Science.gov

Sample records for bright x-ray pulsars

  1. The anomalous X-ray pulsars

    NASA Astrophysics Data System (ADS)

    Chen, Rui; Li, Xiangdong

    2002-03-01

    In the last few years it has been recognized that a group of X-ray pulsars have peculiar properties which set them apart from the majority of accreting pulars in X-ray binaries. They are called the Anomalous X-ray Pulsars (AXP). These objects are characterized by very soft X-ray spectra with low and steady X-ray fluxes, narrow-distributed spin periods, steady spin-down, no optical/infrared counterparts. Some of them may associate with supernova remnants. The nature of AXP remains mysterious. It has been suggested that AXP are accreting neutron stars, or solitary "magnetars", neutron stars with super strong magnetic fields (≍1010-1011T). In this paper we review the recent progress in the studies of AXP, and discuss the possible implications from comparison of AXP with other neutron stars, such as radio pulsars, radio quiet X-ray pulsar candidates and soft γ-ray repeaters.

  2. Spacecraft Navigation Using X-ray Pulsars

    DTIC Science & Technology

    2006-01-01

    make them attractive as potential natural naviga- tion beacons and why a practical implementation looks most feasible in the X-ray band. We then...describe the history of the X-ray navigation program at NRL up through our current Defense Advanced Research Proj- ects Agency (DARPA) program. Finally, we...that produce the powerful radiation beams. These pulsars then turn off and inhabit the “pulsar graveyard.” During their lives, these pulsars make very

  3. An unexpected drop in the magnetic field of the X-ray pulsar V0332+53 after the bright outburst occurred in 2015

    NASA Astrophysics Data System (ADS)

    Cusumano, G.; La Parola, V.; D'Aì, A.; Segreto, A.; Tagliaferri, G.; Barthelmy, S. D.; Gehrels, N.

    2016-07-01

    How the accreted mass settling on the surface of a neutron star affects the topology of the magnetic field and how the secular evolution of the binary system depends on the magnetic field change is still an open issue. We report evidence for a clear drop in the observed magnetic field in the accreting pulsar V0332+53 after undergoing a bright 3-month long X-ray outburst. We determine the field from the position of the fundamental cyclotron line in its X-ray spectrum and relate it to the luminosity. For equal levels of luminosity, in the declining phase we measure a systematically lower value of the cyclotron line energy with respect to the rising phase. This results in a drop of ˜1.7 × 1011 G of the observed field between the onset and the end of the outburst. The settling of the accreted plasma on to the polar cap seems to induce a distortion of the magnetic field lines weakening their intensity along the accretion columns. Therefore, the dissipation rate of the magnetic field could be much faster than previously estimated, unless the field is able to restore its original configuration on a time-scale comparable with the outbursts recurrence time.

  4. The Use of X-Ray Pulsars for Aiding GPS Satellite Orbit Determination

    DTIC Science & Technology

    2005-03-01

    pulsar used was PSR B0531+21 (Crab Pulsar) which is a very well known bright pulsar in the Crab Nebula [28]. Feasibly, if GPS x-ray detectors were 4...Variations Within the Pulse Profile Peaks of the Crab Nebula Pulsar,” The Astrophysical Journal , 467 (1996). 18. Halsell, Charles A. Orbit

  5. X-Ray Pulsar Studies With RXTE

    NASA Technical Reports Server (NTRS)

    Rappaport, Saul

    2004-01-01

    Our activities here at MIT have largely concentrated on four different binary X-ray pulsars: LMC X-4; 4UO352+3O/XPer; 4U0115+63; and X1908+075. We have also recently initiated a search for millisecond X-ray pulsations in RXTE archival data for several bright LMXBs using a new technique. Since this study is just getting under way, we will not report any results here. Using RXTE timing observations of LMC X-4 we have definitively measured, for the first time, the orbital decay of this high-mass X-ray binary. The e-folding decay time scale is very close to lo6 years, comparable to, but somewhat longer than, the corresponding orbital decay times for SMC X-1 and Cen X-3. We find that the orbital decay in LMC X-4 is likely driven by tidal interactions, where the asynchronism between the orbital motion and the rotation of the companion star is maintained by the evolutionary expansion of the companion. Under NASA grant NAGS7479 we carried out RXTE observations of X Per/4U0352+30 in order to track the pulse phase over a one year interval. This effort was successful in tentatively identifying a N 250-day orbital period. However, due to the fact that the observing interval was only somewhat longer than the orbital period, we asked for the observations of X Per to continue as public, or non-proprietary observations. Dr. Jean Swank kindly agreed to the continuation of the observations and they were carried out on a less frequent basis over the next year and a half. After 72 separate observations of X Per, we have the orbital period and semimajor axis firmly determined. In addition, we were able to measure the orbital eccentricity-which turns out to be remarkably small (e = 0.10) for such a wide binary orbit. This has led us establish the birth of a neutron star with a very small (or zero) natal kick.

  6. EXTINCTION AND DISTANCE TO ANOMALOUS X-RAY PULSARS FROM X-RAY SCATTERING HALOS

    SciTech Connect

    Rivera-Ingraham, A.; Van Kerkwijk, M. H. E-mail: mhvk@astro.utoronto.c

    2010-02-10

    We analyze the X-ray scattering halos around three Galactic Anomalous X-ray Pulsars in order to constrain the distance and the optical extinction of each source. We obtain surface brightness distributions from EPIC-pn data obtained with XMM-Newton, compare the profiles of different sources, and fit them with a model based on the standard theory of X-ray scattering by dust grains, both for a uniform distribution of dust along the line of sight, and for dust distributions constrained by previous measurements. Somewhat surprisingly, we find that for all three sources, the uniform distribution reproduces the observed surface brightness as well as or better than the distributions that are informed by previous constraints. Nevertheless, the inferred total dust columns are robust, and serve to confirm that previous measurements based on interstellar edges in high-resolution X-ray spectra and on modeling of broadband X-ray spectra were reliable. Specifically, we find A{sub V} {approx_equal} 4, 6, and 8 mag for 4U 0142+61, 1E 1048.1 - 5937, and 1RXS J170849.0 - 400910, respectively. For 1E 1048.1 - 5937, this is well in excess of the extinction expected toward an H I bubble along the line of sight, thus casting further doubt on the suggested association with the source.

  7. Accretion powered X-ray pulsars

    NASA Technical Reports Server (NTRS)

    White, N. E.; Swank, J. H.; Holt, S. S.

    1982-01-01

    A unified description of the properties of 14 X-ray pulsars is presented and compared with the current theoretical understanding of these systems. The sample extends over six orders of magnitude in luminosity, with the only trend in the phase averaged spectra being that the lower luminosity systems appear to have less abrupt high energy cutoffs. There is no correlation of luminosity with power law index, high energy cutoff energy or iron line EW. Detailed pulse phase spectroscopy is given for five systems.

  8. Accretion onto Fast X-Ray Pulsars

    NASA Technical Reports Server (NTRS)

    Rappaport, S. A.; Fregeau, J. M.; Spruit, H.

    2004-01-01

    The recent emergence of a new class of accretion-powered, transient, millisecond X-ray pulsars presents some difficulties for the conventional picture of accretion onto rapidly rotating magnetized neutron stars and their spin behavior during outbursts. In particular, it is not clear that the standard paradigm can accommodate the wide range in M(i.e., approx. greater than a factor of 50) over which these systems manage to accrete and the high rate of spindown that the neutron stars exhibit in at least a number of cases. When the accretion rate drops sufficiently, the X-ray pulsar is said to become a "fast rotator," and in the conventional view, this is accompanied by a transition from accretion to "propellering," in which accretion ceases and the matter is ejected from the system. On the theoretical side, we note that this scenario for the onset of propellering cannot be entirely correct because it is not energetically self-consistent. We show that, instead, the transition is likely to take place through disks that combine accretion with spindown and terminate at the corotation radius. We demonstrate the existence of such disk solutions by modifying the Shakura-Sunyaev equations with a simple magnetic torque prescription. The solutions are completely analytic and have the same dependence on M and a (the viscosity parameter) as the original Shakura-Sunyaev solutions, but the radial profiles can be considerably modified, depending on the degree of fastness. We apply these results to compute the torques expected during the outbursts of the transient millisecond pulsars and find that we can explain the large spin-down rates that are observed for quite plausible surface magnetic fields of approx. 10(exp 90 G.

  9. New, fast X-ray pulsar in the supernova remnant MSH 15--52

    SciTech Connect

    Seward, F.D.; Harnden, F.R. Jr.

    1982-05-15

    A pulsing X-ray source has been discovered within the shell of the supernova remnant MSH 15--52. The period is 0.150 s, and the rate of increase of period with time is the highest measured for any pulsar. These characteristics and the fact that the pulsar is surrounded by a small, bright nebula indicate that this object is very similar to the Crab pulsar.

  10. A new, fast X-ray pulsar in the supernova remnant MSH 15-52

    NASA Technical Reports Server (NTRS)

    Seward, F. D.; Harnden, F. R., Jr.

    1982-01-01

    A pulsing X-ray source has been discovered within the shell of the supernova remnant MSH 15-52. The period is 0.150 s, and the rate of increase of period with time is the highest measured for any pulsar. These characteristics and the fact that the pulsar is surrounded by a small, bright nebula indicate that this object is very similar to the Crab pulsar.

  11. X-ray studies of three binary millisecond pulsars

    NASA Astrophysics Data System (ADS)

    Webb, N. A.; Olive, J.-F.; Barret, D.

    2005-10-01

    It is thought that millisecond pulsars with white dwarf companions are born from X-ray binaries. The majority of known systems have been studied uniquely in the radio domain, which limits our understanding of such systems. We present here the X-ray observations of the millisecond pulsar PSR J0218+4232 and the two faint millisecond pulsars PSR J0751+1807 and PSR J1012+5307, which we discuss in conjunction with radio observations. We confirm the previously detected X-ray pulsations of PSR J0218+4232 and we show that its folded lightcurve is strongly dependent on energy. We present evidence to suggest that the broad band X-ray spectrum for this pulsar may not be a simple power law, but that there is some evidence for an excess of soft thermal emission over the power law spectrum, in particular from the strongest pulse, in support of a heated polar cap model for this pulsar. We also present the X-ray spectra of the two faint millisecond pulsars as well as some evidence to suggest that both of these millisecond pulsars show pulsations in the X-ray band. We then discuss the implied nature of the magnetic field configuration as a means of discriminating between competing magnetic field evolution theories in millisecond pulsars.

  12. Pulsed X-rays from the Vela pulsar

    NASA Technical Reports Server (NTRS)

    Oegelman, H.; Finley, J. P.; Zimmerman, H. U.

    1993-01-01

    An unambiguous detection by the Rosat satellite of pulsed X-ray emission from the Vela pulsar is reported. The pulse signal is soft, appearing mainly at energies less than 1 keV. The Rosat observations resolve the two sources of emission and show that the pointlike emission centered on the pulsars is soft, whereas the emission from the compact nebula is hard. The observations show that Vela more closely resembles older pulsars that the archetypal young pulsar embedded in an SNR.

  13. Synchronous x-ray and radio mode switches: a rapid global transformation of the pulsar magnetosphere.

    PubMed

    Hermsen, W; Hessels, J W T; Kuiper, L; van Leeuwen, J; Mitra, D; de Plaa, J; Rankin, J M; Stappers, B W; Wright, G A E; Basu, R; Alexov, A; Coenen, T; Grießmeier, J-M; Hassall, T E; Karastergiou, A; Keane, E; Kondratiev, V I; Kramer, M; Kuniyoshi, M; Noutsos, A; Serylak, M; Pilia, M; Sobey, C; Weltevrede, P; Zagkouris, K; Asgekar, A; Avruch, I M; Batejat, F; Bell, M E; Bell, M R; Bentum, M J; Bernardi, G; Best, P; Bîrzan, L; Bonafede, A; Breitling, F; Broderick, J; Brüggen, M; Butcher, H R; Ciardi, B; Duscha, S; Eislöffel, J; Falcke, H; Fender, R; Ferrari, C; Frieswijk, W; Garrett, M A; de Gasperin, F; de Geus, E; Gunst, A W; Heald, G; Hoeft, M; Horneffer, A; Iacobelli, M; Kuper, G; Maat, P; Macario, G; Markoff, S; McKean, J P; Mevius, M; Miller-Jones, J C A; Morganti, R; Munk, H; Orrú, E; Paas, H; Pandey-Pommier, M; Pandey, V N; Pizzo, R; Polatidis, A G; Rawlings, S; Reich, W; Röttgering, H; Scaife, A M M; Schoenmakers, A; Shulevski, A; Sluman, J; Steinmetz, M; Tagger, M; Tang, Y; Tasse, C; ter Veen, S; Vermeulen, R; van de Brink, R H; van Weeren, R J; Wijers, R A M J; Wise, M W; Wucknitz, O; Yatawatta, S; Zarka, P

    2013-01-25

    Pulsars emit from low-frequency radio waves up to high-energy gamma-rays, generated anywhere from the stellar surface out to the edge of the magnetosphere. Detecting correlated mode changes across the electromagnetic spectrum is therefore key to understanding the physical relationship among the emission sites. Through simultaneous observations, we detected synchronous switching in the radio and x-ray emission properties of PSR B0943+10. When the pulsar is in a sustained radio-"bright" mode, the x-rays show only an unpulsed, nonthermal component. Conversely, when the pulsar is in a radio-"quiet" mode, the x-ray luminosity more than doubles and a 100% pulsed thermal component is observed along with the nonthermal component. This indicates rapid, global changes to the conditions in the magnetosphere, which challenge all proposed pulsar emission theories.

  14. The superslow pulsation X-ray pulsars in high mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Wang, Wei

    2013-03-01

    There exists a special class of X-ray pulsars that exhibit very slow pulsation of P spin > 1000 s in the high mass X-ray binaries (HMXBs). We have studied the temporal and spectral properties of these superslow pulsation neutron star binaries in hard X-ray bands with INTEGRAL observations. Long-term monitoring observations find spin period evolution of two sources: spin-down trend for 4U 2206+54 (P spin ~ 5560 s with Ṗ spin ~ 4.9 × 10-7 s s-1) and long-term spin-up trend for 2S 0114+65 (P spin ~ 9600 s with Ṗ spin ~ -1 × 10-6 s s-1) in the last 20 years. A Be X-ray transient, SXP 1062 (P spin ~ 1062 s), also showed a fast spin-down rate of Ṗ spin ~ 3 × 10-6 s s-1 during an outburst. These superslow pulsation neutron stars cannot be produced in the standard X-ray binary evolution model unless the neutron star has a much stronger surface magnetic field (B > 1014 G). The physical origin of the superslow spin period is still unclear. The possible origin and evolution channels of the superslow pulsation X-ray pulsars are discussed. Superslow pulsation X-ray pulsars could be younger X-ray binary systems, still in the fast evolution phase preceding the final equilibrium state. Alternatively, they could be a new class of neutron star system - accreting magnetars.

  15. Galactic X-ray emission from pulsars

    NASA Technical Reports Server (NTRS)

    Harding, A. K.

    1981-01-01

    The contribution of pulsars to the gamma-ray flux from the galactic plane is examined using data from the most recent pulsar surveys. It is assumed that pulsar gamma-rays are produced by curvature radiation from relativistic particles above the polar cap and attenuated by pair production in the strong magnetic and electric fields. Assuming that all pulsars produce gamma-rays in this way, their luminosities can be predicted as a function of period and magnetic field strength. Using the distribution of pulsars in the galaxy as determined from data on 328 pulsars detected in three surveys, the local gamma-ray production spectrum, the longitude profile, and the latitude profile of pulsar gamma-ray flux are calculated. The largest sources of uncertainty in the size of the pulsar contribution are the value of the mean interstellar electron density, the turnover in the pulsar radio luminosity function, and the average pulsar magnetic field strength. A present estimate is that pulsars contribute from 15 to 20 % of the total flux of gamma-rays from the galactic plane.

  16. X-Ray States of Redback Millisecond Pulsars

    NASA Astrophysics Data System (ADS)

    Linares, M.

    2014-11-01

    Compact binary millisecond pulsars with main-sequence donors, often referred to as "redbacks," constitute the long-sought link between low-mass X-ray binaries and millisecond radio pulsars and offer a unique probe of the interaction between pulsar winds and accretion flows. We present a systematic study of eight nearby redbacks, using more than 100 observations obtained with Swift's X-ray Telescope. We distinguish between three main states: pulsar, disk, and outburst states. We find X-ray mode switching in the disk state of PSR J1023+0038 and XSS J12270-4859, similar to what was found in the other redback that showed evidence for accretion: rapid, recurrent changes in X-ray luminosity (0.5-10 keV, L X), between (6-9) × 1032 erg s-1 (disk-passive state) and (3-5) × 1033 erg s-1 (disk-active state). This strongly suggests that mode switching—which has not been observed in quiescent low-mass X-ray binaries—is universal among redback millisecond pulsars in the disk state. We briefly explore the implications for accretion disk truncation and find that the inferred magnetospheric radius in the disk state of PSR J1023+0038 and XSS J12270-4859 lies outside the light cylinder. Finally, we note that all three redbacks that have developed accretion disks have relatively high L X in the pulsar state (>1032 erg s-1).

  17. Pulsars, X-ray synchrotron nebulae, and guest stars

    NASA Technical Reports Server (NTRS)

    Seward, Frederick D.; Wang, Zhen-Ru

    1988-01-01

    X-ray observations of supernova remnants and radio pulsars are used to derive luminosities of neutron stars and synchrotron nebulae. Observations of known isolated pulsars are used to develop an empirical relationship between the X-ray luminosity and the rate of loss of rotational energy. This is used to derive the characteristics of pulsars hidden in remnants which show evidence for a central compact object or associated nebular emission, but no clear pulsed signal from the neutron star itself. Possible periods and period derivatives for the hidden pulsars are discussed. Some might have periods as long as 0.5 s, and period derivatives considerably higher than that of PSR 1509 - 58, currently the pulsar with the highest known period derivative.

  18. X-ray and γ-ray studies of the millisecond pulsar and possible X-ray binary/radio pulsar transition object PSR J1723-2837

    SciTech Connect

    Bogdanov, Slavko; Esposito, Paolo; Crawford III, Fronefield; Possenti, Andrea; McLaughlin, Maura A.; Freire, Paulo

    2014-01-20

    We present X-ray observations of the 'redback' eclipsing radio millisecond pulsar (MSP) and candidate radio pulsar/X-ray binary transition object PSR J1723-2837. The X-ray emission from the system is predominantly non-thermal and exhibits pronounced variability as a function of orbital phase, with a factor of ∼2 reduction in brightness around superior conjunction. Such temporal behavior appears to be a defining characteristic of this variety of peculiar MSP binaries and is likely caused by a partial geometric occultation by the main-sequence-like companion of a shock within the binary. There is no indication of diffuse X-ray emission from a bow shock or pulsar wind nebula associated with the pulsar. We also report on a search for point source emission and γ-ray pulsations in Fermi Large Area Telescope data using a likelihood analysis and photon probability weighting. Although PSR J1723-2837 is consistent with being a γ-ray point source, due to the strong Galactic diffuse emission at its position a definitive association cannot be established. No statistically significant pulsations or modulation at the orbital period are detected. For a presumed detection, the implied γ-ray luminosity is ≲5% of its spin-down power. This indicates that PSR J1723-2837 is either one of the least efficient γ-ray producing MSPs or, if the detection is spurious, the γ-ray emission pattern is not directed toward us.

  19. X-ray Pulsar Navigation Algorithms and Testbed for SEXTANT

    NASA Technical Reports Server (NTRS)

    Winternitz, Luke M. B.; Hasouneh, Monther A.; Mitchell, Jason W.; Valdez, Jennifer E.; Price, Samuel R.; Semper, Sean R.; Yu, Wayne H.; Ray, Paul S.; Wood, Kent S.; Arzoumanian, Zaven; Grendreau, Keith C.

    2015-01-01

    The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a NASA funded technologydemonstration. SEXTANT will, for the first time, demonstrate real-time, on-board X-ray Pulsar-based Navigation (XNAV), a significant milestone in the quest to establish a GPS-like navigation capability available throughout our Solar System and beyond. This paper describes the basic design of the SEXTANT system with a focus on core models and algorithms, and the design and continued development of the GSFC X-ray Navigation Laboratory Testbed (GXLT) with its dynamic pulsar emulation capability. We also present early results from GXLT modeling of the combined NICER X-ray timing instrument hardware and SEXTANT flight software algorithms.

  20. X-ray observations of black widow pulsars

    SciTech Connect

    Gentile, P. A.; McLaughlin, M. A.; Roberts, M. S. E.; Camilo, F.; Hessels, J. W. T.; Kerr, M.; Ransom, S. M.; Ray, P. S.; Stairs, I. H.

    2014-03-10

    We describe the first X-ray observations of five short orbital period (P{sub B} < 1 day), γ-ray emitting, binary millisecond pulsars (MSPs). Four of these—PSRs J0023+0923, J1124–3653, J1810+1744, and J2256–1024—are 'black-widow' pulsars, with degenerate companions of mass <<0.1 M {sub ☉}, three of which exhibit radio eclipses. The fifth source, PSR J2215+5135, is an eclipsing 'redback' with a near Roche-lobe filling ∼0.2 solar mass non-degenerate companion. Data were taken using the Chandra X-Ray Observatory and covered a full binary orbit for each pulsar. Two pulsars, PSRs J2215+5135 and J2256–1024, show significant orbital variability while PSR J1124–3653 shows marginal orbital variability. The lightcurves for these three pulsars have X-ray flux minima coinciding with the phases of the radio eclipses. This phenomenon is consistent with an intrabinary shock emission interpretation for the X-rays. The other two pulsars, PSRs J0023+0923 and J1810+1744, are fainter and do not demonstrate variability at a level we can detect in these data. All five spectra are fit with three separate models: a power-law model, a blackbody model, and a combined model with both power-law and blackbody components. The preferred spectral fits yield power-law indices that range from 1.3 to 3.2 and blackbody temperatures in the hundreds of eV. The spectrum for PSR J2215+5135 shows a significant hard X-ray component, with a large number of counts above 2 keV, which is additional evidence for the presence of intrabinary shock emission. This is similar to what has been detected in the low-mass X-ray binary to MSP transition object PSR J1023+0038.

  1. X-ray states of redback millisecond pulsars

    SciTech Connect

    Linares, M.

    2014-11-01

    Compact binary millisecond pulsars with main-sequence donors, often referred to as 'redbacks', constitute the long-sought link between low-mass X-ray binaries and millisecond radio pulsars and offer a unique probe of the interaction between pulsar winds and accretion flows. We present a systematic study of eight nearby redbacks, using more than 100 observations obtained with Swift's X-ray Telescope. We distinguish between three main states: pulsar, disk, and outburst states. We find X-ray mode switching in the disk state of PSR J1023+0038 and XSS J12270-4859, similar to what was found in the other redback that showed evidence for accretion: rapid, recurrent changes in X-ray luminosity (0.5-10 keV, L {sub X}), between (6-9) × 10{sup 32} erg s{sup –1} (disk-passive state) and (3-5) × 10{sup 33} erg s{sup –1} (disk-active state). This strongly suggests that mode switching—which has not been observed in quiescent low-mass X-ray binaries—is universal among redback millisecond pulsars in the disk state. We briefly explore the implications for accretion disk truncation and find that the inferred magnetospheric radius in the disk state of PSR J1023+0038 and XSS J12270-4859 lies outside the light cylinder. Finally, we note that all three redbacks that have developed accretion disks have relatively high L {sub X} in the pulsar state (>10{sup 32} erg s{sup –1}).

  2. X-Ray Observations of High-B Radio Pulsars

    NASA Astrophysics Data System (ADS)

    Olausen, S. A.; Zhu, W. W.; Vogel, J. K.; Kaspi, V. M.; Lyne, A. G.; Espinoza, C. M.; Stappers, B. W.; Manchester, R. N.; McLaughlin, M. A.

    2013-02-01

    The study of high-magnetic-field pulsars is important for examining the relationships between radio pulsars, magnetars, and X-ray-isolated neutron stars (XINSs). Here, we report on X-ray observations of three such high-magnetic-field radio pulsars. We first present the results of a deep XMM-Newton observation of PSR J1734-3333, taken to follow up on its initial detection in 2009. The pulsar's spectrum is well fit by a blackbody with a temperature of 300 ± 60 eV, with bolometric luminosity L_{{bb}}=2.0_{-0.7}^{+2.2}× 10^{32} {erg s^{-1}}≈ 0.0036 \\dot{E} for a distance of 6.1 kpc. We detect no X-ray pulsations from the source, setting a 1σ upper limit on the pulsed fraction of 60% in the 0.5-3 keV band. We compare PSR J1734-3333 to other rotation-powered pulsars of similar age and find that it is significantly hotter, supporting the hypothesis that the magnetic field affects the observed thermal properties of pulsars. We also report on XMM-Newton and Chandra observations of PSRs B1845-19 and J1001-5939. We do not detect either pulsar, setting 3σ upper limits on their blackbody temperatures of 48 and 56 eV, respectively. Despite the similarities in rotational properties, these sources are significantly cooler than all but one of the XINSs, which we attribute to the two groups having been born with different magnetic fields and hence evolving differently.

  3. X-RAY OBSERVATIONS OF HIGH-B RADIO PULSARS

    SciTech Connect

    Olausen, S. A.; Kaspi, V. M.; Zhu, W. W.; Vogel, J. K.; Lyne, A. G.; Espinoza, C. M.; Stappers, B. W.; Manchester, R. N.; McLaughlin, M. A.

    2013-02-10

    The study of high-magnetic-field pulsars is important for examining the relationships between radio pulsars, magnetars, and X-ray-isolated neutron stars (XINSs). Here, we report on X-ray observations of three such high-magnetic-field radio pulsars. We first present the results of a deep XMM-Newton observation of PSR J1734-3333, taken to follow up on its initial detection in 2009. The pulsar's spectrum is well fit by a blackbody with a temperature of 300 {+-} 60 eV, with bolometric luminosity L{sub bb}=2.0{sub -0.7}{sup +2.2} Multiplication-Sign 10{sup 32} erg s{sup -1}{approx}0.0036 E-dot for a distance of 6.1 kpc. We detect no X-ray pulsations from the source, setting a 1{sigma} upper limit on the pulsed fraction of 60% in the 0.5-3 keV band. We compare PSR J1734-3333 to other rotation-powered pulsars of similar age and find that it is significantly hotter, supporting the hypothesis that the magnetic field affects the observed thermal properties of pulsars. We also report on XMM-Newton and Chandra observations of PSRs B1845-19 and J1001-5939. We do not detect either pulsar, setting 3{sigma} upper limits on their blackbody temperatures of 48 and 56 eV, respectively. Despite the similarities in rotational properties, these sources are significantly cooler than all but one of the XINSs, which we attribute to the two groups having been born with different magnetic fields and hence evolving differently.

  4. Laser-heated X-ray flashlamp brightness measurements

    SciTech Connect

    Matthews, D.L.; Campbell, E.M.; Hagelstein, P.; Halsey, W.; Kauffman, R.L.; Koppel, L.; Phillion, D.; Price, R.; Toor, A.

    1983-12-01

    The authors present measurements of the X-ray emission characteristics of laser-irradiated flashlamp foils which are candidates to produce by resonant photoexcitation a population inversion in either a neon or fluorine lasant gas. Using the Shiva 1.06 ..mu.. laser, the authors heated Fe, Cr, and Ni foils to study the brightness and centroid energies of X-ray lines stemming from L-M transitions. Results indicate that appropriately bright and uniform sources can be produced.

  5. New micro pore optics for x-ray pulsar navigation

    NASA Astrophysics Data System (ADS)

    Jin, Ge; Zhang, Qindong; Xu, Zhao; Zhang, Zhengjun; Zhang, Zhiyong; Xu, Wei; Li, Jingwen; Wang, Jian

    2016-01-01

    Solutions of focusing pulsars X-ray is a key factor in improving the accuracy of pulsar navigation. Based on the focusing principle of lobster eye grazing incidence, new micro pore optics (MPO) for pulsar navigation which is glass-substrated X-ray MPO is researched and developed. The effective areas on MPO when single grazing incidence or double grazing incidence happens are analyzed in detail and the first generation of MPO is produced. By illumination of parallel X-ray beam with 1.49keV and 8.05keV on the MPO, it is found that the crossing focusing image can be clearly visible, and the arm of cross image of 1.49keV and 8.05keV are is respectively 30mm and 17mm in length. Moreover, the center intensity was significantly higher than the cross arm which is consistent with theoretical calculation. Besides, the angular resolution of first generation of MPO with 8.05keV parallel X-ray beam illuminated is 4.19'.

  6. Synchrotron X-ray emission from old pulsars

    NASA Astrophysics Data System (ADS)

    Kisaka, Shota; Tanaka, Shuta J.

    2014-09-01

    We study the synchrotron radiation as the observed non-thermal emission by the X-ray satellites from old pulsars (≳1-10 Myr) to investigate the particle acceleration in their magnetospheres. We assume that the power-law component of the observed X-ray spectra is caused by the synchrotron radiation from electrons and positrons in the magnetosphere. We consider two pair-production mechanisms of X-ray emitting particles, the magnetic and the photon-photon pair productions. High-energy photons, which ignite the pair production, are emitted via the curvature radiation of the accelerated particles. We use the analytical description for the radiative transfer and estimate the luminosity of the synchrotron radiation. We find that for pulsars with the spin-down luminosity Lsd ≲ 1033 erg s-1, the locations of the particle acceleration and the non-thermal X-ray emission are within ≲107 cm from the centre of the neutron star, where the magnetic pair production occurs. For pulsars with the spin-down luminosity Lsd ≲ 1031 erg s-1 such as J0108-1431, the synchrotron radiation is difficult to explain the observed non-thermal component even if we consider the existence of the strong and small-scale surface magnetic field structures.

  7. X-RAY OBSERVATIONS OF DISRUPTED RECYCLED PULSARS: NO REFUGE FOR ORPHANED CENTRAL COMPACT OBJECTS

    SciTech Connect

    Gotthelf, E. V.; Halpern, J. P.; Allen, B.; Knispel, B.

    2013-08-20

    We present a Chandra X-ray survey of the disrupted recycled pulsars (DRPs), isolated radio pulsars with P > 20 ms and B{sub s} < 3 Multiplication-Sign 10{sup 10} G. These observations were motivated as a search for the immediate descendants of the Almost-Equal-To 10 central compact objects (CCOs) in supernova remnants (SNRs), 3 of which have similar timing and magnetic properties as the DRPs, but are bright, thermal X-ray sources consistent with minimal neutron star (NS) cooling curves. Since none of the DPRs were detected in this survey, there is no evidence that they are ''orphaned'' CCOs, NSs whose SNRs has dissipated. Upper limits on their thermal X-ray luminosities are in the range of log L{sub x} [erg s{sup -1}] = 31.8-32.8, which implies cooling ages >10{sup 4}-10{sup 5} yr, roughly 10 times the ages of the Almost-Equal-To 10 known CCOs in a similar volume of the Galaxy. The order of a hundred CCO descendants that could be detected by this method are thus either intrinsically radio quiet or occupy a different region of (P, B{sub s} ) parameter space from the DRPs. This motivates a new X-ray search for orphaned CCOs among radio pulsars with larger B-fields, which could verify the theory that their fields are buried by the fall-back of supernova ejecta, but quickly regrow to join the normal pulsar population.

  8. X-ray spectra of the Crab pulsar and nebula

    NASA Technical Reports Server (NTRS)

    Pravdo, S. H.; Serlemitsos, P. J.

    1981-01-01

    The spectrum of the Crab pulsar was measued from 2 to 50 keV as a function of pulse phase and a progressive hardening and subsequent softening of the spectrum across the pulse was found. The fraction of the pulsed flux which exhibits spectral variability is 0.14 and is concentrated solely in the region between the two peaks. A model is suggested in which the pulsed X-ray emission from the Crab pulsar consists of two components: one which has no spectral dependence with pulse phase and which is physically related to the double peaked gama ray pulse and, perhaps, the radio and optical pulses; and another component which exhibits spectral variability with pulse phase is confined to and comprises the interpeak emission, and which is only seen at X-ray energies. These results and studies of the binary X-ray pulsar Hercules X-1 suggest a phenomonological similarity. If the spectrally varying component in the Crab pulsar arises from a hot, magnetized plasma near the neutron star surface then higher energy spectral observations of this phase region might reveal spectral features which can be used to determine the surface field strength.

  9. Models for X-Ray Emission from Isolated Pulsars

    NASA Technical Reports Server (NTRS)

    Wang, F. Y.-H.; Ruderman, M.; Halpern, Jules P.; Zhu, T.; Oliversen, Ronald (Technical Monitor)

    2001-01-01

    A model is proposed for the observed combination of power-law and thermal X-rays from rotationally powered pulsars. For gamma-ray pulsars with accelerators very many stellar radii above the neutron star surface, 100 MeV curvature gamma-rays from e(-) or e(+) flowing starward out of such accelerators are converted to e1 pairs on closed field lines all around the star. These pairs strongly affect X-ray emission from near the star in two ways. (1) The pairs are a source of synchrotron emission immediately following their creation in regions where B approx. 10(exp 10) G. This emission, in the photon energy range 0.1 keV less than E(sub X) less than 5 MeV, has a power-law spectrum with energy index 0.5 and X-ray luminosity that depends on the back-flow current, and is typically approx. 10(exp 33) ergs/ s. (2) The pairs ultimately a cyclotron resonance "blanket" surrounding the star except for two holes along the open field line bundles which pass through it. In such a blanket the gravitational pull on e(+,-) pairs toward the star is balanced by the hugely amplified push of outflowing surface emitted X-rays wherever cyclotron resonance occurs. Because of it the neutron star is surrounded by a leaky "hohlraum" of hot blackbody radiation with two small holes, which prevents direct X-ray observation of a heated polar cap of a gamma-ray pulsar. Weakly spin modulated radiation from the blanket together with more strongly spin-modulated radiation from the holes through it would then dominate observed low energy (0.1-10 keV) emission. For non-y-ray pulsars, in which no such accelerators with their accompanying extreme relativistic back-flow toward the star are expected, optically thick e1 resonance blankets should not form (except in special cases very close to the open field line bundle). From such pulsars blackbody radiation from both the warm stellar surface and the heated polar caps should be directly observable. In these pulsars, details of the surface magnetic field

  10. Soft X ray properties of the Geminga pulsar

    NASA Astrophysics Data System (ADS)

    Halpern, J. P.; Ruderman, M.

    1993-01-01

    The ROSAT soft x ray spectrum and pulse profile of the Geminga pulsar are analyzed and interpreted in terms of thermal emission from the surface of the neutron star. The x ray spectrum appears to consist of two blackbody components with T1 = (5.2 +/- 1.0) x 10 5 K and T2 approximately 3 x 106 K, respectively. The inferred ratio of surface areas, A2/A1, is approximately 3 x 10-5. Both components are highly modulated at the pulsar rotation period, but the harder x ray pulse is narrower, and leads the main (soft) x ray pulse by about 105 deg of phase. The soft x ray component is interpreted as photospheric cooling of much of the neutron star's surface area, while the small, hot region could be part of the much smaller polar cap heated by energetic particles flowing inward from the magnetospheric accelerator which is responsible for the production of Geminga's gamma rays. Geminga's gamma ray emission is consistent with outer-magnetosphere accelerator models for highly inclined dipoles. These predict the beaming of energetic gamma rays close enough to the star to give copious e(+/-) production in the stellar magnetic field and a large circumstellar pair density from pair inflow toward the surface. These pairs may quench radio emission, and also reflect most of the hard polar cap x rays back to the stellar surface by cyclotron resonance scattering. They are then reemitted from that much larger area at the lower temperature T1. The single-peaked nature of the x ray pulse and its energy-dependent phase suggest an off-center dipole geometry for the surface magnetic field. Under the assumption that the soft x ray emission comes from the full surface of a neutron star of radius R = 10 km, a distance estimate of (150-400) pc is derived. This range is consistent with the fit interstellar column density of (1.5 +/- 0.5) x 1020 cm-2. Distances less than 150 pc are probably ruled out both by the lower limit on the column density, and also by the requirement that the Rayleigh

  11. A radio pulsar/x-ray binary link.

    PubMed

    Archibald, Anne M; Stairs, Ingrid H; Ransom, Scott M; Kaspi, Victoria M; Kondratiev, Vladislav I; Lorimer, Duncan R; McLaughlin, Maura A; Boyles, Jason; Hessels, Jason W T; Lynch, Ryan; van Leeuwen, Joeri; Roberts, Mallory S E; Jenet, Frederick; Champion, David J; Rosen, Rachel; Barlow, Brad N; Dunlap, Bart H; Remillard, Ronald A

    2009-06-12

    Radio pulsars with millisecond spin periods are thought to have been spun up by the transfer of matter and angular momentum from a low-mass companion star during an x-ray-emitting phase. The spin periods of the neutron stars in several such low-mass x-ray binary (LMXB) systems have been shown to be in the millisecond regime, but no radio pulsations have been detected. Here we report on detection and follow-up observations of a nearby radio millisecond pulsar (MSP) in a circular binary orbit with an optically identified companion star. Optical observations indicate that an accretion disk was present in this system within the past decade. Our optical data show no evidence that one exists today, suggesting that the radio MSP has turned on after a recent LMXB phase.

  12. Observations of x ray pulsars from the Kvant module

    NASA Technical Reports Server (NTRS)

    Gilfanov, M.; Sunyaev, Rashid A.; Churazov, E.; Loznikov, V.; Efremov, V. V.; Kaniovskiy, A.; Kuznetsov, A. V.; Yamburenko, N.; Melioranskiy, A.; Skinner, G. K.

    1991-01-01

    The Roentgen international x ray observatory on the Kvant module of the Mir space station has been successfully operating since the beginning of June 1987. Many x ray sources were observed and among them were several x ray pulsars. Four telescopes mounted on board the Kvant module cover a wide energy range with good timing resolution. Timing analysis of the Kvant module data suffers from the presence of only short continuous intervals of source observations, separated by 90 min gaps (90 min is the orbital period of the Mir space station around the Earth). The presence of 90 min gaps leads to the appearance of beat frequencies v=v sub 0 + or - n/90 min (n = 1, 2, 3). Special analysis was applied to avoid this difficulty. Results are presented of the pulsation period measurements of the x ray pulsars Her X-1, Cen X-3, SMC X-1, Vela X-1, A0535 + 26 by the instruments on board the Kvant module in 1987 to 1989. The values of the periods are reduced to the solar system barycenter and to the binary system barycenter (excluding A0535 + 26).

  13. Be/X-Ray Pulsar Binary Science with LOFT

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2011-01-01

    Accretion disks are ubiquitous in astronomical sources. Accretion powered pulsars are a good test bed for accretion disk physics, because unlike for other objects, the spin of the neutron star is directly observable allowing us to see the effects of angular momentum transfer onto the pulsar. The combination of a sensitive wide-field monitor and the large area detector on LOFT will enable new detailed studies of accretion powered pulsars which I will review. RXTE observations have shown an unusually high number of Be/X-ray pulsar binaries in the SMC. Unlike binaries in the Milky Way, these systems are all at the same distance, allowing detailed population studies using the sensitive LOFT WFM, potentially providing connections to star formation episodes. For Galactic accreting pulsar systems, LOFT will allow measurement of spectral variations within individual pulses, mapping the accretion column in detail for the first time. LOFT will also provide better constraints on magnetic fields in accreting pulsars, allowing measurements of cyclotron features, observations of transitions into the centrifugal inhibition regime, and monitoring of spin-up rate vs flux correlations. Coordinated multi-wavelength observations are crucial to extracting the best science from LOFT from these and numerous other objects.

  14. Precision Timing of Two Anomalous X-Ray Pulsars.

    PubMed

    Kaspi; Chakrabarty; Steinberger

    1999-11-01

    We report on long-term X-ray timing of two anomalous X-ray pulsars, 1RXS J170849.0-400910 and 1E 2259+586, using the Rossi X-Ray Timing Explorer. In monthly observations made over 1.4 and 2.6 yr for the two pulsars, respectively, we have obtained phase-coherent timing solutions which imply that these objects have been rotating with great stability throughout the course of our observations. For 1RXS J170849.0-400910, we find a rotation frequency of 0.0909169331(5) Hz and frequency derivative -15.687&parl0;4&parr0;x10-14 Hz s-1 for epoch MJD 51215.931. For 1E 2259+586, we find a rotation frequency of 0.1432880613(2) Hz and frequency derivative -1.0026&parl0;7&parr0;x10-14 Hz s-1 for epoch MJD 51195.583. The rms phase residuals from these simple models are only approximately 0.01 cycles for both sources. We show that the frequency derivative for 1E 2259+586 is inconsistent with that inferred from incoherent frequency observations made over the last 20 yr. Our observations are consistent with the magnetar hypothesis and make binary accretion scenarios appear unlikely.

  15. Patterns of variability in Be/X-ray pulsars during giant outbursts

    NASA Astrophysics Data System (ADS)

    Reig, P.; Nespoli, E.

    2013-03-01

    Context. The discovery of source states in the X-ray emission of black-hole binaries and neutron-star low-mass X-ray binaries constituted a major step forward in the understanding of the physics of accretion onto compact objects. While there are numerous studies on the correlated timing and spectral variability of these systems, very little work has been done on high-mass X-ray binaries, the third major type of X-ray binaries. Accretion-powered pulsars with Be companions represent the most numerous group of high-mass X-ray binaries. When active, they are amongst the brightest extra-solar objects in the X-ray sky and are characterised by dramatic variability in brightness on timescales of days. Aims: The main goal of this work is to investigate whether Be accreting X-ray pulsars display source states and characterise those states through their spectral and timing properties. Methods: We have made a systematic study of the power spectra, energy spectra and X-ray hardness-intensity diagrams of nine Be/X-ray pulsars. Energy spectra were fitted with an absorbed power-law modified by an exponential cutoff. Discrete components such as iron emission lines and cyclotron lines were represented by Gaussian and pseudo-Lorentzian profiles, respectively. Power spectra were fitted by a combination of Lorentzian functions. The evolution of the timing and spectral parameters were monitored through changes over two orders of magnitude in luminosity. Results: We find that Be/X-ray pulsars trace two different branches in the hardness-intensity diagram: the horizontal branch corresponds to a low-intensity state of the source and it is characterised by fast colour and spectral changes and high X-ray variability. The diagonal branch is a high-intensity state that emerges when the X-ray luminosity exceeds a critical limit. The photon index anticorrelates with X-ray flux in the horizontal branch but correlates with it in the diagonal branch. The correlation between quasi

  16. Quasispherical subsonic accretion in X-ray pulsars

    NASA Astrophysics Data System (ADS)

    Shakura, Nikolai I.; Postnov, Konstantin A.; Kochetkova, A. Yu; Hjalmarsdotter, L.

    2013-04-01

    A theoretical model is considered for quasispherical subsonic accretion onto slowly rotating magnetized neutron stars. In this regime, the accreting matter settles down subsonically onto the rotating magnetosphere, forming an extended quasistatic shell. Angular momentum transfer in the shell occurs via large-scale convective motions resulting, for observed pulsars, in an almost iso-angular-momentum \\omega \\sim 1/R^2 rotation law inside the shell. The accretion rate through the shell is determined by the ability of the plasma to enter the magnetosphere due to Rayleigh-Taylor instabilities, with allowance for cooling. A settling accretion regime is possible for moderate accretion rates \\dot M \\lesssim \\dot M_* \\simeq 4\\times 10^{16} g s ^{-1}. At higher accretion rates, a free-fall gap above the neutron star magnetosphere appears due to rapid Compton cooling, and the accretion becomes highly nonstationary. Observations of spin-up/spin-down rates of quasispherically wind accreting equilibrium X-ray pulsars with known orbital periods (e.g., GX 301-2 and Vela X-1) enable us to determine the main dimensionless parameters of the model, as well as to estimate surface magnetic field of the neutron star. For equilibrium pulsars, the independent measurements of the neutron star magnetic field allow for an estimate of the stellar wind velocity of the optical companion without using complicated spectroscopic measurements. For nonequilibrium pulsars, a maximum value is shown to exist for the spin-down rate of the accreting neutron star. From observations of the spin-down rate and the X-ray luminosity in such pulsars (e.g., GX 1+4, SXP 1062, and 4U 2206+54), a lower limit can be put on the neutron star magnetic field, which in all cases turns out to be close to the standard value and which agrees with cyclotron line measurements. Furthermore, both explains the spin-up/spin-down of the pulsar frequency on large time-scales and also accounts for the irregular short

  17. X-ray flares from postmerger millisecond pulsars.

    PubMed

    Dai, Z G; Wang, X Y; Wu, X F; Zhang, B

    2006-02-24

    Recent observations support the suggestion that short-duration gamma-ray bursts are produced by compact star mergers. The x-ray flares discovered in two short gamma-ray bursts last much longer than the previously proposed postmerger energy-release time scales. Here, we show that they can be produced by differentially rotating, millisecond pulsars after the mergers of binary neutron stars. The differential rotation leads to windup of interior poloidal magnetic fields and the resulting toroidal fields are strong enough to float up and break through the stellar surface. Magnetic reconnection-driven explosive events then occur, leading to multiple x-ray flares minutes after the original gamma-ray burst.

  18. Fast microtomography using bright monochromatic x-rays

    SciTech Connect

    Jung, J. W.; Lee, J. S.; Park, S. J.; Chang, S.; Pyo, J.; Kwon, N.; Kim, J.; Kohmura, Y.; Nishino, Y.; Yamamoto, M.; Ishikawa, T.

    2012-09-15

    A fast microtomography system for high-resolution high-speed imaging has been developed using bright monochromatic x-rays at the BL29XU beamline of SPring-8. The shortest scan time for microtomography we attained was 0.25 s in 1.25 {mu}m effective pixel size by combining the bright monochromatic x-rays, a fast rotating sample stage, and a high performance x-ray imaging detector. The feasibility of the tomography system was successfully demonstrated by visualization of rising bubbles in a viscous liquid, an interesting issue in multiphase flow physics. This system also provides a high spatial (a measurable feature size of 300 nm) or a very high temporal (9.8 {mu}s) resolution in radiographs.

  19. Soft x ray properties of the Geminga pulsar

    NASA Technical Reports Server (NTRS)

    Halpern, J. P.; Ruderman, M.

    1993-01-01

    The ROSAT soft x ray spectrum and pulse profile of the Geminga pulsar are analyzed and interpreted in terms of thermal emission from the surface of the neutron star. The x ray spectrum appears to consist of two blackbody components with T(sub 1) = (5.2 +/- 1.0) x 10 (exp 5) K and T(sub 2) approximately 3 x 10(exp 6) K, respectively. The inferred ratio of surface areas, A(sub 2)/A(sub 1), is approximately 3 x 10(exp -5). Both components are highly modulated at the pulsar rotation period, but the harder x ray pulse is narrower, and leads the main (soft) x ray pulse by about 105 deg of phase. The soft x ray component is interpreted as photospheric cooling of much of the neutron star's surface area, while the small, hot region could be part of the much smaller polar cap heated by energetic particles flowing inward from the magnetospheric accelerator which is responsible for the production of Geminga's gamma rays. Geminga's gamma ray emission is consistent with outer-magnetosphere accelerator models for highly inclined dipoles. These predict the beaming of energetic gamma rays close enough to the star to give copious e(+/-) production in the stellar magnetic field and a large circumstellar pair density from pair inflow toward the surface. These pairs may quench radio emission, and also reflect most of the hard polar cap x rays back to the stellar surface by cyclotron resonance scattering. They are then reemitted from that much larger area at the lower temperature T(sub 1). The single-peaked nature of the x ray pulse and its energy-dependent phase suggest an off-center dipole geometry for the surface magnetic field. Under the assumption that the soft x ray emission comes from the full surface of a neutron star of radius R = 10 km, a distance estimate of (150-400) pc is derived. This range is consistent with the fit interstellar column density of (1.5 +/- 0.5) x 10(exp 20) cm(exp -2). Distances less than 150 pc are probably ruled out both by the lower limit on the column

  20. Modelling X-ray Pulse Profiles of Millisecond Pulsars

    NASA Astrophysics Data System (ADS)

    Leahy, D. A.; Morsink, S.; Tian, W.

    2013-03-01

    The modelling of X-ray pulse profiles from accreting millisecond pulsars is a way to infer masses and radii of neutron stars. We briefly describe how a pulse shape encodes information on the mass and radius, but also depends on other parameters such as hot spot location and observer viewing angle. A numerical model that we have developed is then described. The model includes light bending, time-delay effects, and Doppler effects for photons. The model accounts for oblateness of the neutron star, caused by the rapid rotation, and for scattered light from the surface of the accretion disk. The millisecond pulsar SAX J1808-3658 has multiple observations taken during different outbursts. The observed pulse shapes vary greatly, and it is a challenging test to fit the different observations. Some of the latest results are given.

  1. Hard X-ray Characteristics of Anomalous X-ray Pulsars: Results from RXTE and INTEGRAL

    NASA Astrophysics Data System (ADS)

    den Hartog, Peter R.

    Until recently anomalous X-ray pulsars (AXPs) were known as soft X-ray emitters. This has changed drastically since the discovery of hard X-ray emission (>10 keV) from several AXPs by INTEGRAL (Molkov et al. 2004, Revnivtsev et al. 2004 and den Hartog et al. 2004). Kuiper et al. (2004) discovered pulsed emission in the same energy range using RXTE (PCA and HEXTE) data. Currently four AXPs (1RXS J170849.0-400910, 1E 1841-045, 4U 0142+614 and 1E 2259+586) have been detected, some of them showing emission up to 200 keV. The spectra exhibit extremely hard power laws with photon indices < 1.0 and with apparent luminosities 2-3 orders of magnitude above the rotational energy loss. The origin of this behaviour is not yet understood. An overview containing the current observational status in the temporal and the spectral domains as well as future prospects of AXPs at high energies is presented.

  2. Unusual Braking Indices in Young X-ray Pulsars

    NASA Astrophysics Data System (ADS)

    Frederic Archibald, Robert; Kaspi, Victoria M.; Beardmore, Andrew P.; Gehrels, Neil; Kennea, Jamie; Gotthelf, Eric V.; Ferdman, Robert; Guillot, Sebastien; Harrison, Fiona; Keane, Evan; Pivovaroff, Michael; Stern, Daniel; Tendulkar, Shriharsh P.; Tomsick, John

    2016-04-01

    Pulsars spin down over time. By measuring braking indices of pulsars, effectively the change in the spin-down rate over time, we can probe the underlying driving engine of the spin-down. For a magnetic dipole in a vacuum, n is predicted to be 3. To date, all measured braking indices are less than 3, which can be explained, e.g. by particle winds, changes in the magnetic field. In all models of braking indices, n should be nearly constant on year time-scales. Here, I will discuss two recent observation results that challenge this model, interestingly both coming from young X-ray pulsars with no detected radio emission. The first, a long-lived decrease in the braking index of PSR J1846-0258 following a burst of magnetar-like activity, and secondly, the first stationary braking index greater than three. Understanding neutron-star spin evolution is key to constraining these objects' long-term energy output and has relevance to topics ranging from pulsar wind nebulae and supernova remnants to core-collapse supernova rates, physics, and expected outcomes.

  3. X-Ray and Rotational Luminosity Correlation and Magnetic Heating of Radio Pulsars

    NASA Astrophysics Data System (ADS)

    Shibata, S.; Watanabe, E.; Yatsu, Y.; Enoto, T.; Bamba, A.

    2016-12-01

    Previous works have suggested a correlation between the X-ray luminosity {L}{{x}} and the rotational luminosity {L}{rot} of radio pulsars. However, none of the obtained regression lines is statistically acceptable due to large scatter. We construct a statistical model that has an intrinsic {L}{{x}}-{L}{rot} relation and reproduces the observed {L}{{x}} distribution about it by using a Monte Carlo simulator, which takes into account the effects obscuring the intrinsic relation, i.e., the anisotropy of radiation, additional heating, uncertainty in distance, and the detection limit of the instruments. From the ATNF pulsar catalog we collect 57 “ordinary radio pulsars” with significant detection and 42 with upper limits. The sample does not include high-magnetic-field pulsars (>1013 G), which are analyzed separately. We obtain a statistically acceptable relation {L}{{x}}{(0.5{--}10{keV})={10}31.69({L}{rot}/{L}0)}{c1} with c 1 = 1.03 ± 0.27 and L 0 = 1035.38. The distribution about the obtained {L}{{x}}-{L}{rot} relation is reproduced well by the simulator. Pulsars with abnormally high {L}{{x}} fall into two types: one is the soft gamma-ray pulsars, and the other is pulsars that are thermally bright in comparison with the standard cooling curve. On the other hand, pulsars showing low {L}{{x}} are found to have dim pulsar wind nebulae (PWNs). We argue that there is an unknown mechanism that governs both the magnetospheric emission and the PWNs, and it might involve the production rate of electron-positron pairs. High-field pulsars form a population that is distinct from ordinary pulsars due to their excess luminosities.

  4. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism.

    PubMed

    Fan, Tingting; Grychtol, Patrik; Knut, Ronny; Hernández-García, Carlos; Hickstein, Daniel D; Zusin, Dmitriy; Gentry, Christian; Dollar, Franklin J; Mancuso, Christopher A; Hogle, Craig W; Kfir, Ofer; Legut, Dominik; Carva, Karel; Ellis, Jennifer L; Dorney, Kevin M; Chen, Cong; Shpyrko, Oleg G; Fullerton, Eric E; Cohen, Oren; Oppeneer, Peter M; Milošević, Dejan B; Becker, Andreas; Jaroń-Becker, Agnieszka A; Popmintchev, Tenio; Murnane, Margaret M; Kapteyn, Henry C

    2015-11-17

    We demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantum trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform.

  5. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism

    PubMed Central

    Fan, Tingting; Grychtol, Patrik; Knut, Ronny; Hernández-García, Carlos; Hickstein, Daniel D.; Zusin, Dmitriy; Gentry, Christian; Dollar, Franklin J.; Mancuso, Christopher A.; Hogle, Craig W.; Kfir, Ofer; Legut, Dominik; Carva, Karel; Ellis, Jennifer L.; Dorney, Kevin M.; Chen, Cong; Shpyrko, Oleg G.; Fullerton, Eric E.; Cohen, Oren; Oppeneer, Peter M.; Milošević, Dejan B.; Becker, Andreas; Jaroń-Becker, Agnieszka A.; Popmintchev, Tenio; Murnane, Margaret M.; Kapteyn, Henry C.

    2015-01-01

    We demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantum trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform. PMID:26534992

  6. X-Ray Spectra of Young Pulsars and Their Wind Nebulae: Dependence on Spin-Down Energy Loss Rate

    NASA Technical Reports Server (NTRS)

    Gotthelf, E. V.

    2003-01-01

    An observational model is presented for the spectra of young rotation-powered pulsars and their nebulae based on a study of nine bright Crab-like pulsar systems observed with the Chandra X-ray observatory. A significant correlation is discovered between the X-ray spectra of these pulsars and that of their associated pulsar wind nebulae, both of which are observed to be a function of the spin-down energy loss rate, E. The 2-10 keV spectra of these objects are well characterized by an absorbed power-law model with photon indices, Gamma, in the range of 0.6 < Gamma (sub PSR) < 2.1 and 1.3 < Gamma(sub PWN) < 2.3, for the pulsars and their nebulae, respectively. A linear regression fit relating these two sets of indexes yields Gamma(sub PWN) = 0.91 +/- 0.18 + (0.66 +/- 0.11) Gamma (sub PSR), with a correlation coefficient of r = 0.97. The spectra of these pulsars are found to steepen as Gamma = Gamma(sub max) + alpha E (exp -1/2), with Gamma(sub max) providing an observational limit on the spectral slopes of young rotation-powered pulsars. These results reveal basic properties of young pulsar systems, allow new observational constraints on models of pulsar wind emission, and provide a means of predicting the energetics of pulsars lacking detected pulsations.

  7. Tugboat model for OB binaries, X-ray stars and pulsars.

    PubMed

    Helfand, D J; Tademaru, E

    1977-05-12

    An examination of the kinematical properties of binary OB stars, binary X-ray sources and pulsars suggests an evolutionary sequence linking an apparent low-velocity class of pulsars to the binary nature of their extreme Population I progenitors.

  8. Optical Variability of X-Ray Bright Southern Symbiotic Stars

    NASA Astrophysics Data System (ADS)

    Hedrick, C.; Sokoloski, J.

    2004-12-01

    We performed weekly B- and V-band observations of four X-ray bright southern symbiotic binary stars -- CD-43 14304, Hen 3-1591, LMC S63, and SMC LN 358 -- using the 1.3-m telescope at Cerro Tololo Inter-American Observatory (CTIO). We began optical monitoring in August 2003 for two of the objects (LMC S63 and SMC LN 358) and in January 2004 for the other two objects (CD-43 14304 and Hen 3-1591). None of the four survey objects experienced a major outburst during the monitoring period. We did, however, detect small-amplitude ( 0.1 mag) optical variability on a time scale of tens of days, for the first time, in each of the four systems. Both the structure and amplitude of the variations are roughly the same in the B band and V band in all of the symbiotics in our sample except one (LMC S63), and is most consistent with the idea that the week-time-scale variability originates with the hot component (most likely an accreting white dwarf) rather than the red giant. We compare the variability properties of our small sample of X-ray-bright symbiotic stars to those of samples of both X-ray-bright and X-ray-dim symbiotic stars from the database of the American Association of Variable Star Observers (AAVSO).

  9. X-ray-selected AGNs near bright galaxies

    NASA Technical Reports Server (NTRS)

    Stocke, John T.; Schneider, Peter; Morris, Simon L.; Gioia, Isabella M.; Maccacaro, Tommaso

    1987-01-01

    Among the numerous low-redshift low-luminosity X-ray sources discovered with the Einstein Observatory, ten AGNs were identified that are projected within three optical diameters of bright (V less than 18) foreground galaxies. These AGNs near galaxies have significantly higher redshifts than the sample as a whole. This discovery is interpreted in terms of gravitational 'microlensing' in which stars in the foreground galaxy have significantly brightened the X-ray emission from these higher redshift AGNs, allowing their detection. It is suggested that microlensing may be responsible for a significant alteration of the inherent QSO luminosity function.

  10. Lightweight Target Generates Bright, Energetic X-Rays

    SciTech Connect

    Hazi, A

    2006-01-25

    Radiography with x rays is a long-established method to see inside objects, from human limbs to weapon parts. Livermore scientists have a continuing need for powerful x rays for such applications as backlighting, or illuminating, inertial confinement fusion (ICF) experiments and imaging still or exploding materials for the nation's Stockpile Stewardship Program. X-radiography is one of the prime diagnostics for ICF experiments because it captures the fine detail needed to determine what happens to nearly microscopic targets when they are compressed by laser light. For example, Livermore scientists participating in the National Ignition Facility's (NIF's) 18-month-long Early Light experimental campaign, which ended in 2004, used x rays to examine hydrodynamic instabilities in jets of plasma. In these experiments, one laser beam irradiated a solid target of titanium, causing it to form a high-temperature plasma that generated x rays of about 4.65 kiloelectronvolts (keV). These x rays backlit a jet of plasma formed when two other laser beams hit a plastic ablator and sent a shock to an aluminum washer. Livermore physicist Kevin Fournier of the Physics and Advanced Technologies Directorate leads a team that is working to increase the efficiency of converting laser energy into x rays so the resulting images provide more information about the object being illuminated. The main characteristics of x-ray sources are energy and brightness. ''As experimental targets get larger and as compression of the targets increases, the backlighter sources must be brighter and more energetic'', says Fournier. The more energetic the x rays, the further they penetrate an object. The brighter the source--that is, the more photons it has--the clearer the image. historically, researchers have used solid targets such as thin metal foils to generate x rays. however, when photon energies are greater than a few kiloelectronvolts, the conversion efficiency of solid targets is only a fraction of 1

  11. An x-ray nebula associated with the millisecond pulsar B1957+20.

    PubMed

    Stappers, B W; Gaensler, B M; Kaspi, V M; van der Klis, M; Lewin, W H G

    2003-02-28

    We have detected an x-ray nebula around the binary millisecond pulsar B1957+20. A narrow tail, corresponding to the shocked pulsar wind, is seen interior to the known Halpha bow shock and proves the long-held assumption that the rotational energy of millisecond pulsars is dissipated through relativistic winds. Unresolved x-ray emission likely represents the shock where the winds of the pulsar and its companion collide. This emission indicates that the efficiency with which relativistic particles are accelerated in the postshock flow is similar to that for young pulsars, despite the shock proximity and much weaker surface magnetic field of this millisecond pulsar.

  12. PROFFIT: Analysis of X-ray surface-brightness profiles

    NASA Astrophysics Data System (ADS)

    Eckert, Dominique

    2016-08-01

    PROFFIT analyzes X-ray surface-brightness profiles for data from any X-ray instrument. It can extract surface-brightness profiles in circular or elliptical annuli, using constant or logarithmic bin size, from the image centroid, the surface-brightness peak, or any user-given center, and provides surface-brightness profiles in any circular or elliptical sectors. It offers background map support to extract background profiles, can excise areas using SAO DS9-compatible (ascl:0003.002) region files to exclude point sources, provides fitting with a number of built-in models, including the popular beta model, double beta, cusp beta, power law, and projected broken power law, uses chi-squared or C statistic, and can fit on the surface-brightness or counts data. It has a command-line interface similar to HEASOFT’s XSPEC (ascl:9910.005) package, provides interactive help with a description of all the commands, and results can be saved in FITS, ROOT or TXT format.

  13. The Emerging Population of Pulsar Wind Nebulae in Hard X-rays

    NASA Astrophysics Data System (ADS)

    Mattana, F.; Götz, D.; Terrier, R.; Renaud, M.; Falanga, M.

    2009-05-01

    The hard X-ray synchrotron emission from Pulsar Wind Nebulae probes energetic particles, closely related to the pulsar injection power at the present time. INTEGRAL has disclosed the yet poorly known population of hard X-ray pulsar/PWN systems. We summarize the properties of the class, with emphasys on the first hard X-ray bow-shock (CTB 80 powered by PSR B1951+32), and highlight some prospects for the study of Pulsar Wind Nebulae with the Simbol-X mission.

  14. PSR J0357+3205: A FAST-MOVING PULSAR WITH A VERY UNUSUAL X-RAY TRAIL

    SciTech Connect

    De Luca, A.; Mignani, R. P.; Marelli, M.; Salvetti, D.; Sartore, N.; Caraveo, P. A.; Bignami, G. F.; Belfiore, A.; Saz Parkinson, P.

    2013-03-01

    The middle-aged PSR J0357+3205 is a nearby, radio-quiet, bright {gamma}-ray pulsar discovered by the Fermi mission. Our previous Chandra observation revealed a huge, very peculiar structure of diffuse X-ray emission originating at the pulsar position and extending for >9' on the plane of the sky. To better understand the nature of such a nebula, we have studied the proper motion of the parent pulsar. We performed relative astrometry on Chandra images of the field spanning a time baseline of 2.2 yr, unveiling a significant angular displacement of the pulsar counterpart, corresponding to a proper motion of 0.''165 {+-} 0.''030 yr{sup -1} at a position angle (P.A.) of 314 Degree-Sign {+-} 8 Degree-Sign . At a distance of {approx}500 pc, the space velocity of the pulsar would be of {approx}390 km s{sup -1} assuming no inclination with respect to the plane of the sky. The direction of the pulsar proper motion is aligned very well with the main axis of the X-ray nebula (P.A. = 315. Degree-Sign 5 {+-} 1. Degree-Sign 5), pointing to a physical, yet elusive, link between the nebula and the pulsar space velocity. No optical emission in the H{alpha} line is seen in a deep image collected at the Gemini telescope, which implies that the interstellar medium into which the pulsar is moving is fully ionized.

  15. Distance Estimation for Eclipsing X-ray Pulsars

    NASA Astrophysics Data System (ADS)

    Wilson, R. E.; Raichur, H.; Paul, B.

    Distance of an X-ray binary can be computed from a rigorous flux scaling law that connects model stellar atmosphere output with observed standard magnitudes of the optical star via either of two standard magnitude calibrations that agree within 4 percent. Accordingly the corresponding distance disagreement (due to the calibrations only) is only 2 percent, which is negligible compared to several other error sources. The flux-distance scaling is not the usual one for spherical stars but preserves directional (i.e. aspect) information, and therefore is not limited to well detached binaries. Bolometric corrections are not needed, so errors in their estimation are avoided. The procedure also models dependence of system brightness and spectroscopically observable temperature on orbital phase and inclination due to tides, irradiance, and eccentric orbits, although those effects cause only minor distance uncertainties for most X-ray binaries. Not taken into account, due to their largely stochastic nature, are radial velocity variations caused by dynamical tides. Expressions are given for derivatives ∂d/∂p, of distance with respect to various parameters. Some of the derivatives are entirely analytic while others are partly numerical. Upper and lower limits to the relative radius, r= R/a, of an X-ray binary's optical star can be measured, although actual rand inclination are otherwise uncertain. An application to the High Mass X-ray Binary Vela X-1/GP Vel, based on archival pulse arrival times and radial velocities, finds a distance of about 2.2 kiloparsecs and also finds distance uncertainties due to estimated magnitude, interstellar extinction, metallicity, orbit size, optical star size, surface temperature, and surface gravity.

  16. Magnetic properties of X-ray bright points. [in sun

    NASA Technical Reports Server (NTRS)

    Golub, L.; Krieger, A. S.; Harvey, J. W.; Vaiana, G. S.

    1977-01-01

    Using high-resolution Kitt Peak National Observatory magnetograms and sequences of simultaneous S-054 soft X-ray solar images, the properties of X-ray bright points (XBP) and ephemeral active regions (ER) are compared. All XBP appear on the magnetograms as bipolar features, except for very recently emerged or old and decayed XBP. The separation of the magnetic bipoles is found to increase with the age of the XBP, with an average emergence growth rate of 2.2 plus or minus 0.4 km per sec. The total magnetic flux in a typical XBP living about 8 hr is found to be about two times ten to the nineteenth power Mx. A proportionality is found between XBP lifetime and total magnetic flux, equivalent to about ten to the twentieth power Mx per day of lifetime.

  17. HIGH-RESOLUTION X-RAY SPECTROSCOPY OF THE BURSTING PULSAR GRO J1744-28

    SciTech Connect

    Degenaar, N.; Miller, J. M.; Harrison, F. A.; Kennea, J. A.; Kouveliotou, C.; Younes, G.

    2014-11-20

    The bursting pulsar GRO J1744-28 is a Galactic low-mass X-ray binary that distinguishes itself by displaying type-II X-ray bursts: brief, bright flashes of X-ray emission that likely arise from spasmodic accretion. Combined with its coherent 2.1 Hz X-ray pulsations and relatively high estimated magnetic field, it is a particularly interesting source to study the physics of accretion flows around neutron stars. Here we report on Chandra/High Energy Transmission Grating observations obtained near the peak of its bright 2014 accretion outburst. Spectral analysis suggests the presence of a broad iron emission line centered at E {sub l} ≅ 6.7 keV. Fits with a disk reflection model yield an inclination angle of i ≅ 52° and an inner disk radius of R {sub in} ≅ 85 GM/c {sup 2}, which is much further out than typically found for neutron star low-mass X-ray binaries. Assuming that the disk is truncated at the magnetospheric radius of the neutron star, we estimate a magnetic field strength of B ≅ (2-6) × 10{sup 10} G. Furthermore, we identify an absorption feature near ≅ 6.85 keV that could correspond to blue-shifted Fe XXV and point to a fast disk wind with an outflow velocity of v {sub out} ≅ (7.5-8.2) × 10{sup 3} km s{sup –1} (≅ 0.025c-0.027c). If the covering fraction and filling factor are large, this wind could be energetically important and perhaps account for the fact that the companion star lost significant mass while the magnetic field of the neutron star remained strong.

  18. High-resolution X-Ray Spectroscopy of the Bursting Pulsar GRO J1744-28

    NASA Astrophysics Data System (ADS)

    Degenaar, N.; Miller, J. M.; Harrison, F. A.; Kennea, J. A.; Kouveliotou, C.; Younes, G.

    2014-11-01

    The bursting pulsar GRO J1744-28 is a Galactic low-mass X-ray binary that distinguishes itself by displaying type-II X-ray bursts: brief, bright flashes of X-ray emission that likely arise from spasmodic accretion. Combined with its coherent 2.1 Hz X-ray pulsations and relatively high estimated magnetic field, it is a particularly interesting source to study the physics of accretion flows around neutron stars. Here we report on Chandra/High Energy Transmission Grating observations obtained near the peak of its bright 2014 accretion outburst. Spectral analysis suggests the presence of a broad iron emission line centered at E l ~= 6.7 keV. Fits with a disk reflection model yield an inclination angle of i ~= 52° and an inner disk radius of R in ~= 85 GM/c 2, which is much further out than typically found for neutron star low-mass X-ray binaries. Assuming that the disk is truncated at the magnetospheric radius of the neutron star, we estimate a magnetic field strength of B ~= (2-6) × 1010 G. Furthermore, we identify an absorption feature near ~= 6.85 keV that could correspond to blue-shifted Fe XXV and point to a fast disk wind with an outflow velocity of v out ~= (7.5-8.2) × 103 km s-1 (sime 0.025c-0.027c). If the covering fraction and filling factor are large, this wind could be energetically important and perhaps account for the fact that the companion star lost significant mass while the magnetic field of the neutron star remained strong.

  19. Stellar kinematics of X-ray bright massive elliptical galaxies

    NASA Astrophysics Data System (ADS)

    Lyskova, N.; Churazov, E.; Moiseev, A.; Sil'chenko, O.; Zhuravleva, I.

    2014-07-01

    We discuss a simple and fast method for estimating masses of early-type galaxies from optical data and compare the results with X-ray derived masses. The optical method relies only on the most basic observables such as the surface brightness I(R) and the line-of-sight velocity dispersion σp(R) profiles and provides an anisotropy-independent estimate of the galaxy circular speed Vc. The mass-anisotropy degeneracy is effectively overcome by evaluating Vc at a characteristic radius Rsweet defined from local properties of observed profiles. The sweet radius Rsweet is expected to lie close to R2, where I(R) ∝ R-2, and not far from the effective radius Reff. We apply the method to a sample of five X-ray bright elliptical galaxies observed with the 6 m telescope BTA-6 in Russia. We then compare the optical Vc estimate with the X-ray derived value, and discuss possible constraints on the non-thermal pressure in the hot gas and configuration of stellar orbits. We find that the average ratio of the optical Vc estimate to the X-ray one is equal to ≈0.98 with 11 per cent scatter, i.e. there is no evidence for the large non-thermal pressure contribution in the gas at ˜Rsweet. From analysis of the Lick indices Hβ, Mgb, Fe5270 and Fe5335, we calculate the mass of the stellar component within the sweet radius. We conclude that a typical dark matter fraction inside Rsweet in the sample galaxies is ˜60 per cent for the Salpeter initial mass function (IMF) and ˜75 per cent for the Kroupa IMF.

  20. Observations of the γ-ray pulsar J1932+1916 in X-rays

    NASA Astrophysics Data System (ADS)

    Karpova, A.; Shternin, P.; Zyuzin, D.; Danilenko, A.; Shibanov, Yu.

    2017-04-01

    We present the analysis of the archival Suzaku and Swift X-ray observations of the young γ-ray pulsar J1932+1916 field. The data revealed a point-like object at the γ-ray position of the pulsar and diffuse X-ray emission around it. Spectra of the point-like source and diffuse emission are well-described by absorbed power-law models with spectral parameters typical for pulsar plus pulsar wind nebula systems. Therefore, we suggest that Suzaku and Swift detected the X-ray counterpart of PSR J1932+1916. Assuming this interpretation, we constrain the distance to the pulsar in the range of 2-6 kpc. We also suggest possible association of the pulsar with the nearby supernova remnant G54.4-0.3 and discuss its implications for the pulsar proper motion, age and distance.

  1. THE RADIATIVE X-RAY AND GAMMA-RAY EFFICIENCIES OF ROTATION-POWERED PULSARS

    SciTech Connect

    Vink, Jacco; Bamba, Aya; Yamazaki, Ryo

    2011-02-01

    We present a statistical analysis of the X-ray luminosity of rotation-powered pulsars and their surrounding nebulae using the sample of Kargaltsev and Pavlov, and we complement this with an analysis of the {gamma}-ray emission of Fermi-detected pulsars. We report a strong trend in the efficiency with which spin-down power is converted to X-ray and {gamma}-ray emission with characteristic age: young pulsars and their surrounding nebulae are efficient X-ray emitters, whereas in contrast old pulsars are efficient {gamma}-ray emitters. We divided the X-ray sample in a young ({tau}{sub c} < 1.7 x 10{sup 4} yr) and old sample and used linear regression to search for correlations between the logarithm of the X-ray and {gamma}-ray luminosities and the logarithms of the periods and period derivatives. The X-ray emission from young pulsars and their nebulae are both consistent with L{sub X}{proportional_to} P-dot{sup 3}/P{sup 6}. For old pulsars and their nebulae the X-ray luminosity is consistent with a more or less constant efficiency {eta}{identical_to}L{sub X}/ E-dot{sub rot}{approx}8x10{sup -5}. For the {gamma}-ray luminosity we confirm that L{sub {gamma}} {proportional_to} {radical}E-dot{sub rot}. We discuss these findings in the context of pair production inside pulsar magnetospheres and the striped wind model. We suggest that the striped wind model may explain the similarity between the X-ray properties of the pulsar wind nebulae and the pulsars themselves, which according to the striped wind model may both find their origin outside the light cylinder, in the pulsar wind zone.

  2. THREE MILLISECOND PULSARS IN FERMI LAT UNASSOCIATED BRIGHT SOURCES

    SciTech Connect

    Ransom, S. M.; Ray, P. S.; Wolff, M. T.; Grove, J. E.; Camilo, F.; Roberts, M. S. E.; Celik, Oe.; DeCesar, M. E.; Ferrara, E. C.; Gehrels, N.; Cheung, C. C.; Abdo, A. A.; Kerr, M.; Pennucci, T.; Cognard, I.; Freire, P. C. C.; Desvignes, G.; Donato, D. E-mail: Paul.Ray@nrl.navy.mil

    2011-01-20

    We searched for radio pulsars in 25 of the non-variable, unassociated sources in the Fermi LAT Bright Source List with the Green Bank Telescope at 820 MHz. We report the discovery of three radio and {gamma}-ray millisecond pulsars (MSPs) from a high Galactic latitude subset of these sources. All of the pulsars are in binary systems, which would have made them virtually impossible to detect in blind {gamma}-ray pulsation searches. They seem to be relatively normal, nearby ({<=}2 kpc) MSPs. These observations, in combination with the Fermi detection of {gamma}-rays from other known radio MSPs, imply that most, if not all, radio MSPs are efficient {gamma}-ray producers. The {gamma}-ray spectra of the pulsars are power law in nature with exponential cutoffs at a few GeV, as has been found with most other pulsars. The MSPs have all been detected as X-ray point sources. Their soft X-ray luminosities of {approx}10{sup 30}-10{sup 31} erg s{sup -1} are typical of the rare radio MSPs seen in X-rays.

  3. Three Millisecond Pulsars in Fermi LAT Unassociated Bright Sources

    NASA Technical Reports Server (NTRS)

    Ransom, S. M.; Ray, P. S.; Camilo, F.; Roberts, M. S. E.; Celik, O.; Wolff, M. T.; Cheung, C. C.; Kerr, M.; Pennucci, T.; DeCesar, M. E.; Cognard, I.; Lyne, A. G.; Stappers, B. W.; Freire, P. C. C.; Grove, J. E.; Abdo, A. A.; Desvignes, G.; Donato, D.; Ferrara, E. C.; Gehrels, N.; Guillemot, L.; Gwon, C.; Johnston, S.; Harding, A. K.; Thompson, D. J.

    2010-01-01

    We searched for radio pulsars in 25 of the non-variable, unassociated sources in the Fermi LAT Bright Source List with the Green Bank Telescope at 820 MHz. We report the discovery of three radio and gamma-ray millisecond pulsar (MSPs) from a high Galactic latitude subset of these sources. All of the pulsars are in binary systems, which would have made them virtually impossible to detect in blind gamma-ray pulsation searches. They seem to be relatively normal, nearby (<= 2 kpc) MSPs. These observations, in combination with the Fermi detection of gamma-rays from other known radio MSPs, imply that most, if not all, radio MSPs are efficient gamma-ray producers. The gamma-ray spectra of the pulsars are power law in nature with exponential cutoffs at a few Ge V, as has been found with most other pulsars. The MSPs have all been detected as X-ray point sources. Their soft X-ray luminosities of approx 10(exp 30) - 10(exp 31) erg/s are typical of the rare radio MSPs seen in X-rays.

