Comparison of molecular breeding values based on within- and across-breed training in beef cattle.
Kachman, Stephen D; Spangler, Matthew L; Bennett, Gary L; Hanford, Kathryn J; Kuehn, Larry A; Snelling, Warren M; Thallman, R Mark; Saatchi, Mahdi; Garrick, Dorian J; Schnabel, Robert D; Taylor, Jeremy F; Pollak, E John
2013-08-16
Although the efficacy of genomic predictors based on within-breed training looks promising, it is necessary to develop and evaluate across-breed predictors for the technology to be fully applied in the beef industry. The efficacies of genomic predictors trained in one breed and utilized to predict genetic merit in differing breeds based on simulation studies have been reported, as have the efficacies of predictors trained using data from multiple breeds to predict the genetic merit of purebreds. However, comparable studies using beef cattle field data have not been reported. Molecular breeding values for weaning and yearling weight were derived and evaluated using a database containing BovineSNP50 genotypes for 7294 animals from 13 breeds in the training set and 2277 animals from seven breeds (Angus, Red Angus, Hereford, Charolais, Gelbvieh, Limousin, and Simmental) in the evaluation set. Six single-breed and four across-breed genomic predictors were trained using pooled data from purebred animals. Molecular breeding values were evaluated using field data, including genotypes for 2227 animals and phenotypic records of animals born in 2008 or later. Accuracies of molecular breeding values were estimated based on the genetic correlation between the molecular breeding value and trait phenotype. With one exception, the estimated genetic correlations of within-breed molecular breeding values with trait phenotype were greater than 0.28 when evaluated in the breed used for training. Most estimated genetic correlations for the across-breed trained molecular breeding values were moderate (> 0.30). When molecular breeding values were evaluated in breeds that were not in the training set, estimated genetic correlations clustered around zero. Even for closely related breeds, within- or across-breed trained molecular breeding values have limited prediction accuracy for breeds that were not in the training set. For breeds in the training set, across- and within-breed trained molecular breeding values had similar accuracies. The benefit of adding data from other breeds to a within-breed training population is the ability to produce molecular breeding values that are more robust across breeds and these can be utilized until enough training data has been accumulated to allow for a within-breed training set.
Comparison of molecular breeding values based on within- and across-breed training in beef cattle
2013-01-01
Background Although the efficacy of genomic predictors based on within-breed training looks promising, it is necessary to develop and evaluate across-breed predictors for the technology to be fully applied in the beef industry. The efficacies of genomic predictors trained in one breed and utilized to predict genetic merit in differing breeds based on simulation studies have been reported, as have the efficacies of predictors trained using data from multiple breeds to predict the genetic merit of purebreds. However, comparable studies using beef cattle field data have not been reported. Methods Molecular breeding values for weaning and yearling weight were derived and evaluated using a database containing BovineSNP50 genotypes for 7294 animals from 13 breeds in the training set and 2277 animals from seven breeds (Angus, Red Angus, Hereford, Charolais, Gelbvieh, Limousin, and Simmental) in the evaluation set. Six single-breed and four across-breed genomic predictors were trained using pooled data from purebred animals. Molecular breeding values were evaluated using field data, including genotypes for 2227 animals and phenotypic records of animals born in 2008 or later. Accuracies of molecular breeding values were estimated based on the genetic correlation between the molecular breeding value and trait phenotype. Results With one exception, the estimated genetic correlations of within-breed molecular breeding values with trait phenotype were greater than 0.28 when evaluated in the breed used for training. Most estimated genetic correlations for the across-breed trained molecular breeding values were moderate (> 0.30). When molecular breeding values were evaluated in breeds that were not in the training set, estimated genetic correlations clustered around zero. Conclusions Even for closely related breeds, within- or across-breed trained molecular breeding values have limited prediction accuracy for breeds that were not in the training set. For breeds in the training set, across- and within-breed trained molecular breeding values had similar accuracies. The benefit of adding data from other breeds to a within-breed training population is the ability to produce molecular breeding values that are more robust across breeds and these can be utilized until enough training data has been accumulated to allow for a within-breed training set. PMID:23953034
Patterns of molecular genetic variation among cat breeds.
Menotti-Raymond, Marilyn; David, Victor A; Pflueger, Solveig M; Lindblad-Toh, Kerstin; Wade, Claire M; O'Brien, Stephen J; Johnson, Warren E
2008-01-01
Genetic variation in cat breeds was assessed utilizing a panel of short tandem repeat (STR) loci genotyped in 38 cat breeds and 284 single-nucleotide polymorphisms (SNPs) genotyped in 24 breeds. Population structure in cat breeds generally reflects their recent ancestry and absence of strong breed barriers between some breeds. There is a wide range in the robustness of population definition, from breeds demonstrating high definition to breeds with as little as a third of their genetic variation partitioning into a single population. Utilizing the STRUCTURE algorithm, there was no clear demarcation of the number of population subdivisions; 16 breeds could not be resolved into independent populations, the consequence of outcrossing in established breeds to recently developed breeds with common ancestry. These 16 breeds were divided into 6 populations. Ninety-six percent of cats in a sample set of 1040 were correctly assigned to their classified breed or breed group/population. Average breed STR heterozygosities ranged from moderate (0.53; Havana, Korat) to high (0.85; Norwegian Forest Cat, Manx). Most of the variation in cat breeds was observed within a breed population (83.7%), versus 16.3% of the variation observed between populations. The hierarchical relationships of cat breeds is poorly defined as demonstrated by phylogenetic trees generated from both STR and SNP data, though phylogeographic grouping of breeds derived completely or in part from Southeast Asian ancestors was apparent.
Can non-breeding be a cost of breeding dispersal?
Danchin, E.; Cam, E.
2002-01-01
Breeding habitat selection and dispersal are crucial processes that affect many components of fitness. Breeding dispersal entails costs, one of which has been neglected: dispersing animals may miss breeding opportunities because breeding dispersal requires finding a new nesting site and mate, two time- and energy-consuming activities. Dispersers are expected to be prone to non-breeding. We used the kittiwake (Rissa tridactyla) to test whether breeding dispersal influences breeding probability. Breeding probability was associated with dispersal, in that both were negatively influenced by private information (previous individual reproductive success) and public information (average reproductive success of conspecifics) about patch quality. Furthermore, the probability of skipping breeding was 1.7 times higher in birds that settled in a new patch relative to those that remained on the same patch. Finally, non-breeders that resumed breeding were 4.4 times more likely to disperse than birds that bred in successive years. Although private information may influence breeding probability directly, the link between breeding probability and public information may be indirect, through the influence of public information on breeding dispersal, non-breeding thus being a cost of dispersal. These results support the hypothesis that dispersal may result in not being able to breed. More generally, non-breeding (which can be interpreted as an extreme form of breeding failure) may reveal costs of various previous activities. Because monitoring the non-breeding portion of a population is difficult, non-breeders have been neglected in many studies of reproduction trade-offs.
Male and female breeding strategies in a cooperative primate.
Yamamoto, Maria Emilia; Araujo, Arrilton; Arruda, Maria de Fatima; Lima, Ana Karinne Moreira; Siqueira, Jose de Oliveira; Hattori, Wallisen Tadashi
2014-11-01
Marmosets are cooperative breeders organized as extended family groups, but breeding is generally restricted to a single pair. Breeding competition is fierce in female marmosets; males, on the other hand, show low levels of intragroup aggression. We investigated male and female breeding strategies and the resulting reproductive output in 9 wild groups. Reproductive output, tenure of breeding animals, identification of the breeding system, breeding position replacements, migration and infanticide were recorded; also, we recorded grooming and aggression. Replacement of the breeding male or female was observed on nine occasions. On four occasions, the son of the breeding male inherited the breeding post, but we never observed inheritance of a breeding post by a daughter. Mostly, females attained a breeding post by immigrating to a group that had a breeding vacancy. Our results showed that Callithrix jacchus males and females use different strategies to attain a breeding position and maintain it for as long as possible. These strategies prolong the tenure of the breeding position, which is the best way to produce a large number of offspring. This article is part of a Special Issue entitled: Neotropical Behaviour. Copyright © 2014 Elsevier B.V. All rights reserved.
Development and application of biological technologies in fish genetic breeding.
Xu, Kang; Duan, Wei; Xiao, Jun; Tao, Min; Zhang, Chun; Liu, Yun; Liu, ShaoJun
2015-02-01
Fish genetic breeding is a process that remolds heritable traits to obtain neotype and improved varieties. For the purpose of genetic improvement, researchers can select for desirable genetic traits, integrate a suite of traits from different donors, or alter the innate genetic traits of a species. These improved varieties have, in many cases, facilitated the development of the aquaculture industry by lowering costs and increasing both quality and yield. In this review, we present the pertinent literatures and summarize the biological bases and application of selection breeding technologies (containing traditional selective breeding, molecular marker-assisted breeding, genome-wide selective breeding and breeding by controlling single-sex groups), integration breeding technologies (containing cross breeding, nuclear transplantation, germline stem cells and germ cells transplantation, artificial gynogenesis, artificial androgenesis and polyploid breeding) and modification breeding technologies (represented by transgenic breeding) in fish genetic breeding. Additionally, we discuss the progress our laboratory has made in the field of chromosomal ploidy breeding of fish, including distant hybridization, gynogenesis, and androgenesis. Finally, we systematically summarize the research status and known problems associated with each technology.
2013-01-01
Background Determining the value of livestock breeds is essential to define conservation priorities, manage genetic diversity and allocate funds. Within- and between-breed genetic diversity need to be assessed to preserve the highest intra-specific variability. Information on genetic diversity and risk status is still lacking for many Creole cattle breeds from the Americas, despite their distinct evolutionary trajectories and adaptation to extreme environmental conditions. Methods A comprehensive genetic analysis of 67 Iberoamerican cattle breeds was carried out with 19 FAO-recommended microsatellites to assess conservation priorities. Contributions to global diversity were investigated using alternative methods, with different weights given to the within- and between-breed components of genetic diversity. Information on Iberoamerican plus 15 worldwide cattle breeds was used to investigate the contribution of geographical breed groups to global genetic diversity. Results Overall, Creole cattle breeds showed a high level of genetic diversity with the highest level found in breeds admixed with zebu cattle, which were clearly differentiated from all other breeds. Within-breed kinships revealed seven highly inbred Creole breeds for which measures are needed to avoid further genetic erosion. However, if contribution to heterozygosity was the only criterion considered, some of these breeds had the lowest priority for conservation decisions. The Weitzman approach prioritized highly differentiated breeds, such as Guabalá, Romosinuano, Cr. Patagonico, Siboney and Caracú, while kinship-based methods prioritized mainly zebu-related breeds. With the combined approaches, breed ranking depended on the weights given to the within- and between-breed components of diversity. Overall, the Creole groups of breeds were generally assigned a higher priority for conservation than the European groups of breeds. Conclusions Conservation priorities differed significantly according to the weight given to within- and between-breed genetic diversity. Thus, when establishing conservation programs, it is necessary to also take into account other features. Creole cattle and local isolated breeds retain a high level of genetic diversity. The development of sustainable breeding and crossbreeding programs for Creole breeds, and the added value resulting from their products should be taken into consideration to ensure their long-term survival. PMID:24079454
Hulsegge, B; Calus, M P L; Oldenbroek, J K; Windig, J J
2017-02-01
From a genetic point of view, the selection of breeds and animals within breeds for conservation in a national gene pool can be based on a maximum diversity strategy. This implies that priority is given to conservation of breeds and animals that diverge most and overlap of conserved diversity is minimized. This study investigated the genetic diversity in the Dutch Red and White Friesian (DFR) cattle breed and its contribution to the total genetic diversity in the pool of the Dutch dairy breeds. All Dutch cattle breeds are clearly distinct, except for Dutch Friesian breed (DF) and DFR and have their own specific genetic identity. DFR has a small but unique contribution to the total genetic diversity of Dutch cattle breeds and is closely related to the Dutch Friesian breed. Seven different lines are distinguished within the DFR breed and all contribute to the diversity of the DFR breed. Two lines show the largest contributions to the genetic diversity in DFR. One of these lines comprises unique diversity both within the breed and across all cattle breeds. The other line comprises unique diversity for the DFR but overlaps with the Holstein Friesian breed. There seems to be no necessity to conserve the other five lines separately, because their level of differentiation is very low. This study illustrates that, when taking conservation decisions for a breed, it is worthwhile to take into account the population structure of the breed itself and the relationships with other breeds. © 2016 Blackwell Verlag GmbH.
Schradin, Carsten
2008-04-01
Animals have to adjust their physiology to seasonal changes, in response to variation in food availability, social tactics and reproduction. I compared basal corticosterone and testosterone levels in free ranging striped mouse from a desert habitat, comparing between the sexes, breeding and philopatric non-breeding individuals, and between the breeding and the non-breeding season. I expected differences between breeders and non-breeders and between seasons with high and low food availability. Basal serum corticosterone was measured from 132 different individuals and serum testosterone from 176 different individuals of free living striped mice. Corticosterone and testosterone levels were independent of age, body weight and not influenced by carrying a transmitter. The levels of corticosterone and testosterone declined by approximately 50% from the breeding to the non-breeding season in breeding females as well as non-breeding males and females. In contrast, breeding males showed much lower corticosterone levels during the breeding season than all other classes, and were the only class that showed an increase of corticosterone from the breeding to the non-breeding season. As a result, breeding males had similar corticosterone levels as other social classes during the non-breeding season. During the breeding season, breeding males had much higher testosterone levels than other classes, which decreased significantly from the breeding to the non-breeding season. My results support the prediction that corticosterone decreases during periods of low food abundance. Variation in the pattern of hormonal secretion in striped mice might assist them to cope with seasonal changes in energy demand in a desert habitat.
Characterization of recombination features and the genetic basis in multiple cattle breeds.
Shen, Botong; Jiang, Jicai; Seroussi, Eyal; Liu, George E; Ma, Li
2018-04-27
Crossover generated by meiotic recombination is a fundamental event that facilitates meiosis and sexual reproduction. Comparative studies have shown wide variation in recombination rate among species, but the characterization of recombination features between cattle breeds has not yet been performed. Cattle populations in North America count millions, and the dairy industry has genotyped millions of individuals with pedigree information that provide a unique opportunity to study breed-level variations in recombination. Based on large pedigrees of Jersey, Ayrshire and Brown Swiss cattle with genotype data, we identified over 3.4 million maternal and paternal crossover events from 161,309 three-generation families. We constructed six breed- and sex-specific genome-wide recombination maps using 58,982 autosomal SNPs for two sexes in the three dairy cattle breeds. A comparative analysis of the six recombination maps revealed similar global recombination patterns between cattle breeds but with significant differences between sexes. We confirmed that male recombination map is 10% longer than the female map in all three cattle breeds, consistent with previously reported results in Holstein cattle. When comparing recombination hotspot regions between cattle breeds, we found that 30% and 10% of the hotspots were shared between breeds in males and females, respectively, with each breed exhibiting some breed-specific hotspots. Finally, our multiple-breed GWAS found that SNPs in eight loci affected recombination rate and that the PRDM9 gene associated with hotspot usage in multiple cattle breeds, indicating a shared genetic basis for recombination across dairy cattle breeds. Collectively, our results generated breed- and sex-specific recombination maps for multiple cattle breeds, provided a comprehensive characterization and comparison of recombination patterns between breeds, and expanded our understanding of the breed-level variations in recombination features within an important livestock species.
Pedersen, N; Liu, H; Theilen, G; Sacks, B
2013-06-01
Genetic diversity was compared among eight dog breeds selected primarily for conformation (Standard Poodle, Italian Greyhound and show English Setter), conformation and performance (Brittany), predominantly performance (German Shorthaired and Wirehaired Pointers) or solely performance (field English Setter and Red Setter). Modern village dogs, which better reflect ancestral genetic diversity, were used as the standard. Four to seven maternal and one to two Y haplotypes were found per breed, with one usually dominant. Diversity of maternal haplotypes was greatest in village dogs, intermediate in performance breeds and lowest in conformation breeds. Maternal haplotype sharing occurred across all breeds, while Y haplotypes were more breed specific. Almost all paternal haplotypes were identified among village dogs, with the exception of the dominant Y haplotype in Brittanys, which has not been identified heretofore. The highest heterozygosity based on 24 autosomal microsatellites was found in village dogs and the lowest in conformation (show) breeds. Principal coordinate analysis indicated that conformation-type breeds were distinct from breeds heavily used for performance, the latter clustering more closely with village dogs. The Brittany, a well-established dual show and field breed, was also genetically intermediate between the conformation and performance breeds. The number of DLA-DRB1 alleles varied from 3 to 10 per breed with extensive sharing. SNPs across the wider DLA region were more frequently homozygous in all pure breeds than in village dogs. Compared with their village dog relatives, all modern breed dogs exhibit reduced genetic diversity. Genetic diversity was even more reduced among breeds under selection for show/conformation. © 2012 Blackwell Verlag GmbH.
The legacy of Columbus in American horse populations assessed by microsatellite markers.
Cortés, O; Dunner, S; Gama, L T; Martínez, A M; Delgado, J V; Ginja, C; Jiménez, L M; Jordana, J; Luis, C; Oom, M M; Sponenberg, D P; Zaragoza, P; Vega-Pla, J L
2017-08-01
Criollo horse populations descend from horses brought from the Iberian Peninsula over the period of colonization (15th to 17th century). They are spread throughout the Americas and have potentially undergone genetic hybridization with other breeds in the recent past. In this study, 25 autosomal microsatellites were genotyped in 50 horse breeds representing Criollo populations from 12 American countries (27 breeds), breeds from the Iberian Peninsula (19), one breed each from France and Morocco and two cosmopolitan horse breeds (Thoroughbred and Arabian). The genetic relationships among breeds identified five clusters: Celtic; Iberian; North American with Thoroughbred influence; most Colombian breeds; and nearly all other Criollo breeds. The group of "all other Criollo breeds" had the closest genetic relationship with breeds originating from the Iberian Peninsula, specifically with the Celtic group. For the whole set of Criollo breeds analysed, the estimated genetic contribution from other breeds was approximately 50%, 30% and 20% for the Celtic, Iberian and Arab-Thoroughbred groups, respectively. The spatial distribution of genetic diversity indicates that hotspots of genetic diversity are observed in populations from Colombia, Ecuador, Brazil, Paraguay and western United States, possibly indicating points of arrival and dispersion of Criollo horses in the American continent. These results indicate that Criollo breeds share a common ancestry, but that each breed has its own identity. © 2017 Blackwell Verlag GmbH.
Boerner, Vinzent; Johnston, David J; Tier, Bruce
2014-10-24
The major obstacles for the implementation of genomic selection in Australian beef cattle are the variety of breeds and in general, small numbers of genotyped and phenotyped individuals per breed. The Australian Beef Cooperative Research Center (Beef CRC) investigated these issues by deriving genomic prediction equations (PE) from a training set of animals that covers a range of breeds and crosses including Angus, Murray Grey, Shorthorn, Hereford, Brahman, Belmont Red, Santa Gertrudis and Tropical Composite. This paper presents accuracies of genomically estimated breeding values (GEBV) that were calculated from these PE in the commercial pure-breed beef cattle seed stock sector. PE derived by the Beef CRC from multi-breed and pure-breed training populations were applied to genotyped Angus, Limousin and Brahman sires and young animals, but with no pure-breed Limousin in the training population. The accuracy of the resulting GEBV was assessed by their genetic correlation to their phenotypic target trait in a bi-variate REML approach that models GEBV as trait observations. Accuracies of most GEBV for Angus and Brahman were between 0.1 and 0.4, with accuracies for abattoir carcass traits generally greater than for live animal body composition traits and reproduction traits. Estimated accuracies greater than 0.5 were only observed for Brahman abattoir carcass traits and for Angus carcass rib fat. Averaged across traits within breeds, accuracies of GEBV were highest when PE from the pooled across-breed training population were used. However, for the Angus and Brahman breeds the difference in accuracy from using pure-breed PE was small. For the Limousin breed no reasonable results could be achieved for any trait. Although accuracies were generally low compared to published accuracies estimated within breeds, they are in line with those derived in other multi-breed populations. Thus PE developed by the Beef CRC can contribute to the implementation of genomic selection in Australian beef cattle breeding.
A simple language to script and simulate breeding schemes: the breeding scheme language
USDA-ARS?s Scientific Manuscript database
It is difficult for plant breeders to determine an optimal breeding strategy given that the problem involves many factors, such as target trait genetic architecture and breeding resource availability. There are many possible breeding schemes for each breeding program. Although simulation study may b...
Phocas, F; Belloc, C; Bidanel, J; Delaby, L; Dourmad, J Y; Dumont, B; Ezanno, P; Fortun-Lamothe, L; Foucras, G; Frappat, B; González-García, E; Hazard, D; Larzul, C; Lubac, S; Mignon-Grasteau, S; Moreno, C R; Tixier-Boichard, M; Brochard, M
2016-11-01
Agroecology uses ecological processes and local resources rather than chemical inputs to develop productive and resilient livestock and crop production systems. In this context, breeding innovations are necessary to obtain animals that are both productive and adapted to a broad range of local contexts and diversity of systems. Breeding strategies to promote agroecological systems are similar for different animal species. However, current practices differ regarding the breeding of ruminants, pigs and poultry. Ruminant breeding is still an open system where farmers continue to choose their own breeds and strategies. Conversely, pig and poultry breeding is more or less the exclusive domain of international breeding companies which supply farmers with hybrid animals. Innovations in breeding strategies must therefore be adapted to the different species. In developed countries, reorienting current breeding programmes seems to be more effective than developing programmes dedicated to agroecological systems that will struggle to be really effective because of the small size of the populations currently concerned by such systems. Particular attention needs to be paid to determining the respective usefulness of cross-breeding v. straight breeding strategies of well-adapted local breeds. While cross-breeding may offer some immediate benefits in terms of improving certain traits that enable the animals to adapt well to local environmental conditions, it may be difficult to sustain these benefits in the longer term and could also induce an important loss of genetic diversity if the initial pure-bred populations are no longer produced. As well as supporting the value of within-breed diversity, we must preserve between-breed diversity in order to maintain numerous options for adaptation to a variety of production environments and contexts. This may involve specific public policies to maintain and characterize local breeds (in terms of both phenotypes and genotypes), which could be used more effectively if they benefited from the scientific and technical resources currently available for more common breeds. Last but not least, public policies need to enable improved information concerning the genetic resources and breeding tools available for the agroecological management of livestock production systems, and facilitate its assimilation by farmers and farm technicians.
Gama, Luis T; Martínez, Amparo M; Carolino, Inês; Landi, Vincenzo; Delgado, Juan V; Vicente, Antonio A; Vega-Pla, José L; Cortés, Oscar; Sousa, Conceição O
2013-06-14
Native pig breeds in the Iberian Peninsula are broadly classified as belonging to either the Celtic or the Mediterranean breed groups, but there are other local populations that do not fit into any of these groups. Most of the native pig breeds in Iberia are in danger of extinction, and the assessment of their genetic diversity and population structure, relationships and possible admixture between breeds, and the appraisal of conservation alternatives are crucial to adopt appropriate management strategies. A panel of 24 microsatellite markers was used to genotype 844 animals representing the 17 most important native swine breeds and wild populations existing in Portugal and Spain and various statistical tools were applied to analyze the results. Genetic diversity was high in the breeds studied, with an overall mean of 13.6 alleles per locus and an average expected heterozygosity of 0.80. Signs of genetic bottlenecks were observed in breeds with a small census size, and population substructure was present in some of the breeds with larger census sizes. Variability among breeds accounted for about 20% of the total genetic diversity, and was explained mostly by differences among the Celtic, Mediterranean and Basque breed groups, rather than by differences between domestic and wild pigs. Breeds clustered closely according to group, and proximity was detected between wild pigs and the Mediterranean cluster of breeds. Most breeds had their own structure and identity, with very little evidence of admixture, except for the Retinto and Entrepelado varieties of the Mediterranean group, which are very similar. Genetic influence of the identified breed clusters extends beyond the specific geographical areas across borders throughout the Iberian Peninsula, with a very sharp transition from one breed group to another. Analysis of conservation priorities confirms that the ranking of a breed for conservation depends on the emphasis placed on its contribution to the between- and within-breed components of genetic diversity. Native pig breeds in Iberia reveal high levels of genetic diversity, a solid breed structure and a clear organization in well-defined clusters.
Bigi, D; Marelli, S P; Randi, E; Polli, M
2015-12-01
Very little research into genetic diversity of Italian native dog breeds has been carried out so far. In this study we aimed to estimate and compare the genetic diversity of four native Italian shepherd dog breeds: the Maremma, Bergamasco, Lupino del Gigante and Oropa shepherds. Therefore, some cosmopolitan dog breeds, which have been widely raised in Italy for a long time past, have also been considered to check possible influence of these dog populations on the Italian autochthonous breeds considered here. A total of 212 individuals, belonging to 10 different dog breeds, were sampled and genotyped using 18 autosomal microsatellite loci. We analyzed the genetic diversity of these breeds, within breed diversity, breed relationship and population structure. The 10 breeds considered in this study were clearly genetically differentiated from each other, regardless of current population sizes and the onset of separate breeding history. The level of genetic diversity explained 20% of the total genetic variation. The level of H E found here is in agreement with that found by other studies. The native Italian breeds showed generally higher genetic diversity compared with the long established, well-defined cosmopolitan dog breeds. As the Border Collie seems closer to the Italian breeds than the other cosmopolitan shepherd dogs considered here, a possible utilization of this breed to improve working performance in Italian traditional working shepherd dogs cannot be ignored. The data and information found here can be utilized in the organization of conservation programs planned to reduce inbreeding and to minimize loss of genetic variability.
Hartwig, S; Wellmann, R; Hamann, H; Bennewitz, J
2014-12-01
During the past decades, migrant contributions have accumulated in many local breeds. Cross-breeding was carried out to mitigate the risk of inbreeding depression and to improve the performance of local breeds. However, breeding activities for local breeds were not as intensive and target oriented as for popular high-yielding breeds. Therefore, even if performance improved, the gap between the performance of local and popular breeds increased for many traits. Furthermore, the genetic originality of local breeds declined due to the increasing contributions of migrant breeds. This study examined the importance of migrant breed influences for the realization of breeding progress of beef traits of German Vorderwald and Hinterwald cattle. The results show that there is a high amount of migrant contributions and their effects on performance are substantial for most traits. The effect of the French cattle breed Montbéliard (p-value 0.014) on daily gain of Vorderwald bulls at test station was positive. The effects of Vorderwald ancestors (p-value for daily gain 0.007 and p-value for net gain 0.004) were positive for both traits under consideration in the population of Hinterwald cattle. Additionally, the effect of remaining breeds (p-value 0.030) on net gain of Hinterwald cattle in the field was also positive. The estimated effect of Fleckvieh ancestors on net gain of Hinterwald cattle was even larger but not significant. Breeding values adjusted for the effects of the migrant breeds showed little genetic trend. © 2014 Blackwell Verlag GmbH.
Cortés, O; Martinez, A M; Cañon, J; Sevane, N; Gama, L T; Ginja, C; Landi, V; Zaragoza, P; Carolino, N; Vicente, A; Sponenberg, P; Delgado, J V
2016-07-01
Criollo pig breeds are descendants from pigs brought to the American continent starting with Columbus second trip in 1493. Pigs currently play a key role in social economy and community cultural identity in Latin America. The aim of this study was to establish conservation priorities among a comprehensive group of Criollo pig breeds based on a set of 24 microsatellite markers and using different criteria. Spain and Portugal pig breeds, wild boar populations of different European geographic origins and commercial pig breeds were included in the analysis as potential genetic influences in the development of Criollo pig breeds. Different methods, differing in the weight given to within- and between-breed genetic variability, were used in order to estimate the contribution of each breed to global genetic diversity. As expected, the partial contribution to total heterozygosity gave high priority to Criollo pig breeds, whereas Weitzman procedures prioritized Iberian Peninsula breeds. With the combined within- and between-breed approaches, different conservation priorities were achieved. The Core Set methodologies highly prioritized Criollo pig breeds (Cr. Boliviano, Cr. Pacifico, Cr. Cubano and Cr. Guadalupe). However, weighing the between- and within-breed components with FST and 1-FST, respectively, resulted in higher contributions of Iberian breeds. In spite of the different conservation priorities according to the methodology used, other factors in addition to genetic information also need to be considered in conservation programmes, such as the economic, cultural or historical value of the breeds involved.
Cortés, O; Martinez, A M; Cañon, J; Sevane, N; Gama, L T; Ginja, C; Landi, V; Zaragoza, P; Carolino, N; Vicente, A; Sponenberg, P; Delgado, J V
2016-01-01
Criollo pig breeds are descendants from pigs brought to the American continent starting with Columbus second trip in 1493. Pigs currently play a key role in social economy and community cultural identity in Latin America. The aim of this study was to establish conservation priorities among a comprehensive group of Criollo pig breeds based on a set of 24 microsatellite markers and using different criteria. Spain and Portugal pig breeds, wild boar populations of different European geographic origins and commercial pig breeds were included in the analysis as potential genetic influences in the development of Criollo pig breeds. Different methods, differing in the weight given to within- and between-breed genetic variability, were used in order to estimate the contribution of each breed to global genetic diversity. As expected, the partial contribution to total heterozygosity gave high priority to Criollo pig breeds, whereas Weitzman procedures prioritized Iberian Peninsula breeds. With the combined within- and between-breed approaches, different conservation priorities were achieved. The Core Set methodologies highly prioritized Criollo pig breeds (Cr. Boliviano, Cr. Pacifico, Cr. Cubano and Cr. Guadalupe). However, weighing the between- and within-breed components with FST and 1-FST, respectively, resulted in higher contributions of Iberian breeds. In spite of the different conservation priorities according to the methodology used, other factors in addition to genetic information also need to be considered in conservation programmes, such as the economic, cultural or historical value of the breeds involved. PMID:27025169
Stevenson, Tyler J; Small, Thomas W; Ball, Gregory F; Moore, Ignacio T
2012-08-01
Seasonal breeding in temperate zone vertebrates is characterised by pronounced variation in both central and peripheral reproductive physiology as well as behaviour. In contrast, many tropical species have a comparatively longer and less of a seasonal pattern of breeding than their temperate zone counterparts. These extended, more "flexible" reproductive periods may be associate with a lesser degree of annual variation in reproductive physiology. Here we investigated variation in the neuroendocrine control of reproduction in relation to the changes in the neural song control system in a tropical breeding songbird the rufous-collared sparrows (Zonotrichia capensis). Using in situ hybridization, we show that the optical density of GnRH1 mRNA expression is relatively constant across pre-breeding and breeding states. However, males were found to have significantly greater expression compared to females regardless of breeding state. Both males and females showed marked variation in measures of peripheral reproductive physiology with greater gonadal volumes and concentrations of sex steroids in the blood (i.e. testosterone in males; estrogen in females) during the breeding season as compared to the pre-breeding season. These findings suggest that the environmental cues regulating breeding in a tropical breeding bird ultimately exert their effects on physiology at the level of the median eminence and regulate the release of GnRH1. In addition, histological analysis of the song control system HVC, RA and Area X revealed that breeding males had significantly larger volumes of these brain nuclei as compared to non-breeding males, breeding females, and non-breeding females. Females did not exhibit a significant difference in the size of song control regions across breeding states. Together, these data show a marked sex difference in the extent to which there is breeding-associated variation in reproductive physiology and brain plasticity that is dependent on the reproductive state in a tropical breeding songbird. Copyright © 2012 Elsevier Inc. All rights reserved.
Medugorac, Ivica; Medugorac, Ana; Russ, Ingolf; Veit-Kensch, Claudia E; Taberlet, Pierre; Luntz, Bernhard; Mix, Henry M; Förster, Martin
2009-08-01
In times of rapid global and unforeseeable environmental changes, there is an urgent need for a sustainable cattle breeding policy, based on a global view. Most of the indigenous breeds are specialized in a particular habitat or production system but are rapidly disappearing. Thus, they represent an important resource to meet present and future breeding objectives. Based on 105 microsatellites, we obtained thorough information on genetic diversity and population structure of 16 cattle breeds that cover a geographical area from the domestication centre near Anatolia, through the Balkan and alpine regions, to the North-West of Europe. Breeds under strict artificial selection and indigenous breeds under traditional breeding schemes were included. The overall results showed that the genetic diversity is widespread in Busa breeds in the Anatolian and Balkan areas, when compared with the alpine and north-western European breeds. Our results reflect long-term evolutionary and short-term breeding events very well. The regular pattern of allele frequency distribution in the entire cattle population studied clearly suggests conservation of rare alleles by conservation of preferably unselected traditional breeds with large effective population sizes. From a global and long-term conservation genetics point of view, the native and highly variable breeds closer to the domestication centre could serve as valuable sources of genes for future needs, not only for cattle but also for other farm animals.
Hozé, C; Fritz, S; Phocas, F; Boichard, D; Ducrocq, V; Croiseau, P
2014-01-01
Single-breed genomic selection (GS) based on medium single nucleotide polymorphism (SNP) density (~50,000; 50K) is now routinely implemented in several large cattle breeds. However, building large enough reference populations remains a challenge for many medium or small breeds. The high-density BovineHD BeadChip (HD chip; Illumina Inc., San Diego, CA) containing 777,609 SNP developed in 2010 is characterized by short-distance linkage disequilibrium expected to be maintained across breeds. Therefore, combining reference populations can be envisioned. A population of 1,869 influential ancestors from 3 dairy breeds (Holstein, Montbéliarde, and Normande) was genotyped with the HD chip. Using this sample, 50K genotypes were imputed within breed to high-density genotypes, leading to a large HD reference population. This population was used to develop a multi-breed genomic evaluation. The goal of this paper was to investigate the gain of multi-breed genomic evaluation for a small breed. The advantage of using a large breed (Normande in the present study) to mimic a small breed is the large potential validation population to compare alternative genomic selection approaches more reliably. In the Normande breed, 3 training sets were defined with 1,597, 404, and 198 bulls, and a unique validation set included the 394 youngest bulls. For each training set, estimated breeding values (EBV) were computed using pedigree-based BLUP, single-breed BayesC, or multi-breed BayesC for which the reference population was formed by any of the Normande training data sets and 4,989 Holstein and 1,788 Montbéliarde bulls. Phenotypes were standardized by within-breed genetic standard deviation, the proportion of polygenic variance was set to 30%, and the estimated number of SNP with a nonzero effect was about 7,000. The 2 genomic selection (GS) approaches were performed using either the 50K or HD genotypes. The correlations between EBV and observed daughter yield deviations (DYD) were computed for 6 traits and using the different prediction approaches. Compared with pedigree-based BLUP, the average gain in accuracy with GS in small populations was 0.057 for the single-breed and 0.086 for multi-breed approach. This gain was up to 0.193 and 0.209, respectively, with the large reference population. Improvement of EBV prediction due to the multi-breed evaluation was higher for animals not closely related to the reference population. In the case of a breed with a small reference population size, the increase in correlation due to multi-breed GS was 0.141 for bulls without their sire in reference population compared with 0.016 for bulls with their sire in reference population. These results demonstrate that multi-breed GS can contribute to increase genomic evaluation accuracy in small breeds. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Breed distribution of the nt230(del4) MDR1 mutation in dogs.
Gramer, Irina; Leidolf, Regina; Döring, Barbara; Klintzsch, Stefanie; Krämer, Eva-Maria; Yalcin, Ebru; Petzinger, Ernst; Geyer, Joachim
2011-07-01
A 4-bp deletion mutation associated with multiple drug sensitivity exists in the canine multidrug resistance (MDR1) gene. This mutation has been detected in more than 10 purebred dog breeds as well as in mixed breed dogs. To evaluate the breed distribution of this mutation in Germany, 7378 dogs were screened, including 6999 purebred and 379 mixed breed dogs. The study included dog breeds that show close genetic relationship or share breeding history with one of the predisposed breeds but in which the occurrence of the MDR1 mutation has not been reported. The breeds comprised Bearded Collies, Anatolian Shepherd Dog, Greyhound, Belgian Tervuren, Kelpie, Borzoi, Australian Cattle Dog and the Irish Wolfhound. The MDR1 mutation was not detected is any of these breeds, although it was found as expected in the Collie, Longhaired Whippet, Shetland Sheepdog, Miniature Australian Shepherd, Australian Shepherd, Wäller, White Swiss Shepherd, Old English Sheepdog and Border Collie with varying allelic frequencies for the mutant MDR1 allele of 59%, 45%, 30%, 24%, 22%, 17%, 14%, 4% and 1%, respectively. Allelic frequencies of 8% and 2% were determined in herding breed mixes and unclassified mixed breeds, respectively. Because of its widespread breed distribution and occurrence in many mixed breed dogs, it is difficult for veterinarians and dog owners to recognise whether MDR1-related drug sensitivity is relevant for an individual animal. This study provides a comprehensive overview of all affected dog breeds and many dog breeds that are probably unaffected on the basis of ∼15,000 worldwide MDR1 genotyping data. Copyright © 2010 Elsevier Ltd. All rights reserved.
Litter size at birth in purebred dogs--a retrospective study of 224 breeds.
Borge, Kaja Sverdrup; Tønnessen, Ragnhild; Nødtvedt, Ane; Indrebø, Astrid
2011-03-15
Despite the long history of purebred dogs and the large number of existing breeds, few studies of canine litter size based upon a large number of breeds exist. Previous studies are either old or include only one or a few selected breeds. The aim of this large-scale retrospective study was to estimate the mean litter size in a large population of purebred dogs and to describe some factors that might influence the litter size. A total of 10,810 litters of 224 breeds registered in the Norwegian Kennel Club from 2006 to 2007 were included in the study. The overall mean litter size at birth was 5.4 (± 0.025). A generalized linear mixed model with a random intercept for breed revealed that the litter size was significantly influenced by the size of the breed, the method of mating and the age of the bitch. A significant interaction between breed size and age was detected, in that the expected number of puppies born decreased more for older bitches of large breeds. Mean litter size increased with breed size, from 3.5 (± 0.04) puppies in miniature breeds to 7.1 (± 0.13) puppies in giant breeds. No effect on litter size was found for the season of birth or the parity of the bitch. The large number of breeds and the detail of the registered information on the litters in this study are unique. In conclusion, the size of the breed, the age of the bitch and the method of mating were found to influence litter size in purebred dogs when controlling for breed, with the size of the breed as the strongest determinant. Copyright © 2011 Elsevier Inc. All rights reserved.
Genomic evaluation of regional dairy cattle breeds in single-breed and multibreed contexts.
Jónás, D; Ducrocq, V; Fritz, S; Baur, A; Sanchez, M-P; Croiseau, P
2017-02-01
An important prerequisite for high prediction accuracy in genomic prediction is the availability of a large training population, which allows accurate marker effect estimation. This requirement is not fulfilled in case of regional breeds with a limited number of breeding animals. We assessed the efficiency of the current French routine genomic evaluation procedure in four regional breeds (Abondance, Tarentaise, French Simmental and Vosgienne) as well as the potential benefits when the training populations consisting of males and females of these breeds are merged to form a multibreed training population. Genomic evaluation was 5-11% more accurate than a pedigree-based BLUP in three of the four breeds, while the numerically smallest breed showed a < 1% increase in accuracy. Multibreed genomic evaluation was beneficial for two breeds (Abondance and French Simmental) with maximum gains of 5 and 8% in correlation coefficients between yield deviations and genomic estimated breeding values, when compared to the single-breed genomic evaluation results. Inflation of genomic evaluation of young candidates was also reduced. Our results indicate that genomic selection can be effective in regional breeds as well. Here, we provide empirical evidence proving that genetic distance between breeds is only one of the factors affecting the efficiency of multibreed genomic evaluation. © 2016 Blackwell Verlag GmbH.
Genetic Diversity in the Modern Horse Illustrated from Genome-Wide SNP Data
Petersen, Jessica L.; Mickelson, James R.; Cothran, E. Gus; Andersson, Lisa S.; Axelsson, Jeanette; Bailey, Ernie; Bannasch, Danika; Binns, Matthew M.; Borges, Alexandre S.; Brama, Pieter; da Câmara Machado, Artur; Distl, Ottmar; Felicetti, Michela; Fox-Clipsham, Laura; Graves, Kathryn T.; Guérin, Gérard; Haase, Bianca; Hasegawa, Telhisa; Hemmann, Karin; Hill, Emmeline W.; Leeb, Tosso; Lindgren, Gabriella; Lohi, Hannes; Lopes, Maria Susana; McGivney, Beatrice A.; Mikko, Sofia; Orr, Nicholas; Penedo, M. Cecilia T; Piercy, Richard J.; Raekallio, Marja; Rieder, Stefan; Røed, Knut H.; Silvestrelli, Maurizio; Swinburne, June; Tozaki, Teruaki; Vaudin, Mark; M. Wade, Claire; McCue, Molly E.
2013-01-01
Horses were domesticated from the Eurasian steppes 5,000–6,000 years ago. Since then, the use of horses for transportation, warfare, and agriculture, as well as selection for desired traits and fitness, has resulted in diverse populations distributed across the world, many of which have become or are in the process of becoming formally organized into closed, breeding populations (breeds). This report describes the use of a genome-wide set of autosomal SNPs and 814 horses from 36 breeds to provide the first detailed description of equine breed diversity. FST calculations, parsimony, and distance analysis demonstrated relationships among the breeds that largely reflect geographic origins and known breed histories. Low levels of population divergence were observed between breeds that are relatively early on in the process of breed development, and between those with high levels of within-breed diversity, whether due to large population size, ongoing outcrossing, or large within-breed phenotypic diversity. Populations with low within-breed diversity included those which have experienced population bottlenecks, have been under intense selective pressure, or are closed populations with long breed histories. These results provide new insights into the relationships among and the diversity within breeds of horses. In addition these results will facilitate future genome-wide association studies and investigations into genomic targets of selection. PMID:23383025
Solis, A; Jugo, B M; Mériaux, J C; Iriondo, M; Mazón, L I; Aguirre, A I; Vicario, A; Estomba, A
2005-01-01
In the present study, genetic analyses of diversity and differentiation were performed on four Basque-Navarrese semiferal native horse breeds. In total, 417 animals were genotyped for 12 microsatellite markers. Mean heterozygosity was higher than in other horse breeds, surely as a consequence of management. Although the population size of some of these breeds has declined appreciably in the past century, no genetic bottleneck was detected in any of the breeds, possibly because it was not narrow enough to be detectable. In the phylogenetic tree, the Jaca Navarra breed was very similar to the Pottoka, but appeared to stand in an intermediate position between this and the meat breeds. Assuming that Pottoka is the breed less affected by admixture, the others gradually distanced themselves from it through varying influences from outside breeds, among other factors. In a comparative study with other breeds, the French breeds Ardanais, Comtois, and Breton were the closest to the four native breeds. Three different approaches for evaluating the distribution of genetic diversity were applied. The high intrabreed variability of Euskal Herriko Mendiko Zaldia (EHMZ) was pointed out in these analyses. In our opinion, cultural, economic, and scientific factors should also be considered in the management of these horse breeds.
Genetic diversity in Egyptian and Italian goat breeds measured with microsatellite polymorphism.
Agha, S H; Pilla, F; Galal, S; Shaat, I; D'Andrea, M; Reale, S; Abdelsalam, A Z A; Li, M H
2008-06-01
Seven microsatellite markers were used to study genetic diversity of three Egyptian (Egyptian Baladi, Barki and Zaraibi) and two Italian (Maltese and Montefalcone) goat breeds. The microsatellites showed a high polymorphic information content (PIC) of more than 0.5 in most of the locus-breed combinations and indicated that the loci were useful in assessing within- and between-breed variability of domestic goat (Capra hircus). The expected heterozygosity of the breeds varied from 0.670 to 0.792. In the geographically wider distributed Egyptian Baladi breed there were indications for deviations from random breeding. Analysis of genetic distances and population structure grouped the three Egyptian goat breeds together, and separated them from the two Italian breeds. The studied Mediterranean breeds sampled from African and European populations seem to have differentiated from each other with only little genetic exchange between the geographically isolated populations.
Miniaturized GPS Tags Identify Non-breeding Territories of a Small Breeding Migratory Songbird.
Hallworth, Michael T; Marra, Peter P
2015-06-09
For the first time, we use a small archival global positioning system (GPS) tag to identify and characterize non-breeding territories, quantify migratory connectivity, and identify population boundaries of Ovenbirds (Seiurus aurocapilla), a small migratory songbird, captured at two widely separated breeding locations. We recovered 15 (31%) GPS tags with data and located the non-breeding territories of breeding Ovenbirds from Maryland and New Hampshire, USA (0.50 ± 0.15 ha, mean ± SE). All non-breeding territories had similar environmental attributes despite being distributed across parts of Florida, Cuba and Hispaniola. New Hampshire and Maryland breeding populations had non-overlapping non-breeding population boundaries that encompassed 114,803 and 169,233 km(2), respectively. Archival GPS tags provided unprecedented pinpoint locations and associated environmental information of tropical non-breeding territories. This technology is an important step forward in understanding seasonal interactions and ultimately population dynamics of populations throughout the annual cycle.
Rigby, Elizabeth A.; Haukos, David A.
2012-01-01
Previous Mottled Duck (Anas fulvigula) studies suggested that high female breeding season survival may be caused by low nesting effort, but few breeding season estimates of survival associated with nesting effort exist on the western Gulf Coast. Here, breeding season survival (N = 40) and breeding incidence (N = 39) were estimated for female Mottled Ducks on the upper Texas coast, 2006–2008. Females were fitted with backpack radio transmitters and visually relocated every 3–4 days. Weekly survival was estimated using the Known Fate procedure of program MARK with breeding incidence estimated as the annual proportion of females observed nesting or with broods. The top-ranked survival model included a body mass covariate and held weekly female survival constant across weeks and years (SW = 0.986, SE = 0.006). When compared to survival across the entire year estimated from previous band recovery and age ratio analysis, survival rate during the breeding season did not differ. Breeding incidence was well below 100% in all years and highly variable among years (15%–63%). Breeding season survival and breeding incidence were similar to estimates obtained with implant transmitters from the mid-coast of Texas. The greatest breeding incidence for both studies occurred when drought indices indicated average environmental moisture during the breeding season. The observed combination of low breeding incidence and high breeding season survival support the hypothesis of a trade-off between the ecological cost of nesting effort and survival for Mottled Duck females. Habitat cues that trigger nesting are unknown and should be investigated.
Characterization of the genetic profile of five Danish dog breeds.
Pertoldi, C; Kristensen, T N; Loeschcke, V; Berg, P; Praebel, A; Stronen, A V; Proschowsky, H F; Fredholm, M
2013-11-01
This investigation presents results from a genetic characterization of 5 Danish dog breeds genotyped on the CanineHD BeadChip microarray with 170,000 SNP. The breeds investigated were 1) Danish Spitz (DS; n=8), 2) Danish-Swedish Farm Dog (DSF; n=18), 3) Broholmer (BR; n=22), 4) Old Danish Pointing Dog (ODP; n=24), and 5) Greenland Dog (GD; n=23). The aims of the investigation were to characterize the genetic profile of the abovementioned dog breeds by quantifying the genetic differentiation among them and the degree of genetic homogeneity within breeds. The genetic profile was determined by means of principal component analysis (PCA) and through a Bayesian clustering method. Both the PCA and the Bayesian clustering method revealed a clear genetic separation of the 5 breeds. The level of genetic variation within the breeds varied. The expected heterozygosity (HE) as well as the degree of polymorphism (P%) ranked the dog breeds in the order DS>DSF>BR>ODP>GD. Interestingly, the breed with a tenfold higher census population size compared to the other breeds, the Greenland Dog, had the lowest within-breed genetic variation, emphasizing that census size is a poor predictor of genetic variation. The observed differences in variation among and within dog breeds may be related to factors such as genetic drift, founder effects, genetic admixture, and population bottlenecks. We further examined whether the observed genetic patterns in the 5 dog breeds can be used to design breeding strategies for the preservation of the genetic pool of these dog breeds.
Across-breed EPD tables for the year 2016 adjusted to breed differences for birth year of 2014
USDA-ARS?s Scientific Manuscript database
Records of progeny of 18 breeds were used to estimate differences among the breeds for birth, weaning, and yearling weight and for maternal effects of weaning weight, among 15 of the 18 breeds for carcass marbling and ribeye area and among 14 of the 18 breeds for fat depth and carcass weight. The r...
[Prospects of molecular breeding in medical plants].
Ma, Xiao-Jun; Mo, Chang-Ming
2017-06-01
The molecular-assisted breeding, transgenic breeding and molecular designing breeding are three development directions of plant molecular breeding. Base on these three development directions, this paper summarizes developing status and new tendency of research field of genetic linkage mapping, QTL mapping, association mapping, molecular-assisted selections, pollen-mediated transformations, agrobacterium-mediated transformations, particle gun-mediated transformations, genome editing technologies, whole-genome sequencing, transcriptome sequencing, proteome sequencing and varietal molecular designing. The objective and existing problem of medical plant molecular breeding were discussed the prospect of these three molecular breeding technologies application on medical plant molecular breeding was outlooked. Copyright© by the Chinese Pharmaceutical Association.
MtDNA diversity among four Portuguese autochthonous dog breeds: a fine-scale characterisation
van Asch, Barbara; Pereira, Luísa; Pereira, Filipe; Santa-Rita, Pedro; Lima, Manuela; Amorim, António
2005-01-01
Background The picture of dog mtDNA diversity, as obtained from geographically wide samplings but from a small number of individuals per region or breed, has revealed weak geographic correlation and high degree of haplotype sharing between very distant breeds. We aimed at a more detailed picture through extensive sampling (n = 143) of four Portuguese autochthonous breeds – Castro Laboreiro Dog, Serra da Estrela Mountain Dog, Portuguese Sheepdog and Azores Cattle Dog-and comparatively reanalysing published worldwide data. Results Fifteen haplotypes belonging to four major haplogroups were found in these breeds, of which five are newly reported. The Castro Laboreiro Dog presented a 95% frequency of a new A haplotype, while all other breeds contained a diverse pool of existing lineages. The Serra da Estrela Mountain Dog, the most heterogeneous of the four Portuguese breeds, shared haplotypes with the other mainland breeds, while Azores Cattle Dog shared no haplotypes with the other Portuguese breeds. A review of mtDNA haplotypes in dogs across the world revealed that: (a) breeds tend to display haplotypes belonging to different haplogroups; (b) haplogroup A is present in all breeds, and even uncommon haplogroups are highly dispersed among breeds and continental areas; (c) haplotype sharing between breeds of the same region is lower than between breeds of different regions and (d) genetic distances between breeds do not correlate with geography. Conclusion MtDNA haplotype sharing occurred between Serra da Estrela Mountain dogs (with putative origin in the centre of Portugal) and two breeds in the north and south of the country-with the Castro Laboreiro Dog (which behaves, at the mtDNA level, as a sub-sample of the Serra da Estrela Mountain Dog) and the southern Portuguese Sheepdog. In contrast, the Azores Cattle Dog did not share any haplotypes with the other Portuguese breeds, but with dogs sampled in Northern Europe. This suggested that the Azores Cattle Dog descended maternally from Northern European dogs rather than Portuguese mainland dogs. A review of published mtDNA haplotypes identified thirteen non-Portuguese breeds with sufficient data for comparison. Comparisons between these thirteen breeds, and the four Portuguese breeds, demonstrated widespread haplotype sharing, with the greatest diversity among Asian dogs, in accordance with the central role of Asia in canine domestication. PMID:15972107
Genetic Diversity of Seven Cattle Breeds Inferred Using Copy Number Variations
Pierce, Magretha D.; Dzama, Kennedy; Muchadeyi, Farai C.
2018-01-01
Copy number variations (CNVs) comprise deletions, duplications, and insertions found within the genome larger than 50 bp in size. CNVs are thought to be primary role-players in breed formation and adaptation. South Africa boasts a diverse ecology with harsh environmental conditions and a broad spectrum of parasites and diseases that pose challenges to livestock production. This has led to the development of composite cattle breeds which combine the hardiness of Sanga breeds and the production potential of the Taurine breeds. The prevalence of CNVs within these respective breeds of cattle and the prevalence of CNV regions (CNVRs) in their diversity, adaptation and production is however not understood. This study therefore aimed to ascertain the prevalence, diversity, and correlations of CNVRs within cattle breeds used in South Africa. Illumina Bovine SNP50 data and PennCNV were utilized to identify CNVRs within the genome of 287 animals from seven cattle breeds representing Sanga, Taurine, Composite, and cross breeds. Three hundred and fifty six CNVRs of between 36 kb to 4.1 Mb in size were identified. The null hypothesis that one CNVR loci is independent of another was tested using the GENEPOP software. One hunded and two and seven of the CNVRs in the Taurine and Sanga/Composite cattle breeds demonstrated a significant (p ≤ 0.05) association. PANTHER overrepresentation analyses of correlated CNVRs demonstrated significant enrichment of a number of biological processes, molecular functions, cellular components, and protein classes. CNVR genetic variation between and within breed group was measured using phiPT which allows intra-individual variation to be suppressed and hence proved suitable for measuring binary CNVR presence/absence data. Estimate PhiPT within and between breed variance was 2.722 and 0.518 respectively. Pairwise population PhiPT values corresponded with breed type, with Taurine Holstein and Angus breeds demonstrating no between breed CNVR variation. Phylogenetic trees were drawn. CNVRs primarily clustered animals of the same breed type together. This study successfully identified, characterized, and analyzed 356 CNVRs within seven cattle breeds. CNVR correlations were evident, with many more correlations being present among the exotic Taurine breeds. CNVR genetic diversity of Sanga, Taurine and Composite breeds was ascertained with breed types exposed to similar selection pressures demonstrating analogous incidences of CNVRs. PMID:29868114
Legarra, A; Baloche, G; Barillet, F; Astruc, J M; Soulas, C; Aguerre, X; Arrese, F; Mintegi, L; Lasarte, M; Maeztu, F; Beltrán de Heredia, I; Ugarte, E
2014-05-01
Genotypes, phenotypes and pedigrees of 6 breeds of dairy sheep (including subdivisions of Latxa, Manech, and Basco-Béarnaise) from the Spain and France Western Pyrenees were used to estimate genetic relationships across breeds (together with genotypes from the Lacaune dairy sheep) and to verify by forward cross-validation single-breed or multiple-breed genetic evaluations. The number of rams genotyped fluctuated between 100 and 1,300 but generally represented the 10 last cohorts of progeny-tested rams within each breed. Genetic relationships were assessed by principal components analysis of the genomic relationship matrices and also by the conservation of linkage disequilibrium patterns at given physical distances in the genome. Genomic and pedigree-based evaluations used daughter yield performances of all rams, although some of them were not genotyped. A pseudo-single step method was used in this case for genomic predictions. Results showed a clear structure in blond and black breeds for Manech and Latxa, reflecting historical exchanges, and isolation of Basco-Béarnaise and Lacaune. Relatedness between any 2 breeds was, however, lower than expected. Single-breed genomic predictions had accuracies comparable with other breeds of dairy sheep or small breeds of dairy cattle. They were more accurate than pedigree predictions for 5 out of 6 breeds, with absolute increases in accuracy ranging from 0.05 to 0.30 points. They were significantly better, as assessed by bootstrapping of candidates, for 2 of the breeds. Predictions using multiple populations only marginally increased the accuracy for a couple of breeds. Pooling populations does not increase the accuracy of genomic evaluations in dairy sheep; however, single-breed genomic predictions are more accurate, even for small breeds, and make the consideration of genomic schemes in dairy sheep interesting. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Variation in the prion protein sequence in Dutch goat breeds.
Windig, J J; Hoving, R A H; Priem, J; Bossers, A; van Keulen, L J M; Langeveld, J P M
2016-10-01
Scrapie is a neurodegenerative disease occurring in goats and sheep. Several haplotypes of the prion protein increase resistance to scrapie infection and may be used in selective breeding to help eradicate scrapie. In this study, frequencies of the allelic variants of the PrP gene are determined for six goat breeds in the Netherlands. Overall frequencies in Dutch goats were determined from 768 brain tissue samples in 2005, 766 in 2008 and 300 in 2012, derived from random sampling for the national scrapie surveillance without knowledge of the breed. Breed specific frequencies were determined in the winter 2013/2014 by sampling 300 breeding animals from the main breeders of the different breeds. Detailed analysis of the scrapie-resistant K222 haplotype was carried out in 2014 for 220 Dutch Toggenburger goats and in 2015 for 942 goats from the Saanen derived White Goat breed. Nine haplotypes were identified in the Dutch breeds. Frequencies for non-wild type haplotypes were generally low. Exception was the K222 haplotype in the Dutch Toggenburger (29%) and the S146 haplotype in the Nubian and Boer breeds (respectively 7 and 31%). The frequency of the K222 haplotype in the Toggenburger was higher than for any other breed reported in literature, while for the White Goat breed it was with 3.1% similar to frequencies of other Saanen or Saanen derived breeds. Further evidence was found for the existence of two M142 haplotypes, M142 /S240 and M142 /P240 . Breeds vary in haplotype frequencies but frequencies of resistant genotypes are generally low and consequently selective breeding for scrapie resistance can only be slow but will benefit from animals identified in this study. The unexpectedly high frequency of the K222 haplotype in the Dutch Toggenburger underlines the need for conservation of rare breeds in order to conserve genetic diversity rare or absent in other breeds. © 2016 Blackwell Verlag GmbH.
Behm, Jocelyn E.; Yang, Xiaodong; Chen, Jin
2013-01-01
Conversion of tropical forests into agriculture may present a serious risk to amphibian diversity if amphibians are not able to use agricultural areas as habitat. Recently, in Xishuangbanna Prefecture, Yunnan Province – a hotspot of frog diversity within China – two-thirds of the native tropical rainforests have been converted into rubber plantation agriculture. We conducted surveys and experiments to quantify habitat use for breeding and non-breeding life history activities of the native frog species in rainforest, rubber plantation and other human impacted sites. Rubber plantation sites had the lowest species richness in our non-breeding habitat surveys and no species used rubber plantation sites as breeding habitat. The absence of breeding was likely not due to intrinsic properties of the rubber plantation pools, as our experiments indicated that rubber plantation pools were suitable for tadpole growth and development. Rather, the absence of breeding in the rubber plantation was likely due to a misalignment of breeding and non-breeding habitat preferences. Analyses of our breeding surveys showed that percent canopy cover over pools was the strongest environmental variable influencing breeding site selection, with species exhibiting preferences for pools under both high and low canopy cover. Although rubber plantation pools had high canopy cover, the only species that bred in high canopy cover sites used the rainforest for both non-breeding and breeding activities, completing their entire life cycle in the rainforest. Conversely, the species that did use the rubber plantation for non-breeding habitat preferred to breed in low canopy sites, also avoiding breeding in the rubber plantation. Rubber plantations are likely an intermediate habitat type that ‘slips through the cracks’ of species habitat preferences and is thus avoided for breeding. In summary, unlike the rainforests they replaced, rubber plantations alone may not be able to support frog populations. PMID:24040026
Warren, Jeffrey M.; Cutting, Kyle A.; Takekawa, John Y.; De La Cruz, Susan E. W.; Williams, Tony D.; Koons, David N.
2014-01-01
The decision to breed influences an individual's current and future reproduction, and the proportion of individuals that breed is an important determinant of population dynamics. Age, experience, individual quality, and environmental conditions have all been demonstrated to influence breeding propensity. To elucidate which of these factors exerts the greatest influence on breeding propensity in a temperate waterfowl, we studied female Lesser Scaup (Aythya affinis) breeding in southwestern Montana. Females were captured during the breeding seasons of 2007–2009, and breeding status was determined on the basis of (1) presence of an egg in the oviduct or (2) blood plasma vitellogenin (VTG) levels. Presence on the study site in the previous year, a proxy for adult female success, was determined with stable isotope signatures of a primary feather collected at capture. Overall, 57% of females had evidence of breeding at the time of capture; this increased to 86% for females captured on or after peak nest initiation. Capture date and size-adjusted body condition positively influenced breeding propensity, with a declining body-condition threshold through the breeding season. We did not detect an influence of age on breeding propensity. Drought conditions negatively affected breeding propensity, reducing the proportion of breeding females to 0.85 (SE = 0.05) from 0.94 (SE = 0.03) during normal-water years. A female that was present in the previous breeding season was 5% more likely to breed than a female that was not present then. The positive correlation between age and experience makes it difficult to differentiate the roles of age, experience, and individual quality in reproductive success in vertebrates. Our results indicate that individual quality, as expressed by previous success and current body condition, may be among the most important determinants of breeding propensity in female Lesser Scaup, providing further support for the individual heterogeneity hypothesis.
Makina, Sithembile O.; Muchadeyi, Farai C.; van Marle-Köster, Este; MacNeil, Michael D.; Maiwashe, Azwihangwisi
2014-01-01
Information about genetic diversity and population structure among cattle breeds is essential for genetic improvement, understanding of environmental adaptation as well as utilization and conservation of cattle breeds. This study investigated genetic diversity and the population structure among six cattle breeds in South African (SA) including Afrikaner (n = 44), Nguni (n = 54), Drakensberger (n = 47), Bonsmara (n = 44), Angus (n = 31), and Holstein (n = 29). Genetic diversity within cattle breeds was analyzed using three measures of genetic diversity namely allelic richness (AR), expected heterozygosity (He) and inbreeding coefficient (f). Genetic distances between breed pairs were evaluated using Nei's genetic distance. Population structure was assessed using model-based clustering (ADMIXTURE). Results of this study revealed that the allelic richness ranged from 1.88 (Afrikaner) to 1.73 (Nguni). Afrikaner cattle had the lowest level of genetic diversity (He = 0.24) and the Drakensberger cattle (He = 0.30) had the highest level of genetic variation among indigenous and locally-developed cattle breeds. The level of inbreeding was lower across the studied cattle breeds. As expected the average genetic distance was the greatest between indigenous cattle breeds and Bos taurus cattle breeds but the lowest among indigenous and locally-developed breeds. Model-based clustering revealed some level of admixture among indigenous and locally-developed breeds and supported the clustering of the breeds according to their history of origin. The results of this study provided useful insight regarding genetic structure of SA cattle breeds. PMID:25295053
"Boldness" in the domestic dog differs among breeds and breed groups.
Starling, Melissa J; Branson, Nicholas; Thomson, Peter C; McGreevy, Paul D
2013-07-01
"Boldness" in dogs is believed to be one end of the shy-bold axis, representing a super-trait. Several personality traits fall under the influence of this super-trait. Previous studies on boldness in dogs have found differences among breeds, but grouping breeds on the basis of behavioural similarities has been elusive. This study investigated differences in the expression of boldness among dog breeds, kennel club breed groups, and sub-groups of kennel club breed groups by way of a survey on dog personality circulated among Australian dog-training clubs and internet forums and lists. Breed had a significant effect on boldness (F=1.63, numDF=111, denDF=272, p<0.001), as did breed group (F=10.66, numDF=8, denDF=772, p<0.001). Herding and gundog groups were broken into sub-groups based on historic breed purpose. Retrievers were significantly bolder than flushing and pointing breeds (Reg. Coef.=2.148; S.E.=0.593; p<0.001), and tending and loose-eyed herding breeds were bolder than heading and cattle-herding breeds (Reg. Coef.=1.744; S.E.=0.866; p=0.045 and Reg. Coef.=1.842; S.E.=0.693; p=0.0084, respectively). This study supports the existence of the shy-bold continuum in dogs. Differences in boldness among groups and sub-groups suggest that behavioural tendencies may be influenced by historical purpose regardless of whether that purpose still factors in selective breeding. Copyright © 2013 Elsevier B.V. All rights reserved.
Makina, Sithembile O; Muchadeyi, Farai C; van Marle-Köster, Este; MacNeil, Michael D; Maiwashe, Azwihangwisi
2014-01-01
Information about genetic diversity and population structure among cattle breeds is essential for genetic improvement, understanding of environmental adaptation as well as utilization and conservation of cattle breeds. This study investigated genetic diversity and the population structure among six cattle breeds in South African (SA) including Afrikaner (n = 44), Nguni (n = 54), Drakensberger (n = 47), Bonsmara (n = 44), Angus (n = 31), and Holstein (n = 29). Genetic diversity within cattle breeds was analyzed using three measures of genetic diversity namely allelic richness (AR), expected heterozygosity (He) and inbreeding coefficient (f). Genetic distances between breed pairs were evaluated using Nei's genetic distance. Population structure was assessed using model-based clustering (ADMIXTURE). Results of this study revealed that the allelic richness ranged from 1.88 (Afrikaner) to 1.73 (Nguni). Afrikaner cattle had the lowest level of genetic diversity (He = 0.24) and the Drakensberger cattle (He = 0.30) had the highest level of genetic variation among indigenous and locally-developed cattle breeds. The level of inbreeding was lower across the studied cattle breeds. As expected the average genetic distance was the greatest between indigenous cattle breeds and Bos taurus cattle breeds but the lowest among indigenous and locally-developed breeds. Model-based clustering revealed some level of admixture among indigenous and locally-developed breeds and supported the clustering of the breeds according to their history of origin. The results of this study provided useful insight regarding genetic structure of SA cattle breeds.
Relationships among and variation within rare breeds of swine.
Roberts, K S; Lamberson, W R
2015-08-01
Extinction of rare breeds of livestock threatens to reduce the total genetic variation available for selection in the face of the changing environment and new diseases. Swine breeds facing extinction typically share characteristics such as small size, slow growth rate, and high fat percentage, which limit them from contributing to commercial production. Compounding the risk of loss of variation is the lack of pedigree information for many rare breeds due to inadequate herd books, which increases the chance that producers are breeding closely related individuals. By making genetic data available, producers can make more educated breeding decisions to preserve genetic diversity in future generations, and conservation organizations can prioritize investments in breed preservation. The objective of this study was to characterize genetic variation within and among breeds of swine and prioritize heritage breeds for preservation. Genotypes from the Illumina PorcineSNP60 BeadChip (GeneSeek, Lincoln, NE) were obtained for Guinea, Ossabaw Island, Red Wattle, American Saddleback, Mulefoot, British Saddleback, Duroc, Landrace, Large White, Pietrain, and Tamworth pigs. A whole-genome analysis toolset was used to construct a genomic relationship matrix and to calculate inbreeding coefficients for the animals within each breed. Relatedness and average inbreeding coefficient differed among breeds, and pigs from rare breeds were generally more closely related and more inbred ( < 0.05). A multidimensional scaling diagram was constructed based on the SNP genotypes. Animals within breeds clustered tightly together except for 2 Guinea pigs. Tamworth, Duroc, and Mulefoot tended to not cluster with the other 7 breeds.
Neff, Mark W.; Robertson, Kathryn R.; Wong, Aaron K.; Safra, Noa; Broman, Karl W.; Slatkin, Montgomery; Mealey, Katrina L.; Pedersen, Niels C.
2004-01-01
A mutation in the canine multidrug resistance gene, MDR1, has previously been associated with drug sensitivities in two breeds from the collie lineage. We exploited breed phylogeny and reports of drug sensitivity to survey other purebred populations that might be genetically at risk. We found that the same allele, mdr1-1Δ, segregated in seven additional breeds, including two sighthounds that were not expected to share collie ancestry. A mutant haplotype that was conserved among affected breeds indicated that the allele was identical by descent. Based on breed histories and the extent of linkage disequilibrium, we conclude that all dogs carrying mdr1-1Δ are descendants of a dog that lived in Great Britain before the genetic isolation of breeds by registry (ca. 1873). The breed distribution and frequency of mdr1-1Δ have applications in veterinary medicine and selective breeding, whereas the allele's history recounts the emergence of formally recognized breeds from an admixed population of working sheepdogs. PMID:15289602
Challenges and opportunities in genetic improvement of local livestock breeds
Biscarini, Filippo; Nicolazzi, Ezequiel L.; Stella, Alessandra; Boettcher, Paul J.; Gandini, Gustavo
2015-01-01
Sufficient genetic variation in livestock populations is necessary both for adaptation to future changes in climate and consumer demand, and for continual genetic improvement of economically important traits. Unfortunately, the current trend is for reduced genetic variation, both within and across breeds. The latter occurs primarily through the loss of small, local breeds. Inferior production is a key driver for loss of small breeds, as they are replaced by high-output international transboundary breeds. Selection to improve productivity of small local breeds is therefore critical for their long term survival. The objective of this paper is to review the technology options available for the genetic improvement of small local breeds and discuss their feasibility. Most technologies have been developed for the high-input breeds and consequently are more favorably applied in that context. Nevertheless, their application in local breeds is not precluded and can yield significant benefits, especially when multiple technologies are applied in close collaboration with farmers and breeders. Breeding strategies that require cooperation and centralized decision-making, such as optimal contribution selection, may in fact be more easily implemented in small breeds. PMID:25763010
Neff, Mark W; Robertson, Kathryn R; Wong, Aaron K; Safra, Noa; Broman, Karl W; Slatkin, Montgomery; Mealey, Katrina L; Pedersen, Niels C
2004-08-10
A mutation in the canine multidrug resistance gene, MDR1, has previously been associated with drug sensitivities in two breeds from the collie lineage. We exploited breed phylogeny and reports of drug sensitivity to survey other purebred populations that might be genetically at risk. We found that the same allele, mdr1-1Delta, segregated in seven additional breeds, including two sighthounds that were not expected to share collie ancestry. A mutant haplotype that was conserved among affected breeds indicated that the allele was identical by descent. Based on breed histories and the extent of linkage disequilibrium, we conclude that all dogs carrying mdr1-1Delta are descendants of a dog that lived in Great Britain before the genetic isolation of breeds by registry (ca. 1873). The breed distribution and frequency of mdr1-1Delta have applications in veterinary medicine and selective breeding, whereas the allele's history recounts the emergence of formally recognized breeds from an admixed population of working sheepdogs.
Costs of mating competition limit male lifetime breeding success in polygynous mammals
Lukas, Dieter; Clutton-Brock, Tim
2014-01-01
Although differences in breeding lifespan are an important source of variation in male fitness, the factors affecting the breeding tenure of males have seldom been explored. Here, we use cross-species comparisons to investigate the correlates of breeding lifespan in male mammals. Our results show that male breeding lifespan depends on the extent of polygyny, which reflects the relative intensity of competition for access to females. Males have relatively short breeding tenure in species where individuals have the potential to monopolize mating with multiple females, and longer ones where individuals defend one female at a time. Male breeding tenure is also shorter in species in which females breed frequently than in those where females breed less frequently, suggesting that the costs of guarding females may contribute to limiting tenure length. As a consequence of these relationships, estimates of skew in male breeding success within seasons overestimate skew calculated across the lifetime and, in several polygynous species, variance in lifetime breeding success is not substantially higher in males than in females. PMID:24827443
Genetic diversity and differentiation of five Cuban cattle breeds using 30 microsatellite loci.
Acosta, A C; Uffo, O; Sanz, A; Ronda, R; Osta, R; Rodellar, C; Martin-Burriel, I; Zaragoza, P
2013-02-01
Conservation and improvement strategies in farm animals should be based on a combination of genetic and phenotypic characteristics. Genotype data from 30 microsatellites were used to assess the genetic diversity and relationships among five Cuban cattle breeds (Siboney de Cuba, Criollo Cubano, Cebú Cubano, Mambí de Cuba and Taíno de Cuba). All microsatellite markers were highly polymorphic in all the breeds. The expected heterozygosity ranged from 0.67 ± 0.02 in the Taíno de Cuba breed to 0.75 ± 0.02 in the Mambí de Cuba breed, and the observed heterozygosity ranged from 0.66 ± 0.03 in the Cebú Cubano breed to 0.73 ± 0.02 in the Siboney de Cuba breed. The genetic differentiation between the breeds was significant (p < 0.01) based on the infinitesimal model (F(ST)). The exact test for Hardy-Weinberg equilibrium within breeds showed a significant deviation in each breed (p < 0.0003) for one or more loci. The genetic distance and structure analysis showed that a significant amount of genetic variation is maintained in the local cattle population and that all breeds studied could be considered genetically distinct. The Siboney de Cuba and Mambí de Cuba breeds seem to be the most genetically related among the studied five breeds. © 2012 Blackwell Verlag GmbH.
Developments in European horse breeding and consequences for veterinarians in equine reproduction.
Aurich, J; Aurich, C
2006-08-01
The liberalization of European animal breeding legislation and an increasing diversity of equestrian sports have led to a constant rise in the number of horse breeds and breed registries. In addition to the trend towards more and smaller breed registries, there is another trend towards an international expansion of the bigger established sport horse breeds. Regional breeds, at least in smaller countries, may no longer be able to run an independent breeding programme. The typical horse breeder, in the future, will be a female and qualified in equestrian sports. Artificial insemination (AI) mainly with fresh or cooled-transported semen has become a major breeding tool, allowing breeders all over Europe to benefit from the best stallions of most breeds. New AI techniques such as low-dose insemination may remain restricted to individual stallions and also the interest of breeding programmes in sex determination of foals via semen sorting is limited. Embryo transfer and associated techniques, although allowed by most breeds, have not contributed significantly to genetic progress in European sport horses so far. A potential use of cloning may be to produce gonad-intact copies from geldings that have performed to a superior level. With a more open and international structure of horse breeding and increased use of AI, equine reproduction and biotechnology should be emphasized by veterinary curricula and continuing professional education programmes.
Molecular Study of the Amazonian Macabea Cattle History.
Vargas, Julio; Landi, Vincenzo; Martínez, Amparo; Gómez, Mayra; Camacho, María Esperanza; Álvarez, Luz Ángela; Aguirre, Lenin; Delgado, Juan Vicente
2016-01-01
Macabea cattle are the only Bos taurus breed that have adapted to the wet tropical conditions of the Amazon. This breed has integrated into the culture of the indigenous Shuar-Asuar nations probably since its origins, being one of the few European zoogenetic resources assimilated by the deep-jungle Amazon communities. Despite its potential for local endogenous sustainable development, this breed is currently endangered. The present study used molecular genetics tools to investigate the within- and between-breeds diversity, in order to characterize the breed population, define its associations with other breeds, and infer its origin and evolution. The within-breed genetic diversity showed high values, as indicated by all genetic parameters, such as the mean number of alleles (MNA = 7.25±2.03), the observed heterozygosity (Ho = 0.72±0.02) and the expected heterozygosity (He = 0.72±0.02). The between-breeds diversity analysis, which included factorial correspondence analysis, Reynolds genetic distance, neighbor-joining analysis, and genetic structure analysis, showed that the Macabea breed belongs to the group of the American Creoles, with a Southern-Spain origin. Our outcomes demonstrated that the Macabea breed has a high level of purity and null influences of exotic cosmopolitan breeds with European or Asiatic origin. This breed is an important zoogenetic resource of Ecuador, with relevant and unique attributes; therefore, there is an urgent need to develop conservation strategies for the Macabea breed.
Molecular Study of the Amazonian Macabea Cattle History
Vargas, Julio; Martínez, Amparo; Gómez, Mayra; Camacho, María Esperanza; Álvarez, Luz Ángela; Aguirre, Lenin; Delgado, Juan Vicente
2016-01-01
Macabea cattle are the only Bos taurus breed that have adapted to the wet tropical conditions of the Amazon. This breed has integrated into the culture of the indigenous Shuar-Asuar nations probably since its origins, being one of the few European zoogenetic resources assimilated by the deep-jungle Amazon communities. Despite its potential for local endogenous sustainable development, this breed is currently endangered. The present study used molecular genetics tools to investigate the within- and between-breeds diversity, in order to characterize the breed population, define its associations with other breeds, and infer its origin and evolution. The within-breed genetic diversity showed high values, as indicated by all genetic parameters, such as the mean number of alleles (MNA = 7.25±2.03), the observed heterozygosity (Ho = 0.72±0.02) and the expected heterozygosity (He = 0.72±0.02). The between-breeds diversity analysis, which included factorial correspondence analysis, Reynolds genetic distance, neighbor-joining analysis, and genetic structure analysis, showed that the Macabea breed belongs to the group of the American Creoles, with a Southern-Spain origin. Our outcomes demonstrated that the Macabea breed has a high level of purity and null influences of exotic cosmopolitan breeds with European or Asiatic origin. This breed is an important zoogenetic resource of Ecuador, with relevant and unique attributes; therefore, there is an urgent need to develop conservation strategies for the Macabea breed. PMID:27776178
The genome-wide structure of two economically important indigenous Sicilian cattle breeds.
Mastrangelo, S; Saura, M; Tolone, M; Salces-Ortiz, J; Di Gerlando, R; Bertolini, F; Fontanesi, L; Sardina, M T; Serrano, M; Portolano, B
2014-11-01
Genomic technologies, such as high-throughput genotyping based on SNP arrays, provided background information concerning genome structure in domestic animals. The aim of this work was to investigate the genetic structure, the genome-wide estimates of inbreeding, coancestry, effective population size (Ne), and the patterns of linkage disequilibrium (LD) in 2 economically important Sicilian local cattle breeds, Cinisara (CIN) and Modicana (MOD), using the Illumina Bovine SNP50K v2 BeadChip. To understand the genetic relationship and to place both Sicilian breeds in a global context, genotypes from 134 other domesticated bovid breeds were used. Principal component analysis showed that the Sicilian cattle breeds were closer to individuals of Bos taurus taurus from Eurasia and formed nonoverlapping clusters with other breeds. Between the Sicilian cattle breeds, MOD was the most differentiated, whereas the animals belonging to the CIN breed showed a lower value of assignment, the presence of substructure, and genetic links with the MOD breed. The average molecular inbreeding and coancestry coefficients were moderately high, and the current estimates of Ne were low in both breeds. These values indicated a low genetic variability. Considering levels of LD between adjacent markers, the average r(2) in the MOD breed was comparable to those reported for others cattle breeds, whereas CIN showed a lower value. Therefore, these results support the need of more dense SNP arrays for a high-power association mapping and genomic selection efficiency, particularly for the CIN cattle breed. Controlling molecular inbreeding and coancestry would restrict inbreeding depression, the probability of losing beneficial rare alleles, and therefore the risk of extinction. The results generated from this study have important implications for the development of conservation and/or selection breeding programs in these 2 local cattle breeds.
Inconsistent identification of pit bull-type dogs by shelter staff.
Olson, K R; Levy, J K; Norby, B; Crandall, M M; Broadhurst, J E; Jacks, S; Barton, R C; Zimmerman, M S
2015-11-01
Shelter staff and veterinarians routinely make subjective dog breed identification based on appearance, but their accuracy regarding pit bull-type breeds is unknown. The purpose of this study was to measure agreement among shelter staff in assigning pit bull-type breed designations to shelter dogs and to compare breed assignments with DNA breed signatures. In this prospective cross-sectional study, four staff members at each of four different shelters recorded their suspected breed(s) for 30 dogs; there was a total of 16 breed assessors and 120 dogs. The terms American pit bull terrier, American Staffordshire terrier, Staffordshire bull terrier, pit bull, and their mixes were included in the study definition of 'pit bull-type breeds.' Using visual identification only, the median inter-observer agreements and kappa values in pair-wise comparisons of each of the staff breed assignments for pit bull-type breed vs. not pit bull-type breed ranged from 76% to 83% and from 0.44 to 0.52 (moderate agreement), respectively. Whole blood was submitted to a commercial DNA testing laboratory for breed identification. Whereas DNA breed signatures identified only 25 dogs (21%) as pit bull-type, shelter staff collectively identified 62 (52%) dogs as pit bull-type. Agreement between visual and DNA-based breed assignments varied among individuals, with sensitivity for pit bull-type identification ranging from 33% to 75% and specificity ranging from 52% to 100%. The median kappa value for inter-observer agreement with DNA results at each shelter ranged from 0.1 to 0.48 (poor to moderate). Lack of consistency among shelter staff indicated that visual identification of pit bull-type dogs was unreliable. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Herrero-Medrano, J M; Megens, H J; Crooijmans, R P; Abellaneda, J M; Ramis, G
2013-06-01
The Chato Murciano (CM), a pig breed from the Murcia region in the southeastern region of Spain, is a good model for endangered livestock populations. The remaining populations are bred on approximately 15 small farms, and no herdbook exists. To assess the genetic threats to the integrity and survival of the CM breed, and to aid in designing a conservation program, three genetic marker systems - microsatellites, SNPs and mtDNA - were applied across the majority of the total breeding stock. In addition, mtDNA and SNPs were genotyped in breeds that likely contributed genetically to the current CM gene pool. The analyses revealed the levels of genetic diversity within the range of other European local breeds (H(e) = 0.53). However, when the eight farms that rear at least 10 CM pigs were independently analyzed, high levels of inbreeding were found in some. Despite the evidence for recent crossbreeding with commercial breeds on a few farms, the entire breeding stock remains readily identifiable as CM, facilitating the design of traceability assays. The genetic management of the breed is consistent with farm size, farm owner and presence of other pig breeds on the farm, demonstrating the highly ad hoc nature of current CM breeding. The results of genetic diversity and substructure of the entire breed, as well as admixture and crossbreeding obtained in the present study, provide a benchmark to develop future conservation strategies. Furthermore, this study demonstrates that identifying farm-based practices and farm-based breeding stocks can aid in the design of a sustainable breeding program for minority breeds. © 2012 The Authors, Animal Genetics © 2012 Stichting International Foundation for Animal Genetics.
