various parameters and solutions, and the identification of unexpected results. The results are displayed and discussed both by individual participants and by groupings of participants (e.g., results from adjusted data sets versus non-adjusted data sets).

  6. The UF6 Breeder - A solution to the problems of nuclear power

    NASA Technical Reports Server (NTRS)

    Williams, J. R.; Clement, J. D.; Rust, J. A.

    1975-01-01

    One of the major advantages of uranium hexafluoride reactors for power generation is the simplified fuel reprocessing scheme which the gaseous fuel makes possible. Critical experiments related to the development of the reactors for electric power generation are discussed along with UF6 breeder reactor studies. Previous energy conversion studies are reported, taking into account gas turbine power plants, thermionic conversion, and MHD conversion. Thermodynamic cycle analyses show that high efficiencies can be achieved using UF6 as the working fluid for Rankine or Brayton cycles without requiring excessive temperatures.

  7. Modelling of tritium transport in a pin-type solid breeder blanket

    SciTech Connect

    Martin, R.; Ghoniem, N.M.

    1986-02-01

    This study supplements a larger study of a solid breeder blanket design featuring lithium ceramic pins. This aspect of the study looks at tritium transport, release, and inventory within this blanket design. Li/sub 2/O and ..gamma..-LiAlO/sub 2/ are the two primary candidates for ceramic solid breeders. ..gamma..-LiAlO/sub 2/ was chosen for this blanket design due to its higher structural stability. Analysis of tritium behavior in solid breeder blankets is of great importance due to its impact on several critical issues: the generation of an adequate amount of fusion fuel, the safety-related issue of keeping radioactive blanket inventories as low as possible, and the release, purge, and economical processing of the bred tritium without undue contamination of the coolant and other reactor structures.

  8. Radioactivation characteristics for the tokamak fusion test reactor

    SciTech Connect

    Ku, L.; Kolibal, J.G.

    1983-11-01

    Activation analysis has been conducted for several primary fusion blanket materials based on a model of a commercial tokamak fusion reactor design, STARFIRE. The blanket materials studied include two solid tritium breeders, viz., Li/sub 2/O and ..cap alpha..-LiAlO/sub 2/, and four candidate structural materials, viz., PCA stainless steel, V15Cr5Ti, Ti6Al4V, and Al-6063 alloys. The importance of breeder material activation is identified in terms of its impurity contents such as potassium, iron, nickel, molybdenum, and zirconium trace elements. The breeder activation is also discussed with regard to its potential for recycling and its impact on the lithium resource requirements. The structural material activation is analyzed based on two measures, volumetric radioactivity concentration and contact biological dose due to decay gamma emission. Using the radioactivity concentration measure, it is revealed that a substantial advantage exists from a viewpoint of radwaste management, which is inherent in fusion reactor designs based on potential low-activation alloys such as V15Cr5Ti, Ti6Al4V, and Al-6063. On the other hand, from the dose standpoint, the V15Cr5Ti alloy is found to be the only alloy for which one could realize a significant dose reduction (below 2.5 mrem/h) within about 100 yr after shutdown, possibly by some extrapolation on alloy purification techniques.

  9. Corrosion of structural materials by lead-based reactor coolants.

    SciTech Connect

    Abraham, D. P.; Leibowitz, L.; Maroni, V. A.; McDeavitt, S. M.; Raraz, A. G.

    2000-11-16

    Advanced nuclear reactor design has, in recent years, focused increasingly on the use of heavy-liquid-metal coolants, such as lead and lead-bismuth eutectic. Similarly, programs on accelerator-based transmutation systems have also considered the use of such coolants. Russian experience with heavy-metal coolants for nuclear reactors has lent credence to the validity of this approach. Of significant concern is the compatibility of structural materials with these coolants. We have used a thermal convection-based test method to allow exposure of candidate materials to molten lead and lead-bismuth flowing under a temperature gradient. The gradient was deemed essential in evaluating the behavior of the test materials in that should preferential dissolution of components of the test material occur we would expect dissolution in the hotter regions and deposition in the colder regions, thus promoting material transport. Results from the interactions of a Si-rich mild steel alloy, AISI S5, and a ferritic-martensitic stainless steel, HT-9, with the molten lead-bismuth are presented.

  10. Updated reference design of a liquid metal cooled tandem mirror fusion breeder

    SciTech Connect

    Berwald, D.H.; Whitley, R.H.; Garner, J.K.; Gromada, R.J.; McCarville, T.J.; Moir, R.W.; Lee, J.D.; Bandini, B.R.; Fulton, F.J.; Wong, C.P.C.; Maya, I.; Hoot, C.G.; Schultz, K.R.; Miller, L.G.; Beeston, J.M.; Harris, B.L.; Westman, R.A.; Ghoniem, N.M.; Orient, G.; Wolfer, M.; DeVan, J.H.; Torterelli, P.

    1985-09-01

    Detailed studies of key techinical issues for liquid metal cooled fusion breeder (fusion-fission hybrid blankets) have been performed during the period 1983-4. Based upon the results of these studies, the 1982 reference liquid metal cooled tandem mirror fusion breeder blanket design was updated and is described. The updated reference blankets provides increased breeding and lower technological risk in comparison with the original reference blanket. In addition to the blanket design revisions, a plant concept, cost, and fuel cycle economics assessment is provided. The fusion breeder continues to promise an economical source of fissile fuel for the indefinite future.

  11. Continuous production of tritium in an isotope-production reactor with a separate circulation system

    DOEpatents

    Cawley, W.E.; Omberg, R.P.

    1982-08-19

    A method is described for producing tritium in a fast breeder reactor cooled with liquid metal. Lithium is allowed to flow through the reactor in separate loops in order to facilitate the production and removal of tritium.

  12. Reactor vibration reduction based on giant magnetostrictive materials

    NASA Astrophysics Data System (ADS)

    Rongge, Yan; Weiying, Liu; Yuechao, Wu; Menghua, Duan; Xiaohong, Zhang; Lihua, Zhu; Ling, Weng; Ying, Sun

    2017-05-01

    The vibration of reactors not only produces noise pollution, but also affects the safe operation of reactors. Giant magnetostrictive materials can generate huge expansion and shrinkage deformation in a magnetic field. With the principle of mutual offset between the giant magnetostrictive force produced by the giant magnetostrictive material and the original vibration force of the reactor, the vibration of the reactor can be reduced. In this paper, magnetization and magnetostriction characteristics in silicon steel and the giant magnetostrictive material are measured, respectively. According to the presented magneto-mechanical coupling model including the electromagnetic force and the magnetostrictive force, reactor vibration is calculated. By comparing the vibration of the reactor with different inserted materials in the air gaps between the reactor cores, the vibration reduction effectiveness of the giant magnetostrictive material is validated.

  13. Reliability of digital reactor protection system based on extenics.

    PubMed

    Zhao, Jing; He, Ya-Nan; Gu, Peng-Fei; Chen, Wei-Hua; Gao, Feng

    2016-01-01

    After the Fukushima nuclear accident, safety of nuclear power plants (NPPs) is widespread concerned. The reliability of reactor protection system (RPS) is directly related to the safety of NPPs, however, it is difficult to accurately evaluate the reliability of digital RPS. The method is based on estimating probability has some uncertainties, which can not reflect the reliability status of RPS dynamically and support the maintenance and troubleshooting. In this paper, the reliability quantitative analysis method based on extenics is proposed for the digital RPS (safety-critical), by which the relationship between the reliability and response time of RPS is constructed. The reliability of the RPS for CPR1000 NPP is modeled and analyzed by the proposed method as an example. The results show that the proposed method is capable to estimate the RPS reliability effectively and provide support to maintenance and troubleshooting of digital RPS system.

  14. GENERIC, COMPONENT FAILURE DATA BASE FOR LIGHT WATER AND LIQUID SODIUM REACTOR PRAs

    SciTech Connect

    S. A. Eide; S. V. Chmielewski; T. D. Swantz

    1990-02-01

    A comprehensive generic component failure data base has been developed for light water and liquid sodium reactor probabilistic risk assessments (PRAs) . The Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR) and the Centralized Reliability Data Organization (CREDO) data bases were used to generate component failure rates . Using this approach, most of the failure rates are based on actual plant data rather than existing estimates .

  15. SACRD: a data base for fast reactor safety computer codes, operational procedures

    SciTech Connect

    Forsberg, V.M.; Arwood, J.W.; Greene, N.M.; Raiford, G.B.

    1980-09-01

    SACRD (Safety Analysis Computerized Reactor Data) is a data base of nondesign-related information used in computer codes for fast reactor safety analyses. This document reports the procedures used in SACRD to help assure a reasonable level of integrity of the material contained in the data base. It also serves to document much of the computer software used with the data base.

  16. Fuel qualification issues and strategies for reactor-based surplus plutonium disposition

    SciTech Connect

    Cowell, B.S.; Copeland, G.L.; Moses, D.L.

    1997-08-01

    The Department of Energy (DOE) has proposed irradiation of mixed-oxide (MOX) fuel in existing commercial reactors as a disposition method for surplus plutonium from the weapons program. The burning of MOX fuel in reactors is supported by an extensive technology base; however, the infrastructure required to implement reactor-based plutonium disposition does not exist domestically. This report identifies and examines the actions required to qualify and license weapons-grade (WG) plutonium-based MOX fuels for use in domestic commercial light-water reactors (LWRs).

  17. Study on core radius minimization for long life Pb-Bi cooled CANDLE burnup scheme based fast reactor

    SciTech Connect

    Afifah, Maryam Su’ud, Zaki; Miura, Ryosuke; Takaki, Naoyuki; Sekimoto, H.

    2015-09-30

    Fast Breeder Reactor had been interested to be developed over the world because it inexhaustible source energy, one of those is CANDLE reactor which is have strategy in burn-up scheme, need not control roads for control burn-up, have a constant core characteristics during energy production and don’t need fuel shuffling. The calculation was made by basic reactor analysis which use Sodium coolant geometry core parameter as a reference core to study on minimum core reactor radius of CANDLE for long life Pb-Bi cooled, also want to perform pure coolant effect comparison between LBE and sodium in a same geometry design. The result show that the minimum core radius of Lead Bismuth cooled CANDLE is 100 cm and 500 MWth thermal output. Lead-Bismuth coolant for CANDLE reactor enable to reduce much reactor size and have a better void coefficient than Sodium cooled as the most coolant for FBR, then we will have a good point in safety analysis.

  18. Study on core radius minimization for long life Pb-Bi cooled CANDLE burnup scheme based fast reactor

    NASA Astrophysics Data System (ADS)

    Afifah, Maryam; Miura, Ryosuke; Su'ud, Zaki; Takaki, Naoyuki; Sekimoto, H.

    2015-09-01

    Fast Breeder Reactor had been interested to be developed over the world because it inexhaustible source energy, one of those is CANDLE reactor which is have strategy in burn-up scheme, need not control roads for control burn-up, have a constant core characteristics during energy production and don't need fuel shuffling. The calculation was made by basic reactor analysis which use Sodium coolant geometry core parameter as a reference core to study on minimum core reactor radius of CANDLE for long life Pb-Bi cooled, also want to perform pure coolant effect comparison between LBE and sodium in a same geometry design. The result show that the minimum core radius of Lead Bismuth cooled CANDLE is 100 cm and 500 MWth thermal output. Lead-Bismuth coolant for CANDLE reactor enable to reduce much reactor size and have a better void coefficient than Sodium cooled as the most coolant for FBR, then we will have a good point in safety analysis.

  19. Coil system for a mirror-based hybrid reactor

    SciTech Connect

    Hagnestal, A.; Agren, O.; Moiseenko, V. E.

    2012-06-19

    Two different superconducting coil systems for the SFLM Hybrid study - a quadrupolar mirror based fusion-fission reactor study - are presented. One coil system is for a magnetic field with 2 T at the midplane and a mirror ratio of four. This coil set consists of semiplanar coils in two layers. The alternative coil system is for a downscaled magnetic field of 1.25 T at the midplane and a mirror ratio of four, where a higher {beta} is required to achieve sufficient the neutron production. This coil set has one layer of twisted 3D coils. The 3D coils are expected to be considerably cheaper than the semiplanar, since NbTi superconductors can be used for most coils instead of Nb3Sn due to the lower magnetic field.

  20. Wear resistant zirconium base alloy article for water reactors

    SciTech Connect

    Gillett, J.E.; Shockling, L.A.; Sherwood, D.G.

    1988-03-01

    In a water reactor operating environment, the combination having improved fretting wear resistance is described comprising: an elongated tubular water displacer rod; having a low neutron absorption cross section guide support plates distributed along the length of the water displacer rod; the water displacer rod intersecting the guide support plates through apertures in the guide support plates; the water displacer rod having a plurality of spaced apart annular electrospark deposited coatings, each coating facing the wall of a respective aperture, the electrospark deposited coatings comprising Cr/sub 2/C/sub 3/; wherein the water displacer rod has a tube wall composed of a zirconium base alloy; and wherein the guide support plates are composed of a stainless steel alloy.

  1. Advanced propulsion engine assessment based on a cermet reactor

    NASA Technical Reports Server (NTRS)

    Parsley, Randy C.

    1993-01-01

    A preferred Pratt & Whitney conceptual Nuclear Thermal Rocket Engine (NTRE) has been designed based on the fundamental NASA priorities of safety, reliability, cost, and performance. The basic philosophy underlying the design of the XNR2000 is the utilization of the most reliable form of ultrahigh temperature nuclear fuel and development of a core configuration which is optimized for uniform power distribution, operational flexibility, power maneuverability, weight, and robustness. The P&W NTRE system employs a fast spectrum, cermet fueled reactor configured in an expander cycle to ensure maximum operational safety. The cermet fuel form provides retention of fuel and fission products as well as high strength. A high level of confidence is provided by benchmark analysis and independent evaluations.

  2. Thorium-Based Transmuter Fuels for Light Water Reactors

    SciTech Connect

    J. Stephen Herring; P. E. MacDonald; K. Weaver

    2004-04-01

    A light water reactor (LWR) fuel cycle is proposed where the reactor core mainly consists of standard uranium-dioxide (UO2) fuel rods with typical 235U enrichment, along with thoria-urania (ThO2-UO2) or yttria-stablized zirconia fertile-free fuel rods containing the plutonium and minor actinides typical of 30-yr old UO2 fuel in 1/9 to 1/3 of the positions. The goals of this mono-recycling strategy or "twice through fuel cycle" are to transmute the great majority of the long lived actinides in existing LWRs and to discharge a fuel form that is a very robust waste form and whose isotopic content is very proliferation resistant. The incorporation of plutonium into a ThO2 or yttria-stablized zirconia fertile-free matrix results in the consumption of already-separated plutonium without breeding significant additional 239Pu. The minor actinides (i.e., neptunium, americium, curium, berkelium, californium, etc.) are also included in the ThO2 or fertile-free transmuter fuel rods to further reduce the overall long-term radiotoxicity of the fuel cycle. Our analyses have shown that thorium-based or fertile-free fuels can reduce the amount of 239Pu needing further transmutation or going to a repository by ~90%. Also, thorium-based fuels produce a mixture of plutonium isotopes high in 238Pu. Because of the high decay heat and spontaneous neutron generation of 238Pu, this isotope provides intrinsic proliferation resistance.

  3. Thorium-Based Transmuter Fuels for Light Water Reactors

    SciTech Connect

    Herring, J. Stephen; MacDonald, Philip E.; Weaver, Kevan D.

    2004-07-15

    A light water reactor (LWR) fuel cycle is proposed where the reactor core mainly consists of standard uranium-dioxide (UO{sub 2}) fuel rods with typical {sup 235}U enrichment, along with thoria-urania (ThO{sub 2}-UO{sub 2}) or yttria-stablized zirconia fertile-free fuel rods containing the plutonium and minor actinides typical of 30-yr old UO{sub 2} fuel in 1/9 to 1/3 of the positions. The goals of this mono-recycling strategy or 'twice through fuel cycle' are to transmute the great majority of the long lived actinides in existing LWRs and to discharge a fuel form that is a very robust waste form and whose isotopic content is very proliferation resistant. The incorporation of plutonium into a ThO{sub 2} or yttria-stablized zirconia fertile-free matrix results in the consumption of already-separated plutonium without breeding significant additional {sup 239}Pu. The minor actinides (i.e., neptunium, americium, curium, berkelium, californium, etc.) are also included in the ThO{sub 2} or fertile-free transmuter fuel rods to further reduce the overall long-term radiotoxicity of the fuel cycle. Our analyses have shown that thorium-based or fertile-free fuels can reduce the amount of {sup 239}Pu needing further transmutation or going to a repository by {approx}90%. Also, thorium-based fuels produce a mixture of plutonium isotopes high in {sup 238}Pu. Because of the high decay heat and spontaneous neutron generation of {sup 238}Pu, this isotope provides intrinsic proliferation resistance.

  4. Uranium resources and their implications for fission breeder and fusion hybrid development

    SciTech Connect

    Max, C.E.

    1984-05-15

    Present estimates of uranium resources and reserves in the US and the non-Communist world are reviewed. The resulting implications are considered for two proposed breeder technologies: the liquid metal fast breeder reactor (LMFBR) and the fusion hybrid reactor. Using both simple arguments and detailed scenarios from the published literature, conditions are explored under which the LMFBR and fusion hybrid could respectively have the most impact, considering both fuel-supply and economic factors. The conclusions emphasize strong potential advantages of the fusion hybrid, due to its inherently large breeding rate. A discussion is presented of proposed US development strategies for the fusion hybrid, which at present is far behind the LMFBR in its practical application and maturity.

  5. Surveillance application using patten recognition software at the EBR-II Reactor Facility

    SciTech Connect

    Olson, D.L.

    1992-05-01

    The System State Analyzer (SSA) is a software based pattern recognition system. For the past several year this system has been used at Argonne National Laboratory`s Experimental Breeder Reactor 2 (EBR-2) reactor for detection of degradation and other abnormalities in plant systems. Currently there are two versions of the SSA being used at EBR-2. One version of SSA is used for daily surveillance and trending of the reactor delta-T and startups of the reactor. Another version of the SSA is the QSSA which is used to monitor individual systems of the reactor such as the Secondary Sodium System, Secondary Sodium Pumps, and Steam Generator. This system has been able to detect problems such as signals being affected by temperature variations due to a failing temperature controller.

  6. Surveillance application using patten recognition software at the EBR-II Reactor Facility

    SciTech Connect

    Olson, D.L.

    1992-01-01

    The System State Analyzer (SSA) is a software based pattern recognition system. For the past several year this system has been used at Argonne National Laboratory's Experimental Breeder Reactor 2 (EBR-2) reactor for detection of degradation and other abnormalities in plant systems. Currently there are two versions of the SSA being used at EBR-2. One version of SSA is used for daily surveillance and trending of the reactor delta-T and startups of the reactor. Another version of the SSA is the QSSA which is used to monitor individual systems of the reactor such as the Secondary Sodium System, Secondary Sodium Pumps, and Steam Generator. This system has been able to detect problems such as signals being affected by temperature variations due to a failing temperature controller.

  7. Charge breeder for the SPIRAL1 upgrade: Preliminary results

    SciTech Connect

    Maunoury, L. Delahaye, P.; Dubois, M.; Bajeat, O.; Frigot, R.; Jeanne, A.; Jardin, P.; Kamalou, O.; Lecomte, P.; Osmond, B.; Peschard, G.; Savalle, A.; Angot, J.; Sole, P.; Lamy, T.

    2016-02-15

    In the framework of the SPIRAL1 upgrade under progress at the GANIL lab, the charge breeder based on a LPSC Phoenix ECRIS, first tested at ISOLDE has been modified to benefit of the last enhancements of this device from the 1+/n+ community. The modifications mainly concern the 1 + optics, vacuum techniques, and the RF—buffer gas injection into the charge breeder. Prior to its installation in the midst of the low energy beam line of the SPIRAL1 facility, it has been decided to qualify its performances and several operation modes at the test bench of LPSC lab. This contribution shall present preliminary results of experiments conducted at LPSC concerning the 1 + to n+ conversion efficiencies for noble gases as well as for alkali elements and the corresponding transformation times.

  8. Thermal Hydraulic Design and Analysis of a Water-Cooled Ceramic Breeder Blanket with Superheated Steam for CFETR

    NASA Astrophysics Data System (ADS)

    Cheng, Xiaoman; Ma, Xuebin; Jiang, Kecheng; Chen, Lei; Huang, Kai; Liu, Songlin

    2015-09-01

    The water-cooled ceramic breeder blanket (WCCB) is one of the blanket candidates for China fusion engineering test reactor (CFETR). In order to improve power generation efficiency and tritium breeding ratio, WCCB with superheated steam is under development. The thermal-hydraulic design is the key to achieve the purpose of safe heat removal and efficient power generation under normal and partial loading operation conditions. In this paper, the coolant flow scheme was designed and one self-developed analytical program was developed, based on a theoretical heat transfer model and empirical correlations. Employing this program, the design and analysis of related thermal-hydraulic parameters were performed under different fusion power conditions. The results indicated that the superheated steam water-cooled blanket is feasible. supported by the National Special Project for Magnetic Confined Nuclear Fusion Energy of China (Nos. 2013GB108004, 2014GB122000 and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)

  9. A new safety channel based on ¹⁷N detection in research reactors.

    PubMed

    Seyfi, Somayye; Gharib, Morteza

    2015-10-01

    Tehran research reactor (TRR) is a representative of pool type research reactors using light water, as coolant and moderator. This reactor is chosen as a prototype to demonstrate and prove the feasibility of (17)N detection as a new redundant channel for reactor power measurement. In TRR, similar to other pool type reactors, neutron detectors are immersed in the pool around the core as the main power measuring devices. In the present article, a different approach, using out of water neutron detector, is employed to measure reactor power. This new method is based on (17)O (n,p) (17)N reaction taking place inside the core and subsequent measurement of delayed neutrons emitted due to (17)N disintegration. Count and measurement of neutrons around outlet water pipe provides a reliable redundant safety channel to measure reactor power. Results compared with other established channels indicate a good agreement and shows a linear interdependency with true thermal power. Safety of reactor operation is improved with installation & use of this new power measuring channel. The new approach may equally serve well as a redundant channel in all other types of reactors having coolant comprised of oxygen in its molecular constituents. Contrary to existing channels, this one is totally out of water and thus is an advantage over current instrumentations. It is proposed to employ the same idea on other reactors (nuclear power plants too) to improve safety criteria. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Composition Optimization of Lithium-Based Ternary Alloy Blankets for Fusion Reactors

    NASA Astrophysics Data System (ADS)

    Jolodosky, Alejandra

    The goal of this dissertation is to examine the neutronic properties of a novel type of fusion reactor blanket material in the form of lithium-based ternary alloys. Pure liquid lithium, first proposed as a blanket for fusion reactors, is utilized as both a tritium breeder and a coolant. It has many attractive features such as high heat transfer and low corrosion properties, but most importantly, it has a very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and presents plant safety concerns including degradation of the concrete containment structure. The work of this thesis began as a collaboration with Lawrence Livermore National Laboratory in an effort to develop a lithium-based ternary alloy that can maintain the beneficial properties of lithium while reducing the reactivity concerns. The first studies down-selected alloys based on the analysis and performance of both neutronic and activation characteristics. First, 3-D Monte Carlo calculations were performed to evaluate two main neutronics performance parameters for the blanket: tritium breeding ratio (TBR), and energy multiplication factor (EMF). Alloys with adequate results based on TBR and EMF calculations were considered for activation analysis. Activation simulations were executed with 50 years of irradiation and 300 years of cooling. It was discovered that bismuth is a poor choice due to achieving the highest decay heat, contact dose rates, and accident doses. In addition, it does not meet the waste disposal ratings (WDR). The straightforward approach to obtain Monte Carlo TBR and EMF results required 231 simulations per alloy and became computationally expensive, time consuming, and inefficient. Consequently, alternate methods were pursued. A collision history-based methodology recently developed for the Monte Carlo code Serpent, calculates perturbation effects on practically

  11. Homogeneous fast-flux isotope-production reactor

    DOEpatents

    Cawley, W.E.; Omberg, R.P.

    1982-08-19

    A method is described for producing tritium in a liquid metal fast breeder reactor. Lithium target material is dissolved in the liquid metal coolant in order to facilitate the production and removal of tritium.

  12. Autonomous Reactor Control Using Model Based Predictive Control for Space Propulsion Applications

    SciTech Connect

    Bragg-Sitton, Shannon M.; Holloway, James Paul

    2005-02-06

    Reliable reactor control is important to reactor safety, both in terrestrial and space systems. For a space system, where the time for communication to Earth is significant, autonomous control is imperative. Based on feedback from reactor diagnostics, a controller must be able to automatically adjust to changes in reactor temperature and power level to maintain nominal operation without user intervention. Model-based predictive control (MBPC) (Clarke 1994; Morari 1994) is investigated as a potential control methodology for reactor start-up and transient operation in the presence of an external source. Bragg-Sitton and Holloway (2004) assessed the applicability of MBPC to reactor start-up from a cold, zero-power condition in the presence of a time-varying external radiation source, where large fluctuations in the external radiation source can significantly impact a reactor during start-up operations. The MBPC algorithm applied the point kinetics model to describe the reactor dynamics, using a single group of delayed neutrons; initial application considered a fast neutron lifetime (10-3 sec) to simplify calculations during initial controller analysis. The present study will more accurately specify the dynamics of a fast reactor, using a more appropriate fast neutron lifetime (10-7 sec) than in the previous work. Controller stability will also be assessed by carefully considering the dependencies of each component in the defined cost (objective) function and its subsequent effect on the selected 'optimal' control maneuvers.

  13. Progress in tritium retention and release modeling for ceramic breeders

    SciTech Connect

    Raffray, A.R.; Federici, G.; Billone, M.C.; Tanaka, S.

    1994-07-11

    Tritium behavior in ceramic breeder blankets is a key design issue for this class of blanket because of its impact on safety and fuel self-sufficiency. Over the past 10-15 years, substantial theoretical and experimental efforts have been dedicated world-wide to develop a better understanding of tritium transport in ceramic breeders. Models that are available today seem to cover reasonably well all the key physical transport and trapping mechanisms. They have allowed for reasonable interpretation and reproduction of experimental data and have helped in pointing out deficiencies in material property data base, in providing guidance for future experiments, and in analyzing blanket tritium behavior. This paper highlights the progress in tritium modeling over the last decade. Key tritium transport mechanisms are briefly described along with the more recent and sophisticated models developed to help understand them. Recent experimental data are highlighted and model calibration and validation discussed. Finally, example applications to blanket cases are shown as illustration of progress in the prediction of ceramic breeder blanket tritium inventory.

  14. Core damage frequency (reactor design) perspectives based on IPE results

    SciTech Connect

    Camp, A.L.; Dingman, S.E.; Forester, J.A.

    1996-12-31

    This paper provides perspectives gained from reviewing 75 Individual Plant Examination (IPE) submittals covering 108 nuclear power plant units. Variability both within and among reactor types is examined to provide perspectives regarding plant-specific design and operational features, and C, modeling assumptions that play a significant role in the estimates of core damage frequencies in the IPEs. Human actions found to be important in boiling water reactors (BWRs) and in pressurized water reactors (PWRs) are presented and the events most frequently found important are discussed.

  15. Reactivity surveillance in a nuclear reactor by using a layered artificial neural network

    SciTech Connect

    Arul, A.J. . Reactor Physics Div.)

    1994-07-01

    Layered neural networks, which are a class of models based on neuronal computation in biological systems, are applied to the task of reactivity monitoring in a nuclear reactor to improve the safety and the reliability of the operating plant. Training is done with a maximum likelihood method, which is suitable for on-line training. Operational data from the Fast Breeder Test Reactor are used to study its performance. The adaptability of the network to slow variations in the system parameters and its ability to learn in a noisy environment are studied.

  16. Evaluation of nutrient specifications for broiler breeders.

    PubMed

    Wilson, H R; Harms, R H

    1984-07-01

    Two experiments were conducted to determine if previously suggested nutrient requirements of broiler breeders (23 g protein, 850 mg sulfur amino acids, 4.5 g calcium, and 750 mg phosphorus/bird/day) are in excess and could be reduced during the laying period. In Experiment 1, Cobb color-sex broiler breeders were fed daily nutrient allowances that were 100.0, 96.3, 92.5, 89.4, and 86.6% of the suggested requirements. In Experiment 2, Cobb feather-sex breeders were fed daily allowances that were 92.5, 89.4, 86.6, 83.4, and 80.9% of the suggested requirements. Birds on all diets were fed the same energy level; however, energy varied with season to maintain body weight. Egg production, fertility, hatchability, egg weight, and shell quality were not significantly affected by the reductions in nutrient intake in either experiment. The diet with the lowest nutrient level (80.9% of the suggested requirement) was adequate, indicating a considerable margin of safety for the stated requirements. Body weight was quite variable but tended to decrease with nutrient restriction. Weights of broilers hatched from treated breeders were not significantly affected at 49 days of age by the breeder dietary treatments. These results indicate that broiler breeder diets formulated to meet presently suggested requirements have a large margin of safety and a reduction of specifications by approximately 10% is suggested. The revised daily intakes recommended are: 20.6 g protein, 754 mg sulfur amino acids, 400 mg methionine, 938 mg lysine, 1379 mg arginine, 256 mg tryptophan, 4.07 g calcium, 683 mg total phosphorus, and 170 mg sodium.