  4. Revisiting the Magnetic and Spin Evolution of Two Young X-ray Pulsars

    NASA Astrophysics Data System (ADS)

    Ferdman, Robert; Kaspi, Victoria M.; Archibald, Robert Frederic

    2014-08-01

    We present results from timing analysis of two young X-ray pulsars found in the large Magellanic Cloud: the Crab-like energetic pulsar PSR B0540-69 and the so-called "big glitcher", PSR J0537-6910. In both cases, we analyze data taken with the Rossi X-ray Timing Explorer. This work extends the published data sets for these pulsars by approximately doubling their respective data spans. We revisit the glitching activity of these neutron stars, particularly that of PSR J0537-6910, determine more precise glitch and spin parameters, and discuss the implications for the spin and magnetospheric evolution of these interesting pulsars.

  5. X-ray Pulsar in the Crab Nebula.

    PubMed

    Fritz, G; Henry, R C; Meekins, J F; Chubb, T A; Friedman, H

    1969-05-09

    X-ray pulsations have been observed in the Crab Nebula at a frequency closely matching the radio and optical pulsations. About 5 percent of the total x-ray power of the nebula appears in the pulsed component. The x-ray pulsations have the form of a main pulse and an interpulse separated by about 12 milliseconds.

  6. Chandra X-ray Observations of 12 Millisecond Pulsars in the Globular Cluster M28

    NASA Astrophysics Data System (ADS)

    Bogdanov, Slavko; van den Berg, Maureen; Servillat, Mathieu; Heinke, Craig O.; Grindlay, Jonathan E.; Stairs, Ingrid H.; Ransom, Scott M.; Freire, Paulo C. C.; Bégin, Steve; Becker, Werner

    2011-04-01

    We present a Chandra X-ray Observatory investigation of the millisecond pulsars in the globular cluster M28 (NGC 6626). In what is one of the deepest X-ray observations of a globular cluster, we firmly detect seven and possibly detect two of the 12 known M28 pulsars. With the exception of PSRs B1821-24 and J1824-2452H, the detected pulsars have relatively soft spectra, with X-ray luminosities 1030-1031 erg s-1 (0.3-8 keV), similar to most "recycled" pulsars in 47 Tucanae and the field of the Galaxy, implying thermal emission from the pulsar magnetic polar caps. We present the most detailed X-ray spectrum to date of the energetic PSR B1821-24. It is well described by a purely non-thermal spectrum with spectral photon index Γ = 1.23 and luminosity 1.4 × 1033Θ(D/5.5 kpc)2 erg s-1 (0.3-8 keV), where Θ is the fraction of the sky covered by the X-ray emission beam(s). We find no evidence for the previously reported line emission feature around 3.3 keV, most likely as a consequence of improvements in instrument calibration. The X-ray spectrum and pulse profile of PSR B1821-24 suggest that the bulk of unpulsed emission from this pulsar is not of thermal origin, and is likely due to low-level non-thermal magnetospheric radiation, an unresolved pulsar wind nebula, and/or small-angle scattering of the pulsed X-rays by interstellar dust grains. The peculiar binary PSR J1824-2452H shows a relatively hard X-ray spectrum and possible variability at the binary period, indicative of an intrabinary shock formed by interaction between the relativistic pulsar wind and matter from its non-degenerate companion star.

  7. Young rotation-powered pulsars as ultraluminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Medvedev, Aleksei S.; Poutanen, Juri

    2013-05-01

    The aim of this paper is to investigate a possible contribution of the rotation-powered pulsars and pulsar wind nebulae to the population of ultraluminous X-ray sources (ULXs). We first develop an analytical model for the evolution of the distribution function of pulsars over the spin period and find both the steady-state and the time-dependent solutions. Using the recent results on the X-ray efficiency dependence on pulsar characteristic age, we then compute the X-ray luminosity function (XLF) of rotation-powered pulsars. In a general case, it has a broken power-law shape with a high-luminosity cutoff, which depends on the distributions of the birth spin period and the magnetic field. Using the observed XLF of sources in the nearby galaxies and the condition that the pulsar XLF does not exceed that, we find the allowed region for the parameters describing the birth period distribution. We find that the mean pulsar period should be greater than 10-40 ms. These results are consistent with the constraints obtained from the X-ray luminosity of core-collapse supernovae. We estimate that the contribution of the rotation-powered pulsars to the ULX population is at a level exceeding 3 per cent. For a wide birth period distribution, this fraction grows with luminosity and above 1040 erg s-1 pulsars can dominate the ULX population.

  8. Toward an understanding of thermal X-ray emission of pulsars

    NASA Astrophysics Data System (ADS)

    Yu, M.; Xu, R. X.

    2011-01-01

    We present a theoretical model for the thermal X-ray emission properties and cooling behaviors of isolated pulsars, assuming that pulsars are solid quark stars. We calculate the heat capacity for such a quark star, including the component of the crystalline lattice and that of the extremely relativistic electron gas. The results show that the residual thermal energy cannot sustain the observed thermal X-ray luminosities seen in typical isolated X-ray pulsars. We conclude that other heating mechanisms must be in operation if the pulsars are in fact solid quark stars. Two possible heating mechanisms are explored. Firstly, for pulsars with little magnetospheric activities, accretion from the interstellar medium or from the material in the associated supernova remnants may power the observed thermal emission. In the propeller regime, a disk-accretion rate M˙˜1% of the Eddington rate with an accretion onto the stellar surface at a rate of ˜0.1%M˙ could explain the observed emission luminosities of the dim isolated neutron stars and the central compact objects. Secondly, for pulsars with significant magnetospheric activities, the pulsar spindown luminosities may have been as the sources of the thermal energy via reversing plasma current flows. A phenomenological study between pulsar bolometric X-ray luminosities and the spin energy loss rates presents the probable existence of a 1/2-law or a linear law, i.e. Lbol∞∝E˙ or Lbol∞∝E˙. This result together with the thermal properties of solid quark stars allow us to calculate the thermal evolution of such stars. Thermal evolution curves, or cooling curves, are calculated and compared with the 'temperature-age' data obtained from 17 active X-ray pulsars. It is shown that the bolometric X-ray observations of these sources are consistent with the solid quark star pulsar model.

  9. Analysis and design of grazing incidence x-ray optics for pulsar navigation

    NASA Astrophysics Data System (ADS)

    Zuo, Fuchang; Chen, Jianwu; Li, Liansheng; Mei, Zhiwu

    2013-10-01

    As a promising new technology for deep space exploration due to autonomous capability, pulsar navigation has attracted extensive attentions from academy and engineering domains. The pulsar navigation accuracy is determined by the measurement accuracy of Time of Arrival (TOA) of X-ray photon, which can be enhanced through design of appropriate optics. The energy band of X-ray suitable for pulsar navigation is 0.1-10keV, the effective focusing of which can be primely and effectively realized by the grazing incidence reflective optics. The Wolter-I optics, originally proposed based on a paraboloid mirror and a hyperboloid mirror for X-ray imaging, has long been widely developed and employed in X-ray observatory. Some differences, however, remain in the requirements on optics between astronomical X-ray observation and pulsar navigation. X-ray concentrator, the simplified Wolter-I optics, providing single reflection by a paraboloid mirror, is more suitable for pulsar navigation. In this paper, therefore, the requirements on aperture, effective area and focal length of the grazing incidence reflective optics were firstly analyzed based on the characteristics, such as high time resolution, large effective area and low angular resolution, of the pulsar navigation. Furthermore, the preliminary design of optical system and overall structure, as well as the diaphragm, was implemented for the X-ray concentrator. Through optical and FEA simulation, system engineering analysis on the X-ray concentrator was finally performed to analyze the effects of environmental factors on the performance, providing basis and guidance for fabrication of the X-ray concentrator grazing incidence optics.

  10. Detection of X-Ray Emission from the Very Old Pulsar J0108-1431

    NASA Astrophysics Data System (ADS)

    Pavlov, G. G.; Kargaltsev, O.; Wong, J. A.; Garmire, G. P.

    2009-01-01

    PSR J0108-1431 is a nearby, 170 Myr old, very faint radio pulsar near the "pulsar death line" in the P-\\dot{P} diagram. We observed the pulsar field with the Chandra X-ray Observatory and detected a point source (53 counts in a 30 ks exposure; energy flux (9 ± 2) × 10-15 erg cm-2 s-1 in the 0.3-8 keV band) close to the radio pulsar position. Based on the large X-ray/optical flux ratio at the X-ray source position, we conclude that the source is the X-ray counterpart of PSR J0108-1431. The pulsar spectrum can be described by a power-law model with photon index Γ ≈ 2.2 and luminosity L 0.3-8 keV ≈ 2 × 1028 d 2 130 erg s-1, or by a blackbody model with temperature kT ≈ 0.28 keV and bolometric luminosity L bol ≈ 1.3 × 1028 d 2 130 erg s-1, for a plausible hydrogen column density N H = 7.3 × 1019 cm-2 (d 130 = d/130 pc). The pulsar converts ~0.4% of its spin-down power into X-ray luminosity, i.e., its X-ray efficiency is higher than for most younger pulsars. From the comparison of the X-ray position with the previously measured radio positions, we estimated the pulsar proper motion of 0.2 arcsec yr-1 (V bottom ≈ 130d 130 km s-1), in the south-southeast direction.

  11. A Study of the X-Ray Emission from Three Radio Pulsars

    NASA Technical Reports Server (NTRS)

    Slane, Patrick O. (Principal Investigator)

    1996-01-01

    The subject grant is for work on a study of x-ray emission from isolated pulsars. The purpose of the study was to: determine whether the pulsars were x-ray sources; and, if so, search for evidence of pulsations at the known radio period; and study the nature of the x-ray emission. Observation of the pulsar PSR 0355+54 were obtained, and the analysis of these data is complete. These results were reported at the 183rd AAS Meeting, and in a paper entitled 'X-Ray Emission from PSR 0355+54' which as published in the The Astrophysical Journal. Also obtained an approx. 3 ks PSPC observations of PSR 1642-03. A summary of the results from these data were reported in a Conference Proceedings for the 'New Horizon of X-ray Astronomy' symposium. In addition, as part of a study with a student from the SAO Summer Intern Program, I incorporated ROSAT archival data in an extended study of pulsar emission. These results were reported at the 185th AAS Meeting, and in a paper entitled 'Soft X-ray Emission from Selected Isolated Pulsars' which was published in The Astrophysical Journal (Letters).

  12. High energy X-ray observations of the 38-second pulsar

    NASA Technical Reports Server (NTRS)

    Byrne, P. F.; Levine, A. M.; Bautz, M.; Howe, S. K.; Lang, F. L.; Primini, F. A.; Lewin, W. H. G.; Gruber, D. E.; Knight, F. K.; Nolan, P. L.

    1981-01-01

    The results of observations of the 38-second pulsar obtained at high X-ray energies (13-180 keV) with the UCSD/MIT instrument aboard HEAO 1 are reported. The results include a measurement of the source location, measurement of the pulse profile, and determination of the average intensity and spectrum during each of three time intervals spanning a baseline of 1 year. The total intensity of the pulsar is seen to vary on a 6-month time scale. The spectrum is hard but, like other X-ray pulsars, steepens at energies above 20 keV.

  13. X-ray studies of the black widow pulsar PSR B1957+20

    NASA Astrophysics Data System (ADS)

    Huang, R. H. H.; Kong, A. K. H.; Takata, J.; Hui, C. Y.; Lin, L. C. C.; Cheng, K. S.

    2013-03-01

    We report on Chandra observations of the black widow pulsar, PSR B1957+20. Evidence for a binary-phase dependence of the X-ray emission from the pulsar is found with a deep observation. The binary-phase resolved spectral analysis reveals non-thermal X-ray emission of PSR B1957+20, confirming the results of previous studies. This suggests that the X-rays are mostly due to intra-binary shock emission which is strongest when the pulsar wind interacts with the ablated material from the companion star. The geometry of the peak emission is determined in our study. The marginal softening of the spectrum of the non-thermal X-ray tail may indicate that particles injected at the termination shock is dominated by synchrotron cooling.

  14. X-Ray Studies of the Black Widow Pulsar PSR B1957+20

    NASA Astrophysics Data System (ADS)

    Huang, R. H. H.; Kong, A. K. H.; Takata, J.; Hui, C. Y.; Lin, L. C. C.; Cheng, K. S.

    2012-11-01

    We report on Chandra observations of the black widow pulsar, PSR B1957+20. Evidence for a binary-phase dependence of the X-ray emission from the pulsar is found with a deep observation. The binary-phase-resolved spectral analysis reveals non-thermal X-ray emission of PSR B1957+20, confirming the results of previous studies. This suggests that the X-rays are mostly due to intra-binary shock emission, which is strongest when the pulsar wind interacts with the ablated material from the companion star. The geometry of the peak emission is determined in our study. The marginal softening of the spectrum of the non-thermal X-ray tail may indicate that particles injected at the termination shock are dominated by synchrotron cooling.

  15. X-RAY STUDIES OF THE BLACK WIDOW PULSAR PSR B1957+20

    SciTech Connect

    Huang, R. H. H.; Kong, A. K. H.; Takata, J.; Cheng, K. S.; Hui, C. Y.; Lin, L. C. C.

    2012-11-20

    We report on Chandra observations of the black widow pulsar, PSR B1957+20. Evidence for a binary-phase dependence of the X-ray emission from the pulsar is found with a deep observation. The binary-phase-resolved spectral analysis reveals non-thermal X-ray emission of PSR B1957+20, confirming the results of previous studies. This suggests that the X-rays are mostly due to intra-binary shock emission, which is strongest when the pulsar wind interacts with the ablated material from the companion star. The geometry of the peak emission is determined in our study. The marginal softening of the spectrum of the non-thermal X-ray tail may indicate that particles injected at the termination shock are dominated by synchrotron cooling.

  16. THERMAL X-RAY EMISSION FROM THE SHOCKED STELLAR WIND OF PULSAR GAMMA-RAY BINARIES

    SciTech Connect

    Zabalza, V.; Paredes, J. M.; Bosch-Ramon, V.

    2011-12-10

    Gamma-ray-loud X-ray binaries are binary systems that show non-thermal broadband emission from radio to gamma rays. If the system comprises a massive star and a young non-accreting pulsar, their winds will collide producing broadband non-thermal emission, most likely originated in the shocked pulsar wind. Thermal X-ray emission is expected from the shocked stellar wind, but until now it has neither been detected nor studied in the context of gamma-ray binaries. We present a semi-analytic model of the thermal X-ray emission from the shocked stellar wind in pulsar gamma-ray binaries, and find that the thermal X-ray emission increases monotonically with the pulsar spin-down luminosity, reaching luminosities of the order of 10{sup 33} erg s{sup -1}. The lack of thermal features in the X-ray spectrum of gamma-ray binaries can then be used to constrain the properties of the pulsar and stellar winds. By fitting the observed X-ray spectra of gamma-ray binaries with a source model composed of an absorbed non-thermal power law and the computed thermal X-ray emission, we are able to derive upper limits on the spin-down luminosity of the putative pulsar. We applied this method to LS 5039, the only gamma-ray binary with a radial, powerful wind, and obtain an upper limit on the pulsar spin-down luminosity of {approx}6 Multiplication-Sign 10{sup 36} erg s{sup -1}. Given the energetic constraints from its high-energy gamma-ray emission, a non-thermal to spin-down luminosity ratio very close to unity may be required.

  17. Detection of cyclotron resonance scattering feature in high-mass X-ray binary pulsar SMC X-2

    NASA Astrophysics Data System (ADS)

    Jaisawal, Gaurava K.; Naik, Sachindra

    2016-09-01

    We report broad-band spectral properties of the high-mass X-ray binary pulsar SMC X-2 by using three simultaneous Nuclear Spectroscopy Telescope Array and Swift/XRT observations during its 2015 outburst. The pulsar was significantly bright, reaching a luminosity up to as high as ˜5.5 × 1038 erg s-1 in 1-70 keV range. Spin period of the pulsar was estimated to be 2.37 s. Pulse profiles were found to be strongly luminosity dependent. The 1-70 keV energy spectrum of the pulsar was well described with three different continuum models such as (i) negative and positive power law with exponential cutoff, (ii) Fermi-Dirac cutoff power law and (iii) cutoff power-law models. Apart from the presence of an iron line at ˜6.4 keV, a model independent absorption like feature at ˜27 keV was detected in the pulsar spectrum. This feature was identified as a cyclotron absorption line and detected for the first time in this pulsar. Corresponding magnetic field of the neutron star was estimated to be ˜2.3 × 1012 G. The cyclotron line energy showed a marginal negative dependence on the luminosity. The cyclotron line parameters were found to be variable with pulse phase and interpreted as due to the effect of emission geometry or complicated structure of the pulsar magnetic field.

  18. Spectral variability in the X-ray pulsar GX 1+4

    NASA Technical Reports Server (NTRS)

    Becker, R. H.; Boldt, E. A.; Holt, S. S.; Pravdo, S. H.; Rothschild, R. E.; Serlemitsos, P. J.; Swank, J. H.

    1976-01-01

    Observations of the galactic center region, hard X-ray source GX 1+4 by the GSFC X-ray spectroscopy experiment on OSO-8 confirm that GX 1+4 is a slow X-ray pulsar. The amount of absorption by cold matter in the spectrum of GX 1+4 varies significantly within a 24 hour period, behavior typical of many X-ray binary systems. The light curve for the pulsations from GX 1+4 appears to be energy dependent.

  19. The effect of vacuum birefringence on the polarization of X-ray binaries and pulsars

    NASA Technical Reports Server (NTRS)

    Novick, R.; Weisskopf, M. C.; Angel, J. R. P.; Sutherland, P. G.

    1977-01-01

    In a strong magnetic field the vacuum becomes birefringent. This effect is especially important for pulsars at X-ray wavelengths. Any polarized X-ray emission from the surface of a magnetic neutron star becomes depolarized as it propagates through the magnetic field. The soft X-ray emission from AM Her, believed to be a magnetic white dwarf, may show about one radian of phase retardation. In this case, circular polarization of the X-ray flux would be a characteristic signature of vacuum birefringence.

  20. Disentangling X-Ray Emission Processes in Vela-Like Pulsars

    NASA Technical Reports Server (NTRS)

    Gaensler, Bryan; Mushotzky, Richard (Technical Monitor)

    2003-01-01

    We present a deep observation with the X-Ray Multimirror Mission of PSR B1823-13, a young pulsar with similar properties to the Vela pulsar. We detect two components to the X-ray emission associated with PSR B1823-13: an elongated core of extent 30 min immediately surrounding the pulsar embedded in a fainter, diffuse component of emission 5 sec in extent, seen only on the southern side of the pulsar. The pulsar itself is not detected, either as a point source or through its pulsations. Both components of the X-ray emission are well fitted by a power-law spectrum, with photon index Gamma approx. 1.6 and X-ray luminosity (0.5-10 keV) L(sub X) approx. 9 x 10(exp 32) ergs/s for the core and Gamma approx. 2.3 and L(sub X) approx. 3 x 10(exp 33) ergs/s for the diffuse emission, for a distance of 4 kpc. We interpret both components of emission as corresponding to a pulsar wind nebula, which we designate G18.0-0.7. We argue that the core region represents the wind termination shock of this nebula, while the diffuse component indicates the shocked downstream wind. We propose that the asymmetric morphology of the diffuse emission with respect to the pulsar is the result of a reverse shock from an associated supernova remnant, which has compressed and distorted the pulsar-powered nebula. Such an interaction might be typical for pulsars at this stage in their evolution. The associated supernova remnant is not detected directly, most likely being too faint to be seen in existing X-ray and radio observations.

  1. High Brightness, Laser-Driven X-ray Source for Nanoscale Metrology and Femtosecond Dynamics

    SciTech Connect

    Siders, C W; Crane, J K; Semenov, V; Betts, S; Kozioziemski, B; Wharton, K; Wilks, S; Barbee, T; Stuart, B; Kim, D E; An, J; Barty, C

    2007-02-26

    This project developed and demonstrated a new, bright, ultrafast x-ray source based upon laser-driven K-alpha generation, which can produce an x-ray flux 10 to 100 times greater than current microfocus x-ray tubes. The short-pulse (sub-picosecond) duration of this x-ray source also makes it ideal for observing time-resolved dynamics of atomic motion in solids and thin films.

  2. X-ray jets from B2224+65: A Middle-aged Pulsar's New Trick

    NASA Astrophysics Data System (ADS)

    Wang, Q. Daniel; Johnson, Seth

    2015-01-01

    Pulsars, though typically not aged ones, are believed to be an important source of energetic cosmic rays. Therefore, it may not be too surprising to detect an X-ray jet associated with the middle-aged radio/X-ray pulsar B2224+65, which is well known for its very high proper motion and its trailing ``Guitar Nebula''. Most unexpected, however, is that this jet is offset from its proper motion direction by 118 degree. Furthermore, an X-ray counter jet and a faint X-ray trail associated with the ``Guitar Nebula'' are now identified in the combined data set of three epoch Chandra observations with a total exposure of 200 ks. We are carrying out a detailed measurements of the X-ray spectral variation with time and across the jets and are critically testing scenarios proposed to explain this enigmatic phenomenon. The study should have strong implications for understanding the origin of cosmic rays, as well as similar linear nonthermal X-ray-emitting features that are associated with more distant pulsars, especially pulsar wind nebula candidates in the central 100 pc region of the Galaxy.

  3. X-rays from radio pulsars - The detection of PSR 1055-52

    NASA Technical Reports Server (NTRS)

    Cheng, A. F.; Helfand, D. J.

    1983-01-01

    The short-period pulsar PSR 1055-52 has been detected as a soft X-ray source in the course of an Einstein Observatory survey of radio pulsars. Its X-ray to radio luminosity ratio is about 10,000, although the X-rays are not modulated at the neutron star's rotation frequency. High spatial resolution observations suggest that a significant fraction of the emission comes from an extended region surrounding the pulsar. Several possible scenarios for the origin of both point and extended X-ray emission from isolated neutron stars are investigated: radiation from the hot stellar surface, from hot polar caps, and from an optically thick atmosphere, as well as from a circumstellar nebula emitting thermal bremsstrahlung or synchrotron radiation. It is concluded that the spatial, spectral, and temporal characteristics of this source are most consistent with a model in which relativistic particles generated by the pulsar are radiating synchrotron X-rays in the surrounding magnetic field; i.e., that PSR 1055 is embedded in a mini-Crab nebula. Observational tests of this hypothesis are suggested, and the implications of this result for pulsar evolution are briefly discussed.

  4. Simultaneous X-ray and radio observations of the radio-mode-switching pulsar PSR B1822-09

    NASA Astrophysics Data System (ADS)

    Hermsen, W.; Kuiper, L.; Hessels, J. W. T.; Mitra, D.; Rankin, J. M.; Stappers, B. W.; Wright, G. A. E.; Basu, R.; Szary, A.; van Leeuwen, J.

    2017-04-01

    We report on simultaneous X-ray and radio observations of the radio-mode-switching pulsar PSR B1822-09 with ESA's XMM-Newton and the Westerbork Synthesis Radio Telescope, Giant Metrewave Radio Telescope and Lovell radio telescopes. PSR B1822-09 switches between a radio-bright and radio-quiet mode, and we discovered a relationship between the durations of its modes and a known underlying radio-modulation time-scale within the modes. We discovered X-ray (energies 0.2-1.4 keV) pulsations with a broad sinusoidal pulse, slightly lagging the radio main pulse in phase by 0.094 ± 0.017, with an energy-dependent pulsed fraction varying from ∼0.15 at 0.3 keV to ∼0.6 at 1 keV. No evidence is found for simultaneous X-ray and radio mode switching. The total X-ray spectrum consists of a cool component (T ∼0.96 × 106 K, hotspot radius R ∼2.0 km) and a hot component (T ∼2.2 × 106 K, R ∼100 m). The hot component can be ascribed to the pulsed emission and the cool component to the unpulsed emission. The high-energy characteristics of PSR B1822-09 resemble those of middle-aged pulsars such as PSR B0656+14, PSR B1055-52 and Geminga, including an indication for pulsed high-energy gamma-ray emission in Fermi Large Area Telescope data. Explanations for the high pulsed fraction seem to require different temperatures at the two poles of this orthogonal rotator, or magnetic anisotropic beaming effects in its strong magnetic field. In our X-ray skymap, we found a harder source at only 5.1 ± 0.5 arcsec from PSR B1822-09, which might be a pulsar wind nebula.

  5. Soft x-ray properties of the binary millisecond pulsar J0437-4715

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Martin, Christopher; Marshall, Herman L.

    1995-01-01

    We obtained a light curve for the 5.75 ms pulsar J0437-4715 in the 65-120 A range with 0.5 ms time resolution using the Deep Survey instrument on the EUVE satellite. The single-peaked profile has a pulsed fraction of 0. 27 +/- 0.05, similar to the ROSAT data in the overlapping energy band. A combined analysis of the EUVE and ROSAT data is consistent with a power-law spectrum of energy index alpha = 1.2-1.5, intervening column density NH = (5-8) x 10(exp 19)/sq cm, and luminosity 5.0 x 10(exp 30) ergs/s in the 0.1-2. 4 keV band. We also use a bright EUVE/ROSAT source only 4.3 deg from the pulsar, the Seyfert galaxy RX J0437.4-4711 (= EUVE J0437-471 = lES 0435-472), to obtain an independent upper limit on the intervening absorption to the pulsar, NH less than 1.2 x 10(exp 20)/sq cm. Although a blackbody spectrum fails to fit the ROSAT data, two-component spectral fits to the combined EUVE/ROSAT data are used to limit the temperatures and surface areas of thermal emission that might make partial contributions to the flux. A hot polar cap of radius 50-600 m and temperature (1.0-3.3) x 10(exp 6) K could be present. Alternatively, a larger region with T = (4-12) x 10(exp 5) K and area less than 200 sq km, might contribute most of the EUVE and soft X-ray flux, but only if a hotter component were present as well. Any of these temperatures would require some mechanism(s) of surface reheating to be operating in this old pulsar, the most plausible being the impact of accelerated electrons and positrons onto the polar caps. The kinematically corrected spin-down power of PSR J0437-4715 is only 4 x 10(exp 33) ergs/s, which is an order of magnitude less than that of the lowest-luminosity gamma-ray pulsars Geminga and PSR B1055-52. The absence of high-energy gamma-rays from PSR J0437-4715 might signify an inefficient or dead outer gap accelerator, which in turn accounts for the lack of a more luminous reheated surface such as those intermediate-age gamma-ray pulsars may have.

  6. Soft X-Ray Properties of the Binary Millisecond Pulsar J0437-4715

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Martin, Christopher; Marshall, Herman, L.; Oliversen, Ronald (Technical Monitor)

    2001-01-01

    We obtained a light curve for the 5.75 ms pulsar J0437-4715 in the 65-120 A range with 0.5 ms time resolution using the Deep Survey instrument on the EUVE satellite. The single-peaked profile has a pulsed fraction of 0.27 +/- 0.05, similar to the ROSAT data in the overlapping energy band. A combined analysis of the EUVE and ROSAT data is consistent with a power-law spectrum of energy index alpha = 1.2 - 1.5, intervening column density N(sub H) = (5 - 8) x 10(exp 19)/sq cm, and luminosity 5.0 x 10(exp 30) ergs/s in the 0.1 - 2.4 keV band. We also use a bright EUVE/ROSAT source only 4.2 min. from the pulsar, the Seyfert galaxy RX J0437.4-4711 (= EUVE J0437-471 = IES 0435-472), to obtain an independent upper limit on the intervening absorption to the pulsar, N(sub H) less than 1.2 x 10(exp 20)/sq cm. Although a blackbody spectrum fails to fit the ROSAT data, two-component spectral fits to the combined EUVE/ROSAT data are used to limit the temperatures and surface areas of thermal emission that might make partial contributions to the flux. A hot polar cap of radius 50 - 600 m and temperature (1.0 - 3.3) x 10(exp 6) K could be present. Alternatively, a larger region with T = (4 - 12) x 10(exp 5) K and area less than 200 sq km, might contribute most of the EUVE and soft X-ray flux, but only if a hotter component were present as well. Any of these temperatures would require some mechanism(s) of surface reheating to be operating in this old pulsar, the most plausible being the impact of accelerated electrons and positrons onto the polar caps. The kinematically corrected spin-down power of PSR J0437-4715 is only 4 x 10(exp 33) ergs/s, which is an order of magnitude less than that of the lowest-luminosity gamma-ray pulsars Geminga and PSR B1055-52. The absence of high-energy gamma-rays from PSR J0437-4715 might signify an inefficient or dead outer gap accelerator, which in turn accounts for the lack of a more luminous reheated surface such as those intermediate-age gamma

  7. LONG-TERM X-RAY MONITORING OF THE YOUNG PULSAR PSR B1509-58

    SciTech Connect

    Livingstone, Margaret A.; Kaspi, Victoria M.

    2011-11-20

    It has long been thought that the pulsed X-ray properties of rotation-powered pulsars are stable on long timescales. However, long-term, systematic studies of individual sources have been lacking. Furthermore, dramatic X-ray variability has now been observed from two pulsars having inferred sub-critical dipole magnetic fields. Here we present an analysis of the long-term pulsed X-ray properties of the young, energetic pulsar PSR B1509-58 using data from the Rossi X-ray Timing Explorer. We measured the 2-50 keV pulsed flux for 14.7 yr of X-ray observations and found that it is consistent with being constant on all relevant timescales, and place a 3{sigma} upper limit on day-to-week variability of <28%. In addition, we searched for magnetar-like X-ray bursts in all observations and found none, which we use to constrain the measurable burst rate to less than one per 750 ks of observations. We also searched for variability in the pulse profile and found that it is consistent with being stable on timescales of days to decades. This supports the hypothesis that X-ray properties of rotation-powered X-ray pulsars can be stable on decade-long timescales. In addition, we extend the existing timing solution by 7.1 yr to a total of 28.4 yr and report updated values of the braking index, n = 2.832 {+-} 0.003, and the second braking index, m = 17.6 {+-} 1.9.

  8. Towards Practical Deep-Space Navigation using X-ray Pulsar Timing

    NASA Astrophysics Data System (ADS)

    Shemar, Setnam; Fraser, George; Heil, Lucy; Hindley, David; Martindale, Adrian; Molyneux, Philippa; Pye, John P.; Warwick, Robert; Lamb, Andrew

    2015-08-01

    We describe a recent study, conducted by the National Physical Laboratory and the University of Leicester for the European Space Agency, on the feasibility of using X-ray timing observations of pulsars for deep space navigation, a technique commonly referred to as ‘XNAV’. We have considered all primary aspects of the ‘system’, i.e. suitable pulsars and their sky distribution, available and future instrumentation, navigation methods and algorithms, and overall performance (e.g. position accuracy). We have used simulations to identify the best combinations of navigation method and X-ray pulsars with respect to predicted performance, taking account of current and future X-ray instrumentation. The XNAV technique would allow increased spacecraft autonomy, improved position accuracies and lower mission operating costs compared to the NASA and ESA Deep Space Networks (DSN). We have also used a high-level navigation algorithm together with real data (from the RXTE mission archive) for the Crab pulsar to demonstrate key elements of XNAV. X-ray instrumentation suitable for use as a spacecraft operational subsystem must be designed to use only modest spacecraft resources. We show that instrumentation designed for the Mercury Imaging X-ray Spectrometer, in production for the ESA/JAXA BepiColombo mission to Mercury, offers a roadmap for a practical XNAV system. We identify key areas for future study.

  9. CHANDRA X-RAY OBSERVATIONS OF 12 MILLISECOND PULSARS IN THE GLOBULAR CLUSTER M28

    SciTech Connect

    Bogdanov, Slavko; Van den Berg, Maureen; Servillat, Mathieu; Grindlay, Jonathan E.; Heinke, Craig O.; Stairs, Ingrid H.; Begin, Steve; Ransom, Scott M.; Freire, Paulo C. C.; Becker, Werner

    2011-04-01

    We present a Chandra X-ray Observatory investigation of the millisecond pulsars in the globular cluster M28 (NGC 6626). In what is one of the deepest X-ray observations of a globular cluster, we firmly detect seven and possibly detect two of the 12 known M28 pulsars. With the exception of PSRs B1821-24 and J1824-2452H, the detected pulsars have relatively soft spectra, with X-ray luminosities 10{sup 30}-10{sup 31} erg s{sup -1} (0.3-8 keV), similar to most 'recycled' pulsars in 47 Tucanae and the field of the Galaxy, implying thermal emission from the pulsar magnetic polar caps. We present the most detailed X-ray spectrum to date of the energetic PSR B1821-24. It is well described by a purely non-thermal spectrum with spectral photon index {Gamma} = 1.23 and luminosity 1.4 x 10{sup 33}{Theta}(D/5.5 kpc){sup 2} erg s{sup -1} (0.3-8 keV), where {Theta} is the fraction of the sky covered by the X-ray emission beam(s). We find no evidence for the previously reported line emission feature around 3.3 keV, most likely as a consequence of improvements in instrument calibration. The X-ray spectrum and pulse profile of PSR B1821-24 suggest that the bulk of unpulsed emission from this pulsar is not of thermal origin, and is likely due to low-level non-thermal magnetospheric radiation, an unresolved pulsar wind nebula, and/or small-angle scattering of the pulsed X-rays by interstellar dust grains. The peculiar binary PSR J1824-2452H shows a relatively hard X-ray spectrum and possible variability at the binary period, indicative of an intrabinary shock formed by interaction between the relativistic pulsar wind and matter from its non-degenerate companion star.

  10. Discovery of X-Ray Emission from the Crab Pulsar at Pulse Minimum

    NASA Technical Reports Server (NTRS)

    Tennant, Allyn F.; Becker, Werner; Juda, Michael X.; Elsner, Ronald F.; Kolodziejczak, Jeffery J.; Murray, Stephen S.; ODell, Stephen L.; Paerels, Frits; Swartz, Douglas A.; Shibazaki, Noriaki; Weisskopf, Martin C.; Rose, M. Franklin (Technical Monitor)

    1999-01-01

    The Chandra X-ray Observatory observed the Crab Nebula and Pulsar using the Low-Energy Transmission Grating (LETG) with the High-Resolution Camera (HRC). Time-resolved zeroth-order images reveal that the pulsar emits x rays at all pulse phases. Analysis of the flux at minimum -- most likely nonthermal in origin -- places an upper limit (T(sub infinity) < 2.1 MK) on the surface temperature of the underlying neutron star. In addition, analysis of the pulse profile appears to confirm the absolute timing of the Observatory to within about 0.2 ms.

  11. Discovery of X-Ray Emission from the Crab Pulsar at Pulse Minimum

    NASA Technical Reports Server (NTRS)

    Tennant, Allyn F.; Becker, Werner; Juda, Michael; Elsner, Ronald F.; Kolodziejczak, Jeffery J.; Murray, Stephen S.; ODell, Stephen L.; Paerels, Frits; Swartz, Douglas A.

    2001-01-01

    The Chandra X-Ray Observatory observed the Crab pulsar using the Low-Energy Transmission Grating with the High-Resolution Camera. Time-resolved zeroth-order images reveal that the pulsar emits X-rays at all pulse phases. Analysis of the flux at minimum - most likely non-thermal in origin - places an upper limit (T(sub infinity) < 2.1 MK) on the surface temperature of the underlying neutron star. In addition, analysis of the pulse profile establishes that the error in the Chandra-determined absolute time is quite small, -0.2 +/- 0.1 ms.

  12. X-RAY PULSATIONS FROM THE RADIO-QUIET GAMMA-RAY PULSAR IN CTA 1

    SciTech Connect

    Caraveo, P. A.; De Luca, A.; Marelli, M.; Bignami, G. F.; Ray, P. S.; Saz Parkinson, P. M.; Kanbach, G.

    2010-12-10

    Prompted by the Fermi-LAT discovery of a radio-quiet gamma-ray pulsar inside the CTA 1 supernova remnant, we obtained a 130 ks XMM-Newton observation to assess the timing behavior of this pulsar. Exploiting both the unprecedented photon harvest and the contemporary Fermi-LAT timing measurements, a 4.7{sigma} single-peak pulsation is detected, making PSR J0007+7303 the second example, after Geminga, of a radio-quiet gamma-ray pulsar also seen to pulsate in X-rays. Phase-resolved spectroscopy shows that the off-pulse portion of the light curve is dominated by a power-law, non-thermal spectrum, while the X-ray peak emission appears to be mainly of thermal origin, probably from a polar cap heated by magnetospheric return currents, pointing to a hot spot varying throughout the pulsar rotation.

  13. FORMATION OF MILLISECOND PULSARS FROM INTERMEDIATE- AND LOW-MASS X-RAY BINARIES

    SciTech Connect

    Shao Yong; Li Xiangdong

    2012-09-01

    We present a systematic study of the evolution of intermediate- and low-mass X-ray binaries consisting of an accreting neutron star of mass 1.0-1.8 M{sub Sun} and a donor star of mass 1.0-6.0 M{sub Sun }. In our calculations we take into account physical processes such as unstable disk accretion, radio ejection, bump-induced detachment, and outflow from the L{sub 2} point. Comparing the calculated results with the observations of binary radio pulsars, we report the following results. (1) The allowed parameter space for forming binary pulsars in the initial orbital period-donor mass plane increases with increasing neutron star mass. This may help explain why some millisecond pulsars with orbital periods longer than {approx}60 days seem to have less massive white dwarfs than expected. Alternatively, some of these wide binary pulsars may be formed through mass transfer driven by planet/brown-dwarf-involved common envelope evolution. (2) Some of the pulsars in compact binaries might have evolved from intermediate-mass X-ray binaries with anomalous magnetic braking. (3) The equilibrium spin periods of neutron stars in low-mass X-ray binaries are in general shorter than the observed spin periods of binary pulsars by more than one order of magnitude, suggesting that either the simple equilibrium spin model does not apply or there are other mechanisms/processes spinning down the neutron stars.

  14. Spectral and temporal properties of the X-ray pulsar SMC X-1 at hard X-rays

    NASA Technical Reports Server (NTRS)

    Kunz, M.; Gruber, D. E.; Kendziorra, E .; Kretschmar, P.; Maisack, M.; Mony, B.; Staubert, R.; Doebereiner, S.; Englhauser, J.; Pietsch, W.

    1993-01-01

    The binary X-ray pulsar SMC X- 1 has been observed at hard X-rays with the High Energy X-Ray Experiment (HEXE) on nine occasions between Nov. 1987 and March 1989. A thin thermal bremsstrahlung fit to the phase averaged spectrum yields a plasma temperature (14.4 +/- 1.3) keV and a luminosity above (1.1 +/- 0.1) x 10 exp 38 erg/s in the 20-80 keV band. Pulse period values have been established for three observations, confirming the remarkably stable spin-up trend of SMC X-1. In one of the three observations the pulse profile was seen to deviate from a dominant double pulsation, while at the same time the pulsed fraction was unusually large. For one observation we determined for the first time the pulsed fraction in narrow energy bands. It increases with photon energy from about 20 percent up to over 60 percent in the energy range from 20 to 80 keV.

  15. A Compact X-Ray Source in the Radio Pulsar-wind Nebula G141.2+5.0

    NASA Astrophysics Data System (ADS)

    Reynolds, Stephen P.; Borkowski, Kazimierz J.

    2016-01-01

    We report the results of a 50 ks Chandra observation of the recently discovered radio object G141.2+5.0, presumed to be a pulsar-wind nebula. We find a moderately bright unresolved X-ray source that we designate CXOU J033712.8 615302 coincident with the central peak radio emission. An absorbed power-law fit to the 241 counts describes the data well, with absorbing column {N}H=6.7(4.0,9.7)× {10}21 cm-2 and photon index {{Γ }}=1.8(1.4,2.2). For a distance of 4 kpc, the unabsorbed luminosity between 0.5 and 8 keV is {1.7}-0.3+0.4× {10}32 erg s-1 (90% confidence intervals). Both LX and Γ are quite typical of pulsars in PWNe. No extended emission is seen; we estimate a conservative 3σ upper limit to the surface brightness of any X-ray PWN near the point source to be 3× {10}-17 erg cm-2 s-1 arcsec-2 between 0.5 and 8 keV, assuming the same spectrum as the point source; for a nebula of diameter 13\\prime\\prime , the flux limit is 6% of the flux of the point source. The steep radio spectrum of the PWN (α ˜ -0.7), if continued to the X-ray without a break, predicts {L}{{X}} {{(nebula)}}˜ 1× {10}33 erg s-1, so additional spectral steepening between radio and X-rays is required, as is true of all known PWNe. The high Galactic latitude gives a z-distance of 350 pc above the Galactic plane, quite unusual for a Population I object.

  16. Denoising of X-ray pulsar observed profile in the undecimated wavelet domain

    NASA Astrophysics Data System (ADS)

    Xue, Meng-fan; Li, Xiao-ping; Fu, Ling-zhong; Liu, Xiu-ping; Sun, Hai-feng; Shen, Li-rong

    2016-01-01

    The low intensity of the X-ray pulsar signal and the strong X-ray background radiation lead to low signal-to-noise ratio (SNR) of the X-ray pulsar observed profile obtained through epoch folding, especially when the observation time is not long enough. This signifies the necessity of denoising of the observed profile. In this paper, the statistical characteristics of the X-ray pulsar signal are studied, and a signal-dependent noise model is established for the observed profile. Based on this, a profile noise reduction method by performing a local linear minimum mean square error filtering in the un-decimated wavelet domain is developed. The detail wavelet coefficients are rescaled by multiplying their amplitudes by a locally adaptive factor, which is the local variance ratio of the noiseless coefficients to the noisy ones. All the nonstationary statistics needed in the algorithm are calculated from the observed profile, without a priori information. The results of experim! ents, carried out on simulated data obtained by the ground-based simulation system and real data obtained by Rossi X-Ray Timing Explorer satellite, indicate that the proposed method is excellent in both noise suppression and preservation of peak sharpness, and it also clearly outperforms four widely accepted and used wavelet denoising methods, in terms of SNR, Pearson correlation coefficient and root mean square error.

  17. SEXTANT X-Ray Pulsar Navigation Demonstration: Flight System and Test Results

    NASA Technical Reports Server (NTRS)

    Winternitz, Luke M. B.; Mitchell, Jason W.; Hassouneh, Munther A.; Valdez, Jennifer E.; Price, Samuel R.; Semper, Sean R.; Yu, Wayne H.; Ray, Paul S.; Wood, Kent S.; Arzoumanian, Zaven; Gendreau, Keith C.

    2016-01-01

    The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a technology demonstration enhancement to the Neutron-star Interior Composition Explorer (NICER) mission. NICER is a NASA Explorer Mission of Opportunity that will be hosted on the International Space Station (ISS). SEXTANT will, for the first time, demonstrate real-time, on-board X-ray Pulsar Navigation (XNAV), a significant milestone in the quest to establish a GPS-like navigation capability available throughout our Solar System and beyond. This paper gives an overview of the SEXTANT system architecture and describes progress prior to environmental testing of the NICER flight instrument. It provides descriptions and development status of the SEXTANT flight software and ground system, as well as detailed description and results from the flight software functional and performance testing within the highfidelity Goddard Space Flight Center (GSFC) X-ray Navigation Laboratory Testbed (GXLT) software and hardware simulation environment. Hardware-in-the-loop simulation results are presented, using the engineering model of the NICER timing electronics and the GXLT pulsar simulator-the GXLT precisely controls NASA GSFC's unique Modulated X-ray Source to produce X-rays that make the NICER detector electronics appear as if they were aboard the ISS viewing a sequence of millisecond pulsars.

  18. SEXTANT X-Ray Pulsar Navigation Demonstration: Flight System and Test Results

    NASA Technical Reports Server (NTRS)

    Winternitz, Luke; Mitchell, Jason W.; Hassouneh, Munther A.; Valdez, Jennifer E.; Price, Samuel R.; Semper, Sean R.; Yu, Wayne H.; Ray, Paul S.; Wood, Kent S.; Arzoumanian, Zaven; Gendreau, Keith C.

    2016-01-01

    The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a technology demonstration enhancement to the Neutron-star Interior Composition Explorer (NICER) mission. NICER is a NASA Explorer Mission of Opportunity that will be hosted on the International Space Station (ISS). SEXTANT will, for the first time, demonstrate real-time, on-board X-ray Pulsar Navigation (XNAV), a significant milestone in the quest to establish a GPS-like navigation capability available throughout our Solar System and beyond. This paper gives an overview of the SEXTANT system architecture and describes progress prior to environmental testing of the NICER flight instrument. It provides descriptions and development status of the SEXTANT flight software and ground system, as well as detailed description and results from the flight software functional and performance testing within the high-fidelity Goddard Space Flight Center (GSFC) X-ray Navigation Laboratory Testbed (GXLT) software and hardware simulation environment. Hardware-in-the-loop simulation results are presented, using the engineering model of the NICER timing electronics and the GXLT pulsar simulator-the GXLT precisely controls NASA GSFC's unique Modulated X-ray Source to produce X-rays that make the NICER detector electronics appear as if they were aboard the ISS viewing a sequence of millisecond pulsars

  19. The pulsar B2224+65 and its jets: a two epoch X-ray analysis

    NASA Astrophysics Data System (ADS)

    Johnson, S. P.; Wang, Q. D.

    2010-10-01

    We present an X-ray morphological and spectroscopic study of the pulsar B2224+65 and its apparent jet-like X-ray features based on two epoch Chandra observations. The main X-ray feature, which shows a large directional offset from the ram-pressure confined pulsar wind nebula (Guitar nebula), is broader in apparent width and shows evidence for spectral hardening (at 95 per cent confidence) in the second epoch compared to the first. Furthermore, the sharp leading edge of the feature is found to have a proper motion consistent with that of the pulsar (~180 mas yr-1). The combined data set also provides evidence for the presence of a counter feature, albeit substantially fainter and shorter than the main one. Additional spectral trends along the major and minor axes of the feature are only marginally detected in the two epoch data, including softening counter to the direction of proper motion. Possible explanations for the X-ray features include diffuse energetic particles being confined by an organized ambient magnetic field as well as a simple ballistic jet interpretation; however, the former may have difficulty in explaining observed spectral trends between epochs and along the feature's major axis, whereas the latter may struggle to elucidate its linearity. Given the low counting statistics available in the two epoch observations, it remains difficult to determine a physical production scenario for these enigmatic X-ray emitting features with any certainty.

  20. Chandra Phase-Resolved X-Ray Spectroscopy of the Crab Pulsar

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; ODell, Stephen L.; Paerels, Frits; Elsner, Ronald F.; Becker, Werner E.; Tennant, Allyn F.; Swartz, Douglas A.

    2003-01-01

    We present here the first phase-resolved study of the X-ray spectral properties of the Crab Pulsar that covers all pulse phases. The superb angular resolution of the Chandra X-ray Observatory enables distinguishing the pulsar from the surrounding nebulosity, even at pulse minimum. Analysis of the pulse-averaged spectrum measures interstellar photoelectric absorption and scattering by dust grains in the direction of the Crab Nebula. Analysis of the spectrum as a function of pulse phase measures the low-energy X-ray spectral index even at pulse minimum - albeit with large statistical uncertainty. The data are used to set a new upper limit to any thermal component.

  1. Application of X-Ray Pulsar Navigation: A Characterization of the Earth Orbit Trade Space

    NASA Technical Reports Server (NTRS)

    Yu, Wayne

    2016-01-01

    The potential for pulsars as a navigation source has been studied since their discovery in 1967. X-ray pulsar navigation (XNAV) is a celestial navigation system that uses the consistent timing nature of x-ray photons from milli-second pulsars (MSP) to perform space navigation. By comparing the detected arrival of x-ray photons to a reference database of expected pulsar lightcurve timing models, one can infer a range and range rate measurement based on light time delay. Much of the challenge of XNAV comes from the faint signal, availability, and distant nature of pulsars. This is a study of potential pulsar XNAV measurements to measure extended Kalman filter (EKF) tracking performance with a wide trade space of bounded Earth orbits, using a simulation of existing x-ray detector space hardware. An example of an x-ray detector for XNAV is the NASA Station Explorer for X-ray Timing and Navigation (SEXTANT) mission, a technology demonstration of XNAV set to perform on the International Space Station (ISS) in late 2016early 2017. XNAV hardware implementation is driven by trajectory and environmental influences which add noise to the x-ray pulse signal. In a closed Earth orbit, the radiation environment can exponentially increase the signal noise from x-ray pulsar sources, decreasing the quality and frequency of measurements. The SEXTANT mission in particular improves on the signal to noise ratio by focusing an array of 56 x-ray silicon drift detectors at one pulsar target at a time. This reduces timing glitches and other timing noise contributions from ambient x-ray sources to within a 100 nanosecond resolution. This study also considers the SEXTANT scheduling challenges inherent in a single target observation. Finally, as the navigation sources are now relatively inertial targets, XNAV measurements are also subject to periods of occultation from various celestial bodies. This study focuses on the characterization of these drivers in closed Earth orbits and is not a

  2. Application of X-Ray Pulsar Navigation: A Characterization of the Earth Orbit Trade Space

    NASA Technical Reports Server (NTRS)

    Yu, Wayne Hong

    2016-01-01

    The potential for pulsars as a navigation source has been studied since their discovery in 1967. X-ray pulsar navigation (XNAV) is a celestial navigation system that uses the consistent timing nature of x-ray photons from millisecond pulsars (MSP) to perform space navigation. By comparing the detected arrival of x-ray photons to a reference database of expected pulsar light-curve timing models, one can infer a range and range rate measurement based on light time delay. Much of the challenge of XNAV comes from the faint signal, availability, and distant nature of pulsars. This is a study of potential pulsar XNAV measurements to measure extended Kalman filter (EKF) tracking performance with a wide trade space of bounded Earth orbits, using a simulation of existing x-ray detector space hardware. An example of an x-ray detector for XNAV is the NASA Station Explorer for X-ray Timing and Navigation (SEXTANT) mission, a technology demonstration of XNAV set to perform on the International Space Station (ISS) in late 2016early 2017. XNAV hardware implementation is driven by trajectory and environmental influences which add noise to the x-ray pulse signal. In a closed Earth orbit, the radiation environment can exponentially increase the signal noise from x-ray pulsar sources, decreasing the quality and frequency of measurements. The SEXTANT mission in particular improves on the signal to noise ratio by focusing an array of 56 x-ray silicon drift detectors at one pulsar target at a time. This reduces timing glitches and other timing noise contributions from ambient x-ray sources to within a 100 nanosecond resolution. This study also considers the SEXTANT scheduling challenges inherent in a single target observation. Finally, as the navigation sources are now relatively inertial targets, XNAV measurements are also subject to periods of occultation from various celestial bodies. This study focuses on the characterization of these drivers in closed Earth orbits and is not a

  3. The energy spectrum of anomalous X-ray pulsars and soft gamma-ray repeaters

    NASA Astrophysics Data System (ADS)

    Trümper, J. E.; Zezas, A.; Ertan, Ü.; Kylafis, N. D.

    2010-07-01

    Context. Anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs) exhibit characteristic X-ray luminosities (both soft and hard) of around 1035 erg s-1 and characteristic power-law, hard X-ray spectra extending to about 200 keV. Two AXPs also exhibit pulsed radio emission. Aims: Assuming that AXPs and SGRs accrete matter from a fallback disk, we attempt to explain both the soft and the hard X-ray emission as the result of the accretion process. We also attempt to explain their radio emission or the lack of it. Methods: We test the hypothesis that the power-law, hard X-ray spectra are produced in the accretion flow mainly by bulk-motion Comptonization of soft photons emitted at the neutron star surface. Fallback disk models invoke surface dipole magnetic fields of 1012 - 1013 G, which is what we assume here. Results: Unlike normal X-ray pulsars, for which the accretion rate is highly super-Eddington, the accretion rate is approximately Eddington in AXPs and SGRs and thus the bulk-motion Comptonization operates efficiently. As an illustrative example we reproduce both the hard and the soft X-ray spectra of AXP 4U 0142+61 well using the XSPEC package compTB. Conclusions: Our model seems to explain both the hard and the soft X-ray spectra of AXPs and SGRs, as well as their radio emission or the lack of it, in a natural way. It might also explain the short bursts observed in these sources. On the other hand, it cannot explain the giant X-ray outbursts observed in SGRs, which may result from the conversion of magnetic energy in local multipole fields.

  4. The dynamic X-ray nebula powered by the pulsar B1259-63

    SciTech Connect

    Kargaltsev, Oleg; Volkov, Igor; Hare, Jeremy; Pavlov, George G.; Durant, Martin

    2014-04-01

    We present observations of the eccentric γ-ray binary B1259-63/LS 2883 with the Chandra X-ray Observatory. The images reveal a variable, extended (about 4'', or ∼1000 times the binary orbit size) structure, which appears to be moving away from the binary with the velocity of 0.05 of the speed of light. The observed emission is interpreted as synchrotron radiation from relativistic particles supplied by the pulsar. However, the fast motion through the circumbinary medium would require the emitting cloud to be loaded with a large amount of baryonic matter. Alternatively, the extended emission can be interpreted as a variable extrabinary shock in the pulsar wind outflow launched near binary apastron. The resolved variable X-ray nebula provides an opportunity to probe pulsar winds and their interaction with stellar winds in a previously inaccessible way.

  5. Discovery of the Orbit of the X-ray pulsar OAO 1657-415

    NASA Technical Reports Server (NTRS)

    Chakrabarty, Deepto; Grunsfeld, John M.; Prince, Thomas A.; Bildsten, Lars; Finger, Mark H.; Wilson, Robert B.; Fishman, Gerald J.; Meegan, Charles A.; Paciesas, William S.

    1993-01-01

    Timing observations of the 38 s accreting X-ray pulsar OAO 1657-415 made with the BATSE large-area detectors on the Compton Gamma Ray Observatory have revealed a binary orbit with an X-ray eclipse by the stellar companion. From the pulsar mass function fx(M) = 11.7 +/- 0.2 solar masses and the measured eclipse half-angle theta(e) = 29.7 +/- 1.3 deg, we infer that the stellar companion is a supergiant of spectral class B0-B6. If the companion can be identified and its orbital velocity measured, the neutron star mass can be constrained. Both intrinsic spin-up and spin-down of the pulsar were measured during our observation.

  6. The X-ray surface brightness of Kepler's supernova remnant

    NASA Technical Reports Server (NTRS)

    White, R. L.; Long, K. S.

    1983-01-01

    The first X-ray images of Kepler's supernova remnant (SN Ophiuchi 1604) are presented, and consequences for SNR models are discussed. Observations made with the Einstein Observatory Imaging Proportional Counter and High Resolution Imager show the remnant to be circular, with a strong shell brighter in the north than in the south. A flux of 1.2 x 10 to the -10th ergs/sq cm per sec was measured in the 0.15-4.5 keV region, which corresponds to an X-ray luminosity of 1.0 x 10 to the 36th ergs/sec at a distance of 5 kpc and an interstellar medium density of 2.8 x 10 to the 21st/sq cm. The X-ray observations do not allow the determination of whether the SNR is in the adiabatic or free expansion phase, but in either case it is shown that the mean ISM density must be greater than about 0.1/cu cm. In addition, the density of the X-ray emitting gas must be high, and its electron temperature must be fairly low. The high ISM densities derived for Kepler's SNR and other SNRs thus suggest an atypical ISM, possibly influenced by mass lost from the pre-supernova star.

  7. A Chandra X-Ray Observation of the Binary Millisecond Pulsar PSR J1023+0038

    NASA Astrophysics Data System (ADS)

    Bogdanov, Slavko; Archibald, Anne M.; Hessels, Jason W. T.; Kaspi, Victoria M.; Lorimer, Duncan; McLaughlin, Maura A.; Ransom, Scott M.; Stairs, Ingrid H.

    2011-12-01

    We present a Chandra X-Ray Observatory ACIS-S variability, spectroscopy, and imaging study of the peculiar binary containing the millisecond pulsar J1023+0038. The X-ray emission from the system exhibits highly significant (12.5σ) large-amplitude (factor of two to three) orbital variability over the five consecutive orbits covered by the observation, with a pronounced decline in the flux at all energies at superior conjunction. This can be naturally explained by a partial geometric occultation by the secondary star of an X-ray-emitting intrabinary shock, produced by the interaction of outflows from the two stars. The depth and duration of the eclipse imply that the intrabinary shock is localized near or at the surface of the companion star and close to the inner Lagrangian point. The energetics of the shock favor a magnetically dominated pulsar wind that is focused into the orbital plane, requiring close alignment of the pulsar spin and orbital angular momentum axes. The X-ray spectrum consists of a dominant non-thermal component and at least one thermal component, likely originating from the heated pulsar polar caps, although a portion of this emission may be from an optically thin "corona." We find no evidence for extended emission due to a pulsar wind nebula or bow shock down to a limiting luminosity of L X <~ 3.6 × 1029 erg s-1 (0.3-8 keV), <~ 7 × 10-6 of the pulsar spin-down luminosity, for a distance of 1.3 kpc and an assumed power-law spectrum with photon index Γ = 1.5.

  8. The 1997 event in the Crab Pulsar in X-rays

    NASA Astrophysics Data System (ADS)

    Vivekanand, M.

    2016-02-01

    Context. In October 1997, radio pulses from the Crab Pulsar underwent abnormal delay. This was reported by two radio observatories, both of which explained this frequency dependent and time varying delay as being due to refractive effects of ionized shells in the Crab Nebula. Both groups also noted that, curiously and confusingly coincident with the frequency dependent delay, the Crab Pulsar also underwent an unusual slowing down, which they believed to be unrelated to the Crab Nebula and instead intrinsic to the Crab Pulsar, resulting in an additional delay that was frequency independent. However, it now appears that one of the groups attributes the frequency independent delay also to refractive effects. Aims: This work aims to verify whether at least a part of the frequency independent delay is indeed due to intrinsic slowing down of the Crab Pulsar. Methods: Timing analysis of the Crab Pulsar's October 1997 event has been done in X-rays, which are not delayed by the refractive and diffractive effects that affect radio waves; at X-rays only the intrinsic slowing down should contribute to any observed delay. Data mainly from the PCA instrument aboard the RXTE satellite have been used, along with a small amount of data from the PDS instrument aboard the BeppoSAX satellite. Results: Analysis of the X-ray data, using the very accurate reference timing model derived at radio frequencies, strongly supports the intrinsic slowing down hypothesis. Analysis using the reference timing model derived self-consistently from the limited X-ray data, which is less accurate, is not completely unambiguous regarding the above two hypotheses, but provides reasonable support for the intrinsic slowing down hypothesis. Conclusions: A significant fraction of the frequency independent delay during the October 1997 event is indeed due to intrinsic slowing down of the Crab Pulsar.

  9. SPECTRAL SURVEY OF X-RAY BRIGHT ACTIVE GALACTIC NUCLEI FROM THE ROSSI X-RAY TIMING EXPLORER

    SciTech Connect

    Rivers, Elizabeth; Markowitz, Alex; Rothschild, Richard

    2011-03-15

    Using long-term monitoring data from the Rossi X-ray Timing Explorer (RXTE), we have selected 23 active galactic nuclei (AGNs) with sufficient brightness and overall observation time to derive broadband X-ray spectra from 3 to {approx}>100 keV. Our sample includes mainly radio-quiet Seyferts, as well as seven radio-loud sources. Given the longevity of the RXTE mission, the greater part of our data is spread out over more than a decade, providing truly long-term average spectra and eliminating inconsistencies arising from variability. We present long-term average values of absorption, Fe line parameters, Compton reflection strengths, and photon indices, as well as fluxes and luminosities for the hard and very hard energy bands, 2-10 keV and 20-100 keV, respectively. We find tentative evidence for high-energy rollovers in three of our objects. We improve upon previous surveys of the very hard X-ray energy band in terms of accuracy and sensitivity, particularly with respect to confirming and quantifying the Compton reflection component. This survey is meant to provide a baseline for future analysis with respect to the long-term averages for these sources and to cement the legacy of RXTE, and especially its High Energy X-ray Timing Experiment, as a contributor to AGN spectral science.

  10. Discovery of radio pulsations from the X-ray pulsar in the supernova remnant G32. 4-1. 2

    SciTech Connect

    Manchester, R.N.; Tuohy, I.R.; D'Amico, N.

    1982-11-15

    A radio counterpart to the X-ray pulsar discovered by Seward and Harnden in the supernova remnant G320.4-1.2 (MSH 15--52) has been detected. The radio observations confirm the very large period derivative indicated by the X-ray data. This implies that the object is not a member of a binary system and hence is an isolated pulsar similar in some ways to the Crab pulsar. Association of the pulsar and the supernova remnant is supported by the observed pulsar dispersion measure.

  11. Coordinated observations of X-ray bright BL lacertae objects

    NASA Technical Reports Server (NTRS)

    Urry, C. M.

    1985-01-01

    Simultaneous multifrequency observations of the BL Lac object Mkn421 covering radio through X-ray wavelengths were performed. Composite multifrequency spectra of the central nonthermal component were obtained at the two epochs after subtracting the optical and infrared light of the underlying galaxy. Physical parameters of Mkn421 are discussed in terms of the synchrotron self-Compton model. Taking the spectral turnover between infrared and radio for synchrotrom self absorption, the radio emmision originates in a more extended region than the infrared to X-ray emission, the source size of which should be less than .01 milliarcseconds. Relativistic beaming is required if the angular size is smaller than a few times .001 milliarcseconds. A possible explanation of the spectral change during the two epochs is also discussed.

  12. Heating Before Eating: X-Ray Observations of Redback Millisecond Pulsar Systems in the Ablation State

    NASA Astrophysics Data System (ADS)

    Roberts, Mallory; McLaughlin, Maura; Ray, Paul S.; Ransom, Scott M.; Hessels, Jason

    2015-01-01

    Redbacks are eclipsing millisecond radio pulsars in close orbits around companions which are non-degenerate and nearly Roche-lobe filling. Several have been observed to transition between a state where the radio pulsar is visible and there is X-ray emission from a shock between the pulsar wind and the ablated material off of the companion, and a state where there appears to be an accretion disk and the radio pulsations are not visible. Here we present X-Ray studies of two recently discovered systems. A Chandra observation of PSR J1628-3205 over its entire 5 hour orbit with Chandra shows little evidence for X-Ray variability. An XMM-Newton observation of PSR J2129-0429 over its 15.2 hour orbit shows strong orbital variability with an intriguing two peaked light curve. We compare these systems' X-Ray properties to other redbacks and comment on the differences between their properities and those of black widows.

  13. Period Clustering of the Anomalous X-Ray Pulsars and Magnetic Field Decay in Magnetars.

    PubMed

    Colpi; Geppert; Page

    2000-01-20

    We confront theoretical models for the rotational, magnetic, and thermal evolution of an ultramagnetized neutron star, or magnetar, with available data on the anomalous X-ray pulsars (AXPs). We argue that, if the AXPs are interpreted as magnetars, their clustering of spin periods between 6 and 12 s (observed at present in this class of objects), their period derivatives, their thermal X-ray luminosities, and the association of two of them with young supernova remnants can only be understood globally if the magnetic field in magnetars decays significantly on a timescale of the order of 104 yr.

  14. X-ray observations of XSS J12270-4859 in a new low state: A transformation to a disk-free rotation-powered pulsar binary

    SciTech Connect

    Bogdanov, Slavko; Patruno, Alessandro; Archibald, Anne M.; Bassa, Cees; Hessels, Jason W. T.; Janssen, Gemma H.; Stappers, Ben W.

    2014-07-01

    We present XMM-Newton and Chandra observations of the low-mass X-ray binary XSS J12270-4859, which experienced a dramatic decline in optical/X-ray brightness at the end of 2012, indicative of the disappearance of its accretion disk. In this new state, the system exhibits previously absent orbital-phase-dependent, large-amplitude X-ray modulations with a decline in flux at superior conjunction. The X-ray emission remains predominantly non-thermal but with an order of magnitude lower mean luminosity and significantly harder spectrum relative to the previous high flux state. This phenomenology is identical to the behavior of the radio millisecond pulsar (MSP) binary PSR J1023+0038 in the absence of an accretion disk, where the X-ray emission is produced in an intra-binary shock driven by the pulsar wind. This further demonstrates that XSS J12270-4859 no longer has an accretion disk and has transformed to a full-fledged eclipsing 'redback' system that hosts an active rotation-powered MSP. There is no evidence for diffuse X-ray emission associated with the binary that may arise due to outflows or a wind nebula. An extended source situated 1.'5 from XSS J12270-4859 is unlikely to be associated, and is probably a previously uncataloged galaxy cluster.

  15. First X-ray Observations of the Young Pulsar J1357-6429

    NASA Technical Reports Server (NTRS)

    Zavlin, Vyacheslav E.

    2007-01-01

    The first short Chandra and XMM-Newton observations of the young and energetic pulsar J1357-6429 provided strong indications of a tail-like pulsar-wind nebula associated with this object, as well as strong pulsations of its X-ray flux with a pulsed fraction above 40% and a thermal component dominating at lower photon energies (below 2 keV). The elongated nebular is very compact in size. about 1" x 1.5" and might be interpreted as a pulsar jet. The thermal radiation is most plausibly emitted from the entire neutron star surface of an effective temperature about 1 MK covered with a magnetized hydrogen atmosphere At higher energies the pulsar's emission is of a nonthermal (magnetospheric) origin, with a power-law spectrum of a photon index Gamma approx. equals 1.1. This makes the X-ray properties of PSR J1357-6429 very similar to those of the youngest pulsars J1119-6127 and Vela with a detected thermal radiation.

  16. Dips in the pulse profiles of accretion powered X-ray pulsars

    NASA Astrophysics Data System (ADS)

    Devasia, Jincy; Paul, Biswajit; James, Marykutty; Indulekha, Kavila

    We will report detection of sharp dips in the pulse profiles of several persistent and transient accretion powered X-ray pulsars using RXTE observations.The pulse profiles of accretion pow-ered pulsars carry a lot of information regarding the radiative processes near the surface of the star, magnetic fields that channel the accretion flow etc. The dips in pulse profiles can be due to the interaction of accretion column with the emitting radiation as it passes through the line of sight. We have also investigated the energy dependence and phase width of these dips to get a better understanding of the nature of this feature.

  17. X-ray observations of the Vela pulsar: Statistics and spectrum

    NASA Technical Reports Server (NTRS)

    Pravdo, S. H.; Becker, R. H.; Boldt, E. A.; Holt, S. S.; Rothschild, R. E.; Serlemitsos, P. J.; Swank, J. H.

    1976-01-01

    The Vela pulsar was observed in the range 2-60 keV by the GSFC proportional counter experiment onboard OSO-8 with temporal resolution sufficient to make possible a sensitive search for pulsed X-rays at the radio pulsar period. A statistical analysis yielded 8 per cent as the 3 sigma upper limit on the pulsed fraction. The energy spectrum is fit well by a structureless power law with number index 2.21 + or - 0.2 and absorption by a hydrogen column density of N sub H equals 2.9 + or - 2.0 times ten to the twenty-second power per sq.cm.

  18. X-ray bounds on the r-mode amplitude in millisecond pulsars

    NASA Astrophysics Data System (ADS)

    Schwenzer, Kai; Boztepe, Tuğba; Güver, Tolga; Vurgun, Eda

    2017-04-01

    r-mode asteroseismology provides a unique way to study the internal composition of compact stars. Due to their precise timing, recycled millisecond radio pulsars present a particularly promising class of sources. Although their thermal properties are still poorly constrained, X-ray data is very useful for asteroseismology since r-modes could strongly heat a star. Using known and new upper bounds on the temperatures and luminosities of several non-accreting millisecond radio pulsars, we derive bounds on the r-mode amplitude as low as α ≲ 10-8 and discuss the impact on scenarios for their internal composition.

  19. X-ray observations of the accreting Be/X-ray binary pulsar A 0535+26 in outburst

    NASA Astrophysics Data System (ADS)

    Caballero, I.

    2009-04-01

    the cyclotron line energy with the X-ray luminosity are thought to be related to a change in the height of the accretion column as the mass accretion rate varies. A detailed timing analysis has been performed, and we find for the first time the onset of a spin-up, at a phase close to the periastron passage, during a normal outburst, providing evidence for an accretion disk around the neutron star. Energy-dependent pulse profiles of the source have been studied and compared to historical observations. During the rising part of the outburst a series of flares were observed. RXTE observed one of these flares, and we found during the flare the energy of the fundamental cyclotron line shifted to a significantly higher position compared to the rest of the outburst. Also, the energy-dependent pulse profiles during the flare were found to vary significantly from the rest of the outburst. These differences have been interpreted in terms of a theoretical model, based on the presence of magnetospheric instabilities at the onset of the accretion. We applied a decomposition method to A 0535+26 energy-dependent pulse profiles. Basic assumptions of the method are that the asymmetry observed in the pulse profiles is caused by non-antipodal magnetic poles, and that the emission regions have axisymmetric beam patterns. Using pulse profiles obtained from RXTE observations, the contribution of the two emission regions has been disentangled. Constraints on the geometry of the pulsar and a possible solution of the beam pattern are given. The reconstructed beam pattern is interpreted in terms of a geometrical model that includes relativistic light deflection.

  20. TINY HICCUPS TO TITANIC EXPLOSIONS: Tackling Transients in Anomalous X-ray Pulsars

    NASA Astrophysics Data System (ADS)

    Kaspi, Victoria

    2008-09-01

    The past decade has seen major progress in neutron star astrophysics, with the discovery of magnetars in general, and the recognition that the Anomalous X-ray Pulsars (AXPs) fall in this class. AXPs have recently revealed surprising and dramatic variability behavior, which theorists have begun to show are highly constraining of physical models of magnetars, including their crusts, atmospheres, coronae and magnetospheres. In this proposal, we request Chandra/ACIS-S Target-of-Opportunity observations of one major Anomalous X-ray Pulsar (AXP) outburst in A10, in order to study in detail the evolution of the spectrum, pulsed fraction and pulse profile, for quantitative confrontation with recently developed models for the structure and electrodynamics of magnetars.

  1. TINY HICCUPS TO TITANIC EXPLOSIONS: Tackling Transients in Anomalous X-ray Pulsars

    NASA Astrophysics Data System (ADS)

    Kaspi, Victoria

    2009-09-01

    The past decade has seen major progress in neutron star astrophysics, with the discovery of magnetars in general, and the recognition that the Anomalous X-ray Pulsars (AXPs) fall in this class. AXPs have recently revealed surprising and dramatic variability behavior, which theorists have begun to show are highly constraining of physical models of magnetars, including their crusts, atmospheres, coronae and magnetospheres. In this proposal, we request Chandra/ACIS-S Target-of-Opportunity observations of one major Anomalous X-ray Pulsar (AXP) outburst in A11, in order to study in detail the evolution of the spectrum, pulsed fraction and pulse profile, for quantitative confrontation with recently developed models for the structure and electrodynamics of magnetars.

  2. TINY HICCUPS TO TITANIC EXPLOSIONS: Tackling Transients in Anomalous X-ray Pulsars

    NASA Astrophysics Data System (ADS)

    Kaspi, Victoria

    2011-09-01

    The past decade has seen major progress in neutron star astrophysics, with the discovery of magnetars in general, and the recognition that the Anomalous X-ray Pulsars (AXPs) fall in this class. AXPs have recently revealed surprising and dramatic variability behavior, which theorists have begun to show are highly constraining of physical models of magnetars, including their crusts, atmospheres, coronae and magnetospheres. In this proposal, we request Chandra/ACIS-S Target-of-Opportunity observations of one major Anomalous X-ray Pulsar (AXP) outburst in AO13, in order to study in detail the evolution of the spectrum, pulsed fraction and pulse profile, for quantitative confrontation with recently developed models for the structure and electrodynamics of magnetars.

  3. TINY HICCUPS TO TITANIC EXPLOSIONS: Tackling Transients in Anomalous X-ray Pulsars

    NASA Astrophysics Data System (ADS)

    Kaspi, Victoria

    2010-09-01

    The past decade has seen major progress in neutron star astrophysics, with the discovery of magnetars in general, and the recognition that the Anomalous X-ray Pulsars (AXPs) fall in this class. AXPs have recently revealed surprising and dramatic variability behavior, which theorists have begun to show are highly constraining of physical models of magnetars, including their crusts, atmospheres, coronae and magnetospheres. In this proposal, we request Chandra/ACIS-S Target-of-Opportunity observations of one major Anomalous X-ray Pulsar (AXP) outburst in AO12, in order to study in detail the evolution of the spectrum, pulsed fraction and pulse profile, for quantitative confrontation with recently developed models for the structure and electrodynamics of magnetars.

  4. Short Pulse High Brightness X-ray Production with the PLEIADES Thomson Scattering Source

    SciTech Connect

    Anderson, S G; Barty, C P J; Betts, S M; Brown, W J; Crane, J K; Cross, R R; Fittinghoff, D N; Gibson, D J; Hartemann, F V; Kuba, J; LaSage, G P; Rosenzweig, J B; Slaughter, D R; Springer, P T; Tremaine, A M

    2003-07-01

    We describe PLEIADES, a compact, tunable, high-brightness, ultra-short pulse, Thomson x-ray source. The peak brightness of the source is expected to exceed 10{sup 20} photons/s/0.1% bandwidth/mm{sup 2}/mrad{sup 2}. Initial results are reported and compared to theoretical calculations.

  5. Short-term temporal variations of X-ray bright points. [on sun

    NASA Technical Reports Server (NTRS)

    Nolte, J. T.; Solodyna, C. V.; Gerassimenko, M.

    1979-01-01

    Skylab S-054 data have been used to examine the flux from X-ray bright points with approximately 90 s time resolution. There is evidence of a steady heating input, similar to one reported for active region loops. Also observed are impulsive brightenings of bright points and rapid decays which are consistent with a sudden turn-off of the steady heating.

  6. The birthplaces of active regions and X-ray bright points. [on sun

    NASA Technical Reports Server (NTRS)

    Howard, R.; Fritzova-Svestkova, L.; Svestka, Z.

    1979-01-01

    A comparison of soft X-ray pictures of the Sun (S-054 experiment of Skylab) with K-line spectroheliograms (Mount Wilson) shows that the X-ray bright points tend to emerge randomly throughout the Ca network pattern. However, all those bright points that developed into active regions emerged at the boundaries of network cells. This suggests that the magnetic flux of active regions comes from greater depths in the convection zone that the shallow flux that gives rise to the random emergence of bright points.

  7. Optical and X-ray radiation from fast pulsars - Effects of duty cycle and spectral shape

    NASA Technical Reports Server (NTRS)

    Pacini, F.; Salvati, M.

    1987-01-01

    The optical luminosity of PSR 0540 is considerably stronger than what one would have predicted in a simple model developed earlier where the pulses are synchrotron radiation by secondary electrons near the light cylinder. This discrepancy can be eliminated if one incorporates into the model the effects of the large duty cycle and the spectral properties of PSR 0540. It is also shown that the same model can provide a reasonable fit to the observed X-ray fluxes from fast pulsars.

  8. Radio upper limits for the accreting millisecond X-ray pulsar IGR J17511-3057

    NASA Astrophysics Data System (ADS)

    Miller-Jones, J. C. A.; Russell, D. M.; Migliari, S.

    2009-10-01

    We report on recent radio observations of the newly-detected accreting millisecond X-ray pulsar, IGR J17511-3057 (ATels #2196, #2197, #2198, #2199, #2215, #2216, #2220, #2221). We used the Very Large Array (VLA) to observe the source under observing program AM971. The array was in its relatively compact 'C' and 'DNC' configurations, and the observations were made at 8.46 GHz. In no case was the source significantly detected.

  9. The Fading of Transient Anomalous X-Ray Pulsar XTE J1810-197

    NASA Astrophysics Data System (ADS)

    Halpern, J. P.; Gotthelf, E. V.

    2005-01-01

    Three observations of the 5.54 s transient anomalous X-ray pulsar XTE J1810-197 obtained over 6 months with the Newton X-ray Multi-Mirror (XMM-Newton) mission are used to study its spectrum and pulsed light curve as the source fades from outburst. The decay is consistent with an exponential of time constant ~300 days but not a power law as predicted in some models of sudden deep crustal heating events. All spectra are well fitted by a blackbody plus a steep power law, a problematic model that is commonly fitted to anomalous X-ray pulsars (AXPs). A two-temperature blackbody fit is also acceptable and better motivated physically in view of the faint optical/IR fluxes, the X-ray pulse shapes that weakly depend on energy in XTE J1810-197, and the inferred emitting areas that are less than or equal to the surface area of a neutron star. The fitted temperatures remained the same while the flux declined by 46%, which can be interpreted as a decrease in area of the emitting regions. The pulsar continues to spin down, albeit at a reduced rate of (5.1+/-1.6)×10-12 s s-1. The inferred characteristic age τc≡P/2P~17,000 yr, magnetic field strength Bs~1.7×1014 G, and outburst properties are consistent with both the outburst and quiescent X-ray luminosities being powered by magnetic field decay, i.e., XTE J1810-197 is a magnetar.