Sonsthagen, Sarah A.; Tibbitts, T. Lee; Gill, Robert E.; Williams, Ian S.; Talbot, Sandra L.
2015-01-01
Migratory birds occupy geographically and ecologically disparate areas during their annual cycle with conditions on breeding and non-breeding grounds playing separate and important roles in population dynamics. We used data from nuclear microsatellite and mitochondrial DNA control region loci to assess the breeding and non-breeding spatial genetic structure of a transoceanic migrant shorebird, the bristle-thighed curlew. We found spatial variance in the distribution of allelic and haplotypic frequencies between the curlew's two breeding areas in Alaska but did not observe this spatial structure throughout its non-breeding range on low-lying tropical and subtropical islands in the Central Pacific (Oceania). This suggests that the two breeding populations do not spatially segregate during the non-breeding season. Lack of migratory connectivity is likely attributable to the species' behavior, as bristle-thighed curlews exhibit differential timing of migration and some individuals move among islands during non-breeding months. Given the detrimental impact of many past and current human activities on island ecosystems, admixture of breeding populations in Oceania may render the bristle-thighed curlew less vulnerable to perturbations there, as neither breeding population will be disproportionally affected by local habitat losses or by stochastic events. Furthermore, lack of migratory connectivity may enable bristle-thighed curlews to respond to changing island ecosystems by altering their non-breeding distribution. However, availability of suitable non-breeding habitat for curlews in Oceania is increasingly limited on both low-lying and high islands by habitat loss, sea level rise, and invasive mammalian predators that pose a threat to flightless and flight-compromised curlews during the molting period.
2009-01-01
The genetic diversity and structure of horses raised in France were investigated using 11 microsatellite markers and 1679 animals belonging to 34 breeds. Between-breed differences explained about ten per cent of the total genetic diversity (Fst = 0.099). Values of expected heterozygosity ranged from 0.43 to 0.79 depending on the breed. According to genetic relationships, multivariate and structure analyses, breeds could be classified into four genetic differentiated groups: warm-blooded, draught, Nordic and pony breeds. Using complementary maximisation of diversity and aggregate diversity approaches, we conclude that particular efforts should be made to conserve five local breeds, namely the Boulonnais, Landais, Merens, Poitevin and Pottok breeds. PMID:19284689
Breeding potential of elite Pee Dee germplasm in Upland cotton breeding programs
USDA-ARS?s Scientific Manuscript database
Successful plant breeding programs begin with parental line selection. Effective parental line selection is facilitated when the breeding potential of candidate parental lines is known. Using topcross families involving germplasm representing eight US public cotton breeding programs, we evaluated th...
Parker, Heidi G; Dreger, Dayna L; Rimbault, Maud; Davis, Brian W; Mullen, Alexandra B; Carpintero-Ramirez, Gretchen; Ostrander, Elaine A
2017-04-25
There are nearly 400 modern domestic dog breeds with a unique histories and genetic profiles. To track the genetic signatures of breed development, we have assembled the most diverse dataset of dog breeds, reflecting their extensive phenotypic variation and heritage. Combining genetic distance, migration, and genome-wide haplotype sharing analyses, we uncover geographic patterns of development and independent origins of common traits. Our analyses reveal the hybrid history of breeds and elucidate the effects of immigration, revealing for the first time a suggestion of New World dog within some modern breeds. Finally, we used cladistics and haplotype sharing to show that some common traits have arisen more than once in the history of the dog. These analyses characterize the complexities of breed development, resolving longstanding questions regarding individual breed origination, the effect of migration on geographically distinct breeds, and, by inference, transfer of trait and disease alleles among dog breeds. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Campos, Bárbara Machado; do Carmo, Adriana Santana; do Egito, Andrea Alves; da Mariante, Arthur Silva; do Albuquerque, Maria Socorro Muaés; de Gouveia, João José Simoni; Malhado, Carlos Henrique Mendes; Verardo, Lucas Lima; da Silva, Marcos Vinícius Gualberto Barbosa; Carneiro, Paulo Luiz Souza
2017-12-01
Genetic diversity is one of the most important issues in studies on conservation of cattle breeds and endangered species. The objective of this study was to estimate the levels of genetic differentiation between locally adapted taurine (Bos taurus taurus) and zebu (Bos taurus indicus) breeds in Brazil, which were genotyped for more than 777,000 SNPs. The fixation index (F ST ), principal component analysis (PCA), and Bayesian clustering were estimated. The F ST highlighted genetic differentiation between taurine and zebu breeds. The taurine lines, Caracu and Caracu Caldeano, had significant genetic differentiation (F ST close to 5%) despite their recent selection for different uses (meat and milk). This genetic variability can be used for conservation of locally adapted animals, as well as for breeding programs on zebu breeds. Introgression of zebu in locally adapted breeds was identified, especially in Curraleiro Pé-Duro breed. The Gyr breed, however, had low breed purity at genomic level due to its very heterogeneous mixing pattern.
Estimated frequency of the canine hyperuricosuria mutation in different dog breeds.
Karmi, N; Brown, E A; Hughes, S S; McLaughlin, B; Mellersh, C S; Biourge, V; Bannasch, D L
2010-01-01
Hyperuricosuria is a condition that predisposes dogs to urate urolithiasis. A mutation that causes canine hyperuricosuria was previously identified in 3 unrelated dog breeds. The occurrence of the mutation in additional breeds was not determined. Identify additional breeds that have the hyperuricosuria mutation and estimate the mutant allele frequency in those breeds. Three thousand five hundred and thirty dogs from 127 different breeds were screened for the hyperuricosuria mutation. DNA samples were genotyped by pyrosequencing and allele-specific polymerase chain reaction methods. Mutant allele frequencies that range from 0.001 to 0.15 were identified in the American Staffordshire Terrier, Australian Shepherd, German Shepherd Dog, Giant Schnauzer, Parson (Jack) Russell Terrier, Labrador Retriever, Large Munsterlander, Pomeranian, South African Boerboel, and Weimaraner breeds. The hyperuricosuria mutation has been identified in several unrelated dog breeds. The mutant allele frequencies vary among breeds and can be used to determine an appropriate breeding plan for each breed. A DNA test is available and may be used by breeders to decrease the mutant allele frequency in breeds that carry the mutation. In addition, veterinarians may use the test as a diagnostic tool to identify the cause of urate urolithiasis. Copyright © 2010 by the American College of Veterinary Internal Medicine.
Makina, Sithembile O; Whitacre, Lindsey K; Decker, Jared E; Taylor, Jeremy F; MacNeil, Michael D; Scholtz, Michiel M; van Marle-Köster, Este; Muchadeyi, Farai C; Makgahlela, Mahlako L; Maiwashe, Azwihangwisi
2016-11-15
Understanding the history of cattle breeds is important because it provides the basis for developing appropriate selection and breed improvement programs. In this study, patterns of ancestry and admixture in Afrikaner, Nguni, Drakensberger and Bonsmara cattle of South Africa were investigated. We used 50 K single nucleotide polymorphism genotypes that were previously generated for the Afrikaner (n = 36), Nguni (n = 50), Drakensberger (n = 47) and Bonsmara (n = 44) breeds, and for 394 reference animals representing European taurine, African taurine, African zebu and Bos indicus. Our findings support previous conclusions that Sanga cattle breeds are composites between African taurine and Bos indicus. Among these breeds, the Afrikaner breed has significantly diverged from its ancestral forebears, probably due to genetic drift and selection to meet breeding objectives of the breed society that enable registration. The Nguni, Drakensberger and Bonsmara breeds are admixed, perhaps unintentionally in the case of Nguni and Drakensberger, but certainly by design in the case of Bonsmara, which was developed through crossbreeding between the Afrikaner, Hereford and Shorthorn breeds. We established patterns of admixture and ancestry for South African Sanga cattle breeds, which provide a basis for developing appropriate strategies for their genetic improvement.
Assortative mating and fragmentation within dog breeds.
Björnerfeldt, Susanne; Hailer, Frank; Nord, Maria; Vilà, Carles
2008-01-28
There are around 400 internationally recognized dog breeds in the world today, with a remarkable diversity in size, shape, color and behavior. Breeds are considered to be uniform groups with similar physical characteristics, shaped by selection rooted in human preferences. This has led to a large genetic difference between breeds and a large extent of linkage disequilibrium within breeds. These characteristics are important for association mapping of candidate genes for diseases and therefore make dogs ideal models for gene mapping of human disorders. However, genetic uniformity within breeds may not always be the case. We studied patterns of genetic diversity within 164 poodles and compared it to 133 dogs from eight other breeds. Our analyses revealed strong population structure within poodles, with differences among some poodle groups as pronounced as those among other well-recognized breeds. Pedigree analysis going three generations back in time confirmed that subgroups within poodles result from assortative mating imposed by breed standards as well as breeder preferences. Matings have not taken place at random or within traditionally identified size classes in poodles. Instead, a novel set of five poodle groups was identified, defined by combinations of size and color, which is not officially recognized by the kennel clubs. Patterns of genetic diversity in other breeds suggest that assortative mating leading to fragmentation may be a common feature within many dog breeds. The genetic structure observed in poodles is the result of local mating patterns, implying that breed fragmentation may be different in different countries. Such pronounced structuring within dog breeds can increase the power of association mapping studies, but also represents a serious problem if ignored. In dog breeding, individuals are selected on the basis of morphology, behaviour, working or show purposes, as well as geographic population structure. The same processes which have historically created dog breeds are still ongoing, and create further subdivision within current dog breeds.
Ling, G V; Franti, C E; Ruby, A L; Johnson, D L
1998-05-01
To analyze selected breed-related data for canine urinary calculi. 11,000 specimens: 5,781 from female dogs, 5,215 from males, and 4 from dogs of unrecorded sex. Information was compiled for all canine urinary calculi submitted between July 1981 and January 1994. Results for a mixed-breed group and 26 of the most common breeds of stone-forming dogs were analyzed. Interrelations of breed, sex, and age of affected dogs and mineral composition of the specimens were determined. Prevalence of 5 specific mineral types was significantly correlated between the sexes of 27 common breed groups: struvite, calcium phosphate (apatite), calcium oxalate, brushite, and urate. Struvite-containing calculi were seen in high proportions in both sexes of 7 breeds, and in low proportions in both sexes of 7 other breeds. Male and female Lhasa Apsos, Cairn Terriers, and 5 other breeds had high proportions of oxalate-containing calculi; values in males were substantially higher. Low numbers of oxalate-containing calculi were seen in both sexes of 7 breeds; Dalmatians had the lowest numbers. Males and females of 6 breeds had high numbers of urate-containing calculi, Dalmatians and English Bulldogs had the highest numbers. Low amounts of urate were found in calculi from males and females of 6 breeds, Samoyeds had the lowest numbers. Highest proportions of cystine-containing calculi were seen in male Dachshunds, English Bulldogs, and Chihuahuas. Males of 8 breeds had no specimens that contained cystine; only 2 such specimens were obtained from females. Prevalence of uroliths differs among breed, age, and sex of affected dogs. Breed, sex, and age of dogs; mineral types of calculi in males versus females; and their anatomic location within the tract are important considerations for clinicians when evaluating risk in dogs with urolithiasis and in identifying areas that need further in-depth applied or clinical investigation, or both.
Assortative mating and fragmentation within dog breeds
2008-01-01
Background There are around 400 internationally recognized dog breeds in the world today, with a remarkable diversity in size, shape, color and behavior. Breeds are considered to be uniform groups with similar physical characteristics, shaped by selection rooted in human preferences. This has led to a large genetic difference between breeds and a large extent of linkage disequilibrium within breeds. These characteristics are important for association mapping of candidate genes for diseases and therefore make dogs ideal models for gene mapping of human disorders. However, genetic uniformity within breeds may not always be the case. We studied patterns of genetic diversity within 164 poodles and compared it to 133 dogs from eight other breeds. Results Our analyses revealed strong population structure within poodles, with differences among some poodle groups as pronounced as those among other well-recognized breeds. Pedigree analysis going three generations back in time confirmed that subgroups within poodles result from assortative mating imposed by breed standards as well as breeder preferences. Matings have not taken place at random or within traditionally identified size classes in poodles. Instead, a novel set of five poodle groups was identified, defined by combinations of size and color, which is not officially recognized by the kennel clubs. Patterns of genetic diversity in other breeds suggest that assortative mating leading to fragmentation may be a common feature within many dog breeds. Conclusion The genetic structure observed in poodles is the result of local mating patterns, implying that breed fragmentation may be different in different countries. Such pronounced structuring within dog breeds can increase the power of association mapping studies, but also represents a serious problem if ignored. In dog breeding, individuals are selected on the basis of morphology, behaviour, working or show purposes, as well as geographic population structure. The same processes which have historically created dog breeds are still ongoing, and create further subdivision within current dog breeds. PMID:18226210
Gutiérrez-Gil, Beatriz; Arranz, Juan J.; Wiener, Pamela
2015-01-01
This review compiles the results of 21 genomic studies of European Bos taurus breeds and thus provides a general picture of the selection signatures in taurine cattle identified by genome-wide selection-mapping scans. By performing a comprehensive summary of the results reported in the literature, we compiled a list of 1049 selection sweeps described across 37 cattle breeds (17 beef breeds, 14 dairy breeds, and 6 dual-purpose breeds), and four different beef-vs.-dairy comparisons, which we subsequently grouped into core selective sweep (CSS) regions, defined as consecutive signals within 1 Mb of each other. We defined a total of 409 CSSs across the 29 bovine autosomes, 232 (57%) of which were associated with a single-breed (Single-breed CSSs), 134 CSSs (33%) were associated with a limited number of breeds (Two-to-Four-breed CSSs) and 39 CSSs (9%) were associated with five or more breeds (Multi-breed CSSs). For each CSS, we performed a candidate gene survey that identified 291 genes within the CSS intervals (from the total list of 5183 BioMart-extracted genes) linked to dairy and meat production, stature, and coat color traits. A complementary functional enrichment analysis of the CSS positional candidates highlighted other genes related to pathways underlying behavior, immune response, and reproductive traits. The Single-breed CSSs revealed an over-representation of genes related to dairy and beef production, this was further supported by over-representation of production-related pathway terms in these regions based on a functional enrichment analysis. Overall, this review provides a comparative map of the selection sweeps reported in European cattle breeds and presents for the first time a characterization of the selection sweeps that are found in individual breeds. Based on their uniqueness, these breed-specific signals could be considered as “divergence signals,” which may be useful in characterizing and protecting livestock genetic diversity. PMID:26029239
50 CFR 15.24 - Permits for cooperative breeding.
Code of Federal Regulations, 2010 CFR
2010-10-01
... PLANTS WILD BIRD CONSERVATION ACT Permits and Approval of Cooperative Breeding Programs § 15.24 Permits for cooperative breeding. (a) Application requirements for permits for cooperative breeding. Each... 50 Wildlife and Fisheries 1 2010-10-01 2010-10-01 false Permits for cooperative breeding. 15.24...
50 CFR 15.24 - Permits for cooperative breeding.
Code of Federal Regulations, 2011 CFR
2011-10-01
... PLANTS WILD BIRD CONSERVATION ACT Permits and Approval of Cooperative Breeding Programs § 15.24 Permits for cooperative breeding. (a) Application requirements for permits for cooperative breeding. Each... 50 Wildlife and Fisheries 1 2011-10-01 2011-10-01 false Permits for cooperative breeding. 15.24...
50 CFR 15.24 - Permits for cooperative breeding.
Code of Federal Regulations, 2012 CFR
2012-10-01
... PLANTS WILD BIRD CONSERVATION ACT Permits and Approval of Cooperative Breeding Programs § 15.24 Permits for cooperative breeding. (a) Application requirements for permits for cooperative breeding. Each... 50 Wildlife and Fisheries 1 2012-10-01 2012-10-01 false Permits for cooperative breeding. 15.24...
9 CFR 147.46 - Committee consideration of proposed changes.
Code of Federal Regulations, 2010 CFR
2010-01-01
... changes. 147.46 Section 147.46 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE... proposed changes falling in their respective fields: (1) Egg-type breeding chickens. (2) Meat-type breeding chickens. (3) Breeding turkeys. (4) Breeding waterfowl, exhibition poultry, and game birds. (5) Breeding...
9 CFR 147.46 - Committee consideration of proposed changes.
Code of Federal Regulations, 2011 CFR
2011-01-01
... changes. 147.46 Section 147.46 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE... proposed changes falling in their respective fields: (1) Egg-type breeding chickens. (2) Meat-type breeding chickens. (3) Breeding turkeys. (4) Breeding waterfowl, exhibition poultry, and game birds. (5) Breeding...
9 CFR 147.46 - Committee consideration of proposed changes.
Code of Federal Regulations, 2013 CFR
2013-01-01
... changes. 147.46 Section 147.46 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE... proposed changes falling in their respective fields: (1) Egg-type breeding chickens. (2) Meat-type breeding chickens. (3) Breeding turkeys. (4) Breeding waterfowl, exhibition poultry, and game birds. (5) Breeding...
9 CFR 147.46 - Committee consideration of proposed changes.
Code of Federal Regulations, 2012 CFR
2012-01-01
... changes. 147.46 Section 147.46 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE... proposed changes falling in their respective fields: (1) Egg-type breeding chickens. (2) Meat-type breeding chickens. (3) Breeding turkeys. (4) Breeding waterfowl, exhibition poultry, and game birds. (5) Breeding...
9 CFR 147.46 - Committee consideration of proposed changes.
Code of Federal Regulations, 2014 CFR
2014-01-01
... changes. 147.46 Section 147.46 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE... proposed changes falling in their respective fields: (1) Egg-type breeding chickens. (2) Meat-type breeding chickens. (3) Breeding turkeys. (4) Breeding waterfowl, exhibition poultry, and game birds. (5) Breeding...
Ultra-low-density genotype panels for breed assignment of Angus and Hereford cattle.
Judge, M M; Kelleher, M M; Kearney, J F; Sleator, R D; Berry, D P
2017-06-01
Angus and Hereford beef is marketed internationally for apparent superior meat quality attributes; DNA-based breed authenticity could be a useful instrument to ensure consumer confidence on premium meat products. The objective of this study was to develop an ultra-low-density genotype panel to accurately quantify the Angus and Hereford breed proportion in biological samples. Medium-density genotypes (13 306 single nucleotide polymorphisms (SNPs)) were available on 54 703 commercial and 4042 purebred animals. The breed proportion of the commercial animals was generated from the medium-density genotypes and this estimate was regarded as the gold-standard breed composition. Ten genotype panels (100 to 1000 SNPs) were developed from the medium-density genotypes; five methods were used to identify the most informative SNPs and these included the Delta statistic, the fixation (F st) statistic and an index of both. Breed assignment analyses were undertaken for each breed, panel density and SNP selection method separately with a programme to infer population structure using the entire 13 306 SNP panel (representing the gold-standard measure). Breed assignment was undertaken for all commercial animals (n=54 703), animals deemed to contain some proportion of Angus based on pedigree (n=5740) and animals deemed to contain some proportion of Hereford based on pedigree (n=5187). The predicted breed proportion of all animals from the lower density panels was then compared with the gold-standard breed prediction. Panel density, SNP selection method and breed all had a significant effect on the correlation of predicted and actual breed proportion. Regardless of breed, the Index method of SNP selection numerically (but not significantly) outperformed all other selection methods in accuracy (i.e. correlation and root mean square of prediction) when panel density was ⩾300 SNPs. The correlation between actual and predicted breed proportion increased as panel density increased. Using 300 SNPs (selected using the global index method), the correlation between predicted and actual breed proportion was 0.993 and 0.995 in the Angus and Hereford validation populations, respectively. When SNP panels optimised for breed prediction in one population were used to predict the breed proportion of a separate population, the correlation between predicted and actual breed proportion was 0.034 and 0.044 weaker in the Hereford and Angus populations, respectively (using the 300 SNP panel). It is necessary to include at least 300 to 400 SNPs (per breed) on genotype panels to accurately predict breed proportion from biological samples.
9 CFR 151.2 - Issuance of a certificate of pure breeding.
Code of Federal Regulations, 2011 CFR
2011-01-01
... breeding. 151.2 Section 151.2 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL BREEDS RECOGNITION OF BREEDS AND BOOKS OF RECORD OF PUREBRED ANIMALS Certification of Purebred Animals § 151.2 Issuance of a certificate of pure breeding. The Administrator will...
9 CFR 151.3 - Application for certificate of pure breeding.
Code of Federal Regulations, 2010 CFR
2010-01-01
... breeding. 151.3 Section 151.3 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL BREEDS RECOGNITION OF BREEDS AND BOOKS OF RECORD OF PUREBRED ANIMALS Certification of Purebred Animals § 151.3 Application for certificate of pure breeding. An application for a...
9 CFR 151.2 - Issuance of a certificate of pure breeding.
Code of Federal Regulations, 2010 CFR
2010-01-01
... breeding. 151.2 Section 151.2 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL BREEDS RECOGNITION OF BREEDS AND BOOKS OF RECORD OF PUREBRED ANIMALS Certification of Purebred Animals § 151.2 Issuance of a certificate of pure breeding. The Administrator will...
9 CFR 151.3 - Application for certificate of pure breeding.
Code of Federal Regulations, 2011 CFR
2011-01-01
... breeding. 151.3 Section 151.3 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL BREEDS RECOGNITION OF BREEDS AND BOOKS OF RECORD OF PUREBRED ANIMALS Certification of Purebred Animals § 151.3 Application for certificate of pure breeding. An application for a...
9 CFR 151.3 - Application for certificate of pure breeding.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., however, That the application for a certificate of pure breeding for dogs, other than those regulated... breeding. 151.3 Section 151.3 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL BREEDS RECOGNITION OF BREEDS AND BOOKS OF RECORD OF PUREBRED ANIMALS...
9 CFR 151.3 - Application for certificate of pure breeding.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., however, That the application for a certificate of pure breeding for dogs, other than those regulated... breeding. 151.3 Section 151.3 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL BREEDS RECOGNITION OF BREEDS AND BOOKS OF RECORD OF PUREBRED ANIMALS...
9 CFR 151.3 - Application for certificate of pure breeding.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., however, That the application for a certificate of pure breeding for dogs, other than those regulated... breeding. 151.3 Section 151.3 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL BREEDS RECOGNITION OF BREEDS AND BOOKS OF RECORD OF PUREBRED ANIMALS...
9 CFR 151.2 - Issuance of a certificate of pure breeding.
Code of Federal Regulations, 2012 CFR
2012-01-01
... breeding. 151.2 Section 151.2 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL BREEDS RECOGNITION OF BREEDS AND BOOKS OF RECORD OF PUREBRED ANIMALS Certification of Purebred Animals § 151.2 Issuance of a certificate of pure breeding. The Administrator will...
9 CFR 151.2 - Issuance of a certificate of pure breeding.
Code of Federal Regulations, 2013 CFR
2013-01-01
... breeding. 151.2 Section 151.2 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL BREEDS RECOGNITION OF BREEDS AND BOOKS OF RECORD OF PUREBRED ANIMALS Certification of Purebred Animals § 151.2 Issuance of a certificate of pure breeding. The Administrator will...
9 CFR 151.2 - Issuance of a certificate of pure breeding.
Code of Federal Regulations, 2014 CFR
2014-01-01
... breeding. 151.2 Section 151.2 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL BREEDS RECOGNITION OF BREEDS AND BOOKS OF RECORD OF PUREBRED ANIMALS Certification of Purebred Animals § 151.2 Issuance of a certificate of pure breeding. The Administrator will...
Fashion vs. function in cultural evolution: the case of dog breed popularity.
Ghirlanda, Stefano; Acerbi, Alberto; Herzog, Harold; Serpell, James A
2013-01-01
We investigate the relationship between characteristics of dog breeds and their popularity between years 1926 and 2005. We consider breed health, longevity, and behavioral qualities such as aggressiveness, trainability, and fearfulness. We show that a breed's overall popularity, fluctuations in popularity, and rates of increase and decrease around popularity peaks show typically no correlation with these breed characteristics. One exception is the finding that more popular breeds tend to suffer from more inherited disorders. Our results support the hypothesis that dog breed popularity has been primarily determined by fashion rather than function.
Fashion vs. Function in Cultural Evolution: The Case of Dog Breed Popularity
Ghirlanda, Stefano; Acerbi, Alberto; Herzog, Harold; Serpell, James A.
2013-01-01
We investigate the relationship between characteristics of dog breeds and their popularity between years 1926 and 2005. We consider breed health, longevity, and behavioral qualities such as aggressiveness, trainability, and fearfulness. We show that a breed's overall popularity, fluctuations in popularity, and rates of increase and decrease around popularity peaks show typically no correlation with these breed characteristics. One exception is the finding that more popular breeds tend to suffer from more inherited disorders. Our results support the hypothesis that dog breed popularity has been primarily determined by fashion rather than function. PMID:24040341
Admixture and Local Breed Marginalization Threaten Algerian Sheep Diversity
Ciani, Elena; Kdidi, Samia; Aouissat, Miloud; Dhimi, Laziz; Lafri, Mohamed; Maftah, Abderrahman; Mehtar, Nadhira
2015-01-01
Due to its geo-climatic conditions, Algeria represents a biodiversity hotspot, with sheep breeds well adapted to a patchwork of extremely heterogeneous harsh habitats. The importance of this peculiar genetic reservoir increases as climate change drives the demand for new adaptations. However, the expansion of a single breed (Ouled-Djellal) which occurred in the last decades has generated a critical situation for the other breeds; some of them are being subjected to uncontrolled cross-breeding with the favored breed and/or to marginalization (effective size contraction). This study investigated genetic diversity within and among six of the nine Algerian breeds, by use of 30 microsatellite markers. Our results showed that, in spite of the census contraction experienced by most of the considered breeds, genetic diversity is still substantial (average gene diversity ranging 0.68 to 0.76) and inbreeding was not identified as a problem. However, two breeds (Rembi and Taâdmit) appeared to have lost most of their genetic originality because of intensive cross-breeding with Ouled-Djellal. Based on the above evidence, we suggest Hamra, Sidaoun, and D’man as breeds deserving the highest priority for conservation in Algeria. PMID:25875832
Use of microsatellite markers to assign goats to their breeds.
Aljumaah, R S; Alobre, M M; Al-Atiyat, R M
2015-08-07
We investigated the potential of 17 microsatellite markers for assigning Saudi goat individuals to their breeds. Three local breeds, Bishi, Jabali, and Tohami were genotyped using these markers, and Somali goats were used as a reference breed. The majority of alleles were shared between the breeds, except for some that were specific to each breed. The Garza-Williamson index was lowest in the Bishi breed, indicating that a recent bottleneck event occurred. The overall results assigned the goat individuals (based on their genotypes) to the same breeds from which they were sampled, except in a few cases. The individuals' genotypes were sufficient to provide a clear distinction between the Somali goat breed and the others. In three factorial dimensions, the results of a correspondence analysis indicated that the total variation for the first and second factors was 48.85 and 31.43%, respectively. Consequently, Jabali, Bishi, and Tohami goats were in separate groups. The Jabali goat was closely related to the Bishi goat. Somali goats were distinguished from each other and from individuals of the other three goat breeds. The markers were successful in assigning individual goats to their breeds, based on the likelihood of a given individual's genotype.
Performance of Seven Tree Breeding Strategies Under Conditions of Inbreeding Depression.
Wu, Harry X; Hallingbäck, Henrik R; Sánchez, Leopoldo
2016-01-06
In the domestication and breeding of tree species that suffer from inbreeding depression (ID), the long-term performance of different breeding strategies is poorly known. Therefore, seven tree breeding strategies including single population, subline, selfing, and nucleus breeding were simulated using a multi-locus model with additive, partial, and complete dominance allele effects, and with intermediate, U-shaped, and major allele distributions. The strategies were compared for genetic gain, inbreeding accumulation, capacity to show ID, the frequencies and fixations of unfavorable alleles, and genetic variances in breeding and production populations. Measured by genetic gain of production population, the nucleus breeding and the single breeding population with mass selection strategies were equal or superior to subline and single breeding population with within-family selection strategies in all simulated scenarios, in spite of their higher inbreeding coefficients. Inbreeding and cross-breeding effectively decreased ID and could in some scenarios produce genetic gains during the first few generations. However, in all scenarios, considerable fixation of unfavorable alleles rendered the purging performance of selfing and cross-breeding strategies ineffective, and resulted in substantial inferiority in comparison to the other strategies in the long-term. Copyright © 2016 Wu et al.
Performance of Seven Tree Breeding Strategies Under Conditions of Inbreeding Depression
Wu, Harry X.; Hallingbäck, Henrik R.; Sánchez, Leopoldo
2016-01-01
In the domestication and breeding of tree species that suffer from inbreeding depression (ID), the long-term performance of different breeding strategies is poorly known. Therefore, seven tree breeding strategies including single population, subline, selfing, and nucleus breeding were simulated using a multi-locus model with additive, partial, and complete dominance allele effects, and with intermediate, U-shaped, and major allele distributions. The strategies were compared for genetic gain, inbreeding accumulation, capacity to show ID, the frequencies and fixations of unfavorable alleles, and genetic variances in breeding and production populations. Measured by genetic gain of production population, the nucleus breeding and the single breeding population with mass selection strategies were equal or superior to subline and single breeding population with within-family selection strategies in all simulated scenarios, in spite of their higher inbreeding coefficients. Inbreeding and cross-breeding effectively decreased ID and could in some scenarios produce genetic gains during the first few generations. However, in all scenarios, considerable fixation of unfavorable alleles rendered the purging performance of selfing and cross-breeding strategies ineffective, and resulted in substantial inferiority in comparison to the other strategies in the long-term. PMID:26739644
Immunogenetic and population genetic analyses of Iberian cattle.
Kidd, K K; Stone, W H; Crimella, C; Carenzi, C; Casati, M; Rognoni, G
1980-01-01
Blood samples were collected from more than 100 animals in each of 2 Spanish cattle breeds (Retinto and De Lidia), 2 Portuguese breeds (Alentejana and Mertolenga), and American Longhorn cattle. All samples for the 4 Iberian breeds were tested for 20 polymorphic systems; American Longhorn were tested for 19 of the 20. For each breed an average inbreeding coefficient was estimated by a comparison of the observed and expected heterozygosity at 7 or 8 codominant systems tested. All breeds had positive values but only 3 breeds had estimates of inbreeding that were statistically significantly different from 0: De Lidia with f = 0.17, Retinto with f = 0.08 and Mertolenga with f = 0.05. The De Lidia breed especially may be suffering from inbreeding depression since this high value is greater than expected if all of the animals were progeny of half-sib matings. Genetic distances were calculated from the gene frequency data on these 5 breeds plus 9 other European breeds. Analyses of these distances show a closely related group of the 4 Iberian breeds and American Longhorn, confirming the close relationships among the Iberian breeds and the Iberian, probably Portuguese, origin of American Longhorn cattle.
Kang, Byeong-Teck; Kim, Kyung-Seok; Min, Mi-Sook; Chae, Young-Jin; Kang, Jung-Won; Yoon, Junghee; Choi, Jihye; Seong, Je-Kyung; Park, Han-Chan; An, Junghwa; Lee, Mun-Han; Park, Hee-Myung; Lee, Hang
2009-06-01
To investigate the population structure of five dog breeds in South Korea and to validate polymorphic microsatellite markers for the parentage test, microsatellite loci analyses were conducted for two Korean native dog breeds, Poongsan and Jindo, and three imported dog breeds, German Shepherd, Beagle and Greyhound. Overall genetic diversity was high across all dog breeds (expected heterozygosity range: 0.71 to 0.85), although breeds differed in deviations from Hardy-Weinberg equilibrium (HWE). Significant reduction of heterozygosity in the Poongsan and Greyhound breeds was caused by non-random mating and population substructure within these breeds (the Wahlund effects). The close relationship and high degree of genetic diversity for two Korean native dog breeds were substantial. The mean polymorphism information content value was highest in Jindos (0.82) and Poongsans (0.81), followed by Beagles (0.74), Greyhounds (0.72), and German Shepherds (0.66). Accumulated exclusion power values, as an indication of marker validity for parentage tests, were varied but very high across breeds, 0.9999 for Jindos, Poongsans, and Beagles, 0.9997 for Greyhounds, and 0.9995 for German Shepherds. Taken together, the microsatellite loci investigated in this study can serve as suitable markers for the parentage test and as individual identification to establish a reliable pedigree verification system of dog breeds in South Korea. This study also stresses that the population subdivision within breeds can become an important cause of deviation from HWE in dog breeds.
The oxidative costs of parental care in cooperative and pair-breeding African starlings.
Guindre-Parker, Sarah; Rubenstein, Dustin R
2018-06-01
The cost of parental care has long been thought to favor the evolution of cooperative breeding, because breeders can provide reduced parental care when aided by alloparents. Oxidative stress-the imbalance between reactive oxygen species and neutralizing antioxidants-has been proposed to mediate the cost of parental care, though results from empirical studies remain equivocal. We measured changes in oxidative status during reproduction in cooperatively breeding superb starlings (Lamprotornis superbus) to gain insight into the relationships among breeding status, parental care, and oxidative stress. We also compared the oxidative cost of reproduction in the cooperatively breeding superb starling to that in a sympatric non-cooperatively breeding species, the greater blue-eared glossy starling (L. chalybaeus), to determine whether cooperatively breeding individuals face reduced oxidative costs of parental care relative to non-cooperatively breeding individuals. Breeders and alloparents of the cooperative species did not differ in oxidative status throughout a breeding attempt. However, individuals of the non-cooperative species incurred an increase in reactive oxygen metabolites proportionally to an individual's workload during offspring care. These findings suggest that non-cooperative starlings experience an oxidative cost of parental care, whereas cooperatively breeding starlings do not. It is possible that high nest predation risk and multi-brooding in the cooperatively breeding species may have favored reduced physiological costs of parental care more strongly compared to pair-breeding starlings. Reduced physiological costs of caring for young may thus represent a direct benefit that promotes cooperative breeding.
Nucleotide variability and linkage disequilibrium patterns in the porcine MUC4 gene.
Yang, Ming; Yang, Bin; Yan, Xueming; Ouyang, Jing; Zeng, Weihong; Ai, Huashui; Ren, Jun; Huang, Lusheng
2012-07-13
MUC4 is a type of membrane anchored glycoprotein and serves as the major constituent of mucus that covers epithelial surfaces of many tissues such as trachea, colon and cervix. MUC4 plays important roles in the lubrication and protection of the surface epithelium, cell proliferation and differentiation, immune response, cell adhesion and cancer development. To gain insights into the evolution of the porcine MUC4 gene, we surveyed the nucleotide variability and linkage disequilibrium (LD) within this gene in Chinese indigenous breeds and Western commercial breeds. A total of 53 SNPs covering the MUC4 gene were genotyped on 5 wild boars and 307 domestic pigs representing 11 Chinese breeds and 3 Western breeds. The nucleotide variability, haplotype phylogeny and LD extent of MUC4 were analyzed in these breeds. Both Chinese and Western breeds had considerable nucleotide diversity at the MUC4 locus. Western pig breeds like Duroc and Large White have comparable nucleotide diversity as many of Chinese breeds, thus artificial selection for lean pork production have not reduced the genetic variability of MUC4 in Western commercial breeds. Haplotype phylogeny analyses indicated that MUC4 had evolved divergently in Chinese and Western pigs. The dendrogram of genetic differentiation between breeds generally reflected demographic history and geographical distribution of these breeds. LD patterns were unexpectedly similar between Chinese and Western breeds, in which LD usually extended less than 20 kb. This is different from the presumed high LD extent (more than 100 kb) in Western commercial breeds. The significant positive Tajima'D, and Fu and Li's D statistics in a few Chinese and Western breeds implied that MUC4 might undergo balancing selection in domestic breeds. Nevertheless, we cautioned that the significant statistics could be upward biased by SNP ascertainment process. Chinese and Western breeds have similar nucleotide diversity but evolve divergently in the MUC4 region. Western breeds exhibited unusual low LD extent at the MUC4 locus, reflecting the complexity of nucleotide variability of pig genome. The finding suggests that high density (e.g. 1SNP/10 kb) markers are required to capture the underlying causal variants at such regions.
Dou, Tengfei; Zhao, Sumei; Rong, Hua; Gu, Dahai; Li, Qihua; Huang, Ying; Xu, Zhiqiang; Chu, Xiaohui; Tao, Linli; Liu, Lixian; Ge, Changrong; Te Pas, Marinus F W; Jia, Junjing
2017-06-20
Intensive selection has resulted in increased growth rates and muscularity in broiler chickens, in addition to adverse effects, including delayed organ development, sudden death syndrome, and altered metabolic rates. The biological mechanisms underlying selection responses remain largely unknown. Non-artificially-selected indigenous Chinese chicken breeds display a wide variety of phenotypes, including differential growth rate, body weight, and muscularity. The Wuding chicken breed is a fast growing large chicken breed, and the Daweishan mini chicken breed is a slow growing small chicken breed. Together they form an ideal model system to study the biological mechanisms underlying broiler chicken selection responses in a natural system. The objective of this study was to study the biological mechanisms underlying differential phenotypes between the two breeds in muscle and liver tissues, and relate these to the growth rate and body development phenotypes of the two breeds. The muscle tissue in the Wuding breed showed higher expression of muscle development genes than muscle tissue in the Daweishan chicken breed. This expression was accompanied by higher expression of acute inflammatory response genes in Wuding chicken than in Daweishan chicken. The muscle tissue of the Daweishan mini chicken breed showed higher expression of genes involved in several metabolic mechanisms including endoplasmic reticulum, protein and lipid metabolism, energy metabolism, as well as specific immune traits than in the Wuding chicken. The liver tissue showed fewer differences between the two breeds. Genes displaying higher expression in the Wuding breed than in the Daweishan breed were not associated with a specific gene network or biological mechanism. Genes highly expressed in the Daweishan mini chicken breed compared to the Wuding breed were enriched for protein metabolism, ABC receptors, signal transduction, and IL6-related mechanisms. We conclude that faster growth rates and larger body size are related to increased expression of genes involved in muscle development and immune response in muscle, while slower growth rates and smaller body size are related to increased general cellular metabolism. The liver of the Daweishan breed displayed increased expression of metabolic genes.
Joint genomic evaluation of French dairy cattle breeds using multiple-trait models.
Karoui, Sofiene; Carabaño, María Jesús; Díaz, Clara; Legarra, Andrés
2012-12-07
Using a multi-breed reference population might be a way of increasing the accuracy of genomic breeding values in small breeds. Models involving mixed-breed data do not take into account the fact that marker effects may differ among breeds. This study was aimed at investigating the impact on accuracy of increasing the number of genotyped candidates in the training set by using a multi-breed reference population, in contrast to single-breed genomic evaluations. Three traits (milk production, fat content and female fertility) were analyzed by genomic mixed linear models and Bayesian methodology. Three breeds of French dairy cattle were used: Holstein, Montbéliarde and Normande with 2976, 950 and 970 bulls in the training population, respectively and 964, 222 and 248 bulls in the validation population, respectively. All animals were genotyped with the Illumina Bovine SNP50 array. Accuracy of genomic breeding values was evaluated under three scenarios for the correlation of genomic breeding values between breeds (r(g)): uncorrelated (1), r(g) = 0; estimated r(g) (2); high, r(g) = 0.95 (3). Accuracy and bias of predictions obtained in the validation population with the multi-breed training set were assessed by the coefficient of determination (R(2)) and by the regression coefficient of daughter yield deviations of validation bulls on their predicted genomic breeding values, respectively. The genetic variation captured by the markers for each trait was similar to that estimated for routine pedigree-based genetic evaluation. Posterior means for rg ranged from -0.01 for fertility between Montbéliarde and Normande to 0.79 for milk yield between Montbéliarde and Holstein. Differences in R(2) between the three scenarios were notable only for fat content in the Montbéliarde breed: from 0.27 in scenario (1) to 0.33 in scenarios (2) and (3). Accuracies for fertility were lower than for other traits. Using a multi-breed reference population resulted in small or no increases in accuracy. Only the breed with a small data set and large genetic correlation with the breed with a large data set showed increased accuracy for the traits with moderate (milk) to high (fat content) heritability. No benefit was observed for fertility, a lowly heritable trait.
Vanderick, S; Harris, B L; Pryce, J E; Gengler, N
2009-03-01
In New Zealand, a large proportion of cows are currently crossbreds, mostly Holstein-Friesians (HF) x Jersey (JE). The genetic evaluation system for milk yields is considering the same additive genetic effects for all breeds. The objective was to model different additive effects according to parental breeds to obtain first estimates of correlations among breed-specific effects and to study the usefulness of this type of random regression test-day model. Estimates of (co)variance components for purebred HF and JE cattle in purebred herds were computed by using a single-breed model. This analysis showed differences between the 2 breeds, with a greater variability in the HF breed. (Co)variance components for purebred HF and JE and crossbred HF x JE cattle were then estimated by using a complete multibreed model in which computations of complete across-breed (co)variances were simplified by correlating only eigenvectors for HF and JE random regressions of the same order as obtained from the single-breed analysis. Parameter estimates differed more strongly than expected between the single-breed and multibreed analyses, especially for JE. This could be due to differences between animals and management in purebred and non-purebred herds. In addition, the model used only partially accounted for heterosis. The multibreed analysis showed additive genetic differences between the HF and JE breeds, expressed as genetic correlations of additive effects in both breeds, especially in linear and quadratic Legendre polynomials (respectively, 0.807 and 0.604). The differences were small for overall milk production (0.926). Results showed that permanent environmental lactation curves were highly correlated across breeds; however, intraherd lactation curves were also affected by the breed-environment interaction. This result may indicate the existence of breed-specific competition effects that vary through the different lactation stages. In conclusion, a multibreed model similar to the one presented could optimally use the environmental and genetic parameters and provide breed-dependent additive breeding values. This model could also be a useful tool to evaluate crossbred dairy cattle populations like those in New Zealand. However, a routine evaluation would still require the development of an improved methodology. It would also be computationally very challenging because of the simultaneous presence of a large number of breeds.
Joint genomic evaluation of French dairy cattle breeds using multiple-trait models
2012-01-01
Background Using a multi-breed reference population might be a way of increasing the accuracy of genomic breeding values in small breeds. Models involving mixed-breed data do not take into account the fact that marker effects may differ among breeds. This study was aimed at investigating the impact on accuracy of increasing the number of genotyped candidates in the training set by using a multi-breed reference population, in contrast to single-breed genomic evaluations. Methods Three traits (milk production, fat content and female fertility) were analyzed by genomic mixed linear models and Bayesian methodology. Three breeds of French dairy cattle were used: Holstein, Montbéliarde and Normande with 2976, 950 and 970 bulls in the training population, respectively and 964, 222 and 248 bulls in the validation population, respectively. All animals were genotyped with the Illumina Bovine SNP50 array. Accuracy of genomic breeding values was evaluated under three scenarios for the correlation of genomic breeding values between breeds (rg): uncorrelated (1), rg = 0; estimated rg (2); high, rg = 0.95 (3). Accuracy and bias of predictions obtained in the validation population with the multi-breed training set were assessed by the coefficient of determination (R2) and by the regression coefficient of daughter yield deviations of validation bulls on their predicted genomic breeding values, respectively. Results The genetic variation captured by the markers for each trait was similar to that estimated for routine pedigree-based genetic evaluation. Posterior means for rg ranged from −0.01 for fertility between Montbéliarde and Normande to 0.79 for milk yield between Montbéliarde and Holstein. Differences in R2 between the three scenarios were notable only for fat content in the Montbéliarde breed: from 0.27 in scenario (1) to 0.33 in scenarios (2) and (3). Accuracies for fertility were lower than for other traits. Conclusions Using a multi-breed reference population resulted in small or no increases in accuracy. Only the breed with a small data set and large genetic correlation with the breed with a large data set showed increased accuracy for the traits with moderate (milk) to high (fat content) heritability. No benefit was observed for fertility, a lowly heritable trait. PMID:23216664
Genome wide linkage disequilibrium and genetic structure in Sicilian dairy sheep breeds.
Mastrangelo, Salvatore; Di Gerlando, Rosalia; Tolone, Marco; Tortorici, Lina; Sardina, Maria Teresa; Portolano, Baldassare
2014-10-10
The recent availability of sheep genome-wide SNP panels allows providing background information concerning genome structure in domestic animals. The aim of this work was to investigate the patterns of linkage disequilibrium (LD), the genetic diversity and population structure in Valle del Belice, Comisana, and Pinzirita dairy sheep breeds using the Illumina Ovine SNP50K Genotyping array. Average r (2) between adjacent SNPs across all chromosomes was 0.155 ± 0.204 for Valle del Belice, 0.156 ± 0.208 for Comisana, and 0.128 ± 0.188 for Pinzirita breeds, and some variations in LD value across chromosomes were observed, in particular for Valle del Belice and Comisana breeds. Average values of r (2) estimated for all pairwise combinations of SNPs pooled over all autosomes were 0.058 ± 0.023 for Valle del Belice, 0.056 ± 0.021 for Comisana, and 0.037 ± 0.017 for Pinzirita breeds. The LD declined as a function of distance and average r (2) was lower than the values observed in other sheep breeds. Consistency of results among the several used approaches (Principal component analysis, Bayesian clustering, F ST, Neighbor networks) showed that while Valle del Belice and Pinzirita breeds formed a unique cluster, Comisana breed showed the presence of substructure. In Valle del Belice breed, the high level of genetic differentiation within breed, the heterogeneous cluster in Admixture analysis, but at the same time the highest inbreeding coefficient, suggested that the breed had a wide genetic base with inbred individuals belonging to the same flock. The Sicilian breeds were characterized by low genetic differentiation and high level of admixture. Pinzirita breed displayed the highest genetic diversity (He, Ne) whereas the lowest value was found in Valle del Belice breed. This study has reported for the first time estimates of LD and genetic diversity from a genome-wide perspective in Sicilian dairy sheep breeds. Our results indicate that breeds formed non-overlapping clusters and are clearly separated populations and that Comisana sheep breed does not constitute a homogenous population. The information generated from this study has important implications for the design and applications of association studies as well as for development of conservation and/or selection breeding programs.
Gunter, Lisa M.; Barber, Rebecca T.; Wynne, Clive D. L.
2016-01-01
Previous research has indicated that certain breeds of dogs stay longer in shelters than others. However, exactly how breed perception and identification influences potential adopters' decisions remains unclear. Current dog breed identification practices in animal shelters are often based upon information supplied by the relinquishing owner, or staff determination based on the dog's phenotype. However, discrepancies have been found between breed identification as typically assessed by welfare agencies and the outcome of DNA analysis. In Study 1, the perceived behavioral and adoptability characteristics of a pit-bull-type dog were compared with those of a Labrador Retriever and Border Collie. How the addition of a human handler influenced those perceptions was also assessed. In Study 2, lengths of stay and perceived attractiveness of dogs that were labeled as pit bull breeds were compared to dogs that were phenotypically similar but were labeled as another breed at an animal shelter. The latter dogs were called "lookalikes." In Study 3, we compared perceived attractiveness in video recordings of pit-bull-type dogs and lookalikes with and without breed labels. Lastly, data from an animal shelter that ceased applying breed labeling on kennels were analyzed, and lengths of stay and outcomes for all dog breeds, including pit bulls, before and after the change in labeling practice were compared. In total, these findings suggest that breed labeling influences potential adopters' perceptions and decision-making. Given the inherent complexity of breed assignment based on morphology coupled with negative breed perceptions, removing breed labels is a relatively low-cost strategy that will likely improve outcomes for dogs in animal shelters. PMID:27008213
Genomics of a revived breed: Case study of the Belgian campine cattle
Wijnrocx, Katrien; Colinet, Frédéric G.; Gengler, Nicolas; Hulsegge, Bettine; Windig, Jack J.; Buys, Nadine
2017-01-01
Through centuries of both natural and artificial selection, a variety of local cattle populations arose with highly specific phenotypes. However, the intensification and expansion of scale in animal production systems led to the predominance of a few highly productive cattle breeds. The loss of local populations is often considered irreversible and with them specific qualities and rare variants could be lost as well. Over these last years, the interest in these local breeds has increased again leading to increasing efforts to conserve these breeds or even revive lost populations, e.g. through the use of crosses with similar breeds. However, the remaining populations are expected to contain crossbred individuals resulting from introgressions. They are likely to carry exogenous genes that affect the breed’s authenticity on a genomic level. Using the revived Campine breed as a case study, 289 individuals registered as purebreds were genotyped on the Illumina BovineSNP50. In addition, genomic information on the Illumina BovineHD and Illumina BovineSNP50 of ten breeds was available to assess the current population structure, genetic diversity, and introgression with phenotypically similar and/or historically related breeds. Introgression with Holstein and beef cattle genotypes was limited to only a few farms. While the current population shows a substantial amount of within-breed variation, the majority of genotypes can be separated from other breeds in the study, supporting the re-establishment of the Campine breed. The majority of the population is genetically close to the Deep Red (NL), Improved Red (NL) and Eastern Belgium Red and White (BE) cattle, breeds known for their historical ties to the Campine breed. This would support an open herdbook policy, thereby increasing the population size and consequently providing a more secure future for the breed. PMID:28426822
Gunter, Lisa M; Barber, Rebecca T; Wynne, Clive D L
2016-01-01
Previous research has indicated that certain breeds of dogs stay longer in shelters than others. However, exactly how breed perception and identification influences potential adopters' decisions remains unclear. Current dog breed identification practices in animal shelters are often based upon information supplied by the relinquishing owner, or staff determination based on the dog's phenotype. However, discrepancies have been found between breed identification as typically assessed by welfare agencies and the outcome of DNA analysis. In Study 1, the perceived behavioral and adoptability characteristics of a pit-bull-type dog were compared with those of a Labrador Retriever and Border Collie. How the addition of a human handler influenced those perceptions was also assessed. In Study 2, lengths of stay and perceived attractiveness of dogs that were labeled as pit bull breeds were compared to dogs that were phenotypically similar but were labeled as another breed at an animal shelter. The latter dogs were called "lookalikes." In Study 3, we compared perceived attractiveness in video recordings of pit-bull-type dogs and lookalikes with and without breed labels. Lastly, data from an animal shelter that ceased applying breed labeling on kennels were analyzed, and lengths of stay and outcomes for all dog breeds, including pit bulls, before and after the change in labeling practice were compared. In total, these findings suggest that breed labeling influences potential adopters' perceptions and decision-making. Given the inherent complexity of breed assignment based on morphology coupled with negative breed perceptions, removing breed labels is a relatively low-cost strategy that will likely improve outcomes for dogs in animal shelters.
Influence of behavioural tactics on recruitment and reproductive trajectory in the kittiwake
Cam, E.; Cadiou, B.; Hines, J.E.
2002-01-01
Many studies have provided evidence that, in birds, inexperienced breeders have a lower probability of breeding successfully. This is often explained by lack of skills and knowledge, and sometimes late laying dates in the first breeding attempt. There is growing evidence that in many species with deferred reproduction, some prebreeders attend breeding places, acquire territories and form pairs. Several behavioural tactics assumed to be associated with territory acquisition have been described in different species. These tactics may influence the probability of recruiting in the breeding segment of the population, age of first breeding, and reproductive success in the first breeding attempt. Here we addressed the influence of behaviour ('squatting') during the prebreeding period on demographic parameters (survival and recruitment probability) in a long-lived colonial seabird species: the kittiwake. We also investigated the influence of behaviour on reproductive trajectory. Squatters have a higher survival and recruitment probability, and a higher probability of breeding successfully in the first breeding attempt in all age-classes where this category is represented. The influence of behaviour is mainly expressed in the first reproduction. However, there is a relationship between breeding success in the first occasion and subsequent occasions. The influence of breeding success in the first breeding attempt on the rest of the trajectory may indirectly reflect the influence of behaviour on breeding success in the first occasion. The shape of the reproductive trajectory is influenced by behaviour and age of first breeding. There is substantial individual variation from the mean reproductive trajectory, which is accounted for by heterogeneity in performance among individuals in the first attempt, but there is no evidence of individual heterogeneity in the rate of change over time in performance in subsequent breeding occasions
Perry, M.C.; Kidwell, D.M.; Wells, A.M.; Lohnes, E.J.R.; Osenton, P.C.; Altmann, S.H.; Hanson, Alan; Kerekes, Joseph; Paquet, Julie
2006-01-01
We analyzed characteristics of wetland habitats used by breeding black scoters (Melanitta nigra) and surf scoters (M. perspicillata) in the eastern boreal forest and subarctic regions of Canada based on satellite telemetry data collected in the spring and summer. During 2002 and 2004, nine black scoters (four males, five females) were tracked to breeding areas in Quebec, Manitoba, and Northwest Territories. In addition, in 2001?04, seven surf scoters (three males, four females) were tracked to breeding areas in Labrador, Quebec, Northwest Territories, and Nunavut. Based on satellite telemetry data, locations of black and surf scoters in breeding areas were not significantly different in regard to latitude and longitude. Presumed breeding areas were manually plotted on topographic maps and percent cover type and water were estimated. Breeding habitat of black scoters was significantly different than that for surf scoters, with black scoters mainly using open (tundra) areas (44%) and surf scoters using mainly forest areas (66%). Surf scoters presumed breeding areas were at significantly higher elevations than areas used by black scoters. Some breeding areas were associated with islands, but the role of islands for breeding areas is equivocal. These results aid in the identification of potentially critical breeding areas and provide a baseline classification of breeding habitats used by these two species.
Sardina, Maria Teresa; Tortorici, Lina; Mastrangelo, Salvatore; Di Gerlando, Rosalia; Tolone, Marco; Portolano, Baldassare
2015-08-01
In livestock, breed assignment may play a key role in the certification of products linked to specific breeds. Traceability of farm animals and authentication of their products can contribute to improve breed profitability and sustainability of animal productions with significant impact on the rural economy of particular geographic areas and on breed and biodiversity conservation. With the goal of developing a breed genetic traceability system for Girgentana dairy products, the aim of this study was to identify specific microsatellite markers able to discriminate among the most important Sicilian dairy goat breeds, in order to detect possible adulteration in Girgentana dairy products. A total of 20 microsatellite markers were analyzed on 338 individual samples from Girgentana, Maltese, and Derivata di Siria goat breeds. Specific microsatellite markers useful for traceability of dairy products were identified. Eight microsatellite markers showed alleles present at the same time in Maltese and Derivata di Siria and absent in Girgentana and, therefore, they were tested on DNA pools of the three breeds. Considering the electropherograms' results, only FCB20, SRCRSP5, and TGLA122 markers were tested on DNA samples extracted from cheeses of Girgentana goat breed. These three microsatellite markers could be applied in a breed genetic traceability system of Girgentana dairy products in order to detect adulteration due to Maltese and Derivata di Siria goat breeds. Copyright © 2015 Elsevier Ltd. All rights reserved.
Comparison of molecular breeding values based on within- and across-breed training in beef cattle
USDA-ARS?s Scientific Manuscript database
Background Although the efficacy of genomic predictors based on within-breed training looks promising, it is necessary to develop and evaluate across-breed predictors for the technology to be fully applied in the beef industry. The efficacies of genomic predictors trained in one breed and utilized ...
9 CFR 151.10 - Recognition of additional breeds and books of record.
Code of Federal Regulations, 2012 CFR
2012-01-01
... books of record. 151.10 Section 151.10 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL BREEDS RECOGNITION OF BREEDS AND BOOKS OF RECORD OF PUREBRED ANIMALS Recognition of Breeds and Books of Record § 151.10 Recognition of additional breeds and books of...
9 CFR 151.10 - Recognition of additional breeds and books of record.
Code of Federal Regulations, 2013 CFR
2013-01-01
... books of record. 151.10 Section 151.10 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL BREEDS RECOGNITION OF BREEDS AND BOOKS OF RECORD OF PUREBRED ANIMALS Recognition of Breeds and Books of Record § 151.10 Recognition of additional breeds and books of...
9 CFR 151.10 - Recognition of additional breeds and books of record.
Code of Federal Regulations, 2014 CFR
2014-01-01
... books of record. 151.10 Section 151.10 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL BREEDS RECOGNITION OF BREEDS AND BOOKS OF RECORD OF PUREBRED ANIMALS Recognition of Breeds and Books of Record § 151.10 Recognition of additional breeds and books of...
Extreme weather and experience influence reproduction in an endangered bird
Reichert, Brian E.; Cattau, Christopher E.; Fletcher, Robert J.; Kendall, William L.; Kitchens, Wiley M.
2012-01-01
Using a 14-year time series spanning large variation in climatic conditions and the entirety of a population's breeding range, we estimated the effects of extreme weather conditions (drought) on the state-specific probabilities of breeding and survival of an endangered bird, the Florida Snail Kite (Rostrhamus sociabilis plumbeus). Our analysis accounted for uncertainty in breeding status assignment, a common source of uncertainty that is often ignored when states are based on field observations. Breeding probabilities in adult kites (>1 year of age) decreased during droughts, whereas the probability of breeding in young kites (1 year of age) tended to increase. Individuals attempting to breed showed no evidence of reduced future survival. Although population viability analyses of this species and other species often implicitly assume that all adults will attempt to breed, we find that breeding probabilities were significantly <1 for all 13 estimable years considered. Our results suggest that experience is an important factor determining whether or not individuals attempt to breed during harsh environmental conditions and that reproductive effort may be constrained by an individual's quality and/or despotic behavior among individuals attempting to breed.
Within- and between-year dispersal of American Avocets among multiple western Great Basin wetlands
Plissner, Jonathan H.; Haig, Susan M.; Oring, L.W.
1999-01-01
Connectivity of discrete habitat patches may be described in terms of the movements of individual organisms among such patches. To examine connectivity of widely dispersed alkali lake systems, we recorded post-breeding and subsequent breeding locations of color-banded American Avocets (Recurvirostra americana) in the western U.S. Great Basin, from 1995-1997. Among individuals observed during the post-breeding/premigratory season, over half of the 188 breeding adults were observed at lakes other than their breeding locations, whereas 70% of 125 post-fledged young were observed only at their natal lake systems. Of 46 breeding adults observed in consecutive years, only eight (17%) dispersed between different lake systems. Only 8% of chicks were observed after their first year, and only 1.3% returned to the natal area in subsequent breeding seasons. Adult and recently fledged birds from the southernmost breeding site were regularly observed in post-breeding aggregations at lakes several hundred kilometers to the north, suggesting seasonal differences in habitat quality at the lake systems studied. These results indicate the importance of maintaining habitat for post-breeding movements.
Analysis of relationships between German heavy horse breeds based on pedigree information.
Aberle, Kerstin; Wrede, Jörn; Distl, Ottmar
2004-01-01
We analysed the relationship coefficients (R) between the four German heavy horse breeds South German Coldblood, Rhenish German Draught Horse, Schleswig Draught Horse and Black Forest Draught Horse. The relationship coefficient makes it possible to ascertain crossbreeding between the breeds over time, or autonomous developments of the breeds, respectively. The investigation revealed that the relationship coefficients between the German draught horse breeds were very low. The mean relationship coefficients between the four German heavy horse breeds were largest between the South German Coldblood and Schleswig Draught Horse (0.103%), whereas mean relationship coefficients were lowest between the Rhenish German and Black Forest Draught Horse (0.001%). The Rhenish German Draught Horse showed largest relationship coefficients with the Schleswig Draught Horse (0.09%), while the Black Forest Draught Horse was mostly related to the South German Coldblood (0.06%). The results reveal the presence of very few common progenitors of the breeds. The gene flow between the breeds is primarily due to crossbreeding of stallions and, especially, in the Rhenish German Draught Horse population breeding with a few mares from other German draught horse breeds.
D-loop haplotype diversity in Brazilian horse breeds
Ianella, Patrícia; Albuquerque, Maria do Socorro Maués; Paiva, Samuel Rezende; do Egito, Andréa Alves; Almeida, Leonardo Daniel; Sereno, Fabiana T. P. S.; Carvalho, Luiz Felipe Ramos; Mariante, Arthur da Silva; McManus, Concepta Margaret
2017-01-01
Abstract The first horses were brought to Brazil by the colonizers after 1534. Over the centuries, these animals evolved and adapted to local environmental conditions usually unsuitable for exotic breeds, thereby originating locally adapted Brazilian breeds. The present work represents the first description of maternal genetic diversity in these horse breeds based on D-loop sequences. A D-Loop HSV-I fragment of 252 bp, from 141 horses belonging to ten Brazilian breeds / genetic groups (locally adapted and specialized breeds) were analysed. Thirty-five different haplotypes belonging to 18 haplogroups were identified with 33 polymorphic sites. Haplotype diversity (varying from 0.20 to 0.96) and nucleotide diversity (varying from 0.0039 to 0.0239) was lower for locally adapted than for specialized breeds, with the same pattern observed for FST values. Haplogroups identified in Brazilian breeds are in agreement with previous findings in South American samples. The low variability observed mainly in locally adapted breeds, indicates that, to ensure conservation of these breeds, careful reproductive management is needed. Additional genetic characterization studies are required to support accurate decision-making. PMID:28863209
An ABC estimate of pedigree error rate: application in dog, sheep and cattle breeds.
Leroy, G; Danchin-Burge, C; Palhiere, I; Baumung, R; Fritz, S; Mériaux, J C; Gautier, M
2012-06-01
On the basis of correlations between pairwise individual genealogical kinship coefficients and allele sharing distances computed from genotyping data, we propose an approximate Bayesian computation (ABC) approach to assess pedigree file reliability through gene-dropping simulations. We explore the features of the method using simulated data sets and show precision increases with the number of markers. An application is further made with five dog breeds, four sheep breeds and one cattle breed raised in France and displaying various characteristics and population sizes, using microsatellite or SNP markers. Depending on the breeds, pedigree error estimations range between 1% and 9% in dog breeds, 1% and 10% in sheep breeds and 4% in cattle breeds. © 2011 The Authors, Animal Genetics © 2011 Stichting International Foundation for Animal Genetics.
Colombian Creole horse breeds: Same origin but different diversity
Jimenez, Ligia Mercedes; Mendez, Susy; Dunner, Susana; Cañón, Javier; Cortés, Óscar
2012-01-01
In order to understand the genetic ancestry and mitochondrial DNA (mtDNA) diversity of current Colombian horse breeds we sequenced a 364-bp fragment of the mitocondrial DNA D-loop in 116 animals belonging to five Spanish horse breeds and the Colombian Paso Fino and Colombian Creole cattle horse breeds. Among Colombian horse breeds, haplogroup D had the highest frequency (53%), followed by haplogroups A (19%), C (8%) and F (6%). The higher frequency of haplogroup D in Colombian horse breeds supports the theory of an ancestral Iberian origin for these breeds. These results also indicate that different selective pressures among the Colombian breeds could explain the relatively higher genetic diversity found in the Colombian Creole cattle horse when compared with the Colombian Paso Fino. PMID:23271940
Sequencing consolidates molecular markers with plant breeding practice.
Yang, Huaan; Li, Chengdao; Lam, Hon-Ming; Clements, Jonathan; Yan, Guijun; Zhao, Shancen
2015-05-01
Plenty of molecular markers have been developed by contemporary sequencing technologies, whereas few of them are successfully applied in breeding, thus we present a review on how sequencing can facilitate marker-assisted selection in plant breeding. The growing global population and shrinking arable land area require efficient plant breeding. Novel strategies assisted by certain markers have proven effective for genetic gains. Fortunately, cutting-edge sequencing technologies bring us a deluge of genomes and genetic variations, enlightening the potential of marker development. However, a large gap still exists between the potential of molecular markers and actual plant breeding practices. In this review, we discuss marker-assisted breeding from a historical perspective, describe the road from crop sequencing to breeding, and highlight how sequencing facilitates the application of markers in breeding practice.
Czerwinski, Veronika; McArthur, Michelle; Smith, Bradley; Hynd, Philip; Hazel, Susan
2016-11-16
Every year, thousands of purebred domestic dogs are bred by registered dog breeders. Yet, little is known about the rearing environment of these dogs, or the attitudes and priorities surrounding breeding practices of these dog breeders. The objective of this study was to explore some of the factors that dog breeders consider important for stock selection, with a particular emphasis on issues relating to the dam. Two-hundred and seventy-four Australian purebred dog breeders, covering 91 breeds across all Australian National Kennel Club breed groups, completed an online survey relating to breeding practices. Most breeders surveyed (76%) reported specialising in one breed of dog, the median number of dogs and bitches per breeder was two and three respectively, and most breeders bred two litters or less a year. We identified four components, relating to the dam, that were considered important to breeders. These were defined as Maternal Care, Offspring Potential, Dam Temperament, and Dam Genetics and Health. Overall, differences were observed in attitudes and beliefs across these components, showing that there is variation according to breed/breed groups. In particular, the importance of Maternal Care varied according to dog breed group. Breeders of brachycephalic breeds tended to differ the most in relation to Offspring Potential and Dam Genetics and Health. The number of breeding dogs/bitches influenced breeding priority, especially in relation to Dam Temperament, however no effect was found relating to the number of puppies bred each year. Only 24% of breeders used their own sire for breeding. The finding that some breeders did not test for diseases relevant to their breed, such as hip dysplasia in Labrador Retrievers and German Shepherds, provides important information on the need to educate some breeders, and also buyers of purebred puppies, that screening for significant diseases should occur. Further research into the selection of breeding dams and sires will inform future strategies to improve the health and behaviour of our best friend.
Ceh, E; Dovc, P
2014-08-01
Livestock guard dog (LGD) breeds from the Western Balkans are a good example of how complex genetic diversity pattern observed in dog breeds has been shaped by transition in dog breeding practices. Despite their common geographical origin and relatively recent formal recognition as separate breeds, the Karst Shepherd, Sarplaninac and Tornjak show distinct population dynamics, assessed by pedigree, microsatellite and mtDNA data. We genotyped 493 dogs belonging to five dog breeds using a set of 18 microsatellite markers and sequenced mtDNA from 94 dogs from these breeds. Different demographic histories of the Karst Shepherd and Tornjak breeds are reflected in the pedigree data with the former breed having more unbalanced contributions of major ancestors and a realized effective population size of less than 20 animals. The highest allelic richness was found in Sarplaninac (5.94), followed by Tornjak (5.72), whereas Karst Shepherd dogs exhibited the lowest allelic richness (3.33). Similarly, the highest mtDNA haplotype diversity was found in Sarplaninac, followed by Tornjak and Karst Shepherd, where only one haplotype was found. Based on FST differentiation values and high percentages of animals correctly assigned, all breeds can be considered genetically distinct. However, using microsatellite data, common ancestry between the Karst Shepherd and Sarplaninac could not be reconstructed, despite pedigree and mtDNA evidence of their historical admixture. Using neighbour-joining, STRUCTURE or DAPC methods, Sarplaninac and Caucasian Shepherd breeds could not be separated and additionally showed close proximity in the NeighborNet tree. STRUCTURE analysis of the Tornjak breed demonstrated substructuring, which needs further investigation. Altogether, results of this study show that the official separation of these dog breeds strongly affected the resolution of genetic differentiation and thus suggest that the relationships between breeds are not only determined by breed relatedness, but in small populations even more importantly by stochastic effects. © 2014 Blackwell Verlag GmbH.
Assessing priorities for conservation in Tuscan cattle breeds using microsatellites.
Bozzi, R; Alvarez, I; Crovetti, A; Fernández, I; De Petris, D; Goyache, F
2012-02-01
Preservation of rare genetic stocks requires assessment of within-population genetic diversity and between-population differentiation to make inferences on their degree of uniqueness. A total of 194 Tuscan cattle (44 Calvana, 35 Chianina, 25 Garfagnina, 31 Maremmana, 31 Mucca Pisana and 28 Pontremolese) individuals were genotyped for 34 microsatellite markers. Moreover, 56 samples belonging to Argentinean Creole and Asturiana de la Montaña cattle breeds were used as an outgroup. Genetic diversity was quantified in terms of molecular coancestry and allelic richness. STRUCTURE analyses showed that the Tuscan breeds have well-differentiated genetic backgrounds, except for the Calvana and Chianina breeds, which share the same genetic ancestry. The between-breed Nei's minimum distance (Dm) matrices showed that the pair Calvana-Chianina was less differentiated (0.049 ± 0.006). The endangered Tuscan breeds (Calvana, Garfagnina, Mucca Pisana and Pontremolese) made null or negative contributions to diversity, except for the Mucca Pisana contribution to allelic richness (CT = 1.8%). The Calvana breed made null or negative within-breed contributions (W = 0.0%; CW = -0.4%). The Garfagnina and Pontremolese breeds made positive contributions to between-breed diversity but negative and high within-breed contributions, thus suggesting population bottleneck with allelic losses and increase of homozygosity in the population. Exclusion of the four endangered Tuscan cattle breeds did not result in losses in genetic diversity (T = -0.7%; CT = -1.2%), whereas exclusion of the non-endangered breeds (Chianina and Maremmana) did (T = 2.1%; CT = 3.9%); the simple exclusion of the Calvana breed from the former group led to losses in genetic diversity (T = 0.47%; CT = 2.34%), indicating a diverse significance for this breed. We showed how quantifying both within-population diversity and between-population differentiation in terms of allelic frequencies and allelic richness provides different and complementary information on the genetic backgrounds assessed and may help to implement priorities and strategies for conservation in livestock.
Mammary gland and milk fatty acid composition of two dairy goat breeds under feed-restriction.
Palma, Mariana; Alves, Susana P; Hernández-Castellano, Lorenzo E; Capote, Juan; Castro, Noemí; Argüello, Anastasio; Matzapetakis, Manolis; Bessa, Rui J B; de Almeida, André M
2017-08-01
Goat dairy products are an important source of animal protein in the tropics. During the dry season, pasture scarcity leads animals to lose up to 40% of their body weight, a condition known as Seasonal Weight Loss (SWL) that is one of the major constraints in ruminant production. Breeds with high tolerance to SWL are relevant to understand the physiological responses to pasture scarcity so they could be used in programs for animal breeding. In the Canary Islands there are two dairy goat breeds with different levels of tolerance to SWL: the Palmera, susceptible to SWL; and the Majorera, tolerant to SWL. Fat is one of the milk components most affected by environmental and physiological conditions. This study hypothesises that feed-restriction affects Majorera and Palmera breeds differently, leading to different fatty acid profiles in the mammary gland and milk. An interaction between breed and feed-restriction was observed in the mammary gland. Feed-restriction was associated with an increase in oleic acid and a decrease in palmitic acid percentage in the Palmera breed whereas no differences were observed in the Majorera breed. Palmitic and oleic acids together constituted around 60% of the total fatty acids identified, which suggests that Palmera breed is more susceptible to SWL. In milk, feed-restriction affected both breeds similarly. Regarding the interaction of the breed with the treatment, we also observed similar responses in both breeds, but this influence affects only around 2% of the total fatty acids. In general, Majorera breed is more tolerant to feed-restriction.
Genome-wide genotyping uncovers genetic profiles and history of the Russian cattle breeds.
Yurchenko, Andrey; Yudin, Nikolay; Aitnazarov, Ruslan; Plyusnina, Alexandra; Brukhin, Vladimir; Soloshenko, Vladimir; Lhasaranov, Bulat; Popov, Ruslan; Paronyan, Ivan A; Plemyashov, Kirill V; Larkin, Denis M
2018-01-01
One of the most economically important areas within the Russian agricultural sector is dairy and beef cattle farming contributing about $11 billion to the Russian economy annually. Trade connections, selection and breeding have resulted in the establishment of a number of breeds that are presumably adapted to local climatic conditions. Little however is known about the ancestry and history of Russian native cattle. To address this question, we genotyped 274 individuals from 18 breeds bred in Russia and compared them to 135 additional breeds from around the world that had been genotyped previously. Our results suggest a shared ancestry between most of the Russian cattle and European taurine breeds, apart from a few breeds that shared ancestry with the Asian taurines. The Yakut cattle, belonging to the latter group, was found to be the most diverged breed in the whole combined dataset according to structure results. Haplotype sharing further suggests that the Russian cattle can be divided into four major clusters reflecting ancestral relations with other breeds. Herein, we therefore shed light on to the history of Russian cattle and identified closely related breeds to those from Russia. Our results will facilitate future research on detecting signatures of selection in cattle genomes and eventually inform future genetics-assisted livestock breeding programs in Russia and in other countries.
Bouwman, Aniek C; Veerkamp, Roel F
2014-10-03
The aim of this study was to determine the consequences of splitting sequencing effort over multiple breeds for imputation accuracy from a high-density SNP chip towards whole-genome sequence. Such information would assist for instance numerical smaller cattle breeds, but also pig and chicken breeders, who have to choose wisely how to spend their sequencing efforts over all the breeds or lines they evaluate. Sequence data from cattle breeds was used, because there are currently relatively many individuals from several breeds sequenced within the 1,000 Bull Genomes project. The advantage of whole-genome sequence data is that it carries the causal mutations, but the question is whether it is possible to impute the causal variants accurately. This study therefore focussed on imputation accuracy of variants with low minor allele frequency and breed specific variants. Imputation accuracy was assessed for chromosome 1 and 29 as the correlation between observed and imputed genotypes. For chromosome 1, the average imputation accuracy was 0.70 with a reference population of 20 Holstein, and increased to 0.83 when the reference population was increased by including 3 other dairy breeds with 20 animals each. When the same amount of animals from the Holstein breed were added the accuracy improved to 0.88, while adding the 3 other breeds to the reference population of 80 Holstein improved the average imputation accuracy marginally to 0.89. For chromosome 29, the average imputation accuracy was lower. Some variants benefitted from the inclusion of other breeds in the reference population, initially determined by the MAF of the variant in each breed, but even Holstein specific variants did gain imputation accuracy from the multi-breed reference population. This study shows that splitting sequencing effort over multiple breeds and combining the reference populations is a good strategy for imputation from high-density SNP panels towards whole-genome sequence when reference populations are small and sequencing effort is limiting. When sequencing effort is limiting and interest lays in multiple breeds or lines this provides imputation of each breed.
Vouraki, Sotiria; Gelasakis, Athanasios I; Alexandri, Panoraia; Boukouvala, Evridiki; Ekateriniadou, Loukia V; Banos, Georgios; Arsenos, Georgios
2018-01-01
Polymorphisms at PRNP gene locus have been associated with resistance against classical scrapie in goats. Genetic selection on this gene within appropriate breeding programs may contribute to the control of the disease. The present study characterized the genetic profile of codons 146, 211 and 222 in three dairy goat breeds in Greece. A total of 766 dairy goats from seven farms were used. Animals belonged to two indigenous Greek, Eghoria (n = 264) and Skopelos (n = 287) and a foreign breed, Damascus (n = 215). Genomic DNA was extracted from blood samples from individual animals. Polymorphisms were detected in these codons using Real-Time PCR analysis and four different Custom TaqMan® SNP Genotyping Assays. Genotypic, allelic and haplotypic frequencies were calculated based on individual animal genotypes. Chi-square tests were used to examine Hardy-Weinberg equilibrium state and compare genotypic distribution across breeds. Genetic distances among the three breeds, and between these and 30 breeds reared in other countries were estimated based on haplotypic frequencies using fixation index FST with Arlequin v3.1 software; a Neighbor-Joining tree was created using PHYLIP package v3.695. Level of statistical significance was set at P = 0.01. All scrapie resistance-associated alleles (146S, 146D, 211Q and 222K) were detected in the studied population. Significant frequency differences were observed between the indigenous Greek and Damascus breeds. Alleles 222K and 146S had the highest frequency in the two indigenous and the Damascus breed, respectively (ca. 6.0%). The studied breeds shared similar haplotypic frequencies with most South Italian and Turkish breeds but differed significantly from North-Western European, Far East and some USA goat breeds. Results suggest there is adequate variation in the PRNP gene locus to support breeding programs for enhanced scrapie resistance in goats reared in Greece. Genetic comparisons among goat breeds indicate that separate breeding programs should apply to the two indigenous and the imported Damascus breeds.
Traoré, S A; Markemann, A; Reiber, C; Piepho, H P; Valle Zárate, A
2017-04-01
Many local livestock breeds in developing countries are being replaced by exotic breeds, leading to a loss of genetic resources. In southern Mali, for the past two decades, a trend towards increasing crossbreeding between the trypanotolerant N'Dama cattle and the trypano-susceptible Fulani Zebu cattle has been taking place. A survey with 160 farmers owning a cattle herd was carried out in southern Mali to investigate their production objectives, as well as trait and breed preferences and correlated socio-economic determinants in order to understand farmers' breeding decisions and to identify comparative advantages of three breed groups (N'Dama, Fulani Zebu and crossbreds) raised in the study area. Data were analyzed using an exploded logit model. The reasons for raising cattle, as well as trait and breed preferences reflected the multiple objectives of the farmers. Draught power and savings were the most important production objectives. Productive traits were ranked highest; farmers reported large body size as the most preferred trait, followed by fertility, draught ability and milk yield. Crossbreds were the favored breed group. Breed preferences were mainly explained by 'resistance to disease' for N'Dama cattle and 'high market price' for Fulani Zebu and crossbred cattle. Production objectives, trait and breed preferences were mainly influenced by farmer group (local farmers and settled transhumants). Local farmers put comparatively more emphasis on livestock functions linked to crop production such as draught power. They had a higher preference for traction ability as a selection trait and preferred N'Dama over Fulani Zebu cattle. Settled transhumants emphasized milk yield as a selection trait and preferred Fulani Zebu over N'Dama. The results indicate that the trend towards more crossbreeding will continue putting the N'Dama breed under high risk of genetic dilution in southern Mali. The N'Dama cattle remain a valuable breed due to their adaptive traits such as disease and drought tolerance and their good traction ability, fulfilling the diverse objectives of local farmers. Crossbreeding was found to be a promising breeding strategy, which might contribute to the maintenance of the local breed, provided that breeding schemes are thoroughly planned and organized.
Breeding strategies for north central tree improvement programs
Ronald P. Overton; Hyun Kang
1985-01-01
The rationales and concepts of long-term tree breeding are discussed and compared with those for short-term breeding. A model breeding program is reviewed which maximizes short-term genetic gain for currently important traits and provides genetic resources that can be used effectively in future short-term breeding. The resources of the north-central region are examined...
1992-10-01
Herpesvirus simiae from a Rhesus Monkey Breeding Colony B-virus Eradication in Breeding Rhesus 6. AUTHOR(S) Jerome J. Sauber , John W. Fanton, Roger C...for Laboratory Animal Science October 1992 An Attempt to Eradicate Herpesvirus simiae from a Rhesus Monkey Breeding Colony Jerome J. Sauber , John W
Y-STR INRA189 polymorphisms in Chinese yak breeds.
Ma, Z J; Chen, S M; Sun, Y G; Xi, Y L; Li, R Z; Xu, J T; Lei, C Z
2015-12-29
To further explore Y-STR INRA189 polymorphisms in the yak, and to determine the genetic differences among yak breeds, genotyping analysis of INRA189 in 102 male yak individuals from three yak breeds in Qinghai Province of China was performed. Genotyping revealed the presence of four alleles, with sizes of 149, 155, 157, and 159 bp, respectively. Of these, the 157-bp allele, which was found with the highest frequency in the three yak breeds, was the dominant allele. Interestingly, the 149-bp allele was only detected in the Gaoyuan breed, and the 159-bp allele was only found in the Huanhu and Datong breeds. Only the 157- and 155-bp alleles were found in all three yak breeds. Taking the three yak breeds as a single population, the frequency of these four alleles was 0.0294, 0.0686, 0.8628, and 0.0392, respectively. The average polymorphism information content in the three yak breeds was 0.2379, indicating that the INRA189 was a low polymorphic Y-STR marker in yak.
Nucleotide variability and linkage disequilibrium patterns in the porcine MUC4 gene
2012-01-01
Background MUC4 is a type of membrane anchored glycoprotein and serves as the major constituent of mucus that covers epithelial surfaces of many tissues such as trachea, colon and cervix. MUC4 plays important roles in the lubrication and protection of the surface epithelium, cell proliferation and differentiation, immune response, cell adhesion and cancer development. To gain insights into the evolution of the porcine MUC4 gene, we surveyed the nucleotide variability and linkage disequilibrium (LD) within this gene in Chinese indigenous breeds and Western commercial breeds. Results A total of 53 SNPs covering the MUC4 gene were genotyped on 5 wild boars and 307 domestic pigs representing 11 Chinese breeds and 3 Western breeds. The nucleotide variability, haplotype phylogeny and LD extent of MUC4 were analyzed in these breeds. Both Chinese and Western breeds had considerable nucleotide diversity at the MUC4 locus. Western pig breeds like Duroc and Large White have comparable nucleotide diversity as many of Chinese breeds, thus artificial selection for lean pork production have not reduced the genetic variability of MUC4 in Western commercial breeds. Haplotype phylogeny analyses indicated that MUC4 had evolved divergently in Chinese and Western pigs. The dendrogram of genetic differentiation between breeds generally reflected demographic history and geographical distribution of these breeds. LD patterns were unexpectedly similar between Chinese and Western breeds, in which LD usually extended less than 20 kb. This is different from the presumed high LD extent (more than 100 kb) in Western commercial breeds. The significant positive Tajima’D, and Fu and Li’s D statistics in a few Chinese and Western breeds implied that MUC4 might undergo balancing selection in domestic breeds. Nevertheless, we cautioned that the significant statistics could be upward biased by SNP ascertainment process. Conclusions Chinese and Western breeds have similar nucleotide diversity but evolve divergently in the MUC4 region. Western breeds exhibited unusual low LD extent at the MUC4 locus, reflecting the complexity of nucleotide variability of pig genome. The finding suggests that high density (e.g. 1SNP/10 kb) markers are required to capture the underlying causal variants at such regions. PMID:22793500
Reverse breeding: a novel breeding approach based on engineered meiosis.