  17. Operational experience with the Argonne National Laboratory Californium Rare Ion Breeder Upgrade facility and electron cyclotron resonance charge breeder

    NASA Astrophysics Data System (ADS)

    Vondrasek, R.; Clark, J.; Levand, A.; Palchan, T.; Pardo, R.; Savard, G.; Scott, R.

    2014-02-01

    The Californium Rare Ion Breeder Upgrade (CARIBU) of the Argonne National Laboratory Argonne Tandem Linac Accelerator System (ATLAS) facility provides low-energy and accelerated neutron-rich radioactive beams to address key nuclear physics and astrophysics questions. A 350 mCi 252Cf source produces fission fragments which are thermalized and collected by a helium gas catcher into a low-energy particle beam with a charge of 1+ or 2+. An electron cyclotron resonance (ECR) ion source functions as a charge breeder in order to raise the ion charge sufficiently for acceleration in the ATLAS linac. The ECR charge breeder has achieved stable beam charge breeding efficiencies of 10.1% for 23Na7+, 17.9% for 39K10+, 15.6% for 84Kr17+, and 12.4% for 133Cs27+. For the radioactive beams, a charge breeding efficiency of 11.7% has been achieved for 143Cs27+ and 14.7% for 143Ba27+. The typical breeding times are 10 ms/charge state, but the source can be tuned such that this value increases to 100 ms/charge state with the best breeding efficiency corresponding to the longest breeding times—the variation of efficiencies with breeding time will be discussed. Efforts have been made to characterize and reduce the background contaminants present in the ion beam through judicious choice of q/m combinations. Methods of background reduction are being investigated based upon plasma chamber cleaning and vacuum practices.

  18. Operational experience with the Argonne National Laboratory Californium Rare Ion Breeder Upgrade facility and electron cyclotron resonance charge breeder.

    PubMed

    Vondrasek, R; Clark, J; Levand, A; Palchan, T; Pardo, R; Savard, G; Scott, R

    2014-02-01

    The Californium Rare Ion Breeder Upgrade (CARIBU) of the Argonne National Laboratory Argonne Tandem Linac Accelerator System (ATLAS) facility provides low-energy and accelerated neutron-rich radioactive beams to address key nuclear physics and astrophysics questions. A 350 mCi (252)Cf source produces fission fragments which are thermalized and collected by a helium gas catcher into a low-energy particle beam with a charge of 1+ or 2+. An electron cyclotron resonance (ECR) ion source functions as a charge breeder in order to raise the ion charge sufficiently for acceleration in the ATLAS linac. The ECR charge breeder has achieved stable beam charge breeding efficiencies of 10.1% for (23)Na(7+), 17.9% for (39)K(10+), 15.6% for (84)Kr(17+), and 12.4% for (133)Cs(27+). For the radioactive beams, a charge breeding efficiency of 11.7% has been achieved for (143)Cs(27+) and 14.7% for (143)Ba(27+). The typical breeding times are 10 ms/charge state, but the source can be tuned such that this value increases to 100 ms/charge state with the best breeding efficiency corresponding to the longest breeding times-the variation of efficiencies with breeding time will be discussed. Efforts have been made to characterize and reduce the background contaminants present in the ion beam through judicious choice of q/m combinations. Methods of background reduction are being investigated based upon plasma chamber cleaning and vacuum practices.

  19. Tritium release behavior of ceramic breeder candidates for fusion reactors

    NASA Astrophysics Data System (ADS)

    Kudo, H.; Okuno, K.; O'hira, S.

    1988-07-01

    The overall HTO(g) release rates of neutron-irradiated Li 2O, γ-LiAlO 2, Li 2SiO 3, Li 2ZrO 3. and Li 8ZrO 6 crystals were controlled by the diffusion of tritium in the crystals, while solid-surface reactions competed in the release process. The order of tritium diffusivity in these crystals was D(Li 8ZrO 6) > D(Li 2O) > D(Li 2ZrO 3) > D(Li 2SiO 3) > D(γ-LiAlO 2) . In Li 2O crystals irradiated with thermal and 14-MeV neutrons the T - state of tritium was found to exist together with the most abundant T + species (OT -), but no T - species was found in unirradiated crystals in which tritium had been dissolved under thermal equilibrium conditions. Although the thermal release behavior of tritium dissolved in Li 2O crystals resembled that in neutron-irradiated ones, the diffusivity of T + ions in the unirradiated crystal was lower than that in the irradiated crystal. The solubility of tritium gas (HT) in Li 2O crystals obeyed the Sieverts' law.

  20. Historical civilian nuclear accident based Nuclear Reactor Condition Analyzer

    NASA Astrophysics Data System (ADS)

    McCoy, Kaylyn Marie

    There are significant challenges to successfully monitoring multiple processes within a nuclear reactor facility. The evidence for this observation can be seen in the historical civilian nuclear incidents that have occurred with similar initiating conditions and sequences of events. Because there is a current lack within the nuclear industry, with regards to the monitoring of internal sensors across multiple processes for patterns of failure, this study has developed a program that is directed at accomplishing that charge through an innovation that monitors these systems simultaneously. The inclusion of digital sensor technology within the nuclear industry has appreciably increased computer systems' capabilities to manipulate sensor signals, thus making the satisfaction of these monitoring challenges possible. One such manipulation to signal data has been explored in this study. The Nuclear Reactor Condition Analyzer (NRCA) program that has been developed for this research, with the assistance of the Nuclear Regulatory Commission's Graduate Fellowship, utilizes one-norm distance and kernel weighting equations to normalize all nuclear reactor parameters under the program's analysis. This normalization allows the program to set more consistent parameter value thresholds for a more simplified approach to analyzing the condition of the nuclear reactor under its scrutiny. The product of this research provides a means for the nuclear industry to implement a safety and monitoring program that can oversee the system parameters of a nuclear power reactor facility, like that of a nuclear power plant.

  1. Comparison of Processes of Transmutation of Long-Lived Actinides in Different Reactors

    SciTech Connect

    Bergelson, B.R.; Gerasimov, A.S.; Kiselev, G.V.; Tikhomirov, G.V.

    2002-07-01

    Efficiency of transmutation of actinides was compared for different types of reactors-transmuters: light water VVER-1000 type reactor, fast breeder BN-600 and Super-Phenix type reactors, as well as high-flux subcritical ADS-800 type facility. Feed with minor actinides extracted from the reactor of VVER-1000 type was supposed. (authors)

  2. Ceramic Breeder Blanket for ARIES-CS

    SciTech Connect

    Raffray, A.R.; Malang, S.; El-Guebaly, L.; Wang, X.

    2005-05-15

    This paper describes the conceptual design of a ceramic breeder blanket considered as one of the candidate blankets in the first phase of the ARIES-CS study. The blanket is coupled to a Brayton power cycle to avoid the safety concern associated with the possibility of Be/steam reaction in case of accident.

  3. Enzyme-immobilized reactors for rapid and efficient sample preparation in MS-based proteomic studies.

    PubMed

    Yamaguchi, Hiroshi; Miyazaki, Masaya

    2013-02-01

    Proteolysis is a key step in proteomic studies integrated with MS analysis but the conventional method of in-solution digestion is limited by time-consuming procedures and low sensitivity. Furthermore, obtaining reliable peptide maps and meaningful sequence data using MS analysis requires not only the separation of the digested peptides but also strictly defined proteolysis conditions. Recently, various immobilized-enzyme reactors have been developed for highly efficient proteolysis in MS-based proteomic analysis. This review focuses on the proteolysis step using protease-immobilized reactors and rapid analysis of protein sequences. We describe the preparation of enzyme reactors by several techniques and protein digestion under unusual conditions. Analysis of posttranslational modifications by enzyme reactors prepared using our immobilization method is presented as a model application. Analysis systems using immobilized-enzyme reactors are expected to become useful tools for proteomic studies and diverse applications in biotechnology.

  4. COMSOL-based Nuclear Reactor Kinetics Studies at the HFIR

    SciTech Connect

    Chandler, David; Freels, James D; Maldonado, G Ivan; Primm, Trent

    2011-01-01

    The computational ability to accurately predict the dynamic behavior of a nuclear reactor core in response to reactivity-induced perturbations is an important subject in reactor physics. Space-time and point kinetics methodologies were developed for the purpose of studying the transient-induced behavior of the High Flux Isotope Reactor s (HFIR) compact core. The space-time simulations employed the three-energy-group neutron diffusion equations, and transients initiated by control cylinder and hydraulic tube rabbit ejections were studied. The work presented here is the first step towards creating a comprehensive multiphysics methodology for studying the dynamic behavior of the HFIR core during reactivity perturbations. The results of these studies show that point kinetics is adequate for small perturbations in which the power distribution is assumed to be time-independent, but space-time methods must be utilized to determine localized effects.

  5. Microlith catalytic reactors for reforming iso-octane-based fuels into hydrogen

    NASA Astrophysics Data System (ADS)

    Roychoudhury, Subir; Castaldi, Marco; Lyubovsky, Maxim; LaPierre, Rene; Ahmed, Shabbir

    Recent advances in the development of short contact time (SCT) reactor design approaches allow reformers capable of overcoming current barriers of cost, size, weight, complexity and efficiency associated with conventional reactor design approaches. PCI has developed an SCT based approach using a patented substrate (trademarked Microlith ®) and proprietary coating technology [1]. The high heat and mass transport properties of the substrate have been shown to significantly reduce reactor size while improving performance. Resistance to coking, especially at low H 2O:C ratios, has also been observed with these reactors. This paper summarizes the results of auto thermal reforming (ATR) of an iso-octane-based liquid fuel. In addition Microlith-based water gas shift (WGS) and preferential CO oxidation (PROX) reactors were also examined for fuel processing applications. Surprisingly, selectivity advantages for these kinetically controlled reactions were observed [2]. Examples described here include low methanation selectivity in WGS applications and large operating windows for PROX at very high space velocities. A complete reformer system with Microlith ATR, WGS and PROX reactors has been identified. Sensitivity of system size with regard to steam:carbon ratios, and the resulting implications for reactor/heat exchanger sizes were documented and a compact system identified.

  6. UCLA program in reactor studies: The ARIES tokamak reactor study. Progress report, December 1, 1990--November 30, 1991

    SciTech Connect

    Not Available

    1991-12-01

    The ARIES research program is a multi-institutional effort to develop several visions of tokamak reactors with enhanced economic, safety, and environmental features. The aims are to determine the potential economics, safety, and environmental features of a range of possible tokamak reactors, and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Four ARIES visions are currently planned for the ARIES program. The ARIES-1 design is a DT-burning reactor based on ``modest`` extrapolations from the present tokamak physics database and relies on either existing technology or technology for which trends are already in place, often in programs outside fusion. ARIES-2 and ARIES-4 are DT-burning reactors which will employ potential advances in physics. The ARIES-2 and ARIES-4 designs employ the same plasma core but have two distinct fusion power core designs; ARIES-2 utilize the lithium as the coolant and breeder and vanadium alloys as the structural material while ARIES-4 utilizes helium is the coolant, solid tritium breeders, and SiC composite as the structural material. Lastly, the ARIES-3 is a conceptual D-{sup 3}He reactor. During the period Dec. 1, 1990 to Nov. 31, 1991, most of the ARIES activity has been directed toward completing the technical work for the ARIES-3 design and documenting the results and findings. We have also completed the documentation for the ARIES-1 design and presented the results in various meetings and conferences. During the last quarter, we have initiated the scoping phase for ARIES-2 and ARIES-4 designs.

  7. NEUTRON REACTOR FUEL ELEMENT UTILIZING ZIRCONIUM-BASE ALLOYS

    DOEpatents

    Saller, H.A.; Keeler, J.R.; Szumachowski, E.R.

    1957-11-12

    This patent relates to clad fuel elements for use in neutronic reactors and is drawn to such a fuel element which consists of a core of fissionable material, comprised of an alloy of zirconium and U/sup 235/ enriched uranium, encased in a jacket of a binary zirconium-tin alloy in which the tin content ranges between 1 and 15% by weight.

  8. The CANDU Reactor System: An Appropriate Technology.

    PubMed

    Robertson, J A

    1978-02-10

    CANDU power reactors are characterized by the combination of heavy water as moderator and pressure tubes to contain the fuel and coolant. Their excellent neutron economy provides the simplicity and low costs of once-through natural-uranium fueling. Future benefits include the prospect of a near-breeder thorium fuel cycle to provide security of fuel supply without the need to develop a new reactor such as the fast breeder. These and other features make the CANDU system an appropriate technology for countries, like Canada, of intermediate economic and industrial capacity.

  9. Control rod drive for reactor shutdown

    DOEpatents

    McKeehan, Ernest R.; Shawver, Bruce M.; Schiro, Donald J.; Taft, William E.

    1976-01-20

    A means for rapidly shutting down or scramming a nuclear reactor, such as a liquid metal-cooled fast breeder reactor, and serves as a backup to the primary shutdown system. The control rod drive consists basically of an in-core assembly, a drive shaft and seal assembly, and a control drive mechanism. The control rod is driven into the core region of the reactor by gravity and hydraulic pressure forces supplied by the reactor coolant, thus assuring that common mode failures will not interfere with or prohibit scramming the reactor when necessary.

  10. Analysis of PIUS reactor passive shutdown using PC-based model

    SciTech Connect

    Cheng, H.S.; Van Tuyle, G.J.

    1992-01-01

    A simplified model of the PIUS 600 Reactor System is described and results form two event simulations are discussed, and compared with ABB's predicted results. The model is based on a BWR Plant Analyzer developed by BNL, with PIUS-specific models added for the density locks. Initial results support the effectiveness of the passive reactor shutdown, although some significant power oscillations occur before the shutdown is completed.

  11. Analysis of PIUS reactor passive shutdown using PC-based model

    SciTech Connect

    Cheng, H.S.; Van Tuyle, G.J.

    1992-09-01

    A simplified model of the PIUS 600 Reactor System is described and results form two event simulations are discussed, and compared with ABB`s predicted results. The model is based on a BWR Plant Analyzer developed by BNL, with PIUS-specific models added for the density locks. Initial results support the effectiveness of the passive reactor shutdown, although some significant power oscillations occur before the shutdown is completed.

  12. Do avian cooperative breeders live longer?

    PubMed

    Beauchamp, Guy

    2014-07-22

    Cooperative breeding is not common in birds but intriguingly over-represented in several families, suggesting that predisposing factors, similar ecological constraints or a combination of the two facilitate the evolution of this breeding strategy. The life-history hypothesis proposes that cooperative breeding is facilitated by high annual survival, which increases the local population and leads to a shortage of breeding opportunities. Clutch size in cooperative breeders is also expected to be smaller. An earlier comparative analysis in a small sample of birds supported the hypothesis but this conclusion has been controversial. Here, I extend the analysis to a larger, worldwide sample and take into account potential confounding factors that may affect estimates of a slow pace of life and clutch size. In a sample of 81 species pairs consisting of closely related cooperative and non-cooperative breeders, I did not find an association between maximum longevity and cooperative breeding, controlling for diet, body mass and sampling effort. However, in a smaller sample of 37 pairs, adult annual survival was indeed higher in the cooperative breeders, controlling for body mass. There was no association between clutch size and cooperative breeding in a sample of 93 pairs. The results support the facilitating effect of high annual survival on the evolution of cooperative breeding in birds but the effect on clutch size remains elusive.

  13. Do avian cooperative breeders live longer?

    PubMed Central

    Beauchamp, Guy

    2014-01-01

    Cooperative breeding is not common in birds but intriguingly over-represented in several families, suggesting that predisposing factors, similar ecological constraints or a combination of the two facilitate the evolution of this breeding strategy. The life-history hypothesis proposes that cooperative breeding is facilitated by high annual survival, which increases the local population and leads to a shortage of breeding opportunities. Clutch size in cooperative breeders is also expected to be smaller. An earlier comparative analysis in a small sample of birds supported the hypothesis but this conclusion has been controversial. Here, I extend the analysis to a larger, worldwide sample and take into account potential confounding factors that may affect estimates of a slow pace of life and clutch size. In a sample of 81 species pairs consisting of closely related cooperative and non-cooperative breeders, I did not find an association between maximum longevity and cooperative breeding, controlling for diet, body mass and sampling effort. However, in a smaller sample of 37 pairs, adult annual survival was indeed higher in the cooperative breeders, controlling for body mass. There was no association between clutch size and cooperative breeding in a sample of 93 pairs. The results support the facilitating effect of high annual survival on the evolution of cooperative breeding in birds but the effect on clutch size remains elusive. PMID:24898375

  14. Fusion breeder studies program: Final report

    SciTech Connect

    Berwald, D.H.

    1986-10-17

    This report is an assessment of technology related to hybrid reactors, especially the Fission-suppressed hybrid. A description of a typical fission-suppressed reactor is given. The economic advantages of the use of a hybrid reactor as part of a fuel cycle center are discussed at length. The inherent safety advantages of the hybrid reactor are analyzed. The report concludes with a proposed timetable for research and development. (JDH)

  15. Two conceptual designs of helical fusion reactor FFHR-d1A based on ITER technologies and challenging ideas

    NASA Astrophysics Data System (ADS)

    Sagara, A.; Miyazawa, J.; Tamura, H.; Tanaka, T.; Goto, T.; Yanagi, N.; Sakamoto, R.; Masuzaki, S.; Ohtani, H.; The FFHR Design Group

    2017-08-01

    The Fusion Engineering Research Project (FERP) at the National Institute for Fusion Science (NIFS) is conducting conceptual design activities for the LHD-type helical fusion reactor FFHR-d1A. This paper newly defines two design options, ‘basic’ and ‘challenging.’ Conservative technologies, including those that will be demonstrated in ITER, are chosen in the basic option in which two helical coils are made of continuously wound cable-in-conduit superconductors of Nb3Sn strands, the divertor is composed of water-cooled tungsten monoblocks, and the blanket is composed of water-cooled ceramic breeders. In contrast, new ideas that would possibly be beneficial for making the reactor design more attractive are boldly included in the challenging option in which the helical coils are wound by connecting high-temperature REBCO superconductors using mechanical joints, the divertor is composed of a shower of molten tin jets, and the blanket is composed of molten salt FLiNaBe including Ti powers to increase hydrogen solubility. The main targets of the challenging option are early construction and easy maintenance of a large and three-dimensionally complicated helical structure, high thermal efficiency, and, in particular, realistic feasibility of the helical reactor.

  16. Advanced reactor safety research. Quarterly report, April-June 1982. Volume 22

    SciTech Connect

    1983-10-01

    Overall objective of this work is to provide NRC a comprehensive data base essential to (1) defining key safety issues, (2) understanding risk-significant accident sequences, (3) developing and verifying models used in safety assessments, and (4) assuring the public that power reactor systems will not be licensed and placed in commercial service in the United States without appropriate consideration being given to their effects on health and safety. This report describes progress in a number of activities dealing with current safety issues relevant to both light water and breeder reactors. The work includes a broad range of experiments to simulate accidental conditions to provide the required data base to understand important accident sequences and to serve as a basis for development and verification of the complex computer simulation models and codes used in accident analysis and licensing reviews. Such a program must include the development of analytical models, verified by experiment, which can be used to predict reactor and safety system performance under a broad variety of abnormal conditions. Current major emphasis is focused on providing information to NRC relevant to (1) its deliberations and decisions dealing with severe LWR accidents, and (2) its safety evaluation of the proposed Clinch River Breeder Reactor.

  17. Liquid fuel molten salt reactors for thorium utilization

    SciTech Connect

    Gehin, Jess C.; Powers, Jeffrey J.

    2016-04-08

    Molten salt reactors (MSRs) represent a class of reactors that use liquid salt, usually fluoride- or chloride-based, as either a coolant with a solid fuel (such as fluoride salt-cooled high temperature reactors) or as a combined coolant and fuel with fuel dissolved in a carrier salt. For liquid-fuelled MSRs, the salt can be processed online or in a batch mode to allow for removal of fission products as well as introduction of fissile fuel and fertile materials during reactor operation. The MSR is most commonly associated with the 233U/thorium fuel cycle, as the nuclear properties of 233U combined with the online removal of parasitic absorbers allow for the ability to design a thermal-spectrum breeder reactor; however, MSR concepts have been developed using all neutron energy spectra (thermal, intermediate, fast, and mixed-spectrum zoned concepts) and with a variety of fuels including uranium, thorium, plutonium, and minor actinides. Early MSR work was supported by a significant research and development (R&D) program that resulted in two experimental systems operating at ORNL in the 1960s, the Aircraft Reactor Experiment and the Molten Salt Reactor Experiment. Subsequent design studies in the 1970s focusing on thermal-spectrum thorium-fueled systems established reference concepts for two major design variants: (1) a molten salt breeder reactor (MSBR), with multiple configurations that could breed additional fissile material or maintain self-sustaining operation; and (2) a denatured molten salt reactor (DMSR) with enhanced proliferation-resistance. T MSRs has been selected as one of six most promising Generation IV systems and development activities have been seen in fast-spectrum MSRs, waste-burning MSRs, MSRs fueled with low-enriched uranium (LEU), as well as more traditional thorium fuel cycle-based MSRs. This study provides an historical background of MSR R&D efforts, surveys and summarizes many of the recent development, and provides

  18. Liquid fuel molten salt reactors for thorium utilization

    DOE PAGES

    Gehin, Jess C.; Powers, Jeffrey J.

    2016-04-08

    Molten salt reactors (MSRs) represent a class of reactors that use liquid salt, usually fluoride- or chloride-based, as either a coolant with a solid fuel (such as fluoride salt-cooled high temperature reactors) or as a combined coolant and fuel with fuel dissolved in a carrier salt. For liquid-fuelled MSRs, the salt can be processed online or in a batch mode to allow for removal of fission products as well as introduction of fissile fuel and fertile materials during reactor operation. The MSR is most commonly associated with the 233U/thorium fuel cycle, as the nuclear properties of 233U combined with themore » online removal of parasitic absorbers allow for the ability to design a thermal-spectrum breeder reactor; however, MSR concepts have been developed using all neutron energy spectra (thermal, intermediate, fast, and mixed-spectrum zoned concepts) and with a variety of fuels including uranium, thorium, plutonium, and minor actinides. Early MSR work was supported by a significant research and development (R&D) program that resulted in two experimental systems operating at ORNL in the 1960s, the Aircraft Reactor Experiment and the Molten Salt Reactor Experiment. Subsequent design studies in the 1970s focusing on thermal-spectrum thorium-fueled systems established reference concepts for two major design variants: (1) a molten salt breeder reactor (MSBR), with multiple configurations that could breed additional fissile material or maintain self-sustaining operation; and (2) a denatured molten salt reactor (DMSR) with enhanced proliferation-resistance. T MSRs has been selected as one of six most promising Generation IV systems and development activities have been seen in fast-spectrum MSRs, waste-burning MSRs, MSRs fueled with low-enriched uranium (LEU), as well as more traditional thorium fuel cycle-based MSRs. This study provides an historical background of MSR R&D efforts, surveys and summarizes many of the recent development, and provides analysis comparing

  19. Sodium Based Heat Pipe Modules for Space Reactor Concepts: Stainless Steel SAFE-100 Core

    SciTech Connect

    Martin, James J.; Reid, Robert S.

    2004-07-01

    A heat pipe cooled reactor is one of several candidate reactor cores being considered for advanced space power and propulsion systems to support future space exploration applications. Long life heat pipe modules, with designs verified through a combination of theoretical analysis and experimental lifetime evaluations, would be necessary to establish the viability of any of these candidates, including the heat pipe reactor option. A hardware-based program was initiated to establish the infrastructure necessary to build heat pipe modules. This effort, initiated by Los Alamos National Laboratory and referred to as the Safe Affordable Fission Engine (SAFE) project, set out to fabricate and perform non-nuclear testing on a modular heat pipe reactor prototype that can provide 100-kWt from the core to an energy conversion system at 700 deg. C. Prototypic heat pipe hardware was designed, fabricated, filled, closed-out and acceptance tested. (authors)

  20. Sodium Based Heat Pipe Modules for Space Reactor Concepts: Stainless Steel SAFE-100 Core

    NASA Technical Reports Server (NTRS)

    Martin, James J.; Reid, Robert S.

    2004-01-01

    A heat pipe cooled reactor is one of several candidate reactor cores being considered for advanced space power and propulsion systems to support future space exploration applications. Long life heat pipe modules, with designs verified through a combination of theoretical analysis and experimental lifetime evaluations, would be necessary to establish the viability of any of these candidates, including the heat pipe reactor option. A hardware-based program was initiated to establish the infrastructure necessary to build heat pipe modules. This effort, initiated by Los Alamos National Laboratory and referred to as the Safe Affordable Fission Engine (SAFE) project, set out to fabricate and perform non-nuclear testing on a modular heat pipe reactor prototype that can provide 100 kilowatt from the core to an energy conversion system at 700 C. Prototypic heat pipe hardware was designed, fabricated, filled, closed-out and acceptance tested.

  1. Impact of thorium based molten salt reactor on the closure of the nuclear fuel cycle

    NASA Astrophysics Data System (ADS)

    Jaradat, Safwan Qasim Mohammad

    Molten salt reactor (MSR) is one of six reactors selected by the Generation IV International Forum (GIF). The liquid fluoride thorium reactor (LFTR) is a MSR concept based on thorium fuel cycle. LFTR uses liquid fluoride salts as a nuclear fuel. It uses 232Th and 233U as the fertile and fissile materials, respectively. Fluoride salt of these nuclides is dissolved in a mixed carrier salt of lithium and beryllium (FLiBe). The objective of this research was to complete feasibility studies of a small commercial thermal LFTR. The focus was on neutronic calculations in order to prescribe core design parameter such as core size, fuel block pitch (p), fuel channel radius, fuel path, reflector thickness, fuel salt composition, and power. In order to achieve this objective, the applicability of Monte Carlo N-Particle Transport Code (MCNP) to MSR modeling was verified. Then, a prescription for conceptual small thermal reactor LFTR and relevant calculations were performed using MCNP to determine the main neutronic parameters of the core reactor. The MCNP code was used to study the reactor physics characteristics for the FUJI-U3 reactor. The results were then compared with the results obtained from the original FUJI-U3 using the reactor physics code SRAC95 and the burnup analysis code ORIPHY2. The results were comparable with each other. Based on the results, MCNP was found to be a reliable code to model a small thermal LFTR and study all the related reactor physics characteristics. The results of this study were promising and successful in demonstrating a prefatory small commercial LFTR design. The outcome of using a small core reactor with a diameter/height of 280/260 cm that would operate for more than five years at a power level of 150 MWth was studied. The fuel system 7LiF - BeF2 - ThF4 - UF4 with a (233U/ 232Th) = 2.01 % was the candidate fuel for this reactor core.

  2. Enhancing VHTR passive safety and economy with thermal radiation based direct reactor auxiliary cooling system

    SciTech Connect

    Zhao, H.; Zhang, H.; Zou, L.; Sun, X.

    2012-07-01

    One of the most important requirements for Gen. IV Very High Temperature Reactor (VHTR) is passive safety. Currently all the gas cooled version of VHTR designs use Reactor Vessel Auxiliary Cooling System (RVACS) for passive decay heat removal. The RVACS can be characterized as a surface-based decay heat removal system. It is especially suitable for smaller power reactors since small systems have relatively larger surface area to volume ratio. However, RVACS limits the maximum achievable power level for modular VHTRs due to the mismatch between the reactor power (proportional to the core volume) and decay heat removal capability (proportional to the vessel surface area). Besides the safety considerations, VHTRs also need to be economical in order to compete with other reactor concepts and other types of energy sources. The limit of decay heat removal capability set by using RVACS has affected the economy of VHTRs. A potential alternative solution is to use a volume-based passive decay heat removal system, called Direct Reactor Auxiliary Cooling Systems (DRACS), to remove or mitigate the limitation on decay heat removal capability. DRACS composes of natural circulation loops with two sets of heat exchangers, one on the reactor side and another on the environmental side. For the reactor side, cooling pipes will be inserted into holes made in the outer or inner graphite reflector blocks. There will be gaps or annular regions formed between these cooling pipes and their corresponding surrounding graphite surfaces. Graphite has an excellent heat conduction property. By taking advantage of this feature, we can have a volume-based method to remove decay heat. The scalability can be achieved, if needed, by employing more rows of cooling pipes to accommodate higher decay heat rates. Since heat can easily conduct through the graphite regions among the holes made for the cooling pipes, those cooling pipes located further away from the active core region can still be very

  3. Very high flux research reactors based on particle fuels

    SciTech Connect

    Powell, J.R.; Takahashi, H.

    1985-01-01

    A new approach to high flux research reactors is described, the VHFR (Very High Flux Reactor). The VHFR fuel region(s) are packed beds of HTGR-type fuel particles through which coolant (e.g., D/sub 2/O) flows directly. The small particle diameter (typically on the order of 500 microns) results in very large surface areas for heat transfer (approx. 100 cm/sup 2//cm/sup 3/ of bed), high power densities (approx. 10 megawatts per liter), and minimal ..delta..T between fuel and coolant (approx. 10 K) VHFR designs are presented which achieve steady-state fluxes of approx. 2x10/sup 16/ n/cm/sup 2/sec. Deuterium/beryllium combinations give the highest flux levels. Critical mass is low, approx. 2 kg /sup 235/U for 20% enriched fuel. Refueling can be carried out continuously on-line, or in a batch process with a short daily shutdown. Fission product inventory is very low, approx. 100 to 300 grams, depending on design.