  10. Optical orbit of the X-ray pulsar binary 0535 - 668 (= A0538 - 66)

    SciTech Connect

    Hutchings, J.B.; Crampton, D.; Cowley, A.P.; Olszewski, E.; Thompson, I.B.; Suntzeff, N.

    1985-05-01

    Spectroscopic data are presented from the optical primary of the LMC X-ray source 0535 - 668 during its optical low state. From these data the star appears as a normal B1 star, slightly evolved off the main sequence. Adopting the X-ray outburst period of 16.65 days, radial velocities indicate an orbit with a high eccentricity, and periastron passage very close to the X-ray flux peak. Probable masses are normal for the primary and the pulsar. At periastron, the center of mass separation is less than the primary-star diameter, and during optical outburst the photosphere is larger than the minimum separation. Orbital parameters and implied quantities are discussed. 18 references.

  11. The period history of the X-ray pulsar in MSH 15-52

    NASA Technical Reports Server (NTRS)

    Weisskopf, M. C.; Elsner, R. F.; Darbo, W.; Leahy, D.; Naranan, S.; Harnden, F. R.; Seward, F. D.; Sutherland, P. G.; Grindlay, J. E.

    1983-01-01

    New and refined mesurements of the pulse period of the X-ray pulsar in the supernova remnant MSH 15-52 are presented. The data were obtained with the Monitor proportional Counter on board the HEAO 2 observatory. The period measurements were obtained by analyzing pulse arrival times determined by cross-correlating sample pulse profiles with a master template. The period history for the source and a representative 0.15 s X-ray light curve are shown. The X-ray measurements alone lead to a refined value of the period derivative of (1.5382 + or -0.0024) x 10 to the -12th s/s, while including the results of more recent radio observations leads to a value of (1.54029 + or -0.00095) x 10 to the -12th s/s. These results indicate a hard-point source surrounded by diffuse nebular emission.

  12. Optical pulsations from the anomalous X-ray pulsar 4U0142+61.

    PubMed

    Kern, B; Martin, C

    2002-05-30

    Anomalous X-ray pulsars (AXPs) differ from ordinary radio pulsars in that their X-ray luminosity is orders of magnitude greater than their rate of rotational energy loss, and so they require an additional energy source. One possibility is that AXPs are highly magnetized neuron stars or 'magnetars' having surface magnetic fields greater than 10(14) G. This would make them similar to the soft gamma-ray repeaters (SGRs), but alternative models that do not require extreme magnetic fields also exist. An optical counterpart to the AXP 4U0142+61 was recently discovered, consistent with emission from a magnetar, but also from a magnetized hot white dwarf, or an accreting isolated neutron star. Here we report the detection of optical pulsations from 4U0142+61. The pulsed fraction of optical light (27 per cent) is five to ten times greater than that of soft X-rays, from which we conclude that 4U0142+61 is a magnetar. Although this establishes a direct relationship between AXPs and the soft gamma-ray repeaters, the evolutionary connection between AXPs, SGRs and radio pulsars remains controversial.

  13. X-ray pulsars/Doppler integrated navigation for Mars final approach

    NASA Astrophysics Data System (ADS)

    Cui, Pingyuan; Wang, Shuo; Gao, Ai; Yu, Zhengshi

    2016-05-01

    The performance of the navigation system during the Mars final approach phase determines the initial accuracy of Mars entry phase, which is critical for a pin-point landing. An X-ray pulsars/Doppler integrated navigation strategy is proposed to improve the estimation accuracy of the spacecraft's entry state, as well as to enhance the autonomy, real-time and reliability. The navigation system uses the X-ray pulsar measurements and Doppler velocity measurements which are complementary to each other. The performance degradation in velocity estimation at the end of the final approach phase for X-ray pulsar based navigation can thus be eliminated. The nonlinearity of the system and the performance of Extended Kalman Filter are analyzed in this paper. Furthermore, in order to optimize the navigation scheme, a principle for navigation beacons selection based on the Fisher information matrix is used. Finally, a navigation scenario based on the 2012 encounter at Mars of Mars Science Laboratory spacecraft is considered to demonstrate the feasibility and accuracy of the proposed scheme. Simulation results also indicate that the proposed navigation scheme has reference value for the design of the future Mars explorations.

  14. On the magnetic fields of Be/X-ray pulsars in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Ikhsanov, N. R.; Mereghetti, S.

    2015-12-01

    We explore the possibility of explaining the properties of the Be/X-ray pulsars observed in the Small Magellanic Cloud (SMC) within the magnetic levitation accretion scenario. This implies that their X-ray emission is powered by a wind-fed accretion on to a neutron star (NS) which captures matter from a magnetized stellar wind. The NS in this case is accreting matter from a non-Keplerian magnetically levitating disc which is surrounding its magnetosphere. This allows us to explain the observed periods of the pulsars in terms of spin equilibrium without the need of invoking dipole magnetic fields outside the usual range ˜1011-1013 G inferred from cyclotron features of Galactic high-mass X-ray binaries. We find that the equilibrium period of a NS, under certain conditions, depends strongly on the magnetization of the stellar wind of its massive companion and, correspondingly, on the magnetic field of the massive companion itself. This may help to explain why similar NSs in binaries with similar properties rotate with different periods yielding a large scatter of periods of the accretion-powered pulsar observed in SMC and our galaxy.

  15. Accretion X-ray ms pulsar as a probe of NS EOS

    NASA Astrophysics Data System (ADS)

    Zhang, Shu; Ji, Long

    2016-07-01

    Equation state of NS is one of the core sciences for future mission. Regarding to the possible probes, apart from the bursting ms pulsars for which the relation between the spinning light curve and the mass/radius of NS is well established theoretically, the accretion X-ray ms pulsars are the potential alternatives. However, the emission mechanism of the latter is more complicated since one has to account for the corona on top of the NS surface which provides Comptonizations that mix/distort the black body underneath. Thus disentangling the model components between the black body and the Comptonization becomes a big challenge in case of relating the spinning light curve to the mass/radius of NS. This problem is hard to be handled even with a powerful telescope owning a very large detection area. X-ray polarimetry shows us a new insight on model discrimination, and we take the accretion X-ray ms pulsar XTEJ1751-305 as an example to show how this issue could be addressed with a polarization telescope.

  16. SEXTANT: A Demonstration of X-ray Pulsar-Based Navigation Using NICER

    NASA Astrophysics Data System (ADS)

    Ray, Paul S.; Mitchell, Jason W; Winternitz, Luke M; Hasouneh, Monther A; Price, Samuel R; Valdez, Jennifer; Yu, Wayne H; Semper, Sean R; Wood, Kent S.; Wolff, Michael Thomas; Arzoumanian, Zaven; Litchford, Ronald J; Gendreau, Keith

    2014-08-01

    The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a technology-demonstration enhancement to the Neutron-star Interior Composition Explorer (NICER) mission. NICER is a NASA Explorer Mission of Opportunity that will be hosted on the International Space Station (ISS). SEXTANT will, for the first time, demonstrate real-time, on-board X-ray pulsar-based navigation (XNAV), a significant milestone in the quest to establish a GPS-like navigation capability available throughout our Solar System and beyond. The SEXTANT XNAV demonstration will exploit the large collecting area (>1800 cm^2), low background (<0.2 counts/s), and precise timing (<300 ns) of the NICER X-ray Timing Instrument (XTE). Taking advantage of NICER’s science observations of X-ray emitting millisecond pulsars, which are nature’s most stable clocks, the SEXTANT flight software will demonstrate real-time orbit determination with error less than 10 km in any direction, through measurements made over 2 weeks or less in the highly dynamic low-Earth ISS orbit. The completed technology demonstration will bring the XNAV concept and algorithms to a Technology Readiness Level of 8 and will inform the design and configuration of future practical XNAV implementations.

  17. THE CORRELATION BETWEEN DISPERSION MEASURE AND X-RAY COLUMN DENSITY FROM RADIO PULSARS

    SciTech Connect

    He, C.; Ng, C.-Y.; Kaspi, V. M.

    2013-05-01

    Pulsars are remarkable objects that emit across the entire electromagnetic spectrum, providing a powerful probe of the interstellar medium. In this study, we investigate the relation between dispersion measure (DM) and X-ray absorption column density N{sub H} using 68 radio pulsars detected at X-ray energies with the Chandra X-Ray Observatory or XMM-Newton. We find a best-fit empirical linear relation of N{sub H} (10{sup 20} cm{sup -2})= 0.30{sup +0.13}{sub -0.09} DM (pc cm{sup -3}), which corresponds to an average ionization of 10{sup +4}{sub -3}%, confirming the ratio of one free electron per 10 neutral hydrogen atoms commonly assumed in the literature. We also compare different N{sub H} estimates and note that some N{sub H} values obtained from X-ray observations are higher than the total Galactic H I column density along the same line of sight, while the optical extinction generally gives the best N{sub H} predictions.

  18. Performance enhancement of X-ray pulsar navigation using autonomous optical sensor

    NASA Astrophysics Data System (ADS)

    Kai, Xiong; Chunling, Wei; Liangdong, Liu

    2016-11-01

    This paper develops an integrated navigation method based on the X-ray pulsar navigation (XNAV) system and an autonomous optical navigation system for spacecrafts. The X-ray pulsar navigation is implemented by using the difference between the measured and predicated pulse arrival time, which is calculated by comparing an observed pulse profile with a standard pulse profile. A problem arises from the X-ray signal processing in that the spacecraft's orbit information, which may be unknown, is required to construct the observed pulse profile. The effect of the spacecraft orbit error on the accuracy of the pulse TOA (time of arrival) difference determination is analyzed. It is specified that the performance of the XNAV system may be degraded in the presence of large orbit error. In order to improve the navigation accuracy, an integrated navigation scheme is presented by fusing the measurement information of a X-ray detector and an ultraviolet optical sensor. The XNAV/optical integrated navigation system is effective to mitigate the effect of the spacecraft orbit error. The superiority of the presented scheme is illustrated through numerical simulations.

  19. Quasiperiodic oscillations in bright galactic-bulge X-ray sources

    NASA Technical Reports Server (NTRS)

    Lamb, F. K.; Shibazaki, N.; Alpar, M. A.; Shaham, J.

    1985-01-01

    Quasiperiodic oscillations with frequencies in the range 5-50 Hz have recently been discovered in X-rays from two bright galactic-bulge sources and Sco X-1. These sources are weakly magnetic neutron stars accreting from disks which the plasma is clumped. The interaction of the magnetosphere with clumps in the inner disk causes oscillations in the X-ray flux with many of the properties observed.

  20. First results from the high-brightness x-ray spectroscopy beamline at ALS

    SciTech Connect

    Perera, R.C.C.; Ng, W.; Jones, G.

    1997-04-01

    Beamline 9.3.1 at the Advanced Light Source (ALS) is a windowless beamline, covering the 1-6 keV photon-energy range, designed to achieve the goal of high brightness at the sample for use in the X-ray Atomic and Molecular Spectroscopy (XAMS) science, surface and interface science, biology and x-ray optical development programs at ALS. X-ray absorption and time of flight photo emission measurements in 2 - 5 keV photon energy in argon along with the flux, resolution, spot size and stability of the beamline will be discussed. Prospects for future XAMS measurements will also be presented.

  1. Interstellar X-Ray Absorption Spectroscopy of the Crab Pulsar with the LETGS

    NASA Technical Reports Server (NTRS)

    Paerels, Frits; Weisskopf, Martin C.; Tennant, Allyn F.; ODell, Stephen L.; Swartz, Douglas A.; Kahn, Steven M.; Behar, Ehud; Becker, Werner; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    We study the interstellar X-ray absorption along the line of sight to the Crab Pulsar. The Crab was observed with the Low Energy Transmission Grating Spectrometer on the Chandra X-ray Observatory, and the pulsar, a point source, produces a full resolution spectrum. The continuum spectrum appears smooth, and we compare its parameters with other measurements of the pulsar spectrum. The spectrum clearly shows absorption edges due to interstellar Ne, Fe, and O. The O edge shows spectral structure that is probably due to O bound in molecules or dust. We search for near-edge structure (EXAFS) in the O absorption spectrum. The Fe L absorption spectrum is largely due to a set of unresolved discrete n=2-3 transitions in neutral or near-neutral Fe, and we analyze it using a new set of dedicated atomic structure calculations, which provide absolute cross sections. In addition to being interesting in its own right, the ISM absorption needs to be understood in quantitative detail in order to derive spectroscopic constraints on possible soft thermal radiation from the pulsar.

  2. Absorption Features in the X-ray Spectrum of an Ordinary Radio Pulsar

    NASA Astrophysics Data System (ADS)

    Kargaltsev, Oleg; Durant, Martin; Misanovic, Zdenka; Pavlov, George G.

    2012-08-01

    The vast majority of known nonaccreting neutron stars (NSs) are rotation-powered radio and/or γ-ray pulsars. So far, their multiwavelength spectra have all been described satisfactorily by thermal and nonthermal continuum models, with no spectral lines. Spectral features have, however, been found in a handful of exotic NSs and were thought to be a manifestation of their unique traits. Here, we report the detection of absorption features in the x-ray spectrum of an ordinary rotation-powered radio pulsar, J1740+1000. Our findings bridge the gap between the spectra of pulsars and other, more exotic, NSs, suggesting that the features are more common in the NS spectra than they have been thought so far.

  3. Absorption features in the x-ray spectrum of an ordinary radio pulsar.

    PubMed

    Kargaltsev, Oleg; Durant, Martin; Misanovic, Zdenka; Pavlov, George G

    2012-08-24

    The vast majority of known nonaccreting neutron stars (NSs) are rotation-powered radio and/or γ-ray pulsars. So far, their multiwavelength spectra have all been described satisfactorily by thermal and nonthermal continuum models, with no spectral lines. Spectral features have, however, been found in a handful of exotic NSs and were thought to be a manifestation of their unique traits. Here, we report the detection of absorption features in the x-ray spectrum of an ordinary rotation-powered radio pulsar, J1740+1000. Our findings bridge the gap between the spectra of pulsars and other, more exotic, NSs, suggesting that the features are more common in the NS spectra than they have been thought so far.

  4. X-ray Analysis of the Bright Source in the Supernova Remnant G350.0-2.0 Field

    NASA Astrophysics Data System (ADS)

    Karpova, A.; Shternin, P.; Zyuzin, D.; Danilenko, A.; Shibanov, Yu

    2016-11-01

    We present results of the analysis of the XMM-Newton data on the bright source 1RXS J172653.4-382157 in the field of the supernova remnant G350.0-2.0. Its spectrum is well described by power law plus thermal component (blackbody or neutron star atmosphere) model. Therefore the source can be a rotation powered pulsar. Alternatively, it can be a cataclysmic variable star since its spectrum is equally well fitted by the two-temperature optically thin thermal plasma model. No periodic pulsations and flux time variability were found. The upper limit on the pulsed fraction of 27% cannot help to state whether the source is a pulsar or a cataclysmic variable. A faint source was detected in the XMM-Newton optical/UV monitor image and found in the GSC-II catalog and ESO Hα and optical/near infrared broadband sky survey images on the X-ray position of J172653.4-382157. Its spectral energy distribution favors the cataclysmic variable interpretation. Further optical and X-ray observations are needed to confirm this.

  5. Experimental Validation of Pulse Phase Tracking for X-Ray Pulsar Based

    NASA Technical Reports Server (NTRS)

    Anderson, Kevin

    2012-01-01

    Pulsars are a form of variable celestial source that have shown to be usable as aids for autonomous, deep space navigation. Particularly those sources emitting in the X-ray band are ideal for navigation due to smaller detector sizes. In this paper X-ray photons arriving from a pulsar are modeled as a non-homogeneous Poisson process. The method of pulse phase tracking is then investigated as a technique to measure the radial distance traveled by a spacecraft over an observation interval. A maximum-likelihood phase estimator (MLE) is used for the case where the observed frequency signal is constant. For the varying signal frequency case, an algorithm is used in which the observation window is broken up into smaller blocks over which an MLE is used. The outputs of this phase estimation process were then looped through a digital phase-locked loop (DPLL) in order to reduce the errors and produce estimates of the doppler frequency. These phase tracking algorithms were tested both in a computer simulation environment and using the NASA Goddard Space flight Center X-ray Navigation Laboratory Testbed (GXLT). This provided an experimental validation with photons being emitted by a modulated X-ray source and detected by a silicon-drift detector. Models of the Crab pulsar and the pulsar B1821-24 were used in order to generate test scenarios. Three different simulated detector trajectories were used to be tracked by the phase tracking algorithm: a stationary case, one with constant velocity, and one with constant acceleration. All three were performed in one-dimension along the line of sight to the pulsar. The first two had a constant signal frequency and the third had a time varying frequency. All of the constant frequency cases were processed using the MLE, and it was shown that they tracked the initial phase within 0.15% for the simulations and 2.5% in the experiments, based on an average of ten runs. The MLE-DPLL cascade version of the phase tracking algorithm was used in

  6. Chandra Phase-Resolved X-ray Spectroscopy of the Crab Pulsar II

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; Tennant, Allyn F.; Yakovlev, Dimitry G.; Harding, Alice; Zavlin, Vyacheslav E.; Elsner, Ronald F.; Becker, Werner

    2012-01-01

    We present a new study of the X-ray spectral properties of the Crab Pulsar. The superb angular resolution of the Chandra X-ray Observatory enables distinguishing the pulsar from the surrounding nebulosity. Analysis of the spectrum as a function of pulse phase allows the least-biased measure of interstellar X-ray extinction due primarily to photoelectric absorption and secondarily to scattering by dust grains in the direction of the Crab Nebula. We modify previous findings that the line-of-sight to the Crab is under-abundant in oxygen and provide measurements with improved accuracy and less bias. Using the abundances and cross sections from Wilms, Allen & McCray (2000) we find [O/H] = (5.28+\\-0.28) x 10(exp -4) (4.9 x 10(exp -4) is solar abundance). \\rVe also measure for the first time the impact of scattering of flux out of the image by interstellar grains. \\rYe find T(sub scat) = 0.147+/-0.043. Analysis of the spectrum as a function of pulse phase also measures the X-ray spectral index even at pulse minimum - albeit with increasing statistical uncertainty. The spectral variations are, by and large, consistent with a sinusoidal variation. The only significant variation from the sinusoid occurs over the same phase range as some rather abrupt behavior in the optical polarization magnitude and position angle. We compare these spectral variations to those observed in Gamma-rays and conclude that our measurements are both a challenge and a guide to future modeling and will thus eventually help us understand pair cascade processes in pulsar magnetospheres. The data were also used to set new. and less biased, upper limits to the surface temperature of the neutron star for different models of the neutron star atmosphere.

  7. Theory of quasi-spherical accretion in X-ray pulsars

    NASA Astrophysics Data System (ADS)

    Shakura, N.; Postnov, K.; Kochetkova, A.; Hjalmarsdotter, L.

    2012-02-01

    A theoretical model for quasi-spherical subsonic accretion on to slowly rotating magnetized neutron stars is constructed. In this model, the accreting matter subsonically settles down on to the rotating magnetosphere forming an extended quasi-static shell. This shell mediates the angular momentum removal from the rotating neutron star magnetosphere during spin-down episodes by large-scale convective motions. The accretion rate through the shell is determined by the ability of the plasma to enter the magnetosphere. The settling regime of accretion can be realized for moderate accretion rates ? g s-1. At higher accretion rates, a free-fall gap above the neutron star magnetosphere appears due to rapid Compton cooling, and accretion becomes highly non-stationary. From observations of the spin-up/spin-down rates (the angular rotation frequency derivative ?, and ? near the torque reversal) of X-ray pulsars with known orbital periods, it is possible to determine the main dimensionless parameters of the model, as well as to estimate the magnetic field of the neutron star. We illustrate the model by determining these parameters for three wind-fed X-ray pulsars GX 301-2, Vela X-1 and GX 1+4. The model explains both the spin-up/spin-down of the pulsar frequency on large time-scales and the irregular short-term frequency fluctuations, which can correlate or anticorrelate with the X-ray flux fluctuations in different systems. It is shown that in real pulsars an almost iso-angular-momentum rotation law with ω˜ 1/R2, due to strongly anisotropic radial turbulent motions sustained by large-scale convection, is preferred.

  8. Outburst of the 2 s Anomalous X-ray Pulsar 1E 1547.0-5408

    NASA Technical Reports Server (NTRS)

    Halpern, J. P.; Gotthelf, E. V.; Camilo, F.; Reynolds, J.; Ransom, S. M.

    2008-01-01

    Following our discovery of radio pulsations from the newly recognized anomalous X-ray pulsar (AXP) 1E 1547.0-5408, we initiated X-ray monitoring with the Swift X-ray telescope and obtained a single target-of-opportunity observation with the Newton X-ray Multi-Mirror Mission (XMM-Newton). In comparison with its historic minimum flux of 3 x 10(exp -l3)ergs/sq cm/s, the source was found to be in a record high state, f(sub x)(1-8 keV) = 5 x 10(exp -12)ergs/sq cm/s, or L(sub x) = 1.7 x 10(exp 35)(d/9 kpc )(sup 2)ergs/s, and declining by 25% in 1 month. Extrapolating the decay, we bound the total energy in this outburst to 1042 ergs < E < ergs. The spectra (fitted with a Comptonized blackbody) show that an increase in the temperature and area of a hot region, to 0.5 keV and -16% of the surface area of the neutron star, respectively, are primarily responsible for its increase in luminosity. The energy, spectrum, and timescale of decay are consistent with a deep crustal heating event, similar to an interpretation of the X-ray turn-on of the transient AXP XTE J18 10- 197. Simultaneous with the 4.6 hr ATdA4-Newton observation, we observed at 6.4 GHz with the Parkes telescope, measuring the phase relationship of the radio and X-ray pulse. The X-ray pulsed fraction of 1E 1547.0-5408 is only approx. 7 %, while its radio pulse is relatively broad for such a slow pulsar, which may indicate a nearly aligned rotator. As also inferred from the transient behavior of XTE J18 10-197, the only other AXP known to emit in the radio, the magnetic field rearrangement responsible for this X-ray outburst of 1E 1547.0-5408 is probably the cause of its radio turn-on.

  9. Bright Points and Subflares in UV Lines and in X-Rays

    NASA Technical Reports Server (NTRS)

    Rovira, M.; Schmieder, B.; Demoulin, P.; Simnett, G. M.; Hagyard, M. J.; Reichmann, E.; Tandberg-Hanssen, E.

    1998-01-01

    We have analysed an active region which was observed in Halpha (MSDP), UV lines (SMM/UVSP), and in X rays (SMM/HXIS). In this active region there were only a few subflares and many small bright points visible in UV and in X rays. Using an extrapolation based on the Fourier transform we have computed magnetic field lines connecting different photospheric magnetic polarities from ground-based magnetograms. Along the magnetic inversion lines we find 2 different zones: 1. a high shear region (less than 70 degrees) where subflares occur 2. a low shear region along the magnetic inversion line where UV bright points are observed.

  10. X-Ray/GeV Emissions from Crab-like Pulsars in the LMC

    NASA Astrophysics Data System (ADS)

    Takata, J.; Cheng, K. S.

    2017-01-01

    We discuss X-ray and gamma-ray emissions from Crab-like pulsars, PSRs J0537-6910 and J0540-6919, in the Large Magellanic Cloud. Fermi-LAT observations have resolved the gamma-ray emissions from these two pulsars and found pulsed emissions from PSR J0540-6919. The total pulsed radiation in the X-ray/gamma-ray energy bands of PSR J0540-6919 is observed with efficiency {η }J0540∼ 0.06 (in 4π sr), which is about a factor of ten larger than {η }{Crab}∼ 0.006 of the Crab pulsar. Although PSR J0537-6910 has the highest spin-down power among currently known pulsars, the efficiency of the observed X-ray emissions is about two orders of magnitude smaller than that of PSR J0540-6919. This paper mainly discusses what causes the difference in the radiation efficiencies of these three energetic Crab-like pulsars. We discuss electron/positron acceleration and high-energy emission processes within the outer gap model. By solving the outer gap structure with the dipole magnetic field, we show that the radiation efficiency decreases as the inclination angle between the magnetic axis and the rotation axis increases. To explain the difference in the pulse profile and in the radiation efficiency, our model suggests that PSR J0540-6919 has an inclination angle much smaller than that of the Crab pulsar (here we assume the inclination angles of both pulsars are α < 90^\\circ ). On the other hand, we speculate that the difference in the radiation efficiencies between PSRs J0537-6910 and J0549-6919 is mainly caused by the difference in the Earth viewing angle, and that we see PSR J0537-6910 with an Earth viewing angle \\zeta \\gg 90^\\circ (or \\ll 90^\\circ ) measured from the spin axis, while we see PSR J0540-6919 with \\zeta ∼ 90^\\circ .

  11. Partial accretion in the propeller stage of accreting millisecond X-ray pulsars

    NASA Astrophysics Data System (ADS)

    Gungor, Can; Gogus, Ersin; Eksi, Kazim Yavuz; Guver, Tolga

    2016-07-01

    Accreting millisecond X-ray pulsars (AMXPs) are very important objects for studying the stages of disk - magnetosphere interaction as these objects may show different stages in an observable duration. A typical X-ray light curve of an outburst of AMXP has a fast rise and an exponential decay phases. Most of the outbursts have a knee where the flux goes from the slow decay stage to the rapid decay stage. This knee may be linked to the transition from accretion to propeller stage. Since, after the knee, the X-ray luminosity of the source is still higher than its quiescent level, the accretion from inner disc must be continuing in the propeller stage with a lower fraction than in the accretion stage. The X-ray does not only come from accretion onto the poles but the inner parts of the disk may also contribute to the total X-ray luminosity. To infer what fraction (f) of the inflowing matter accretes onto the star the light curve in the propeller stage, one should first separate the emission originating from the disk and obtain a light curve of X-ray emission only from the magnetic poles. We provide a new method to infer from the observational data the fraction of accreting matter onto the neutron star pole to the mass transferring from outer layers of the disc to the inner disc (f), as a function of the fastness parameter (ω_{*}), assuming the knee is due to the transition from accretion to the propeller stage. We transform X-ray luminosities to the mass fraction, f, and the time scale of outburst to fastness parameter, ω_*. It allows us to compare different types of outbursts of an AMXP in f - ω_* space which is universal for a unique system. We analysed the Rossi X-ray Timing Explorer/Proportional Counter Array (RXTE/PCA) observations of the 2000 and the 2011 outbursts and the Swift Gamma-Ray Burst Mission/X-ray Telescope (SWIFT/XRT) data of the 2013 outburst of the most known AMXP, Aql X-1 using a combination of blackbody representing hot spot, disk blackbody

  12. Bright X-Ray Transients in M31: 2004 July XMM-Newton Observations

    NASA Astrophysics Data System (ADS)

    Trudolyubov, Sergey; Priedhorsky, William; Cordova, France

    2006-07-01

    We present the results of X-ray observations of four bright transients sources detected in the 2004 July XMM-Newton observations of the central bulge of M31. Two X-ray sources, XMMU J004315.5+412440 and XMMU J004144.7+411110, were discovered for the first time. Two other sources, CXOM31 J004309.9+412332 and CXOM31 J004241.8+411635, were previously detected by Chandra. The properties of the sources suggest their identification with accreting binary systems in M31. The X-ray spectra and variability of two sources, XMMU J004144.7+411110 and CXOM31 J004241.8+411635, are similar to that of the Galactic black hole transients. The X-ray source XMMU J004315.5+412440 demonstrates a dramatic decline of the X-ray flux on a timescale of three days and a remarkable flaring behavior on a timescale of tens of minutes. The X-ray data on XMMU J004315.5+412440 and CXOM31 J004309.9+412332 suggest that they can be either black hole or neutron star systems. Combining the results of 2000-2004 XMM-Newton observations of M31, we estimate the total rate of the bright transient outbursts in the central region of M31 to be 6-12 yr-1, in agreement with previous studies.

  13. CHANDRA PHASE-RESOLVED X-RAY SPECTROSCOPY OF THE CRAB PULSAR

    SciTech Connect

    Weisskopf, Martin C.; Tennant, Allyn F.; O'Dell, Stephen L.; Elsner, Ronald F.; Yakovlev, Dmitry G.; Harding, Alice; Zavlin, Vyacheslav E.; Becker, Werner

    2011-12-20

    We present a new study of the X-ray spectral properties of the Crab Pulsar. The superb angular resolution of the Chandra X-Ray Observatory enables distinguishing the pulsar from the surrounding nebulosity. Analysis of the spectrum as a function of pulse phase allows the least-biased measure of interstellar X-ray extinction due primarily to photoelectric absorption and secondarily to scattering by dust grains in the direction of the Crab Nebula. We modify previous findings that the line of sight to the Crab is underabundant in oxygen and provide measurements with improved accuracy and less bias. Using the abundances and cross sections from Wilms et al. we find [O/H] = (5.28 {+-} 0.28) Multiplication-Sign 10{sup -4} (4.9 Multiplication-Sign 10{sup -4} is solar abundance). We also measure for the first time the impact of scattering of flux out of the image by interstellar grains. We find {tau}{sub scat} = 0.147 {+-} 0.043. Analysis of the spectrum as a function of pulse phase also measures the X-ray spectral index even at pulse minimum-albeit with increasing statistical uncertainty. The spectral variations are, by and large, consistent with a sinusoidal variation. The only significant variation from the sinusoid occurs over the same phase range as some rather abrupt behavior in the optical polarization magnitude and position angle. We also compare these spectral variations to those observed in gamma-rays and conclude that our measurements are both a challenge and a guide to future modeling and will thus eventually help us understand pair cascade processes in pulsar magnetospheres. The data are also used to set new, and less biased, upper limits to the surface temperature of the neutron star for different models of the neutron star atmosphere. We discuss how such data are best connected to theoretical models of neutron star cooling and neutron star interiors. The data restrict the neutrino emission rate in the pulsar core and the amount of light elements in the heat

  14. Towards practical autonomous deep-space navigation using X-Ray pulsar timing

    NASA Astrophysics Data System (ADS)

    Shemar, Setnam; Fraser, George; Heil, Lucy; Hindley, David; Martindale, Adrian; Molyneux, Philippa; Pye, John; Warwick, Robert; Lamb, Andrew

    2016-10-01

    We investigate the feasibility of deep-space navigation using the highly stable periodic signals from X-ray pulsars in combination with dedicated instrumentation on the spacecraft: a technique often referred to as `XNAV'. The results presented are based on the outputs from a study undertaken for the European Space Agency. The potential advantages of this technique include increased spacecraft autonomy and lower mission operating costs. Estimations of navigation uncertainties have been obtained using simulations of different pulsar combinations and navigation strategies. We find that the pulsar PSR B1937 + 21 has potential to allow spacecraft positioning uncertainties of 2 and 5 km in the direction of the pulsar after observation times of 10 and 1 h respectively, for ranges up to 30 AU. This could be achieved autonomously on the spacecraft using a focussing X-ray instrument of effective area 50 cm2 together with a high performance atomic clock. The Mercury Imaging X-ray Spectrometer (MIXS) instrument, due to be launched on the ESA/JAXA BepiColombo mission to Mercury in 2018, is an example of an instrument that may be further developed as a practical telescope for XNAV. For a manned mission to Mars, where an XNAV system could provide valuable redundancy, observations of the three pulsars PSR B1937 + 21, B1821-24 and J0437-4715 would enable a three-dimensional positioning uncertainty of 30 km for up to 3 months without the need to contact Earth-based systems. A lower uncertainty may be achieved, for example, by use of extended observations or, if feasible, by use of a larger instrument. X-ray instrumentation suitable for use in an operational XNAV subsystem must be designed to require only modest resources, especially in terms of size, mass and power. A system with a focussing optic is required in order to reduce the sky and particle background against which the source must be measured. We examine possible options for future developments in terms of simpler, lower

  15. Radio and X-Ray Observations of the Intermittent Pulsar J1832+0029

    NASA Astrophysics Data System (ADS)

    Lorimer, D. R.; Lyne, A. G.; McLaughlin, M. A.; Kramer, M.; Pavlov, G. G.; Chang, C.

    2012-10-01

    We report on radio and X-ray observations of PSR J1832+0029, a 533 ms radio pulsar discovered in the Parkes Multibeam Pulsar Survey. From radio observations taken with the Parkes, Lovell, and Arecibo telescopes, we show that this pulsar exhibits two spin-down states akin to PSRs B1931+24 reported by Kramer et al. and J1841-0500 reported by Camilo et al. Unlike PSR B1931+24, which switches between "on" and "off" states on a 30-40 day timescale, PSR J1832+0029 is similar to PSR J1841-0500 in that it spends a much longer period of time in the off-state. So far, we have fully sampled two off-states. The first one lasted between 560 and 640 days and the second one lasted between 810 and 835 days. From our radio timing observations, the ratio of on/off spin-down rates is 1.77 ± 0.03. Chandra observations carried out during both the on- and off-states of this pulsar failed to detect any emission. Our results challenge but do not rule out models involving accretion onto the neutron star from a low-mass stellar companion. In spite of the small number of intermittent pulsars currently known, difficulties in discovering them and in quantifying their behavior imply that their total population could be substantial.

  16. Signs of magnetic accretion in the young Be/X-ray pulsar SXP 1062

    NASA Astrophysics Data System (ADS)

    Ikhsanov, N. R.

    2012-07-01

    The spin behaviour of the neutron star in the newly discovered young Be/X-ray long-period pulsar SXP 1062 is discussed. The star is observed to rotate with the period of 1062 s, and spin down at the rate ˜-2.6 × 10-12 Hz s-1. I show that all of the conventional accretion scenarios encounter major difficulties in explaining the rapid spin-down of the pulsar. These difficulties can be, however, avoided within the magnetic accretion scenario in which the neutron star is assumed to accrete from a magnetized wind. The spin-down rate of the pulsar can be explained within this scenario provided the surface magnetic field of the neutron star is B*˜ 4 × 1013 G. I show that the age of the pulsar in this case lies in the range (2-4) × 104 yr, which is consistent with observations. The spin evolution of the pulsar is briefly discussed.

  17. The Ophiuchus cluster - A bright X-ray cluster of galaxies at low galactic latitude

    NASA Technical Reports Server (NTRS)

    Johnston, M. D.; Bradt, H. V.; Doxsey, R. E.; Marshall, F. E.; Schwartz, D. A.; Margon, B.

    1981-01-01

    The discovery of an extended X-ray source identified with a cluster of galaxies at low galactic latitude is reported. The source, designated the Ophiuchus cluster, was detected near 4U 1708-23 with the HEAO 1 Scanning Modulation Collimator, and identified with the cluster on the basis of extended X-ray size and positional coincidence on the ESO/SRC (J) plate of the region. An X-ray flux density in the region 2-10 keV of approximately 25 microJ was measured, along with an X-ray luminosity of 1.6 x 10 to the 45th ergs/sec and an X-ray core radius of approximately 4 arcmin (0.2 Mpc) for an assumed isothermal sphere surface brightness distribution. The X-ray spectrum in the range 2-10 keV obtained with the HEAO 1 A-2 instrument is well fit by a thermal bremsstrahlung model with kT = 8 keV and a 6.7-keV iron line of equivalent width 450 eV. The steep-spectrum radio source MSH 17-203 also appears to be associated with the cluster, which is the closest and brightest representative of the class of X-ray clusters with a dominant central galaxy.

  18. The soft X-ray spectrum of transient pulsars in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    La Palombara, N.; Sidoli, L.; Esposito, P.; Pintore, F.; Tiengo, A.; Mereghetti, S.

    2016-06-01

    The Small Magellanic Cloud is characterized by a high number of transient accreting pulsars, which can reach luminosities up to 10^{38} erg s^{-1} during their outbursts. Due to the low Galactic interstellar absorption in the SMC direction, these sources offer a unique opportunity to investigate the soft end of the X-ray spectrum in accreting pulsars. In the last two years we observed with XMM-Newton the large outburst of two of these transient pulsars (RX J0059.2-7138 and SMC X-2). Thanks to the high throughput and spectral resolution of XMM, these observations allowed us to investigate at an unprecedented level of detail their spectral and timing properties at soft X-ray energies. We found that both sources show a pulsed emission also at low energies, and that they are characterized by a thermal component which dominates the source spectrum below 0.5 keV; moreover, we discovered several emission and absorption features, which are very likely produced by photoionization of plasma located above the inner regions of the accretion disc.

  19. Propeller Effect in the Transient X-Ray Pulsar SMC X-2

    NASA Astrophysics Data System (ADS)

    Lutovinov, Alexander A.; Tsygankov, Sergey S.; Krivonos, Roman A.; Molkov, Sergey V.; Poutanen, Juri

    2017-01-01

    We report the results of the monitoring campaign of the transient X-ray pulsar SMC X-2 performed with the Swift/XRT telescope over the period of 2015 September–2016 January during the Type II outburst. During this event, the bolometric luminosity of the source ranged from ≃1039 down to several ×1034 erg s‑1. Moreover, we discovered its dramatic drop by a factor of more than 100 below the limiting value of {L}{lim}≃ 4× {10}36 erg s‑1, which can be interpreted as a transition to the propeller regime. These measurements make SMC X-2 the sixth pulsating X-ray source where such a transition is observed and allow us to estimate the magnetic field of the neutron star in the system B ≃ 3 × 1012 G, which is in agreement with independent results of the spectral analysis.

  20. Tiny Tremors to Titanic Explosions: Tackling Transients in Anomalous X-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Kaspi, Victoria

    We are requesting the target-of-oppurtunity (ToO) component of an ongoing, successful, long-term RXTE monitoring campaign of anomalous X- ray pulsars (AXPs). Their nature had been a mystery, but with our discoveries of X-ray bursts from AXPs, there is compelling evidence that they are young, isolated, ultra-magnetized neutron stars or "magnetars." We request ToO observations of any of the known and candidate AXPs as well as of any newly discovered AXPs should they exhibit anomalous behavior of one or more of the following types: bursts, significant sudden pulse profile changes, glitches or other rotational anomalies, or pulse fractions changes. These observations will allow us to answer basic physical questions about neutron star structure.

  1. Tiny Hiccups to Titanic Explosions: Tackling Transients in Anomalous X-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Kaspi, Victoria

    We request the Target-of-Opportunity (TOO) component of an ongoing, successful, long-term RXTE monitoring campaign of anomalous X-ray pulsars (AXPs). Their nature had been a long-standing mystery, but with our discoveries of soft gamma-ray repeater-like X-ray bursts from two AXPs, there is compelling evidence that they are magnetars. We request TOO observations of any of five AXPs (and one candidate) should they exhibit anomalous behavior of one or more of the following types: bursts, significant pulse profile changes, glitches or other rotational anomalies, or pulse fractions changes. These observations will allow us to answer basic physical questions about neutron star structure and constrain the physics of magnetars.

  2. Tiny Tremors to Titanic Explosions: Tackling Transients in Anomalous X-Ray Pulsars (core Program)

    NASA Astrophysics Data System (ADS)

    We are requesting the target-of-oppurtunity (ToO) component of an ongoing, successful, long-term RXTE monitoring campaign of anomalous X- ray pulsars (AXPs). Their nature had been a mystery, but with our discoveries of X-ray bursts from AXPs, there is compelling evidence that they are young, isolated, ultra-magnetized neutron stars or "magnetars." We request ToO observations of any of the known and candidate AXPs as well as of any newly discovered AXPs should they exhibit anomalous behavior of one or more of the following types: bursts, significant sudden pulse profile changes, glitches or other rotational anomalies, or pulse fractions changes. These observations will allow us to answer basic physical questions about neutron star structure.

  3. Tiny Hiccups to Titanic Explosions: Tackling Transients in Anomalous X-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Kaspi, Victoria

    We are requesting the target-of-oppurtunity (ToO) component of an ongoing, successful, long-term RXTE monitoring campaign of anomalous X- ray pulsars (AXPs). Their nature had been a mystery, but with our discoveries of X-ray bursts from AXPs, there is compelling evidence that they are young, isolated, ultra-magnetized neutron stars or "magnetars." We request ToO observations of any of the known and candidate AXPs should they exhibit anomalous behavior of one or more of the following types: bursts, significant sudden pulse profile changes, glitches or other rotational anomalies, or pulse fractions changes. These observations will allow us to answer basic physical questions about neutron star structure.

  4. Pulse-to-pulse variations in accreting X-ray pulsars

    NASA Astrophysics Data System (ADS)

    Kretschmar, Peter; Marcu, Diana; Kühnel, Matthias; Klochkov, Dmitry; Pottschmidt, Katja; Staubert, Rüdiger; Wilson-Hodge, Colleen A.; Jenke, Peter A.; Caballero, Isabel; Fürst, Felix

    2014-01-01

    In most accreting X-ray pulsars, the periodic signal is very clear and easily shows up as soon as data covering sufficient pulse periods (a few ten) are available. The mean pulse profile is often quite typical for a given source and with minor variations repeated and recognisable across observations done years or even decades apart. At the time scale of individual pulses, significant pulse-to-pulse variations are commonly observed. While at low energies some of these variations might be explained by absorption, in the hard X-rays they will reflect changes in the accretion and subsequent emission. The amount of these variations appears to be quite different between sources and contains information about the surrounding material as well ass possibly interactions at the magnetosphere. We investigate such variations for a sample of well-known sources.

  5. RADIO-QUIET AND RADIO-LOUD PULSARS: SIMILAR IN GAMMA-RAYS BUT DIFFERENT IN X-RAYS

    SciTech Connect

    Marelli, M.; Mignani, R. P.; Luca, A. De; Salvetti, D.; Parkinson, P. M. Saz; Hartog, P. R. Den

    2015-04-01

    We present new Chandra and XMM-Newton observations of a sample of eight radio-quiet (RQ) γ-ray pulsars detected by the Fermi Large Area Telescope. For all eight pulsars we identify the X-ray counterpart, based on the X-ray source localization and the best position obtained from γ-ray pulsar timing. For PSR J2030+4415 we found evidence for a ∼10″-long pulsar wind nebula. Our new results consolidate the work from Marelli et al. and confirm that, on average, the γ-ray-to-X-ray flux ratios (F{sub γ}/F{sub X}) of RQ pulsars are higher than for the radio-loud (RL) ones. Furthermore, while the F{sub γ}/F{sub X} distribution features a single peak for the RQ pulsars, the distribution is more dispersed for the RL ones, possibly showing two peaks. We discuss possible implications of these different distributions based on current models for pulsar X-ray emission.

  6. A New Two-fluid Radiation-hydrodynamical Model for X-Ray Pulsar Accretion Columns

    NASA Astrophysics Data System (ADS)

    West, Brent F.; Wolfram, Kenneth D.; Becker, Peter A.

    2017-02-01

    Previous research centered on the hydrodynamics in X-ray pulsar accretion columns has largely focused on the single-fluid model, in which the super-Eddington luminosity inside the column decelerates the flow to rest at the stellar surface. This type of model has been relatively successful in describing the overall properties of the accretion flows, but it does not account for the possible dynamical effect of the gas pressure. On the other hand, the most successful radiative transport models for pulsars generally do not include a rigorous treatment of the dynamical structure of the column, instead assuming an ad hoc velocity profile. In this paper, we explore the structure of X-ray pulsar accretion columns using a new, self-consistent, “two-fluid” model, which incorporates the dynamical effect of the gas and radiation pressures, the dipole variation of the magnetic field, the thermodynamic effect of all of the relevant coupling and cooling processes, and a rigorous set of physical boundary conditions. The model has six free parameters, which we vary in order to approximately fit the phase-averaged spectra in Her X-1, Cen X-3, and LMC X-4. In this paper, we focus on the dynamical results, which shed new light on the surface magnetic field strength, the inclination of the magnetic field axis relative to the rotation axis, the relative importance of gas and radiation pressures, and the radial variation of the ion, electron, and inverse-Compton temperatures. The results obtained for the X-ray spectra are presented in a separate paper.

  7. TINY HICCUPS TO TITANIC EXPLOSIONS: Tackling Transients in Anomalous X-ray Pulsars

    NASA Astrophysics Data System (ADS)

    Kaspi, Victoria

    2005-09-01

    Recently discovered transient events in Anomalous X-ray Pulsars (AXPs) may be a Rosetta Stone for understanding the persistent emission from magnetars. They also may hold the key to quantifying the number of magnetars in the Galaxy. Here we request Chandra TOO time to observe any AXP following a rare transient event, including a major outburst or a long-duration flare. Specifically, the requested observations will determine the pulsed fraction and spectral evolution of a transient AXP event as the source relaxes back to quiescence, in order to quantitatively test the "twisted magnetosphere" model for magnetars, and establish the basic phenomenology of transient AXP events.

  8. Tiny Hiccups To Titanic Explosions: Tackling Transients in Anomalous X-ray Pulsars

    NASA Astrophysics Data System (ADS)

    Kaspi, Victoria

    2006-09-01

    Recently discovered transient events in Anomalous X-ray Pulsars (AXPs) may be a Rosetta Stone for understanding the persistent emission from magnetars. They also may hold the key to quantifying the number of magnetars in the Galaxy. Here we request Chandra TOO time to observe any AXP following a rare transient event, including a major outburst or a long-duration flare. Specifically, the requested observations will determine the pulsed fraction and spectral evolution of a transient AXP event as the source relaxes back to quiescence, in order to quantitatively test the "twisted magnetosphere" model for magnetars, and establish the basic phenomenology of transient AXP events.

  9. TINY HICCUPS TO TITANIC EXPLOSIONS: Tackling Transients in Anomalous X-ray Pulsars

    NASA Astrophysics Data System (ADS)

    Kaspi, Victoria

    2007-09-01

    Recently discovered transient events in Anomalous X-ray Pulsars (AXPs) may be a Rosetta Stone for understanding the persistent emission from magnetars. They also may hold the key to quantifying the number of magnetars in the Galaxy. Here we request Chandra TOO time to observe any AXP following a rare transient event, including a major outburst or a long-duration flare. Specifically, the requested observations will determine the pulsed fraction and spectral evolution of a transient AXP event as the source relaxes back to quiescence, in order to quantitatively test the "twisted magnetosphere" model for magnetars, and establish the basic phenomenology of transient AXP events.

  10. A Optical Synchrotron Nebula around the X-Ray Pulsar 0540-693

    NASA Astrophysics Data System (ADS)

    Chanan, G.; Helfand, D.; Reynolds, S.

    The authors report the discovery of extended optical continuum emission around the recently discovered 50 ms X-ray pulsar in the supernova remnant 0540-693. Exposures in blue and red broadband filters made with the CTIO 4 m telescope and prime focus CCD show a center-brightened but clearly extended nebula about 4arcsec in diameter (FWHM), while an image in an [O III] filter shows an 8arcsec diameter shell (as reported earlier) which encloses the continuum source. 0540-693 is a system very similar to the Crab nebula and represents the second detection of optical synchrotron radiation in a supernova remnant.

  11. On the Extended Emission of the Anomalous X-ray Pulsar IE 1547.0-5408

    NASA Technical Reports Server (NTRS)

    Olausen, S. A.; Kaspi, V. M.; Ng, C. -Y.; Zhu, W. W.; Gavriil, F. P.; Woods, P. M.

    2012-01-01

    We present an analysis of the extended emission around the anomalous X-ray pulsar IE 1547.0-5408 using four XMM-Newton observations taken with the source in varying states of outburst as well as in quiescence. We find that the extended emission flux is highly variable and strongly correlated with the flux of the magnetar. Based on this result, as well as on spectral and energetic considerations, we conclude that the extended emission is dominated by a dust-scattering halo and not a pulsar wind nebula (P-VVN), as has been previously argued. We obtain an upper limit on the 2-10 keV flux of a possible PWN of 4.7 x 10(exp -14) erg/s/sq cm, three times less than the previously claimed value, implying an efficiency for conversion of spin-down energy into nebular luminosity of <9 x 10(exp -4) .

  12. High-brightness beamline for x-ray spectroscopy at the ALS

    SciTech Connect

    Perera, R.C.C.; Jones, G.; Lindle, D.W.

    1997-04-01

    Beamline 9.3.1 at the Advanced Light Source (ALS) is a windowless beamline, covering the 1-6 keV photon-energy range, designed to achieve the goals of high energy resolution, high flux, and high brightness at the sample. When completed later this year, it will be the first ALS monochromatic hard x-ray beamline, and its brightness will be an order of magnitude higher than presently available in this energy range. In addition, it will provide flux and resolution comparable to any other beamline now in operation. To achieve these goals, two technical improvements, relative to existing x-ray beamlines, were incorporated. First, a somewhat novel optical design for x-rays, in which matched toroidal mirrors are positioned before and after the double-crystal monochromator, was adopted. This configuration allows for high resolution by passing a collimated beam through the monochromator, and for high brightness by focusing the ALS source on the sample with unit magnification. Second, a new {open_quotes}Cowan type{close_quotes} double-crystal monochromator based on the design used at NSLS beamline X-24A was developed. The measured mechanical precision of this new monochromator shows significant improvement over existing designs, without using positional feedback available with piezoelectric devices. Such precision is essential because of the high brightness of the radiation and the long distance (12 m) from the source (sample) to the collimating (focusing) mirror. This combination of features will provide a bright, high resolution, and stable x-ray beam for use in the x-ray spectroscopy program at the ALS.

  13. Prospects for X-ray absorption with the super-bright light sources of the future.

    PubMed

    Norman, D

    2001-03-01

    The immense growth in applications of X-ray absorption spectroscopy (XAS) has been enabled by the widespread availability of intense tunable X-rays from synchrotron radiation sources. Recently, new concepts have been proposed for fourth-generation light sources, such as the SASE (self-amplified stimulated emission) X-ray free-electron lasers (XFELs) being pursued at Hamburg (TESLA) and Stanford (LCLS), and the recirculator ring (MARS) at Novosibirsk. These sources offer expected gains of many orders of magnitude in instantaneous brilliance, which will unlock opportunities for qualitatively different science. Examples of new or greatly expanded techniques in XAS could include Raman X-ray absorption fine structure (XAFS), pump-probe experiments, time-resolved XAFS and small-spot X-ray spectromicroscopy, although the limited tunability of the sources might not allow conventional XAFS measurements. Multi-photon X-ray absorption could become a new field of study. There should not be a collective stampede to these new sources, however, and it is likely that storage rings will continue to be necessary for most XAFS applications. The extreme brightness of these future light sources will present difficult challenges in instrumentation, especially detectors and sample containment. Practitioners will also have to exercise caution, because the intensity of the beam will surely destroy many samples and in some cases there will be so many photons absorbed per atom that XAFS will be impossible.

  14. X-ray emission properties of the old pulsar PSR B2224+65

    NASA Astrophysics Data System (ADS)

    Hui, C. Y.; Becker, W.

    2007-06-01

    Using archival Chandra data we studied the X-ray emission properties of PSR B2224+65 and its environment. Albeit limited by photon statistics the spectral analysis suggests that the bulk of the emission from PSR B2224+65 is non-thermal. Fitting a power-law model to the observed energy spectrum yields a photon index of Γ=1.58+0.43-0.33. The possible origin of the non-thermal pulsar emission is discussed in the context of the outer-gap model. We did not find any evidence for a compact nebula around PSR B2224+65 though the Chandra data reveal the existence of an extended feature which appears to be associated with PSR B2224+65. It extends from the pulsar position about 2 arcmin to the north-west. Its orientation deviates by ˜118° from the pulsar's proper motion direction. Investigating its energy spectrum shows that the emission of this extended feature is much harder than that of the pulsar itself and is non-thermal in nature.

  15. Flares from Galactic Centre pulsars: a new class of X-ray transients?

    NASA Astrophysics Data System (ADS)

    Giannios, Dimitrios; Lorimer, Duncan R.

    2016-06-01

    Despite intensive searches, the only pulsar within 0.1 pc of the central black hole in our Galaxy, Sgr A*, is a radio-loud magnetar. Since magnetars are rare among the Galactic neutron star population, and a large number of massive stars are already known in this region, the Galactic Centre (GC) should harbour a large number of neutron stars. Population syntheses suggest several thousand neutron stars may be present in the GC. Many of these could be highly energetic millisecond pulsars which are also proposed to be responsible for the GC gamma-ray excess. We propose that the presence of a neutron star within 0.03 pc from Sgr A* can be revealed by the shock interactions with the disc around the central black hole. As we demonstrate, these interactions result in observable transient non-thermal X-ray and gamma-ray emission over time-scales of months, provided that the spin-down luminosity of the neutron star is Lsd ˜ 1035 erg s-1. Current limits on the population of normal and millisecond pulsars in the GC region suggest that a number of such pulsars are present with such luminosities.

  16. Contrasting Behaviour from Two Be/X-ray Binary Pulsars: Insights into Differing Neutron Star Accretion Modes

    NASA Technical Reports Server (NTRS)

    Townsend, L. J.; Drave, S. P.; Hill, A. B.; Coe, M. J.; Corbet, R. H. D.; Bird, A. J.

    2013-01-01

    In this paper we present the identification of two periodic X-ray signals coming from the direction of the Small Magellanic Cloud (SMC). On detection with the Rossi X-ray Timing Explorer (RXTE), the 175.4 s and 85.4 s pulsations were considered to originate from new Be/X-ray binary (BeXRB) pulsars with unknown locations. Using rapid follow-up INTEGRAL and XMM-Newton observations, we show the first pulsar (designated SXP175) to be coincident with a candidate high-mass X-ray binary (HMXB) in the northern bar region of the SMC undergoing a small Type II outburst. The orbital period (87d) and spectral class (B0-B0.5IIIe) of this system are determined and presented here for the first time. The second pulsar is shown not to be new at all, but is consistent with being SXP91.1 - a pulsar discovered at the very beginning of the 13 year long RXTE key monitoring programme of the SMC. Whilst it is theoretically possible for accreting neutron stars to change spin period so dramatically over such a short time, the X-ray and optical data available for this source suggest this spin-up is continuous during long phases of X-ray quiescence, where accretion driven spin-up of the neutron star should be minimal.

  17. Implications of rapid rotation for pulse profile models of millisecond-period x-ray pulsars

    NASA Astrophysics Data System (ADS)

    Cadeau, Coire

    2007-08-01

    The rapid rotation of recycled neutron stars in accretion-powered millisecond- period X-ray pulsars has important consequences for models of their pulsed emission, and by extension, the analysis of observations of these objects. We begin by considering the problem of calculating the time-varying bolometric flux arising due to emission from a bright spot on the surface of a rapidly rotating neutron star, with rotational period on the order of a millisecond. We restrict to the case of isotropic emission from an infinitesimal emission zone, but carry out the calculations with sufficient generality to incorporate a precisely solved spacetime metric and stellar structure. The geodesic equation is integrated numerically. Using the computer code developed for this work, we investigate the effect that commonly-used simplifying approximations have on the shape of the pulse profile compared to the full calculation. In particular, we consider the effect of neglecting the phase-dependent travel time of photons, approximating the exterior metric as either Schwarzschild or Kerr, and neglecting the rotation- induced oblateness of the neutron star. We also consider the consequences that result when approximate pulse profiles are used to obtain neutron star parameters such as mass, radius, emission inclination, and observer inclination via least squares fitting. Specifically, we look at fitting light curves calculated using the Schwarzschild metric and a spherical star to a light curve calculated using a precisely-solved metric and stellar structure. We are able to conclude that, in an idealised case where there is no random noise component and all light curves are for bolometric fluxes from isotropic emission, neglecting photon times-of-flight or stellar oblateness in model light curves used for fitting can introduce errors at the level of several tens of percent on the determination of mass and radius individually. However, these errors will often offset each other such that the

  18. PLEIADES: High Peak Brightness, Subpicosecond Thomson Hard-X-ray source

    SciTech Connect

    Kuba, J; Anderson, S G; Barty, C J; Betts, S M; Booth, R; Brown, W J; Crane, J K; Cross, R R; Fittinghoff, D N; Gibson, D J; Harteman, F V; Le Sage, G P; Rosenzweig, J B; Tremaine, A M; Springer, P T

    2003-12-15

    The Picosecond Laser-Electron Inter-Action for the Dynamic Evaluation of Structures (PLEIADES) facility, is a unique, novel, tunable (10-200 keV), ultrafast (ps-fs), hard x-ray source that greatly extends the parameter range reached by existing 3rd generation sources, both in terms of x-ray energy range, pulse duration, and peak brightness at high energies. First light was observed at 70 keV early in 2003, and the experimental data agrees with 3D codes developed at LLNL. The x-rays are generated by the interaction of a 50 fs Fourier-transform-limited laser pulse produced by the TW-class FALCON CPA laser and a highly focused, relativistic (20-100 MeV), high brightness (1 nC, 0.3-5 ps, 5 mm.mrad, 0.2% energy spread) photo-electron bunch. The resulting x-ray brightness is expected to exceed 10{sup 20} ph/mm{sup 2}/s/mrad{sup 2}/0.1% BW. The beam is well-collimated (10 mrad divergence over the full spectrum, 1 mrad for a single color), and the source is a unique tool for time-resolved dynamic measurements in matter, including high-Z materials.

  19. IGR J17062–6143 Is an Accreting Millisecond X-Ray Pulsar

    NASA Astrophysics Data System (ADS)

    Strohmayer, Tod; Keek, Laurens

    2017-02-01

    We present the discovery of 163.65 Hz X-ray pulsations from IGR J17062‑6143 in the only observation obtained from the source with the Rossi X-ray Timing Explorer. This detection makes IGR J17062‑6143 the lowest-frequency accreting millisecond X-ray pulsar presently known. The pulsations are detected in the 2–12 keV band with an overall significance of 4.3σ and an observed pulsed amplitude of 5.54% ± 0.67% (in this band). Both dynamic power spectral and coherent phase timing analysis indicate that the pulsation frequency is decreasing during the ≈1.2 ks observation in a manner consistent with orbital motion of the neutron star. Because the observation interval is short, we cannot precisely measure the orbital period; however, periods shorter than 17 minutes are excluded at 90% confidence. For the range of acceptable circular orbits the inferred binary mass function substantially overlaps the observed range for the AMXP population as a whole.

  20. Dynamical and Radiative Properties of X-Ray Pulsar Accretion Columns: Phase-averaged Spectra

    NASA Astrophysics Data System (ADS)

    West, Brent F.; Wolfram, Kenneth D.; Becker, Peter A.

    2017-02-01

    The availability of the unprecedented spectral resolution provided by modern X-ray observatories is opening up new areas for study involving the coupled formation of the continuum emission and the cyclotron absorption features in accretion-powered X-ray pulsar spectra. Previous research focusing on the dynamics and the associated formation of the observed spectra has largely been confined to the single-fluid model, in which the super-Eddington luminosity inside the column decelerates the flow to rest at the stellar surface, while the dynamical effect of gas pressure is ignored. In a companion paper, we have presented a detailed analysis of the hydrodynamic and thermodynamic structure of the accretion column obtained using a new self-consistent model that includes the effects of both gas and radiation pressures. In this paper, we explore the formation of the associated X-ray spectra using a rigorous photon transport equation that is consistent with the hydrodynamic and thermodynamic structure of the column. We use the new model to obtain phase-averaged spectra and partially occulted spectra for Her X-1, Cen X-3, and LMC X-4. We also use the new model to constrain the emission geometry, and compare the resulting parameters with those obtained using previously published models. Our model sheds new light on the structure of the column, the relationship between the ionized gas and the photons, the competition between diffusive and advective transport, and the magnitude of the energy-averaged cyclotron scattering cross-section.

  1. IGR J170626143 is an Accreting Millisecond X-Ray Pulsar

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod E.; Keek, Laurens

    2017-01-01

    We present the discovery of 163.65 Hz X-ray pulsations from IGR J17062-6143 in the only observation obtained from the source with the Rossi X-ray Timing Explorer. This detection makes IGR J17062-6143 the lowest frequency accreting millisecond X-ray pulsar presently known. The pulsations are detected in the 2-12 keV band with an overall significance of 4.3sigma and an observed pulsed amplitude of 5.54% +/-0.67% (in this band). Both dynamic power spectral and coherent phase timing analysis indicate that the pulsation frequency is decreasing during the approx. =1.2 ks observation in a manner consistent with orbital motion of the neutron star. Because the observation interval is short, we cannot precisely measure the orbital period; however, periods shorter than 17 minutes are excluded at 90% confidence. For the range of acceptable circular orbits the inferred binary mass function substantially overlaps the observed range for the AMXP population as a whole.

  2. Chandra X-Ray Observations of 19 Millisecond Pulsars in the Globular Cluster 47 Tucanae

    NASA Astrophysics Data System (ADS)

    Bogdanov, Slavko; Grindlay, Jonathan E.; Heinke, Craig O.; Camilo, Fernando; Freire, Paulo C. C.; Becker, Werner

    2006-08-01

    We present spectral and long-timescale variability analyses of Chandra X-Ray Observatory ACIS-S observations of the 19 millisecond pulsars (MSPs) with precisely known positions in the globular cluster 47 Tucanae. The X-ray emission of the majority of these MSPs is well described by a thermal (blackbody or neutron star hydrogen atmosphere) spectrum with a temperature Teff~(1-3)×106 K, emission radius Reff~0.1-3 km, and luminosity LX~1030-1031 ergs s-1. For several MSPs, there are indications that a second thermal component is required, similar to what is seen in some nearby field MSPs. The observed radiation most likely originates from the heated magnetic polar caps of the MSPs. The small apparent scatter in LX is consistent with thermal emission from the polar caps of a global dipole field, although the small emission areas may imply either a more complex small-scale magnetic field configuration near the neutron star surface or nonuniform polar cap heating. The radio eclipsing binary MSPs 47 Tuc J, O, and W show a significant nonthermal (power-law) component, with spectral photon index Γ~1-1.5, which most likely originates in an intrabinary shock formed due to interaction between the relativistic pulsar wind and matter from the stellar companion. We reexamine the X-ray-spin-down luminosity relation (LX-E˙ relation) and find that for the MSPs with thermal spectra LX~E˙β, where β~0.2+/-1.1. Due to the large uncertainties in both parameters, the result is consistent with both the linear LX-E˙ relation and the flatter LX~E˙0.5 predicted by polar cap heating models. In terms of X-ray properties, we find no clear systematic differences between MSPs in globular clusters and in the field of the Galaxy. We discuss the implications of these results on the present understanding of the X-ray emission properties of MSPs.

  3. Discovery of a new accreting millisecond X-ray pulsar in the globular cluster NGC 2808

    NASA Astrophysics Data System (ADS)

    Sanna, A.; Papitto, A.; Burderi, L.; Bozzo, E.; Riggio, A.; Di Salvo, T.; Ferrigno, C.; Rea, N.; Iaria, R.

    2017-01-01

    We report on the discovery of coherent pulsations at a period of 2.9 ms from the X-ray transient MAXI J0911-655 in the globular cluster NGC 2808. We observed X-ray pulsations at a frequency of 339.97 Hz in three different observations of the source performed with XMM-Newton and NuSTAR during the source outburst. This newly discovered accreting millisecond pulsar is part of an ultra-compact binary system characterised by an orbital period of 44.3 min and a projected semi-major axis of 17.6 lt-ms. Based on the mass function, we estimate a minimum companion mass of 0.024 M⊙, which assumes a neutron star mass of 1.4 M⊙ and a maximum inclination angle of 75° (derived from the lack of eclipses and dips in the light-curve of the source). We find that the Roche-lobe of the companion star could either be filled by a hot (5 × 106 K) pure helium white dwarf with a 0.028 M⊙ mass (implying i ≃ 58°) or an old (>5 Gyr) brown dwarf with metallicity abundances between solar/sub-solar and mass ranging in the interval 0.065 to 0.085 (16 < i < 21). During the outburst, the broad-band energy spectra are well described by a superposition of a weak black-body component (kT 0.5 keV) and a hard cut-off power-law with photon index Γ 1.7 and cut-off at a temperature kTe 130 keV. Up until the latest Swift-XRT observation performed on 19th July, 2016, the source had been observed in outburst for almost 150 days, which makes MAXI J0911-655 the second accreting millisecond X-ray pulsar with outburst duration longer than 100 days.

  4. Bright Points and Subflares in Ultraviolet Lines and X-Rays

    NASA Technical Reports Server (NTRS)

    Rovira, M.; Schmieder, B.; Demoulin, P.; Simnett, G. M.; Hagyard, M. J.; Reichmann, E.; Reichmann, E.; Tandberg-Hanssen, E.

    1999-01-01

    We have analyzed an active region which was observed in H.alpha (Multichannel Subtractive Double Pass Spectrograph), in UV lines (SMM/UVSP), and in X-rays (SMM/HXIS). In this active region there were only a few subflares and many small bright points visible in UV and in X-rays. Using an extrapolation based on the Fourier transform, we have computed magnetic field lines connecting different photospheric magnetic polarities from ground-based magnetograms. Along the magnetic inversion lines we find two different zones: (1) a high-shear region (> 70 deg) where subflares occur, and (2) a low-shear region along the magnetic inversion line where UV bright points are observed. In these latter regions the magnetic topology is complex with a mixture of polarities. According to the velocity field observed in the Si IV lamda.1402 line and the extrapolation of the magnetic field, we notice that each UV bright point is consistent with emission from low-rising loops with downflows at both ends. We notice some hard X-ray emissions above the bright-point regions with temperatures up to 8 x 10(exp 6) K, which suggests some induced reconnection due to continuous emergence of new flux. This reconnection is also enhanced by neighboring subflares.

  5. DISCOVERY OF X-RAY PULSATION FROM THE GEMINGA-LIKE PULSAR PSR J2021+4026

    SciTech Connect

    Lin, L. C. C.; Hui, C. Y.; Seo, K. A.; Hu, C. P.; Chou, Y.; Wu, J. H. K.; Huang, R. H. H.; Trepl, L.; Takata, J.; Wang, Y.; Cheng, K. S.

    2013-06-10

    We report the discovery of an X-ray periodicity of {approx}265.3 ms from a deep XMM-Newton observation of the radio-quiet {gamma}-ray pulsar, PSR J2021+4026, located at the edge of the supernova remnant G78.2+2.1 ({gamma}-Cygni). The detected frequency is consistent with the {gamma}-ray pulsation determined by the observation of the Fermi Gamma-ray Space Telescope at the same epoch. The X-ray pulse profile resembles the modulation of a hot spot on the surface of the neutron star. The phase-averaged spectral analysis also suggests that the majority of the observed X-rays have thermal origins. This is the third member in the class of radio-quiet pulsars with significant pulsations detected from both X-ray and {gamma}-ray regimes.

  6. Generation of bright isolated attosecond soft X-ray pulses driven by multicycle midinfrared lasers.

    PubMed

    Chen, Ming-Chang; Mancuso, Christopher; Hernández-García, Carlos; Dollar, Franklin; Galloway, Ben; Popmintchev, Dimitar; Huang, Pei-Chi; Walker, Barry; Plaja, Luis; Jaroń-Becker, Agnieszka A; Becker, Andreas; Murnane, Margaret M; Kapteyn, Henry C; Popmintchev, Tenio

    2014-06-10

    High harmonic generation driven by femtosecond lasers makes it possible to capture the fastest dynamics in molecules and materials. However, to date the shortest subfemtosecond (attosecond, 10(-18) s) pulses have been produced only in the extreme UV region of the spectrum below 100 eV, which limits the range of materials and molecular systems that can be explored. Here we experimentally demonstrate a remarkable convergence of physics: when midinfrared lasers are used to drive high harmonic generation, the conditions for optimal bright, soft X-ray generation naturally coincide with the generation of isolated attosecond pulses. The temporal window over which phase matching occurs shrinks rapidly with increasing driving laser wavelength, to the extent that bright isolated attosecond pulses are the norm for 2-µm driving lasers. Harnessing this realization, we experimentally demonstrate the generation of isolated soft X-ray attosecond pulses at photon energies up to 180 eV for the first time, to our knowledge, with a transform limit of 35 attoseconds (as), and a predicted linear chirp of 300 as. Most surprisingly, advanced theory shows that in contrast with as pulse generation in the extreme UV, long-duration, 10-cycle, driving laser pulses are required to generate isolated soft X-ray bursts efficiently, to mitigate group velocity walk-off between the laser and the X-ray fields that otherwise limit the conversion efficiency. Our work demonstrates a clear and straightforward approach for robustly generating bright isolated attosecond pulses of electromagnetic radiation throughout the soft X-ray region of the spectrum.

  7. Generation of bright isolated attosecond soft X-ray pulses driven by multicycle midinfrared lasers

    PubMed Central

    Chen, Ming-Chang; Mancuso, Christopher; Hernández-García, Carlos; Dollar, Franklin; Galloway, Ben; Popmintchev, Dimitar; Huang, Pei-Chi; Walker, Barry; Plaja, Luis; Jaroń-Becker, Agnieszka A.; Becker, Andreas; Murnane, Margaret M.; Kapteyn, Henry C.; Popmintchev, Tenio

    2014-01-01

    High harmonic generation driven by femtosecond lasers makes it possible to capture the fastest dynamics in molecules and materials. However, to date the shortest subfemtosecond (attosecond, 10−18 s) pulses have been produced only in the extreme UV region of the spectrum below 100 eV, which limits the range of materials and molecular systems that can be explored. Here we experimentally demonstrate a remarkable convergence of physics: when midinfrared lasers are used to drive high harmonic generation, the conditions for optimal bright, soft X-ray generation naturally coincide with the generation of isolated attosecond pulses. The temporal window over which phase matching occurs shrinks rapidly with increasing driving laser wavelength, to the extent that bright isolated attosecond pulses are the norm for 2-µm driving lasers. Harnessing this realization, we experimentally demonstrate the generation of isolated soft X-ray attosecond pulses at photon energies up to 180 eV for the first time, to our knowledge, with a transform limit of 35 attoseconds (as), and a predicted linear chirp of 300 as. Most surprisingly, advanced theory shows that in contrast with as pulse generation in the extreme UV, long-duration, 10-cycle, driving laser pulses are required to generate isolated soft X-ray bursts efficiently, to mitigate group velocity walk-off between the laser and the X-ray fields that otherwise limit the conversion efficiency. Our work demonstrates a clear and straightforward approach for robustly generating bright isolated attosecond pulses of electromagnetic radiation throughout the soft X-ray region of the spectrum. PMID:24850866

  8. High-energy Neutrino Flares from X-Ray Bright and Dark Tidal Disruption Events

    NASA Astrophysics Data System (ADS)

    Senno, Nicholas; Murase, Kohta; Mészáros, Peter

    2017-03-01

    X-ray and γ-ray observations by the Swift satellite revealed that a fraction of tidal disruption events (TDEs) have relativistic jets. Jetted TDEs have been considered to be potential sources of very-high-energy cosmic-rays and neutrinos. In this work, using semi-analytical methods, we calculate neutrino spectra of X-ray bright TDEs with powerful jets and dark TDEs with possible choked jets, respectively. We estimate their neutrino fluxes and find that non-detection would give us an upper limit on the baryon loading of the jet luminosity contained in cosmic-rays ξ cr ≲ 20–50 for Sw J1644+57. We show that X-ray bright TDEs make a sub-dominant (≲5%–10%) contribution to IceCube’s diffuse neutrino flux, and study possible contributions of X-ray dark TDEs given that particles are accelerated in choked jets or disk winds. We discuss future prospects for multi-messenger searches of the brightest TDEs.

  9. EXTENDED HARD X-RAY EMISSION FROM THE VELA PULSAR WIND NEBULA

    SciTech Connect

    Mattana, F.; Terrier, R.; Zurita Heras, J. A.; Goetz, D.; Caballero, I.; Soldi, S.; Schanne, S.; Ponti, G.; Falanga, M.; Renaud, M.

    2011-12-10

    The nebula powered by the Vela pulsar is one of the best examples of an evolved pulsar wind nebula, allowing access to the particle injection history and the interaction with the supernova ejecta. We report on the INTEGRAL discovery of extended emission above 18 keV from the Vela nebula. The northern side has no known counterparts and it appears larger and more significant than the southern one, which is in turn partially coincident with the cocoon, the soft X-ray, and TeV filament toward the center of the remnant. We also present the spectrum of the Vela nebula in the 18-400 keV energy range as measured by IBIS/ISGRI and SPI on board the INTEGRAL satellite. The apparent discrepancy between IBIS/ISGRI, SPI, and previous measurements is understood in terms of the point-spread function, supporting the hypothesis of a nebula more diffuse than previously thought. A break at {approx}25 keV is found in the spectrum within 6' from the pulsar after including the Suzaku XIS data. Interpreted as a cooling break, this points out that the inner nebula is composed of electrons injected in the last {approx}2000 years. Broadband modeling also implies a magnetic field higher than 10 {mu}G in this region. Finally, we discuss the nature of the northern emission, which might be due to fresh particles injected after the passage of the reverse shock.

  10. EVOLUTION OF TRANSIENT LOW-MASS X-RAY BINARIES TO REDBACK MILLISECOND PULSARS

    SciTech Connect

    Jia, Kun; Li, Xiang-Dong

    2015-11-20

    Redback millisecond pulsars (MSPs; hereafter redbacks) are a subpopulation of eclipsing MSPs in close binaries. The formation processes of these systems are not clear. The three pulsars showing transitions between rotation- and accretion-powered states belong to both redbacks and transient low-mass X-ray binaries (LMXBs), suggesting a possible evolutionary link between them. Through binary evolution calculations, we show that the accretion disks in almost all LMXBs are subject to the thermal-viscous instability during certain evolutionary stages, and the parameter space for the disk instability covers the distribution of known redbacks in the orbital period—companion mass plane. We accordingly suggest that the abrupt reduction of the mass accretion rate during quiescence of transient LMXBs provides a plausible way to switch on the pulsar activity, leading to the formation of redbacks, if the neutron star has been spun up to be an energetic MSP. We investigate the evolution of redbacks, taking into account the evaporation feedback, and discuss its possible influence on the formation of black widow MSPs.

  11. Swift-XRT confirms the renewed X-ray activity of the Bursting Pulsar "GRO J1744-28"

    NASA Astrophysics Data System (ADS)

    Sanna, A.; D'Ai, A.; Bozzo, E.; Riggio, A.; Pintore, F.; Burderi, L.; Di Salvo, T.; Iaria, R.

    2017-02-01

    Triggered by the X-ray enhancement reported by INTEGRAL on 2017, Feb. 13 at a position compatible with the X-ray binary GRO J1744-28 (Atel #10073), a 1 ks observation with Swift-XRT was promptly carried out. Swift-XRT, operated in Window Timing mode, detected a bright X-ray source with mean count rate of approximately 3 cts/s.

  12. A CHANDRA OBSERVATION OF THE BURSTING MILLISECOND X-RAY PULSAR IGR J17511-3057

    SciTech Connect

    Paizis, A.; Nowak, M. A.; Rodriguez, J.; Chaty, S.; Del Santo, M.; Ubertini, P. E-mail: mnowak@space.mit.edu

    2012-08-10

    IGR J17511-3057 is a low-mass X-ray binary hosting a neutron star and is one of the few accreting millisecond X-ray pulsars with X-ray bursts. We report on a 20 ks Chandra grating observation of IGR J17511-3057, performed on 2009 September 22. We determine the most accurate X-ray position of IGR J17511-3057, {alpha}{sub J2000} = 17{sup h}51{sup m}08.{sup s}66, {delta}{sub J2000} = -30 Degree-Sign 57'41.''0 (90% uncertainty of 0.''6). During the observation, a {approx}54 s long type-I X-ray burst is detected. The persistent (non-burst) emission has an absorbed 0.5-8 keV luminosity of 1.7 Multiplication-Sign 10{sup 36} erg s{sup -1} (at 6.9 kpc) and can be well described by a thermal Comptonization model of soft, {approx}0.6 keV, seed photons upscattered by a hot corona. The type-I X-ray burst spectrum, with average luminosity over the 54 s duration L{sub 0.5-8{sub keV}} = 1.6 Multiplication-Sign 10{sup 37} erg s{sup -1}, can be well described by a blackbody with kT{sub bb} {approx} 1.6 keV and R{sub bb} {approx} 5 km. While an evolution in temperature of the blackbody can be appreciated throughout the burst (average peak kT{sub bb} = 2.5{sup +0.8}{sub -0.4} keV to tail kT{sub bb} = 1.3{sup +0.2}{sub -0.1} keV), the relative emitting surface shows no evolution. The overall persistent and type-I burst properties observed during the Chandra observation are consistent with what was previously reported during the 2009 outburst of IGR J17511-3057.

  13. THE QUIESCENT X-RAY PROPERTIES OF THE ACCRETING MILLISECOND X-RAY PULSAR AND ECLIPSING BINARY SWIFT J1749.4-2807

    SciTech Connect

    Degenaar, N.; Patruno, A.; Wijnands, R.