Dirks, Rob; van Dun, Kees; de Snoo, C Bastiaan; van den Berg, Mark; Lelivelt, Cilia L C; Voermans, William; Woudenberg, Leo; de Wit, Jack P C; Reinink, Kees; Schut, Johan W; van der Zeeuw, Eveline; Vogelaar, Aat; Freymark, Gerald; Gutteling, Evert W; Keppel, Marina N; van Drongelen, Paul; Kieny, Matthieu; Ellul, Philippe; Touraev, Alisher; Ma, Hong; de Jong, Hans; Wijnker, Erik
2009-12-01
Reverse breeding (RB) is a novel plant breeding technique designed to directly produce parental lines for any heterozygous plant, one of the most sought after goals in plant breeding. RB generates perfectly complementing homozygous parental lines through engineered meiosis. The method is based on reducing genetic recombination in the selected heterozygote by eliminating meiotic crossing over. Male or female spores obtained from such plants contain combinations of non-recombinant parental chromosomes which can be cultured in vitro to generate homozygous doubled haploid plants (DHs). From these DHs, complementary parents can be selected and used to reconstitute the heterozygote in perpetuity. Since the fixation of unknown heterozygous genotypes is impossible in traditional plant breeding, RB could fundamentally change future plant breeding. In this review, we discuss various other applications of RB, including breeding per chromosome.
Reverse breeding: a novel breeding approach based on engineered meiosis
Dirks, Rob; van Dun, Kees; de Snoo, C Bastiaan; van den Berg, Mark; Lelivelt, Cilia L C; Voermans, William; Woudenberg, Leo; de Wit, Jack P C; Reinink, Kees; Schut, Johan W; van der Zeeuw, Eveline; Vogelaar, Aat; Freymark, Gerald; Gutteling, Evert W; Keppel, Marina N; van Drongelen, Paul; Kieny, Matthieu; Ellul, Philippe; Touraev, Alisher; Ma, Hong; de Jong, Hans; Wijnker, Erik
2009-01-01
Reverse breeding (RB) is a novel plant breeding technique designed to directly produce parental lines for any heterozygous plant, one of the most sought after goals in plant breeding. RB generates perfectly complementing homozygous parental lines through engineered meiosis. The method is based on reducing genetic recombination in the selected heterozygote by eliminating meiotic crossing over. Male or female spores obtained from such plants contain combinations of non-recombinant parental chromosomes which can be cultured in vitro to generate homozygous doubled haploid plants (DHs). From these DHs, complementary parents can be selected and used to reconstitute the heterozygote in perpetuity. Since the fixation of unknown heterozygous genotypes is impossible in traditional plant breeding, RB could fundamentally change future plant breeding. In this review, we discuss various other applications of RB, including breeding per chromosome. PMID:19811618
Maintenance of a high level of reproductive performance in the beef cow herd.
Wiltbank, J N
1983-03-01
To insure a high consistent reproductive program in a cow herd, 90 to 95 per cent of the cows must calve early each year and wean a heavy calf. To accomplish this, the producer should follow these steps: 1. Feed heifers to reach a target weight consistent with their breed. 2. Breed heifers 45 days to a bull known to sire small calves (Longhorn or Jersey or a proven bull within a breed). Also consider cows with Brahman blood to decrease birth weight. 3. Use a 60-day breeding season in the cow herd. 4. Have cows in good to moderate body condition at calving time. 5. Have cows gaining weight three weeks before breeding and during the breeding season. 6. Remove calves for 48 hours at the start of the breeding season. 7. Breed to fertile bulls.
Mealey, Katrina L; Meurs, Kathryn M
2008-09-15
To evaluate the breed distribution of the ABCB1-1Delta polymorphism in a large number of dogs in North America, including dogs of several herding breeds in which this polymorphism has been detected and other breeds in which this polymorphism has not yet been identified. Cross-sectional study. 5,368 dogs from which buccal swab samples were collected for purposes of ABCB1 genotyping. From May 1, 2004, to September 30, 2007, DNA specimens derived from buccal swab samples collected from 5,368 dogs underwent ABCB1 genotyping. These data were reviewed, and results for each dog were recorded in a spreadsheet, along with the dog's breed. The genotypes for each breed were tallied by use of a sorting function. The ABCB1-1Delta allele was identified in 9 breeds of dogs and in many mixed-breed dogs. Breeds that had the ABCB1-1Delta allele included Collie, Longhaired Whippet, Australian Shepherd (standard and miniature), Shetland Sheepdog, Old English Sheepdog, Border Collie, Silken Windhound, and German Shepherd Dog (a breed in which this mutation had not been detected previously). The ABCB1-1Delta polymorphism is associated with increased susceptibility to many adverse drug reactions and with suppression of the hypothalamic-pituitary-adrenal axis and is present in many herding breeds of dog. Veterinarians should be familiar with the breeds that have the ABCB1-1Delta polymorphism to make appropriate pharmacologic choices for these patients.
Owner perceived differences between mixed-breed and purebred dogs.
Turcsán, Borbála; Miklósi, Ádám; Kubinyi, Enikő
2017-01-01
Studies about the behaviours of mixed-breed dogs are rare, although mixed-breeds represent the majority of the world's dog population. We have conducted two surveys to investigate the behavioural, demographic, and dog keeping differences between purebred and mixed-breed companion dogs. Questionnaire data were collected on a large sample of dogs living in Germany (N = 7,700 purebred dogs representing more than 200 breeds, and N = 7,691 mixed-breeds). We found that according to their owners, mixed-breeds were (1) less calm, (2) less sociable toward other dogs, and (3) showed more problematic behaviour than purebreds (p < 0.001 for all). Mixed-breeds and purebreds were similar in trainability and boldness scores. However, twelve out of 20 demographic and dog keeping factors differed between purebred and mixed-breed dogs, and two factors showed considerable (> 10%) differences: neutering was more frequent among mixed-breeds, and they were acquired at older ages than purebreds (p < 0.001 for both), which could result in the observed behaviour differences. After controlling for the distribution of the demographic and dog keeping factors, we found that mixed-breeds were (1) more trainable than purebreds, (2) less calm, and (3) showed more problematic behaviour than purebreds (p < 0.001 for all). We discuss that these differences at least partly might be due to selective forces. Our results suggest that instead of being the "average" dogs, mixed-breeds represent a special group with characteristic behavioural traits.
Rapid genetic diversification within dog breeds as evidenced by a case study on Schnauzers.
Streitberger, K; Schweizer, M; Kropatsch, R; Dekomien, G; Distl, O; Fischer, M S; Epplen, J T; Hertwig, S T
2012-10-01
As a result of strong artificial selection, the domesticated dog has arguably become one of the most morphologically diverse vertebrate species, which is mirrored in the classification of around 400 different breeds. To test the influence of breeding history on the genetic structure and variability of today's dog breeds, we investigated 12 dog breeds using a set of 19 microsatellite markers from a total of 597 individuals with about 50 individuals analysed per breed. High genetic diversity was noted over all breeds, with the ancient Asian breeds (Akita, Chow Chow, Shar Pei) exhibiting the highest variability, as was indicated chiefly by an extraordinarily high number of rare and private alleles. Using a Bayesian clustering method, we detected significant genetic stratification within the closely related Schnauzer breeds. The individuals of these three recently differentiated breeds (Miniature, Standard and Giant Schnauzer) could not be assigned to a single cluster each. This hidden genetic structure was probably caused by assortative mating owing to breeders' preferences regarding coat colour types and the underlying practice of breeding in separate lineages. Such processes of strong artificial disruptive selection for different morphological traits in isolated and relatively small lineages can result in the rapid creation of new dog types and potentially new breeds and represent a unique opportunity to study the evolution of genetic and morphological differences in recently diverged populations. © 2011 The Authors, Animal Genetics © 2011 Stichting International Foundation for Animal Genetics.
Iteroparity in the variable environment of the salamander Ambystoma tigrinum
Church, D.R.; Bailey, L.L.; Wilbur, H.M.; Kendall, W.L.; Hines, J.E.
2007-01-01
Simultaneous estimation of survival, reproduction, and movement is essential to understanding how species maximize lifetime reproduction in environments that vary across space and time. We conducted a four-year, capture–recapture study of three populations of eastern tiger salamanders (Ambystoma tigrinum tigrinum) and used multistate mark–recapture statistical methods to estimate the manner in which movement, survival, and breeding probabilities vary under different environmental conditions across years and among populations and habitats. We inferred how individuals may mitigate risks of mortality and reproductive failure by deferring breeding or by moving among populations. Movement probabilities among populations were extremely low despite high spatiotemporal variation in reproductive success and survival, suggesting possible costs to movements among breeding ponds. Breeding probabilities varied between wet and dry years and according to whether or not breeding was attempted in the previous year. Estimates of survival in the nonbreeding, forest habitat varied among populations but were consistent across time. Survival in breeding ponds was generally high in years with average or high precipitation, except for males in an especially ephemeral pond. A drought year incurred severe survival costs in all ponds to animals that attempted breeding. Female salamanders appear to defer these episodic survival costs of breeding by choosing not to breed in years when the risk of adult mortality is high. Using stochastic simulations of survival and breeding under historical climate conditions, we found that an interaction between breeding probabilities and mortality limits the probability of multiple breeding attempts differently between the sexes and among populations.
Aberle, K S; Hamann, H; Drögemüller, C; Distl, O
2004-08-01
We compared the genetic diversity and distance among six German draught horse breeds to wild (Przewalski's Horse), primitive (Icelandic Horse, Sorraia Horse, Exmoor Pony) or riding horse breeds (Hanoverian Warmblood, Arabian) by means of genotypic information from 30 microsatellite loci. The draught horse breeds included the South German Coldblood, Rhenish German Draught Horse, Mecklenburg Coldblood, Saxon Thuringa Coldblood, Black Forest Horse and Schleswig Draught Horse. Despite large differences in population sizes, the average observed heterozygosity (H(o)) differed little among the heavy horse breeds (0.64-0.71), but was considerably lower than in the Hanoverian Warmblood or Icelandic Horse population. The mean number of alleles (N(A)) decreased more markedly with declining population sizes of German draught horse breeds (5.2-6.3) but did not reach the values of Hanoverian Warmblood (N(A) = 6.7). The coefficient of differentiation among the heavy horse breeds showed 11.6% of the diversity between the heavy horse breeds, as opposed to 21.2% between the other horse populations. The differentiation test revealed highly significant genetic differences among all draught horse breeds except the Mecklenburg and Saxon Thuringa Coldbloods. The Schleswig Draught Horse was the most distinct draught horse breed. In conclusion, the study demonstrated a clear distinction among the German draught horse breeds and even among breeds with a very short history of divergence like Rhenish German Draught Horse and its East German subpopulations Mecklenburg and Saxon Thuringa Coldblood.
Beckmann, Manfred; Enot, David P; Overy, David P; Scott, Ian M; Jones, Paul G; Allaway, David; Draper, John
2010-04-01
Selective breeding of dogs has culminated in a large number of modern breeds distinctive in terms of size, shape and behaviour. Inadvertently, a range of breed-specific genetic disorders have become fixed in some pure-bred populations. Several inherited conditions confer chronic metabolic defects that are influenced strongly by diet, but it is likely that many less obvious breed-specific differences in physiology exist. Using Labrador retrievers and miniature Schnauzers maintained in a simulated domestic setting on a controlled diet, an experimental design was validated in relation to husbandry, sampling and sample processing for metabolomics. Metabolite fingerprints were generated from 'spot' urine samples using flow injection electrospray MS (FIE-MS). With class based on breed, urine chemical fingerprints were modelled using Random Forest (a supervised data classification technique), and metabolite features (m/z) explanatory of breed-specific differences were putatively annotated using the ARMeC database (http://www.armec.org). GC-MS profiling to confirm FIE-MS predictions indicated major breed-specific differences centred on the metabolism of diet-related polyphenols. Metabolism of further diet components, including potentially prebiotic oligosaccharides, animal-derived fats and glycerol, appeared significantly different between the two breeds. Analysis of the urinary metabolome of young male dogs representative of a wider range of breeds from animals maintained under domestic conditions on unknown diets provided preliminary evidence that many breeds may indeed have distinctive metabolic differences, with significant differences particularly apparent in comparisons between large and smaller breeds.
Owner perceived differences between mixed-breed and purebred dogs
Turcsán, Borbála; Miklósi, Ádám; Kubinyi, Enikő
2017-01-01
Studies about the behaviours of mixed-breed dogs are rare, although mixed-breeds represent the majority of the world’s dog population. We have conducted two surveys to investigate the behavioural, demographic, and dog keeping differences between purebred and mixed-breed companion dogs. Questionnaire data were collected on a large sample of dogs living in Germany (N = 7,700 purebred dogs representing more than 200 breeds, and N = 7,691 mixed-breeds). We found that according to their owners, mixed-breeds were (1) less calm, (2) less sociable toward other dogs, and (3) showed more problematic behaviour than purebreds (p < 0.001 for all). Mixed-breeds and purebreds were similar in trainability and boldness scores. However, twelve out of 20 demographic and dog keeping factors differed between purebred and mixed-breed dogs, and two factors showed considerable (> 10%) differences: neutering was more frequent among mixed-breeds, and they were acquired at older ages than purebreds (p < 0.001 for both), which could result in the observed behaviour differences. After controlling for the distribution of the demographic and dog keeping factors, we found that mixed-breeds were (1) more trainable than purebreds, (2) less calm, and (3) showed more problematic behaviour than purebreds (p < 0.001 for all). We discuss that these differences at least partly might be due to selective forces. Our results suggest that instead of being the “average” dogs, mixed-breeds represent a special group with characteristic behavioural traits. PMID:28222103
Maurice-Van Eijndhoven, M H T; Bovenhuis, H; Veerkamp, R F; Calus, M P L
2015-09-01
The aim of this study was to identify if genomic variations associated with fatty acid (FA) composition are similar between the Holstein-Friesian (HF) and native dual-purpose breeds used in the Dutch dairy industry. Phenotypic and genotypic information were available for the breeds Meuse-Rhine-Yssel (MRY), Dutch Friesian (DF), Groningen White Headed (GWH), and HF. First, the reliability of genomic breeding values of the native Dutch dual-purpose cattle breeds MRY, DF, and GWH was evaluated using single nucleotide polymorphism (SNP) effects estimated in HF, including all SNP or subsets with stronger associations in HF. Second, the genomic variation of the regions associated with FA composition in HF (regions on Bos taurus autosome 5, 14, and 26), were studied in the different breeds. Finally, similarities in genotype and allele frequencies between MRY, DF, GWH, and HF breeds were assessed for specific regions associated with FA composition. On average across the traits, the highest reliabilities of genomic prediction were estimated for GWH (0.158) and DF (0.116) when the 8 to 22 SNP with the strongest association in HF were included. With the same set of SNP, GEBV for MRY were the least reliable (0.022). This indicates that on average only 2 (MRY) to 16% (GWH) of the genomic variation in HF is shared with the native Dutch dual-purpose breeds. The comparison of predicted variances of different regions associated with milk and milk fat composition showed that breeds clearly differed in genomic variation within these regions. Finally, the correlations of allele frequencies between breeds across the 8 to 22 SNP with the strongest association in HF were around 0.8 between the Dutch native dual-purpose breeds, whereas the correlations between the native breeds and HF were clearly lower and around 0.5. There was no consistent relationship between the reliabilities of genomic prediction for a specific breed and the correlation between the allele frequencies of this breed and HF. In conclusion, most of the genomic variation associated with FA composition in the Dutch dual-purpose breeds appears to be breed-specific. Furthermore, the minor allele frequencies of genes having an effect on the milk FA composition in HF were shown to be much smaller in the breeds MRY, DF, and GWH, especially for the MRY breed. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Importance of adaptation and genotype × environment interactions in tropical beef breeding systems.
Burrow, H M
2012-05-01
This paper examines the relative importance of productive and adaptive traits in beef breeding systems based on Bos taurus and tropically adapted breeds across temperate and (sub)tropical environments. In the (sub)tropics, differences that exist between breeds in temperate environments are masked by the effects of environmental stressors. Hence in tropical environments, breeds are best categorised into breed types to compare their performance across environments. Because of the presence of environmental stressors, there are more sources of genetic variation in tropical breeding programmes. It is therefore necessary to examine the genetic basis of productive and adaptive traits for breeding programmes in those environments. This paper reviews the heritabilities and genetic relationships between economically important productive and adaptive traits relevant to (sub)tropical breeding programmes. It is concluded that it is possible to simultaneously genetically improve productive and adaptive traits in tropically adapted breeds of beef cattle grazed in tropical environments without serious detrimental consequences for either adaptation or production. However, breed-specific parameters are required for genetic evaluations. The paper also reviews the magnitude of genotype × environment (G × E) interactions impacting on production and adaptation of cattle, where 'genotype' is defined as breed (within a crossbreeding system), sire within breed (in a within-breed selection programme) or associations between economically important traits and single nucleotide polymorphisms (SNPs - within a marker-assisted selection programme). It is concluded that re-ranking of breeds across environments is best managed by the use of the breed type(s) best suited to the particular production environment. Re-ranking of sires across environments is apparent in poorly adapted breed types across extreme tropical and temperate environments or where breeding animals are selected in a temperate environment for use in the (sub)tropics. However, G × E interactions are unlikely to be of major importance in tropically adapted beef cattle grazed in either temperate or (sub)tropical environments, although sex × environment interactions may provide new opportunities for differentially selecting to simultaneously improve steer performance in benign environments and female performance in harsher environments. Early evidence suggests that re-ranking of SNPs occurs across temperate and tropical environments, although their magnitude is still to be confirmed in well-designed experiments. The major limitation to genetic improvement of beef cattle over the next decade is likely to be a deficiency of large numbers of accurately recorded phenotypes for most productive and adaptive traits and, in particular, for difficult-to-measure adaptive traits such as resistance to disease and environmental stressors.
Batista, E O S; Vieira, L M; Sá Filho, M F; Carvalho, P D; Rivera, H; Cabrera, V; Wiltbank, M C; Baruselli, P S; Souza, A H
2016-03-01
The aim of this study was to compare pregnancy per artificial insemination (P/AI) from service sires used on artificial insemination after estrus detection (EAI) or timed artificial insemination (TAI) breedings. Confirmed artificial insemination outcome records from 3 national data centers were merged and used as a data source. Criteria edits were herd's overall P/AI within 20 and 60%, a minimum of 30 breedings reported per herd-year, service sires that were used in at least 10 different herds with no more than 40% of the breedings performed in a single herd, breeding records from lactating Holstein cows receiving their first to fifth postpartum breedings occurring within 45 to 375 d in milk, and cows with 1 to 5 lactations producing a minimum of 6,804 kg. Initially 1,142,859 breeding records were available for analysis. After editing, a subset of the data (n=857,539) was used to classify breeding codes into either EAI or TAI based on weekly insemination profile in each individual herd. The procedure HPMIXED of SAS was used and took into account effects of state, farm, cow identification, breeding month, year, parity, days in milk at breeding, and service sire. This model was used independently for the 2 types osires f breeding codes (EAI vs. TAI), and service sire P/AI rankings within each breeding code were performed for sires with >700 breedings (94 sires) and for with >1,000 breedings (n=56 sires) following both EAI and TAI. Correlation for service sire fertility rankings following EAI and TAI was performed with the PROC CORR of SAS. Service sire P/AI rankings produced with EAI and TAI were 0.81 (for sires with >700 breedings) and 0.84 (for sires with >1,000 breedings). In addition, important changes occurred in service sire P/AI ranking to EAI and TAI for sires with less than 10,000 recorded artificial inseminations. In conclusion, the type of breeding strategy (EAI or TAI) was associated with some changes in service sire P/AI ranking, but ranking changes declined as number of breedings per service sire increased. Future randomized studies need to explore whether changes in P/AI ranking to EAI versus TAI are due to specific semen characteristics. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Width of forest streamside zones and breeding bird abundance in eastern Texas
Richard N. Conner; James G. Dickson; J. Howard Williamson; Brent Ortego
2004-01-01
We evaluated breeding bird communities in forested streamside zones in eastern Texas to determine threshold widths of riparian forest that were associated with the addition of mature-forest-breeding birds and loss of shrub-breeding birds. We observed an association of shrub-breeding birds with narrow streamside zones and an increasing number of mature forest species...
Brasil, B S A F; Coelho, E G A; Drummond, M G; Oliveira, D A A
2013-11-18
The Brazilian cattle population is mainly composed of breeds of zebuine origin and their American derivatives. Comprehensive knowledge about the genetic diversity of these populations is fundamental for animal breeding programs and the conservation of genetic resources. This study aimed to assess the phylogenetic relationships, levels of genetic diversity, and patterns of taurine/zebuine admixture among 9 commercial cattle breeds raised in Brazil. Analysis of DNA polymorphisms was performed on 2965 animals using the 11 microsatellite markers recommended by the International Society of Animal Genetics. High genetic diversity was detected in all breeds, even though significant inbreeding was observed within some. Differences among the breeds accounted for 14.72% of the total genetic variability, and genetic differentiation was higher among taurine than among zebuine cattle. Of note, Nelore cattle presented with high levels of admixture, which is consistent with the history of frequent gene flow during the establishment of this breed in Brazil. Furthermore, significant genetic variability was partitioned within the commercial cattle breeds formed in America, which, therefore, comprise important resources of genetic diversity in the tropics. The genetic characterization of these important Brazilian breeds may now facilitate the development of management and breeding programs for these populations.
Population structure and inbreeding from pedigree analysis of purebred dogs.
Calboli, Federico C F; Sampson, Jeff; Fretwell, Neale; Balding, David J
2008-05-01
Dogs are of increasing interest as models for human diseases, and many canine population-association studies are beginning to emerge. The choice of breeds for such studies should be informed by a knowledge of factors such as inbreeding, genetic diversity, and population structure, which are likely to depend on breed-specific selective breeding patterns. To address the lack of such studies we have exploited one of the world's most extensive resources for canine population-genetics studies: the United Kingdom (UK) Kennel Club registration database. We chose 10 representative breeds and analyzed their pedigrees since electronic records were established around 1970, corresponding to about eight generations before present. We find extremely inbred dogs in each breed except the greyhound and estimate an inbreeding effective population size between 40 and 80 for all but 2 breeds. For all but 3 breeds, >90% of unique genetic variants are lost over six generations, indicating a dramatic effect of breeding patterns on genetic diversity. We introduce a novel index Psi for measuring population structure directly from the pedigree and use it to identify subpopulations in several breeds. As well as informing the design of canine population genetics studies, our results have implications for breeding practices to enhance canine welfare.
Genomics-assisted breeding in fruit trees.
Iwata, Hiroyoshi; Minamikawa, Mai F; Kajiya-Kanegae, Hiromi; Ishimori, Motoyuki; Hayashi, Takeshi
2016-01-01
Recent advancements in genomic analysis technologies have opened up new avenues to promote the efficiency of plant breeding. Novel genomics-based approaches for plant breeding and genetics research, such as genome-wide association studies (GWAS) and genomic selection (GS), are useful, especially in fruit tree breeding. The breeding of fruit trees is hindered by their long generation time, large plant size, long juvenile phase, and the necessity to wait for the physiological maturity of the plant to assess the marketable product (fruit). In this article, we describe the potential of genomics-assisted breeding, which uses these novel genomics-based approaches, to break through these barriers in conventional fruit tree breeding. We first introduce the molecular marker systems and whole-genome sequence data that are available for fruit tree breeding. Next we introduce the statistical methods for biparental linkage and quantitative trait locus (QTL) mapping as well as GWAS and GS. We then review QTL mapping, GWAS, and GS studies conducted on fruit trees. We also review novel technologies for rapid generation advancement. Finally, we note the future prospects of genomics-assisted fruit tree breeding and problems that need to be overcome in the breeding.
Genomics-assisted breeding in fruit trees
Iwata, Hiroyoshi; Minamikawa, Mai F.; Kajiya-Kanegae, Hiromi; Ishimori, Motoyuki; Hayashi, Takeshi
2016-01-01
Recent advancements in genomic analysis technologies have opened up new avenues to promote the efficiency of plant breeding. Novel genomics-based approaches for plant breeding and genetics research, such as genome-wide association studies (GWAS) and genomic selection (GS), are useful, especially in fruit tree breeding. The breeding of fruit trees is hindered by their long generation time, large plant size, long juvenile phase, and the necessity to wait for the physiological maturity of the plant to assess the marketable product (fruit). In this article, we describe the potential of genomics-assisted breeding, which uses these novel genomics-based approaches, to break through these barriers in conventional fruit tree breeding. We first introduce the molecular marker systems and whole-genome sequence data that are available for fruit tree breeding. Next we introduce the statistical methods for biparental linkage and quantitative trait locus (QTL) mapping as well as GWAS and GS. We then review QTL mapping, GWAS, and GS studies conducted on fruit trees. We also review novel technologies for rapid generation advancement. Finally, we note the future prospects of genomics-assisted fruit tree breeding and problems that need to be overcome in the breeding. PMID:27069395
Elevational gradient in clutch size of Red-faced Warblers
Dillon, Kristen G.; Conway, Courtney J.
2015-01-01
Our understanding of life history evolution has benefited from debates regarding the underlying causes, and geographic ubiquity, of spatial patterns in avian clutch sizes. Past studies have revealed that birds lay smaller clutch sizes at higher elevation. However, in most previous studies, investigators have failed to adequately control for elevational differences in breeding phenology. To better understand the elevational gradient in avian clutch size, we need to know how clutch size changes across the entire elevational breeding range of a species (i.e., the shape of the relationship between elevation and clutch size), and whether the elevational gradient in clutch size is merely an artifact of elevational gradients in breeding phenology or breeding season length. We examined the relationship between breeding elevation and clutch size of Red-faced Warblers (Cardellina rubrifrons) along a 1000-m elevational gradient in Arizona. Our objectives were to determine how clutch size changed with elevation, and if the relationship between clutch size and elevation merely reflected elevational changes in breeding season length or phenology. The proportion of 5-egg clutches decreased and the proportion of 3- and 4-egg clutches increased non-linearly with increasing elevation, even after controlling for the elevational gradient in nest initiation date. Thus, average clutch size declined across the elevational breeding range of Red-faced Warblers, but this decline was not due to elevational variation in breeding phenology. Timing of breeding changed, but the duration of the breeding season did not change appreciably across the elevational gradient. Hence, elevational differences in breeding season length or breeding phenology cannot explain why Red-faced Warblers (and perhaps other birds) breeding at higher elevations have smaller clutches.
Islam, M Nazrul; Tsukahara, N; Sugita, S
2012-06-01
The present study investigated effects of apoptosis observed during seasonal testicular regression in Japanese Jungle Crows. The study was conducted during January to June 2008, 2009. Testes from adults captured during non-breeding (January), prebreeding (February to mid-March), main-breeding (late March to early May), transition (mid-May to late May), and post-breeding (June) seasons were analyzed. Apoptosis was assessed by in situ terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay. Paired-testis volume increased 95-fold from the non-breeding to the main-breeding season (P < 0.05), and subsequently decreased 26-fold from the main breeding to the post-breeding season (P < 0.05). Testicular activity was evaluated from the total germ cell count and sperm index, which increased 42- and 5-fold, respectively, in the main-breeding season, and subsequently decreased 33- and 5-fold in the post-breeding season. In testes, TUNEL-positive germ cells were at low levels in the non-breeding season, absent in the prebreeding and the main-breeding seasons, and highest in mid-May (P < 0.05). In contrast, TUNEL-positive Sertoli cells occurred only in late-April. In addition, TUNEL-positive fibroblast-like cells were observed in the outer zone of the tunica albuginea in the post-breeding season. Collectively, these data suggested that the seasonal rise in the testicular competence occurred slowly in Japanese Jungle Crows; however, testis function was terminated rapidly after the breeding season. Furthermore, we concluded, similar to other avian species, Sertoli cell apoptosis followed by massive germ cell death was responsible for rapid testicular regression in Jungle Crows. Copyright © 2012 Elsevier Inc. All rights reserved.
Berthier, David; Peylhard, Moana; Dayo, Guiguigbaza-Kossigan; Flori, Laurence; Sylla, Souleymane; Bolly, Seydou; Sakande, Hassane; Chantal, Isabelle; Thevenon, Sophie
2015-01-01
Background Animal African Trypanosomosis particularly affects cattle and dramatically impairs livestock development in sub-Saharan Africa. African Zebu (AFZ) or European taurine breeds usually die of the disease in the absence of treatment, whereas West African taurine breeds (AFT), considered trypanotolerant, are able to control the pathogenic effects of trypanosomosis. Up to now, only one AFT breed, the longhorn N’Dama (NDA), has been largely studied and is considered as the reference trypanotolerant breed. Shorthorn taurine trypanotolerance has never been properly assessed and compared to NDA and AFZ breeds. Methodology/Principal Findings This study compared the trypanotolerant/susceptible phenotype of five West African local breeds that differ in their demographic history. Thirty-six individuals belonging to the longhorn taurine NDA breed, two shorthorn taurine Lagune (LAG) and Baoulé (BAO) breeds, the Zebu Fulani (ZFU) and the Borgou (BOR), an admixed breed between AFT and AFZ, were infected by Trypanosoma congolense IL1180. All the cattle were genetically characterized using dense SNP markers, and parameters linked to parasitaemia, anaemia and leukocytes were analysed using synthetic variables and mixed models. We showed that LAG, followed by NDA and BAO, displayed the best control of anaemia. ZFU showed the greatest anaemia and the BOR breed had an intermediate value, as expected from its admixed origin. Large differences in leukocyte counts were also observed, with higher leukocytosis for AFT. Nevertheless, no differences in parasitaemia were found, except a tendency to take longer to display detectable parasites in ZFU. Conclusions We demonstrated that LAG and BAO are as trypanotolerant as NDA. This study highlights the value of shorthorn taurine breeds, which display strong local adaptation to trypanosomosis. Thanks to further analyses based on comparisons of the genome or transcriptome of the breeds, these results open up the way for better knowledge of host-pathogen interactions and, furthermore, for identifying key biological pathways. PMID:25954819
Berthier, David; Peylhard, Moana; Dayo, Guiguigbaza-Kossigan; Flori, Laurence; Sylla, Souleymane; Bolly, Seydou; Sakande, Hassane; Chantal, Isabelle; Thevenon, Sophie
2015-01-01
Animal African Trypanosomosis particularly affects cattle and dramatically impairs livestock development in sub-Saharan Africa. African Zebu (AFZ) or European taurine breeds usually die of the disease in the absence of treatment, whereas West African taurine breeds (AFT), considered trypanotolerant, are able to control the pathogenic effects of trypanosomosis. Up to now, only one AFT breed, the longhorn N'Dama (NDA), has been largely studied and is considered as the reference trypanotolerant breed. Shorthorn taurine trypanotolerance has never been properly assessed and compared to NDA and AFZ breeds. This study compared the trypanotolerant/susceptible phenotype of five West African local breeds that differ in their demographic history. Thirty-six individuals belonging to the longhorn taurine NDA breed, two shorthorn taurine Lagune (LAG) and Baoulé (BAO) breeds, the Zebu Fulani (ZFU) and the Borgou (BOR), an admixed breed between AFT and AFZ, were infected by Trypanosoma congolense IL1180. All the cattle were genetically characterized using dense SNP markers, and parameters linked to parasitaemia, anaemia and leukocytes were analysed using synthetic variables and mixed models. We showed that LAG, followed by NDA and BAO, displayed the best control of anaemia. ZFU showed the greatest anaemia and the BOR breed had an intermediate value, as expected from its admixed origin. Large differences in leukocyte counts were also observed, with higher leukocytosis for AFT. Nevertheless, no differences in parasitaemia were found, except a tendency to take longer to display detectable parasites in ZFU. We demonstrated that LAG and BAO are as trypanotolerant as NDA. This study highlights the value of shorthorn taurine breeds, which display strong local adaptation to trypanosomosis. Thanks to further analyses based on comparisons of the genome or transcriptome of the breeds, these results open up the way for better knowledge of host-pathogen interactions and, furthermore, for identifying key biological pathways.
Anderson, Heidi; Davison, Stephen; Hughes, Angela M.; Bouirmane, Julia; Lindqvist, Johan; Lytle, Katherine M.; Ganesan, Balasubramanian; Ottka, Claudia; Ruotanen, Päivi; Forman, Oliver P.; Fretwell, Neale; Cole, Cynthia A.; Lohi, Hannes
2018-01-01
Knowledge on the genetic epidemiology of disorders in the dog population has implications for both veterinary medicine and sustainable breeding. Limited data on frequencies of genetic disease variants across breeds exists, and the disease heritage of mixed breed dogs remains poorly explored to date. Advances in genetic screening technologies now enable comprehensive investigations of the canine disease heritage, and generate health-related big data that can be turned into action. We pursued population screening of genetic variants implicated in Mendelian disorders in the largest canine study sample examined to date by examining over 83,000 mixed breed and 18,000 purebred dogs representing 330 breeds for 152 known variants using a custom-designed beadchip microarray. We further announce the creation of MyBreedData (www.mybreeddata.com), an online updated inherited disorder prevalence resource with its foundation in the generated data. We identified the most prevalent, and rare, disease susceptibility variants across the general dog population while providing the first extensive snapshot of the mixed breed disease heritage. Approximately two in five dogs carried at least one copy of a tested disease variant. Most disease variants are shared by both mixed breeds and purebreds, while breed- or line-specificity of others is strongly suggested. Mixed breed dogs were more likely to carry a common recessive disease, whereas purebreds were more likely to be genetically affected with one, providing DNA-based evidence for hybrid vigor. We discovered genetic presence of 22 disease variants in at least one additional breed in which they were previously undescribed. Some mutations likely manifest similarly independently of breed background; however, we emphasize the need for follow up investigations in each case and provide a suggested validation protocol for broader consideration. In conclusion, our study provides unique insight into genetic epidemiology of canine disease risk variants, and their relevance for veterinary medicine, breeding programs and animal welfare. PMID:29708978
Assigning breed origin to alleles in crossbred animals.
Vandenplas, Jérémie; Calus, Mario P L; Sevillano, Claudia A; Windig, Jack J; Bastiaansen, John W M
2016-08-22
For some species, animal production systems are based on the use of crossbreeding to take advantage of the increased performance of crossbred compared to purebred animals. Effects of single nucleotide polymorphisms (SNPs) may differ between purebred and crossbred animals for several reasons: (1) differences in linkage disequilibrium between SNP alleles and a quantitative trait locus; (2) differences in genetic backgrounds (e.g., dominance and epistatic interactions); and (3) differences in environmental conditions, which result in genotype-by-environment interactions. Thus, SNP effects may be breed-specific, which has led to the development of genomic evaluations for crossbred performance that take such effects into account. However, to estimate breed-specific effects, it is necessary to know breed origin of alleles in crossbred animals. Therefore, our aim was to develop an approach for assigning breed origin to alleles of crossbred animals (termed BOA) without information on pedigree and to study its accuracy by considering various factors, including distance between breeds. The BOA approach consists of: (1) phasing genotypes of purebred and crossbred animals; (2) assigning breed origin to phased haplotypes; and (3) assigning breed origin to alleles of crossbred animals based on a library of assigned haplotypes, the breed composition of crossbred animals, and their SNP genotypes. The accuracy of allele assignments was determined for simulated datasets that include crosses between closely-related, distantly-related and unrelated breeds. Across these scenarios, the percentage of alleles of a crossbred animal that were correctly assigned to their breed origin was greater than 90 %, and increased with increasing distance between breeds, while the percentage of incorrectly assigned alleles was always less than 2 %. For the remaining alleles, i.e. 0 to 10 % of all alleles of a crossbred animal, breed origin could not be assigned. The BOA approach accurately assigns breed origin to alleles of crossbred animals, even if their pedigree is not recorded.
Analysis of breed effects on semen traits in light horse, warmblood, and draught horse breeds.
Gottschalk, Maren; Sieme, Harald; Martinsson, Gunilla; Distl, Ottmar
2016-05-01
In the present study, systematic effects on semen quality traits were investigated in 381 stallions representing 22 breeds. All stallions were used for AI either at the Lower Saxon National Stud Celle or the North Rhine-Westphalian National Stud Warendorf. A total of 71,078 fresh semen reports of the years 2001 to 2014 were edited for analysis of gel-free volume, sperm concentration, total number of sperm, progressive motility, and total number of progressively motile sperm. Breed differences were studied for warmblood and light horse breeds of both national studs (model I) and for warmblood breeds and the draught horse breed Rhenish German Coldblood from the North Rhine-Westphalian National stud (model II) using mixed model procedures. The fixed effects of age class, year, and month of semen collection had significant influences on all semen traits in both analyses. A significant influence of the horse breed was found for all semen traits but gel-free volume in both statistical models. Comparing warmblood and light horse stallions of both national studs, we observed highest sperm concentrations, total numbers of sperm, and total numbers of progressively motile sperm in Anglo-Arabian stallions. The draught horse breed Rhenish German Coldblood had the highest least squares means for gel-free volume, whereas all other investigated semen traits were significantly lower in this breed compared to the warmblood stallions under study. The variance components among stallions within breeds were significant for all semen traits and accounted for 40% to 59% of the total variance. The between-breed-variance among stallions was not significant underlining the similar size of the random stallion effect in each of the horse breeds analyzed here. In conclusion, breed and stallion are accounting for a significant proportion of the variation in semen quality. Copyright © 2016 Elsevier Inc. All rights reserved.
Donner, Jonas; Anderson, Heidi; Davison, Stephen; Hughes, Angela M; Bouirmane, Julia; Lindqvist, Johan; Lytle, Katherine M; Ganesan, Balasubramanian; Ottka, Claudia; Ruotanen, Päivi; Kaukonen, Maria; Forman, Oliver P; Fretwell, Neale; Cole, Cynthia A; Lohi, Hannes
2018-04-01
Knowledge on the genetic epidemiology of disorders in the dog population has implications for both veterinary medicine and sustainable breeding. Limited data on frequencies of genetic disease variants across breeds exists, and the disease heritage of mixed breed dogs remains poorly explored to date. Advances in genetic screening technologies now enable comprehensive investigations of the canine disease heritage, and generate health-related big data that can be turned into action. We pursued population screening of genetic variants implicated in Mendelian disorders in the largest canine study sample examined to date by examining over 83,000 mixed breed and 18,000 purebred dogs representing 330 breeds for 152 known variants using a custom-designed beadchip microarray. We further announce the creation of MyBreedData (www.mybreeddata.com), an online updated inherited disorder prevalence resource with its foundation in the generated data. We identified the most prevalent, and rare, disease susceptibility variants across the general dog population while providing the first extensive snapshot of the mixed breed disease heritage. Approximately two in five dogs carried at least one copy of a tested disease variant. Most disease variants are shared by both mixed breeds and purebreds, while breed- or line-specificity of others is strongly suggested. Mixed breed dogs were more likely to carry a common recessive disease, whereas purebreds were more likely to be genetically affected with one, providing DNA-based evidence for hybrid vigor. We discovered genetic presence of 22 disease variants in at least one additional breed in which they were previously undescribed. Some mutations likely manifest similarly independently of breed background; however, we emphasize the need for follow up investigations in each case and provide a suggested validation protocol for broader consideration. In conclusion, our study provides unique insight into genetic epidemiology of canine disease risk variants, and their relevance for veterinary medicine, breeding programs and animal welfare.
Kumpulainen, M; Anderson, H; Svevar, T; Kangasvuo, I; Donner, J; Pohjoismäki, J
2017-10-01
Finnish Spitz is 130-year-old breed and has been highly popular in Finland throughout its history. Nordic Spitz is very similar to Finnish Spitz by origin and use, but is a relatively recent breed with much smaller population size. To see how breed age and breeding history have influenced the current population, we performed comprehensive population genetic analysis using pedigree data of 28,119 Finnish and 9,009 Nordic Spitzes combined with genomewide single nucleotide polymorphism (SNP) data from 135 Finnish and 110 Nordic Spitzes. We found that the Finnish Spitz has undergone repeated male bottlenecks resulting in dramatic loss of genetic diversity, reflected by 20 effective founders (f a ) and mean heterozygosity (Hz) of 0.313. The realized effective population size in the breed based on pedigree analysis (N¯ec) is 168, whereas the genetic effective population size (N eg ) computed the decay of linkage disequilibrium (r 2 ) is only 57 individuals. Nordic Spitz, although once been near extinction, has not been exposed to similar repeated bottlenecks than Finnish Spitz and had f a of 27 individuals. However, due to the smaller total population size, the breed has also smaller effective population size than Finnish Spitz (N¯ec = 98 and N eg = 49). Interestingly, the r 2 data show that the effective population size has contracted dramatically since the establishment of the breed, emphasizing the role of breed standards as constrains for the breeding population. Despite the small population size, Nordic Spitz still maintains SNP heterozygosity levels similar to mixed breed dogs (mean Hz = 0.409). Our study demonstrates that although pedigree analyses cannot provide estimates of the present diversity within a breed, the effective population sizes inferred from them correlate with the genotyping results. The genetic relationships of the northern Spitz breeds and the benefits of the open breed registry are discussed. © 2017 Blackwell Verlag GmbH.
Winward, Josh; Beattie, Ursula; Cipolli, William
2018-01-01
Among species, larger animals tend to live longer than smaller ones, however, the opposite seems to be true for dogs—smaller dogs tend to live significantly longer than larger dogs across all breeds. We were interested in the mechanism that may allow for small breeds to age more slowly compared with large breeds in the context of cellular metabolism and oxidative stress. Primary dermal fibroblasts from small and large breed dogs were grown in culture. We measured basal oxygen consumption (OCR), proton leak, and glycolysis using a Seahorse XF96 oxygen flux analyzer. Additionally, we measured rates of reactive species (RS) production, reduced glutathione (GSH) content, mitochondrial content, lipid peroxidation (LPO) damage and DNA (8-OHdg) damage. Our data suggests that as dogs of both size classes age, proton leak is significantly higher in older dogs, regardless of size class. We found that all aspects of glycolysis were significantly higher in larger breeds compared with smaller breeds. We found significant differences between age classes in GSH concentration, and a negative correlation between DNA damage in puppies and mean breed lifespan. Interestingly, RS production showed no differences across size and age class. Thus, large breed dogs may have higher glycolytic rates, and DNA damage, suggesting a potential mechanism for their decreased lifespan compared with small breed dogs. PMID:29694441
Y-SNPs haplotype diversity in four Chinese cattle breeds.
Zhang, Runfeng; Cheng, Ming; Li, Xiaofeng; Chen, Fuying; Zheng, Jing; Wang, Xiaofei; Meng, Quanke
2013-01-01
To investigate the genetic diversity of Chinese cattle, 96 male samples of 4 Chinese native cattle breeds were investigated using 5 single nucleotide polymorphisms specific to the bovine Y chromosome. Two previously described haplotypes (taurine Y2 and indicine Y3) were detected in 74 and 22 animals, respectively. The haplotype frequencies varied amongst the four native breeds. The taurine Y2 haplotype dominated in the Qinchuan, Dabieshan, and Yunba breeds. However, the indicine Y3 haplotype occurred in high frequency in the Enshi breed. Among the four native breeds, Yunba had the highest haplotype diversity (0.4330 ± 0.0750), followed by Qinchuan (0.2899 ± 0.1028) and Enshi (0.2222 ± 0.1662), Dabieshan was the least differentiated (0.1079 ± 0.0680). Compared with some foreign cattle breeds, the low level of haplotype diversity was detected in our breeds (0.2633 ± 0.1030).
Migratory double breeding in Neotropical migrant birds.
Rohwer, Sievert; Hobson, Keith A; Rohwer, Vanya G
2009-11-10
Neotropical migratory songbirds typically breed in temperate regions and then travel long distances to spend the majority of the annual cycle in tropical wintering areas. Using stable-isotope methodology, we provide quantitative evidence of dual breeding ranges for 5 species of Neotropical migrants. Each is well known to have a Neotropical winter range and a breeding range in the United States and Canada. However, after their first bout of breeding in the north, many individuals migrate hundreds to thousands of kilometers south in midsummer to breed a second time during the same summer in coastal west Mexico or Baja California Sur. They then migrate further south to their final wintering areas in the Neotropics. Our discovery of dual breeding ranges in Neotropical migrants reveals a hitherto unrealized flexibility in life-history strategies for these species and underscores that demographic models and conservation plans must consider dual breeding for these migrants.
Genome-editing technologies and their potential application in horticultural crop breeding
Xiong, Jin-Song; Ding, Jing; Li, Yi
2015-01-01
Plant breeding, one of the oldest agricultural activities, parallels human civilization. Many crops have been domesticated to satisfy human's food and aesthetical needs, including numerous specialty horticultural crops such as fruits, vegetables, ornamental flowers, shrubs, and trees. Crop varieties originated through selection during early human civilization. Other technologies, such as various forms of hybridization, mutation, and transgenics, have also been invented and applied to crop breeding over the past centuries. The progress made in these breeding technologies, especially the modern biotechnology-based breeding technologies, has had a great impact on crop breeding as well as on our lives. Here, we first review the developmental process and applications of these technologies in horticultural crop breeding. Then, we mainly describe the principles of the latest genome-editing technologies and discuss their potential applications in the genetic improvement of horticultural crops. The advantages and challenges of genome-editing technologies in horticultural crop breeding are also discussed. PMID:26504570
Breeding erect plant type sweetpotato lines using cross breeding and gamma-ray irradiation.
Kuranouchi, Toshikazu; Kumazaki, Tadashi; Kumagai, Toru; Nakatani, Makoto
2016-06-01
Few sweetpotato (Ipomoea batatas Lam.) cultivars with erect plant type are available despite their advantages over spreading type, such as simplicity of cultivation and ability to adapt to limited space. One of the reasons is insufficiency of their agronomic characteristics for table use. So, it is important to overcome these drawbacks of ER-type lines. We attempted to breed new erect plant type sweetpotato lines having good agronomic traits using cross breeding and mutation breeding with gamma-ray irradiation. With cross breeding we successfully developed new erect plant type lines with almost equal levels of yield as compared to 'Beniazuma', one of the leading cultivars in Japan. However, mutation breeding failed to develop any promising lines because we could not obtain distinct erect plant type lines. In the future larger numbers of plants should be used for mutation breeding, and irradiation methods should be improved.
USDA-ARS?s Scientific Manuscript database
Our objective was to evaluate whether breed composition of crossbred cattle could be predicted using reference breed frequencies of SNP markers on the BovineSNP50 array. Semen DNA samples of over 2,000 bulls from 16 common commercial beef breeds were genotyped using the array and used to estimate cu...
Allais, S; Levéziel, H; Hocquette, J F; Rousset, S; Denoyelle, C; Journaux, L; Renand, G
2014-10-01
Improving the traits that underlie meat quality is a major challenge in the beef industry. The objective of this paper was to detect QTL linked to sensory meat quality traits in 3 French beef cattle breeds. We genotyped 1,059, 1,219, and 947 young bulls and their sires belonging to the Charolais, Limousin, and Blonde d'Aquitaine breeds, respectively, using the Illumina BovineSNP50 BeadChip (Illumina Inc., San Diego, CA). After estimating relevant genetic parameters using VCE software, we performed a linkage disequilibrium and linkage analysis on 4 meat traits: intramuscular fat content, muscle lightness, shear force, and tenderness score. Heritability coefficients largely ranged between 0.10 and 0.24; however, they reached a maximum of 0.44 and 0.50 for intramuscular fat content and tenderness score, respectively, in the Charolais breed. The 2 meat texture traits, shear force and tenderness score, were strongly genetically correlated (-0.91 in the Charolais and Limousin breed and -0.86 in the Blonde d'Aquitaine breed), indicating that they are 2 different measures of approximately the same trait. The genetic correlation between tenderness and intramuscular fat content differed across breeds. Using a significance threshold of 5 × 10(-4) for QTL detection, we found more than 200 significant positions across the 29 autosomal chromosomes for the 4 traits in the Charolais and Blonde d'Aquitaine breeds; in contrast, there were only 78 significant positions in the Limousin breed. Few QTL were common across breeds. We detected QTL for intramuscular fat content located near the myostatin gene in the Charolais and Blonde d'Aquitaine breeds. No mutation in this gene has been reported for the Blonde d'Aquitaine breed; therefore, it suggests that an unknown mutation could be segregating in this breed. We confirmed that, in certain breeds, markers in the calpastatin and calpain 1 gene regions affect tenderness. We also found new QTL as several QTL on chromosome 3 that are significantly associated with meat tenderness in the Blonde d'Aquitaine breed. Overall, these results greatly contribute to the goal of building a panel of markers that can be used to select animals of high meat quality.
Population structure of four Thai indigenous chicken breeds.
Mekchay, Supamit; Supakankul, Pantaporn; Assawamakin, Anunchai; Wilantho, Alisa; Chareanchim, Wanwisa; Tongsima, Sissades
2014-03-27
In recent years, Thai indigenous chickens have increasingly been bred as an alternative in Thailand poultry market. Due to their popularity, there is a clear need to improve the underlying quality and productivity of these chickens. Studying chicken genetic variation can improve the chicken meat quality as well as conserving rare chicken species. To begin with, a minimal set of molecular markers that can characterize the Thai indigenous chicken breeds is required. Using AFLP-PCR, 30 single nucleotide polymorphisms (SNPs) from Thai indigenous chickens were obtained by DNA sequencing. From these SNPs, we genotyped 465 chickens from 7 chicken breeds, comprising four Thai indigenous chicken breeds--Pradhuhangdum (PD), Luenghangkhao (LK), Dang (DA) and Chee (CH), one wild chicken--the red jungle fowls (RJF), and two commercial chicken breeds--the brown egg layer (BL) and commercial broiler (CB). The chicken genotypes reveal unique genetic structures of the four Thai indigenous chicken breeds. The average expected heterozygosities of PD=0.341, LK=0.357, DA=0.349 and CH=0.373, while the references RJF= 0.327, CB=0.324 and BL= 0.285. The F(ST) values among Thai indigenous chicken breeds vary from 0.051 to 0.096. The F(ST) values between the pairs of Thai indigenous chickens and RJF vary from 0.083 to 0.105 and the FST values between the Thai indigenous chickens and the two commercial chicken breeds vary from 0.116 to 0.221. A neighbour-joining tree of all individual chickens showed that the Thai indigenous chickens were clustered into four groups which were closely related to the wild RJF but far from the commercial breeds. Such commercial breeds were split into two closely groups. Using genetic admixture analysis, we observed that the Thai indigenous chicken breeds are likely to share common ancestors with the RJF, while both commercial chicken breeds share the same admixture pattern. These results indicated that the Thai indigenous chicken breeds may descend from the same ancestors. These indigenous chicken breeds were more closely related to red jungle fowls than those of the commercial breeds. These findings showed that the proposed SNP panel can effectively be used to characterize the four Thai indigenous chickens.
Genotype imputation in the domestic dog
Meurs, K. M.
2016-01-01
Application of imputation methods to accurately predict a dense array of SNP genotypes in the dog could provide an important supplement to current analyses of array-based genotyping data. Here, we developed a reference panel of 4,885,283 SNPs in 83 dogs across 15 breeds using whole genome sequencing. We used this panel to predict the genotypes of 268 dogs across three breeds with 84,193 SNP array-derived genotypes as inputs. We then (1) performed breed clustering of the actual and imputed data; (2) evaluated several reference panel breed combinations to determine an optimal reference panel composition; and (3) compared the accuracy of two commonly used software algorithms (Beagle and IMPUTE2). Breed clustering was well preserved in the imputation process across eigenvalues representing 75 % of the variation in the imputed data. Using Beagle with a target panel from a single breed, genotype concordance was highest using a multi-breed reference panel (92.4 %) compared to a breed-specific reference panel (87.0 %) or a reference panel containing no breeds overlapping with the target panel (74.9 %). This finding was confirmed using target panels derived from two other breeds. Additionally, using the multi-breed reference panel, genotype concordance was slightly higher with IMPUTE2 (94.1 %) compared to Beagle; Pearson correlation coefficients were slightly higher for both software packages (0.946 for Beagle, 0.961 for IMPUTE2). Our findings demonstrate that genotype imputation from SNP array-derived data to whole genome-level genotypes is both feasible and accurate in the dog with appropriate breed overlap between the target and reference panels. PMID:27129452
Ocular biometry by computed tomography in different dog breeds.
Chiwitt, Carolin L H; Baines, Stephen J; Mahoney, Paul; Tanner, Andrew; Heinrich, Christine L; Rhodes, Michael; Featherstone, Heidi J
2017-09-01
To (i) correlate B-mode ocular ultrasound (US) and computed tomography (CT) (prospective pilot study), (ii) establish a reliable method to measure the normal canine eye using CT, (iii) establish a reference guide for some dog breeds, (iv) compare eye size between different breeds and breed groups, and (v) investigate the correlation between eye dimensions and body weight, gender, and skull type (retrospective study). B-mode US and CT were performed on ten sheep cadaveric eyes. CT biometry involved 100 adult pure-bred dogs with nonocular and nonorbital disease, representing eleven breeds. Eye length, width, and height were each measured in two of three planes (horizontal, sagittal, and equatorial). B-mode US and CT measurements of sheep cadaveric eyes correlated well (0.70-0.71). The shape of the canine eye was found to be akin to an oblate spheroid (a flattened sphere). A reference guide was established for eleven breeds. Eyes of large breed dogs were significantly larger than those of medium and small breed dogs (P < 0.01), and eyes of medium breed dogs were significantly larger than those of small breed dogs (P < 0.01). Eye size correlated with body weight (0.74-0.82) but not gender or skull type. Computed tomography is a suitable method for biometry of the canine eye, and a reference guide was established for eleven breeds. Eye size correlated with breed size and body weight. Because correlation between B-mode US and CT was shown, the obtained values can be applied in the clinical setting, for example, for the diagnosis of microphthalmos and buphthalmos. © 2016 American College of Veterinary Ophthalmologists.
Population-Wide Failure to Breed in the Clark's Nutcracker (Nucifraga columbiana).
Schaming, Taza D
2015-01-01
In highly variable environments, conditions can be so stressful in some years that entire populations forgo reproduction in favor of higher likelihood of surviving to breed in future years. In two out of five years, Clark's nutcrackers (Nucifraga Columbiana) in the Greater Yellowstone Ecosystem exhibited population-wide failure to breed. Clark's nutcrackers at the study site experienced substantial interannual differences in food availability and weather conditions, and the two nonbreeding years corresponded with low whitebark pine (Pinus albicaulis) cone crops the previous autumn (≤ an average of 8 ± 2 cones per tree versus ≥ an average of 20 ± 2 cones per tree during breeding years) and high snowpack in early spring (≥ 61.2 ± 5.5 cm versus ≤ 51.9 ± 4.4 cm during breeding years). The average adult body condition index during the breeding season was significantly lower in 2011 (-1.5 ± 1.1), a nonbreeding year, as compared to 2012 (6.2 ± 2.0), a breeding year. The environmental cues available to the birds prior to breeding, specifically availability of cached whitebark pine seeds, may have allowed them to predict that breeding conditions would be poor, leading to the decision to skip breeding. Alternatively, the Clark's nutcrackers may have had such low body energy stores that they chose not to or were unable to breed. Breeding plasticity would allow Clark's nutcrackers to exploit an unpredictable environment. However, if large-scale mortality of whitebark pines is leading to an increase in the number of nonbreeding years, there could be serious population-level and ecosystem-wide consequences.
7 CFR 3430.309 - Priority areas.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Agriculture and Food Research Initiative § 3430.309 Priority areas. NIFA will award competitive grants in the...) Conventional breeding, including cultivar and breed development, selection theory, applied quantitative... development, selection theory, applied quantitative genetics, breeding for improved food quality, breeding for...
7 CFR 3430.309 - Priority areas.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Agriculture and Food Research Initiative § 3430.309 Priority areas. NIFA will award competitive grants in the...) Conventional breeding, including cultivar and breed development, selection theory, applied quantitative... development, selection theory, applied quantitative genetics, breeding for improved food quality, breeding for...
7 CFR 3430.309 - Priority areas.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Agriculture and Food Research Initiative § 3430.309 Priority areas. NIFA will award competitive grants in the...) Conventional breeding, including cultivar and breed development, selection theory, applied quantitative... development, selection theory, applied quantitative genetics, breeding for improved food quality, breeding for...
7 CFR 3430.309 - Priority areas.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Agriculture and Food Research Initiative § 3430.309 Priority areas. NIFA will award competitive grants in the...) Conventional breeding, including cultivar and breed development, selection theory, applied quantitative... development, selection theory, applied quantitative genetics, breeding for improved food quality, breeding for...
Molecular genetic analysis of a cattle population to reconstitute the extinct Algarvia breed
2010-01-01
Background Decisions to initiate conservation programmes need to account for extant variability, diversity loss and cultural and economic aspects. Molecular markers were used to investigate if putative Algarvia animals could be identified for use as progenitors in a breeding programme to recover this nearly extinct breed. Methods 46 individuals phenotypically representative of Algarvia cattle were genotyped for 27 microsatellite loci and compared with 11 Portuguese autochthonous and three imported breeds. Genetic distances and factorial correspondence analyses (FCA) were performed to investigate the relationship among Algarvia and related breeds. Assignment tests were done to identify representative individuals of the breed. Y chromosome and mtDNA analyses were used to further characterize Algarvia animals. Gene- and allelic-based conservation analyses were used to determine breed contributions to overall genetic diversity. Results Genetic distance and FCA results confirmed the close relationship between Algarvia and southern Portuguese breeds. Assignment tests without breed information classified 17 Algarvia animals in this cluster with a high probability (q > 0.95). With breed information, 30 cows and three bulls were identified (q > 0.95) that could be used to reconstitute the Algarvia breed. Molecular and morphological results were concordant. These animals showed intermediate levels of genetic diversity (MNA = 6.0 ± 1.6, Rt = 5.7 ± 1.4, Ho = 0.63 ± 0.19 and He = 0.69 ± 0.10) relative to other Portuguese breeds. Evidence of inbreeding was also detected (Fis = 0.083, P < 0.001). The four Algarvia bulls had Y-haplotypes H6Y2 and H11Y2, common in Portuguese cattle. The mtDNA composition showed prevalence of T3 matrilines and presence of the African-derived T1a haplogroup. This analysis confirmed the genetic proximity of Algarvia and Garvonesa breeds (Fst = 0.028, P > 0.05). Algarvia cattle provide an intermediate contribution (CB = 6.18, CW = -0.06 and D1 = 0.50) to the overall gene diversity of Portuguese cattle. Algarvia and seven other autochthonous breeds made no contribution to the overall allelic diversity. Conclusions Molecular analyses complemented previous morphological findings to identify 33 animals that can be considered remnants of the Algarvia breed. Results of genetic diversity and conservation analyses provide objective information to establish a management program to reconstitute the Algarvia breed. PMID:20540741
A genealogical survey of Australian registered dog breeds.
Shariflou, Mohammad R; James, John W; Nicholas, Frank W; Wade, Claire M
2011-08-01
Breeding practices were analysed for 32 registered dog breeds representing very small registries (120 Central Asian shepherd dogs) through to very large registries (252,521 German shepherd dogs) in Australia. The vast majority (91%) of registered kennels in Australia that were sampled did not regularly employ either close breeding or popular sire usage in their kennels and the weighted mean inbreeding coefficient of Australian pedigree dogs was <5%. Australian breed mean inbreeding coefficients ranged from 0% (Central Asian shepherd dog) to 10.1% (Bichon Frise). Breed effective population sizes ranged from 26 (Ibizan hound) to 1090 (Golden retriever), comparable with other species of domesticated animals. The relatively low levels of inbreeding suggest that pedigree dog disorders are unlikely to arise frequently from the use of popular sires or close breeding in Australian registered dog breeds. It is possible that deleterious allele fixation might be driven by founder effects, genetic drift or adverse selection practices, which were not assessed in this analysis. European popular sire definitions should be revisited for rare breeds. Copyright © 2011. Published by Elsevier Ltd.
Genomic analyses of modern dog breeds.
Parker, Heidi G
2012-02-01
A rose may be a rose by any other name, but when you call a dog a poodle it becomes a very different animal than if you call it a bulldog. Both the poodle and the bulldog are examples of dog breeds of which there are >400 recognized worldwide. Breed creation has played a significant role in shaping the modern dog from the length of his leg to the cadence of his bark. The selection and line-breeding required to maintain a breed has also reshaped the genome of the dog, resulting in a unique genetic pattern for each breed. The breed-based population structure combined with extensive morphologic variation and shared human environments have made the dog a popular model for mapping both simple and complex traits and diseases. In order to obtain the most benefit from the dog as a genetic system, it is necessary to understand the effect structured breeding has had on the genome of the species. That is best achieved by looking at genomic analyses of the breeds, their histories, and their relationships to each other.
Genomic Analyses of Modern Dog Breeds
Parker, Heidi G.
2013-01-01
A rose may be a rose by any other name, but when you call a dog a poodle it becomes a very different animal than if you call it a bulldog. Both the poodle and the bulldog are examples of dog breeds of which there are >400 recognized world-wide. Breed creation has played a significant role in shaping the modern dog from the length of his leg to the cadence of his bark. The selection and line-breeding required to maintain a breed has also reshaped the genome of the dog resulting in a unique genetic pattern for each breed. The breed-based population structure combined with extensive morphologic variation and shared human environments have made the dog a popular model for mapping both simple and complex traits and diseases. In order to obtain the most benefit from the dog as a genetic system, it is necessary to understand the effect structured breeding has had on the genome of the species. That is best achieved by looking at genomic analyses of the breeds, their histories, and their relationships to each other. PMID:22231497
Fertility of the male alpaca: effect of daily consecutive breeding.
Bravo, P W; Solis, P; Ordoñez, C; Alarcon, V
1997-04-01
The fertility of the male alpaca under different frequencies of daily consecutive matings was evaluated. Fifteen adult male Huacaya alpacas were divided randomly into three groups of five each to breed lactating female alpacas. The schedule of daily matings was two, four and six consecutive breeding per group and for nine consecutive days. Ovulation was determined by progesterone at seven days after breeding. Pregnancy was determined by ultrasonography at 15 and 30 days after breeding. Two hundred and eighty females were bred with some males not fulfilling their schedule of breeding. There were differences (P < 0.05) in the fertility rate of males breeding two and four times daily (76%) in contrast to 59% for males breeding six times. There were also differences (P < 0.05) in the fertility of individual males. Length of copulation was affected (P < 0.05) by schedule of matings, day of breeding and male. Ovulation was independent of length of copulation. Overall, it seems the fertility of the male alpaca is affected significantly when consecutive matings are over four times a day and for nine consecutive days.
Evidence for wing molt and breeding site fidelity in King Eiders
Phillips, Laura M.; Powell, A.N.
2006-01-01
Fidelity of King Eiders (Somateria spectabilis) to breeding and wing molt sites was examined using satellite telemetry data obtained opportunistically when battery life of transmitters provided locations in a second year. Consecutive breeding locations were obtained for eleven female and 23 male King Eiders. All females exhibited breeding site fidelity by returning to sites within 15 km of first year breeding areas on the North Slope of Alaska. Breeding locations of males in a subsequent year were located on average >1000 km from their prior breeding sites and were primarily outside Alaska, on the coasts of Russia and Canada. Second-year wing molt locations were obtained for two female and six male King Eiders. Wing molt sites of males were located 6.2 ?? 3.1 km apart on average in successive years, while female wing molt locations averaged almost 50 km apart. Our results demonstrate site fidelity of female King Eiders to a breeding area on the North Slope of Alaska, document the dispersal of male King Eiders between breeding seasons, and present the first evidence for wing molt site fidelity in males.
Breed traceability of buffalo meat using microsatellite genotyping technique.
Kannur, Bheemashankar H; Fairoze, Md Nadeem; Girish, P S; Karabasanavar, Nagappa; Rudresh, B H
2017-02-01
Although buffalo has emerged as a major meat producing animal in Asia, major research on breed traceability has so far been focused on cattle (beef). This research gap on buffalo breed traceability has impelled development and validation of buffalo breed traceability using a set of eight microsatellite (STR) markers in seven Indian buffalo breeds (Bhadawari, Jaffaarabadi, Murrah, Mehsana, Nagpuri, Pandharpuri and Surti). Probability of sharing same profile by two individuals at a specific locus was computed considering different STR numbers, allele pooling in breed and population. Match probabilities per breed were considered and six most polymorphic loci were genotyped. Out of eight microsatellite markers studied, markers CSSMO47, DRB3 and CSSM060 were found most polymorphic. Developed technique was validated with known and unknown, blood and meat samples; wherein, samples were genetically traced in 24 out of 25 samples tested. Results of this study showed potential applications of the methodology and encourage other researchers to address the problem of buffalo traceability so as to create a world-wide archive of breed specific genotypes. This work is the first report of breed traceability of buffalo meat utilizing microsatellite genotyping technique.
Traditional and modern plant breeding methods with examples in rice (Oryza sativa L.).
Breseghello, Flavio; Coelho, Alexandre Siqueira Guedes
2013-09-04
Plant breeding can be broadly defined as alterations caused in plants as a result of their use by humans, ranging from unintentional changes resulting from the advent of agriculture to the application of molecular tools for precision breeding. The vast diversity of breeding methods can be simplified into three categories: (i) plant breeding based on observed variation by selection of plants based on natural variants appearing in nature or within traditional varieties; (ii) plant breeding based on controlled mating by selection of plants presenting recombination of desirable genes from different parents; and (iii) plant breeding based on monitored recombination by selection of specific genes or marker profiles, using molecular tools for tracking within-genome variation. The continuous application of traditional breeding methods in a given species could lead to the narrowing of the gene pool from which cultivars are drawn, rendering crops vulnerable to biotic and abiotic stresses and hampering future progress. Several methods have been devised for introducing exotic variation into elite germplasm without undesirable effects. Cases in rice are given to illustrate the potential and limitations of different breeding approaches.
Genetic relationships among Vietnamese local pigs investigated using genome-wide SNP markers.
Ishihara, S; Arakawa, A; Taniguchi, M; Luu, Q M; Pham, D L; Nguyen, B V; Mikawa, S; Kikuchi, K
2018-02-01
Vietnam is one of the most important countries for pig domestication, and a total of 26 local breeds have been reported. In the present study, genetic relationships among the various pig breeds were investigated using 90 samples collected from local pigs (15 breeds) in 15 distantly separated, distinct areas of the country and six samples from Landrace pigs in Hanoi as an out-group of a common Western breed. All samples were genotyped using the Illumina Porcine SNP60 v2 Genotyping BeadChip. We used 15 160-15 217 SNPs that showed a high degree of polymorphism in the Vietnamese breeds for identifying genetic relationships among the Vietnamese breeds. Principal components analysis showed that most pigs indigenous to Vietnam formed clusters correlated with their original geographic locations. Some Vietnamese breeds formed a cluster that was genetically related to the Western breed Landrace, suggesting the possibility of crossbreeding. These findings will be useful for the conservation and management of Vietnamese local pig breeds. © 2018 Stichting International Foundation for Animal Genetics.
Global impact of accelerated plant breeding: Evidence from a meta-analysis on rice breeding.
Lenaerts, Bert; de Mey, Yann; Demont, Matty
2018-01-01
Rice breeders in Asia and elsewhere in the world have long overlooked trying to shorten the time it takes to develop new varieties. Plant breeders have proposed a technique called Rapid Generation Advance (RGA) as a way to accelerate the results of public rice breeding programs. However, little is known about RGA's potential impact. Here, we present the first results of a global impact study of RGA. More specifically, we calculated the multiplicator effects of RGA on the research benefits generated by conventional rice breeding programs and applied them to a meta-analysis of selected impact studies in the literature. These insights are a first crucial step in developing a targeted approach for disseminating RGA technology among rice breeders to accelerate the impact of their public rice breeding programs around the world. We show that the additional benefits due to time savings are considerable and offer some insights into the economics of breeding. Our results confirm that the adoption of accelerated breeding would lead to substantial advantages to rice breeding programs and the earlier variety release leads to significant economic benefits to society. This can be important to policy makers when reshaping their public breeding methods and optimising their return on research investments in breeding.
Conklin, Jesse R.; Battley, Phil F.; Potter, Murray A.; Ruthrauff, Daniel R.
2011-01-01
Among scolopacid shorebirds, Bar-tailed Godwits (Limosa lapponica) have unusually high intra- and intersexual differences in size and breeding plumage. Despite historical evidence for population structure among Alaska-breeding Bar-tailed Godwits (L. l. baueri), no thorough analysis, or comparison with the population's nonbreeding distribution, has been undertaken. We used live captures, field photography, museum specimens, and individuals tracked from New Zealand to describe geographic variation in size and plumage within the Alaska breeding range. We found a north-south cline in body size in Alaska, in which the smallest individuals of each sex occurred at the highest latitudes. Extent of male breeding plumage (proportion of nonbreeding contour feathers replaced) also increased with latitude, but female breeding plumage was most extensive at mid-latitudes. This population structure was not maintained in the nonbreeding season: morphometrics of captured birds and timing of migratory departures indicated that individuals from a wide range of breeding latitudes occur in each region and site in New Zealand. Links among morphology, phenology, and breeding location suggest the possibility of distinct Alaska breeding populations that mix freely in the nonbreeding season, and also imply that the strongest selection for size occurs in the breeding season.
Gillman, Sierra J; Ziegler-Meeks, Karen; Eager, Carol; Tenhundfeld, Thomas A; Shaffstall, Wendy; Stearns, Mary Jo; Crosier, Adrienne E
2017-09-01
This paper examines the effects of transfer away from natal facility and littermate presence on cheetah breeding success in the AZA Species Survival Plan (SSP) population. Transfer and breeding history data for captive males and females were gathered from seven and four AZA SSP breeding facilities, respectively, to identify factors influencing breeding success. The results indicate that transfer history (p = 0.032), age at transfer (p = 0.013), and female littermate presence/absence (p = 0.04) was associated with breeding success, with females transferred away from their natal facility before sexual maturity and without littermates present accounting for the highest breeding success. Keeping males at their natal facility and/or removing them from their coalitions did not negatively affect their breeding success. Males appeared to demonstrate the same fecundity regardless of transfer history or coalition status, indicating that dispersal away from natal environment was not as critical for the breeding success of males compared with female cheetahs. These results highlight the significance of moving females away from their natal environment, as would occur in the wild, and separating them from their female littermates for optimization of breeding success in the ex situ population. © 2017 Wiley Periodicals, Inc.
Progress in the molecular and genetic modification breeding of beef cattle in China.
Tong, Bin; Zhang, Li; Li, Guang-Peng
2017-11-20
The studies of beef cattle breeding in China have been greatly improved with the rapid development of the international beef cattle industrialization. The beef cattle breeding technologies have rapidly transformed from traditional breeding to molecular marker-assisted breeding, genomic selection and genetic modification breeding. Hundreds of candidate genes and molecular markers associated with growth, meat quality, reproduction performance and diseases resistance have been identified, and some of them have already been used in cattle breeding. Genes and molecular markers associated with growth and development are focused on the growth hormone, muscle regulatory factors, myostatin and insulin-like growth factors. Meat quality is mediated by fatty acid transport and deposition related signals, calpains and calpain system, muscle regulatory factors and muscle growth regulation pathways. Reproduction performance is regulated by GnRH-FSH-LH, growth differentiation factor 9, prolactin receptor and forkhead box protein O1. Disease resistance is modulated by the major histocompatibility complex gene family, toll-like receptors, mannose-binding lectin and interferon gene signals. In this review, we summarize the most recent progress in beef cattle breeding in marker-assisted selection, genome-wide selection and genetic modification breeding, aiming to provide a reference for further genetic breeding research of beef cattle in China.
The differentiation of camel breeds based on meat measurements using discriminant analysis.
Al-Atiyat, Raed Mahmoud; Suliman, Gamal; AlSuhaibani, Entissar; El-Waziry, Ahmad; Al-Owaimer, Abdullah; Basmaeil, Saeid
2016-06-01
The meat productivity of camel in the tropics is still under investigation for identification of better meat breed or type. Therefore, four one-humped Saudi Arabian (SA) camel breeds, Majaheem, Maghateer, Hamrah, and Safrah were experimented in order to differentiate them from each other based on meat measurements. The measurements were biometrical meat traits measured on six intact males from each breed. The results showed higher values of the Majaheem breed than that obtained for the other breeds except few cases such dressing percentage and rib-eye area. In differentiation analysis, the most discriminating meat variables were myofibrillar protein index, meat color components (L* and a*, b*), and cooking loss. Consequently, the Safrah and the Majaheem breeds presented the largest dissimilarity as evidenced by their multivariate means. The canonical discriminant analysis allowed an additional understanding of the differentiation between breeds. Furthermore, two large clusters, one formed by Hamrah and Maghateer in one group along with Safrah. These classifications may assign each breed into one cluster considering they are better as meat producers. The Majaheem was clustered alone in another cluster that might be a result of being better as milk producers. Nevertheless, the productivity type of the camel breeds of SA needs further morphology and genetic descriptions.
Will genomic selection be a practical method for plant breeding?
Nakaya, Akihiro; Isobe, Sachiko N
2012-11-01
Genomic selection or genome-wide selection (GS) has been highlighted as a new approach for marker-assisted selection (MAS) in recent years. GS is a form of MAS that selects favourable individuals based on genomic estimated breeding values. Previous studies have suggested the utility of GS, especially for capturing small-effect quantitative trait loci, but GS has not become a popular methodology in the field of plant breeding, possibly because there is insufficient information available on GS for practical use. In this review, GS is discussed from a practical breeding viewpoint. Statistical approaches employed in GS are briefly described, before the recent progress in GS studies is surveyed. GS practices in plant breeding are then reviewed before future prospects are discussed. Statistical concepts used in GS are discussed with genetic models and variance decomposition, heritability, breeding value and linear model. Recent progress in GS studies is reviewed with a focus on empirical studies. For the practice of GS in plant breeding, several specific points are discussed including linkage disequilibrium, feature of populations and genotyped markers and breeding scheme. Currently, GS is not perfect, but it is a potent, attractive and valuable approach for plant breeding. This method will be integrated into many practical breeding programmes in the near future with further advances and the maturing of its theory.
Flockhart, D. T. Tyler; Wassenaar, Leonard I.; Martin, Tara G.; Hobson, Keith A.; Wunder, Michael B.; Norris, D. Ryan
2013-01-01
Insect migration may involve movements over multiple breeding generations at continental scales, resulting in formidable challenges to their conservation and management. Using distribution models generated from citizen scientist occurrence data and stable-carbon and -hydrogen isotope measurements, we tracked multi-generational colonization of the breeding grounds of monarch butterflies (Danaus plexippus) in eastern North America. We found that monarch breeding occurrence was best modelled with geographical and climatic variables resulting in an annual breeding distribution of greater than 12 million km2 that encompassed 99% occurrence probability. Combining occurrence models with stable isotope measurements to estimate natal origin, we show that butterflies which overwintered in Mexico came from a wide breeding distribution, including southern portions of the range. There was a clear northward progression of monarchs over successive generations from May until August when reproductive butterflies began to change direction and moved south. Fifth-generation individuals breeding in Texas in the late summer/autumn tended to originate from northern breeding areas rather than regions further south. Although the Midwest was the most productive area during the breeding season, monarchs that re-colonized the Midwest were produced largely in Texas, suggesting that conserving breeding habitat in the Midwest alone is insufficient to ensure long-term persistence of the monarch butterfly population in eastern North America. PMID:23926146
Carry-over body mass effect from winter to breeding in a resident seabird, the little penguin.
Salton, Marcus; Saraux, Claire; Dann, Peter; Chiaradia, André
2015-01-01
Using body mass and breeding data of individual penguins collected continuously over 7 years (2002-2008), we examined carry-over effects of winter body mass on timing of laying and breeding success in a resident seabird, the little penguin (Eudyptula minor). The austral winter month of July consistently had the lowest rate of colony attendance, which confirmed our expectation that penguins work hard to find resources at this time between breeding seasons. Contrary to our expectation, body mass in winter (July) was equal or higher than in the period before ('moult-recovery') and after ('pre-breeding') in 5 of 7 years for males and in all 7 years for females. We provided evidence of a carry-over effect of body mass from winter to breeding; females and males with higher body mass in winter were more likely to breed early and males with higher body mass in winter were likely to breed successfully. Sex differences might relate to sex-specific breeding tasks, where females may use their winter reserves to invest in egg-laying, whereas males use their winter reserves to sustain the longer fasts ashore during courtship. Our findings suggest that resident seabirds like little penguins can also benefit from a carry-over effect of winter body mass on subsequent breeding.
Breed, sex, and litter effects in 2-month old puppies' behaviour in a standardised open-field test.
Barnard, Shanis; Marshall-Pescini, Sarah; Pelosi, Annalisa; Passalacqua, Chiara; Prato-Previde, Emanuela; Valsecchi, Paola
2017-05-11
A considerable number of studies have reported differences among dog breeds with respect to their genetic profile, cognitive abilities or personality traits. Each dog breed is normally treated as a homogeneous group, however, researchers have recently questioned whether the behavioural profile of modern breeds still reflects their historical function or if the intense divergent selective pressures and geographical barriers have created a more fragmented picture. The majority of studies attempting to assess and compare modern breeds' personality focused on the evaluation of adult dogs where the potential effects of environmental/human factors on the dogs' behaviour are hard to discern from their genetic heritage. In the following study, we aimed at investigating between- and within-breed differences in the personality of two-months-old puppies by direct behavioural observation of 377 puppies from 12 breeds. Results showed that there was no effect of sex, however both breed and litter, significantly affected all personality traits. Breed on average explained 10% of the variance, whereas the effect of litter was noticeably higher, explaining on average 23% of the variance. Taken together, our results suggest that breed does have some influence on personality traits, but they also highlight the importance of taking litter effects into account.
Leadership behavior in relation to dominance and reproductive status in gray wolves, Canis lupus
Peterson, R.O.; Jacobs, A.K.; Drummer, T.D.; Mech, L.D.; Smith, D.W.
2002-01-01
We analyzed the leadership behavior of breeding and nonbreeding gray wolves (Canis lupus) in three packs during winter in 1997-1999. Scent-marking, frontal leadership (time and frequency in the lead while traveling), initiation of activity, and nonfrontal leadership were recorded during 499 h of ground-based observations in Yellowstone National Park. All observed scent-marking (N = 158) was done by breeding wolves, primarily dominant individuals. Dominant breeding pairs provided most leadership, consistent with a trend in social mammals for leadership to correlate with dominance. Dominant breeding wolves led traveling packs during 64% of recorded behavior bouts (N = 591) and 71% of observed travel time (N = 64 h). During travel, breeding males and females led packs approximately equally, which probably reflects high parental investment by both breeding male and female wolves. Newly initiated behaviors (N = 104) were prompted almost 3 times more often by dominant breeders (70%) than by nonbreeders (25%). Dominant breeding females initiated pack activities almost 4 times more often than subordinate breeding females (30 vs. 8 times). Although one subordinate breeding female led more often than individual nonbreeders in one pack in one season, more commonly this was not the case. In 12 cases breeding wolves exhibited nonfrontal leadership. Among subordinate wolves, leadership behavior was observed in subordinate breeding females and other individuals just prior to their dispersal from natal packs. Subordinate wolves were more often found leading packs that were large and contained many subordinate adults.
Leadership behavior in relation to dominance and reproductive status in gray wolves, Canis lupus
Peterson, Rolf O.; Jacobs, Amy K.; Drummer, Thomas D.; Mech, L. David; Smith, Douglas W.