  4. Experimental reproduction of enterococcal spondylitis in male broiler breeder chickens.

    PubMed

    Martin, Leslie T; Martin, Michael P; Barnes, H John

    2011-06-01

    There has been a recent emergence of epidemic spinal infections with necrosis causing lameness and mortality in male broilers and broiler breeders. Mortality in affected flocks may be as high as 15%. The disease has been called enterococcal spondylitis (ES), based on the frequent isolation of Enterococcus cecorum from the lesions and necrosis and inflammation observed in the free thoracic vertebrae (FTV) of affected birds. Male broiler breeders in an experimental setting were challenged with pure E. cecorum isolates obtained from ES-affected commercial flocks. Challenge routes included oral gavage (10(8)), intravenous (i.v.; 10(3)), and air sac (AS; 10(3)). Half the study birds in each group were chemically immunosuppressed with dexamethasone. Spinal lesions were observed grossly in birds challenged intravenously (2.9%) and birds challenged orally (6.1%). Microscopic spinal lesions consistent with ES were more frequently identified compared with gross lesions in the orally challenged group (30.3%). Chemical immunosuppression with dexamethasone was not associated with a greater incidence of ES in this study. By recreating the disease experimentally, the study design reported here may help in the further development of an experimental challenge model for future studies on risk factors, prevention, and therapeutic intervention of ES.

  5. Humans are not cooperative breeders but practice biocultural reproduction.

    PubMed

    Bogin, Barry; Bragg, Jared; Kuzawa, Christopher

    2014-01-01

    Alloparental care and feeding of young is often called "cooperative breeding" and humans are increasingly described as being a cooperative breeding species. To critically evaluate whether the human offspring care system is best grouped with that of other cooperative breeders. (1) Review of the human system of offspring care in the light of definitions of cooperative, communal and social breeding; (2) re-analysis of human lifetime reproductive effort. Human reproduction and offspring care are distinct from other species because alloparental behaviour is defined culturally rather than by genetic kinship alone. This system allows local flexibility in provisioning strategies and ensures that care and resources often flow between unrelated individuals. This review proposes the term "biocultural reproduction" to describe this unique human reproductive system. In a re-analysis of human life history data, it is estimated that the intense alloparenting typical of human societies lowers the lifetime reproductive effort of individual women by 14-29% compared to expectations based upon other mammals. Humans are not cooperative breeders as classically defined; one effect of the unique strategy of human biocultural reproduction is a lowering of human lifetime reproductive effort, which could help explain lifespan extension.

  6. Group size adjustment to ecological demand in a cooperative breeder.

    PubMed

    Zöttl, Markus; Frommen, Joachim G; Taborsky, Michael

    2013-04-07

    Environmental factors can determine which group size will maximize the fitness of group members. This is particularly important in cooperative breeders, where group members often serve different purposes. Experimental studies are yet lacking to check whether ecologically mediated need for help will change the propensity of dominant group members to accept immigrants. Here, we manipulated the perceived risk of predation for dominant breeders of the cooperatively breeding cichlid fish Neolamprologus pulcher to test their response to unrelated and previously unknown immigrants. Potential immigrants were more readily accepted if groups were exposed to fish predators or egg predators than to herbivorous fish or control situations lacking predation risk. Our data are consistent with both risk dilution and helping effects. Egg predators were presented before spawning, which might suggest that the fish adjust acceptance rates also to a potential future threat. Dominant group members of N. pulcher apparently consider both present and future need of help based on ecological demand. This suggests that acceptance of immigrants and, more generally, tolerance of group members on demand could be a widespread response to ecological conditions in cooperatively breeding animals.

  7. Group size adjustment to ecological demand in a cooperative breeder

    PubMed Central

    Zöttl, Markus; Frommen, Joachim G.; Taborsky, Michael

    2013-01-01

    Environmental factors can determine which group size will maximize the fitness of group members. This is particularly important in cooperative breeders, where group members often serve different purposes. Experimental studies are yet lacking to check whether ecologically mediated need for help will change the propensity of dominant group members to accept immigrants. Here, we manipulated the perceived risk of predation for dominant breeders of the cooperatively breeding cichlid fish Neolamprologus pulcher to test their response to unrelated and previously unknown immigrants. Potential immigrants were more readily accepted if groups were exposed to fish predators or egg predators than to herbivorous fish or control situations lacking predation risk. Our data are consistent with both risk dilution and helping effects. Egg predators were presented before spawning, which might suggest that the fish adjust acceptance rates also to a potential future threat. Dominant group members of N. pulcher apparently consider both present and future need of help based on ecological demand. This suggests that acceptance of immigrants and, more generally, tolerance of group members on demand could be a widespread response to ecological conditions in cooperatively breeding animals. PMID:23390105

  8. Temperature-based control of an anaerobic reactor using a multi-model observer-based estimator.

    PubMed

    Morel, Emmanuel; Tartakovsky, Boris; Perrier, Michel; Guiot, Serge R

    2007-02-01

    This study presents a temperature-based control strategy for the stabilization of an anaerobic reactor during organic overloads. To prove feasibility of the proposed approach the rate of methane production was followed in batch activity tests and reactor runs during mesophilic-thermophilic transitions. Within the first 0.25-6 h of temperature augmentation, an increase in the rate of methane production was observed with higher rates measured under thermophilic (above 40 degrees C) conditions. However, 24 h after startup both in batch tests and reactor runs, the rate of methane production under thermophilic conditions was inferior to that under optimal mesophilic conditions (35 degrees C). Following these results, a control strategy based on short-term augmentation of the reactor temperature was proposed and tested in a 10 L UASB reactor. The control strategy employed a multi-model observer-based estimator to stabilize the effluent COD concentration during organic overloads. The temperature-based control resulted in an increased methanization rate and improved reactor stability overall.

  9. Vented target elements for use in an isotope-production reactor. [LMFBR

    DOEpatents

    Cawley, W.E.; Omberg, R.P.

    1982-08-19

    A method is described for producing tritium gas in a fast breeder reactor cooled with liquid metal. Lithium target material is placed in pins equipped with vents, and tritium gas is recovered from the coolant.

  10. Fuel pins with both target and fuel pellets in an isotope-production reactor

    DOEpatents

    Cawley, W.E.; Omberg, R.P.

    1982-08-19

    A method is described for producing tritium in a fast breeder reactor cooled with liquid metal. Lithium target pellets are placed in close contact with fissile fuel pellets in order to increase the tritium production rate.

  11. Assemblies with both target and fuel pins in an isotope-production reactor

    DOEpatents

    Cawley, W.E.; Omberg, R.P.

    1982-08-19

    A method is described for producing tritium in a fast breeder reactor cooled with liquid metal. Lithium target material is placed in pins adjacent to fuel pins in order to increase the tritium production rate.

  12. Thermosiphon-based PCR reactor: experiment and modeling.

    PubMed

    Chen, Zongyuan; Qian, Shizhi; Abrams, William R; Malamud, Daniel; Bau, Haim H

    2004-07-01

    A self-actuated, flow-cycling polymerase chain reaction (PCR) reactor that takes advantage of buoyancy forces to continuously circulate reagents in a closed loop through various thermal zones has been constructed, tested, and modeled. The heating required for the PCR is advantageously used to induce fluid motion without the need for a pump. Flow velocities on the order of millimeters per second are readily attainable. In our preliminary prototype, we measured a cross-sectionally averaged velocity of 2.5 mm/s and a cycle time of 104 s. The flow velocity is nearly independent of the loop's length, making the device readily scalable. Successful amplifications of 700- and 305-bp fragments of Bacillus cereus genomic DNA have been demonstrated. Since the device does not require any moving parts, it is particularly suitable for miniature systems.

  13. US-DOE Fusion-Breeder Program: blanket design and system performance

    SciTech Connect

    Lee, J.D.

    1983-01-01

    Conceptual design studies are being used to assess the technical and economic feasibility of fusion's potential to produce fissile fuel. A reference design of a fission-suppressed blanket using conventional materials is under development. Theoretically, a fusion breeder that incorporates this fusion-suppressed blanket surrounding a 3000-MW tandem mirror fusion core produces its own tritium plus 5600 kg of /sup 233/U per year. The /sup 233/U could then provide fissile makeup for 21 GWe of light-water reactor (LWR) power using a denatured thorium fuel cycle with full recycle. This is 16 times the net electric power produced by the fusion breeder (1.3 GWe). The cost of electricity from this fusion-fission system is estimated to be only 23% higher than the cost from LWRs that have makeup from U/sub 3/O/sub 8/ at present costs (55 $/kg). Nuclear performance, magnetohydrodynamics (MHD), radiation effects, and other issues concerning the fission-suppressed blanket are summarized, as are some of the present and future objectives of the fusion breeder program.

  14. Status report on the fusion breeder

    SciTech Connect

    Moir, R.W.

    1980-12-12

    The rationale for hybrid fusion-fission reactors is the production of fissile fuel for fission reactors. A new class of reactor, the fission-suppressed hybrid promises unusually good safety features as well as the ability to support 25 light-water reactors of the same nuclear power rating, or even more high-conversion-ratio reactors such as the heavy-water type. One 4000-MW nuclear hybrid can produce 7200 kg of /sup 233/U per year. To obtain good economics, injector efficiency times plasma gain (eta/sub i/Q) should be greater than 2, the wall load should be greater than 1 MW m/sup -2/, and the hybrid should cost less than 6 times the cost of a light-water reactor. Introduction rates for the fission-suppressed hybrid are unusually rapid.

  15. [Reoccurrence of histomonosis in turkey breeder farm].

    PubMed

    Aka, Johannes; Hauck, Rüdiger; Blankenstein, Petra; Balczulat, Stefanie; Hafez, Hafez Mohamed

    2011-01-01

    Histomonosis is a severe disease caused by the protozoan parasite Histomonas (H.) meleagridis, which can lead to high losses in turkeys. The present report describes the reoccurrence of histomonosis in a turkey breeder farm. The first outbreak occurred in 2005 in 17 weeks old hens, the second in 2009 in 8 weeks old hens. The disease remained restricted in one house and one compartment, respectively. Mortality rose to 26 and 65% respectively within few days in spite of therapy with various compounds. Both flocks had to be euthanized. In both cases H. meleagridis belonging to genotype A was detected. The source of infection remained unclear in both cases.

  16. Nitrous Oxide Production in a Granule-based Partial Nitritation Reactor: A Model-based Evaluation.

    PubMed

    Peng, Lai; Sun, Jing; Liu, Yiwen; Dai, Xiaohu; Ni, Bing-Jie

    2017-04-03

    Sustainable wastewater treatment has been attracting increasing attentions over the past decades. However, the production of nitrous oxide (N2O), a potent GHG, from the energy-efficient granule-based autotrophic nitrogen removal is largely unknown. This study applied a previously established N2O model, which incorporated two N2O production pathways by ammonia-oxidizing bacteria (AOB) (AOB denitrification and the hydroxylamine (NH2OH) oxidation). The two-pathway model was used to describe N2O production from a granule-based partial nitritation (PN) reactor and provide insights into the N2O distribution inside granules. The model was evaluated by comparing simulation results with N2O monitoring profiles as well as isotopic measurement data from the PN reactor. The model demonstrated its good predictive ability against N2O dynamics and provided useful information about the shift of N2O production pathways inside granules for the first time. The simulation results indicated that the increase of oxygen concentration and granule size would significantly enhance N2O production. The results further revealed a linear relationship between N2O production and ammonia oxidation rate (AOR) (R(2) = 0.99) under the conditions of varying oxygen levels and granule diameters, suggesting that bulk oxygen and granule size may exert an indirect effect on N2O production by causing a change in AOR.

  17. Nitrous Oxide Production in a Granule-based Partial Nitritation Reactor: A Model-based Evaluation

    PubMed Central

    Peng, Lai; Sun, Jing; Liu, Yiwen; Dai, Xiaohu; Ni, Bing-Jie

    2017-01-01

    Sustainable wastewater treatment has been attracting increasing attentions over the past decades. However, the production of nitrous oxide (N2O), a potent GHG, from the energy-efficient granule-based autotrophic nitrogen removal is largely unknown. This study applied a previously established N2O model, which incorporated two N2O production pathways by ammonia-oxidizing bacteria (AOB) (AOB denitrification and the hydroxylamine (NH2OH) oxidation). The two-pathway model was used to describe N2O production from a granule-based partial nitritation (PN) reactor and provide insights into the N2O distribution inside granules. The model was evaluated by comparing simulation results with N2O monitoring profiles as well as isotopic measurement data from the PN reactor. The model demonstrated its good predictive ability against N2O dynamics and provided useful information about the shift of N2O production pathways inside granules for the first time. The simulation results indicated that the increase of oxygen concentration and granule size would significantly enhance N2O production. The results further revealed a linear relationship between N2O production and ammonia oxidation rate (AOR) (R2 = 0.99) under the conditions of varying oxygen levels and granule diameters, suggesting that bulk oxygen and granule size may exert an indirect effect on N2O production by causing a change in AOR. PMID:28367960

  18. Nitrous Oxide Production in a Granule-based Partial Nitritation Reactor: A Model-based Evaluation

    NASA Astrophysics Data System (ADS)

    Peng, Lai; Sun, Jing; Liu, Yiwen; Dai, Xiaohu; Ni, Bing-Jie

    2017-04-01

    Sustainable wastewater treatment has been attracting increasing attentions over the past decades. However, the production of nitrous oxide (N2O), a potent GHG, from the energy-efficient granule-based autotrophic nitrogen removal is largely unknown. This study applied a previously established N2O model, which incorporated two N2O production pathways by ammonia-oxidizing bacteria (AOB) (AOB denitrification and the hydroxylamine (NH2OH) oxidation). The two-pathway model was used to describe N2O production from a granule-based partial nitritation (PN) reactor and provide insights into the N2O distribution inside granules. The model was evaluated by comparing simulation results with N2O monitoring profiles as well as isotopic measurement data from the PN reactor. The model demonstrated its good predictive ability against N2O dynamics and provided useful information about the shift of N2O production pathways inside granules for the first time. The simulation results indicated that the increase of oxygen concentration and granule size would significantly enhance N2O production. The results further revealed a linear relationship between N2O production and ammonia oxidation rate (AOR) (R2 = 0.99) under the conditions of varying oxygen levels and granule diameters, suggesting that bulk oxygen and granule size may exert an indirect effect on N2O production by causing a change in AOR.

  19. Characterization of advertisements for puppies sold online: determinants of cost and a comparison with parent club breeders.

    PubMed

    Voris, H C; Wittum, T E; Rajala-Schultz, P J; Lord, L K

    2011-07-01

    The Internet is an increasingly common way for consumers to purchase puppies. Yet very little information is available about the types of puppies sold via the Internet. In addition these sales are not subject to United States Depart of Agriculture (USDA) regulation. The objectives of the study were to describe puppies sold via the Internet, to assess the characteristics that contribute to the cost of a puppy, and to compare puppies sold via the Internet with puppies sold by American Kennel Club (AKC) Parent Club breeders. Over 14 weeks in 2008, Yorkshire Terrier, Shih Tzu, English Bulldog, Boxer, and Labrador Retriever puppies for sale on two large-scale online puppy sales sites were categorized based on their Internet advertisements. Data were collected in three categories: puppy characteristics, health characteristics, and policies (such as spay/neuter requirement, health guarantee, and return policy). After the survey was completed, 25 AKC Parent Club breeders and 25 other breeders who advertised via one of the puppy sales websites were randomly selected and interviewed over the phone. Small breed puppies were most frequently advertised with 35.2% (1228/3485) of advertisements for Yorkshire Terriers and 23.0% (802/3485) for Shih Tzus. Almost one quarter of Internet breeders 768/3474 (22.2%) advertised four or more different dog breeds. Champion bloodlines increased the cost of a puppy of all breeds. AKC Parent Club breeders 21/25 (84%) were more likely to mention breed-specific health screening tests when compared to Internet breeders 7/25 (28%). Consumers should apply the same standards for purchasing from a breeder found through a puppy sales site as they would for purchasing from a local breeder. Breeders who advertise at one of the large-scale puppy sales websites are less knowledgeable about breed-specific health issues compared to an AKC Parent Club breeder. Internet breeders are less likely to perform these screening tests on their breeding dogs and may

  20. Effect of dietary canthaxanthin and 25-hydroxycholecalciferol supplementation on the performance of duck breeders under two different vitamin regimens.

    PubMed

    Ren, Zhouzheng; Jiang, Shizhen; Zeng, Qiufeng; Ding, Xuemei; Bai, Shiping; Wang, Jianping; Luo, Yuheng; Su, Zhuowei; Xuan, Yue; Yao, Bing; Cisneros, Fernando; Zhang, Keying

    2016-01-01

    Dietary canthaxanthin (CX), 25-hydroxycholecalciferol (25-OH-D 3 ) and vitamins have been widely reported to be involved in productive and reproductive performance of broiler breeders. However, limited information is available for duck breeders. In this study, a total of 1,560 Cherry Valley SM3 duck breeder females and 312 males were used to assess if the addition of CX and 25-OH-D3 could increase the performance of duck breeders under two different dietary vitamin regimens. Four diets were used under a 2 × 2 factorial arrangement with 2 kinds of vitamin premixes (REGULAR and HIGH; HIGH premix had higher levels of all vitamins except K3 than REGULAR premix), and with or without the supplementation of the mixture of CX (6 mg/kg) and 25-OH-D3 (0.069 mg/kg). The ducks were fed ad libitum with pelleted diets based on corn-soybean meal from 38 to 77 wk of age. HIGH vitamin premix decreased malondialdehyde (MDA) level (P < 0.001) of egg yolk, increased hatchability of fertile eggs (P = 0.029), increased hatchability of total eggs (P = 0.029), and decreased serum protein carbonyl level (P = 0.037) of breeder males. The mixture of CX and 25-OH-D3 increased serum calcium of breeder females (P = 0.010), decreased the cracked egg rate (P = 0.001), increased the pigmentation of egg yolk (P < 0.001) and male bill (P < 0.001), and decreased MDA level of egg yolk (P < 0.001) and male serum (P = 0.034). Interactive effects were observed in cracked egg rate (P = 0.038), shell thickness (P = 0.011) and serum phosphorus (P = 0.026) of breeder females. HIGH vitamin premix together with the mixture of CX and 25-OH-D3 decreased cracked egg rate and increased shell thickness of duck breeders. Serum phosphorus was decreased in duck breeder females fed REGULAR vitamin premix without the addition of the CX and 25-OH-D3 mixture. Dietary HIGH vitamin premix increased antioxidant status of eggs and breeder males, and increased

  1. Enhancing VHTR Passive Safety and Economy with Thermal Radiation Based Direct Reactor Auxiliary Cooling System

    SciTech Connect

    Haihua Zhao; Hongbin Zhang; Ling Zou; Xiaodong Sun

    2012-06-01

    One of the most important requirements for Gen. IV Very High Temperature Reactor (VHTR) is passive safety. Currently all the gas cooled version of VHTR designs use Reactor Vessel Auxiliary Cooling System (RVACS) for passive decay heat removal. The decay heat first is transferred to the core barrel by conduction and radiation, and then to the reactor vessel by thermal radiation and convection; finally the decay heat is transferred to natural circulated air or water systems. RVACS can be characterized as a surface based decay heat removal system. The RVACS is especially suitable for smaller power reactors since small systems have relatively larger surface area to volume ratio. However, RVACS limits the maximum achievable power level for modular VHTRs due to the mismatch between the reactor power (proportional to volume) and decay heat removal capability (proportional to surface area). When the relative decay heat removal capability decreases, the peak fuel temperature increases, even close to the design limit. Annular core designs with inner graphite reflector can mitigate this effect; therefore can further increase the reactor power. Another way to increase the reactor power is to increase power density. However, the reactor power is also limited by the decay heat removal capability. Besides the safety considerations, VHTRs also need to be economical in order to compete with other reactor concepts and other types of energy sources. The limit of decay heat removal capability set by using RVACS has affected the economy of VHTRs. A potential alternative solution is to use a volume-based passive decay heat removal system, called Direct Reactor Auxiliary Cooling Systems (DRACS), to remove or mitigate the limitation on decay heat removal capability. DRACS composes of natural circulation loops with two sets of heat exchangers, one on the reactor side and another on the environment side. For the reactor side, cooling pipes will be inserted into holes made in the outer or

  2. Optimization of lamp arrangement in a closed-conduit UV reactor based on a genetic algorithm.

    PubMed

    Sultan, Tipu; Ahmad, Zeshan; Cho, Jinsoo

    2016-01-01

    The choice for the arrangement of the UV lamps in a closed-conduit ultraviolet (CCUV) reactor significantly affects the performance. However, a systematic methodology for the optimal lamp arrangement within the chamber of the CCUV reactor is not well established in the literature. In this research work, we propose a viable systematic methodology for the lamp arrangement based on a genetic algorithm (GA). In addition, we analyze the impacts of the diameter, angle, and symmetry of the lamp arrangement on the reduction equivalent dose (RED). The results are compared based on the simulated RED values and evaluated using the computational fluid dynamics simulations software ANSYS FLUENT. The fluence rate was calculated using commercial software UVCalc3D, and the GA-based lamp arrangement optimization was achieved using MATLAB. The simulation results provide detailed information about the GA-based methodology for the lamp arrangement, the pathogen transport, and the simulated RED values. A significant increase in the RED values was achieved by using the GA-based lamp arrangement methodology. This increase in RED value was highest for the asymmetric lamp arrangement within the chamber of the CCUV reactor. These results demonstrate that the proposed GA-based methodology for symmetric and asymmetric lamp arrangement provides a viable technical solution to the design and optimization of the CCUV reactor.

  3. Recycle of LWR (Light Water Reactor) actinides to an IFR (Integral Fast Reactor)

    SciTech Connect

    Pierce, R.D.; Ackerman, J.P.; Johnson, G.K.; Mulcahey, T.P.; Poa, D.S.

    1991-01-01

    A large quantity of actinide elements is present in irradiated Light Water Reactor (LWR) fuel that is stored throughout the world. Because of the high fission-to-capture ratio for the transuranium (TRU) elements with the high-energy neutrons in the metal-fueled Integral Fast Reactor (IFR), that reactor can consume these elements effectively. The stored fuel represents a valuable resource for an expanding application of fast power reactors. In addition, removal of the TRU elements from the spent LWR fuel has the potential for increasing the capacity of a high-level waste facility by reducing the heat loads and increasing the margin of safety in meeting licensing requirements. Argonne National Laboratory (ANL) is developing a pyrochemical process, which is compatible with the IFR fuel cycle, for the recovery of TRU elements from LWR fuel. The proposed product is a metallic actinide ingot, which can be introduced into the electrorefining step of the IFR process. The major objective of the LWR fuel recovery process is high TRU element recovery, with decontamination a secondary issue, because fission product removal is accomplished in the IFR process. The extensive pyrochemical processing studies of the 1960s and 1970s provide a basis for the design of possible processes. Two processes were selected for laboratory-scale investigation. One is based on the Salt Transport Process studied at ANL for mixed-oxide fast reactor fuel, and the other is based on the blanket processing studies done for ANL's second Experimental Breeder Reactor (EBR-2). This paper discusses the two processes and is a status report on the experimental studies. 5 refs., 2 figs., 2 tabs.

  4. Neutron flux spectra and radiation damage parameters for the Russian Bor-60 and SM-2 reactors

    SciTech Connect

    Karasiov, A.V.; Greenwood, L.R.

    1995-04-01

    The objective is to compare neutron irradiation conditions in Russian reactors and similar US facilities. Neutron fluence and spectral information and calculated radiation damage parameters are presented for the BOR-60 (Fast Experimental Reactor - 60 MW) and SM-2 reactors in Russia. Their neutron exposure characteristics are comparable with those of the Experimental Breeder Reactor (ERB-II), the Fast Flux Test Facility (FFTF), and the High Flux Isotope Reactor (HFIR) in the United States.

  5. Analysis on burnup step effect for evaluating reactor criticality and fuel breeding ratio

    SciTech Connect

    Saputra, Geby; Purnama, Aditya Rizki; Permana, Sidik; Suzuki, Mitsutoshi

    2014-09-30

    Criticality condition of the reactors is one of the important factors for evaluating reactor operation and nuclear fuel breeding ratio is another factor to show nuclear fuel sustainability. This study analyzes the effect of burnup steps and cycle operation step for evaluating the criticality condition of the reactor as well as the performance of nuclear fuel breeding or breeding ratio (BR). Burnup step is performed based on a day step analysis which is varied from 10 days up to 800 days and for cycle operation from 1 cycle up to 8 cycles reactor operations. In addition, calculation efficiency based on the variation of computer processors to run the analysis in term of time (time efficiency in the calculation) have been also investigated. Optimization method for reactor design analysis which is used a large fast breeder reactor type as a reference case was performed by adopting an established reactor design code of JOINT-FR. The results show a criticality condition becomes higher for smaller burnup step (day) and for breeding ratio becomes less for smaller burnup step (day). Some nuclides contribute to make better criticality when smaller burnup step due to individul nuclide half-live. Calculation time for different burnup step shows a correlation with the time consuming requirement for more details step calculation, although the consuming time is not directly equivalent with the how many time the burnup time step is divided.

  6. Chlortetracycline removal by using hydrogen based membrane biofilm reactor.

    PubMed

    Aydın, Ekrem; Şahin, Mehmet; Taşkan, Ergin; Hasar, Halil; Erdem, Mehmet

    2016-12-15

    In the last years, increasing attention has been paid on the presence of antibiotics in aqueous environments due to their ecological damage and potential adverse effects on organisms. Membrane biofilm reactors (MBfR) have been gained a significant popularity as an advanced wastewater treatment technology in removing of organic micro-pollutants. In this study, the performance of H2-MBfR for simultaneous removal of nitrate and chlortetracycline, formation of transformation products and community analysis of the biofilm grown on the gas permeable hollow fiber membranes was evaluated by considering effect of the hydraulic retention time, surface loadings of target pollutants and H2 pressure. The results showed that the simultaneous chlortetracycline (96%) and nitrate removal (99%) took placed successfully under the conditions of 5h HRT and 2psi H2 pressure. It has been determined that the main elimination process was biodegradation and Betaproteobacteria species was responsible for chlortetracycline degradation. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Study of carbon dioxide gas treatment based on equations of kinetics in plasma discharge reactor

    NASA Astrophysics Data System (ADS)

    Abedi-Varaki, Mehdi

    2017-08-01

    Carbon dioxide (CO2) as the primary greenhouse gas, is the main pollutant that is warming earth. CO2 is widely emitted through the cars, planes, power plants and other human activities that involve the burning of fossil fuels (coal, natural gas and oil). Thus, there is a need to develop some method to reduce CO2 emission. To this end, this study investigates the behavior of CO2 in dielectric barrier discharge (DBD) plasma reactor. The behavior of different species and their reaction rates are studied using a zero-dimensional model based on equations of kinetics inside plasma reactor. The results show that the plasma reactor has an effective reduction on the CO2 density inside the reactor. As a result of reduction in the temporal variations of reaction rate, the speed of chemical reactions for CO2 decreases and very low concentration of CO2 molecules inside the plasma reactor is generated. The obtained results are compared with the existing experimental and simulation findings in the literature.

  8. Fast Reactor Based on the Self-Sustained Regime of Nuclear Burning Wave

    NASA Astrophysics Data System (ADS)

    Fomin, S. P.; Mel'nik, Yu. P.; Pilipenko, V. V.; Shul'ga, N. F.

    An approach for description of the space-time evolution of self-organizing nuclear burning wave regime in a critical fast neutron reactor has been developed in the effective multigroup approximation. It is based on solving the non-stationary neutron diffusion equation together with the fuel burn-up equations and the equations of nuclear kinetics for delayed neutron precursor nuclei. The calculations have been carried out in the plane one-dimensional model for a two-zone homogeneous reactor with the metal U-Pu fuel, the Na coolant and constructional material Fe.

  9. Flow-through immobilized enzyme reactors based on monoliths: II. Kinetics study and application.

    PubMed

    Vlakh, Evgenia G; Tennikova, Tatiana B

    2013-03-01

    In the last decade, the application of monolithic materials has rapidly expanded to the realization of flow-through bioconversion processes. Up to these days, different classes of enzymes such as hydrolases, lyases, and oxidoreductases have been immobilized on organic, inorganic, or hybrid monolithic materials to prepare the effective flow-through enzymes reactors for application in proteomics, biotechnology, pharmaceutics, organic synthesis, and biosensoring. Current review describes the results of kinetic study and specialties of flow-through immobilized enzyme reactors based on the existing monolithic materials.

  10. Supervisory control design based on hybrid systems and fuzzy events detection. Application to an oxichlorination reactor.

    PubMed

    Altamiranda, Edmary; Torres, Horacio; Colina, Eliezer; Chacón, Edgar

    2002-10-01

    This paper presents a supervisory control scheme based on hybrid systems theory and fuzzy events detection. The fuzzy event detector is a linguistic model, which synthesizes complex relations between process variables and process events incorporating experts' knowledge about the process operation. This kind of detection allows the anticipation of appropriate control actions, which depend upon the selected membership functions used to characterize the process under scrutiny. The proposed supervisory control scheme was successfully implemented for an oxichlorination reactor in a vinyl monomer plant. This implementation has allowed improvement of reactor stability and reduction of raw material consumption.

  11. Gamma-thermometer-based reactor-core liquid-level detector. [PWR

    SciTech Connect

    Burns, T.J.