    2012-09-10

    Swift J1749.4-2807 is a transient neutron star low-mass X-ray binary that contains an accreting millisecond X-ray pulsar spinning at 518 Hz. It is the first of its kind that displays X-ray eclipses, which holds significant promise to precisely constrain the mass of the neutron star. We report on a {approx_equal} 105 ks long XMM-Newton observation performed when Swift J1749.4-2807 was in quiescence. We detect the source at a 0.5-10 keV luminosity of {approx_equal}1 Multiplication-Sign 10{sup 33}(D/6.7 kpc){sup 2} erg s{sup -1}. The X-ray light curve displays three eclipses that are consistent in orbital phase and duration with the ephemeris derived during outburst. Unlike most quiescent neutron stars, the X-ray spectrum can be adequately described with a simple power law, while a pure-hydrogen atmosphere model does not fit the data. We place an upper limit on the 0.01-100 keV thermal luminosity of the cooling neutron star of {approx}< 2 Multiplication-Sign 10{sup 33} erg s{sup -1} and constrain its temperature to be {approx}< 0.1 keV (for an observer at infinity). Timing analysis does not reveal evidence for X-ray pulsations near the known spin frequency of the neutron star or its first overtone with a fractional rms of {approx}< 34% and {approx}< 28%, respectively. We discuss the implications of our findings for dynamical mass measurements, the thermal state of the neutron star, and the origin of the quiescent X-ray emission.

  14. Discovery of a 105-ms X-ray Pulsar in Kesteven-79: On the Nature of Compact Central Objects in Supernova Remnants

    NASA Technical Reports Server (NTRS)

    Gotthelf, E. V.; Halpern, J. P.; Seward, F. D.

    2005-01-01

    We report the discovery of 105-ms X-ray pulsations from the compact central object (CCO) in the supernova remnant \\snr\\ using data acquired with the {\\it Newton X-Ray Multi-Mirror Mission). Using two observations of the pulsar taken 6-days apart we derive an upper limit on its spin-down rate of $\\dot P < 9 \\times 10"{-14}$-s-${-l)$,a nd find no evidence for binary orbital motion. The implied energy loss rate is $\\dot E < 3 \\times 10A{36)$-ergs-s$A{-1)$, polar magnetic field strength is $B-{\\rm p) < 3 \\times 10A{12)$-G, and spin-down age is $\\tau > 18.5$-kyr. The latter exceeds the remnant's estimated age, suggesting that the pulsar was born spinning near its current period. The X-ray spectrum of \\psr\\ is best characterized as a blackbody of temperature $kT {BB) =, 0.43\\pm0.02$ keV, radius $R-{BB) \\approx 1.3$-km, and $I{\\rm bol) = 5.2 \\times 10A{33)$ ergs-sSA{-1)$ at $d = 7.1$-kpc. The sinusoidal light curve is modulated with a pulsed fraction of $>45\\%$, suggestive of a small hot spot on the surface of the rotating neutron star. The lack of a discernible pulsar wind nebula is consistent with an interpretation of \\psr\\ as a rotation-powered pulsar whose spin-down luminosity falls below the empirical threshold for generating bright wind nebulae, $\\dot E-{\\rm c) = 4 \\times 10A{36)$-ergs-sSA{-I)$. The age discrepancy suggests that its $\\dot E$ has always been below $\\dot E c$, perhaps a distinguishing property of the CCOs. Alternatively, the X-ray spectrum of \\psr\\ suggests a low-luminosity AXP, but the weak inferred $B-{\\rm p)$ field is incompatible with a magnetar theory of its X-ray luminosity. The ordinary spin parameters discovered from \\psr\\ highlight the inability of existing theories to explain the high luminosities and temperatures of CCO thermal X-ray spectra.

  15. On the Magnetic Field of the Ultraluminous X-Ray Pulsar M82 X-2

    NASA Astrophysics Data System (ADS)

    Xu, Kun; Li, Xiang-Dong

    2017-04-01

    The discovery of the ultraluminous X-ray pulsar M82 X-2 has stimulated lively discussion on the nature of the accreting neutron star. In most of the previous studies the magnetic field of the neutron star was derived from the observed spin-up/down rates based on the standard thin, magnetized accretion disk model. However, under super-Eddington accretion the inner part of the accretion disk becomes geometrically thick. In this work we consider both radiation feedback from the neutron star and the sub-Keplerian rotation in a thick disk and calculate the magnetic moment–mass accretion rate relations for the measured rates of spin change. We find that the derived neutron star's dipole magnetic field depends on the maximum accretion rate adopted, but is likely ≲1013 G. The predicted accretion rate change can be used to test the proposed models by comparison with observations.

  16. Compact radiation sources for increased access to high brightness x-rays

    NASA Astrophysics Data System (ADS)

    O'Shea, Finn Henry

    The successful operation of the x-ray free electron lasers at LCLS and SACLA are a boon for science. The increase in brightness of 10 orders of magnitude over synchrotron sources as well as the sub-picosecond time profile of the x-rays are opening new avenues of research in fields ranging from biology to solid state physics. However, synchrotrons and free electron lasers that produce x-rays are expensive, with price tags that measured hundreds of millions. Further, the standard unit of measure for the scale of these sources is kilometers. The sheer size and prohibitive cost of these devices means that such sources are out of the reach of universities and smaller laboratories. The focus of this dissertation is in increasing access to x-ray sources by making them both smaller and, perhaps more importantly, cheaper. Current limitations to source size reduction are discussed which leads to the conclusion that smaller x-rays sources require short period undulators. In this context, two approaches to increasing access to x-rays are covered. The first is direct decrease in the period length of undulators through more advanced design and materials. This path begins with a discussion of the design and construction of a 9 mm period prototype. An analysis of the benefits of such a device, in reduced undulator and accelerator lengths at existing free electron lasers, is explored. And finally, the operation of the undulator in a realistic scenario is experimentally explored in a scaled experiment at optical frequencies. The second method for decreasing the period length of the light source is to replace the undulator with a laser, making an inverse Compton scattering source. The relationship between undulator radiation and the inverse Compton scattering process is examined, as well as the characteristics of the source itself. Lastly, as a demonstration of the function of the inverse Compton scattering source at Brookhaven National Laboratory as a diagnostic tool rather than an

  17. Magnetic fields in Supernova Remnants and Pulsar-Wind Nebulae: Deductions from X-ray Observations

    NASA Astrophysics Data System (ADS)

    Reynolds, S. P.

    2016-06-01

    Magnetic field strengths B in synchrotron sources are notoriously difficult to measure. Simple arguments such as equipartition of energy can give values for which the total energy is a minimum, but there is no guarantee that Nature obeys it, or even if so, what particle population (just electrons? electrons plus ions?) should have an energy density comparable to that in magnetic field. However, the operation of synchrotron losses can provide additional information, if those losses are manifested in the synchrotron spectra as steepenings of the spectral-energy distribution above some characteristic frequency often called a "break" (though it is more typically a gradual curvature). A source of known age, if it has been accelerating particles continuously, will have such a break above the energy at which particle radiative lifetimes equal the source age, and this can give B. However, in spatially resolved sources such as supernova remnants (SNRs) and pulsar-wind nebulae (PWNe), systematic advection of particles, if at a known rate, gives a second measure of particle age to compare with radiative lifetimes. In most young SNRs, synchrotron X-rays make a contribution to the X-ray spectrum, and are usually found in thin rims at the remnant edges. If the rims are thin in the radial direction due to electron energy losses, a magnetic-field strength can be estimated. I present recent modeling of this process, along with models in which rims are thin due to decay of magnetic turbulence, and apply them to the remnants of SN 1006 and Tycho. In PWNe, outflows of relativistic plasma behind the pulsar wind termination shock are likely quite inhomogeneous, so magnetic-field estimates based on source lifetimes and assuming spatial uniformity can give misleading values for B. I shall discuss inhomogeneous PWN models and the effects they can have on B estimates.

  18. A Suzaku View of Accretion-powered X-Ray Pulsar GX 1+4

    NASA Astrophysics Data System (ADS)

    Yoshida, Yuki; Kitamoto, Shunji; Suzuki, Hiroo; Hoshino, Akio; Naik, Sachindra; Jaisawal, Gaurava K.

    2017-03-01

    We present results obtained from a Suzaku observation of the accretion-powered X-ray pulsar GX 1+4. A broadband continuum spectrum of the pulsar was found to be better described by a simple model consisting of a blackbody component and an exponential cutoff power law than the previously used compTT continuum model. Though the pulse profile had a sharp dip in soft X-rays (<10 keV), phase-resolved spectroscopy confirmed that the dimming was not due to an increase in photoelectric absorption. Phase-sliced spectral analysis showed the presence of a significant spectral modulation beyond 10 keV except for the dip phase. A search for the presence of a cyclotron resonance scattering feature in the Suzaku spectra yielded a negative result. Iron K-shell (K{}α and {{{K}}}β ) emission lines from nearly neutral iron ions (

  19. X-ray Observations of the Bright Old Nova V603 Aquilae

    NASA Technical Reports Server (NTRS)

    Mukai, K.; Orio, M.

    2004-01-01

    We report on our Chandra and RXTE observations of the bright old nova, V603 Aql, performed in 2001 April, supplemented by our analysis of archival X-ray data on this object. We find that the RXTE data are contaminated by the Galactic Ridge X-ray emission. After accounting for this effect, we find a high level of aperiodic variability in the RXTE data, at a level consistent with the uncontaminated Chandra data. The Chandra HETG spectrum clearly originates in a multi-temperature plasma. We constrain the possible emission measure distribution of the plasma through a combination of global and local fits. The X-ray luminosity and the spectral shape of V603 Aql resemble those of SS Cyg in transition between quiescence and outburst. The fact that the X-ray flux variability is only weakly energy dependent can be interpreted by supposing that the variability is due to changes in the maximum temperature of the plasma. The plasma density is likely to be high, and the emission region is likely to be compact. Finally, the apparent overabundance of Ne is consistent with V603 Aql being a young system.

  20. NuSTAR Observations of Bright X-ray Flares from Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Vievering, Juliana; Glesener, Lindsay; Grefenstette, Brian; Smith, David

    2016-05-01

    Bright x-ray flares are observed to occur on young stellar objects (YSOs) and are presumed to be driven by similar processes as those seen on our sun. Observations of the flaring activity of YSOs can add to our understanding of the early lives of stars and the development of planetary systems. In particular, x-ray observations of these stellar flares are essential for probing the youngest stars, as these stars are most obscured by dense molecular clouds. One such cloud complex of YSOs, rho Ophiuchi, has been a past target for soft x-ray (SXR) missions, including Chandra and XMM-Newton. However, the energy ranges covered by these missions drop off prior to the hard x-ray (HXR) regime, where the crossover to a dominant nonthermal component could be observed. Whether or not this nonthermal emission is strong enough to be observed could then be an indicator of how large an influence these flares have on the surrounding protoplanetary disk. To begin investigating this HXR emission, two 50ks observations of rho Ophiuchi have been taken with the Nuclear Spectroscopic Telescope Array (NuSTAR), which is optimized over the energy range of 3-79 keV. Multiple stellar flares have been identified in the observations; here we present the preliminary analysis, including light curves and spectra, of the brightest of these flaring events. We explore the implications of the data for flaring activity of YSOs and compare the results to typical flaring activity of the sun.

  1. The Geminga Pulsar: Soft X-Ray Variability and an EUVE Observation

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Martin, Christopher; Marshall, Herman L.; Oliversen, Ronald (Technical Monitor)

    2001-01-01

    We observed the Geminga pulsar with the EUVE satellite, detecting pulsed emission in the Deep Survey imager. Joint spectral fits of the EUVE flux with ROSAT PSPC data are consistent with thermal plus power-law models in which the thermal component makes the dominant contribution to the soft X-ray flux seen by EUVE and ROSAT. The data are consistent with blackbody emission of T = (4 - 6) x 10(exp 5) K over most of the surface of the star at the measured parallax distance of 160 pc. Although model atmospheres are more realistic, and can fit the data with effective temperatures a factor of 2 lower, current data would not discriminate between these and blackbody models. We also find evidence for variability of Geminga's soft X-ray pulse shape. Narrow dips in the light curve that were present in 1991 had largely disappeared in 1993/1994, causing the pulsed fraction to decline from 32% to 18%. If the dips are attributed to cyclotron resonance scattering by an e1 plasma on closed magnetic field lines, then the process that resupplies that plasma must be variable.

  2. The Geminga Pulsar: Soft X-Ray Variability and an EUVE Observation

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Martin, Christopher; Marshall, Herman L.

    1996-01-01

    We observed the Geminga pulsar with the EUVE satellite, detecting pulsed emission in the Deep Survey imager. Joint spectral fits of the EUVE flux with ROSAT PSPC data are consistent with thermal plus power-law models in which the thermal component makes the dominant contribution to the soft X-ray flux seen by EUVE and ROSAT. The data are consistent with blackbody emission of T = (4-6) x 10(exp 5) K over most of the surface of the star at the measured parallax distance of 160 pc. Although model atmospheres are more realistic, and can fit the data with effective temperatures a factor of 2 lower, current data would not discriminate between these and blackbody models. We also find evidence for variability of Geminga's soft X-ray pulse shape. Narrow dips in the light curve that were present in 1991 had largely disappeared in 1993/1994, causing the pulsed fraction to decline from 32% to 18%. If the dips are attributed to cyclotron resonance scattering by an e(+/-) plasma on closed magnetic field lines, then the process that resupplies that plasma must be variable.

  3. Two populations of X-ray pulsars produced by two types of supernova.

    PubMed

    Knigge, Christian; Coe, Malcolm J; Podsiadlowski, Philipp

    2011-11-09

    Two types of supernova are thought to produce the overwhelming majority of neutron stars in the Universe. The first type, iron-core-collapse supernovae, occurs when a high-mass star develops a degenerate iron core that exceeds the Chandrasekhar limit. The second type, electron-capture supernovae, is associated with the collapse of a lower-mass oxygen-neon-magnesium core as it loses pressure support owing to the sudden capture of electrons by neon and/or magnesium nuclei. It has hitherto been impossible to identify the two distinct families of neutron stars produced in these formation channels. Here we report that a large, well-known class of neutron-star-hosting X-ray pulsars is actually composed of two distinct subpopulations with different characteristic spin periods, orbital periods and orbital eccentricities. This class, the Be/X-ray binaries, contains neutron stars that accrete material from a more massive companion star. The two subpopulations are most probably associated with the two distinct types of neutron-star-forming supernova, with electron-capture supernovae preferentially producing systems with short spin periods, short orbital periods and low eccentricities. Intriguingly, the split between the two subpopulations is clearest in the distribution of the logarithm of spin period, a result that had not been predicted and which still remains to be explained.

  4. Disentangling X-Ray Emission Processes In Vela-Like Pulsars

    NASA Technical Reports Server (NTRS)

    Gaensler, Bryan; Mushotzky, Richard (Technical Monitor)

    2002-01-01

    This grant is to support analysis of data from the X-ray Multi-mirror Mission (XMM). Specifically, we have been awarded time to observe two young neutron stars, B1823-13 and B1046-58, whose X-ray emission is expected to be a complicated combination of emission from an associated supernova remnant, from a wind-powered synchrotron nebula, from magnetospheric pulsations, and from the surface of the neutron star itself. It is only with XMM's unique combination of spectral, temporal and angular resolution that all these different processes can be separated and studied. Observations of B1823-13 have been conducted and analyzed. We interpret the data as follows: The unpulsed extended non-thermal nature of the central core argues that the extended source of emission corresponds to synchrotron emission from a nebula powered by the pulsar. The temperature of the diffuse component is too high to be interpreted as thermal emission; we rather argue that this extended component is non-thermal emission from a surrounding supernova remnant shell.

  5. The optical counterparts of accreting millisecond X-ray pulsars during quiescence

    NASA Astrophysics Data System (ADS)

    D'Avanzo, P.; Campana, S.; Casares, J.; Covino, S.; Israel, G. L.; Stella, L.

    2009-12-01

    Context: Eight accreting millisecond X-ray pulsars (AMXPs) are known to date. Although these systems are well studied at high energies, very little information is available for their optical/NIR counterparts. Up to now, only two of them, SAX J1808.4-3658 and IGR J00291+5934, have a secure multi-band detection of their optical counterparts in quiescence. Aims: All these systems are transient low-mass X-ray binaries. Optical and NIR observations carried out during quiescence give a unique opportunity to constrain the nature of the donor star and to investigate the origin of the observed quiescent luminosity at long wavelengths. In addition, optical observations can be fundamental as they ultimately allow us to estimate the compact object mass through mass function measurements. Methods: Using data obtained with the ESO-Very Large Telescope, we performed a deep optical and NIR photometric study of the fields of XTE J1814-338 and of the ultracompact systems XTE J0929-314 and XTE J1807-294 during quiescence in order to look for the presence of a variable counterpart. If suitable candidates were found, we also carried out optical spectroscopy. Results: We present here the first multi-band (VR) detection of the optical counterpart of XTE J1814-338 in quiescence together with its optical spectrum. The optical light curve shows variability in both bands consistent with a sinusoidal modulation at the known 4.3 h orbital period and presents a puzzling decrease of the V-band flux around superior conjunction that may be interpreted as a partial eclipse. The marginal detection of the very faint counterpart of XTE J0929-314 and deep upper limits for the optical/NIR counterpart of XTE J1807-294 are also reported. We also briefly discuss the results reported in the literature for the optical/NIR counterpart of XTE J1751-305. Conclusions: Our findings are consistent with AMXPs being systems containing an old, weakly magnetized neutron star, reactivated as a millisecond radio pulsar

  6. High brightness--multiple beamlets source for patterned X-ray production

    DOEpatents

    Leung, Ka-Ngo; Ji, Qing; Barletta, William A.; Jiang, Ximan; Ji, Lili

    2009-10-27

    Techniques for controllably directing beamlets to a target substrate are disclosed. The beamlets may be either positive ions or electrons. It has been shown that beamlets may be produced with a diameter of 1 .mu.m, with inter-aperture spacings of 12 .mu.m. An array of such beamlets, may be used for maskless lithography. By step-wise movement of the beamlets relative to the target substrate, individual devices may be directly e-beam written. Ion beams may be directly written as well. Due to the high brightness of the beamlets from extraction from a multicusp source, exposure times for lithographic exposure are thought to be minimized. Alternatively, the beamlets may be electrons striking a high Z material for X-ray production, thereafter collimated to provide patterned X-ray exposures such as those used in CAT scans. Such a device may be used for remote detection of explosives.

  7. The correspondence between X-ray bright points and evolving magnetic features in the quiet sun

    NASA Technical Reports Server (NTRS)

    Webb, D. F.; Martin, S. F.; Moses, D.; Harvey, J. W.

    1993-01-01

    The results of a study of X-ray bright points (XBPs) and small-scale evolving magnetic structures are presented. X-ray images obtained during rocket flights, full-disk magnetograms, and time-lapse magnetograms of multiple fields make up the coordinated data set. XBPs were found to be more frequently associated with pre-existing magnetic features of opposite polarity which appeared to be cancelling than with new or emerging flux regions. Most of the XBPs appeared to correspond to opposite polarity magnetic features which were converging towards each other, and some of which had not yet begun cancelling. It is suggested that most XBPs are created when converging flow brings together oppositely directed field lines. This leads to reconnection and heating in the low corona of the newly-formed loops.

  8. X-RAY EMISSION FROM J1446–4701, J1311–3430, AND OTHER BLACK WIDOW PULSARS

    SciTech Connect

    Arumugasamy, Prakash; Pavlov, George G.; Garmire, Gordon P.

    2015-12-01

    We present the results of detailed X-ray analysis of two black-widow pulsars (BWPs), J1446–4701 and J1311–3430. PSR J1446–4701 is a BWP with orbital parameters near the median values of the sample of known BWPs. Its X-ray emission that was detected by XMM-Newton is well characterized by a soft power-law (PL) spectrum (photon index Γ ≈ 3), and it shows no significant orbital modulations. In view of a lack of radio eclipses and an optical non-detection, the system most likely has a low orbital inclination. PSR J1311–3430 is an extreme BWP with a very compact orbit and the lowest minimum mass companion. Our Chandra data confirm the hard Γ ≈ 1.3 emission seen in previous observations. Through phase-restricted spectral analysis, we found a hint (∼2.6σ) of spectral hardening around pulsar inferior conjunction. We also provide a uniform analysis of the 12 BWPs observed with Chandra and compare their X-ray properties. Pulsars with soft, Γ > 2.5 emission seem to have lower than average X-ray and γ-ray luminosities. We do not, however, see any other prominent correlation between the pulsar’s X-ray emission characteristics and any of its other properties. The contribution of the intra-binary shock to the total X-ray emission, if any, is not discernible in this sample of pulsars with shallow observations.

  9. X-Ray Emission from J1446--4701, J1311--3430, and Other Black Widow Pulsars

    NASA Astrophysics Data System (ADS)

    Arumugasamy, Prakash; Pavlov, George G.; Garmire, Gordon P.

    2015-12-01

    We present the results of detailed X-ray analysis of two black-widow pulsars (BWPs), J1446-4701 and J1311-3430. PSR J1446-4701 is a BWP with orbital parameters near the median values of the sample of known BWPs. Its X-ray emission that was detected by XMM-Newton is well characterized by a soft power-law (PL) spectrum (photon index Γ ≈ 3), and it shows no significant orbital modulations. In view of a lack of radio eclipses and an optical non-detection, the system most likely has a low orbital inclination. PSR J1311-3430 is an extreme BWP with a very compact orbit and the lowest minimum mass companion. Our Chandra data confirm the hard Γ ≈ 1.3 emission seen in previous observations. Through phase-restricted spectral analysis, we found a hint (˜2.6σ) of spectral hardening around pulsar inferior conjunction. We also provide a uniform analysis of the 12 BWPs observed with Chandra and compare their X-ray properties. Pulsars with soft, Γ > 2.5 emission seem to have lower than average X-ray and γ-ray luminosities. We do not, however, see any other prominent correlation between the pulsar’s X-ray emission characteristics and any of its other properties. The contribution of the intra-binary shock to the total X-ray emission, if any, is not discernible in this sample of pulsars with shallow observations.

  10. Guitar with a bow: a jet-like X-ray-emitting feature associated a fast-moving pulsar

    NASA Astrophysics Data System (ADS)

    Wang, Q. Daniel

    2011-09-01

    The Guitar Nebula is known to be a ram-pressure confined pulsar wind nebula associated with the very fast-moving pulsar B2224+65. Existing observations at two epochs have shown an unexpected 2 arcmin long X-ray-emitting jet-like feature emanating from the pulsar and offset from its proper motion direction by 118 degree. We propose a deep third epoch observation of this system in order to measure the X-ray spectral gradient across the feature as well as to confirm its proper motion, its morphological variation with time, and the presence of a counter jet. We will then critically test scenarios proposed to explain this system, which represents a class of similarly enigmatic objects recently discovered locally and in the central region of our Galaxy.

  11. Bright X-ray arcs and the emergence of solar magnetic flux

    NASA Technical Reports Server (NTRS)

    Chapman, G. A.; Broussard, R. M.

    1977-01-01

    The Skylab S-056 and S-082A experiments and ground-based magnetograms have been used to study the role of bright X-ray arcs and the emergence of solar magnetic flux in the McMath region 12476. The S-056 X-ray images show a system of one or sometimes two bright arcs within a diffuse emitting region. The arcs seem to directly connect regions of opposite magnetic polarity in the photosphere. Magnetograms suggest the possible emergence of a magnetic flux. The width of the main arc is approximately 6 arcsec when most clearly defined, and the length is approximately 30-50 arcsec. Although the arc system is observed to vary in brightness over a period exceeding 24 hours, it remains fixed in orientation. The temperature of the main arc is approximately 3 x 10 to the 6th K. It is suggested that merging magnetic fields may provide the primary energy source, perhaps accompanied by resistive heating from a force-free current.

  12. THE EFFECT OF STARBURST METALLICITY ON BRIGHT X-RAY BINARY FORMATION PATHWAYS

    SciTech Connect

    Linden, T.; Kalogera, V.; Sepinsky, J. F.; Prestwich, A.; Zezas, A.; Gallagher, J. S.

    2010-12-20

    We investigate the characteristics of young (<20 Myr) and bright (L{sub X} > 1 x 10{sup 36} erg s{sup -1}) high-mass X-ray binaries (HMXBs) and find the population to be strongly metallicity dependent. We separate the model populations among two distinct formation pathways: (1) systems undergoing active Roche lobe overflow (RLO) and (2) wind accretion systems with donors in the (super)giant stage, which we find to dominate the HMXB population. We find metallicity to primarily affect the number of systems which move through each formation pathway, rather than the observable parameters of systems which move through each individual pathway. We discuss the most important model parameters affecting the HMXB population at both low and high metallicities. Using these results, we show that (1) the population of ultra-luminous X-ray sources can be consistently described by very bright HMXBs which undergo stable RLO with mild super-Eddington accretion and (2) the HMXB population of the bright starburst galaxy NGC 1569 is likely dominated by one extremely metal-poor starburst cluster.

  13. The rotation-powered nature of some soft gamma-ray repeaters and anomalous X-ray pulsars

    NASA Astrophysics Data System (ADS)

    Coelho, Jaziel G.; Cáceres, D. L.; de Lima, R. C. R.; Malheiro, M.; Rueda, J. A.; Ruffini, R.

    2017-03-01

    Context. Soft gamma-ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are slow rotating isolated pulsars whose energy reservoir is still matter of debate. Adopting neutron star (NS) fiducial parameters; mass M = 1.4 M⊙, radius R = 10 km, and moment of inertia, I = 1045 g cm2, the rotational energy loss, Ėrot, is lower than the observed luminosity (dominated by the X-rays) LX for many of the sources. Aims: We investigate the possibility that some members of this family could be canonical rotation-powered pulsars using realistic NS structure parameters instead of fiducial values. Methods: We compute the NS mass, radius, moment of inertia and angular momentum from numerical integration of the axisymmetric general relativistic equations of equilibrium. We then compute the entire range of allowed values of the rotational energy loss, Ėrot, for the observed values of rotation period P and spin-down rate Ṗ. We also estimate the surface magnetic field using a general relativistic model of a rotating magnetic dipole. Results: We show that realistic NS parameters lowers the estimated value of the magnetic field and radiation efficiency, LX/Ėrot, with respect to estimates based on fiducial NS parameters. We show that nine SGRs/AXPs can be described as canonical pulsars driven by the NS rotational energy, for LX computed in the soft (2-10 keV) X-ray band. We compute the range of NS masses for which LX/Ėrot< 1. We discuss the observed hard X-ray emission in three sources of the group of nine potentially rotation-powered NSs. This additional hard X-ray component dominates over the soft one leading to LX/Ėrot > 1 in two of them. Conclusions: We show that 9 SGRs/AXPs can be rotation-powered NSs if we analyze their X-ray luminosity in the soft 2-10 keV band. Interestingly, four of them show radio emission and six have been associated with supernova remnants (including Swift J1834.9-0846 the first SGR observed with a surrounding wind nebula). These observations give

  14. THE PROPER MOTION AND X-RAY ANALYSIS OF THE PULSAR WIND NEBULA, PSR J1741-2054 USING CHANDRA.

    NASA Astrophysics Data System (ADS)

    Auchettl, Katie; Slane, Patrick O.; Romani, Roger W.; Kargaltsev, Oleg; Pavlov, George G.

    2014-08-01

    A pulsar dissipates its rotational energy by generating relativistic winds, which in turn produces a population of high energy electrons and positions that we observe as a synchrotron emitting nebula. If the pulsar has a high space velocity, the corresponding nebula will have a bow-shock morphology due to the pulsar wind being confined by ram pressure. Pulsar wind nebulae (PWNe) provide a good test bed to study the dynamics and interaction of relativistic outflows with their environment and the corresponding shocks that result from these interactions. They can also aid in understanding the evolution of the neutron star and the properties of the local medium with which they are interacting. Here we report on the X-ray analysis of PSR J1741-2054 carried out as a part of the Chandra XVP program (6 ACIS-S observations, totalling ~300 ks over 5 months). By registering this new epoch of observations using X-ray point sources in the field of view to an archival observation taken 3.2 years earlier, we are able to measure the proper motion of the pulsar with >3σ significance. We also investigate the spatial and spectral properties of the pulsar, its compact nebula and extended tail. We find that the compact nebula can be well described with an absorbed power-law with photon index of Γ=1.6+/-0.2, while the tail shows no evidence of variation in the spectral index with the distance from the pulsar. We have also investigated the X-ray spectrum of the neutron star. We find nonthermal emission accompanied by a significant thermal component and will provide constraints on the overall nature of the emission.

  15. Multiwavelength Study of the Bright X-ray Source Population in the Interacting Galaxies NGC 5774/NGC 5775

    NASA Technical Reports Server (NTRS)

    Ghosh, Kajal K.; Swartz, Douglas A.; Tennant, Allyn F.; Saripalli, Lakshmi; Gandhi, Poshak; Foellmi, Cedric; Gutierrez, Carlos M.; Lopez-Corredoira, Martin

    2006-01-01

    The X-ray source population in the field of the interacting pair of galaxies NGC 5774/5775 is reported. A total of 49 discrete sources are detected, including 12 ultraluminous X-ray source candidates with lum inosities above 10(exp 39)erg/s in the 0.5 - 8.0 keV X-ray band. Several of these latter are transient X-ray sources that fall below detect ion levels in one of two X-ray observations spaced 15 months apart. X-ray source positions are mapped onto optical and radio images to sear ch for potential counterparts. Eleven sources have optically-bright c ounterparts. Optical colors are used to differentiate these sources, which are mostly located outside the optical extent of the interacting galaxies, as potential globular clusters (3 sources) and quasars (5) . Follow-up optical spectroscopy confirms two of the latter are background quasars.

  16. NuSTAR DETECTION OF HARD X-RAY PHASE LAGS FROM THE ACCRETING PULSAR GS 0834–430

    SciTech Connect

    Miyasaka, Hiromasa; Harrison, Fiona A.; Fürst, Felix; Bellm, Eric C.; Grefenstette, Brian W.; Madsen, Kristin K.; Walton, Dominic J.; Bachetti, Matteo; Barret, Didier; Boggs, Steven E.; Craig, William W.; Tomsick, John A.; Chakrabarty, Deepto; Chenevez, Jerome; Christensen, Finn E.; Hailey, Charles J.; Natalucci, Lorenzo; Pottschmidt, Katja; Stern, Daniel; Wilms, Jörn; and others

    2013-09-20

    The Nuclear Spectroscopic Telescope Array hard X-ray telescope observed the transient Be/X-ray binary GS 0834–430 during its 2012 outburst—the first active state of this system observed in the past 19 yr. We performed timing and spectral analysis and measured the X-ray spectrum between 3-79 keV with high statistical significance. We find the phase-averaged spectrum to be consistent with that observed in many other magnetized, accreting pulsars. We fail to detect cyclotron resonance scattering features that would allow us to constrain the pulsar's magnetic field in either phase-averaged or phase-resolved spectra. Timing analysis shows a clearly detected pulse period of ∼12.29 s in all energy bands. The pulse profiles show a strong, energy-dependent hard phase lag of up to 0.3 cycles in phase, or about 4 s. Such dramatic energy-dependent lags in the pulse profile have never before been reported in high-mass X-ray binary pulsars. Previously reported lags have been significantly smaller in phase and restricted to low energies (E < 10 keV). We investigate the possible mechanisms that might produce this energy-dependent pulse phase shift. We find the most likely explanation for this effect is a complex beam geometry.

  17. The XMM-Newton Bright Survey sample of absorbed quasars: X-ray and accretion properties

    NASA Astrophysics Data System (ADS)

    Ballo, L.; Severgnini, P.; Della Ceca, R.; Caccianiga, A.; Vignali, C.; Carrera, F. J.; Corral, A.; Mateos, S.

    2014-11-01

    Although absorbed quasars are extremely important for our understanding of the energetics of the Universe, the main physical parameters of their central engines are still poorly known. In this work, we present and study a complete sample of 14 quasars (QSOs) that are absorbed in the X-rays (column density NH > 4 × 1021 cm-2 and X-ray luminosity L 2-10 keV > 1044 ergs-1; XQSO2) belonging to the XMM-Newton Bright Serendipitous Survey (XBS). From the analysis of their ultraviolet-to-mid-infrared spectral energy distribution, we can separate the nuclear emission from the host galaxy contribution, obtaining a measurement of the fundamental nuclear parameters, like the mass of the central supermassive black hole and the value of Eddington ratio, λ Edd. Comparing the properties of XQSO2s with those previously obtained for the X-ray unabsorbed QSOs in the XBS, we do not find any evidence that the two samples are drawn from different populations. In particular, the two samples span the same range in Eddington ratios, up to λ Edd ˜ 0.5; this implies that our XQSO2s populate the `forbidden region' in the so-called `effective Eddington limit paradigm'. A combination of low grain abundance, presence of stars inwards of the absorber, and/or anisotropy of the disc emission can explain this result.

  18. Ionization break-out from millisecond pulsar wind nebulae: an X-ray probe of the origin of superluminous supernovae

    NASA Astrophysics Data System (ADS)

    Metzger, Brian D.; Vurm, Indrek; Hascoët, Romain; Beloborodov, Andrei M.

    2014-01-01

    Magnetic spin-down of a rapidly rotating (millisecond) neutron star has been proposed as the power source of hydrogen-poor `superluminous' supernovae (SLSNe-I). However, producing an unambiguous test that can distinguish this model from alternatives, such as circumstellar interaction, has proven challenging. After the supernova explosion, the pulsar wind inflates a hot cavity behind the expanding stellar ejecta: the nascent millisecond pulsar wind nebula. Electron/positron pairs injected by the wind cool through inverse Compton scattering and synchrotron emission, producing a pair cascade and hard X-ray spectrum inside the nebula. These X-rays ionize the inner exposed side of the ejecta, driving an ionization front that propagates outwards with time. Under some conditions this front can breach the ejecta surface within months after the optical supernova peak, allowing ˜0.1-1 keV photons to escape the nebula unattenuated with a characteristic luminosity LX ˜ 1043-1045 erg s-1. This `ionization break-out' may explain the luminous X-ray emission observed from the transient SCP 06F, providing direct evidence that this SLSN was indeed engine powered. Luminous break-out requires a low ejecta mass and that the spin-down time of the pulsar be comparable to the photon diffusion time-scale at optical maximum, the latter condition being similar to that required for a supernova with a high optical fluence. These relatively special requirements may explain why most SLSNe-I are not accompanied by detectable X-ray emission. Global asymmetry of the supernova ejecta increases the likelihood of an early break-out along the direction of lowest density. Atomic states with lower threshold energies are more readily ionized at earlier times near optical maximum, allowing `UV break-out' across a wider range of pulsar and ejecta properties than X-ray break-out, possibly contributing to the blue/UV colours of SLSNe-I.

  19. Spectral and Temporal Characteristics of X-Ray-Bright Stars in the Pleiades

    NASA Technical Reports Server (NTRS)

    Gagne, Marc; Caillault, Jean-Pierre; Stauffer, John R.

    1995-01-01

    We follow up our deep ROSAT imaging survey of the Pleiades (Stauffer et al. 1994) with an analysis of the spectral and temporal characteristics of the X-ray-bright stars in the Pleiades. Raymond & Smith (1977) one and two-temperature models have been used to fit the position-sensitive proportional counter (PSPC) pulse-height spectra of the dozen or so brightest sources associated with late-type Pleiades members. The best-fit temperatures suggest hot coronal temperatures for K, M, and rapidly rotating G stars, and cooler temperatures for F and slowly rotating G stars. In order to probe the many less X-ray-luminous stars, we have generated composite spectra by combining net counts from all Pleiades members according to spectral type and rotational velocity. Model fits to the composite spectra confirm the trend seen in the individual spectral fits. Particularly interesting is the apparent dependence of coronal temperature on L(sub x)/L(sub bol). A hardness-ratio analysis also confirms some of these trends. The PSPC data have also revealed a dozen or so strong X-ray flares with peak X-ray luminosities in excess of approx. 10(exp 30) ergs/sec. We have modeled the brightest of these flares with a simple quasi-static cooling loop model. The peak temperature and emission measure and the inferred electron density and plasma volume suggest a very large scale flaring event. The PSPC data were collected over a period of approx. 18 months, allowing us to search for source variability on timescales ranging from less than a day (in the case of flares) to more than a year between individual exposures. On approximately year-long timescales, roughly 25% of the late-type stars are variable. Since the Pleiades was also intensively monitored by the imaging instruments on the Einstein Observatory, we have examined X-ray luminosity variations on the 10 yr timescale between Einstein and ROSAT and find that up to 40% of the late-type stars are X-ray variable. Since there is only marginal

  20. H-alpha macrospicules - Identification with EUV macrospicules and with flares in X-ray bright points

    NASA Technical Reports Server (NTRS)

    Moore, R. L.; Tang, F.; Bohlin, J. D.; Golub, L.

    1977-01-01

    The paper presents observational evidence that two newly observed transient solar phenomena, EUV macrospicules and X-ray bright-point flares, are closely related. Time-lapse H-alpha filtergram observations of the limb in quiet regions show small surgelike eruptions called H-alpha macrospicules. From the similarity of H-alpha macrospicules and EUV macrospicules, and from comparison of simultaneous H-alpha and He II 304 A observations, we conclude that H-alpha macrospicules are EUV macrospicules viewed in H-alpha, although most EUV macrospicules are too faint in H-alpha to appear on H-alpha filtergrams of normal exposure. From comparison of simultaneous X-ray and H-alpha observations of flares in X-ray bright points situated on the limb, we show that flares in X-ray bright points often produce H-alpha macrospicules.

  1. X-RAY INVESTIGATION OF THE DIFFUSE EMISSION AROUND PLAUSIBLE {gamma}-RAY EMITTING PULSAR WIND NEBULAE IN KOOKABURRA REGION

    SciTech Connect

    Kishishita, Tetsuichi; Bamba, Aya; Uchiyama, Yasunobu

    2012-05-10

    We report on the results from Suzaku X-ray observations of the radio complex region called Kookaburra, which includes two adjacent TeV {gamma}-ray sources HESS J1418-609 and HESS J1420-607. The Suzaku observation revealed X-ray diffuse emission around a middle-aged pulsar PSR J1420-6048 and a plausible pulsar wind nebula (PWN) Rabbit with elongated sizes of {sigma}{sub X} = 1.'66 and {sigma}{sub X} = 1.'49, respectively. The peaks of the diffuse X-ray emission are located within the {gamma}-ray excess maps obtained by H.E.S.S. and the offsets from the {gamma}-ray peaks are 2.'8 for PSR J1420-6048 and 4.'5 for Rabbit. The X-ray spectra of the two sources were well reproduced by absorbed power-law models with {Gamma} = 1.7-2.3. The spectral shapes tend to become softer according to the distance from the X-ray peaks. Assuming the one-zone electron emission model as the first-order approximation, the ambient magnetic field strengths of HESS J1420-607 and HESS J1418-609 can be estimated as 3 {mu}G and 2.5 {mu}G, respectively. The X-ray spectral and spatial properties strongly support that both TeV sources are PWNe, in which electrons and positrons accelerated at termination shocks of the pulsar winds are losing their energies via the synchrotron radiation and inverse Compton scattering as they are transported outward.

  2. The nature of the X-ray pulsar in M 31: An intermediate-mass X-ray binary?

    NASA Astrophysics Data System (ADS)

    Karino, Shigeyuki

    2016-12-01

    The first finding of the spin period of an accreting neutron star in M 31 was recently reported. The observed spin period is 1.2 s, and it shows 1.27 d modulations due to orbital motion. From the orbital information, the mass donor could not be a giant massive star. On the other hand, its observed properties are very odd as those of typical low-mass X-ray binaries. In this study, we compare the observed binary parameters with theoretical models given by a stellar evolution track, and give a restriction on the possible mass range of the donor. According to the standard stellar evolution model, the donor star should be larger than 1.5 M⊙, which suggests that this system is a new member of a rare category, an intermediate-mass X-ray binary. The magnetic field strength of the neutron star suggested by the spin-up/down tendency in this system supports the possibility of an intermediate-mass donor.

  3. 16 yr of RXTE monitoring of five anomalous X-ray pulsars

    SciTech Connect

    Dib, Rim; Kaspi, Victoria M. E-mail: vkaspi@physics.mcgill.ca

    2014-03-20

    We present a summary of the long-term evolution of various properties of the five non-transient anomalous X-ray pulsars (AXPs) 1E 1841–045, RXS J170849.0–400910, 1E 2259+586, 4U 0142+61, and 1E 1048.1–5937, regularly monitored with RXTE from 1996 to 2012. We focus on three properties of these sources: the evolution of the timing, pulsed flux, and pulse profile. We report several new timing anomalies and radiative events, including a putative anti-glitch seen in 1E 2259+586 in 2009, and a second epoch of very large spin-down rate fluctuations in 1E 1048.1–5937 following a large flux outburst. We compile the properties of the 11 glitches and 4 glitch candidates observed from these 5 AXPs between 1996 and 2012. Overall, these monitoring observations reveal several apparent patterns in the behavior of this sample of AXPs: large radiative changes in AXPs (including long-lived flux enhancements, short bursts, and pulse profile changes) are rare, occurring typically only every few years per source; large radiative changes are almost always accompanied by some form of timing anomaly, usually a spin-up glitch; only 20%-30% of timing anomalies are accompanied by any form of radiative change. We find that AXP radiative behavior at the times of radiatively loud glitches is sufficiently similar to suggest common physical origins. The similarity in glitch properties when comparing radiatively loud and radiatively silent glitches in AXPs suggests a common physical origin in the stellar interior. Finally, the overall similarity of AXP and radio pulsar glitches suggests a common physical origin for both phenomena.

  4. On the Nature of the Eclipsing Bright X-ray Source in the Circinus Galaxy Field

    NASA Technical Reports Server (NTRS)

    Weisskopf, M. C.; Wu, K.; Tennant, A. F.; Swartz, D. A.

    2003-01-01

    The X-ray spectrum and light curve of the bright source CG X-1 in the field of the Circinus galaxy are re-examined. Previous analyses have concluded that the source is an accreting black hole of about 50 solar masses although it was noted that the light curve resembles that of an AM Her-type system. Here we show that the light curve and orbital dynamics constrain the mass of the compact object to less than 30 solar masses and the mass of the companion to less than 1 solar mass. Combining the mass constraints with the observed X-ray flux, we show that an accreting object must either radiate anisotropically or strongly violate the Eddington limit. If the emission is beamed, then the companion star, which intercepts this flux during eclipse, will be driven out of thermal equilibrium and evaporate within approx. 103 yr. We find, therefore, that the observations are most consistent with the interpretation of CG X-1 as a bright, long-period, AM Her system in the Milky Way.

  5. Detecting edges in the X-ray surface brightness of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Sanders, J. S.; Fabian, A. C.; Russell, H. R.; Walker, S. A.; Blundell, K. M.

    2016-08-01

    The effects of many physical processes in the intracluster medium of galaxy clusters imprint themselves in X-ray surface brightness images. It is therefore important to choose optimal methods for extracting information from and enhancing the interpretability of such images. We describe in detail a gradient filtering edge detection method that we previously applied to images of the Centaurus cluster of galaxies. The Gaussian gradient filter measures the gradient in the surface brightness distribution on particular spatial scales. We apply this filter on different scales to Chandra X-ray observatory images of two clusters with active galactic nucleus feedback, the Perseus cluster and M 87, and a merging system, A 3667. By combining filtered images on different scales using radial filters spectacular images of the edges in a cluster are produced. We describe how to assess the significance of features in filtered images. We find the gradient filtering technique to have significant advantages for detecting many kinds of features compared to other analysis techniques, such as unsharp masking. Filtering cluster images in this way in a hard energy band allows shocks to be detected.

  6. SXP 214: An X-Ray Pulsar in the Small Magellanic Cloud, Crossing the Circumstellar Disk of the Companion

    NASA Astrophysics Data System (ADS)

    Hong, JaeSub; Antoniou, Vallia; Zezas, Andreas; Haberl, Frank; Drake, Jeremy J.; Plucinsky, Paul P.; Gaetz, Terrance; Sasaki, Manami; Williams, Benjamin; Long, Knox S.; Blair, William P.; Winkler, P. Frank; Wright, Nicholas J.; Laycock, Silas; Udalski, Andrzej

    2016-07-01

    Located in the Small Magellanic Cloud (SMC), SXP 214 is an X-ray pulsar in a high mass X-ray binary system with a Be-star companion. A recent survey of the SMC under a Chandra X-ray Visionary program found that the source was in a transition when the X-ray flux was on a steady rise. The Lomb-Scargle periodogram revealed a pulse period of 211.49 ± 0.42 s, which is significantly (>5σ) shorter than the previous measurements made with XMM-Newton and RXTE. This implies that the system has gone through sudden spin-up episodes recently. The pulse profile shows a sharp eclipse-like feature with a modulation amplitude of >95%. The linear rise of the observed X-ray luminosity from ≲2× to 7× {10}35 erg s-1 is correlated with a steady softening of the X-ray spectrum, which can be described by the changes in the local absorption from N H ˜ 1024 to ≲1020 cm-2 for an absorbed power-law model. The soft X-ray emission below 2 keV was absent in the early part of the observation when only the pulsating hard X-ray component was observed, whereas at later times, both soft and hard X-ray components were observed to be pulsating. A likely explanation is that the neutron star was initially hidden in the circumstellar disk of the companion, and later came out of the disk with the accreted material that continued fueling the observed pulsation.

  7. The Magnetar Nature and the Outburst Mechanism of a Transient Anomalous X-ray Pulsar

    NASA Technical Reports Server (NTRS)

    Guver, Tolga; Ozel, Feryal; Gogus, Ersin; Kouveliotou, Chryssa

    2007-01-01

    Anomalous X-ray Pulsars (AXPs) belong to a class of neutron stars believed to harbor the strongest magnetic fields in the universe, as indicated by their energetic bursts and their rapid spindowns. However, a direct measurement of their surface field strengths has not been made to date. It is also not known whether AXP outbursts result from changes in the neutron star magnetic field or crust properties. Here we report the first, spectroscopic measurement of the surface magnetic field strength of an AXP, XTE J1810-197, and solidify its magnetar nature. The field strength obtained from detailed spectral analysis and modeling is remarkably close to the value inferred from the rate of spindown of this source and remains nearly constant during numerous observations spanning over two orders of magnitude in source flux. The surface temperature, on the other hand, declines steadily and dramatically following the 2003 outburst of this source. Our findings demonstrate that heating occurs in the upper neutron star crust during an outburst and sheds light on the transient behaviour of AXPs.

  8. Detailed Physical Modeling Reveals the Magnetar Nature of a Transient Anomalous X-ray Pulsar

    NASA Technical Reports Server (NTRS)

    Guever, T.; Oezel, F.; Goegues, E.; Kouveliotou, C.

    2007-01-01

    Anomalous X-ray Pulsars (AXPs) belong to a class of neutron stars believed to harbor the strongest magnetic fields in the universe, as indicated by their energetic bursts and their rapid spindowns. However, a direct measurement of their surface field strengths has not been made to date. It is also not known whether AXP outbursts result from changes in the neutron star magnetic field or crust properties. Here we report the first, spectroscopic measurement of the surface magnetic field strength of an AXP, XTE J1810-197, and solidify its magnetar nature. The field strength obtained from detailed spectral analysis and modeling is remarkably close to the value inferred from the rate of spindown of this source and remains nearly constant during numerous observations spanning over two orders of magnitude in source flux. The surface temperature, on the other hand, declines steadily and dramatically following the 2003 outburst of this source. Our findings demonstrate that heating occurs in the upper neutron star crust during an outburst and sheds light on the transient behaviour of AXPs.

  9. The Stochastic X-Ray Variability of the Accreting Millisecond Pulsar MAXI J0911-655

    NASA Technical Reports Server (NTRS)

    Bult, Peter

    2017-01-01

    In this work, I report on the stochastic X-ray variability of the 340 hertz accreting millisecond pulsar MAXI J0911-655. Analyzing pointed observations of the XMM-Newton and NuSTAR observatories, I find that the source shows broad band-limited stochastic variability in the 0.01-10 hertz range with a total fractional variability of approximately 24 percent root mean square timing residuals in the 0.4 to 3 kiloelectronvolt energy band that increases to approximately 40 percent root mean square timing residuals in the 3 to 10 kiloelectronvolt band. Additionally, a pair of harmonically related quasi-periodic oscillations (QPOs) are discovered. The fundamental frequency of this harmonic pair is observed between frequencies of 62 and 146 megahertz. Like the band-limited noise, the amplitudes of the QPOs show a steep increase as a function of energy; this suggests that they share a similar origin, likely the inner accretion flow. Based on their energy dependence and frequency relation with respect to the noise terms, the QPOs are identified as low-frequency oscillations and discussed in terms of the Lense-Thirring precession model.

  10. The Stochastic X-Ray Variability of the Accreting Millisecond Pulsar MAXI J0911–655

    NASA Astrophysics Data System (ADS)

    Bult, Peter

    2017-03-01

    In this work, I report on the stochastic X-ray variability of the 340 Hz accreting millisecond pulsar MAXI J0911–655. Analyzing pointed observations of the XMM-Newton and NuSTAR observatories, I find that the source shows broad band-limited stochastic variability in the 0.01{--}10 {Hz} range with a total fractional variability of ∼ 24 % rms in the 0.4{--}3 {keV} energy band that increases to ∼ 40 % rms in the 3–10 keV band. Additionally, a pair of harmonically related quasi-periodic oscillations (QPOs) are discovered. The fundamental frequency of this harmonic pair is observed between frequencies of 62 and 146 mHz. Like the band-limited noise, the amplitudes of the QPOs show a steep increase as a function of energy; this suggests that they share a similar origin, likely the inner accretion flow. Based on their energy dependence and frequency relation with respect to the noise terms, the QPOs are identified as low-frequency oscillations and discussed in terms of the Lense–Thirring precession model.

  11. A Sequence of Outbursts from the Transient X-Ray Pulsar GS 0834-430

    NASA Technical Reports Server (NTRS)

    Wilson, Colleen A.; Finger, Mark H.; Harmon, B.Alan; Scott, D. Matthew; Wilson, Robert B.; Bildsten, Lars; Chakrabarty, Deepto; Prince, Thomas A.

    1997-01-01

    GS 0834-430, a 12.3 s accretion-powered pulsar, has been observed in seven outbursts with the BATSE large-area detectors on the Compton Gamma Ray Observatory. The first five outbursts observed by BATSE occurred at intervals of about 107 days, while the final two outbursts were separated by about 140 days. The photon energy spectrum, measured by Earth occultation in the 20 100 keV band, can be fitted by a power law with photon index alpha approximately equals -3.7 or by an exponential spectrum with temperature kT approximately equals 15 keV, with some variations within outbursts. The source has a low pulse fraction, less than or equal to 0.15 in the 20-50 keV band. We have observed significant temporal and energy-dependent variations in epoch folded pulse profiles. Because the intrinsic torque effects for this system are at least comparable to orbital effects, pulse timing analysis did not produce a unique orbital solution. However, confidence regions for the orbital elements yielded the following 1 sigma limits: orbital period P(sub orb) = 105.8 +/- 0.4 days and eccentricity 0.10 less than or approximately equals epsilon less than or approximately equals 0.17. GS 0834-430 is most likely a Be/X-ray binary.

  12. The Multi-Component Nature of the Vela Pulsar Nonthermal X-ray Spectrum

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.; Strickman, Mark S.; Gwinn, Carl; McCulloch, P.; Moffet, D.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We report on our analysis of a 274 ks observation of the Vela pulsar with the Rossi X-Ray Timing Explorer (RXTE). The double-peaked, pulsed emission at 2 - 30 keV, which we had previously detected during a 93 ks observation, is confirmed with much improved statistics. There is now clear evidence, both in the spectrum and the light curve, that the emission in the RXTE band is a blend of two separate non-thermal components. The spectrum of the harder component connects smoothly with the OSSE, COMPTEL and EGRET spectrum and the peaks in the light curve are in phase coincidence with those of the high-energy light curve. The spectrum of the softer component is consistent with an extrapolation to the pulsed optical flux, and the second RXTE pulse is in phase coincidence with the second optical peak. In addition, we see a peak in the 2-8 keV RXTE pulse profile at the radio phase.

  13. A bright attosecond x-ray pulse train generation in a double-laser-driven cone target

    NASA Astrophysics Data System (ADS)

    Hu, Li-Xiang; Yu, Tong-Pu; Shao, Fu-Qiu; Luo, Wen; Yin, Yan

    2016-06-01

    By using full three-dimensional particle-in-cell and Monte Carlo simulations, we investigate the generation of a high-brightness attosecond x-ray pulse train in a double-laser-driven cone target. The scheme makes use of two lasers: the first high-intensity laser with a laser peak intensity 1.37 × 1020 W/cm2 irradiates the cone and produces overdense attosecond electron bunches; the second counterpropagating weakly relativistic laser with a laser peak intensity 4.932 × 1017 W/cm2 interacts with the produced electron bunches and a bright x-ray pulse train is generated by Thomson backscattering of the second laser off the attosecond electron bunches. It is shown that the photon flux rises by 5 times using the cone target as compared with a normal channel. Meanwhile, the x-ray peak brightness increases significantly from 1.4 × 1021/(s mm2 mrad2 0.1 keV) to 6.0 × 1021/(s mm2 mrad2 0.1 keV), which is much higher than that of the Thomson x-ray source generated from traditional accelerators. We also discuss the influence of the laser and target parameters on the x-ray pulse properties. This compact bright x-ray source may have diverse applications, e.g., the study of electric dynamics and harmonics emission in the atomic scale.

  14. 2S 1553-542: a Be/X-ray binary pulsar on the far side of the Galaxy

    NASA Astrophysics Data System (ADS)

    Lutovinov, Alexander A.; Buckley, David A. H.; Townsend, Lee J.; Tsygankov, Sergey S.; Kennea, Jamie

    2016-11-01

    We report the results of a comprehensive analysis of X-ray (Chandra and Swift observatories), optical (Southern African Large Telescope, SALT) and near-infrared (the VVV survey) observations of the Be/X-ray binary pulsar 2S 1553-542. Accurate coordinates for the X-ray source are determined and are used to identify the faint optical/infrared counterpart for the first time. Using VVV and SALTICAM photometry, we have constructed the spectral energy distribution (SED) for this star and found a moderate NIR excess that is typical for Be stars and arises due to the presence of circumstellar material (disc). A comparison of the SED with those of known Be/X-ray binaries has allowed us to estimate the spectral type of the companion star as B1-2V and the distance to the system as >15 kpc. This distance estimation is supported by the X-ray data and makes 2S 1553-542 one of the most distant X-ray binaries within the Milky Way, residing on the far side in the Scutum-Centaurus arm or even further.

  15. A New Supernova Remnant Coincident with the Slow X-Ray Pulsar AX J1845-0258.

    PubMed

    Gaensler; Gotthelf; Vasisht

    1999-11-20

    We report on Very Large Array observations in the direction of the recently discovered slow X-ray pulsar AX J1845-0258. In the resulting images, we find a 5&arcmin; shell of radio emission; the shell is linearly polarized with a nonthermal spectral index. We classify this source as a previously unidentified, young (<8000 yr) supernova remnant (SNR), G29.6+0.1, which we propose is physically associated with AX J1845-0258. The young age of G29.6+0.1 is then consistent with the interpretation that anomalous X-ray pulsars (AXPs) are isolated, highly magnetized neutron stars ("magnetars"). Three of the six known AXPs can now be associated with SNRs; we conclude that AXPs are young ( less, similar10,000 yr) objects and that they are produced in at least 5% of core-collapse supernovae.

  16. On the power spectra of the wind-fed X-ray binary pulsar GX 301 - 2

    NASA Technical Reports Server (NTRS)

    Orlandini, Mauro; Morfill, G. E.

    1992-01-01

    A phenomenological model of accretion which is applied to the wind-fed X-ray binary pulsar GX 301 - 2 is developed, assuming that the accretion onto the neutron star does not occur from a continuous flux of plasma, but from blobs of matter which are threaded by the magnetic field lines onto the magnetic polar caps of the neutron star. These 'lumps' are produced at the magnetospheric limit by magnetohydrodynamical instability, introducing a 'noise' in the accretion process, due to the discontinuity in the flux of matter onto the neutron star. This model is able to describe the change of slope observed in the continuum component of the power spectra of the X-ray binary pulsar GX 301 - 2, in the frequency range 0.01 - 0.1 Hz. The physical properties of the infalling blobs derived in the model are in agreement with the constraints imposed by observations.

  17. Discovery of a Be/X-ray pulsar binary and associated supernova remnant in the Wing of the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Hénault-Brunet, V.; Oskinova, L. M.; Guerrero, M. A.; Sun, W.; Chu, Y.-H.; Evans, C. J.; Gallagher, J. S., III; Gruendl, R. A.; Reyes-Iturbide, J.

    2012-02-01

    We report on a new Be/X-ray pulsar binary located in the Wing of the Small Magellanic Cloud (SMC). The strong pulsed X-ray source was discovered with the Chandra and XMM-Newton X-ray observatories. The X-ray pulse period of 1062 s is consistently determined from both Chandra and XMM-Newton observations, revealing one of the slowest rotating X-ray pulsars known in the SMC. The optical counterpart of the X-ray source is the emission-line star 2dFS 3831. Its B0-0.5(III)e+ spectral type is determined from VLT-FLAMES and 2dF optical spectroscopy, establishing the system as a Be/X-ray binary (Be-XRB). The hard X-ray spectrum is well fitted by a power law with additional thermal and blackbody components, the latter reminiscent of persistent Be-XRBs. This system is the first evidence of a recent supernova in the low-density surroundings of NGC 602. We detect a shell nebula around 2dFS 3831 in Hα and [O III] images and conclude that it is most likely a supernova remnant. If it is linked to the supernova explosion that created this new X-ray pulsar, its kinematic age of (2-4) × 104 yr provides a constraint on the age of the pulsar.

  18. Rapid oscillations in cataclysmic variables. V - H2252-035, a single-sideband X-ray and optical pulsar

    NASA Technical Reports Server (NTRS)

    Patterson, J.; Price, C. M.

    1981-01-01

    Photometric and spectroscopic observations of the optical counterpart of the X-ray source H2252-035 reveal the existence of stable periodicities of 3.59 hr and 14.31 min. Both radial velocity and photometric variations occur at the longer period, suggesting that it is the true orbital period of the underlying cataclysmic binary. The shorter period appears as a 10% modulation in the light curve, superposed on the 3.59 hr variation. The frequency is the lower orbital sideband of the X-ray pulsation frequency, suggesting that the optical pulses arise from reprocessing in the atmosphere of the secondary. Unlike the majority of X-ray pulsars, H2252-035 appears to contain a white dwarf rather than a neutron star.

  19. Long-Term Time Variability in the X-Ray Pulse Shape of the Crab Nebula Pulsar

    NASA Technical Reports Server (NTRS)

    Fazio, Giovanni G.

    2000-01-01

    This is the final performance report for our grant 'Long-Term Time Variability in the X-Ray Pulse Shape of the Crab Nebula Pulsar.' In the first year of this grant, we received the 50,000-second ROSAT (German acronym for X-ray satellite) High Resolution Images (HRI) observation of the Crab Nebula pulsar. We used the data to create a 65-ms-resolution pulse profile and compared it to a similar pulse profile obtained in 1991. No statistically significant differences were found. These results were presented at the January 1998 meeting of the American Astronomical Society. Since then, we have performed more sensitive analyses to search for potential changes in the pulse profile shape between the two data sets. Again, no significant variability was found. In order to augment this long (six-year) baseline data set, we have analyzed archival observations of the Crab Nebula pulsar with the Rossi X-Ray Timing Explorer (RXTE). While these observations have shorter time baselines than the ROSAT data set, their higher signal-to-noise offers similar sensitivity to long-term variability. Again, no significant variations have been found, confirming our ROSAT results. This work was done in collaboration with Prof. Stephen Eikenberry, Cornell University. These analyses will be included in Cornell University graduate student Dae-Sik Moon's doctoral thesis.

  20. First results from the high-brightness x-ray spectroscopy beamline 9. 3.1 at ALS

    SciTech Connect

    Ng, W.; Jones, G.; Perera, R.C.C.

    1995-10-01

    Beamline 9.3.1 at the Advanced Light Source (ALS) is a windowless beamline, covering the 1-6 keV photon-energy range. This beamline is designed to achieve the goal of high brightness at the sample for use in the X-ray Atomic and Molecular Spectroscopy (XAMS) science, surface and interface science, biology, and x-ray optical development programs at ALS. X-ray absorption and time of flight photoemission measurements in 2 - 5 keV photon energy along with the flux, resolution, spot size and stability of the beamline will be discussed. Prospects for future XAMS measurements will also be presented.

  1. Plasmon-enhanced photocathode for high brightness and high repetition rate x-ray sources

    SciTech Connect

    Polyakov, Aleksandr; Senft, Christoph; Thompson, K. F.; Feng, J.; Cabrini, S.; Schuck, P. J.; Padmore, Howard; Peppernick, Samuel J.; Hess, Wayne P.

    2013-02-11

    High brightness electron sources are at the heart of anew generation of x-ray sources based on the Free ElectronLaser (FEL) as well as in Energy Recovery Linac (ERL) and Inverse Compton Scattering (ICS) sources.The source of electrons consists of a photoinjector, comprised of a laser-driven photocathode in a high gradient electric field produced by an rf cavity. The function of the rf cavity is to provide a field sufficient for acceleration of electrons to relativistic velocity over a small distance, thus minimizing effects of the space-charge. Even so, the dense electron beam required for high brightness suffers from a space charge field that chirps and reshapes the electron pulse increasing beam emittance and thus reducing the overall brightness. This emittance growth can be avoided if the initial distribution of electrons is pancake shaped, with a semicircular transverse intensity profile. In this case, the electron distribution develops under its space charge field from a pancake into a uniformly filled ellipsoidal beam. This condition, referred to as the blowout regime, requires ultrashort pulses less than 100 fs long and has been successfully demonstrated recently in a high gradient photoinjector.

  2. Bright betatronlike x rays from radiation pressure acceleration of a mass-limited foil target.

    PubMed

    Yu, Tong-Pu; Pukhov, Alexander; Sheng, Zheng-Ming; Liu, Feng; Shvets, Gennady

    2013-01-25

    By using multidimensional particle-in-cell simulations, we study the electromagnetic emission from radiation pressure acceleration of ultrathin mass-limited foils. When a circularly polarized laser pulse irradiates the foil, the laser radiation pressure pushes the foil forward as a whole. The outer wings of the pulse continue to propagate and act as a natural undulator. Electrons move together with ions longitudinally but oscillate around the latter transversely, forming a self-organized helical electron bunch. When the electron oscillation frequency coincides with the laser frequency as witnessed by the electron, betatronlike resonance occurs. The emitted x rays by the resonant electrons have high brightness, short durations, and broad band ranges which may have diverse applications.

  3. Rapidly Rotating, X-Ray Bright Stars in the Kepler Field

    NASA Astrophysics Data System (ADS)

    Howell, Steve B.; Mason, Elena; Boyd, Patricia; Smith, Krista Lynne; Gelino, Dawn M.

    2016-11-01

    We present Kepler light curves and optical spectroscopy of twenty X-ray bright stars located in the Kepler field of view. The stars, spectral type F-K, show evidence for rapid rotation including chromospheric activity 100 times or more above the Sun at maximum and flaring behavior in their light curves. Eighteen of our objects appear to be (sub)giants and may belong to the class of FK Com variables, which are evolved rapidly spinning single stars with no excretion disk and high levels of chromospheric activity. Such stars are rare and are likely the result of W UMa binary mergers, a process believed to produce the FK Com class of variable and their descendants. The FK Com stage, including the presence of an excretion disk, is short lived but leads to longer-lived stages consisting of single, rapidly rotating evolved (sub)giants with high levels of stellar activity.

  4. A Comprehensive Spectral Analysis of the X-Ray Pulsar 4U 1907+09 from Two Observations with the Suzaku X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Rivers, Elizabeth; Markowitz, Alex; Pottschmidt, Katja; Roth, Stefanie; Barragan, Laura; Furst, Felix; Suchy, Slawomir; Kreykenbohm, Ingo; Wilms, Jorn; Rothschild, Richard

    2009-01-01

    We present results from two observations of the wind-accreting X-ray pulsar 4U 1907+09 using the Suzaku observatory, The broadband time-averaged spectrum allows us to examine the continuum emission of the source and the cyclotron resonance scattering feature at approx. 19 keV. Additionally, using the narrow CCD response of Suzaku near 6 ke V allows us to study in detail the Fe K bandpass and to quantify the Fe Kp line for this source for the first time. The source is absorbed by fully-covering material along the line of sight with a column density of N(sub H) approx. 2 x 10(exp 22)/sq cm, consistent with a wind accreting geometry, and a high Fe abundance (approx. 3 - 4 x solar). Time and phase-resolved analyses allow us to study variations in the source spectrum. In particular, dips found in the 2006 observation which are consistent with earlier observations occur in the hard X-ray bandpass, implying a variation of the whole continuum rather than occultation by intervening material, while a dip near the end of the 2007 observation occurs mainly in the lower energies implying an increase in NH along the line of sight, perhaps indicating clumpiness in the stellar wind

  5. THE TRANSIENT ACCRETING X-RAY PULSAR XTE J1946+274: STABILITY OF X-RAY PROPERTIES AT LOW FLUX AND UPDATED ORBITAL SOLUTION

    SciTech Connect

    Marcu-Cheatham, Diana M.; Pottschmidt, Katja; Kühnel, Matthias; Müller, Sebastian; Falkner, Sebastian; Kreykenbohm, Ingo; Caballero, Isabel; Jenke, Peter J.; Wilson-Hodge, Colleen A.; Fürst, Felix; Grinberg, Victoria; Hemphill, Paul B.; Rothschild, Richard E.; Klochkov, Dmitry; Terada, Yukikatsu; and others

    2015-12-10

    We present a timing and spectral analysis of the X-ray pulsar XTE J1946+274 observed with Suzaku during an outburst decline in 2010 October and compare with previous results. XTE J1946+274 is a transient X-ray binary consisting of a Be-type star and a neutron star with a 15.75 s pulse period in a 172 days orbit with 2–3 outbursts per orbit during phases of activity. We improve the orbital solution using data from multiple instruments. The X-ray spectrum can be described by an absorbed Fermi–Dirac cut-off power-law model along with a narrow Fe Kα line at 6.4 keV and a weak Cyclotron Resonance Scattering Feature (CRSF) at ∼35 keV. The Suzaku data are consistent with the previously observed continuum flux versus iron line flux correlation expected from fluorescence emission along the line of sight. However, the observed iron line flux is slightly higher, indicating the possibility of a higher iron abundance or the presence of non-uniform material. We argue that the source most likely has only been observed in the subcritical (non-radiation dominated) state since its pulse profile is stable over all observed luminosities and the energy of the CRSF is approximately the same at the highest (∼5 × 10{sup 37} erg s{sup −1}) and lowest (∼5 × 10{sup 36} erg s{sup −1}) observed 3–60 keV luminosities.

  6. Thermometric- and Acoustic-Based Beam Power Monitor for Ultra-Bright X-Rays

    SciTech Connect

    Bentsen, Gregory; /Rochester U. /SLAC

    2010-08-25

    A design for an average beam power monitor for ultra-bright X-ray sources is proposed that makes simultaneous use of calorimetry and radiation acoustics. Radiation incident on a solid target will induce heating and ultrasonic vibrations, both of which may be measured to give a fairly precise value of the beam power. The monitor is intended for measuring ultra-bright Free-Electron Laser (FEL) X-ray beams, for which traditional monitoring technologies such as photo-diodes or scintillators are unsuitable. The monitor consists of a Boron Carbide (B{sub 4}C) target designed to absorb most of the incident beam's energy. Resistance temperature detectors (RTD) and piezoelectric actuators are mounted on the outward faces of the target to measure the temperature changes and ultrasonic vibrations induced by the incident beam. The design was tested using an optical pulsed beam (780 nm, 120 and 360 Hz) from a Ti:sapphire oscillator at several energies between 0.8 and 2.6 mJ. The RTDs measured an increase in temperature of about 10 K over a period of several minutes. The piezoelectric sensors recorded ringing acoustic oscillations at 580 {+-} 40 kHz. Most importantly, the amplitude of the acoustic signals was observed to scale linearly with beam power up to 2 mJ of pulse energy. Above this pulse energy, the vibrational signals became nonlinear. Several causes for this nonlinearity are discussed, including amplifier saturation and piezoelectric saturation. Despite this nonlinearity, these measurements demonstrate the feasibility of such a beam power measurement device. The advantage of two distinct measurements (acoustic and thermometric) provides a useful method of calibration that is unavailable to current LCLS diagnostics tools.

  7. A Multiwavelength Study of the Pulsar PSR B1929+10 and Its X-Ray Trail

    NASA Astrophysics Data System (ADS)

    Becker, Werner; Kramer, Michael; Jessner, Axel; Taam, Ronald E.; Jia, Jian J.; Cheng, Kwong S.; Mignani, Roberto; Pellizzoni, Alberto; de Luca, Andrea; Słowikowska, Agnieszka; Caraveo, Patrizia A.

    2006-07-01

    We report on the emission properties of PSR B1929+10 and its putative trail from a multiwavelength study performed using optical, X-ray, and radio data. XMM-Newton observations confirm the existence of the diffuse emission with a trail morphology lying in a direction opposite to the transverse motion of the pulsar. The trail spectrum is nonthermal and produced by electron-synchrotron emission in the shock between the pulsar wind and the surrounding medium. Radio data from the Effelsberg 11 cm radio continuum survey show an elongated feature that roughly coincides with the X-ray trail. Three not fully resolved radio sources seen in the NVSS survey data at 1.4 GHz match with part of the elongated radio feature seen at 11 cm. The emission properties observed from PSR B1929+10 are in excellent agreement with a nonthermal, and thus magnetospheric-radiation-dominated, emission scenario. The pulsar's X-ray spectrum is best described by a single power-law model with a photon index of 2.72+0.12-0.09. A flux contribution from the thermal emission of heated polar caps of at most ~7% is inferred from a best-fitting composite Planckian and power-law spectral model. A pure thermal emission spectrum consisting of two Planckian spectra is regarded as unlikely. A broken power-law spectral model with Ebreak=0.83+0.05-0.03 keV and the photon indexes α1=1.12+0.02-0.03 and α2=2.48+0.08-0.07 can describe the optical and X-ray data entirely in terms of a nonthermal magnetospheric origin. The X-ray pulse profile observed in the 0.2-10 keV band is found to be markedly different from the broad sinusoidal pulse profile seen in the low statistic Röntgensatellit (ROSAT) data. Fitting Gaussians to the X-ray light curve indicates the possible existence of three pulse components. A small narrow pulse, characterized by energies greater than 1 keV, is found to lead the radio main pulse by ~20°. The fraction of pulsed photons in the 0.2-10 keV band is 32%+/-4%. For the subbands 0.2-1.0 and 1

  8. A radiation-hydrodynamics model of accretion columns for ultra-luminous X-ray pulsars

    NASA Astrophysics Data System (ADS)

    Kawashima, Tomohisa; Mineshige, Shin; Ohsuga, Ken; Ogawa, Takumi

    2016-10-01

    Prompted by the recent discovery of pulsed emission from an ultra-luminous X-ray source, M 82 X-2 ("ULX-pulsar"), we perform a two-dimensional radiation-hydrodynamics simulation of a supercritical accretion flow onto a neutron star through a narrow accretion column. We set an accretion column with a cone shape filled with tenuous gas with the density of 10-4 g cm-3 above a neutron star and solve the two-dimensional gas motion and radiative transfer within the column. The side boundaries are set such that radiation can freely escape, but gas cannot. Since the initial gas layer is not in a hydrostatic balance, the column gas falls onto the neutron-star surface, and thereby a shock is generated. As a result, the accretion column is composed of two regions: an upper, nearly free-fall region and a lower settling region, as noted by Basko and Sunyaev (1976, MNRAS, 175, 395). The average accretion rate is very high; dot{M}˜ 10^{2{-}3} L_E/c2 (with LE being the Eddington luminosity), and so radiation energy dominates over gas internal energy entirely within the column. Despite the high accretion rate, the radiation flux in the laboratory frame is kept barely below LE/(4πr2) at a distance r in the settling region so that matter can slowly accrete. This adjustment is made possible, since a large amount of photons produced via dissipation of kinetic energy of matter can escape through the side boundaries. The total luminosity can greatly exceed LE by several orders of magnitude, whereas the apparent luminosity observed from the top of the column is much less. Due to such highly anisotropic radiation fields, the observed flux should exhibit periodic variations with the rotation period, provided that the rotation and magnetic axes are misaligned.

  9. Swift Detection of a 65 Day X-Ray Period from the Ultraluminous Pulsar NGC 7793 P13

    NASA Astrophysics Data System (ADS)

    Hu, Chin-Ping; Li, K. L.; Kong, Albert K. H.; Ng, C.-Y.; Chun-Che Lin, Lupin

    2017-01-01

    NGC 7793 P13 is an ultraluminous X-ray source harboring an accreting pulsar. We report on the detection of a ∼65 day period X-ray modulation with Swift observations in this system. The modulation period found in the X-ray band is P = 65.05 ± 0.10 days and the profile is asymmetric with a fast rise and a slower decay. On the other hand, the u-band light curve collected by Swift UVOT confirmed an optical modulation with a period of P = 64.24 ± 0.13 days. We explored the phase evolution of the X-ray and optical periodicities and propose two solutions. A superorbital modulation with a period of ∼2700–4700 days probably caused by the precession of a warped accretion disk is necessary to interpret the phase drift of the optical data. We further discuss the implication if this ∼65 day periodicity is caused by the superorbital modulation. Estimated from the relationship between the spin-orbital and orbital-superorbital periods of known disk-fed high-mass X-ray binaries, the orbital period of P13 is roughly estimated as 3–7 days. In this case, an unknown mechanism with a much longer timescale is needed to interpret the phase drift. Further studies on the stability of these two periodicities with a long-term monitoring could help us to probe their physical origins.

  10. Using the Chandra Source-Finding Algorithm to Automatically Identify Solar X-ray Bright Points

    NASA Technical Reports Server (NTRS)

    Adams, Mitzi L.; Tennant, A.; Cirtain, J. M.

    2009-01-01

    This poster details a technique of bright point identification that is used to find sources in Chandra X-ray data. The algorithm, part of a program called LEXTRCT, searches for regions of a given size that are above a minimum signal to noise ratio. The algorithm allows selected pixels to be excluded from the source-finding, thus allowing exclusion of saturated pixels (from flares and/or active regions). For Chandra data the noise is determined by photon counting statistics, whereas solar telescopes typically integrate a flux. Thus the calculated signal-to-noise ratio is incorrect, but we find we can scale the number to get reasonable results. For example, Nakakubo and Hara (1998) find 297 bright points in a September 11, 1996 Yohkoh image; with judicious selection of signal-to-noise ratio, our algorithm finds 300 sources. To further assess the efficacy of the algorithm, we analyze a SOHO/EIT image (195 Angstroms) and compare results with those published in the literature (McIntosh and Gurman, 2005). Finally, we analyze three sets of data from Hinode, representing different parts of the decline to minimum of the solar cycle.

  11. X-Ray Imaging and Spectroscopy of the Supernova Remnant CTB 109 and Its Associated Pulsar 1E 2259+586

    NASA Astrophysics Data System (ADS)

    Rho, Jeonghee; Petre, R.

    1997-07-01

    We present the results of our analysis of the X-ray spectral structure of the evolved supernova remnant CTB 109 (G109.1-1.0), using data from the ROSAT Position Sensitive Proportional Counter (PSPC) and Broad Band X-Ray Telescope (BBXRT). The deep broadband PSPC image shows the same overall remnant morphology as previous X-ray images but reveals many new details. The remnant appears as a hemispherical shell centered on the X-ray-bright central pulsar 1E 2259+586. Despite the substantial improvement in sensitivity of the PSPC image over previous images, no X-ray emission is detected from the western half of the remnant, consistent with the interpretation that the western shock front has been significantly decelerated by a dense molecular cloud. Enhanced emission along the cloud remnant boundary supports this interpretation. Among important new small-scale structures revealed are clumpy substructure within the jetlike lobe running northeastward from the pulsar to the shell, and extended emission, with 2-3 arc minute radius, around 1E 2259+586. Spatially resolved spectroscopy using the PSPC reveals an overall column density variation across the remnant as well as intrinsic spectral variations. In particular, the spectrum over most of the shell is well fitted by a single-component thermal model, while for the lobe, the northern and southern shell, two thermal components are required, with one having parameter values similar to that found in those regions fitted by a single-component model. We conclude that either the thermal conditions vary within the remnant or there exists a second, distinct gas component in some parts of the remnant. A simultaneous fit to BBXRT and PSPC spectra for part of the interior and shell to the south of the pulsar shows that the plasma there is not in ionization equilibrium. The results of fitting these spectra using nonequilibrium ionization models are ambiguous, however: equally acceptable fits were obtained using models with and without

  12. DISCOVERY OF A 205.89 Hz ACCRETING MILLISECOND X-RAY PULSAR IN THE GLOBULAR CLUSTER NGC 6440

    SciTech Connect

    Altamirano, D.; Patruno, A.; Linares, M.; Wijnands, R.; Van der Klis, M.; Heinke, C. O.; Markwardt, C.; Strohmayer, T. E.; Swank, J. H.