2002-01-01
We analyzed the leadership behavior of breeding and nonbreeding gray wolves (Canis lupus) in three packs during winter in 19971999. Scent-marking, frontal leadership (time and frequency in the lead while traveling), initiation of activity, and nonfrontal leadership were recorded during 499 h of ground-based observations in Yellowstone National Park. All observed scent-marking (N = 158) was done by breeding wolves, primarily dominant individuals. Dominant breeding pairs provided most leadership, consistent with a trend in social mammals for leadership to correlate with dominance. Dominant breeding wolves led traveling packs during 64% of recorded behavior bouts (N = 591) and 71% of observed travel time (N = 64 h). During travel, breeding males and females led packs approximately equally, which probably reflects high parental investment by both breeding male and female wolves. Newly initiated behaviors (N = 104) were prompted almost 3 times more often by dominant breeders (70%) than by nonbreeders (25%). Dominant breeding females initiated pack activities almost 4 times more often than subordinate breeding females (30 vs. 8 times). Although one subordinate breeding female led more often than individual nonbreeders in one pack in one season, more commonly this was not the case. In 12 cases breeding wolves exhibited nonfrontal leadership. Among subordinate wolves, leadership behavior was observed in subordinate breeding females and other individuals just prior to their dispersal from natal packs. Subordinate wolves were more often found leading packs that were large and contained many subordinate adults.
Identification of the mutation causing progressive retinal atrophy in Old Danish Pointing Dog.
Karlskov-Mortensen, P; Proschowsky, H F; Gao, F; Fredholm, M
2018-06-01
Progressive retinal atrophy (PRA) is a common cause of blindness in many dog breeds. It is most often inherited as a simple Mendelian trait, but great genetic heterogeneity has been demonstrated both within and between breeds. In many breeds the genetic cause of the disease is not known, and until now, the Old Danish Pointing Dog (ODP) has been one of those breeds. ODP is one of the oldest dog breeds in Europe. Seventy years ago the breed almost vanished, but today a population still exists, primarily in Denmark but with some dogs in Germany and Sweden. PRA has been diagnosed in ODP since the late 1990s. It resembles late onset PRA in other dog breeds, and it is inherited as an autosomal recessive trait. In the present study, we performed whole-genome sequencing and identified a single base insertion (c.3149_3150insC) in exon 1 of C17H2orf71. This is the same mutation previously found to cause PRA in Gordon Setters and Irish Setters, and it was later found in Tibetan Terrier, Standard Poodle and the Polski Owczarek Nizinny. The presence of the mutation in such a diverse range of breeds indicates an origin preceding creation of modern dog breeds. Hence, we screened 262 dogs from 44 different breeds plus four crossbred dogs, and can subsequently add Miniature Poodle and another polish sheepdog, the Polski Owczarek Podhalanski, to the list of affected breeds. © 2018 Stichting International Foundation for Animal Genetics.
50 CFR 15.21 - General application procedures.
Code of Federal Regulations, 2010 CFR
2010-10-01
... PLANTS WILD BIRD CONSERVATION ACT Permits and Approval of Cooperative Breeding Programs § 15.21 General... purposes only: Scientific research; zoological breeding or display programs; cooperative breeding programs...) A person wishing to obtain a permit under this subpart or approval of cooperative breeding programs...
50 CFR 15.21 - General application procedures.
Code of Federal Regulations, 2011 CFR
2011-10-01
... PLANTS WILD BIRD CONSERVATION ACT Permits and Approval of Cooperative Breeding Programs § 15.21 General... purposes only: Scientific research; zoological breeding or display programs; cooperative breeding programs...) A person wishing to obtain a permit under this subpart or approval of cooperative breeding programs...
Ulloa, A; Rodríguez, M H; Rodríguez, A D; Roberts, D R
1997-09-01
The abundance and age structure of Anopheles albimanus populations were estimated by UV updraft light traps and human landing catches within villages and in nearby breeding sites of southern México. Four villages and 5 breeding sites were selected for the study. Light trap and human landing catches were simultaneously carried out in each breeding site and each village. Anopheles albimanus was the most abundant malaria vector caught in breeding sites and in villages. Significant differences in overall An. albimanus abundance among villages and among breeding sites were detected only by human landing catches. In both villages and breeding sites, more mosquitoes were captured by 1 human bait (34.3 +/- 6.3 and 14.6 +/- 2.9, respectively) than by one light trap (15.9 +/- 3.3 and 2.4 +/- 0.3 respectively) collection. After pooling, no significant differences were detected in the abundance estimated by each method in breeding sites and villages. A significant correlation of numbers of specimens between methods was detected. Age structure was different between samples from breeding sites and villages, with more gravid females collected in breeding sites, whereas more nulipars were collected in villages. By collection method, age structure was also different both in breeding sites and in villages. In breeding sites, the percentage of parous females was significantly higher in human landing catches, whereas the percentage of gravid females was significantly higher in light traps. In villages, only the percentage of gravid females was significantly higher in light traps. Our results suggests that UV light traps could be used to measure several entomological parameters of An. albimanus populations because both abundance variations and parity rates were similarly detected by both methods.
Jansson, M; Laikre, L
2014-04-01
One problem in modern dogs is a high occurrence of physical diseases, defects and disorders. Many breeds exhibit physical problems that affect individual dogs throughout life. A potential cause of these problems is inbreeding that is known to reduce the viability of individuals. We investigated the possible correlation between recent inbreeding and health problems in dogs and used studbook data from 26 breeds provided by the Swedish Kennel Club for this purpose. The pedigrees date back to the mid-20th century and comprise 5-10 generations and 1 000-50 000 individuals per pedigree over our study period of 1980-2010. We compared levels of inbreeding and loss of genetic variation measured in relation to the number of founding animals during this period in the investigated dog breeds that we classified as 'healthy' (11 breeds) or 'unhealthy' (15) based on statistics on the extent of veterinary care obtained from Sweden's four largest insurance companies for pets. We found extensive loss of genetic variation and moderate levels of recent inbreeding in all breeds examined, but no strong indication of a difference in these parameters between healthy versus unhealthy breeds over this period. Thus, recent breeding history with respect to rate of inbreeding does not appear to be a main cause of poor health in the investigated dog breeds in Sweden. We identified both strengths and weaknesses of the dog pedigree data important to consider in future work of monitoring and conserving genetic diversity of dog breeds. © 2013 The Authors Journal of Animal Breeding and Genetics Published by Blackwell Verlag GmbH.
Genome-wide linkage disequilibrium and past effective population size in three Korean cattle breeds.
Sudrajad, P; Seo, D W; Choi, T J; Park, B H; Roh, S H; Jung, W Y; Lee, S S; Lee, J H; Kim, S; Lee, S H
2017-02-01
The routine collection and use of genomic data are useful for effectively managing breeding programs for endangered populations. Linkage disequilibrium (LD) using high-density DNA markers has been widely used to determine population structures and predict the genomic regions that are associated with economic traits in beef cattle. The extent of LD also provides information about historical events, including past effective population size (N e ), and it allows inferences on the genetic diversity of breeds. The objective of this study was to estimate the LD and N e in three Korean cattle breeds that are genetically similar but have different coat colors (Brown, Brindle and Jeju Black Hanwoo). Brindle and Jeju Black are endangered breeds with small populations, whereas Brown Hanwoo is the main breeding population in Korea. DNA samples from these cattle breeds were genotyped using the Illumina BovineSNP50 Bead Chip. We examined 13 cattle breeds, including European taurines, African taurines and indicines, and hybrids to compare their LD values. Brown Hanwoo consistently had the lowest mean LD compared to Jeju Black, Brindle and the other 13 cattle breeds (0.13, 0.19, 0.21 and 0.15-0.22 respectively). The high LD values of Brindle and Jeju Black contributed to small N e values (53 and 60 respectively), which were distinct from that of Brown Hanwoo (531) for 11 generations ago. The differences in LD and N e for each breed reflect the breeding strategy applied. The N e for these endangered cattle breeds remain low; thus, effort is needed to bring them back to a sustainable tract. © 2016 Stichting International Foundation for Animal Genetics.
PrP genotype frequencies and risk evaluation for scrapie in dairy sheep breeds from southern Italy.
Martemucci, Giovanni; Iamartino, Daniela; Blasi, Michele; D'Alessandro, Angela Gabriella
2015-12-01
Concerns regarding scrapie in sheep breeding have increased in the last few decades. The present study was carried out in dairy sheep breeds from southern Italy. In order to find breeding animals resistant to scrapie, the PrP genes of 1,205 animals from entire flocks of dairy native Apulian Leccese and Altamurana breeds, and Sicilian Comisana breed, were analysed for polymorphisms at codons 136, 154, and 171 related to scrapie resistance/susceptibility. The Altamurana breed was considered as two populations (Alt-Cav and Alt-Cra-Zoe), based on presumed cross-breeding. A total of five alleles and ten different genotypes were found. The ARQ allele was predominant for all breeds followed by ARR, the most resistant allele to scrapie, which was highly prevalent in Comisana (50%) and in native Alt-Cav (42.4%). The VRQ allele, associated with the highest susceptibility to scrapie, was detected at not negligeable levels in allocthonous Comisana (3.5%), at a low frequency (0.2%) in native Leccese and Alt-Cra-Zoe, while it was absent in Alt-Cav. The frequencies of PrP genotypes with a very low susceptibility risk to scrapie (R1) was higher in Comisana and Alt-Cav. The most susceptible genotype, ARQ/VRQ, was found only in Comisana. Within the Altamurana breed, there were notable differences between Alt-Cav and Alt-Cra-Zoe sheep. The Alt-Cav was characterised by the absence of VRQ and AHQ alleles and by the higher frequency of the ARR/ARR genotype (18.7%). Breeding programs, mainly in endangered breeds such as Altamurana, should be conducted gradually, combining resistance to scrapie, maintenance of genetic variability, and production. Copyright © 2015 Elsevier B.V. All rights reserved.
Michailidou, S; Tsangaris, G; Fthenakis, G C; Tzora, A; Skoufos, I; Karkabounas, S C; Banos, G; Argiriou, A; Arsenos, G
2018-06-01
In the present study, genome-wide genotyping was applied to characterize the genetic diversity and population structure of three autochthonous Greek breeds: Boutsko, Karagouniko and Chios. Dairy sheep are among the most significant livestock species in Greece numbering approximately 9 million animals which are characterized by large phenotypic variation and reared under various farming systems. A total of 96 animals were genotyped with the Illumina's OvineSNP50K microarray beadchip, to study the population structure of the breeds and develop a specialized panel of single-nucleotide polymorphisms (SNPs), which could distinguish one breed from the others. Quality control on the dataset resulted in 46,125 SNPs, which were used to evaluate the genetic structure of the breeds. Population structure was assessed through principal component analysis (PCA) and admixture analysis, whereas inbreeding was estimated based on runs of homozygosity (ROHs) coefficients, genomic relationship matrix inbreeding coefficients (F GRM ) and patterns of linkage disequilibrium (LD). Associations between SNPs and breeds were analyzed with different inheritance models, to identify SNPs that distinguish among the breeds. Results showed high levels of genetic heterogeneity in the three breeds. Genetic distances among breeds were modest, despite their different ancestries. Chios and Karagouniko breeds were more genetically related to each other compared to Boutsko. Analysis revealed 3802 candidate SNPs that can be used to identify two-breed crosses and purebred animals. The present study provides, for the first time, data on the genetic background of three Greek indigenous dairy sheep breeds as well as a specialized marker panel that can be applied for traceability purposes as well as targeted genetic improvement schemes and conservation programs.
Jonas, Elisabeth; de Koning, Dirk-Jan
2015-01-01
Genomic selection is a promising development in agriculture, aiming improved production by exploiting molecular genetic markers to design novel breeding programs and to develop new markers-based models for genetic evaluation. It opens opportunities for research, as novel algorithms and lab methodologies are developed. Genomic selection can be applied in many breeds and species. Further research on the implementation of genomic selection (GS) in breeding programs is highly desirable not only for the common good, but also the private sector (breeding companies). It has been projected that this approach will improve selection routines, especially in species with long reproduction cycles, late or sex-limited or expensive trait recording and for complex traits. The task of integrating GS into existing breeding programs is, however, not straightforward. Despite successful integration into breeding programs for dairy cattle, it has yet to be shown how much emphasis can be given to the genomic information and how much additional phenotypic information is needed from new selection candidates. Genomic selection is already part of future planning in many breeding companies of pigs and beef cattle among others, but further research is needed to fully estimate how effective the use of genomic information will be for the prediction of the performance of future breeding stock. Genomic prediction of production in crossbreeding and across-breed schemes, costs and choice of individuals for genotyping are reasons for a reluctance to fully rely on genomic information for selection decisions. Breeding objectives are highly dependent on the industry and the additional gain when using genomic information has to be considered carefully. This review synthesizes some of the suggested approaches in selected livestock species including cattle, pig, chicken, and fish. It outlines tasks to help understanding possible consequences when applying genomic information in breeding scenarios. PMID:25750652
Onzima, R B; Upadhyay, M R; Mukiibi, R; Kanis, E; Groenen, M A M; Crooijmans, R P M A
2018-02-01
Uganda has a large population of goats, predominantly from indigenous breeds reared in diverse production systems, whose existence is threatened by crossbreeding with exotic Boer goats. Knowledge about the genetic characteristics and relationships among these Ugandan goat breeds and the potential admixture with Boer goats is still limited. Using a medium-density single nucleotide polymorphism (SNP) panel, we assessed the genetic diversity, population structure and admixture in six goat breeds in Uganda: Boer, Karamojong, Kigezi, Mubende, Small East African and Sebei. All the animals had genotypes for about 46 105 SNPs after quality control. We found high proportions of polymorphic SNPs ranging from 0.885 (Kigezi) to 0.928 (Sebei). The overall mean observed (H O ) and expected (H E ) heterozygosity across breeds was 0.355 ± 0.147 and 0.384 ± 0.143 respectively. Principal components, genetic distances and admixture analyses revealed weak population sub-structuring among the breeds. Principal components separated Kigezi and weakly Small East African from other indigenous goats. Sebei and Karamojong were tightly entangled together, whereas Mubende occupied a more central position with high admixture from all other local breeds. The Boer breed showed a unique cluster from the Ugandan indigenous goat breeds. The results reflect common ancestry but also some level of geographical differentiation. admixture and f 4 statistics revealed gene flow from Boer and varying levels of genetic admixture among the breeds. Generally, moderate to high levels of genetic variability were observed. Our findings provide useful insights into maintaining genetic diversity and designing appropriate breeding programs to exploit within-breed diversity and heterozygote advantage in crossbreeding schemes. © 2018 The Authors. Animal Genetics published by John Wiley & Sons Ltd on behalf of Stichting International Foundation for Animal Genetics.
A genome-wide scan for signatures of selection in Chinese indigenous and commercial pig breeds.
Yang, Songbai; Li, Xiuling; Li, Kui; Fan, Bin; Tang, Zhonglin
2014-01-15
Modern breeding and artificial selection play critical roles in pig domestication and shape the genetic variation of different breeds. China has many indigenous pig breeds with various characteristics in morphology and production performance that differ from those of foreign commercial pig breeds. However, the signatures of selection on genes implying for economic traits between Chinese indigenous and commercial pigs have been poorly understood. We identified footprints of positive selection at the whole genome level, comprising 44,652 SNPs genotyped in six Chinese indigenous pig breeds, one developed breed and two commercial breeds. An empirical genome-wide distribution of Fst (F-statistics) was constructed based on estimations of Fst for each SNP across these nine breeds. We detected selection at the genome level using the High-Fst outlier method and found that 81 candidate genes show high evidence of positive selection. Furthermore, the results of network analyses showed that the genes that displayed evidence of positive selection were mainly involved in the development of tissues and organs, and the immune response. In addition, we calculated the pairwise Fst between Chinese indigenous and commercial breeds (CHN VS EURO) and between Northern and Southern Chinese indigenous breeds (Northern VS Southern). The IGF1R and ESR1 genes showed evidence of positive selection in the CHN VS EURO and Northern VS Southern groups, respectively. In this study, we first identified the genomic regions that showed evidences of selection between Chinese indigenous and commercial pig breeds using the High-Fst outlier method. These regions were found to be involved in the development of tissues and organs, the immune response, growth and litter size. The results of this study provide new insights into understanding the genetic variation and domestication in pigs.
A genome-wide scan for signatures of selection in Chinese indigenous and commercial pig breeds
2014-01-01
Background Modern breeding and artificial selection play critical roles in pig domestication and shape the genetic variation of different breeds. China has many indigenous pig breeds with various characteristics in morphology and production performance that differ from those of foreign commercial pig breeds. However, the signatures of selection on genes implying for economic traits between Chinese indigenous and commercial pigs have been poorly understood. Results We identified footprints of positive selection at the whole genome level, comprising 44,652 SNPs genotyped in six Chinese indigenous pig breeds, one developed breed and two commercial breeds. An empirical genome-wide distribution of Fst (F-statistics) was constructed based on estimations of Fst for each SNP across these nine breeds. We detected selection at the genome level using the High-Fst outlier method and found that 81 candidate genes show high evidence of positive selection. Furthermore, the results of network analyses showed that the genes that displayed evidence of positive selection were mainly involved in the development of tissues and organs, and the immune response. In addition, we calculated the pairwise Fst between Chinese indigenous and commercial breeds (CHN VS EURO) and between Northern and Southern Chinese indigenous breeds (Northern VS Southern). The IGF1R and ESR1 genes showed evidence of positive selection in the CHN VS EURO and Northern VS Southern groups, respectively. Conclusions In this study, we first identified the genomic regions that showed evidences of selection between Chinese indigenous and commercial pig breeds using the High-Fst outlier method. These regions were found to be involved in the development of tissues and organs, the immune response, growth and litter size. The results of this study provide new insights into understanding the genetic variation and domestication in pigs. PMID:24422716
Is income breeding an appropriate construct for waterfowl?
Janke, Adam K.; Anteau, Michael J.; Markl, Nicholas; Stafford, Joshua D.
2015-01-01
Breeding birds use a range of nutrient accumulation and allocation strategies to meet the nutritional demands of clutch formation and incubation. On one end of the spectrum, capital breeders use stored nutrients acquired prior to clutch formation and incubation to sustain metabolism during reproduction, while on the opposite end, income breeders derive nutrients solely from exogenous sources on the breeding grounds. Blue-winged Teal (Anas discors) are an ideal candidate to test for adoption of an income strategy among migratory waterfowl because of their small body size, temperate breeding range, and timing of reproduction relative to pulses in nutrient availability within breeding habitats. We collected migrating and pre-breeding Blue-winged Teal (n = 110) during the warmest spring in over a century in the southern edge of the species’ breeding range, which produced ideal conditions to test for adoption of an income breeding strategy among migratory waterfowl. Regression analyses revealed that females accumulated protein and fat reserves early in follicle development and appeared to mobilize at least some reserves coincident with the onset of clutch formation. Accumulation and subsequent mobilization of nutrient reserves was inconsistent with adherence to an income breeding strategy and suggested breeding Blue-winged Teal used capital (albeit locally acquired) for reproduction. Our results add to existing knowledge on the ubiquity of endogenous nutrient reserve accumulation prior to and during reproduction by waterfowl, perhaps suggesting endogenous nutrient reserves are universally used for clutch formation or incubation to some degree. If indeed Blue-winged Teal and other waterfowl universally use capital for breeding, research and conservation efforts should shift from evaluating whether an income breeding strategy is used and focus on when and where necessary capital is acquired prior to clutch formation.
Population-Wide Failure to Breed in the Clark’s Nutcracker (Nucifraga columbiana)
Schaming, Taza D.
2015-01-01
In highly variable environments, conditions can be so stressful in some years that entire populations forgo reproduction in favor of higher likelihood of surviving to breed in future years. In two out of five years, Clark’s nutcrackers (Nucifraga Columbiana) in the Greater Yellowstone Ecosystem exhibited population-wide failure to breed. Clark’s nutcrackers at the study site experienced substantial interannual differences in food availability and weather conditions, and the two nonbreeding years corresponded with low whitebark pine (Pinus albicaulis) cone crops the previous autumn (≤ an average of 8 ± 2 cones per tree versus ≥ an average of 20 ± 2 cones per tree during breeding years) and high snowpack in early spring (≥ 61.2 ± 5.5 cm versus ≤ 51.9 ± 4.4 cm during breeding years). The average adult body condition index during the breeding season was significantly lower in 2011 (-1.5 ± 1.1), a nonbreeding year, as compared to 2012 (6.2 ± 2.0), a breeding year. The environmental cues available to the birds prior to breeding, specifically availability of cached whitebark pine seeds, may have allowed them to predict that breeding conditions would be poor, leading to the decision to skip breeding. Alternatively, the Clark’s nutcrackers may have had such low body energy stores that they chose not to or were unable to breed. Breeding plasticity would allow Clark’s nutcrackers to exploit an unpredictable environment. However, if large-scale mortality of whitebark pines is leading to an increase in the number of nonbreeding years, there could be serious population-level and ecosystem-wide consequences. PMID:25970294
Evaluation of the sustainability of contrasted pig farming systems: breeding programmes.
Rydhmer, L; Gourdine, J L; de Greef, K; Bonneau, M
2014-12-01
The sustainability of breeding activities in 15 pig farming systems in five European countries was evaluated. One conventional and two differentiated systems per country were studied. The Conventional systems were the standard systems in their countries. The differentiated systems were of three categories: Adapted Conventional with focus on animal welfare, meat quality or environment (five systems); Traditional with local breeds in small-scale production (three systems) and Organic (two systems). Data were collected with a questionnaire from nine breeding organisations providing animals and semen to the studied farming systems and from, on average, five farmers per farming system. The sustainability assessment of breeding activities was performed in four dimensions. The first dimension described whether the market for the product was well defined, and whether the breeding goal reflected the farming system and the farmers' demands. The second dimension described recording and selection procedures, together with genetic change in traits that were important in the system. The third dimension described genetic variation, both within and between pig breeds. The fourth dimension described the management of the breeding organisation, including communication, transparency, and technical and human resources. The results show substantial differences in the sustainability of breeding activities, both between farming systems within the same category and between different categories of farming systems. The breeding activities are assessed to be more sustainable for conventional systems than for differentiated systems in three of the four dimensions. In most differentiated farming systems, breeding goals are not related to the system, as these systems use the same genetic material as conventional systems. The breeds used in Traditional farming systems are important for genetic biodiversity, but the small scale of these systems renders them vulnerable. It is hoped that, by reflecting on different aspects of sustainability, this study will encourage sustainable developments in pig production.
Y chromosome haplotype diversity of domestic sheep (Ovis aries) in northern Eurasia.
Zhang, Min; Peng, Wei-Feng; Yang, Guang-Li; Lv, Feng-Hua; Liu, Ming-Jun; Li, Wen-Rong; Liu, Yong-Gang; Li, Jin-Quan; Wang, Feng; Shen, Zhi-Qiang; Zhao, Sheng-Guo; Hehua, Eer; Marzanov, Nurbiy; Murawski, Maziek; Kantanen, Juha; Li, Meng-Hua
2014-12-01
Variation in two SNPs and one microsatellite on the Y chromosome was analyzed in a total of 663 rams representing 59 breeds from a large geographic range in northern Eurasia. SNPA-oY1 showed the highest allele frequency (91.55%) across the breeds, whereas SNPG-oY1 was present in only 56 samples. Combined genotypes established seven haplotypes (H4, H5, H6, H7, H8, H12 and H19). H6 dominated in northern Eurasia, and H8 showed the second-highest frequency. H4, which had been earlier reported to be absent in European breeds, was detected in one European breed (Swiniarka), whereas H7, which had been previously identified to be unique to European breeds, was present in two Chinese breeds (Ninglang Black and Large-tailed Han), one Buryatian (Transbaikal Finewool) and two Russian breeds (North Caucasus Mutton-Wool and Kuibyshev). H12, which had been detected only in Turkish breeds, was also found in Chinese breeds in this work. An overall low level of haplotype diversity (median h = 0.1288) was observed across the breeds with relatively higher median values in breeds from the regions neighboring the Near Eastern domestication center of sheep. H6 is the dominant haplotype in northwestern and eastern China, in which the haplotype distribution could be explained by the historical translocations of the H4 and H8 Y chromosomes to China via the Mongol invasions followed by expansions to northwestern and eastern China. Our findings extend previous results of sheep Y chromosomal genetic variability and indicate probably recent paternal gene flows between sheep breeds from distinct major geographic regions. © 2014 Stichting International Foundation for Animal Genetics.
Advances and Challenges in Genomic Selection for Disease Resistance.
Poland, Jesse; Rutkoski, Jessica
2016-08-04
Breeding for disease resistance is a central focus of plant breeding programs, as any successful variety must have the complete package of high yield, disease resistance, agronomic performance, and end-use quality. With the need to accelerate the development of improved varieties, genomics-assisted breeding is becoming an important tool in breeding programs. With marker-assisted selection, there has been success in breeding for disease resistance; however, much of this work and research has focused on identifying, mapping, and selecting for major resistance genes that tend to be highly effective but vulnerable to breakdown with rapid changes in pathogen races. In contrast, breeding for minor-gene quantitative resistance tends to produce more durable varieties but is a more challenging breeding objective. As the genetic architecture of resistance shifts from single major R genes to a diffused architecture of many minor genes, the best approach for molecular breeding will shift from marker-assisted selection to genomic selection. Genomics-assisted breeding for quantitative resistance will therefore necessitate whole-genome prediction models and selection methodology as implemented for classical complex traits such as yield. Here, we examine multiple case studies testing whole-genome prediction models and genomic selection for disease resistance. In general, whole-genome models for disease resistance can produce prediction accuracy suitable for application in breeding. These models also largely outperform multiple linear regression as would be applied in marker-assisted selection. With the implementation of genomic selection for yield and other agronomic traits, whole-genome marker profiles will be available for the entire set of breeding lines, enabling genomic selection for disease at no additional direct cost. In this context, the scope of implementing genomics selection for disease resistance, and specifically for quantitative resistance and quarantined pathogens, becomes a tractable and powerful approach in breeding programs.
Jonas, Elisabeth; de Koning, Dirk-Jan
2015-01-01
Genomic selection is a promising development in agriculture, aiming improved production by exploiting molecular genetic markers to design novel breeding programs and to develop new markers-based models for genetic evaluation. It opens opportunities for research, as novel algorithms and lab methodologies are developed. Genomic selection can be applied in many breeds and species. Further research on the implementation of genomic selection (GS) in breeding programs is highly desirable not only for the common good, but also the private sector (breeding companies). It has been projected that this approach will improve selection routines, especially in species with long reproduction cycles, late or sex-limited or expensive trait recording and for complex traits. The task of integrating GS into existing breeding programs is, however, not straightforward. Despite successful integration into breeding programs for dairy cattle, it has yet to be shown how much emphasis can be given to the genomic information and how much additional phenotypic information is needed from new selection candidates. Genomic selection is already part of future planning in many breeding companies of pigs and beef cattle among others, but further research is needed to fully estimate how effective the use of genomic information will be for the prediction of the performance of future breeding stock. Genomic prediction of production in crossbreeding and across-breed schemes, costs and choice of individuals for genotyping are reasons for a reluctance to fully rely on genomic information for selection decisions. Breeding objectives are highly dependent on the industry and the additional gain when using genomic information has to be considered carefully. This review synthesizes some of the suggested approaches in selected livestock species including cattle, pig, chicken, and fish. It outlines tasks to help understanding possible consequences when applying genomic information in breeding scenarios.
2011-01-01
Background It has been questioned if the old native Norwegian sheep breed, Old Norse Sheep (also called Norwegian Feral Sheep), normally distributed on coastal areas where ticks are abundant, is more protected against tick-borne infections than other Norwegian breeds due to a continuously high selection pressure on pasture. The aim of the present study was to test this hypothesis in an experimental infection study. Methods Five-months-old lambs of two Norwegian sheep breeds, Norwegian White (NW) sheep and Old Norse (ON) sheep, were experimentally infected with a 16S rRNA genetic variant of Anaplasma phagocytophilum (similar to GenBank accession number M73220). The experiment was repeated for two subsequent years, 2008 and 2009, with the use of 16 lambs of each breed annually. Ten lambs of each breed were inoculated intravenously each year with 0.4 ml A. phagocytophilum-infected blood containing approximately 0.5 × 106 infected neutrophils/ml. Six lambs of each breed were used as uninfected controls. Half of the primary inoculated lambs in each breed were re-challenged with the same infectious dose at nine (2008) and twelve (2009) weeks after the first challenge. The clinical, haematological and serological responses to A. phagocytophilum infection were compared in the two sheep breeds. Results The present study indicates a difference in fever response and infection rate between breeds of Norwegian sheep after experimental infection with A. phagocytophilum. Conclusion Although clinical response seems to be less in ON-lambs compared to NW-lambs, further studies including more animals are needed to evaluate if the ON-breed is more protected against tick-borne infections than other Norwegian breeds. PMID:21314927
USDA-ARS?s Scientific Manuscript database
Genomic Selection (GS) is a new breeding method in which genome-wide markers are used to predict the breeding value of individuals in a breeding population. GS has been shown to improve breeding efficiency in dairy cattle and several crop plant species, and here we evaluate for the first time its ef...
Zierath, Sharon; Hughes, Angela M.; Fretwell, Neale; Dibley, Mark
2017-01-01
Background A large and growing number of inherited genetic disease mutations are now known in the dog. Frequencies of these mutations are typically examined within the breed of discovery, possibly in related breeds, but nearly always in purebred dogs. No report to date has examined the frequencies of specific genetic disease mutations in a large population of mixed-breed dogs. Further, veterinarians and dog owners typically dismiss inherited/genetic diseases as possibilities for health problems in mixed-breed dogs, assuming hybrid vigor will guarantee that single-gene disease mutations are not a cause for concern. Therefore, the objective of this study was to screen a large mixed-breed canine population for the presence of mutant alleles associated with five autosomal recessive disorders: hyperuricosuria and hyperuricemia (HUU), cystinuria (CYST), factor VII deficiency (FVIID), myotonia congenita (MYC) and phosphofructokinase deficiency (PKFD). Genetic testing was performed in conjunction with breed determination via the commercially-available Wisdom PanelTM test. Results From a population of nearly 35,000 dogs, homozygous mutant dogs were identified for HUU (n = 57) and FVIID (n = 65). Homozygotes for HUU and FVIID were identified even among dogs with highly mixed breed ancestry. Carriers were identified for all disorders except MYC. HUU and FVIID were of high enough frequency to merit consideration in any mixed-breed dog, while CYST, MYC, and PKFD are vanishingly rare. Conclusions The assumption that mixed-breed dogs do not suffer from single-gene genetic disorders is shown here to be false. Within the diseases examined, HUU and FVIID should remain on any practitioner’s rule-out list, when clinically appropriate, for all mixed-breed dogs, and judicious genetic testing should be performed for diagnosis or screening. Future testing of large mixed-breed dog populations that include additional known canine genetic mutations will refine our knowledge of which genetic diseases can strike mixed-breed dogs. PMID:29166669
Zierath, Sharon; Hughes, Angela M; Fretwell, Neale; Dibley, Mark; Ekenstedt, Kari J
2017-01-01
A large and growing number of inherited genetic disease mutations are now known in the dog. Frequencies of these mutations are typically examined within the breed of discovery, possibly in related breeds, but nearly always in purebred dogs. No report to date has examined the frequencies of specific genetic disease mutations in a large population of mixed-breed dogs. Further, veterinarians and dog owners typically dismiss inherited/genetic diseases as possibilities for health problems in mixed-breed dogs, assuming hybrid vigor will guarantee that single-gene disease mutations are not a cause for concern. Therefore, the objective of this study was to screen a large mixed-breed canine population for the presence of mutant alleles associated with five autosomal recessive disorders: hyperuricosuria and hyperuricemia (HUU), cystinuria (CYST), factor VII deficiency (FVIID), myotonia congenita (MYC) and phosphofructokinase deficiency (PKFD). Genetic testing was performed in conjunction with breed determination via the commercially-available Wisdom PanelTM test. From a population of nearly 35,000 dogs, homozygous mutant dogs were identified for HUU (n = 57) and FVIID (n = 65). Homozygotes for HUU and FVIID were identified even among dogs with highly mixed breed ancestry. Carriers were identified for all disorders except MYC. HUU and FVIID were of high enough frequency to merit consideration in any mixed-breed dog, while CYST, MYC, and PKFD are vanishingly rare. The assumption that mixed-breed dogs do not suffer from single-gene genetic disorders is shown here to be false. Within the diseases examined, HUU and FVIID should remain on any practitioner's rule-out list, when clinically appropriate, for all mixed-breed dogs, and judicious genetic testing should be performed for diagnosis or screening. Future testing of large mixed-breed dog populations that include additional known canine genetic mutations will refine our knowledge of which genetic diseases can strike mixed-breed dogs.
Pariset, L; Mariotti, M; Nardone, A; Soysal, M I; Ozkan, E; Williams, J L; Dunner, S; Leveziel, H; Maróti-Agóts, A; Bodò, I; Valentini, A
2010-12-01
Italian Maremmana, Turkish Grey and Hungarian Grey breeds belong to the same Podolic group of cattle, have a similar conformation and recently experienced a similar demographic reduction. The aim of this study was to assess the relationship among the analysed Podolic breeds and to verify whether their genetic state reflects their history. To do so, approximately 100 single nucleotide polymorphisms (SNPs) were genotyped on individuals belonging to these breeds and compared to genotypes of individuals of two Italian beef breeds, Marchigiana and Piemontese, which underwent different selection and migration histories. Population genetic parameters such as allelic frequencies and heterozygosity values were assessed, genetic distances calculated and assignment test performed to evaluate the possibility of recent admixture between the populations. The data show that the physical similarity among the Podolic breeds examined, and particularly between Hungarian Grey and Maremmana cattle that experienced admixture in the recent past, is mainly morphological. The assignment of individuals from genotype data was achieved using Bayesian inference, confirming that the set of chosen SNPs is able to distinguish among the breeds and that the breeds are genetically distinct. Individuals of Turkish Grey breed were clearly assigned to their breed of origin for all clustering alternatives, showing that this breed can be differentiated from the others on the basis of the allelic frequencies. Remarkably, in the Turkish Grey there were differences observed between the population of Enez district, where in situ conservation studies are practised, and that of Bandirma district of Balikesir, where ex situ conservation studies are practised out of the original raising area. In conclusion, this study demonstrates that molecular data could be used to reveal an unbiased view of past events and provide the basis for a rational exploitation of livestock, suggesting appropriate cross-breeding plans based on genetic distance or breeding strategies that include the population structure. © 2010 Blackwell Verlag GmbH.
Development of a genetic tool for product regulation in the diverse British pig breed market.
Wilkinson, Samantha; Archibald, Alan L; Haley, Chris S; Megens, Hendrik-Jan; Crooijmans, Richard P M A; Groenen, Martien A M; Wiener, Pamela; Ogden, Rob
2012-11-15
The application of DNA markers for the identification of biological samples from both human and non-human species is widespread and includes use in food authentication. In the food industry the financial incentive to substituting the true name of a food product with a higher value alternative is driving food fraud. This applies to British pork products where products derived from traditional pig breeds are of premium value. The objective of this study was to develop a genetic assay for regulatory authentication of traditional pig breed-labelled products in the porcine food industry in the United Kingdom. The dataset comprised of a comprehensive coverage of breed types present in Britain: 460 individuals from 7 traditional breeds, 5 commercial purebreds, 1 imported European breed and 1 imported Asian breed were genotyped using the PorcineSNP60 beadchip. Following breed-informative SNP selection, assignment power was calculated for increasing SNP panel size. A 96-plex assay created using the most informative SNPs revealed remarkably high genetic differentiation between the British pig breeds, with an average FST of 0.54 and Bayesian clustering analysis also indicated that they were distinct homogenous populations. The posterior probability of assignment of any individual of a presumed origin actually originating from that breed given an alternative breed origin was > 99.5% in 174 out of 182 contrasts, at a test value of log(LR) > 0. Validation of the 96-plex assay using independent test samples of known origin was successful; a subsequent survey of market samples revealed a high level of breed label conformity. The newly created 96-plex assay using selected markers from the PorcineSNP60 beadchip enables powerful assignment of samples to traditional breed origin and can effectively identify mislabelling, providing a highly effective tool for DNA analysis in food forensics.
Development of a genetic tool for product regulation in the diverse British pig breed market
2012-01-01
Background The application of DNA markers for the identification of biological samples from both human and non-human species is widespread and includes use in food authentication. In the food industry the financial incentive to substituting the true name of a food product with a higher value alternative is driving food fraud. This applies to British pork products where products derived from traditional pig breeds are of premium value. The objective of this study was to develop a genetic assay for regulatory authentication of traditional pig breed-labelled products in the porcine food industry in the United Kingdom. Results The dataset comprised of a comprehensive coverage of breed types present in Britain: 460 individuals from 7 traditional breeds, 5 commercial purebreds, 1 imported European breed and 1 imported Asian breed were genotyped using the PorcineSNP60 beadchip. Following breed-informative SNP selection, assignment power was calculated for increasing SNP panel size. A 96-plex assay created using the most informative SNPs revealed remarkably high genetic differentiation between the British pig breeds, with an average FST of 0.54 and Bayesian clustering analysis also indicated that they were distinct homogenous populations. The posterior probability of assignment of any individual of a presumed origin actually originating from that breed given an alternative breed origin was > 99.5% in 174 out of 182 contrasts, at a test value of log(LR) > 0. Validation of the 96-plex assay using independent test samples of known origin was successful; a subsequent survey of market samples revealed a high level of breed label conformity. Conclusion The newly created 96-plex assay using selected markers from the PorcineSNP60 beadchip enables powerful assignment of samples to traditional breed origin and can effectively identify mislabelling, providing a highly effective tool for DNA analysis in food forensics. PMID:23150935
Genomic predictions for crossbreds from all-breed data
USDA-ARS?s Scientific Manuscript database
Genomic predictions of transmitting ability (GPTAs) for crossbred animals were computed from marker effects of 5 dairy breeds weighted by each breed’s genomic contribution to the crossbreds. Estimates of genomic breed composition are labeled breed base representation (BBR) and are reported since May...
A computational approach to animal breeding.
Berger-Wolf, Tanya Y; Moore, Cristopher; Saia, Jared
2007-02-07
We propose a computational model of mating strategies for controlled animal breeding programs. A mating strategy in a controlled breeding program is a heuristic with some optimization criteria as a goal. Thus, it is appropriate to use the computational tools available for analysis of optimization heuristics. In this paper, we propose the first discrete model of the controlled animal breeding problem and analyse heuristics for two possible objectives: (1) breeding for maximum diversity and (2) breeding a target individual. These two goals are representative of conservation biology and agricultural livestock management, respectively. We evaluate several mating strategies and provide upper and lower bounds for the expected number of matings. While the population parameters may vary and can change the actual number of matings for a particular strategy, the order of magnitude of the number of expected matings and the relative competitiveness of the mating heuristics remains the same. Thus, our simple discrete model of the animal breeding problem provides a novel viable and robust approach to designing and comparing breeding strategies in captive populations.
Wijnrocx, K; François, L; Stinckens, A; Janssens, S; Buys, N
2016-10-01
The genetic diversity in 23 dog breeds raised in Belgium was investigated using both genealogical analysis and microsatellite markers. Some of these breeds are native breeds, with only small populations maintained. Pedigree and molecular data, obtained from the Belgian kennel club, were used to calculate the inbreeding coefficients, realised effective population size as well as probabilities of gene origin and average observed heterozygosity. Inbreeding coefficients ranged from 0.8 to 44.7% and realised effective population size varied between 3.2 and 829.1, according to the used method and breed. Mean observed heterozygosity ranged from 0.47 to 0.73. Both pedigree and molecular methods reveal low genetic diversity and presence of bottlenecks, especially in native Belgian breeds with small population sizes. Furthermore, principal component analysis on the set of investigated diversity parameters revealed no groups of breeds that could be identified in which similar breeding strategies could be applied to maintain genetic diversity. © 2016 Blackwell Verlag GmbH.
The Ascent of Cat Breeds: Genetic Evaluations of Breeds and Worldwide Random Bred Populations
Lipinski, Monika J.; Froenicke, Lutz; Baysac, Kathleen C.; Billings, Nicholas C.; Leutenegger, Christian M.; Levy, Alon M.; Longeri, Maria; Niini, Tirri; Ozpinar, Haydar; Slater, Margaret R.; Pedersen, Niels C.; Lyons, Leslie A.
2008-01-01
The diaspora of the modern cat was traced with microsatellite markers from the presumed site of domestication to distant regions of the world. Genetic data were derived from over 1100 individuals, representing seventeen random bred populations from five continents and twenty-two breeds. The Mediterranean was reconfirmed to be the probable site of domestication. Genetic diversity has remained broad throughout the world, with distinct genetic clustering in the Mediterranean basin, Europe/America, Asia and Africa. However, Asian cats appeared to have separated early and expanded in relative isolation. Most breeds were derived from indigenous cats of their purported regions of origin. However, the Persian and Japanese Bobtail were more aligned with European/American than Mediterranean basin or Asian clusters. Three recently derived breeds were not distinct from their parental breeds of origin. Pure breeding was associated with a loss of genetic diversity, however, this loss did not correlate with breed popularity or age. PMID:18060738
Improving Charging-Breeding Simulations with Space-Charge Effects
NASA Astrophysics Data System (ADS)
Bilek, Ryan; Kwiatkowski, Ania; Steinbrügge, René
2016-09-01
Rare-isotope-beam facilities use Highly Charged Ions (HCI) for accelerators accelerating heavy ions and to improve measurement precision and resolving power of certain experiments. An Electron Beam Ion Trap (EBIT) is able to create HCI through successive electron impact, charge breeding trapped ions into higher charge states. CBSIM was created to calculate successive charge breeding with an EBIT. It was augmented by transferring it into an object-oriented programming language, including additional elements, improving ion-ion collision factors, and exploring the overlap of the electron beam with the ions. The calculation is enhanced with the effects of residual background gas by computing the space charge due to charge breeding. The program assimilates background species, ionizes and charge breeds them alongside the element being studied, and allows them to interact with the desired species through charge exchange, giving fairer overview of realistic charge breeding. Calculations of charge breeding will be shown for realistic experimental conditions. We reexamined the implementation of ionization energies, cross sections, and ion-ion interactions when charge breeding.
Zhou, Yi-Quan; Qu, Xian-You; Yang, Guang; Li, Jun-de; Su, Yan; Li, Ying
2016-12-01
Medicinal animal breeding standards is regarded as the law to normalize relevant production that can guarantee the quality of traditional Chinese medicine of animal category. The article summarized the medicinal animal resources in our country and the present condition of medicinal animal breeding standards. It considered the current animal breeding standards system was in adequate, not only the quantity of breeding standards, the standard content and index were also uncomprehensive, which is not conducive to the scientific and orderly development and utilization of medicinal animal resources. The article pointed out that the development of the basic standards, environmental control, feed quality, raising management, inspection and quarantine should be included into the medicinal animal breeding standards, and the medicinal animal breeding standards content framework was introduced. Meanwhile, animal welfare, biological safety and file management should be concerned during the process of research. Hope the article has good reference value to medicinal animal breeding standards establishment and production management. Copyright© by the Chinese Pharmaceutical Association.
Agriculture modifies the seasonal decline of breeding success in a tropical wild bird population
Cartwright, Samantha J; Nicoll, Malcolm A C; Jones, Carl G; Tatayah, Vikash; Norris, Ken
2014-01-01
Habitat conversion for agriculture is a major driver of biodiversity loss, but our understanding of the demographic processes involved remains poor. We typically investigate the impacts of agriculture in isolation even though populations are likely to experience multiple, concurrent changes in the environment (e.g. land and climate change). Drivers of environmental change may interact to affect demography, but the mechanisms have yet to be explored fully in wild populations. Here, we investigate the mechanisms linking agricultural land use with breeding success using long-term data for the formerly Critically Endangered Mauritius kestrel Falco punctatus, a tropical forest specialist that also occupies agricultural habitats. We specifically focused on the relationship between breeding success, agriculture and the timing of breeding because the latter is sensitive to changes in climatic conditions (spring rainfall) and enables us to explore the interactive effects of different (land and climate) drivers of environmental change. Breeding success, measured as egg survival to fledging, declines seasonally in this population, but we found that the rate of this decline became increasingly rapid as the area of agriculture around a nest site increased. If the relationship between breeding success and agriculture was used in isolation to estimate the demographic impact of agriculture, it would significantly under-estimate breeding success in dry (early) springs and over-estimate breeding success in wet (late) springs. Analysis of prey delivered to nests suggests that the relationship between breeding success and agriculture might be due, in part, to spatial variation in the availability of native, arboreal geckos. Synthesis and applications. Agriculture modifies the seasonal decline in breeding success in this population. As springs are becoming wetter in our study area and since the kestrels breed later in wetter springs, the impact of agriculture on breeding success will become worse over time. Our results suggest that forest restoration designed to reduce the detrimental impacts of agriculture on breeding may also help reduce the detrimental effects of breeding late due to wetter springs. Our results therefore highlight the importance of considering the interactive effects of environmental change when managing wild populations. PMID:25558086
Hoffman, Christy L; Harrison, Natalie; Wolff, London; Westgarth, Carri
2014-01-01
Bull breeds are commonly kept as companion animals, but the pit bull terrier is restricted by breed-specific legislation (BSL) in parts of the United States and throughout the United Kingdom. Shelter workers must decide which breed(s) a dog is. This decision may influence the dog's fate, particularly in places with BSL. In this study, shelter workers in the United States and United Kingdom were shown pictures of 20 dogs and were asked what breed each dog was, how they determined each dog's breed, whether each dog was a pit bull, and what they expected the fate of each dog to be. There was much variation in responses both between and within the United States and United Kingdom. UK participants frequently labeled dogs commonly considered by U.S. participants to be pit bulls as Staffordshire bull terriers. UK participants were more likely to say their shelters would euthanize dogs deemed to be pit bulls. Most participants noted using dogs' physical features to determine breed, and 41% affected by BSL indicated they would knowingly mislabel a dog of a restricted breed, presumably to increase the dog's adoption chances.
Differences in Trait Impulsivity Indicate Diversification of Dog Breeds into Working and Show Lines.
Fadel, Fernanda Ruiz; Driscoll, Patricia; Pilot, Malgorzata; Wright, Hannah; Zulch, Helen; Mills, Daniel
2016-03-10
Impulsiveness describes the inability to inhibit behaviour in the presence of salient cues. Trait-level impulsivity exists on a continuum and individual differences can be adaptive in different contexts. While breed related differences in behavioural tendency in the domestic dog (Canis familiaris) are well established, the phenomenon within lines of a breed which have been selected more recently is not well studied, although it may challenge the popular notion of breed-typical behaviour. We describe differences in impulsivity between and within two dog breeds with working and show lines selected for different levels of impulsivity: Border Collies (herding work) and Labrador Retrievers (gun work). Recent show line selection might have lessened differences in impulsivity between breeds. We tested this hypothesis on a dataset of 1161 individuals assessed using a validated psychometric tool (Dog Impulsivity Assessment Scale--DIAS). Collies were more impulsive on average, consistent with the original purpose of breed selection. Regarding line, working Collies differed from working Labradors, but show lines from the two breeds were not significantly different. Altered or relaxed artificial selection for behavioural traits when appearance rather than behaviour become the primary focus for breeders may reduce average differences in impulsivity between breeds in show lines.
Hall, S J G; Lenstra, J A; Deeming, D C
2012-06-01
Conservation of the intraspecific genetic diversity of livestock species requires protocols that assess between-breed genetic variability and also take into account differences among individuals within breeds. Here, we focus on variation between breeds. Conservation of neutral genetic variation has been seen as promoting, through linkage processes, the retention of useful and potentially useful variation. Using public information on beef cattle breeds, with a total of 165 data sets each relating to a breed comparison of a performance variable, we have tested this paradigm by calculating the correlations between pairwise breed differences in performance and pairwise genetic distances deduced from biochemical and immunological polymorphisms, microsatellites and single-nucleotide polymorphisms. As already observed in floral and faunal biodiversity, significant positive correlations (n=54) were found, but many correlations were non-significant (n=100) or significantly negative (n=11). This implies that maximizing conserved neutral genetic variation with current techniques may conserve breed-level genetic variation in some traits but not in others and supports the view that genetic distance measurements based on neutral genetic variation are not sufficient as a determinant of conservation priority among breeds. © 2011 Blackwell Verlag GmbH.
Leroy, G; Boettcher, P; Hoffmann, I; Mottet, A; Teillard, F; Baumung, R
2016-12-01
This study investigates the relationships between various environmental and geographic, demographic, and socioeconomic factors with the diversity of livestock breeds reported within countries across the world. Statistical analyses were performed considering the numbers of breeds reported by 158 countries for 4 livestock mammalian species (cattle, sheep, goats, and pigs). Organization for Economic Cooperation and Development (OECD) countries reported more breeds than non-OECD countries in general. Strong and positive correlations were found between agricultural area, human population size, species population size, and number of breeds per country. When considering regression models, the species population size was found as the most important explanatory factor for the number of breeds reported by countries in the 4 species. Diversity of production systems in the country had a significant association with the number of breeds reported for sheep, goats, and pigs. The number of ruminant breeds was positively associated with the size of agricultural area and the diversity of land cover in the country. While demographic and cultural importance of a given species is a major factor associated with the number of livestock breeds within countries, this diversity is also connected to the variability in environmental and production conditions.
Hoffman, Christy L.; Harrison, Natalie; Wolff, London; Westgarth, Carri
2014-01-01
Bull breeds are commonly kept as companion animals, but the pit bull terrier is restricted by breed-specific legislation (BSL) in parts of the United States and throughout the United Kingdom. Shelter workers must decide which breed(s) a dog is. This decision may influence the dog's fate, particularly in places with BSL. In this study, shelter workers in the United States and United Kingdom were shown pictures of 20 dogs and were asked what breed each dog was, how they determined each dog's breed, whether each dog was a pit bull, and what they expected the fate of each dog to be. There was much variation in responses both between and within the United States and United Kingdom. UK participants frequently labeled dogs commonly considered by U.S. participants to be pit bulls as Staffordshire bull terriers. UK participants were more likely to say their shelters would euthanize dogs deemed to be pit bulls. Most participants noted using dogs' physical features to determine breed, and 41% affected by BSL indicated they would knowingly mislabel a dog of a restricted breed, presumably to increase the dog's adoption chances. PMID:24673506
Zhao, Meijuan; Christie, Maureen; Coleman, Jonathan; Hassell, Chris; Gosbell, Ken; Lisovski, Simeon; Minton, Clive; Klaassen, Marcel
2017-01-01
Migrants have been hypothesised to use different migration strategies between seasons: a time-minimization strategy during their pre-breeding migration towards the breeding grounds and an energy-minimization strategy during their post-breeding migration towards the wintering grounds. Besides season, we propose body size as a key factor in shaping migratory behaviour. Specifically, given that body size is expected to correlate negatively with maximum migration speed and that large birds tend to use more time to complete their annual life-history events (such as moult, breeding and migration), we hypothesise that large-sized species are time stressed all year round. Consequently, large birds are not only likely to adopt a time-minimization strategy during pre-breeding migration, but also during post-breeding migration, to guarantee a timely arrival at both the non-breeding (i.e. wintering) and breeding grounds. We tested this idea using individual tracks across six long-distance migratory shorebird species (family Scolopacidae) along the East Asian-Australasian Flyway varying in size from 50 g to 750 g lean body mass. Migration performance was compared between pre- and post-breeding migration using four quantifiable migratory behaviours that serve to distinguish between a time- and energy-minimization strategy, including migration speed, number of staging sites, total migration distance and step length from one site to the next. During pre- and post-breeding migration, the shorebirds generally covered similar distances, but they tended to migrate faster, used fewer staging sites, and tended to use longer step lengths during pre-breeding migration. These seasonal differences are consistent with the prediction that a time-minimization strategy is used during pre-breeding migration, whereas an energy-minimization strategy is used during post-breeding migration. However, there was also a tendency for the seasonal difference in migration speed to progressively disappear with an increase in body size, supporting our hypothesis that larger species tend to use time-minimization strategies during both pre- and post-breeding migration. Our study highlights that body size plays an important role in shaping migratory behaviour. Larger migratory bird species are potentially time constrained during not only the pre- but also the post-breeding migration. Conservation of their habitats during both seasons may thus be crucial for averting further population declines.
Population structure of four Thai indigenous chicken breeds
2014-01-01
Background In recent years, Thai indigenous chickens have increasingly been bred as an alternative in Thailand poultry market. Due to their popularity, there is a clear need to improve the underlying quality and productivity of these chickens. Studying chicken genetic variation can improve the chicken meat quality as well as conserving rare chicken species. To begin with, a minimal set of molecular markers that can characterize the Thai indigenous chicken breeds is required. Results Using AFLP-PCR, 30 single nucleotide polymorphisms (SNPs) from Thai indigenous chickens were obtained by DNA sequencing. From these SNPs, we genotyped 465 chickens from 7 chicken breeds, comprising four Thai indigenous chicken breeds- Pradhuhangdum (PD), Luenghangkhao (LK), Dang (DA) and Chee (CH), one wild chicken - the red jungle fowls (RJF), and two commercial chicken breeds - the brown egg layer (BL) and commercial broiler (CB). The chicken genotypes reveal unique genetic structures of the four Thai indigenous chicken breeds. The average expected heterozygosities of PD= 0.341, LK= 0.357, DA=0.349 and CH= 0.373, while the references RJF= 0.327, CB=0.324 and BL= 0.285. The FST values among Thai indigenous chicken breeds vary from 0.051 to 0.096. The FST values between the pairs of Thai indigenous chickens and RJF vary from 0.083 to 0.105 and the FST values between the Thai indigenous chickens and the two commercial chicken breeds vary from 0.116 to 0.221. A neighbour-joining tree of all individual chickens showed that the Thai indigenous chickens were clustered into four groups which were closely related to the wild RJF but far from the commercial breeds. Such commercial breeds were split into two closely groups. Using genetic admixture analysis, we observed that the Thai indigenous chicken breeds are likely to share common ancestors with the RJF, while both commercial chicken breeds share the same admixture pattern. Conclusion These results indicated that the Thai indigenous chicken breeds may descend from the same ancestors. These indigenous chicken breeds were more closely related to red jungle fowls than those of the commercial breeds. These findings showed that the proposed SNP panel can effectively be used to characterize the four Thai indigenous chickens. PMID:24674423
Direct and indirect genetic and fine-scale location effects on breeding date in song sparrows.
Germain, Ryan R; Wolak, Matthew E; Arcese, Peter; Losdat, Sylvain; Reid, Jane M
2016-11-01
Quantifying direct and indirect genetic effects of interacting females and males on variation in jointly expressed life-history traits is central to predicting microevolutionary dynamics. However, accurately estimating sex-specific additive genetic variances in such traits remains difficult in wild populations, especially if related individuals inhabit similar fine-scale environments. Breeding date is a key life-history trait that responds to environmental phenology and mediates individual and population responses to environmental change. However, no studies have estimated female (direct) and male (indirect) additive genetic and inbreeding effects on breeding date, and estimated the cross-sex genetic correlation, while simultaneously accounting for fine-scale environmental effects of breeding locations, impeding prediction of microevolutionary dynamics. We fitted animal models to 38 years of song sparrow (Melospiza melodia) phenology and pedigree data to estimate sex-specific additive genetic variances in breeding date, and the cross-sex genetic correlation, thereby estimating the total additive genetic variance while simultaneously estimating sex-specific inbreeding depression. We further fitted three forms of spatial animal model to explicitly estimate variance in breeding date attributable to breeding location, overlap among breeding locations and spatial autocorrelation. We thereby quantified fine-scale location variances in breeding date and quantified the degree to which estimating such variances affected the estimated additive genetic variances. The non-spatial animal model estimated nonzero female and male additive genetic variances in breeding date (sex-specific heritabilities: 0·07 and 0·02, respectively) and a strong, positive cross-sex genetic correlation (0·99), creating substantial total additive genetic variance (0·18). Breeding date varied with female, but not male inbreeding coefficient, revealing direct, but not indirect, inbreeding depression. All three spatial animal models estimated small location variance in breeding date, but because relatedness and breeding location were virtually uncorrelated, modelling location variance did not alter the estimated additive genetic variances. Our results show that sex-specific additive genetic effects on breeding date can be strongly positively correlated, which would affect any predicted rates of microevolutionary change in response to sexually antagonistic or congruent selection. Further, we show that inbreeding effects on breeding date can also be sex specific and that genetic effects can exceed phenotypic variation stemming from fine-scale location-based variation within a wild population. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.
Breeding design considerations for coastal Douglas-fir.
Randy Johnson
1998-01-01
The basic principles of designing forest tree breeding programs are reviewed for Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) in the Pacific Northwest. Breeding populations are discussed given current and future breeding zone sizes and seed orchard designs. Seed orchard composition is discussed for potential genetic gain and maintaining...
Code of Federal Regulations, 2010 CFR
2010-01-01
... the bacteriological examination of egg-type breeding flocks with salmonella enteritidis positive... examination of egg-type breeding flocks with salmonella enteritidis positive environments. Birds selected for bacteriological examination from egg-type breeding flocks positive for Salmonella enteritidis after environmental...
50 CFR 15.42 - List of foreign qualifying breeding facilities. [Reserved
Code of Federal Regulations, 2010 CFR
2010-10-01
... IMPORTATION OF WILDLIFE AND PLANTS WILD BIRD CONSERVATION ACT Qualifying Facilities Breeding Exotic Birds in Captivity § 15.42 List of foreign qualifying breeding facilities. [Reserved] ... 50 Wildlife and Fisheries 1 2010-10-01 2010-10-01 false List of foreign qualifying breeding...
50 CFR 15.42 - List of foreign qualifying breeding facilities. [Reserved
Code of Federal Regulations, 2011 CFR
2011-10-01
... IMPORTATION OF WILDLIFE AND PLANTS WILD BIRD CONSERVATION ACT Qualifying Facilities Breeding Exotic Birds in Captivity § 15.42 List of foreign qualifying breeding facilities. [Reserved] ... 50 Wildlife and Fisheries 1 2011-10-01 2011-10-01 false List of foreign qualifying breeding...
50 CFR 15.42 - List of foreign qualifying breeding facilities. [Reserved
Code of Federal Regulations, 2012 CFR
2012-10-01
... IMPORTATION OF WILDLIFE AND PLANTS WILD BIRD CONSERVATION ACT Qualifying Facilities Breeding Exotic Birds in Captivity § 15.42 List of foreign qualifying breeding facilities. [Reserved] ... 50 Wildlife and Fisheries 1 2012-10-01 2012-10-01 false List of foreign qualifying breeding...
50 CFR 15.42 - List of foreign qualifying breeding facilities. [Reserved
Code of Federal Regulations, 2013 CFR
2013-10-01
... IMPORTATION OF WILDLIFE AND PLANTS WILD BIRD CONSERVATION ACT Qualifying Facilities Breeding Exotic Birds in Captivity § 15.42 List of foreign qualifying breeding facilities. [Reserved] ... 50 Wildlife and Fisheries 1 2013-10-01 2013-10-01 false List of foreign qualifying breeding...
50 CFR 15.42 - List of foreign qualifying breeding facilities. [Reserved
Code of Federal Regulations, 2014 CFR
2014-10-01
... IMPORTATION OF WILDLIFE AND PLANTS WILD BIRD CONSERVATION ACT Qualifying Facilities Breeding Exotic Birds in Captivity § 15.42 List of foreign qualifying breeding facilities. [Reserved] ... 50 Wildlife and Fisheries 1 2014-10-01 2014-10-01 false List of foreign qualifying breeding...
Genomic tools and and prospects for new breeding techniques in flower bulb crops
USDA-ARS?s Scientific Manuscript database
For many of the new breeding techniques, sequence information is of the utmost importance. In addition to current breeding techniques, such as marker-assisted selection (MAS) and genetic modification (GM), new breeding techniques such as zinc finger nucleases, oligonucleotide-mediated mutagenesis, R...
Maurice-Van Eijndhoven, M H T; Bovenhuis, H; Soyeurt, H; Calus, M P L
2013-04-01
The aim of this study was to estimate breed differences in milk fatty acid (FA) profile among 5 dairy cattle breeds present in the Netherlands: Holstein-Friesian (HF), Meuse-Rhine-Yssel (MRY), Dutch Friesian (DF), Groningen White Headed (GWH), and Jersey (JER). For this purpose, total fat percentage and detailed FA contents in milk (14 individual FA and 14 groups of FA) predicted from mid-infrared spectra were used. Mid-infrared spectrometry profiles were collected during regular milk recording from a range of herds with different combinations of breeds, including both purebred and crossbred cows. The data set used for the analyses contained 41,404 records from a total of 24,445 cows. In total 7,626 cows were crossbreds belonging to the breeds HF, MRY, DF, GWH, and JER; 1,769 purebreds (≥87.5%) belonging to the breeds MRY, DF, GWH, and JER; and the other 15,050 cows were HF. Breed effects were estimated using a single-trait animal model. The content in milk of short-chain FA C4:0, C6:0, C8:0, C10:0, C12:0, C14:0, and C16:0 was higher for JER and the content in milk of C16:0 was lower for GWH compared with the other breeds; when adjusting for breed differences in fat percentage, however, not all breed differences were significant. Breed differences were also found for cis-9 C14:1, cis-9 C16:1, C18:0, and a number of C18 unsaturated FA. In general, differences in fat composition in milk between HF, MRY, and DF were not significant. Jerseys tended to produce more saturated FA, whereas GWH tended to produce relatively less saturated FA. After adjusting for differences in fat percentage, breed differences in detailed fat composition disappeared or became smaller for several short- and medium-chain FA, whereas for several long-chain unsaturated FA, more significant breed differences were found. This indicates that short- and medium-chain FA are for all breeds more related to total fat percentage than long-chain FA. In conclusion, between breed differences were found in detailed FA composition and content of individual FA. Especially, for FA produced through de novo synthesis (short-chain FA, C12:0, C14:0, and partly C16:0) differences were found for JER and GWH, compared with the breeds HF, MRY, and DF. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Doyle, Jennifer L; Berry, Donagh P; Walsh, Siobhan W; Veerkamp, Roel F; Evans, Ross D; Carthy, Tara R
2018-05-04
Linear type traits describing the skeletal, muscular, and functional characteristics of an animal are routinely scored on live animals in both the dairy and beef cattle industries. Previous studies have demonstrated that genetic parameters for certain performance traits may differ between breeds; no study, however, has attempted to determine if differences exist in genetic parameters of linear type traits among breeds or sexes. Therefore, the objective of the present study was to determine if genetic covariance components for linear type traits differed among five contrasting cattle breeds, and to also investigate if these components differed by sex. A total of 18 linear type traits scored on 3,356 Angus (AA), 31,049 Charolais (CH), 3,004 Hereford (HE), 35,159 Limousin (LM), and 8,632 Simmental (SI) were used in the analysis. Data were analyzed using animal linear mixed models which included the fixed effects of sex of the animal (except in the investigation into the presence of sexual dimorphism), age at scoring, parity of the dam, and contemporary group of herd-date of scoring. Differences (P < 0.05) in heritability estimates, between at least two breeds, existed for 13 out of 18 linear type traits. Differences (P < 0.05) also existed between the pairwise within-breed genetic correlations among the linear type traits. Overall, the linear type traits in the continental breeds (i.e., CH, LM, SI) tended to have similar heritability estimates to each other as well as similar genetic correlations among the same pairwise traits, as did the traits in the British breeds (i.e., AA, HE). The correlation between a linear function of breeding values computed conditional on covariance parameters estimated from the CH breed with a linear function of breeding values computed conditional on covariance parameters estimated from the other breeds was estimated. Replacing the genetic covariance components estimated in the CH breed with those of the LM had least effect but the impact was considerable when the genetic covariance components of the AA were used. Genetic correlations between the same linear type traits in the two sexes were all close to unity (≥0.90) suggesting little advantage in considering these as separate traits for males and females. Results for the present study indicate the potential increase in accuracy of estimated breeding value prediction from considering, at least, the British breed traits separate to continental breed traits.
Magne, M A; Thénard, V; Mihout, S
2016-05-01
Finding ways of increasing animal production with low external inputs and without compromising reproductive performances is a key issue of livestock systems sustainability. One way is to take advantage of the diversity and interactions among components within livestock systems. Among studies that investigate the influence of differences in animals' individual abilities in a herd, few focus on combinations of cow breeds with contrasting features in dairy cattle herds. This study aimed to analyse the performances and management of such multi-breed dairy cattle herds. These herds were composed of two types of dairy breeds: 'specialist' (Holstein) and 'generalist' (e.g. Montbeliarde, Simmental, etc.). Based on recorded milk data in southern French region, we performed (i) to compare the performances of dairy herds according to breed-type composition: multi-breed, single specialist breed or single generalist breed and (ii) to test the difference of milk performances of specialist and generalist breed cows (n = 10 682) per multi-breed dairy herd within a sample of 22 farms. The sampled farmers were also interviewed to characterise herd management through multivariate analysis. Multi-breed dairy herds had a better trade-off among milk yield, milk fat and protein contents, herd reproduction and concentrate-conversion efficiency than single-breed herds. Conversely, they did not offer advantages in terms of milk prices and udder health. Compared to specialist dairy herds, they produce less milk with the same concentrate-conversion efficiency but have better reproductive performances. Compared to generalist dairy herds, they produce more milk with better concentrate-conversion efficiency but have worse reproductive performances. Within herds, specialist and generalist breed cows significantly differed in milk performances, showing their complementarity. The former produced more milk for a longer lactation length while the latter produced milk with higher protein and fat contents and had a slightly longer lactation rank. Our results also focus on the farmers' management of multi-breed dairy herds underlying herd performances. Three strategies of management were identified and structured along two main axes. The first differentiates farmers according to their animal-selection practices in relation with their objectives of production: adapting animal to produce milk with low-feeding inputs v. focussing on milk yield trait to intensify milk production. The second refers to the purpose farmers give to multi-breed dairy herds: milk v. milk/meat production. These initial insights on the performances and management of multi-breed dairy herds contribute to better understanding the functioning of ruminant livestock systems based on individual variability.
Biochemical polymorphism in Egyptian Baladi cattle and their relationship with other breeds.
Graml, R; Ohmayer, G; Pirchner, F; Erhard, L; Buchberger, J; Mostageer, A
1986-01-01
Gene frequencies were estimated in a sample of Baladi cattle for milk proteins, blood proteins and blood groups. Gene frequency estimates of Bos taurus, Bos indicus and Sanga breeds were assembled from the literature. The gene frequencies were utilized for estimating the genetic distance between the breeds and breed groups. The Egyptian Baladi cattle appeared to be closer to Bos taurus breeds than to the Sanga. They are far removed from Zebus.
Leroy, G; Baumung, R
2011-02-01
On the basis of simulations and genealogical data of ten dog breeds, three popular mating practices (popular sire effect, line breeding, close breeding) were investigated along with their effects on the dissemination of genetic disorders. Our results showed that the use of sires in these ten breeds is clearly unbalanced. Depending on the breed, the effective number of sires represented between 33% and 70% of the total number of sires. Mating between close relatives was also found to be quite common, and the percentage of dogs inbred after two generations ranged from 1% to about 8%. A more or less long-term genetic differentiation, linked to line breeding practices, was also emphasized in most breeds. F(IT) index based on gene dropping proved to be efficient in differentiating the effects of the different mating practices, and it ranged from -1.3% to 3.2% when real founders were used to begin a gene dropping process. Simulation results confirmed that the popular sire practice leads to a dissemination of genetic disorders. Under a realistic scenario, regarding the imbalance in the use of sires, the dissemination risk was indeed 4.4 times higher than under random mating conditions. In contrast, line breeding and close breeding practices tend to decrease the risk of the dissemination of genetic disorders. © 2010 The Authors, Animal Genetics © 2010 Stichting International Foundation for Animal Genetics.
Mitochondrial DNA variants of Podolian cattle breeds testify for a dual maternal origin.
Di Lorenzo, Piera; Lancioni, Hovirag; Ceccobelli, Simone; Colli, Licia; Cardinali, Irene; Karsli, Taki; Capodiferro, Marco Rosario; Sahin, Emine; Ferretti, Luca; Ajmone Marsan, Paolo; Sarti, Francesca Maria; Lasagna, Emiliano; Panella, Francesco; Achilli, Alessandro
2018-01-01
Over the past 15 years, 300 out of 6000 breeds of all farm animal species identified by the Food and Agriculture Organization of the United Nations (FAO) have gone extinct. Among cattle, many Podolian breeds are seriously endangered in various European areas. Podolian cattle include a group of very ancient European breeds, phenotypically close to the aurochs ancestors (Bos primigenius). The aim of the present study was to assess the genetic diversity of Podolian breeds and to reconstruct their origin. The mitochondrial DNA (mtDNA) control-regions of 18 Podolian breeds have been phylogenetically assessed. Nine non-Podolian breeds have been also included for comparison. The overall analysis clearly highlights some peculiarities in the mtDNA gene pool of some Podolian breeds. In particular, a principal component analysis point to a genetic proximity between five breeds (Chianina, Marchigiana, Maremmana, Podolica Italiana and Romagnola) reared in Central Italy and the Turkish Grey. We here propose the suggestive hypothesis of a dual ancestral contribution to the present gene pool of Podolian breeds, one deriving from Eastern European cattle; the other arising from the arrival of Middle Eastern cattle into Central Italy through a different route, perhaps by sea, ferried by Etruscan boats. The historical migration of Podolian cattle from North Eastern Europe towards Italy has not cancelled the mtDNA footprints of this previous ancient migration.
DNA typing of Pakistani cattle breeds Tharparkar and Red Sindhi by microsatellite markers.
Azam, Amber; Babar, Masroor Ellahi; Firyal, Sehrish; Anjum, Aftab Ahmad; Akhtar, Nabeela; Asif, Muhammad; Hussain, Tanveer
2012-02-01
Microsatellite markers are used for any individual identity and breed characterization in animals that is an efficient and successful way of investigation. They are used for multiple purposes as genetic detectors including, rapid mutation rate, high level of polymorphism, and range of variety of microsatellite markers available. A panel of 19 microsatellite markers was developed for breed characterization in Tharparkar and Red Sindhi breeds of cattle in Pakistan. Forty four blood samples of cattle (each breed) were collected from Department of Livestock Management, Sindh Agriculture University, Tandojam, Tando Qaiser, Tharparkar Cattle Farm Nabi sar Road, Umer Kot, Sindh, and Govt. Red Sindhi Cattle Breeding Farm, Tando Muhammad Khan Pakistan. Breed characterization was 100% successful. Average PIC, He and Power of Exclusion values were found to be 0.91, 0.62 and 13.28, respectively. Pattern of allelic frequencies of most of the microsatellite markers were clearly distinct between two breeds. As a result of present study a reliable, efficient and very informative panel of microsatellite markers was successfully developed which was capable to interpret individual identity, forensic cases and breed characterization in cattle. This facility is ready to be provided to local cattle breeder at commercial level for DNA testing of cattle. This study will also be highly helpful for breed conservation of cattle. In addition this study can also become a basis to open up new disciplines of animal forensics in Pakistan.
The potential of open learning in animal breeding.
Lohuis, M M; Lohuis, C T; Petrongolo, R A
1999-07-01
Animal breeding education is presently facing many challenges. These include rapid changes in breeding knowledge and technology, resource and funding restrictions, and altering demographics of the learner and the animal breeding industry. These challenges can be met via an open learning educational format. This nontraditional approach is based on the needs of individual learners, not the interests of the teacher or the institution. An important feature of open learning is its appropriateness for the professional development audience. Delivery methods include interactive distance courses on the Web, computer-assisted learning, and team-based study. The Canadian dairy breeding industry has expressed the need for ongoing professional development to understand and adopt new animal breeding technologies. The University of Guelph responded by delivering a series of animal breeding short courses (Executive Certificate Program in Animal Breeding) to industry decision makers in 1997. A version modified specifically for farmers and breeding industry personnel was offered in 1998. Through the collaboration of experts from various agricultural institutions and the use of a learner-centered format, this professional development initiative was a pedagogical and financial success. This paper describes how the open learning approach differs from traditional university teaching. Using the University of Guelph example in animal breeding professional development, the framework for a successful open learning program will be examined. The best practices for effective adult education will also be identified and discussed within this case study.
Metzger, Julia; Tonda, Raul; Beltran, Sergi; Agueda, Lídia; Gut, Marta; Distl, Ottmar
2014-07-04
Domestication has shaped the horse and lead to a group of many different types. Some have been under strong human selection while others developed in close relationship with nature. The aim of our study was to perform next generation sequencing of breed and non-breed horses to provide an insight into genetic influences on selective forces. Whole genome sequencing of five horses of four different populations revealed 10,193,421 single nucleotide polymorphisms (SNPs) and 1,361,948 insertion/deletion polymorphisms (indels). In comparison to horse variant databases and previous reports, we were able to identify 3,394,883 novel SNPs and 868,525 novel indels. We analyzed the distribution of individual variants and found significant enrichment of private mutations in coding regions of genes involved in primary metabolic processes, anatomical structures, morphogenesis and cellular components in non-breed horses and in contrast to that private mutations in genes affecting cell communication, lipid metabolic process, neurological system process, muscle contraction, ion transport, developmental processes of the nervous system and ectoderm in breed horses. Our next generation sequencing data constitute an important first step for the characterization of non-breed in comparison to breed horses and provide a large number of novel variants for future analyses. Functional annotations suggest specific variants that could play a role for the characterization of breed or non-breed horses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ostroumov, P. N.; Barcikowski, A.; Dickerson, C. A.
The Electron Beam Ion Source (EBIS), developed to breed CARIBU radioactive beams at ATLAS, is being tested off-line. A unique property of the EBIS is a combination of short breeding times, high repetition rates and a large acceptance. Overall, we have implemented many innovative features during the design and construction of the CARIBU EBIS as compared to the existing EBIS breeders. The offline charge breeding tests are being performed using a surface ionization source that produces singly-charged cesium ions. The main goal of the off-line commissioning is to demonstrate stable operation of the EBIS at a 10 Hz repetition ratemore » and a breeding efficiency into single charge state higher than 15%. These goals have been successfully achieved and exceeded. We have measured (20±0.7)% breeding efficiency into the single charge state of 28+ cesium ions with the breeding time of 28 ms. In general, the current CARIBU EBIS operational parameters can provide charge breeding of any ions in the full mass range of periodic table with high efficiency, short breeding times and sufficiently low charge-to-mass ratio, 1/6.3 for the heaviest masses, for further acceleration in ATLAS. In this paper we discuss the parameters of the EBIS and the charge breeding results in a pulsed injection mode with repetition rates up to 10 Hz.« less
Will genomic selection be a practical method for plant breeding?
Nakaya, Akihiro; Isobe, Sachiko N.
2012-01-01
Background Genomic selection or genome-wide selection (GS) has been highlighted as a new approach for marker-assisted selection (MAS) in recent years. GS is a form of MAS that selects favourable individuals based on genomic estimated breeding values. Previous studies have suggested the utility of GS, especially for capturing small-effect quantitative trait loci, but GS has not become a popular methodology in the field of plant breeding, possibly because there is insufficient information available on GS for practical use. Scope In this review, GS is discussed from a practical breeding viewpoint. Statistical approaches employed in GS are briefly described, before the recent progress in GS studies is surveyed. GS practices in plant breeding are then reviewed before future prospects are discussed. Conclusions Statistical concepts used in GS are discussed with genetic models and variance decomposition, heritability, breeding value and linear model. Recent progress in GS studies is reviewed with a focus on empirical studies. For the practice of GS in plant breeding, several specific points are discussed including linkage disequilibrium, feature of populations and genotyped markers and breeding scheme. Currently, GS is not perfect, but it is a potent, attractive and valuable approach for plant breeding. This method will be integrated into many practical breeding programmes in the near future with further advances and the maturing of its theory. PMID:22645117
Czerwinski, Veronika; McArthur, Michelle; Smith, Bradley; Hynd, Philip; Hazel, Susan
2016-01-01
Simple Summary One of the most important factors influencing the health and welfare of puppies is the decision made by the breeder on which dam and sire they will breed from. Unfortunately, our understanding of what dog breeders consider important when selecting their dogs, particularly the dam, is limited. In order to bridge this gap, we conducted an online survey of Australian purebred dog breeders. We identified four major factors that the breeder considered important in relation to the dam: Maternal Care; Offspring Potential; Dam Temperament; and Dam Genetics and Health. Overall, the priorities and practices of dog breeders surveyed were variable across breeds. Importantly, it seemed that not all breeders understood the importance of maternal care behaviour, despite the significant role it may play on future puppy behaviour. Abstract Every year, thousands of purebred domestic dogs are bred by registered dog breeders. Yet, little is known about the rearing environment of these dogs, or the attitudes and priorities surrounding breeding practices of these dog breeders. The objective of this study was to explore some of the factors that dog breeders consider important for stock selection, with a particular emphasis on issues relating to the dam. Two-hundred and seventy-four Australian purebred dog breeders, covering 91 breeds across all Australian National Kennel Club breed groups, completed an online survey relating to breeding practices. Most breeders surveyed (76%) reported specialising in one breed of dog, the median number of dogs and bitches per breeder was two and three respectively, and most breeders bred two litters or less a year. We identified four components, relating to the dam, that were considered important to breeders. These were defined as Maternal Care, Offspring Potential, Dam Temperament, and Dam Genetics and Health. Overall, differences were observed in attitudes and beliefs across these components, showing that there is variation according to breed/breed groups. In particular, the importance of Maternal Care varied according to dog breed group. Breeders of brachycephalic breeds tended to differ the most in relation to Offspring Potential and Dam Genetics and Health. The number of breeding dogs/bitches influenced breeding priority, especially in relation to Dam Temperament, however no effect was found relating to the number of puppies bred each year. Only 24% of breeders used their own sire for breeding. The finding that some breeders did not test for diseases relevant to their breed, such as hip dysplasia in Labrador Retrievers and German Shepherds, provides important information on the need to educate some breeders, and also buyers of purebred puppies, that screening for significant diseases should occur. Further research into the selection of breeding dams and sires will inform future strategies to improve the health and behaviour of our best friend. PMID:27854338
Phenotypic Diagnosis of Lineage and Differentiation During Sake Yeast Breeding
Ohnuki, Shinsuke; Okada, Hiroki; Friedrich, Anne; Kanno, Yoichiro; Goshima, Tetsuya; Hasuda, Hirokazu; Inahashi, Masaaki; Okazaki, Naoto; Tamura, Hiroyasu; Nakamura, Ryo; Hirata, Dai; Fukuda, Hisashi; Shimoi, Hitoshi; Kitamoto, Katsuhiko; Watanabe, Daisuke; Schacherer, Joseph; Akao, Takeshi; Ohya, Yoshikazu
2017-01-01
Sake yeast was developed exclusively in Japan. Its diversification during breeding remains largely uncharacterized. To evaluate the breeding processes of the sake lineage, we thoroughly investigated the phenotypes and differentiation of 27 sake yeast strains using high-dimensional, single-cell, morphological phenotyping. Although the genetic diversity of the sake yeast lineage is relatively low, its morphological diversity has expanded substantially compared to that of the Saccharomyces cerevisiae species as a whole. Evaluation of the different types of breeding processes showed that the generation of hybrids (crossbreeding) has more profound effects on cell morphology than the isolation of mutants (mutation breeding). Analysis of phenotypic robustness revealed that some sake yeast strains are more morphologically heterogeneous, possibly due to impairment of cellular network hubs. This study provides a new perspective for studying yeast breeding genetics and micro-organism breeding strategies. PMID:28642365
Morphometrics within dog breeds are highly reproducible and dispute Rensch’s rule
Sutter, Nathan B.; Mosher, Dana S.; Gray, Melissa M.
2009-01-01
Using 27 body measurements, we have identified 13 breed-defining metrics for 109 of 159 domestic dog breeds, most of which are recognized by the American Kennel Club (AKC). The data set included 1,155 dogs at least 1 year old (average 5.4 years), and for 53 breed populations, complete measurement data were collected from at least three males and three females. We demonstrate, first, that AKC breed standards are rigorously adhered to for most domestic breeds with little variation observed within breeds. Second, Rensch’s rule, which describes a scaling among taxa such that sexual dimorphism is greater among larger species if males are the larger sex, with less pronounced differences in male versus female body size in smaller species, is not maintained in domestic dog breeds because the proportional size difference between males and females of small and large breeds is essentially the same. Finally, principal components (PCs) analysis describes both the overall body size (PC1) and the shape (length versus width) of the skeleton (PC2). That the integrity of the data set is sufficiently rich to discern PCs has strong implications for mapping studies, suggesting that individual measurements may not be needed for genetic studies of morphologic traits, particularly in the case of breed-defining traits that are typically under strong selection. Rather, phenotypes derived from data sets such as these, collected at a fraction of the effort and cost, may be used to direct whole-genome association studies aimed at understanding the genetic basis of fixed morphologic phenotypes defining distinct dog breeds. PMID:19020935
Parker, Heidi G.; Kukekova, Anna V.; Akey, Dayna T.; Goldstein, Orly; Kirkness, Ewen F.; Baysac, Kathleen C.; Mosher, Dana S.; Aguirre, Gustavo D.; Acland, Gregory M.; Ostrander, Elaine A.