    1981-06-16

    A system is provided which employs a modified gamma thermometer for determining the liquid coolant level within a nuclear reactor core. The gamma thermometer which normally is employed to monitor local core heat generation rate (reactor power), is modified by thermocouple junctions and leads to obtain an unambiguous indication of the presence or absence of coolant liquid at the gamma thermometer location. A signal processor generates a signal based on the thermometer surface heat transfer coefficient by comparing the signals from the thermocouples at the thermometer location. The generated signal is a direct indication of loss of coolant due to the change in surface heat transfer when coolant liquid drops below the thermometer location. The loss of coolant indication is independent of reactor power at the thermometer location. Further, the same thermometer may still be used for the normal power monitoring function.

  12. New Monte Carlo-based method to evaluate fission fraction uncertainties for the reactor antineutrino experiment

    NASA Astrophysics Data System (ADS)

    Ma, X. B.; Qiu, R. M.; Chen, Y. X.

    2017-02-01

    Uncertainties regarding fission fractions are essential in understanding antineutrino flux predictions in reactor antineutrino experiments. A new Monte Carlo-based method to evaluate the covariance coefficients between isotopes is proposed. The covariance coefficients are found to vary with reactor burnup and may change from positive to negative because of balance effects in fissioning. For example, between 235U and 239Pu, the covariance coefficient changes from 0.15 to -0.13. Using the equation relating fission fraction and atomic density, consistent uncertainties in the fission fraction and covariance matrix were obtained. The antineutrino flux uncertainty is 0.55%, which does not vary with reactor burnup. The new value is about 8.3% smaller.

  13. Compact-Toroid fusion reactor based on the field-reversed theta pinch

    SciTech Connect

    Hagenson, R.L.; Krakowski, R.A.

    1981-03-01

    Early scoping studies based on approximate, analytic models have been extended on the basis of a dynamic plasma model and an overall systems approach to examine a Compact Toroid (CTOR) reactor embodiment that uses a Field-Reversed Theta Pinch as a plasma source. The field-reversed plasmoid would be formed and compressionally heated to ignition prior to injection into and translation through a linear burn chamber, thereby removing the high-technology plasmoid source from the hostile reactor environment. Stabilization of the field-reversed plasmoid would be provided by a passive conducting shell located outside the high-temperature blanket but within the low-field superconducting magnets and associated radiation shielding. On the basis of this batch-burn but thermally steady-state approach, a reactor concept emerges with a length below approx. 40 m that generates 300 to 400 MWe of net electrical power with a recirculating power fraction less than 0.15.

  14. Virulence characteristics of Escherichia coli isolates obtained from broiler breeders with salpingitis.

    PubMed

    Monroy, Maria A R; Knöbl, Terezinha; Bottino, José A; Ferreira, Claudete S Astolfi; Ferreira, Antonio J Piantino

    2005-01-01

    Thirty isolates of Escherichia coli from broiler breeders with salpingitis were studied. Using the slide agglutination test, the isolates were found to belong to serogroups O1, O2, O5, O36, O45, O53 and O78. Pathogenicity for day-old chicks was determined by air sac inoculation and isolates were categorized as having high, intermediate or low virulence. Growth on iron starvation medium was observed together with aerobactin production. Based on the results of in vitro adherence tests, attachment to oviduct epithelium from old birds was found to be superior to that observed using corresponding material from young birds. DNA hybridization testing for type 1, P, and S fimbriae revealed predominant expression of type 1, correlating with mannose-sensitive hemagglutination using guinea-pig erythrocytes. In this study, P and S fimbriae were not considered to be important adherence factors. Study findings would suggest that, as far as salpingitis is concerned, type 1 fimbriae can play an important role in E. coli infection in breeders. An interesting result to emerge from the study was the observation that E. coli isolates were completely resistant to serum from young breeders, whereas they were completely sensitive using serum from older breeders. Based on serogroups involved, pathogenicity for day-old chicks and virulence indicators, the salpingitis isolates were similar to those from cases of chronic respiratory disease.

  15. Nuclear reactor power as applied to a space-based radar mission

    NASA Technical Reports Server (NTRS)

    Jaffe, L.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Fujita, T.; Grossman, M.; Bloomfield, H.; Heller, J.

    1988-01-01

    A space-based radar mission and spacecraft are examined to determine system requirements for a 300 kWe space nuclear reactor power system. The spacecraft configuration and its orbit, launch vehicle, and propulsion are described. Mission profiles are addressed, and storage in assembly orbit is considered. Dynamics and attitude control and the problems of nuclear and thermal radiation are examined.

  16. Catalytic liquid marbles: Ag nanowire-based miniature reactors for highly efficient degradation of methylene blue.

    PubMed

    Miao, Yue-E; Lee, Hiang Kwee; Chew, Wee Shern; Phang, In Yee; Liu, Tianxi; Ling, Xing Yi

    2014-06-04

    Ag nanowire-based catalytic liquid marbles are fabricated as miniature reactors, which demonstrate highly efficient, support-free and rate-controllable heterogeneous degradation of methylene blue, with catalytic efficiency close to 100%. Our miniature catalytic liquid marbles are essential for reactions involving highly toxic/hazardous or costly reactants, where small volume preliminary reactions are preferred.

  17. Evaluation of rotating-cylinder and piston-cylinder reactors for ground-based emulsion polymerization

    NASA Technical Reports Server (NTRS)

    Vanderhoff, J. W.; El-Aasser, M. S.

    1987-01-01

    The objectives of this program are to apply ground-based emulsion polymerization reactor technology to improve the production of: monodisperse latex particles for calibration standards, chromatographic separation column packing, and medical research; and commercial latexes such as those used for coatings, foams, and adhesives.

  18. Nuclear reactor power as applied to a space-based radar mission

    NASA Technical Reports Server (NTRS)

    Jaffe, L.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Fujita, T.; Grossman, M.; Bloomfield, H.; Heller, J.

    1988-01-01

    A space-based radar mission and spacecraft are examined to determine system requirements for a 300 kWe space nuclear reactor power system. The spacecraft configuration and its orbit, launch vehicle, and propulsion are described. Mission profiles are addressed, and storage in assembly orbit is considered. Dynamics and attitude control and the problems of nuclear and thermal radiation are examined.

  19. Nuclear reactor

    DOEpatents

    Yant, Howard W.; Stinebiser, Karl W.; Anzur, Gregory C.

    1977-01-01

    A nuclear reactor, particularly a liquid-metal breeder reactor, whose upper internals include outlet modules for channeling the liquid-metal coolant from selected areas of the outlet of the core vertically to the outlet plenum. The modules are composed of a highly-refractory, high corrosion-resistant alloy, for example, INCONEL-718. Each module is disposed to confine and channel generally vertically the coolant emitted from a subplurality of core-component assemblies. Each module has a grid with openings, each opening disposed to receive the coolant from an assembly of the subplurality. The grid in addition serves as a holdown for the assemblies of the corresponding subplurality preventing their excessive ejection upwardly from the core. In the region directly over the core the outlet modules are of such peripheral form that they nest forming a continuum over the core-component assemblies whose outlet coolant they confine. Each subassembly includes a chimney which confines the coolant emitted by its corresponding subassemblies to generally vertical flow between the outlet of the core and the outlet plenum. Each subplurality of assemblies whose emitted coolant is confined by an outlet module includes assemblies which emit lower-temperature coolant, for example, a control-rod assembly, or fertile assemblies, and assemblies which emit coolant of substantially higher temperature, for example, fuel-rod assemblies. The coolants of different temperatures are mixed in the chimneys reducing the effect of stripping (hot-cold temperature fluctuations) on the remainder of the upper internals which are composed typically of AISI-304 or AISI-316 stainless steel.

  20. Fuel and cladding nano-technologies based solutions for long life heat-pipe based reactors

    SciTech Connect

    Popa-Simil, L.

    2012-07-01

    A novel nuclear reactor concept, unifying the fuel pipe with fuel tube functionality has been developed. The structure is a quasi-spherical modular reactor, designed for a very long life. The reactor module unifies the fuel tube with the heat pipe and a graphite beryllium reflector. It also uses a micro-hetero-structure that allows the fission products to be removed in the heat pipe flow and deposited in a getter area in the cold zone of the heat pipe, but outside the neutron flux. The reactor operates as a breed and burn reactor - it contains the fuel pipe with a variable enrichment, starting from the hot-end of the pipe, meant to assure the initial criticality, and reactor start-up followed by area with depleted uranium or thorium that get enriched during the consumption of the first part of the enriched uranium. (authors)

  1. SPARC EBIT — a charge breeder for the HITRAP project

    NASA Astrophysics Data System (ADS)

    Sokolov, A.; Herfurth, F.; Kester, O.; Stoehlker, Th; Thorn, A.; Vorobjev, G.; Zschornack, G.

    2010-11-01

    Charge breeding of externally injected, singly-charged ions in an electron beam ion source/trap (EBIS/T) extends the range of elements from which highly-charged ions can be produced with these machines, which is important for numerous atomic and nuclear physics experiments. Existing EBIS/T charge breeders feature electron guns producing intense beams and superconducting magnets generating strong fields to achieve high efficiencies and high ion charge states. We show an alternative possibility to inject, capture, charge-breed and extract ions using a compact room-temperature EBIT based on permanent magnet technology. Singly-charged potassium and rubidium ions injected over the barrier were charge bred and extracted as bare and neon-like ions, respectively. Simulations of injection and capture of singly-charged ions in this EBIT show the challenges and help understanding the results.

  2. Curved Waveguide Based Nuclear Fission for Small, Lightweight Reactors

    NASA Technical Reports Server (NTRS)

    Coker, Robert; Putnam, Gabriel

    2012-01-01

    The focus of the presented work is on the creation of a system of grazing incidence, supermirror waveguides for the capture and reuse of fission sourced neutrons. Within research reactors, neutron guides are a well known tool for directing neutrons from the confined and hazardous central core to a more accessible testing or measurement location. Typical neutron guides have rectangular, hollow cross sections, which are crafted as thin, mirrored waveguides plated with metal (commonly nickel). Under glancing angles with incoming neutrons, these waveguides can achieve nearly lossless transport of neutrons to distant instruments. Furthermore, recent developments have created supermirror surfaces which can accommodate neutron grazing angles up to four times as steep as nickel. A completed system will form an enclosing ring or spherical resonator system to a coupled neutron source for the purpose of capturing and reusing free neutrons to sustain and/or accelerate fission. While grazing incidence mirrors are a known method of directing and safely using neutrons, no method has been disclosed for capture and reuse of neutrons or sustainment of fission using a circular waveguide structure. The presented work is in the process of fabricating a functional, highly curved, neutron supermirror using known methods of Ni-Ti layering capable of achieving incident reflection angles up to four times steeper than nickel alone. Parallel work is analytically investigating future geometries, mirror compositions, and sources for enabling sustained fission with applicability to the propulsion and energy goals of NASA and other agencies. Should research into this concept prove feasible, it would lead to development of a high energy density, low mass power source potentially capable of sustaining fission with a fraction of the standard critical mass for a given material and a broadening of feasible materials due to reduced rates of release, absorption, and non-fission for neutrons. This

  3. Characterization of stress coping style in Senegalese sole (Solea senegalensis) juveniles and breeders for aquaculture

    PubMed Central

    Fatsini, E.; Rey, S.; Chereguini, O.; Martin, I.; Rasines, I.; Duncan, N.

    2016-01-01

    The aim of this work was to characterize stress coping styles of Senegalese sole (Solea senegalensis) juveniles and breeders and to select an operational behavioural screening test (OBST) that can be used by the aquaculture industry to classify and select between behavioural phenotypes in order to improve production indicators. A total of 61 juveniles and 59 breeders were subjected to five individual behavioural tests and two grouping tests. At the end of the individual tests, all animals were blood sampled in order to measure cortisol, glucose and lactate. Three tests (restraining, new environment and confinement) characterized the stress coping style behaviour of Senegalese sole juveniles and breeders and demonstrated inter-individual consistency. Further, the tests when incorporated into a principal components analysis (PCA) (i) identified two principal axes of personality traits: ‘fearfulness-reactivity’ and ‘activity-exploration’, (ii) were representative of the physiological axis of stress coping style, and (iii) were validated by established group tests. This study proposed for the first time three individual coping style tests that reliably represented proactive and reactive personalities of Senegalese sole juveniles and breeders. In addition, the three proposed tests met some basic operational criteria (rapid testing, no special equipment and easy to apply and interpret) that could prove attractive for fish farmers to identify fish with a specific behaviour that gives advantages in the culture system and that could be used to establish selection-based breeding programmes to improve domestication and production. PMID:28018634

  4. Characterization of stress coping style in Senegalese sole (Solea senegalensis) juveniles and breeders for aquaculture.

    PubMed

    Ibarra-Zatarain, Z; Fatsini, E; Rey, S; Chereguini, O; Martin, I; Rasines, I; Alcaraz, C; Duncan, N

    2016-11-01

    The aim of this work was to characterize stress coping styles of Senegalese sole (Solea senegalensis) juveniles and breeders and to select an operational behavioural screening test (OBST) that can be used by the aquaculture industry to classify and select between behavioural phenotypes in order to improve production indicators. A total of 61 juveniles and 59 breeders were subjected to five individual behavioural tests and two grouping tests. At the end of the individual tests, all animals were blood sampled in order to measure cortisol, glucose and lactate. Three tests (restraining, new environment and confinement) characterized the stress coping style behaviour of Senegalese sole juveniles and breeders and demonstrated inter-individual consistency. Further, the tests when incorporated into a principal components analysis (PCA) (i) identified two principal axes of personality traits: 'fearfulness-reactivity' and 'activity-exploration', (ii) were representative of the physiological axis of stress coping style, and (iii) were validated by established group tests. This study proposed for the first time three individual coping style tests that reliably represented proactive and reactive personalities of Senegalese sole juveniles and breeders. In addition, the three proposed tests met some basic operational criteria (rapid testing, no special equipment and easy to apply and interpret) that could prove attractive for fish farmers to identify fish with a specific behaviour that gives advantages in the culture system and that could be used to establish selection-based breeding programmes to improve domestication and production.

  5. Multiphase CFD-based models for chemical looping combustion process: Fuel reactor modeling

    SciTech Connect

    Jung, Jonghwun; Gamwo, I.K.

    2008-04-21

    Chemical looping combustion (CLC) is a flameless two-step fuel combustion that produces a pure CO2 stream, ready for compression and sequestration. The process is composed of two interconnected fluidized bed reactors. The air reactor which is a conventional circulating fluidized bed and the fuel reactor which is a bubbling fluidized bed. The basic principle is to avoid the direct contact of air and fuel during the combustion by introducing a highly-reactive metal particle, referred to as oxygen carrier, to transport oxygen from the air to the fuel. In the process, the products from combustion are kept separated from the rest of the flue gases namely nitrogen and excess oxygen. This process eliminates the energy intensive step to separate the CO2 from nitrogen-rich flue gas that reduce the thermal efficiency. Fundamental knowledge of multiphase reactive fluid dynamic behavior of the gas–solid flow is essential for the optimization and operation of a chemical looping combustor. Our recent thorough literature review shows that multiphase CFD-based models have not been adapted to chemical looping combustion processes in the open literature. In this study, we have developed the reaction kinetics model of the fuel reactor and implemented the kinetic model into a multiphase hydrodynamic model, MFIX, developed earlier at the National Energy Technology Laboratory. Simulated fuel reactor flows revealed high weight fraction of unburned methane fuel in the flue gas along with CO2 and H2O. This behavior implies high fuel loss at the exit of the reactor and indicates the necessity to increase the residence time, say by decreasing the fuel flow rate, or to recirculate the unburned methane after condensing and removing CO2.

  6. Plasma instabilities of a charge breeder ECRIS

    NASA Astrophysics Data System (ADS)

    Tarvainen, O.; Angot, J.; Izotov, I.; Skalyga, V.; Koivisto, H.; Thuillier, T.; Kalvas, T.; Lamy, T.

    2017-10-01

    Experimental observation of plasma instabilities in a charge breeder electron cyclotron resonance ion source (CB-ECRIS) is reported. It is demonstrated that the injection of 133Cs+ or 85Rb+ ion beam into the oxygen discharge of the CB-ECRIS can trigger electron cyclotron instabilities, which restricts the parameter space available for the optimization of the charge breeding efficiency. It is concluded that the transition from a stable to unstable plasma regime is caused by gradual accumulation and ionization of Cs/Rb and simultaneous change of the discharge parameters in 10–100 ms time scale, not by a prompt interaction between the incident ion beam and the ECRIS plasma. The instabilities lead to loss of ion confinement, which results in the sputtering of the surfaces in contact with the plasma, followed by up to an order of magnitude increase of impurity currents in the extracted n+ ion beam.

  7. Monensin toxicity in turkey breeder hens.

    PubMed

    Ficken, M D; Wages, D P; Gonder, E

    1989-01-01

    High mortality in two flocks of 1900 turkey breeder hens accidentally fed 280 g monensin/ton of complete feed is described. Mortality attributed to the poisoning was 76% in flock 1 and 18% in flock 2. Clinically, turkeys were found dead, exhibited respiratory distress with wings extended laterally, had fine tremors, or showed posterior paresis and inability to rise. The most striking finding at necropsy was the almost complete absence of gross lesions. Some turkeys had severely congested lungs; however, many did not. A few birds had pale streaks within the adductor muscles of the legs. Microscopic lesions included myofiber degeneration and necrosis of skeletal and myocardial muscle. Serum phosphorus, lactate dehydrogenase, and creatine phosphokinase were markedly elevated, whereas potassium, chloride, and calcium values were lowered.

  8. Advances in boron neutron capture therapy (BNCT) at kyoto university - From reactor-based BNCT to accelerator-based BNCT

    NASA Astrophysics Data System (ADS)

    Sakurai, Yoshinori; Tanaka, Hiroki; Takata, Takushi; Fujimoto, Nozomi; Suzuki, Minoru; Masunaga, Shinichiro; Kinashi, Yuko; Kondo, Natsuko; Narabayashi, Masaru; Nakagawa, Yosuke; Watanabe, Tsubasa; Ono, Koji; Maruhashi, Akira

    2015-07-01

    At the Kyoto University Research Reactor Institute (KURRI), a clinical study of boron neutron capture therapy (BNCT) using a neutron irradiation facility installed at the research nuclear reactor has been regularly performed since February 1990. As of November 2014, 510 clinical irradiations were carried out using the reactor-based system. The world's first accelerator-based neutron irradiation system for BNCT clinical irradiation was completed at this institute in early 2009, and the clinical trial using this system was started in 2012. A shift of BCNT from special particle therapy to a general one is now in progress. To promote and support this shift, improvements to the irradiation system, as well as its preparation, and improvements in the physical engineering and the medical physics processes, such as dosimetry systems and quality assurance programs, must be considered. The recent advances in BNCT at KURRI are reported here with a focus on physical engineering and medical physics topics.

  9. A two-stage enzymatic ethanol-based biodiesel production in a packed bed reactor.

    PubMed

    Xu, Yuan; Nordblad, Mathias; Woodley, John M

    2012-12-31

    A two-stage enzymatic process for producing fatty acid ethyl ester (FAEE) in a packed bed reactor is reported. The process uses an experimental immobilized lipase (NS 88001) and Novozym 435 to catalyze transesterification (first stage) and esterification (second stage), respectively. Both stages were conducted in a simulated series of reactors by repeatedly passing the reaction mixture through a single reactor, with separation of the by-product glycerol and water between passes in the first and second stages, respectively. The second stage brought the major components of biodiesel to 'in-spec' levels according to the European biodiesel specifications for methanol-based biodiesel. The highest overall productivity achieved in the first stage was 2.52 kg FAEE(kg catalyst)⁻¹ h⁻¹ at a superficial velocity of 7.6 cm min⁻¹, close to the efficiency of a stirred tank reactor under similar conditions. The overall productivity of the proposed two-stage process was 1.56 kg FAEE(kg catalyst)⁻¹ h⁻¹. Based on this process model, the challenges of scale-up have been addressed and potential continuous process options have been proposed. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. The search for advanced remote technology in fast reactor reprocessing

    SciTech Connect

    Burch, W.D.; Herndon, J.N.; Stradley, J.G. )

    1990-01-01

    Research and development in fast reactor reprocessing has been under way [approximately] 20 yr in several countries. During the past decade, France and the United Kingdom have developed active programs in breeder reprocessing. Actual fuels from their demonstration reactors have been reprocessed in small-scale facilities. Early US work in breeder reprocessing was carried out at the Experimental Breeder Reactor II (EBR-II) facilities with the early metal fuels, and interest has renewed recently in metal fuels. A major, comprehensive program, focused on oxide fuels, has been carried out in the Consolidated Fuel Reprocessing Program (CFRP) at the Oak Ridge National Laboratory (ORNL) since 1974. The Federal Republic of Germany (FRG) and Japan have also carried out development programs in breeder reprocessing, and Japan appears committed to major demonstration of breeder reactors and their fuel cycles. While much of the effort in these programs addressed process chemistry and process hardware, a significant element of many of these programs, particularly the CFRP, has been on advancements in facility concepts and remote maintenance features. This paper focuses on the search for improved facility concepts and better maintenance systems in the CFRP, and, in turn, on how developments at ORNL have influenced the technology elsewhere.

  11. Drop-in capsule testing of plutonium-based fuels in the Advanced Test Reactor

    SciTech Connect

    Chang, G.S.; Ryskamp, J.M.; Terry, W.K.; Ambrosek, R.G.; Palmer, A.J.; Roesener, R.A.

    1996-09-01

    The most attractive way to dispose of weapons-grade plutonium (WGPu) is to use it as fuel in existing light water reactors (LWRs) in the form of mixed oxide (MOX) fuel - i.e., plutonia (PuO[sub 2]) mixed with urania (UO[sub 2]). Before U.S. reactors could be used for this purpose, their operating licenses would have to be amended. Numerous technical issues must be resolved before LWR operating licenses can be amended to allow the use of MOX fuel. The proposed weapons-grade MOX fuel is unusual, even relative to ongoing foreign experience with reactor-grade MOX power reactor fuel. Some demonstration of the in- reactor thermal, mechanical, and fission gas release behavior of the prototype fuel will most likely be required in a limited number of test reactor irradiations. The application to license operation with MOX fuel must be amply supported by experimental data. The Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory (INEL) is capable of playing a key role in the irradiation, development, and licensing of these new fuel types. The ATR is a 250- MW (thermal) LWR designed to study the effects of intense radiation on reactor fuels and materials. For 25 years, the primary role of the ATR has been to serve in experimental investigations for the development of advanced nuclear fuels. Both large- and small-volume test positions in the ATR could be used for MOX fuel irradiation. The ATR would be a nearly ideal test bed for developing data needed to support applications to license LWRs for operation with MOX fuel made from weapons-grade plutonium. Furthermore, these data can be obtained more quickly by using ATR instead of testing in a commercial LWR. Our previous work in this area has demonstrated that it is technically feasible to perform MOX fuel testing in the ATR. This report documents our analyses of sealed drop-in capsules containing plutonium-based test specimens placed in various ATR positions.

  12. Artificial photosynthesis of oxalate and oxalate-based polymer by a photovoltaic reactor

    PubMed Central

    Nong, Guangzai; Chen, Shan; Xu, Yuanjin; Huang, Lijie; Zou, Qingsong; Li, Shiqiang; Mo, Haitao; Zhu, Pingchuan; Cen, Weijian; Wang, Shuangfei

    2014-01-01

    A photovoltaic reactor was designed for artificial photosynthesis, based on the reactions involved in high energy hydrogen atoms, which were produced from water electrolysis. Water and CO2, under the conditions studied, were converted to oxalate (H2C2O4) and a polymer. This was the first time that the oxalates and oxalate-based polymer were produced from the artificial photosynthesis process. PMID:24389750

  13. On the conversion of infrared radiation from fission reactor-based photon engine into parallel beam

    NASA Astrophysics Data System (ADS)

    Gulevich, Andrey V.; Levchenko, Vladislav E.; Loginov, Nicolay I.; Kukharchuk, Oleg F.; Evtodiev, Denis A.; Zrodnikov, Anatoly V.

    2002-01-01

    The efficiency of infrared radiation conversion from photon engine based on fission reactor into parallel photon beam is discussed. Two different ways of doing that are considered. One of them is to use the parabolic mirror to convert of infrared radiation into parallel photon beam. The another one is based on the use of special lattice consisting of numerous light conductors. The experimental facility and some results are described. .

  14. Artificial photosynthesis of oxalate and oxalate-based polymer by a photovoltaic reactor.

    PubMed

    Nong, Guangzai; Chen, Shan; Xu, Yuanjin; Huang, Lijie; Zou, Qingsong; Li, Shiqiang; Mo, Haitao; Zhu, Pingchuan; Cen, Weijian; Wang, Shuangfei

    2014-01-06

    A photovoltaic reactor was designed for artificial photosynthesis, based on the reactions involved in high energy hydrogen atoms, which were produced from water electrolysis. Water and CO2, under the conditions studied, were converted to oxalate (H2C2O4) and a polymer. This was the first time that the oxalates and oxalate-based polymer were produced from the artificial photosynthesis process.

  15. Nuclear Thermal Propulsion engine based on Particle Bed Reactor using light water steam as a propellant

    SciTech Connect

    Powell, J.R.; Ludewig, H.; Maise, G.

    1993-06-01

    In this paper the possibility of configuring a water cooled Nuclear Thermal Propulsion (NTP) rocket, based on a Particle Bed Reactor (PBR) is investigated. This rocket will be used to operate on water obtained from near earth objects. The conclusions reached in this paper indicate that it is possible to configure a PBR based NTP rocket to operate on water and meet the mission requirements envisioned for it. No insurmountable technology issues have been identified.

  16. Artificial photosynthesis of oxalate and oxalate-based polymer by a photovoltaic reactor

    NASA Astrophysics Data System (ADS)

    Nong, Guangzai; Chen, Shan; Xu, Yuanjin; Huang, Lijie; Zou, Qingsong; Li, Shiqiang; Mo, Haitao; Zhu, Pingchuan; Cen, Weijian; Wang, Shuangfei

    2014-01-01

    A photovoltaic reactor was designed for artificial photosynthesis, based on the reactions involved in high energy hydrogen atoms, which were produced from water electrolysis. Water and CO2, under the conditions studied, were converted to oxalate (H2C2O4) and a polymer. This was the first time that the oxalates and oxalate-based polymer were produced from the artificial photosynthesis process.

  17. COMMODITY SCALE SYNTHESIS OF 1-METHYLIMIDAZOLE BASED IONIC LIQUIDS USING A SPINNING TUBE-IN-TUBE REACTOR

    EPA Science Inventory

    The continuous large-scale preparation of several 1-methylimidazole based ionic liquids was carried out using a Spinning Tube-in-Tube (STT) reactor (manufactured by Kreido Laboratories). This reactor, which embodies and facilitates the use of Green Chemistry principles and Proce...

  18. COMMODITY SCALE SYNTHESIS OF 1-METHYLIMIDAZOLE BASED IONIC LIQUIDS USING A SPINNING TUBE-IN-TUBE REACTOR

    EPA Science Inventory

    The continuous large-scale preparation of several 1-methylimidazole based ionic liquids was carried out using a Spinning Tube-in-Tube (STT) reactor (manufactured by Kreido Laboratories). This reactor, which embodies and facilitates the use of Green Chemistry principles and Proce...

  19. PR-EDB: Power Reactor Embrittlement Data Base, Version 2. Revision 2, Program description

    SciTech Connect

    Stallmann, F.W.; Wang, J.A.; Kam, F.B.K.; Taylor, B.J.

    1994-01-01

    Investigations of regulatory issues such as vessel integrity over plant life, vessel failure, and sufficiency of current codes Standard Review Plans (SRP`s) and Guides for license renewal can be greatly expedited by the use of a well-designed computerized data base. Also, such a data base is essential for the validation of embrittlement prediction models by researchers. The Power Reactor Embrittlement Data Base (PR-EDB) is such a comprehensive collection of data for US commercial nuclear reactors. The current version of the PR-EDB contains the Charpy test data that were irradiated in 252 capsules of 96 reactors and consists of 207 data points for heat-affected-zone (HAZ) materials (98 different HAZ), 227 data points for weld materials (105 different welds), 524 data points for base materials (136 different base materials), including 297 plate data points (85 different plates), 119 forging data points (31) different forging), and 108 correlation monitor materials data points (3 different plates). The data files are given in dBASE format and can be accessed with any computer using the DOS operating system. ``User-friendly`` utility programs are used to retrieve and select specific data, manipulate data, display data to the screen or printer, and to fit and plot Charpy impact data. The results of several studies investigated are presented in Appendix D.

  20. An analysis of activation and the impact of tritium breeding media and structural materials for a commercial tokamak fusion reactor design

    SciTech Connect

    Jung, J.

    1983-11-01

    Activation analysis has been conducted for several primary fusion blanket materials based on a model of a commercial tokamak fusion reactor design, STARFIRE. The blanket materials studied include two solid tritium breeders, viz., Li/sub 2/O and ..cap alpha..-LiAlO/sub 2/, and four candidate structural materials, viz., PCA stainless steel, V15Cr5Ti, Ti6Al4V, and Al-6063 alloys. The importance of breeder material activation is identified in terms of its impurity contents such as potassium, iron, nickel, molybdenum, and zirconium trace elements. The breeder activation is also discussed with regard to its potential for recycling and its impact on the lithium resource requirements. The structural material activation is analyzed based on two measures, volumetric radioactivity concentration and contact biological dose due to decay gamma emission. Using the radioactivity concentration measure, it is revealed that a substantial advantage exists from a viewpoint of radwaste management, which is inherent in fusion reactor designs based on potential low-activation alloys such as V15Cr5Ti, Ti6Al4V, and Al-6063. On the other hand, from the dose standpoint, the V15Cr5Ti alloy is found to be the only alloy for which one could realize a significant dose reduction (below 2.5 mrem/h) within about100 yr after shutdown, possibly by some extrapolation on alloy purification techniques.