    2010-03-20

    We report on the discovery of the second accreting millisecond X-ray pulsar (AMXP) in the globular cluster NGC 6440. Pulsations with a frequency of 205.89 Hz were detected with RXTE on 2009 August 30, October 1 and October 28, during the decays of {approx}<4 day outbursts of a newly X-ray transient source in NGC 6440. By studying the Doppler shift of the pulsation frequency, we find that the system is an ultra-compact binary with an orbital period of 57.3 minutes and a projected semimajor axis of 6.22 lt-ms. Based on the mass function, we estimate a lower limit to the mass of the companion to be 0.0067 M {sub sun} (assuming a 1.4 M {sub sun} neutron star). This new pulsar shows the shortest outburst recurrence time among AMXPs ({approx}1 month). If this behavior does not cease, this AMXP has the potential to be one of the best sources in which to study how the binary system and the neutron star spin evolve. Furthermore, the characteristics of this new source indicate that there might exist a population of AMXPs undergoing weak outbursts which are undetected by current all-sky X-ray monitors. NGC 6440 is the only globular cluster to host two known AMXPs, while no AMXPs have been detected in any other globular cluster.

  13. X-Ray Analysis of the Proper Motion and Pulsar Wind Nebula for PSR J1741-2054

    NASA Technical Reports Server (NTRS)

    Auchettl, Katie; Slane, Patrick; Romani, Roger W.; Posselt, Bettina; Pavlov, George G.; Kargaltsev, Oleg; Ng, C-Y.; Temim, Tea; Weisskopf, Martin C.; Bykov, Andrei; Swartz, Douglas

    2015-01-01

    We obtained six observations of PSR J1741-2054 using the Chandra ACIS-S detector totaling approx.300 ks. By registering this new epoch of observations to an archival observation taken 3.2 yr earlier using X-ray point sources in the field of view, we have measured the pulsar proper motion at micron = 109 +/- 10 mas yr(exp. -1) in a direction consistent with the symmetry axis of the observed H(alpha) nebula. We investigated the inferred past trajectory of the pulsar but find no compelling association with OB associations in which the progenitor may have originated. We confirm previous measurements of the pulsar spectrum as an absorbed power law with photon index gamma = 2.68 +/- 0.04, plus a blackbody with an emission radius of (4.5(+3.2/-2.5))d(0.38) km, for a DM-estimated distance of 0.38d(0.38) kpc and a temperature of 61.7 +/- 3.0 eV. Emission from the compact nebula is well described by an absorbed power law model with a photon index of gamma = 1.67 +/- 0.06, while the diffuse emission seen as a trail extending northeast of the pulsar shows no evidence of synchrotron cooling. We also applied image deconvolution techniques to search for small-scale structures in the immediate vicinity of the pulsar, but found no conclusive evidence for such structures.

  14. The End of Accretion: The X-Ray Binary/Millisecond Pulsar Transition Object PSR J1023+0038

    NASA Astrophysics Data System (ADS)

    Archibald, Anne

    2015-04-01

    Millisecond radio pulsars (MSRPs), those spinning hundreds of times per second, have long been understood to be old pulsars that have been spun up by the accretion of matter from a companion in a low-mass X-ray binary (LMXB) phase. Yet the details of this transformation, particularly the end of the accretion process and the birth of a radio pulsar, remain mysterious. I will describe the discovery and detailed study of the first object known to transition between MSRP and LMXB states, PSR J1023+0038. By dint of a multiwavelength campaign of observations in the RMSP state, we are able to measure all the key system parameters and show the existence of an X-ray shock close to the pulsar-facing side of the companion. Since the discovery of PSR J1023+0038, two more objects (XSS J12270-4859 and M28I) have been found to make the same transition, and the study of these transitioning objects has become an active field of research. Most interestingly, PSR J1023+0038 has transitioned back into an LMXB state, with an active accretion disk and a puzzling increase in gamma-ray flux. Our detailed picture of the system allows us to test models of accretion against the phenomena we observe in PSR J1023+0038, and in fact these observations challenge current models: in spite of the low luminosity of the system (and low inferred accretion rate) some material is penetrating the centrifugal barrier and falling on the neutron-star surface. Key evidence for explaining this puzzling behaviour will come when PSR J1023+0038 returns to an MSRP state and we are able to compare pulsar timing models from after the LMXB state with those we obtained in this work.

  15. Possible detection of a cyclotron resonance scattering feature in the X-ray pulsar 4U 1909+07

    SciTech Connect

    Jaisawal, Gaurava K.; Naik, Sachindra; Paul, Biswajit

    2013-12-10

    We present timing and broad band spectral studies of the high-mass X-ray binary pulsar 4U 1909+07 using data from Suzaku observations during 2010 November 2-3. The pulse period of the pulsar is estimated to be 604.11 ± 0.14 s. Pulsations are seen in the X-ray light curve up to ∼70 keV. The pulse profile is found to be strongly energy-dependent: a complex, multi-peaked structure at low energy becomes a simple single peak at higher energy. We found that the 1-70 keV pulse-averaged continuum can be fit by the sum of a blackbody and a partial covering Negative and Positive power law with Exponential cutoff model. A weak iron fluorescence emission line at 6.4 keV was detected in the spectrum. An absorption-like feature at ∼44 keV was clearly seen in the residuals of the spectral fitting, independent of the continuum model adopted. To check the possible presence of a cyclotron resonance scattering feature (CRSF) in the spectrum, we normalized the pulsar spectrum with the spectrum of the Crab Nebula. The resulting Crab ratio also showed a clear dip centered at ∼44 keV. We performed statistical tests on the residuals of the spectral fitting and also on the Crab spectral ratio to determine the significance of the absorption-like feature and identified it as a CRSF of the pulsar. We estimated the corresponding surface magnetic field of the pulsar to be 3.8 × 10{sup 12} G.

  16. An optical synchrotron nebula around the X-ray pulsar 0540 693 in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Chanan, G. A.; Helfand, D. J.; Reynolds, S. P.

    1984-12-01

    The discovery of extended optical continuum emission around the recently discovered 50 ms X-ray pulsar in the supernova remnant 0540 - 693 is reported. Exposures in blue and red broad-band filters made with the CTIO 4 m telescope and prime focus CCD show a center-brightened but clearly extended nebula about 4 arcsec in diameter (FWHM), while an image in an (O III) filter shows an 8 arcsec diameter shell (as reported earlier) which encloses the continuum source. The extinction-correction magnitudes B = 17.5 and I = 16.4 both correspond to flux densities which lie directly on the extrapolation of the observed X-ray power-law spectrum, suggesting that the emission from 10 to the 14.5 Hz to 10 to the 18th Hz is synchrotron radiation from a single population of particles. Line emission is shown to be only a small contaminant in the broad-band images. Thus the 0540 - 693 system is apparently a very close analog of the Crab Nebula. Any point source component in the former nebula must have B greater than 20; the Crab pulsar at this distance would have B approximately 23. The implications of the observations for the energetics of the pulsar/nebula system are discussed.

  17. A Chandra look at the X-ray faint millisecond pulsars in the globular cluster NGC 6752

    NASA Astrophysics Data System (ADS)

    Forestell, L. M.; Heinke, C. O.; Cohn, H. N.; Lugger, P. M.; Sivakoff, G. R.; Bogdanov, S.; Cool, A. M.; Anderson, J.

    2014-06-01

    We combine new and archival Chandra observations of the globular cluster NGC 6752 to create a deeper X-ray source list, and study the faint radio millisecond pulsars (MSPs) of this cluster. We detect four of the five MSPs in NGC 6752, and present evidence for emission from the fifth. The X-rays from these MSPs are consistent with thermal emission from the neutron star surfaces, with significantly higher fitted blackbody temperatures than other globular cluster MSPs (though we cannot rule out contamination by non-thermal emission or other X-ray sources). NGC 6752 E is one of the lowest-LX MSPs known, with LX(0.3-8 keV) = 1.0^{+0.9}_{-0.5}× 10^{30} erg s-1. We check for optical counterparts of the three isolated MSPs in the core using new Hubble Space Telescope Advanced Camera for Surveys images, finding no plausible counterparts, which is consistent with their lack of binary companions. We compile measurements of LX and spin-down power for radio MSPs from the literature, including errors where feasible. We find no evidence that isolated MSPs have lower LX than MSPs in binary systems, omitting binary MSPs showing emission from intrabinary wind shocks. We find weak evidence for an inverse correlation between the estimated temperature of the MSP X-rays and the known MSP spin period, consistent with the predicted shrinking of the MSP polar cap size with increasing spin period.

  18. Pulsar-Wind Nebulae and Magnetar Outflows: Observations at Radio, X-Ray, and Gamma-Ray Wavelengths

    NASA Astrophysics Data System (ADS)

    Reynolds, Stephen P.; Pavlov, George G.; Kargaltsev, Oleg; Klingler, Noel; Renaud, Matthieu; Mereghetti, Sandro

    2017-03-01

    We review observations of several classes of neutron-star-powered outflows: pulsar-wind nebulae (PWNe) inside shell supernova remnants (SNRs), PWNe interacting directly with interstellar medium (ISM), and magnetar-powered outflows. We describe radio, X-ray, and gamma-ray observations of PWNe, focusing first on integrated spectral-energy distributions (SEDs) and global spectral properties. High-resolution X-ray imaging of PWNe shows a bewildering array of morphologies, with jets, trails, and other structures. Several of the 23 so far identified magnetars show evidence for continuous or sporadic emission of material, sometimes associated with giant flares, and a few "magnetar-wind nebula" have been recently identified.

  19. Glitch and pulsed flux increase in Anomalous X-ray Pulsar 1E 1048.1-5937.

    NASA Astrophysics Data System (ADS)

    Dib, R.; Kaspi, V. M.; Gavriil, F. P.; Woods, P. M.

    2007-04-01

    We report the detection of a sudden spin-up and pulsed flux increase in the 6.5-s anomalous X-ray pulsar 1E 1048.1-5937 in regular timing observations made with RXTE. The event, which occured between MJD 54181 (2007 March 22) and 54187 (2007 March 28), but most likely on MJD 54186 (2007 March 27) can be characterized by a fractional increase in the rotational frequency of magnitude (deltaNU/NU = 2.7+/-0.7 x 10-6).

  20. The Crab Pulsar Observed by RXTE: Monitoring the X-Ray to Radio Delay for 16 Years

    NASA Technical Reports Server (NTRS)

    Rots, Arnold; Jahoda, Keith

    2012-01-01

    In 2004 we published the results of monitoring the Crab Pulsar by RXTE. At that time we determined that the primary pulse of the pulsar at X-ray energies precedes its radio counterpart by about 0.01 period in phase or approximately 330 micro seconds. However, we could not establish unambiguously whether the delay is in phase or due to a difference in pathlength. At this time we have twice the time baseline we had in 2004 and we present the same analysis, but now over a period of 16 years, which will represent almost the full mission and the best that will be available from RXTE. The full dataset shows that the phase delay has been decreasing faster than the pulse frequency over the 16 year baseline and that there are variations in the delay on a variety of timescales.

  1. An accreting pulsar with extreme properties drives an ultraluminous x-ray source in NGC 5907

    NASA Astrophysics Data System (ADS)

    Israel, Gian Luca; Belfiore, Andrea; Stella, Luigi; Esposito, Paolo; Casella, Piergiorgio; De Luca, Andrea; Marelli, Martino; Papitto, Alessandro; Perri, Matteo; Puccetti, Simonetta; Castillo, Guillermo A. Rodríguez; Salvetti, David; Tiengo, Andrea; Zampieri, Luca; D’Agostino, Daniele; Greiner, Jochen; Haberl, Frank; Novara, Giovanni; Salvaterra, Ruben; Turolla, Roberto; Watson, Mike; Wilms, Joern; Wolter, Anna

    2017-02-01

    Ultraluminous x-ray sources (ULXs) in nearby galaxies shine brighter than any x-ray source in our Galaxy. ULXs are usually modeled as stellar-mass black holes (BHs) accreting at very high rates or intermediate-mass BHs. We present observations showing that NGC 5907 ULX is instead an x-ray accreting neutron star (NS) with a spin period evolving from 1.43 seconds in 2003 to 1.13 seconds in 2014. It has an isotropic peak luminosity of ~1000 times the Eddington limit for a NS at 17.1 megaparsec. Standard accretion models fail to explain its luminosity, even assuming beamed emission, but a strong multipolar magnetic field can describe its properties. These findings suggest that other extreme ULXs (x-ray luminosity ≥ 1041 erg second‑1) might harbor NSs.

  2. An accreting pulsar with extreme properties drives an ultraluminous x-ray source in NGC 5907.

    PubMed

    Israel, Gian Luca; Belfiore, Andrea; Stella, Luigi; Esposito, Paolo; Casella, Piergiorgio; De Luca, Andrea; Marelli, Martino; Papitto, Alessandro; Perri, Matteo; Puccetti, Simonetta; Castillo, Guillermo A Rodríguez; Salvetti, David; Tiengo, Andrea; Zampieri, Luca; D'Agostino, Daniele; Greiner, Jochen; Haberl, Frank; Novara, Giovanni; Salvaterra, Ruben; Turolla, Roberto; Watson, Mike; Wilms, Joern; Wolter, Anna

    2017-02-24

    Ultraluminous x-ray sources (ULXs) in nearby galaxies shine brighter than any x-ray source in our Galaxy. ULXs are usually modeled as stellar-mass black holes (BHs) accreting at very high rates or intermediate-mass BHs. We present observations showing that NGC 5907 ULX is instead an x-ray accreting neutron star (NS) with a spin period evolving from 1.43 seconds in 2003 to 1.13 seconds in 2014. It has an isotropic peak luminosity of [Formula: see text]1000 times the Eddington limit for a NS at 17.1 megaparsec. Standard accretion models fail to explain its luminosity, even assuming beamed emission, but a strong multipolar magnetic field can describe its properties. These findings suggest that other extreme ULXs (x-ray luminosity [Formula: see text] 10(41) erg second[Formula: see text]) might harbor NSs.

  3. X-ray jets from B2224+65: A Middle-aged Pulsar's New Trick

    NASA Astrophysics Data System (ADS)

    Wang, Q. Daniel

    2014-11-01

    B2224+65 is well known to have a very high proper motion and to be associated with the ``Guitar Nebula'' in the opposite direction of the motion. A jet-like X-ray feature, however, is offset from its proper motion direction by 118 degree. Furthermore, the X-ray luminosity and morphology of the feature changed significantly between three Chandra observations. We are carrying out a detailed measurements of the X-ray spectral variation with time and across the feature and are critically testing scenarios proposed to explain this enigmatic system. The study will also have strong implications for understanding somewhat similar linear nonthermal X-ray-emitting features that have been identified in the central 100 pc region of the Galaxy.

  4. DISCOVERY OF A FAINT X-RAY COUNTERPART AND A PARSEC-LONG X-RAY TAIL FOR THE MIDDLE-AGED, {gamma}-RAY-ONLY PULSAR PSR J0357+3205

    SciTech Connect

    De Luca, A.; Bignami, G. F.; Marelli, M.; Caraveo, P. A.; Mignani, R. P.; Hummel, W.; Collins, S.; Shearer, A.; Parkinson, P. M. Saz; Belfiore, A.

    2011-06-01

    The Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope opened a new era for pulsar astronomy, detecting {gamma}-ray pulsations from more than 60 pulsars, {approx}40% of which are not seen at radio wavelengths. One of the most interesting sources discovered by LAT is PSR J0357+3205, a radio-quiet, middle-aged ({tau}{sub C} {approx} 0.5 Myr) pulsar standing out for its very low spin-down luminosity (E-dot{sub rot}{approx}6x10{sup 33} erg s{sup -1}), indeed the lowest among non-recycled {gamma}-ray pulsars. A deep X-ray observation with Chandra (0.5-10 keV), coupled with sensitive optical/infrared ground-based images of the field, allowed us to identify PSR J0357+3205 as a faint source with a soft spectrum, consistent with a purely non-thermal emission (photon index {Gamma} = 2.53 {+-} 0.25). The absorbing column (N{sub H} = 8 {+-} 4 x 10{sup 20} cm{sup -2}) is consistent with a distance of a few hundred parsecs. Moreover, the Chandra data unveiled a huge (9 arcmin long) extended feature apparently protruding from the pulsar. Its non-thermal X-ray spectrum points to synchrotron emission from energetic particles from the pulsar wind, possibly similar to other elongated X-ray tails associated with rotation-powered pulsars and explained as bow-shock pulsar wind nebulae (PWNe). However, energetic arguments as well as the peculiar morphology of the diffuse feature associated with PSR J0357+3205 make the bow-shock PWN interpretation rather challenging.

  5. The XMM-Newton survey of the Small Magellanic Cloud: discovery of the 11.866 s Be/X-ray binary pulsar XMMU J004814.0-732204(SXP11.87)

    NASA Astrophysics Data System (ADS)

    Sturm, R.; Haberl, F.; Coe, M. J.; Bartlett, E. S.; Buckley, D. A. H.; Corbet, R. H. D.; Ehle, M.; Filipović, M. D.; Hatzidimitriou, D.; Mereghetti, S.; La Palombara, N.; Pietsch, W.; Tiengo, A.; Townsend, L. J.; Udalski, A.

    2011-03-01

    Aims: One of the goals of the XMM-Newton survey of the Small Magellanic Cloud is to study the Be/X-ray binary population. During one of our first survey observations, a bright new transient - XMMU J004814.0-732204 - was discovered. Methods: We present the analysis of the EPIC X-ray data, together with optical observations, to investigate the spectral and temporal characteristics of XMMU J004814.0-732204. Results: We found coherent X-ray pulsations in the EPIC data with a period of (11.86642 ± 0.00017) s. The X-ray spectrum can be modelled by an absorbed power law with an indication for a soft excess. Depending on the modelling of the soft X-ray spectrum, the photon index ranges between 0.53 and 0.66. We identify the optical counterpart as a B = 14.9 mag star that was monitored during the MACHO and OGLE-III projects. The optical light curves show regular outbursts by ~0.5 mag in B and R and up to 0.9 mag in I, which repeat on a time scale of about 1000 days. The OGLE-III optical colours of the star are consistent with an early B spectral type. An optical spectrum obtained at the 1.9 m telescope of the South African Astronomical Observatory in December 2009 shows Hα emission with an equivalent width of 3.5 ± 0.6 Å. Conclusions: The X-ray spectrum and the detection of pulsations suggest that XMMU J004814.0-732204is a new high-mass X-ray binary pulsar in the SMC. The long term variability and the Hα emission line in the spectrum of the optical counterpart identify it as a Be/X-ray binary system.

  6. A possible 55-d X-ray period of the ultraluminous accreting pulsar M82 X-2

    NASA Astrophysics Data System (ADS)

    Kong, Albert K. H.; Hu, Chin-Ping; Lin, Lupin Chun-Che; Li, K. L.; Jin, Ruolan; Liu, C. Y.; Yen, David Chien-Chang

    2016-10-01

    We report on the possible detection of a 55-d X-ray modulation for the ultraluminous accreting pulsar M82 X-2 from archival Chandra observations. Because M82 X-2 is known to have a 2.5-d orbital period, if the 55-d period is real, then it will be the superorbital period of the system. We also investigated variabilities of three other nearby ultraluminous X-ray sources in the central region of M82 with the Chandra data, and we did not find any evidence of periodicities. Furthermore, we re-examined the previously reported 62-d periodicity near the central region of M82 by performing a systematic timing study with all the archival Rossi X-Ray Timing Explorer and Swift data. Using various dynamic timing analysis methods, we have confirmed that the 62-d period is not stable, suggesting that it is not the orbital period of M82 X-1; this is in agreement with previous work.

  7. ON THE SPIN-DOWN AND MAGNETIC FIELD OF THE X-RAY PULSAR 1E 1207.4-5209

    SciTech Connect

    Halpern, J. P.; Gotthelf, E. V. E-mail: eric@astro.columbia.edu

    2011-06-01

    We analyze all of the archival X-ray timing data from the years 2000-2008 on the weakly magnetized central compact object (CCO) pulsar 1E 1207.4-5209 in an attempt to measure its dipole magnetic field strength via spin-down. because most of these observations were not planned for the purpose of phase-coherent timing, the resulting ephemeris is not unique, but is restricted to two comparably good timing solutions that correspond to B{sub s} = 9.9 x 10{sup 10} G or 2.4 x 10{sup 11} G, respectively, assuming dipole spin-down. One of these should be the correct value and the other one an alias. There are no spinning-up solutions. The smaller value of B{sub s} is close to the surface field of 8 x 10{sup 10} G that is measured independently from the unique absorption lines in the X-ray spectrum of 1E 1207.4-5209, assuming that the lowest-energy line at 0.7 keV is the electron-cyclotron fundamental. We suggest that 1E 1207.4-5209 has the strongest magnetic field among CCOs, which would account for the unique presence of its cyclotron absorption spectrum, while other CCOs likely have even weaker fields for which the cyclotron fundamental falls below the observable soft X-ray band.

  8. DISCOVERY OF ECLIPSES FROM THE ACCRETING MILLISECOND X-RAY PULSAR SWIFT J1749.4-2807

    SciTech Connect

    Markwardt, C. B.; Strohmayer, T. E.

    2010-07-10

    We report the discovery of X-ray eclipses in the recently discovered accreting millisecond X-ray pulsar SWIFT J1749.4-2807. This is the first detection of X-ray eclipses in a system of this type and should enable a precise neutron star mass measurement once the companion star is identified and studied. We present a combined pulse and eclipse timing solution that enables tight constraints on the orbital parameters and inclination and shows that the companion mass is in the range 0.6-0.8 M{sub sun} for a likely range of neutron star masses, and that it is larger than a main-sequence star of the same mass. We observed two individual eclipse egresses and a single ingress. Our timing model shows that the eclipse features are symmetric about the time of 90{sup 0} longitude from the ascending node, as expected. Our eclipse timing solution gives an eclipse duration (from the mid-points of ingress to egress) of 2172 {+-} 13 s. This represents 6.85% of the 8.82 hr orbital period. This system also presents a potential measurement of 'Shapiro' delay due to general relativity; through this technique alone, we set an upper limit to the companion mass of 2.2 M{sub sun}.

  9. Superorbital Modulation and Orbital Parameters of the Eclipsing High-Mass X-ray Pulsar IGR J16493-4348

    NASA Astrophysics Data System (ADS)

    Pearlman, Aaron B.; Corbet, R.; Pottschmidt, K.

    2013-01-01

    Previous infrared studies of the X-ray pulsar IGR J16493-4348 classified the system as a supergiant high-mass X-ray binary (HMXB). A ~6.78 d orbital period was discovered from Swift Burst Alert Telescope (BAT) and Rossi X-ray Timing Explorer (RXTE) Proportional Counter Array (PCA) Galactic Bulge scan observations. A coherent signal at ~20.07 d was also found using the PCA and BAT instruments, suggestive of superorbital behavior within the system. Using well-sampled PCA archival pointed data (2.5-25 keV) spanning 9.5 d, we find strong evidence for a pulse period at ~1093 s from pulse arrival time analysis and the power spectrum of the light curve after removal of low frequency noise. We present an eclipse model for the folded PCA scan and BAT 66-month snapshot light curves, which constrains the system's behavior during orbital transitions. Pulse arrival times are derived using the PCA pointed light curve, and circular and eccentric orbital solutions are provided. A 14.0 ± 2.3 M⊙ mass function is determined, which further confirms the designation of IGR J16493-4348 as a supergiant HMXB.

  10. Discovery of a 0.42-s pulsar in the ultraluminous X-ray source NGC 7793 P13

    NASA Astrophysics Data System (ADS)

    Israel, G. L.; Papitto, A.; Esposito, P.; Stella, L.; Zampieri, L.; Belfiore, A.; Rodríguez Castillo, G. A.; De Luca, A.; Tiengo, A.; Haberl, F.; Greiner, J.; Salvaterra, R.; Sandrelli, S.; Lisini, G.

    2017-03-01

    NGC 7793 P13 is a variable (luminosity range ∼100) ultraluminous X-ray source proposed to host a stellar-mass black hole of less than 15 M⊙ in a binary system with orbital period of 64 d and a 18-23 M⊙ B9Ia companion. Within the EXTraS (Exploring the X-ray Transient and variable Sky) project, we discovered pulsations at a period of ∼0.42 s in two XMM-Newton observations of NGC 7793 P13, during which the source was detected at LX ∼ 2.1 × 1039 and 5 × 1039 erg s-1 (0.3-10 keV band). These findings unambiguously demonstrate that the compact object in NGC 7793 P13 is a neutron star accreting at super-Eddington rates. While standard accretion models face difficulties accounting for the pulsar X-ray luminosity, the presence of a multipolar magnetic field with B ∼ few × 1013 G close to the base of the accretion column appears to be in agreement with the properties of the system.

  11. Discovery of Eclipses from the Accreting Millisecond X-Ray Pulsar Swift J1749.4-2807

    NASA Technical Reports Server (NTRS)

    Markwardt, C. B.; Stromhmayer, T. E.

    2010-01-01

    We report the discovery of X-ray eclipses in the recently discovered accreting millisecond X-ray pulsar SWIFT J1749.4-2807. This is the first detection of X-ray eclipses in a system of this type and should enable a precise neutron star mass measurement once the companion star is identified and studied. We present a combined pulse and eclipse timing solution that enables tight constraints on the orbital parameters and inclination and shows that the companion mass is in the range 0.6-0.8 solar mass for a likely range of neutron star masses, and that it is larger than a main-sequence star of the same mass. We observed two individual eclipse egresses and a single ingress. Our timing model shows that the eclipse features are symmetric about the time of 90 longitude from the ascending node, as expected. Our eclipse timing solution gives an eclipse duration (from the mid-points of ingress to egress) of 2172+/-13 s. This represents 6.85% of the 8.82 hr orbital period. This system also presents a potential measurement of "Shapiro" delay due to general relativity; through this technique alone, we set an upper limit to the companion mass of 2.2 Solar mass .

  12. A FAST X-RAY DISK WIND IN THE TRANSIENT PULSAR IGR J17480-2446 IN TERZAN 5

    SciTech Connect

    Miller, Jon M.; Maitra, Dipankar; Cackett, Edward M.; Bhattacharyya, Sudip; Strohmayer, Tod E.

    2011-04-10

    Accretion disk winds are revealed in Chandra gratings spectra of black holes. The winds are hot and highly ionized (typically composed of He-like and H-like charge states) and show modest blueshifts. Similar line spectra are sometimes seen in 'dipping' low-mass X-ray binaries (LMXBs), which are likely viewed edge-on; however, that absorption is tied to structures in the outer disk, and blueshifts are not typically observed. Here, we report the detection of blueshifted He-like Fe XXV (3100 {+-} 400 km s{sup -1}) and H-like Fe XXVI (1000 {+-} 200 km s{sup -1}) absorption lines in a Chandra/HETG spectrum of the transient pulsar and LMXB IGR J17480-2446 in Terzan 5. These features indicate a disk wind with at least superficial similarities to those observed in stellar-mass black holes. The wind does not vary strongly with numerous weak X-ray bursts or flares. A broad Fe K emission line is detected in the spectrum, and fits with different line models suggest that the inner accretion disk in this system may be truncated. If the stellar magnetic field truncates the disk, a field strength of B= (0.7-4.0)x10{sup 9} G is implied, which is in line with estimates based on X-ray timing techniques. We discuss our findings in the context of accretion flows onto neutron stars and stellar-mass black holes.

  13. Broad-band spectral analysis of the accreting millisecond X-ray pulsar SAX J1748.9-2021

    NASA Astrophysics Data System (ADS)

    Pintore, F.; Sanna, A.; Di Salvo, T.; Del Santo, M.; Riggio, A.; D'Aì, A.; Burderi, L.; Scarano, F.; Iaria, R.

    2016-04-01

    We analysed a 115-ks XMM-Newton observation and the stacking of 8 d of INTEGRAL observations, taken during the raise of the 2015 outburst of the accreting millisecond X-ray pulsar SAX J1748.9-2021. The source showed numerous type-I burst episodes during the XMM-Newton observation, and for this reason we studied separately the persistent and burst epochs. We described the persistent emission with a combination of two soft thermal components, a cold thermal Comptonization component (˜2 keV) and an additional hard X-ray emission described by a power law (Γ ˜ 2.3). The continuum components can be associated with an accretion disc, the neutron star (NS) surface and a thermal Comptonization emission coming out of an optically thick plasma region, while the origin of the high-energy tail is still under debate. In addition, a number of broad (σ = 0.1-0.4 keV) emission features likely associated with reflection processes have been observed in the XMM-Newton data. The estimated 1.0-50 keV unabsorbed luminosity of the source is ˜5 × 1037 erg s-1, about 25 per cent of the Eddington limit assuming a 1.4 M⊙ NS. We suggest that the spectral properties of SAX J1748.9-2021 are consistent with a soft state, differently from many other accreting X-ray millisecond pulsars which are usually found in the hard state. Moreover, none of the observed type-I burst reached the Eddington luminosity. Assuming that the burst ignition and emission are produced above the whole NS surface, we estimate an NS radius of ˜7-8 km, consistent with previous results.

  14. Generation of bright attosecond x-ray pulse trains via Thomson scattering from laser-plasma accelerators.

    PubMed

    Luo, W; Yu, T P; Chen, M; Song, Y M; Zhu, Z C; Ma, Y Y; Zhuo, H B

    2014-12-29

    Generation of attosecond x-ray pulse attracts more and more attention within the advanced light source user community due to its potentially wide applications. Here we propose an all-optical scheme to generate bright, attosecond hard x-ray pulse trains by Thomson backscattering of similarly structured electron beams produced in a vacuum channel by a tightly focused laser pulse. Design parameters for a proof-of-concept experiment are presented and demonstrated by using a particle-in-cell code and a four-dimensional laser-Compton scattering simulation code to model both the laser-based electron acceleration and Thomson scattering processes. Trains of 200 attosecond duration hard x-ray pulses holding stable longitudinal spacing with photon energies approaching 50 keV and maximum achievable peak brightness up to 1020 photons/s/mm2/mrad2/0.1%BW for each micro-bunch are observed. The suggested physical scheme for attosecond x-ray pulse trains generation may directly access the fastest time scales relevant to electron dynamics in atoms, molecules and materials.

  15. Bright, low debris, ultrashort hard x-ray table top source using carbon nanotubes

    SciTech Connect

    Bagchi, Suman; Kiran, P. Prem; Yang, K.; Rao, A. M.; Bhuyan, M. K.; Krishnamurthy, M.; Kumar, G. Ravindra

    2011-01-15

    We demonstrate that carbon nanotube coated surfaces produce two orders of magnitude brighter hard x-ray emission, in laser produced plasmas, than planar surfaces. It is accompanied by three orders of magnitude reduction in ion debris which is also low Z and nontoxic. The increased emission is a direct consequence of the enhancement in local fields and is via the simple and well known 'lightning rod' effect. We propose that this carbon nanotube hard x-ray source is a simple, inexpensive, and high repetition rate hard x-ray point source for a variety of applications in imaging, lithography, microscopy, and material processing.

  16. Ultra-bright, ultra-broadband hard x-ray driven by laser-produced energetic electron beams

    SciTech Connect

    Shi, Yin; Shen, Baifei; Zhang, Xiaomei; Wang, Wenpeng; Ji, Liangliang; Zhang, Lingang; Xu, Jiancai; Yu, Yahong; Zhao, Xueyan; Wang, Xiaofeng; Yi, Longqing; Xu, Tongjun; Xu, Zhizhan

    2013-09-15

    We propose a new method of obtaining a compact ultra-bright, ultra-broadband hard X-ray source. This X-ray source has a high peak brightness in the order of 10{sup 22} photons/(s mm{sup 2} mrad{sup 2} 0.1\\%BW), an ultrashort duration (10 fs), and a broadband spectrum (flat distribution from 0.1 MeV to 4 MeV), and thus has wide-ranging potential applications, such as in ultrafast Laue diffraction experiments. In our scheme, laser-plasma accelerators (LPAs) provide driven electron beams. A foil target is placed oblique to the beam direction so that the target normal sheath field (TNSF) is used to provide a bending force. Using this TNSF-kick scheme, we can fully utilize the advantages of current LPAs, including their high charge, high energy, and low emittance.

  17. Detecting and timing a pulsed radio counterpart to the recently discovered high magnetic field X-ray pulsar PSR J1640-4631

    NASA Astrophysics Data System (ADS)

    Ferdman, Robert; Kaspi, Victoria; Gotthelf, Eric

    2014-04-01

    We propose to perform a directed search for a pulsed radio-emitting counterpart to the rotation-powered 206-ms X-ray pulsar PSR J1640-4631, recently discovered with the NuSTAR X-ray telescope. This source has a very large spin-down rate, and hence is an excellent and rare candidate for the measurement of the source's “braking index,” a fundamental test of the electromagnetic braking hypothesis. A braking index below 2, as has been recently measured for a similar pulsar, would provide further evidence of a connection between pulsars and magnetars. We request time to initially verify this pulsar’s radio detectability, and to perform coherent timing observations that would lead to the aforementioned braking index measurement. If the pulsar is not detected in the initial observations, we will inform the director to withdraw the timing observation portion of our request.

  18. Bright x-ray stainless steel K-shell source development at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    May, M. J.; Fournier, K. B.; Colvin, J. D.; Barrios, M. A.; Dewald, E. L.; Hohenberger, M.; Moody, J.; Patterson, J. R.; Schneider, M.; Widmann, K.; Regan, S. P.

    2015-06-01

    High x-ray conversion efficiency (XRCE) K-shell sources are being developed for high energy density experiments for use as backlighters and for the testing of materials exposed to high x-ray fluxes and fluences. Recently, sources with high XRCE in the K-shell x-ray energy range of iron and nickel were investigated at the National Ignition Facility (NIF). The x-ray conversion efficiency in the 5-9 keV spectral range was determined to be 6.8% ± 0.3%. These targets were 4.1 mm diameter, 4 mm tall hollow epoxy tubes having a 50 μm thick wall supporting a tube of 3 to 3.5 μm thick stainless steel. The NIF laser deposited ˜460 kJ of 3ω light into the target in a 140 TW, 3.3 ns square pulse. The absolute x-ray emission of the source was measured by two calibrated Dante x-ray spectrometers. Time resolved images filtered for the Fe K-shell were recorded to follow the heating of the target. Time integrated high-resolution spectra were recorded in the K-shell range.

  19. Bright x-ray stainless steel K-shell source development at the National Ignition Facility

    SciTech Connect

    May, M. J.; Fournier, K. B.; Colvin, J. D.; Barrios, M. A.; Dewald, E. L.; Moody, J.; Patterson, J. R.; Schneider, M.; Widmann, K.; Hohenberger, M.; Regan, S. P.

    2015-06-15

    High x-ray conversion efficiency (XRCE) K-shell sources are being developed for high energy density experiments for use as backlighters and for the testing of materials exposed to high x-ray fluxes and fluences. Recently, sources with high XRCE in the K-shell x-ray energy range of iron and nickel were investigated at the National Ignition Facility (NIF). The x-ray conversion efficiency in the 5–9 keV spectral range was determined to be 6.8% ± 0.3%. These targets were 4.1 mm diameter, 4 mm tall hollow epoxy tubes having a 50 μm thick wall supporting a tube of 3 to 3.5 μm thick stainless steel. The NIF laser deposited ∼460 kJ of 3ω light into the target in a 140 TW, 3.3 ns square pulse. The absolute x-ray emission of the source was measured by two calibrated Dante x-ray spectrometers. Time resolved images filtered for the Fe K-shell were recorded to follow the heating of the target. Time integrated high-resolution spectra were recorded in the K-shell range.

  20. Broad-band spectroscopy of the transient X-ray binary pulsar KS 1947+300 during 2013 giant outburst: Detection of pulsating soft X-ray excess component

    NASA Astrophysics Data System (ADS)

    Epili, Prahlad; Naik, Sachindra; Jaisawal, Gaurava K.

    2016-05-01

    We present the results obtained from detailed timing and spectral studies of the Be/X-ray binary pulsar KS 1947+300 during its 2013 giant outburst. We used data from Suzaku observations of the pulsar at two epochs, i.e. on 2013 October 22 (close to the peak of the outburst) and 2013 November 22. X-ray pulsations at ˜18.81 s were clearly detected in the light curves obtained from both observations. Pulse periods estimated during the outburst showed that the pulsar was spinning up. The pulse profile was found to be single-peaked up to ˜10 keV beyond which a sharp peak followed by a dip-like feature appeared at hard X-rays. The dip-like feature has been observed up to ˜70 keV. The 1-110 keV broad-band spectroscopy of both observations revealed that the best-fit model was comprised of a partially absorbed Negative and Positive power law with EXponential cutoff (NPEX) continuum model along with a blackbody component for the soft X-ray excess and two Gaussian functions at 6.4 and 6.7 keV for emission lines. Both the lines were identified as emission from neutral and He-like iron atoms. To fit the spectra, we included the previously reported cyclotron absorption line at 12.2 keV. From the spin-up rate, the magnetic field of the pulsar was estimated to be ˜1.2×1012 G and found to be comparable to that obtained from the detection of the cyclotron absorption feature. Pulse-phase resolved spectroscopy revealed the pulsating nature of the soft X-ray excess component in phase with the continuum flux. This confirms that the accretion column and/or accretion stream are the most probable regions of the soft X-ray excess emission in KS1947+300. The presence of the pulsating soft X-ray excess in phase with continuum emission may be the possible reason for not observing the dip at soft X-rays.

  1. High Spatial Resolution X-Ray Spectroscopy of the IC 443 Pulsar Wind Nebula and Environs

    NASA Astrophysics Data System (ADS)

    Swartz, Douglas A.; Pavlov, George G.; Clarke, Tracy; Castelletti, Gabriela; Zavlin, Vyacheslav E.; Bucciantini, Niccolò; Karovska, Margarita; van der Horst, Alexander J.; Yukita, Mihoko; Weisskopf, Martin C.

    2015-07-01

    Deep Chandra ACIS observations of the region around the putative pulsar, CXOU J061705.3+222127, in the supernova remnant (SNR) IC 443 reveal an ˜5″ radius ring-like structure surrounding the pulsar and a jet-like feature oriented roughly north-south across the ring and through the pulsar's location at 06h17m5.ˢ200 + 22°21‧27.″52 (J2000.0 coordinates). The observations further confirm that (1) the spectrum and flux of the central object are consistent with a rotation-powered pulsar, (2) the non-thermal spectrum and morphology of the surrounding nebula are consistent with a pulsar wind, and (3) the spectrum at greater distances is consistent with thermal emission from the SNR. The cometary shape of the nebula, suggesting motion toward the southwest, appears to be subsonic: There is no evidence either spectrally or morphologically for a bow shock or contact discontinuity; the nearly circular ring is not distorted by motion through the ambient medium; and the shape near the apex of the nebula is narrow. Comparing this observation with previous observations of the same target, we set a 99% confidence upper limit to the proper motion of CXOU J061705.3+222127 to be less than 44 mas yr-1 (310 km s-1 for a distance of 1.5 kpc), with the best-fit (but not statistically significant) projected direction toward the west.

  2. HIGH SPATIAL RESOLUTION X-RAY SPECTROSCOPY OF THE IC 443 PULSAR WIND NEBULA AND ENVIRONS

    SciTech Connect

    Swartz, Douglas A.; Zavlin, Vyacheslav E.; Pavlov, George G.; Clarke, Tracy; Castelletti, Gabriela; Bucciantini, Niccolò; Karovska, Margarita; Horst, Alexander J. van der; Yukita, Mihoko; Weisskopf, Martin C.

    2015-07-20

    Deep Chandra ACIS observations of the region around the putative pulsar, CXOU J061705.3+222127, in the supernova remnant (SNR) IC 443 reveal an ∼5″ radius ring-like structure surrounding the pulsar and a jet-like feature oriented roughly north–south across the ring and through the pulsar's location at 06{sup h}17{sup m}5.{sup s}200 + 22°21′27.″52 (J2000.0 coordinates). The observations further confirm that (1) the spectrum and flux of the central object are consistent with a rotation-powered pulsar, (2) the non-thermal spectrum and morphology of the surrounding nebula are consistent with a pulsar wind, and (3) the spectrum at greater distances is consistent with thermal emission from the SNR. The cometary shape of the nebula, suggesting motion toward the southwest, appears to be subsonic: There is no evidence either spectrally or morphologically for a bow shock or contact discontinuity; the nearly circular ring is not distorted by motion through the ambient medium; and the shape near the apex of the nebula is narrow. Comparing this observation with previous observations of the same target, we set a 99% confidence upper limit to the proper motion of CXOU J061705.3+222127 to be less than 44 mas yr{sup −1} (310 km s{sup −1} for a distance of 1.5 kpc), with the best-fit (but not statistically significant) projected direction toward the west.

  3. A broadband X-ray study of the Geminga pulsar with NuSTAR And XMM-Newton

    SciTech Connect

    Mori, Kaya; Gotthelf, Eric V.; Halpern, Jules P.; Beloborodov, Andrei M.; Hailey, Charles J.; Dufour, Francois; Kaspi, Victoria M.; An, Hongjun; Bachetti, Matteo; Boggs, Steven E.; Craig, William W.; Christensen, Finn E.; Harrison, Fiona A.; Kouveliotou, Chryssa; Pivovaroff, Michael J.; Stern, Daniel; Zhang, William W.

    2014-10-01

    We report on the first hard X-ray detection of the Geminga pulsar above 10 keV using a 150 ks observation with the Nuclear Spectroscopic Telescope Array (NuSTAR) observatory. The double-peaked pulse profile of non-thermal emission seen in the soft X-ray band persists at higher energies. Broadband phase-integrated spectra over the 0.2-20 keV band with NuSTAR and archival XMM-Newton data do not fit to a conventional two-component model of a blackbody plus power law, but instead exhibit spectral hardening above ∼5 keV. We find that two spectral models fit the data well: (1) a blackbody (kT {sub 1} ∼ 42 eV) with a broken power law (Γ{sub 1} ∼ 2.0, Γ{sub 2} ∼ 1.4 and E {sub break} ∼ 3.4 keV) and (2) two blackbody components (kT {sub 1} ∼ 44 eV and kT {sub 2} ∼ 195 eV) with a power-law component (Γ ∼ 1.7). In both cases, the extrapolation of the Rayleigh-Jeans tail of the thermal component is consistent with the UV data, while the non-thermal component overpredicts the near-infrared data, requiring a spectral flattening at E ∼ 0.05-0.5 keV. While strong phase variation of the power-law index is present below ∼5 keV, our phase-resolved spectroscopy with NuSTAR indicates that another hard non-thermal component with Γ ∼ 1.3 emerges above ∼5 keV. The spectral hardening in non-thermal X-ray emission as well as spectral flattening between the optical and X-ray bands argue against the conjecture that a single power law may account for multi-wavelength non-thermal spectra of middle-aged pulsars.

  4. The X-ray nebula around PSR 1509 - 58

    NASA Technical Reports Server (NTRS)

    Seward, F. D.; Harnden, F. R., Jr.; Szymkowiak, A.; Swank, J.

    1984-01-01

    With the use of measured spectra and a model, volumes and luminosities are derived for several components of the supernova remnant MSH 15 - 52. The hard, featureless spectrum and spatial symmetry of the X-ray nebula surrounding the central pulsar strongly indicate synchrotron radiation as the source of emission. Power requirements are easily supplied by the pulsar. The observed surface brightness is only 0.00002 that of the X-ray synchrotron emission around the Crab pulsar, and the X-ray luminosity is 0.01 that of the Crab. In spite of the great difference in luminosity and size, the two systems are probably similar in nature, with the high brightness and unique appearance of the Crab synchrotron nebula being due to the high energy output of the pulsar and the relatively small volume of the confining filaments.

  5. Multi-wavelength properties of IGR J05007-7047 (LXP 38.55) and identification as a Be X-ray binary pulsar in the LMC

    NASA Astrophysics Data System (ADS)

    Vasilopoulos, G.; Haberl, F.; Delvaux, C.; Sturm, R.; Udalski, A.

    2016-09-01

    We report on the results of a ˜40-d multi-wavelength monitoring of the Be X-ray binary system IGR J05007-7047 (LXP 38.55). During that period the system was monitored in the X-rays using the Swift telescope and in the optical with multiple instruments. When the X-ray luminosity exceeded 1036 erg s-1 we triggered an XMM-Newton ToO observation. Timing analysis of the photon events collected during the XMM-Newton observation reveals coherent X-ray pulsations with a period of 38.551(3) s (1σ), making it the 17th known high-mass X-ray binary pulsar in the LMC. During the outburst, the X-ray spectrum is fitted best with a model composed of an absorbed power law (Γ = 0.63) plus a high-temperature blackbody (kT ˜2 keV) component. By analysing ˜12 yr of available OGLE optical data we derived a 30.776(5) d optical period, confirming the previously reported X-ray period of the system as its orbital period. During our X-ray monitoring the system showed limited optical variability while its IR flux varied in phase with the X-ray luminosity, which implies the presence of a disc-like component adding cooler light to the spectral energy distribution of the system.

  6. Monitoring Accreting X-ray Pulsars with the GLAST Burst Monitor

    NASA Technical Reports Server (NTRS)

    Wilson, Colleen A.; Finger, Mark H.; Patel, Sandeep K.; Bhat, P. Narayana; Preece, Robert D.; Meegan, Charles A.

    2007-01-01

    Accreting pulsars are exceptionally good laboratories for probing the detailed physics of accretion onto magnetic stars. While similar accretion flows also occur in other types of astrophysical systems, e.g. magnetic CVs, only neutron stars have a small enough moment of inertia for the accretion of angular momentum to result in measurable changes in spin-frequency in a timescale of days. Long-term monitoring of accreting pulsar spin-frequencies and fluxes was demonstrated with the Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory. Here we present sample results from BATSE, discuss measurement techniques appropriate for GBM, and estimate the expected GBM sensitivity.

  7. Environmental Effects on PAHs and VSGs in X-ray-bright Dusty Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Kaneda, Hidehiro; Kitayama, Tetsu; Okada, Yoko; Onaka, Takashi; Sakon, Itsuki; Tajiri, Yuka

    2006-05-01

    Elliptical galaxies provide dust with a unique environment, i.e. old stellar radiation fields without active star formation and interstellar media (ISM) mostly dominated by hot plasma. Small particles such as polycyclic aromatic hydrocarbons (PAHs) and very small grains (VSGs) are expected to be easily destroyed through sputtering by plasma ions. However, in our GO1 program, we have detected PAH emission features and prominent VSG mid-IR excess from X-ray-bright dusty elliptical galaxies. The observed IRS/SL spectra are quite unusual; the usually strong features at 6.2, 7.7, and 8.6 micron are very faint in contrast to prominent features at 11.3 and/or 12.7 micron. A naive interpretation is that the dominant emitters are neutral PAHs. We propose IRS/SL&LL observations of 18 nearby elliptical galaxies with properties similar to the GO1 galaxies, which include IRS/LL observations of the GO1 galaxies; we did not observe them with the IRS/LL. The IRS spectra are ideal to study the environmental effects on PAHs and VSGs; the IRS/SL is well matched to study overall properties of PAHs, while the IRS/LL is crucial to discuss the ionization state of PAHs and the properties of VSGs. Detection of aforementioned unusual PAH features as well as the 16-18 micron plateaus would lay strong constraints on the ionization state of the PAHs and thus their origins. If the results really support the dominance of neutral PAHs, we may have to relinquish a commonly-believed picture that dust and plasma are well mixed in the interstellar space. Then how are the dust spatially separated from the plasma? Detection of prominent mid-IR excess would reasonably explain efficient interaction of the dust with the plasma. Then, how do we sustain the hot plasma against the effective radiative cooling via a dust channel? Observational results with the large sample would give a great impact on the understanding of the dust and plasma physics and the evolutionary history of the ISM of the elliptical

  8. MAGNETIC DOMAINS IN MAGNETAR MATTER AS AN ENGINE FOR SOFT GAMMA-RAY REPEATERS AND ANOMALOUS X-RAY PULSARS

    SciTech Connect

    Suh, In-Saeng; Mathews, Grant J. E-mail: gmathews@nd.ed

    2010-07-10

    Magnetars have been suggested as the most promising site for the origin of observed soft gamma-ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs). In this work, we investigate the possibility that SGRs and AXPs might be observational evidence for a magnetic phase separation in magnetars. We study magnetic domain formation as a new mechanism for SGRs and AXPs in which magnetar matter separates into phases containing different flux densities. We identify the parameter space in matter density and magnetic field strength at which there is an instability for magnetic domain formation. We conclude that such instabilities will likely occur in the deep outer crust for the magnetic Baym, Pethick, and Sutherland model and in the inner crust and core for magnetars described in the relativistic Hartree theory. Moreover, we estimate that the energy released by the onset of this instability is comparable with the energy emitted by SGRs.

  9. The donor star of the X-ray pulsar X1908+075

    NASA Astrophysics Data System (ADS)

    Martínez-Núñez, S.; Sander, A.; Gímenez-García, A.; Gónzalez-Galán, A.; Torrejón, J. M.; Gónzalez-Fernández, C.; Hamann, W.-R.

    2015-06-01

    High-mass X-ray binaries consist of a massive donor star and a compact object. While several of those systems have been well studied in X-rays, little is known for most of the donor stars as they are often heavily obscured in the optical and ultraviolet regime. There is an opportunity to observe them at infrared wavelengths, however. The goal of this study is to obtain the stellar and wind parameters of the donor star in the X1908+075 high-mass X-ray binary system with a stellar atmosphere model to check whether previous studies from X-ray observations and spectral morphology lead to a sufficient description of the donor star. We obtained H- and K-band spectra of X1908+075 and analysed them with the Potsdam Wolf-Rayet (PoWR) model atmosphere code. For the first time, we calculated a stellar atmosphere model for the donor star, whose main parameters are: Mspec = 15 ± 6 M⊙, T∗ = 23-3+6 kK, log geff = 3.0 ± 0.2 and log L/L⊙ = 4.81 ± 0.25. The obtained parameters point towards an early B-type (B0-B3) star, probably in a supergiant phase. Moreover we determined a more accurate distance to the system of 4.85 ± 0.50 kpc than the previously reported value. Based on observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.Appendix A is available in electronic form at http://www.aanda.org

  10. NuSTAR Discovery of a Cyclotron Line in the Accreting X-Ray Pulsar IGR J16393-4643

    NASA Astrophysics Data System (ADS)

    Bodaghee, Arash; Tomsick, John A.; Fornasini, Francesca M.; Krivonos, Roman; Stern, Daniel; Mori, Kaya; Rahoui, Farid; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Hailey, Charles J.; Harrison, Fiona A.; Zhang, William W.

    2016-06-01

    The high-mass X-ray binary and accreting X-ray pulsar IGR J16393-4643 was observed by the Nuclear Spectroscope Telescope Array in the 3-79 keV energy band for a net exposure time of 50 ks. We present the results of this observation which enabled the discovery of a cyclotron resonant scattering feature with a centroid energy of {29.3}-1.3+1.1 keV. This allowed us to measure the magnetic field strength of the neutron star for the first time: B = (2.5 ± 0.1) × 1012 G. The known pulsation period is now observed at 904.0 ± 0.1 s. Since 2006, the neutron star has undergone a long-term spin-up trend at a rate of \\dot{P}=-2× {10}-8 s s-1 (-0.6 s per year, or a frequency derivative of \\dot{ν }=3× {10}-14 Hz s-1). In the power density spectrum, a break appears at the pulse frequency which separates the zero slope at low frequency from the steeper slope at high frequency. This addition of angular momentum to the neutron star could be due to the accretion of a quasi-spherical wind, or it could be caused by the transient appearance of a prograde accretion disk that is nearly in corotation with the neutron star whose magnetospheric radius is around 2 × 108 cm.

  11. RXTE and BeppoSAX Observations of the Transient X-ray Pulsar XTE J 18591+083

    NASA Technical Reports Server (NTRS)

    Corbet, R. H. D.; intZand, J. J. M.; Levine, A. M.; Marshall, F. E.

    2008-01-01

    We present observations of the 9.8 s X-ray pulsar XTE J159+083 made with the All-Sky Monitor (ASM) and Proportional Counter Array (PCA) on board the Rossi X-ray Timing Explorer (RXTE), and the Wide Field Cameras (WFC) on board BeppoSAX. The ASM data cover a 12 year time interval and show that an extended outburst occurred between approximately MJD50, 250, and 50, 460 (1996 June 16 to 1997 January 12). The ASM data excluding this outburst interval suggest a possible 61 day modulation. Eighteen sets of PCA observations were obtained over an approx. one month interval in 1999. The flux variability measured with the PCA appears consistent with the possible period found with the ASM. The PCA measurements of the pulse period showed it to decrease non-monotonically and then to increase significantly. Doppler shifts due to orbital motion rather than accretion torques appear to be better able to explain the pulse period changes. Observations with the WFC during the extended outburst give an error box which is consistent with a previously determined PCA error box but is significantly smaller. The transient nature of XTE J1859+083 and the length of its pulse period are consistent with it being a Be/neutral star binary. The possible 61 day orbital period would be of the expected length for a Be star system with a 9.8 s pulse period.

  12. A MODEL FOR THE WAVEFORM BEHAVIOR OF ACCRETING MILLISECOND X-RAY PULSARS: NEARLY ALIGNED MAGNETIC FIELDS AND MOVING EMISSION REGIONS

    SciTech Connect

    Lamb, Frederick K.; Boutloukos, Stratos; Van Wassenhove, Sandor; Chamberlain, Robert T.; Lo, Ka Ho; Clare, Alexander; Yu Wenfei; Miller, M. Coleman

    2009-11-20

    We investigate further a model of the accreting millisecond X-ray pulsars we proposed earlier. In this model, the X-ray-emitting regions of these pulsars are near their spin axes but move. This is to be expected if the magnetic poles of these stars are close to their spin axes, so that accreting gas is channeled there. As the accretion rate and the structure of the inner disk vary, gas is channeled along different field lines to different locations on the stellar surface, causing the X-ray-emitting areas to move. We show that this 'nearly aligned moving spot model' can explain many properties of the accreting millisecond X-ray pulsars, including their generally low oscillation amplitudes and nearly sinusoidal waveforms; the variability of their pulse amplitudes, shapes, and phases; the correlations in this variability; and the similarity of the accretion- and nuclear-powered pulse shapes and phases in some. It may also explain why accretion-powered millisecond pulsars are difficult to detect, why some are intermittent, and why all detected so far are transients. This model can be tested by comparing with observations the waveform changes it predicts, including the changes with accretion rate.

  13. EXTraS discovery of an 1.2-s X-ray pulsar in M 31

    NASA Astrophysics Data System (ADS)

    Esposito, P.; Israel, G. L.; Belfiore, A.; Novara, G.; Sidoli, L.; Rodríguez Castillo, G. A.; De Luca, A.; Tiengo, A.; Haberl, F.; Salvaterra, R.; Read, A. M.; Salvetti, D.; Sandrelli, S.; Marelli, M.; Wilms, J.; D'Agostino, D.

    2016-03-01

    During a search for coherent signals in the X-ray archival data of XMM-Newton, we discovered a modulation at 1.2 s in 3XMM J004301.4+413017 (3X J0043), a source lying in the direction of an external arm of M 31. This short period indicates a neutron star (NS). Between 2000 and 2013, the position of 3X J0043 was imaged by public XMM-Newton observations 35 times. The analysis of these data allowed us to detect an orbital modulation at 1.27 d and study the long-term properties of the source. The emission of the pulsar was rather hard (most spectra are described by a power law with Γ < 1) and, assuming the distance to M 31, the 0.3-10 keV luminosity was variable, from ˜3 × 1037 to 2 × 1038 erg s-1. The analysis of optical data shows that, while 3X J0043 is likely associated to a globular cluster in M 31, a counterpart with V ≳ 22 outside the cluster cannot be excluded. Considering our findings, there are two main viable scenarios for 3X J0043: a peculiar low-mass X-ray binary, similar to 4U 1822-37 or 4U 1626-67, or an intermediate-mass X-ray binary resembling Her X-1. Regardless of the exact nature of the system, 3X J0043 is the first accreting NS in M 31 in which the spin period has been detected.

  14. Application of the Ghosh & Lamb Relation to the Spin-up/down Behavior in the X-ray Binary Pulsar 4U 1626-67

    NASA Astrophysics Data System (ADS)

    Takagi, Toshihiro; Mihara, Tatehiro; Sugizaki, Mutsumi; Makishima, Kazuo; Morii, Mikio

    Using the relation proposed by Ghosh & Lamb (1979) between the pulse-period derivative and the X-ray luminosity in binary X-ray pulsars, we tried to constrain the mass and radius of a neutron star. To apply the relation to the binary X-ray pulsar 4U 1626-67, we compiled previous measurements of its period, period derivative, and flux, and added measurements with the MAXI/GSC onboard the International Space Station. The measured period derivative was tightly correlated with the flux, and the relation is successfully explained by the Ghosh & Lamb relation. We found that an assumed distance of, e.g., 8 kpc, gives a mass of 1.39-1.46 solar mass, and a radius as 11.9-12.0 km. This method thus provides a valuable tool to constrain these parameters, even though we need to precisely know the distance [2].

  15. X-ray bright points and high-speed wind streams: A preliminary analysis from Yohkoh and Ulysses data

    NASA Technical Reports Server (NTRS)

    Poletto, Giannina; Suess, Steven T.; Khan, J. I.; Uchida, Y.; Hiei, E.; Neugebauer, M.; Goldstein, B. E.; Strong, K. T.; Harvey, K. L.

    1994-01-01

    The following aspect of the solar wind mass flux, and of its variation, is examined: whether coronal plumes might be responsible for the long-term variability of the mass flux in high-speed streams emanating from coronal holes. The assumption that plumes are rooted in coronal bright points (BP's) is made. The behavior of X-ray BP's, imaged by the Yohkoh soft X-ray telescope (SXT), during a seven month period when Ulysses experiments observed a series of recurrent high-speed streams, is analyzed. If plumes/BP's are sources of the wind mass flux, changes in the coronal hole BP density to mimic changes of the mass flux in high-speed streams are expected. SOHO will have the capability of measuring the solar wind speed/density at small heliocentric distances while simultaneously observing coronal BP's and coronal plumes.

  16. X-ray Analysis of the Pulsar Wind Nebula DA 495 and its Central Object

    NASA Astrophysics Data System (ADS)

    Karpova, A.; Zyuzin, D.; Danilenko, A.; Shibanov, Yu

    2016-11-01

    We report the results of a simultaneous analysis of the Chandra and XMM- Newton data on the pulsar wind nebula DA 495 and its central object, J1952.2+2925, which is presumably a pulsar. The J1952.2+2925 pure thermal spectrum can be equally well described either by the blackbody model with a temperature of 215 eV and an emitting area radius of 0.6 km or magnetized neutron star atmosphere models with temperatures of 80-90 eV. We also used the high temporal resolution XMM-Newton/EPIC-pn data to search for pulsations from J1952.2+2925. No pulsations were found so we set an upper limit for the pulsed fraction which is 40%. Using of the interstellar absorption-distance relation allowed us to estimate the distance to DA 495, which lies between 1 and 5 kpc.

  17. X-ray source brightness comparison: Rigaku rotating anode source vs. Kevex microfocus tube

    SciTech Connect

    Koch, J A; Dewald, E; Kozioziemski, B

    2010-03-17

    In 2007, we began to explore alternative x-ray sources for application to refraction-enhanced (phase contrast) x-ray radiography of cryogenic NIF ignition capsules containing frozen deuterium-tritium (D-T) ice layers. These radiographs are currently obtained using Kevex microfocus tubes as backlights, and for these sources the x-ray source size is approximately 5 {micro}m. As part of this exploration, we obtained refraction-enhanced radiographs of empty plastic capsules using the Janus laser facility at LLNL, demonstrating that even large ({approx} 100 {micro}m) sources can be utilized in refraction-enhanced radiography provided the source/sample distance is sufficiently large, and provided the final x-ray detector has sufficient spatial resolution. Essentially, in the current geometry, we rely on a small source to provide spatial resolution and on the source/sample distance to provide refraction contrast, but an equally useful alternative geometry is to use a large source and rely on fine detector spatial resolution to provide spatial resolution and on the sample/detector distance to provide refraction contrast.

  18. A High X-ray Brightness State of HBL Source 1ES 0033+595

    NASA Astrophysics Data System (ADS)

    Kapanadze, Bidzina

    2015-09-01

    The TeV-detected HBL object of unknown redshift 1ES 0033+595 has been observed six times with X-ray Telecope onboard Swift satellite (Swift-XRT) since 2015 August 30 on the basis of our Target of Opportunity (ToO) requests of low and medium urgencies (see https://www.swift.psu.edu/secure/toop/summary.php).

  19. High-Energy Density science with an ultra-bright x-ray laser

    NASA Astrophysics Data System (ADS)

    Glenzer, Siegfried

    2015-11-01

    This talk will review recent progress in high-energy density physics using the world's brightest x-ray source, the Linac Coherent Light Source, SLAC's free electron x-ray laser. These experiments investigate laser-driven matter in extreme conditions where powerful x-ray scattering and imaging techniques have been applied to resolve ionic interactions at atomic (Ångstrom) scale lengths and to visualize the formation of dense plasma states. Major research areas include dynamic compression experiments of solid targets to determine structural properties and to discover and characterize phase transitions at mega-bar pressures. A second area studies extreme fields produced by high-intensity radiation where fundamental questions of laboratory plasmas can be related to cosmological phenomena. Each of these areas takes advantage of the unique properties of the LCLS x-ray beam. They include small foci for achieving high intensity or high spatial resolution, high photon flux for dynamic structure factor measurements in single shots, and high spectral bandwidth to resolve plasmon (Langmuir) waves or ion acoustic waves in dense plasmas. We will further describe new developments of ultrafast pump-probe technique at high repetition rates. These include studies on dense cryogenic hydrogen that have begun providing fundamental insights into the physical properties of matter in extreme conditions that are important for astrophysics, fusion experiments and generation of radiation sources. This work was supported by DOE Office of Science, Fusion Energy Science under FWP 100182.

  20. BROADBAND X-RAY IMAGING AND SPECTROSCOPY OF THE CRAB NEBULA AND PULSAR WITH NuSTAR

    SciTech Connect

    Madsen, Kristin K.; Harrison, Fiona; Grefenstette, Brian W.; Reynolds, Stephen; An, Hongjun; Boggs, Steven; Craig, William W.; Zoglauer, Andreas; Christensen, Finn E.; Fryer, Chris L.; Hailey, Charles J.; Nynka, Melania; Markwardt, Craig; Zhang, William; Stern, Daniel

    2015-03-01

    We present broadband (3-78 keV) NuSTAR X-ray imaging and spectroscopy of the Crab nebula and pulsar. We show that while the phase-averaged and spatially integrated nebula + pulsar spectrum is a power law in this energy band, spatially resolved spectroscopy of the nebula finds a break at ∼9 keV in the spectral photon index of the torus structure with a steepening characterized by ΔΓ ∼ 0.25. We also confirm a previously reported steepening in the pulsed spectrum, and quantify it with a broken power law with break energy at ∼12 keV and ΔΓ ∼ 0.27. We present spectral maps of the inner 100'' of the remnant and measure the size of the nebula as a function of energy in seven bands. These results find that the rate of shrinkage with energy of the torus size can be fitted by a power law with an index of γ = 0.094 ± 0.018, consistent with the predictions of Kennel and Coroniti. The change in size is more rapid in the NW direction, coinciding with the counter-jet where we find the index to be a factor of two larger. NuSTAR observed the Crab during the latter part of a γ-ray flare, but found no increase in flux in the 3-78 keV energy band.

  1. PSR J2022 plus 3842: An Energetic Radio and X-Ray Pulsar Associated with SNR G76.9 plus 1.0

    NASA Technical Reports Server (NTRS)

    Arzoumanian, Z.; Gotthelf, E. V.; Ransom, S. M.; Kothes, R.; Landecker, T. L.

    2010-01-01

    We present Chandra X-ray Observatory, Robert C. Byrd Green Bank Radio Telescope (GBT), and Rossi X-ray Timing Explorer (RXTE) observations directed toward the radio supernova remnant (SNR) G76.9+1.0. The Chandra investigation reveals a hard, unresolved X-ray source coincident with the midpoint of the double-lobed radio morphology and surrounded by faint, compact X-ray nebulosity. These features suggest that an energetic neutron star is powering a pulsar wind nebula (PWN) seen in synchrotron emission. Indeed, the spatial relationship of the X-ray and radio emissions is remarkably similar to the extended emission around the Vela pulsar. A follow-up pulsation search with the GBT uncovered a highly-dispersed (DM = 427 +/- 1 pc/cu cm) and highly-scattered pulsar with a period of 24 ms. Its subsequently measured spin-down rate implies a characteristic age T(sub c) = 8.9 kyr, making PSR J2022+3842 the most rapidly rotating young radio pulsar known. With a spin-down luminosity E = 1.2 x 10(exp 38) erg/s, it is the second-most energetic Galactic pulsar known, after the Crab pulsar. The 24-ms pulsations have also been detected in the RXTE observation; the combined Chandra and RXTE spectral fit suggests that the Chandra point-source emission is virtually 100% pulsed. The 2-16 keV spectrum of the narrow (0.06 cycles FWHM) pulse is well-fitted by an absorbed power-law model with column density N(sub H) = (1.7 +/- 0.5) x 10(exp 22)/sq cm and photon index Gamma = 1.0 +/- 0.2, strongly suggestive of magnetospheric emission. For an assumed distance of 10 kpc, the 2-10 keV luminosity of L(sub X) = 6.9 x 10(exp 33) erg/s suggests one of the lowest known X-ray conversion efficiencies L(sub X)/ E = 5.8 x 10(exp -5), similar to that of the Vela pulsar. Finally, the PWN around PSR J2022+3842 revealed by Chandra is also underluminous, with F(sub PWN)/ F(sub PSR) < or approx.1 in the 2-10 keV band, a further surprise given the pulsar's high spin-down luminosity.

  2. SUZAKU OBSERVATIONS OF γ-RAY BRIGHT RADIO GALAXIES: ORIGIN OF THE X-RAY EMISSION AND BROADBAND MODELING

    SciTech Connect

    Fukazawa, Yasushi; Itoh, Ryosuke; Tokuda, Shin'ya; Finke, Justin; Stawarz, Łukasz; Tanaka, Yasuyuki

    2015-01-10

    We performed a systematic X-ray study of eight nearby γ-ray bright radio galaxies with Suzaku in order to understand the origins of their X-ray emissions. The Suzaku spectra for five of those have been presented previously, while the remaining three (M87, PKS 0625–354, and 3C 78) are presented here for the first time. Based on the Fe-K line strength, X-ray variability, and X-ray power-law photon indices, and using additional information on the [O III] line emission, we argue for a jet origin of the observed X-ray emission in these three sources. We also analyzed five years of Fermi Large Area Telescope (LAT) GeV gamma-ray data on PKS 0625–354 and 3C 78 to understand these sources within the blazar paradigm. We found significant γ-ray variability in the former object. Overall, we note that the Suzaku spectra for both PKS 0625–354 and 3C 78 are rather soft, while the LAT spectra are unusually hard when compared with other γ-ray detected low-power (FR I) radio galaxies. We demonstrate that the constructed broadband spectral energy distributions of PKS 0625–354 and 3C 78 are well described by a one-zone synchrotron/synchrotron self-Compton model. The results of the modeling indicate lower bulk Lorentz factors compared to those typically found in other BL Lacertae (BL Lac) objects, but consistent with the values inferred from modeling other LAT-detected FR I radio galaxies. Interestingly, the modeling also implies very high peak (∼10{sup 16} Hz) synchrotron frequencies in the two analyzed sources, contrary to previously suggested scenarios for Fanaroff-Riley (FR) type I/BL Lac unification. We discuss the implications of our findings in the context of the FR I/BL Lac unification schemes.

  3. Investigation of high-temperature bright plasma X-ray sources produced in 5-MA X-pinch experiments.

    PubMed

    Sinars, D B; McBride, R D; Pikuz, S A; Shelkovenko, T A; Wenger, D F; Cuneo, M E; Yu, E P; Chittenden, J P; Harding, E C; Hansen, S B; Peyton, B P; Ampleford, D J; Jennings, C A

    2012-10-12

    Using solid, machined X-pinch targets driven by currents rising from 0 to 5-6 MA in 60 ns, we observed bright spots of 5-9-keV continuum radiation from 5±2-μm diameter regions. The >6-keV radiation is emitted in about 0.4 ns, and the bright spots are roughly 75 times brighter than the bright spots measured at 1 MA. A total x-ray power of 10 TW peak and yields of 165±20 kJ were emitted from a 3-mm height. The 3-5-keV continuum radiation had a 50-90-GW peak power and 0.15-0.35-kJ yield. The continuum is plausibly from a 1275±75-eV blackbody or alternatively from a 3500±500-eV bremsstrahlung source.

  4. A XMM-Newton Observation of Nova LMC 1995, a Bright Supersoft X-ray Source

    NASA Technical Reports Server (NTRS)

    Orio, Marina; Hartmann, Wouter; Still, Martin; Greiner, Jochen

    2003-01-01

    Nova LMC 1995, previously detected during 1995-1998 with ROSAT, was observed again as a luminous supersoft X-ray source with XMM-Newton in December of 2000. This nova offers the possibility to observe the spectrum of a hot white dwarf, burning hydrogen in a shell and not obscured by a wind or by nebular emission like in other supersoft X-ray sources. Notwithstanding uncertainties in the calibration of the EPIC instruments at energy E<0.5 keV, using atmospheric models in Non Local Thermonuclear Equilibrium we derived an effective temperature in the range 400,000-450,000 K, a bolometric luminosity Lbolabout equal to 2.3 times 10 sup37 erg s sup-l, and we verified that the abundance of carbon is not significantly enhanced in the X-rays emitting shell. The RGS grating spectra do not show emission lines (originated in a nebula or a wind) observed for some other supersoft X-ray sources. The crowded atmospheric absorption lines of the white dwarf cannot be not resolved. There is no hard component (expected from a wind, a surrounding nebula or an accretion disk), with no counts above the background at E>0.6 keV, and an upper limit Fx,hard = 10 sup-14 erg s sup-l cm sup-2 to the X-ray flux above this energy. The background corrected count rate measured by the EPIC instruments was variable on time scales of minutes and hours, but without the flares or sudden obscuration observed for other novae. The power spectrum shows a peak at 5.25 hours, possibly due to a modulation with the orbital period. We also briefly discuss the scenarios in which this nova may become a type Ia supernova progenitor.

  5. HIGH-ENERGY X-RAYS FROM J174545.5-285829, THE CANNONBALL: A CANDIDATE PULSAR WIND NEBULA ASSOCIATED WITH Sgr A EAST

    SciTech Connect

    Nynka, Melania; Hailey, Charles J.; Mori, Kaya; Gotthelf, Eric V.; Zhang, Shuo; Baganoff, Frederick K.; Bauer, Franz E.; Boggs, Steven E.; Craig, William W.; Christensen, Finn E.; Harrison, Fiona A.; Hong, Jaesub; Perez, Kerstin M.; Stern, Daniel; Zhang, William W.

    2013-12-01

    We report the unambiguous detection of non-thermal X-ray emission up to 30 keV from the Cannonball, a few-arcsecond long diffuse X-ray feature near the Galactic Center, using the NuSTAR X-ray observatory. The Cannonball is a high-velocity (v {sub proj} ∼ 500 km s{sup –1}) pulsar candidate with a cometary pulsar wind nebula (PWN) located ∼2' north-east from Sgr A*, just outside the radio shell of the supernova remnant Sagittarius A (Sgr A) East. Its non-thermal X-ray spectrum, measured up to 30 keV, is well characterized by a Γ ∼ 1.6 power law, typical of a PWN, and has an X-ray luminosity of L(3-30 keV) = 1.3 × 10{sup 34} erg s{sup –1}. The spectral and spatial results derived from X-ray and radio data strongly suggest a runaway neutron star born in the Sgr A East supernova event. We do not find any pulsed signal from the Cannonball. The NuSTAR observations allow us to deduce the PWN magnetic field and show that it is consistent with the lower limit obtained from radio observations.

  6. High-Energy X-rays from J174545.5-285829, the Cannonball: a Candidate Pulsar Wind Nebula Associated with Sgr a East

    NASA Technical Reports Server (NTRS)

    Nynka, Melania; Hailey, Charles J.; Mori, Kaya; Baganoff, Frederick K.; Bauer, Franz E.; Boggs, Steven E.; Craig, William W.; Christensen, Finn E.; Gotthelf, Eric V.; Harrison, Fiona A.; Hong, Jaesub; Perez, Kerstin M.; Stern, Daniel; Zhang, Shuo; Zhang, William W.

    2013-01-01

    We report the unambiguous detection of non-thermal X-ray emission up to 30 keV from the Cannonball, a few arcsecond long diffuse X-ray feature near the Galactic Center, using the NuSTAR X-ray observatory. The Cannonball is a high-velocity (v(proj) approximately 500 km s(exp -1)) pulsar candidate with a cometary pulsar wind nebula (PWN) located approximately 2' north-east from Sgr A*, just outside the radio shell of the supernova remnant Sagittarius A (Sgr A) East. Its non-thermal X-ray spectrum, measured up to 30 keV, is well characterized by a Gamma is approximately 1.6 power law, typical of a PWN, and has an X-ray luminosity of L(3-30 keV) = 1.3 × 10(exp 34) erg s(exp -1). The spectral and spatial results derived from X-ray and radio data strongly suggest a runaway neutron star born in the Sgr A East supernova event. We do not find any pulsed signal from the Cannonball. The NuSTAR observations allow us to deduce the PWN magnetic field and show that it is consistent with the lower limit obtained from radio observations.

  7. Orbital Parameters and Spectroscopy of the Transient X-Ray Pulsar 4U 0115+63

    NASA Technical Reports Server (NTRS)

    Mueller, Sebastian; Obst,Maria; Kreykenbohm, Ingo; Fuerst, Felix; Kuehnel, Matthias; Wilms, Joern; Klochkov, Dmitry; Staubert, Ruediger; Santangelo, Andrea; Pottschmidt, Katja; Suchy, Slawomir; Rothschild, Richard E.; Caballero, Isabel; Schoenherr, Gabriele

    2011-01-01

    We report on an outburst of the high mass X-ray binary 4U 0115+63 with a pulse period of 3.6s in spring 2008 as observed with INTEGRAL and RXTE. By analyzing the lightcurves we derive an updated orbital- and pulse period ephemeris of the neutron star. We also study the pulse profile variations as a function of time and energy as well as the variability of the spectral parameters. We find clear evidence for at least three cyclotron line features. In agreement with previous observations of 4U 0115+63, we detect an anti-correlation between the luminosity and the fundamental cyclotron line energy.

  8. INTEGRAL and XMM-Newton Observations of the X-Ray Pulsar IGR J16320-4751/AX J1691.9-4752

    NASA Technical Reports Server (NTRS)

    Rodriquez, J.; Bodaghee, A.; Kaaret, P.; Tomsick, J. A.; Kuulkers, E.; Malaguti, G.; Petrucci, P.-O.; Cabanac, C.; Chernyakova, M.; Corbel, S.; Deluit, S.; DiCocco, G.; Ebisawa, K.; Goldwurm, A.; Henri, G.; Lebrun, F.; Paizis, A.; Walter, R.; Foschini, L.

    2006-01-01

    We report on observations of the X-ray pulsar IGR J16320-4751 (also known as AX J1631.9-4752) performed simultaneously with International Gamma-Ray Astrophysics Laboratory (INTEGRAL) and XMM-Newton. We refine the source position and identify the most likely infrared counterpart. Our simultaneous coverage allows us to confirm the presence of X-ray pulsations at approximately 1300 s, that we detect above 20 keV with INTEGRAL for the first time. The pulse fraction is consistent with being constant with energy, which is compatible with a model of polar accretion by a pulsar. We study the spectral properties of IGR J16320-4751 during two major periods occurring during the simultaneous coverage with both satellites, namely a flare and a non-flare period. We detect the presence of a narrow 6.4 keV iron line in both periods. The presence of such a feature is typical of supergiant wind accretors such as Vela X-1 or GX 301-2. We inspect the spectral variations with respect to the pulse phase during the non-flare period, and show that the pulse is solely due to variations of the X-ray flux emitted by the source and not due to variations of the spectral parameters. Our results are therefore compatible with the source being a pulsar in a High Mass X-ray Binary. We detect a soft excess appearing in the spectra as a blackbody with a temperature of approximately 0.07 keV. We discuss the origin of the X-ray emission in IGR J16320-4751: while the hard X-rays are likely the result of Compton emission produced in the close vicinity of the pulsar, based on energy argument we suggest that the soft excess is likely the emission by a collisionally energized cloud in which the compact object is embedded.