2007-01-01
The features of modern dog breeds that increase the ease of mapping common diseases, such as reduced heterogeneity and extensive linkage disequilibrium, may also increase the difficulty associated with fine mapping and identifying causative mutations. One way to address this problem is by combining data from multiple breeds segregating the same trait after initial linkage has been determined. The multibreed approach increases the number of potentially informative recombination events and reduces the size of the critical haplotype by taking advantage of shortened linkage disequilibrium distances found across breeds. In order to identify breeds that likely share a trait inherited from the same ancestral source, we have used cluster analysis to divide 132 breeds of dog into five primary breed groups. We then use the multibreed approach to fine-map Collie eye anomaly (cea), a complex disorder of ocular development that was initially mapped to a 3.9-cM region on canine chromosome 37. Combined genotypes from affected individuals from four breeds of a single breed group significantly narrowed the candidate gene region to a 103-kb interval spanning only four genes. Sequence analysis revealed that all affected dogs share a homozygous deletion of 7.8 kb in the NHEJ1 gene. This intronic deletion spans a highly conserved binding domain to which several developmentally important proteins bind. This work both establishes that the primary cea mutation arose as a single disease allele in a common ancestor of herding breeds as well as highlights the value of comparative population analysis for refining regions of linkage. PMID:17916641
Blum, Meike; Distl, Ottmar
2014-01-01
In the present study, breeding values for canine congenital sensorineural deafness, the presence of blue eyes and patches have been predicted using multivariate animal models to test the reliability of the breeding values for planned matings. The dataset consisted of 6669 German Dalmatian dogs born between 1988 and 2009. Data were provided by the Dalmatian kennel clubs which are members of the German Association for Dog Breeding and Husbandry (VDH). The hearing status for all dogs was evaluated using brainstem auditory evoked potentials. The reliability using the prediction error variance of breeding values and the realized reliability of the prediction of the phenotype of future progeny born in each one year between 2006 and 2009 were used as parameters to evaluate the goodness of prediction through breeding values. All animals from the previous birth years were used for prediction of the breeding values of the progeny in each of the up-coming birth years. The breeding values based on pedigree records achieved an average reliability of 0.19 for the future 1951 progeny. The predictive accuracy (R2) for the hearing status of single future progeny was at 1.3%. Combining breeding values for littermates increased the predictive accuracy to 3.5%. Corresponding values for maternal and paternal half-sib groups were at 3.2 and 7.3%. The use of breeding values for planned matings increases the phenotypic selection response over mass selection. The breeding values of sires may be used for planned matings because reliabilities and predictive accuracies for future paternal progeny groups were highest.
Necrotizing meningoencephalitis in atypical dog breeds: a case series and literature review.
Cooper, J J; Schatzberg, S J; Vernau, K M; Summers, B A; Porter, B F; Siso, S; Young, B D; Levine, J M
2014-01-01
Canine necrotizing meningoencephalitis (NME) is a fatal, noninfectious inflammatory disease of unknown etiology. NME has been reported only in a small number of dog breeds, which has led to the presumption that it is a breed-restricted disorder. Our objective was to describe histopathologically confirmed NME in dog breeds in which the condition has not been reported previously and to provide preliminary evidence that NME affects a wider spectrum of dog breeds than previously reported. Four dogs with NME. Archives from 3 institutions and from 1 author's (BS) collection were reviewed to identify histopathologically confirmed cases of NME in breeds in which the disease has not been reported previously. Age, sex, breed, survival from onset of clinical signs, and histopathologic findings were evaluated. Necrotizing meningoencephalitis was identified in 4 small dog breeds (Papillon, Shih Tzu, Coton de Tulear, and Brussels Griffon). Median age at clinical evaluation was 2.5 years. Histopathologic abnormalities included 2 or more of the following: lymphoplasmacytic or histiocytic meningoencephalitis or encephalitis, moderate-to-severe cerebrocortical necrosis, variable involvement of other anatomic locations within the brain (cerebellum, brainstem), and absence of detectable infectious agents. Until now, NME has only been described in 5 small dog breeds. We document an additional 4 small breeds previously not shown to develop NME. Our cases further illustrate that NME is not a breed-restricted disorder and should be considered in the differential diagnosis for dogs with signalment and clinical signs consistent with inflammatory brain disease. Copyright © 2013 by the American College of Veterinary Internal Medicine.
Jansson, M; Laikre, L
2014-01-01
One problem in modern dogs is a high occurrence of physical diseases, defects and disorders. Many breeds exhibit physical problems that affect individual dogs throughout life. A potential cause of these problems is inbreeding that is known to reduce the viability of individuals. We investigated the possible correlation between recent inbreeding and health problems in dogs and used studbook data from 26 breeds provided by the Swedish Kennel Club for this purpose. The pedigrees date back to the mid-20th century and comprise 5–10 generations and 1 000–50 000 individuals per pedigree over our study period of 1980–2010. We compared levels of inbreeding and loss of genetic variation measured in relation to the number of founding animals during this period in the investigated dog breeds that we classified as ‘healthy’ (11 breeds) or ‘unhealthy’ (15) based on statistics on the extent of veterinary care obtained from Sweden's four largest insurance companies for pets. We found extensive loss of genetic variation and moderate levels of recent inbreeding in all breeds examined, but no strong indication of a difference in these parameters between healthy versus unhealthy breeds over this period. Thus, recent breeding history with respect to rate of inbreeding does not appear to be a main cause of poor health in the investigated dog breeds in Sweden. We identified both strengths and weaknesses of the dog pedigree data important to consider in future work of monitoring and conserving genetic diversity of dog breeds. PMID:24289536
Breeding implications resulting from classification of patellae luxation in dogs.
van Grevenhof, E M; Hazewinkel, H A W; Heuven, H C M
2016-08-01
Patellar luxation (PL) is one of the major hereditary orthopaedic abnormalities observed in a variety of dog breeds. When the patellae move sideways out of the trochlear groove, this is called PL. The PL score varies between dogs from normal to very severe. Reducing the prevalence of PL by breeding could prevent surgery, thereby improve welfare. Orthopaedic specialists differentiate between normal and loose patellae, where the patellae can be moved to the edge of the trochlear groove, considering scoring loose patellae as normal in the future. Loose patellae are considered acceptable for breeding so far by the breeding organization. The aim of this study was to analyse the genetic background of PL to decide on the importance of loose patellae when breeding for healthy dogs. Data are available from two dog breeds, that is Flat-coated Retrievers (n = 3808) and Kooiker dogs (n = 794), with a total of 4602 dogs. Results show that loose patellae indicate that dogs are genetically more susceptible to develop PL because family members of the dogs with loose patellae showed more severe PL. In addition, the estimated breeding values for dogs with loose patellae indicate that breeding values of dogs with loose patellae were worse than breeding values obtained for dogs with a normal score. Given these results, it is advised to orthopaedic specialists to continue to score loose patellae as a separate class and to dog breeders to minimize the use of dogs in breeding with a genetically higher susceptibility for PL. © 2015 Blackwell Verlag GmbH.
Optimum allocation of test resources and comparison of breeding strategies for hybrid wheat.
Longin, C Friedrich H; Mi, Xuefei; Melchinger, Albrecht E; Reif, Jochen C; Würschum, Tobias
2014-10-01
The use of a breeding strategy combining the evaluation of line per se with testcross performance maximizes annual selection gain for hybrid wheat breeding. Recent experimental studies confirmed a high commercial potential for hybrid wheat requiring the design of optimum breeding strategies. Our objectives were to (1) determine the optimum allocation of the type and number of testers, the number of test locations and the number of doubled haploid lines for different breeding strategies, (2) identify the best breeding strategy and (3) elaborate key parameters for an efficient hybrid wheat breeding program. We performed model calculations using the selection gain for grain yield as target variable to optimize the number of lines, testers and test locations in four different breeding strategies. A breeding strategy (BS2) combining the evaluation of line per se performance and general combining ability (GCA) had a far larger annual selection gain across all considered scenarios than a breeding strategy (BS1) focusing only on GCA. In the combined strategy, the production of testcross seed conducted in parallel with the first yield trial for line per se performance (BS2rapid) resulted in a further increase of the annual selection gain. For the current situation in hybrid wheat, this relative superiority of the strategy BS2rapid amounted to 67 % in annual selection gain compared to BS1. Varying a large number of parameters, we identified the high costs for hybrid seed production and the low variance of GCA in hybrid wheat breeding as key parameters limiting selection gain in BS2rapid.
Montgomery, Tracy M; Pendleton, Erika L; Smith, Jennifer E
2018-05-02
Although cooperation represents a long-standing evolutionary puzzle, field studies on social carnivores have contributed greatly to our understanding of the selective forces favoring cooperative breeding. Despite these insights, our grasp of the proximate mechanisms facilitating cooperation in carnivores remains surprisingly limited. Here we provide an overview of our current knowledge of the endocrine mechanisms mediating cooperative breeding in terrestrial species belonging to the mammalian order Carnivora. We focus primarily on aspects of reproductive suppression and alloparental care. We find few studies on the topic, with some of the best studies focusing on the behavioral endocrinology of cooperative breeding in canids (dogs) and herpestids (mongooses). Overall, these studies suggest that breeding females typically have higher circulating levels of estrogen, luteinizing hormone, progesterone, and prolactin than do non-breeding adult females. We also find that among males, testosterone levels are often elevated in breeders compared to non-breeding adult males. The effect of glucocorticoids on reproductive suppression in carnivores appears to be sex-specific: breeding males typically have higher glucocorticoid levels than their non-breeding subordinates, but there is no clear pattern for breeding females. Finally, elevated levels of prolactin and oxytocin are consistently associated with alloparental care in cooperatively breeding carnivores, whereas testosterone and glucocorticoids are often lower in individuals who participate in alloparenting. Taken together, our synthesis elucidates striking gaps in our knowledge of carnivore physiology, especially the endocrine mechanisms promoting alloparental care, and we identify important areas for future research. Copyright © 2017 Elsevier Inc. All rights reserved.
Avian use of forest habitats in the Pembina Hills of northeastern North Dakota
Faanes, Craig A.; Andrew, Jonathan M.
1983-01-01
North Dakota has the least extensive total area of forested habitats of any of the 50 United States. Although occurring in limited area, forest communities add considerably to the total ecological diversity of the State. The forests of the Pembina Hills region in northeastern North Dakota are one of only three areas large enough to be considered of commercial value. During 1981 we studied the avifauna of the upper valley of the Pembina River in the Pembina Hills. Field work extended from 20 April to 23 July; breeding bird censuses were conducted 7 June to 2 July. Of the 120 bird species recorded during the study period, 79 species were recorded during the breeding season. The total breeding population was estimated at nearly 76,000 breeding pairs. The wood warblers (Parulidae) were the most numerous family, accounting for about 28,000 breeding pairs. The yellow warbler (Dendroica petechia) was the most abundant breeding species, making up 19.4% of the population. American redstart (Setophaga ruticilla) was second in abundance, accounting for 10.5% of the breeding population. Largest breeding densities occurred in the willow (Salix sp.) shrub community. Although supporting the lowest mean breeding density, quaking aspen (Populus tremuloides) forests supported the highest species diversity. First State breeding records were recorded for alder flycatcher (Empidonax alnorum) and golden-winged warbler (Vermivora chrysoptera). Records were obtained for 12 species considered rare or unusual in North Dakota during the breeding season. The status of all species known to have occurred in the study area is described in an annotated species list.
Habitat selection by breeding red-winged blackbirds
Albers, P.H.
1978-01-01
Habitat preferences of breeding Red-winged Blackbirds in an agricultural area were determined by comparing population density, landscape characteristics, and vegetational descriptions. Observations were made throughout the breeding season. Preferred breeding habitats of Red-wings, in order of preference, were wetlands, hayfields, old fields, and pastures. Males and females occupied old fields and wetlands first, then hayfields, and finally, pastures. Cutting of hayfields caused territorial abandonment by both sexes within 48 h. The apparent movement of displaced females from cut hayfields to uncut hayfields suggests that habitat fidelity of females is strong after the breeding effort has begun. Breeding Red-wings exhibited general preferences for trees, large amounts of habitat edge, erect old vegetation, and sturdy, tall, and dense vegetation. Vegetative forms and species, such as upland grasses, broad- and narrow-leafed monocots in wetlands, and forbs were important to the Red-wing at various times during the breeding season. Landscape and vegetational preferences of breeding adults were easier to observe early in the breeding season (March through May) than later. Vegetational growth and increases in the size of the breeding population probably make these preferences more difficult to detect. Territory size was poorly correlated with landscape and vegetational characteristics in uplands but strongly correlated with broad- and narrow-leafed mono cots and vegetative height in wetlands. Wetland territories were smaller than upland territories. Territories increased in size during the middle and late portions of the breedi g season. Habitat selection by the Red-winged Blackbird can best be studied by evaluating vegetative preferences throughout the breeding season.
Genetic improvement of beef cattle in the United States: cattle, people and their interaction.
Willham, R L
1982-03-01
The purpose of this essay is to develop a historic perspective of the beef cattle population and the legion of people directing its genetic change so that future leadership can increase the rate of breeding technology assimilation. Use of cattle for beef to feed millions is relatively recent. The beef industry of the United States has a rich, romantic heritage that combined Spanish exploitation with British tradition. Spanish cattle became adapted as the Texas longhorn and the European cattle became indigenous. Breeds developed in Britain replaced both. The Zebu was introduced to produce cattle adapted to the Gulf Coast. Selection for early maturity in the British breeds promoted by livestock shows was ended by the dwarf gene. The Charolais breed demonstrated growth potential. Then in 1967, Continental European breeds were imported, given an array of biological types from which to select. Beef cattle breeding research expanded after the second world war through the three regional projects. Performance Registry International was the focal point for performance. The Beef Improvement Federation produced guidelines for recording beef performance including those for national sire evaluation. U.S. Meat Animal Research Center evaluated the several newly introduced breeds. To date, breeding researchers have developed breeding technology for the use by breeder. The major breed association are keeping and utilizing performance records. The genetic structure of the beef breeds is being altered by the use of AI such that genetic change can be made rapidly by the use of superior sires evaluated on their progeny in many herds.
Extending RosBREED in the Pacific Northwest for strawberry processing traits: year 1
USDA-ARS?s Scientific Manuscript database
In an effort to implement marker-assisted breeding in Rosaceae, many traits need to be characterized in diverse germplasm. The USDA-NIFA Specialty Crop Research Initiative-funded RosBREED project includes breeding programs of four Rosaceae crops (apple, peach, cherry, and strawberry). Phenotyping ea...
The Return of Rare Breeds: How Heritage Livestock Can Lead Us to Greener Pastures.
ERIC Educational Resources Information Center
Jacques, Ben
2002-01-01
Several New England groups are breeding and marketing "heritage livestock"--older, multipurpose breeds that are hardier and more disease resistant than modern livestock bred for specialized uses. Hancock Shaker Village (Massachusetts)--a historical museum and working farm--will teach visitors about heritage breeds and sustainable…
Landscape Correlates of Breeding Bird Richness Across the United States Mid-Atlantic Region
K. Bruce Jones; Anne C. Neale; Maliha S. Nash; Kurt H. Riitters; James D. Wickham; Robert V. O' Neill; Rick D. van Remortel
2000-01-01
Using a new set of landscape indicator data generated by the U.S. EPA, and a comprhensive breeding database from the National Breeding Bird Survey, we evaluated associations between breeding bird richness and landscape characteristics across the entire mid-Atlantic region of the United States.
50 CFR 15.23 - Permits for zoological breeding or display programs.
Code of Federal Regulations, 2011 CFR
2011-10-01
... OF WILDLIFE AND PLANTS WILD BIRD CONSERVATION ACT Permits and Approval of Cooperative Breeding Programs § 15.23 Permits for zoological breeding or display programs. (a) Application requirements for... 50 Wildlife and Fisheries 1 2011-10-01 2011-10-01 false Permits for zoological breeding or display...
50 CFR 15.26 - Approval of cooperative breeding programs.
Code of Federal Regulations, 2011 CFR
2011-10-01
... WILDLIFE AND PLANTS WILD BIRD CONSERVATION ACT Permits and Approval of Cooperative Breeding Programs § 15.26 Approval of cooperative breeding programs. Upon receipt of a complete application, the Director... 50 Wildlife and Fisheries 1 2011-10-01 2011-10-01 false Approval of cooperative breeding programs...
50 CFR 15.23 - Permits for zoological breeding or display programs.
Code of Federal Regulations, 2010 CFR
2010-10-01
... OF WILDLIFE AND PLANTS WILD BIRD CONSERVATION ACT Permits and Approval of Cooperative Breeding Programs § 15.23 Permits for zoological breeding or display programs. (a) Application requirements for... 50 Wildlife and Fisheries 1 2010-10-01 2010-10-01 false Permits for zoological breeding or display...
19 CFR 10.70 - Purebred animals for breeding purposes; certificate.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 19 Customs Duties 1 2013-04-01 2013-04-01 false Purebred animals for breeding purposes... Provisions Animals and Birds § 10.70 Purebred animals for breeding purposes; certificate. (a) In connection with the entry of purebred animals for breeding purposes under subheading 0101.11.00, Harmonized Tariff...
19 CFR 10.70 - Purebred animals for breeding purposes; certificate.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 19 Customs Duties 1 2012-04-01 2012-04-01 false Purebred animals for breeding purposes... Provisions Animals and Birds § 10.70 Purebred animals for breeding purposes; certificate. (a) In connection with the entry of purebred animals for breeding purposes under subheading 0101.11.00, Harmonized Tariff...
19 CFR 10.70 - Purebred animals for breeding purposes; certificate.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 19 Customs Duties 1 2014-04-01 2014-04-01 false Purebred animals for breeding purposes... Provisions Animals and Birds § 10.70 Purebred animals for breeding purposes; certificate. (a) In connection with the entry of purebred animals for breeding purposes under subheading 0101.11.00, Harmonized Tariff...
9 CFR 151.9 - Recognized breeds and books of record.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Recognized breeds and books of record. 151.9 Section 151.9 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL BREEDS RECOGNITION OF BREEDS AND BOOKS OF RECORD OF PUREBRED ANIMALS...
9 CFR 151.9 - Recognized breeds and books of record.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Recognized breeds and books of record. 151.9 Section 151.9 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL BREEDS RECOGNITION OF BREEDS AND BOOKS OF RECORD OF PUREBRED ANIMALS...
9 CFR 151.9 - Recognized breeds and books of record.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Recognized breeds and books of record. 151.9 Section 151.9 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL BREEDS RECOGNITION OF BREEDS AND BOOKS OF RECORD OF PUREBRED ANIMALS...
9 CFR 151.9 - Recognized breeds and books of record.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Recognized breeds and books of record. 151.9 Section 151.9 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL BREEDS RECOGNITION OF BREEDS AND BOOKS OF RECORD OF PUREBRED ANIMALS...
9 CFR 151.9 - Recognized breeds and books of record.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Recognized breeds and books of record. 151.9 Section 151.9 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL BREEDS RECOGNITION OF BREEDS AND BOOKS OF RECORD OF PUREBRED ANIMALS...
Mirzaei, A; Mohebbi-Fani, M; Omidi, A; Boostani, A; Nazifi, S; Mahmoodian-Fard, H R; Chahardahcherik, M
2017-09-15
The combination of ram effect with two injections of PGF 2α 10-days apart and the same protocol plus an additional injection of GnRH prior to the first injection of PGF 2α were examined in Karakul ewes during breeding and non-breeding seasons, respectively. Plasma progesterone (P 4 ) concentrations (to detect the presence of active corpus luteum), twin lambing, litter size and synchronization of lambing were evaluated. In each study 70 ewes (2-4 years old) were divided to a treatment (n = 40) and a control (n = 30) group. During the breeding season, on days -10 and 0 before ram release, the treatment group was injected intramuscularly with PGF 2α (D-Cloprostenol; 0.15 mg). During the non-breeding season, on day -15 before ram release the treatment group was injected with GnRH (buserelin; 4.2 μg) intramuscularly followed by two injections of PGF 2α on days -10 and 0. In both studies, the rams were released into the ewe flock after the second prostaglandin injection (day 0). Blood samples of ewes were collected on days -10, 0, 20 and 70 of the study in breeding season and on days -15, -10, 0, 20 and 70 during non-breeding season. The treatment group had higher P 4 concentrations compared to the control ewes on day 0 in the breeding season (5.80 ± 0.61 vs. 5.0 ± 0.93 ng/mL) and day -10 in the non-breeding season (3.50 ± 0.33 vs. 2.70 ± 0.35 ng/mL) though the differences were not significant (P > 0.05). Based on plasma P 4 concentrations (>1 ng/mL) on day 70, in the breeding season all control ewes (100%) and 91.9% of the treatment ewes were detected to have active corpus luteum (P = 0.09). An almost inverse result (90% vs. 97.5%; P = 0.2) was detected in the non-breeding season. The lambing rate was higher (P = 0.03) in the treatment group compared to the control ewes during the non-breeding season (90% vs. 70%), but tended to be lower (P = 0.07) in the breeding season (73% vs. 90%). Twin lambing rate was higher in the treatment group compared to the control ewes in the breeding (40.7% vs. 0.0%; P < 0.05) and non-breeding (22.2% vs. 0.0%; P < 0.05) seasons. The litter size of the control and treated ewes were 1.0 ± 0.0 vs. 1.40 ± 0.10 in the breeding and 1.0 ± 0.0 vs. 1.22 ± 0.10 in the non-breeding season (P < 0.05). No effect was observed regard to synchronization of the treated ewes. In the breeding season two injections of PGF 2α ten days apart combined with ram effect, may lower the lambing rate, but may enhance twin pregnancies and litter size in Karakul ewes. In the non-breeding season, however, the GnRH-PGF 2α treatment plus ram effect may enhance the lambing rate, twin pregnancies and litter size. Copyright © 2017. Published by Elsevier Inc.
Space use by Forster's Terns breeding in South San Francisco Bay
Bluso-Demers, J.; Colwell, M.A.; Takekawa, John Y.; Ackerman, Joshua T.
2008-01-01
Parental care behaviors often differ in dimorphic seabirds, leading to sex-specific differences in foraging behaviors. However, few studies have examined sex-specific foraging behaviors in monomorphic seabirds. Using radio-telemetry, we studied Forster's Terns (Sterna forsteri) - a monomorphic and socially monogamous seabird - breeding in the South San Francisco Bay, California. Space use did not differ between males and females. Instead, space use varied by breeding stage and colony affiliation. Forster's Terns were located farthest from the nest during pre-breeding and post-breeding time periods, and closest to the nest during incubation and chick-rearing. Home-range size and core-use areas decreased as the breeding season progressed and were most concentrated in the post-breeding stage. The results of this and other studies indicate that tems, unlike other monomorphic seabirds studied, do not exhibit sex-specific differences in space use.
Tonoike, Akiko; Nagasawa, Miho; Mogi, Kazutaka; Serpell, James A.; Ohtsuki, Hisashi; Kikusui, Takefumi
2015-01-01
During the domestication process, dogs were selected for their suitability for multiple purposes, resulting in a variety of behavioral characteristics. In particular, the ancient group of breeds that is genetically closer to wolves may show different behavioral characteristics when compared to other breed groups. Here, we used questionnaire evaluations of dog behavior to investigate whether behavioral characteristics of dogs were different among genetically clustered breed groups. A standardized questionnaire, the Canine Behavioral Assessment and Research Questionnaire (C-BARQ), was used, and breed group differences of privately-owned dogs from Japan (n = 2,951) and the United States (n = 10,389) were analyzed. Results indicated that dogs in the ancient and spitz breed group showed low attachment and attention-seeking behavior. This characteristic distinguished the ancient group from any other breed groups with presumed modern European origins, and may therefore, be an ancestral trait. PMID:26680442
Avian cooperative breeding: Old hypotheses and new directions.
Heinsohn, R G; Cockburn, A; Mulder, R A
1990-12-01
In cooperatively breeding birds, individuals that appear capable of reproducing on their own may instead assist others with their breeding efforts. Research into avian cooperative breeding has attempted to reconcile the apparent altruism of this behaviour with maximization of inclusive fitness. Most explanations of cooperative breeding have suggested that philopatry is enforced by ecological constraints, such as a shortage of resources critical to breeding. Non-dispersers may then benefit both directly and indirectly from contributing at the nest. Recent research has shown that such benefits may be sufficient to promote philopatry, without the need for ecological constraints, and emphasizes that consideration of both costs and benefits of philopatry is essential for a comprehensive approach to the problem. The growing body of data from long-term studies of different species should combine with an improved phylogenetic perspective on cooperative breeding, to provide a useful base for future comparative analyses and experimentation. Copyright © 1990. Published by Elsevier Ltd.
19 CFR 10.70 - Purebred animals for breeding purposes; certificate.
Code of Federal Regulations, 2011 CFR
2011-04-01
... application for a certificate of pure breeding to the U.S. Department of Agriculture, Animal and Plant Health... 19 Customs Duties 1 2011-04-01 2011-04-01 false Purebred animals for breeding purposes... Provisions Animals and Birds § 10.70 Purebred animals for breeding purposes; certificate. (a) In connection...
19 CFR 10.70 - Purebred animals for breeding purposes; certificate.
Code of Federal Regulations, 2010 CFR
2010-04-01
... application for a certificate of pure breeding to the U.S. Department of Agriculture, Animal and Plant Health... 19 Customs Duties 1 2010-04-01 2010-04-01 false Purebred animals for breeding purposes... Provisions Animals and Birds § 10.70 Purebred animals for breeding purposes; certificate. (a) In connection...
9 CFR 151.10 - Recognition of additional breeds and books of record.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Recognition of additional breeds and books of record. 151.10 Section 151.10 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL BREEDS RECOGNITION OF BREEDS AND BOOKS OF RECORD OF PUREBRED...
9 CFR 151.10 - Recognition of additional breeds and books of record.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Recognition of additional breeds and books of record. 151.10 Section 151.10 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL BREEDS RECOGNITION OF BREEDS AND BOOKS OF RECORD OF PUREBRED...
Code of Federal Regulations, 2014 CFR
2014-10-01
... a commercial breeding operation for Appendix-I wildlife and commercially exporting specimens? 23.46... registering a commercial breeding operation for Appendix-I wildlife and commercially exporting specimens? (a... originating from a commercial breeding operation that is registered with the CITES Secretariat may be traded...
Code of Federal Regulations, 2013 CFR
2013-10-01
... a commercial breeding operation for Appendix-I wildlife and commercially exporting specimens? 23.46... registering a commercial breeding operation for Appendix-I wildlife and commercially exporting specimens? (a... originating from a commercial breeding operation that is registered with the CITES Secretariat may be traded...
Code of Federal Regulations, 2012 CFR
2012-10-01
... a commercial breeding operation for Appendix-I wildlife and commercially exporting specimens? 23.46... registering a commercial breeding operation for Appendix-I wildlife and commercially exporting specimens? (a... originating from a commercial breeding operation that is registered with the CITES Secretariat may be traded...
Code of Federal Regulations, 2011 CFR
2011-10-01
... a commercial breeding operation for Appendix-I wildlife and commercially exporting specimens? 23.46... registering a commercial breeding operation for Appendix-I wildlife and commercially exporting specimens? (a... originating from a commercial breeding operation that is registered with the CITES Secretariat may be traded...
Code of Federal Regulations, 2010 CFR
2010-10-01
... a commercial breeding operation for Appendix-I wildlife and commercially exporting specimens? 23.46... registering a commercial breeding operation for Appendix-I wildlife and commercially exporting specimens? (a... originating from a commercial breeding operation that is registered with the CITES Secretariat may be traded...
The distributions of Chinese yak breeds in response to climate change over the past 50 years.
Wu, Jianguo
2016-07-01
The effects of prior climate change on yak breed distributions are uncertain. Here, we measured changes in the distributions of 12 yak breeds over the past 50 years in China and examined whether the changes could be attributed to climate change. Long-term records of yak breed distribution, grey relational analysis, fuzzy sets classification techniques and attribution methods were used. Over the past 50 years, the distributions of several yak breeds have changed in multiple directions, mainly shifting northward or westward, and most of these changes are related to the thermal index. Driven by climate change over the past years, the suitable range and the distribution centers of certain yak breeds have changed with fluctuation and have mainly shifted northward, eastward or southward. The consistency of observed versus predicted changes in distribution boundaries or distribution centers is higher for certain yak breeds. Changes in the eastern distribution boundary of two yak breeds over the past 50 years can be attributed to climate change. © 2015 Japanese Society of Animal Science.
Changes in breeding bird populations in North Dakota: 1967 to 1992-93
Igl, L.D.; Johnson, D.H.
1997-01-01
We compared breeding bird populations in North Dakota using surveys conducted in 1967 and 1992-93. In decreasing order, the five most frequently occurring species were Horned Lark (Eremophila alpestris), Brown-headed Cowbird (Molothrus ater), Western Meadowlark (Sturnella neglecta), Red-winged Blackbird (Agelaius phoeniceus), and Eastern Kingbird (Tyrannus tyrannus). The five most abundant species - Horned Lark, Chestnut-collared Longspur (Calcarius ornatus), Red-winged Blackbird, Western Meadowlark, and Brown-headed Cowbird - accounted for 31-41% of the estimated statewide breeding bird population in the three years. Although species composition remained relatively similar among years, between-year patterns in abundance and frequency varied considerably among species. Data from this survey and the North American Breeding Bird Survey indicated that species exhibiting significant declines were primarily grassland- and wetland-breeding birds, whereas species exhibiting significant increases primarily were those associated with human structures and woody vegetation. Population declines and increases for species with similar habitat associations paralleled breeding habitat changes, providing evidence that factors on the breeding grounds are having a detectable effect on breeding birds in the northern Great Plains.
Divergence, convergence, and the ancestry of feral populations in the domestic rock pigeon.
Stringham, Sydney A; Mulroy, Elisabeth E; Xing, Jinchuan; Record, David; Guernsey, Michael W; Aldenhoven, Jaclyn T; Osborne, Edward J; Shapiro, Michael D
2012-02-21
Domestic pigeons are spectacularly diverse and exhibit variation in more traits than any other bird species [1]. In The Origin of Species, Charles Darwin repeatedly calls attention to the striking variation among domestic pigeon breeds-generated by thousands of years of artificial selection on a single species by human breeders-as a model for the process of natural divergence among wild populations and species [2]. Darwin proposed a morphology-based classification of domestic pigeon breeds [3], but the relationships among major groups of breeds and their geographic origins remain poorly understood [4, 5]. We used a large, geographically diverse sample of 361 individuals from 70 domestic pigeon breeds and two free-living populations to determine genetic relationships within this species. We found unexpected relationships among phenotypically divergent breeds as well as convergent evolution of derived traits among several breed groups. Our findings also illuminate the geographic origins of breed groups in India and the Middle East and suggest that racing breeds have made substantial contributions to feral pigeon populations. Copyright © 2012 Elsevier Ltd. All rights reserved.
Mortality and morbidity due to gastric dilatation-volvulus syndrome in pedigree dogs in the UK.
Evans, Katy M; Adams, Vicki J
2010-07-01
To estimate breed-specific risk of death due to, and prevalence of, gastric dilatation-volvulus (GDV) in UK pedigree dogs. Data were available on the reported cause of and age at death and occurrence of and age at diagnosis of disease from the 2004 purebred dog health survey. A total of 15,881 dogs of 165 breeds had died in the previous 10 years; GDV was the cause of death in 65 breeds. There were 36,006 live dogs of 169 breeds of which 48 breeds had experienced > or =1 episodes of GDV. Prevalence ratios were used to estimate breed-specific GDV mortality and morbidity risks. Gastric dilatation-volvulus was the cause of death for 389 dogs, representing 2.5% (95% CI: 2.2-2.7) of all deaths reported and the median age at death was 7.92 years. There were 253 episodes in 238 live dogs. The median age at first diagnosis was five years. Breeds at greatest risk of GDV mortality were the bloodhound, Grand Bleu de Gascogne, German longhaired pointer and Neapolitan mastiff. Breeds at greatest risk of GDV morbidity were the Grand Bleu de Gascogne, bloodhound, otterhound, Irish setter and Weimaraner. These results suggest that 16 breeds, mainly large/giant, are at increased risk of morbidity/mortality due to GDV.
Suárez, N M; Betancor, E; Fregel, R; Pestano, J
2013-08-01
Many studies presenting genetic analysis of dog breeds have been conducted without the inclusion of island dog breeds, although isolation can be one of the main factors in their origin. Here we report the genetic analysis at the nuclear and mitochondrial DNA levels of five Canary Island dog breeds (Canarian Warren Hound, Canary Island Mastiff, Garafiano Shepherd, La Palma Rat-Hunter and El Hierro Wolfhound) to fill this gap and, at the same time, genetically characterize these breeds. We identified 168 alleles in autosomal microsatellites and 16 mitochondrial haplotypes. Observed and expected heterozygosities ranged from 0.556 to 0.783 and from 0.737 to 0.943 respectively. Furthermore, three haplotypes were newly described and exclusive to a particular breed (A17+ in the Canary Island Mastiff; A33+ in the Canarian Warren Hound; Bi in the La Palma Rat-Hunter). The outcome of our analyses also revealed different breed histories consistent with historical documents and hypothetical origin designations. Although mtDNA haplotypes showed poor breed discriminating power, autosomal markers allowed a clear clustering of each single population. We expect that our results, together with further analyses, will help to make the population histories of island dog breeds clearer. © 2013 The Authors, Animal Genetics © 2013 Stichting International Foundation for Animal Genetics.
Novák, Karel; Pikousová, Jitka; Czerneková, Vladimíra; Mátlová, Věra
2017-07-03
The allelic variants of immunity genes in historical breeds likely reflect local infection pressure and therefore represent a reservoir for breeding. Screening to determine the diversity of the Toll-like receptor gene TLR4 was conducted in two conserved cattle breeds: Czech Red and Czech Red Pied. High-throughput sequencing of pooled PCR amplicons using the PacBio platform revealed polymorphisms, which were subsequently confirmed via genotyping techniques. Eight SNPs found in coding and adjacent regions were grouped into 18 haplotypes, representing a significant portion of the known diversity in the global breed panel and presumably exceeding diversity in production populations. Notably, the ancient Czech Red breed appeared to possess greater haplotype diversity than the Czech Red Pied breed, a Simmental variant, although the haplotype frequencies might have been distorted by significant crossbreeding and bottlenecks in the history of Czech Red cattle. The differences in haplotype frequencies validated the phenotypic distinctness of the local breeds. Due to the availability of Czech Red Pied production herds, the effect of intensive breeding on TLR diversity can be evaluated in this model. The advantages of the Pacific Biosciences technology for the resequencing of long PCR fragments with subsequent direct phasing were independently validated.
Short communication: casein haplotype variability in sicilian dairy goat breeds.
Gigli, I; Maizon, D O; Riggio, V; Sardina, M T; Portolano, B
2008-09-01
In the Mediterranean region, goat milk production is an important economic activity. In the present study, 4 casein genes were genotyped in 5 Sicilian goat breeds to 1) identify casein haplotypes present in the Argentata dell'Etna, Girgentana, Messinese, Derivata di Siria, and Maltese goat breeds; and 2) describe the structure of the Sicilian goat breeds based on casein haplotypes and allele frequencies. In a sample of 540 dairy goats, 67 different haplotypes with frequency >or=0.01 and 27 with frequency >or=0.03 were observed. The most common CSN1S1-CSN2-CSN1S2-CSN3 haplotype for Derivata di Siria and Maltese was FCFB (0.17 and 0.22, respectively), whereas for Argentata dell'Etna, Girgentana and Messinese was ACAB (0.06, 0.23, and 0.10, respectively). According to the haplotype reconstruction, Argentata dell'Etna, Girgentana, and Messinese breeds presented the most favorable haplotype for cheese production, because the casein concentration in milk of these breeds might be greater than that in Derivata di Siria and Maltese breeds. Based on a cluster analysis, the breeds formed 2 main groups: Derivata di Siria, and Maltese in one group, and Argentata dell'Etna and Messinese in the other; the Girgentana breed was between these groups but closer to the latter.
Birds choose long-term partners years before breeding
Teitelbaum, Claire S.; Converse, Sarah J.; Mueller, Thomas
2017-01-01
Pair bonds can provide social benefits to long-term monogamous species alongside their benefits for reproduction. However, little is known about when these bonds form, in particular how long they are present before breeding. Previous studies of pair formation in long-term monogamous birds have been rather data-limited, but for many migratory birds they report pair formation on the wintering grounds. We provide the first systematic investigation of prebreeding association patterns of long-term monogamous pairs by examining entire life histories based on tracking data of migratory whooping cranes, Grus americana. We found that a substantial portion (62%) of breeding pairs started associating at least 12 months before first breeding, with 16 of 58 breeding pairs beginning to associate over 2 years before first breeding. For most pairs, these associations with future breeding partners also became unique and distinguishable from association patterns with nonpartner individuals 12 months before first breeding. In addition, 60% of pair associations began before at least one partner had reached nominal sexual maturity. Most pairs began associating in the late spring upon arrival at the summer grounds, while associations beginning at other times of the year were rare. Patterns in the associations of pairs prior to breeding can point to the potential benefits of prebreeding relationships, for instance providing support in competitive interactions or increasing partner familiarity.
Cisgenesis strongly improves introgression breeding and induced translocation breeding of plants.
Jacobsen, Evert; Schouten, Henk J
2007-05-01
There are two ways for genetic improvement in classical plant breeding: crossing and mutation. Plant varieties can also be improved through genetic modification; however, the present GMO regulations are based on risk assessments with the transgenes coming from non-crossable species. Nowadays, DNA sequence information of crop plants facilitates the isolation of cisgenes, which are genes from crop plants themselves or from crossable species. The increasing number of these isolated genes, and the development of transformation protocols that do not leave marker genes behind, provide an opportunity to improve plant breeding while remaining within the gene pool of the classical breeder. Compared with induced translocation and introgression breeding, cisgenesis is an improvement for gene transfer from crossable plants: it is a one-step gene transfer without linkage drag of other genes, whereas induced translocation and introgression breeding are multiple step gene transfer methods with linkage drag. The similarity of the genes used in cisgenesis compared with classical breeding is a compelling argument to treat cisgenic plants as classically bred plants. In the case of the classical breeding method induced translocation breeding, the insertion site of the genes is a priori unknown, as it is in cisgenesis. This provides another argument to treat cisgenic plants as classically bred plants, by exempting cisgenesis of plants from the GMO legislations.
Signatures of Diversifying Selection in European Pig Breeds
Wilkinson, Samantha; Lu, Zen H.; Megens, Hendrik-Jan; Archibald, Alan L.; Haley, Chris; Jackson, Ian J.; Groenen, Martien A. M.; Crooijmans, Richard P. M. A.; Ogden, Rob; Wiener, Pamela
2013-01-01
Following domestication, livestock breeds have experienced intense selection pressures for the development of desirable traits. This has resulted in a large diversity of breeds that display variation in many phenotypic traits, such as coat colour, muscle composition, early maturity, growth rate, body size, reproduction, and behaviour. To better understand the relationship between genomic composition and phenotypic diversity arising from breed development, the genomes of 13 traditional and commercial European pig breeds were scanned for signatures of diversifying selection using the Porcine60K SNP chip, applying a between-population (differentiation) approach. Signatures of diversifying selection between breeds were found in genomic regions associated with traits related to breed standard criteria, such as coat colour and ear morphology. Amino acid differences in the EDNRB gene appear to be associated with one of these signatures, and variation in the KITLG gene may be associated with another. Other selection signals were found in genomic regions including QTLs and genes associated with production traits such as reproduction, growth, and fat deposition. Some selection signatures were associated with regions showing evidence of introgression from Asian breeds. When the European breeds were compared with wild boar, genomic regions with high levels of differentiation harboured genes related to bone formation, growth, and fat deposition. PMID:23637623
Frequencies of genes for coat colour and horns in Nordic cattle breeds
Kantanen, Juha; Olsaker, Ingrid; Brusgaard, Klaus; Eythorsdottir, Emma; Holm, Lars-Erik; Lien, Sigbjørn; Danell, Birgitta; Adalsteinsson, Stefan
2000-01-01
Gene frequencies of coat colour and horn types were assessed in 22 Nordic cattle breeds in a project aimed at establishing genetic profiles of the breeds under study. The coat colour loci yielding information on genetic variation were: extension, agouti, spotting, brindle, dun dilution and colour sided. The polled locus was assessed for two alleles. A profound variation between breeds was observed in the frequencies of both colour and horn alleles, with the older breeds generally showing greater variation in observed colour, horn types and segregating alleles than the modern breeds. The correspondence between the present genetic distance matrix and previous molecular marker distance matrices was low (r = 0.08 – 0.12). The branching pattern of a neighbour-joining tree disagreed to some extent with the molecular data structure. The current data indicates that 70% of the total genetic variation could be explained by differences between the breeds, suggesting a much greater breed differentiation than typically found at protein and microsatellite loci. The marked differentiation of the cattle breeds and observed disagreements with the results from the previous molecular data in the topology of the phylogenetic trees are most likely a result of selection on phenotypic characters analysed in this study. PMID:14736370
Sedinger, James S.; Schamber, Jason L.; Ward, David H.; Nicolai, Christopher A.; Conant, Bruce
2011-01-01
We used observations of individually marked female black brant geese (Branta bernicla nigricans; brant) at three wintering lagoons on the Pacific coast of Baja California—Laguna San Ignacio (LSI), Laguna Ojo de Liebre (LOL), and Bahía San Quintín (BSQ)—and the Tutakoke River breeding colony in Alaska to assess hypotheses about carryover effects on breeding and distribution of individuals among wintering areas. We estimated transition probabilities from wintering locations to breeding and nonbreeding by using multistratum robust-design capture-mark-recapture models. We also examined the effect of breeding on migration to wintering areas to assess the hypothesis that individuals in family groups occupied higher-quality wintering locations. We used 4,538 unique female brant in our analysis of the relationship between winter location and breeding probability. All competitive models of breeding probability contained additive effects of wintering location and the 1997–1998 El Niño–Southern Oscillation (ENSO) event on probability of breeding. Probability of breeding in non-ENSO years was 0.98 ± 0.02, 0.68 ± 0.04, and 0.91 ± 0.11 for females wintering at BSQ, LOL, and LSI, respectively. After the 1997–1998 ENSO event, breeding probability was between 2% (BSQ) and 38% (LOL) lower than in other years. Individuals that bred had the highest probability of migrating the next fall to the wintering area producing the highest probability of breeding.
Ostroumov, P. N.; Barcikowski, A.; Dickerson, C. A.; ...
2015-08-28
The Electron Beam Ion Source (EBIS), developed to breed Californium Rare Isotope Breeder Upgrade (CARIBU) radioactive beams at Argonne Tandem Linac Accelerator System (ATLAS), is being tested off-line. A unique property of the EBIS is a combination of short breeding times, high repetition rates, and a large acceptance. Overall, we have implemented many innovative features during the design and construction of the CARIBU EBIS as compared to the existing EBIS breeders. The off-line charge breeding tests are being performed using a surface ionization source that produces singly charged cesium ions. The main goal of the off-line commissioning is to demonstratemore » stable operation of the EBIS at a 10 Hz repetition rate and a breeding efficiency into single charge state higher than 15%. These goals have been successfully achieved and exceeded. We have measured (20% ± 0.7%) breeding efficiency into the single charge state of 28+ cesium ions with the breeding time of 28 ms. In general, the current CARIBU EBIS operational parameters can provide charge breeding of any ions in the full mass range of periodic table with high efficiency, short breeding times, and sufficiently low charge-to-mass ratio, 1/6.3 for the heaviest masses, for further acceleration in ATLAS. In this study, we discuss the parameters of the EBIS and the charge breeding results in a pulsed injection mode with repetition rates up to 10 Hz.« less
Genome-wide analysis highlights genetic dilution in Algerian sheep.
Gaouar, S B S; Lafri, M; Djaout, A; El-Bouyahiaoui, R; Bouri, A; Bouchatal, A; Maftah, A; Ciani, E; Da Silva, A B
2017-03-01
Algeria represents a reservoir of genetic diversity with local sheep breeds adapted to a large range of environments and showing specific features necessary to deal with harsh conditions. This remarkable diversity results from the traditional management of dryland by pastoralists over centuries. Most of these breeds are poorly productive, and the economic pressure leads farmers to realize anarchic cross-breeding (that is, not carried out in the framework of selection plans) with the hope to increase animal's conformation. In this study, eight of the nine local Algerian sheep breeds (D'men, Hamra, Ouled-Djellal, Rembi, Sidaoun, Tazegzawt, Berber and Barbarine) were investigated for the first time by genome-wide single-nucleotide polymorphism genotyping. At an international scale, Algerian sheep occupied an original position shaped by relations with African and European (particularly Italian) breeds. The strong genetic proximity with Caribbean and Brazilian breeds confirmed that the genetic make-up of these American breeds was largely influenced by the Atlantic slave trade. At a national scale, an alarming genetic dilution of the Berber (a primitive breed) and the Rembi was observed, as a consequence of uncontrolled mating practices with Ouled-Djellal. A similar, though less pronounced, phenomenon was also detected for the Barbarine, another ancestral breed. Genetic originality appeared to be better preserved in Tazegzawt, Hamra, D'men and Sidaoun. These breeds should be given high priority in the establishment of conservation plans to halt their progressive loss. For Berber and Barbarine that also occur in the bordering neighbor countries, urgent concerted transnational actions are needed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ostroumov, P. N.; Barcikowski, A.; Dickerson, C. A.
The Electron Beam Ion Source (EBIS), developed to breed Californium Rare Isotope Breeder Upgrade (CARIBU) radioactive beams at Argonne Tandem Linac Accelerator System (ATLAS), is being tested off-line. A unique property of the EBIS is a combination of short breeding times, high repetition rates, and a large acceptance. Overall, we have implemented many innovative features during the design and construction of the CARIBU EBIS as compared to the existing EBIS breeders. The off-line charge breeding tests are being performed using a surface ionization source that produces singly charged cesium ions. The main goal of the off-line commissioning is to demonstratemore » stable operation of the EBIS at a 10 Hz repetition rate and a breeding efficiency into single charge state higher than 15%. These goals have been successfully achieved and exceeded. We have measured (20% ± 0.7%) breeding efficiency into the single charge state of 28+ cesium ions with the breeding time of 28 ms. In general, the current CARIBU EBIS operational parameters can provide charge breeding of any ions in the full mass range of periodic table with high efficiency, short breeding times, and sufficiently low charge-to-mass ratio, 1/6.3 for the heaviest masses, for further acceleration in ATLAS. In this study, we discuss the parameters of the EBIS and the charge breeding results in a pulsed injection mode with repetition rates up to 10 Hz.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ostroumov, P. N., E-mail: ostroumov@anl.gov; Barcikowski, A.; Dickerson, C. A.
The Electron Beam Ion Source (EBIS), developed to breed Californium Rare Isotope Breeder Upgrade (CARIBU) radioactive beams at Argonne Tandem Linac Accelerator System (ATLAS), is being tested off-line. A unique property of the EBIS is a combination of short breeding times, high repetition rates, and a large acceptance. Overall, we have implemented many innovative features during the design and construction of the CARIBU EBIS as compared to the existing EBIS breeders. The off-line charge breeding tests are being performed using a surface ionization source that produces singly charged cesium ions. The main goal of the off-line commissioning is to demonstratemore » stable operation of the EBIS at a 10 Hz repetition rate and a breeding efficiency into single charge state higher than 15%. These goals have been successfully achieved and exceeded. We have measured (20% ± 0.7%) breeding efficiency into the single charge state of 28+ cesium ions with the breeding time of 28 ms. In general, the current CARIBU EBIS operational parameters can provide charge breeding of any ions in the full mass range of periodic table with high efficiency, short breeding times, and sufficiently low charge-to-mass ratio, 1/6.3 for the heaviest masses, for further acceleration in ATLAS. In this paper, we discuss the parameters of the EBIS and the charge breeding results in a pulsed injection mode with repetition rates up to 10 Hz.« less
2013-01-01
Background Effective population sizes of 140 populations (including 60 dog breeds, 40 sheep breeds, 20 cattle breeds and 20 horse breeds) were computed using pedigree information and six different computation methods. Simple demographical information (number of breeding males and females), variance of progeny size, or evolution of identity by descent probabilities based on coancestry or inbreeding were used as well as identity by descent rate between two successive generations or individual identity by descent rate. Results Depending on breed and method, effective population sizes ranged from 15 to 133 056, computation method and interaction between computation method and species showing a significant effect on effective population size (P < 0.0001). On average, methods based on number of breeding males and females and variance of progeny size produced larger values (4425 and 356, respectively), than those based on identity by descent probabilities (average values between 93 and 203). Since breeding practices and genetic substructure within dog breeds increased inbreeding, methods taking into account the evolution of inbreeding produced lower effective population sizes than those taking into account evolution of coancestry. The correlation level between the simplest method (number of breeding males and females, requiring no genealogical information) and the most sophisticated one ranged from 0.44 to 0.60 according to species. Conclusions When choosing a method to compute effective population size, particular attention should be paid to the species and the specific genetic structure of the population studied. PMID:23281913
Clark, Steven M.; Dunham, Jason B.; McEnroe, Jeffery R.; Lightcap, Scott W.
2014-01-01
The fitness of female Pacific salmon (Oncorhynchus spp.) with respect to breeding behavior can be partitioned into at least four fitness components: survival to reproduction, competition for breeding sites, success of egg incubation, and suitability of the local environment near breeding sites for early rearing of juveniles. We evaluated the relative influences of habitat features linked to these fitness components with respect to selection of breeding sites by coho salmon (Oncorhynchus kisutch). We also evaluated associations between breeding site selection and additions of large wood, as the latter were introduced into the study system as a means of restoring habitat conditions to benefit coho salmon. We used a model selection approach to organize specific habitat features into groupings reflecting fitness components and influences of large wood. Results of this work suggest that female coho salmon likely select breeding sites based on a wide range of habitat features linked to all four hypothesized fitness components. More specifically, model parameter estimates indicated that breeding site selection was most strongly influenced by proximity to pool-tail crests and deeper water (mean and maximum depths). Linkages between large wood and breeding site selection were less clear. Overall, our findings suggest that breeding site selection by coho salmon is influenced by a suite of fitness components in addition to the egg incubation environment, which has been the emphasis of much work in the past.
Serum Biochemical Phenotypes in the Domestic Dog
Chang, Yu-Mei; Hadox, Erin; Szladovits, Balazs; Garden, Oliver A.
2016-01-01
The serum or plasma biochemical profile is essential in the diagnosis and monitoring of systemic disease in veterinary medicine, but current reference intervals typically take no account of breed-specific differences. Breed-specific hematological phenotypes have been documented in the domestic dog, but little has been published on serum biochemical phenotypes in this species. Serum biochemical profiles of dogs in which all measurements fell within the existing reference intervals were retrieved from a large veterinary database. Serum biochemical profiles from 3045 dogs were retrieved, of which 1495 had an accompanying normal glucose concentration. Sixty pure breeds plus a mixed breed control group were represented by at least 10 individuals. All analytes, except for sodium, chloride and glucose, showed variation with age. Total protein, globulin, potassium, chloride, creatinine, cholesterol, total bilirubin, ALT, CK, amylase, and lipase varied between sexes. Neutering status significantly impacted all analytes except albumin, sodium, calcium, urea, and glucose. Principal component analysis of serum biochemical data revealed 36 pure breeds with distinctive phenotypes. Furthermore, comparative analysis identified 23 breeds with significant differences from the mixed breed group in all biochemical analytes except urea and glucose. Eighteen breeds were identified by both principal component and comparative analysis. Tentative reference intervals were generated for breeds with a distinctive phenotype identified by comparative analysis and represented by at least 120 individuals. This is the first large-scale analysis of breed-specific serum biochemical phenotypes in the domestic dog and highlights potential genetic components of biochemical traits in this species. PMID:26919479
Soukup, Sheryl Swartz; Drilling, Nancy E.; Eckerle, Kevin P.; Sakaluk, Scott K.; Thompson, Charles F.
2016-01-01
Climate change has affected the seasonal phenology of a variety of taxa, including that of migratory birds and their critical food resources. However, whether climate-induced changes in breeding phenology affect individual fitness, and how these changes might, therefore, influence selection on breeding date remain unresolved. Here, we use a 36-year dataset from a long-term, individual-based study of House Wrens (Troglodytes aedon) to test whether the timing of avian breeding seasons is associated with annual changes in temperature, which have increased to a small but significant extent locally since the onset of the study in 1980. Increasing temperature was associated with an advancement of breeding date in the population, as the onset of breeding within years was closely associated with daily spring temperatures. Warmer springs were also associated with a reduced incubation period, but reduced incubation periods were associated with a prolonged duration of nestling provisioning. Nest productivity, in terms of fledgling production, was not associated with temperature, but wetter springs reduced fledging success. Most years were characterized by selection for earlier breeding, but cool and wet years resulted in stabilizing selection on breeding date. Our results indicate that climate change and increasing spring temperatures can affect suites of life-history traits, including selection on breeding date. Increasing temperatures may favor earlier breeding, but the extent to which the phenology of populations might advance may be constrained by reductions in fitness associated with early breeding during cool, wet years. Variability in climatic conditions will, therefore, shape the extent to which seasonal organisms can respond to changes in their environment. PMID:27859132
A genetic dissection of breed composition and performance enhancement in the Alaskan sled dog
2010-01-01
Background The Alaskan sled dog offers a rare opportunity to investigate the development of a dog breed based solely on performance, rather than appearance, thus setting the breed apart from most others. Several established breeds, many of which are recognized by the American Kennel Club (AKC), have been introduced into the sled dog population to enhance racing performance. We have used molecular methods to ascertain the constitutive breeds used to develop successful sled dog lines, and in doing so, determined the breed origins of specific performance-related behaviors. One hundred and ninety-nine Alaskan sled dogs were genotyped using 96 microsatellite markers that span the canine genome. These data were compared to that from 141 similarly genotyped purebred dog breeds. Sled dogs were evaluated for breed composition based on a variety of performance phenotypes including speed, endurance and work ethic, and the data stratified based on population structure. Results We observe that the Alaskan sled dog has a unique molecular signature and that the genetic profile is sufficient for identifying dogs bred for sprint versus distance. When evaluating contributions of existing breeds we find that the Alaskan Malamute and Siberian Husky contributions are associated with enhanced endurance; Pointer and Saluki are associated with enhanced speed and the Anatolian Shepherd demonstrates a positive influence on work ethic. Conclusion We have established a genetic breed profile for the Alaskan sled dog, identified profile variance between sprint and distance dogs, and established breeds associated with enhanced performance attributes. These data set the stage for mapping studies aimed at finding genes that are associated with athletic attributes integral to the high performing Alaskan sled dog. PMID:20649949
Characterization of casein gene complex and genetic diversity analysis in Indian goats.
Rout, P K; Kumar, A; Mandal, A; Laloe, D; Singh, S K; Roy, R
2010-04-01
Milk protein polymorphism plays an important role in genetic diversity analysis, phylogenetic studies, establishing geographical diversity, conservation decision, and improving breeding goals. Milk protein polymorphism in Indian goat breeds has not been well studied; therefore, an investigation was carried out to analyze the genetic structure of the casein gene and milk protein diversity at six milk protein loci in nine Indian goat breeds/genetic groups from varied agro-climatic zones. Milk protein genotyping was carried out in 1098 individual milk samples by SDS-PAGE at alphaS1-CN (CSN1S1), beta-CN (CSN2), alphaS2-CN (CSN1S2), kappa-CN (CSN3), beta-LG, and alpha-LA loci. Indian goats exhibited alphaS1-casein A allele in higher frequency in the majority of breeds except Ganjam and local goats. The alphaS1-casein A allele frequencies varied from 0.45 to 0.77. A total of 16 casein haplotypes were observed in seven breeds and breed specific haplotypes were observed with respect to geographic region. The average number of alleles was lowest in Ganjam (1.66 +/- 0.81) and highest in Sirohi goats (2.50 +/- 1.05). Expected heterozygosity at six different loci demonstrated genetic diversity and breed fragmentation. Neighbor-Joining tree was built basing on Nei's distance. There was about 16.95% variability due to differences between breeds, indicating a strong subdivision. Principal component analysis was carried out to highlight the relationship among breeds. The variability among goat breeds was contributed by alphaS2-CN, beta-LG and alphaS1-CN. The Indian goats exhibited alphaS1-CN (CSN1S1) A allele in higher frequency in all the breeds indicating the higher casein yield in their milk.
Analysis of genetic diversity of Chinese dairy goats via microsatellite markers.
Wang, G Z; Chen, S S; Chao, T L; Ji, Z B; Hou, L; Qin, Z J; Wang, J M
2017-05-01
In this study, 15 polymorphic microsatellite markers were used to analyze the genetic structure and phylogenetic relationships of 6 dairy goat breeds in China, including 4 native developed breeds and 2 introduced breeds. The results showed that a total of 172 alleles were detected in 347 samples of the dairy goat breeds included in this study. The mean number of effective alleles per locus was 4.92. Except for BMS0812, all of the remaining microsatellite loci were highly polymorphic (polymorphism information content [PIC] > 0.5). The analysis of genetic diversity parameters, including the number of effective alleles, PIC, and heterozygosity, revealed that the native developed dairy goat breeds in China harbored a rich genetic diversity. However, these breeds showed a low breeding degree and a high population intermix degree, with a certain degree of inbreeding and within-subpopulation inbreeding coefficient ( > 0). The analysis of population genetic differentiation and phylogenetic tree topologies showed a moderate state of genetic differentiation among subpopulations of native developed breed dairy goats in China (0.05 < gene fixation coefficient [] < 0.15). The native developed breeds shared a common ancestor, namely, the Saanen dairy goat, originating from Europe. The results showed that there was a close genetic relationship between Wendeng and Laoshan dairy goats while the Guanzhong dairy goat and the Xinong Saanen dairy goat were also found to have a close genetic relationship, which were both in agreement with the formation history and geographical distribution of the breeds. This study revealed that adopting genetic management strategies, such as expanding pedigree source and strengthening multi-trait selection, is useful in maintaining the genetic diversity of native developed breeds and improving the population uniformity of dairy goats.
Lloyd, Amanda J; Beckmann, Manfred; Tailliart, Kathleen; Brown, Wendy Y; Draper, John; Allaway, David
Dog breeds are a consequence of artificial selection for specific attributes. These closed genetic populations have metabolic and physiological characteristics that may be revealed by metabolomic analysis. To identify and characterise the drivers of metabolic differences in the fasted plasma metabolome and then determine metabolites differentiating breeds. Fasted plasma samples were collected from dogs maintained under two environmental conditions (controlled and client-owned at home). The former (n = 33) consisted of three breeds (Labrador Retriever, Cocker Spaniel and Miniature Schnauzer) fed a single diet batch, the latter (n = 96), client-owned dogs consisted of 9 breeds (Beagle, Chihuahua, Cocker Spaniel, Dachshund, Golden Retriever, Greyhound, German Shepherd, Labrador Retriever and Maltese) consuming various diets under differing feeding regimens. Triplicate samples were taken from Beagle (n = 10) and Labrador Retriever (n = 9) over 3 months. Non-targeted metabolite fingerprinting was performed using flow infusion electrospray-ionization mass spectrometry which was coupled with multivariate data analysis. Metadata factors including age, gender, sexual status, weight, diet and breed were investigated. Breed differences were identified in the plasma metabolome of dogs housed in a controlled environment. Triplicate samples from two breeds identified intra-individual variability, yet breed separation was still observed. The main drivers of variance in dogs maintained in the home environment were associated with breed and gender. Furthermore, metabolite signals were identified that discriminated between Labrador Retriever and Cocker Spaniels in both environments. Metabolite fingerprinting of plasma samples can be used to investigate breed differences in client-owned dogs, despite added variance of diet, sexual status and environment.
Furrow, E; Patterson, E E; Armstrong, P J; Osborne, C A; Lulich, J P
2015-01-01
Hypercalciuria and hyperoxaluria are risk factors for calcium oxalate (CaOx) urolithiasis, but breed-specific reports of urinary metabolites and their relationship with stone status are lacking. To compare urinary metabolites (calcium and oxalate) and blood ionized calcium (iCa) concentrations between CaOx stone formers and breed-matched stone-free controls for the Miniature Schnauzer, Bichon Frise, and Shih Tzu breeds. Forty-seven Miniature Schnauzers (23 cases and 24 controls), 27 Bichons Frise (14 cases and 13 controls), and 15 Shih Tzus (7 cases and 8 controls). Prospective study. Fasting spot urinary calcium-to-creatinine and oxalate-to-creatinine ratios (UCa/Cr and UOx/Cr, respectively) and blood iCa concentrations were measured and compared between cases and controls within and across breeds. Regression models were used to test the effect of patient and environmental factors on these variables. UCa/Cr was higher in cases than controls for each of the 3 breeds. In addition to stone status, being on a therapeutic food designed to prevent CaOx stone recurrence was associated with higher UCa/Cr. UOx/Cr did not differ between cases and controls for any of the breeds. Blood iCa was higher in cases than controls in the Miniature Schnauzer and Bichon Frise breeds and had a moderate correlation with UCa/Cr. Hypercalciuria is associated with CaOx stone status in the Miniature Schnauzer, Bichon Frise, and Shih Tzu breeds. UOx/Cr did not correlate with stone status in these 3 breeds. These findings may influence breed-specific stone prevention recommendations. Copyright © 2015 by the American College of Veterinary Internal Medicine.
Roth, T L; Armstrong, D L; Barrie, M T; Wildt, D E
1997-01-01
Ovaries of the seasonally-breeding snow leopard (Uncia uncia) were examined to determine whether they were responsive to exogenous gonadotrophins throughout the year. The potential of laparoscopic artificial insemination (AI) also was assessed for producing offspring. During the non-breeding, pre-breeding, breeding and post-breeding seasons, females (n = 20) were treated with a standardized, dual-hormone regimen given intramuscularly (600 I.U. of equine chorionic gonadotrophin followed 80-84 h later with 300 I.U. of human chorionic gonadotrophin (hCG)). Laparoscopy was performed 45-50 h after administration of hCG, and all ovarian structures were described. Females with fresh corpora lutea (CL) were inseminated, and anovulatory females were subjected to follicular aspiration to examine oocyte quality. Snow leopards responded to exogenous gonadotrophins throughout the year. Mean number of total ovarian structures (distinct follicles mature in appearance plus CL) did not differ (P > or = 0.05) with season, but the proportion of CL: total ovarian structures was greater (P < 0.01) for the breeding season compared with all other seasons. The proportion of females ovulating was greater (P < 0.05) during the breeding and post-breeding seasons than during the pre-breeding and non-breeding seasons respectively. No Grade-1 quality oocytes were recovered from follicles of anovulatory females. Serum concentrations of oestradiol-17 beta appeared elevated in all females, and neither oestradiol-17 beta concentrations nor progesterone concentrations differed (P > or = 0.05) among seasons. Of 15 females artificially inseminated, the only one that was inseminated in the non-breeding season became pregnant and delivered a single cub. This is the first successful pregnancy resulting from AI in this endangered species.
Managing the rate of increase in average co-ancestry in a rolling front tree breeding strategy.
Kerr, R J; McRae, T A; Dutkowski, G W; Tier, B
2015-04-01
In breeding forest trees, as for livestock, the goal is to capture as much genetic gain as possible for the breeding objective, while limiting long- and short-term inbreeding. The Southern Tree Breeding Association (STBA) is responsible for breeding Australia's two main commercial forest tree species and has adopted algorithms and methods commonly used in animal breeding to achieve this balance. Discrete generation breeding is the norm for most tree breeding programmes. However, the STBA uses an overlapping generation strategy, with a new stream of breeding initiated each year. A feature of the species bred by the STBA (Pinus radiata and Eucalyptus globulus) is the long interval (up to 7 years) between when an individual is mated and when its progeny is first assessed in field trials and performance data included in the national performance database. Mate selection methods must therefore recognize the large pool of unmeasured progeny generated over recent years of crossing. In addition, the substantial delay between when an individual is selected in a field trial and when it is clonally copied into a mating facility (breeding arboretum) means that selection and mating must occur as a two-step process. In this article, we describe modifications to preselection and mate selection algorithms that allow unmeasured progeny (juveniles) to be recognized. We also demonstrate that the addition of hypothetical new progeny to the juvenile pool is important for computing the increase in average co-ancestry in the population. Methods outlined in this article may have relevance to animal breeding programmes where between mating and progeny measurement, new rounds of mating are initiated. © 2015 Blackwell Verlag GmbH.
Kubota, Hitoshi; Watanabe, Katsutoshi
2012-01-01
The maintenance of genetic diversity is one of the chief concerns in the captive breeding of endangered species. Using microsatellite and mtDNA markers, we examined the effects of two key variables (parental number and duration of breeding period) on effective population size (N(e) ) and genetic diversity of offspring in an experimental breeding program for the endangered Tokyo bitterling, Tanakia tanago. Average heterozygosity and number of alleles of offspring estimated from microsatellite data increased with parental number in a breeding aquarium, and exhibited higher values for a long breeding period treatment (9 weeks) compared with a short breeding period (3 weeks). Haplotype diversity in mtDNA of offspring decreased with the reduction in parental number, and this tendency was greater for the short breeding period treatment. Genetic estimates of N(e) obtained with two single-sample estimation methods were consistently higher for the long breeding period treatment with the same number of parental fish. Average N(e) /N ratios were ranged from 0.5 to 1.4, and were high especially in the long breeding period with small and medium parental number treatments. Our results suggest that the spawning intervals of females and alternative mating behaviors of males influence the effective size and genetic diversity of offspring in bitterling. To maintain the genetic diversity of captive T. tanago, we recommend that captive breeding programs should be conducted for a sufficiently long period with an optimal level of parental density, as well as using an adequate number of parents. © 2011 Wiley Periodicals, Inc.
Rochus, Christina M; Johansson, Anna M
2017-01-01
Breeds with small population size are in danger of an increased inbreeding rate and loss of genetic diversity, which puts them at risk for extinction. In Sweden there are a number of local breeds, native breeds which have adapted to specific areas in Sweden, for which efforts are being made to keep them pure and healthy over time. One example of such a breed is the Swedish Gute sheep. The objective of this study was to estimate inbreeding and genetic diversity of Swedish Gute sheep. Three datasets were analysed: pedigree information of the whole population, pedigree information for 100 animals of the population, and microsatellite genotypes for 94 of the 100 animals. The average inbreeding coefficient for lambs born during a six year time period (2007-2012) did not increase during that time period. The inbreeding calculated from the entire pedigree (0.038) and for a sample of the population (0.018) was very low. Sheep were more heterozygous at the microsatellite markers than expected (average multilocus heterozygosity and Ritland inbreeding estimates 1.01845 and -0.03931) and five of seven microsatellite markers were not in Hardy Weinberg equilibrium due to heterozygosity excess. The total effective population size estimated from the pedigree information was 155.4 and the average harmonic mean effective population size estimated from microsatellites was 88.3. Pedigree and microsatellite genotype estimations of inbreeding were consistent with a breeding program with the purpose of reducing inbreeding. Our results showed that current breeding programs of the Swedish Gute sheep are consistent with efforts of keeping this breed viable and these breeding programs are an example for other small local breeds in conserving breeds for the future.
Martín-Hidalgo, D; Barón, F J; Robina, A; Bragado, M J; Llera, A Hurtado de; García-Marín, L J; Gil, M C
2013-06-01
During boar semen liquid preservation, extender is one of the factors that influence storage tolerance of spermatozoa. However, there are few studies about intra-breed variation in the preservation of semen quality during storage in different extenders. Similarly, boar breed is generally not considered a possible factor influencing variation in the semen storage tolerance in a particular extender. The aim of this study was to compare boar semen storage potential, in terms of the ability to maintain sperm viability and motility, of two currently used long-term extenders, MR-A and XCell. Extended semen from two breeds, Iberian and Duroc that had been stored at 17°C for up to 7 days was used. Intra- and inter-breed effect was studied. On Days 1, 4 and 7 (Day 0=day of semen collection), motility parameters and the percentage of total motile sperm and progressively motile sperm using a CASA system was evaluated. Viability (SYBR-14/PI) was evaluated by flow cytometry. Within each breed and for each storage day, there were differences between extenders, although semen tolerance to preservation was more influenced by the extender in the Iberian than in the Duroc breed. Neither breed nor extender influenced the percentage of viable spermatozoa during the storage time. Moreover, differences in motility parameters were observed between breeds, although the differences were greater when the XCell extender was used. In conclusion, both extender and breed influence motility characteristics of liquid-stored boar semen, so both aspects have to be considered in the design of comparative studies about stored boar semen quality from different breeds or with different extenders. Further studies are needed to corroborate these findings. Copyright © 2013 Elsevier B.V. All rights reserved.
Toxicity of DDT to Japanese quail as influenced by body weight, breeding condition, and sex
Gish, C.D.; Chura, N.J.
1970-01-01
Controlled experiments were utilized to simulate the stresses on wild birds of breeding condition and of weight loss due to migration. Light conditions in the laboratory were manipulated to produce Japanese quail (Coturnix coturnix japonica) in breeding condition and not in breeding condition. Within each of these groups, some birds were partially starved before dosage and some were fully fed. Birds were then fed dietary levels of 0, 700, 922, 1214, or 1600 ppm dry weight of p,p?-DDT for a period of 20 days or until death. Birds partially starved before dosage were more susceptible to DDT intoxication than nonstarved ones, and birds not in breeding condition were slightly more so than birds in breeding condition. Similarly, males died earlier than females, and the birds of the lighter weight strain used in the second half of the study died earlier than the birds of the heavier strain used in the first half. The heavier birds of each sex not only survived longer than lighter individuals receiving the same treatments, but they also lost a greater proportion of their weight before death. During the early portion of the dosage period, females in breeding condition were less sensitive to DDT than were females not in breeding condition and males. After 10 days on dosage, however, the cumulative mortality of females in breeding condition rapidly approached that of males and of females not in breeding condition. Food restriction prior to dosage, strains of quail, breeding conditions, and sexes resulted in weight differences and a corresponding accentuation or delay of the effects of the different levels of DDT.
Understanding crop genetic diversity under modern plant breeding.
Fu, Yong-Bi
2015-11-01
Maximizing crop yield while at the same time minimizing crop failure for sustainable agriculture requires a better understanding of the impacts of plant breeding on crop genetic diversity. This review identifies knowledge gaps and shows the need for more research into genetic diversity changes under plant breeding. Modern plant breeding has made a profound impact on food production and will continue to play a vital role in world food security. For sustainable agriculture, a compromise should be sought between maximizing crop yield under changing climate and minimizing crop failure under unfavorable conditions. Such a compromise requires better understanding of the impacts of plant breeding on crop genetic diversity. Efforts have been made over the last three decades to assess crop genetic diversity using molecular marker technologies. However, these assessments have revealed some temporal diversity patterns that are largely inconsistent with our perception that modern plant breeding reduces crop genetic diversity. An attempt was made in this review to explain such discrepancies by examining empirical assessments of crop genetic diversity and theoretical investigations of genetic diversity changes over time under artificial selection. It was found that many crop genetic diversity assessments were not designed to assess diversity impacts from specific plant breeding programs, while others were experimentally inadequate and contained technical biases from the sampling of cultivars and genomes. Little attention has been paid to theoretical investigations on crop genetic diversity changes from plant breeding. A computer simulation of five simplified breeding schemes showed the substantial effects of plant breeding on the retention of heterozygosity over generations. It is clear that more efforts are needed to investigate crop genetic diversity in space and time under plant breeding to achieve sustainable crop production.
Gourdine, J L; Sørensen, A C; Rydhmer, L
2012-01-01
Selection progress must be carefully balanced against the conservation of genetic variation in small populations of local breeds. Well-defined breeding programs with specified selection traits are rare in local pig breeds. Given the small population size, the focus is often on the management of genetic diversity. However, in local breeds, optimum contribution selection can be applied to control the rate of inbreeding and to avoid reduced performance in traits with high market value. The aim of this study was to assess the extent to which a breeding program aiming for improved product quality in a small local breed would be feasible. We used stochastic simulations to compare 25 scenarios. The scenarios differed in size of population, selection intensity of boars, type of selection (random selection, truncation selection based on BLUP breeding values, or optimum contribution selection based on BLUP breeding values), and heritability of the selection trait. It was assumed that the local breed is used in an extensive system for a high-meat-quality market. The simulations showed that in the smallest population (300 female reproducers), inbreeding increased by 0.8% when selection was performed at random. With optimum contribution selection, genetic progress can be achieved that is almost as great as that with truncation selection based on BLUP breeding values (0.2 to 0.5 vs. 0.3 to 0.5 genetic SD, P < 0.05), but at a considerably decreased rate of inbreeding (0.7 to 1.2 vs. 2.3 to 5.7%, P < 0.01). This confirmation of the potential utilization of OCS even in small populations is important in the context of sustainable management and the use of animal genetic resources.
Palma, Mariana; Hernández-Castellano, Lorenzo E; Castro, Noemí; Arguëllo, Anastasio; Capote, Juan; Matzapetakis, Manolis; de Almeida, André Martinho
2016-06-21
Goats are of special importance in the Mediterranean and tropical regions for producing a variety of dairy products. The scarcity of pastures during the dry season leads to seasonal weight loss (SWL), which affects milk production. In this work, we studied the effect of feed-restriction on two dairy goat breeds, with different tolerance levels to SWL: the Majorera breed (tolerant) and the Palmera breed (susceptible). Nuclear magnetic resonance (NMR) was used to compare the metabolome of an aqueous fraction of the mammary gland and milk serum from both breeds. Goats in mid-lactation were divided by breed, and each in two feed-regime groups: the control group and the restricted-fed group (to achieve 15-20% reduction of body weight at the end of the experiment). Milk and mammary gland samples were collected at the end of the experimental period (23rd day). (1)H NMR spectra were collected from the aqueous extract of the mammary gland biopsies and the milk serum. Profiling analysis has led to the identification of 46 metabolites in the aqueous extract of the mammary gland. Lactose, glutamate, glycine and lactate were found to be the most abundant. Analysis of milk serum allowed the identification of 50 metabolites, the most abundant being lactose, citrate and creatine. Significant differences were observed, in mammary gland biopsies and milk serum, between control and restricted-fed groups in both breeds, albeit with no differences between the breeds. Variations seem to be related to metabolism adaptation to the low-energy diet and are indicative of breed-specific microflora. Milk serum showed more metabolites varying between control and restricted groups, than the mammary gland. The Majorera breed also showed more variations than the Palmera breed in milk samples, which could be an indication of a prompt adaptation to SWL by the Majorera breed.
Migratory connectivity of a widely distributed songbird, the American redstart (Setophaga ruticilla)
Norris, D.R.; Marra, P.P.; Bowen, G.J.; Ratcliffe, L.M.; Royle, J. Andrew; Kyser, T.K.; Boulet, Marylene; Norris, D. Ryan
2006-01-01
Determining the degree of connectivity between breeding and wintering populations is critical for understanding the ecology and evolution of migratory systems. We analyzed stable hydrogen isotopic compositions in tail feathers ($Dw) collected from 26 sites in 11 countries throughout the wintering range of the American Redstart (Setophaga ruticilla), a Nearctic- Neotropical migratory passerine bird. Feathers were assumed to have molted on the breeding grounds, and $Dw was used to estimate breeding origin. Values of $Dw were highly correlated with longitude of sampling location, indicating that breeding populations were generally distributed along the east-west axis of the wintering grounds. Within the Caribbean region, Florida, and Bahamas, $Dw values were negatively correlated with winter latitude, which suggests that American Redstarts exhibit a pattern of chain migration in which individuals wintering at northern latitudes are also the most northern breeders. To identify the most probable breeding regions, we used a likelihood-assignment test incorporated with a prior probability of breeding abundance using Bayes?s rule. Expected $D values of feathers from five breeding regions were based on interpolated $D values from a model of continent-wide growing-season $D values in precipitation ($Dp) and were adjusted to account for a discrimination factor between precipitation and feathers. At most wintering locations, breeding assignments were significantly different from expected frequencies based on relative breeding abundance. Birds wintering in eastern and western Mexico had a high probability of breeding in northwest and midwest North America, whereas birds in the Greater and Lesser Antilles were likely to have originated from breeding regions in the northeast and southeast, respectively. Migratory connectivity, such as we report here, implies that the dynamics of breeding and nonbreeding populations may be linked at a regional scale. These results provide a key opportunity for studying the year-round ecology and evolution of spatially connected populations in a migratory species.
Breed-specific reference intervals for assessing thyroid function in seven dog breeds.
Hegstad-Davies, Rebecca L; Torres, Sheila M F; Sharkey, Leslie C; Gresch, Sarah C; Muñoz-Zanzi, Claudia A; Davies, Peter R
2015-11-01
Thyroxine (T4), free T4 (FT4), and thyrotropin (TSH) concentrations were measured in serum from 693 healthy representatives from 7 dog breeds (Alaskan Malamute, Collie, English Setter, Golden Retriever, Keeshond, Samoyed, or Siberian Husky) to determine whether breed-specific reference intervals (RIs) are warranted. Veterinarians reviewed the health history, performed a physical examination, and approved laboratory data for the enrolled dogs. Many purebred dogs had T4 and FT4 concentrations that were at, or below, the lower limits previously determined for non-breed-specific RIs. Mean concentrations of T4, FT4, and TSH varied significantly among breeds. The range of mean concentration of T4 (19.7 nmol/L [1.53 µg/dL] in English Setters to 29.0 nmol/L [2.25 µg/dL] in Keeshonds) and FT4 (12.6 pmol/L [0.98 ng/dL] in English Setters to 20.2 pmol/L [1.57 ng/dL] in Samoyeds) was considerable. Median TSH values ranged from 6.10 mIU/L (0.07 ng/mL; Alaskan Malamute and Golden Retriever) to 17.6 mIU/L (0.26 ng/mL; Collie). Mean T4 and FT4 concentrations were higher in females. Increasing age was associated with decreasing T4 and FT4, and increasing TSH concentration. The substantial ranges across breeds of measures of central tendency (mean, median) for all hormones indicate that breed-specific RIs are warranted. RIs encompassing the central 95% of reference values for all breeds combined, and for individual breeds, were calculated using nonparametric (TSH) and robust (T4, FT4) methods. Use of breed-specific RIs in combination with careful attention to the potential for pre-analytical and analytical variability in test results will improve thyroid function assessment in these breeds. © 2015 The Author(s).
Range-wide reproductive consequences of ocean climate variability for the seabird Cassin's Auklet.
Wolf, Shaye G; Sydeman, William J; Hipfner, J Mark; Abraham, Christine L; Tershy, Bernie R; Croll, Donald A
2009-03-01
We examine how ocean climate variability influences the reproductive phenology and demography of the seabird Cassin's Auklet (Ptychoramphus aleuticus) across approximately 2500 km of its breeding range in the oceanographically dynamic California Current System along the west coast of North America. Specifically, we determine the extent to which ocean climate conditions and Cassin's Auklet timing of breeding and breeding success covary across populations in British Columbia, central California, and northern Mexico over six years (2000-2005) and test whether auklet timing of breeding and breeding success are similarly related to local and large-scale ocean climate indices across populations. Local ocean foraging environments ranged from seasonally variable, high-productivity environments in the north to aseasonal, low-productivity environments to the south, but covaried similarly due to the synchronizing effects of large-scale climate processes. Auklet timing of breeding in the southern population did not covary with populations to the north and was not significantly related to local oceanographic conditions, in contrast to northern populations, where timing of breeding appears to be influenced by oceanographic cues that signal peaks in prey availability. Annual breeding success covaried similarly across populations and was consistently related to local ocean climate conditions across this system. Overall, local ocean climate indices, particularly sea surface height, better explained timing of breeding and breeding success than a large-scale climate index by better representing heterogeneity in physical processes important to auklets and their prey. The significant, consistent relationships we detected between Cassin's Auklet breeding success and ocean climate conditions across widely spaced populations indicate that Cassin's Auklets are susceptible to climate change across the California Current System, especially by the strengthening of climate processes that synchronize oceanographic conditions. Auklet populations in the northern and central regions of this ecosystem may be more sensitive to changes in the timing and variability of ocean climate conditions since they appear to time breeding to take advantage of seasonal productivity peaks.