  1. Physics-based multiscale coupling for full core nuclear reactor simulation

    SciTech Connect

    Gaston, Derek R.; Permann, Cody J.; Peterson, John W.; Slaughter, Andrew E.; Andrš, David; Wang, Yaqi; Short, Michael P.; Perez, Danielle M.; Tonks, Michael R.; Ortensi, Javier; Zou, Ling; Martineau, Richard C.

    2015-10-01

    Numerical simulation of nuclear reactors is a key technology in the quest for improvements in efficiency, safety, and reliability of both existing and future reactor designs. Historically, simulation of an entire reactor was accomplished by linking together multiple existing codes that each simulated a subset of the relevant multiphysics phenomena. Recent advances in the MOOSE (Multiphysics Object Oriented Simulation Environment) framework have enabled a new approach: multiple domain-specific applications, all built on the same software framework, are efficiently linked to create a cohesive application. This is accomplished with a flexible coupling capability that allows for a variety of different data exchanges to occur simultaneously on high performance parallel computational hardware. Examples based on the KAIST-3A benchmark core, as well as a simplified Westinghouse AP-1000 configuration, demonstrate the power of this new framework for tackling—in a coupled, multiscale manner—crucial reactor phenomena such as CRUD-induced power shift and fuel shuffle. 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-SA license

  2. Advanced fuel assembly characterization capabilities based on gamma tomography at the Halden boiling water reactor

    SciTech Connect

    Holcombe, S.; Eitrheim, K.; Svaerd, S. J.; Hallstadius, L.; Willman, C.

    2012-07-01

    Characterization of individual fuel rods using gamma spectroscopy is a standard part of the Post Irradiation Examinations performed on experimental fuel at the Halden Boiling Water Reactor. However, due to handling and radiological safety concerns, these measurements are presently carried out only at the end of life of the fuel, and not earlier than several days or weeks after its removal from the reactor core. In order to enhance the fuel characterization capabilities at the Halden facilities, a gamma tomography measurement system is now being constructed, capable of characterizing fuel assemblies on a rod-by-rod basis in a more timely and efficient manner. Gamma tomography for measuring nuclear fuel is based on gamma spectroscopy measurements and tomographic reconstruction techniques. The technique, previously demonstrated on irradiated commercial fuel assemblies, is capable of determining rod-by-rod information without the need to dismantle the fuel. The new gamma tomography system will be stationed close to the Halden reactor in order to limit the need for fuel transport, and it will significantly reduce the time required to perform fuel characterization measurements. Furthermore, it will allow rod-by-rod fuel characterization to occur between irradiation cycles, thus allowing for measurement of experimental fuel repeatedly during its irradiation lifetime. The development of the gamma tomography measurement system is a joint project between the Inst. for Energy Technology - OECD Halden Reactor Project, Westinghouse (Sweden), and Uppsala Univ.. (authors)

  3. Physics-based multiscale coupling for full core nuclear reactor simulation

    DOE PAGES

    Gaston, Derek R.; Permann, Cody J.; Peterson, John W.; ...

    2015-10-01

    Numerical simulation of nuclear reactors is a key technology in the quest for improvements in efficiency, safety, and reliability of both existing and future reactor designs. Historically, simulation of an entire reactor was accomplished by linking together multiple existing codes that each simulated a subset of the relevant multiphysics phenomena. Recent advances in the MOOSE (Multiphysics Object Oriented Simulation Environment) framework have enabled a new approach: multiple domain-specific applications, all built on the same software framework, are efficiently linked to create a cohesive application. This is accomplished with a flexible coupling capability that allows for a variety of different datamore » exchanges to occur simultaneously on high performance parallel computational hardware. Examples based on the KAIST-3A benchmark core, as well as a simplified Westinghouse AP-1000 configuration, demonstrate the power of this new framework for tackling—in a coupled, multiscale manner—crucial reactor phenomena such as CRUD-induced power shift and fuel shuffle. 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-SA license« less

  4. Oxygen transport membrane reactor based method and system for generating electric power

    DOEpatents

    Kelly, Sean M.; Chakravarti, Shrikar; Li, Juan

    2017-02-07

    A carbon capture enabled system and method for generating electric power and/or fuel from methane containing sources using oxygen transport membranes by first converting the methane containing feed gas into a high pressure synthesis gas. Then, in one configuration the synthesis gas is combusted in oxy-combustion mode in oxygen transport membranes based boiler reactor operating at a pressure at least twice that of ambient pressure and the heat generated heats steam in thermally coupled steam generation tubes within the boiler reactor; the steam is expanded in steam turbine to generate power; and the carbon dioxide rich effluent leaving the boiler reactor is processed to isolate carbon. In another configuration the synthesis gas is further treated in a gas conditioning system configured for carbon capture in a pre-combustion mode using water gas shift reactors and acid gas removal units to produce hydrogen or hydrogen-rich fuel gas that fuels an integrated gas turbine and steam turbine system to generate power. The disclosed method and system can also be adapted to integrate with coal gasification systems to produce power from both coal and methane containing sources with greater than 90% carbon isolation.

  5. R and D of On-line Reprocessing Technology for Molten-Salt Reactor Systems

    SciTech Connect

    Uhlir, Jan; Tulackova, Radka; Chuchvalcova Bimova, Karolina

    2006-07-01

    The Molten Salt Reactor (MSR) represents one of promising future nuclear reactor concept included in the Generation IV reactors family. The reactor can be operated as the thorium breeder or as the actinide transmuter. However, the future deployment of Molten-Salt Reactors will be significantly dependent on the successful mastering of advanced reprocessing technologies dedicated to their fuel cycle. Here the on-line reprocessing technology connected with the fuel circuit of MSR is of special importance because the reactor cannot be operated for a long run without the fuel salt clean-up. Generally, main MSR reprocessing technologies are pyrochemical, majority of them are fluoride technologies. The proposed flow-sheets of MSR on-line reprocessing are based on a combination of molten-salt / liquid metal extraction and electro-separation processes, which can be added to the gas extraction process already verified during the MSRE project in ORNL. The crucial separation method proposed for partitioning of actinides from fission products is based on successive Anodic dissolution and Cathodic deposition processes in molten fluoride media. (authors)

  6. A new pressure swing adsorption (PSA) process for recovery of tritium from the ITER solid ceramic breeder helium purge gas

    SciTech Connect

    Sood, S.K.; Fong, C.; Kalyanam, K.M. ); Kveton, O.K. ); Busigin, A. ); Ruthven, D.M. )

    1992-03-01

    This paper reports on Pressure Swing Adsorption (PSA), a well established industrial process for separating and purifying industrial gases, it is proposed for recovery of hydrogen isotopes from the ITER (International Thermonuclear Experimental Reactor) solid breeder He purge stream. The PSA process has an inherent advantage over a recently proposed Temperature Swing Adsorption (TSA) design because it allows much faster cycling (10 vs. 480 min.) and therefore has significantly (48 times) lower tritium inventory. The maximum tritium inventory for a 10 minute PSA cycle is less than 0.5 g of tritium, thus meeting an important safety goal of ITER. The PSA process is based on using molecular sieve 5A at 77 K, with pressure cycling from 1-2 MPa during the adsorption cycle, to a rough vacuum during regeneration. Experiments have been carried out to confirm the H{sub 2}/He adsorption isotherms on molecular sieve 5A, and to develop new data points at low H{sub 2} partial pressures and a temperature of 77 K. A dynamic simulation model has been developed to facilitate system design and optimization.

  7. Seismic design technology for Breeder Reactor structures. Volume 3: special topics in reactor structures

    SciTech Connect

    Reddy, D.P.

    1983-04-01

    This volume is divided into six chapters: analysis techniques, equivalent damping values, probabilistic design factors, design verifications, equivalent response cycles for fatigue analysis, and seismic isolation. (JDB)

  8. An assessment of the base blanket for ITER

    SciTech Connect

    Raffray, A.R.; Abdou, M.A.; Ying, A.

    1991-12-31

    Ideally, the ITER base blanket would provide the necessary tritium for the reactor to be self-sufficient during operation, while having minimal impact on the overall reactor cost, reliability and safety. A solid breeder blanket has been developed in CDA phase in an attempt to achieve such objectives. The reference solid breeder base blanket configurations at the end of the CDA phase has many attractive features such as a tritium breeding ratio (TBR) of 0.8--0.9 and a reasonably low tritium inventory. However, some concerns regarding the risk, cost and benefit of the base blanket have been raised. These include uncertainties associated with the solid breeder thermal control and the potentially high cost of the amount of Be used to achieve high TBR and to provide the necessary thermal barrier between the high temperature solid breeder and low temperature coolant. This work addresses these concerns. The basis for the selection of a breeding blanket is first discussed in light of the incremental risk, cost and benefits relative to a non-breeding blanket. Key issues associated with the CDA breeding blanket configurations are then analyzed. Finally, alternative schemes that could enhance the attractiveness and flexibility of a breeding blanket are explored.

  9. An assessment of the base blanket for ITER

    SciTech Connect

    Raffray, A.R.; Abdou, M.A.; Ying, A.

    1991-01-01

    Ideally, the ITER base blanket would provide the necessary tritium for the reactor to be self-sufficient during operation, while having minimal impact on the overall reactor cost, reliability and safety. A solid breeder blanket has been developed in CDA phase in an attempt to achieve such objectives. The reference solid breeder base blanket configurations at the end of the CDA phase has many attractive features such as a tritium breeding ratio (TBR) of 0.8--0.9 and a reasonably low tritium inventory. However, some concerns regarding the risk, cost and benefit of the base blanket have been raised. These include uncertainties associated with the solid breeder thermal control and the potentially high cost of the amount of Be used to achieve high TBR and to provide the necessary thermal barrier between the high temperature solid breeder and low temperature coolant. This work addresses these concerns. The basis for the selection of a breeding blanket is first discussed in light of the incremental risk, cost and benefits relative to a non-breeding blanket. Key issues associated with the CDA breeding blanket configurations are then analyzed. Finally, alternative schemes that could enhance the attractiveness and flexibility of a breeding blanket are explored.

  10. Investigation of bi-enzymatic reactor based on hybrid monolith with nanoparticles embedded and its proteolytic characteristics.

    PubMed

    Shangguan, Lulu; Zhang, Lingyi; Xiong, Zhichao; Ren, Jun; Zhang, Runsheng; Gao, Fangyuan; Zhang, Weibing

    2015-04-03

    The bottom-up strategy of proteomic profiling study based on mass spectrometer (MS) has drawn high attention. However, conventional solution-based digestion could not satisfy the demands of highly efficient and complete high throughput proteolysis of complex samples. We proposed a novel bi-enzymatic reactor by immobilizing two different enzymes (trypsin/chymotrypsin) onto a mixed support of hybrid organic-inorganic monolith with SBA-15 nanoparticles embedded. Typsin and chymotrypsin were crossly immobilized onto the mixed support by covalent bonding onto the monolith with glutaraldehyde as bridge reagent and chelation via copper ion onto the nanoparticles, respectively. Compared with single enzymatic reactors, the bi-enzymatic reactor improved the overall functional analysis of membrane proteins of rat liver by doubling the number of identified peptides (from 1184/1010 with trypsin/chymotrypsin enzymatic reactors to 2891 with bi-enzymatic reactor), which led to more proteins identified with deep coverage (from 452/336 to 620); the efficiency of the bi-enzymatic reactor is also better than that of solution-based tandem digestion, greatly shorting the digestion time from 24h to 50s. Moreover, more transmembrane proteins were identified by bi-enzymatic reactor (106) compared with solution-based tandem digestion (95) with the same two enzymes and enzymatic reactors with single enzyme immobilized (75 with trypsin and 66 with chymotrypsin). The proteolytic characteristics of the bi-enzymatic reactors were evaluated by applying them to digestion of rat liver proteins. The reactors showed good digestion capability for proteins with different hydrophobicity and molecular weight.

  11. Catalytic pyrolysis of wood biomass in an auger reactor using calcium-based catalysts.

    PubMed

    Veses, A; Aznar, M; Martínez, I; Martínez, J D; López, J M; Navarro, M V; Callén, M S; Murillo, R; García, T

    2014-06-01

    Wood catalytic pyrolysis using calcium-based materials was studied in an auger reactor at 450°C. Two different catalysts, CaO and CaO·MgO were evaluated and upgraded bio-oils were obtained in both cases. Whilst acidity and oxygen content remarkable decrease, both pH and calorific value increase with respect to the non-catalytic test. Upgrading process was linked to the fact that calcium-based materials could not only fix the CO2-like compounds but also promoted the dehydration reactions. In addition, process simulation demonstrated that the addition of these catalysts, especially CaO, could favour the energetic integration since a lowest circulation of heat carrier between combustor and auger reactor should be needed. An energy self-sustained system was obtained where thermal energy required for biomass drying and for pyrolysis reaction was supplied by non-condensable gas and char combustion, respectively.

  12. A modular gas-cooled cermet reactor system for planetary base power

    SciTech Connect

    Jahshan, S.N.; Borkowski, J.A. )

    1993-01-15

    Fission nuclear power is foreseen as the source for electricity in planetary colonization and exploration. A six module gas-cooled, cermet-fueled reactor is proposed that can meet the design objectives. The highly enriched core is compact and can operate at high temperature for a long life. The helium coolant powers six modular Brayton cycles that compare favorably with the SP-100-based Brayton cycle.

  13. Tritium permeation and recovery for the helium-cooled molten salt fusion breeder

    SciTech Connect

    Sherwood, A.E.

    1984-09-01

    Design concepts are presented to control tritium permeation from a molten salt/helium fusion breeder reactor. This study assumes tritium to be a gas dissolved in molten salt, with TF formation suppressed. Tritium permeates readily through the hot steel tubes of the reactor and steam generator and will leak into the steam system at the rate of about one gram per day in the absence of special permeation barriers, assuming that 1% of the helium coolant flow rate is processed for tritium recovery at 90% efficiency per pass. The proposed permeation barrier for the reactor tubes is a 10 ..mu..m layer of tungsten which, in principle, will reduce tritium blanket permeation by a factor of about 300 below the bare-steel rate. A research and development effort is needed to prove feasibility or to develop alternative barriers. A 1 mm aluminum sleeve is proposed to suppress permeation through the steam generator tubes. This gives a calculated reduction factor of more than 500 relative to bare steel, including a factor of 30 due to an assumed oxide layer. The permeation equations are developed in detail for a multi-layer tube wall including a frozen salt layer and with two fluid boundary-layer resistances. Conditions are discussed for which Sievert's or Henry's Law materials become flux limiters. An analytical model is developed to establish the tritium split between wall permeation and reactor-tube flow.

  14. Global radioxenon emission inventory based on nuclear power reactor reports.

    PubMed

    Kalinowski, Martin B; Tuma, Matthias P

    2009-01-01

    Atmospheric radioactivity is monitored for the verification of the Comprehensive Nuclear-Test-Ban Treaty, with xenon isotopes 131mXe, 133Xe, 133mXe and 135Xe serving as important indicators of nuclear explosions. The treaty-relevant interpretation of atmospheric concentrations of radioxenon is enhanced by quantifying radioxenon emissions released from civilian facilities. This paper presents the first global radioxenon emission inventory for nuclear power plants, based on North American and European emission reports for the years 1995-2005. Estimations were made for all power plant sites for which emission data were unavailable. According to this inventory, a total of 1.3PBq of radioxenon isotopes are released by nuclear power plants as continuous or pulsed emissions in a generic year.

  15. Model-based evaluation of ferrous iron oxidation by acidophilic bacteria in chemostat and biofilm airlift reactors.

    PubMed

    Ebrahimi, Sirous; Faraghi, Neda; Hosseini, Maryam

    2015-10-01

    This article presents a model-based evaluation of ferrous iron oxidation in chemostat and biofilm airlift reactors inoculated with a mixed culture of Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans bacteria. The competition between the two types of bacteria in the chemostat and in the biofilm airlift reactors together with the distribution of both bacteria along the biofilm thickness at different time sections has been studied. The bacterial distribution profiles along the biofilm in the airlift reactor at different time scales show that in the beginning A. ferrooxidans bacteria are dominant, but when the reactor operates for a long time the desirable L. ferrooxidans species outcompete A. ferrooxidans as a result of the low Fe(2+) and high Fe(3+) concentrations. The results obtained from the simulation were compared with the experimental data of continuously operated internal loop airlift biofilm reactor. The model results are in good agreement with the experimental results.

  16. Data bases for rapid response to power reactor problems

    SciTech Connect

    Maskewitz, B.F.

    1980-01-01

    The urgency of the TMI-2 incident demanded prompt answers to an imperious situation. In responding to these challenging circumstances, both government and industry recognized deficiencies in both availability of essential retrievable data and calculational capabilities designed to respond immediately to actual abnormal events. Each responded by initiating new programs to provide a remedy for the deficiencies and to generally improve all safety measures in the nuclear power industry. Many data bases and information centers offer generic data and other technology resources which are generally useful in support of nuclear safety programs. A few centers can offer rapid access to calculational methods and associated data and more will make an effort to do so. As a beneficial spin-off from the lessons learned from TMI-2, more technical effort and financial resources will be devoted to the prevention of accidents, and to improvement of safety measures in the immediate future and for long term R and D programs by both government and the nuclear power industry.

  17. Systems design of direct-cycle supercritical-water-cooled fast reactors

    SciTech Connect

    Oka, Yoshiaki; Koshizuka, Seiichi; Jevremovic, Tatjana; Okano, Yashushi

    1995-01-01

    The system design of a direct-cycle supercritical-water-cooled fast reactor is presented. The supercritical water does not exhibit a change of phase. the recirculation system, steam separator, and dryer of a boiling water reactor (BWR) are unnecessary. Roughly speaking, the reactor pressure vessel and control rods are similar to those of a pressurized water reactor, the containment and emergency core cooling system are similar to a BWR, and the balance of plant is similar to a supercritical-pressure fossil-fired power plant (FPP). the electric power of the fast converter is 1,508 MW(electric). The number of coolant loops is only two because of the high coolant enthalpy. Containment volume is much reduced. The thermal efficiency is improved 24% over a BWR. The coolant void reactivity is negative by placing thin zirconium-hydride layers between seeds and blankets. The power costs would be much reduced compared with those of a light water reactor (LWR) and a liquid-metal fast breeder reactor. The concept is based on the huge amount of experience with the water coolant technology of LWRs and FPPs. The oxidation of stainless steel cladding is avoided by adopting a much lower coolant temperature than that of the FPP.

  18. Evaluation of micro-homogeneity in plutonium based nuclear reactor fuel pellets by alpha-autoradiography technique

    NASA Astrophysics Data System (ADS)

    Baghra, Chetan; Sathe, D. B.; Sharma, Jitender; Walinjkar, Nilima; Behere, P. G.; Afzal, Mohd; Kumar, Arun

    2015-12-01

    Alpha-autoradiography is a fast and non-destructive technique which is used at Advanced Fuel Fabrication Facility (India) to evaluate micro-homogeneity of plutonium in uranium and plutonium mixed oxide (U-Pu)O2 fuel pellets fabricated for both thermal and fast breeder reactors. In this study, various theoretical calculations to understand effect of alpha autoradiography process parameters and limiting conditions for measuring micro-homogeneity of plutonium in the pellets having different concentrations of plutonium were reported. Experiments were carried out to establish the procedure to evaluate micro-homogeneity of plutonium in (U-x%Pu)O2 pellets where x varies from 0.4 to 44% and to measure the size of agglomerates, if any, present in the pellet. An attempt had been made to measure plutonium content in the agglomerate using alpha-autoradiography. This study can also be useful for carrying out alpha-autoradiography of spent fuel pellets during post-irradiation examination.

  19. A Microwave Thermostatic Reactor for Processing Liquid Materials Based on a Heat-Exchanger.

    PubMed

    Zhou, Yongqiang; Zhang, Chun; Xie, Tian; Hong, Tao; Zhu, Huacheng; Yang, Yang; Liu, Changjun; Huang, Kama

    2017-10-08

    Microwaves have been widely used in the treatment of different materials. However, the existing adjustable power thermostatic reactors cannot be used to analyze materials characteristics under microwave effects. In this paper, a microwave thermostatic chemical reactor for processing liquid materials is proposed, by controlling the velocity of coolant based on PLC (programmable logic controller) in different liquid under different constant electric field intensity. A nonpolar coolant (Polydimethylsiloxane), which is completely microwave transparent, is employed to cool the liquid materials. Experiments are performed to measure the liquid temperature using optical fibers, the results show that the precision of temperature control is at the range of ±0.5 °C. Compared with the adjustable power thermostatic control system, the effect of electric field changes on material properties are avoided and it also can be used to detect the properties of liquid materials and special microwave effects.

  20. A modular diagnosis system based on fuzzy logic for UASB reactors treating sewage.

    PubMed

    Borges, R M; Mattedi, A; Munaro, C J; Franci Gonçalves, R

    A modular diagnosis system (MDS), based on the framework of fuzzy logic, is proposed for upflow anaerobic sludge blanket (UASB) reactors treating sewage. In module 1, turbidity and rainfall information are used to estimate the influent organic content. In module 2, a dynamic fuzzy model is used to estimate the current biogas production from on-line measured variables, such as daily average temperature and the previous biogas flow rate, as well as the organic load. Finally, in module 3, all the information above and the residual value between the measured and estimated biogas production are used to provide diagnostic information about the operation status of the plant. The MDS was validated through its application to two pilot UASB reactors and the results showed that the tool can provide useful diagnoses to avoid plant failures.

  1. A fuzzy-logic-based controller for methane production in anaerobic fixed-film reactors.

    PubMed

    Robles, A; Latrille, E; Ruano, M V; Steyer, J P

    2017-01-01

    The main objective of this work was to develop a controller for biogas production in continuous anaerobic fixed-bed reactors, which used effluent total volatile fatty acids (VFA) concentration as control input in order to prevent process acidification at closed loop. To this aim, a fuzzy-logic-based control system was developed, tuned and validated in an anaerobic fixed-bed reactor at pilot scale that treated industrial winery wastewater. The proposed controller varied the flow rate of wastewater entering the system as a function of the gaseous outflow rate of methane and VFA concentration. Simulation results show that the proposed controller is capable to achieve great process stability even when operating at high VFA concentrations. Pilot results showed the potential of this control approach to maintain the process working properly under similar conditions to the ones expected at full-scale plants.

  2. Test of a prototype neutron spectrometer based on diamond detectors in a fast reactor

    SciTech Connect

    Osipenko, M.; Ripani, M.; Ricco, G.; Caiffi, B.; Pompili, F.; Pillon, M.; Angelone, M.; Verona-Rinati, G.; Cardarelli, R.; Argiro, S.

    2015-07-01

    A prototype of neutron spectrometer based on diamond detectors has been developed. This prototype consists of a {sup 6}Li neutron converter sandwiched between two CVD diamond crystals. The radiation hardness of the diamond crystals makes it suitable for applications in low power research reactors, while a low sensitivity to gamma rays and low leakage current of the detector permit to reach good energy resolution. A fast coincidence between two crystals is used to reject background. The detector was read out using two different electronic chains connected to it by a few meters of cable. The first chain was based on conventional charge-sensitive amplifiers, the other used a custom fast charge amplifier developed for this purpose. The prototype has been tested at various neutron sources and showed its practicability. In particular, the detector was calibrated in a TRIGA thermal reactor (LENA laboratory, University of Pavia) with neutron fluxes of 10{sup 8} n/cm{sup 2}s and at the 3 MeV D-D monochromatic neutron source named FNG (ENEA, Rome) with neutron fluxes of 10{sup 6} n/cm{sup 2}s. The neutron spectrum measurement was performed at the TAPIRO fast research reactor (ENEA, Casaccia) with fluxes of 10{sup 9} n/cm{sup 2}s. The obtained spectra were compared to Monte Carlo simulations, modeling detector response with MCNP and Geant4. (authors)

  3. Influences of iron and calcium carbonate on wastewater treatment performances of algae based reactors.

    PubMed

    Zhao, Zhimiao; Song, Xinshan; Wang, Wei; Xiao, Yanping; Gong, Zhijie; Wang, Yuhui; Zhao, Yufeng; Chen, Yu; Mei, Mengyuan

    2016-09-01

    The influences of iron and calcium carbonate (CaCO3) addition in wastewater treatments reactors performance were investigated. Adding different concentrations of Fe(3+) (5, 10, 30 and 50mmol/m(3)), iron and CaCO3 powder led to changes in algal characteristics and physico-chemical and microbiological properties. According to the investigation results, nutrient removal efficiency in algae based reactors was obviously increased by the addition of 10mmol/m(3) Fe(3+), iron (5mmol/m(3)) and CaCO3 powder (0.2gm(-3)) and the removal efficiencies of BOD5, TN, and TP in Stage 2 were respectively increased by 28%, 8.9%, and 22%. The improvements in physico-chemical performances were verified by microbial community tests (bacteria quantity, activity and community measured in most probable number, extracellular enzymes activity, and Biolog Eco Plates). Microbial variations indicated the coexistence of Fe ions and carbonate-bicarbonate, which triggered the synergistic effect of physico-chemical action and microbial factors in algae based reactors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. [An enzyme reactor based on aptamer modified microfluidic chip for protein analysis].

    PubMed

    Xiao, Peng; Li, Dalei; Man, Yan; Geng, Lina; Lü, Xuefei; Deng, Yulin

    2012-11-01

    As a kind of recognition molecule, aptamer has been studied and applied widely in numerous science fields in recent years. Immobilized enzymatic reactor has drawn much attention because of its striking advantages, such as high digestion efficiency and ease in coupling with the separation and detection systems. In this study, a novel microfluidic enzymatic chip, which immobilized trypsin based on aptamer, was prepared and proposed. An online analysis platform, which consisted of an aptamer-based chip and high performance liquid chromatography tandem mass spectrometry, was established by using a 6-port valve and applied to protein analysis. The enzymatic capacity and stability performance of chip reactor were characterized by using mixed protein sample, which consisted of bovine serum albumin (BSA), myoglobin (Mb) and cytochrome c (Cyt. c). The sample digestion time of the chip reactor was about 5.76 s while 1 microL/min of flow rate was adopted; and moreover, 5 ng of Mb was identified successfully with the sequence coverage of 37%. Furthermore, the sequence coverages and the relative standard deviations were 44.3% and 6.5% for BSA, 65.0% and 2.7% for Mb, 62.0% and 5.6% for Cyt. c respectively when 500 ng digest of mixed proteins were analyzed in three runs. According to experimental results, the online analysis platform possesses the ability of high sensitivity and good stability, which can provide a promising tool for rapid and high-throughput proteomics study in the near future.

  5. Hybrid reactor based on combined cavitation and ozonation: from concept to practical reality.

    PubMed

    Gogate, P R; Mededovic-Thagard, S; McGuire, D; Chapas, G; Blackmon, J; Cathey, R

    2014-03-01

    The present work gives an in depth discussion related to the development of a hybrid advanced oxidation reactor, which can be effectively used for the treatment of various types of water. The reactor is based on the principle of intensifying degradation/disinfection using a combination of hydrodynamic cavitation, acoustic cavitation, ozone injection and electrochemical oxidation/precipitation. Theoretical studies have been presented to highlight the uniform distribution of the cavitational activity and enhanced generation of hydroxyl radicals in the cavitation zone, as well as higher turbulence in the main reactor zone. The combination of these different oxidation technologies have been shown to result in enhanced water treatment ability, which can be attributed to the enhanced generation of hydroxyl radicals, enhanced contact of ozone and contaminants, and the elimination of mass transfer resistances during electrochemical oxidation/precipitation. Compared to the use of individual approaches, the hybrid reactor is expected to intensify the treatment process by 5-20 times, depending on the application in question, which can be confirmed based on the literature illustrations. Also, the use of Ozonix® has been successfully proven while processing recycled fluids at commercial sites on over 750 oil and natural gas wells during hydraulic operations around the United States. The superiority of the hybrid process over conventional chemical treatments in terms of bacteria and scale reduction as well as increased water flowability and better chemical compatibility, which is a key requirement for oil and gas applications, has been established. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. The hybrid reactor project based on the straight field line mirror concept

    NASA Astrophysics Data System (ADS)

    Ågren, O.; Noack, K.; Moiseenko, V. E.; Hagnestâl, A.; Källne, J.; Anglart, H.