  9. The Reawakening of the Sleeping X-ray Pulsar XTE J1946+274

    NASA Technical Reports Server (NTRS)

    Mueller, Sebastian; Mueller, Sebastian; Kuechnel, Matthias; Fuerst, Felix; Kreykenbohm, Ingo; Sagredo, Macarena; Obst, Maria; Wilms, Joern; Caballero, Isabel; Potttschmidt, Katja; Ferrigno, Carlo; Rothschild, Richard E.

    2012-01-01

    We report on a series of outbursts of the high mass X-ray binary XTE 11946+274 in 2010/2011 as observed with INTEGRAL, RXTE, and Swift. We discuss possible mechanisms resulting in the extraordinary outburst behavior of this source. The X-ray spectra can be described by standard phenomenological models, enhanced by an absorption feature of unknown origin at about 10 keV and a narrow iron K alpha fluorescence line at 6.4keV, which are variable in flux and pulse phase. We find possible evidence for the presence of a cyclotron resonance scattering feature at about 25 keV at the 93% level. The presence of a strong cyclotron line at 35 keV seen in data from the source's 1998 outburst and confirmed by a reanalysis of these data can be excluded. This result indicates that the cyclotron line feature in XTE 11946+274 is variable between individual outbursts.

  10. GAMMA-RAY AND HARD X-RAY EMISSION FROM PULSAR-AIDED SUPERNOVAE AS A PROBE OF PARTICLE ACCELERATION IN EMBRYONIC PULSAR WIND NEBULAE

    SciTech Connect

    Murase, Kohta; Kashiyama, Kazumi; Kiuchi, Kenta; Bartos, Imre

    2015-05-20

    It has been suggested that some classes of luminous supernovae (SNe) and gamma-ray bursts (GRBs) are driven by newborn magnetars. Fast-rotating proto-neutron stars have also been of interest as potential sources of gravitational waves (GWs). We show that for a range of rotation periods and magnetic fields, hard X-rays and GeV gamma rays provide us with a promising probe of pulsar-aided SNe. It is observationally known that young pulsar wind nebulae (PWNe) in the Milky Way are very efficient lepton accelerators. We argue that, if embryonic PWNe satisfy similar conditions at early stages of SNe (in ∼1–10 months after the explosion), external inverse-Compton emission via upscatterings of SN photons is naturally expected in the GeV range as well as broadband synchrotron emission. To fully take into account the Klein–Nishina effect and two-photon annihilation process that are important at early times, we perform detailed calculations including electromagnetic cascades. Our results suggest that hard X-ray telescopes such as NuSTAR can observe such early PWN emission by follow-up observations in months to years. GeV gamma-rays may also be detected by Fermi for nearby SNe, which serve as counterparts of these GW sources. Detecting the signals will give us an interesting probe of particle acceleration at early times of PWNe, as well as clues to driving mechanisms of luminous SNe and GRBs. Since the Bethe–Heitler cross section is lower than the Thomson cross section, gamma rays would allow us to study subphotospheric dissipation. We encourage searches for high-energy emission from nearby SNe, especially SNe Ibc including super-luminous objects.

  11. X-Ray and Near-infrared Observations of the Obscured Accreting Pulsar IGR J18179-1621

    NASA Astrophysics Data System (ADS)

    Nowak, M. A.; Paizis, A.; Rodriguez, J.; Chaty, S.; Del Santo, M.; Grinberg, V.; Wilms, J.; Ubertini, P.; Chini, R.

    2012-10-01

    IGR J18179-1621 is an obscured accreting X-ray pulsar discovered by INTEGRAL on 2012 February 29. We report on our 20 ks Chandra-High Energy Transmission Gratings Spectrometer observation of the source performed on 2012 March 17, on two short contemporaneous Swift observations, and on our two near-infrared (Ks , Hn , and Jn ) observations performed on 2012 March 13 and 26. We determine the most accurate X-ray position of IGR J18179-1621, αJ2000 = 18h17m52.s18, δJ2000 = -16°21'31farcs68 (90% uncertainty of 0farcs6). A strong periodic variability at 11.82 s is clearly detected in the Chandra data, confirming the pulsating nature of the source, with the light-curve softening at the pulse peak. The quasi-simultaneous Chandra-Swift spectra of IGR J18179-1621 can be well fit by a heavily absorbed hard power law (N H = 2.2 ± 0.3 × 1023 cm-2 and photon index Γ = 0.4 ± 0.1) with an average absorbed 2-8 keV flux of 1.4 × 10-11 erg cm-2 s-1. At the Chandra-based position, a source is detected in our near-infrared (NIR) maps with Ks = 13.14 ± 0.04 mag, Hn = 16 ± 0.1 mag, and no Jn -band counterpart down to ~18 mag. The NIR source, compatible with 2MASS J18175218-1621316, shows no variability between 2012 March 13 and 26. Searches of the UKIDSS database show similar NIR flux levels at epochs six months prior to and after a 2007 February 11 archival Chandra observation where the source's X-ray flux was at least 87 times fainter. In many ways IGR J18179-1621 is unusual: its combination of a several week long outburst (without evidence of repeated outbursts in the historical record), high absorption column (a large fraction of which is likely local to the system), and 11.82 s period does not fit neatly into existing X-ray binary categories.

  12. X-RAY AND NEAR-INFRARED OBSERVATIONS OF THE OBSCURED ACCRETING PULSAR IGR J18179-1621

    SciTech Connect

    Nowak, M. A.; Paizis, A.; Rodriguez, J.; Chaty, S.; Grinberg, V.; Wilms, J.; Chini, R. E-mail: ada@iasf-milano.inaf.it

    2012-10-01

    IGR J18179-1621 is an obscured accreting X-ray pulsar discovered by INTEGRAL on 2012 February 29. We report on our 20 ks Chandra-High Energy Transmission Gratings Spectrometer observation of the source performed on 2012 March 17, on two short contemporaneous Swift observations, and on our two near-infrared (K{sub s} , H{sub n} , and J{sub n} ) observations performed on 2012 March 13 and 26. We determine the most accurate X-ray position of IGR J18179-1621, {alpha}{sub J2000} = 18{sup h}17{sup m}52.{sup s}18, {delta}{sub J2000} = -16 Degree-Sign 21'31.''68 (90% uncertainty of 0.''6). A strong periodic variability at 11.82 s is clearly detected in the Chandra data, confirming the pulsating nature of the source, with the light-curve softening at the pulse peak. The quasi-simultaneous Chandra-Swift spectra of IGR J18179-1621 can be well fit by a heavily absorbed hard power law (N{sub H} = 2.2 {+-} 0.3 Multiplication-Sign 10{sup 23} cm{sup -2} and photon index {Gamma} = 0.4 {+-} 0.1) with an average absorbed 2-8 keV flux of 1.4 Multiplication-Sign 10{sup -11} erg cm{sup -2} s{sup -1}. At the Chandra-based position, a source is detected in our near-infrared (NIR) maps with K{sub s} 13.14 {+-} 0.04 mag, H{sub n} = 16 {+-} 0.1 mag, and no J{sub n} -band counterpart down to {approx}18 mag. The NIR source, compatible with 2MASS J18175218-1621316, shows no variability between 2012 March 13 and 26. Searches of the UKIDSS database show similar NIR flux levels at epochs six months prior to and after a 2007 February 11 archival Chandra observation where the source's X-ray flux was at least 87 times fainter. In many ways IGR J18179-1621 is unusual: its combination of a several week long outburst (without evidence of repeated outbursts in the historical record), high absorption column (a large fraction of which is likely local to the system), and 11.82 s period does not fit neatly into existing X-ray binary categories.

  13. Increasing X-Ray Brightness of HBL Source 1ES 1727+650

    NASA Astrophysics Data System (ADS)

    Kapanadze, Bidzina

    2017-02-01

    The nearby TeV-detected HBL object 1ES 1727+502 (1Zw 187, z=0.055) has been targeted 111 times by X-ray Telescope (XRT) onboard Swift since 2010 April 2. During this monitoring, the 0.3-10 keV count rate varied by a factor of 17.4 (see http://www.swift.psu.edu/monitoring/source.php?source=QSOB1727+502) and showed a prolonged X-ray flaring activity during 2015 March - 2016 February, revealed mainly via the Target of Opportunity observations performed in the framework of our request of different urgencies (Request Number 6571, 6606, 6717, 6809, 6927, 7322, 7355, 7379, 7390, 7404, 7430, 7441, 7516, 7565; see Kapanadze et al. 2015, Atel #8224, #7342).

  14. High Brightness X-Ray Source for Directed Energy and Holographic Imaging Applications

    DTIC Science & Technology

    1992-03-31

    for lensless electron microscopy . 2 24 4 II. MICROHOLOGRAPHY WITH VISIBLE RADIATION A. Camera Design Figure (1) is a schematic of the microholographic... Microscopy with ’ lensless ’ Fourier-Transform Holograms and Correlative Source-Effect Compensation", Optique des Rayons X et Microanalyse (Hermann, Paris, 1966...development of a powerful new means of visualization, three- dimensional ’x-ray microholography.1 Importontly, unlike electron microscopy . which

  15. The Origin of Bright X-Ray Sources in Multiple Stars

    SciTech Connect

    Makarov, V V; Eggleton, P P

    2009-04-23

    Luminous X-ray stars are very often found in visual double or multiple stars. Binaries with periods of a few days possess the highest degree of coronal X-ray activity among regular, non-relativistic stars. But the orbital periods in visual double stars are too large for any direct interaction between the companions to take place. We suggest that most of the strongest X-ray components in resolved binaries are yet-undiscovered short-period binaries, and that a few are merged remnants of such binaries. The omnipresence of short-period active stars, e.g. of BY-Dra-type binaries, in multiple systems is explained via the dynamical evolution of triple stars with large mutual inclinations. The dynamical perturbation on the inner pair pumps up the eccentricity in a cyclic manner, a phenomenon known as Kozai cycling. At times of close periapsis, tidal friction reduces the angular momentum of the binary, causing it to shrink. When the orbital period of the inner pair drops to a few days, fast surface rotation of the companions is driven by tidal forces, boosting activity by a few orders of magnitude. If the period drops still further, a merger may take place leaving a rapidly-rotating active dwarf with only a distant companion.

  16. Dynamic Ultra-Bright X-ray Laser Scattering from Isochorically Heated Cryogenic Hydrogen

    NASA Astrophysics Data System (ADS)

    Fletcher, Luke; High Energy Density Collaboration

    2015-11-01

    Recent x-ray scattering experiments performed at the MEC end-station of the LCLS, have demonstrated novel plasma measurements of the electron temperature, pressure, and density by simultaneous high-resolution angularly and spectrally resolved x-ray scattering from shock-compressed materials in the warm dense regime. Such measurements provide the structural properties relating the microscopic quantities in terms of thermodynamic properties using first-principles calculations. These studies have led us on a path where we create conditions with increasing temperatures and pressures to explore the high-energy density phase space. Specifically, we have begun experiments on hot and dense hydrogen plasmas producing energetic proton beams that find applications in fusion research and astrophysical phenomena. For our experiments with the 25 TW short pulse laser we apply repetition rates and pulse widths with a good match to the LCLS x-ray beam capabilities allowing pump-probe experiments with ultrahigh temporal resolution with very high data throughput with shot rates of up to 5 Hz. In this talk we will discuss our recent measurements that have resolved the ultrafast structural response of hydrogen to intense heating.

  17. Discovery of Radio Pulsations from the X-ray Pulsar JO205+6449 in Supernova Remnant 3C58 with the Green Bank Telescope

    NASA Technical Reports Server (NTRS)

    Camilo, F.; Stairs, I. H.; Lorimer, D. R.; Backer, D. C.; Ransom, S. M.; Klein, B.; Wielebinski, R.; Kramer, M.; McLaughlin, M. A.; Arzoumanian, Z.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We report the discovery with the 100m Green Bank Telescope of 65 ms radio pulsations from the X-ray pulsar J0205+6449 at the center of supernova remnant 3C58, making this possibly the youngest radio pulsar known. From our observations at frequencies of 820 and 1375 MHz, the free electron column density to USSR J0205+6449 is found to be 140.7 +/- 0.3/cc pc. The barycentric pulsar period P and P(dot) determined from a phase-coherent timing solution are consistent with the values previously measured from X-ray observations. The averaged radio profile of USSR J0205+6449 consists of one sharp pulse of width = 3 ms = 0.05 P. The pulsar is an exceedingly weak radio source, with pulse-averaged flux density in the 1400 MHz band of approximately 45 micro-Jy and a spectral index of approximately -2.1. Its radio luminosity of approximately 0.5 may kpc(exp 2) at 1400 MHz is lower than that of approximately 99% of known pulsar and is the lowest among known young pulsars.

  18. Chandra X-Ray Observatory Observations of the Globular Cluster M28 and its Millisecond Pulsar PSR B1821-24

    NASA Technical Reports Server (NTRS)

    Becker, Werner; Swartz, Douglas A.; Pavlov, George G.; Elsner, Ronald F.; Grindlay, Jonathan; Mignani, Roberto; Tennant, Allyn F.; Backer, Don; Weisskopf, Martin C.

    2003-01-01

    We report here the results of the first Chandra X-Ray Observatory observations of the globular cluster M28 (NGC 6626). We detect 46 X-ray sources of which 12 lie within one core radius of the center. We show that the apparently extended X-ray core emission seen with the ROSAT HRI is due to the superposition of multiple discrete sources for which we determine the X-ray luminosity function down to a limit of about 6 x 10(exp 30) erg/s. We measure the radial distribution of the X-ray sources and fit it to a King profile finding a core radius of r(sub c,x) approx. 11 sec. We obtain the best-fit mass of the X-ray sources to be M(sub x) approx. 1.9 solar masses. We measure for the first time the unconfused phase-averaged X-ray spectrum of the 3.05-ms pulsar B1821-24 and find it best described by a power law with photon-index Gamma approx. equal to 1.2. We find marginal evidence of an emission line centered at 3.3 kev in the pulsar spectrum, which could be interpreted as cyclotron emission from a corona above the pulsar's polar cap if the the magnetic field is strongly different from a centered dipole. The unabsorbed pulsar flux in the 0.5-8.0 keV band is approx. 3.5 x 10(exp -13) ergs/s/sq cm. We present spectral analyses of the 5 brightest unidentified sources. Based on the spectral parameters of the brightest of these sources, we suggest that it is a transiently accreting neutron star in a low-mass X-ray binary, in quiescence. Fitting its spectrum with a hydrogen neutron star atmosphere model yields the effective temperature T(sup infinity)(sub eff) = 90(sup +30)(sub -10) eV and the radius R(sup infinity)(sub NS) = 14.5(sup +6.9)(sub -3.8) km. In addition to the resolved sources, we detect fainter, unresolved X-ray emission from the central core. Using the Chandra-derived positions, we also present a preliminary report on the result of searching archival Hubble Space Telescope data for possible optical counterparts.

  19. Orbital parameters for the X-ray pulsar 1E1145-6141

    SciTech Connect

    Hutchings, J.B.; Crampton, D.; Cowley, A.P.; Thompson, I.B.

    1987-05-01

    Results are reported of spectroscopy of the B-star primary of the X-ray binary 1E1145-6141 obtained during the past five years. Since the period is longer than the individual observing runs, it is difficult to determine unambiguously, but the most probable orbital period is 10.756 days. A less likely possibility is 12.09 days. The orbital parameters are derived and used to show that the system contains a neutron star of mass 1.4 to 2.0 solar masses and a B2 supergiant of mass 10 to 18 solar masses. The orbital inclination is 45-65 deg, the mass ratio is 6-9, and the primary is undermassive for its type and luminosity. 8 references.

  20. A Library of known X-ray Pulsars in the Small Magellanic Cloud: Time Evolution of their Luminosities and Spin Periods

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Laycock, Silas; Christodoulou, Dimitris; Drake, Jeremy J.; Hong, Jaesub; Antoniou, Vallia; Zezas, Andreas; Coe, Malcolm; Ho, Wynn

    2017-01-01

    We have collected and analyzed 116 {\\itshape XMM-Newton\\/}, 151 {\\itshape Chandra\\/}, and 952 {\\itshape RXTE\\/} observations of the Small Magellanic Cloud (SMC), spanning 1997-2014. The resulting observational library provides a comprehensive view of the physical, temporal and statistical properties of the SMC pulsar population across the luminosity range of $L_X= 10^{31.5}-10^{38}$~erg~s$^{-1}$. We report $\\sim$1600 individual pulsar detections, yielding $\\sim$1300 pulse period measurements. Our pipeline generates a suite of products for each pulsar detection: period, flux, event list, high time-resolution light-curve, pulse-profile, periodogram and X-ray spectrum. Upper-limits are estimated for all non-detections bringing the combined database to $\\sim$37,000 observations of 67 pulsars. Combining all three satellites, we generated complete histories of the spin periods, pulse amplitudes, pulse fractions and X-ray luminosities. Many of the pulsars show variations in pulse period due to the combination of orbital motion and accretion torques. Long-term spin-up/down trends are seen in 27/25 pulsars respectively, pointing to sustained transfer of mass and angular momentum to the neutron star on decadal timescales. The distributions of pulse-detection and flux as functions of spin-period provide interesting findings: mapping boundaries of accretion-driven X-ray luminosity, and showing that fast pulsars ($P<$10 s) are rarely detected, yet are more prone to giant outburst. Accompanying this paper is an initial public release of the library so that it can be used by other researchers. We intend the database and pulse profile library to be useful in driving improved models of neutron star magnetospheres and accretion physics.

  1. Concurrence of monoenergetic electron beams and bright X-rays from an evolving laser-plasma bubble

    PubMed Central

    Yan, Wenchao; Chen, Liming; Li, Dazhang; Zhang, Lu; Hafz, Nasr A. M.; Dunn, James; Ma, Yong; Huang, Kai; Su, Luning; Chen, Min; Sheng, Zhengming; Zhang, Jie

    2014-01-01

    Desktop laser plasma acceleration has proven to be able to generate gigaelectronvolt-level quasi-monoenergetic electron beams. Moreover, such electron beams can oscillate transversely (wiggling motion) in the laser-produced plasma bubble/channel and emit collimated ultrashort X-ray flashes known as betatron radiation with photon energy ranging from kiloelectronvolts to megaelectronvolts. This implies that usually one cannot obtain bright betatron X-rays and high-quality electron beams with low emittance and small energy spread simultaneously in the same accelerating wave bucket. Here, we report the first (to our knowledge) experimental observation of two distinct electron bunches in a single laser shot, one featured with quasi-monoenergetic spectrum and another with continuous spectrum along with large emittance. The latter is able to generate high-flux betatron X-rays. Such is observed only when the laser self-guiding is extended over 4 mm at a fixed plasma density (4 × 1018 cm−3). Numerical simulation reveals that two bunches of electrons are injected at different stages due to the bubble evolution. The first bunch is injected at the beginning to form a stable quasi-monoenergetic electron beam, whereas the second one is injected later due to the oscillation of the bubble size as a result of the change of the laser spot size during the propagation. Due to the inherent temporal synchronization, this unique electron–photon source can be ideal for pump–probe applications with femtosecond time resolution. PMID:24711405

  2. Concurrence of monoenergetic electron beams and bright X-rays from an evolving laser-plasma bubble.

    PubMed

    Yan, Wenchao; Chen, Liming; Li, Dazhang; Zhang, Lu; Hafz, Nasr A M; Dunn, James; Ma, Yong; Huang, Kai; Su, Luning; Chen, Min; Sheng, Zhengming; Zhang, Jie

    2014-04-22

    Desktop laser plasma acceleration has proven to be able to generate gigaelectronvolt-level quasi-monoenergetic electron beams. Moreover, such electron beams can oscillate transversely (wiggling motion) in the laser-produced plasma bubble/channel and emit collimated ultrashort X-ray flashes known as betatron radiation with photon energy ranging from kiloelectronvolts to megaelectronvolts. This implies that usually one cannot obtain bright betatron X-rays and high-quality electron beams with low emittance and small energy spread simultaneously in the same accelerating wave bucket. Here, we report the first (to our knowledge) experimental observation of two distinct electron bunches in a single laser shot, one featured with quasi-monoenergetic spectrum and another with continuous spectrum along with large emittance. The latter is able to generate high-flux betatron X-rays. Such is observed only when the laser self-guiding is extended over 4 mm at a fixed plasma density (4 × 10(18) cm(-3)). Numerical simulation reveals that two bunches of electrons are injected at different stages due to the bubble evolution. The first bunch is injected at the beginning to form a stable quasi-monoenergetic electron beam, whereas the second one is injected later due to the oscillation of the bubble size as a result of the change of the laser spot size during the propagation. Due to the inherent temporal synchronization, this unique electron-photon source can be ideal for pump-probe applications with femtosecond time resolution.

  3. The 2006-2007 Active Phase Of Anomalous X-Ray Pulsar 4U 0142+61: Radiative and Timing Changes, Bursts, and Burst Spectral Features

    NASA Technical Reports Server (NTRS)

    Gavril, Fotis P.; Dib, Rim; Kaspi, Victoria M.

    2009-01-01

    After at least 6 years of quiescence, Anomalous X-ray Pulsar (AXP) 4U 0142+61 entered an active phase in 2006 March that lasted several months and included six X-ray bursts as well as many changes in the persistent X-ray emission. The bursts, the first seen from this AXP in >11 years of Rossi X-ray Timing Explorer monitoring, all occurred in the interval between 2006 April 6 and 2007 February 7. The burst durations ranged from 8-3x10(exp 3)s. The first five burst spectra are well modeled by blackbodies, with temperatures kT approx. 2 - 6 keV. However, the sixth burst had a complicated spectrum that is well characterized by a blackbody plus three emission features whose amplitude varied throughout the burst. The most prominent feature was at 14.0 keV. Upon entry into the active phase the pulsar showed a significant change in pulse morphology and a likely timing glitch. The glitch had a total frequency jump of (1.9+/-0.4)x10(exp -7) Hz, which recovered with a decay time of 17+/-2 days by more than the initial jump, implying a net spin-down of the pulsar. We discuss these events in the context of the magnetar model.

  4. HEAO 1 high-energy X-ray observations of three bright transient X-ray sources H1705-250 (Nova Ophiuchi), H1743-322, and H1833-077 (Scutum X-1)

    NASA Technical Reports Server (NTRS)

    Cooke, B. A.; Levine, A. M.; Lang, F. L.; Primini, F. A.; Lewin, W. H. G.

    1984-01-01

    The bright X-ray transients H1705-250 (Nova Ophiuchi) and H1743-322 in the energy range 12-180 keV were observed, and the presence of high-energy spectral components was revealed. On the basis of X-ray spectra in the 1-10 keV range, transients are classified as 'soft' (kT = 4 keV) or 'hard' (kT = 17 keV); and both H1705-250 and H1743-322 should be in the 'soft' category. Data have been reexamined for the archetypal 'soft' transient A0600-00 taken by the SAS 3 satellite, but no evidence is found there for a high-energy spectral component. Thus consideration of a wider X-ray energy range makes the 'hard'/'soft' distinction between X-ray transients much less clear.

  5. EXTraS discovery of two pulsators in the direction of the LMC: a Be/X-ray binary pulsar in the LMC and a candidate double-degenerate polar in the foreground

    NASA Astrophysics Data System (ADS)

    Haberl, F.; Israel, G. L.; Rodriguez Castillo, G. A.; Vasilopoulos, G.; Delvaux, C.; De Luca, A.; Carpano, S.; Esposito, P.; Novara, G.; Salvaterra, R.; Tiengo, A.; D'Agostino, D.; Udalski, A.

    2017-02-01

    Context. The Exploring the X-ray Transient and variable Sky (EXTraS) project searches for coherent signals in the X-ray archival data of XMM-Newton. Aims: XMM-Newton performed more than 400 pointed observations in the region of the Large Magellanic Cloud (LMC). We inspected the results of the EXTraS period search to systematically look for new X-ray pulsators in our neighbour galaxy. Methods: We analysed the XMM-Newton observations of two sources from the 3XMM catalogue which show significant signals for coherent pulsations. Results: 3XMM J051259.8-682640 was detected as a source with a hard X-ray spectrum in two XMM-Newton observations, revealing a periodic modulation of the X-ray flux with 956 s. As optical counterpart we identify an early-type star with Hα emission. The OGLE I-band light curve exhibits a regular pattern with three brightness dips which mark a period of 1350 d. The X-ray spectrum of 3XMM J051034.6-670353 is dominated by a super-soft blackbody-like emission component (kT 70 eV) which is modulated by nearly 100% with a period of 1418 s. From GROND observations we suggest a star with r' = 20.9 mag as a possible counterpart of the X-ray source. Conclusions: 3XMM J051259.8-682640 is confirmed as a new Be/X-ray binary pulsar in the LMC. We discuss the long-term optical period as the likely orbital period which would be the longest known from a high-mass X-ray binary. The spectral and temporal properties of the super-soft source 3XMM J051034.6-670353 are very similar to those of RX J0806.3+1527 and RX J1914.4+2456 suggesting that it belongs to the class of double-degenerate polars and is located in our Galaxy rather than in the LMC.

  6. A search for X-ray emission from a nearby pulsar - PSR 1929 + 10

    NASA Technical Reports Server (NTRS)

    Alpar, A.; Brinkmann, W.; Oegelman, H.; Kiziloglu, U.; Pines, D.

    1987-01-01

    Observations of the radio pulsar PSR 1929 + 10 with the Exosat observatory are reported. A 2 sigma upper limit of 0.0005 cts/s was obtained in the 0.04-2.4 keV range, which translates into a luminosity upper limit of 2 x 10 to the 29th erg/s for a power-law source with photon number index 1-3, and a luminosity upper limit of 10 to the 30th erg/s corresponding to a temperature of 190,000 K for a blackbody with radius 10 km. The implications of these upper limits for various models and their compatibility with the positive detection of this source by the Einstein Observatory are discussed.

  7. DISCOVERY OF {gamma}-RAY PULSATION AND X-RAY EMISSION FROM THE BLACK WIDOW PULSAR PSR J2051-0827

    SciTech Connect

    Wu, J. H. K.; Kong, A. K. H.; Huang, R. H. H.; Tam, P. H. T.; Takata, J.; Wu, E. M. H.; Cheng, K. S. E-mail: akong@phys.nthu.edu.tw

    2012-04-01

    We report the discovery of pulsed {gamma}-ray emission and X-ray emission from the black widow millisecond pulsar PSR J2051-0827 by using the data from the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope and the Advanced CCD Imaging Spectrometer array on the Chandra X-Ray Observatory. Using three years of LAT data, PSR J2051-0827 is clearly detected in {gamma}-rays with a significance of {approx}8{sigma} in the 0.2-20 GeV band. The 200 MeV-20 GeV {gamma}-ray spectrum of PSR J2051-0827 can be modeled by a simple power law with a photon index of 2.46 {+-} 0.15. Significant ({approx}5{sigma}) {gamma}-ray pulsations at the radio period were detected. PSR J2051-0827 was also detected in soft (0.3-7 keV) X-ray with Chandra. By comparing the observed {gamma}-rays and X-rays with theoretical models, we suggest that the {gamma}-ray emission is from the outer gap while the X-rays can be from intra-binary shock and pulsar magnetospheric synchrotron emissions.

  8. Metal nanoplasmas as bright sources of hard X-ray pulses.

    PubMed

    Rajeev, P P; Taneja, P; Ayyub, P; Sandhu, A S; Kumar, G Ravindra

    2003-03-21

    We report significant enhancements in light coupling to intense-laser-created solid plasmas via surface plasmon and "lightning rod" effects. We demonstrate this in metal nanoparticle-coated solid targets irradiated with 100 fs, 806 nm laser pulses, focused to intensities approximately 10(14)-10(15) W cm(-2). Our experiments show a 13-fold enhancement in hard x-ray yield (10-200 keV) emitted by copper nanoparticle plasmas formed at the focal volume. A simple model explains the observed enhancement quantitatively and provides pointers to the design of structured surfaces for maximizing such emissions.

  9. X-Ray Spectroscopy of Optically Bright Planets using the Chandra Observatory

    NASA Technical Reports Server (NTRS)

    Ford, P. G.; Elsner, R. F.

    2005-01-01

    Since its launch in July 1999, Chandra's Advanced CCD Imaging Spectrometer (ACIS) has observed several planets (Venus, Mars, Jupiter and Saturn) and 6 comets. At 0.5 arc-second spatial resolution, ACIS detects individual x-ray photons with good quantum efficiency (25% at 0.6 KeV) and energy resolution (20% FWHM at 0.6 KeV). However, the ACIS CCDs are also sensitive to optical and near-infrared light, which is absorbed by optical blocking filters (OBFs) that eliminate optical contamination from all but the brightest extended sources, e.g., planets. .Jupiter at opposition subseconds approx.45 arc-seconds (90 CCD pixels.) Since Chandra is incapable of tracking a moving target, the planet takes 10 - 20 kiloseconds to move across the most sensitive ACIS CCD, after which the observatory must be re-pointed. Meanwhile, the OBF covering that CCD adds an opt,ical signal equivalent to approx.110 eV to each pixel that lies within thc outline of the Jovian disk. This has three consequences: (1) the observatory must be pointed away from Jupiter while CCD bias maps are constructed; (2) most x-rays from within the optical image will be misidentified as charged-particle background and ignored; and (3) those x-rays that are reported will bc assigned anomalously high energies. The same also applies to thc other planets, but is less serious since they are either dimmer at optical wavelengths, or they show less apparent motion across the sky, permitting reduced CCD exposure times: the optical contamination from Saturn acids approx.15 eV per pixel, and from Mars and Venus approx.31 eV. After analyzing a series of short .Jupiter observations in December 2000, ACIS parameters were optimized for the February 2003 opposition. CCD bias maps were constructed while Chandra pointed away from Jupiter, and the subsequent observations employed on-board software to ignore any pixel that contained less charge than that expected from optical leakage. In addition, ACIS was commanded to report 5 x 5

  10. Plasmon-enhanced photocathode for high brightness and high repetition rate x-ray sources.

    PubMed

    Polyakov, A; Senft, C; Thompson, K F; Feng, J; Cabrini, S; Schuck, P J; Padmore, H A; Peppernick, S J; Hess, W P

    2013-02-15

    In this Letter, we report on the efficient generation of electrons from metals using multiphoton photoemission by use of nanostructured plasmonic surfaces to trap, localize, and enhance optical fields. The plasmonic surface increases absorption over normal metals by more than an order of magnitude, and due to the localization of fields, this results in over 6 orders of magnitude increase in effective nonlinear quantum yield. We demonstrate that the achieved quantum yield is high enough for use in rf photoinjectors operating as electron sources for MHz repetition rate x-ray free electron lasers.

  11. The Advanced Light Source at Lawrence Berkeley Laboratory: A high-brightness soft x-ray synchrotron-radiation facility

    SciTech Connect

    Schlachter, A.S.; Robinson, A.L.

    1990-07-01

    The Advanced Light Source, a third-generation national synchrotron-radiation facility now under construction at the Lawrence Berkeley Laboratory, is scheduled to begin serving qualified users across a broad spectrum of research areas in the spring of 1993. Based on a low-emittance electron storage ring optimized to operate at 1.5 GeV, the ALS will have 10 long straight sections available for insertion devices (undulators and wigglers) and 24 high-quality bend-magnet ports. The short pulse width (30--50 ns) will be ideal for time-resolved measurements. Undulators will generate high-brightness soft x-ray and ultraviolet (XUV) radiation from below 20 eV to above 2 keV. Wigglers and bend magnets will extend the spectrum by generating high fluxes of hard x-rays to photon energies above 10 keV. The ALS will support an extensive research program in which XUV radiation is used to study matter in all its varied gaseous, liquid, and solid forms. The high brightness will open new areas of research in the materials sciences, such as spatially resolved spectroscopy (spectromicroscopy). Biological applications will include x-ray microscopy with element-specific sensitivity in the water window of the spectrum where water is much more transparent than protein. The ALS will be an excellent research tool for atomic physics and chemistry because the high flux will allow measurements to be made with tenuous gas-phase targets. 8 refs., 7 figs., 3 tabs.

  12. Chandra X-Ray Observatory Observations of the Globular Cluster M28 and its Milisecond Pulsar PSR B1821-24

    NASA Technical Reports Server (NTRS)

    Becker, Werner; Swartz, Douglas A.; Pavlov, George G.; Elsner, Ronald F.; Grindlay, Jonathan; Mignani, Roberto; Tennant, Allyn F.; Backer, Don; Pulone, Luigi; Testa, Vincenzo

    2003-01-01

    We report here the results of the first Chandra X-Ray Observatory observations of the globular cluster M28 (NGC 6626). We detect 46 X-ray sources, of which 12 lie within 1 core radius of the center. We show that the apparently extended X-ray core emission seen with the ROSAT HRI is due to the superposition of multiple discrete sources, for which we determine the X-ray luminosity function down to a limit of about 6 x 10(exp 30) ergs/s. We measure the radial distribution of the X-ray sources and fit it to a King profile finding a core radius of r(sub c,X) approx. = 5 11". We measure for the first time the unconfused phase-averaged X-ray spectrum of the 3.05 ms pulsar B1821-24 and find that it is best described by a power law with photon index Gamma approx. = 1.2. We find marginal evidence of an emission line centered at 3.3 keV in the pulsar spectrum, which could be interpreted as cyclotron emission from a corona above the pulsar s polar cap if the magnetic field is strongly different from a centered dipole. The unabsorbed pulsar flux in the 0.1 - 8.0 keV band is approx. = 3.5 x 10(exp -13) ergs/s sq cm. We present spectral analyses of the five brightest unidentified sources. Based on the spectral parameters of the brightest of these sources, we suggest that it is a transiently accreting neutron star in a low-mass X-ray binary, in quiescence. Fitting its spectrum with a hydrogen neutron star atmosphere model yields the effective temperature T(sub eff, sup infinity) = 90(sup +30, sub -10) eV and the radius R(sub NS, sup infinity) = 14.5(sup +6.9, sub -3.8) km. In addition to the resolved sources, we detect fainter, unresolved X-ray emission from the central core. Using the Chandra-derived positions, we also report on the result of searching archival Hubble Space Telescope data for possible optical counterparts.

  13. Luminosity-dependent change of the emission diagram in the X-ray pulsar 4U 1626-67

    NASA Astrophysics Data System (ADS)

    Koliopanos, Filippos; Gilfanov, Marat

    2016-03-01

    We detect variability of the Fe K α emission line in the spectrum of X-ray pulsar 4U 1626-67, correlated with changes in its luminosity and in the shape of its pulse profile. Analysis of archival Chandra and RXTE observations revealed the presence of an intrinsically narrow Fe K α emission line in the spectrum obtained during the source's current high-luminosity period. However, the line was not present during an XMM-Newton observation seven years earlier, when the source was ˜three times fainter. The line is resolved by the high-energy grating of Chandra at the 98 per cent confidence level, and its small intrinsic width, σ =36.4_{-11.3}^{+15.3} eV, suggests reflection off an accretion disc at the radius R≈ (7.5_{-3.8}^{+8.2})× 10^8 cm assuming a Keplerian disk, viewed at an inclination angle of 20°. This value is consistent with the radius of the magnetosphere of the pulsar, suggesting that the line originates near the inner edge of a disc that is truncated by the magnetic field of the neutron star. Timing analysis of the XMM-Newton and RXTE data revealed a major change in the pulse profile of the source from a distinct double-peaked shape during the high-luminosity state when the line was present, to a much more complex multipeak structure during the low-luminosity state. We argue that the appearance of the line and the change in the shape of the pulse profile are correlated and are the result of a major change in the emission diagram of the accretion column, from a pencil-beam pattern at low luminosity, to a fan-beam pattern at high luminosity.

  14. High-resolution X-ray spectroscopy of the X-ray burster and 11 Hz pulsar IGR J17480-2446

    NASA Astrophysics Data System (ADS)

    Canizares, Claude

    2013-09-01

    The detection and identification of photospheric absorption lines from a neutron star would allow measurement of their gravitational redshift and hence the neutron star compactness. In principle, the line shape would allow unique determination of M and R. X-ray bursters are, in most respects, the ideal targets for this search, but most rotate so rapidly that any lines are too broadened to detect. However, the recently discovered X-ray burster Terzan 5 X-2 spins at only 11 Hz, 20x slower than the next slowest rotator. We propose a TOO observation with HETGS to search for narrow lines of ionized Fe when this X-ray transient next becomes active. This is the best chance ever to detect a narrow atomic line in a neutron star.

  15. High-resolution X-ray spectroscopy of the X-ray burster and 11 Hz pulsar IGR J17480-2446

    NASA Astrophysics Data System (ADS)

    Canizares, Claude

    2014-09-01

    The detection and identification of photospheric absorption lines from a neutron star would allow measurement of their gravitational redshift and hence the neutron star compactness. In principle, the line shape would allow unique determination of M and R. X-ray bursters are, in most respects, the ideal targets for this search, but most rotate so rapidly that any lines are too broadened to detect. However, the recently discovered X-ray burster Terzan 5 X-2 spins at only 11 Hz, 20x slower than the next slowest rotator. We propose a TOO observation with HETGS to search for narrow lines of ionized Fe when this X-ray transient next becomes active. This is the best chance ever to detect a narrow atomic line in a neutron star.

  16. Pulsator-like Spectra from Ultraluminous X-Ray Sources and the Search for More Ultraluminous Pulsars

    NASA Astrophysics Data System (ADS)

    Pintore, F.; Zampieri, L.; Stella, L.; Wolter, A.; Mereghetti, S.; Israel, G. L.

    2017-02-01

    Ultraluminous X-ray sources (ULXs) are a population of extragalactic objects whose luminosity exceeds the Eddington limit for a 10 M ⊙ black hole (BH). Their properties have been widely interpreted in terms of accreting stellar-mass or intermediate-mass BHs. However at least three neutron stars (NSs) have been recently identified in ULXs through the discovery of periodic pulsations. Motivated by these findings we studied the spectral properties of a sample of bright ULXs using a simple continuum model which was extensively used to fit the X-ray spectra of accreting magnetic NSs in the Galaxy. We found that such a model, consisting of a power-law with a high-energy exponential cut-off, fits most of the ULX spectra analyzed here very well, at a level comparable to that of models involving an accreting BH. On these grounds alone we suggest that other non-pulsating ULXs may host NSs. We also found that above 2 keV the spectrum of known pulsating ULXs is harder than that of the majority of the other ULXs of the sample, with only IC 342 X-1 and Ho IX X-1 displaying spectra of comparable hardness. We thus suggest that these two ULXs may host an accreting NS and encourage searches for periodic pulsations in the flux.

  17. A WHITE DWARF MERGER AS PROGENITOR OF THE ANOMALOUS X-RAY PULSAR 4U 0142+61?

    SciTech Connect

    Rueda, J. A.; Boshkayev, K.; Izzo, L.; Ruffini, R.; Loren-Aguilar, P.; Kuelebi, B.; Aznar-Siguan, G.; Garcia-Berro, E. E-mail: enrique.garcia-berro@upc.edu

    2013-08-01

    It has been recently proposed that massive, fast-rotating, highly magnetized white dwarfs could describe the observational properties of some of soft gamma-ray repeaters and anomalous X-ray pulsars (AXPs). Moreover, it has also been shown that high-field magnetic white dwarfs can be the outcome of white dwarf binary mergers. The products of these mergers consist of a hot central white dwarf surrounded by a rapidly rotating disk. Here we show that the merger of a double degenerate system can explain the characteristics of the peculiar AXP 4U 0142+61. This scenario accounts for the observed infrared excess. We also show that the observed properties of 4U 0142+6 are consistent with an approximately 1.2 M{sub Sun} white dwarf, remnant of the coalescence of an original system made of two white dwarfs of masses 0.6 M{sub Sun} and 1.0 M{sub Sun }. Finally, we infer a post-merging age {tau}{sub WD} Almost-Equal-To 64 kyr and a magnetic field B Almost-Equal-To 2 Multiplication-Sign 10{sup 8} G. Evidence for such a magnetic field may come from the possible detection of the electron cyclotron absorption feature observed between the B and V bands at Almost-Equal-To 10{sup 15} Hz in the spectrum of 4U 0142+61.

  18. Hubble Space Telescope Imaging of Bright Galactic X-Ray Binaries in Crowded Fields

    NASA Technical Reports Server (NTRS)

    Deutsch, Eric W.; Margon, Bruce; Wachter, Stefanie; Anderson, Scott F.

    1996-01-01

    We report high spatial resolution HST imagery and photometry of three well-studied, intense Galactic X-ray binaries, X2129+470, CAL 87, and GX 17+2. All three sources exhibit important anomalies that are not readily interpreted by conventional models. Each source also lies in a severely crowded field, and in all cases the anomalies would be removed if much of the light observed from the ground in fact came from a nearby, thus far unresolved superposed companion. For V1727 Cyg (X2129+470), we find no such companion. We also present an HST FOS spectrum and broadband photometry which is consistent with a single, normal star. The supersoft LMC X-ray source CAL 87 was already known from ground-based work to have a companion separated by O.9 minutes from the optical counterpart; our HST images clearly resolve these objects and yield the discovery of an even closer, somewhat fainter additional companion. Our photometry indicates that contamination is not severe outside eclipse, where the companions only contribute 20% of the light in V, but during eclipse more than half of the V light comes from the companions. The previously determined spectral type of the CAL 87 secondary may need to be reevaluated due to this significant contamination, with consequences on inferences of the mass of the components. We find no companions to NP Ser (= X1813-14, = GX 17+2). However, for this object we point out a small but possibly significant astrometric discrepancy between the position of the optical object and that of the radio source which is the basis for the identification. This discrepancy needs to be clarified.

  19. GAMMA-RAY OBSERVATIONS OF THE Be/PULSAR BINARY 1A 0535+262 DURING A GIANT X-RAY OUTBURST

    SciTech Connect

    Acciari, V. A.; Benbow, W.; Aliu, E.; Araya, M.; Cui, W.; Finley, J. P.; Arlen, T.; Aune, T.; Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R.; Bradbury, S. M.; Byrum, K.; Cannon, A.; Collins-Hughes, E.; Cesarini, A.; Ciupik, L.; Duke, C.; Falcone, A. E-mail: cui@purdue.edu

    2011-06-01

    Giant X-ray outbursts, with luminosities of about 10{sup 37} erg s{sup -1}, are observed roughly every five years from the nearby Be/pulsar binary 1A 0535+262. In this article, we present observations of the source with VERITAS at very high energies (VHEs; E >100 GeV) triggered by the X-ray outburst in 2009 December. The observations started shortly after the onset of the outburst and provided comprehensive coverage of the episode, as well as the 111 day binary orbit. No VHE emission is evident at any time. We also examined data from the contemporaneous observations of 1A 0535+262 with the Fermi/Large Area Telescope at high-energy photons (E > 0.1 GeV) and failed to detect the source at GeV energies. The X-ray continua measured with the Swift/X-Ray Telescope and the RXTE/PCA can be well described by the combination of blackbody and Comptonized emission from thermal electrons. Therefore, the gamma-ray and X-ray observations suggest the absence of a significant population of non-thermal particles in the system. This distinguishes 1A 0535+262 from those Be X-ray binaries (such as PSR B1259-63 and LS I +61{sup 0}303) that have been detected at GeV-TeV energies. We discuss the implications of the results on theoretical models.

  20. The X-Ray Structure and Spectrum of the Pulsar Wind Nebula Surrounding PSR B1853+01 in W44

    NASA Technical Reports Server (NTRS)

    Petre, R.; Kuntz, K. D.; Shelton, R. L.; White, Nicholas E. (Technical Monitor)

    2001-01-01

    We present the result of a Chandra ACIS observation of the pulsar PSR B1853+01 and its associated pulsar wind nebula (PWN), embedded within the supernova remnant W44. A hard band ACIS map cleanly distinguishes the PWN from the thermal emission of W44. The nebula is extended in the north-south direction, with an extent about half that of the radio emission. Morphological differences between the X-ray and radio images are apparent. Spectral fitting reveals a clear difference in spectral index between the hard emission from PSR B1853+01 (Gamma approx. 1.4) and the extended nebula (Gamma approx. 2.2). The more accurate values for the X-ray flux and spectral index are used refine estimates for PWN parameters, including magnetic field strength, the average Lorentz factor gamma of the particles in the wind, the magnetization parameter sigma, and the ratio k of electrons to other particles.

  1. Long-term timing and glitch characteristics of anomalous X-ray pulsar 1RXS J170849.0–400910

    SciTech Connect

    Muş, Sinem Şaşmaz; Göğüş, Ersin

    2013-12-01

    We present the results of our detailed timing studies of an anomalous X-ray pulsar, 1RXS J170849.0–400910, using Rossi X-ray Timing Explorer (RXTE) observations spanning over ∼6 yr from 2005 until the end of the RXTE mission. We constructed the long-term spin characteristics of the source and investigated the time and energy dependence of the pulse profile and pulsed count rates. We find that the pulse profile and pulsed count rates in the 2-10 keV band do not show any significant variations in ∼6 yr. 1RXS J170849.0–400910 has been the most frequently glitching anomalous X-ray pulsar: three spin-up glitches and three candidate glitches were observed prior to 2005. Our extensive search for glitches later in the timeline resulted in no unambiguous glitches, though we identified two glitch candidates (with Δν/ν ∼ 10{sup –6}) in two data gaps: a strong candidate around MJD 55532 and another one around MJD 54819, which is slightly less robust. We discuss our results in the context of pulsar glitch models and expectancy of glitches within the vortex unpinning model.

  2. Properties of a B0 I stellar wind and interstellar grains derived from Ginga observations of the binary X-ray pulsar 4U 1538-52

    NASA Technical Reports Server (NTRS)

    Clark, George W.; Woo, Jonathan W.; Nagase, Fumiaki

    1994-01-01

    From measurements of the X-ray eclipse phenomena of the binary X-ray pulsar 4U 1538-52, we derive properties of the stellar wind of its B0 I companion, QV Nor, and a constraint on models of interstellar grains. Estimates of the wind density as a function of the distance from the center of QV Nor are obtained from an analysis of the variation of X-ray attenuation during an eclipse egress. A Monte Carlo computation of the absorption and scattering of X-rays in the X-ray-ionized wind accounts for approximately two-thirds of the spectrum of X-rays with energies above 4.5 keV observed during the eclipse. Our upper limit on R(sub XV) is 0.06/mag, which implies that the X-ray scattering efficiency of interstellar dust is less than expected for solid grains with a size distribution of the form n(sub g)(a) approximately a(exp -3.5) in the range from 0.005 to 0.25 microns and composed of silicate (R(sub XV) = 0.22/mag) or a silicate-graphite mixture (R(sub XV) = 0.11/mag) as derived from the calculations of Martin & Rouleau (1991). This lends support to the idea (Mathis & Whiffen 1989) that interstellar grains are 'fluffy' aggregates with an average bulk density less than that of their constitutent particles. Such aggregates would have a smaller ratio of X-ray scattering efficiency to optical extinction efficiency compared with solid grains of the same material.

  3. Observation of spatial and temporal variations in X-ray bright point emergence patterns. [at solar surface

    NASA Technical Reports Server (NTRS)

    Golub, L.; Krieger, A. S.; Vaiana, G. S.

    1976-01-01

    Observations of X-ray bright points (XBP) over a six-month interval in 1973 show significant variations in both the number density of XBP as a function of heliographic longitude and in the full-sun average number of XBP from one rotation to the next. The observed increases in XBP emergence are estimated to be equivalent to several large active regions emerging per day for several months. The number of XBP emerging at high latitudes varies in phase with the low-latitude variation and reaches a maximum approximately simultaneous with a major outbreak of active regions. The quantity of magnetic flux emerging in the form of XBP at high latitudes alone is estimated to be as large as the contribution from all active regions.

  4. On the Nature of X-ray Surface Brightness Fluctuations in M87

    NASA Astrophysics Data System (ADS)

    Arévalo, P.; Churazov, E.; Zhuravleva, I.; Forman, W. R.; Jones, C.

    2016-02-01

    X-ray images of galaxy clusters and gas-rich elliptical galaxies show a wealth of small-scale features that reflect fluctuations in density and/or temperature of the intracluster medium. In this paper we study these fluctuations in M87/Virgo to establish whether sound waves/shocks, bubbles, or uplifted cold gas dominate the structure. We exploit the strong dependence of the emissivity on density and temperature in different energy bands to distinguish between these processes. Using simulations we demonstrate that our analysis recovers the leading type of fluctuation even in the presence of projection effects and temperature gradients. We confirm the isobaric nature of cool filaments of gas entrained by buoyantly rising bubbles, extending to 7‧ to the east and southwest, and the adiabatic nature of the weak shocks at 40″ and 3‧ from the center. For features of ˜5-10 kpc, we show that the central 4‧ × 4‧ region is dominated by cool structures in pressure equilibrium with the ambient hotter gas while up to 30% of the variance in this region can be ascribed to adiabatic fluctuations. The remaining part of the central 14‧ × 14‧ region, excluding the arms and shocks described above, is dominated by apparently isothermal fluctuations (bubbles) with a possible admixture (at the level of ˜30%) of adiabatic (sound waves) and by isobaric structures. Larger features, of about 30 kpc, show a stronger contribution from isobaric fluctuations. The results broadly agree with a model based on feedback from an active galactic nucleus mediated by bubbles of relativistic plasma.

  5. ON THE NATURE OF X-RAY SURFACE BRIGHTNESS FLUCTUATIONS IN M87

    SciTech Connect

    Arévalo, P.; Churazov, E.; Zhuravleva, I.; Forman, W. R.; Jones, C.

    2016-02-10

    X-ray images of galaxy clusters and gas-rich elliptical galaxies show a wealth of small-scale features that reflect fluctuations in density and/or temperature of the intracluster medium. In this paper we study these fluctuations in M87/Virgo to establish whether sound waves/shocks, bubbles, or uplifted cold gas dominate the structure. We exploit the strong dependence of the emissivity on density and temperature in different energy bands to distinguish between these processes. Using simulations we demonstrate that our analysis recovers the leading type of fluctuation even in the presence of projection effects and temperature gradients. We confirm the isobaric nature of cool filaments of gas entrained by buoyantly rising bubbles, extending to 7′ to the east and southwest, and the adiabatic nature of the weak shocks at 40″ and 3′ from the center. For features of ∼5–10 kpc, we show that the central 4′ × 4′ region is dominated by cool structures in pressure equilibrium with the ambient hotter gas while up to 30% of the variance in this region can be ascribed to adiabatic fluctuations. The remaining part of the central 14′ × 14′ region, excluding the arms and shocks described above, is dominated by apparently isothermal fluctuations (bubbles) with a possible admixture (at the level of ∼30%) of adiabatic (sound waves) and by isobaric structures. Larger features, of about 30 kpc, show a stronger contribution from isobaric fluctuations. The results broadly agree with a model based on feedback from an active galactic nucleus mediated by bubbles of relativistic plasma.

  6. X-ray measurement of the spin-down of CalverA: A radio- and gamma-ray-quiet pulsar

    SciTech Connect

    Halpern, J. P.; Bogdanov, S.; Gotthelf, E. V.

    2013-12-01

    We measure spin-down of the 59 ms X-ray pulsar Calvera by comparing the XMM-Newton discovery data from 2009 with new Chandra timing observations taken in 2013. Its period derivative is P-dot =(3.19± 0.08)×10{sup −15}, which corresponds to spin-down luminosity E-dot =6.1×10{sup 35} erg s{sup –1}, characteristic age τ{sub c}≡P/2 P-dot =2.9×10{sup 5} yr, and surface dipole magnetic field strength B{sub s} = 4.4 × 10{sup 11} G. These values rule out a mildly recycled pulsar, but Calvera could be an orphaned central compact object (anti-magnetar), with a magnetic field that was initially buried by supernova debris and is now reemerging and approaching normal strength. We also performed unsuccessful searches for high-energy γ-rays from Calvera in both imaging and timing of >100 MeV Fermi photons. Even though the distance to Calvera is uncertain by an order of magnitude, an upper limit of d < 2 kpc inferred from X-ray spectra implies a γ-ray luminosity limit of <3.3 × 10{sup 32} erg s{sup –1}, which is less than that of any pulsar of comparable E-dot . Calvera shares some properties with PSR J1740+1000, a young radio pulsar that we show by virtue of its lack of proper motion was born outside of the Galactic disk. As an energetic, high-Galactic-latitude pulsar, Calvera is unique in being undetected in both radio and γ-rays to faint limits, which should place interesting constraints on models for particle acceleration and beam patterns in pulsar magnetospheres.

  7. The 2006-2007 Active Phase of Anomalous X-Ray Pulsar 4U 0142+61: Radiative and Timing Changes, Bursts,and Burst Spectral Features

    NASA Technical Reports Server (NTRS)

    Gavriil, Fotis P.; Dib, Rim; Kaspi, Victoria M.

    2011-01-01

    After at least 6 years of quiescence, Anomalous X-ray Pulsar (AXP) 4U 0142+61 entered an active phase in 2006 March that lasted several months and included six X-ray bursts as well as many changes in the persistent X-ray emission. The bursts, the first seen from this AXP in > 11 years of Rossi X-ray Timing Explorer monitoring, all occurred in the interval between 2006 April 6 and 2007 February 7. The burst durations ranged from 0.4 - 1.8 x 10(exp 3) s. The first five burst spectra are well modeled by blackbodies, with temperatures kT approx 2 - 9 keV. However, the sixth burst had a complicated spectrum that is well characterized by a blackbody plus two emission features whose amplitude varied throughout the burst. The most prominent feature was at 14.0 keV. Upon entry into the active phase the pulsar showed a significant change in pulse morphology and a likely timing glitch. The glitch had a total frequency jump of (1.9+/-0.4) x 10(exp -7) Hz, which recovered with a decay time of 17+/-2 days by more than the initial jump, implying a net spin-down of the pulsar. Within the framework of the magnetar model, the net spin-down of the star could be explained by regions of the superfluid that rotate. slower than the rest. The bursts, flux enhancements, and pulse morphology changes can be explained as arising from crustal deformations due to stresses imposed by the highly twisted internal magnetic field. However, unlike other AXP outbursts, we cannot account for a major twist being implanted in the magnetosphere.

  8. SXP 1062, a young Be X-ray binary pulsar with long spin period. Implications for the neutron star birth spin

    NASA Astrophysics Data System (ADS)

    Haberl, F.; Sturm, R.; Filipović, M. D.; Pietsch, W.; Crawford, E. J.

    2012-01-01

    Context. The Small Magellanic Cloud (SMC) is ideally suited to investigating the recent star formation history from X-ray source population studies. It harbours a large number of Be/X-ray binaries (Be stars with an accreting neutron star as companion), and the supernova remnants can be easily resolved with imaging X-ray instruments. Aims: We search for new supernova remnants in the SMC and in particular for composite remnants with a central X-ray source. Methods: We study the morphology of newly found candidate supernova remnants using radio, optical and X-ray images and investigate their X-ray spectra. Results: Here we report on the discovery of the new supernova remnant around the recently discovered Be/X-ray binary pulsar CXO J012745.97-733256.5 = SXP 1062 in radio and X-ray images. The Be/X-ray binary system is found near the centre of the supernova remnant, which is located at the outer edge of the eastern wing of the SMC. The remnant is oxygen-rich, indicating that it developed from a type Ib event. From XMM-Newton observations we find that the neutron star with a spin period of 1062 s (the second longest known in the SMC) shows a very high average spin-down rate of 0.26 s per day over the observing period of 18 days. Conclusions: From the currently accepted models, our estimated age of around 10 000-25 000 years for the supernova remnant is not long enough to spin down the neutron star from a few 10 ms to its current value. Assuming an upper limit of 25 000 years for the age of the neutron star and the extreme case that the neutron star was spun down by the accretion torque that we have measured during the XMM-Newton observations since its birth, a lower limit of 0.5 s for the birth spin period is inferred. For more realistic, smaller long-term average accretion torques our results suggest that the neutron star was born with a correspondingly longer spin period. This implies that neutron stars in Be/X-ray binaries with long spin periods can be much younger

  9. Experimental investigation of bright spots in broadband, gated x-ray images of ignition-scale implosions on the National Ignition Facility

    SciTech Connect

    Barrios, M. A.; Suter, L. J.; Glenn, S.; Benedetti, L. R.; Bradley, D. K.; Collins, G. W.; Hammel, B. A.; Izumi, N.; Ma, T.; Scott, H.; Smalyuk, V. A.; Regan, S. P.; Epstein, R.; Kyrala, G. A.

    2013-07-15

    Bright spots in the hot spot intensity profile of gated x-ray images of ignition-scale implosions at the National Ignition Facility [G. H. Miller et al., Opt. Eng. 443, (2004)] are observed. X-ray images of cryogenically layered deuterium-tritium (DT) and tritium-hydrogen-deuterium (THD) ice capsules, and gas filled plastic shell capsules (Symcap) were recorded along the hohlraum symmetry axis. Heterogeneous mixing of ablator material and fuel into the hot spot (i.e., hot-spot mix) by hydrodynamic instabilities causes the bright spots. Hot-spot mix increases the radiative cooling of the hot spot. Fourier analysis of the x-ray images is used to quantify the evolution of bright spots in both x- and k-space. Bright spot images were azimuthally binned to characterize bright spot location relative to known isolated defects on the capsule surface. A strong correlation is observed between bright spot location and the fill tube for both Symcap and cryogenically layered DT and THD ice targets, indicating the fill tube is a significant seed for the ablation front instability causing hot-spot mix. The fill tube is the predominant seed for Symcaps, while other capsule non-uniformities are dominant seeds for the cryogenically layered DT and THD ice targets. A comparison of the bright spot power observed for Si- and Ge-doped ablator targets shows heterogeneous mix in Symcap targets is mostly material from the doped ablator layer.

  10. Can AGN and galaxy clusters explain the surface brightness fluctuations of the cosmic X-ray background?

    NASA Astrophysics Data System (ADS)

    Kolodzig, Alexander; Gilfanov, Marat; Hütsi, Gert; Sunyaev, Rashid

    2017-04-01

    Fluctuations of the surface brightness of cosmic X-ray background (CXB) carry unique information about faint and low-luminosity source populations, which is inaccessible for conventional large-scale structure (LSS) studies based on resolved sources. We used XBOOTES (5ks deep Chandra X-ray Observatory ACIS-I maps of the ∼ 9 deg2 Bootes field of the NOAO Deep Wide-Field Survey) to conduct the most accurate measurement to date of the power spectrum of fluctuations of the unresolved CXB on the angular scales of 3 arcsec-17 arcmin. We find that at sub-arcmin angular scales, the power spectrum is consistent with the active galactic nucleus (AGN) shot noise, without much need for any significant contribution from their one-halo term. This is consistent with the theoretical expectation that low-luminosity AGN reside alone in their dark matter haloes. However, at larger angular scales, we detect a significant LSS signal above the AGN shot noise. Its power spectrum, obtained after subtracting the AGN shot noise, follows a power law with the slope of -0.8 ± 0.1 and its amplitude is much larger than what can be plausibly explained by the two-halo term of AGN. We demonstrate that the detected LSS signal is produced by unresolved clusters and groups of galaxies. For the flux limit of the XBOOTES survey, their flux-weighted mean redshift equals ∼ 0.3, and the mean temperature of their intracluster medium (ICM), ≈ 1.4 keV, corresponds to the mass of M500 ∼ 1013.5 M⊙. The power spectrum of CXB fluctuations carries information about the redshift distribution of these objects and the spatial structure of their ICM on the linear scales of up to ∼Mpc, i.e. of the order of the virial radius.

  11. X-RAY OBSERVATIONS OF THE SUPERNOVA REMNANT CTB 87 (G74.9+1.2): AN EVOLVED PULSAR WIND NEBULA

    SciTech Connect

    Matheson, H.; Safi-Harb, S.; Kothes, R. E-mail: samar@physics.umanitoba.ca

    2013-09-01

    Pulsar wind nebulae (PWNe) studies with the Chandra X-Ray Observatory have opened a new window to address the physics of pulsar winds, zoom on their interaction with their hosting supernova remnant (SNR) and interstellar medium, and identify their powering engines. We here present a new 70 ks, plus an archived 18 ks, Chandra ACIS observation of the SNR CTB 87 (G74.9+1.2), classified as a PWN with unusual radio properties and poorly studied in X-rays. We find that the peak of the X-ray emission is clearly offset from the peak of the radio emission by {approx}100'' and located at the southeastern edge of the radio nebula. We detect a point source-the putative pulsar-at the peak of the X-ray emission and study its spectrum separately from the PWN. This new point source, CXOU J201609.2+371110, is surrounded by a compact nebula displaying a torus-like structure and possibly a jet. A more extended diffuse nebula is offset from the radio nebula, extending from the point source to the northwest for {approx}250''. The spectra of the point source, compact nebula, and extended diffuse nebula are all well described by a power-law model with a photon index of 1.1 (0.7-1.6), 1.2 (0.9-1.4), and 1.7 (1.5-1.8), respectively, for a column density N{sub H} = 1.38 (1.21-1.57) Multiplication-Sign 10{sup 22} cm{sup -2} (90% confidence). The total X-ray luminosity of the source is {approx}1.6 Multiplication-Sign 10{sup 34} erg s{sup -1} at an assumed distance of 6.1 kpc, with {approx}2% and 6% contribution from the point source and compact nebula, respectively. The observed properties suggest that CTB 87 is an evolved ({approx}5-28 kyr) PWN, with the extended radio emission likely a ''relic'' PWN, as in Vela-X and G327.1-1.1. To date, however, there is no evidence for thermal X-ray emission from this SNR, and the SNR shell is still missing, suggesting expansion into a low-density medium (n{sub 0} < 0.2 D{sup -1/2}{sub 6.1} cm{sup -3}), likely caused by a stellar wind bubble blown by the

  12. NuSTAR observations of the supergiant X-ray pulsar IGR J18027-2016: accretion from the stellar wind and possible cyclotron absorption line

    NASA Astrophysics Data System (ADS)

    Lutovinov, Alexander A.; Tsygankov, Sergey S.; Postnov, Konstantin A.; Krivonos, Roman A.; Molkov, Sergey V.; Tomsick, John A.

    2017-04-01

    We report on the first focused hard X-ray view of the absorbed supergiant system IGR J18027-2016 performed with the Nuclear Spectroscopic Telescope Array observatory. The pulsations are clearly detected with a period of Pspin = 139.866(1) s and a pulse fraction of about 50-60 per cent at energies from 3 to 80 keV. The source demonstrates an approximately constant X-ray luminosity on a time-scale of more than dozen years with an average spin-down rate of dot{P}≃ 6× 10^{-10} s s-1. This behaviour of the pulsar can be explained in terms of the wind accretion model in the settling regime. The detailed spectral analysis at energies above 10 keV was performed for the first time and revealed a possible cyclotron absorption feature at energy ∼23 keV. This energy corresponds to the magnetic field B ≃ 3 × 1012 G at the surface of the neutron star, which is typical for X-ray pulsars.

  13. An X-ray Pulsar with a Superstrong Magnetic Field in the Soft Gamma-Ray Repeater SGR1806-20

    NASA Technical Reports Server (NTRS)

    Kouveliotou, C.; Dieters, S.; Strohmayer, T.; vanParadijs, J.; Fishman, G. J.; Meegan, C. A.; Hurley, K.; Kommers, J.; Smith, I.; Frail, D.; Murakami, T.

    1998-01-01

    Soft gamma-ray repeaters (SGRs) emit multiple, brief (approximately O.1 s) intense outbursts of low-energy gamma-rays. They are extremely rare; three are known in our galaxy and one in the Large Magellanic Cloud. Two SGRs are associated with young supernova remnants (SNRs), and therefore most probably with neutron stars, but it remains a puzzle why SGRs are so different from 'normal' radio pulsars. Here we report the discovery of pulsations in the persistent X-ray flux of SGR1806-20, with a period of 7.47 s and a spindown rate of 2.6 x 10(exp -3) s/yr. We argue that the spindown is due to magnetic dipole emission and find that the pulsar age and (dipolar) magnetic field strength are approximately 1500 years and 8 x 10(exp 14) gauss, respectively. Our observations demonstrate the existence of 'magnetars', neutron stars with magnetic fields about 100 times stronger than those of radio pulsars, and support earlier suggestions that SGR bursts are caused by neutron-star 'crust-quakes' produced by magnetic stresses. The 'magnetar' birth rate is about one per millenium, a substantial fraction of that of radio pulsars. Thus our results may explain why some SNRs have no radio pulsars.

  14. A laboratory 8 keV transmission full-field x-ray microscope with a polycapillary as condenser for bright and dark field imaging

    SciTech Connect

    Baumbach, S. Wilhein, T.; Kanngießer, B.; Malzer, W.; Stiel, H.

    2015-08-15

    This article introduces a laboratory setup of a transmission full-field x-ray microscope at 8 keV photon energy. The microscope operates in bright and dark field imaging mode with a maximum field of view of 50 μm. Since the illumination geometry determines whether the sample is illuminated homogeneously and moreover, if different imaging methods can be applied, the condenser optic is one of the most significant parts. With a new type of x-ray condenser, a polycapillary optic, we realized bright field imaging and for the first time dark field imaging at 8 keV photon energy in a laboratory setup. A detector limited spatial resolution of 210 nm is measured on x-ray images of Siemens star test patterns.

  15. A laboratory 8 keV transmission full-field x-ray microscope with a polycapillary as condenser for bright and dark field imaging

    NASA Astrophysics Data System (ADS)

    Baumbach, S.; Kanngießer, B.; Malzer, W.; Stiel, H.; Wilhein, T.

    2015-08-01

    This article introduces a laboratory setup of a transmission full-field x-ray microscope at 8 keV photon energy. The microscope operates in bright and dark field imaging mode with a maximum field of view of 50 μm. Since the illumination geometry determines whether the sample is illuminated homogeneously and moreover, if different imaging methods can be applied, the condenser optic is one of the most significant parts. With a new type of x-ray condenser, a polycapillary optic, we realized bright field imaging and for the first time dark field imaging at 8 keV photon energy in a laboratory setup. A detector limited spatial resolution of 210 nm is measured on x-ray images of Siemens star test patterns.

  16. Discovery of a soft X-ray 8 mHz QPO from the accreting millisecond pulsar IGR J00291+5934

    NASA Astrophysics Data System (ADS)

    Ferrigno, C.; Bozzo, E.; Sanna, A.; Pintore, F.; Papitto, A.; Riggio, A.; Burderi, L.; Di Salvo, T.; Iaria, R.; D'Aì, A.

    2017-04-01

    We report on the analysis of the peculiar X-ray variability displayed by the accreting millisecond X-ray pulsar IGR J00291+5934 in a 80 ks-long joint NuSTAR and XMM-Newton observation performed during the source outburst in 2015. The light curve of the source is characterized by a flaring-like behaviour, with typical rise and decay time-scales of ∼120 s. The flares are accompanied by a remarkable spectral variability, with the X-ray emission being generally softer at the peak of the flares. A strong quasi-periodic oscillation (QPO) is detected at ∼8 mHz in the power spectrum of the source and clearly associated with the flaring-like behaviour. This feature has the strongest power at soft X-rays ( ≲ 3 keV). We carried out a dedicated hardness-ratio-resolved spectral analysis and a QPO phase-resolved spectral analysis, together with an in-depth study of the source-timing properties, to investigate the origin of this behaviour. We suggest that the unusual variability of IGR J00291+5934 observed by XMM-Newton and NuSTAR could be produced by a heartbeat-like mechanism, similar to that observed in black hole X-ray binaries. The possibility that this variability, and the associated QPO, are triggered by phases of quasi-stable nuclear burning, as sustained in the literature for a number of other neutron star binaries displaying a similar behaviour, cannot be solidly tested in the case of IGR J00291+5934 due to the paucity of type I X-ray bursts detected from this source.

  17. Hercules X-1: Spectral Variability of an X-Ray Pulsar in a Stellar Binary System. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Pravdo, S. H.

    1976-01-01

    A cosmic X-ray spectroscopy experiment onboard the Orbiting Solar Observatory 8 (OSO-8), observed Her x-1 continuously for approximately 8 days. Spectral-temporal correlations of the X-ray emission were obtained. The major results concern observations of: (1) iron band emission, (2) spectral hardening (increase in effective x-ray temperature) within the X-ray pulse, and (3) a transition from an X-ray low state to a high state. The spectrum obtained prior to the high state can be interpreted as reflected emission from a hot coronal gas surrounding an accretion disk, which itself shields the primary X-ray source from the line of sight during the low state. The spectral hardening within the X-ray pulse was indicative of the beaming mechanism at the neutron star surface. The hardest spectrum by pulse phase was identified with the line of sight close to the Her x-1 magnetic dipole axis, and the X-ray pencil beam become harder with decreasing angle between the line of sight and the dipole axis.

  18. Dependence of coronal X-ray emission on spot-induced brightness variations in cool main sequence stars

    NASA Astrophysics Data System (ADS)

    Messina, S.; Pizzolato, N.; Guinan, E. F.; Rodonò, M.

    2003-11-01

    The maximum amplitude (Amax) of spot-induced brightness variations from long-term V-band photometry and the ratio LX/Lbol between X-ray and bolometric luminosities are suitable indicators of the level of magnetic activity in the photosphere and in the corona of late-type stars, respectively. By using these activity indicators we investigate the dependence of coronal X-ray emission on the level of photospheric starspot activity in a homogeneous sample of low mass main sequence field and cluster stars of different ages (IC 2602, IC 4665, IC 2391, alpha Persei, Pleiades and Hyades). First, the activity-rotation connection at the photospheric level is re-analysed, as well as its dependence on spectral type and age. The upper envelope of Amax increases monotonically with decreasing rotational period (P) and Rossby number (R0) showing a break around 1.1 d that separates two rotation regimes where the starspot activity shows different behaviours. The Amax-P and Amax-R0 relations are fitted with linear, exponential and power laws to look for the function which best represents the trend of the data. The highest values of Amax are found among K-type stars and at the ages of alpha Persei and Pleiades. We also analyse the activity-rotation connection at the coronal level as well as its dependence on spectral type. The level of X-ray emission increases with increasing rotation rate up to a saturation level. The rotational period at which saturation occurs is colour-dependent and increases with advancing spectral type. Also the LX/Lbol-P and LX/Lbol-R0 relations are fitted with linear, exponential and power laws to look for the best fitting function. Among the fastest rotating stars (P<=0.3 d) there is evidence of super-saturation. Also the highest values of LXLbol are found among K-type stars. Finally, the photospheric-coronal activity connection is investigated by using for the first time the largest ever sample of light curve amplitudes as indicators of the magnetic filling

  19. On the Nature of the Bright Short-Period X-ray Source in the Circinus Galaxy Field

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; Tennant, Allyn F.; Wu, Kinwah; Swartz, Douglas A.; Ghosh, Kajal K.

    2003-01-01

    The spectrum and light curve of the bright X-ray source CG X-1 in the field of the Circinus galaxy are re-examined. Previous analyses have concluded that the source is an accreting black hole of mass approx. greater than 50 solar masses although it was noted that the light curve resembles that of an AM Her system. Here we show that the short period and an assumed main sequence companion constrain the mass of the companion to less than 1 solar mass. Further a possible eclipse seen during one of the Chandra observations and a subsequent XMM-Newton observation constrains the mass of the compact object to less than 60 solar masses. If such a system lies in the Circinus galaxy, then the accreting object must either radiate anisotropically or strongly violate the Eddington limit. Even if the emission is beamed, then the companion star which intercepts this flux during eclipse will be driven out of thermal equilibrium and evaporate within approx. 10(exp 3) yr. We find that the observations cannot rule out an AM Her system in the Milky Way and that such a system can account for the variations seen in the light curve.

  20. On the Nature of the Bright Short-Period X-Ray Source in the Circinus Galaxy Field

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; Wu, Kinwah; Tennant, Allyn F.; Swartz, Douglas A.; Ghosh, Kajal K.

    2004-01-01

    The spectrum and light curve of the bright X-ray source CG X-1 in the field of the Circinus galaxy are reexamined. Previous analyses have concluded that the source is an accreting black hole of mass > or approx. 50 solar masses although it has been noted that the light curve resembles that of an AM Herculis system. Here we show that the short period and an assumed main-sequence companion constrain the mass of the companion to less than 1 solar mass. Furthermore, a possible eclipse seen during one of the Chandra observations and a subsequent XMM-Newton observation constrain the mass of the compact object to less than 60 solar masses. If such a system lies in the Circinus galaxy, then the accreting object must either radiate anisotropically or strongly violate the Eddington limit. Even if the emission is beamed, then the companion star that intercepts this flux during eclipse will be driven out of thermal equilibrium and evaporate within approx. 10(exp 3) yr. We find that the observations cannot rule out an AM Herculis system in the Milky Way and that such a system can account for the variations seen in the light curve.

  1. Discovery of a cyclotron absorption line in the spectrum of the binary X-ray pulsar 4U 1538 - 52 observed by Ginga

    NASA Technical Reports Server (NTRS)

    Clark, George W.; Woo, Jonathan W.; Nagase, Fumiaki; Makishima, Kazuo; Sakao, Taro

    1990-01-01

    A cyclotron absorption line near 20 keV has been found in the spectrum of the massive eclipsing binary X-ray pulsar 4U 1538 - 52 in observations with the Ginga observatory. The line is detected throughout the 529 s pulse cycle with a variable equivalent width that has its maximum value during the smaller peak of the two-peak pulse profile. It is found that the profile of the pulse and the phase-dependence of the cyclotron line can be explained qualitatively by a pulsar model based on recent theoretical results on the properties of pencil beams emitted by accretion-heated slabs of magnetized plasma at the magnetic poles of a neutron star. The indicated field at the surface of the neutron star is 1.7 (1 + z) x 10 to the 12th G, where z is the gravitational redshift.

  2. Developing a bright 17 keV x-ray source for probing high-energy-density states of matter at high spatial resolution

    SciTech Connect

    Huntington, C. M.; Park, H.-S.; Maddox, B. R.; Barrios, M. A.; Benedetti, R.; Braun, D. G.; Landen, O. L.; Wehrenberg, C. E.; Remington, B. A.; Hohenberger, M.; Regan, S. P.

    2015-04-15

    A set of experiments were performed on the National Ignition Facility (NIF) to develop and optimize a bright, 17 keV x-ray backlighter probe using laser-irradiated Nb foils. High-resolution one-dimensional imaging was achieved using a 15 μm wide slit in a Ta substrate to aperture the Nb He{sub α} x-rays onto an open-aperture, time integrated camera. To optimize the x-ray source for imaging applications, the effect of laser pulse shape and spatial profile on the target was investigated. Two laser pulse shapes were used—a “prepulse” shape that included a 3 ns, low-intensity laser foot preceding the high-energy 2 ns square main laser drive, and a pulse without the laser foot. The laser spatial profile was varied by the use of continuous phase plates (CPPs) on a pair of shots compared to beams at best focus, without CPPs. A comprehensive set of common diagnostics allowed for a direct comparison of imaging resolution, total x-ray conversion efficiency, and x-ray spectrum between shots. The use of CPPs was seen to reduce the high-energy tail of the x-ray spectrum, whereas the laser pulse shape had little effect on the high-energy tail. The measured imaging resolution was comparably high for all combinations of laser parameters, but a higher x-ray flux was achieved without phase plates. This increased flux was the result of smaller laser spot sizes, which allowed us to arrange the laser focal spots from multiple beams and produce an x-ray source which was more localized behind the slit aperture. Our experiments are a first demonstration of point-projection geometry imaging at NIF at the energies (>10 keV) necessary for imaging denser, higher-Z targets than have previously been investigated.

  3. X-Ray Observations of the Supernova Remnant CTB 87 (G74.9+1.2): An Evolved Pulsar Wind Nebula

    NASA Astrophysics Data System (ADS)

    Matheson, H.; Safi-Harb, S.; Kothes, R.