Gunia, M; Phocas, F; Gourdine, J-L; Bijma, P; Mandonnet, N
2013-02-01
The Creole goat is a local breed used for meat production in Guadeloupe (French West Indies). As in other tropical countries, improvement of parasite resistance is needed. In this study, we compared predicted selection responses for alternative breeding programs with or without parasite resistance and resilience traits. The overall breeding goal included traits for production, reproduction, and parasite resilience and resistance to ensure a balanced selection outcome. The production traits were BW and dressing percentage (DP). The reproduction trait was fertility (FER), which was the number of doe kiddings per mating. The resistance trait was worm fecal egg count (FEC), which is a measurement of the number of gastro-intestinal parasite eggs found in the feces. The resilience trait was the packed cell volume (PCV), which is a measurement of the volume of red blood cells in the blood. Dressing percentage, BW, and FEC were measured at 11 mo of age, which is the mating or selling age. Fertility and PCV were measured on females at each kidding period. The breeding program accounting for the overall breeding goal and a selection index including all traits gave annual selection responses of 800 g for BW, 3.75% for FER, 0.08% for DP, -0.005 ln(eggs/g) for FEC, and 0.28% for PCV. The expected selection responses for BW and DP in this breeding program were reduced by 2% and 6%, respectively, compared with a breeding program not accounting for FEC and PCV. The overall breeding program, proposed for the Creole breed, offers the best breeding strategy in terms of expected selection responses, making it possible to improve all traits together. It offers a good balance between production and adaptation traits and may present some interest for the selection of other goat breeds in the tropics.
Extent of linkage disequilibrium in the domestic cat, Felis silvestris catus, and its breeds.
Alhaddad, Hasan; Khan, Razib; Grahn, Robert A; Gandolfi, Barbara; Mullikin, James C; Cole, Shelley A; Gruffydd-Jones, Timothy J; Häggström, Jens; Lohi, Hannes; Longeri, Maria; Lyons, Leslie A
2013-01-01
Domestic cats have a unique breeding history and can be used as models for human hereditary and infectious diseases. In the current era of genome-wide association studies, insights regarding linkage disequilibrium (LD) are essential for efficient association studies. The objective of this study is to investigate the extent of LD in the domestic cat, Felis silvestris catus, particularly within its breeds. A custom illumina GoldenGate Assay consisting of 1536 single nucleotide polymorphisms (SNPs) equally divided over ten 1 Mb chromosomal regions was developed, and genotyped across 18 globally recognized cat breeds and two distinct random bred populations. The pair-wise LD descriptive measure (r(2)) was calculated between the SNPs in each region and within each population independently. LD decay was estimated by determining the non-linear least-squares of all pair-wise estimates as a function of distance using established models. The point of 50% decay of r(2) was used to compare the extent of LD between breeds. The longest extent of LD was observed in the Burmese breed, where the distance at which r(2) ≈ 0.25 was ∼380 kb, comparable to several horse and dog breeds. The shortest extent of LD was found in the Siberian breed, with an r(2) ≈ 0.25 at approximately 17 kb, comparable to random bred cats and human populations. A comprehensive haplotype analysis was also conducted. The haplotype structure of each region within each breed mirrored the LD estimates. The LD of cat breeds largely reflects the breeds' population history and breeding strategies. Understanding LD in diverse populations will contribute to an efficient use of the newly developed SNP array for the cat in the design of genome-wide association studies, as well as to the interpretation of results for the fine mapping of disease and phenotypic traits.
Tapio, I; Värv, S; Bennewitz, J; Maleviciute, J; Fimland, E; Grislis, Z; Meuwissen, T H E; Miceikiene, I; Olsaker, I; Viinalass, H; Vilkki, J; Kantanen, J
2006-12-01
Northern European indigenous cattle breeds are currently endangered and at a risk of becoming extinct. We analyzed variation at 20 microsatellite loci in 23 indigenous, 3 old imported, and 9 modern commercial cattle breeds that are presently distributed in northern Europe. We measured the breeds' allelic richness and heterozygosity, and studied their genetic relationships with a neighbor-joining tree based on the Chord genetic distance matrix. We used the Weitzman approach and the core set diversity measure of Eding et al. (2002) to quantify the contribution of each breed to the maximum amount of genetic diversity and to identify breeds important for the conservation of genetic diversity. We defined 11 breeds as a "safe set" of breeds (not endangered) and estimated a reduction in genetic diversity if all nonsafe (endangered) breeds were lost. We then calculated the increase in genetic diversity by adding one by one each of the nonsafe breeds to the safe set (the safe-set-plus-one approach). The neighbor-joining tree grouped the northern European cattle breeds into Black-and-White type, Baltic Red, and Nordic cattle groups. Väne cattle, Bohus Poll, and Danish Jersey had the highest relative contribution to the maximum amount of genetic diversity when the diversity was quantified by the Weitzman diversity measure. These breeds not only showed phylogenetic distinctiveness but also low within-population variation. When the Eding et al. method was applied, Eastern Finncattle and Lithuanian White Backed cattle contributed most of the genetic variation. If the loss of the nonsafe set of breeds happens, the reduction in genetic diversity would be substantial (72%) based on the Weitzman approach, but relatively small (1.81%) based on the Eding et al. method. The safe set contained only 66% of the observed microsatellite alleles. The safe-set-plus-one approach indicated that Bohus Poll and Väne cattle contributed most to the Weitzman diversity, whereas the Eastern Finncattle contribution was the highest according to the Eding et al. method. Our results indicate that both methods of Weitzman and Eding et al. recognize the importance of local populations as a valuable resource of genetic variation.
Population Structure and Genomic Breed Composition in an Angus-Brahman Crossbred Cattle Population.
Gobena, Mesfin; Elzo, Mauricio A; Mateescu, Raluca G
2018-01-01
Crossbreeding is a common strategy used in tropical and subtropical regions to enhance beef production, and having accurate knowledge of breed composition is essential for the success of a crossbreeding program. Although pedigree records have been traditionally used to obtain the breed composition of crossbred cattle, the accuracy of pedigree-based breed composition can be reduced by inaccurate and/or incomplete records and Mendelian sampling. Breed composition estimation from genomic data has multiple advantages including higher accuracy without being affected by missing, incomplete, or inaccurate records and the ability to be used as independent authentication of breed in breed-labeled beef products. The present study was conducted with 676 Angus-Brahman crossbred cattle with genotype and pedigree information to evaluate the feasibility and accuracy of using genomic data to determine breed composition. We used genomic data in parametric and non-parametric methods to detect population structure due to differences in breed composition while accounting for the confounding effect of close familial relationships. By applying principal component analysis (PCA) and the maximum likelihood method of ADMIXTURE to genomic data, it was possible to successfully characterize population structure resulting from heterogeneous breed ancestry, while accounting for close familial relationships. PCA results offered additional insight into the different hierarchies of genetic variation structuring. The first principal component was strongly correlated with Angus-Brahman proportions, and the second represented variation within animals that have a relatively more extended Brangus lineage-indicating the presence of a distinct pattern of genetic variation in these cattle. Although there was strong agreement between breed proportions estimated from pedigree and genetic information, there were significant discrepancies between these two methods for certain animals. This was most likely due to inaccuracies in the pedigree-based estimation of breed composition, which supported the case for using genomic information to complement and/or replace pedigree information when estimating breed composition. Comparison with a supervised analysis where purebreds are used as the training set suggest that accurate predictions can be achieved even in the absence of purebred population information.
van den Berg, Irene; Boichard, Didier; Lund, Mogens Sandø
2016-11-01
The objective of this study was to compare mapping precision and power of within-breed and multibreed genome-wide association studies (GWAS) and to compare the results obtained by the multibreed GWAS with 3 meta-analysis methods. The multibreed GWAS was expected to improve mapping precision compared with a within-breed GWAS because linkage disequilibrium is conserved over shorter distances across breeds than within breeds. The multibreed GWAS was also expected to increase detection power for quantitative trait loci (QTL) segregating across breeds. GWAS were performed for production traits in dairy cattle, using imputed full genome sequences of 16,031 bulls, originating from 6 French and Danish dairy cattle populations. Our results show that a multibreed GWAS can be a valuable tool for the detection and fine mapping of quantitative trait loci. The number of QTL detected with the multibreed GWAS was larger than the number detected by the within-breed GWAS, indicating an increase in power, especially when the 2 Holstein populations were combined. The largest number of QTL was detected when all populations were combined. The analysis combining all breeds was, however, dominated by Holstein, and QTL segregating in other breeds but not in Holstein were sometimes overshadowed by larger QTL segregating in Holstein. Therefore, the GWAS combining all breeds except Holstein was useful to detect such peaks. Combining all breeds except Holstein resulted in smaller QTL intervals on average, but this outcome was not the case when the Holstein populations were included in the analysis. Although no decrease in the average QTL size was observed, mapping precision did improve for several QTL. Out of 3 different multibreed meta-analysis methods, the weighted z-scores model resulted in the most similar results to the full multibreed GWAS and can be useful as an alternative to a full multibreed GWAS. Differences between the multibreed GWAS and the meta-analyses were larger when different breeds were combined than when the 2 Holstein populations were combined. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Rahmatalla, Siham A; Arends, Danny; Reissmann, Monika; Said Ahmed, Ammar; Wimmers, Klaus; Reyer, Henry; Brockmann, Gudrun A
2017-10-23
Sudan is endowed with a variety of indigenous goat breeds which are used for meat and milk production and which are well adapted to the local environment. The aim of the present study was to determine the genetic diversity and relationship within and between the four main Sudanese breeds of Nubian, Desert, Taggar and Nilotic goats. Using the 50 K SNP chip, 24 animals of each breed were genotyped. More than 96% of high quality SNPs were polymorphic with an average minor allele frequency of 0.3. In all breeds, no significant difference between observed (0.4) and expected (0.4) heterozygosity was found and the inbreeding coefficients (F IS ) did not differ from zero. F st coefficients for the genetic distance between breeds also did not significantly deviate from zero. In addition, the analysis of molecular variance revealed that 93% of the total variance in the examined population can be explained by differences among individuals, while only 7% result from differences between the breeds. These findings provide evidence for high genetic diversity and little inbreeding within breeds on one hand, and low diversity between breeds on the other hand. Further examinations using Nei's genetic distance and STRUCTURE analysis clustered Taggar goats distinct from the other breeds. In a principal component (PC) analysis, PC1 could separate Taggar, Nilotic and a mix of Nubian and Desert goats into three groups. The SNPs that contributed strongly to PC1 showed high F st values in Taggar goat versus the other goat breeds. PCA allowed us to identify target genomic regions which contain genes known to influence growth, development, bone formation and the immune system. The information on the genetic variability and diversity in this study confirmed that Taggar goat is genetically different from the other goat breeds in Sudan. The SNPs identified by the first principal components show high F st values in Taggar goat and allowed to identify candidate genes which can be used in the development of breed selection programs to improve local breeds and find genetic factors contributing to the adaptation to harsh environments.
Seong, Pil Nam; Park, Kuyng Mi; Kang, Sun Moon; Kang, Geun Ho; Cho, Soo Hyun; Park, Beom Young; Van Ba, Hoa
2014-01-01
The present study demonstrates the impact of specific breed on the characteristics of dry-cured ham. Eighty thighs from Korean native pig (KNP), crossbreed (Landrace×Yorkshire)♀×Duroc♂ (LYD), Berkshire (Ber), and Duroc (Du) pig breeds (n = 10 for each breed) were used for processing of dry-cured ham. The thighs were salted with 6% NaCl (w/w) and 100 ppm NaNO2, and total processing time was 413 days. The effects of breed on the physicochemical composition, texture, color and sensory characteristics were assessed on the biceps femoris muscle of the hams. The results revealed that the highest weight loss was found in the dry-cured ham of LYD breed and the lowest weight loss was found in Ber dry-cured ham. The KNP dry-cured ham contain higher intramuscular fat level than other breed hams (p<0.05). It was observed that the dry-cured ham made from KNP breed had the lowest water activity value and highest salt content, while the LYD dry-cure ham had higher total volatile basic nitrogen content than the Ber and Du hams (p<0.05). Zinc, iron and total monounsaturated fatty acids levels were higher in KNP ham while polyunsaturated fatty acids levels were higher in Du ham when compared to other breed hams (p<0.05). Additionally, the KNP dry-cured ham possessed higher Commission International de l’Eclairage (CIE) a* value, while the Du dry-cured ham had higher L*, CIE b* and hue angle values (p<0.05). Furthermore, breed significantly affected the sensory attributes of dry-cured hams with higher scores for color, aroma and taste found in KNP dry-cured ham as compared to other breed hams (p<0.05). The overall outcome of the study is that the breed has a potential effect on the specific chemical composition, texture, color and sensorial properties of dry-cured hams. These data could be useful for meat processors to select the suitable breeds for economical manufacturing of high quality dry-cured hams. PMID:25083111
Seong, Pil Nam; Park, Kuyng Mi; Kang, Sun Moon; Kang, Geun Ho; Cho, Soo Hyun; Park, Beom Young; Van Ba, Hoa
2014-08-01
The present study demonstrates the impact of specific breed on the characteristics of dry-cured ham. Eighty thighs from Korean native pig (KNP), crossbreed (Landrace×Yorkshire)♀×Duroc♂ (LYD), Berkshire (Ber), and Duroc (Du) pig breeds (n = 10 for each breed) were used for processing of dry-cured ham. The thighs were salted with 6% NaCl (w/w) and 100 ppm NaNO2, and total processing time was 413 days. The effects of breed on the physicochemical composition, texture, color and sensory characteristics were assessed on the biceps femoris muscle of the hams. The results revealed that the highest weight loss was found in the dry-cured ham of LYD breed and the lowest weight loss was found in Ber dry-cured ham. The KNP dry-cured ham contain higher intramuscular fat level than other breed hams (p<0.05). It was observed that the dry-cured ham made from KNP breed had the lowest water activity value and highest salt content, while the LYD dry-cure ham had higher total volatile basic nitrogen content than the Ber and Du hams (p<0.05). Zinc, iron and total monounsaturated fatty acids levels were higher in KNP ham while polyunsaturated fatty acids levels were higher in Du ham when compared to other breed hams (p<0.05). Additionally, the KNP dry-cured ham possessed higher Commission International de l'Eclairage (CIE) a* value, while the Du dry-cured ham had higher L*, CIE b* and hue angle values (p<0.05). Furthermore, breed significantly affected the sensory attributes of dry-cured hams with higher scores for color, aroma and taste found in KNP dry-cured ham as compared to other breed hams (p<0.05). The overall outcome of the study is that the breed has a potential effect on the specific chemical composition, texture, color and sensorial properties of dry-cured hams. These data could be useful for meat processors to select the suitable breeds for economical manufacturing of high quality dry-cured hams.
Adult sex ratios and their implications for cooperative breeding in birds.
Komdeur, Jan; Székely, Tamás; Long, Xiaoyan; Kingma, Sjouke A
2017-09-19
Cooperative breeding is a form of breeding system where in addition to a core breeding pair, one or more usually non-breeding individuals provide offspring care. Cooperative breeding is widespread in birds, but its origin and maintenance in contemporary populations are debated. Although deviations in adult sex ratio (ASR, the proportion of males in the adult population) have been hypothesized to influence the occurrence of cooperative breeding because of the resulting surplus of one sex and limited availability of breeding partners, this hypothesis has not been tested across a wide range of taxa. By using data from 188 bird species and phylogenetically controlled analyses, we show that cooperatively breeding species have more male-biased ASRs than non-cooperative species. Importantly, ASR predicts helper sex ratio: in species with more male-biased ASR, helper sex ratio is also more male biased. We also show that offspring sex ratios do not predict ASRs, so that the skewed ASRs emerge during the period when individuals aim to obtain a breeding position or later during adulthood. In line with this result, we found that ASR (among both cooperatively and non-cooperatively breeding species) is inversely related to sex bias in dispersal distance, suggesting that the cost of dispersal is more severe for the further-dispersing sex. As females usually disperse further in birds, this explains the generally male-biased ASR, and in combination with benefits of philopatry for males, this probably explains why ASR is more biased in cooperatively breeding species. Taken together, our results suggest that a sex bias in helping in cooperatively breeding species relates to biased ASRs. We propose that this relationship is driven by sex-specific costs and benefits of dispersal and helping, as well as other demographic factors. Future phylogenetic comparative and experimental work is needed to establish how this relationship emerges.This article is part of the themed issue 'Adult sex ratios and reproductive decisions: a critical re-examination of sex differences in human and animal societies'. © 2017 The Author(s).
Chen, L; Schenkel, F; Vinsky, M; Crews, D H; Li, C
2013-10-01
In beef cattle, phenotypic data that are difficult and/or costly to measure, such as feed efficiency, and DNA marker genotypes are usually available on a small number of animals of different breeds or populations. To achieve a maximal accuracy of genomic prediction using the phenotype and genotype data, strategies for forming a training population to predict genomic breeding values (GEBV) of the selection candidates need to be evaluated. In this study, we examined the accuracy of predicting GEBV for residual feed intake (RFI) based on 522 Angus and 395 Charolais steers genotyped on SNP with the Illumina Bovine SNP50 Beadchip for 3 training population forming strategies: within breed, across breed, and by pooling data from the 2 breeds (i.e., combined). Two other scenarios with the training and validation data split by birth year and by sire family within a breed were also investigated to assess the impact of genetic relationships on the accuracy of genomic prediction. Three statistical methods including the best linear unbiased prediction with the relationship matrix defined based on the pedigree (PBLUP), based on the SNP genotypes (GBLUP), and a Bayesian method (BayesB) were used to predict the GEBV. The results showed that the accuracy of the GEBV prediction was the highest when the prediction was within breed and when the validation population had greater genetic relationships with the training population, with a maximum of 0.58 for Angus and 0.64 for Charolais. The within-breed prediction accuracies dropped to 0.29 and 0.38, respectively, when the validation populations had a minimal pedigree link with the training population. When the training population of a different breed was used to predict the GEBV of the validation population, that is, across-breed genomic prediction, the accuracies were further reduced to 0.10 to 0.22, depending on the prediction method used. Pooling data from the 2 breeds to form the training population resulted in accuracies increased to 0.31 and 0.43, respectively, for the Angus and Charolais validation populations. The results suggested that the genetic relationship of selection candidates with the training population has a greater impact on the accuracy of GEBV using the Illumina Bovine SNP50 Beadchip. Pooling data from different breeds to form the training population will improve the accuracy of across breed genomic prediction for RFI in beef cattle.
Ramayo-Caldas, Yuliaxis; Renand, Gilles; Ballester, Maria; Saintilan, Romain; Rocha, Dominique
2016-04-23
Studies to identify markers associated with beef tenderness have focused on Warner-Bratzler shear force (WBSF) but the interplay between the genes associated with WBSF has not been explored. We used the association weight matrix (AWM), a systems biology approach, to identify a set of interacting genes that are co-associated with tenderness and other meat quality traits, and shared across the Charolaise, Limousine and Blonde d'Aquitaine beef cattle breeds. Genome-wide association studies were performed using ~500K single nucleotide polymorphisms (SNPs) and 17 phenotypes measured on more than 1000 animals for each breed. First, this multi-trait approach was applied separately for each breed across 17 phenotypes and second, between- and across-breed comparisons at the AWM and functional levels were performed. Genetic heterogeneity was observed, and most of the variants that were associated with WBSF segregated within rather than across breeds. We identified 206 common candidate genes associated with WBSF across the three breeds. SNPs in these common genes explained between 28 and 30 % of the phenotypic variance for WBSF. A reduced number of common SNPs mapping to the 206 common genes were identified, suggesting that different mutations may target the same genes in a breed-specific manner. Therefore, it is likely that, depending on allele frequencies and linkage disequilibrium patterns, a SNP that is identified for one breed may not be informative for another unrelated breed. Well-known candidate genes affecting beef tenderness were identified. In addition, some of the 206 common genes are located within previously reported quantitative trait loci for WBSF in several cattle breeds. Moreover, the multi-breed co-association analysis detected new candidate genes, regulators and metabolic pathways that are likely involved in the determination of meat tenderness and other meat quality traits in beef cattle. Our results suggest that systems biology approaches that explore associations of correlated traits increase statistical power to identify candidate genes beyond the one-dimensional approach. Further studies on the 206 common genes, their pathways, regulators and interactions will expand our knowledge on the molecular basis of meat tenderness and could lead to the discovery of functional mutations useful for genomic selection in a multi-breed beef cattle context.
Dulau, Violaine; Pinet, Patrick; Geyer, Ygor; Fayan, Jacques; Mongin, Philippe; Cottarel, Guillaume; Zerbini, Alexandre; Cerchio, Salvatore
2017-01-01
Humpback whales are known to undertake long-distance migration between feeding and breeding sites, but their movement behavior within their breeding range is still poorly known. Satellite telemetry was used to investigate movement of humpback whales during the breeding season and provide further understanding of the breeding ecology and sub-population connectivity within the southwest Indian Ocean (SWIO). Implantable Argos satellite tags were deployed on 15 whales (7 males and 6 females) during the peak of the breeding season in Reunion Island. A switching-state-space model was applied to the telemetry data, in order to discriminate between "transiting" and "localized" movements, the latter of which relates to meandering behavior within putative breeding habitats, and a kernel density analysis was used to assess the spatial scale of the main putative breeding sites. Whales were tracked for up to 71 days from 31/07/2013 to 16/10/2013. The mean transmission duration was 25.7 days and the mean distance travelled was 2125.8 km. The tracks showed consistent movement of whales from Reunion to Madagascar, demonstrating a high level of connectivity between the two sub-regions, and the use of yet unknown breeding sites such as underwater seamounts (La Perouse) and banks (Mascarene Plateau). A localized movement pattern occurred in distinct bouts along the tracks, suggesting that whales were involved in breeding activity for 4.3 consecutive days on average, after which they resume transiting for an average of 6.6 days. Males visited several breeding sites within the SWIO, suggesting for the first time a movement strategy at a basin scale to maximize mating. Unexpectedly, females with calf also showed extensive transiting movement, while they engaged in localized behavior mainly off Reunion and Sainte-Marie (East Madagascar). The results indicated that whales from Reunion do not represent a discrete population. Discrete breeding sites were identified, thereby highlighting priority areas for conservation. The study is a first attempt to quantify movement of humpback whales within the southwestern Indian Ocean breeding range. We demonstrate a wandering behavior with stopovers at areas that likely represent key breeding habitat, a strategy which may enhance likelihood of individual reproductive success.
Genetic parameters for carcass weight, conformation and fat in five beef cattle breeds.
Kause, A; Mikkola, L; Strandén, I; Sirkko, K
2015-01-01
Profitability of beef production can be increased by genetically improving carcass traits. To construct breeding value evaluations for carcass traits, breed-specific genetic parameters were estimated for carcass weight, carcass conformation and carcass fat in five beef cattle breeds in Finland (Hereford, Aberdeen Angus, Simmental, Charolais and Limousin). Conformation and fat were visually scored using the EUROP carcass classification. Each breed was separately analyzed using a multitrait animal model. A total of 6879-19 539 animals per breed had phenotypes. For the five breeds, heritabilities were moderate for carcass weight (h 2=0.39 to 0.48, s.e.=0.02 to 0.04) and slightly lower for conformation (h 2=0.30 to 0.44, s.e.=0.02 to 0.04) and carcass fat (h 2=0.29 to 0.44, s.e.=0.02 to 0.04). The genetic correlation between carcass weight and conformation was favorable in all breeds (r G=0.37 to 0.53, s.e.=0.04 to 0.05), heavy carcasses being genetically more conformed. The phenotypic correlation between carcass weight and carcass fat was moderately positive in all breeds (r P=0.21 to 0.32), implying that increasing carcass weight was related to increasing fat levels. The respective genetic correlation was the strongest in Hereford (r G=0.28, s.e.=0.05) and Angus (r G=0.15, s.e.=0.05), the two small body-sized British breeds with the lowest conformation and the highest fat level. The correlation was weaker in the other breeds (r G=0.08 to 0.14). For Hereford, Angus and Simmental, more conformed carcasses were phenotypically fatter (r P=0.11 to 0.15), but the respective genetic correlations were close to zero (r G=-0.05 to 0.04). In contrast, in the two large body-sized and muscular French breeds, the genetic correlation between conformation and fat was negative and the phenotypic correlation was close to zero or negative (Charolais: r G=-0.18, s.e.=0.06, r P=0.02; Limousin: r G=-0.56, s.e.=0.04, r P=-0.13). The results indicate genetic variation for the genetic improvement of the carcass traits, favorable correlations for the simultaneous improvement of carcass weight and conformation in all breeds, and breed differences in the correlations of carcass fat.
26 CFR 1.1231-2 - Livestock held for draft, breeding, dairy, or sporting purposes.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 26 Internal Revenue 11 2011-04-01 2011-04-01 false Livestock held for draft, breeding, dairy, or... Gains and Losses § 1.1231-2 Livestock held for draft, breeding, dairy, or sporting purposes. (a)(1) In... livestock, regardless of age, held by the taxpayer for draft, breeding, dairy, or sporting purposes, and...
Evidence of autumn breeding in red squirrels, Tamiasciurus hudsonicus, in western Montana
Dean E. Pearson
2000-01-01
Red Squirrels (Tamiasciurus hudsonicus) routinely breed biannually in eastern North America, but normally breed once annually in western North America. However, a postpartum estrus resulting in two breeding seasons per year has been documented within the maritime region of British Columbia. I present two accounts of Red Squirrel behavior suggestive of autumn...
Breeding for resistance to downy mildews and stalk rots in maize.
Lal, S; Singh, I S
1984-12-01
The present review includes information on distribution, symptoms, inoculation techniques, disease rating, sources of resistance, genetics of resistance, breeding approaches for resistance, and the present status of resistance breeding with respect to Sclerophthora and Peronosclerospora downy mildews and Erwinia, Cephalosporium and Fusarium stalk rots. Some suggestions highlighting research gaps pertinent to future breeding strategies are mentioned.
USDA-ARS?s Scientific Manuscript database
Most artificial-insemination organizations in the United States now market sex-sorted semen. For 10.8 million US Holstein breedings with conventional semen since January 2006 and 122,705 sexed-semen breedings, data were available from all breedings for conception rate, 12 and 9% of breedings for cal...
Canine Breed-Specific Hepatopathies.
Watson, Penny
2017-05-01
Canine hepatopathies, both congenital and acquired, arise from an interaction between genes and environment. Many show increased breed prevalences. This article reviews the current understanding on breed predispositions for congenital portosystemic shunts; microvascular dysplasia and portal vein hypoplasia; ductal plate abnormalities (congenital hepatic fibrosis and Caroli disease); chronic hepatitis (both copper associated and idiopathic); vacuolar hepatopathies; and gallbladder mucocele. Although all these diseases can occur in many breeds and crossbreeds, understanding breed predispositions helps recognition and will guide future research to improve understanding of causes and treatments. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.
Fish genome manipulation and directional breeding.
Ye, Ding; Zhu, ZuoYan; Sun, YongHua
2015-02-01
Aquaculture is one of the fastest developing agricultural industries worldwide. One of the most important factors for sustainable aquaculture is the development of high performing culture strains. Genome manipulation offers a powerful method to achieve rapid and directional breeding in fish. We review the history of fish breeding methods based on classical genome manipulation, including polyploidy breeding and nuclear transfer. Then, we discuss the advances and applications of fish directional breeding based on transgenic technology and recently developed genome editing technologies. These methods offer increased efficiency, precision and predictability in genetic improvement over traditional methods.
Breeding and Selection of New Switchgrass Varieties for Increased Biomass Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taliaferro, C.M.
2003-05-27
Switchgrass breeding and genetics research was conducted from 1992-2002 at the Oklahoma State University as part of the national DOE-Bioenergy Feedstock Development Program (BFDP) effort to develop the species as a bioenergy feedstock crop. The fundamental objective of the program was to implement and conduct a breeding program to increase biomass yield capability in switchgrass and develop cultivars for the central and southern United States. Supporting research objectives included: (1) switchgrass germplasm collection, characterization, and enhancement; (2) elucidation of cytogenetic and breeding behavior; and (3) identification of best breeding procedures.
Rice Molecular Breeding Laboratories in the Genomics Era: Current Status and Future Considerations
Collard, Bert C. Y.; Vera Cruz, Casiana M.; McNally, Kenneth L.; Virk, Parminder S.; Mackill, David J.
2008-01-01
Using DNA markers in plant breeding with marker-assisted selection (MAS) could greatly improve the precision and efficiency of selection, leading to the accelerated development of new crop varieties. The numerous examples of MAS in rice have prompted many breeding institutes to establish molecular breeding labs. The last decade has produced an enormous amount of genomics research in rice, including the identification of thousands of QTLs for agronomically important traits, the generation of large amounts of gene expression data, and cloning and characterization of new genes, including the detection of single nucleotide polymorphisms. The pinnacle of genomics research has been the completion and annotation of genome sequences for indica and japonica rice. This information—coupled with the development of new genotyping methodologies and platforms, and the development of bioinformatics databases and software tools—provides even more exciting opportunities for rice molecular breeding in the 21st century. However, the great challenge for molecular breeders is to apply genomics data in actual breeding programs. Here, we review the current status of MAS in rice, current genomics projects and promising new genotyping methodologies, and evaluate the probable impact of genomics research. We also identify critical research areas to “bridge the application gap” between QTL identification and applied breeding that need to be addressed to realize the full potential of MAS, and propose ideas and guidelines for establishing rice molecular breeding labs in the postgenome sequence era to integrate molecular breeding within the context of overall rice breeding and research programs. PMID:18528527
Haig, Susan M.; Oring, L.W.; Sanzenbacher, Peter M.; Taft, Oriane W.
2002-01-01
Western Willets (Catoptrophorus semipalmatus inornatus) were banded (n = 146 breeding adults and chicks) and radio-marked (n = 68 adults) at three western Great Basin wetland complexes to determine inter- and intraseasonal space use and movement patterns (primarily in 1998 and 1999). Birds were then tracked to overwintering sites where migratory connectivity and local movements were documented. Willets arrived synchronously at breeding sites during mid-April and spent less than 12 weeks in the Great Basin. There were no movements to other sites in the Great Basin during the breeding or postbreeding season. However, most breeding birds moved locally on a daily basis from upland nest sites to wetland foraging sites. The mean distance breeding birds were detected from nests did not differ between sexes or between members of a pair, although these distances were greater among postbreeding than breeding birds. Home-range estimates did not differ significantly between paired males and females during breeding or postbreeding. However, female home ranges were larger following breeding than during breeding. Shortly after chicks fledged, adult Willets left the Great Basin for locations primarily at coastal and estuarine sites in the San Francisco Bay area. Limited data revealed little among-site movements once Willets arrived at the coast, and birds appeared to be site faithful in subsequent winters. Winter sites of western Great Basin Willets differed from those used by birds from other areas in the subspecies' range, suggesting another subspecies or distinct population segment may exist. This study illustrates the importance of understanding movements and space use throughout the annual cycle in conservation planning.
Haig, S.M.; Oring, L.W.; Sanzenbacher, P.M.; Taft, O.W.
2002-01-01
Western Willets (Catoptrophorus semipalmatus inornatus) were banded (n = 146 breeding adults and chicks) and radio-marked (n = 68 adults) at three western Great Basin wetland complexes to determine inter- and intraseasonal space use and movement patterns (primarily in 1998 and 1999). Birds were then tracked to overwintering sites where migratory connectivity and local movements were documented. Willets arrived synchronously at breeding sites during mid-April and spent less than 12 weeks in the Great Basin. There were no movements to other sites in the Great Basin during the breeding or postbreeding season. However, most breeding birds moved locally on a daily basis from upland nest sites to wetland foraging sites. The mean distance breeding birds were detected from nests did not differ between sexes or between members of a pair, although these distances were greater among postbreeding than breeding birds. Home-range estimates did not differ significantly between paired males and females during breeding or postbreeding. However, female home ranges were larger following breeding than during breeding. Shortly after chicks fledged, adult Willets left the Great Basin for locations primarily at coastal and estuarine sites in the San Francisco Bay area. Limited data revealed little among-site movements once Willets arrived at the coast, and birds appeared to be site faithful in subsequent winters. Winter sites of western Great Basin Willets differed from those used by birds from other areas in the subspecies' range, suggesting another subspecies or distinct population segment may exist. This study illustrates the importance of understanding movements and space use throughout the annual cycle in conservation planning.
Similar recent selection criteria associated with different behavioural effects in two dog breeds.
Sundman, A-S; Johnsson, M; Wright, D; Jensen, P
2016-11-01
Selection during the last decades has split some established dog breeds into morphologically and behaviourally divergent types. These breed splits are interesting models for behaviour genetics since selection has often been for few and well-defined behavioural traits. The aim of this study was to explore behavioural differences between selection lines in golden and Labrador retriever, in both of which a split between a common type (pet and conformation) and a field type (hunting) has occurred. We hypothesized that the behavioural profiles of the types would be similar in both breeds. Pedigree data and results from a standardized behavioural test from 902 goldens (698 common and 204 field) and 1672 Labradors (1023 and 649) were analysed. Principal component analysis revealed six behavioural components: curiosity, play interest, chase proneness, social curiosity, social greeting and threat display. Breed and type affected all components, but interestingly there was an interaction between breed and type for most components. For example, in Labradors the common type had higher curiosity than the field type (F 1,1668 = 18.359; P < 0.001), while the opposite was found in goldens (F 1,897 = 65.201; P < 0.001). Heritability estimates showed considerable genetic contributions to the behavioural variations in both breeds, but different heritabilities between the types within breeds was also found, suggesting different selection pressures. In conclusion, in spite of similar genetic origin and similar recent selection criteria, types behave differently in the breeds. This suggests that the genetic architecture related to behaviour differs between the breeds. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Wells, Konstans; O'Hara, Robert B; Cooke, Brian D; Mutze, Greg J; Prowse, Thomas A A; Fordham, Damien A
2016-07-01
The reproduction of many species is determined by seasonally-driven resource supply. But it is difficult to quantify whether the fecundity is sensitive to short- or long-term exposure to environmental conditions such as rainfall that drive resource supply. Using 25 years of data on individual fecundity of European female rabbits, Oryctolagus cuniculus, from semiarid Australia, we investigate the role of individual body condition, rainfall and temperature as drivers of seasonal and long-term and population-level changes in fecundity (breeding probability, ovulation rate, embryo survival). We built distributed lag models in a hierarchical Bayesian framework to account for both immediate and time-lagged effects of climate and other environmental drivers, and possible shifts in reproduction over consecutive seasons. We show that rainfall during summer, when rabbits typically breed only rarely, increased breeding probability immediately and with time lags of up to 10 weeks. However, an earlier onset of the yearly breeding period did not result in more overall reproductive output. Better body condition was associated with an earlier onset of breeding and higher embryo survival. Breeding probability in the main breeding season declined with increased breeding activity in the preceding season and only individuals in good body condition were able to breed late in the season. Higher temperatures reduce breeding success across seasons. We conclude that a better understanding of seasonal dynamics and plasticity (and their interplay) in reproduction will provide crucial insights into how lagomorphs are likely to respond and potentially adapt to the influence of future climate and other environmental change.
Kurushima, J. D.; Lipinski, M. J.; Gandolfi, B.; Froenicke, L.; Grahn, J. C.; Grahn, R. A.; Lyons, L. A.
2012-01-01
Summary Both cat breeders and the lay public have interests in the origins of their pets, not only in the genetic identity of the purebred individuals, but also the historical origins of common household cats. The cat fancy is a relatively new institution with over 85% of its 40–50 breeds arising only in the past 75 years, primarily through selection on single-gene aesthetic traits. The short, yet intense cat breed history poses a significant challenge to the development of a genetic marker-based breed identification strategy. Using different breed assignment strategies and methods, 477 cats representing 29 fancy breeds were analysed with 38 short tandem repeats, 148 intergenic and five phenotypic single nucleotide polymorphisms. Results suggest the frequentist method of Paetkau (accuracy single nucleotide polymorphisms = 0.78, short tandem repeats = 0.88) surpasses the Bayesian method of Rannala and Mountain (single nucleotide polymorphisms = 0.56, short tandem repeats = 0.83) for accurate assignment of individuals to the correct breed. Additionally, a post-assignment verification step with the five phenotypic single nucleotide polymorphisms accurately identified between 0.31 and 0.58 of the mis-assigned individuals raising the sensitivity of assignment with the frequentist method to 0.89 and 0.92 single nucleotide polymorphisms and short tandem repeats respectively. This study provides a novel multi-step assignment strategy and suggests that, despite their short breed history and breed family groupings, a majority of cats can be assigned to their proper breed or population of origin, i.e. race. PMID:23171373
Evidence of selection signatures that shape the Persian cat breed.
Bertolini, Francesca; Gandolfi, Barbara; Kim, Eui Soo; Haase, Bianca; Lyons, Leslie A; Rothschild, Max F
2016-04-01
The Persian cat is mainly characterized by an extremely brachycephalic face as part of the standard body conformation. Despite the popularity, world-wide distribution, and economic importance of the Persian cat as a fancy breed, little is known about the genetics of their hallmark morphology, brachycephaly. Over 800 cats from different breeds including Persian, non-Persian breeds (Abyssinian, Cornish Rex, Bengal, La Perm, Norwegian Forest, Maine Coon, Manx, Oriental, and Siamese), and Persian-derived breeds (British Shorthair, Scottish Fold, Selkirk Rex) were genotyped with the Illumina 63 K feline DNA array. The experimental strategy was composed of three main steps: (i) the Persian dataset was screened for runs of homozygosity to find and select highly homozygous regions; (ii) selected Persian homozygous regions were evaluated for the difference of homozygosity between Persians and those considered non-Persian breeds, and, (iii) the Persian homozygous regions most divergent from the non-Persian breeds were investigated by haplotype analysis in the Persian-derived breeds. Four regions with high homozygosity (H > 0.7) were detected, each with an average length of 1 Mb. Three regions can be considered unique to the Persian breed, with a less conservative haplotype pattern in the Persian-derived breeds. Moreover, two genes, CHL1 and CNTN6 known to determine face shape modification in humans, reside in one of the identified regions and therefore are positional candidates for the brachycephalic face in Persians. In total, the homozygous regions contained several neuronal genes that could be involved in the Persian cat behavior and can provide new insights into cat domestication.
Jonas, Elisabeth; de Koning, Dirk Jan
Genomic Selection is an important topic in quantitative genetics and breeding. Not only does it allow the full use of current molecular genetic technologies, it stimulates also the development of new methods and models. Genomic selection, if fully implemented in commercial farming, should have a major impact on the productivity of various agricultural systems. But suggested approaches need to be applicable in commercial breeding populations. Many of the published research studies focus on methodologies. We conclude from the reviewed publications, that a stronger focus on strategies for the implementation of genomic selection in advanced breeding lines, introduction of new varieties, hybrids or multi-line crosses is needed. Efforts to find solutions for a better prediction and integration of environmental influences need to continue within applied breeding schemes. Goals of the implementation of genomic selection into crop breeding should be carefully defined and crop breeders in the private sector will play a substantial part in the decision-making process. However, the lack of published results from studies within, or in collaboration with, private companies diminishes the knowledge on the status of genomic selection within applied breeding programmes. Studies on the implementation of genomic selection in plant breeding need to evaluate models and methods with an enhanced emphasis on population-specific requirements and production environments. Adaptation of methods to breeding schemes or changes to breeding programmes for a better integration of genomic selection strategies are needed across species. More openness with a continuous exchange will contribute to successes.
Lesser scaup breeding probability and female survival on the yukon flats, Alaska
Martin, K.H.; Lindberg, M.S.; Schmutz, J.A.; Bertram, M.R.
2009-01-01
Information on the ecology of waterfowl breeding in the boreal forest is lacking, despite the boreal region's importance to continental waterfowl populations and to duck species that are currently declining, such as lesser scaup (Aythya affinis). We estimated breeding probability and breeding season survival of female lesser scaup on the Yukon Flats National Wildlife Refuge, Alaska, USA, in 2005 and 2006. We captured and marked 93 lesser scaup with radiotransmitters during prelaying and nesting periods. Although all marked lesser scaup females were paired throughout prelaying and incubation periods, we estimated breeding probability over both years as 0.12 (SE = 0.05, n = 67) using telemetry. Proportion of lesser scaup females undergoing rapid follicle growth at capture in 2006 was 0.46 (SE = 0.11, n = 37), based on concentration of yolk precursors in blood plasma. By combining methods based on telemetry, yolk precursors, and postovulatory follicles, we estimated maximum breeding probability as 0.68 (SE = 0.08, n = 37) in 2006. Notably, breeding probability was positively related to female body mass. Survival of female lesser scaup during the nesting and brood-rearing periods was 0.92 (SE = 0.05) in 2005 and 0.86 (SE = 0.08) in 2006. Our results suggest that breeding probability is lower than expected for lesser scaup. In addition, the implicit assumption of continental duck-monitoring programs that all paired females attempt to breed should be reevaluated. Recruitment estimates based on annual breeding-pair surveys may overestimate productivity of scaup pairs in the boreal forest. ?? The Wildlife Society.
Shinada, Hiroshi; Yamamoto, Toshio; Yamamoto, Eiji; Hori, Kiyosumi; Yonemaru, Junichi; Matsuba, Shuichi; Fujino, Kenji
2014-04-01
The rice local population was clearly differentiated into six groups over the 100-year history of rice breeding programs in the northern limit of rice cultivation over the world. Genetic improvements in plant breeding programs in local regions have led to the development of new cultivars with specific agronomic traits under environmental conditions and generated the unique genetic structures of local populations. Understanding historical changes in genome structures and phenotypic characteristics within local populations may be useful for identifying profitable genes and/or genetic resources and the creation of new gene combinations in plant breeding programs. In the present study, historical changes were elucidated in genome structures and phenotypic characteristics during 100-year rice breeding programs in Hokkaido, the northern limit of rice cultivation in the world. We selected 63 rice cultivars to represent the historical diversity of this local population from landraces to the current breeding lines. The results of the phylogenetic analysis demonstrated that these cultivars clearly differentiated into six groups over the history of rice breeding programs. Significant differences among these groups were detected in five of the seven traits, indicating that the differentiation of the Hokkaido rice population into these groups was correlated with these phenotypic changes. These results demonstrated that breeding practices in Hokkaido have created new genetic structures for adaptability to specific environmental conditions and breeding objectives. They also provide a new strategy for rice breeding programs in which such unique genes in local populations in the world can explore the genetic potentials of the local populations.
Chase, C C; Chenoweth, P J; Larsen, R E; Olson, T A; Hammond, A C; Menchaca, M A; Randel, R D
1997-02-01
To determine the effect of breed on growth and reproductive development, weaned bulls in each of 2 yr were managed as a single group for approximately a year. In Year 1, the study group consisted of 24 Angus, 24 Brahman, 20 Hereford and 14 Senepol bulls, while in Year 2, it contained 25 Angus, 17 Brahman. 13 Romosinuano and 9 Nellore x Brahman bulls. Body and testicular growth measurements were recorded at 6-wk intervals. At approximately 1 yr of age and quarterly thereafter (4 periods), bulls were evaluated for libido, pubertal status, and GnRH-induced LH and testosterone secretion. Significant breed-by-age interactions occurred for most growth measurements. Brahman bulls (Bos indicus ) were (P < 0.05) older and heavier at puberty than Angus, Hereford, Senepol and Romosinuano bulls (Bos taurus ). Libido scores were lowest for Brahman and Nell ore x Brahman bulls (Bos indicus ). highest for Angus and Hereford bulls (temperate Bos taurus breeds) and intermediate for Senepol and Romosinuano bulls (tropical Bos taurus breeds; P < 0.05). Differences were not consistent among breeds or between years for GnRH-induced LH secretion. In both years, basal testosterone concentrations and areas under the GnRH-induced testosterone curve were higher (P < 0.05) for Angus and Hereford bulls (temperate breeds) than for Brahman, Senepol, Romosinuano and Nellore x Brahman bulls (tropical breeds). In conclusion, reproductive development of Senepol and Romosinuano bulls (tropical Bos taurus breeds) was more similar to Angus and Hereford bulls (temperate Bos taurus breeds) than to Brahman and Nellore x Brahman bulls (Bos indicus ).
Recent advances of microbial breeding via heavy-ion mutagenesis at IMP.
Hu, W; Li, W; Chen, J
2017-10-01
Nowadays, the value of heavy-ion mutagenesis has been accepted as a novel powerful mutagen technique to generate new microbial mutants due to its high linear energy transfer and high relative biological effectiveness. This paper briefly reviews recent progress in developing a more efficient mutagenesis technique for microbial breeding using heavy-ion mutagenesis, and also presents the outline of the beam line for microbial breeding in Heavy Ion Research Facility of Lanzhou. Then, new insights into microbial biotechnology via heavy-ion mutagenesis are also further explored. We hope that our concerns will give deep insight into microbial breeding biotechnology via heavy-ion mutagenesis. We also believe that heavy-ion mutagenesis breeding will greatly contribute to the progress of a comprehensive study industrial strain engineering for bioindustry in the future. There is currently a great interest in developing rapid and diverse microbial mutation tool for strain modification. Heavy-ion mutagenesis has been proved as a powerful technology for microbial breeding due to its broad spectrum of mutation phenotypes with high efficiency. In order to deeply understand heavy-ion mutagenesis technology, this paper briefly reviews recent progress in microbial breeding using heavy-ion mutagenesis at IMP, and also presents the outline of the beam line for microbial breeding in Heavy Ion Research Facility of Lanzhou (HIRFL) as well as new insights into microbial biotechnology via heavy-ion mutagenesis. Thus, this work can provide the guidelines to promote the development of novel microbial biotechnology cross-linking heavy-ion mutagenesis breeding that could make breeding process more efficiently in the future. © 2017 The Society for Applied Microbiology.
Steen, Valerie A.; Powell, Abby N.
2012-01-01
We examined wetland selection by the Black Tern (Chlidonias niger), a species that breeds primarily in the prairie pothole region, has experienced population declines, and is difficult to manage because of low site fidelity. To characterize its selection of wetlands in this region, we surveyed 589 wetlands throughout North and South Dakota. We documented breeding at 5% and foraging at 17% of wetlands. We created predictive habitat models with a machine-learning algorithm, Random Forests, to explore the relative role of local wetland characteristics and those of the surrounding landscape and to evaluate which characteristics were important to predicting breeding versus foraging. We also examined area-dependent wetland selection while addressing the passive sampling bias by replacing occurrence of terns in the models with an index of density. Local wetland variables were more important than landscape variables in predictions of occurrence of breeding and foraging. Wetland size was more important to prediction of foraging than of breeding locations, while floating matted vegetation was more important to prediction of breeding than of foraging locations. The amount of seasonal wetland in the landscape was the only landscape variable important to prediction of both foraging and breeding. Models based on a density index indicated that wetland selection by foraging terns may be more area dependent than that by breeding terns. Our study provides some of the first evidence for differential breeding and foraging wetland selection by Black Terns and for a more limited role of landscape effects and area sensitivity than has been previously shown.
Fraser, Kevin C; Stutchbury, Bridget J M; Silverio, Cassandra; Kramer, Patrick M; Barrow, John; Newstead, David; Mickle, Nanette; Cousens, Bruce F; Lee, J Charlene; Morrison, Danielle M; Shaheen, Tim; Mammenga, Paul; Applegate, Kelly; Tautin, John
2012-12-22
North American birds that feed on flying insects are experiencing steep population declines, particularly long-distance migratory populations in the northern breeding range. We determine, for the first time, the level of migratory connectivity across the range of a songbird using direct tracking of individuals, and test whether declining northern populations have higher exposure to agricultural landscapes at their non-breeding grounds in South America. We used light-level geolocators to track purple martins, Progne subis, originating from North American breeding populations, coast-to-coast (n = 95 individuals). We show that breeding populations of the eastern subspecies, P. s. subis, that are separated by ca. 2000 km, nevertheless have almost completely overlapping non-breeding ranges in Brazil. Most (76%) P. s. subis overwintered in northern Brazil near the Amazon River, not in the agricultural landscape of southern Brazil. Individual non-breeding sites had an average of 91 per cent forest and only 4 per cent agricultural ground cover within a 50 km radius, and birds originating from declining northern breeding populations were not more exposed to agricultural landscapes than stable southern breeding populations. Our results show that differences in wintering location and habitat do not explain recent trends in breeding population declines in this species, and instead northern populations may be constrained in their ability to respond to climate change.
Nepolean, Thirunavukkarsau; Kaul, Jyoti; Mukri, Ganapati; Mittal, Shikha
2018-01-01
Breeding science has immensely contributed to the global food security. Several varieties and hybrids in different food crops including maize have been released through conventional breeding. The ever growing population, decreasing agricultural land, lowering water table, changing climate, and other variables pose tremendous challenge to the researchers to improve the production and productivity of food crops. Drought is one of the major problems to sustain and improve the productivity of food crops including maize in tropical and subtropical production systems. With advent of novel genomics and breeding tools, the way of doing breeding has been tremendously changed in the last two decades. Drought tolerance is a combination of several component traits with a quantitative mode of inheritance. Rapid DNA and RNA sequencing tools and high-throughput SNP genotyping techniques, trait mapping, functional characterization, genomic selection, rapid generation advancement, and other tools are now available to understand the genetics of drought tolerance and to accelerate the breeding cycle. Informatics play complementary role by managing the big-data generated from the large-scale genomics and breeding experiments. Genome editing is the latest technique to alter specific genes to improve the trait expression. Integration of novel genomics, next-generation breeding, and informatics tools will accelerate the stress breeding process and increase the genetic gain under different production systems. PMID:29696027
Signatures of selection in five Italian cattle breeds detected by a 54K SNP panel.
Mancini, Giordano; Gargani, Maria; Chillemi, Giovanni; Nicolazzi, Ezequiel Luis; Marsan, Paolo Ajmone; Valentini, Alessio; Pariset, Lorraine
2014-02-01
In this study we used a medium density panel of SNP markers to perform population genetic analysis in five Italian cattle breeds. The BovineSNP50 BeadChip was used to genotype a total of 2,935 bulls of Piedmontese, Marchigiana, Italian Holstein, Italian Brown and Italian Pezzata Rossa breeds. To determine a genome-wide pattern of positive selection we mapped the F st values against genome location. The highest F st peaks were obtained on BTA6 and BTA13 where some candidate genes are located. We identified selection signatures peculiar of each breed which suggest selection for genes involved in milk or meat traits. The genetic structure was investigated by using a multidimensional scaling of the genetic distance matrix and a Bayesian approach implemented in the STRUCTURE software. The genotyping data showed a clear partitioning of the cattle genetic diversity into distinct breeds if a number of clusters equal to the number of populations were given. Assuming a lower number of clusters beef breeds group together. Both methods showed all five breeds separated in well defined clusters and the Bayesian approach assigned individuals to the breed of origin. The work is of interest not only because it enriches the knowledge on the process of evolution but also because the results generated could have implications for selective breeding programs.
Emmenegger, Tamara; Hahn, Steffen; Bauer, Silke
2014-03-21
The timing of migration substantially influences individual fitness. To match peak requirements with peak resource availability, we hypothesized that individual migrants schedule spring migration in close relation to seasonal changes in environmental conditions along the route and particularly, at the breeding destination.To test this hypothesis, we investigated the timing of spring migration in male common nightingales Luscinia megarhynchos, a small Palearctic-African long-distance migrant, by linking spring migration timing to the phenology of local environmental conditions at non-breeding migratory stopover and breeding sites. In particular, we related individual migration decisions (i.e. departure and arrival) of nine males to site-specific vegetation phenology (based on remotely sensed vegetation index) and a proxy of food availability (based on insects' thermal requirements). We found weak relation of departures from non-breeding and no relation of stopover timing with local phenology. However, our results showed that individuals, which departed early from their non-breeding sites and arrived early at the breeding site closely matched spring green-up there. Early arrival at the breeding site meant also a close match with peak food availability for adults and in a time-lagged manner, for offspring. Our findings suggest that male nightingale used cues other than local phenology for their departure decisions from non-breeding grounds and that there is some evidence for equalizing late departures during the course of migration.
Genetic variation in the endangered Southwestern Willow Flycatcher
Busch, Joseph; Miller, Mark P.; Paxton, E.H.; Sogge, M.K.; Keim, Paul
2000-01-01
The Southwestern Willow Flycatcher (Empidonax traillii extimus) is an endangered Neotropical migrant that breeds in isolated remnants of dense riparian habitat in the southwestern United States. We estimated genetic variation at 20 breeding sites of the Southwestern Willow Flycatcher (290 individuals) using 38 amplified fragment length polymorphisms (AFLPs). Our results suggest that considerable genetic diversity exists within the subspecies and within local breeding sites. Statistical analyses of genetic variation revealed only slight, although significant, differentiation among breeding sites (Mantel's r = 0.0705, P < 0.0005; θ = 0.0816, 95% CI = 0.0608 to 0.1034; ΦST = 0.0458, P < 0.001). UPGMA cluster analysis of the AFLP markers indicates that extensive gene flow has occurred among breeding sites. No one site stood out as being genetically unique or isolated. Therefore, the small level of genetic structure that we detected may not be biologically significant. Ongoing field studies are consistent with this conclusion. Of the banded birds that were resighted or recaptured in Arizona during the 1996 to 1998 breeding seasons, one-third moved between breeding sites and two-thirds were philopatric. Low differentiation may be the result of historically high rangewide diversity followed by recent geographic isolation of breeding sites, although observational data indicate that gene flow is a current phenomenon. Our data suggest that breeding groups of E. t. extimus act as a metapopulation.
Cheng, Peng Hui; Liang, Juan Boo; Wu, Yin Bao; Wang, Yan; Tufarelli, Vincenzo; Laudadio, Vito; Liao, Xin Di
2017-08-01
Native Lantang and commercial Duroc pigs were used as animal models to evaluate the differences existing in dietary fiber utilization ability between breeds. Animals were fed the same diet from weaning (4 weeks) to 4 months of age. Neutral detergent fiber (NDF) from wheat bran (as substrate) and fecal samples from the two breeds (as inoculum) were used in an in vitro gas production trial. Results showed that cumulative and maximum gas productions were higher in inocula from Lantang than those from the Duroc breed (P < 0.05). The degradation capacity of NDF for microbiome from Lantang fecal samples were significantly higher compared to Duroc (P < 0.01). The total quantity of short-chain fatty acids and its constituents from the fermentation liquors were different between breeds, suggesting that the dynamic characteristics of fermentation differed between the two breeds. The PCR denaturing gradient gel electrophoresis fingerprint and cluster analysis demonstrated that microbial communities of the two breeds were separated into two clusters and the bacterial community structure of large intestine among the two breed of pigs was different. Our results concluded that Lantang had higher dietary fiber degradation capacity than Duroc pigs, and the higher degradation capacity for the former breed was due to differences in the inherent microbial community in their respective large intestines. © 2016 Japanese Society of Animal Science.
Druml, T; Baumung, R; Sölkner, J
2009-10-01
The pedigree of the current Austrian Noriker draught horse population comprising 2808 horses was traced back to the animals considered as founders of this breed. In total, the number of founders was 1991, the maximum pedigree length was 31 generations, with an average of 12.3 complete generations. Population structure in this autochthonous Austrian draught horse breed is defined by seven breeding regions (Carinthia, Lower Austria, Salzburg, Styria, Tyrol, Upper Austria and Vorarlberg) or through six coat colour groups (Bay, Black, Chestnut, Roan, Leopard, Tobiano). Average inbreeding coefficients within the breeding regions ranged from 4.5% to 5.5%; for the colour groups, the coefficients varied from 3.5% to 5.9%. Other measures of genetic variability like the effective number of founders, ancestors and founder genomes revealed a slightly different genetic background of the subpopulations. Average co-ancestries between and within breeding areas showed that the Salzburg population may be considered as the nucleus or original stock whereas all other subpopulations showed high relationship to horses from Salzburg. The target of draught horse breeding in the 21st century does not meet the breeding concept of maximizing genetic gains any more. Stabilizing selection takes place. In this study, we show that demographic factors as well as structure given by different coat colours helped to maintain genetic diversity in this endangered horse breed.
A Genetic Analysis of Taoyuan Pig and Its Phylogenetic Relationship to Eurasian Pig Breeds
Li, Kuan-Yi; Li, Kuang-Ti; Cheng, Chun-Chun; Chen, Chia-Hsuan; Hung, Chien-Yi; Ju, Yu-Ten
2015-01-01
Taoyuan pig is a native Taiwan breed. According to the historical record, the breed was first introduced to Taiwan from Guangdong province, Southern China, around 1877. The breed played an important role in Taiwan’s early swine industry. It was classified as an indigenous breed in 1986. After 1987, a conserved population of Taoyuan pig was collected and reared in isolation. In this study, mitochondrial DNA sequences and 18 microsatellite markers were used to investigate maternal lineage and genetic diversity within the Taoyuan pig population. Population differentiation among Taoyuan, Asian type, and European type pig breeds was also evaluated using differentiation indices. Only one D-loop haplotype of the Taoyuan pig was found. It clustered with Lower Changjiang River Basin and Central China Type pig breeds. Based on the polymorphism of microsatellite markers, a positive fixation index value (FIS) indicates that the conserved Taoyuan population suffers from inbreeding. In addition, high FST values (>0.2105) were obtained, revealing high differentiation among these breeds. Non-metric multi-dimensional scaling showed a clear geometric structure among 7 breeds. Together these results indicate that maternally Taoyuan pig originated in the Lower Changjiang River Basin and Central China; however, since being introduced to Taiwan differentiation has occurred. In addition, Taoyuan pig has lost genetic diversity in both its mitochondrial and nuclear genomes. PMID:25656199
NCFES
1966-01-01
Included are (1) 22 technical papers (by researchers from many sections of the United States and Canada) pertaining to selection and progeny testing, radiation genetics, intraspecific variation, natural and artificial hybridization, breeding systems, breeding methodology and specialized tree breeding techniques, and applied breeding and allied fields; (2) concise...
26 CFR 1.1231-2 - Livestock held for draft, breeding, dairy, or sporting purposes.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 26 Internal Revenue 11 2010-04-01 2010-04-01 true Livestock held for draft, breeding, dairy, or... Losses § 1.1231-2 Livestock held for draft, breeding, dairy, or sporting purposes. (a)(1) In the case of..., regardless of age, held by the taxpayer for draft, breeding, dairy, or sporting purposes, and held by him: (i...
Breeding dispersal of Mexican Spotted Owls in the Sacramento Mountains, New Mexico
Joseph L. Ganey; Darrell L. Apprill; Todd A. Rawlinson; Sean C. Kyle; Ryan S. Jonnes; James P. Ward
2014-01-01
Dispersal is a key process influencing population dynamics and gene flow in species. Despite this, little is known about breeding dispersal in threatened Mexican Spotted Owls (Strix occidentalis lucida), here defined as movement of a non-juvenile owl between territories where it had the opportunity to breed. We observed 28 cases of breeding dispersal during a study of...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-19
... recombinant DNA technology, or breeding one or more transgenic rodents to create a new transgenic rodent (i.e., breeding of two different transgenic rodents or the breeding of a transgenic rodent and a non-transgenic... NIH Guidelines so as to exempt breeding of almost all transgenic rodents that can be housed at BL1...
Teresa J Lorenz
2016-01-01
Between-year breeding dispersal has not been previously documented in White-headed Woodpeckers (Picoides albolarvatus). Therefore, resightings of color-banded adults on previous yearsâ breeding territories have been considered a means of estimating annual adult survival. From 2013 to 2015, I observed 2 cases of between-year breeding dispersal by...
Evaluation of genetic diversity and population structure of West-Central Indian cattle breeds.
Shah, Tejas M; Patel, Jaina S; Bhong, Chandrakant D; Doiphode, Aakash; Umrikar, Uday D; Parmar, Shivnandan S; Rank, Dharamshibhai N; Solanki, Jitendra V; Joshi, Chaitanya G
2013-08-01
Evaluations of genetic diversity in domestic livestock populations are necessary to implement region-specific conservation measures. We determined the genetic diversity and evolutionary relationships among eight geographically and phenotypically diverse cattle breeds indigenous to west-central India by genotyping these animals for 22 microsatellite loci. A total of 326 alleles were detected, and the expected heterozygosity ranged from 0.614 (Kenkatha) to 0.701 (Dangi). The mean number of alleles among the cattle breeds ranged from 7.182 (Khillar) to 9.409 (Gaolao). There were abundant genetic variations displayed within breeds, and the genetic differentiation was also high between the Indian cattle breeds, which displayed 15.9% of the total genetic differentiation among the different breeds. The genetic differentiation (pairwise FST ) among the eight Indian breeds varied from 0.0126 for the Kankrej-Malvi pair to 0.2667 for Khillar-Kenkatha pair. The phylogeny, principal components analysis, and structure analysis further supported close grouping of Kankrej, Malvi, Nimari and Gir; Gaolao and Kenkatha, whereas Dangi and Khillar remained at distance from other breeds. © 2012 The Authors, Animal Genetics © 2012 Stichting International Foundation for Animal Genetics.
Roberts, Taryn; McGreevy, Paul D
2010-03-01
Hip dysplasia (HD) is the most common skeletal disease in purebred dogs. Radiographic schemes developed to reduce prevalence through selective breeding have had limited success, but the role of selecting for morphological characteristics prized in the show-ring and dictated by breed standards has not been fully explored. This study correlated published scores of hip pathology with measurements of body length to height ratio from photographs of Best-of-Breed specimens from 30 breeds (n=12/breed) to establish whether selection criteria could be compromising welfare by increasing susceptibility to HD. Relative body length correlated strongly with higher rates of HD by breed data from the Orthopedic Foundation for Animals (Spearman r=0.727, P<0.001), the British Veterinary Association (r=0.701, P<0.001), and the Australian Veterinary Association (r=0.577, P<0.01). By favouring body shapes that are longer than they are tall, judges may be inadvertently selecting for conformational attributes predisposing dogs to HD, suggesting that ambiguity in breed standards and extreme relative body length phenotypes can engender serious welfare consequences and need to be re-evaluated. 2009 Elsevier Ltd. All rights reserved.
Nesteruk, L V; Makarova, N N; Svishcheva, G R; Stolpovsky, Yu A
2015-07-01
Estimation of the state of the genetic diversity and the originality of the breed structure is required for the conservation and management of domestic breeds of agricultural animals. The Romanov breed of sheep from the leading breeding and gene pool farms in Yaroslavl oblast (Russia) is the object of our study. ISS R fingerprinting was used as a molecular method of the study of sheep gene pools. Forty-three DNA fragments were detected (25 and 18, respectively) by two primers ((AG)9C and (GA)9C). Of the discovered ISSR markers, 81% were polymorphic. The coefficient of genetic originality was for the first time used for the study of the specificity and originality of the Romanov-breed gene pool. Based on its values, the studied individuals were divided into five classes depending on the frequency of the ISSR fragment. The most original or the rarest, as well as typical genotypes, were singled out in the Romanov sheep gene pool. Use the obtained data on genetic originality was proposed as a means to increase the efficiency of selection and breeding during the breeding of autochthonous breeds of domesticated animal species.
Genetic diversity of dog breeds: within-breed diversity comparing genealogical and molecular data.
Leroy, G; Verrier, E; Meriaux, J C; Rognon, X
2009-06-01
The genetic diversity of 61 dog breeds raised in France was investigated. Genealogical analyses were performed on the pedigree file of the French kennel club. A total of 1514 dogs were also genotyped using 21 microsatellite markers. For animals born from 2001 to 2005, the average coefficient of inbreeding ranged from 0.2% to 8.8% and the effective number of ancestors ranged from 9 to 209, according to the breed. The mean value of heterozygosity was 0.62 over all breeds (range 0.37-0.77). At the breed level, few correlations were found between genealogical and molecular parameters. Kinship coefficients and individual similarity estimators were, however, significantly correlated, with the best mean correlation being found for the Lynch & Ritland estimator (r = 0.43). According to both approaches, it was concluded that special efforts should be made to maintain diversity for three breeds, namely the Berger des Pyrénées, Braque Saint-Germain and Bull Terrier.
Combined prevalence of inherited skeletal disorders in dog breeds in Belgium.
Coopman, F; Broeckx, B; Verelst, E; Deforce, D; Saunders, J; Duchateau, L; Verhoeven, G
2014-01-01
Canine hip dysplasia (CHD), canine elbow dysplasia (CED), and humeral head osteochondrosis (HHOC) are inherited traits with uneven incidence in dog breeds. Knowledge of the combined prevalence of these three disorders is necessary to estimate the effect of the currently applied breeding strategies, in order to improve the genetic health of the population. Official screening results of the Belgian National Committee for Inherited Skeletal Disorders (NCSID) revealed that an average of 31.8% (CHD, CED, or both; n = 1273 dogs) and 47.2% (CHD, CED, HHOC, or a combination of these three diseases; n = 250 dogs) of dogs are mildly to severely affected by at least one skeletal disorder. According to the current breeding recommendations in some dog breeds in Belgium, these animals should be restricted (mild signs) or excluded (moderate to severe signs) from breeding. The introduction of genetic parameters, such as estimated breeding values, might create a better approach to gradually reduce the incidence of these complex inherited joint disorders, without compromising genetic population health.
Assessing the impact of breeding strategies on inherited disorders and genetic diversity in dogs.
Leroy, Grégoire; Rognon, Xavier
2012-12-01
In the context of management of genetic diversity and control of genetic disorders within dog breeds, a method is proposed for assessing the impact of different breeding strategies that takes into account the genealogical information specific to a given breed. Two types of strategies were investigated: (1) eradication of an identified monogenic recessive disorder, taking into account three different mating limitations and various initial allele frequencies; and (2) control of the population sire effect by limiting the number of offspring per reproducer. The method was tested on four dog breeds: Braque Saint Germain, Berger des Pyrénées, Coton de Tulear and Epagneul Breton. Breeding policies, such as the removal of all carriers from the reproduction pool, may have a range of effects on genetic diversity, depending on the breed and the frequency of deleterious alleles. Limiting the number of offspring per reproducer may also have a positive impact on genetic diversity. Copyright © 2012 Elsevier Ltd. All rights reserved.
Corbee, R J
2013-10-01
Obesity is an important disease with a growing incidence. Because obesity is related to several other diseases, and decreases life span, it is important to identify the population at risk. Several risk factors for obesity have been described in the literature. A higher incidence of obesity in certain breeds is often suggested. The aim of this study was to determine whether obesity occurs more often in certain breeds. The second aim was to relate the increased prevalence of obesity in certain breeds to the official standards of that breed. To this end, we investigated 1379 dogs of 128 different breeds by determining their body condition score (BCS). Overall, 18.6% of the show dogs had a BCS >5, and 1.1% of the show dogs had a BCS>7. There were significant differences between breeds, which could be correlated to the breed standards. It warrants firm discussions with breeders and judges in order to come to different interpretations of the standards to prevent overweight conditions from being the standard of beauty. © 2012 Blackwell Verlag GmbH.
Citrus breeding, genetics and genomics in Japan
Omura, Mitsuo; Shimada, Takehiko
2016-01-01
Citrus is one of the most cultivated fruits in the world, and satsuma mandarin (Citrus unshiu Marc.) is a major cultivated citrus in Japan. Many excellent cultivars derived from satsuma mandarin have been released through the improvement of mandarins using a conventional breeding method. The citrus breeding program is a lengthy process owing to the long juvenility, and it is predicted that marker-assisted selection (MAS) will overcome the obstacle and improve the efficiency of conventional breeding methods. To promote citrus molecular breeding in Japan, a genetic mapping was initiated in 1987, and the experimental tools and resources necessary for citrus functional genomics have been developed in relation to the physiological analysis of satsuma mandarin. In this paper, we review the progress of citrus breeding and genome researches in Japan and report the studies on genetic mapping, expression sequence tag cataloguing, and molecular characterization of breeding characteristics, mainly in terms of the metabolism of bio-functional substances as well as factors relating to, for example, fruit quality, disease resistance, polyembryony, and flowering. PMID:27069387
Vleeshouwers, Vivianne G A A; Oliver, Richard P
2014-03-01
One of most important challenges in plant breeding is improving resistance to the plethora of pathogens that threaten our crops. The ever-growing world population, changing pathogen populations, and fungicide resistance issues have increased the urgency of this task. In addition to a vital inflow of novel resistance sources into breeding programs, the functional characterization and deployment of resistance also needs improvement. Therefore, plant breeders need to adopt new strategies and techniques. In modern resistance breeding, effectors are emerging as tools to accelerate and improve the identification, functional characterization, and deployment of resistance genes. Since genome-wide catalogues of effectors have become available for various pathogens, including biotrophs as well as necrotrophs, effector-assisted breeding has been shown to be successful for various crops. "Effectoromics" has contributed to classical resistance breeding as well as for genetically modified approaches. Here, we present an overview of how effector-assisted breeding and deployment is being exploited for various pathosystems.
Verma, Subhash; Thakur, Aneesh; Katoch, Shailja; Shekhar, Chander; Wani, Aasim Habib; Kumar, Sandeep; Dohroo, Shweta; Singh, Geetanjali; Sharma, Mandeep
2017-10-01
Cattle are an integral part of the largely agrarian economy of India. Indigenous breeds of cattle comprise about 80% of total cattle population of the country and contribute significantly to the overall milk production. There are 40 recognized indigenous breeds of cattle and a number of uncharacterized non-descript cattle. Pahari cattle of Himachal Pradesh in Northern India are one such non-descript indigenous breed. Here we describe a comprehensive evaluation of haematobiochemical parameters and innate and adaptive immune response traits of Pahari cattle and a comparison with Jersey crossbred cattle. The study shows demonstrable differences in the two breeds with respect to some innate and adaptive immunological traits. This is a first attempt to characterize immune response traits of Pahari cattle and the results of the study provide an understanding of breed differences in immune status of cattle which could be useful for their breeding and conservations programs. Copyright © 2017 Elsevier B.V. All rights reserved.
Changing nest placement of Hawaiian Common Amakihi during the breeding cycle
van Riper, Charles; Kern, M. D.; Sogge, M. K.
1993-01-01
We studied the nesting behavior of the Common Amakihi (Hemignathus virens) from 1970-1981 on the island of Hawaii to determine if the species alters nest placement over a protracted 9-month breeding season. Birds preferentially chose the southwest quadrant of trees in which to build nests during all phases of the breeding season. It appeared that ambient temperature (Ta) was a contributing factor to differential nest placement between early and late phases of the annual breeding cycle. When Ta is low during the early (December-March) breeding period, Common Amakihi selected exposed nesting locations that benefitted them with maximum solar insolation. However, in the later phase of the breeding period (April-July) when Ta was much higher, renesting birds selected nest sites deeper in the canopy in significantly taller trees. This is one of the few documented examples in which a species changes location of nest during a breeding season, thus allowing exploitation of temporally differing microclimatic conditions.
Single nucleotide polymorphism discovery in bovine liver using RNA-seq technology.
Pareek, Chandra Shekhar; Błaszczyk, Paweł; Dziuba, Piotr; Czarnik, Urszula; Fraser, Leyland; Sobiech, Przemysław; Pierzchała, Mariusz; Feng, Yaping; Kadarmideen, Haja N; Kumar, Dibyendu
2017-01-01
RNA-seq is a useful next-generation sequencing (NGS) technology that has been widely used to understand mammalian transcriptome architecture and function. In this study, a breed-specific RNA-seq experiment was utilized to detect putative single nucleotide polymorphisms (SNPs) in liver tissue of young bulls of the Polish Red, Polish Holstein-Friesian (HF) and Hereford breeds, and to understand the genomic variation in the three cattle breeds that may reflect differences in production traits. The RNA-seq experiment on bovine liver produced 107,114,4072 raw paired-end reads, with an average of approximately 60 million paired-end reads per library. Breed-wise, a total of 345.06, 290.04 and 436.03 million paired-end reads were obtained from the Polish Red, Polish HF, and Hereford breeds, respectively. Burrows-Wheeler Aligner (BWA) read alignments showed that 81.35%, 82.81% and 84.21% of the mapped sequencing reads were properly paired to the Polish Red, Polish HF, and Hereford breeds, respectively. This study identified 5,641,401 SNPs and insertion and deletion (indel) positions expressed in the bovine liver with an average of 313,411 SNPs and indel per young bull. Following the removal of the indel mutations, a total of 195,3804, 152,7120 and 205,3184 raw SNPs expressed in bovine liver were identified for the Polish Red, Polish HF, and Hereford breeds, respectively. Breed-wise, three highly reliable breed-specific SNP-databases (SNP-dbs) with 31,562, 24,945 and 28,194 SNP records were constructed for the Polish Red, Polish HF, and Hereford breeds, respectively. Using a combination of stringent parameters of a minimum depth of ≥10 mapping reads that support the polymorphic nucleotide base and 100% SNP ratio, 4,368, 3,780 and 3,800 SNP records were detected in the Polish Red, Polish HF, and Hereford breeds, respectively. The SNP detections using RNA-seq data were successfully validated by kompetitive allele-specific PCR (KASPTM) SNP genotyping assay. The comprehensive QTL/CG analysis of 110 QTL/CG with RNA-seq data identified 20 monomorphic SNP hit loci (CARTPT, GAD1, GDF5, GHRH, GHRL, GRB10, IGFBPL1, IGFL1, LEP, LHX4, MC4R, MSTN, NKAIN1, PLAG1, POU1F1, SDR16C5, SH2B2, TOX, UCP3 and WNT10B) in all three cattle breeds. However, six SNP loci (CCSER1, GHR, KCNIP4, MTSS1, EGFR and NSMCE2) were identified as highly polymorphic among the cattle breeds. This study identified breed-specific SNPs with greater SNP ratio and excellent mapping coverage, as well as monomorphic and highly polymorphic putative SNP loci within QTL/CGs of bovine liver tissue. A breed-specific SNP-db constructed for bovine liver yielded nearly six million SNPs. In addition, a KASPTM SNP genotyping assay, as a reliable cost-effective method, successfully validated the breed-specific putative SNPs originating from the RNA-seq experiments.
van Nocker, Steve; Gardiner, Susan E
2014-01-01
Woody perennial plants, including trees that produce fruits and nuts of horticultural value, typically have long breeding cycles, and development and introduction of improved cultivars by plant breeders may require many breeding cycles and dozens of years. However, recent advances in biotechnologies and genomics have the potential to accelerate cultivar development greatly in all crops. This mini-review summarizes approaches to reduce the number and the duration of breeding cycles for horticultural tree crops, and outlines the challenges that remain to implement these into efficient breeding pipelines. PMID:26504538
Banteng and Bali cattle in Indonesia: status and forecasts.
Purwantara, B; Noor, R R; Andersson, G; Rodriguez-Martinez, H
2012-01-01
Bali cattle still represents 27% of the total cattle population in Indonesia, and it is considered the pillar breed for small farmers. Moreover, it is a breed of evolutionary importance regarding its direct ancestry from Banteng. However, there is a need for the establishment of a rational system for the evaluation of breeding soundness for indigenous Bali bulls to be used as sires for artificial insemination breeding programmes. Moreover, there is a need for cryobanking of well-identified genetic resources pertaining their use in evolutionary research and application as essential germplasm in breeding programmes. © 2012 Blackwell Verlag GmbH.
The application of biotechnology in medicinal plants breeding research in China.
Huang, He-Ping; Li, Jin-Cai; Huang, Lu-Qi; Wang, Dian-Lei; Huang, Peng; Nie, Jiu-Sheng
2015-07-01
Breeding is not only an important area of medicinal plants research but also the foundation for the superior varieties acquirement of medicinal plants. The rise of modern biotechnology provides good opportunities and new means for medicinal plants breeding research in China. Biotechnology shows its technical advantages and new development prospects in breeding of new medicinal plants varieties with high and stable yield, good quality, as well as stress-resistance. In this paper, we describe recent advances, problems, and development prospects about the application of modern biotechnology in medicinal plants breeding research in China.
Influence of a CIDR prior to bull breeding on pregnancy rates and subsequent calving distribution.
Lamb, G C; Dahlen, C R; Vonnahme, K A; Hansen, G R; Arseneau, J D; Perry, G A; Walker, R S; Clement, J; Arthington, J D
2008-11-01
We determined whether insertion of a CIDR for 7 days prior to the breeding season enhanced pregnancy rates and altered the date of conception in suckled beef cows mated naturally. Suckled beef cows (n=2033) from 15 locations were randomly assigned to one of two treatments: (1) cows received a CIDR 7 days prior to the breeding season for 7 days (CIDR; n=999); (2) cows received no treatment (Control; n=1034). On the first day of the breeding season bulls were introduced to herds at a rate of 15-25 cows per yearling bull or 20-30 cows per mature bull. Pregnancy status and the date of conception were determined via transrectal ultrasonography at 56 and 120 days after initiation of the breeding season. Overall pregnancy rates ranged from 59.3 to 98.9% among the 15 locations. The percentage of cows becoming pregnant during the first 30 days of the breeding season was similar between CIDR (68.2%) and Control (66.7%) cows, and overall pregnancy rates were similar between CIDR (88.9%) and Control (88.6%) cows. The average day of conception after initiation of the breeding season was shorter (P<0.01) for CIDR (20.1+/-0.8 days) compared to Control cows (23.2+/-0.8 days). Of cows conceiving during the breeding season, more (P<0.05) CIDR cows (35.9%) conceived during the first 10 days of the breeding season than Control cows (30.8%). Neither body condition score and nor parity affected pregnancy rates or days to conception, whereas pregnancy rates and days to conception were affected (P<0.01) by location and days postpartum. Days to conception were greater for cows that calved within 40 days (31.6+/-1.2 days) of initiation of the breeding season compared to cows calving between 40 and 50 days (25.3+/-1.2 days) prior to initiation of the breeding season, which were greater than those cows calving between 50-60 days (20.0+/-0.8 days) and 60-70 days (21.3+/-1.0 days) prior to initiation of the breeding season. Cows calving greater than 70 days (17.3+/-1.5 days) from initiation of the breeding season had the shortest interval to conception. We concluded that insertion of a CIDR prior to the breeding season failed to increase overall pregnancy rates, but did influence the average day of conception.
Weber, K L; Thallman, R M; Keele, J W; Snelling, W M; Bennett, G L; Smith, T P L; McDaneld, T G; Allan, M F; Van Eenennaam, A L; Kuehn, L A
2012-12-01
Genomic selection involves the assessment of genetic merit through prediction equations that allocate genetic variation with dense marker genotypes. It has the potential to provide accurate breeding values for selection candidates at an early age and facilitate selection for expensive or difficult to measure traits. Accurate across-breed prediction would allow genomic selection to be applied on a larger scale in the beef industry, but the limited availability of large populations for the development of prediction equations has delayed researchers from providing genomic predictions that are accurate across multiple beef breeds. In this study, the accuracy of genomic predictions for 6 growth and carcass traits were derived and evaluated using 2 multibreed beef cattle populations: 3,358 crossbred cattle of the U.S. Meat Animal Research Center Germplasm Evaluation Program (USMARC_GPE) and 1,834 high accuracy bull sires of the 2,000 Bull Project (2000_BULL) representing influential breeds in the U.S. beef cattle industry. The 2000_BULL EPD were deregressed, scaled, and weighted to adjust for between- and within-breed heterogeneous variance before use in training and validation. Molecular breeding values (MBV) trained in each multibreed population and in Angus and Hereford purebred sires of 2000_BULL were derived using the GenSel BayesCπ function (Fernando and Garrick, 2009) and cross-validated. Less than 10% of large effect loci were shared between prediction equations trained on (USMARC_GPE) relative to 2000_BULL although locus effects were moderately to highly correlated for most traits and the traits themselves were highly correlated between populations. Prediction of MBV accuracy was low and variable between populations. For growth traits, MBV accounted for up to 18% of genetic variation in a pooled, multibreed analysis and up to 28% in single breeds. For carcass traits, MBV explained up to 8% of genetic variation in a pooled, multibreed analysis and up to 42% in single breeds. Prediction equations trained in multibreed populations were more accurate for Angus and Hereford subpopulations because those were the breeds most highly represented in the training populations. Accuracies were less for prediction equations trained in a single breed due to the smaller number of records derived from a single breed in the training populations.
Genetic progress in multistage dairy cattle breeding schemes using genetic markers.
Schrooten, C; Bovenhuis, H; van Arendonk, J A M; Bijma, P
2005-04-01
The aim of this paper was to explore general characteristics of multistage breeding schemes and to evaluate multistage dairy cattle breeding schemes that use information on quantitative trait loci (QTL). Evaluation was either for additional genetic response or for reduction in number of progeny-tested bulls while maintaining the same response. The reduction in response in multistage breeding schemes relative to comparable single-stage breeding schemes (i.e., with the same overall selection intensity and the same amount of information in the final stage of selection) depended on the overall selection intensity, the selection intensity in the various stages of the breeding scheme, and the ratio of the accuracies of selection in the various stages of the breeding scheme. When overall selection intensity was constant, reduction in response increased with increasing selection intensity in the first stage. The decrease in response was highest in schemes with lower overall selection intensity. Reduction in response was limited in schemes with low to average emphasis on first-stage selection, especially if the accuracy of selection in the first stage was relatively high compared with the accuracy in the final stage. Closed nucleus breeding schemes in dairy cattle that use information on QTL were evaluated by deterministic simulation. In the base scheme, the selection index consisted of pedigree information and own performance (dams), or pedigree information and performance of 100 daughters (sires). In alternative breeding schemes, information on a QTL was accounted for by simulating an additional index trait. The fraction of the variance explained by the QTL determined the correlation between the additional index trait and the breeding goal trait. Response in progeny test schemes relative to a base breeding scheme without QTL information ranged from +4.5% (QTL explaining 5% of the additive genetic variance) to +21.2% (QTL explaining 50% of the additive genetic variance). A QTL explaining 5% of the additive genetic variance allowed a 35% reduction in the number of progeny tested bulls, while maintaining genetic response at the level of the base scheme. Genetic progress was up to 31.3% higher for schemes with increased embryo production and selection of embryos based on QTL information. The challenge for breeding organizations is to find the optimum breeding program with regard to additional genetic progress and additional (or reduced) cost.