    2012-06-01

    The straight field line mirror (SFLM) concept is aiming towards a steady-state compact fusion neutron source. Besides the possibility for steady state operation for a year or more, the geometry is chosen to avoid high loads on materials and plasma facing components. A comparatively small fusion hybrid device with "semi-poor" plasma confinement (with a low fusion Q factor) may be developed for industrial transmutation and energy production from spent nuclear fuel. This opportunity arises from a large fission to fusion energy multiplication ratio, Qr = Pfis/Pfus>>1. The upper bound on Qr is primarily determined by geometry and reactor safety. For the SFLM, the upper bound is Qr≈150, corresponding to a neutron multiplicity of keff=0.97. Power production in a mirror hybrid is predicted for a substantially lower electron temperature than the requirement Te≈10 keV for a fusion reactor. Power production in the SFLM seems possible with Q≈0.15, which is 10 times lower than typically anticipated for hybrids (and 100 times smaller than required for a fusion reactor). This relaxes plasma confinement demands, and broadens the range for use of plasmas with supra-thermal ions in hybrid reactors. The SFLM concept is based on a mirror machine stabilized by qudrupolar magnetic fields and large expander tanks beyond the confinement region. The purpose of the expander tanks is to distribute axial plasma loss flow over a sufficiently large area so that the receiving plates can withstand the heat. Plasma stability is not relying on a plasma flow into the expander regions. With a suppressed plasma flow into the expander tanks, a possibility arise for higher electron temperature. A brief presentation will be given on basic theory for the SFLM with plasma stability and electron temperature issues, RF heating computations with sloshing ion formation, neutron transport computations with reactor safety margins and material load estimates, magnetic coil designs as well as a discussion on

  7. Non-Proliferative, Thorium-Based, Core and Fuel Cycle for Pressurized Water Reactors

    SciTech Connect

    Todosow M.; Todosow M.; Raitses, G. Galperin, A.

    2009-07-12

    Two of the major barriers to the expansion of worldwide adoption of nuclear power are related to proliferation potential of the nuclear fuel cycle and issues associated with the final disposal of spent fuel. The Radkowsky Thorium Fuel (RTF) concept proposed by Professor A. Radkowsky offers a partial solution to these problems. The main idea of the concept is the utilization of the seed-blanket unit (SBU) fuel assembly geometry which is a direct replacement for a 'conventional' assembly in either a Russian pressurized water reactor (VVER-1000) or a Western pressurized water reactor (PWR). The seed-blanket fuel assembly consists of a fissile (U) zone, known as seed, and a fertile (Th) zone known as blanket. The separation of fissile and fertile allows separate fuel management schemes for the thorium part of the fuel (a subcritical 'blanket') and the 'driving' part of the core (a supercritical 'seed'). The design objective for the blanket is an efficient generation and in-situ fissioning of the U233 isotope, while the design objective for the seed is to supply neutrons to the blanket in a most economic way, i.e. with minimal investment of natural uranium. The introduction of thorium as a fertile component in the nuclear fuel cycle significantly reduces the quantity of plutonium production and modifies its isotopic composition, reducing the overall proliferation potential of the fuel cycle. Thorium based spent fuel also contains fewer higher actinides, hence reducing the long-term radioactivity of the spent fuel. The analyses show that the RTF core can satisfy the requirements of fuel cycle length, and the safety margins of conventional pressurized water reactors. The coefficients of reactivity are comparable to currently operating VVER's/PWR's. The major feature of the RTF cycle is related to the total amount of spent fuel discharged for each cycle from the reactor core. The fuel management scheme adopted for RTF core designs allows a significant decrease in the

  8. Design of the injection beamline for the Californium Rare Isotope Breeder Upgrade electron beam ion source for charge breeder

    SciTech Connect

    Dickerson C. A.; Pikin A.; Mustapha, B.; Kondrashev, S.; Ostroumov, P.N.; Savard, S.; Levand, A.

    2012-02-07

    The design of the ion injection line connecting the electron beam ion source (EBIS) charge breeder and the Californium Rare Isotope Breeder Upgrade radio frequency quadrupole cooler-buncher at the Argonne Tandem Linear Accelerator System was investigated with particle tracking simulations. The injection line was configured to accommodate several differential pumping sections, individual optical components were optimized to minimize emittance growth, and the ion beam parameters were matched with the EBIS electron beam acceptance to minimize losses upon injection.

  9. Design of the injection beamline for the Californium Rare Isotope Breeder Upgrade electron beam ion source charge breeder

    SciTech Connect

    Dickerson, C. A.; Mustapha, B.; Kondrashev, S.; Ostroumov, P. N.; Savard, G.; Levand, A.; Pikin, A.

    2012-02-15

    The design of the ion injection line connecting the electron beam ion source (EBIS) charge breeder and the Californium Rare Isotope Breeder Upgrade radio frequency quadrupole cooler-buncher at the Argonne Tandem Linear Accelerator System was investigated with particle tracking simulations. The injection line was configured to accommodate several differential pumping sections, individual optical components were optimized to minimize emittance growth, and the ion beam parameters were matched with the EBIS electron beam acceptance to minimize losses upon injection.

  10. Design of the injection beamline for the Californium Rare Isotope Breeder Upgrade electron beam ion source charge breeder.

    PubMed

    Dickerson, C A; Mustapha, B; Kondrashev, S; Ostroumov, P N; Savard, G; Levand, A; Pikin, A

    2012-02-01

    The design of the ion injection line connecting the electron beam ion source (EBIS) charge breeder and the Californium Rare Isotope Breeder Upgrade radio frequency quadrupole cooler-buncher at the Argonne Tandem Linear Accelerator System was investigated with particle tracking simulations. The injection line was configured to accommodate several differential pumping sections, individual optical components were optimized to minimize emittance growth, and the ion beam parameters were matched with the EBIS electron beam acceptance to minimize losses upon injection.

  11. Guideline for Performing Systematic Approach to Evaluate and Qualify Legacy Documents that Support Advanced Reactor Technology Activity

    SciTech Connect

    Honma, George

    2015-10-01

    The establishment of a systematic process for the evaluation of historic technology information for use in advanced reactor licensing is described. Efforts are underway to recover and preserve Experimental Breeder Reactor II and Fast Flux Test Facility historical data. These efforts have generally emphasized preserving information from data-acquisition systems and hard-copy reports and entering it into modern electronic formats suitable for data retrieval and examination. The guidance contained in this document has been developed to facilitate consistent and systematic evaluation processes relating to quality attributes of historic technical information (with focus on sodium-cooled fast reactor (SFR) technology) that will be used to eventually support licensing of advanced reactor designs. The historical information may include, but is not limited to, design documents for SFRs, research-and-development (R&D) data and associated documents, test plans and associated protocols, operations and test data, international research data, technical reports, and information associated with past U.S. Nuclear Regulatory Commission (NRC) reviews of SFR designs. The evaluation process is prescribed in terms of SFR technology, but the process can be used to evaluate historical information for any type of advanced reactor technology. An appendix provides a discussion of typical issues that should be considered when evaluating and qualifying historical information for advanced reactor technology fuel and source terms, based on current light water reactor (LWR) requirements and recent experience gained from Next Generation Nuclear Plant (NGNP).

  12. Advanced liquid-metal-reactor development at ANL during the 1980s

    SciTech Connect

    Wade, D.C. )

    1990-01-01

    The fundamental long-term rationale for the liquid-metal reactor (LMR) remains unchanged - to provide for resource extension by consuming the more abundant isotope of uranium. The design goals for the next generation of breeder reactors include a concerted effort to provide engineering solutions that can positively impact on the technical issues and on the public perception issues that harry the current generation of commercial power reactors. The work at Argonne National Laboratory since late 1983 has approached these design goals for the next-generation-reactor enterprise as a whole and has based the approach on a closed, fissile-self-sufficient, transuranic-self-consuming fuel cycle that employs a uranium/plutonium metallic alloy fuel form. Pyrometallurgically based reprocessing and remote injection casting fuel refabrication form the basis on which the closed fuel cycle is expected to provide low fuel cycle costs even on an incremental dedicated fuel cycle facility basis. Passive safety features that decouple reactor shutdown and decay heat removal from reliance on balance-of-plant equipment form the basis for reduced capital costs. Preapproved licensing form the basis for shorter and more predictable construction cycles. Incomplete fission product separation and incomplete uranium/plutonium separation of the product streams provide for a deterrent to subnational diversion. Finally, the waste management strategy is based on pyrometallurgical reprocessing in which all transuranics can be made to follow the plutonium-rich product stream.

  13. Assessment of start-up mechanisms for anaerobic fluidized bed reactor in series based on mathematical simulation

    NASA Astrophysics Data System (ADS)

    Sudibyo, Hanifrahmawan; Guntama, Dody; Budhijanto, Wiratni

    2017-05-01

    Anaerobic digestion is associated with long hydraulic residence time and hence leads to huge reactor volume, especially for high rate input to the reactor. To overcome this major drawback, one of the possibilities is optimizing the schemes of reactor configuration and start-up mechanisms. This study aimed to determine the most promising start-up mechanism for anaerobic digestion reactors in series, with respect to the shortest hydraulic residence time to reach the highest biogas production rate. The reactor to be studied is anaerobic fluidized bed reactor (AFBR) which is known as the most efficient reactor for high organic loading rate. Case to be studied is landfill leachate digestion. Although reactor optimization can be conducted experimentally, it could be expensive and time consuming. This study proposed the utilization of mathematical modeling to screen the possibilities towards the best options to be verified experimentally. Kinetic study of landfill leachate anaerobic digestion was first conducted to depict the rate of microbial growth and the rate of substrate consumption. Kinetics constants obtained from this batch experiment were then used in the mathematical model representing AFBR. Several mechanisms were simulated in this study. In the first mechanism, all digesters were started simultaneously. In the second mechanism, each digester was started until it achieved steady-state condition before the next digester was started. The third mechanism was start-up scenario for single reactor as opposed to the previous two mechanisms. These all three mechanisms were simulated for either one-through stream and recycling a portion of the reactor effluent. The mathematical simulation result was used to evaluate each mechanism based on hydraulic residence time required for all digesters in series to reach the steady-state condition, the extent of pollutant removal, and the rate of biogas production. In the need of high sCOD removal, the second mechanism emerged as

  14. Effects of supplementing broiler breeder diets with organoselenium compounds and polyunsaturated fatty acids on hatchability.

    PubMed

    Pappas, A C; Acamovic, T; Sparks, N H C; Surai, P F; McDevitt, R M

    2006-09-01

    The effects of supplementing broiler breeder diets with polyunsaturated fatty acids (PUFA) and organoselenium compounds on fertility, hatchability, and the weight of 1-d-old chicks was assessed. Prepeak (23 wk) and peak (27 wk) production breeders were fed 1 of 4 diets: a wheat-based commercial breeder diet with 55 g/kg of either soybean oil (SO) or fish oil (FO), but no added Se (only that originating from feed ingredients), and each diet with added Se as Sel-Plex (SO + Se, FO + Se). The diets were designed to contain <0.1 mg/kg of Se and about 0.5 mg/kg of Se for the nonsupplemented (no added Se) and the supplemented diets, respectively. The Se concentration of the eggshell of the hatching egg was measured. The concentration of Se, PUFA, and total lipid content of the brain and liver of the 1-d-old chick was determined. The number of fertile eggs increased, embryonic mortality decreased, and hatchability increased as hen age increased from 23 to 27 wk. The Se concentration in the eggshell and the brain and liver of 1-d-old chicks was higher in the high-Se treatments com pared with the concentration in the low-Se treatments. Fish oil inclusion in the breeder diet increased embryonic mortality in wk 3 of incubation and reduced both hatchability and 1-d-old chick weight in hens of both ages. The addition of Se to the FO diets ameliorated some of these adverse effects, because chicks hatched from eggs laid by 23-wk-old breeders of the FO + Se treatment were heavier than those receiving the FO treatment. The Se concentration in the brain and liver of chicks from the FO hens was higher than that in chicks from the SO hens. The concentration of docosahexaenoic fatty acid was higher in the liver of chicks from the SO + Se treatment compared with that of chicks from the SO treatment, indicating possible protective effects of Se. Hatchability was decreased by increased PUFA and was higher in 27-wk-old compared with 23-wk-old breeders.

  15. Irradiation effects in oxide dispersion strengthened (ODS) Ni-base alloys for Gen. IV nuclear reactors

    NASA Astrophysics Data System (ADS)

    Oono, Naoko; Ukai, Shigeharu; Kondo, Sosuke; Hashitomi, Okinobu; Kimura, Akihiko

    2015-10-01

    Oxide particle dispersion strengthened (ODS) Ni-base alloys are irradiated by using simulation technique (Fe/He dual-ion irradiation) to investigate the reliability to Gen. IV high-temperature reactors. The fine oxide particles with less than 10 nm in average size and approximately 8.0 × 1022 m-3 in number density remained after 101 dpa irradiation. The tiny helium bubbles were inside grains, not at grain-boundaries; it is advantageous effect of oxide particles which trap the helium atoms at the particle-matrix interface. Ni-base ODS alloys demonstrated their great ability to overcome He embrittlement.

  16. Advanced tokamak reactors based on the spherical torus (ATR/ST). Preliminary design considerations

    SciTech Connect

    Miller, R.L.; Krakowski, R.A.; Bathke, C.G.; Copenhaver, C.; Schnurr, N.M.; Engelhardt, A.G.; Seed, T.J.; Zubrin, R.M.

    1986-06-01

    Preliminary design results relating to an advanced magnetic fusion reactor concept based on the high-beta, low-aspect-ratio, spherical-torus tokamak are summarized. The concept includes resistive (demountable) toroidal-field coils, magnetic-divertor impurity control, oscillating-field current drive, and a flowing liquid-metal breeding blanket. Results of parametric tradeoff studies, plasma engineering modeling, fusion-power-core mechanical design, neutronics analyses, and blanket thermalhydraulics studies are described. The approach, models, and interim results described here provide a basis for a more detailed design. Key issues quantified for the spherical-torus reactor center on the need for an efficient drive for this high-current (approx.40 MA) device as well as the economic desirability to increase the net electrical power from the nominal 500-MWe(net) value adopted for the baseline system. Although a direct extension of present tokamak scaling, the stablity and transport of this high-beta (approx.0.3) plasma is a key unknown that is resoluble only by experiment. The spherical torus generally provides a route to improved tokamak reactors as measured by considerably simplified coil technology in a configuration that allows a realistic magnetic divertor design, both leading to increased mass power density and reduced cost.

  17. Research on inside surface of hollow reactor based on photoelectric detecting technique

    NASA Astrophysics Data System (ADS)

    Song, Gui-cai; Na, Yan-xiang; Shi, Wen-zong; Zhang, Qi

    2011-08-01

    The detection of inside surface of the hollow reactor uses the industrial fiber endoscope mostly. In order to obtain the large view angle, industrial endoscope generally uses the ultra wide fisheye lenses, which have the larger image distortion, and the smaller depth focus. Industrial endoscope uses optical look system. It is inconvenience for the observer. Even if use the TV image transmission system, it is also hard to get high quality images for the limit of like a bouquet of processing by preaching. The hollow reactor inside surface rapidly detection system based on the photoelectric detecting technique is composed by optical detection system, control system, the transmission system, image transmission system, image acquisition, display and data processing system. It can detect four holes and eight surface at the same time, and the testing time only 50-60 seconds. It can save the real condition of the inside surface of hollow reactor in the form of the bitmap. It can screen the bitmap stored according to the set of parameters, find out the problem bitmaps and supply for the techniques to identify and confirm.

  18. Monoenergetic positron beam at the reactor based positron source at FRM-II

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, C.; Kögel, G.; Repper, R.; Schreckenbach, K.; Sperr, P.; Straßer, B.; Triftshäuser, W.

    2002-05-01

    The principle of the in-pile positron source at the Munich research reactor FRM-II is based on absorption of high energy prompt γ-rays from thermal neutron capture in 113Cd. For this purpose, a cadmium cap is placed inside the tip of the inclined beam tube SR-11 in the moderator tank of the reactor, where an undisturbed thermal neutron flux up to 2×10 14n cm-2 s-1 is expected. Inside the cadmium cap a structure of platinum foils is placed for converting high energy γ-radiation into positron-electron pairs. Due to the negative positron work function, moderation in annealed platinum leads to emission of monoenergetic positrons. Therefore, platinum will also be used as moderator, since its moderation property seems to yield long-term stability under reactor conditions and it is much easier to handle than tungsten. Model calculations were performed with SIMION-7.0w to optimise geometry and potential of Pt-foils and electrical lenses. It could be shown that the potentials between the Pt-foils must be chosen in the range of 1-10 V to extract moderated positrons. After successive acceleration to 5 keV by four electrical lenses the beam is magnetically guided in a solenoid field of 7.5 mT resulting in a beam diameter of about 25 mm. An intensity of about 10 10 slow positrons per second is expected in the primary positron beam. Outside of the reactor shield a W(1 0 0) single crystal remoderation stage will lead to an improvement of the positron beam brilliance before the positrons are guided to the experimental facilities.

  19. Neutronics Analysis of Water-Cooled Ceramic Breeder Blanket for CFETR

    NASA Astrophysics Data System (ADS)

    Zhu, Qingjun; Li, Jia; Liu, Songlin

    2016-07-01

    In order to investigate the nuclear response to the water-cooled ceramic breeder blanket models for CFETR, a detailed 3D neutronics model with 22.5° torus sector was developed based on the integrated geometry of CFETR, including heterogeneous WCCB blanket models, shield, divertor, vacuum vessel, toroidal and poloidal magnets, and ports. Using the Monte Carlo N-Particle Transport Code MCNP5 and IAEA Fusion Evaluated Nuclear Data Library FENDL2.1, the neutronics analyses were performed. The neutron wall loading, tritium breeding ratio, the nuclear heating, neutron-induced atomic displacement damage, and gas production were determined. The results indicate that the global TBR of no less than 1.2 will be a big challenge for the water-cooled ceramic breeder blanket for CFETR. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB108004, 2014GB122000, and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)

  20. Brazing of bulk graphite/solid tritium breeder materials to metal substrates

    NASA Astrophysics Data System (ADS)

    Suiter, David J.; Bowers, David A.; Morgan, Grover D.; Trachsel, Clarence A.; Wille, Gerald W.

    1984-05-01

    The preliminary study involved evaluation of a brazed joint concept for obtaining improved heat transfer conditions between a coolant-containing metal structure and a solid tritium breeder or bulk graphite. A titanium-based braze alloy was used to successfully bond: a) POCO AXF-5Q bulk graphite to metal substrates (OFHC Cu, 316 SS, and Inconel 625), and b) solid tritium breeders (Li 2O, γ-LiAlO 2, Li 4SiO 4, Li 2TiO 3, and Li 2ZrO 3) to a 316 SS sample by employing an intermediate compliant metal layer to accommodate differences in linear thermal expansion of the materials.

  1. Sodium technology activities at HEDL in support of fast reactor development and the FFTF

    SciTech Connect

    Atwood, J.M.

    1984-02-27

    Activities of the Hanford Engineering Development Laboratory are presented. A brief description of FFTF and some highlights of reactor operations are reviewed. The sodium technology work at HEDL is summarized by discussing several facets of the program and their tie-ins to breeder reactor development.

  2. Thermal conductivities for sintered and sphere-pac Li/sub 2/O and. gamma. /sup -/LiAlO/sub 2/ solid breeders with and without irradiation effects

    SciTech Connect

    Liu, Y.Y.; Tam, S.W.

    1984-07-01

    Thermal conductivities (k, k/sub eff/) have been estimated for sintered and sphere-pac Li/sub 2/O and ..gamma..-LiAlO/sub 2/ with and without neutron irradiation effects. The estimation is based on (1) data from unirradiated UO/sub 2/, Li/sub 2/O, and ..gamma..-LiAlO/sub 2/; (2) data from irradiated dielectric insulator materials; and (3) relatively simple physical models. Comparison of model predictions with limited ex- and in-reactor data found reasonable agreement, thus lending credence for their use in design applications. The impact of thermal conductivities on tritium breeding and power generation in fusion solid-breeder blankets is briefly highlighted.

  3. Reactor control rod timing system

    DOEpatents

    Wu, Peter T. K.

    1982-01-01

    A fluid driven jet-edge whistle timing system for control rods of a nuclear reactor for producing real-time detection of the timing of each control rod in its scram operation. An important parameter in reactor safety, particularly for liquid metal fast breeder reactors (LMFBR), is the time deviation between the time the control rod is released and the time the rod actually reaches the down position. The whistle has a nearly pure tone signal with center frequency (above 100 kHz) far above the frequency band in which the energy of the background noise is concentrated. Each control rod can be fitted with a whistle with a different frequency so that there is no ambiguity in differentiating the signal from each control rod.

  4. Ion-exchange-membrane-based enzyme micro-reactor coupled online with liquid chromatography-mass spectrometry for protein analysis.

    PubMed

    Zhou, Zhigui; Yang, Youyou; Zhang, Jialing; Zhang, Zhengxiang; Bai, Yu; Liao, Yiping; Liu, Huwei

    2012-04-01

    In this article, we developed a membrane-based enzyme micro-reactor by directly using commercial polystyrene-divinylbenzene cation-exchange membrane as the support for trypsin immobilization via electrostatic and hydrophobic interactions and successfully applied it for protein digestion. The construction of the reactor can be simply achieved by continuously pumping trypsin solution through the reactor for only 2 min, which was much faster than the other enzyme immobilization methods. In addition, the membrane reactor could be rapidly regenerated within 35 min, resulting in a "new" reactor for the digestion of every protein sample, completely eliminating the cross-interference of different protein samples. The amount and the activity of immobilized trypsin were measured, and the repeatability of the reactor was tested, with an RSD of 3.2% for the sequence coverage of cytochrome c in ten digestion replicates. An integrated platform for protein analysis, including online protein digestion and peptide separation and detection, was established by coupling the membrane enzyme reactor with liquid chromatography-quadrupole time-of-flight mass spectrometry. The performance of the platform was evaluated using cytochrome c, myoglobin, and bovine serum albumin, showing that even in the short digestion time of several seconds the obtained sequence coverages was comparable to or higher than that with in-solution digestion. The system was also successfully used for the analysis of proteins from yeast cell lysate.

  5. A Framework for Human Performance Criteria for Advanced Reactor Operational Concepts

    SciTech Connect

    Jacques V Hugo; David I Gertman; Jeffrey C Joe

    2014-08-01

    This report supports the determination of new Operational Concept models needed in support of the operational design of new reactors. The objective of this research is to establish the technical bases for human performance and human performance criteria frameworks, models, and guidance for operational concepts for advanced reactor designs. The report includes a discussion of operating principles for advanced reactors, the human performance issues and requirements for human performance based upon work domain analysis and current regulatory requirements, and a description of general human performance criteria. The major findings and key observations to date are that there is some operating experience that informs operational concepts for baseline designs for SFR and HGTRs, with the Experimental Breeder Reactor-II (EBR-II) as a best-case predecessor design. This report summarizes the theoretical and operational foundations for the development of a framework and model for human performance criteria that will influence the development of future Operational Concepts. The report also highlights issues associated with advanced reactor design and clarifies and codifies the identified aspects of technology and operating scenarios.

  6. Effect of vaccinating breeder chickens with a killed Salmonella vaccine on Salmonella prevalences and loads in breeder and broiler chicken flocks.

    PubMed

    Berghaus, R D; Thayer, S G; Maurer, J J; Hofacre, C L

    2011-05-01

    The objective of this study was to evaluate the effect of vaccination of breeder chickens on Salmonella prevalences and loads in breeder and broiler chicken flocks. Chickens housed on six commercial breeder farms were vaccinated with a killed Salmonella vaccine containing Salmonella Typhimurium, Salmonella Enteritidis, and Salmonella Kentucky. Unvaccinated breeders placed on six additional farms served as controls. Eggs from vaccinated and unvaccinated breeder flocks were kept separately in the hatchery, and the resulting chicks were used to populate 58 commercial broiler flock houses by using a pair-matched design. Vaccinated breeder flocks had significantly higher Salmonella-specific antibody titers than did the unvaccinated breeder flocks, although they did not differ significantly with respect to environmental Salmonella prevalences or loads. Broiler flocks that were the progeny of vaccinated breeders had significantly lower Salmonella prevalences and loads than broiler flocks that were the progeny of unvaccinated breeders. After adjusting for sample type and clustering at the farm level, the odds of detecting Salmonella in samples collected from broiler flocks originating from vaccinated breeders were 62% lower (odds ratio [95% confidence interval] = 0.38 [0.21, 0.68]) than in flocks from unvaccinated breeders. In addition, the mean load of culture-positive samples was lower in broilers from vaccinated breeders by 0.30 log most probable number per sample (95% confidence interval of -0.51, -0.09; P = 0.004), corresponding to a 50% decrease in Salmonella loads. In summary, vaccination of broiler breeder pullets increased humoral immunity in the breeders and reduced Salmonella prevalences and loads in their broiler progeny, but did not significantly decrease Salmonella in the breeder farm environment.

  7. Recent advances in the development of solid breeder-blanket materials

    SciTech Connect

    Johnson, C.E.; Hollenburg, G.W.

    1983-01-01

    Increasing attention in breeder-blanket development has been given to the lithium-containing ceramic materials. The most promising of these materials include Li/sub 2/O, Li/sub 8/ZrO/sub 6/, Li/sub 4/SiO/sub 4/, and ..gamma..-LiAlO/sub 2/. Recent studies have focused on Li/sub 2/O because of its high tritium breeding potential and good thermal characteristics. Tritium solubility in Li/sub 2/O is within acceptable ranges and this oxide displays excellent behavior under neutron irradiation. A broad scope of laboratory and in-reactor irradiation experiments are underway to further investigate these materials.

  8. Effects of dietary supplementation of meat-type quail breeders with guanidinoacetic acid on their reproductive parameters and progeny performance.

    PubMed

    Murakami, A E; Rodrigueiro, R J B; Santos, T C; Ospina-Rojas, I C; Rademacher, M

    2014-09-01

    This study was conducted to assess the effect of dietary supplementation of meat-type quail breeders with guanidinoacetic acid (GAA) on their reproductive parameters and progeny performance. Two hundred forty meat-type quails at 25 wk of age were distributed in a completely randomized design with 5 treatments and 8 replicates of 6 birds each. The treatments consisted of 5 dietary levels of GAA (0.00, 0.06, 0.12, 0.18, and 0.24%). The progenies from quail breeders were housed according to breeder treatments and fed a conventional diet based on corn and soybean meal without GAA supplementation. Dietary GAA levels did not affect (P > 0.05) the productivity of meat-type quail breeders, although the concentration of guanidinic compounds (creatine, GAA, and creatinine) in the eggs from the breeders increased linearly (P < 0.05) according to the increase in dietary GAA levels. The number of spermatozoa present in the vitelline membrane was not affected (P > 0.05) by the treatments, but there was a quadratic effect (P < 0.05) of the levels of GAA on fertility, embryonic mortality, and egg hatchability, with the best results estimated at 0.13, 0.15, and 0.14% GAA, respectively. The creatine levels of the pectoral muscle in newborn quails showed a quadratic effect (P ≤ 0.07), and the dietary GAA level of 0.11% was estimated to maximize the muscular creatine level in the progeny. There was a quadratic effect (P < 0.05) of GAA levels on weight gain and feed conversion of progeny at 35 d of age with an optimization point of 0.14% GAA for these variables. Dietary GAA supplementation of meat-type quail breeders increases the availability of creatine in eggs and muscle of progeny, which results in better reproductive parameters and better postnatal progeny performance. © 2014 Poultry Science Association Inc.

  9. Advanced burner test reactor preconceptual design report.

    SciTech Connect

    Chang, Y. I.; Finck, P. J.; Grandy, C.; Cahalan, J.; Deitrich, L.; Dunn, F.; Fallin, D.; Farmer, M.; Fanning, T.; Kim, T.; Krajtl, L.; Lomperski, S.; Moisseytsev, A.; Momozaki, Y.; Sienicki, J.; Park, Y.; Tang, Y.; Reed, C.; Tzanos, C; Wiedmeyer, S.; Yang, W.; Chikazawa, Y.; JAEA

    2008-12-16

    advanced fuel cycle; (2) To qualify the transuranics-containing fuels and advanced structural materials needed for a full-scale ABR; and (3) To support the research, development and demonstration required for certification of an ABR standard design by the U.S. Nuclear Regulatory Commission. The ABTR should also address the following additional objectives: (1) To incorporate and demonstrate innovative design concepts and features that may lead to significant improvements in cost, safety, efficiency, reliability, or other favorable characteristics that could promote public acceptance and future private sector investment in ABRs; (2) To demonstrate improved technologies for safeguards and security; and (3) To support development of the U.S. infrastructure for design, fabrication and construction, testing and deployment of systems, structures and components for the ABRs. Based on these objectives, a pre-conceptual design of a 250 MWt ABTR has been developed; it is documented in this report. In addition to meeting the primary and additional objectives listed above, the lessons learned from fast reactor programs in the U.S. and worldwide and the operating experience of more than a dozen fast reactors around the world, in particular the Experimental Breeder Reactor-II have been incorporated into the design of the ABTR to the extent possible.

  10. A gas-cooled cermet reactor system for planetary base power

    SciTech Connect

    Jahshan, S.N.; Borkowski, J.A.

    1992-08-01

    Fission nuclear power is foreseen as the source for electricity in colonization exploration. A gas-cooled, cermet-fueled reactor is proposed that can meet many of the design objectives. The highly enriched core is compact and can operate at high temperature for a long life. The helium coolant powers a Brayton cycle that compares well with the SP-100-based Brayton cycle. The power cycle can be upgraded further under certain siting-related conditions by the addition of a low temperature Rankine cycle.

  11. A gas-cooled cermet reactor system for planetary base power

    SciTech Connect

    Jahshan, S.N.; Borkowski, J.A.

    1992-01-01

    Fission nuclear power is foreseen as the source for electricity in colonization exploration. A gas-cooled, cermet-fueled reactor is proposed that can meet many of the design objectives. The highly enriched core is compact and can operate at high temperature for a long life. The helium coolant powers a Brayton cycle that compares well with the SP-100-based Brayton cycle. The power cycle can be upgraded further under certain siting-related conditions by the addition of a low temperature Rankine cycle.