    2013-09-01

    Pulsar wind nebulae (PWNe) studies with the Chandra X-Ray Observatory have opened a new window to address the physics of pulsar winds, zoom on their interaction with their hosting supernova remnant (SNR) and interstellar medium, and identify their powering engines. We here present a new 70 ks, plus an archived 18 ks, Chandra ACIS observation of the SNR CTB 87 (G74.9+1.2), classified as a PWN with unusual radio properties and poorly studied in X-rays. We find that the peak of the X-ray emission is clearly offset from the peak of the radio emission by ~100'' and located at the southeastern edge of the radio nebula. We detect a point source—the putative pulsar—at the peak of the X-ray emission and study its spectrum separately from the PWN. This new point source, CXOU J201609.2+371110, is surrounded by a compact nebula displaying a torus-like structure and possibly a jet. A more extended diffuse nebula is offset from the radio nebula, extending from the point source to the northwest for ~250''. The spectra of the point source, compact nebula, and extended diffuse nebula are all well described by a power-law model with a photon index of 1.1 (0.7-1.6), 1.2 (0.9-1.4), and 1.7 (1.5-1.8), respectively, for a column density N H = 1.38 (1.21-1.57) × 1022 cm-2 (90% confidence). The total X-ray luminosity of the source is ~1.6 × 1034 erg s-1 at an assumed distance of 6.1 kpc, with ~2% and 6% contribution from the point source and compact nebula, respectively. The observed properties suggest that CTB 87 is an evolved (~5-28 kyr) PWN, with the extended radio emission likely a "relic" PWN, as in Vela-X and G327.1-1.1. To date, however, there is no evidence for thermal X-ray emission from this SNR, and the SNR shell is still missing, suggesting expansion into a low-density medium (n_0 < 0.2 D^{-1/2}_{6.1} cm-3), likely caused by a stellar wind bubble blown by the progenitor star.

  4. Photometry of slow X-ray pulsars. II - The 13.9 minute period of X Persei

    NASA Technical Reports Server (NTRS)

    Margon, B.; Thorstensen, J. R.; Bowyer, S.; Mason, K. O.; White, N. E.; Sanford, P. W.; Parkes, G.; Stone, R. P. S.; Bailey, J.

    1977-01-01

    Results are presented for time-resolved narrow-band photometry and spectrophotometry of X Per performed in an unsuccessful effort to confirm previously reported observations of 13.9-min pulsations in the intensity of the He II line at 4686 A. No features that are synchronous with a 13.9-min period are found in the optical data, and simultaneous X-ray observations of 3U 0352+30 are reported which show that a strong 13.9-min X-ray modulation was present during the optical photometry. Some implications of the X-ray periodicities observed for X Per are considered.

  5. DEEP X-RAY OBSERVATIONS OF THE YOUNG HIGH-MAGNETIC-FIELD RADIO PULSAR J1119-6127 AND SUPERNOVA REMNANT G292.2-0.5

    SciTech Connect

    Ng, C.-Y.; Kaspi, V. M.; Ho, W. C. G.; Weltevrede, P.; Bogdanov, S.; Shannon, R.; Gonzalez, M. E.

    2012-12-10

    High-magnetic-field radio pulsars are important transition objects for understanding the connection between magnetars and conventional radio pulsars. We present a detailed study of the young radio pulsar J1119-6127, which has a characteristic age of 1900 yr and a spin-down-inferred magnetic field of 4.1 Multiplication-Sign 10{sup 13} G, and its associated supernova remnant G292.2-0.5, using deep XMM-Newton and Chandra X-ray Observatory exposures of over 120 ks from each telescope. The pulsar emission shows strong modulation below 2.5 keV with a single-peaked profile and a large pulsed fraction of 0.48 {+-} 0.12. Employing a magnetic, partially ionized hydrogen atmosphere model, we find that the observed pulse profile can be produced by a single hot spot of temperature 0.13 keV covering about one-third of the stellar surface, and we place an upper limit of 0.08 keV for an antipodal hot spot with the same area. The non-uniform surface temperature distribution could be the result of anisotropic heat conduction under a strong magnetic field, and a single-peaked profile seems common among high-B radio pulsars. For the associated remnant G292.2-0.5, its large diameter could be attributed to fast expansion in a low-density wind cavity, likely formed by a Wolf-Rayet progenitor, similar to two other high-B radio pulsars.

  6. Joint ROSAT-Compton GRO observations of the X-ray bright Seyfert galaxy IC 4329A

    NASA Technical Reports Server (NTRS)

    Madejski, G. M.; Zdziarski, A. A.; Turner, T. J.; Done, C.; Mushotzky, R. F.; Hartman, R. C.; Gehrels, N.; Connors, A.; Fabian, A. C.; Nandra, K.

    1995-01-01

    We report a simultaneous ROSAT and Gamma Ray Observatory (GRO) observation of the X-ray-bright Seyfert galaxy IC 4329A. For the GRO Oriented Scintillation Spectrometer Experiment (OSSE) detector, we also present the sum of the data for this and earlier observations. The overall spectrum is very well described as a power law with an energy spectral index of approximately 1 absorbed at low energies plus a strong Compton reflection component, typical for Seyfert 1 galaxies. The low energy absorption can be well described by a sum of a neutral column density of approximately 3 x 10(exp 21)sq cm, most of which is associated with the edge-on galactic disk of IC 4329A, plus an edgelike feature at approximately 700 eV; this feature implies either complex absorption (due to additional ionized material, or due to a partial covering), or a soft excess. The data only weakly constrain the presence of a high-energy cutoff in the underlying power law; they are compatible with an exponential cutoff at any energy E(sub c) approximately greater than 100 keV. The relative steepness of the OSSE data, with the power-law energy index of 1.6 +/- 0.2, can be accounted for entirely by the contribution of the high-energy tail of the reflection component when E(sub c) approaches infinity. (We find that the definite cutoff at an energy E(sub c)approximately 130 keV suggested in the recently published analysis of the OSSE data for this subject is due to a data reduction error.) Including nonsimultaneous Ginga observations with 2 keV fluxes matching well that of ROSAT gives us likely broad-band X-ray/gamma-ray spectra of the object from approximately 0.1 keV up to several hundred keV. We also report the ROSAT spectrum of the companion object to the Seyfert galaxy, the elliptical galaxy IC 4329.

  7. Gamma-ray emission from globular clusters. Shock high energy emission from the Be-Star/Pulsar System PSR 1259-63. Echoes in x-ray novae

    NASA Technical Reports Server (NTRS)

    Kaaret, Philip

    1995-01-01

    This grant covers work on the Compton phase 3 investigation, 'Shock High Energy Emission from the Be- Star/Pulsar System PSR 1259-63' and cycle 4 investigations 'Diffuse Gamma-Ray Emission at High Latitudes' and 'Echoes in X-Ray Novae'. Work under the investigation 'Diffuse Gamma-Ray Emission at High Latitudes' has lead to the publication of a paper (attached), describing gamma-ray emissivity variations in the northern galactic hemisphere. Using archival EGRET data, we have found a large irregular region of enhanced gamma-ray emissivity at energies greater 100 MeV. This is the first observation of local structure in the gamma-ray emissivity. Work under the investigation 'Echoes in X-Ray Novae' is proceeding with analysis of data from OSSE from the transient source GRO J1655-40. The outburst of this source last fall triggered this Target of Opportunity investigation. Preliminary spectral analysis shows emission out to 600 keV and a pure power low spectrum with no evidence of an exponential cutoff. Work is complete on the analysis of BATSE data from the Be-Star/Pulsar Sustem PSR 1259-63.

  8. The SAS-3 X-ray observatory

    NASA Technical Reports Server (NTRS)

    Mayer, W. F.

    1975-01-01

    The experiment section of the Small Astronomy Satellite-3 (SAS-3) launched in May 1975 is an X-ray observatory intended to determine the location of bright X-ray sources to an accuracy of 15 arc-seconds; to study a selected set of sources over a wide energy range, from 0.1 to 55 keV, while performing very specific measurements of the spectra and time variability of known X-ray sources; and to monitor the sky continuously for X-ray novae, flares, and unexpected phenomena. The improvements in SAS-3 spacecraft include a clock accurate to 1 part in 10 billion, rotatable solar panels, a programmable data format, and improved nutation damper, a delayed command system, improved magnetic trim and azimuth control systems. These improvements enable SAS-3 to perform three-axis stabilized observations of any point on the celestial sphere at any time of the year. The description of the experiment section and the SAS-3 operation is followed by a synopsis of scientific results obtained from the observations of X-ray sources, such as Vela X-1 (supposed to be an accreting neutron star), a transient source of hard X-ray (less than 36 min in duration) detected by SAS-3, the Crab Nebula pulsar, the Perseus cluster of galaxies, and the Vela supernova remnant.

  9. Discovery of a 168.8 s X-ray pulsar transiting in front of its Be companion star in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Maggi, P.; Haberl, F.; Sturm, R.; Pietsch, W.; Rau, A.; Greiner, J.; Udalski, A.; Sasaki, M.

    2013-06-01

    Aims: We report the discovery of LXP 169, a new high-mass X-ray binary in the Large Magellanic Cloud. The optical counterpart has been identified and appears to exhibit an eclipsing light curve. We performed follow-up observations to clarify the eclipsing nature of the system. Methods: Energy spectra and time series were extracted from two XMM-Newton observations to search for pulsations, characterise the spectrum, and measure spectral and timing changes. Long-term X-ray variability was studied using archival ROSAT data. The XMM-Newton positions were used to identify the optical counterpart. We obtained ultraviolet to near-infrared photometry to characterise the companion, along with its 4000 d I-band light curve and colour-magnitude variability. We observed LXP 169 with Swift at two predicted eclipse times. Results: We found a spin period of 168.8 s that did not change between two XMM-Newton observations. The X-ray spectrum, well characterised by a power law, was harder when the source was brighter. The X-ray flux of LXP 169 is found to be variable by a factor of at least 10. The counterpart is highly variable on short and long timescales, and its photometry is that of an early-type star with an ouflowing circumstellar disc producing a near-infrared excess. This classifies the source as a Be/X-ray binary pulsar. We observe a transit in the ultraviolet, thereby confirming that the companion star itself is eclipsed. We give an ephemeris for the transit of MJD 56 203.877-0.197+0.934 + N × (24.329±0.008). We propose and discuss the scenario where the matter captured from the companion's equatorial disc creates an extended region of high density around the neutron star, which partially eclipses the companion as the neutron star transits in front of it. Conclusions: This is most likely the first time the compact object in an X-ray binary is observed to eclipse its companion star. LXP 169 would be the first eclipsing Be/X-ray binary, and a wealth of important

  10. RXTE/ASM and Swift/BAT observations of spectral transitions in bright X-ray binaries in 2005-2010

    NASA Astrophysics Data System (ADS)

    Tang, Jing; Yu, Wen-Fei; Yan, Zhen

    2011-04-01

    We have studied X-ray spectral state transitions that can be seen in the long-term monitoring light curves of bright X-ray binaries from the All-Sky Monitor (ASM) onboard the Rossi X-ray Timing Explorer (RXTE) and the Burst Alert Telescope (BAT) onboard Swift during a period of five years from 2005 to 2010. We have applied a program to automatically identify the hard-to-soft (H-S) spectral state transitions in the bright X-ray binaries monitored by the ASM and the BAT. In total, we identified 128 hard-to-soft transitions, of which 59 occurred after 2008. We also determined the transition fluxes and the peak fluxes of the following soft states, updated the measurements of the luminosity corresponding to the H-S transition and the peak luminosity of the following soft state in about 30 bright persistent and transient black hole and neutron star binaries following Yu & Yan, and found the luminosity correlation and the luminosity range of spectral transitions in data between 2008-2010 are about the same as those derived from data before 2008. This further strengthens the idea that the luminosity at which the H-S spectral transition occurs in the Galactic X-ray binaries is determined by non-stationary accretion parameters such as the rate-of-change of the mass accretion rate rather than the mass accretion rate itself. The correlation is also found to hold in data of individual sources 4U 1608-52 and 4U 1636-53.

  11. Real-Time Observation of Laser Heated Metals with High Brightness Monochromatic X-Ray Techniques at Present and Their Future Prospects

    NASA Astrophysics Data System (ADS)

    Daido, H.; Shobu, T.; Yamada, T.; Yamashita, S.; Sugihara, K.; Nishimura, A.; Muramatsu, T.

    We present the x-ray techniques for characterizing laser heated metals for welding and cutting techniques. At present, with an undulator (70 keV) as well as bending magnet (30 keV) sources at SPring-8 as a probe source, CW 300 W Ytterbium fiber laser irradiates an Aluminum slab as a sample. Simultaneously the x-ray beam probes the sample for real time observation of a molten pool. We observe the convection indicated by the motion of tungsten based particles as a tracer in the molten pool. During the cooling phase, the molten metal is solidified with residual stresses which are affected by the heating and convection processes. In this experiment the time and space resolution are ˜milli-second and several tens of μm, respectively. On the other hand, microscopic short transient phenomena also play a significant role for the quality of a solidified material. For this purpose, we need high energy short pulse x-ray sources. We try to discuss on the capability and limitation of present x-ray sources and the prospect of an ultra high brightness x-ray source as a complementary source for full characterization of the laser heated and cooling processes of metals.

  12. DISCOVERY OF PSR J1227−4853: A TRANSITION FROM A LOW-MASS X-RAY BINARY TO A REDBACK MILLISECOND PULSAR

    SciTech Connect

    Roy, Jayanta; Bhattacharyya, Bhaswati; Stappers, Ben; Ray, Paul S.; Wolff, Michael; Wood, Kent S.; Chengalur, Jayaram N.; Deneva, Julia; Camilo, Fernando; Johnson, Tyrel J.; Hessels, Jason W. T.; Bassa, Cees G.; Keane, Evan F.; Ferrara, Elizabeth C.; Harding, Alice K.

    2015-02-10

    XSS J12270−4859 is an X-ray binary associated with the Fermi Large Area Telescope gamma-ray source 1FGL J1227.9−4852. In 2012 December, this source underwent a transition where the X-ray and optical luminosity dropped and the spectral signatures of an accretion disk disappeared. We report the discovery of a 1.69 millisecond pulsar (MSP), PSR J1227−4853, at a dispersion measure of 43.4 pc cm{sup −3} associated with this source, using the Giant Metrewave Radio Telescope (GMRT) at 607 MHz. This demonstrates that, post-transition, the system hosts an active radio MSP. This is the third system after PSR J1023+0038 and PSR J1824−2452I showing evidence of state switching between radio MSP and low-mass X-ray binary states. We report timing observations of PSR J1227−4853 with the GMRT and Parkes, which give a precise determination of the rotational and orbital parameters of the system. The companion mass measurement of 0.17–0.46 M{sub ⊙} suggests that this is a redback system. PSR J1227−4853 is eclipsed for about 40% of its orbit at 607 MHz with additional short-duration eclipses at all orbital phases. We also find that the pulsar is very energetic, with a spin-down luminosity of ∼10{sup 35} erg s{sup −1}. We report simultaneous imaging and timing observations with the GMRT, which suggests that eclipses are caused by absorption rather than dispersion smearing or scattering.

  13. High-brightness table-top hard X-ray source driven by sub-100-femtosecond mid-infrared pulses

    NASA Astrophysics Data System (ADS)

    Weisshaupt, Jannick; Juvé, Vincent; Holtz, Marcel; Ku, Shinan; Woerner, Michael; Elsaesser, Thomas; Ališauskas, Skirmantas; Pugžlys, Audrius; Baltuška, Andrius

    2014-12-01

    Ultrafast structural dynamics in the condensed phase represents a key topic of current physics, chemistry and materials science. Femtosecond hard X-ray pulses are important structure probes that have been applied in time-resolved X-ray absorption and diffraction. Optical pump/X-ray probe schemes with compact laser-driven table-top sources have allowed for tiny changes of diffracted intensity to be measured with X-ray photon statistics, which has set the ultimate sensitivity limit. To address the strong quest for a higher X-ray flux, here we present the first hard X-ray plasma source driven by intense mid-infrared sub-100-fs pulses at 3.9 μm. The comparably long optical period allows for accelerating electrons from the Cu target to very high kinetic energies and for generating a characteristic Kα flux of 109 photons per pulse, 25 times more than with our 800 nm driver. Theoretical simulations account for the experimental results in a wide range of driving fields and predict a further enhancement of X-ray flux.

  14. Discovery of Spatial and Spectral Structure in the X-Ray Emission from the Crab Nebula.

    PubMed

    Weisskopf; Hester; Tennant; Elsner; Schulz; Marshall; Karovska; Nichols; Swartz; Kolodziejczak; O'Dell

    2000-06-20

    The Chandra X-Ray Observatory observed the Crab Nebula and pulsar during orbital calibration. Zeroth-order images with the High-Energy Transmission Grating (HETG) readout by the Advanced CCD Imaging Spectrometer spectroscopy array (ACIS-S) show a striking richness of X-ray structure at a resolution comparable to that of the best ground-based visible-light observations. The HETG-ACIS-S images reveal, for the first time, an X-ray inner ring within the X-ray torus, the suggestion of a hollow-tube structure for the torus, and X-ray knots along the inner ring and (perhaps) along the inward extension of the X-ray jet. Although complicated by instrumental effects and the brightness of the Crab Nebula, the spectrometric analysis shows systematic variations of the X-ray spectrum throughout the nebula.

  15. Discovery of Spatial and Spectral Structure in the X-Ray Emission from the Crab Nebula

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; Hester, J. Jeff; Tennant, Allyn F.; Elsner, Ronald F.; Schulz, Norbert S.; Marshall, Herman L.; Karovska, Margarita; Nichols, Joy S.; Swartz, Douglas A.; Kolodziejczak, Jeffery J.

    2000-01-01

    The Chandra X-Ray Observatory observed the Crab Nebula and pulsar during orbital calibration. Zeroth-order images with the High-Energy Transmission Grating (HETG) readout by the Advanced Charge Coupled Devices (CCD) Imaging Spectrometer spectroscopy array (ACIS-S) show a striking richness of X-ray structure at a resolution comparable to that of the best ground-based visible-light observations. The HETG-ACIS-S images reveal, for the first time, an X-ray inner ring within the X-ray torus, the suggestion of a hollow-tube structure for the torus, and X-ray knots along the inner ring and (perhaps) along the inward extension of the X-ray jet. Although complicated by instrumental effects and the brightness of the Crab Nebula, the spectrometric analysis shows systematic variations of the X-ray spectrum throughout the nebula.

  16. Application of the Ghosh & Lamb relation to the spin-up/down behavior in the X-ray binary pulsar 4U 1626-67

    NASA Astrophysics Data System (ADS)

    Takagi, Toshihiro; Mihara, Tatehiro; Sugizaki, Mutsumi; Makishima, Kazuo; Morii, Mikio

    2016-06-01

    We analyzed continuous Monitor of All-sky X-ray Image/Gas Slit Camera (MAXI/GSC) data of the X-ray binary pulsar 4U 1626-67 from 2009 October to 2013 September, and determined the pulse period and the pulse-period derivative for every 60-d interval by the epoch folding method. The obtained periods are consistent with those provided by the Fermi/Gamma-ray Burst Monitor pulsar project. In all the 60-d intervals, the pulsar was observed to spin up, with the spin-up rate positively correlated with the 2-20 keV flux. We applied the accretion torque model proposed by Ghosh and Lamb (1979, ApJ, 234, 296) to the MAXI/GSC data, as well as the past data including both spin-up and spin-down phases. The "Ghosh & Lamb" relation was confirmed to successfully explain the observed relation between the spin-up/down rate and the flux. By comparing the model-predicted luminosity with the observed flux, the source distance was constrained as 5-13 kpc, which is consistent with that found by Chakrabarty (1998, ApJ, 492, 342). Conversely, if the source distance is assumed, the data can constrain the mass and radius of the neutron star, because the Ghosh & Lamb model depends on these parameters. We attempted this idea, and found that an assumed distance of, e.g., 10 kpc gives a mass in the range of 1.81-1.90 solar mass, and a radius of 11.4-11.5 km, although these results are still subject to considerable systematic uncertainties, other than distance.

  17. Generation of Bright, Spatially Coherent Soft X-Ray High Harmonics in a Hollow Waveguide Using Two-Color Synthesized Laser Pulses

    NASA Astrophysics Data System (ADS)

    Jin, Cheng; Stein, Gregory J.; Hong, Kyung-Han; Lin, C. D.

    2015-07-01

    We investigate the efficient generation of low-divergence high-order harmonics driven by waveform-optimized laser pulses in a gas-filled hollow waveguide. The drive waveform is obtained by synthesizing two-color laser pulses, optimized such that highest harmonic yields are emitted from each atom. Optimization of the gas pressure and waveguide configuration has enabled us to produce bright and spatially coherent harmonics extending from the extreme ultraviolet to soft x rays. Our study on the interplay among waveguide mode, atomic dispersion, and plasma effect uncovers how dynamic phase matching is accomplished and how an optimized waveform is maintained when optimal waveguide parameters (radius and length) and gas pressure are identified. Our analysis should help laboratory development in the generation of high-flux bright coherent soft x rays as tabletop light sources for applications.

  18. Pulse-phased spectroscopy of X-ray pulsars as a tool for the study of physical conditions and geometry of the binary system

    NASA Astrophysics Data System (ADS)

    Lutovinov, Alexander; Tsygankov, Sergey

    Results of the pulse phase-resolved spectroscopy of the transient X-ray pulsar V0332+53 are presented. We found a strong variation of the cyclotron resonance line parameters (energy and depth) along the pulse profile, that seems to connect with observations of regions with different magnetic fields under different angles during different pulse phases. Moreover, a variability of the iron line equivalent width on different time scales (pulse period, orbital period, outburst phase) was also revealed and searched for its correlation with the continuum flux, spectral parameters, etc. We discussed a possibility to use variations of spectral parameters during a pulse for the study of the emission geometry, spatial distribution and physical conditions of the matter around the compact object and in the binary system.

  19. The slow X-ray pulsar SXP 1062 and associated supernova remnant in the Wing of the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Oskinova, L. M.; Guerrero, M. A.; Hénault-Brunet, V.; Sun, W.; Chu, Y.-H.; Evans, C.; Gallagher, J. S.; Gruendl, R. A.; Reyes-Iturbide, J.

    2013-03-01

    SXP 1062 is an exceptional case of a young neutron star in a wind-fed high-mass X-ray binary associated with a supernova remnant. A unique combination of measured spin period, its derivative, luminosity and young age makes this source a key probe for the physics of accretion and neutron star evolution. Theoretical models proposed to explain the properties of SXP 1062 shall be tested with new data.

  20. The advanced light source at Lawrence Berkeley Laboratory—A high-brightness soft x-ray synchrotron-radiation facility

    NASA Astrophysics Data System (ADS)

    Schlachter, Alfred S.; Robinson, Arthur L.

    1990-12-01

    The Advanced Light Source, a third-generation national synchrotron-radiation facility now under construction at the Lawrence Berkeley Laboratory, is scheduled to begin serving qualified users across a broad spectrum of research areas in the spring of 1993. Based on a low-emittance electron storage ring optimized to operate at 1.5 GeV, the ALS will have 10 long straight sections available for insertion devices (undulators and wigglers) and 24 high-quality bend-magnet ports. The short pulse width (30-50 ns) will be ideal for time-resolved measurements. Undulators will generate high-brightness soft x-ray and ultraviolet (XUV) radiation from below 10 eV to above 2 keV. Wigglers and bend magnets will extend the spectrum by generating high fluxes of hard x-rays to photon energies above 10 keV. The ALS will support an extensive research program in which XUV radiation is used to study matter in all its varied gaseous, liquid, and solid forms. The high brightness will open new areas of research in the materials sciences, such as spatially resolved spectroscopy (spectromicroscopy). Biological applications will include x-ray microscopy with element-specific sensitivity in the water window of the spectrum where water is much more transparent than protein. The ALS will be an excellent research tool for atomic physics and chemistry because the high flux will allow measurements to be made with tenuous gas-phase targets.

  1. Precise Localization of the Soft Gamma Repeater SGR 1627-41 with Chandra and the Anomalous X-Ray Pulsar AXP 1E1841-045 with Chandra

    NASA Technical Reports Server (NTRS)

    Wachter, Stefanie; Patel, Sandeep K.; Kouveliotou, Chryssa; Bouchet, Patrice; Ozel, Feryal; Tennant, Allyn F.; Woods, Peter M.; Hurley, Kevin; Becker, Werner; Slane, Patrick

    2004-01-01

    We present precise localizations of AXP 1E184-045 and SGR 1627-41 with Chandra. We obtained new infrared observations of SGR 1627-41 and reanalyzed archival observations of AXP 1E1841-045 in order to refine their positions and search for infrared counterparts. A faint source is detected inside the error circle of AXP 1E1841-045. In the case of SGR 1627-41, several sources are located within the error radius of the X-ray position, and we discuss the likelihood of one of them being the counterpart. We compare the properties of our candidates to those of other known anomalous X-ray pulsar (AXP) and soft gamma repeater (SGR) counterparts. We find that the counterpart candidates for SGR 1627-41 and SGR 1806-20 would have to be intrinsically much brighter than AXPs in order to have counterparts detectable with the observational limits currently available for these sources. To confirm the reported counterpart of SGR 1806-20, we obtained new infrared observations during the 2003 July burst activation of the source. No brightening of the suggested counterpart is detected, implying that the counterpart of SGR 1806-20 remains yet to be identified.

  2. Time-dependent, x-ray spectral unfolds and brightness temperatures for intense Li + ion beam-driven hohlraums

    NASA Astrophysics Data System (ADS)

    Fehl, D. L.; Chandler, G. A.; Biggs, F.; Dukart, R. J.; Moats, A. R.; Leeper, R. J.

    1997-01-01

    X-ray-producing hohlraums are being studied as indirect drives for inertial confinement fusion targets. In a 1994 target series on the PBFAII accelerator, cylindrical hohlraum targets were heated by an intense Li+ ion beam and viewed by an array of 13 time-resolved, filtered x-ray detectors (XRDs). The unfold operator (UFO) code and its suite of auxiliary functions were used extensively in obtaining time-resolved x-ray spectra and radiation temperatures from this diagnostic. The UFO was also used to obtain fitted response functions from calibration data, to simulate data from blackbody x-ray spectra of interest, to determine the suitability of various unfolding parameters (e.g., energy domain, energy partition, smoothing conditions, and basis functions), to interpolate the XRD signal traces, and to unfold experimental data. The simulation capabilities of the code were useful in understanding an anomalous feature in the unfolded spectra at low photon energies (⩽100 eV). Uncertainties in the differential and energy-integrated unfolded spectra were estimated from uncertainties in the data. The time-history of the radiation temperature agreed well with independent calculations of the wall temperature in the hohlraum.

  3. Bright end of the luminosity function of high-mass X-ray binaries: contributions of hard, soft and supersoft sources

    NASA Astrophysics Data System (ADS)

    Sazonov, S.; Khabibullin, I.

    2017-04-01

    Using a spectral analysis of bright Chandra X-ray sources located in 27 nearby galaxies and maps of star-formation rate (SFR) and interstellar medium surface densities for these galaxies, we constructed the intrinsic X-ray luminosity function (XLF) of luminous high-mass X-ray binaries (HMXBs), taking into account absorption effects and the diversity of HMXB spectra. The XLF per unit SFR can be described by a power-law dN/dlog LX,unabs ≈ 2.0(LX,unabs/1039 erg s-1)-0.6 (M⊙ yr-1)-1 from LX,unabs = 1038 to 1040.5 erg s-1, where LX,unabs is the unabsorbed luminosity at 0.25-8 keV. The intrinsic number of luminous HMXBs per unit SFR is a factor of ∼2.3 larger than the observed number reported before. The intrinsic XLF is composed of hard, soft and supersoft sources (defined here as those with the 0.25-2 keV to 0.25-8 keV flux ratio of <0.6, 0.6-0.95 and >0.95, respectively) in ∼ 2:1:1 proportion. We also constructed the intrinsic HMXB XLF in the soft X-ray band (0.25-2 keV). Here, the numbers of hard, soft and supersoft sources prove to be nearly equal. The cumulative present-day 0.25-2 keV emissivity of HMXBs with luminosities between 1038 and 1040.5 erg s-1 is ∼5 × 1039 erg s-1(M⊙ yr-1)-1, which may be relevant for studying the X-ray preheating of the early Universe.

  4. Search for TeV Gamma-ray Emission from GRB 100621A, an extremely bright GRB in X-rays, with H.E.S.S.

    NASA Astrophysics Data System (ADS)

    H.E.S.S. Collaboration; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Angüner, E.; Anton, G.; Balenderan, S.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker Tjus, J.; Bernlöhr, K.; Birsin, E.; Bissaldi, E.; Biteau, J.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Chalme-Calvet, R.; Chaves, R. C. G.; Cheesebrough, A.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Conrad, J.; Couturier, C.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; O'C. Drury, L.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Espigat, P.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giebels, B.; Glicenstein, J. F.; Grondin, M.-H.; Grudzińska, M.; Häffner, S.; Hahn, J.; Harris, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Janiak, M.; Jankowsky, F.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Khélifi, B.; Kieffer, M.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lefaucheur, J.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Lennarz, D.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Méhault, J.; Menzler, U.; Meyer, M.; Moderski, R.; Mohamed, M.; Moulin, E.; Murach, T.; Naumann, C. L.; de Naurois, M.; Niemiec, J.; Nolan, S. J.; Oakes, L.; O'Brien, P. T.; Ohm, S.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perez, J.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Raue, M.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Rob, L.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sol, H.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Szostek, A.; Tam, P. H. T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Valerius, K.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorster, M.; Wagner, S. J.; Wagner, P.; Ward, M.; Weidinger, M.; Weitzel, Q.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Zacharias, M.; Zajczyk, A.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.

    2014-05-01

    The long gamma-ray burst (GRB) 100621A, at the time the brightest X-ray transient ever detected by Swift-XRT in the 0.3-10 keV range, has been observed with the H.E.S.S. imaging air Cherenkov telescope array, sensitive to gamma radiation in the very-high-energy (VHE, >100 GeV) regime. Due to its relatively small redshift of z ~ 0.5, the favourable position in the southern sky and the relatively short follow-up time (<700 s after the satellite trigger) of the H.E.S.S. observations, this GRB could be within the sensitivity reach of the H.E.S.S. instrument. The analysis of the H.E.S.S. data shows no indication of emission and yields an integral flux upper limit above ~380 GeV of 4.2 × 10-12 cm-2 s-1 (95% confidence level), assuming a simple Band function extension model. A comparison to a spectral-temporal model, normalised to the prompt flux at sub-MeV energies, constraints the existence of a temporally extended and strong additional hard power law, as has been observed in the other bright X-ray GRB 130427A. A comparison between the H.E.S.S. upper limit and the contemporaneous energy output in X-rays constrains the ratio between the X-ray and VHE gamma-ray fluxes to be greater than 0.4. This value is an important quantity for modelling the afterglow and can constrain leptonic emission scenarios, where leptons are responsible for the X-ray emission and might produce VHE gamma rays.

  5. A complete sample of bright Swift Gamma-ray bursts: X-ray afterglow luminosity and its correlation with the prompt emission

    NASA Astrophysics Data System (ADS)

    D'Avanzo, P.; Salvaterra, R.; Sbarufatti, B.; Nava, L.; Melandri, A.; Bernardini, M. G.; Campana, S.; Covino, S.; Fugazza, D.; Ghirlanda, G.; Ghisellini, G.; Parola, V. La; Perri, M.; Vergani, S. D.; Tagliaferri, G.

    2012-09-01

    We investigate whether there is any correlation between the X-ray afterglow luminosity and the prompt emission properties of a carefully selected sub-sample of bright Swift long Gamma-ray bursts (GRBs) nearly complete in redshift (˜90 per cent). Being free of selection effects (except flux limit), this sample provides the possibility to compare the rest frame physical properties of GRB prompt and afterglow emission in an unbiased way. The afterglow X-ray luminosities are computed at four different rest frame times (5 min, 1 h, 11 h and 24 h after trigger) and compared with the prompt emission isotropic energy Eiso, the isotropic peak luminosity Liso and the rest frame peak energy Epeak. We find that the rest frame afterglow X-ray luminosity do correlate with these prompt emission quantities, but the significance of each correlation decreases over time. This result is in agreement with the idea that the GRB X-ray light curve can be described as the result of a combination of different components whose relative contribution and weight change with time, with the prompt and afterglow emission dominating at early and late time, respectively. In particular, we found evidence that the plateau and the shallow decay phase often observed in GRB X-ray light curves are powered by activity from the central engine. The existence of the LX - Eiso correlation at late times (trf≥11h) suggests a similar radiative efficiency among different bursts with on average about 6 per cent of the total kinetic energy powering the prompt emission.

  6. High-Energy X-Ray Imaging of the Pulsar Wind Nebula MSH 15-52: Constraints on Particle Acceleration and Transport

    NASA Technical Reports Server (NTRS)

    An, Hongjun; Madsen, Kristin K.; Reynolds, Stephen P.; Kaspi, Victoria M.; Harrison, Fiona A.; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Fryer, Chris L.; Grefenstette, Brian W.; Zhang, William W.

    2014-01-01

    We present the first images of the pulsar wind nebula (PWN) MSH 15-52 in the hard X-ray band (8 keV), as measured with the Nuclear Spectroscopic Telescope Array (NuSTAR). Overall, the morphology of the PWN as measured by NuSTAR in the 3-7 keV band is similar to that seen in Chandra high-resolution imaging. However, the spatial extent decreases with energy, which we attribute to synchrotron energy losses as the particles move away from the shock. The hard-band maps show a relative deficit of counts in the northern region toward the RCW 89 thermal remnant, with significant asymmetry. We find that the integrated PWN spectra measured with NuSTAR and Chandra suggest that there is a spectral break at 6 keV, which may be explained by a break in the synchrotron emitting electron distribution at approximately 200 TeV and/or imperfect cross calibration. We also measure spatially resolved spectra, showing that the spectrum of the PWN softens away from the central pulsar B1509-58, and that there exists a roughly sinusoidal variation of spectral hardness in the azimuthal direction. We discuss the results using particle flow models. We find non-monotonic structure in the variation with distance of spectral hardness within 50 of the pulsar moving in the jet direction, which may imply particle and magnetic-field compression by magnetic hoop stress as previously suggested for this source. We also present two-dimensional maps of spectral parameters and find an interesting shell-like structure in the N(sub H) map. We discuss possible origins of the shell-like structure and their implications.

  7. High-energy X-Ray Imaging of the Pulsar Wind Nebula MSH 15-52: Constraints on Particle Acceleration and Transport

    NASA Astrophysics Data System (ADS)

    An, Hongjun; Madsen, Kristin K.; Reynolds, Stephen P.; Kaspi, Victoria M.; Harrison, Fiona A.; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Fryer, Chris L.; Grefenstette, Brian W.; Hailey, Charles J.; Mori, Kaya; Stern, Daniel; Zhang, William W.

    2014-10-01

    We present the first images of the pulsar wind nebula (PWN) MSH 15-52 in the hard X-ray band (gsim8 keV), as measured with the Nuclear Spectroscopic Telescope Array (NuSTAR). Overall, the morphology of the PWN as measured by NuSTAR in the 3-7 keV band is similar to that seen in Chandra high-resolution imaging. However, the spatial extent decreases with energy, which we attribute to synchrotron energy losses as the particles move away from the shock. The hard-band maps show a relative deficit of counts in the northern region toward the RCW 89 thermal remnant, with significant asymmetry. We find that the integrated PWN spectra measured with NuSTAR and Chandra suggest that there is a spectral break at 6 keV, which may be explained by a break in the synchrotron-emitting electron distribution at ~200 TeV and/or imperfect cross calibration. We also measure spatially resolved spectra, showing that the spectrum of the PWN softens away from the central pulsar B1509-58, and that there exists a roughly sinusoidal variation of spectral hardness in the azimuthal direction. We discuss the results using particle flow models. We find non-monotonic structure in the variation with distance of spectral hardness within 50'' of the pulsar moving in the jet direction, which may imply particle and magnetic-field compression by magnetic hoop stress as previously suggested for this source. We also present two-dimensional maps of spectral parameters and find an interesting shell-like structure in the N H map. We discuss possible origins of the shell-like structure and their implications.

  8. High-energy X-ray imaging of the pulsar wind nebula MSH 15–52: constraints on particle acceleration and transport

    SciTech Connect

    An, Hongjun; Kaspi, Victoria M.; Madsen, Kristin K.; Harrison, Fiona A.; Grefenstette, Brian W.; Reynolds, Stephen P.; Boggs, Steven E.; Craig, William W.; Christensen, Finn E.; Fryer, Chris L.; Hailey, Charles J.; Mori, Kaya; Stern, Daniel; Zhang, William W.

    2014-10-01

    We present the first images of the pulsar wind nebula (PWN) MSH 15–52 in the hard X-ray band (≳8 keV), as measured with the Nuclear Spectroscopic Telescope Array (NuSTAR). Overall, the morphology of the PWN as measured by NuSTAR in the 3-7 keV band is similar to that seen in Chandra high-resolution imaging. However, the spatial extent decreases with energy, which we attribute to synchrotron energy losses as the particles move away from the shock. The hard-band maps show a relative deficit of counts in the northern region toward the RCW 89 thermal remnant, with significant asymmetry. We find that the integrated PWN spectra measured with NuSTAR and Chandra suggest that there is a spectral break at 6 keV, which may be explained by a break in the synchrotron-emitting electron distribution at ∼200 TeV and/or imperfect cross calibration. We also measure spatially resolved spectra, showing that the spectrum of the PWN softens away from the central pulsar B1509–58, and that there exists a roughly sinusoidal variation of spectral hardness in the azimuthal direction. We discuss the results using particle flow models. We find non-monotonic structure in the variation with distance of spectral hardness within 50'' of the pulsar moving in the jet direction, which may imply particle and magnetic-field compression by magnetic hoop stress as previously suggested for this source. We also present two-dimensional maps of spectral parameters and find an interesting shell-like structure in the N {sub H} map. We discuss possible origins of the shell-like structure and their implications.

  9. Galaxies in X-ray Selected Clusters and Groups in Dark Energy Survey Data: Stellar Mass Growth of Bright Central Galaxies Since z~1.2

    DOE PAGES

    Zhang, Y.; Miller, C.; McKay, T.; ...

    2016-01-10

    Using the science verification data of the Dark Energy Survey for a new sample of 106 X-ray selected clusters and groups, we study the stellar mass growth of bright central galaxies (BCGs) since redshift z ~ 1.2. Compared with the expectation in a semi-analytical model applied to the Millennium Simulation, the observed BCGs become under-massive/under-luminous with decreasing redshift. We incorporate the uncertainties associated with cluster mass, redshift, and BCG stellar mass measurements into analysis of a redshift-dependent BCG-cluster mass relation.

  10. SU Lyncis, a Hard X-Ray Bright M Giant: Clues Point to a Large Hidden Population of Symbiotic Stars

    NASA Technical Reports Server (NTRS)

    Mukai, K.; Luna, G. J. M.; Cusumano, G.; Segreto, A.; Munari, U.; Sokoloski, J. L.; Lucy, A. B.; Nelson, T.; Nunez, N. E.

    2016-01-01

    Symbiotic star surveys have traditionally relied almost exclusively on low resolution optical spectroscopy. However, we can obtain amore reliable estimate of their total Galactic population by using all available signatures of the symbiotic phenomenon. Here we report the discovery of a hard X-ray source, 4PBC J0642.9+5528, in the Swift hard X-ray all-sky survey, and identify it with a poorly studied red giant, SU Lyn, using pointed Swift observations and ground-based optical spectroscopy. The X-ray spectrum, the optical to UV spectrum, and the rapid UV variability of SU Lyn are all consistent with our interpretation that it is a symbiotic star containing an accreting white dwarf. The symbiotic nature of SU Lyn went unnoticed until now, because it does not exhibit emission lines strong enough to be obvious in low resolution spectra. We argue that symbiotic stars without shell-burning have weak emission lines, and that the current lists of symbiotic stars are biased in favour of shell-burning systems. We conclude that the true population of symbiotic stars has been underestimated, potentially by a large factor.

  11. SU Lyncis, a hard X-ray bright M giant: clues point to a large hidden population of symbiotic stars

    NASA Astrophysics Data System (ADS)

    Mukai, K.; Luna, G. J. M.; Cusumano, G.; Segreto, A.; Munari, U.; Sokoloski, J. L.; Lucy, A. B.; Nelson, T.; Nuñez, N. E.

    2016-09-01

    Symbiotic star surveys have traditionally relied almost exclusively on low resolution optical spectroscopy. However, we can obtain a more reliable estimate of their total Galactic population by using all available signatures of the symbiotic phenomenon. Here we report the discovery of a hard X-ray source, 4PBC J0642.9+5528, in the Swift hard X-ray all-sky survey, and identify it with a poorly studied red giant, SU Lyn, using pointed Swift observations and ground-based optical spectroscopy. The X-ray spectrum, the optical to UV spectrum, and the rapid UV variability of SU Lyn are all consistent with our interpretation that it is a symbiotic star containing an accreting white dwarf. The symbiotic nature of SU Lyn went unnoticed until now, because it does not exhibit emission lines strong enough to be obvious in low resolution spectra. We argue that symbiotic stars without shell-burning have weak emission lines, and that the current lists of symbiotic stars are biased in favour of shell-burning systems. We conclude that the true population of symbiotic stars has been underestimated, potentially by a large factor.

  12. X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Lewin, Walter H. G.; van Paradijs, Jan; van den Heuvel, Edward Peter Jacobus

    1997-01-01

    Preface; 1. The properties of X-ray binaries, N. E. White, F. Nagase and A. N. Parmar; 2. Optical and ultraviolet observations of X-ray binaries J. van Paradijs and J. E. McClintock; 3. Black-hole binaries Y. Tanaka and W. H. G. Lewin; 4. X-ray bursts Walter H. G. Lewin, Jan Van Paradijs and Ronald E. Taam; 5. Millisecond pulsars D. Bhattacharya; 6. Rapid aperiodic variability in binaries M. van der Klis; 7. Radio properties of X-ray binaries R. M. Hjellming and X. Han; 8. Cataclysmic variable stars France Anne-Dominic Córdova; 9. Normal galaxies and their X-ray binary populations G. Fabbiano; 10. Accretion in close binaries Andrew King; 11. Formation and evolution of neutron stars and black holes in binaries F. Verbunt and E. P. J. van den Heuvel; 12. The magnetic fields of neutron stars and their evolution D. Bhattacharya and G. Srinivasan; 13. Cosmic gamma-ray bursts K. Hurley; 14. A catalogue of X-ray binaries Jan van Paradijs; 15. A compilation of cataclysmic binaries with known or suspected orbital periods Hans Ritter and Ulrich Kolb; References; Index.

  13. Research and development of an electron beam focusing system for a high-brightness X-ray generator.

    PubMed

    Sakai, Takeshi; Ohsawa, Satoshi; Sakabe, Noriyoshi; Sugimura, Takashi; Ikeda, Mitsuo

    2011-01-01

    A new type of rotating anticathode X-ray generator, where an electron beam of up to 60 keV irradiates the inner surface of a U-shaped Cu anticathode, has achieved a beam brilliance of 130 kW mm(-2) (at 2.3 kW). A higher-flux electron beam is expected from simulation by optimizing the geometry of a combined-function-type magnet instead of the fringing field of the bending magnet. In order to minimize the size of the X-ray source the electron beam has been focused over a short distance by a new combined-function bending magnet, whose geometrical shape was determined by simulation using the Opera-3D, General Particle Tracer and CST-STUDIO codes. The result of the simulation clearly shows that the role of combined functions in both the bending and the steering magnets is important for focusing the beam to a small size. FWHM sizes of the beam are predicted by simulation to be 0.45 mm (horizontal) and 0.05 mm (vertical) for a 120 keV/75 mA beam, of which the effective brilliance is about 500 kW mm(-2) on the supposition of a two-dimensional Gaussian distribution. High-power tests have begun using a high-voltage 120 kV/75 mA power supply for the X-ray generator instead of 60 kV/100 mA. The beam focus size on the target will be verified in the experiments.

  14. RXTE Monitoring of the Anomalous X-ray Pulsar 1E 1048.1-5937: Long-Term Variability and the 2007 March Event

    NASA Technical Reports Server (NTRS)

    Dib, Rim; Kaspi, Victoria M.; Gavriil, Fotis P.

    2009-01-01

    After three years of no unusual activity, Anomalous X-ray Pulsar 1E 1048.1-5937 reactivated in 2007 March. We report on the detection of a large glitch (deltav/v = 1.63(2) x 10(exp -5)) on 2007 March 26 (MJD 54185.9), contemporaneous with the onset of a pulsed-flux flare, the third flare observed from this source in 10 years of monitoring with the Rossi X-ray Timing Explorer. Additionally, we report on a detailed study of the evolution of the timing properties, the pulsed flux, and the pulse profile of this source as measured by RXTE from 1996 July to 2008 January. In our timing study, we attempted phase coherent timing of all available observations. We show that in 2001, a timing anomaly of uncertain nature occurred near the rise of the first pulsed flux flare; we show that a likely glitch (deltav/v = 2.91(9) x 10(exp -6)) occurred in 2002, near the rise of the second flare, and we present a detailed description of the variations in the spin-down. In our pulsed flux study, we compare the decays of the three flares and discuss changes in the hardness ratio. In our pulse profile study, we show that the profile exhibited large variations near the peak of the first two flares, and several small short-term profile variations during the most recent flare. Finally, we report on the discovery of a small burst 27 days after the peak of the last flare, the fourth burst discovered from this source. We discuss the relationships between the observed properties in the framework of the magnetar model.

  15. Geriatric Pulsar Still Kicking

    NASA Astrophysics Data System (ADS)

    2009-02-01

    's clearly fading as it ages, it is still more than holding its own with the younger generations." It's likely that two forms of X-ray emission are produced in J0108: emission from particles spiraling around magnetic fields, and emission from heated areas around the neutron star's magnetic poles. Measuring the temperature and size of these heated regions can provide valuable insight into the extraordinary properties of the neutron star surface and the process by which charged particles are accelerated by the pulsar. The younger, bright pulsars commonly detected by radio and X-ray telescopes are not representative of the full population of objects, so observing objects like J0108 helps astronomers see a more complete range of behavior. At its advanced age, J0108 is close to the so-called "pulsar death line," where its pulsed radiation is expected to switch off and it will become much harder, if not impossible, to observe. "We can now explore the properties of this pulsar in a regime where no other pulsar has been detected outside the radio range," said co-author Oleg Kargaltsev of the University of Florida. "To understand the properties of 'dying pulsars,' it is important to study their radiation in X-rays. Our finding that a very old pulsar can be such an efficient X-ray emitter gives us hope to discover new nearby pulsars of this class via their X-ray emission." The Chandra observations were reported by Pavlov and colleagues in the January 20, 2009, issue of The Astrophysical Journal. However, the extreme nature of J0108 was not fully apparent until a new distance to it was reported on February 6 in the PhD thesis of Adam Deller from Swinburne University in Australia. The new distance is both larger and more accurate than the distance used in the Chandra paper, showing that J0108 was brighter in X-rays than previously thought. "Suddenly this pulsar became the record holder for its ability to make X-rays," said Pavlov, "and our result became even more interesting without us

  16. X ray timing observations and gravitational physics

    NASA Technical Reports Server (NTRS)

    Michelson, Peter F.; Wood, Kent S.

    1989-01-01

    Photon-rich x ray observations on bright compact galactic sources will make it possible to detect many fast processes that may occur in these systems on millisecond and submillisecond timescales. Many of these processes are of direct relevance to gravitational physics because they arise in regions of strong gravity near neutron stars and black holes where the dynamical timescales for compact objects of stellar mass are milliseconds. To date, such observations have been limited by the detector area and telemetry rates available. However, instruments such as the proposed X ray Large Array (XLA) would achieve collecting areas of about 100 sq m. This instrument has been described elsewhere (Wood and Michelson 1988) and was the subject of a recent prephase A feasibility study at Marshall Space Flight Center. Observations with an XLA class instrument will directly impact five primary areas of astrophysics research: the attempt to detect gravitational radiation, the study of black holes, the physics of mass accretion onto compact objects, the structure of neutron stars and nuclear matter, and the characterization of dark matter in the universe. Those observations are discussed that are most directly relevant to gravitational physics: the search for millisecond x ray pulsars that are potential sources of continuous gravitational radiation; and the use of x ray timing observations to probe the physical conditions in extreme relativistic regions of space near black holes, both stellar-sized and supermassive.

  17. Caliste-SO, a CdTe based spectrometer for bright solar event observations in hard X-rays

    NASA Astrophysics Data System (ADS)

    Meuris, A.; Limousin, O.; Gevin, O.; Blondel, C.; Martignac, J.; Vassal, M.-C.; Soufflet, F.; Fiant, N.; Bednarzik, M.; Stutz, S.; Grimm, O.; Commichau, V.

    2015-07-01

    Caliste-SO is a CdTe hybrid detector designed to be used as a spectrometer for a hard X-ray Fourier telescope. The imaging technique was implemented in the Yohkoh satellite in 1991 and the RHESSI satellite in 2002 to achieve arc-second angular resolution images of solar flares with spectroscopic capabilities. The next generation of such instruments will be the Spectrometer Telescope Imaging X-rays (STIX) on-board the Solar Orbiter mission adopted by the European Space Agency in 2011 for launch in 2017. The design and performance of Caliste-SO allows both high spectral resolution and high count rate measurements from 4 to 150 keV with limited demands on spacecraft resources such as mass, power and volume (critical for interplanetary missions). The paper reports on the flight production of the Caliste-SO devices for STIX, describing the test facilities built-up in Switzerland and France. It illustrates some results obtained with the first production samples that will be mounted in the STIX engineering model.

  18. EXOSAT guest observer program. Binary parameters of the X-ray Pulsar 4U1626-67

    NASA Technical Reports Server (NTRS)

    Mcclintock, Jeffrey E.

    1987-01-01

    The pulsing X-ray source 4U1626-67 is an accreting neutron star in a binary system with a very low mass companion. The source was observed with EXOSAT continuously for 23 hr on 30 to 31 March 1986 UT. These observations allowed the setting of a stringent upper limit on the projected semimajor axis of the orbit of the neutron star of approx. 10 light msec for the 2485-s orbital period found by Middleditch et al., and a limit of approx. 13 light msec for any other plausible orbital period. The corresponding upper limit on the mass function for the 2485-s orbital period is 1.3 x 0.000001 solar mass. It was concluded that if the orbital inclination angle, i, equals 90 deg, then the optical companion star has a mass greater than 0.02 solar mass. However, it was found that a companion star mass greater than 0.06 solar mass is required if gravitational radiation is responsible for driving the mass transfer in this system. Only for i less than 16 deg can a companion star mass this large be accommodated by the limits set on the orbital amplitude. Also presented are results on the flaring activity in 4U1626-67 on time scales of approx. 1000 s, the energy dependent pulse profiles, and the pulse period history over the past decade.

  19. Neutron star crustal plate tectonics. I. Magnetic dipole evolution in millisecond pulsars and low-mass X-ray binaries

    SciTech Connect

    Ruderman, M. )

    1991-01-01

    Crust lattices in spinning-up or spinning-down neutron stars have growing shear stresses caused by neutron superfluid vortex lines pinned to lattice nuclei. For the most rapidly spinning stars, this stress will break and move the crust before vortex unpinning occurs. In spinning-down neutron stars, crustal plates will move an equatorial subduction zone in which the plates are forced into the stellar core below the crust. The opposite plate motion occurs in spinning-up stars. Magnetic fields which pass through the crust or have sources in it move with the crust. Spun-up neutron stars in accreting low-mass X-ray binaries LMXBs should then have almost axially symmetric magnetic fields. Spun-down ones with very weak magnetic fields should have external magnetic fields which enter and leave the neutron star surface only near its equator. The lowest field millisecond radiopulsars seem to be orthogonal rotators implying that they have not previously been spun-up in LMXBs but are neutron stars initially formed with periods near 0.001 s that subsequently spin down to their present periods. Accretion-induced white dwarf collapse is then the most plausible genesis for them. 29 refs.

  20. RXTE Observations of Anomalous X-ray Pulsar 1E 1547.0-5408 During and After its 2008 and 2009 Outbursts

    NASA Technical Reports Server (NTRS)

    Dib, Rim; Kaspi, Victoria M.; Scholz, Paul; Gavriil, Fotis P.

    2012-01-01

    We present the results of Rossi X-ray Timing Explorer (RXTE) and Swift monitoring observations of the magnetar 1E 1547.0-5408 following the pulsar's radiative outbursts in 2008 October and 2009 January. We report on a study of the evolution of the timing properties and the pulsed flux from 2008 October 4 through 2009 December 26. In our timing study, a phase-coherent analysis shows that for the first 29 days following the 2008 outburst, there was a very fast increase in the magnitude of the rotational frequency derivative upsilon-dot, such that upsilon-dot-dot was a factor of 60 larger than that reported in data from 2007. This upsilon-dot magnitude increase occurred in concert with the decay of the pulsed flux following the start of the 2008 event. Following the 2009 outburst, for the first 23 days, upsilon-dot-dot was consistent with zero, and upsilon-dot had returned to close to its 2007 value. In contrast to the 2008 event, the 2009 outburst showed a major increase in persistent flux, relatively little change in the pulsed flux, and sudden significant spectral hardening approx 15 days after the outburst. We show that, excluding the month following each of the outbursts, and because of the noise and the sparsity in the data, multiple plausible timing solutions fit the pulsar's frequency behavior. We note similarities in the behavior of 1E 1547.0-5408 following the 2008 outburst to that seen in the AXP 1E 1048.1-5937 following its 2001-2002 outburst and discuss this in terms of the magnetar model.

  1. IMPACT OF SUPERNOVA AND COSMIC-RAY DRIVING ON THE SURFACE BRIGHTNESS OF THE GALACTIC HALO IN SOFT X-RAYS

    SciTech Connect

    Peters, Thomas; Girichidis, Philipp; Gatto, Andrea; Naab, Thorsten; Walch, Stefanie; Wünsch, Richard; Glover, Simon C. O.; Klessen, Ralf S.; Baczynski, Christian; Clark, Paul C.

    2015-11-10

    The halo of the Milky Way contains a hot plasma with a surface brightness in soft X-rays of the order 10{sup −12} erg cm{sup −2} s{sup −1} deg{sup −2}. The origin of this gas is unclear, but so far numerical models of galactic star formation have failed to reproduce such a large surface brightness by several orders of magnitude. In this paper, we analyze simulations of the turbulent, magnetized, multi-phase interstellar medium including thermal feedback by supernova explosions as well as cosmic-ray feedback. We include a time-dependent chemical network, self-shielding by gas and dust, and self-gravity. Pure thermal feedback alone is sufficient to produce the observed surface brightness, although it is very sensitive to the supernova rate. Cosmic rays suppress this sensitivity and reduce the surface brightness because they drive cooler outflows. Self-gravity has by far the largest effect because it accumulates the diffuse gas in the disk in dense clumps and filaments, so that supernovae exploding in voids can eject a large amount of hot gas into the halo. This can boost the surface brightness by several orders of magnitude. Although our simulations do not reach a steady state, all simulations produce surface brightness values of the same order of magnitude as the observations, with the exact value depending sensitively on the simulation parameters. We conclude that star formation feedback alone is sufficient to explain the origin of the hot halo gas, but measurements of the surface brightness alone do not provide useful diagnostics for the study of galactic star formation.

  2. The Radio Emission, X-Ray Emission, and Hydrodynamics of G328.4+0.2: A Comprehensive Analysis of a Luminous Pulsar Wind Nebula, Its Neutron Star, and the Progenitor Supernova Explosion

    NASA Astrophysics Data System (ADS)

    Gelfand, Joseph D.; Gaensler, B. M.; Slane, Patrick O.; Patnaude, Daniel J.; Hughes, John P.; Camilo, Fernando

    2007-07-01

    We present new observational and modeling results obtained for the Galactic nonthermal radio source G328.4+0.2. Using X-ray data obtained by XMM-Newton, we confirm that its X-ray emission is heavily absorbed, has a spectrum best fitted by a power-law model of photon index Γ=2 with no evidence for a thermal component, comes from a region significantly smaller than the radio emission, and that the X-ray and radio emissions are significantly offset from each other. We also present the results of a new high-resolution (7") 1.4 GHz image of G328.4+0.2 obtained using ATCA and a deep search for radio pulsations using the Parkes radio telescope. By comparing this 1.4 GHz image with a similar resolution image at 4.8 GHz, we find that the radio emission has a flat spectrum (α~0 Sν~να). Additionally, we are able to limit the pseudoluminosity of any pulsar to L1400≡S1400400d2<~30 mJy kpc2 for the central radio pulsar, assuming a distance of 17 kpc. In light of these observational results, we test whether G328.4+0.2 is a pulsar wind nebula or an SNR that contains a large pulsar wind nebula using a simple hydrodynamic model for the evolution of a pulsar wind nebula inside an SNR. As a result of this analysis, we conclude that G328.4+0.2 is a young (<~10,000 years old) pulsar wind nebula formed by a low magnetic field (<~1012 G) neutron star born spinning rapidly (<~10 ms) expanding into an undetected SNR formed by an energetic (>~1051 ergs), low ejecta mass (Mej<~5 Msolar) supernova explosion that occurred in a low-density (n~0.03 cm-3) environment.

  3. Radio and X-ray observations of the gamma-ray bright quasar PKS 0528+134

    NASA Technical Reports Server (NTRS)

    Zhang, Yun Fei; Marscher, Alan P.; Aller, Hugh D.; Aller, Margo F.; Terasranta, Harri; Valtaoja, Esko

    1994-01-01

    We present a study of the z = 2.07 quasar PKS 0528+134, which has been detected as an extraordinarily luminous gamma-ray source. Its radio properties are highly variable in both total and polarized flux density. Milliarcsecond-scale maps from global very long base interferometry (VLBI) experiments, an X-ray spectrum from ROSAT Position Sensitive Proportional Counter (PSPC) observations, and light curves in total flux density and polarization are used to investigate the geometry, radiation mechanism, and physical environment of the emission region in the source. The VLBI images reveal a bent jet extending toward the northeast on parsec scales, with less intense knots of emission appearing on the opposite side of the brightest spot. The position of the core usually found in such sources is unclear. The polarization angle is stable despite strong variability in polarized flux density and indicates that the magnetic field is aligned with the jet axis as defined by our 8.4 GHz image. The ROSAT X-ray flux density of PKS 0528+134 in 1991 March is measured to be 1.6 micro Jy at 1 keV, with a very steep spectral (`energy') index sigma(sub x) approximately equal to 2.2. The X-ray observations reveal the presence of cold gas along the line of sight significantly in excess of that present in the Galaxy. A strong radio flare began within two months of the first observation of a high flux of gamma-rays from PKS 0528+134 by Hunter et al. Using the geometry and spectral chacateristics determined by our VLBI observations, a synchrotron self-Compton calculation indicates that relativistic bulk motion is required in PKS 0528+134, with an estimated Doppler beaming factor delta approximately greater than 4.3, similar to the value delta approximately greater than 7 required to explain the low optical depth of the gamma-rays to photon-photon pair production. We suggest that the core activity of PKS 0528+134 is sporadic in nature, with the nonthermal outburst starting in 1991 representing

  4. Discovery of Spatial and Spectral Structure in the X-Ray Emission from the Crab Nebula

    NASA Technical Reports Server (NTRS)

    Weisskopf, M.; Hester, J. J.; Tennant, A. F.; Elsner, R. F.; Schulz, N. S.; Marshall, H. L.; Karovska, M.; Nichols, J. S.; Swartz, D. A.; Kolodziejczak, J. J.

    2000-01-01

    The Chandra X-ray Observatory observed the Crab Nebula and Pulsar During orbital calibration. Zeroth-order images with the High-Energy Transmission Grating (HETG) read-out by the Advanced CCD Imaging Spectrometer spectroscopy array (ACIS-S) show a striking richness of X-ray structure, at a resolution comparable to that of the best ground-based visible-light observations. The HETG-ACIS-S images reveal, for the first time, an X-ray knots along the inner ring and (perhaps) along the inward extension of the X-ray jet. Although complicated by instrumental effects and the brightness of the Crab Nebula, the spectrometric analysis shows systematic variations of the X-ray spectrum throughout the Nebula.

  5. Understanding Bright 13 keV Kr K-shell X-ray Sources at the NIF

    NASA Astrophysics Data System (ADS)

    May, M. J.; Colvin, J. D.; Kemp, G. E.; Fournier, K. B.; Scott, H.; Patel, M.; Barrios, Widmann; Widmann, K.

    2015-11-01

    High x-ray conversion efficiency (CE) K-shell Kr sources are being investigated for High Energy Density experiments. These sources are 4.1 mm in diameter 4.4 mm tall hollow epoxy tubes having a 40 μm thick wall holding either 1.2 or 1.5 atm of Kr gas. The CE of K-shell Kr is dependent upon the peak electron temperature in the radiating plasma. In the NIF experiments, the available energy heats the source to Te = 6-7 keV, well below the temperature of Te ~25 keV needed to optimize the Kr CE. The CE is a steep function of the peak electron temperature. A spatially averaged electron temperature can be estimated from measured He(α) and Ly(α) line ratios. Some disagreement has been observed in the simulated and measured line ratios for some of these K-shell sources. Disagreements have been observed between the simulated and measured line ratios for some of these K-shell sources. To help understand this issue, Kr gas pipes have been shot with 3 ω light at ?750 kJ at ~210, ~140 TW and ~120 TW power levels with 3.7, 5.2 and 6.7 ns pulses, respectively. The power and pulse length scaling of the measured CE and K-shell line ratios and their comparison to simulations will be discussed. This work was performed under the auspic

  6. Observations of the vacuum ultraviolet and x-ray brightness profiles of Fe, Ni, and Ge in magnetically confined fusion plasmas.

    PubMed

    May, M J; Finkenthal, M; Moos, H W; Fournier, K B; Goldstein, W H; Mattioli, M; Pacella, D; Mazzitelli, G; Leigheb, M; Gabellieri, L

    2001-09-01

    The spatial brightness profiles of emission lines for the K-like through He-like ionization states of Fe, Ge, and Ni have been measured during a set of experiments in which Fe and Ge were introduced into FTU tokamak plasmas by using the laser blowoff technique. Nickel was an intrinsic impurity observed during these experiments that was sputtered from the inconel limiter. The brightness profiles were measured by spatially scanable, photometrically calibrated vaccum ultraviolet and x-ray spectrometers that covered the 1 to 1700 A region. Simulations of these profiles and the time evolution of the laser blowoffs were performed with the MIST transport code using several sets of atomic physics compilations [ADPAK (originally in MIST), Arnaud and Raymond (AR92), Arnaud and Rothenflug (AR85), Mazzotta et al., and Mattioli (an extension to Mazzotta)]. The goal was to determine which set of available rates could best simulate the measured spatial brightness profiles and the charge state balance in the plasma. The Mazzotta et al. (for Fe and Ni), the Mattioli (for Ge), and the AR92 (for Fe only) rates adequately simulated the He-, Li-, Be-, Na-, Mg-like ionization states. The F- to B-like charge states could not be simulated by these compilations unless the relevant dielectronic rates were multiplied by a factor of 2. The ADPAK rates could not adequately predict any of the charge states of Fe, Ge, or Ni.

  7. Generating high-brightness and coherent soft x-ray pulses in the water window with a seeded free-electron laser

    NASA Astrophysics Data System (ADS)

    Zhou, Kaishang; Feng, Chao; Deng, Haixiao; Wang, Dong

    2017-01-01

    We propose a new scheme to generate high-brightness and temporal coherent soft x-ray radiation in a seeded free-electron laser. The proposed scheme is based on the coherent harmonic generation (CHG) and superradiant principles. A CHG scheme is first used to generate a coherent signal at ultrahigh harmonics of the seed. This coherent signal is then amplified by a series of chicane-undulator modules via the fresh bunch and superradiant processes in the following radiator. Using a representative of a realistic set of parameters, three-dimensional simulations have been carried out and the simulations results demonstrated that 10 GW-level ultrashort (˜20 fs ) coherent radiation pulses in the water window can be achieved by using a 1.6 GeV electron beam based on the proposed technique.

  8. Gamma-Ray Blazar BL Lacertae at historic high brightness in millimeter, X-ray and far-infrared bands

    NASA Astrophysics Data System (ADS)

    Wehrle, Ann E.; Grupe, Dirk; Gurwell, Mark; Jorstad, Svetlana; Marscher, Alan

    2012-11-01

    We report on the current unprecedented brightness of BL Lacertae (2200+420) as observed by the Submillimeter Array (SMA), Swift, and the Herschel Space Observatory. Prompted by the reports of historic flaring at centimeter and millimeter bands by the F-GAMMA program (ATEL 4349.), we began Target of Opportunity monitoring in late October 2012 with the Submillimeter Array, Swift, and the Herschel Observatory.

  9. Spectral variability in hard X-rays and discovery of a 13,5 years period in bright quasar 3C273

    NASA Astrophysics Data System (ADS)

    Manchanda, R.

    SPECTRAL VARIABILITY IN HARD X-RAYS AND DISCOVERY OF A 13.5 YEARS PERIOD IN BRIGHT QUASAR 3C273. R. K. Manchanda Tata Institute of Fundamental Research, Colaba, Mumbai-400005, India. ravi@tifr.res.in/Fax:+91-22-2152110 Among the large variety of active galactic nuclei, 3C 273 is the nearest quasi stellar object. The source has been studied in details in various energy bands and shows a large variety of morphological features. In the X-ray energy range 2-20 keV, the spectrum follows a power law with a spectral index of -1.5, however, the observed value of the spectral index in the 20-120 keV band shows a large variation. In the case of old archival data, the derived spectral index has a value between 1.5 and 2.2 while, the recent data from OSSE experiment showed a flat spectrum with index 0.8. Thus, to fit the GeV fluxes from the source, a break in the spectrum around 1 MeV has been proposed. In this paper we report the balloon-borne hard X-ray observations of 3C273 made with LASE instrument on Nov. 20, 1998 as a part of our continuing programme of balloon borne hard X-ray observations in the 20-200 keV band using high sensitivity Large Area Scintillation counter Experiment. Our data clearly show a steep spectrum in the 20-200 keV with spectral index a = -2.26+ 0.07 and its extrapolation can fit the GeV data. The presence of steep power law index is in complete contrast to earlier observation from OSSE. From a comparison with the available archival data of the source we have discovered that 50 keV flux from the source, shows very strong modulation with a period of about 13.5 years and which is also present at 100 keV and in the spectral index to a lesser degree. We discuss the periodicity in terms of precessing source geometry.

  10. Clocking femtosecond X rays.

    PubMed

    Cavalieri, A L; Fritz, D M; Lee, S H; Bucksbaum, P H; Reis, D A; Rudati, J; Mills, D M; Fuoss, P H; Stephenson, G B; Kao, C C; Siddons, D P; Lowney, D P; Macphee, A G; Weinstein, D; Falcone, R W; Pahl, R; Als-Nielsen, J; Blome, C; Düsterer, S; Ischebeck, R; Schlarb, H; Schulte-Schrepping, H; Tschentscher, Th; Schneider, J; Hignette, O; Sette, F; Sokolowski-Tinten, K; Chapman, H N; Lee, R W; Hansen, T N; Synnergren, O; Larsson, J; Techert, S; Sheppard, J; Wark, J S; Bergh, M; Caleman, C; Huldt, G; van der Spoel, D; Timneanu, N; Hajdu, J; Akre, R A; Bong, E; Emma, P; Krejcik, P; Arthur, J; Brennan, S; Gaffney, K J; Lindenberg, A M; Luening, K; Hastings, J B

    2005-03-25

    Linear-accelerator-based sources will revolutionize ultrafast x-ray science due to their unprecedented brightness and short pulse duration. However, time-resolved studies at the resolution of the x-ray pulse duration are hampered by the inability to precisely synchronize an external laser to the accelerator. At the Sub-Picosecond Pulse Source at the Stanford Linear-Accelerator Center we solved this problem by measuring the arrival time of each high energy electron bunch with electro-optic sampling. This measurement indirectly determined the arrival time of each x-ray pulse relative to an external pump laser pulse with a time resolution of better than 60 fs rms.

  11. Spectral and Temporal Properties of the Ultraluminous X-Ray Pulsar in M82 from 15 years of Chandra Observations and Analysis of the Pulsed Emission Using NuSTAR

    NASA Astrophysics Data System (ADS)

    Brightman, Murray; Harrison, Fiona; Walton, Dominic J.; Fuerst, Felix; Hornschemeier, Ann; Zezas, Andreas; Bachetti, Matteo; Grefenstette, Brian; Ptak, Andrew; Tendulkar, Shriharsh; Yukita, Mihoko

    2016-01-01

    The recent discovery by Bachetti et al. of a pulsar in M82 that can reach luminosities of up to 1040 erg s-1, a factor of ˜100 times the Eddington luminosity for a 1.4 M⊙ compact object, poses a challenge for accretion physics. In order to better understand the nature of this source and its duty cycle, and in light of several physical models that have been subsequently published, we conduct a spectral and temporal analysis of the 0.5-8 keV X-ray emission from this source from 15 years of Chandra observations. We analyze 19 ACIS observations where the point-spread function (PSF) of the pulsar is not contaminated by nearby sources. We fit the Chandra spectra of the pulsar with a power-law model and a disk blackbody model, subjected to interstellar absorption in M82. We carefully assess for the effect of pile-up in our observations, where four observations have a pile-up fraction of >10%, which we account for during spectral modeling with a convolution model. When fitted with a power-law model, the average photon index when the source is at high luminosity (LX > 1039 erg s-1) is Γ = 1.33 ± 0.15. For the disk blackbody model, the average temperature is Tin = 3.24 ± 0.65 keV, the spectral shape being consistent with other luminous X-ray pulsars. We also investigated the inclusion of a soft excess component and spectral break, finding that the spectra are also consistent with these features common to luminous X-ray pulsars. In addition, we present spectral analysis from NuSTAR over the 3-50 keV range where we have isolated the pulsed component. We find that the pulsed emission in this band is best fit by a power-law with a high-energy cutoff, where Γ = 0.6 ± 0.3 and {E}{{C}}={14}-3+5 keV. While the pulsar has previously been identified as a transient, we find from our longer-baseline study that it has been remarkably active over the 15-year period, where for 9/19 (47%) observations that we analyzed, the pulsar appears to be emitting at a luminosity in excess of

  12. Spectral and Temporal Properties of the Ultra-Luminous X-Ray Pulsar in M82 from 15 Years of Chandra Observations and Analysis of the Pulsed Emission Using NuSTAR

    NASA Technical Reports Server (NTRS)

    Brightman, Murray; Harrison, Fiona; Walton, Dominic J.; Fuerst, Felis; Zezas, Andreas; Bachetti, Matteo; Grefenstette, Brian; Ptak, Andrew; Tendulkar, Shriharsh; Yukita, Mihoko

    2016-01-01

    The recent discovery by Bachetti et al. of a pulsar in M82 that can reach luminosities of up to 10(exp 40) erg s(exp -1), a factor of approximately 100 times the Eddington luminosity for a 1.4 solar mass compact object, poses a challenge for accretion physics. In order to better understand the nature of this source and its duty cycle, and in light of several physical models that have been subsequently published, we conduct a spectral and temporal analysis of the 0.58 keV X-ray emission from this source from 15 years of Chandra observations. We analyze 19 ACIS observations where the point-spread function (PSF) of the pulsar is not contaminated by nearby sources. We fit the Chandra spectra of the pulsar with a power-law model and a disk blackbody model, subjected to interstellar absorption in M82. We carefully assess for the effect of pile-up in our observations, where four observations have a pile-up fraction of 10, which we account for during spectral modeling with a convolution model. When fitted with a power-law model, the average photon index when the source is at high luminosity (LX greater than 10(exp 39) erg s(exp -1) is equal to gamma 1.33 +/-.0.15. For the disk blackbody model, the average temperature is T(sub in) 3.24 +/- 0.65 keV, the spectral shape being consistent with other luminous X-ray pulsars. We also investigated the inclusion of a soft excess component and spectral break, finding that the spectra are also consistent with these features common to luminous X-ray pulsars. In addition, we present spectral analysis from NuSTAR over the 3-50 keV range where we have isolated the pulsed component. We find that the pulsed emission in this band is best fit by a power-law with a high-energy cutoff, where gamma is equal to 0.6 +/- 0.3 and E(sub C) is equal to 14(exp +5) (sub -3)) keV. While the pulsar has previously been identified as a transient, we find from our longer-baseline study that it has been remarkably active over the 15-year period, where for 9

  13. X-Ray and Optical Study of the Gamma-ray Source 3FGL J0838.8–2829: Identification of a Candidate Millisecond Pulsar Binary and an Asynchronous Polar

    NASA Astrophysics Data System (ADS)

    Halpern, Jules P.; Bogdanov, Slavko; Thorstensen, John R.

    2017-04-01

    We observed the field of the Fermi source 3FGL J0838.8‑2829 in optical and X-rays, initially motivated by the cataclysmic variable (CV) 1RXS J083842.1‑282723 that lies within its error circle. Several X-ray sources first classified as CVs have turned out to be γ-ray emitting millisecond pulsars (MSPs). We find that 1RXS J083842.1‑282723 is in fact an unusual CV, a stream-fed asynchronous polar in which accretion switches between magnetic poles (that are ≈120° apart) when the accretion rate is at minimum. High-amplitude X-ray modulation at periods of 94.8 ± 0.4 minutes and 14.7 ± 1.2 hr are seen. The former appears to be the spin period, while the latter is inferred to be one-third of the beat period between the spin and the orbit, implying an orbital period of 98.3 ± 0.5 minutes. We also measure an optical emission-line spectroscopic period of 98.413 ± 0.004 minutes, which is consistent with the orbital period inferred from the X-rays. In any case, this system is unlikely to be the γ-ray source. Instead, we find a fainter variable X-ray and optical source, XMMU J083850.38‑282756.8, that is modulated on a timescale of hours in addition to exhibiting occasional sharp flares. It resembles the black widow or redback pulsars that have been discovered as counterparts of Fermi sources, with the optical modulation due to heating of the photosphere of a low-mass companion star by, in this case, an as-yet undetected MSP. We propose XMMU J083850.38‑282756.8 as the MSP counterpart of 3FGL J0838.8‑2829.

  14. VARIABILITY AND SPECTRAL MODELING OF THE HARD X-RAY EMISSION OF GX 339-4 IN A BRIGHT LOW/HARD STATE

    SciTech Connect

    Droulans, R.; Belmont, R.; Malzac, J.; Jourdain, E.

    2010-07-10

    We study the high-energy emission of the Galactic black hole candidate GX 339-4 using INTEGRAL/SPI and simultaneous RXTE/PCA data. By the end of 2007 January, when it reached its peak luminosity in hard X-rays, the source was in a bright hard state. The SPectrometer on INTEGRAL (SPI) data from this period show a good signal-to-noise ratio, allowing a detailed study of the spectral energy distribution up to several hundred keV. As a main result, we report on the detection of a variable hard spectral feature ({>=}150 keV) which represents a significant excess with respect to the cutoff power-law shape of the spectrum. The SPI data suggest that the intensity of this feature is positively correlated with the 25-50 keV luminosity of the source and the associated variability timescale is shorter than 7 hr. The simultaneous Proportional Counter Array data, however, show no significant change in the spectral shape, indicating that the source is not undergoing a canonical state transition. We analyzed the broadband spectra in the lights of several physical models, assuming different heating mechanisms and properties of the Comptonizing plasma. For the first time, we performed quantitative model fitting with the new versatile Comptonization code BELM, accounting self-consistently for the presence of a magnetic field. We show that a magnetized medium subject to pure non-thermal electron acceleration provides a framework for a physically consistent interpretation of the observed 4-500 keV emission. Moreover, we find that the spectral variability might be triggered by the variations of only one physical parameter, namely the magnetic field strength. Therefore, it appears that the magnetic field is likely to be a key parameter in the production of the Comptonized hard X-ray emission.

  15. The Extended X-ray Nebula of PSR J1420-6048

    SciTech Connect

    Van Etten, Adam; Romani, Roger W.; /Stanford U., Phys. Dept.

    2011-08-19

    The vicinity of the unidentified EGRET source 3EG J1420-6038 has undergone extensive study in the search for counterparts, revealing the energetic young pulsar PSR J1420-6048 and its surrounding wind nebula as a likely candidate for at least part of the emission from this bright and extended gamma-ray source. We report on new Suzaku observations of PSR J1420-6048, along with analysis of archival XMM Newton data. The low background of Suzaku permits mapping of the extended X-ray nebula, indicating a tail stretching {approx} 8 minutes north of the pulsar. The X-ray data, along with archival radio and VHE data, hint at a pulsar birthsite to the North, and yield insights into its evolution and the properties of the ambient medium. We further explore such properties by modeling the spectral energy distribution (SED) of the extended nebula.