Integrating genomic selection into dairy cattle breeding programmes: a review.
Bouquet, A; Juga, J
2013-05-01
Extensive genetic progress has been achieved in dairy cattle populations on many traits of economic importance because of efficient breeding programmes. Success of these programmes has relied on progeny testing of the best young males to accurately assess their genetic merit and hence their potential for breeding. Over the last few years, the integration of dense genomic information into statistical tools used to make selection decisions, commonly referred to as genomic selection, has enabled gains in predicting accuracy of breeding values for young animals without own performance. The possibility to select animals at an early stage allows defining new breeding strategies aimed at boosting genetic progress while reducing costs. The first objective of this article was to review methods used to model and optimize breeding schemes integrating genomic selection and to discuss their relative advantages and limitations. The second objective was to summarize the main results and perspectives on the use of genomic selection in practical breeding schemes, on the basis of the example of dairy cattle populations. Two main designs of breeding programmes integrating genomic selection were studied in dairy cattle. Genomic selection can be used either for pre-selecting males to be progeny tested or for selecting males to be used as active sires in the population. The first option produces moderate genetic gains without changing the structure of breeding programmes. The second option leads to large genetic gains, up to double those of conventional schemes because of a major reduction in the mean generation interval, but it requires greater changes in breeding programme structure. The literature suggests that genomic selection becomes more attractive when it is coupled with embryo transfer technologies to further increase selection intensity on the dam-to-sire pathway. The use of genomic information also offers new opportunities to improve preservation of genetic variation. However, recent simulation studies have shown that putting constraints on genomic inbreeding rates for defining optimal contributions of breeding animals could significantly reduce achievable genetic gain. Finally, the article summarizes the potential of genomic selection to include new traits in the breeding goal to meet societal demands regarding animal health and environmental efficiency in animal production.
Paula-Lopes, F F; Chase, C C; Al-Katanani, Y M; Krininger, C E; Rivera, R M; Tekin, S; Majewski, A C; Ocon, O M; Olson, T A; Hansen, P J
2003-02-01
The detrimental effects of heat stress on fertility in cattle are less pronounced in heat-tolerant breeds. Although these genetic differences reflect differences in thermoregulation, cells from heat-tolerant breeds are less adversely compromised by increased temperature (that is, heat shock) than cells from heat-sensitive breeds. Experiments were performed to test the hypothesis that cells and tissues from two thermotolerant breeds (Brahman and Senepol) are better able to survive and function after exposure to increased temperature than cells and tissues from two thermosensitive breeds (Holstein and Angus). Exposure of embryos at>eight-cell stage at day 5 after insemination to heat shock of 41.0 degrees C for 6 h decreased development to the blastocyst stage and the number of cells per embryo. However, the deleterious effect of heat shock on blastocyst formation and the number of cells per embryo was less pronounced for Brahman than for Holstein and Angus breeds. Embryos from Senepol cows had very low development and it was not possible to determine heat shock effects in this breed. In contrast to the sensitivity of embryos to heat shock, there was no effect of a 41.0 degrees C heat shock on [(3)H]leucine incorporation into proteins secreted by oviductal or endometrial explants. Lymphocytes from Brahman and Senepol cows were more resistant to heat-induced apoptosis than lymphocytes from other breeds. Heat shock reduced lymphocyte glutathione content but the magnitude of the decrease was not affected by breed. In conclusion, embryos from Brahman cows are more resistant to heat shock than embryos from Holstein or Angus cows. Genetic differences are also present in thermotolerance for apoptosis response in lymphocytes, with Brahman and Senepol cattle being more resistant to heat shock than Angus and Holstein breeds. It is likely that the evolutionary forces that led to the Brahman and Senepol breeds being adapted to hot climates resulted in the selection of genes controlling resistance to cellular heat shock.
Chenoweth, P J; Chase, C C; Thatcher, M J; Wilcox, C J; Larsen, R E
1996-11-01
Yearling, grass-fed, beef bulls at the USDA Subtropical Agricultural Research Station, Brooksville, Florida, were assessed for physical and semen traits in January, April, July and October of 1991 (Trial 1) and 1992 (Trial 2). Bulls were given a breeding soundness evaluation (BSE) using revised semen and scrotal circumference (SC) criteria. In Trial 1, the bulls consisted of Angus (n = 15), Brahman (n = 14), Hereford (n = 15) and Senepol (n = 14). In Trial 2, the breeds were Angus (n = 15), Brahman (n = 16), Romosinuano (n = 13) and Nellore x Brahman (n = 9). Trial bulls generally showed delayed growth compared with grain-fed bulls in temperate environments. Breed influenced semen traits (percentage sperm motility, normal spermatozoa and those with primary abnormalities) in both trials. Temperate Bos taurus breeds (Angus, Hereford) were generally superior to Bos indicus breeds (Brahman, Nellore x Brahman). Tropically-adapted Bos taurus breeds (Senepol, Romosinuano) were intermediate for those traits tested. In general, tropically-adapted Bos taurus breeds were more similar in reproductive development to temperate Bos taurus than to Bos indicus breeds. Breed by test period interactions occurred and were mainly influenced by delayed sexual maturity of Bos indicus bulls. Qualitative semen traits increased with bull age, particularly from 12 to 18 mo. Scrotal circumference development was slower in the Bos indicus breeds. Bulls of satisfactory BSE status at 18.1 to 22 mo of age were 73.9% in Trial 1 and 58.5% in Trial 2. Brahman bulls had the least satisfactory BSE scores in both years (Trial 1, 44.4%; Trial 2, 22.2%). Most bulls failed to achieve satisfactory BSE status due to a small SC relative to age (Trial 1, 66%; Trial 2, 72%). The most efficacious use of the BSE was > or = 15 mo in Bos taurus bulls and > 18 mo for Bos indicus bulls. Although the BSE has proven to be useful for the assessment of young, pasture-raised bulls in semi-tropical environments, use of SC thresholds linked more with growth traits than with calendar age would improve comparisons of relative reproductive development in such bulls, particularly those of Bos indicus derivation.
Wang, Yu; Bennewitz, Jörn; Wellmann, Robin
2017-05-12
Optimum contribution selection (OCS) is effective for increasing genetic gain, controlling the rate of inbreeding and enables maintenance of genetic diversity. However, this diversity may be caused by high migrant contributions (MC) in the population due to introgression of genetic material from other breeds, which can threaten the conservation of small local populations. Therefore, breeding objectives should not only focus on increasing genetic gains but also on maintaining genetic originality and diversity of native alleles. This study aimed at investigating whether OCS was improved by including MC and modified kinships that account for breed origin of alleles. Three objective functions were considered for minimizing kinship, minimizing MC and maximizing genetic gain in the offspring generation, and we investigated their effects on German Angler and Vorderwald cattle. In most scenarios, the results were similar for Angler and Vorderwald cattle. A significant positive correlation between MC and estimated breeding values of the selection candidates was observed for both breeds, thus traditional OCS would increase MC. Optimization was performed under the condition that the rate of inbreeding did not exceed 1% and at least 30% of the maximum progress was achieved for all other criteria. Although traditional OCS provided the highest breeding values under restriction of classical kinship, the magnitude of MC in the progeny generation was not controlled. When MC were constrained or minimized, the kinship at native alleles increased compared to the reference scenario. Thus, in addition to constraining MC, constraining kinship at native alleles is required to ensure that native genetic diversity is maintained. When kinship at native alleles was constrained, the classical kinship was automatically lowered in most cases and more sires were selected. However, the average breeding value in the next generation was also lower than that obtained with traditional OCS. For local breeds with historical introgressions, current breeding programs should focus on increasing genetic gain and controlling inbreeding, as well as maintaining the genetic originality of the breeds and the diversity of native alleles via the inclusion of MC and kinship at native alleles in the OCS process.
Bowles, Dianna; Carson, Amanda; Isaac, Peter
2014-01-01
There is considerable interest in locally adapted breeds of livestock as reservoirs of genetic diversity that may provide important fitness traits for future use in agriculture. In marginal areas, these animals contribute to food security and extract value from land unsuitable for other systems of farming. In England, close to 50% of the national sheep flock is farmed on grassland designated as disadvantaged areas for agricultural production. Many of these areas are in the uplands, where some native breeds of sheep continue to be commercially farmed only in highly localised geographical regions to which they are adapted. This study focuses on three of these breeds, selected for their adaptation to near identical environments and their geographical concentration in regions close to one another. Our objective has been to use retrotyping, microsatellites and single nucleotide polymorphisms to explore the origins of the breeds and whether, despite their similar adaptations and proximity, they are genetically distinctive. We find the three breeds each have a surprisingly different pattern of retrovirus insertions into their genomes compared with one another and with other UK breeds. Uniquely, there is a high incidence of the R0 retrotype in the Herdwick population, characteristic of a primitive genome found previously in very few breeds worldwide and none in the UK mainland. The Herdwick and Rough Fells carry two rare retroviral insertion events, common only in Texels, suggesting sheep populations in the northern uplands have a historical association with the original pin-tail sheep of Texel Island. Microsatellite data and analyses of SNPs associated with RXFP2 (horn traits) and PRLR (reproductive performance traits) also distinguished the three breeds. Significantly, an SNP linked to TMEM154, a locus controlling susceptibility to infection by Maedi-Visna, indicated that all three native hill breeds have a lower than average risk of infection to the lentivirus. PMID:24489968
Franco, D; Rois, D; Vázquez, J A; Purriños, L; González, R; Lorenzo, J M
2012-02-01
The aim of this research was to study the Mos rooster breed growth performance, carcass, and meat quality. The breed effect (Mos vs. Sasso T-44) and finishing feed in the last month (fodder vs. corn) on animal growth, carcass characteristics, meat quality, and fatty and amino acid profiles were studied using a randomized block design with initial weight as covariance. In total, 80 roosters (n = 30 of Sasso T-44 line and n = 50 of Mos breed) were used. They were separated by breed and allocated to 2 feeding treatment groups (concentrate and corn). Each feeding treatment group consisted of 15 and 25 roosters, for Sasso T-44 line and Mos breed, respectively. Finishing feeding did not affect growth parameters in the 2 genotypes of rooster tested (P > 0.05). Nonetheless, the comparison between both types of roosters led to significant differences in growth parameters (P < 0.05). Regarding carcass characteristics, no significant influences of finishing feeding treatment (P > 0.05) were found, and as expected, carcass weight clearly differed between genotypes due to the lower growth rate of Mos roosters. However, drumstick, thigh, and wing percentages were greater in the Mos breed than in the hybrid line. In color instrumental traits, roosters feeding with corn showed breast meat with significantly (P < 0.001) higher a* and b* values than those of cocks feeding with commercial fodder. Values of shear force were less than 2 kg for both genotypes, thus it can be classified as very tender meat. Finishing with corn significantly increased (P < 0.001) the polyunsaturated fatty acid content in the breast; the Mos breed had a polyunsaturated to saturated fatty acid ratio of 0.73. The amino acid profile of the indigenous breed was not similar to that of the commercial strain. Finishing feeding treatment had a greater influence than breed effect on amino acid profile.
Long-term genetic selection reduced prevalence of hip and elbow dysplasia in 60 dog breeds
Keller, G. G.; Famula, T. R.
2017-01-01
Canine hip dysplasia (CHD) and elbow dysplasia (ED) impact the health and welfare of all dogs. The first formally organized assessment scheme to improve canine health centered on reducing the prevalence of these orthopedic disorders. Phenotypic screening of joint conformation remains the currently available strategy for breeders to make selection decisions. The present study evaluated the efficacy of employing phenotypic selection on breed improvement of hips and elbows using the Orthopedic Foundation for Animals complete database spanning the 1970–2015 time period. Sixty breeds having more than 1000 unique hip evaluations and 500 elbow evaluations (1,056,852 and 275,129 hip and elbow records, respectively) were interrogated to derive phenotypic improvement, sex and age at time of assessment effects, correlation between the two joints, heritability estimates, estimated breeding values (EBV), and effectiveness of maternal/paternal selection. The data demonstrated that there has been overall improvement in hip and elbow conformation with a reduction in EBV for disease liability, although the breeds differed in the magnitude of the response to selection. Heritabilities also differed substantially across the breeds as did the correlation of the joints; in the absence of a universal association of these differences with breed size, popularity, or participation in screening, it appears that the breeds themselves vary in genetic control. There was subtle, though again breed specific, impact of sex and older ages on CHD and ED. There was greater paternal impact on a reduction of CHD. In the absence of direct genetic tests for either of these two diseases, phenotypic selection has proven to be effective. Furthermore, the data underscore that selection schemes must be breed specific and that it is likely the genetic profiles will be unique across the breeds for these two conditions. Despite the advances achieved with phenotypic selection, incorporation of EBVs into selection schemes should accelerate advances in hip and elbow improvement. PMID:28234985
Long-term genetic selection reduced prevalence of hip and elbow dysplasia in 60 dog breeds.
Oberbauer, A M; Keller, G G; Famula, T R
2017-01-01
Canine hip dysplasia (CHD) and elbow dysplasia (ED) impact the health and welfare of all dogs. The first formally organized assessment scheme to improve canine health centered on reducing the prevalence of these orthopedic disorders. Phenotypic screening of joint conformation remains the currently available strategy for breeders to make selection decisions. The present study evaluated the efficacy of employing phenotypic selection on breed improvement of hips and elbows using the Orthopedic Foundation for Animals complete database spanning the 1970-2015 time period. Sixty breeds having more than 1000 unique hip evaluations and 500 elbow evaluations (1,056,852 and 275,129 hip and elbow records, respectively) were interrogated to derive phenotypic improvement, sex and age at time of assessment effects, correlation between the two joints, heritability estimates, estimated breeding values (EBV), and effectiveness of maternal/paternal selection. The data demonstrated that there has been overall improvement in hip and elbow conformation with a reduction in EBV for disease liability, although the breeds differed in the magnitude of the response to selection. Heritabilities also differed substantially across the breeds as did the correlation of the joints; in the absence of a universal association of these differences with breed size, popularity, or participation in screening, it appears that the breeds themselves vary in genetic control. There was subtle, though again breed specific, impact of sex and older ages on CHD and ED. There was greater paternal impact on a reduction of CHD. In the absence of direct genetic tests for either of these two diseases, phenotypic selection has proven to be effective. Furthermore, the data underscore that selection schemes must be breed specific and that it is likely the genetic profiles will be unique across the breeds for these two conditions. Despite the advances achieved with phenotypic selection, incorporation of EBVs into selection schemes should accelerate advances in hip and elbow improvement.
Bertolini, F; Galimberti, G; Schiavo, G; Mastrangelo, S; Di Gerlando, R; Strillacci, M G; Bagnato, A; Portolano, B; Fontanesi, L
2018-01-01
Commercial single nucleotide polymorphism (SNP) arrays have been recently developed for several species and can be used to identify informative markers to differentiate breeds or populations for several downstream applications. To identify the most discriminating genetic markers among thousands of genotyped SNPs, a few statistical approaches have been proposed. In this work, we compared several methods of SNPs preselection (Delta, F st and principal component analyses (PCA)) in addition to Random Forest classifications to analyse SNP data from six dairy cattle breeds, including cosmopolitan (Holstein, Brown and Simmental) and autochthonous Italian breeds raised in two different regions and subjected to limited or no breeding programmes (Cinisara, Modicana, raised only in Sicily and Reggiana, raised only in Emilia Romagna). From these classifications, two panels of 96 and 48 SNPs that contain the most discriminant SNPs were created for each preselection method. These panels were evaluated in terms of the ability to discriminate as a whole and breed-by-breed, as well as linkage disequilibrium within each panel. The obtained results showed that for the 48-SNP panel, the error rate increased mainly for autochthonous breeds, probably as a consequence of their admixed origin lower selection pressure and by ascertaining bias in the construction of the SNP chip. The 96-SNP panels were generally more able to discriminate all breeds. The panel derived by PCA-chrom (obtained by a preselection chromosome by chromosome) could identify informative SNPs that were particularly useful for the assignment of minor breeds that reached the lowest value of Out Of Bag error even in the Cinisara, whose value was quite high in all other panels. Moreover, this panel contained also the lowest number of SNPs in linkage disequilibrium. Several selected SNPs are located nearby genes affecting breed-specific phenotypic traits (coat colour and stature) or associated with production traits. In general, our results demonstrated the usefulness of Random Forest in combination to other reduction techniques to identify population informative SNPs.
Cañas-Álvarez, J J; González-Rodríguez, A; Munilla, S; Varona, L; Díaz, C; Baro, J A; Altarriba, J; Molina, A; Piedrafita, J
2015-11-01
The availability of SNP chips for massive genotyping has proven to be useful to genetically characterize populations of domestic cattle and to assess their degree of divergence. In this study, the Illumina BovineHD BeadChip genotyping array was used to describe the genetic variability and divergence among 7 important autochthonous Spanish beef cattle breeds. The within-breed genetic diversity, measured as the marker expected heterozygosity, was around 0.30, similar to other European cattle breeds. The analysis of molecular variance revealed that 94.22% of the total variance was explained by differences within individuals whereas only 4.46% was the result of differences among populations. The degree of genetic differentiation was small to moderate as the pairwise fixation index of genetic differentiation among breeds (F) estimates ranged from 0.026 to 0.068 and the Nei's D genetic distances ranged from 0.009 to 0.016. A neighbor joining (N-J) phylogenetic tree showed 2 main groups of breeds: Pirenaica, Bruna dels Pirineus, and Rubia Gallega on the one hand and Avileña-Negra Ibérica, Morucha, and Retinta on the other. In turn, Asturiana de los Valles occupied an independent and intermediate position. A principal component analysis (PCA) applied to a distance matrix based on marker identity by state, in which the first 2 axes explained up to 17.3% of the variance, showed a grouping of animals that was similar to the one observed in the N-J tree. Finally, a cluster analysis for ancestries allowed assigning all the individuals to the breed they belong to, although it revealed some degree of admixture among breeds. Our results indicate large within-breed diversity and a low degree of divergence among the autochthonous Spanish beef cattle breeds studied. Both N-J and PCA groupings fit quite well to the ancestral trunks from which the Spanish beef cattle breeds were supposed to derive.
Medger, Katarina; Bennett, Nigel C; Lutermann, Heike; Ganswindt, Andre
2018-05-18
Dominant females of cooperative breeding species often use aggression to suppress reproduction of subordinate females, resulting in subordinates experiencing stress-related increases in glucocorticoid levels, which may cause reproductive down-regulation. This would suggest a general pattern with higher glucocorticoid levels in subordinate compared to dominant individuals; however, the opposite was found in a number of cooperatively breeding species. Furthermore, breeding females of the cooperatively breeding Damaraland mole-rats (Fukomys damarensis) exhibit very high androgen concentrations during the wet season, presumably to support their breeding monopoly. Hormone analysis in Damaraland mole-rats have typically been measured using plasma and urine, but faecal analysis offers additional advantages especially for field studies on this species. The present study examines the suitability of Damaraland mole-rat faecal samples for determining glucocorticoid metabolite (fGCM) and androgen metabolite (fAM) concentrations using enzyme immunoassays. Using these assays, we further evaluated the effects of breeding status on fGCM and fAM concentrations in wild-caught and captive Damaraland mole-rats. Wild-caught breeding and non-breeding males and females exhibited no differences in fAM concentrations. Immunoreactive fGCM concentrations were only high in male breeders and comparatively low in non-breeders and breeding females. Concentrations of fAMs and fGCMs were similar in captive males and females, but fAM concentrations were elevated in captive compared to wild-caught individuals, which may be related to a higher reproductive activity due to removal from the breeding female. The relatively uniform fAM and fGCM concentrations found in wild-caught mole-rats may be explained by a stable colony structure during the dry season during which this study was conducted. Limited dispersal opportunities result in lower aggression and stress levels within a colony and as a result lower fAM and fGCM concentrations. Copyright © 2018 Elsevier Inc. All rights reserved.
Extent of Linkage Disequilibrium in the Domestic Cat, Felis silvestris catus, and Its Breeds
Alhaddad, Hasan; Khan, Razib; Grahn, Robert A.; Gandolfi, Barbara; Mullikin, James C.; Cole, Shelley A.; Gruffydd-Jones, Timothy J.; Häggström, Jens; Lohi, Hannes; Longeri, Maria; Lyons, Leslie A.
2013-01-01
Domestic cats have a unique breeding history and can be used as models for human hereditary and infectious diseases. In the current era of genome-wide association studies, insights regarding linkage disequilibrium (LD) are essential for efficient association studies. The objective of this study is to investigate the extent of LD in the domestic cat, Felis silvestris catus, particularly within its breeds. A custom illumina GoldenGate Assay consisting of 1536 single nucleotide polymorphisms (SNPs) equally divided over ten 1 Mb chromosomal regions was developed, and genotyped across 18 globally recognized cat breeds and two distinct random bred populations. The pair-wise LD descriptive measure (r 2) was calculated between the SNPs in each region and within each population independently. LD decay was estimated by determining the non-linear least-squares of all pair-wise estimates as a function of distance using established models. The point of 50% decay of r2 was used to compare the extent of LD between breeds. The longest extent of LD was observed in the Burmese breed, where the distance at which r2 ≈ 0.25 was ∼380 kb, comparable to several horse and dog breeds. The shortest extent of LD was found in the Siberian breed, with an r2 ≈ 0.25 at approximately 17 kb, comparable to random bred cats and human populations. A comprehensive haplotype analysis was also conducted. The haplotype structure of each region within each breed mirrored the LD estimates. The LD of cat breeds largely reflects the breeds’ population history and breeding strategies. Understanding LD in diverse populations will contribute to an efficient use of the newly developed SNP array for the cat in the design of genome-wide association studies, as well as to the interpretation of results for the fine mapping of disease and phenotypic traits. PMID:23308248
Martín-Collado, D; Díaz, C; Mäki-Tanila, A; Colinet, F; Duclos, D; Hiemstra, S J; Gandini, G
2013-06-01
SWOT (Strengths, Weaknesses, Opportunities and Threats) analysis is a tool widely used to help in decision making in complex systems. It suits to exploring the issues and measures related to the conservation and development of local breeds, as it allows the integration of many driving factors influencing breed dynamics. We developed a quantified SWOT method as a decision-making tool for identification and ranking of conservation and development strategies of local breeds, and applied it to a set of 13 cattle breeds of six European countries. The method has four steps: definition of the system, identification and grouping of the driving factors, quantification of the importance of driving factors and identification and prioritization of the strategies. The factors were determined following a multi-stakeholder approach and grouped with a three-level structure. Animal genetic resources expert groups ranked the factors, and a quantification process was implemented to identify and prioritize strategies. The proposed SWOT methodology allows analyzing the dynamics of local cattle breeds in a structured and systematic way. It is a flexible tool developed to assist different stakeholders in defining the strategies and actions. The quantification process allows the comparison of the driving factors and the prioritization of the strategies for the conservation and development of local cattle breeds. We identified 99 factors across the breeds. Although the situation is very heterogeneous, the future of these breeds may be promising. The most important strengths and weaknesses were related to production systems and farmers. The most important opportunities were found in marketing new products, whereas the most relevant threats were found in selling the current products. The across-breed strategies utility decreased as they gained specificity. Therefore, the strategies at European level should focus on general aspects and be flexible enough to be adapted to the country and breed specificities.
Effects of selection for cooperation and attention in dogs.
Gácsi, Márta; McGreevy, Paul; Kara, Edina; Miklósi, Adám
2009-07-24
It has been suggested that the functional similarities in the socio-cognitive behaviour of dogs and humans emerged as a consequence of comparable environmental selection pressures. Here we use a novel approach to account for the facilitating effect of domestication in dogs and reveal that selection for two factors under genetic influence (visual cooperation and focused attention) may have led independently to increased comprehension of human communicational cues. In Study 1, we observed the performance of three groups of dogs in utilizing the human pointing gesture in a two-way object choice test. We compared breeds selected to work while visually separated from human partners (N = 30, 21 breeds, clustered as independent worker group), with those selected to work in close cooperation and continuous visual contact with human partners (N = 30, 22 breeds, clustered as cooperative worker group), and with a group of mongrels (N = 30).Secondly, it has been reported that, in dogs, selective breeding to produce an abnormal shortening of the skull is associated with a more pronounced area centralis (location of greatest visual acuity). In Study 2, breeds with high cephalic index and more frontally placed eyes (brachycephalic breeds, N = 25, 14 breeds) were compared with breeds with low cephalic index and laterally placed eyes (dolichocephalic breeds, N = 25, 14 breeds). In Study 1, cooperative workers were significantly more successful in utilizing the human pointing gesture than both the independent workers and the mongrels.In study 2, we found that brachycephalic dogs performed significantly better than dolichocephalic breeds. After controlling for environmental factors, we have provided evidence that at least two independent phenotypic traits with certain genetic variability affect the ability of dogs to rely on human visual cues. This finding should caution researchers against making simple generalizations about the effects of domestication and on dog-wolf differences in the utilization of human visual signals.
Liao, Yuying; Mo, Guodong; Sun, Junli; Wei, Fengying; Liao, Dezhong Joshua
2016-05-01
The domestic chicken (Gallus gallus domesticus) is an excellent model for genetic studies of phenotypic diversity. The Guangxi Region of China possesses several native chicken breeds displaying a broad range of phenotypes well adapted to the extreme hot-and-wet environments in the region. We thus evaluated the genetic diversity and relationships among six native chicken populations of the Guangxi region and also evaluated two commercial breeds (Arbor Acres and Roman chickens). We analyzed the sequences of the D-loop region of the mitochondrial DNA (mtDNA) and 18 microsatellite loci of 280 blood samples from six Guangxi native chicken breeds and from Arbor Acres and Roman chickens, and used the neighbor-joining method to construct the phylogenetic tree of these eight breeds. Our results showed that the genetic diversity of Guangxi native breeds was relatively rich. The phylogenetic tree using the unweighed pair-group method with arithmetic means (UPGAM) on microsatellite marks revealed two main clusters. Arbor Acres chicken and Roman chicken were in one cluster, while the Guangxi breeds were in the other cluster. Moreover, the UPGAM tree of Guangxi native breeds based on microsatellite loci was more consistent with the genesis, breeding history, differentiation and location than the mtDNA D-loop region. STRUCTURE analysis further confirmed the genetic structure of Guangxi native breeds in the Neighbor-Net dendrogram. The nomenclature of mtDNA sequence polymorphisms suggests that the Guangxi native chickens are distributed across four clades, but most of them are clustered in two main clades (B and E), with the other haplotypes within the clades A and C. The Guangxi native breeds revealed abundant genetic diversity not only on microsatellite loci but also on mtDNA D-loop region, and contained multiple maternal lineages, including one from China and another from Europe or the Middle East.
Polgár, Zita; Kinnunen, Mari; Újváry, Dóra; Miklósi, Ádám; Gácsi, Márta
2016-01-01
Many dog breeds are bred specifically for increased performance in scent-based tasks. Whether dogs bred for this purpose have higher olfactory capacities than other dogs, or even wolves with whom they share a common ancestor, has not yet been studied. Indeed, there is no standard test for assessing canine olfactory ability. This study aimed to create a simple procedure that requires no pre-training and to use it to measure differences in olfactory capacity across four groups of canines: (1) dog breeds that have been selected for their scenting ability; (2) dog breeds that have been bred for other purposes; (3) dog breeds with exaggerated short-nosed features; and (4) hand-reared grey wolves. The procedure involved baiting a container with raw turkey meat and placing it under one of four identical ceramic pots. Subjects were led along the row of pots and were tasked with determining by olfaction alone which of them contained the bait. There were five levels of increasing difficulty determined by the number of holes on the container’s lid. A subsample of both dogs and wolves was retested to assess reliability. The results showed that breeds selected for scent work were better than both short-nosed and non-scent breeds. In the most difficult level, wolves and scenting breeds performed better than chance, while non-scenting and short-nosed breeds did not. In the retested samples wolves improved their success; however, dogs showed no change in their performances indicating that a single test may be reliable enough to assess their capacity. Overall, we revealed measurable differences between dog breeds in their olfactory abilities and suggest that the Natural Detection Task is a good foundation for developing an efficient way of quantifying them. PMID:27152412
Polgár, Zita; Kinnunen, Mari; Újváry, Dóra; Miklósi, Ádám; Gácsi, Márta
2016-01-01
Many dog breeds are bred specifically for increased performance in scent-based tasks. Whether dogs bred for this purpose have higher olfactory capacities than other dogs, or even wolves with whom they share a common ancestor, has not yet been studied. Indeed, there is no standard test for assessing canine olfactory ability. This study aimed to create a simple procedure that requires no pre-training and to use it to measure differences in olfactory capacity across four groups of canines: (1) dog breeds that have been selected for their scenting ability; (2) dog breeds that have been bred for other purposes; (3) dog breeds with exaggerated short-nosed features; and (4) hand-reared grey wolves. The procedure involved baiting a container with raw turkey meat and placing it under one of four identical ceramic pots. Subjects were led along the row of pots and were tasked with determining by olfaction alone which of them contained the bait. There were five levels of increasing difficulty determined by the number of holes on the container's lid. A subsample of both dogs and wolves was retested to assess reliability. The results showed that breeds selected for scent work were better than both short-nosed and non-scent breeds. In the most difficult level, wolves and scenting breeds performed better than chance, while non-scenting and short-nosed breeds did not. In the retested samples wolves improved their success; however, dogs showed no change in their performances indicating that a single test may be reliable enough to assess their capacity. Overall, we revealed measurable differences between dog breeds in their olfactory abilities and suggest that the Natural Detection Task is a good foundation for developing an efficient way of quantifying them.
Forsberg, Simon K G; Kierczak, Marcin; Ljungvall, Ingrid; Merveille, Anne-Christine; Gouni, Vassiliki; Wiberg, Maria; Lundgren Willesen, Jakob; Hanås, Sofia; Lequarré, Anne-Sophie; Mejer Sørensen, Louise; Tiret, Laurent; McEntee, Kathleen; Seppälä, Eija; Koch, Jørgen; Battaille, Géraldine; Lohi, Hannes; Fredholm, Merete; Chetboul, Valerie; Häggström, Jens; Carlborg, Örjan; Lindblad-Toh, Kerstin; Höglund, Katja
2015-01-01
Diabetes mellitus is a serious health problem in both dogs and humans. Certain dog breeds show high prevalence of the disease, whereas other breeds are at low risk. Fructosamine and glycated haemoglobin (HbA1c) are two major biomarkers of glycaemia, where serum concentrations reflect glucose turnover over the past few weeks to months. In this study, we searched for genetic factors influencing variation in serum fructosamine concentration in healthy dogs using data from nine dog breeds. Considering all breeds together, we did not find any genome-wide significant associations to fructosamine serum concentration. However, by performing breed-specific analyses we revealed an association on chromosome 3 (pcorrected ≈ 1:68 × 10-6) in Belgian shepherd dogs of the Malinois subtype. The associated region and its close neighbourhood harbours interesting candidate genes such as LETM1 and GAPDH that are important in glucose metabolism and have previously been implicated in the aetiology of diabetes mellitus. To further explore the genetics of this breed specificity, we screened the genome for reduced heterozygosity stretches private to the Belgian shepherd breed. This revealed a region with reduced heterozygosity that shows a statistically significant interaction (p = 0.025) with the association region on chromosome 3. This region also harbours some interesting candidate genes and regulatory regions but the exact mechanisms underlying the interaction are still unknown. Nevertheless, this finding provides a plausible explanation for breed-specific genetic effects for complex traits in dogs. Shepherd breeds are at low risk of developing diabetes mellitus. The findings in Belgian shepherds could be connected to a protective mechanism against the disease. Further insight into the regulation of glucose metabolism could improve diagnostic and therapeutic methods for diabetes mellitus.
Pilot, Małgorzata; Malewski, Tadeusz; Moura, Andre E; Grzybowski, Tomasz; Oleński, Kamil; Kamiński, Stanisław; Fadel, Fernanda Ruiz; Alagaili, Abdulaziz N; Mohammed, Osama B; Bogdanowicz, Wiesław
2016-08-09
Domesticated species are often composed of distinct populations differing in the character and strength of artificial and natural selection pressures, providing a valuable model to study adaptation. In contrast to pure-breed dogs that constitute artificially maintained inbred lines, free-ranging dogs are typically free-breeding, i.e., unrestrained in mate choice. Many traits in free-breeding dogs (FBDs) may be under similar natural and sexual selection conditions to wild canids, while relaxation of sexual selection is expected in pure-breed dogs. We used a Bayesian approach with strict false-positive control criteria to identify FST-outlier SNPs between FBDs and either European or East Asian breeds, based on 167,989 autosomal SNPs. By identifying outlier SNPs located within coding genes, we found four candidate genes under diversifying selection shared by these two comparisons. Three of them are associated with the Hedgehog (HH) signaling pathway regulating vertebrate morphogenesis. A comparison between FBDs and East Asian breeds also revealed diversifying selection on the BBS6 gene, which was earlier shown to cause snout shortening and dental crowding via disrupted HH signaling. Our results suggest that relaxation of natural and sexual selection in pure-breed dogs as opposed to FBDs could have led to mild changes in regulation of the HH signaling pathway. HH inhibits adhesion and the migration of neural crest cells from the neural tube, and minor deficits of these cells during embryonic development have been proposed as the underlying cause of "domestication syndrome." This suggests that the process of breed formation involved the same genetic and developmental pathways as the process of domestication. Copyright © 2016 Pilot et al.
The extent of linkage disequilibrium in beef cattle breeds using high-density SNP genotypes.
Porto-Neto, Laercio R; Kijas, James W; Reverter, Antonio
2014-03-24
The extent of linkage disequilibrium (LD) between molecular markers impacts genome-wide association studies and implementation of genomic selection. The availability of high-density single nucleotide polymorphism (SNP) genotyping platforms makes it possible to investigate LD at an unprecedented resolution. In this work, we characterised LD decay in breeds of beef cattle of taurine, indicine and composite origins and explored its variation across autosomes and the X chromosome. In each breed, LD decayed rapidly and r2 was less than 0.2 for marker pairs separated by 50 kb. The LD decay curves clustered into three groups of similar LD decay that distinguished the three main cattle types. At short distances between markers (<10 kb), taurine breeds showed higher LD (r2=0.45) than their indicine (r2=0.25) and composite (r2=0.32) counterparts. This higher LD in taurine breeds was attributed to a smaller effective population size and a stronger bottleneck during breed formation. Using all SNPs on only the X chromosome, the three cattle types could still be distinguished. However for taurine breeds, the LD decay on the X chromosome was much faster and the background level much lower than for indicine breeds and composite populations. When using only SNPs that were polymorphic in all breeds, the analysis of the X chromosome mimicked that of the autosomes. The pattern of LD mirrored some aspects of the history of breed populations and showed a sharp decay with increasing physical distance between markers. We conclude that the availability of the HD chip can be used to detect association signals that remained hidden when using lower density genotyping platforms, since LD dropped below 0.2 at distances of 50 kb.
Ward, Jessica L; Love, Elliot K; Baugh, Alexander T; Gordon, Noah M; Tanner, Jessie C; Bee, Mark A
2015-12-01
Endocrine systems play critical roles in facilitating sexual behavior in seasonally breeding vertebrates. Much of the research exploring this topic has focused on the endocrine correlates of signaling behavior in males and sexual proceptivity in females. What is less understood is how hormones promote the expression of the often complex and highly selective set of stimulus-response behaviors that are observed in naturally breeding animals. In female frogs, phonotaxis is a robust and sensitive bioassay of mate choice and is exhibited by gravid females during the breeding season. In stark contrast, females exhibit low phonotactic responsiveness outside the breeding season, but the administration of hormones can induce sexual proceptivity. Here we test the hypothesis that manipulation of a minimal set of reproductive hormones-progesterone and prostaglandin F2α-are capable of evoking not only proceptive behavior in non-breeding females, but also the patterns of intraspecific selectivity for male sexual displays observed in gravid females tested during the breeding season. Specifically, we investigated whether preferences for faster call rates, longer call durations, and higher call efforts were similar between breeding and hormone-treated females of Cope's gray treefrog (Hyla chrysoscelis). Hormone injections induced patterns of selective phonotaxis in non-breeding females that were remarkably similar to those observed in breeding females. These results suggest that there may be an important contribution of hormonal pleiotropy in regulating this complex, acoustically-guided sexual behavior. Our findings also support the idea that hormonal induction could be used to evaluate hypotheses about selective mate choice, and its underlying mechanisms, using non-breeding females. Copyright © 2015 Elsevier Inc. All rights reserved.
Molecular identification of livestock breeds: a tool for modern conservation biology.
Yaro, Mohammed; Munyard, Kylie A; Stear, Michael J; Groth, David M
2017-05-01
Global livestock genetic diversity includes all of the species, breeds and strains of domestic animals, and their variations. Although a recent census indicated that there were 40 species and over 8000 breeds of domestic animals; for the purpose of conservation biology the diversity between and within breeds rather than species is regarded to be of crucial importance. This domestic animal genetic diversity has developed through three main evolutionary events, from speciation (about 3 million years ago) through domestication (about 12000 years ago) to specialised breeding (starting about 200 years ago). These events and their impacts on global animal genetic resources have been well documented in the literature. The key importance of global domestic animal resources in terms of economic, scientific and cultural heritage has also been addressed. In spite of their importance, there is a growing number of reports on the alarming erosion of domestic animal genetic resources. This erosion of is happening in spite of several global conservation initiatives designed to mitigate it. Herein we discuss these conservation interventions and highlight their strengths and weaknesses. However, pivotal to the success of these conservation initiatives is the reliability of the genetic assignment of individual members to a target breed. Finally, we discuss the prospect of using improved breed identification methodologies to develop a reliable breed-specific molecular identification tool that is easily applicable to populations of livestock breeds in various ecosystems. These identification tools, when developed, will not only facilitate the regular monitoring of threatened or endangered breed populations, but also enhance the development of more efficient and sustainable livestock production systems. © 2016 Cambridge Philosophical Society.
Localization of canine brachycephaly using an across breed mapping approach.
Bannasch, Danika; Young, Amy; Myers, Jeffrey; Truvé, Katarina; Dickinson, Peter; Gregg, Jeffrey; Davis, Ryan; Bongcam-Rudloff, Eric; Webster, Matthew T; Lindblad-Toh, Kerstin; Pedersen, Niels
2010-03-10
The domestic dog, Canis familiaris, exhibits profound phenotypic diversity and is an ideal model organism for the genetic dissection of simple and complex traits. However, some of the most interesting phenotypes are fixed in particular breeds and are therefore less tractable to genetic analysis using classical segregation-based mapping approaches. We implemented an across breed mapping approach using a moderately dense SNP array, a low number of animals and breeds carefully selected for the phenotypes of interest to identify genetic variants responsible for breed-defining characteristics. Using a modest number of affected (10-30) and control (20-60) samples from multiple breeds, the correct chromosomal assignment was identified in a proof of concept experiment using three previously defined loci; hyperuricosuria, white spotting and chondrodysplasia. Genome-wide association was performed in a similar manner for one of the most striking morphological traits in dogs: brachycephalic head type. Although candidate gene approaches based on comparable phenotypes in mice and humans have been utilized for this trait, the causative gene has remained elusive using this method. Samples from nine affected breeds and thirteen control breeds identified strong genome-wide associations for brachycephalic head type on Cfa 1. Two independent datasets identified the same genomic region. Levels of relative heterozygosity in the associated region indicate that it has been subjected to a selective sweep, consistent with it being a breed defining morphological characteristic. Genotyping additional dogs in the region confirmed the association. To date, the genetic structure of dog breeds has primarily been exploited for genome wide association for segregating traits. These results demonstrate that non-segregating traits under strong selection are equally tractable to genetic analysis using small sample numbers.
Makina, Sithembile O; Taylor, Jeremy F; van Marle-Köster, Este; Muchadeyi, Farai C; Makgahlela, Mahlako L; MacNeil, Michael D; Maiwashe, Azwihangwisi
2015-01-01
Knowledge on the extent of linkage disequilibrium (LD) in livestock populations is essential to determine the minimum distance between markers required for effective coverage when conducting genome-wide association studies (GWAS). This study evaluated the extent of LD, persistence of allelic phase and effective population size (Ne) for four Sanga cattle breeds in South Africa including the Afrikaner (n = 44), Nguni (n = 54), Drakensberger (n = 47), and Bonsmara breeds (n = 46), using Angus (n = 31) and Holstein (n = 29) as reference populations. We found that moderate LD extends up to inter-marker distances of 40-60 kb in Angus (0.21) and Holstein (0.21) and up to 100 kb in Afrikaner (0.20). This suggests that genomic selection and association studies performed within these breeds using an average inter-marker r (2)≥ 0.20 would require about 30,000-50,000 SNPs. However, r (2)≥ 0.20 extended only up to 10-20 kb in the Nguni and Drakensberger and 20-40 kb in the Bonsmara indicating that 75,000 to 150,000 SNPs would be necessary for GWAS in these breeds. Correlation between alleles at contiguous loci indicated that phase was not strongly preserved between breeds. This suggests the need for breed-specific reference populations in which a much greater density of markers should be scored to identify breed specific haplotypes which may then be imputed into multi-breed commercial populations. Analysis of effective population size based on the extent of LD, revealed Ne = 95 (Nguni), Ne = 87 (Drakensberger), Ne = 77 (Bonsmara), and Ne = 41 (Afrikaner). Results of this study form the basis for implementation of genomic selection programs in the Sanga breeds of South Africa.
Makina, Sithembile O.; Taylor, Jeremy F.; van Marle-Köster, Este; Muchadeyi, Farai C.; Makgahlela, Mahlako L.; MacNeil, Michael D.; Maiwashe, Azwihangwisi
2015-01-01
Knowledge on the extent of linkage disequilibrium (LD) in livestock populations is essential to determine the minimum distance between markers required for effective coverage when conducting genome-wide association studies (GWAS). This study evaluated the extent of LD, persistence of allelic phase and effective population size (Ne) for four Sanga cattle breeds in South Africa including the Afrikaner (n = 44), Nguni (n = 54), Drakensberger (n = 47), and Bonsmara breeds (n = 46), using Angus (n = 31) and Holstein (n = 29) as reference populations. We found that moderate LD extends up to inter-marker distances of 40–60 kb in Angus (0.21) and Holstein (0.21) and up to 100 kb in Afrikaner (0.20). This suggests that genomic selection and association studies performed within these breeds using an average inter-marker r2≥ 0.20 would require about 30,000–50,000 SNPs. However, r2≥ 0.20 extended only up to 10–20 kb in the Nguni and Drakensberger and 20–40 kb in the Bonsmara indicating that 75,000 to 150,000 SNPs would be necessary for GWAS in these breeds. Correlation between alleles at contiguous loci indicated that phase was not strongly preserved between breeds. This suggests the need for breed-specific reference populations in which a much greater density of markers should be scored to identify breed specific haplotypes which may then be imputed into multi-breed commercial populations. Analysis of effective population size based on the extent of LD, revealed Ne = 95 (Nguni), Ne = 87 (Drakensberger), Ne = 77 (Bonsmara), and Ne = 41 (Afrikaner). Results of this study form the basis for implementation of genomic selection programs in the Sanga breeds of South Africa. PMID:26648975
Pilot, Małgorzata; Malewski, Tadeusz; Moura, Andre E.; Grzybowski, Tomasz; Oleński, Kamil; Kamiński, Stanisław; Fadel, Fernanda Ruiz; Alagaili, Abdulaziz N.; Mohammed, Osama B.; Bogdanowicz, Wiesław
2016-01-01
Domesticated species are often composed of distinct populations differing in the character and strength of artificial and natural selection pressures, providing a valuable model to study adaptation. In contrast to pure-breed dogs that constitute artificially maintained inbred lines, free-ranging dogs are typically free-breeding, i.e., unrestrained in mate choice. Many traits in free-breeding dogs (FBDs) may be under similar natural and sexual selection conditions to wild canids, while relaxation of sexual selection is expected in pure-breed dogs. We used a Bayesian approach with strict false-positive control criteria to identify FST-outlier SNPs between FBDs and either European or East Asian breeds, based on 167,989 autosomal SNPs. By identifying outlier SNPs located within coding genes, we found four candidate genes under diversifying selection shared by these two comparisons. Three of them are associated with the Hedgehog (HH) signaling pathway regulating vertebrate morphogenesis. A comparison between FBDs and East Asian breeds also revealed diversifying selection on the BBS6 gene, which was earlier shown to cause snout shortening and dental crowding via disrupted HH signaling. Our results suggest that relaxation of natural and sexual selection in pure-breed dogs as opposed to FBDs could have led to mild changes in regulation of the HH signaling pathway. HH inhibits adhesion and the migration of neural crest cells from the neural tube, and minor deficits of these cells during embryonic development have been proposed as the underlying cause of “domestication syndrome.” This suggests that the process of breed formation involved the same genetic and developmental pathways as the process of domestication. PMID:27233669
The timing of wing molt in tundra swans: energetic and non-energetic constraints
Earnst, S.L.
1992-01-01
Date of wing molt initiation, based on the regression of tenth primary length on capture date, was calculated for breeding and nonbreeding Tundra Swans (Cygnus columbianus columbianus) on the Colville River Delta, Alaska. Breeding females initiated wing molt significantly later than breeding males and nonbreeding males and females; the molt of breeding females was correlated with the date on which their eggs hatched. Breeding males did not differ significantly from nonbreeding males and females in the date of molt initiation. Timing of molt in breeding males and females was consistent with the views that females delay molt while replenishing energy spent on reproduction, but was also consistent with the breeding pair's need for primaries to defend territories and to defend and brood young. Other results, including an increase in an index of female body condition throughout most of the molt period, and a positive correlation between clutch size and female hatch-to-molt interval, were not predicted by the hypothesis that past energy expenditures constrain the timing of molt. Patterns of wing molt within and among other Northern Hemisphere geese and swans are also difficult to explain on the basis of energetics alone. For example, breeding females initiate molt before breeding males in many species. Also, there is extreme asynchrony between mates in two swan species; one of those species also exhibits variation in which sex initiates wing molt first. Both patterns suggest that asynchrony, per se, is important, probably to facilitate brood protection or territory defense. In Tundra Swans and other northern breeding geese and swans, the non-energetic demands of territory defense, brood defense, and brooding are probably important constraints on the timing of wing molt.
Characterization of local goat breeds using RAP-DNA markers
NASA Astrophysics Data System (ADS)
Al-Barzinji, Yousif M. S.; Hamad, Aram O.
2017-09-01
The present study was conducted on different colors of local goat breeds. A number of 216 does were sampled from the seven groups. Genomic DNA was extracted from the blood samples. From the twenty used RAPD primers 12 of them were amplified, and presence of bands. The total fragment number of 12 primers over all the goat breed samples was 485 fragments. Out of the 485 fragments, 90 of them were Polymorphic fragments numbers (PFN). From all bands obtained, 20 of them possessed unique bands. The highest unique band was found in locus RAP 6 which has 4 unique bands, three of them in the Maraz Brown and one in the local Koor. Nei's gene diversity and Shanon's information index in this study were averaged 0.38 and 0.60, respectively. The genetic distance among several goat breeds ranged from 9.11 to 43.33%. The highest genetic distance 43.33% recorded between Maraz goat and other goat breeds and between local Koor and other goat (except Maraz goats) breeds (37.79%). However, the lowest genetic distance recorded between local white and Pnok. The distance between (local Black and Pnok) and (local Black and local white) was 22.75%. In conclusions, the high distance among these goat breeds, polymorphism and high numbers of unique bands found in present study indicates that these goat breeds have the required amount of genetic variation to made genetic improvement. This study helps us to clarify the image of the genetic diversity of the local goat breeds and the breeders can used it for mating system when need to make the crossing among these goat breeds.
2012-01-01
Background Identification of genomic regions that have been targets of selection for phenotypic traits is one of the most important and challenging areas of research in animal genetics. However, currently there are relatively few genomic regions identified that have been subject to positive selection. In this study, a genome-wide scan using ~50,000 Single Nucleotide Polymorphisms (SNPs) was performed in an attempt to identify genomic regions associated with fat deposition in fat-tail breeds. This trait and its modification are very important in those countries grazing these breeds. Results Two independent experiments using either Iranian or Ovine HapMap genotyping data contrasted thin and fat tail breeds. Population differentiation using FST in Iranian thin and fat tail breeds revealed seven genomic regions. Almost all of these regions overlapped with QTLs that had previously been identified as affecting fat and carcass yield traits in beef and dairy cattle. Study of selection sweep signatures using FST in thin and fat tail breeds sampled from the Ovine HapMap project confirmed three of these regions located on Chromosomes 5, 7 and X. We found increased homozygosity in these regions in favour of fat tail breeds on chromosome 5 and X and in favour of thin tail breeds on chromosome 7. Conclusions In this study, we were able to identify three novel regions associated with fat deposition in thin and fat tail sheep breeds. Two of these were associated with an increase of homozygosity in the fat tail breeds which would be consistent with selection for mutations affecting fat tail size several thousand years after domestication. PMID:22364287
Interbreed variation in serum serotonin (5-hydroxytryptamine) concentration in healthy dogs.
Höglund, K; Häggström, J; Hanås, S; Merveille, A-C; Gouni, V; Wiberg, M; Lundgren Willesen, J; Entee, K Mc; Mejer Sørensen, L; Tiret, L; Seppälä, E H; Lohi, H; Chetboul, V; Fredholm, M; Lequarré, A-S; Ljungvall, I
2018-06-16
Serotonin (5-hydroxytryptamine [5-HT]) has several biological functions. In different species, excessive 5-HT has been linked to valvular lesions, similar to those seen in dogs with myxomatous mitral valve disease. Previous studies suggest higher 5-HT in healthy Cavalier King Charles Spaniels (CKCSs), a breed highly affected by myxomatous mitral valve disease, compared to other breeds. To investigate potential interbreed variation in serum 5-HT in healthy dogs. 483 healthy dogs of nine breeds aged 1-7 years. Dogs were examined at five European centers. Absence of cardiovascular, organ-related, or systemic diseases was ensured by thorough clinical investigations including echocardiography. Serum was frozen and later analyzed by enzyme-linked immunosorbent assay (ELISA). Median 5-HT concentration was 252.5 (interquartile range = 145.5-390.6) ng/mL. Overall breed difference was found (p<0.0001), and 42% of pairwise breed comparisons were significant. Univariate regression analysis showed association between serum 5-HT concentration and breed, center of examination, storage time, and sex, with higher 5-HT in females. In multiple regression analysis, the final model had an adjusted R 2 of 0.27 with breed (p<0.0001), center (p<0.0001), and storage time (p=0.014) remaining significant. Within centers, overall breed differences were found at 3/5 centers (p≤0.028), and pairwise comparisons within those centers showed breed differences in 42% of comparisons. Among the included breeds, Newfoundlands, Belgian Shepherds and CKCSs had highest 5-HT concentrations. Interbreed variation in serum 5-HT concentration was found in healthy dogs aged 1-7 years. These differences should be taken into account when designing clinical studies. Copyright © 2018 Elsevier B.V. All rights reserved.
Pickup, Emily; German, Alexander J; Blackwell, Emily; Evans, Mark; Westgarth, Carri
2017-01-01
Regular physical activity is an important means of promoting health, both in people and their pets. Walking is the most common method used for dogs, but there is a lack of clarity on how much daily activity different breeds of dog require. Data from an online survey of UK dog owners were collected between June and August in 2014. The University of Liverpool Ethics Committee approved the project, and owners consented to data use. The initial dataset (17 028 dogs) was first cleaned to remove erroneous data, and then edited to remove mixed breed dogs, leaving a total of 12 314 dogs from known pedigree breeds. Other information collected included sex, age, neuter status, breed, and amount and frequency of exercise. Exercise frequency and duration were estimated across different breeds, and compared with Kennel Club recommendations, using χ 2 tests and binary logistic regression. The online survey data indicated differences amongst breeds in the amount of walking reported ( P < 0·001). Afghan hounds were the least exercised breed, whilst breeds reportedly exercised most included: English setter, foxhound, Irish setter and Old English sheepdog. Gundogs were most likely to be walked once per d or more ( P < 0·001), whilst smaller dogs were more likely to meet their UK Kennel Club guidelines for dog walking ( P < 0·001). The frequency of dog walking varies both within and amongst breeds, and many do not currently receive the recommended amount of exercise. This may constitute a canine welfare problem and also have an impact on the physical activity levels of their owners.
Radiographic liver size in Pekingese dogs versus other dog breeds.
Choi, Jihye; Keh, Seoyeon; Kim, Hyunwook; Kim, Junyoung; Yoon, Junghee
2013-01-01
Differential diagnoses for canine liver disease are commonly based on radiographic estimates of liver size, however little has been published on breed variations. Aims of this study were to describe normal radiographic liver size in Pekingese dogs and to compare normal measurements for this breed with other dog breeds and Pekingese dogs with liver disease. Liver measurements were compared for clinically normal Pekingese (n = 61), normal non-Pekingese brachycephalic (n = 45), normal nonbrachycephalic (n = 71), and Pekingese breed dogs with liver disease (n = 22). For each dog, body weight, liver length, T11 vertebral length, thoracic depth, and thoracic width were measured on right lateral and ventrodorsal abdominal radiographs. Liver volume was calculated using a formula and ratios of liver length/T11 vertebral length and liver volume/body weight ratio were determined. Normal Pekingese dogs had a significantly smaller liver volume/body weight ratio (16.73 ± 5.67, P < 0.05) than normal non-Pekingese brachycephalic breed dogs (19.54 ± 5.03) and normal nonbrachycephalic breed dogs (18.72 ± 6.52). The liver length/T11 vertebral length ratio in normal Pekingese (4.64 ± 0.65) was significantly smaller than normal non-Pekingese brachycephalic breed dogs (5.16 ± 0.74) and normal nonbrachycephalic breed dogs (5.40 ± 0.74). Ratios of liver volume/body weight and liver length/T11 vertebral length in normal Pekingese were significantly different from Pekingese with liver diseases (P < 0.05). Findings supported our hypothesis that Pekingese dogs have a smaller normal radiographic liver size than other breeds. We recommend using 4.64× the length of the T11 vertebra as a radiographic criterion for normal liver length in Pekingese dogs. © 2012 Veterinary Radiology & Ultrasound.
Ryan, Calen P; Dawson, Alistair; Sharp, Peter J; Meddle, Simone L; Williams, Tony D
2014-06-01
Clutch size is a fundamental predictor of avian fitness, widely-studied from evolutionary and ecological perspectives, but surprisingly little is known about the physiological mechanisms regulating clutch size variation. The only formal mechanistic hypothesis for avian clutch-size determination predicts an anti-gonadal effect of circulating prolactin (PRL) via the inhibition of luteinizing hormone (LH), and has become widely-accepted despite little experimental support. Here we investigated the relationship between pre-breeding and breeding plasma PRL and LH and clutch-size in captive-breeding female zebra finches (Taeniopygia guttata). Using a repeated-measures design, we followed individual females from pre-breeding, through multiple breeding attempts, and attempted to decrease PRL using the D2-receptor agonist, bromocriptine. Clutch size was independent of variation in pre-breeding PRL or LH, although pre-breeding LH was negatively correlated with the time between pairing and the onset of laying. Clutch size was independent of variation in plasma PRL on all days of egg-laying. Bromocriptine treatment had no effect on plasma PRL, but in this breeding attempt clutch size was also independent of plasma PRL. Finally, we found no evidence for an inverse relationship between plasma PRL and LH levels, as predicted if PRL had inhibitory effects via LH. Thus, our data fail to provide any support for the involvement of circulating PRL in clutch size determination. These findings suggest that alternative models for hormonal control of avian clutch size need to be considered, perhaps involving downstream regulation of plasma PRL at the level of the ovary, or other hormones that have not been considered to date. Copyright © 2014 Elsevier Inc. All rights reserved.
Ockendon, Nancy; Leech, Dave; Pearce-Higgins, James W
2013-01-01
Long-distance migrants may be particularly vulnerable to climate change on both wintering and breeding grounds. However, the relative importance of climatic variables at different stages of the annual cycle is poorly understood, even in well-studied Palaearctic migrant species. Using a national dataset spanning 46 years, we investigate the impact of wintering ground precipitation and breeding ground temperature on breeding phenology and clutch size of 19 UK migrants. Although both spring temperature and arid zone precipitation were significantly correlated with laying date, the former accounted for 3.5 times more inter-annual variation. Neither climate variable strongly affected clutch size. Thus, although carry-over effects had some impact, they were weaker drivers of reproductive traits than conditions on the breeding grounds.
Age and breeding success related to nest position in a White stork Ciconia ciconia colony
NASA Astrophysics Data System (ADS)
Vergara, Pablo; Aguirre, José I.
2006-11-01
Coloniality is a breeding system that may produce benefits in terms of breeding success, although these advantages could vary according to factors such as colony size or nest position. We studied breeder's age in relation to nest position (peripheral or central) within the colony. In addition, we studied the relationship between breeding success and nest position, controlling for breeder's age, a highly correlated factor, in a White Stork Ciconia ciconia colony over a 7-year period. Our results show that central nests are mainly occupied by adult birds and had lower failure rates. However, controlling for breeder's age, nest position per se did not explain breeding success. The scarce predation and the lack of human disturbance in the study colony could explain the absence of differences in breeding success between different nest positions within the colony.
Status of breeding seabirds on the Northern Islands of the Red Sea, Saudi Arabia.
Shobrak, Mohammed Y; Aloufi, Abdulhadi A
2014-07-01
We undertook breeding surveys between 2010 and 2011 to assess the status of breeding birds on 16 islands in the northern Saudi Arabia. Sixteen bird species were found breeding at three different seasons; i.e. winter (Osprey), spring (Caspian and Saunder's Terns), and summer (Lesser Crested, White-cheeked, Bridled Terns). It is postulated that food availability is an important factor influencing the breeding of seabirds in the northern Saudi Arabian Red Sea. Several species laid eggs earlier in northern parts of the Red Sea than in southern parts. The predicted increases in temperatures (Ta ) could have a negative effect on species survival in the future, especially on those whose nests that are in the open. Finally, disturbance, predation and egg collection were probably the main immediate threats affecting the breeding seabird species in the northern Red Sea.
Staykova, Teodora
2008-01-01
Isoenzymes are very suitable markers for the study of the inter-breed diversity of the silkworm Bombyx mon L. (Lepidoptera: Bombycidae). More than 250 breeds are raised in Bulgaria, which are not very well studied with regard to their isoenzymic polymorphism. Polymorphism of nonspecific esterases from pupal haemolymph was analyzed, as well as of phosphoglucomutase from different organs of larvae, pupae and imago, from eight introduced breeds. Electrophoresis in polyacrylamide gels was used. A polylocus control of nonspecific esterases, and possible monolocus control of phosphoglucomutase was ascertained. Biallele and triallele polymorphism of phosphoglucomutase locus and in three of the esterase loci was determined. The allelic frequencies of the polymorphic loci in each breed were analyzed. Inter-breed differences were found in different allelic frequencies, different heterozygosity and polymorphism.
Ely, Craig R.; Fox, A.D.; Alisauskas, R.T.; Andreev, A.; Bromley, R.G.; Degtyarev, Andrei G.; Ebbinge, B.; Gurtovaya, E.N.; Kerbes, R.; Kondratyev, Alexander V.; Kostin, I.; Krechmar, A.V.; Litvin, K.E.; Miyabayashi, Y.; Moou, J.H.; Oates, R.M.; Orthmeyer, D.L.; Sabano, Yutaka; Simpson, S.G.; Solovieva, D.V.; Spindler, Michael A.; Syroechkovsky, Y.V.; Takekawa, John Y.; Walsh, A.
2005-01-01
Capsule: Greater White-fronted Geese show significant variation in body size from sampling locations throughout their circumpolar breeding range. Aims: To determine the degree of geographical variation in body size of Greater White-fronted Geese and identify factors contributing to any apparent patterns in variation. Methods: Structural measures of >3000 geese from 16 breeding areas throughout the Holarctic breeding range of the species were compared statistically. Results: Palearctic forms varied clinally, and increased in size from the smallest forms on the Kanin and Taimyr peninsulas in western Eurasia to the largest forms breeding in the Anadyr Lowlands of eastern Chukotka. Clinal variation was less apparent in the Nearctic, as both the smallest form in the Nearctic and the largest form overall (the Tule Goose) were from different breeding areas in Alaska. The Tule Goose was 25% larger than the smallest form. Birds from Greenland (A. a. flavirostris) were the second largest, although only slightly larger than geese from several North American populations. Body size was not correlated with breeding latitude but was positively correlated with temperature on the breeding grounds, breeding habitat, and migration distance. Body mass of Greater White-fronted Geese from all populations remained relatively constant during the period of wing moult. Morphological distinctness of eastern and western Palearctic forms concurs with earlier findings of complete range disjunction. Conclusions: Patterns of morphological variation in Greater White-fronted Geese across the Holarctic can be generally attributed to adaptation to variable breeding environments, migration requirements, and phylo-geographical histories.
Identification of breeding objectives for Begait goat in western Tigray, North Ethiopia.
Abraham, Hagos; Gizaw, Solomon; Urge, Mengistu
2018-06-21
A sound breeding objective is the basis for genetic improvement in overall economic merit of farm animals. Begait goat is one of the identified breeds in Ethiopia, which is a multipurpose breed as it serves as source of cash income and source of food (meat and milk). Despite its importance, no formal breeding objectives exist for Begait goat. The objective of the present study was to identify breeding objectives for the breed through two approaches: using own-flock ranking experiment and developing deterministic bio-economic models as a preliminary step towards designing sustainable breeding programs for the breed. In the own-flock ranking experiment, a total of 45 households were visited at their homesteads and were asked to select, with reasons, the first best, second best, third best, and the most inferior does from their own flock. Age, previous reproduction, and production information of the identified animals were inquired; live body weight and some linear body measurements were taken. The bio-economic model included performance traits (weights, daily weight gain, kidding interval, litter size, milk yield, kid mortality, pregnancy, and replacement rates) and economic (revenue and costs) parameters. It was observed that there was close agreement between the farmers' ranking and bio-economic model results. In general, the results of the present study indicated that Begait goat owners could improve performance of their goats and profitability of their farms by selecting for 6-month weight, litter size, pre-weaning kid survival rate, and milk yield.
New World cattle show ancestry from multiple independent domestication events
McTavish, Emily Jane; Decker, Jared E.; Schnabel, Robert D.; Taylor, Jeremy F.; Hillis, David M.
2013-01-01
Previous archeological and genetic research has shown that modern cattle breeds are descended from multiple independent domestication events of the wild aurochs (Bos primigenius) ∼10,000 y ago. Two primary areas of domestication in the Middle East/Europe and the Indian subcontinent resulted in taurine and indicine lines of cattle, respectively. American descendants of cattle brought by European explorers to the New World beginning in 1493 generally have been considered to belong to the taurine lineage. Our analyses of 47,506 single nucleotide polymorphisms show that these New World cattle breeds, as well as many related breeds of cattle in southern Europe, actually exhibit ancestry from both the taurine and indicine lineages. In this study, we show that, although European cattle are largely descended from the taurine lineage, gene flow from African cattle (partially of indicine origin) contributed substantial genomic components to both southern European cattle breeds and their New World descendants. New World cattle breeds, such as Texas Longhorns, provide an opportunity to study global population structure and domestication in cattle. Following their introduction into the Americas in the late 1400s, semiferal herds of cattle underwent between 80 and 200 generations of predominantly natural selection, as opposed to the human-mediated artificial selection of Old World breeding programs. Our analyses of global cattle breed population history show that the hybrid ancestry of New World breeds contributed genetic variation that likely facilitated the adaptation of these breeds to a novel environment. PMID:23530234
Downs, Louise M; Hitti, Rebekkah; Pregnolato, Silvia; Mellersh, Cathryn S
2014-03-01
To assess the extent of progressive retinal atrophy (PRA) genetic heterogeneity within and between domestic dog breeds. DNA from 231 dogs with PRA, representing 36 breeds, was screened for 17 mutations previously associated with PRA in at least one breed of dog. Screening methods included amplified fragment size discrimination using gel electrophoresis or detection of fluorescence, (TaqMan(®) ; Life Technologies, Carlsbad, CA, USA) allelic discrimination, and Sanger sequencing. Of the 231 dogs screened, 129 were homozygous for a PRA-associated mutation, 29 dogs were carriers, and 73 were homozygous for the wild-type allele at all loci tested. In two of the 129 dogs, homozygous mutations were identified that had not previously been observed in the respective breeds: one Chinese Crested dog was homozygous for the RCD3-associated mutation usually found in the Cardigan Welsh Corgi, and one Standard Poodle was homozygous for the RCD4-associated mutation previously reported to segregate in Gordon and Irish Setters. In the majority of the breeds (15/21) in which a PRA-associated mutation is known to segregate, cases were identified that did not carry any of the known PRA-associated mutations. Progressive retinal atrophy in the dog displays significant genetic heterogeneity within as well as between breeds. There are also several instances where PRA-associated mutations segregate among breeds with no known close ancestry. © 2013 American College of Veterinary Ophthalmologists.
Dog sperm head morphometry: its diversity and evolution.
Soler, Carles; Alambiaga, Ana; Martí, Maria A; García-Molina, Almudena; Valverde, Anthony; Contell, Jesús; Campos, Marcos
2017-01-01
Dogs have been under strong artificial selection as a consequence of their relationship with man. Differences between breeds are evident that could be reflected in seminal characteristics. The present study was to evaluate differences in sperm head morphometry between seven well-defined breeds of dog: the British Bulldog, Chihuahua, German Shepherd, Labrador Retriever, Spanish Mastiff, Staffordshire Terrier, and Valencian Rat Hunting dog. Semen samples were obtained by masturbation and smears stained with Diff-Quik. Morphometric analysis (CASA-Morph) produced four size and four shape parameters. Length, Ellipticity, and Elongation showed higher differences between breeds. MANOVA revealed differences among all breeds. Considering the whole dataset, principal component analysis (PCA) showed that PC1 was related to head shape and PC2 to size. Procluster analysis showed the British Bulldog to be the most isolated breed, followed by the German Shepherd. The PCA breed by breed showed the Chihuahua, Labrador Retriever, Spanish Mastiff, and Staffordshire Terrier to have PC1 related to shape and PC2 to size, whereas the British Bulldog, Valencia Rat Hunting dog, and German Shepherd had PC1 related to size and PC2 to shape. The dendrogram for cluster groupings and the distance between them showed the British Bulldog to be separated from the rest of the breeds. Future work on dog semen must take into account the large differences in the breeds' sperm characteristics. The results provide a base for future work on phylogenetic and evolutionary studies of dogs, based on their seminal characteristics.
Seward, Adam M; Beale, Colin M; Gilbert, Lucy; Jones, T Hefin; Thomas, Robert J
2014-01-01
Many populations of migratory songbirds are declining or shifting in distribution. This is likely due to environmental changes that alter factors such as food availability that may have an impact on survival and/or breeding success. We tested the impact of experimentally supplemented food on the breeding success over three years of northern wheatears (Oenanthe oenanthe), a species in decline over much of Europe. The number of offspring fledged over the season was higher for food-supplemented birds than for control birds. The mechanisms for this effect were that food supplementation advanced breeding date, which, together with increased resources, allowed further breeding attempts. While food supplementation did not increase the clutch size, hatching success or number of chicks fledged per breeding attempt, it did increase chick size in one year of the study. The increased breeding success was greater for males than females; males could attempt to rear simultaneous broods with multiple females as well as attempting second broods, whereas females could only increase their breeding effort via second broods. Multiple brooding is rare in the study population, but this study demonstrates the potential for changes in food availability to affect wheatear breeding productivity, primarily via phenotypic flexibility in the number of breeding attempts. Our results have implications for our understanding of how wheatears may respond to natural changes in food availability due to climate changes or changes in habitat management.
Boyko, Adam R.; Boyko, Ryan H.; Boyko, Corin M.; Parker, Heidi G.; Castelhano, Marta; Corey, Liz; Degenhardt, Jeremiah D.; Auton, Adam; Hedimbi, Marius; Kityo, Robert; Ostrander, Elaine A.; Schoenebeck, Jeffrey; Todhunter, Rory J.; Jones, Paul; Bustamante, Carlos D.
2009-01-01
High genetic diversity of East Asian village dogs has recently been used to argue for an East Asian origin of the domestic dog. However, global village dog genetic diversity and the extent to which semiferal village dogs represent distinct, indigenous populations instead of admixtures of various dog breeds has not been quantified. Understanding these issues is critical to properly reconstructing the timing, number, and locations of dog domestication. To address these questions, we sampled 318 village dogs from 7 regions in Egypt, Uganda, and Namibia, measuring genetic diversity >680 bp of the mitochondrial D-loop, 300 SNPs, and 89 microsatellite markers. We also analyzed breed dogs, including putatively African breeds (Afghan hounds, Basenjis, Pharaoh hounds, Rhodesian ridgebacks, and Salukis), Puerto Rican street dogs, and mixed breed dogs from the United States. Village dogs from most African regions appear genetically distinct from non-native breed and mixed-breed dogs, although some individuals cluster genetically with Puerto Rican dogs or United States breed mixes instead of with neighboring village dogs. Thus, African village dogs are a mosaic of indigenous dogs descended from early migrants to Africa, and non-native, breed-admixed individuals. Among putatively African breeds, Pharaoh hounds, and Rhodesian ridgebacks clustered with non-native rather than indigenous African dogs, suggesting they have predominantly non-African origins. Surprisingly, we find similar mtDNA haplotype diversity in African and East Asian village dogs, potentially calling into question the hypothesis of an East Asian origin for dog domestication. PMID:19666600
Boyko, Adam R; Boyko, Ryan H; Boyko, Corin M; Parker, Heidi G; Castelhano, Marta; Corey, Liz; Degenhardt, Jeremiah D; Auton, Adam; Hedimbi, Marius; Kityo, Robert; Ostrander, Elaine A; Schoenebeck, Jeffrey; Todhunter, Rory J; Jones, Paul; Bustamante, Carlos D
2009-08-18
High genetic diversity of East Asian village dogs has recently been used to argue for an East Asian origin of the domestic dog. However, global village dog genetic diversity and the extent to which semiferal village dogs represent distinct, indigenous populations instead of admixtures of various dog breeds has not been quantified. Understanding these issues is critical to properly reconstructing the timing, number, and locations of dog domestication. To address these questions, we sampled 318 village dogs from 7 regions in Egypt, Uganda, and Namibia, measuring genetic diversity >680 bp of the mitochondrial D-loop, 300 SNPs, and 89 microsatellite markers. We also analyzed breed dogs, including putatively African breeds (Afghan hounds, Basenjis, Pharaoh hounds, Rhodesian ridgebacks, and Salukis), Puerto Rican street dogs, and mixed breed dogs from the United States. Village dogs from most African regions appear genetically distinct from non-native breed and mixed-breed dogs, although some individuals cluster genetically with Puerto Rican dogs or United States breed mixes instead of with neighboring village dogs. Thus, African village dogs are a mosaic of indigenous dogs descended from early migrants to Africa, and non-native, breed-admixed individuals. Among putatively African breeds, Pharaoh hounds, and Rhodesian ridgebacks clustered with non-native rather than indigenous African dogs, suggesting they have predominantly non-African origins. Surprisingly, we find similar mtDNA haplotype diversity in African and East Asian village dogs, potentially calling into question the hypothesis of an East Asian origin for dog domestication.
Rethinking dog domestication by integrating genetics, archeology, and biogeography.
Larson, Greger; Karlsson, Elinor K; Perri, Angela; Webster, Matthew T; Ho, Simon Y W; Peters, Joris; Stahl, Peter W; Piper, Philip J; Lingaas, Frode; Fredholm, Merete; Comstock, Kenine E; Modiano, Jaime F; Schelling, Claude; Agoulnik, Alexander I; Leegwater, Peter A; Dobney, Keith; Vigne, Jean-Denis; Vilà, Carles; Andersson, Leif; Lindblad-Toh, Kerstin
2012-06-05
The dog was the first domesticated animal but it remains uncertain when the domestication process began and whether it occurred just once or multiple times across the Northern Hemisphere. To ascertain the value of modern genetic data to elucidate the origins of dog domestication, we analyzed 49,024 autosomal SNPs in 1,375 dogs (representing 35 breeds) and 19 wolves. After combining our data with previously published data, we contrasted the genetic signatures of 121 breeds with a worldwide archeological assessment of the earliest dog remains. Correlating the earliest archeological dogs with the geographic locations of 14 so-called "ancient" breeds (defined by their genetic differentiation) resulted in a counterintuitive pattern. First, none of the ancient breeds derive from regions where the oldest archeological remains have been found. Second, three of the ancient breeds (Basenjis, Dingoes, and New Guinea Singing Dogs) come from regions outside the natural range of Canis lupus (the dog's wild ancestor) and where dogs were introduced more than 10,000 y after domestication. These results demonstrate that the unifying characteristic among all genetically distinct so-called ancient breeds is a lack of recent admixture with other breeds likely facilitated by geographic and cultural isolation. Furthermore, these genetically distinct ancient breeds only appear so because of their relative isolation, suggesting that studies of modern breeds have yet to shed light on dog origins. We conclude by assessing the limitations of past studies and how next-generation sequencing of modern and ancient individuals may unravel the history of dog domestication.
DNA-informed breeding of rosaceous crops: promises, progress and prospects
Peace, Cameron P
2017-01-01
Crops of the Rosaceae family provide valuable contributions to rural economies and human health and enjoyment. Sustained solutions to production challenges and market demands can be met with genetically improved new cultivars. Traditional rosaceous crop breeding is expensive and time-consuming and would benefit from improvements in efficiency and accuracy. Use of DNA information is becoming conventional in rosaceous crop breeding, contributing to many decisions and operations, but only after past decades of solved challenges and generation of sufficient resources. Successes in deployment of DNA-based knowledge and tools have arisen when the ‘chasm’ between genomics discoveries and practical application is bridged systematically. Key steps are establishing breeder desire for use of DNA information, adapting tools to local breeding utility, identifying efficient application schemes, accessing effective services in DNA-based diagnostics and gaining experience in integrating DNA information into breeding operations and decisions. DNA-informed germplasm characterization for revealing identity and relatedness has benefitted many programs and provides a compelling entry point to reaping benefits of genomics research. DNA-informed germplasm evaluation for predicting trait performance has enabled effective reallocation of breeding resources when applied in pioneering programs. DNA-based diagnostics is now expanding from specific loci to genome-wide considerations. Realizing the full potential of this expansion will require improved accuracy of predictions, multi-trait DNA profiling capabilities, streamlined breeding information management systems, strategies that overcome plant-based features that limit breeding progress and widespread training of current and future breeding personnel and allied scientists. PMID:28326185
Omasaki, S K; van Arendonk, J A M; Kahi, A K; Komen, H
2016-10-01
In general, livestock and fish farming systems in developing countries tend to be highly diverse in terms of agro-ecological conditions and market orientation. There are no studies that have investigated if and how this diversity translates to varying preferences for breeding objective traits. This is particularly important for breeding programmes that are organized on a national level (e.g. government-supported nucleus breeding programmes). The aim of this study was to investigate whether Nile tilapia farmers with diverse production systems and economic constraints have different preferences for breeding objective traits. The second objective was to derive a consensus breeding goal, using weighted goal programming that could be used for a national breeding programme for Nile tilapia. A survey was conducted among 100 smallholder Nile tilapia farmers in Kenya to obtain preference values for traits of economic importance, by using multiple pairwise comparisons. Individual and group preference values were estimated using analytical hierarchy process. Low-income farmers preferred harvest weight, while medium- and high-income farmers preferred growth rate and survival. Grouping farmers according to market objective (fingerling production or fattening) showed that fingerling producers preferred growth rate and survival, while fattening farmers preferred harvest weight, height and thickness. Weighted goal programming was used to obtain consensus preference values, and these were used to derive desired gains for a breeding goal of a national breeding programme that takes into account the diversity of smallholder production systems. © 2016 Blackwell Verlag GmbH.
Lalusin, Antonio; Borromeo, Teresita; Gregorio, Glenn; Hernandez, Jose; Virk, Parminder; Collard, Bertrand; McCouch, Susan R.
2015-01-01
Genome-wide association mapping studies (GWAS) are frequently used to detect QTL in diverse collections of crop germplasm, based on historic recombination events and linkage disequilibrium across the genome. Generally, diversity panels genotyped with high density SNP panels are utilized in order to assay a wide range of alleles and haplotypes and to monitor recombination breakpoints across the genome. By contrast, GWAS have not generally been performed in breeding populations. In this study we performed association mapping for 19 agronomic traits including yield and yield components in a breeding population of elite irrigated tropical rice breeding lines so that the results would be more directly applicable to breeding than those from a diversity panel. The population was genotyped with 71,710 SNPs using genotyping-by-sequencing (GBS), and GWAS performed with the explicit goal of expediting selection in the breeding program. Using this breeding panel we identified 52 QTL for 11 agronomic traits, including large effect QTLs for flowering time and grain length/grain width/grain-length-breadth ratio. We also identified haplotypes that can be used to select plants in our population for short stature (plant height), early flowering time, and high yield, and thus demonstrate the utility of association mapping in breeding populations for informing breeding decisions. We conclude by exploring how the newly identified significant SNPs and insights into the genetic architecture of these quantitative traits can be leveraged to build genomic-assisted selection models. PMID:25785447
Pospahala, Richard S.; Anderson, David R.; Henny, Charles J.
1974-01-01
This report, the second in a series on a comprehensive analysis of mallard population data, provides information on mallard breeding habitat, the size and distribution of breeding populations, and indices to production. The information in this report is primarily the result of large-scale aerial surveys conducted during May and July, 1955-73. The history of the conflict in resource utilization between agriculturalists and wildlife conservation interests in the primary waterfowl breeding grounds is reviewed. The numbers of ponds present during the breeding season and the midsummer period and the effects of precipitation and temperature on the number of ponds present are analyzed in detail. No significant cycles in precipitation were detected and it appears that precipitation is primarily influenced by substantial seasonal and random components. Annual estimates (1955-73) of the number of mallards in surveyed and unsurveyed breeding areas provided estimates of the size and geographic distribution of breeding mallards in North America. The estimated size of the mallard breeding population in North America has ranged from a high of 14.4 million in 1958 to a low of 7.1 million in 1965. Generally, the mallard breeding population began to decline after the 1958 peak until 1962, and remained below 10 million birds until 1970. The decline and subsequent low level of the mallard population between 1959 and 1969 .generally coincided with a period of poor habitat conditions on the major breeding grounds. The density of mallards was highest in the Prairie-Parkland Area with an average of nearly 19.2 birds per square mile. The proportion of the continental mallard breeding population in the Prairie-Parkland Area ranged from 30% in 1962 to a high of 600/0 in 1956. The geographic distribution of breeding mallards throughout North America was significantly related to the number of May ponds in the Prairie-Parkland Area. Estimates of midsummer habitat conditions and indices to production from the July Production Survey were studied in detail. Several indices relating to production showed marked declines from west to east in the Prairie-Parkland Area, these are: (1) density of breeding mallards (per square mile and per May pond), (2) brood density (per square mile and per July pond), (3) average brood size (all species combined), and (4) brood survival from class II to class III. An index to late nesting and renesting efforts was highest during years when midsummer water conditions were good. Production rates of many ducks breeding in North America appear to be regulated by both density-dependent and density-independent factors. Spacing of birds in the Prairie-Parkland Area appeared to be a key factor in the density-dependent regulation of the population. The spacing mechanism, in conjunction with habitat conditions, influenced some birds to overfly the primary breeding grounds into less favorable habitats to the north and northwest where the production rate may be suppressed. The production rate of waterfowl in the Prairie Parkland Area seems to be independent of density (after emigration has taken place) because the production index appears to be a linear function of the number of breeding birds in the area. Similarly, the production rate of waterfowl in northern Saskatchewan and northern Manitoba appeared to be independent of density. Production indices in these northern areas appear to be a linear function of the size of the breeding population. Thus, the density and distribution of breeding ducks is probably regulated through a spacing mechanism that is at least partially dependent on measurable environmental factors. The result is a density-dependent process operating to ultimately effect the production and production rate of breeding ducks on a continent-wide basis. Continental production, and therefore the size of the fall population, is probably partially regulated by the number of birds that are distributed north and northwest into environments less favorable for successful reproduction. Thus, spacing of the birds in the Prairie-Parkland Area and the movement of a fraction of the birds out of the prime breeding areas may be key factors in the density-dependent regulation of the total mallard population.