  12. Nuclear propulsion systems for orbit transfer based on the particle bed reactor

    SciTech Connect

    Powell, J.R.; Ludewig, H.; Horn, F.L.; Araj, K.; Benenati, R.; Lazareth, O.; Slovik, G.; Solon, M.; Tappe, W.; Belisle, J.

    1987-01-01

    The technology of nuclear direct propulsion orbit transfer systems based on the Particle Bed Reactor (PBR) is described. A 200 megawatt illustrative design is presented for LEO to GEO and other high ..delta..V missions. The PBR-NOTV can be used in a one-way mode with the shuttle or an expendable launch vehicle, e.g., the Titan 34D7, or as a two-way reusable space tug. In the one-way mode, payload capacity is almost three times greater than that of chemical OTV's. PBR technology status is described and development needs outlined.

  13. Nuclear reactor power as applied to a space-based radar mission

    NASA Technical Reports Server (NTRS)

    Jaffe, L.; Fujita, T.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Grossman, M.; Kia, T.; Nesmith, B.

    1988-01-01

    The SP-100 Project was established to develop and demonstrate feasibility of a space reactor power system (SRPS) at power levels of 10's of kilowatts to a megawatt. To help determine systems requirements for the SRPS, a mission and spacecraft were examined which utilize this power system for a space-based radar to observe moving objects. Aspects of the mission and spacecraft bearing on the power system were the primary objectives of this study; performance of the radar itself was not within the scope. The study was carried out by the Systems Design Audit Team of the SP-100 Project.

  14. Reactivity control assembly for nuclear reactor. [LMFBR

    DOEpatents

    Bollinger, L.R.

    1982-03-17

    This invention, which resulted from a contact with the United States Department of Energy, relates to a control mechanism for a nuclear reactor and, more particularly, to an assembly for selectively shifting different numbers of reactivity modifying rods into and out of the core of a nuclear reactor. It has been proposed heretofore to control the reactivity of a breeder reactor by varying the depth of insertion of control rods (e.g., rods containing a fertile material such as ThO/sub 2/) in the core of the reactor, thereby varying the amount of neutron-thermalizing coolant and the amount of neutron-capturing material in the core. This invention relates to a mechanism which can advantageously be used in this type of reactor control system.

  15. Leatherback turtles are capital breeders: morphometric and physiological evidence from longitudinal monitoring.

    PubMed

    Plot, Virginie; Jenkins, Thomas; Robin, Jean-Patrice; Fossette, Sabrina; Georges, Jean-Yves

    2013-01-01

    Organisms compensate for reproduction costs through two major strategies: capital breeders store body reserves before reproduction and do not feed during the breeding season, whereas income breeders adjust their food intake depending on concurrent reproductive needs. Sea turtles are commonly considered capital breeders. Yet recent biometric and behavioral studies have suggested that sea turtles may in fact feed during reproduction. We tested this hypothesis in the leatherback turtle Dermochelys coriacea, nesting in French Guiana. Our study is based on the innovative use of longitudinal monitoring for morphological (body size, body mass, and body condition) and physiological (plasma glucose, triacylglycerides, urea, calcium, and hematocrit) measurements in 35 females throughout the 2006 nesting season. During their 71-d nesting period, leatherbacks lost a mean (±SE) of [Formula: see text] kg (i.e., ∼11% of their initial body mass of [Formula: see text] kg). Simultaneously, a significant decrease in plasma concentrations of glucose, triacylglycerides, and urea was observed throughout the nesting season, following typical patterns reported in other long-fasting animals that rely on lipid body stores. At the end of the nesting season, the interindividual variability in plasma concentrations was very low, which may characterize some minimum thresholds associated with the end of reproduction. We also identified a minimum necessary threshold for female body condition at the onset of reproduction; the body condition of any females beginning the nesting period below this threshold decreased dramatically. This study makes a compelling case that, in French Guiana, gravid leatherback females are anorexic during the nesting season (i.e., leatherback turtles are capital breeders). We further highlight the mechanisms that prevent this multiparous reptile from jeopardizing its own body condition while not feeding during reproduction.

  16. What drives seasonal fluctuations of body condition in a semelparous income breeder octopus?

    NASA Astrophysics Data System (ADS)

    Quetglas, Antoni; Ordines, Francesc; Valls, Maria

    2011-09-01

    The vast majority of modern cephalopods is single-season breeders, or semelparous in the strict sense, that die soon after the reproduction takes place. Individual body condition in these marine invertebrates is expected to be highly affected by reproduction because: 1) the gonad weight of females, which represents <1% of body weight when immature, increases up to 20-50% during maturation; and 2) octopus females reduce or even cease their food intake during breeding. Based on this expectation, we analysed the interrelationship between condition and reproduction in the temperate octopus Eledone cirrhosa. Results from a previous work using biochemical analyses showed that reproduction in this species is not fuelled by stored reserves (capital breeder), but by food intakes (income breeder). Since income breeders depend strongly on food resources, the effect of several environmental variables related to food availability such as primary production, sea temperature (ST) and river discharges were also analysed. Condition showed a marked intrannual cycle independently of the sex and, noteworthy, the maturity stage. Given that immature individuals are not expected to display seasonal fluctuations in body condition related to maturation, these results preclude reproduction as a driving factor for the observed circannual cycle. Condition was significantly correlated with all the environmental variables analysed, except with ST at the depths where the species lives. Although this last result also precludes concurrent ST as a driving factor of body condition, those correlations suggest that condition might display an intrinsic seasonal cycle, as many other life-history traits in most species such as reproduction, migration or moulting. Finally, there also remains the possibility that condition in this octopus species is determined genetically, as has been reported in recent studies across different taxonomical groups.

  17. Multivariate epidemiological approach to salmonellosis in broiler breeder flocks.

    PubMed

    Henken, A M; Frankena, K; Goelema, J O; Graat, E A; Noordhuizen, J P

    1992-05-01

    A retrospective, case-control study into risk factors of salmonellosis was undertaken using data from 111 broiler breeder flocks assembled during a 5-yr period. The results of both univariate and multivariate analyses are presented. Many different Salmonella species were detected. Multivariate models were created based on the outcome of univariate analyses. The following variables appeared to be the most relevant: disinfection tubs, hygiene barriers, the interaction of disinfection tubs by hygiene barriers, and feed mills. The final model indicated that flocks housed at farms without a disinfection tub, with poor hygiene barriers, and receiving their feed from a small feed mill had a 46.1 times greater risk of being Salmonella-positive than flocks housed at farms with a disinfection tub, with good hygiene barriers, and receiving their feed from a large feed mill. It is concluded that the application of quantitative epidemiological methods can be valuable not only to identify potential risk factors but also to quantify their contributory effect on the disease outcome. Hence, it may be a useful tool for application in "integrated food chain quality control programs".

  18. Chemical compatibility study between ceramic breeder and EUROFER97 steel for HCPB-DEMO blanket

    NASA Astrophysics Data System (ADS)

    Mukai, Keisuke; Sanchez, Fernando; Knitter, Regina

    2017-05-01

    Chemical compatibility between ceramic breeder (Li4SiO4 + 20 mol% addition of Li2TiO3) and EUROFER97 steel was examined in this study. These materials were contacted and heated at 623, 823 and 1073 K under He + 0.1 vol.% H2 atmosphere for up to 12 weeks. Limited influence was found in the breeder specimens, although losses of the constituent elements appeared near the surface of the breeder pellets heated at 1073 K. For the EUROFER specimens with formation of a corrosion layer, element diffusivity was estimated based on diffusion kinetics. In the temperature range, effective diffusion coefficients of oxygen into EUROFER steel were in the range from 3.5 × 10-14 to 2.5 × 10-12 cm2/s and found to be faster than that of Li. The coefficients yielded an activation energy of 0.93 eV for oxygen diffusion into EUROFER steel and predicted the possible thickness of the corrosion layer after operational periods.

  19. Inertial-fusion-reactor studies at Lawrence Livermore National Laboratory

    SciTech Connect

    Monsler, M.J.; Meier, W.R.

    1982-08-01

    We present results of our reactor studies for inertial-fusion energy production. Design studies of liquid-metal wall chambers have led to reactors that are remarkably simple in design, and that promise long life and low cost. Variants of the same basic design, called HYLIFE, can be used for electricity production, as a fissile-fuel factory, a dedicated tritium breeder, or hybrids of each.

  20. Detector of the reactor AntiNeutrino based on Solid-state plastic Scintillator (DANSS). Status and first results.

    NASA Astrophysics Data System (ADS)

    Alekseev, I.; Belov, V.; Brudanin, V.; Danilov, M.; Egorov, V.; Filosofov, D.; Fomina, M.; Hons, Z.; Kazartsev, S.; Kobyakin, A.; Kuznetsov, A.; Machikhiliyan, I.; Medvedev, D.; Nesterov, V.; Olshevsky, A.; Ponomarev, D.; Rozova, I.; Rumyantseva, N.; Rusinov, V.; Salamatin, A.; Shevchik, Ye; Shirchenko, M.; Shitov, Yu; Skrobova, N.; Starostin, A.; Svirida, D.; Tarkovsky, E.; Tikhomirov, I.; Vlášek, J.; Zhitnikov, I.; Zinatulina, D.

    2017-01-01

    A detector of the reactor antineutrino based on a cubic meter of plastic scintillator is installed below 3.1 GW industrial reactor. The detector is placed on a movable platform which allows to change the distance to the reactor core center in the range 10.7-12.7 m. 2500 scintillator strips are read out individually by SiPMs and in groups of 50 by PMTs. In addition to the overburden by the reactor (50 m w.e.) the detector has multilayer passive shielding and active muon veto. Inverse beta-decay count rate of about 5000 events per day in the fiducial volume (78% of the detector) with about 5% of cosmic background has been reached. DANSS is sensitive to sterile neutrino in the most interesting region of mixing parameter space. The article covers the detector status and performance, as well as the first results.

  1. Performance of plastic- and sponge-based trickling filters treating effluents from an UASB reactor.

    PubMed

    Almeida, P G S; Marcus, A K; Rittmann, B E; Chernicharo, C A L

    2013-01-01

    The paper compares the performance of two trickling filters (TFs) filled with plastic- or sponge-based packing media treating the effluent from an upflow anaerobic sludge blanket (UASB) reactor. The UASB reactor was operated with an organic loading rate (OLR) of 1.2 kgCOD m(-3) d(-1), and the OLR applied to the TFs was 0.30-0.65 kgCOD m(-3) d(-1) (COD: chemical oxygen demand). The sponge-based packing medium (Rotosponge) gave substantially better performance for ammonia, total-N, and organic matter removal. The superior TF-Rotosponge performance for NH(4)(+)-N removal (80-95%) can be attributed to its longer biomass and hydraulic retention times (SRT and HRT), as well as enhancements in oxygen mass transfer by dispersion and advection inside the sponges. Nitrogen removals were significant (15 mgN L(-1)) in TF-Rotosponge when the OLRs were close to 0.75 kgCOD m(-3) d(-1), due to denitrification that was related to solids hydrolysis in the sponge interstices. For biochemical oxygen demand removal, higher HRT and SRT were especially important because the UASB removed most of the readily biodegradable organic matter. The new configuration of the sponge-based packing medium called Rotosponge can enhance the feasibility of scaling-up the UASB/TF treatment, including when retrofitting is necessary.

  2. Behavior of 241Am in fast reactor systems - a safeguards perspective

    SciTech Connect

    Beddingfield, David H; Lafleur, Adrienne M

    2009-01-01

    Advanced fuel-cycle developments around the world currently under development are exploring the possibility of disposing of {sup 241}Am from spent fuel recycle processes by burning this material in fast reactors. For safeguards practitioners, this approach could potentially complicate both fresh- and spent-fuel safeguards measurements. The increased ({alpha},n) production in oxide fuels from the {sup 241}Am increases the uncertainty in coincidence assay of Pu in MOX assemblies and will require additional information to make use of totals-based neutron assay of these assemblies. We have studied the behavior of {sup 241}Am-bearing MOX fuel in the fast reactor system and the effect on neutron and gamma-ray source-terms for safeguards measurements. In this paper, we will present the results of simulations of the behavior of {sup 241}Am in a fast breeder reactor system. Because of the increased use of MOX fuel in thermal reactors and advances in fuel-cycle designs aimed at americium disposal in fast reactors, we have undertaken a brief study of the behavior of americium in these systems to better understand the safeguards impacts of these new approaches. In this paper we will examine the behavior of {sup 241}Am in a variety of nuclear systems to provide insight into the safeguards implications of proposed Am disposition schemes.

  3. Ultra-High Temperature ContinuousReactors based on Electro-thermal FluidizedBed Concept

    SciTech Connect

    Fedorov, Sergiy S.; Rohatgi, Upendra Singh; Barsukov, Igor V.; Gubynskyi, Mykhailo V.; Barsukov, Michelle G.; Wells, Brain S.; Livitan, Mykola V.; Gogotsi, Oleksiy G.

    2015-12-08

    This paper presents the results of research and development in high-temperature (i.e. 2,000- 3,000ºС) continuous furnaces operating on the principle of electro-thermal fluidized bed for the purification of recycled, finely sized carbon materials. The basis of this fluidized bed furnace is specific electrical resistance and a new correlation has been developed to predict specific electrical resistance for the natural graphite-based precursors entering the fluidized bed reactor This correlation has been validated with the data from a fully functional pilot furnace whose throughput capacity is 10 kg per hour built as part of this work. Data collected in the course of graphite refining experiments demonstrated that difference between the calculated and measured values of specific electrical resistance of fluidized bed does not exceed 25%. It was concluded that due to chaotic nature of electro-thermal fluidized bed reactors this discrepancy is acceptable. The fluid mechanics of the three types of operating regimes, have been described. The numerical relationships obtained as part of this work allowed proposing an algorithm for selection of technological operational modes with large- scale high-temperature furnaces rated for throughputs of several tons of product per hour. Optimizations proposed now allow producing natural graphite-based end product with the purity level of 99.98+ wt%C which is the key passing criteria for applications in the advanced battery markets.

  4. Ultra-High Temperature ContinuousReactors based on Electro-thermal FluidizedBed Concept

    DOE PAGES

    Fedorov, Sergiy S.; Rohatgi, Upendra Singh; Barsukov, Igor V.; ...

    2015-12-08

    This paper presents the results of research and development in high-temperature (i.e. 2,000- 3,000ºС) continuous furnaces operating on the principle of electro-thermal fluidized bed for the purification of recycled, finely sized carbon materials. The basis of this fluidized bed furnace is specific electrical resistance and a new correlation has been developed to predict specific electrical resistance for the natural graphite-based precursors entering the fluidized bed reactor This correlation has been validated with the data from a fully functional pilot furnace whose throughput capacity is 10 kg per hour built as part of this work. Data collected in the course ofmore » graphite refining experiments demonstrated that difference between the calculated and measured values of specific electrical resistance of fluidized bed does not exceed 25%. It was concluded that due to chaotic nature of electro-thermal fluidized bed reactors this discrepancy is acceptable. The fluid mechanics of the three types of operating regimes, have been described. The numerical relationships obtained as part of this work allowed proposing an algorithm for selection of technological operational modes with large- scale high-temperature furnaces rated for throughputs of several tons of product per hour. Optimizations proposed now allow producing natural graphite-based end product with the purity level of 99.98+ wt%C which is the key passing criteria for applications in the advanced battery markets.« less

  5. Investigation of oxidation resistance of carbon based first-wall liner materials of fusion reactors

    NASA Astrophysics Data System (ADS)

    Moormann, R.; Hinssen, H. K.; Krüssenberg, A.-K.; Stauch, B.; Wu, C. H.

    1994-09-01

    One important aspect in selection of carbon based first-wall liner materials in fusion reactors is a sufficient oxidation resistance against steam and oxygen; this is because during accidents like loss of coolant into vacuum or loss of vacuum these oxidizing media can enter the vacuum vessel and may cause some corrosion of carbon followed by release of adsorbed tritium; in addition other consequences of oxidation like formation of burnable gases and their explosions have to be examined. Based on extensive experience on nuclear graphite oxidation in HTRs KFA has started in cooperation with NET some experimental investigations on oxidation of fusion reactor carbons. Results of first experiments on CFCs, Ti- and Si-doped carbons and graphites in steam (1273-1423 K) and oxygen (973 K) are reported. It was found that most materials have a similar reactivity as HTR nuclear graphites (which is much smaller than those of usual technical carbons); Si-doped CFCs however have a remarkably better oxidation resistance than those, which is probably due to the formation of a protecting layer of SiO 2. The measured kinetic data will be used in safety analyses for above mentioned accidents.

  6. Progress in the development of metallic fuel in fast reactors

    SciTech Connect

    Seidel, B.R.; Walters, L.C.

    1988-01-01

    Renewed interest has developed in metallic fuel for fast reactors as a result of Argonne National Laboratory's integral fast reactor (IFR) concept. This concept involves a novel approach to fuel-cycle closure that is based on metal reprocessing and injection-casting fabrication. This paper delves into recent developments associated with the performance of metallic fuels. In February of 1985, three full assemblies of advanced metallic fuel were placed in the core of the Experimental Breeder Reactor II (EBR-II). The 61-pin assemblies each contained an identical complement of metallic fuel of three compositions: U-10 Zr, U-8 Pu-10 Zr, and U-19 Pu-10 Zr. The pins were clad with the austenitic D9, had linear power rating of 15 kW/ft, and achieved peak cladding temperatures of 600{degree}C. The burnup achieved to date on these pins is 14 at.% burnup without any failures, and the irradiation continues. These lead assemblies have demonstrated that metallic fuels have the potential of being competitive with any existing fuel type in terms of steady-state performance.

  7. Numerical and experimental studies on thermal deformation of ceramic breeder pebble bed systems

    NASA Astrophysics Data System (ADS)

    An, Zhiyong

    The goal of this work is to develop modeling capabilities for understanding and predicting thermo-mechanical behavior of ceramic breeder pebble bed systems at elevated temperatures (600-800°C). The thermo-mechanical behavior of solid breeder pebble beds is a critical issue for the solid breeder blanket designs and is different from the behaviors of solid materials. The issue includes potential breakage of pebble materials and change in heat transfer characteristics across the breeder materials and cladding interface. Furthermore, at elevated temperatures, thermal creep deformation plays an uncertain role related to the contact stresses in the pebble beds. To understand these effects, the following efforts have been undertaken: First, experiments of a typical breeder blanket design have been conducted to study the thermal creep behaviors of the pebble bed system. Other than providing data for benchmarking numerical simulation, the experimental results show that the thermal deformation behaviors of typical pebble materials, such as Li2O and Li4SiO4 lithium ceramics, are nonlinear with respect to time and temperature. Under fixed temperatures (higher than 600°C), stresses generated from differential thermal expansion begin to decrease as a result of creep deformation. Second, a new numerical program, based on discrete element method (DEM), has been developed to simulate the fundamental mechanical behaviors of the packed pebble bed system. Considering the effects in a high temperature situation, inelastic contact models have been derived to predict thermal creep deformation. Our DEM program is mainly used to derive the effective mechanical constitutive equations for a pebble bed system. Besides that, it can provide the stress distribution inside the pebble bed and the force evolution related to the changes of boundary loadings. Last, a numerical program based on the finite element analysis (FEA) has been utilized to simulate the stress magnitude and deformation

  8. Simulation and design of an electron beam ion source charge breeder for the californium rare isotope breeder upgrade

    NASA Astrophysics Data System (ADS)

    Dickerson, Clayton; Mustapha, Brahim; Pikin, Alexander; Kondrashev, Sergey; Ostroumov, Peter; Levand, Anthony; Fischer, Rick

    2013-02-01

    An electron beam ion source (EBIS) will be constructed and used to charge breed ions from the californium rare isotope breeder upgrade (CARIBU) for postacceleration into the Argonne tandem linear accelerator system (ATLAS). Simulations of the EBIS charge breeder performance and the related ion transport systems are reported. Propagation of the electron beam through the EBIS was verified, and the anticipated incident power density within the electron collector was identified. The full normalized acceptance of the charge breeder with a 2 A electron beam, 0.024πmmmrad for nominal operating parameters, was determined by simulating ion injection into the EBIS. The optics of the ion transport lines were carefully optimized to achieve well-matched ion injection, to minimize emittance growth of the injected and extracted ion beams, and to enable adequate testing of the charge bred ions prior to installation in ATLAS.

  9. Advanced Safeguards Approaches for New Fast Reactors

    SciTech Connect

    Durst, Philip C.; Therios, Ike; Bean, Robert; Dougan, A.; Boyer, Brian; Wallace, Rick L.; Ehinger, Michael H.; Kovacic, Don N.; Tolk, K.

    2007-12-15

    This third report in the series reviews possible safeguards approaches for new fast reactors in general, and the ABR in particular. Fast-neutron spectrum reactors have been used since the early 1960s on an experimental and developmental level, generally with fertile blanket fuels to “breed” nuclear fuel such as plutonium. Whether the reactor is designed to breed plutonium, or transmute and “burn” actinides depends mainly on the design of the reactor neutron reflector and the whether the blanket fuel is “fertile” or suitable for transmutation. However, the safeguards issues are very similar, since they pertain mainly to the receipt, shipment and storage of fresh and spent plutonium and actinide-bearing “TRU”-fuel. For these reasons, the design of existing fast reactors and details concerning how they have been safeguarded were studied in developing advanced safeguards approaches for the new fast reactors. In this regard, the design of the Experimental Breeder Reactor-II “EBR-II” at the Idaho National Laboratory (INL) was of interest, because it was designed as a collocated fast reactor with a pyrometallurgical reprocessing and fuel fabrication line – a design option being considered for the ABR. Similarly, the design of the Fast Flux Facility (FFTF) on the Hanford Site was studied, because it was a successful prototype fast reactor that ran for two decades to evaluate fuels and the design for commercial-scale fast reactors.

  10. Microcomputer-based equipment-control and data-acquisition system for fission-reactor reactivity-worth measurements

    SciTech Connect

    McDowell, W.P.; Bucher, R.G.

    1980-01-01

    Material reactivity-worth measurements are one of the major classes of experiments conducted on the Zero Power research reactors (ZPR) at Argonne National Laboratory. These measurements require the monitoring of the position of a servo control element as a sample material is positioned at various locations in a critical reactor configuration. In order to guarantee operational reliability and increase experimental flexibility for these measurements, the obsolete hardware-based control unit has been replaced with a microcomputer based equipment control and data acquisition system. This system is based on an S-100 bus, dual floppy disk computer with custom built cards to interface with the experimental system. To measure reactivity worths, the system accurately positions samples in the reactor core and acquires data on the position of the servo control element. The data are then analyzed to determine statistical adequacy. The paper covers both the hardware and software aspects of the design.

  11. Analysis of the Gas Core Actinide Transmutation Reactor (GCATR)

    NASA Technical Reports Server (NTRS)

    Clement, J. D.; Rust, J. H.

    1977-01-01

    Design power plant studies were carried out for two applications of the plasma core reactor: (1) As a breeder reactor, (2) As a reactor able to transmute actinides effectively. In addition to the above applications the reactor produced electrical power with a high efficiency. A reactor subsystem was designed for each of the two applications. For the breeder reactor, neutronics calculations were carried out for a U-233 plasma core with a molten salt breeding blanket. A reactor was designed with a low critical mass (less than a few hundred kilograms U-233) and a breeding ratio of 1.01. The plasma core actinide transmutation reactor was designed to transmute the nuclear waste from conventional LWR's. The spent fuel is reprocessed during which 100% of Np, Am, Cm, and higher actinides are separated from the other components. These actinides are then manufactured as oxides into zirconium clad fuel rods and charged as fuel assemblies in the reflector region of the plasma core actinide transmutation reactor. In the equilibrium cycle, about 7% of the actinides are directly fissioned away, while about 31% are removed by reprocessing.

  12. Reactor plasma facing component designs based on liquid metal concepts supported in porous systems

    NASA Astrophysics Data System (ADS)

    Tabarés, F. L.; Oyarzabal, E.; Martin-Rojo, A. B.; Tafalla, D.; de Castro, A.; Soleto, A.

    2017-01-01

    The use of liquid metals (LMs) as plasma facing components in fusion devices was proposed as early as 1970 for a field reversed concept and inertial fusion reactors. The idea was extensively developed during the APEX Project, at the turn of the century, and it is the subject at present of the biennial International Symposium on Lithium Applications (ISLA), whose fourth meeting took place in Granada, Spain at the end of September 2015. While liquid metal flowing concepts were specially addressed in USA research projects, the idea of embedding the metal in a capillary porous system (CPS) was put forwards by Russian teams in the 1990s, thus opening the possibility of static concepts. Since then, many ideas and accompanying experimental tests in fusion devices and laboratories have been produced, involving a large fraction of countries within the international fusion community. Within the EUROFusion Roadmap, these activities are encompassed into the working programs of the plasma facing components (PFC) and divertor tokamak test (DTT) packages. In this paper, a review of the state of the art in concepts based on the CPS set-up for a fusion reactor divertor target, aimed at preventing the ejection of the liquid metal by electro-magnetic (EM) forces generated under plasma operation, is described and required R+D activities on the topic, including ongoing work at CIEMAT specifically oriented to filling the remaining gaps, are stressed.

  13. COMPONENT DEGRADATION SUSCEPTIBILITIES AS THE BASES FOR MODELING REACTOR AGING RISK

    SciTech Connect

    Unwin, Stephen D.; Lowry, Peter P.; Toyooka, Michael Y.

    2010-07-18

    The extension of nuclear power plant operating licenses beyond 60 years in the United States will be necessary if we are to meet national energy needs while addressing the issues of carbon and climate. Characterizing the operating risks associated with aging reactors is problematic because the principal tool for risk-informed decision-making, Probabilistic Risk Assessment (PRA), is not ideally-suited to addressing aging systems. The components most likely to drive risk in an aging reactor - the passives - receive limited treatment in PRA, and furthermore, standard PRA methods are based on the assumption of stationary failure rates: a condition unlikely to be met in an aging system. A critical barrier to modeling passives aging on the wide scale required for a PRA is that there is seldom sufficient field data to populate parametric failure models, and nor is there the availability of practical physics models to predict out-year component reliability. The methodology described here circumvents some of these data and modeling needs by using materials degradation metrics, integrated with conventional PRA models, to produce risk importance measures for specific aging mechanisms and component types. We suggest that these measures have multiple applications, from the risk-screening of components to the prioritization of materials research.

  14. Bio-reduction of tetrachloroethen using a H2-based membrane biofilm reactor and community fingerprinting.

    PubMed

    Karataş, Serdar; Hasar, Halil; Taşkan, Ergin; Özkaya, Bestamin; Şahinkaya, Erkan

    2014-07-01

    Chlorinated ethenes in drinking water could be reductively dechlorinated to non-toxic ethene by using a hydrogen based membrane biofilm reactor (H2-MBfR) under denitrifying conditions as it provides an appropriate environment for dechlorinating bacteria in biofilm communities. This study evaluates the reductive dechlorination of perchloroethene (PCE) to non-toxic ethene (ETH) and comparative community analysis of the biofilm grown on the gas permeable membrane fibers. For these purposes, three H2-MBfRs receiving three different chlorinated ethenes (PCE, TCE and DCE) were operated under different hydraulic retention times (HRTs) and H2 pressures. Among these reactors, the H2-MBfR fed with PCE (H2-MBfR 1) accomplished a complete dechlorination, whereas cis-DCE accumulated in the TCE receiving H2-MBfR 2 and no dechlorination was detected in the DCE receiving H2-MBfR 3. The results showed that 95% of PCE dechlorinated to ETH together with over 99.8% dechlorination efficiency. Nitrate was the preferred electron acceptor as the most of electrons generated from H2 oxidation used for denitrification and dechlorination started under nitrate deficient conditions at increased H2 pressures. PCR-DGGE analysis showed that Dehalococcoides were present in autotrophic biofilm community dechlorinating PCE to ethene, and RDase genes analysis revealed that pceA, tceA, bvcA and vcrA, responsible for complete dechlorination step, were available in Dehalococcoides strains. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Atomistic simulations of deuterium irradiation on iron-based alloys in future fusion reactors

    DOE PAGES

    Safi, E.; Polvi, J.; Lasa, A.; ...

    2016-10-14

    Iron-based alloys are now being considered as plasma-facing materials for the first wall of future fusion reactors. Therefore, the iron (Fe) and carbon (C) erosion will play a key role in predicting the life-time and viability of reactors with steel walls. In this work, the surface erosion and morphology changes due to deuterium (D) irradiation in pure Fe, Fe with 1% C impurity and the cementite, are studied using molecular dynamics (MD) simulations, varying surface temperature and impact energy. The sputtering yields for both Fe and C were found to increase with incoming energy. In iron carbide, C sputtering wasmore » preferential to Fe and the deuterium was mainly trapped as D2 in bubbles, while mostly atomic D was present in Fe and Fe–1%C. The sputtering yields obtained from MD were compared to SDTrimSP yields. At lower impact energies, the sputtering mechanism was of both physical and chemical origin, while at higher energies (>100 eV) the physical sputtering dominated.« less

  16. Atomistic simulations of deuterium irradiation on iron-based alloys in future fusion reactors

    SciTech Connect

    Safi, E.; Polvi, J.; Lasa, A.; Nordlund, K.