  16. Galaxies in X-Ray Selected Clusters and Groups in Dark Energy Survey Data. I. Stellar Mass Growth of Bright Central Galaxies since z~1.2

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Miller, C.; McKay, T.; Rooney, P.; Evrard, A. E.; Romer, A. K.; Perfecto, R.; Song, J.; Desai, S.; Mohr, J.; Wilcox, H.; Bermeo-Hernandez, A.; Jeltema, T.; Hollowood, D.; Bacon, D.; Capozzi, D.; Collins, C.; Das, R.; Gerdes, D.; Hennig, C.; Hilton, M.; Hoyle, B.; Kay, S.; Liddle, A.; Mann, R. G.; Mehrtens, N.; Nichol, R. C.; Papovich, C.; Sahlén, M.; Soares-Santos, M.; Stott, J.; Viana, P. T.; Abbott, T.; Abdalla, F. B.; Banerji, M.; Bauer, A. H.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Carnero Rosell, A.; Castander, F. J.; Diehl, H. T.; Doel, P.; Cunha, C. E.; Eifler, T. F.; Fausti Neto, A.; Fernandez, E.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gaztanaga, E.; Gruen, D.; Gruendl, R. A.; Honscheid, K.; James, D.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Maia, M. A. G.; Makler, M.; Marshall, J. L.; Martini, Paul; Miquel, R.; Ogando, R.; Plazas, A. A.; Roodman, A.; Rykoff, E. S.; Sako, M.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla, I.; Smith, R. C.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Tucker, D.; Vikram, V.; da Costa, L. N.

    2016-01-01

    Using the science verification data of the Dark Energy Survey for a new sample of 106 X-ray selected clusters and groups, we study the stellar mass growth of bright central galaxies (BCGs) since redshift z ~ 1.2. Compared with the expectation in a semi-analytical model applied to the Millennium Simulation, the observed BCGs become under-massive/under-luminous with decreasing redshift. We incorporate the uncertainties associated with cluster mass, redshift, and BCG stellar mass measurements into an analysis of a redshift-dependent BCG-cluster mass relation, m*∝ (M200/{1.5×10}14M⊙})0.24+/-0.08 (1+z)-0.19+/- 0.34, and compare the observed relation to the model prediction. We estimate the average growth rate since z = 1.0 for BCGs hosted by clusters of M200,z = 1013.8 M⊙ at z = 1.0: m*,BCG appears to have grown by 0.13 ± 0.11 dex, in tension at the ˜2.5σ significance level with the 0.40 dex growth rate expected from the semi-analytic model. We show that the build-up of extended intracluster light after z = 1.0 may alleviate this tension in BCG growth rates.

  17. Deep optical imaging of the γ-ray pulsar J1048-5832 with the VLT

    NASA Astrophysics Data System (ADS)

    Danilenko, A.; Kirichenko, A.; Sollerman, J.; Shibanov, Yu.; Zyuzin, D.

    2013-04-01

    Context. PSR J1048-5832 is a young radio-pulsar that has recently been detected in γ-rays with Fermi, and also in X-rays with Chandra and XMM-Newton. It powers a compact pulsar wind nebula visible in X-rays and is in many ways similar to the Vela pulsar. Aims: We present deep optical observations made with the ESO Very Large Telescope to search for optical counterparts of the pulsar and its nebula and to explore their multi-wavelength emission properties. Methods: The data were obtained in the V and R bands and were compared with archival data in other spectral domains. Results: We do not detect the pulsar in the optical and derive informative upper limits of R ≳ 28.m1 and V ≳ 28.m4 for its brightness. Using a red-clump star method, we estimate an interstellar extinction towards the pulsar of AV ≈ 2 mag, which is consistent with the absorbing column density derived from X-rays. The respective distance agrees with the dispersion measure distance. We reanalysed the Chandra X-ray data and compared the dereddened upper limits with the unabsorbed X-ray spectrum of the pulsar. We find that regarding its optical-X-ray spectral properties this γ-ray pulsar is not distinct from other pulsars detected in both ranges. However, like the Vela pulsar, it is very inefficient in the optical and X-rays. Among a dozen optical sources overlapping with the pulsar X-ray nebula we find one with V ≈ 26.m9 and R ≈ 26.m3, whose colour is slightly bluer than that of the field stars and is consistent with the peculiar colours typical for pulsar nebula features. It positionally coincides with a relatively bright feature of the pulsar X-ray nebula, resembling the Crab wisp and is located in ~2 from the pulsar. We suggest this source as a counterpart candidate to the feature. Conclusions: Based on the substantial interstellar extinction towards the pulsar and its optical inefficiency, additional optical studies should be carried out at longer wavelengths. Based on observations made

  18. EX56a study of extended X-ray emission around isolated galaxies EX56b identification and spectra of bright X-ray sources at high galactic latitude

    NASA Technical Reports Server (NTRS)

    Schwartz, Daniel A.

    1987-01-01

    The EXOSAT observations confirmed the identification and extended nature of PKS 2345-35. It gave a good 2 to 10 keV X-ray spectrum and a detailed spatial profile indicating asymmetry of the structure. In the high galactic latitidue investigation, the BL Lac object identified with the HEAO-1 source 1430+423 was detected, and the first X-ray spectrum was obtained. Several simulataneous observations of H0323+022 were obtained over a broad range of electromagnetic spectrum. Studies of luminous active galactic nuclei have given significant information on the spectrum of the quasar PKS 0558-504. In a study of Southern sky cataclysmic variables, the EXOSAT was used to determine the X-ray spectrum and search for periodicities in two objects. Studies of complete identifications have revealed that X-ray sources in two high galactic latitude fields are stars, and therefore are to be excluded from the Piccinotti extragalactic sample. Only one Piccinotti source remains to be identified.

  19. Accreting Millisecond Pulsars: Neutron Star Masses and Radii

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod

    2004-01-01

    High amplitude X-ray brightness oscillations during thermonuclear X-ray bursts were discovered with the Rossi X-ray Timing Explorer (RXTE) in early 1996. Spectral and timing evidence strongly supports the conclusion that these oscillations are caused by rotational modulation of the burst emission and that they reveal the spin frequency of neutron stars in low mass X-ray binaries. The recent discovery of X-ray burst oscillations from two accreting millisecond pulsars has confirmed this basic picture and provided a new route to measuring neutron star properties and constraining the dense matter equation of state. I will briefly summarize the current observational understanding of accreting millisecond pulsars, and describe recent attempts to determine the mass and radius of the neutron star in XTE J1814-338.

  20. Final Report on DTRA Basic Research Project #BRCALL08-Per3-C-2-0006 "High-Z Non-Equilibrium Physics and Bright X-ray Sources with New Laser Targets"

    SciTech Connect

    Colvin, Jeffrey D.

    2016-06-01

    This project had two major goals. Final Goal: obtain spectrally resolved, absolutely calibrated x-ray emission data from uniquely uniform mm-scale near-critical-density high-Z plasmas not in local thermodynamic equilibrium (LTE) to benchmark modern detailed atomic physics models. Scientific significance: advance understanding of non-LTE atomic physics. Intermediate Goal: develop new nano-fabrication techniques to make suitable laser targets that form the required highly uniform non-LTE plasmas when illuminated by high-intensity laser light. Scientific significance: advance understanding of nano-science. The new knowledge will allow us to make x-ray sources that are bright at the photon energies of most interest for testing radiation hardening technologies, the spectral energy range where current x-ray sources are weak. All project goals were met.

  1. X-Ray Spectral Evolution of the Crab Pulse

    NASA Technical Reports Server (NTRS)

    Harding, A. K.; Pravdo, S. H.; Angelini, L.

    1997-01-01

    The Crab Pulsar was observed with the X-ray detectors on the Rossi X-ray Timing Explorer (RXTE) on May 2, 1996. The large area, high time resolution, extended energy range, and moderate energy resolution of the RXTE instruments provided an unprecedented measurement of the Crab pulsar spectrum as it evolved in phase across the 33 msec pulse.

  2. Are the Galactic-bulge X-ray sources magnetized?

    NASA Technical Reports Server (NTRS)

    Kundt, W.; Ozel, M. E.; Ercan, E. N.

    1987-01-01

    This paper attempts to demonstrate that a better understanding of Galactic-bulge X-ray sources can be achieved if their magnetic moments are assumed to have the same values as those of young pulsars. It is argued that most of the matter leaving the inner edge of the accretion disk can reach the neutron star's surface in the form of massive clumps in quasi-Keplerian orbits. As a result, most of the accretion flow covers a broad equatorial belt rather than the polar caps, and the star shines as an almost unpulsed source. The liberation of half of the accretion power before the surface is reached can lead to the reported UHE pulses and bright infrared bursts. Spasmodic accretion is discussed as a model for gamma-ray bursts, and the observed low-energy X-ray absorption features are considered as an indication of strong magnetic fields shifted to lower energies during super-Eddington outbursts.

  3. Revealing the X-Ray Emission Processes of Old Rotation-Powered Pulsars: XMM-Newton Observations of PSR B0950+08, PSR B0823+26 and PSR J2043+2740

    NASA Technical Reports Server (NTRS)

    Becker, Werner; Weisskopf, Martin C.; Tenant, Allyn F.; Jessmer, Axel; Zhang, Shiang N.

    2004-01-01

    We have completed part of a program to study the X-ray emission properties of old rotation-powered pulsars with XMM-Newton in order to probe and identify the origin of their X radiation. The X-ray emission from these old pulsars is largely dominated by non-thermal processes. None of the observed spectra required adding a thermal component consisting of either a hot polar cap or surface cooling emission to model the data. The energy spectrum of PSR B0950+08 is best described by a single power law of photon-index alpha = 1.93(sup +0.14)(sub -0.12). Three-sigma temperature upper limits for possible contributions from a heated polar cap or the whole neutron star surface are T(sup infinity)(sub pc) < 0.87 x 10(exp 6) K and T(sup infinity)(sub s) < 0.48 x 10(exp 6) K, respectively. We also find that the X-ray emission from PSR B0950+08 is pulsed with two peaks per rotation period. The phase separation between the two X-ray peaks is approx. 144 deg (maximum to maximum) which is similar to the pulse peak separation observed in the radio band at 1.4 GHz. The fraction of X-ray pulsed photons is approx. 30%. A phase resolved spectral analysis confirms the nonthermal nature of the pulsed emission and finds power law slopes of alpha = 2.4(sup +0.52)(sub -0.42) and alpha = 1.93(sup +0.29)(sub -0.24) for the pulse peaks P1 and P2, respectively. The spectral emission properties observed for PSR B0823+26 are similar to those of PSR B0950+08. Its energy spectrum is very well described by a single power law with photon-index alpha = 2.5(sup +0.52)(sub -0.24. Three-sigma temperature upper limits for thermal contributions from a hot polar cap or from the entire neutron star surface are T(sup infinity)(sub pc) < 1.17 x 10(exp 6) K and T(sup infinity)(sub s) < 0.5 x 10(exp 6) K, respectively. There is evidence for pulsed X-ray emission at the - 97% confidence level with a pulsed fraction of 49 +/- 22%. For PSR 52043+2740 we report the first detection of X-ray emission. A power law

  4. Recent results of X-ray observations from OSO-7 and SAS-3

    NASA Technical Reports Server (NTRS)

    Clark, G. W.

    1978-01-01

    Recent observations bearing on the nature of compact X-ray sources obtained from the MIT instruments aboard OSO-7 and SAS-3 are discussed. Results on the X-ray sky survey, new ultralow-energy X-ray sources, X-ray sources in globular clusters, slow X-ray pulsars, and variability and position of compact X-ray sources in Cen A are discussed. Descriptions of the satellite-borne X-ray instruments are provided.

  5. Hard X-ray astrophysics

    NASA Technical Reports Server (NTRS)

    Rothschild, R. E.

    1981-01-01

    Past hard X-ray and lower energy satellite instruments are reviewed and it is shown that observation above 20 keV and up to hundreds of keV can provide much valuable information on the astrophysics of cosmic sources. To calculate possible sensitivities of future arrays, the efficiencies of a one-atmosphere inch gas counter (the HEAO-1 A-2 xenon filled HED3) and a 3 mm phoswich scintillator (the HEAO-1 A-4 Na1 LED1) were compared. Above 15 keV, the scintillator was more efficient. In a similar comparison, the sensitivity of germanium detectors did not differ much from that of the scintillators, except at high energies where the sensitivity would remain flat and not rise with loss of efficiency. Questions to be addressed concerning the physics of active galaxies and the diffuse radiation background, black holes, radio pulsars, X-ray pulsars, and galactic clusters are examined.

  6. X-Ray Probes of Cosmic Star-Formation History

    NASA Technical Reports Server (NTRS)

    Ghosh, Pranab; White, Nicholas E.

    2001-01-01

    In a previous paper we point out that the X-ray luminosity L(sub x) of a galaxy is driven by the evolution of its X-ray binary population and that the profile of L(sub x) with redshift can both serve as a diagnostic probe of the Star Formation Rate (SFR) profile and constrain evolutionary models for X-ray binaries. We update our previous work using a suite of more recently developed SFR profiles that span the currently plausible range. The first Chandra deep imaging results on L(sub x)-evolution are beginning to probe the SFR profile of bright spirals and the early results are consistent with predictions based on current SFR models. Using these new SFR profiles the resolution of the "birthrate problem" of lowmass X-ray binaries (LMXBs) and recycled, millisecond pulsars in terms of an evolving global SFR is more complete. We also discuss the possible impact of the variations in the SFR profile of individual galaxies.

  7. X-ray observations of Crab-like supernova remnants

    NASA Technical Reports Server (NTRS)

    Becker, R. H.

    1983-01-01

    Distinguishing radio and morphological characteristics of Crab Nebula-like supernova remnants (SNR) are described. Radio features comprise a flat spectrum, a filled center brightness distribution, and a centrally located pulsar. The radio signals are linearly polarized and suggest a synchrotron emission mechanism. Known objects with those characteristics include the Crab Nebula, Vela X, 3C58, G21.5 - 0.9 and G74.9 + 1.2. Only the Crab Nebula exhibits pulsations, while all have unresolved X-ray sources and nonthermal X-ray spectra. Although the Crab-like SNR are distinctly different from shell-like SNR, the SNR CTB80, G326.3 - 1.8, W28 and G29.7 0.3 display characteristics of both, particularly shell-like structures and flat spectra. X-ray spectra from compact sources have also been detected from 3C58, CTB80, W28 and MSH 15 - 52 and exhibit nonthermal power law features. The X-ray spectra could be used as a measure of the evolutionary stage of the source.

  8. A complete library of X-ray pulsars in the Magellanic Clouds: A new resource for modeling the time evolution of luminosity and pulse profile

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Laycock, Silas; Christodoulou, Dimitris; Fingerman, Samuel; Cappallo, Rigel; Zezas, Andreas; Antoniou, Vallia; Hong, Jaesub; Ho, Wynn; Coe, Malcolm; Klus, Helen

    2016-01-01

    We have collected and analyzed all XMM-Newton and Chandra (˜ 300) observations of the known pulsars in the Small & Large Magellanic Clouds (SMC, LMC). We aim to classify various pulsar properties with amplitude logLX = 33 ˜ 38 erg/s and incorporate the related parameters in theoretical models. With the high time-resolution data from the European Photon Imaging Camera (EPIC) and the latest calibration files and the Science Analysis System (SAS) software from High Energy Astrophysics Science Archive Research Center Software (HEASOFT), our pipeline generates a suite of useful products for each pulsar detection: point-source event lists, pulse profiles, periodograms, and spectra for the broad energy band, the soft band (0.2-2 keV), and the hard band (2-12 keV). Of 59 SMC pulsars in the EPIC field of view, we were able to measure 29 with pulse periods and power spectra. From XMM for example, for 16 of them, we find 12 are spinning up and 4 are spinning down. We also compare the observed pulse profiles to geometric models of the pulsars in order to constrain the magnetospheric parameters of each of these sources. Our motivation is to provide a library for time domain studies and profile modeling.

  9. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1990-01-01

    The annual progress report on Cosmic X Ray Physics is presented. Topics studied include: the soft x ray background, proportional counter and filter calibrations, the new sounding rocket payload: X Ray Calorimeter, and theoretical studies.

  10. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1991-01-01

    The annual progress report on Cosmic X Ray Physics for the period 1 Jan. to 31 Dec. 1990 is presented. Topics studied include: soft x ray background, new sounding rocket payload: x ray calorimeter, and theoretical studies.

  11. Chest X-Ray

    MedlinePlus

    ... by Image/Video Gallery Your radiologist explains chest x-ray. Transcript Welcome to Radiology Info dot org! Hello, ... you about chest radiography also known as chest x-rays. Chest x-rays are the most commonly performed ...

  12. Joint x-ray

    MedlinePlus

    X-ray - joint; Arthrography; Arthrogram ... x-ray technologist will help you position the joint to be x-rayed on the table. Once in place, pictures are taken. The joint may be moved into other positions for more ...

  13. Compact Stellar X-ray Sources

    NASA Astrophysics Data System (ADS)

    Lewin, Walter H. G.; van der Klis, Michiel

    2006-04-01

    1. Accreting neutron stars and black holes: a decade of discoveries D. Psaltis; 2. Rapid X-ray variability M. van der Klis; 3. New views of thermonuclear bursts T. Strohmayer and L. Bildsten; 4. Black hole binaries J. McClintock and R. Remillard; 5. Optical, ultraviolet and infrared observations of X-ray binaries P. Charles and M. Coe; 6. Fast X-ray transients and X-ray flashes J. Heise and J. in 't Zand; 7. Isolated neutron stars V. Kaspi, M. Roberts and A. Harding; 8. Globular cluster X-ray sources F. Verbunt and W. Lewin; 9. Jets from X-ray binaries R. Fender; 10. X-Rays from cataclysmic variables E. Kuulkers, A. Norton, A. Schwope and B. Warner; 11. Super soft sources P. Kahabka and E. van den Heuvel; 12. Compact stellar X-ray sources in normal galaxies G. Fabbiano and N. White; 13. Accretion in compact binaries A. King; 14. Soft gamma repeaters and anomalous X-ray pulsars: magnetar candidates P. Woods and C. Thompson; 15. Cosmic gamma-ray bursts, their afterglows, and their host galaxies K. Hurley, R. Sari and S. Djorgovski; 16. Formation and evolution of compact stellar X-ray sources T. Tauris and E. van den Heuvel.

  14. Compact Stellar X-ray Sources

    NASA Astrophysics Data System (ADS)

    Lewin, Walter; van der Klis, Michiel

    2010-11-01

    1. Accreting neutron stars and black holes: a decade of discoveries D. Psaltis; 2. Rapid X-ray variability M. van der Klis; 3. New views of thermonuclear bursts T. Strohmayer and L. Bildsten; 4. Black hole binaries J. McClintock and R. Remillard; 5. Optical, ultraviolet and infrared observations of X-ray binaries P. Charles and M. Coe; 6. Fast X-ray transients and X-ray flashes J. Heise and J. in 't Zand; 7. Isolated neutron stars V. Kaspi, M. Roberts and A. Harding; 8. Globular cluster X-ray sources F. Verbunt and W. Lewin; 9. Jets from X-ray binaries R. Fender; 10. X-Rays from cataclysmic variables E. Kuulkers, A. Norton, A. Schwope and B. Warner; 11. Super soft sources P. Kahabka and E. van den Heuvel; 12. Compact stellar X-ray sources in normal galaxies G. Fabbiano and N. White; 13. Accretion in compact binaries A. King; 14. Soft gamma repeaters and anomalous X-ray pulsars: magnetar candidates P. Woods and C. Thompson; 15. Cosmic gamma-ray bursts, their afterglows, and their host galaxies K. Hurley, R. Sari and S. Djorgovski; 16. Formation and evolution of compact stellar X-ray sources T. Tauris and E. van den Heuvel.

  15. SEARCHES FOR MILLISECOND PULSAR CANDIDATES AMONG THE UNIDENTIFIED FERMI OBJECTS

    SciTech Connect

    Hui, C. Y.; Park, S. M.; Hu, C. P.; Lin, L. C. C.; Li, K. L.; Kong, A. K. H.; Jin, Ruolan; Yen, T.-C.; Tam, P. H. T.; Takata, J.; Cheng, K. S.; Kim, Chunglee

    2015-08-10

    Here we report the results of searching millisecond pulsar (MSP) candidates from the Fermi LAT second source catalog (2FGL). Seven unassociated γ-ray sources in this catalog are identified as promising MSP candidates based on their γ-ray properties. Through the X-ray analysis, we have detected possible X-ray counterparts, localized to an arcsecond accuracy. We have systematically estimated their X-ray fluxes and compared them with the corresponding γ-ray fluxes. The X-ray to γ-ray flux ratios for 2FGL J1653.6-0159 and 2FGL J1946.4-5402 are comparable with the typical value for pulsars. For 2FGL J1625.2-0020, 2FGL J1653.6-0159, and 2FGL J1946.4-5402, their candidate X-ray counterparts are bright enough to perform a detailed spectral and temporal analysis to discriminate their thermal/non-thermal nature and search for the periodic signal. We have also searched for possible optical/IR counterparts at the X-ray positions. For the optical/IR source coincident with the brightest X-ray object associated with 2FGL J1120.0-2204, its spectral energy distribution is comparable with a late-type star. Evidence for the variability has also been found by examining its optical light curve. All the aforementioned 2FGL sources resemble a pulsar in one or more aspects, making them promising targets for follow-up investigations.

  16. NuSTAR observations of the X-ray pulsar LMC X-4: A constraint on the magnetic field and tomography of the system in the fluorescent iron line

    NASA Astrophysics Data System (ADS)

    Shtykovsky, A. E.; Lutovinov, A. A.; Arefiev, V. A.; Molkov, S. V.; Tsygankov, S. S.; Revnivtsev, M. G.

    2017-03-01

    We present the results of the spectral and timing analysis of the X-ray pulsar LMC X-4 based on data from the NuSTAR observatory in the broad X-ray energy range 3-79 keV. Along with a detailed analysis of the source's averaged spectrum, high-precision spectra corresponding to different phases of the neutron star spin cycle have been obtained for the first time. The Comptonization model is shown to describe best the source's spectrum, and the evolution of its parameters as a function of the pulse phase has been traced. For all spectra (the averaged and phase-resolved ones) in the energy range 5-55 keV we have searched for the cyclotron absorption line. The derived upper limit on the optical depth of the cyclotron line τ 0.15 (3 σ) points to the absence of this feature in the given energy range, which provides a constraint on the magnetic field of the neutron star: B <3 × 1011 or >6.5 × 1012 G. The latter constraint is consistent with the magnetic field estimate obtained by analyzing the pulsar's power spectrum, B ≅ 3 × 1013 G. Based on our analysis of the phase-resolved spectra, we have determined the delay between the emission peaks and the equivalent width of the fluorescent iron line. This delay depends on the orbital phase and is apparently associated with the travel time of photons between the emitting regions in the vicinity of the neutron star and the region where the flux is reflected (presumably in the inflowing stream or at the place of interaction between the stream and the outer edge of the accretion disk).

  17. Optically Levitated Targets as a Source for High Brightness X-rays and a Platform for Mass-Limited Laser-interaction Experiments

    NASA Astrophysics Data System (ADS)

    Giltrap, Samuel; Stuart, Nick; Robinson, Tim; Armstrong, Chris; Hicks, George; Eardley, Sam; Gumbrell, Ed; Smith, Roland

    2016-10-01

    Here we report on the development of an optical levitation based x-ray and proton source, motivated by the requirement for a debris free, high spatial resolution, and low EMP source for x-ray radiography and proton production. Research at Imperial College has led to the development of a feedback controlled optical levitation trap which is capable of holding both solid (Glass beads) and liquid (silicon based oil) micro-targets ( 3-10um). The optical levitation trap has been successfully fielded in a high-intensity laser interaction experiment at Imperial College London and at the Vulcan Petawatt Laser system at the Rutherford Appleton Laboratory (RAL). Here we report on the results from that RAL run including; an x-ray source size of 10-15um with very good spherical symmetry when compared to wire targets, secondly very low EMP signal from isolated levitated targets (9 times less RF signal than a comparable wire target). At Imperial College we were also able to record an x-ray energy spectrum which produced an electron temperature of 0.48KeV, and performed interferometry of a shock evolving into a blast wave off an optically levitated droplet which allowed us to infer the electron density within the shock front.

  18. Time-dependent, x-ray spectral unfolds and brightness temperatures for intense Li{sup +} ion beam-driven hohlraums

    SciTech Connect

    Fehl, D.L.; Chandler, G.A.; Biggs, F.; Dukart, R.J.; Moats, A.R.; Leeper, R.J.

    1997-01-01

    X-ray-producing hohlraums are being studied as indirect drives for inertial confinement fusion targets. In a 1994 target series on the PBFAII accelerator, cylindrical hohlraum targets were heated by an intense Li{sup +} ion beam and viewed by an array of 13 time-resolved, filtered x-ray detectors (XRDs). The unfold operator (UFO) code and its suite of auxiliary functions were used extensively in obtaining time-resolved x-ray spectra and radiation temperatures from this diagnostic. The UFO was also used to obtain fitted response functions from calibration data, to simulate data from blackbody x-ray spectra of interest, to determine the suitability of various unfolding parameters (e.g., energy domain, energy partition, smoothing conditions, and basis functions), to interpolate the XRD signal traces, and to unfold experimental data. The simulation capabilities of the code were useful in understanding an anomalous feature in the unfolded spectra at low photon energies ({le}100 eV). Uncertainties in the differential and energy-integrated unfolded spectra were estimated from uncertainties in the data. The time{endash}history of the radiation temperature agreed well with independent calculations of the wall temperature in the hohlraum. {copyright} {ital 1997 American Institute of Physics.}

  19. Time-dependent, x-ray spectral unfolds and brightness temperatures for intense Li{sup +} ion beam-driven hohlraums

    SciTech Connect

    Fehl, D.L.; Chandler, G.A.; Biggs, F.; Dukart, R.J.; Moats, A.R.; Leeper, R.J.

    1996-07-01

    X-ray-producing hohlraums are being studied as indirect drives for Inertial Confinement Fusion targets. In a 1994 target series on the PBFAII accelerator, cylindrical hohlraum targets were heated by an intense Li{sup +} ion beam and viewed by an array of 13 time-resolved, filtered x-ray detectors (XRDs). The UFO unfold code and its suite of auxiliary functions were used extensively in obtaining time- resolved x-ray spectra and radiation temperatures from this diagnostic. UFO was also used to obtain fitted response functions from calibration data, to simulate data from blackbody x-ray spectra of interest, to determine the suitability of various unfolding parameters (e.g., energy domain, energy partition, smoothing conditions, and basis functions), to interpolate the XRD signal traces, and to unfold experimental data. The simulation capabilities of the code were useful in understanding an anomalous feature in the unfolded spectra at low photon energies ({le} 100 eV). Uncertainties in the differential and energy-integrated unfolded spectra were estimated from uncertainties in the data. The time-history of the radiation temperature agreed well with independent calculations of the wall temperature in the hohlraum.

  20. A Correlation between the Intrinsic Brightness and Average Decay Rate of Gamma-Ray Burst X-Ray Afterglow Light Curves

    NASA Astrophysics Data System (ADS)

    Racusin, J. L.; Oates, S. R.; de Pasquale, M.; Kocevski, D.

    2016-07-01

    We present a correlation between the average temporal decay ({α }{{X},{avg},\\gt 200{{s}}}) and early-time luminosity ({L}{{X},200{{s}}}) of X-ray afterglows of gamma-ray bursts as observed by the Swift X-ray Telescope. Both quantities are measured relative to a rest-frame time of 200 s after the γ-ray trigger. The luminosity-average decay correlation does not depend on specific temporal behavior and contains one scale-independent quantity minimizing the role of selection effects. This is a complementary correlation to that discovered by Oates et al. in the optical light curves observed by the Swift Ultraviolet Optical Telescope. The correlation indicates that, on average, more luminous X-ray afterglows decay faster than less luminous ones, indicating some relative mechanism for energy dissipation. The X-ray and optical correlations are entirely consistent once corrections are applied and contamination is removed. We explore the possible biases introduced by different light-curve morphologies and observational selection effects, and how either geometrical effects or intrinsic properties of the central engine and jet could explain the observed correlation.

  1. Applications of soft x-ray lasers

    SciTech Connect

    Skinner, C.H.

    1993-08-01

    The high brightness and short pulse duration of soft x-ray lasers provide unique advantages for novel applications. Imaging of biological specimens using x-ray lasers has been demonstrated by several groups. Other applications to fields such as chemistry, material science, plasma diagnostics, and lithography are beginning to emerge. We review the current status of soft x-ray lasers from the perspective of applications, and present an overview of the applications currently being developed.

  2. X-Ray Emission from the Guitar Nebula

    NASA Technical Reports Server (NTRS)

    Romani, Roger W.; Cordes, James M.; Yadigaroglu, I.-A.

    1997-01-01

    We have detected weak soft X-ray emission from the pulsar wind nebula trailing the high-velocity star PSR 2224+65 (the "Guitar Nebula"). This X-ray flux gives evidence of gamma approximately 10(exp 7) eV particles in the pulsar wind and constrains the properties of the postshock flow. The X-ray emission is most easily understood if the shocked pulsar wind is partly confined in the nebula and if magnetic fields in this zone can grow to near-equipartition values.

  3. Pulse Phase Dependence of Low Energy Emission Lines in an X-ray pulsar 4U 1626-67 during its spin-up and spin-down phase

    NASA Astrophysics Data System (ADS)

    Beri, Aru; Paul, Biswajit; Dewangan, Gulab Chand

    2016-07-01

    We will present the results obtained from the new observation of an ultra-compact X-ray binary pulsar 4U 1626-67, carried out with the XMM-Newton observatory. 4U 1626-67, a unique accretion powered pulsar underwent two torque reversals since its discovery in 1977. Pulse phase resolved spectroscopy of this source performed using the data from the XMM-Newton observatory during its spin-down phase revealed the dependence of the emission lines on the pulse phase. O VII emission line at 0.569 keV showed the maximum variation by factor of 4. These variations were interpreted due to warps in the accretion disk (Beri et al. 2015). Radiation pressure induced warping is also believed to be the cause for spin-down. In light of this possible explanation for spin-down torque reversal we expect different line variability during the spin-up phase. We will discuss the implications of the results obtained after performing pulse phase resolved spectroscopy using data from the EPIC-pn during the current spin-up phase. Detailed study of the prominent Neon and Oxygen line complexes with the high resolution Reflection Grating Spectrometer (RGS) on-board XMM-Newton will also be presented.

  4. Extended hard-X-ray emission in the inner few parsecs of the Galaxy.

    PubMed

    Perez, Kerstin; Hailey, Charles J; Bauer, Franz E; Krivonos, Roman A; Mori, Kaya; Baganoff, Frederick K; Barrière, Nicolas M; Boggs, Steven E; Christensen, Finn E; Craig, William W; Grefenstette, Brian W; Grindlay, Jonathan E; Harrison, Fiona A; Hong, Jaesub; Madsen, Kristin K; Nynka, Melania; Stern, Daniel; Tomsick, John A; Wik, Daniel R; Zhang, Shuo; Zhang, William W; Zoglauer, Andreas

    2015-04-30

    The Galactic Centre hosts a puzzling stellar population in its inner few parsecs, with a high abundance of surprisingly young, relatively massive stars bound within the deep potential well of the central supermassive black hole, Sagittarius A* (ref. 1). Previous studies suggest that the population of objects emitting soft X-rays (less than 10 kiloelectronvolts) within the surrounding hundreds of parsecs, as well as the population responsible for unresolved X-ray emission extending along the Galactic plane, is dominated by accreting white dwarf systems. Observations of diffuse hard-X-ray (more than 10 kiloelectronvolts) emission in the inner 10 parsecs, however, have been hampered by the limited spatial resolution of previous instruments. Here we report the presence of a distinct hard-X-ray component within the central 4 × 8 parsecs, as revealed by subarcminute-resolution images in the 20-40 kiloelectronvolt range. This emission is more sharply peaked towards the Galactic Centre than is the surface brightness of the soft-X-ray population. This could indicate a significantly more massive population of accreting white dwarfs, large populations of low-mass X-ray binaries or millisecond pulsars, or particle outflows interacting with the surrounding radiation field, dense molecular material or magnetic fields. However, all these interpretations pose significant challenges to our understanding of stellar evolution, binary formation, and cosmic-ray production in the Galactic Centre.

  5. Two XTE A01 Projects: A Multifrequency Study of Circinus X-1 and a Search for Microsecond Variability From Bright Galactic X-Ray Source

    NASA Technical Reports Server (NTRS)

    Jernigan, Garrett

    1998-01-01

    This final report describes the research of a single common portion of the above-named two projects, conducted by G. Jernigan, i.e., the theory for a new method, a variation of a Kolmogorov-Smirnov test, for determining the fastest variability present in an X-ray source. The current phase involves testing the newly developed code on real example sources (CYG X1). Unfortunately, there are no calibration sources for testing the code, which therefore required the development of an X-ray source simulation code. The goal is to evaluate the sensitivity of the code for the detection of a range of different types of variability (bursts, pulsations, etc.).

  6. X-ray lithography using holographic images

    DOEpatents

    Howells, Malcolm R.; Jacobsen, Chris

    1995-01-01

    A non-contact X-ray projection lithography method for producing a desired X-ray image on a selected surface of an X-ray-sensitive material, such as photoresist material on a wafer, the desired X-ray image having image minimum linewidths as small as 0.063 .mu.m, or even smaller. A hologram and its position are determined that will produce the desired image on the selected surface when the hologram is irradiated with X-rays from a suitably monochromatic X-ray source of a selected wavelength .lambda.. On-axis X-ray transmission through, or off-axis X-ray reflection from, a hologram may be used here, with very different requirements for monochromaticity, flux and brightness of the X-ray source. For reasonable penetration of photoresist materials by X-rays produced by the X-ray source, the wavelength X, is preferably chosen to be no more than 13.5 nm in one embodiment and more preferably is chosen in the range 1-5 nm in the other embodiment. A lower limit on linewidth is set by the linewidth of available microstructure writing devices, such as an electron beam.

  7. An extremely bright gamma-ray pulsar in the Large Magellanic Cloud.

    PubMed

    2015-11-13

    Pulsars are rapidly spinning, highly magnetized neutron stars, created in the gravitational collapse of massive stars. We report the detection of pulsed giga-electron volt gamma rays from the young pulsar PSR J0540-6919 in the Large Magellanic Cloud, a satellite galaxy of the Milky Way. This is the first gamma-ray pulsar detected in another galaxy. It has the most luminous pulsed gamma-ray emission yet observed, exceeding the Crab pulsar's by a factor of 20. PSR J0540-6919 presents an extreme test case for understanding the structure and evolution of neutron star magnetospheres.

  8. Challenges in explaining the Galactic Center gamma-ray excess with millisecond pulsars

    SciTech Connect

    Cholis, Ilias; Hooper, Dan; Linden, Tim E-mail: dhooper@fnal.gov

    2015-06-01

    Millisecond pulsars have been discussed as a possible source of the gamma-ray excess observed from the region surrounding the Galactic Center. With this in mind, we use the observed population of bright low-mass X-ray binaries to estimate the number of millisecond pulsars in the Inner Galaxy. This calculation suggests that only ∼ 1–5% of the excess is produced by millisecond pulsars. We also use the luminosity function derived from local measurements of millisecond pulsars, along with the number of point sources resolved by Fermi, to calculate an upper limit for the diffuse emission from such a population. While this limit is compatible with the millisecond pulsar population implied by the number of low-mass X-ray binaries, it strongly excludes the possibility that most of the excess originates from such objects.

  9. Burst and Persistent Emission Properties during the Recent Active Episode of the Anomalous X-Ray Pulsar 1E 1841-045

    NASA Technical Reports Server (NTRS)

    Lin, Lin; Kouveliotou, Chryssa; Gogus, Ersin; van der Horst, Alexander J.; Watts, Anna L.; Baring, Matthew G.; Kaneko, Yuki; Wijers, Ralph A. M. J.; Woods, Peter M.; Barthelmy, Scott; Burgess, J. Michael; Chaplin, Vandiver; Gehrels, Neil; Goldstein, Adam; Granot, Jonathan; Guiriec, Sylvain; Mcenery, Julie; Preece, Robert D.; Tierney, David; van der Klis, Michiel; von Kienlin, Andreas; Zhang, Shuang Nan

    2011-01-01

    SWift/BAT detected the first burst from 1E 1841-045 in May 2010 with intermittent burst activity recorded through at least July 2011. Here we present Swift and Fermi/GBM observations of this burst activity and search for correlated changes to the persistent X-ray emission of the source. The T90 durations of the bursts range between 18 - 140 ms, comparable to other magnetar burst durations, while the energy released in each burst ranges between (0.8-25) x 1038 erg, which is in the low side of SGR bursts. We find that the bursting activity did not have a significant effect on the persistent flux level of the source. We argue that the mechanism leading to this sporadic burst activity in IE 1841-045 might not involve large scale restructuring (either crustal or magnetospheric) as seen in other magnetar sources.

  10. Ultraluminous X-ray Sources.

    NASA Astrophysics Data System (ADS)

    Fabrika, S.; Sholukhova, O.; Abolmasov, P.

    2008-12-01

    We discuss a new type of X-ray sources discovered in galaxies -- ultraluminous X-ray sources (ULXs). They are of two order of magnitude brighter in X-rays than the brightest Galactic black holes. Two mod- els of ULXs are discussed: "intermediate mass" black holes, 100 - 10000 solar masses, with standard accretion disks, and "stellar mass" black holes with su- percritical accretion disks like that in the Galactic object SS 433. A study of gas nebulae surrounding these objects gives us a new important information on the central sources. The observed X-ray radiation of ULXs is not enough to power their nebulae. To understand both spectra and power of the nebulae one needs a powerful UV source. The ULXs must be such bright in UV range as they are in X-rays. Spectroscopy of gas filaments surrounding SS 433 proves that the intrinsic face-on luminosity of the supercritical accretion disk in the far UV region to be "sim; 10^40 erg/s. We expect that observations of ULXs with the WSO-UV Observatory, measurements their UV fluxes and spectral slopes solve the problem of ULXs between the two known models of these sources.

  11. Pulsars

    NASA Astrophysics Data System (ADS)

    Stappers, Benjamin W.

    2012-04-01

    Pulsars can be considered as the ultimate time-variable source. They show variations on time-scales ranging from nanoseconds to as long as years, and they emit over almost the entire electromagnetic spectrum. The dominant modulation is associated with the rotation period, which can vary from slighty more than a millisecond to upwards of ten seconds (if we include the magnetars). Variations on time-scales shorter than the pulse period are mostly associated with emission processes and are manifested as giant pulses, microstructure and sub-pulses (to name a few). On time-scales of a rotation to a few hundred rotations are other phenomena also associated with the emission, such as nulling, moding, drifting and intermittency. By probing these and slightly longer time-scales we find that pulsars exhibit ``glitches'', which are rapid variations in spin rates. They are believed to be related to the interaction between the superfluid interior of the neutron star and the outer crust. Detailed studies of glitches can reveal much about the properties of the constituents of neutron stars-the only way to probe the physics of material at such extreme densities. Time-scales of about an hour or longer reveal that some pulsars are in binary systems, in particular the most rapidly rotating systems. Discovering and studying those binary systems provides vital clues to the evolution of massive stars, while some of the systems are also the best probes of strong-field gravity theories; the elusive pulsar-black hole binary would be the ultimate system. Pulsars are tools that allow us to probe a range of phenomena and time-scales. It is possible to measure the time of arrival of pulses from some pulsars to better than a few tens of nanoseconds over years, making them some of the most accurate clocks known. Concerning their rotation, deviations from sphericity may cause pulsars to emit gravitational waves which might then be detected by next-generation gravitational-wave detectors. Pulsars

  12. The unique opportunity to determine the mass of an accreting neutron star: the eclipsing accretion powered X-ray pulsar SWIFTJ1749.4-2807

    NASA Astrophysics Data System (ADS)

    Jonker, Peter; Eikenberry, Steve; Torres, Manuel; Steeghs, Daniel; Chakrabarty, Deepto

    2014-02-01

    In 2010 it was discovered that the peculiar transient SWIFT J1749.4-2807 exhibits pulsations at 518 Hz. Furthermore, it turned out that the source was eclipsing in a 8.8 hr orbit thereby holding the promise of a model independent neutron star mass determination. Optical or near-infrared dynamical studies offer the best prospects for constraining the neutron star equation of state, as they do not rely on any specific models concerning the neutron star itself. Using Gemini NIRI observations we identified the NIR counterpart to the pulsar. Here, we propose for Gemini near-infrared spectroscopy with FLAMINGOS-2 to obtain spectra over the orbit to measure the radial velocity semi-amplitude of the mass donor star, which will lead to a model independent mass measurement of the neutron star.

  13. Classical Accreting Pulsars with NICER

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2014-01-01

    Soft excesses are very common center dot Lx > 1038 erg/s - reprocessing by optically thick material at the inner edge of the accretion disk center dot Lx < 1036 erg/s - photoionized or collisionally heated diffuse gas or thermal emission from the NS surface center dot Lx 1037 erg/s - either or both types of emission center dot NICER observations of soft excesses in bright X-ray pulsars combined with reflection modeling will constrain the ionization state, metalicity and dynamics of the inner edge of the magnetically truncated accretion disk Reflection models of an accretion disk for a hard power law - Strong soft excess below 3 keV from hot X-ray heated disk - For weakly ionized case: strong recombination lines - Are we seeing changes in the disk ionization in 4U1626-26? 13 years of weekly monitoring with RXTE PCA center dot Revealed an unexpectedly large population of Be/X-ray binaries compared to the Milky Way center dot Plotted luminosities are typical of "normal" outbursts (once per orbit) center dot The SMC provides an excellent opportunity to study a homogenous population of HMXBs with low interstellar absorption for accretion disk studies. Monitoring with NICER will enable studies of accretion disk physics in X-ray pulsars center dot The SMC provides a potential homogeneous low-absorption population for this study center dot NICER monitoring and TOO observations will also provide measurements of spinfrequencies, QPOs, pulsed fluxes, and energy spectra.

  14. X-Ray Lasers

    ERIC Educational Resources Information Center

    Chapline, George; Wood, Lowell

    1975-01-01

    Outlines the prospects of generating coherent x rays using high-power lasers and indentifies problem areas in their development. Indicates possible applications for coherent x rays in the fields of chemistry, biology, and crystallography. (GS)

  15. X-ray (image)

    MedlinePlus

    X-rays are a form of ionizing radiation that can penetrate the body to form an image on ... will be shades of gray depending on density. X-rays can provide information about obstructions, tumors, and other ...

  16. Bone x-ray

    MedlinePlus

    ... not being scanned. Alternative Names X-ray - bone Images Skeleton Skeletal spine Osteogenic sarcoma - x-ray References ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ...

  17. X-ray

    MedlinePlus

    ... think you might be pregnant. Alternative Names Radiography Images X-ray X-ray References Geleijns J, Tack ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ...

  18. Extremity x-ray

    MedlinePlus

    ... sensitive to the risks of an x-ray. Images X-ray References Kelly DM. Congenital anomalies of ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ...

  19. X-Ray Toolkit

    SciTech Connect

    2015-10-20

    Radiographic Image Acquisition & Processing Software for Security Markets. Used in operation of commercial x-ray scanners and manipulation of x-ray images for emergency responders including State, Local, Federal, and US Military bomb technicians and analysts.

  20. Discovery of an Energetic Pulsar Associated with SNR G76.9+1.0

    NASA Technical Reports Server (NTRS)

    Arzoumanian, Zaven; Gotthelf, E. V.; Ransom, S. M.; Safi-Harb, S.; Kothes, R.; Landecker, T. L.

    2012-01-01

    We report the discovery of PSR J2022-<-3842, a 24 ms radio and X-ray pulsar in the supernova remnant G76.9+i.0, in observations with the Chandra X-ray telescope, the Robert C. Byrd Green Bank Radio Telescope, and the Rossi X-ray Timing Explorer (RXTE). The pulsar's spin-down rate implies a rotation-powered luminosity E = 1.2 X 10(exp 38) erg/s, a surface dipole magnetic field strength B(sub S), = 1.0 X 10(exp 12) G, and a characteristic age of 8.9 kyr. PSR J2022+3842 is thus the second-most energetic Galactic pulsar known, after the Crab, as well as the most rapidly-rotating young, radio-bright pulsar known. The radio pulsations are highly dispersed and broadened by interstellar scattering, and we find that a large (delta f/f approximates 1.9 x 10(exp -6)) spin glitch must have occurred between our discovery and confirmation observations. The X-ray pulses are narrow (0.06 cycles FWHM) and visible up to 20 keV, consistent with magnetospheric emission from a rotation-powered pulsar. The Chandra X-ray image identifies the pulsar with a hard, unresolved source at the midpoint of the double-lobed radio morphology of G76.9+ 1.0 and embedded within faint, compact X-ray nebulosity. The spatial relationship of the X-ray and radio emissions is remarkably similar to extended structure seen around the Vela pulsar. The combined Chandra and RXTE pulsar spectrum is well-fitted by an absorbed power-law model with column density N(sub H) = (1.7 +/- 0.3) x 10(exp 22) / sq cm and photon index Gamma = 1.0 +/- 0.2; it implies that the Chandra point-source flux is virtually 100% pulsed. For a distance of 10 kpc, the X-ray luminosity of PSR J2022+3842 is L(sub x){2-1O keV) = 7.0 x 10(exp 33) erg/s. Despite being extraordinarily energetic, PSR J2022+3842 lacks a bright X-ray wind nebula and has an unusually low conversion efficiency of spin-down power to X-ray luminosity, Lx/E = 5.9 X 10(exp-5).

  1. Novel X-ray Communication Based XNAV Augmentation Method Using X-ray Detectors.

    PubMed

    Song, Shibin; Xu, Luping; Zhang, Hua; Bai, Yuanjie

    2015-09-03

    The further development of X-ray pulsar-based NAVigation (XNAV) is hindered by its lack of accuracy, so accuracy improvement has become a critical issue for XNAV. In this paper, an XNAV augmentation method which utilizes both pulsar observation and X-ray ranging observation for navigation filtering is proposed to deal with this issue. As a newly emerged concept, X-ray communication (XCOM) shows great potential in space exploration. X-ray ranging, derived from XCOM, could achieve high accuracy in range measurement, which could provide accurate information for XNAV. For the proposed method, the measurement models of pulsar observation and range measurement observation are established, and a Kalman filtering algorithm based on the observations and orbit dynamics is proposed to estimate the position and velocity of a spacecraft. A performance comparison of the proposed method with the traditional pulsar observation method is conducted by numerical experiments. Besides, the parameters that influence the performance of the proposed method, such as the pulsar observation time, the SNR of the ranging signal, etc., are analyzed and evaluated by numerical experiments.

  2. Novel X-ray Communication Based XNAV Augmentation Method Using X-ray Detectors

    PubMed Central

    Song, Shibin; Xu, Luping; Zhang, Hua; Bai, Yuanjie

    2015-01-01

    The further development of X-ray pulsar-based NAVigation (XNAV) is hindered by its lack of accuracy, so accuracy improvement has become a critical issue for XNAV. In this paper, an XNAV augmentation method which utilizes both pulsar observation and X-ray ranging observation for navigation filtering is proposed to deal with this issue. As a newly emerged concept, X-ray communication (XCOM) shows great potential in space exploration. X-ray ranging, derived from XCOM, could achieve high accuracy in range measurement, which could provide accurate information for XNAV. For the proposed method, the measurement models of pulsar observation and range measurement observation are established, and a Kalman filtering algorithm based on the observations and orbit dynamics is proposed to estimate the position and velocity of a spacecraft. A performance comparison of the proposed method with the traditional pulsar observation method is conducted by numerical experiments. Besides, the parameters that influence the performance of the proposed method, such as the pulsar observation time, the SNR of the ranging signal, etc., are analyzed and evaluated by numerical experiments. PMID:26404295

  3. Principles of X-ray Navigation

    SciTech Connect

    Hanson, John Eric; /SLAC

    2006-03-17

    X-ray navigation is a new concept in satellite navigation in which orientation, position and time are measured by observing stellar emissions in x-ray wavelengths. X-ray navigation offers the opportunity for a single instrument to be used to measure these parameters autonomously. Furthermore, this concept is not limited to missions in close proximity to the earth. X-ray navigation can be used on a variety of missions from satellites in low earth orbit to spacecraft on interplanetary missions. In 1997 the Unconventional Stellar Aspect Experiment (USA) will be launched as part of the Advanced Research and Global Observation Satellite (ARGOS). USA will provide the first platform for real-time experimentation in the field of x-ray navigation and also serves as an excellent case study for the design and manufacturing of space qualified systems in small, autonomous groups. Current techniques for determining the orientation of a satellite rely on observations of the earth, sun and stars in infrared, visible or ultraviolet wavelengths. It is possible to use x-ray imaging devices to provide arcsecond level measurement of attitude based on star patterns in the x-ray sky. This technique is explored with a simple simulation. Collimated x-ray detectors can be used on spinning satellites to provide a cheap and reliable measure of orientation. This is demonstrated using observations of the Crab Pulsar taken by the high Energy Astronomy Observatory (HEAO-1) in 1977. A single instrument concept is shown to be effective, but dependent on an a priori estimate of the guide star intensity and thus susceptible to errors in that estimate. A star scanner based on a differential measurement from two x-ray detectors eliminates the need for an a priori estimate of the guide star intensity. A first order model and a second order model of the two star scanner concepts are considered. Many of the stars that emit in the x-ray regime are also x-ray pulsars with frequency stability approaching a

  4. Sinus x-ray

    MedlinePlus

    Paranasal sinus radiography; X-ray - sinuses ... sinus x-ray is taken in a hospital radiology department. Or the x-ray may be taken ... Brown J, Rout J. ENT, neck, and dental radiology. In: Adam A, Dixon AK, Gillard JH Schaefer- ...

  5. Hand x-ray

    MedlinePlus

    X-ray - hand ... A hand x-ray is taken in a hospital radiology department or your health care provider's office by an ... technician. You will be asked to place your hand on the x-ray table, and keep it ...

  6. Spectral and Timing Nature of the Symbiotic X-Ray Binary 4U 1954+319: The Slowest Rotating Neutron Star in AN X-Ray Binary System

    NASA Technical Reports Server (NTRS)

    Enoto, Teruaki; Sasano, Makoto; Yamada, Shin'Ya; Tamagawa, Toru; Makishima, Kazuo; Pottschmidt, Katja; Marcu, Diana; Corbet, Robin H. D.; Fuerst, Felix; Wilms, Jorn

    2014-01-01

    The symbiotic X-ray binary (SyXB) 4U 1954+319 is a rare system hosting a peculiar neutron star (NS) and an M-type optical companion. Its approx. 5.4 hr NS spin period is the longest among all known accretion-powered pulsars and exhibited large (is approx. 7%) fluctuations over 8 yr. A spin trend transition was detected with Swift/BAT around an X-ray brightening in 2012. The source was in quiescent and bright states before and after this outburst based on 60 ks Suzaku observations in 2011 and 2012. The observed continuum is well described by a Comptonized model with the addition of a narrow 6.4 keV Fe-K alpha line during the outburst. Spectral similarities to slowly rotating pulsars in high-mass X-ray binaries, its high pulsed fraction (approx. 60%-80%), and the location in the Corbet diagram favor high B-field (approx. greater than 10(exp12) G) over a weak field as in low-mass X-ray binaries. The observed low X-ray luminosity (10(exp33)-10(exp35) erg s(exp-1)), probable wide orbit, and a slow stellar wind of this SyXB make quasi-spherical accretion in the subsonic settling regime a plausible model. Assuming a approx. 10(exp13) G NS, this scheme can explain the approx. 5.4 hr equilibrium rotation without employing the magnetar-like field (approx. 10(exp16) G) required in the disk accretion case. The timescales of multiple irregular flares (approx. 50 s) can also be attributed to the free-fall time from the Alfv´en shell for a approx. 10(exp13) G field. A physical interpretation of SyXBs beyond the canonical binary classifications is discussed.

  7. Spectral and Timing Nature of the Symbiotic X-Ray Binary 4U 1954+319: The Slowest Rotating Neutron Star in an X-Ray Binary System

    NASA Astrophysics Data System (ADS)

    Enoto, Teruaki; Sasano, Makoto; Yamada, Shin'ya; Tamagawa, Toru; Makishima, Kazuo; Pottschmidt, Katja; Marcu, Diana; Corbet, Robin H. D.; Fuerst, Felix; Wilms, Jörn

    2014-05-01

    The symbiotic X-ray binary (SyXB) 4U 1954+319 is a rare system hosting a peculiar neutron star (NS) and an M-type optical companion. Its ~5.4 hr NS spin period is the longest among all known accretion-powered pulsars and exhibited large (~7%) fluctuations over 8 yr. A spin trend transition was detected with Swift/BAT around an X-ray brightening in 2012. The source was in quiescent and bright states before and after this outburst based on 60 ks Suzaku observations in 2011 and 2012. The observed continuum is well described by a Comptonized model with the addition of a narrow 6.4 keV Fe-Kα line during the outburst. Spectral similarities to slowly rotating pulsars in high-mass X-ray binaries, its high pulsed fraction (~60%-80%), and the location in the Corbet diagram favor high B-field (gsim 1012 G) over a weak field as in low-mass X-ray binaries. The observed low X-ray luminosity (1033-1035 erg s-1), probable wide orbit, and a slow stellar wind of this SyXB make quasi-spherical accretion in the subsonic settling regime a plausible model. Assuming a ~1013 G NS, this scheme can explain the ~5.4 hr equilibrium rotation without employing the magnetar-like field (~1016 G) required in the disk accretion case. The timescales of multiple irregular flares (~50 s) can also be attributed to the free-fall time from the Alfvén shell for a ~1013 G field. A physical interpretation of SyXBs beyond the canonical binary classifications is discussed.

  8. NuSTAR OBSERVATIONS AND BROADBAND SPECTRAL ENERGY DISTRIBUTION MODELING OF THE MILLISECOND PULSAR BINARY PSR J1023+0038

    SciTech Connect

    Li, K. L.; Kong, A. K. H.; Tam, P. H. T.; Jin, Ruolan; Takata, J.; Cheng, K. S.; Hui, C. Y. E-mail: akong@phys.nthu.edu.tw

    2014-12-20

    We report the first hard X-ray (3-79 keV) observations of the millisecond pulsar (MSP) binary PSR J1023+0038 using NuSTAR. This system has been shown transiting between a low-mass X-ray binary (LMXB) state and a rotation-powered MSP state. The NuSTAR observations were taken in both LMXB state and rotation-powered state. The source is clearly seen in both states up to ∼79 keV. During the LMXB state, the 3-79 keV flux is about a factor of 10 higher than in the rotation-powered state. The hard X-rays show clear orbital modulation during the X-ray faint rotation-powered state but the X-ray orbital period is not detected in the X-ray bright LMXB state. In addition, the X-ray spectrum changes from a flat power-law spectrum during the rotation-powered state to a steeper power-law spectrum in the LMXB state. We suggest that the hard X-rays are due to the intrabinary shock from the interaction between the pulsar wind and the injected material from the low-mass companion star. During the rotation-powered MSP state, the X-ray orbital modulation is due to Doppler boosting of the shocked pulsar wind. At the LMXB state, the evaporating matter of the accretion disk due to the gamma-ray irradiation from the pulsar stops almost all the pulsar wind, resulting in the disappearance of the X-ray orbital modulation.

  9. Femtosecond laser-electron x-ray source

    DOEpatents

    Hartemann, Frederic V.; Baldis, Hector A.; Barty, Chris P.; Gibson, David J.; Rupp, Bernhard

    2004-04-20

    A femtosecond laser-electron X-ray source. A high-brightness relativistic electron injector produces an electron beam pulse train. A system accelerates the electron beam pulse train. The femtosecond laser-electron X-ray source includes a high intra-cavity power, mode-locked laser and an x-ray optics system.

  10. Swings between rotation and accretion power in a binary millisecond pulsar.

    PubMed

    Papitto, A; Ferrigno, C; Bozzo, E; Rea, N; Pavan, L; Burderi, L; Burgay, M; Campana, S; Di Salvo, T; Falanga, M; Filipović, M D; Freire, P C C; Hessels, J W T; Possenti, A; Ransom, S M; Riggio, A; Romano, P; Sarkissian, J M; Stairs, I H; Stella, L; Torres, D F; Wieringa, M H; Wong, G F

    2013-09-26

    It is thought that neutron stars in low-mass binary systems can accrete matter and angular momentum from the companion star and be spun-up to millisecond rotational periods. During the accretion stage, the system is called a low-mass X-ray binary, and bright X-ray emission is observed. When the rate of mass transfer decreases in the later evolutionary stages, these binaries host a radio millisecond pulsar whose emission is powered by the neutron star's rotating magnetic field. This evolutionary model is supported by the detection of millisecond X-ray pulsations from several accreting neutron stars and also by the evidence for a past accretion disc in a rotation-powered millisecond pulsar. It has been proposed that a rotation-powered pulsar may temporarily switch on during periods of low mass inflow in some such systems. Only indirect evidence for this transition has hitherto been observed. Here we report observations of accretion-powered, millisecond X-ray pulsations from a neutron star previously seen as a rotation-powered radio pulsar. Within a few days after a month-long X-ray outburst, radio pulses were again detected. This not only shows the evolutionary link between accretion and rotation-powered millisecond pulsars, but also that some systems can swing between the two states on very short timescales.

  11. A soft X-ray image of the moon

    NASA Technical Reports Server (NTRS)

    Schmitt, J. H. M. M.; Aschenbach, B.; Hasinger, G.; Pfeffermann, E.; Snowden, S. L.

    1991-01-01

    A soft X-ray image of the moon obtained by the Roentgen Observatory Satellite ROSAT clearly shows a sunlit crescent, demonstrating that the moon's X-ray luminosity arises from backscattering of solar X-rays. The moon's optically dark side is also X-ray dark, and casts a distinct shadow on the diffuse cosmic X-ray background. Unexpectedly, the dark side seems to emit X-rays at a level about one percent of that of the bright side; this emission very probably results from energetic solar-wind electrons striking the moon's surface.

  12. On The Nature of the Ultraluminous X-Ray Transient in Cen A (NGC 5128)

    NASA Technical Reports Server (NTRS)

    Ghosh, Kajal K.; Finger, Mark H.; Swartz, Douglas A.; Tennant, Allyn F.; Wu, Kinwah

    2005-01-01

    We combine 20 ROSAT, Chandra, and XMM-Newton observations of the Cen A galaxy to obtain the X-ray light curve of 1RXH J132519.8-430312 (=CXOU J132519.9-430317) spanning 1990 to 2003. The source reached a peak 0.1-2.4 keV flux F(sub X) > 10(exp -12) ergs/sq cm/s during a 10 day span in 1995 July. The inferred peak isotropic luminosity of the source therefore exceeded 3 x 10(exp 39) ergs/s, which places the source in the class of ultra-luminous X-ray sources. Coherent pulsations at 13.264 Hz are detected at the 3 sigma level during a second bright episode (F(sub x) > 3 x 10(exp -13) ergs/sq cm/s) in 1999 December. The source is detected and varies significantly within three additional observations but is below the detection threshold in 7 observations. The X-ray spectrum in 1999 December is best described as a cut-off power law or a disk-blackbody (multi-colored disk). We also detect an optical source, m(sub F555W) approx. 24.1 mag, within the Chandra error circle of 1RXH J132519.8-430312 in Hubble images taken 195 days before the nearest X-ray observation. The optical brightness of this source is consistent with a late O or early B star at the distance of Cen A. The X-ray and optical behavior of 1RXH J132519.8-430312 is therefore similar to the transient Be/X-ray pulsar A 0538-66.

  13. Solar x ray astronomy rocket program

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The dynamics were studied of the solar corona through the imaging of large scale coronal structures with AS&E High Resolution Soft X ray Imaging Solar Sounding Rocket Payload. The proposal for this program outlined a plan of research based on the construction of a high sensitivity X ray telescope from the optical and electronic components of the previous flight of this payload (36.038CS). Specifically, the X ray sensitive CCD camera was to be placed in the prime focus of the grazing incidence X ray mirror. The improved quantum efficiency of the CCD detector (over the film which had previously been used) allows quantitative measurements of temperature and emission measure in regions of low x ray emission such as helmet streamers beyond 1.2 solar radii or coronal holes. Furthermore, the improved sensitivity of the CCD allows short exposures of bright objects to study unexplored temporal regimes of active region loop evolution.

  14. Probing the X-ray Emission from Dueling Magnetospheres

    NASA Astrophysics Data System (ADS)

    Chatterjee, Shamibrata

    2004-09-01

    The double pulsar system J0737-3039 may provide answers to longstanding questions about the pulsar emission mechanism and the physics of relativistic winds. X-ray emission detected with Chandra could be produced by pulsed magnetospheric emission or at termination shocks located at the wind-wind boundary or the wind-ISM boundary. We propose high time resolution observations with HRC-S which will determine the X-ray modulation fraction at the pulsar rotational and orbital periods, thus distinguishing between the various possibilities and providing direct constraints on the magnetization parameter of the relativistic wind.

  15. Detection of x ray sources in PROS

    NASA Technical Reports Server (NTRS)

    Deponte, J.; Primini, F. A.

    1992-01-01

    The problem of detecting discrete sources in x-ray images has much in common with the problem of automatic source detection at other wavelengths. In all cases, one searches for positive brightness enhancements exceeding a certain threshold, which appear consistent with what one expects for a point source, in the presence of a (possibly) spatially variable background. Multidimensional point spread functions (e.g., dependent on detector position and photon energy) are also common. At the same time, the problem in x-ray astronomy has some unique aspects. For example, for typical x-ray exposures in current or recent observatories, the number of available pixels far exceeds the number of actual x-ray events, so Poisson, rather than Gaussian statistics apply. Further, extended cosmic x-ray sources are common, and one often desires to detect point sources in the vicinity or even within bright, diffuse x-ray emission. Finally, support structures in x-ray detectors often cast sharp shadows in x-ray images making it necessary to detect sources in a region of rapidly varying exposure. We have developed a source detection package within the IRAF/PROS environment which attempts to deal with some of the problems of x-ray source detection. We have patterned our package after the successful Einstein Observatory x-ray source detection programs. However, we have attempted to improve the flexibility and accessibility of the functions and to provide a graphical front-end for the user. Our philosophy has been to use standard IRAF tasks whenever possible for image manipulation and to separate general functions from mission-specific ones. We will report on the current status of the package and discuss future developments, including simulation tasks, to allow the user to assess detection efficiency and source significance, tasks to determine source intensity, and alternative detection algorithms.

  16. Design and development of grazing incidence x-ray mirrors

    NASA Astrophysics Data System (ADS)

    Zuo, Fuchang; Mei, Zhiwu; Ma, Tao; Deng, Loulou; Shi, Yongqiang; Li, Liansheng

    2016-01-01

    X-ray pulsar navigation has attracted extensive attentions from academy and engineering domains. The navigation accuracy is can be enhanced through design of X-ray mirrors to focus X-rays to a small detector. The Wolter-I optics, originally proposed based on a paraboloid mirror and a hyperboloid mirror for X-ray imaging, has long been widely developed and employed in X-ray observatory. Some differences, however, remain in the requirements on optics between astronomical X-ray observation and pulsar navigation. The simplified Wolter-I optics, providing single reflection by a paraboloid mirror, is more suitable for pulsar navigation. In this paper, therefore, the grazing incidence X-ray mirror was designed further based on our previous work, with focus on the reflectivity, effective area, angular resolution and baffles. To evaluate the performance of the manufactured mirror, the surface roughness and reflectivity were tested. The test results show that the grazing incidence mirror meets the design specifications. On the basis of this, the reflectivity of the mirror in the working bandwidth was extrapolated to evaluate the focusing ability of the mirror when it works together with the detector. The purpose of our current work to design and develop a prototype mirror was realized. It can lay a foundation and provide guidance for the development of multilayer nested X-ray mirror with larger effective area.

  17. X-ray binaries

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Satellite X-ray experiments and ground-based programs aimed at observation of X-ray binaries are discussed. Experiments aboard OAO-3, OSO-8, Ariel 5, Uhuru, and Skylab are included along with rocket and ground-based observations. Major topics covered are: Her X-1, Cyg X-3, Cen X-3, Cyg X-1, the transient source A0620-00, other possible X-ray binaries, and plans and prospects for future observational programs.

  18. Symbiotic Stars in X-rays

    NASA Technical Reports Server (NTRS)

    Luna, G. J. M.; Sokoloski, J. L.; Mukai, K.; Nelson, T.

    2014-01-01

    Until recently, symbiotic binary systems in which a white dwarf accretes from a red giant were thought to be mainly a soft X-ray population. Here we describe the detection with the X-ray Telescope (XRT) on the Swift satellite of 9 white dwarf symbiotics that were not previously known to be X-ray sources and one that was previously detected as a supersoft X-ray source. The 9 new X-ray detections were the result of a survey of 41 symbiotic stars, and they increase the number of symbiotic stars known to be X-ray sources by approximately 30%. Swift/XRT detected all of the new X-ray sources at energies greater than 2 keV. Their X-ray spectra are consistent with thermal emission and fall naturally into three distinct groups. The first group contains those sources with a single, highly absorbed hard component, which we identify as probably coming from an accretion-disk boundary layer. The second group is composed of those sources with a single, soft X-ray spectral component, which likely arises in a region where low-velocity shocks produce X-ray emission, i.e. a colliding-wind region. The third group consists of those sources with both hard and soft X-ray spectral components. We also find that unlike in the optical, where rapid, stochastic brightness variations from the accretion disk typically are not seen, detectable UV flickering is a common property of symbiotic stars. Supporting our physical interpretation of the two X-ray spectral components, simultaneous Swift UV photometry shows that symbiotic stars with harder X-ray emission tend to have stronger UV flickering, which is usually associated with accretion through a disk. To place these new observations in the context of previous work on X-ray emission from symbiotic stars, we modified and extended the alpha/beta/gamma classification scheme for symbiotic-star X-ray spectra that was introduced by Muerset et al. based upon observations with the ROSAT satellite, to include a new sigma classification for sources with

  19. Globular cluster x-ray sources.

    PubMed

    Pooley, David

    2010-04-20

    Globular clusters and x-ray astronomy have a long and fruitful history. Uhuru and OSO-7 revealed highly luminous (> 10(36) ergs(-1)) x-ray sources in globular clusters, and Einstein and ROSAT revealed a larger population of low-luminosity (< 10(33) ergs(-1)) x-ray sources. It was realized early on that the high-luminosity sources were low-mass x-ray binaries in outburst and that they were orders of magnitude more abundant per unit mass in globular clusters than in the rest of the galaxy. However, the low-luminosity sources proved difficult to classify. Many ideas were put forth--low-mass x-ray binaries in quiescence (qLMXBs), cataclysmic variables (CVs), active main-sequence binaries (ABs), and millisecond pulsars (MSPs)--but secure identifications were scarce. In ROSAT observations of 55 clusters, about 25 low-luminosity sources were found. Chandra has now observed over 80 Galactic globular clusters, and these observations have revealed over 1,500 x-ray sources. The superb angular resolution has allowed for many counterpart identifications, providing clues to the nature of this population. It is a heterogeneous mix of qLMXBs, CVs, ABs, and MSPs, and it has been shown that the qLMXBs and CVs are both, in part, overabundant like the luminous LMXBs. The number of x-ray sources in a cluster correlates very well with its encounter frequency. This points to dynamical formation scenarios for the x-ray sources and shows them to be excellent tracers of the complicated internal dynamics. The relation between the encounter frequency and the number of x-ray sources has been used to suggest that we have misunderstood the dynamical states of globular clusters.

  20. "X-Ray Transients in Star-Forming Regions" and "Hard X-Ray Emission from X-Ray Bursters"

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Kaaret, Philip

    1999-01-01

    This grant funded work on the analysis of data obtained with the Burst and Transient Experiment (BATSE) on the Compton Gamma-Ray Observatory. The goal of the work was to search for hard x-ray transients in star forming regions using the all-sky hard x-ray monitoring capability of BATSE. Our initial work lead to the discovery of a hard x-ray transient, GRO J1849-03. Follow-up observations of this source made with the Wide Field Camera on BeppoSAX showed that the source should be identified with the previously known x-ray pulsar GS 1843-02 which itself is identified with the x-ray source X1845-024 originally discovered with the SAS-3 satellite. Our identification of the source and measurement of the outburst recurrence time, lead to the identification of the source as a Be/X-ray binary with a spin period of 94.8 s and an orbital period of 241 days. The funding was used primarily for partial salary and travel support for John Tomsick, then a graduate student at Columbia University. John Tomsick, now Dr. Tomsick, received his Ph.D. from Columbia University in July 1999, based partially on results obtained under this investigation. He is now a postdoctoral research scientist at the University of California, San Diego.

  1. Accelerator-driven X-ray Sources

    SciTech Connect

    Nguyen, Dinh Cong

    2015-11-09

    After an introduction which mentions x-ray tubes and storage rings and gives a brief review of special relativity, the subject is treated under the following topics and subtopics: synchrotron radiation (bending magnet radiation, wiggler radiation, undulator radiation, brightness and brilliance definition, synchrotron radiation facilities), x-ray free-electron lasers (linac-driven X-ray FEL, FEL interactions, self-amplified spontaneous emission (SASE), SASE self-seeding, fourth-generation light source facilities), and other X-ray sources (energy recovery linacs, Inverse Compton scattering, laser wakefield accelerator driven X-ray sources. In summary, accelerator-based light sources cover the entire electromagnetic spectrum. Synchrotron radiation (bending magnet, wiggler and undulator radiation) has unique properties that can be tailored to the users’ needs: bending magnet and wiggler radiation is broadband, undulator radiation has narrow spectral lines. X-ray FELs are the brightest coherent X-ray sources with high photon flux, femtosecond pulses, full transverse coherence, partial temporal coherence (SASE), and narrow spectral lines with seeding techniques. New developments in electron accelerators and radiation production can potentially lead to more compact sources of coherent X-rays.

  2. Chandra Discovery of Intervening, Local and Intrinsic Highly Ionized Absorption in an extremely bright high resolution X-ray spectrum of an Extragalactic Source

    NASA Astrophysics Data System (ADS)

    Nicastro, F.; Elvis, M.; Fang, T.; Mathur, S.; Siemiginowska, A.; Zezas, A.

    2003-03-01

    In this contribution we present the brightest high resolution X-ray spectrum ever taken for an extragalactic source. Following our ToO request, Chandra observed the blazar Mkn 421 (z=0.03) during an exceptionally high-luminosity flare. The observation lasted about 100 ks, during which the source reached a flux level of > 0.1 Crab in the 0.5-2 keV band This allowed us to collect 4.2 million counts in the 1st-order ACIS-LETG spectrum of Mkn 421, and more than 3000 counts per resolution elements at the rest frame wavelength of the OVII Kα resonant transitions (21.6 Å). A forest of very weak (EW=3.1-10 mÅ) resonant absorption lines is detected from the rest frame wavelength of the OVII Kα all the way down to the position of the OVII Kα line at the source redshift. We identify these lines as due to: (a) Local Group Warm-Hot Intergalactic Medium (WHIM) absorption, (b) intervening WHIM absorption at redshifts z=0.01 (associated with faint H Lyα absorption) and z=0.025, and (c) intrinsic source absorption. The strongest of these systems is associated with the local WHIM first discovered along the line of sight to PKS 2155-304 (Nicastro et al., 2002, 2003), and now observed (always with consistent gas properties) along all the lines of sight for which Chandra high resolution spectra with sufficient signal to noise ratio are available. The faintest systems (probing OVII column densities as low as 1015 cm-2) are those identified as due to the two intervening WHIM systems. If both these identification are correct this discovery implies a number of intervening OVII WHIM systems per unit redshift of dN/dz(NOVII>1015) = 75, about 3-4 times larger than the corresponding number estimated for OVI systems in the local Universe (down to OVI EW of 60 mÅ). The WHIM baryon fraction implied depends slightly on the ionization correction applied, and ranges between 40 % and 60 % of the total baryons at z<2, so confirming hydrodynamical simulation predictions and accounting for all of

  3. Resolving the Crab Nebula with Direct Hard X-Ray Imaging

    NASA Technical Reports Server (NTRS)

    Swartz, Douglas A.; Ramsey, Brian D.; Tennant, Allyn F.; Dietz, Kurtis L.; Apple, Jeff A.; Gaskin, Jessica A.; Weisskopf, Martin

    2008-01-01

    We report the first direct hard (25--60 keV) X-ray imaging observation of the Crab Nebula that resolves structure to approximately 0.25 pc. The observation was performed over a 1.4 hour period during a balloon flight from Ft. Sumner, NM, on 2007 May 27. The source was detected in the energy band above the atmospheric cutoff at approx.25 keV and below the mirror graze angle cutoff at approx.60 keV. The image shows elongation about 25 degrees E of N in the direction along the plane of the torus (and perpendicular to the jet axis) with a slight surface-brightness enhancement NE of the pulsar. The spectrum within a 1.7 arcminute radius region centered on the Crab pulsar can be fitted with a Gamma=2 power law absorbed by an atmospheric column consistent with the balloon altitude at the time of observation.

  4. X-Ray

    MedlinePlus

    ... of gray. For some types of X-ray tests, a contrast medium — such as iodine or barium — is introduced into your body to provide greater detail on the images. X-ray technology is used to examine many parts of the ...

  5. Chest X-Ray

    MedlinePlus Videos and Cool Tools

    ... Site Index A-Z Spotlight Recently posted: Anal Cancer Facet Joint Block Video: Lung Cancer Screening Video: Upper GI Tract X-ray Video: ... of lung conditions such as pneumonia, emphysema and cancer. A chest x-ray requires no special preparation. ...

  6. X-ray Spectrometry.

    ERIC Educational Resources Information Center

    Markowicz, Andrzej A.; Van Grieken, Rene E.

    1984-01-01

    Provided is a selective literature survey of X-ray spectrometry from late 1981 to late 1983. Literature examined focuses on: excitation (photon and electron excitation and particle-induced X-ray emission; detection (wavelength-dispersive and energy-dispersive spectrometry); instrumentation and techniques; and on such quantitative analytical…

  7. X-ray beamsplitter

    DOEpatents

    Ceglio, Natale M.; Stearns, Daniel S.; Hawryluk, Andrew M.; Barbee, Jr., Troy W.

    1989-01-01

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5-50 pairs of alternate Mo/Si layers with a period of 20-250 A. The support membrane is 10-200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window.

  8. Dental x-rays

    MedlinePlus

    ... X-rays are a form of high energy electromagnetic radiation. The x-rays penetrate the body to form ... for detecting cavities, unless the decay is very advanced and deep. Many ... The amount of radiation given off during the procedure is less than ...

  9. X-ray beamsplitter

    DOEpatents

    Ceglio, N.M.; Stearns, D.G.; Hawryluk, A.M.; Barbee, T.W. Jr.

    1987-08-07

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5--50 pairs of alternate Mo/Si layers with a period of 20--250 A. The support membrane is 10--200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window. 6 figs.

  10. X-ray generator

    DOEpatents

    Dawson, John M.

    1976-01-01

    Apparatus and method for producing coherent secondary x-rays that are controlled as to direction by illuminating a mixture of high z and low z gases with an intense burst of primary x-rays. The primary x-rays are produced with a laser activated plasma, and these x-rays strip off the electrons of the high z atoms in the lasing medium, while the low z atoms retain their electrons. The neutral atoms transfer electrons to highly excited states of the highly striped high z ions giving an inverted population which produces the desired coherent x-rays. In one embodiment, a laser, light beam provides a laser spark that produces the intense burst of coherent x-rays that illuminates the mixture of high z and low z gases, whereby the high z atoms are stripped while the low z ones are not, giving the desired mixture of highly ionized and neutral atoms. To this end, the laser spark is produced by injecting a laser light beam, or a plurality of beams, into a first gas in a cylindrical container having an adjacent second gas layer co-axial therewith, the laser producing a plasma and the intense primary x-rays in the first gas, and the second gas containing the high and low atomic number elements for receiving the primary x-rays, whereupon the secondary x-rays are produced therein by stripping desired ions in a neutral gas and transfer of electrons to highly excited states of the stripped ions from the unionized atoms. Means for magnetically confining and stabilizing the plasma are disclosed for controlling the direction of the x-rays.

  11. X-rays from Saturn Pose Puzzles

    NASA Astrophysics Data System (ADS)

    2004-03-01

    The first clear detection of X-rays from the giant, gaseous planet Saturn has been made with NASA's Chandra X-ray Observatory. Chandra's image shows that the X-rays are concentrated near Saturn's equator, a surprising result since Jupiter's X-ray emission is mainly concentrated near the poles. Existing theories cannot easily explain the intensity or distribution of Saturn's X-rays. Chandra observed Saturn for about 20 hours in April of 2003. The spectrum, or distribution with energy of the X-rays, was found to be very similar to that of X-rays from the Sun. "This indicates that Saturn's