Benjamin O. Knapp; G. Geoff Wang; Stacy L Clark; Lauren S. Pile; Scott E. Schlarbaum
2014-01-01
Backcross breeding programs have been used to transfer disease resistance and other traits from one forest tree species to another in order to meet restoration objectives. Evaluating the field performance of such material is critical for determining the success of breeding programs. In eastern North America, The American Chestnut Foundation has a backcross breeding...
H.F. Sakai; B.R. Noon
1990-01-01
The foraging characteristics of Hammondâs and Western flycatchers in northwestern California varied with different stages of the breeding cycle during the breeding seasons (early April-mid August) in 1984 and 1985. The speciesâ behaviors did not always vary in parallel nor were all foraging behaviors distributed equally during the breeding cycle. For example, the...
Global spatial ecology of three closely-related gadfly petrels
Ramos, Raül; Ramírez, Iván; Paiva, Vitor H.; Militão, Teresa; Biscoito, Manuel; Menezes, Dília; Phillips, Richard A.; Zino, Francis; González-Solís, Jacob
2016-01-01
The conservation status and taxonomy of the three gadfly petrels that breed in Macaronesia is still discussed partly due to the scarce information on their spatial ecology. Using geolocator and capture-mark-recapture data, we examined phenology, natal philopatry and breeding-site fidelity, year-round distribution, habitat usage and at-sea activity of the three closely-related gadfly petrels that breed in Macaronesia: Zino’s petrel Pterodroma madeira, Desertas petrel P. deserta and Cape Verde petrel P. feae. All P. feae remained around the breeding area during their non-breeding season, whereas P. madeira and P. deserta dispersed far from their colony, migrating either to the Cape Verde region, further south to equatorial waters in the central Atlantic, or to the Brazil Current. The three taxa displayed a clear allochrony in timing of breeding. Habitat modelling and at-sea activity patterns highlighted similar environmental preferences and foraging behaviours of the three taxa. Finally, no chick or adult was recaptured away from its natal site and survival estimates were relatively high at all study sites, indicating strong philopatry and breeding-site fidelity for the three taxa. The combination of high philopatry, marked breeding asynchrony and substantial spatio-temporal segregation of their year-round distribution suggest very limited gene flow among the three taxa. PMID:27001141
Global spatial ecology of three closely-related gadfly petrels
NASA Astrophysics Data System (ADS)
Ramos, Raül; Ramírez, Iván; Paiva, Vitor H.; Militão, Teresa; Biscoito, Manuel; Menezes, Dília; Phillips, Richard A.; Zino, Francis; González-Solís, Jacob
2016-03-01
The conservation status and taxonomy of the three gadfly petrels that breed in Macaronesia is still discussed partly due to the scarce information on their spatial ecology. Using geolocator and capture-mark-recapture data, we examined phenology, natal philopatry and breeding-site fidelity, year-round distribution, habitat usage and at-sea activity of the three closely-related gadfly petrels that breed in Macaronesia: Zino’s petrel Pterodroma madeira, Desertas petrel P. deserta and Cape Verde petrel P. feae. All P. feae remained around the breeding area during their non-breeding season, whereas P. madeira and P. deserta dispersed far from their colony, migrating either to the Cape Verde region, further south to equatorial waters in the central Atlantic, or to the Brazil Current. The three taxa displayed a clear allochrony in timing of breeding. Habitat modelling and at-sea activity patterns highlighted similar environmental preferences and foraging behaviours of the three taxa. Finally, no chick or adult was recaptured away from its natal site and survival estimates were relatively high at all study sites, indicating strong philopatry and breeding-site fidelity for the three taxa. The combination of high philopatry, marked breeding asynchrony and substantial spatio-temporal segregation of their year-round distribution suggest very limited gene flow among the three taxa.
Papaleo Mazzucco, J; Goszczynski, D E; Ripoli, M V; Melucci, L M; Pardo, A M; Colatto, E; Rogberg-Muñoz, A; Mezzadra, C A; Depetris, G J; Giovambattista, G; Villarreal, E L
2016-04-01
Grazing steers from Angus and Hereford breeds, their cross-breeds and a three-way cross-breed (Limousin × Angus-Hereford) were measured for growth, carcass and meat quality traits. Breed effects were studied, and the association of SNPs with fat deposition and fatty acid (FA) composition (leptin, melanocortin-4 receptor, stearoyl-CoA desaturase, FA synthase and thyroglobulin) was tested. Limousin cross-breed showed the greatest final body weight, ultrasound rib eye area, dressing percentage, carcass and leg length, and the lowest backfat thickness and intramuscular fat content. Genetic groups had similar pH, shear force, cooking loss, L* and b* and n-6:n-3 ratio. Meat from 1/2-Angus presented greater a* than Limousin cross-breed. Whereas Angus had the highest total SFA content, Hereford had the lowest total SFA and the highest total MUFA. Limousin cross-breed had greater content of several individual PUFAs, total PUFA, n-6 and n-3 FA than Angus and 1/2-Angus. Leptin and FA synthase were associated with some FAs, supporting their influence over fat metabolism for grazing animals. Copyright © 2015 Elsevier Ltd. All rights reserved.
On the origin of mongrels: evolutionary history of free-breeding dogs in Eurasia
Pilot, Małgorzata; Malewski, Tadeusz; Moura, Andre E.; Grzybowski, Tomasz; Oleński, Kamil; Ruść, Anna; Kamiński, Stanisław; Ruiz Fadel, Fernanda; Mills, Daniel S.; Alagaili, Abdulaziz N.; Mohammed, Osama B.; Kłys, Grzegorz; Okhlopkov, Innokentiy M.; Suchecka, Ewa; Bogdanowicz, Wiesław
2015-01-01
Although a large part of the global domestic dog population is free-ranging and free-breeding, knowledge of genetic diversity in these free-breeding dogs (FBDs) and their ancestry relations to pure-breed dogs is limited, and the indigenous status of FBDs in Asia is still uncertain. We analyse genome-wide SNP variability of FBDs across Eurasia, and show that they display weak genetic structure and are genetically distinct from pure-breed dogs rather than constituting an admixture of breeds. Our results suggest that modern European breeds originated locally from European FBDs. East Asian and Arctic breeds show closest affinity to East Asian FBDs, and they both represent the earliest branching lineages in the phylogeny of extant Eurasian dogs. Our biogeographic reconstruction of ancestral distributions indicates a gradual westward expansion of East Asian indigenous dogs to the Middle East and Europe through Central and West Asia, providing evidence for a major expansion that shaped the patterns of genetic differentiation in modern dogs. This expansion was probably secondary and could have led to the replacement of earlier resident populations in Western Eurasia. This could explain why earlier studies based on modern DNA suggest East Asia as the region of dog origin, while ancient DNA and archaeological data point to Western Eurasia. PMID:26631564
On the origin of mongrels: evolutionary history of free-breeding dogs in Eurasia.
Pilot, Małgorzata; Malewski, Tadeusz; Moura, Andre E; Grzybowski, Tomasz; Oleński, Kamil; Ruść, Anna; Kamiński, Stanisław; Ruiz Fadel, Fernanda; Mills, Daniel S; Alagaili, Abdulaziz N; Mohammed, Osama B; Kłys, Grzegorz; Okhlopkov, Innokentiy M; Suchecka, Ewa; Bogdanowicz, Wiesław
2015-12-07
Although a large part of the global domestic dog population is free-ranging and free-breeding, knowledge of genetic diversity in these free-breeding dogs (FBDs) and their ancestry relations to pure-breed dogs is limited, and the indigenous status of FBDs in Asia is still uncertain. We analyse genome-wide SNP variability of FBDs across Eurasia, and show that they display weak genetic structure and are genetically distinct from pure-breed dogs rather than constituting an admixture of breeds. Our results suggest that modern European breeds originated locally from European FBDs. East Asian and Arctic breeds show closest affinity to East Asian FBDs, and they both represent the earliest branching lineages in the phylogeny of extant Eurasian dogs. Our biogeographic reconstruction of ancestral distributions indicates a gradual westward expansion of East Asian indigenous dogs to the Middle East and Europe through Central and West Asia, providing evidence for a major expansion that shaped the patterns of genetic differentiation in modern dogs. This expansion was probably secondary and could have led to the replacement of earlier resident populations in Western Eurasia. This could explain why earlier studies based on modern DNA suggest East Asia as the region of dog origin, while ancient DNA and archaeological data point to Western Eurasia. © 2015 The Author(s).
NASA Astrophysics Data System (ADS)
Gladics, A.; Suryan, R. M.
2016-02-01
Previous warm temperature anomalies in the NE Pacific, including the 1997-1998 El Niño, had profound impacts on seabird communities in the northern California Current. Both physical forcing and biotic interactions impact seabirds from top-down effects of seabird predators to interactions between seabirds and their prey. We report on changes in diving seabird (common murre, Uria aalge, and pelagic and Brandt's cormorants, Phalacrocorax spp.) breeding population sizes, reproductive success, phenology, and diets at breeding colonies (1998-2015) and at-sea seabird distribution and abundance (2013-2015) along the Oregon coast. Breeding seabird responses varied by species and breeding site. In 2014, reproductive success was mostly consistent with recent prior years for all species. In 2015, however, common murres and pelagic cormorants suffered colony-wide reproductive failures, while Brandt's cormorants had the highest breeding success during our 8-yr time series. Breeding phenology in cormorants was delayed by 14 days in 2015 and the number of breeding pairs reduced compared to 2014. At-sea surveys revealed greater species diversity in 2015 compared to previous years, with sub-tropical and unusual migrant species observed in greater numbers. Overall, seabirds off Oregon appeared to suffer greater impacts from the 2014-2015 Pacific Ocean Anomalies during the 2015 breeding season.
Paranzini, Cristiane Sella; Correia, Luiz Eduardo Cruz Dos Santos; de Camargo, Laiza Sartori; Silva, Kelry Mayara; de França, Tatyana Mendes; Silva, Josineudson Augusto de Vasconcelos; Veiga, Nabor; de Souza, Fabiana Ferreira
2018-02-01
This study aimed to report in detail, the technique and challenges of cloacal massage, to collect and evaluate semen from red-winged tinamou (Rhynchotus rufescens) keep in captivity, performed by only one technician. Sixty-four semen collection attempts, from 16 adult males, during breeding season and 16 attempts form these same 16 males in non-breeding season, were performed. Prior to collection, all animals were conditioned to cloacal massage for 6 weeks and the ejaculates were succeed with viable spermatozoa and then, evaluated for feces, urine and mucus contamination, volume, concentration, sperm vigor, motility, morphological defects and acrosome integrity. Semen collection success rate was 63% in breeding season and 2 (5%) samples were discarded by grade 5 contamination. Only 3 ejaculates from 16 tinamou were obtained in non-breeding season. Sperm concentration and acrosome integrity was higher (p = 0.00) in breeding season, and the percentage of total sperm morphological defects, were high in both in breeding and out breeding season. Overall, we concluded that the red-winged tinamou breeding season, is linked to photoperiod (spring and summer), and at this period time, semen can be obtained by cloacal massage collection satisfactorily, allowing its use in reproduction biotechnologies and sperm cryopreservation. Copyright © 2017 Elsevier Inc. All rights reserved.
Corbee, R J
2014-12-01
Obesity is an important disease with a high prevalence in cats. Because obesity is related to several other diseases, it is important to identify the population at risk. Several risk factors for obesity have been described in the literature. A higher incidence of obesity in certain cat breeds has been suggested. The aim of this study was to determine whether obesity occurs more often in certain breeds. The second aim was to relate the increased prevalence of obesity in certain breeds to the official standards of that breed. To this end, 268 cats of 22 different breeds investigated by determining their body condition score (BCS) on a nine-point scale by inspection and palpation, at two different cat shows. Overall, 45.5% of the show cats had a BCS > 5, and 4.5% of the show cats had a BCS > 7. There were significant differences between breeds, which could be related to the breed standards. Most overweight and obese cats were in the neutered group. It warrants firm discussions with breeders and cat show judges to come to different interpretations of the standards in order to prevent overweight conditions in certain breeds from being the standard of beauty. Neutering predisposes for obesity and requires early nutritional intervention to prevent obese conditions. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.
Importance of determining the climatic domains of sheep breeds.
Petit, D; Boujenane, I
2018-07-01
The main purpose of the study was to compare the capacity of the major sheep breeds in Morocco to cope with climate changes through the ranges of several climate parameters in which they can be found. We first delimitated the climatic 'domains' of each breed by constructing a database including altitude and climatic parameters (minima mean of the coldest month, maxima mean of the hottest month, annual rainfall, pluviothermic coefficient of Emberger Q 2, annual minima mean and annual maxima mean) on a 30-year period using the representative stations of each breed distribution. The overlap between each breed combination was quantified through a canonical analysis that extracted the most discriminant parameters. The variance analysis of each climatic parameter evidenced two breeds remarkable by their tolerance. The first one is the Timahdite, mainly settled in areas over 1100 m, which can tolerate the greatest variations in annual rainfall and pluviothermic coefficient. In spite of this feature, this breed is endangered owing to the decreasing quality of pastures. The second one is the D'man which apparently can support high variations in extreme temperatures. In fact, this breed is not well adapted to pastures and requires a special microclimate offered by oases. The information reported in this study will be the basis for the establishment of characterization and selection strategies for Moroccan sheep.
Furdui, Emilia M; Mărghitaş, Liviu A; Dezmirean, Daniel S; Paşca, Ioan; Pop, Iulia F; Erler, Silvio; Schlüns, Ellen A
2014-01-01
The domesticated silkworm Bombyx mori L. comprises a large number of geographical breeds and hybrid lines. Knowing the genetic structure of those may provide information to improve the conservation of commercial lines by estimating inbreeding over generations and the consequences of excessive use of those lineages. Here, we analyzed the genetic diversity of seven breeds and eight hybrid lines from Eastern Europe and Asia using highly polymorphic microsatellites markers to determine its genetical impact on their use in global breeding programs. No consistent pattern of deviation from Hardy-Weinberg equilibrium was found for most breed and hybrids; and the absence of a linkage disequilibrium also suggests that the strains are in equilibrium. A principal coordinate analysis revealed a clear separation of two silkworm breeds from the rest: one (IBV) originated from India and the other one (RG90) from Romania/Japan. The tendency of the other breeds from different geographic origins to cluster together in a general mix might be due to similar selection pressures (climate and anthropogenic factors) in different geographic locations. Phylogenetic analyses grouped the different silkworm breeds but not the hybrids according to their geographic origin and confirmed the pattern found in the principal coordinate analysis. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.
Genetic diversity of mtDNA D-loop sequences in four native Chinese chicken breeds.
Guo, H W; Li, C; Wang, X N; Li, Z J; Sun, G R; Li, G X; Liu, X J; Kang, X T; Han, R L
2017-10-01
1. To explore the genetic diversity of Chinese indigenous chicken breeds, a 585 bp fragment of the mitochondrial DNA (mtDNA) region was sequenced in 102 birds from the Xichuan black-bone chicken, Yunyang black-bone chicken and Lushi chicken. In addition, 30 mtDNA D-loop sequences of Silkie fowls were downloaded from NCBI. The mtDNA D-loop sequence polymorphism and maternal origin of 4 chicken breeds were analysed in this study. 2. The results showed that a total of 33 mutation sites and 28 haplotypes were detected in the 4 chicken breeds. The haplotype diversity and nucleotide diversity of these 4 native breeds were 0.916 ± 0.014 and 0.012 ± 0.002, respectively. Three clusters were formed in 4 Chinese native chickens and 12 reference breeds. Both the Xichuan black-bone chicken and Yunyang black-bone chicken were grouped into one cluster. Four haplogroups (A, B, C and E) emerged in the median-joining network in these breeds. 3. It was concluded that these 4 Chinese chicken breeds had high genetic diversity. The phylogenetic tree and median network profiles showed that Chinese native chickens and its neighbouring countries had at least two maternal origins, one from Yunnan, China and another from Southeast Asia or its surrounding area.
Speed breeding is a powerful tool to accelerate crop research and breeding.
Watson, Amy; Ghosh, Sreya; Williams, Matthew J; Cuddy, William S; Simmonds, James; Rey, María-Dolores; Asyraf Md Hatta, M; Hinchliffe, Alison; Steed, Andrew; Reynolds, Daniel; Adamski, Nikolai M; Breakspear, Andy; Korolev, Andrey; Rayner, Tracey; Dixon, Laura E; Riaz, Adnan; Martin, William; Ryan, Merrill; Edwards, David; Batley, Jacqueline; Raman, Harsh; Carter, Jeremy; Rogers, Christian; Domoney, Claire; Moore, Graham; Harwood, Wendy; Nicholson, Paul; Dieters, Mark J; DeLacy, Ian H; Zhou, Ji; Uauy, Cristobal; Boden, Scott A; Park, Robert F; Wulff, Brande B H; Hickey, Lee T
2018-01-01
The growing human population and a changing environment have raised significant concern for global food security, with the current improvement rate of several important crops inadequate to meet future demand 1 . This slow improvement rate is attributed partly to the long generation times of crop plants. Here, we present a method called 'speed breeding', which greatly shortens generation time and accelerates breeding and research programmes. Speed breeding can be used to achieve up to 6 generations per year for spring wheat (Triticum aestivum), durum wheat (T. durum), barley (Hordeum vulgare), chickpea (Cicer arietinum) and pea (Pisum sativum), and 4 generations for canola (Brassica napus), instead of 2-3 under normal glasshouse conditions. We demonstrate that speed breeding in fully enclosed, controlled-environment growth chambers can accelerate plant development for research purposes, including phenotyping of adult plant traits, mutant studies and transformation. The use of supplemental lighting in a glasshouse environment allows rapid generation cycling through single seed descent (SSD) and potential for adaptation to larger-scale crop improvement programs. Cost saving through light-emitting diode (LED) supplemental lighting is also outlined. We envisage great potential for integrating speed breeding with other modern crop breeding technologies, including high-throughput genotyping, genome editing and genomic selection, accelerating the rate of crop improvement.
Srivastava, U C; Singh, S; Singh, D
2012-10-08
Hippocampus in birds is a relatively narrow, curved strip of tissue that lies on the dorsomedial surface of telencephalon. It is widest dorsally at the junction with parahippocampal area, and it tapers with septum. Parahippocampal area (APH), the most prominent field of hippocampus is a long structure that lies at the most rostral level and continues upto caudal extent. It has been indicated by behavioral studies that hippocampus in birds plays an important role in process of learning, memory formation, food storage and spatial navigation. The present study enlightens some interesting fluctuations occurring in the neuronal classes of parahippocampal area of two seasonally breeding birds viz. P. krameri and E. scolopaceus in terms of dendritic thickness, spine density and spine morphology during breeding and non-breeding time period of birds. The Golgi-impregnated sections were used to study these fluctuations and it was noticed that there was a significant increase in dendritic thickness, spine density, spine length and spine head diameter during breeding as compared to non-breeding period. The results obtained were comparable in two different seasonally breeding birds, supporting the view that avian parahippocampal area shows neuroanatomical plasticity associated with breeding and non-breeding period because of variations in endocrinology.
Furdui, Emilia M.; Mărghitaş, Liviu A.; Dezmirean, Daniel S.; Paşca, Ioan; Pop, Iulia F.; Erler, Silvio; Schlüns, Ellen A.
2014-01-01
Abstract The domesticated silkworm Bombyx mori L. comprises a large number of geographical breeds and hybrid lines. Knowing the genetic structure of those may provide information to improve the conservation of commercial lines by estimating inbreeding over generations and the consequences of excessive use of those lineages. Here, we analyzed the genetic diversity of seven breeds and eight hybrid lines from Eastern Europe and Asia using highly polymorphic microsatellites markers to determine its genetical impact on their use in global breeding programs. No consistent pattern of deviation from Hardy–Weinberg equilibrium was found for most breed and hybrids; and the absence of a linkage disequilibrium also suggests that the strains are in equilibrium. A principal coordinate analysis revealed a clear separation of two silkworm breeds from the rest: one (IBV) originated from India and the other one (RG 90 ) from Romania/Japan. The tendency of the other breeds from different geographic origins to cluster together in a general mix might be due to similar selection pressures (climate and anthropogenic factors) in different geographic locations. Phylogenetic analyses grouped the different silkworm breeds but not the hybrids according to their geographic origin and confirmed the pattern found in the principal coordinate analysis. PMID:25502023
[Comparison on agronomy and quality characters and breeding of new strains of Erigeron breviscapus].
Yang, Shengchao; Yang, Jianwen; Pan, Yinghua; Li, Guoxing; Liu, Binghua; Zhang, Qiong; Wen, Guosong; Wang, Pingli
2010-03-01
To explore breeding method and breed new varieties of Erigeron breviscapus. Superior individual were selected from natural outcrossing population of E. breviscapus, lines and strains were established and selected and compared. The scutellarin contents of two E. breviscapus strains of 2003-15 and 2003-6 through line breeding were 3.21% and 3.01%, respectively, and increased 15.77% and 23.46% comparing with the control strain (QS-1), respectively, the yield increased 20.37% and 17.59%, scutellarin yield per hectare enhanced 39.31% and 44.82%. New varieties of E. breviscapus can be bred through lines breeding.
Breeding colonies of least terns (Sternula antillarum) in northern Sonora, Mexico, 2006-2008
Rosemartin, Alyssa; van Riper, Charles
2012-01-01
We document distribution of breeding least terns (Sternula antillarum) in northern Sonora, Mexico, 2006-2008. We report breeding activity at six sites with active colonies, including three previously undocumented colonies.
Dog Breed Differences in Visual Communication with Humans.
Konno, Akitsugu; Romero, Teresa; Inoue-Murayama, Miho; Saito, Atsuko; Hasegawa, Toshikazu
2016-01-01
Domestic dogs (Canis familiaris) have developed a close relationship with humans through the process of domestication. In human-dog interactions, eye contact is a key element of relationship initiation and maintenance. Previous studies have suggested that canine ability to produce human-directed communicative signals is influenced by domestication history, from wolves to dogs, as well as by recent breed selection for particular working purposes. To test the genetic basis for such abilities in purebred dogs, we examined gazing behavior towards humans using two types of behavioral experiments: the 'visual contact task' and the 'unsolvable task'. A total of 125 dogs participated in the study. Based on the genetic relatedness among breeds subjects were classified into five breed groups: Ancient, Herding, Hunting, Retriever-Mastiff and Working). We found that it took longer time for Ancient breeds to make an eye-contact with humans, and that they gazed at humans for shorter periods of time than any other breed group in the unsolvable situation. Our findings suggest that spontaneous gaze behavior towards humans is associated with genetic similarity to wolves rather than with recent selective pressure to create particular working breeds.
Genetic Mapping of Fixed Phenotypes: Disease Frequency as a Breed Characteristic
Jones, Paul; Martin, Alan; Ostrander, Elaine A.; Lark, Karl G.
2009-01-01
Traits that have been stringently selected to conform to specific criteria in a closed population are phenotypic stereotypes. In dogs, Canis familiaris, such stereotypes have been produced by breeding for conformation, performance (behaviors), etc. We measured phenotypes on a representative sample to establish breed stereotypes. DNA samples from 147 dog breeds were used to characterize single nucleotide polymorphism allele frequencies for association mapping of breed stereotypes. We identified significant size loci (quantitative trait loci [QTLs]), implicating candidate genes appropriate to regulation of size (e.g., IGF1, IGF2BP2 SMAD2, etc.). Analysis of other morphological stereotypes, also under extreme selection, identified many additional significant loci. Behavioral loci for herding, pointing, and boldness implicated candidate genes appropriate to behavior (e.g., MC2R, DRD1, and PCDH9). Significant loci for longevity, a breed characteristic inversely correlated with breed size, were identified. The power of this approach to identify loci regulating the incidence of specific polygenic diseases is demonstrated by the association of a specific IGF1 haplotype with hip dysplasia, patella luxation, and pacreatitis. PMID:19321632
Effectiveness of a 95 SNP panel for the screening of breed label fraud in the Chinese meat market.
Rogberg-Muñoz, A; Wei, S; Ripoli, M V; Guo, B L; Carino, M H; Lirón, J P; Prando, A J; Vaca, R J A; Peral-García, P; Wei, Y M; Giovambattista, G
2016-01-01
Breed assignment has proved to be useful to control meat trade and protect the value of special productions. Meat-related frauds have been detected in China; therefore, 95 SNPs selected from the ISAG core panel were evaluated to develop an automated and technologically updated tool to screen breed label fraud in the Chinese meat market. A total of 271 animals from four Chinese yellow cattle (CYC) populations, six Bos taurus breeds, two Bos indicus and one composite were used. The allocation test distinguished European, Japanese and Zebu breeds, and two Chinese genetic components. It correctly allocated Japanese Black, Zebu and British breeds in 100, 90 and 89% of samples, respectively. CYC evidenced the Zebu, Holstein and Limousin introgression. The test did not detect CYC components in any of the 25 samples from Argentinean butchers. The method could be useful to certify Angus, Hereford and Japanese Black meat, but a modification in the panel would be needed to differentiate other breeds. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jin, Yuqing; Ma, Yongpeng; Wang, Shun; Hu, Xian-Ge; Huang, Li-Sha; Li, Yue; Wang, Xiao-Ru; Mao, Jian-Feng
2016-10-01
Platycladus orientalis, a widespread conifer with long lifespan and significant adaptability. It is much used in reforestation in north China and commonly planted in central Asia. With the increasing demand for plantation forest in central to north China, breeding programs are progressively established for this species. Efficient use of breeding resources requires good understanding of the genetic value of the founder breeding materials. This study investigated the distribution of genetic variation in 192 elite trees collected for the breeding program for the central range of the species. We developed first set of 27 polymorphic EST-derived SSR loci for the species from transcriptome/genome data. After examination of amplification quality, 10 loci were used to evaluate the genetic variation in the breeding population. We found moderate genetic diversity (average He = 0.348) and low population differentiation (Fst = 0.011). Extensive admixture and no significant geographic population structure characterized this set of collections. Our analyses of the diversity and population structure are important steps toward a long-term sustainable deployment of the species and provide valuable genetic information for conservation and breeding applications.
Genetic Structure and Gene Flows within Horses: A Genealogical Study at the French Population Scale
Pirault, Pauline; Danvy, Sophy; Verrier, Etienne; Leroy, Grégoire
2013-01-01
Since horse breeds constitute populations submitted to variable and multiple outcrossing events, we analyzed the genetic structure and gene flows considering horses raised in France. We used genealogical data, with a reference population of 547,620 horses born in France between 2002 and 2011, grouped according to 55 breed origins. On average, individuals had 6.3 equivalent generations known. Considering different population levels, fixation index decreased from an overall species FIT of 1.37%, to an average of −0.07% when considering the 55 origins, showing that most horse breeds constitute populations without genetic structure. We illustrate the complexity of gene flows existing among horse breeds, a few populations being closed to foreign influence, most, however, being submitted to various levels of introgression. In particular, Thoroughbred and Arab breeds are largely used as introgression sources, since those two populations explain together 26% of founder origins within the overall horse population. When compared with molecular data, breeds with a small level of coancestry also showed low genetic distance; the gene pool of the breeds was probably impacted by their reproducer exchanges. PMID:23630596
Home range and residency status of Northern Goshawks breeding in Minnesota
Boal, C.W.; Andersen, D.E.; Kennedy, P.L.
2003-01-01
We used radio-telemetry to estimate breeding season home-range size of 17 male and 11 female Northern Goshawks (Accipiter gentilis) and combined home ranges of 10 pairs of breeding goshawks in Minnesota. Home-range sizes for male and female goshawks were 2593 and 2494 ha, respectively, using the minimum convex polygon, and 3927 and 5344 ha, respectively, using the 95% fixed kernel. Home ranges of male and female members of 10 goshawk pairs were smaller than combined home-range size of those pairs (mean difference = 3527 ha; 95% CI = 891 to 6164 ha). Throughout the nonbreeding season, the maximum distance from the nest recorded for all but one goshawk was 12.4 km. Goshawks breeding in Minnesota have home ranges similar to or larger than those reported in most other areas. Home-range overlap between members of breeding pairs was typically ???50%, and both members of breeding pairs were associated with breeding home ranges year round. Goshawk management plans based on estimated home-range size of individual hawks may substantially underestimate the area actually used by a nesting pair.
Charge breeding simulations for radioactive ion beam production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Variale, V.; Raino, A. C.; Clauser, T.
2012-02-15
The charge breeding technique is used for radioactive ion beam (RIB) production in order of optimizing the re-acceleration of the radioactive element ions produced by a primary beam in a thick target. Charge breeding is achieved by means of a device capable of increasing the ion charge state from 1+ to a desired value n+. In order to get high intensity RIB, experiments with charge breeding of very high efficiency could be required. To reach this goal, the charge breeding simulation could help to optimize the high charge state production efficiency by finding more proper parameters for the radioactive 1+more » ions. In this paper a device based on an electron beam ion source (EBIS) is considered. In order to study that problem, a code already developed for studying the ion selective containment in an EBIS with RF quadrupoles, BRICTEST, has been modified to simulate the ion charge state breeding rate for different 1+ ion injection conditions. Particularly, the charge breeding simulations for an EBIS with a hollow electron beam have been studied.« less
Efficient Breeding by Genomic Mating.
Akdemir, Deniz; Sánchez, Julio I
2016-01-01
Selection in breeding programs can be done by using phenotypes (phenotypic selection), pedigree relationship (breeding value selection) or molecular markers (marker assisted selection or genomic selection). All these methods are based on truncation selection, focusing on the best performance of parents before mating. In this article we proposed an approach to breeding, named genomic mating, which focuses on mating instead of truncation selection. Genomic mating uses information in a similar fashion to genomic selection but includes information on complementation of parents to be mated. Following the efficiency frontier surface, genomic mating uses concepts of estimated breeding values, risk (usefulness) and coefficient of ancestry to optimize mating between parents. We used a genetic algorithm to find solutions to this optimization problem and the results from our simulations comparing genomic selection, phenotypic selection and the mating approach indicate that current approach for breeding complex traits is more favorable than phenotypic and genomic selection. Genomic mating is similar to genomic selection in terms of estimating marker effects, but in genomic mating the genetic information and the estimated marker effects are used to decide which genotypes should be crossed to obtain the next breeding population.
Genomic Characterisation of the Indigenous Irish Kerry Cattle Breed
Browett, Sam; McHugo, Gillian; Richardson, Ian W.; Magee, David A.; Park, Stephen D. E.; Fahey, Alan G.; Kearney, John F.; Correia, Carolina N.; Randhawa, Imtiaz A. S.; MacHugh, David E.
2018-01-01
Kerry cattle are an endangered landrace heritage breed of cultural importance to Ireland. In the present study we have used genome-wide SNP array data to evaluate genomic diversity within the Kerry population and between Kerry cattle and other European breeds. Patterns of genetic differentiation and gene flow among breeds using phylogenetic trees with ancestry graphs highlighted historical gene flow from the British Shorthorn breed into the ancestral population of modern Kerry cattle. Principal component analysis (PCA) and genetic clustering emphasised the genetic distinctiveness of Kerry cattle relative to comparator British and European cattle breeds. Modelling of genetic effective population size (Ne) revealed a demographic trend of diminishing Ne over time and that recent estimated Ne values for the Kerry breed may be less than the threshold for sustainable genetic conservation. In addition, analysis of genome-wide autozygosity (FROH) showed that genomic inbreeding has increased significantly during the 20 years between 1992 and 2012. Finally, signatures of selection revealed genomic regions subject to natural and artificial selection as Kerry cattle adapted to the climate, physical geography and agro-ecology of southwest Ireland. PMID:29520297
Genetic mapping of fixed phenotypes: disease frequency as a breed characteristic.
Chase, Kevin; Jones, Paul; Martin, Alan; Ostrander, Elaine A; Lark, Karl G
2009-01-01
Traits that have been stringently selected to conform to specific criteria in a closed population are phenotypic stereotypes. In dogs, Canis familiaris, such stereotypes have been produced by breeding for conformation, performance (behaviors), etc. We measured phenotypes on a representative sample to establish breed stereotypes. DNA samples from 147 dog breeds were used to characterize single nucleotide polymorphism allele frequencies for association mapping of breed stereotypes. We identified significant size loci (quantitative trait loci [QTLs]), implicating candidate genes appropriate to regulation of size (e.g., IGF1, IGF2BP2 SMAD2, etc.). Analysis of other morphological stereotypes, also under extreme selection, identified many additional significant loci. Behavioral loci for herding, pointing, and boldness implicated candidate genes appropriate to behavior (e.g., MC2R, DRD1, and PCDH9). Significant loci for longevity, a breed characteristic inversely correlated with breed size, were identified. The power of this approach to identify loci regulating the incidence of specific polygenic diseases is demonstrated by the association of a specific IGF1 haplotype with hip dysplasia, patella luxation, and pancreatitis.
Single-Nucleotide-Polymorphism-Based Association Mapping of Dog Stereotypes
Jones, Paul; Chase, Kevin; Martin, Alan; Davern, Pluis; Ostrander, Elaine A.; Lark, Karl G.
2008-01-01
Phenotypic stereotypes are traits, often polygenic, that have been stringently selected to conform to specific criteria. In dogs, Canis familiaris, stereotypes result from breed standards set for conformation, performance (behaviors), etc. As a consequence, phenotypic values measured on a few individuals are representative of the breed stereotype. We used DNA samples isolated from 148 dog breeds to associate SNP markers with breed stereotypes. Using size as a trait to test the method, we identified six significant quantitative trait loci (QTL) on five chromosomes that include candidate genes appropriate to regulation of size (e.g., IGF1, IGF2BP2 SMAD2, etc.). Analysis of other morphological stereotypes, also under extreme selection, identified many additional significant loci. Less well-documented data for behavioral stereotypes tentatively identified loci for herding, pointing, boldness, and trainability. Four significant loci were identified for longevity, a breed characteristic not under direct selection, but inversely correlated with breed size. The strengths and limitations of the approach are discussed as well as its potential to identify loci regulating the within-breed incidence of specific polygenic diseases. PMID:18505865
Single nucleotide polymorphism discovery in bovine liver using RNA-seq technology
Pareek, Chandra Shekhar; Błaszczyk, Paweł; Dziuba, Piotr; Czarnik, Urszula; Fraser, Leyland; Sobiech, Przemysław; Pierzchała, Mariusz; Feng, Yaping; Kadarmideen, Haja N.; Kumar, Dibyendu
2017-01-01
Background RNA-seq is a useful next-generation sequencing (NGS) technology that has been widely used to understand mammalian transcriptome architecture and function. In this study, a breed-specific RNA-seq experiment was utilized to detect putative single nucleotide polymorphisms (SNPs) in liver tissue of young bulls of the Polish Red, Polish Holstein-Friesian (HF) and Hereford breeds, and to understand the genomic variation in the three cattle breeds that may reflect differences in production traits. Results The RNA-seq experiment on bovine liver produced 107,114,4072 raw paired-end reads, with an average of approximately 60 million paired-end reads per library. Breed-wise, a total of 345.06, 290.04 and 436.03 million paired-end reads were obtained from the Polish Red, Polish HF, and Hereford breeds, respectively. Burrows-Wheeler Aligner (BWA) read alignments showed that 81.35%, 82.81% and 84.21% of the mapped sequencing reads were properly paired to the Polish Red, Polish HF, and Hereford breeds, respectively. This study identified 5,641,401 SNPs and insertion and deletion (indel) positions expressed in the bovine liver with an average of 313,411 SNPs and indel per young bull. Following the removal of the indel mutations, a total of 195,3804, 152,7120 and 205,3184 raw SNPs expressed in bovine liver were identified for the Polish Red, Polish HF, and Hereford breeds, respectively. Breed-wise, three highly reliable breed-specific SNP-databases (SNP-dbs) with 31,562, 24,945 and 28,194 SNP records were constructed for the Polish Red, Polish HF, and Hereford breeds, respectively. Using a combination of stringent parameters of a minimum depth of ≥10 mapping reads that support the polymorphic nucleotide base and 100% SNP ratio, 4,368, 3,780 and 3,800 SNP records were detected in the Polish Red, Polish HF, and Hereford breeds, respectively. The SNP detections using RNA-seq data were successfully validated by kompetitive allele-specific PCR (KASPTM) SNP genotyping assay. The comprehensive QTL/CG analysis of 110 QTL/CG with RNA-seq data identified 20 monomorphic SNP hit loci (CARTPT, GAD1, GDF5, GHRH, GHRL, GRB10, IGFBPL1, IGFL1, LEP, LHX4, MC4R, MSTN, NKAIN1, PLAG1, POU1F1, SDR16C5, SH2B2, TOX, UCP3 and WNT10B) in all three cattle breeds. However, six SNP loci (CCSER1, GHR, KCNIP4, MTSS1, EGFR and NSMCE2) were identified as highly polymorphic among the cattle breeds. Conclusions This study identified breed-specific SNPs with greater SNP ratio and excellent mapping coverage, as well as monomorphic and highly polymorphic putative SNP loci within QTL/CGs of bovine liver tissue. A breed-specific SNP-db constructed for bovine liver yielded nearly six million SNPs. In addition, a KASPTM SNP genotyping assay, as a reliable cost-effective method, successfully validated the breed-specific putative SNPs originating from the RNA-seq experiments. PMID:28234981
1987-07-01
gray whales (Eschrichtius robustus) were apparently displaced from a wintering breeding lagoon off Baja California, Mexico, by increased ship traffic...human activities have been thought to impact whale distribution include the breeding and feeding areas of north Pacific humpback whales (Megaptera...seasonal or periodic (mass) movement of animals away from and back to their breeding areas, and typically precedes and follows breeding seasons
Simulated breeding with QU-GENE graphical user interface.
Hathorn, Adrian; Chapman, Scott; Dieters, Mark
2014-01-01
Comparing the efficiencies of breeding methods with field experiments is a costly, long-term process. QU-GENE is a highly flexible genetic and breeding simulation platform capable of simulating the performance of a range of different breeding strategies and for a continuum of genetic models ranging from simple to complex. In this chapter we describe some of the basic mechanics behind the QU-GENE user interface and give a simplified example of how it works.
Huang, Chao-Wei; Lin, Yu-Tsung; Ding, Shih-Torng; Lo, Ling-Ling; Wang, Pei-Hwa; Lin, En-Chung; Liu, Fang-Wei; Lu, Yen-Wen
2015-01-01
The genetic markers associated with economic traits have been widely explored for animal breeding. Among these markers, single-nucleotide polymorphism (SNPs) are gradually becoming a prevalent and effective evaluation tool. Since SNPs only focus on the genetic sequences of interest, it thereby reduces the evaluation time and cost. Compared to traditional approaches, SNP genotyping techniques incorporate informative genetic background, improve the breeding prediction accuracy and acquiesce breeding quality on the farm. This article therefore reviews the typical procedures of animal breeding using SNPs and the current status of related techniques. The associated SNP information and genotyping techniques, including microarray and Lab-on-a-Chip based platforms, along with their potential are highlighted. Examples in pig and poultry with different SNP loci linked to high economic trait values are given. The recommendations for utilizing SNP genotyping in nimal breeding are summarized. PMID:27600241
General parity between trio and pairwise breeding of laboratory mice in static caging.
Kedl, Ross M; Wysocki, Lawrence J; Janssen, William J; Born, Willi K; Rosenbaum, Matthew D; Granowski, Julia; Kench, Jennifer A; Fong, Derek L; Switzer, Lisa A; Cruse, Margaret; Huang, Hua; Jakubzick, Claudia V; Kosmider, Beata; Takeda, Katsuyuki; Stranova, Thomas J; Klumm, Randal C; Delgado, Christine; Tummala, Saigiridhar; De Langhe, Stijn; Cambier, John; Haskins, Katherine; Lenz, Laurel L; Curran-Everett, Douglas
2014-11-15
Changes made in the 8th edition of the Guide for the Care and Use of Laboratory Animals included new recommendations for the amount of space for breeding female mice. Adopting the new recommendations required, in essence, the elimination of trio breeding practices for all institutions. Both public opinion and published data did not readily support the new recommendations. In response, the National Jewish Health Institutional Animal Care and Use Committee established a program to directly compare the effects of breeding format on mouse pup survival and growth. Our study showed an overall parity between trio and pairwise breeding formats on the survival and growth of the litters, suggesting that the housing recommendations for breeding female mice as stated in the current Guide for the Care and Use of Laboratory Animals should be reconsidered. Copyright © 2014 by The American Association of Immunologists, Inc.
Insect ectoparasites on wild birds in the Czech Republic during the pre-breeding period
Sychra, O.; Literák, I.; Podzemný, P.; Harmat, P.; Hrabák, R.
2011-01-01
Wild passerine birds (Passeriformes) from the northeastern part of the Czech Republic were examined for ectoparasites during the pre-breeding period in 2007. Two species of fleas of the genera Ceratophyllus and Dasypsyllus (Siphonaptera: Ceratophyllidae), and 23 species of chewing lice belonging to the genera Ricinus, Myrsidea, Menacanthus (Phthiraptera: Menoponidae), Brueelia, Penenirmus, and Philopterus (Phthiraptera: Philopteridae) were found on 108 birds of 16 species. Distribution of insect ectoparasites found on wild birds during pre-breeding was compared with previous data from the post-breeding period. There was no difference in total prevalence of chewing lice in prebreeding and post-breeding periods. Higher prevalence of fleas and slightly higher mean intensity of chewing lice were found on birds during the pre-breeding period. There was a significant difference in total prevalence but equal mean intensity of chewing lice on resident and migrating birds. PMID:21395201
[Status of traditional Chinese medicine materials seed and seedling breeding bases].
Li, Ying; Huang, Lu-Qi; Zhang, Xiao-Bo; Wang, Hui; Cheng, Meng; Zhang, Tian; Yang, Guang
2017-11-01
Seeds and seedlings are the material basis of traditional Chinese medicine materials production, and the construction of traditional Chinese medicine materials seed and seedling breeding bases is beneficial to the production of high-quality traditional Chinese medicine materials. The construction of traditional Chinese medicine materials seed and seedling breeding bases is one of the major topics of Chinese medica resources census pilot. Targets, tasks of traditional Chinese medicine materials seed and seedling breeding bases based on Chinese medica resources census pilot were expounded.Construction progress including hardware construction, germplasm conservation and breeding, procedures and standardsestablishment, social servicesare presented. Development counter measures were proposed for the next step: perfect the standard and system, maintain and strengthen the breeding function, strengthen the cultivation of multi-level talents, explore market development model, joint efforts to deepen services and development. Copyright© by the Chinese Pharmaceutical Association.
Potential benefits of genomic selection on genetic gain of small ruminant breeding programs.
Shumbusho, F; Raoul, J; Astruc, J M; Palhiere, I; Elsen, J M
2013-08-01
In conventional small ruminant breeding programs, only pedigree and phenotype records are used to make selection decisions but prospects of including genomic information are now under consideration. The objective of this study was to assess the potential benefits of genomic selection on the genetic gain in French sheep and goat breeding designs of today. Traditional and genomic scenarios were modeled with deterministic methods for 3 breeding programs. The models included decisional variables related to male selection candidates, progeny testing capacity, and economic weights that were optimized to maximize annual genetic gain (AGG) of i) a meat sheep breeding program that improved a meat trait of heritability (h(2)) = 0.30 and a maternal trait of h(2) = 0.09 and ii) dairy sheep and goat breeding programs that improved a milk trait of h(2) = 0.30. Values of ±0.20 of genetic correlation between meat and maternal traits were considered to study their effects on AGG. The Bulmer effect was accounted for and the results presented here are the averages of AGG after 10 generations of selection. Results showed that current traditional breeding programs provide an AGG of 0.095 genetic standard deviation (σa) for meat and 0.061 σa for maternal trait in meat breed and 0.147 σa and 0.120 σa in sheep and goat dairy breeds, respectively. By optimizing decisional variables, the AGG with traditional selection methods increased to 0.139 σa for meat and 0.096 σa for maternal traits in meat breeding programs and to 0.174 σa and 0.183 σa in dairy sheep and goat breeding programs, respectively. With a medium-sized reference population (nref) of 2,000 individuals, the best genomic scenarios gave an AGG that was 17.9% greater than with traditional selection methods with optimized values of decisional variables for combined meat and maternal traits in meat sheep, 51.7% in dairy sheep, and 26.2% in dairy goats. The superiority of genomic schemes increased with the size of the reference population and genomic selection gave the best results when nref > 1,000 individuals for dairy breeds and nref > 2,000 individuals for meat breed. Genetic correlation between meat and maternal traits had a large impact on the genetic gain of both traits. Changes in AGG due to correlation were greatest for low heritable maternal traits. As a general rule, AGG was increased both by optimizing selection designs and including genomic information.
Ecohealth System Dynamic Model as a Planning Tool for the Reduction of Breeding Sites
NASA Astrophysics Data System (ADS)
Respati, T.; Raksanagara, A.; Djuhaeni, H.; Sofyan, A.; Shandriasti, A.
2017-03-01
Dengue is still one of major health problem in Indonesia. Dengue transmission is influenced by dengue prevention and eradication program, community participation, housing environment and climate. The complexity of the disease coupled with limited resources necessitates different approach for prevention methods that include factors contribute to the transmission. One way to prevent the dengue transmission is by reducing the mosquito’s breeding sites. Four factors suspected to influence breeding sites are dengue prevention and eradication program, community participation, housing environment, and weather condition. In order to have an effective program in reducing the breeding site it is needed to have a model which can predict existence of the breeding sites while the four factors under study are controlled. The objective of this study is to develop an Ecohealth model using system dynamic as a planning tool for the reduction of breeding sites to prevent dengue transmission with regard to dengue prevention and eradication program, community participation, housing environment, and weather condition. The methodology is a mixed method study using sequential exploratory design. The study comprised of 3 stages: first a qualitative study to 14 respondents using in-depth interview and 6 respondents for focus group discussion. The results from the first stage was used to develop entomology and household survey questionnaires for second stage conducted in 2036 households across 12 sub districts in Bandung City. Ecohealth system dynamic model was developed using data from first and second stages. Analyses used are thematic analysis for qualitative data; spatial, generalized estimating equation (GEE) and structural equation modeling for quantitative data; also average mean error (AME) and average variance error (AVE) for dynamic system model validation. System dynamic model showed that the most effective approach to eliminate breeding places was by ensuring the availability of basic sanitation for all houses. Weather factors such as precipitation can be compensated with the eradication of breeding sites activities which is conducted as scheduled and at the same time for the whole areas. Conclusion of this study is that dengue prevention and eradication program, community participation, and housing environment contributed to breeding places elimination influenced the existence of the breeding sites. The availability of basic sanitation and breeding places eradication program done timely and collectively are the most effective approach to eradicate breeding sites. Ecohealth dynamic system model can be used as a tool for the planning of breeding sites eradication program to prevent disease transmissions at city level.
Hietala, P; Juga, J
2017-04-01
Improving feed efficiency in dairy cattle could result in more profitable and environmentally sustainable dairy production through lowering feed costs and emissions from dairy farming. In addition, beef production based on dairy herds generates fewer greenhouse gas emissions per unit of meat output than beef production from suckler cow systems. Different scenarios were used to assess the profitability of adding traits, excluded from the current selection index for Finnish Ayrshire, to the breeding goal for combined dairy and beef production systems. The additional breeding goal traits were growth traits (average daily gain of animals in the fattening and rearing periods), carcass traits (fat covering, fleshiness and dressing percentage), mature live weight (LW) of cows and residual feed intake (RFI) traits. A breeding scheme was modeled for Finnish Ayrshire under the current market situation in Finland using the deterministic simulation software ZPLAN+. With the economic values derived for the current production system, the inclusion of growth and carcass traits, while preventing LW increase generated the highest improvement in the discounted profit of the breeding program (3.7%), followed by the scenario where all additional traits were included simultaneously (5.1%). The use of a selection index that included growth and carcass traits excluding LW, increased the profit (0.8%), but reduced the benefits resulted from breeding for beef traits together with LW. A moderate decrease in the profit of the breeding program was obtained when adding only LW to the breeding goal (-3.1%), whereas, adding only RFI traits to the breeding goal resulted in a minor increase in the profit (1.4%). Including beef traits with LW in the breeding goal showed to be the most potential option to improve the profitability of the combined dairy and beef production systems and would also enable a higher rate of self-sufficiency in beef. When considering feed efficiency related traits, the inclusion of LW traits in the breeding goal that includes growth and carcass traits could be more profitable than the inclusion of RFI, because the marginal costs of measuring LW can be expected to be lower than for RFI and it is readily available for selection. In addition, before RFI can be implemented as a breeding objective, the genetic correlations between RFI and other breeding goal traits estimated for the studied population as well as information on the most suitable indicator traits for RFI are needed to assess more carefully the consequences of selecting for RFI.
Keijser, S F A; Meijndert, L E; Fieten, H; Carrière, B J; van Steenbeek, F G; Leegwater, P A J; Rothuizen, J; Nielen, M
2017-05-01
Current public and professional opinion is that many dog breeds suffer from health issues related to inherited diseases or extreme phenotypes. The aim of this historical comparative observational study was to evaluate the breed-related disease burden in three purebred dog populations (Chihuahua, French bulldog, Labrador retriever) and one purebred cat breed (Persian cats) in the Netherlands by comparison to a control population of mixed-breed dogs and European Shorthair cats. A qualitative query was performed, consisting of a literature review and collecting the expert opinions of University veterinary specialists, to gather insight into potential diseases of the study population. Next, a referral clinic case control study of the patients referred to specific medical disciplines in the University Clinic was performed. The odds ratio (OR) was calculated to determine the likelihood of a patient referred to a particular medical discipline being a certain breed. Together, the qualitative query and the case control study resulted in a list of potentially relevant diseases limited to five organ systems per breed. These were analysed in data from primary practices. Patient files from ten primary practices over a period of two years were manually extracted and examined. Four-hundred individual patient records per breed as well as 1000 non-breed records were randomly selected from the 10 practices, weighted per practice size. Records were then examined and the presence or absence of certain diseases was identified. To evaluate the disease burden per breed, proportional difference (PD) was estimated, as well as the animal's age at presentation in months. The results of the referral clinic case control study showed an overrepresentation (Odds Ratio>1.5) of the selected breeds in several medical specialties, while median age at presentation was in some cases significantly lower than in the non-breed animals. Results of the practice-based extended cross-sectional study showed that only a few of the selected diseases contribute to the disease burden in these purebred populations, which was different from the expectations derived from the literature or expert opinion. Additional results included age difference at presentation, which may be interpreted as age of onset, and could indicate a higher disease burden for the individual animal. Also, only a small percentage of purebred dogs was registered with the national kennel club. Our final recommendation is that population-based data mining is needed to evaluate country-specific companion animal health and welfare. Copyright © 2017 Elsevier B.V. All rights reserved.
McLaren, D G; Buchanan, D S; Williams, J E
1987-10-01
A static, deterministic computer model, programmed in Microsoft Basic for IBM PC and Apple Macintosh computers, was developed to calculate production efficiency (cost per kg of product) for nine alternative types of crossbreeding system involving four breeds of swine. The model simulates efficiencies for four purebred and 60 alternative two-, three- and four-breed rotation, rotaterminal, backcross and static cross systems. Crossbreeding systems were defined as including all purebred, crossbred and commercial matings necessary to maintain a total of 10,000 farrowings. Driving variables for the model are mean conception rate at first service and for an 8-wk breeding season, litter size born, preweaning survival rate, postweaning average daily gain, feed-to-gain ratio and carcass backfat. Predictions are computed using breed direct genetic and maternal effects for the four breeds, plus individual, maternal and paternal specific heterosis values, input by the user. Inputs required to calculate the number of females farrowing in each sub-system include the proportion of males and females replaced each breeding cycle in purebred and crossbred populations, the proportion of male and female offspring in seedstock herds that become breeding animals, and the number of females per boar. Inputs required to calculate the efficiency of terminal production (cost-to-product ratio) for each sub-system include breeding herd feed intake, gilt development costs, feed costs and labor and overhead costs. Crossbreeding system efficiency is calculated as the weighted average of sub-system cost-to-product ratio values, weighting by the number of females farrowing in each sub-system.
Transcriptome architecture across tissues in the pig
Ferraz, André LJ; Ojeda, Ana; López-Béjar, Manel; Fernandes, Lana T; Castelló, Anna; Folch, Josep M; Pérez-Enciso, Miguel
2008-01-01
Background Artificial selection has resulted in animal breeds with extreme phenotypes. As an organism is made up of many different tissues and organs, each with its own genetic programme, it is pertinent to ask: How relevant is tissue in terms of total transcriptome variability? Which are the genes most distinctly expressed between tissues? Does breed or sex equally affect the transcriptome across tissues? Results In order to gain insight on these issues, we conducted microarray expression profiling of 16 different tissues from four animals of two extreme pig breeds, Large White and Iberian, two males and two females. Mixed model analysis and neighbor – joining trees showed that tissues with similar developmental origin clustered closer than those with different embryonic origins. Often a sound biological interpretation was possible for overrepresented gene ontology categories within differentially expressed genes between groups of tissues. For instance, an excess of nervous system or muscle development genes were found among tissues of ectoderm or mesoderm origins, respectively. Tissue accounted for ~11 times more variability than sex or breed. Nevertheless, we were able to confidently identify genes with differential expression across tissues between breeds (33 genes) and between sexes (19 genes). The genes primarily affected by sex were overall different than those affected by breed or tissue. Interaction with tissue can be important for differentially expressed genes between breeds but not so much for genes whose expression differ between sexes. Conclusion Embryonic development leaves an enduring footprint on the transcriptome. The interaction in gene × tissue for differentially expressed genes between breeds suggests that animal breeding has targeted differentially each tissue's transcriptome. PMID:18416811
Rethinking dog domestication by integrating genetics, archeology, and biogeography
Larson, Greger; Karlsson, Elinor K.; Perri, Angela; Webster, Matthew T.; Ho, Simon Y. W.; Peters, Joris; Stahl, Peter W.; Piper, Philip J.; Lingaas, Frode; Fredholm, Merete; Comstock, Kenine E.; Modiano, Jaime F.; Schelling, Claude; Agoulnik, Alexander I.; Leegwater, Peter A.; Dobney, Keith; Vigne, Jean-Denis; Vilà, Carles; Andersson, Leif; Lindblad-Toh, Kerstin
2012-01-01
The dog was the first domesticated animal but it remains uncertain when the domestication process began and whether it occurred just once or multiple times across the Northern Hemisphere. To ascertain the value of modern genetic data to elucidate the origins of dog domestication, we analyzed 49,024 autosomal SNPs in 1,375 dogs (representing 35 breeds) and 19 wolves. After combining our data with previously published data, we contrasted the genetic signatures of 121 breeds with a worldwide archeological assessment of the earliest dog remains. Correlating the earliest archeological dogs with the geographic locations of 14 so-called “ancient” breeds (defined by their genetic differentiation) resulted in a counterintuitive pattern. First, none of the ancient breeds derive from regions where the oldest archeological remains have been found. Second, three of the ancient breeds (Basenjis, Dingoes, and New Guinea Singing Dogs) come from regions outside the natural range of Canis lupus (the dog’s wild ancestor) and where dogs were introduced more than 10,000 y after domestication. These results demonstrate that the unifying characteristic among all genetically distinct so-called ancient breeds is a lack of recent admixture with other breeds likely facilitated by geographic and cultural isolation. Furthermore, these genetically distinct ancient breeds only appear so because of their relative isolation, suggesting that studies of modern breeds have yet to shed light on dog origins. We conclude by assessing the limitations of past studies and how next-generation sequencing of modern and ancient individuals may unravel the history of dog domestication. PMID:22615366
Kvarnemo, C; Svensson, O; Manson, W
2010-05-01
This study of the sand goby Pomatoschistus minutus, a nest-holding fish with paternal care, focused on gonadal investment among males of different sizes collected early and late in the breeding season. All males caught at the nest had breeding colour, whereas trawl-caught fish consisted of males both with and without colour. The absence or presence of breeding colour was a good predictor of testes investment. Compared to males with breeding colour, males without colour were smaller in body size but had extraordinarily large testes. In absolute terms, testes mass of males without breeding colour was on average 3.4 times greater than those of males with breeding colour. Since small colourless males are known to reproduce as sneaker males, this heavy investment in testes probably reflects that they are forced to spawn under sperm competition. Contrary to testes size, sperm-duct glands were largest among males with breeding colour. These glands produce mucins used for making sperm-containing mucous trails that males place in the nest before and during spawning. Since both sneakers and nest-holders potentially could benefit from having large glands, this result is intriguing. Yet, high mucus production may be more important for nest-holders, because it also protects developing embryos from infections. There was no significant effect of season on body size, testes or sperm-duct glands size, but colourless males tended to be less common late in the season. Possibly this may indicate that individual small colourless males develop into their more colourful counterparts within the breeding season.
Viblanc, Vincent A; Gineste, Benoit; Stier, Antoine; Robin, Jean-Patrice; Groscolas, René
2014-07-01
Because glucocorticoid (stress) hormones fundamentally affect various aspects of the behaviour, life history and fitness of free-living vertebrates, there is a need to understand the environmental factors shaping their variation in natural populations. Here, we examined whether spatial heterogeneity in breeding territory quality affected the stress of colonial king penguin (Aptenodytes patagonicus). We assessed the effects of local climate (wind, sun and ambient temperature) and social conditions (number of neighbours, distance to neighbours) on the baseline levels of plasma total corticosterone (CORT) in 77 incubating and 42 chick-brooding birds, breeding on territories of central or peripheral colony location. We also assessed the oxidative stress status of a sub-sample of central vs. peripheral chick-brooders to determine whether chronic stress arose from breeding on specific territories. On average, we found that brooders had 55% higher CORT levels than incubators. Regardless of breeding status, central birds experienced greater social density (higher number of neighbours, shorter distance between territories) and had higher CORT levels than peripheral birds. Increasing social density positively explained 40% of the variation in CORT levels of both incubators and brooders, but the effect was more pronounced in brooders. In contrast, climate was similar among breeding territories and did not significantly affect the CORT levels of breeding birds. In brooders, oxidative stress status was not affected by local density or weather conditions. These results highlight that local heterogeneity in breeding (including social) conditions may strongly affect the stress levels of breeding seabirds. The fitness consequences of such variation remain to be investigated.
Wang, Yanan; Tang, Zhonglin; Sun, Yaqi; Wang, Hongyang; Wang, Chao; Yu, Shaobo; Liu, Jing; Zhang, Yu; Fan, Bin; Li, Kui; Liu, Bang
2014-01-01
Copy number variations (CNVs) represent a substantial source of structural variants in mammals and contribute to both normal phenotypic variability and disease susceptibility. Although low-resolution CNV maps are produced in many domestic animals, and several reports have been published about the CNVs of porcine genome, the differences between Chinese and western pigs still remain to be elucidated. In this study, we used Porcine SNP60 BeadChip and PennCNV algorithm to perform a genome-wide CNV detection in 302 individuals from six Chinese indigenous breeds (Tongcheng, Laiwu, Luchuan, Bama, Wuzhishan and Ningxiang pigs), three western breeds (Yorkshire, Landrace and Duroc) and one hybrid (Tongcheng×Duroc). A total of 348 CNV Regions (CNVRs) across genome were identified, covering 150.49 Mb of the pig genome or 6.14% of the autosomal genome sequence. In these CNVRs, 213 CNVRs were found to exist only in the six Chinese indigenous breeds, and 60 CNVRs only in the three western breeds. The characters of CNVs in four Chinese normal size breeds (Luchuan, Tongcheng and Laiwu pigs) and two minipig breeds (Bama and Wuzhishan pigs) were also analyzed in this study. Functional annotation suggested that these CNVRs possess a great variety of molecular function and may play important roles in phenotypic and production traits between Chinese and western breeds. Our results are important complementary to the CNV map in pig genome, which provide new information about the diversity of Chinese and western pig breeds, and facilitate further research on porcine genome CNVs.
Sun, Yaqi; Wang, Hongyang; Wang, Chao; Yu, Shaobo; Liu, Jing; Zhang, Yu; Fan, Bin; Li, Kui; Liu, Bang
2014-01-01
Copy number variations (CNVs) represent a substantial source of structural variants in mammals and contribute to both normal phenotypic variability and disease susceptibility. Although low-resolution CNV maps are produced in many domestic animals, and several reports have been published about the CNVs of porcine genome, the differences between Chinese and western pigs still remain to be elucidated. In this study, we used Porcine SNP60 BeadChip and PennCNV algorithm to perform a genome-wide CNV detection in 302 individuals from six Chinese indigenous breeds (Tongcheng, Laiwu, Luchuan, Bama, Wuzhishan and Ningxiang pigs), three western breeds (Yorkshire, Landrace and Duroc) and one hybrid (Tongcheng×Duroc). A total of 348 CNV Regions (CNVRs) across genome were identified, covering 150.49 Mb of the pig genome or 6.14% of the autosomal genome sequence. In these CNVRs, 213 CNVRs were found to exist only in the six Chinese indigenous breeds, and 60 CNVRs only in the three western breeds. The characters of CNVs in four Chinese normal size breeds (Luchuan, Tongcheng and Laiwu pigs) and two minipig breeds (Bama and Wuzhishan pigs) were also analyzed in this study. Functional annotation suggested that these CNVRs possess a great variety of molecular function and may play important roles in phenotypic and production traits between Chinese and western breeds. Our results are important complementary to the CNV map in pig genome, which provide new information about the diversity of Chinese and western pig breeds, and facilitate further research on porcine genome CNVs. PMID:25198154
Monday, Jessica D; Larson, Robert L; Laflin, Shelie; White, Brad J; Theurer, Miles E
2018-01-01
The study objective was to evaluate the Ready-Intermediate-Problem (RIP) replacement heifer evaluation matrix's ability to classify heifers into groups with differing reproductive outcomes. Beef heifers (n = 341) from six Kansas herds were classified according to RIP matrix guidelines and then exposed to AI breeding, bull breeding, or a combination of both as per the management plans for each participating herd. Following the breeding season the heifers were evaluated to determine pregnancy status, AI pregnancy status, days bred, and the number of 21 day cycles needed during the breeding season to become pregnant. After the breeding season, 298 (87%) of the heifers were pregnant, 204 (68%) of which became pregnant in the first 21 days of the breeding season. There was a significant interaction (P = 0.01) in RIP classification and pregnancy by 21 day cycle. Ready classified heifers had a significantly greater risk of becoming pregnant after a single AI exposure (P = 0.03) and in the first 21-day cycle (P = 0.02) compared to Problem classified heifers, and significantly less risk of being non-pregnant at the end of the breeding season (P < 0.01) compared to Problem classified heifers. The RIP matrix can be useful for classifying heifers prior to the onset of the breeding season. Further research is needed to evaluate the matrix in other settings and populations of U.S. beef heifers as well as at different intervals between evaluation and the start of breeding season. Copyright © 2017 Elsevier Inc. All rights reserved.
Duckworth, Benjamin M; Jawor, Jodie M
2018-07-01
As animals move through life history stages, energy requirements for each stage will vary. Both daily and annual variation in the glucocoriticoid hormones (specifically corticosterone, or CORT, in birds) helps provide the variable energy needed through life history stages. In many bird species, CORT is higher in the breeding season when energy demands can be quite high and is often lower in the non-breeding season. Additionally, CORT has a role to play in the response to stressful stimuli and the level to which CORT is elevated following stressful events can vary through the annual cycle as well. Here we report on baseline and stress-induced CORT levels in both sexes of northern cardinals, Cardinalis cardinalis, a non-migrating, year-round territorial species across life history stages. Corticosterone is overall higher in the non-breeding season than the breeding season in both sexes. Males tend to have higher levels of stress-induced CORT than females, although the observed patterns are complex. Our findings differ from one of the more common profile reported in songbirds where breeding season CORT tends to be higher than non-breeding levels. A strong influence may be the prolonged breeding season seen in cardinals; lower levels of CORT during breeding may guard against adverse maternal effects, interruptions in breeding behaviors, or egg production. Additional investigation of species with similar ecologies to northern cardinals, and more populations of cardinals, may show that annual glucocorticoid profiles are more labile than previously appreciated. Copyright © 2018 Elsevier Inc. All rights reserved.
Marshall, K
2014-10-01
Developing country livestock production systems are diverse and dynamic, and include those where existing indigenous breeds are currently optimal and likely to remain so, those where non-indigenous breed types are already in common use, and systems that are changing, such as by intensification, where the introduction of new breed types represents significant opportunities. These include opportunities to improve the livelihood of the world's poor, increase food and nutrition security and enhance environmental sustainability. At present, very little research has focused on this issue, such that significant knowledge gaps in relation to breed-change interventions remain. The purpose of this study is to raise awareness of this issue and suggests strategic research areas to begin filling these knowledge gaps. Such strategic research would include (i) assessing the impact of differing breed types in developing country livestock productions systems, from a range of viewpoints including intrahousehold livelihood benefit, food and nutrition security at different scales, and environmental sustainability; (ii) identification of specific livestock production systems within developing countries, and the type of livestock keepers within these system, that are most likely to benefit from new breed types; and (iii) identification of new breed types as candidates for in-situ testing within these systems, such as through the use of spatial analysis to identify similar production environments combined with community acceptance studies. Results of these studies would primarily assist stakeholders in agriculture, including both policy makers and livestock keepers, to make informed decisions on the potential use of new breed types. © 2014 Blackwell Verlag GmbH.
Haberland, A M; König von Borstel, U; Simianer, H; König, S
2012-09-01
Reliable selection criteria are required for young riding horses to increase genetic gain by increasing accuracy of selection and decreasing generation intervals. In this study, selection strategies incorporating genomic breeding values (GEBVs) were evaluated. Relevant stages of selection in sport horse breeding programs were analyzed by applying selection index theory. Results in terms of accuracies of indices (r(TI) ) and relative selection response indicated that information on single nucleotide polymorphism (SNP) genotypes considerably increases the accuracy of breeding values estimated for young horses without own or progeny performance. In a first scenario, the correlation between the breeding value estimated from the SNP genotype and the true breeding value (= accuracy of GEBV) was fixed to a relatively low value of r(mg) = 0.5. For a low heritability trait (h(2) = 0.15), and an index for a young horse based only on information from both parents, additional genomic information doubles r(TI) from 0.27 to 0.54. Including the conventional information source 'own performance' into the before mentioned index, additional SNP information increases r(TI) by 40%. Thus, particularly with regard to traits of low heritability, genomic information can provide a tool for well-founded selection decisions early in life. In a further approach, different sources of breeding values (e.g. GEBV and estimated breeding values (EBVs) from different countries) were combined into an overall index when altering accuracies of EBVs and correlations between traits. In summary, we showed that genomic selection strategies have the potential to contribute to a substantial reduction in generation intervals in horse breeding programs.
Zhou, Degui; Chen, Wei; Lin, Zechuan; Chen, Haodong; Wang, Chongrong; Li, Hong; Yu, Renbo; Zhang, Fengyun; Zhen, Gang; Yi, Junliang; Li, Kanghuo; Liu, Yaoguang; Terzaghi, William; Tang, Xiaoyan; He, Hang; Zhou, Shaochuan; Deng, Xing Wang
2016-02-01
Analyses of genome variations with high-throughput assays have improved our understanding of genetic basis of crop domestication and identified the selected genome regions, but little is known about that of modern breeding, which has limited the usefulness of massive elite cultivars in further breeding. Here we deploy pedigree-based analysis of an elite rice, Huanghuazhan, to exploit key genome regions during its breeding. The cultivars in the pedigree were resequenced with 7.6× depth on average, and 2.1 million high-quality single nucleotide polymorphisms (SNPs) were obtained. Tracing the derivation of genome blocks with pedigree and information on SNPs revealed the chromosomal recombination during breeding, which showed that 26.22% of Huanghuazhan genome are strictly conserved key regions. These major effect regions were further supported by a QTL mapping of 260 recombinant inbred lines derived from the cross of Huanghuazhan and a very dissimilar cultivar, Shuanggui 36, and by the genome profile of eight cultivars and 36 elite lines derived from Huanghuazhan. Hitting these regions with the cloned genes revealed they include numbers of key genes, which were then applied to demonstrate how Huanghuazhan were bred after 30 years of effort and to dissect the deficiency of artificial selection. We concluded the regions are helpful to the further breeding based on this pedigree and performing breeding by design. Our study provides genetic dissection of modern rice breeding and sheds new light on how to perform genomewide breeding by design. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
Amare, Tadesse; Goshu, Gebeyehu; Tamir, Berhan
2018-01-01
Sheep production is a major component of the livestock sector in Ethiopia. The country owing to the large population of 30.70 million estimated numbers of sheep in the country and out of which about 72.14% are females, and 27.86% are males with diverse genetic resources. The real value of indigenous breeds was often under-estimated mostly due to their poor appearance and relatively low productivity. Developing countries in most cases opt for exotic breeds to increase animal productivity through crossbreeding or breed substitution without properly investigating the production potential of the indigenous breeds. The main objective of the research was to identify sheep flock composition and structure, farmers' traits of interest and breeding objective of Wollo highland sheep, and their F 1 crossbreed progenies. Smallholder farmers' flock synthesized from breeding ewes, breeding rams, pre-weaned ewe lambs, pre-weaned ram lambs, unproductive ewes, castrated and fattened rams, with the percentage coverage of 29.2, 13.3, 15.5, 16.5, 12.4, and 12.5%, respectively. The maximum number of flock size was 289.0 sheep per flock and higher in the third stratum. The off-take rate percentage of the three strata presented as 21.9% in 1st stratum, 12% in the 2nd stratum, and 16.4% in the 3rd stratum and higher off-take rate recorded in the first stratum. Sheep producer's traits of interest ranked by growth rate (first), body size (second) and marketing value was third rank. Communal breeding (random mating), village based controlled breeding, mixed type and private ram controlled breeding practice were comprised of 39.7, 61.7, 52 and 71.3%, respectively. The percentages of ewes per flock composition were presented as 36.5, 27.1 and 25.5%, respectively in the 3rd stratum, 2nd stratum and 3rd stratum in the order of their importance's. Genetic improvement practices at smallholder sheep producers situation was showing promising outcome with indigenous Washera F 1 crossbred lambs and which designated for weaning rate, body size, marketing age, age at first lambing, good temperament and large litter size in the order of their rank. The contemporary breeding practice tendency indicated that, reduced flock size to improve flock productivity via crossbreeding practices.
Creedon, Nanci; Ó'Súilleabháin, Páraic S
2017-01-01
The primary objective of this study was to investigate if differences in dog bite characteristics exist amongst legislated and non-legislated dog breeds listed under breed-specific legislation in Ireland (age when bitten, anatomical bite locations, triggers for biting, victim's relationship with the dog, geographical location and owner presence, history of aggression, reporting bite incident to authorities, medical treatment required following the bite, and type of bite inflicted). A second objective of the current study was to investigate dog control officer's enforcement and perceptions of current legislation. Data for statistical analyses were collated through a nationally advertised survey, with Pearson Chi-square and Fisher's Exact Test statistical methods employed for analyses. A total of 140 incident surveys were assessed comprising of non-legislated ( n = 100) and legislated ( n = 40) dog bite incidents. Legislated breeds were significantly more likely to be perceived as aggressive and less fearful as triggers for biting compared to non-legislated breeds ( P = 0.003). Non-legislated breeds were more likely to inflict a bite with the owner present on own property and on a business premises compared to legislated breeds ( P = 0.036). Non-legislated breeds were more likely to not be reported to the authorities before ( P = 0.009), and after ( P = 0.032) the bite occurred compared to legislated breeds. There were no significant differences observed between both groups for; age when the victim was bitten, bite location, relationship with the dog, history of aggression, outcome for the dog, if the dog bit again, and seeing a professional trainer or behaviourist. No significant difference was observed between both legislated and non-legislated groups for medical treatment required following the bite, and the type of bite inflicted. The present study results did not observe evidence of any differences between legislated and non-legislated for both the medical treatment to victims required following the bite, and the type of bite inflicted. The significant differences in bites being reported to authorities, perceived triggers for biting, and biting locations suggests distinctly differing perceptions relating to risk between legislated and non-legislated dog breeds. Further consequences relating to the introduction of breed-specific legislation in Ireland are discussed.
High-density marker imputation accuracy in sixteen French cattle breeds.
Hozé, Chris; Fouilloux, Marie-Noëlle; Venot, Eric; Guillaume, François; Dassonneville, Romain; Fritz, Sébastien; Ducrocq, Vincent; Phocas, Florence; Boichard, Didier; Croiseau, Pascal
2013-09-03
Genotyping with the medium-density Bovine SNP50 BeadChip® (50K) is now standard in cattle. The high-density BovineHD BeadChip®, which contains 777,609 single nucleotide polymorphisms (SNPs), was developed in 2010. Increasing marker density increases the level of linkage disequilibrium between quantitative trait loci (QTL) and SNPs and the accuracy of QTL localization and genomic selection. However, re-genotyping all animals with the high-density chip is not economically feasible. An alternative strategy is to genotype part of the animals with the high-density chip and to impute high-density genotypes for animals already genotyped with the 50K chip. Thus, it is necessary to investigate the error rate when imputing from the 50K to the high-density chip. Five thousand one hundred and fifty three animals from 16 breeds (89 to 788 per breed) were genotyped with the high-density chip. Imputation error rates from the 50K to the high-density chip were computed for each breed with a validation set that included the 20% youngest animals. Marker genotypes were masked for animals in the validation population in order to mimic 50K genotypes. Imputation was carried out using the Beagle 3.3.0 software. Mean allele imputation error rates ranged from 0.31% to 2.41% depending on the breed. In total, 1980 SNPs had high imputation error rates in several breeds, which is probably due to genome assembly errors, and we recommend to discard these in future studies. Differences in imputation accuracy between breeds were related to the high-density-genotyped sample size and to the genetic relationship between reference and validation populations, whereas differences in effective population size and level of linkage disequilibrium showed limited effects. Accordingly, imputation accuracy was higher in breeds with large populations and in dairy breeds than in beef breeds. More than 99% of the alleles were correctly imputed if more than 300 animals were genotyped at high-density. No improvement was observed when multi-breed imputation was performed. In all breeds, imputation accuracy was higher than 97%, which indicates that imputation to the high-density chip was accurate. Imputation accuracy depends mainly on the size of the reference population and the relationship between reference and target populations.
High-density marker imputation accuracy in sixteen French cattle breeds
2013-01-01
Background Genotyping with the medium-density Bovine SNP50 BeadChip® (50K) is now standard in cattle. The high-density BovineHD BeadChip®, which contains 777 609 single nucleotide polymorphisms (SNPs), was developed in 2010. Increasing marker density increases the level of linkage disequilibrium between quantitative trait loci (QTL) and SNPs and the accuracy of QTL localization and genomic selection. However, re-genotyping all animals with the high-density chip is not economically feasible. An alternative strategy is to genotype part of the animals with the high-density chip and to impute high-density genotypes for animals already genotyped with the 50K chip. Thus, it is necessary to investigate the error rate when imputing from the 50K to the high-density chip. Methods Five thousand one hundred and fifty three animals from 16 breeds (89 to 788 per breed) were genotyped with the high-density chip. Imputation error rates from the 50K to the high-density chip were computed for each breed with a validation set that included the 20% youngest animals. Marker genotypes were masked for animals in the validation population in order to mimic 50K genotypes. Imputation was carried out using the Beagle 3.3.0 software. Results Mean allele imputation error rates ranged from 0.31% to 2.41% depending on the breed. In total, 1980 SNPs had high imputation error rates in several breeds, which is probably due to genome assembly errors, and we recommend to discard these in future studies. Differences in imputation accuracy between breeds were related to the high-density-genotyped sample size and to the genetic relationship between reference and validation populations, whereas differences in effective population size and level of linkage disequilibrium showed limited effects. Accordingly, imputation accuracy was higher in breeds with large populations and in dairy breeds than in beef breeds. More than 99% of the alleles were correctly imputed if more than 300 animals were genotyped at high-density. No improvement was observed when multi-breed imputation was performed. Conclusion In all breeds, imputation accuracy was higher than 97%, which indicates that imputation to the high-density chip was accurate. Imputation accuracy depends mainly on the size of the reference population and the relationship between reference and target populations. PMID:24004563
Ecological relationships of breeding blue-winged teal to prairie potholes
Drewien, R.C.; Springer, P.F.
1969-01-01
Ecology of breeding blue-winged teal (Anas discors) was studied on the Waubay Study Area in Day County, South Dakota, in 1965 and 1966. Breeding pair use of the wetland habitat and importance of Type 1 ponds in the wetland complex were evaluated. Changes in breeding pair densities and wetland habitat conditions on the study area were compared for the 16-year period, 1950-66.Blue-winged teal pair densities of 30.7 and 33.0 per square mile in 1965 and 1966, respectively, were above the 16-year average from 1950 to 1966 and near the maximum for this period. Blue-winged teal comprised 46.7 per cent of the waterfowl breeding population in 1965 and 51.7 per cent in 1966. Number of water areas per square mile through mid-spring 1965 was comparable to the average for the 16-year period, whereas during late spring 1965 and throughout the 1966 spring breeding seasons the number of water areas increased to near optimum conditions.Annual breeding-pair densities from 1950 to 1966 appeared to be largely influenced by water conditions, and pair-density fluctuations resulted from changes in number of wet ponds from late April through mid-May. Variations in water conditions after this period did not appear to have as great an effect on numbers of breeding teal.Use of wetland habitat by pairs changed throughout the spring breeding seasons. During the post-arrival period, teal congregated on larger wetlands. With onset of egg-laying, pairs dispersed into ponds throughout the wetland complex to establish breeding home ranges. Other factors that influenced changes in habitat use included: 1) pond type and size, 2) breeding cycle phenology, 3) availability of wet ponds, and 4) land use. Number of blue-winged teal pairs per unit area of water was highest in 1965 and 1966 on Type 1B ponds, followed in decreasing order by Types 3, 1A, and 4 and 5. Greater use of Type 1B ponds was probably related to larger ratio of edge or shore line to unit area of water. Interspersion of many small wetlands throughout the breeding habitat provided for maximum pair dispersal during egg-laying and early incubation stages of the reproductive cycle.
Coleman, S W; Chase, C C; Riley, D G; Williams, M J
2017-01-01
This study was initiated to evaluate performance and patterns of cow traits and blood metabolites of 3 breeds of cows grazing bahiagrass (Paspalum notatum Flügge) pastures in central Florida. Purebred cows (n = 411) of either Angus (Bos taurus), Brahman (Bos indicus), or Romosinuano (Bos taurus) breeding, rotationally grazed (moved twice weekly) bahiagrass pastures year-round, and received bahiagrass hay supplemented with molasses and soyhulls or legume hay supplemented with unfortified molasses from October to June each production year. At monthly intervals, all cows were weighed, measured at the hip (HH), scored for BCS, and blood samples collected by jugular puncture from 10 cows per cow breed/block group for plasma urea N (PUN), glucose and non-esterified fatty acids (NEFA). Data were analyzed on cows that calved with a statistical model that included fixed effects of year, cowage, cow breed, month, block, supplement group (n = 2, but not presented), and whether the cow weaned a calf the previous year. Cow was a repeated observation over mo. Three-way interactions involving monthly patterns for cowage x year, year x lactation status the previous year, cowage × cow breed, year × cow breed, and cow breed × lactation status the previous year were significant (P < 0.001) for BW and BCS. The interaction for cowage × month was also significant (P < 0.05) for glucose, and cow breed × month was important (P < 0.01) for PUN, glucose, and NEFA. Important differences included: 1) greater BW and BCS for older cows compared to 3-yr old cows; 2) greater BW and BCS before calving for cows that did not lactate the previous year; 3) PUN levels were above 11 mg/dl except for February, August and September, and was generally greater in tropically adapted breeds; 4) GLU was greatest in Brahman, lowest in Angus, and intermediate in Romosinuano cows; and 5) plasma levels of NEFA escalated at calving and then declined, but Brahman cows maintained greater (P < 0.05) levels from calving until weaning than the other breeds. Cows that lactated the previous year had less NEFA than those that did not lactate. Brahman cows were less fertile than Bos taurus breeds, and weaned heavier calves.
Redesigning the exploitation of wheat genetic resources.
Longin, C Friedrich H; Reif, Jochen C
2014-10-01
More than half a million wheat genetic resources are resting in gene banks worldwide. Unlocking their hidden favorable genetic diversity for breeding is pivotal for enhancing grain yield potential, and averting future food shortages. Here, we propose exploiting recent advances in hybrid wheat technology to uncover the masked breeding values of wheat genetic resources. The gathered phenotypic information will enable a targeted choice of accessions with high value for pre-breeding among this plethora of genetic resources. We intend to provoke a paradigm shift in pre-breeding strategies for grain yield, moving away from allele mining toward genome-wide selection to bridge the yield gap between genetic resources and elite breeding pools. Copyright © 2014 Elsevier Ltd. All rights reserved.