    2016-10-14

    Iron-based alloys are now being considered as plasma-facing materials for the first wall of future fusion reactors. Therefore, the iron (Fe) and carbon (C) erosion will play a key role in predicting the life-time and viability of reactors with steel walls. In this work, the surface erosion and morphology changes due to deuterium (D) irradiation in pure Fe, Fe with 1% C impurity and the cementite, are studied using molecular dynamics (MD) simulations, varying surface temperature and impact energy. The sputtering yields for both Fe and C were found to increase with incoming energy. In iron carbide, C sputtering was preferential to Fe and the deuterium was mainly trapped as D2 in bubbles, while mostly atomic D was present in Fe and Fe–1%C. The sputtering yields obtained from MD were compared to SDTrimSP yields. At lower impact energies, the sputtering mechanism was of both physical and chemical origin, while at higher energies (>100 eV) the physical sputtering dominated.

  17. Nuclear reactor power for a space-based radar. SP-100 project

    NASA Technical Reports Server (NTRS)

    Bloomfield, Harvey; Heller, Jack; Jaffe, Leonard; Beatty, Richard; Bhandari, Pradeep; Chow, Edwin; Deininger, William; Ewell, Richard; Fujita, Toshio; Grossman, Merlin

    1986-01-01

    A space-based radar mission and spacecraft, using a 300 kWe nuclear reactor power system, has been examined, with emphasis on aspects affecting the power system. The radar antenna is a horizontal planar array, 32 X 64 m. The orbit is at 61 deg, 1088 km. The mass of the antenna with support structure is 42,000 kg; of the nuclear reactor power system, 8,300 kg; of the whole spacecraft about 51,000 kg, necessitating multiple launches and orbital assembly. The assembly orbit is at 57 deg, 400 km, high enough to provide the orbital lifetime needed for orbital assembly. The selected scenario uses six Shuttle launches to bring the spacecraft and a Centaur G upper-stage vehicle to assembly orbit. After assembly, the Centaur places the spacecraft in operational orbit, where it is deployed on radio command, the power system started, and the spacecraft becomes operational. Electric propulsion is an alternative and allows deployment in assembly orbit, but introduces a question of nuclear safety.

  18. NOx removal using a wet type plasma reactor based on a three-electrode device

    NASA Astrophysics Data System (ADS)

    Jolibois, J.; Takashima, K.; Mizuno, A.

    2011-06-01

    In this paper, a wet type plasma reactor based on a three electrode device is investigated experimentally in order to remove NO and NOx at low flow rate. First, a comparison of cleaning performances of gas exhaust has been performed when the surface discharge operates in DBD or SD modes. From these previous results, the second part of study has consisted to improve the electrochemical conversion of the wet type plasma reactor by adding a coil between the AC HV power supply and the surface discharge. The parametric study has been performed with 100 ppm of NO content in gas flow at room temperature and atmospheric pressure for a flow rate of 1 L/min. For each electrical parameter tested, an electric characterization and measurement of NOx content via FT-IR has been conducted. The results highlight a better cleaning of gas exhaust when the surface discharge operates in DBD mode. Moreover, the presence of solution promotes the arc transition when the operating mode is SD, resulting a reliability reduction of plasma device. In addition, the measurements show that the insertion of coil in the electrical circuit improves the NOx removal at a given power consumption for the DBD operating mode.

  19. Final Report, NERI Project: ''An Innovative Reactor Analysis Methodology Based on a Quasidiffusion Nodal Core Model''

    SciTech Connect

    Dmitriy Y. Anistratov; Marvin L. Adams; Todd S. Palmer; Kord S. Smith; Kevin Clarno; Hikaru Hiruta; Razvan Nes

    2003-08-04

    OAK (B204) Final Report, NERI Project: ''An Innovative Reactor Analysis Methodology Based on a Quasidiffusion Nodal Core Model'' The present generation of reactor analysis methods uses few-group nodal diffusion approximations to calculate full-core eigenvalues and power distributions. The cross sections, diffusion coefficients, and discontinuity factors (collectively called ''group constants'') in the nodal diffusion equations are parameterized as functions of many variables, ranging from the obvious (temperature, boron concentration, etc.) to the more obscure (spectral index, moderator temperature history, etc.). These group constants, and their variations as functions of the many variables, are calculated by assembly-level transport codes. The current methodology has two main weaknesses that this project addressed. The first weakness is the diffusion approximation in the full-core calculation; this can be significantly inaccurate at interfaces between different assemblies. This project used the nodal diffusion framework to implement nodal quasidiffusion equations, which can capture transport effects to an arbitrary degree of accuracy. The second weakness is in the parameterization of the group constants; current models do not always perform well, especially at interfaces between unlike assemblies. The project developed a theoretical foundation for parameterization and homogenization models and used that theory to devise improved models. The new models were extended to tabulate information that the nodal quasidiffusion equations can use to capture transport effects in full-core calculations.

  20. A fission matrix based validation protocol for computed power distributions in the advanced test reactor

    SciTech Connect

    Nielsen, J. W.; Nigg, D. W.; LaPorta, A. W.

    2013-07-01

    The Idaho National Laboratory (INL) has been engaged in a significant multi year effort to modernize the computational reactor physics tools and validation procedures used to support operations of the Advanced Test Reactor (ATR) and its companion critical facility (ATRC). Several new protocols for validation of computed neutron flux distributions and spectra as well as for validation of computed fission power distributions, based on new experiments and well-recognized least-squares statistical analysis techniques, have been under development. In the case of power distributions, estimates of the a priori ATR-specific fuel element-to-element fission power correlation and covariance matrices are required for validation analysis. A practical method for generating these matrices using the element-to-element fission matrix is presented, along with a high-order scheme for estimating the underlying fission matrix itself. The proposed methodology is illustrated using the MCNP5 neutron transport code for the required neutronics calculations. The general approach is readily adaptable for implementation using any multidimensional stochastic or deterministic transport code that offers the required level of spatial, angular, and energy resolution in the computed solution for the neutron flux and fission source. (authors)

  1. Nuclear reactor power for a space-based radar. SP-100 project

    NASA Technical Reports Server (NTRS)

    Bloomfield, Harvey; Heller, Jack; Jaffe, Leonard; Beatty, Richard; Bhandari, Pradeep; Chow, Edwin; Deininger, William; Ewell, Richard; Fujita, Toshio; Grossman, Merlin

    1986-01-01

    A space-based radar mission and spacecraft, using a 300 kWe nuclear reactor power system, has been examined, with emphasis on aspects affecting the power system. The radar antenna is a horizontal planar array, 32 X 64 m. The orbit is at 61 deg, 1088 km. The mass of the antenna with support structure is 42,000 kg; of the nuclear reactor power system, 8,300 kg; of the whole spacecraft about 51,000 kg, necessitating multiple launches and orbital assembly. The assembly orbit is at 57 deg, 400 km, high enough to provide the orbital lifetime needed for orbital assembly. The selected scenario uses six Shuttle launches to bring the spacecraft and a Centaur G upper-stage vehicle to assembly orbit. After assembly, the Centaur places the spacecraft in operational orbit, where it is deployed on radio command, the power system started, and the spacecraft becomes operational. Electric propulsion is an alternative and allows deployment in assembly orbit, but introduces a question of nuclear safety.

  2. Simultaneous removal of nitrate and chromate in groundwater by a spiral fiber based biofilm reactor.

    PubMed

    Zhai, Siyuan; Zhao, Yinxin; Ji, Min; Qi, Wenfang

    2017-05-01

    A spiral fiber based biofilm reactor was developed to remove nitrate and chromate simultaneously. The denitrification and Cr(VI) removal efficiency was evaluated with synthetic groundwater (NO3(-)-N=50mg/L) under different Cr(VI) concentrations (0-1.0mg/L), carbon nitrogen ratios (C/N) (0.8-1.2), hydraulic retention times (HRT) (2-16h) and initial pHs (4-10). Nitrate and Cr(VI) were completely removed without nitrite accumulation when the Cr(VI) concentration was lower than 0.4mg/L. As Cr(VI) up to 1.0mg/L, the system was obviously inhibited, but it recovered rapidly within 6days due to the strong adaption and domestication of microorganisms in the biofilm reactor. The results demonstrated that high removal efficiency of nitrate (≥99%) and Cr(VI) (≥95%) were achieved at lower C/N=0.9, HRT=8h, initial pH=7, and Cr(VI)=1.0mg/L. The technology proposed in present study can be alternative for simultaneous removal of co-contaminants in groundwater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. A Bacterial Continuous Culture System Based on a Microfluidic Droplet Open Reactor.

    PubMed

    Ito, Manami; Sugiura, Haruka; Ayukawa, Shotaro; Kiga, Daisuke; Takinoue, Masahiro

    2016-01-01

    Recently, micrometer-sized bacterial culture systems have attracted attention as useful tools for synthetic biology studies. Here, we present the development of a bacterial continuous culture system based on a microdroplet open reactor consisting of two types of water-in-oil microdroplets with diameters of several hundred micrometers. A continuous culture was realized the through supply of nutrient substrates and the removal of waste and excess bacterial cells based on repeated fusion and fission of droplets. The growth dynamics was controlled by the interval of fusion. We constructed a microfluidic system and quantitatively assessed the dynamics of the bacterial growth using a mathematical model. This system will facilitate the study of synthetic biology and metabolic engineering in the future.

  4. Sonochemical Reactors.

    PubMed

    Gogate, Parag R; Patil, Pankaj N

    2016-10-01

    Sonochemical reactors are based on the generation of cavitational events using ultrasound and offer immense potential for the intensification of physical and chemical processing applications. The present work presents a critical analysis of the underlying mechanisms for intensification, available reactor configurations and overview of the different applications exploited successfully, though mostly at laboratory scales. Guidelines have also been presented for optimum selection of the important operating parameters (frequency and intensity of irradiation, temperature and liquid physicochemical properties) as well as the geometric parameters (type of reactor configuration and the number/position of the transducers) so as to maximize the process intensification benefits. The key areas for future work so as to transform the successful technique at laboratory/pilot scale into commercial technology have also been discussed. Overall, it has been established that there is immense potential for sonochemical reactors for process intensification leading to greener processing and economic benefits. Combined efforts from a wide range of disciplines such as material science, physics, chemistry and chemical engineers are required to harness the benefits at commercial scale operation.

  5. World directory of forest geneticists and tree breeders

    Treesearch

    F. Thomas Ledig; David B. Neale

    1998-01-01

    A formal task of the Forest Genetic Resources Study Group/North American Forestry Commission/Food and Agriculture Organization of the United Nations and Working Party 2.04.09 / Division 2- Physiology and Genetics / International Union of Forest ResearchOrganizations, this international directory lists more than 1,800 forest geneticists and tree breeders from 86...

  6. The search for advanced remote technology in fast reactor reprocessing

    SciTech Connect

    Burch, W.D.; Herndon, J.N.; Stradley, J.G.

    1990-01-01

    Research and development in fast reactor reprocessing has been under way about 20 years in several countries throughout the world. During the past decade in France and the United Kingdom, active development programs have been carried out in breeder reprocessing. Actual fuels from their demonstration reactors have been reprocessed in small-scale facilities. Early US work in breeder reprocessing was carried out at the EBR-II facilities with the early metal fuels, and interest has renewed recently in metal fuels. A major, comprehensive program, focused on oxide fuels, has been carried out in the Consolidated Fuel Reprocessing Program (CFRP) at the Oak Ridge National Laboratory (ORNL) since 1974. Germany and Japan have also carried out development programs in breeder reprocessing, and Japan appears committed to major demonstration of breeder reactors and their fuel cycles. While much of the effort in all of these programs addressed process chemistry and process hardware, a significant element of many of these programs, particularly the CFRP, has been on advancements in facility concepts and remote maintenance features. This paper will focus principally on the search for improved facility concepts and better maintenance systems in the CFRP and, in turn, on how developments at ORNL have influenced the technology elsewhere.

  7. A bimodal spacecraft bus based on a cermet fueled heat pipe reactor

    SciTech Connect

    Polansky, G.F.; Rochow, R.F.; Gunther, N.G.; Bixler, C.H.

    1995-07-01

    Bimodal space reactor systems provide both thermal propulsion for the spacecraft orbital transfer and electrical power to the spacecraft bus once it is on station. These systems have the potential to increase both the available payload in high energy orbits and the available power to that payload. These increased mass and power capabilities can be used to either reduce mission cost by permitting the use of smaller launch vehicles or to provide increased mission performance from the current launch vehicle. A major barrier to the deployment of these bimodal systems has been the cost associated with their development. This paper describes a bimodal spacecraft bus with performance potential to permit more than 70% of the instrumented payload of the Titan IV/Centaur to be launched from the Atlas IIAS. The development cost is minimized by basing the design on existing component technologies.

  8. Analysis of Nickel Based Hardfacing Materials Manufactured by Laser Cladding for Sodium Fast Reactor

    NASA Astrophysics Data System (ADS)

    Aubry, P.; Blanc, C.; Demirci, I.; Dal, M.; Malot, T.; Maskrot, H.

    For improving the operational capacity, the maintenance and the decommissioning of the future French Sodium Fast Reactor ASTRID which is under study, it is asked to find or develop a cobalt free hardfacing alloy and the associated manufacturing process that will give satisfying wear performances. This article presents recent results obtained on some selected nickel-based hardfacing alloys manufactured by laser cladding, particularly on Tribaloy 700 alloy. A process parameter search is made and associated the microstructural analysis of the resulting clads. A particular attention is made on the solidification of the main precipitates (chromium carbides, boron carbides, Laves phases,…) that will mainly contribute to the wear properties of the material. Finally, the wear resistance of some samples is evaluated in simple wear conditions evidencing promising results on tribology behavior of Tribaloy 700.

  9. Selected transport studies of a tokamak-based DEMO fusion reactor

    NASA Astrophysics Data System (ADS)

    Fable, E.; Wenninger, R.; Kemp, R.

    2017-02-01

    As a next-step in the tokamak-based fusion programme, the DEMO fusion reactor is foreseen to produce relevant output electricity, in the order of  ∼500 MW delivered to the network. The scenarios that are being presently investigated consist of a pulsed device, called DEMO1, and a steady-state device, called DEMO2. In this work, which is focused on the pulsed device DEMO1, scenarios are studied from the point of view of core transport, to assess plasma performance and limitations due to core microinstabilities. The role of radiated power, aspect ratio, and height of temperature pedestal are assessed as they impact both core energy and particle transport. Open issues in this framework are also discussed.

  10. Evaluation of Nb-base alloys for the divertor structure in fusion reactors

    SciTech Connect

    Purdy, I.M.

    1996-04-01

    Niobium-base alloys are candidate materials for the divertor structure in fusion reactors. For this application, an alloy should resist aqueous corrosion, hydrogen embrittlement, and radiation damage and should have high thermal conductivity and low thermal expansion. Results of corrosion and embrittlement screening tests of several binary and ternary Nb alloys in high-temperature water indicated the Mb-1Zr, Nb-5MO-1Zr, and Nb-5V-1Z4 (wt %) showed sufficient promise for further investigation. These alloys, together with pure Nb and Zircaloy-4 have been exposed to high purity water containing a low concentration of dissolved oxygen (<12 ppb) at 170, 230, and 300{degrees}C for up to {approx}3200 h. Weight-change data, microstructural observations, and qualitative mechanical-property evaluation reveal that Nb-5V-1Zr is the most promising alloy at higher temperatures. Below {approx}200{degrees}C, the alloys exhibit similiar corrosion behavior.

  11. A bimodal spacecraft bus based on a cermet fueled heat pipe reactor

    NASA Astrophysics Data System (ADS)

    Polansky, G. F.; Rochow, R. F.; Gunther, N. G.; Bixler, C. H.

    Bimodal space reactor systems provide both thermal propulsion for the spacecraft orbital transfer and electrical power to the spacecraft bus once it is on station. These systems have the potential to increase both the available payload in high energy orbits and the available power to that payload. These increased mass and power capabilities can be used to either reduce mission cost by permitting the use of smaller launch vehicles or to provide increased mission performance from the current launch vehicle. A major barrier to the deployment of these bimodal systems has been the cost associated with their development. This paper describes a bimodal spacecraft bus with performance potential to permit more than 70% of the instrumented payload of the Titan 4/Centaur to be launched from the Atlas IIAS. The development cost is minimized by basing the design on existing component technologies.

  12. Can Genetic Estimators Provide Robust Estimates of the Effective Number of Breeders in Small Populations?

    PubMed Central

    Hoehn, Marion; Gruber, Bernd; Sarre, Stephen D.; Lange, Rebecca; Henle, Klaus

    2012-01-01

    The effective population size (Ne) is proportional to the loss of genetic diversity and the rate of inbreeding, and its accurate estimation is crucial for the monitoring of small populations. Here, we integrate temporal studies of the gecko Oedura reticulata, to compare genetic and demographic estimators of Ne. Because geckos have overlapping generations, our goal was to demographically estimate NbI, the inbreeding effective number of breeders and to calculate the NbI/Na ratio (Na = number of adults) for four populations. Demographically estimated NbI ranged from 1 to 65 individuals. The mean reduction in the effective number of breeders relative to census size (NbI/Na) was 0.1 to 1.1. We identified the variance in reproductive success as the most important variable contributing to reduction of this ratio. We used four methods to estimate the genetic based inbreeding effective number of breeders NbI(gen) and the variance effective populations size NeV(gen) estimates from the genotype data. Two of these methods - a temporal moment-based (MBT) and a likelihood-based approach (TM3) require at least two samples in time, while the other two were single-sample estimators - the linkage disequilibrium method with bias correction LDNe and the program ONeSAMP. The genetic based estimates were fairly similar across methods and also similar to the demographic estimates excluding those estimates, in which upper confidence interval boundaries were uninformative. For example, LDNe and ONeSAMP estimates ranged from 14–55 and 24–48 individuals, respectively. However, temporal methods suffered from a large variation in confidence intervals and concerns about the prior information. We conclude that the single-sample estimators are an acceptable short-cut to estimate NbI for species such as geckos and will be of great importance for the monitoring of species in fragmented landscapes. PMID:23139784

  13. A new steam-cooled reactor

    SciTech Connect

    Schultz, M.A.; Edlund, M.C.

    1985-08-01

    A new ultrasafe type of nuclear power plant is described that has a complete ''walk-awayfrom'' characteristic. That is, the reactor can safely dissipate its shutdown heat even if its powe and water supplies are cut off. The reactor is steam cooled and is designed to operate at one fixed steam density. Its reactivity characteristics are such that if the power level increases, the steam becomes less dense than the optimum and tends to shut the reactor off. Similarly, if the reactor is flooded wit water, the reactivity greatly decreases and also shuts the reactor down. The reactor can be operated as a burner, a high-efficiency converter, or a breeder, depending on the isotopic content of the fuel. The plant operates at low pressure and relatively high efficiency with an example given at 1000 psia and 35% efficiency. The reactor is enclosed in a conventional steel vessel resembling a boiling water reactor. The vessel is connected to a large atmospheric pressure pool of water, and shutdown consists of passively cou pling the pool to the reactor through the loss of steam flow. Shutdown cooling is provided by forced air and natural draft convection cooling of the pressure vessel. Sufficient water and passive cooling are provided by the pool for many months of shutdown water cooling. The plant piping is double walled, and all paths of radiation escape, including pressure-vessel cracking, are channeled through an on-line cleanup system.

  14. Fast Reactors

    NASA Astrophysics Data System (ADS)

    Esposito, S.; Pisanti, O.

    The following sections are included: * Elementary Considerations * The Integral Equation to the Neutron Distribution * The Critical Size for a Fast Reactor * Supercritical Reactors * Problems and Exercises

  15. A comparison of radioactive waste from first generation fusion reactors and fast fission reactors with actinide recycling

    SciTech Connect

    Koch, M.; Kazimi, M.S.

    1991-04-01

    Limitations of the fission fuel resources will presumably mandate the replacement of thermal fission reactors by fast fission reactors that operate on a self-sufficient closed fuel cycle. This replacement might take place within the next one hundred years, so the direct competitors of fusion reactors will be fission reactors of the latter rather than the former type. Also, fast fission reactors, in contrast to thermal fission reactors, have the potential for transmuting long-lived actinides into short-lived fission products. The associated reduction of the long-term activation of radioactive waste due to actinides makes the comparison of radioactive waste from fast fission reactors to that from fusion reactors more rewarding than the comparison of radioactive waste from thermal fission reactors to that from fusion reactors. Radioactive waste from an experimental and a commercial fast fission reactor and an experimental and a commercial fusion reactor has been characterized. The fast fission reactors chosen for this study were the Experimental Breeder Reactor 2 and the Integral Fast Reactor. The fusion reactors chosen for this study were the International Thermonuclear Experimental Reactor and a Reduced Activation Ferrite Helium Tokamak. The comparison of radioactive waste parameters shows that radioactive waste from the experimental fast fission reactor may be less hazardous than that from the experimental fusion reactor. Inclusion of the actinides would reverse this conclusion only in the long-term. Radioactive waste from the commercial fusion reactor may always be less hazardous than that from the commercial fast fission reactor, irrespective of the inclusion or exclusion of the actinides. The fusion waste would even be far less hazardous, if advanced structural materials, like silicon carbide or vanadium alloy, were employed.

  16. Second test of base hydrolysate decomposition in a 0.04 gallon per minute scale reactor

    SciTech Connect

    Cena, R.J.; Thorsness, C.B.; Coburn, T.T.; Watkins, B.E.

    1994-10-11

    LLNL has built and operated a pilot plant for processing oil shale using recirculating hot solids. This pilot plant, was adapted in 1993 to demonstrate the feasibility of decomposing base hydrolysate, a mixture of sodium nitrite, sodium formate and other constituents. This material is the waste stream from the base hydrolysis process for destruction of energetic materials. In the Livermore process, the waste feed is thermally treated in a moving packed bed of ceramic spheres, where constituents in the waste decompose, in the presence of carbon dioxide, to form solid sodium carbonate and a suite of gases including: methane, carbon monoxide, oxygen, nitrogen oxides, ammonia and possibly molecular nitrogen. The ceramic spheres are circulated and heated, providing the energy required for thermal decomposition. The spheres provide a large surface area for evaporation and decomposition to occur, avoiding sticking and agglomeration of the waste. We performed a 2.5 hour test of the solids recirculation system, with continuous injection of approximately 0.04 gal/min of waste. Gasses from the packed bed reactor were directed through the lift pipe and water was not condensed. Potassium carbonate (0.356 M) was added to the hydrolysate prior to its introduction to the retort. Continuous on-line gas analysis was invaluable in tracking the progress of the experiment and quantifying the decomposition products. Analyses showed the primary solid product, collected in the lift exit cyclone, was indeed sodium carbonate, as expected. For the reactor condition studied in this test, N{sub 2}O was found to be the primary nitrogen bearing gas species. In the test, approximately equal quantities of ammonia and nitrogen bearing oxide gases were produced. Under proper conditions, this ammonia and NO{sub x} can be recombined downstream to form N{sub 2} and O{sub 2} as the primary effluent gases.

  17. Microbial ecology of a perchlorate-reducing, hydrogen-based membrane biofilm reactor.

    PubMed

    Nerenberg, Robert; Kawagoshi, Yasunori; Rittmann, Bruce E

    2008-02-01

    The hydrogen-based membrane biofilm reactor (MBfR) has been shown to reduce perchlorate to below 4 microg/L, but little is known about the microbial ecology of this or other hydrogen-based reactors, especially when influent perchlorate concentrations are much lower than the influent oxygen and nitrate concentrations. Dissimilatory (per)chlorate-reducing bacteria (PCRB) can use oxygen as an electron acceptor, and most can also use nitrate. Since oxygen and nitrate can be reduced concurrently with perchlorate, they may serve as primary electron acceptors, sustaining PCRB when the perchlorate concentrations are very low. We studied five identical MBfRs, all seeded with the same inoculum and initially supplied with oxygen, or oxygen plus nitrate, in the influent. After 20 days, perchlorate was added to four MBfRs at influent concentrations of 100-10,000 microg/L, while the fifth was maintained as a control. One day after perchlorate addition, the MBfRs displayed limited perchlorate reduction, suggesting a low initial abundance of PCRB. However, perchlorate reduction improved significantly over time, and denaturing gradient gel electrophoresis (DGGE) analyses suggested an increasing abundance of a single Dechloromonas species. Fluorescence in-situ hybridization (FISH) tests showed that the Dechloromonas species accounted for 14% of the bacterial count in the control MBfR, and 22%, 31%, and 49% in the MBfRs receiving nitrate plus 100, 1000, and 10,000 microg/L perchlorate, respectively. The abundance was 34% in the MBfR receiving oxygen plus 1000 microg/L perchlorate. These results suggest that oxygen is more favorable than nitrate as a primary electron acceptor for PCRB, that PCRB are present at low levels even without perchlorate, and that the presence of perchlorate, even at low levels relative to nitrate or oxygen, significantly enhances selection for PCRB.

  18. Estimation of Specific Mass for Multimegawatt NEP Systems Based on Vapor Core Reactors with MHD Power Conversion

    NASA Astrophysics Data System (ADS)

    Knight, Travis; Anghaie, Samim

    2004-02-01

    Very low specific-mass power generation in space is possible using Vapor Core Reactors with Magnetohydrodynamic (VCR/MHD) generator. These advanced reactors at the conceptual design level have potential for the generation of tens to hundreds of megawatts of power in space with specific mass of about 1 kg/kWe. Power for nuclear electric propulsion (NEP) is possible with almost direct power conditioning and coupling of the VCR/MHD power output to the VASIMR engine, MPD, and a whole host of electric thrusters. The VCR/MHD based NEP system is designed to power space transportation systems that dramatically reduce the mission time for human exploration of the entire solar system or for aggressive long-term robotic missions. There are more than 40 years of experience in the evaluation of the scientific and technical feasibility of gas and vapor core reactor concepts. The proposed VCR is based on the concept of a cavity reactor made critical through the use of a reflector such as beryllium or beryllium oxide. Vapor fueled cavity reactors that are considered for NEP applications operate at maximum core center and wall temperatures of 4000 K and 1500K, respectively. A recent investigation has resulted in the conceptual design of a uranium tetrafluoride fueled vapor core reactor coupled to a MHD generator. Detailed neutronic design and cycle analyses have been performed to establish the operating design parameters for 10 to 200 MWe NEP systems. An integral system engineering-simulation code is developed to perform parametric analysis and design optimization studies for the VCR/MHD power system. Total system weight and size calculated based on existing technology has proven the feasibility of achieving exceptionally low specific mass (α ~1 kg/kWe) with a VCR/MHD powered system.

  19. CO2 Reduction Assembly Prototype Using Microlith-Based Sabatier Reactor for Ground Demonstration

    NASA Technical Reports Server (NTRS)

    Junaedi, Christian; Hawley, Kyle; Walsh, Dennis; Roychoudhury, Subir; Abney, Morgan B.; Perry, Jay L.

    2014-01-01

    The utilization of CO2 to produce life support consumables, such as O2 and H2O, via the Sabatier reaction is an important aspect of NASA's cabin Atmosphere Revitalization System (ARS) and In-Situ Resource Utilization (ISRU) architectures for both low-earth orbit and long-term manned space missions. Carbon dioxide can be reacted with H2, obtained from the electrolysis of water, via Sabatier reaction to produce methane and H2O. Methane can be stored and utilized as propellant while H2O can be either stored or electrolyzed to produce oxygen and regain the hydrogen atoms. Depending on the application, O2 can be used to replenish the atmosphere in human-crewed missions or as an oxidant for robotic and return missions. Precision Combustion, Inc. (PCI), with support from NASA, has previously developed an efficient and compact Sabatier reactor based on its Microlith® catalytic technology and demonstrated the capability to achieve high CO2 conversion and CH4 selectivity (i.e., =90% of the thermodynamic equilibrium values) at high space velocities and low operating temperatures. This was made possible through the use of high-heat-transfer and high-surface-area Microlith catalytic substrates. Using this Sabatier reactor, PCI designed, developed, and demonstrated a stand-alone CO2 Reduction Assembly (CRA) test system for ground demonstration and performance validation. The Sabatier reactor was integrated with the necessary balance-of-plant components and controls system, allowing an automated, single "push-button" start-up and shutdown. Additionally, the versatility of the test system prototype was demonstrated by operating it under H2-rich (H2/CO2 of >4), stoichiometric (ratio of 4), and CO2-rich conditions (ratio of <4) without affecting its performance and meeting the equilibrium-predicted water recovery rates. In this paper, the development of the CRA test system for ground demonstration will be discussed. Additionally, the performance results from testing the system at

  20. Space rocket engine on the base of the reactor-pumped laser for the interplanetary flights and earth orbital applications

    NASA Astrophysics Data System (ADS)

    Gulevich, Andrey V.; Dyachenko, Peter P.; Kukharchuk, Oleg F.; Zrodnikov, Anatoly V.

    2000-01-01

    In this report the concept of vehicle-based reactor-laser engine for long time interplanetary and interorbital (LEO to GEO) flights is proposed. Reactor-pumped lasers offer the perspective way to create on the base of modern nuclear and lasers technologies the low mass and high energy density, repetitively pulsed vehicle-based laser of average power 100 kW. Nowadays the efficiency of nuclear-to-optical energy conversion reached the value of 2-3%. The demo model of reactor-pumped laser facility is under construction in Institute for Physics and Power Engineering (Obninsk, Russia). It enable us to hope that using high power laser on board of the vehicle could make the effective space laser engine possible. Such engine may provide the high specific impulse ~1000-2000 s with the thrust up to 10-100 n. Some calculation results of the characteristics of vehicle-based reactor-laser thermal engine concept are also presented. .