Bişgin, Abdullah Taner
2018-05-29
Background: Brilliant Blue and Sunset Yellow, two highly water-soluble synthetic food dyes, are the most popular food dyes used and consumed. Although they are not highly toxic, some health problems can be observed when excessive amounts of food products containing these dyes are consumed. Objectives: The aim of the study was to develop a simultaneous UV-Vis combined solid-phase extraction method, based on the adsorption onto Amberlite XAD-8 resin, for determination of Brilliant Blue and Sunset Yellow dyes. Methods: Sample solution was poured into the reservoir of the column and permitted to gravitationally pass through the column at 2 mL/min flow rate. Adsorbed dyes were eluted to 5 mL of final volume with 1 mol/L HNO₃ in ethanol solution by applying a 2 mL/min flow rate. Dye concentrations of the solution were determined at 483 and 630 nm for Sunset Yellow and Brilliant Blue, respectively. Results: The detection limits of the method for Brilliant Blue and Sunset Yellow were determined as 0.13 and 0.66 ng/mL, respectively. Preconcentration factor was 80. Brilliant Blue contents of real food samples were found to be between 11 and 240 μg/g. Sunset Yellow concentrations of foodstuffs were determined to be between 19 and 331 μg/g. Conclusions: Economical, effective, and simple simultaneous determination of Brilliant Blue and Sunset Yellow was achieved by using a solid-phase extraction combined UV-Vis spectrometry method. Highlights: The method is applicable and suitable for routine analysis in quality control laboratories without the need for expert personnel and high operational costs because the instrumentation is simple and inexpensive.
Ultrasound assisted synthesis of WO3-ZnO nanocomposites for brilliant blue dye degradation.
Hunge, Y M; Yadav, A A; Mathe, V L
2018-07-01
The present work deals with the preparation of WO 3 and WO 3 -ZnO nanocomposites in presence of ultrasonic irradiation, and its use in the sonocatalytic degradation of brilliant blue dye. WO 3 -ZnO nanocomposite is prepared using one step in-situ ultrasound assisted method. The successfully prepared WO 3 and WO 3 -ZnO nanocomposites were characterized using different characterization techniques such as XRD, Raman, BET, FE-SEM and EDS. The XRD pattern reveals that the formation of monoclinic and hexagonal crystal structures of WO 3 and ZnO respectively. BET study shows that WO 3 -ZnO nanocomposite have maximum surface area than that of the WO 3 . EDS study confirms the formation of WO 3 -ZnO nanocomposites. Further the use of the prepared WO 3 and WO 3 -ZnO nanocomposites as a sonocatalyst for the degradation of brilliant blue dye. The rate constant (k) was evaluated as a function of the initial concentration of brilliant blue dye. It is found that WO 3 -ZnO nanocomposites exhibits maximum sonocatalytic activity as compared to WO 3 photocatalyst. Copyright © 2018 Elsevier B.V. All rights reserved.
Brilliant Blue Dyes in Daily Food: How Could Purinergic System Be Affected?
Ferreira, Leonardo Gomes Braga; Ferreira, Natiele Carla da Silva; Soares-Bezerra, Rômulo José
2016-01-01
Dyes were first obtained from the extraction of plant sources in the Neolithic period to produce dyed clothes. At the beginning of the 19th century, synthetic dyes were produced to color clothes on a large scale. Other applications for synthetic dyes include the pharmaceutical and food industries, which are important interference factors in our lives and health. Herein, we analyzed the possible implications of some dyes that are already described as antagonists of purinergic receptors, including special Brilliant Blue G and its derivative FD&C Blue No. 1. Purinergic receptor family is widely expressed in the body and is critical to relate to much cellular homeostasis maintenance as well as inflammation and cell death. In this review, we discuss previous studies and show purinergic signaling as an important issue to be aware of in food additives development and their correlations with the physiological functions. PMID:27833914
Celebi, Mithat; Ozdemir, Zafer Omer; Eroglu, Emre; Altikatoglu, Melda; Guney, Ibrahim
2015-02-01
Synthetic dyes are very important for textile dyeing, paper printing, color photography and petroleum products. Traditional methods of dye removal include biodegradation, precipitation, adsorption, chemical degradation, photo degradation, and chemical coagulation. Dye decolorization with enzymatic reaction is an important issue for several research field (chemistry, environment) In this study, minimum decolorization time of Remazol Brilliant Blue R dye with Horseradish peroxidase enzyme was calculated using with mathematical equation depending on experimental data. Dye decolorization was determined by monitoring the absorbance decrease at the specific maximum wavelength for dye. All experiments were carried out with different initial dye concentrations of Remazol Brilliant Blue R at 25 degrees C constant temperature for 30 minutes. The development of the least squares estimators for a nonlinear model brings about complications not encountered in the case of the linear model. Decolorization times for completely removal of dye were calculated according to equation. It was shown that mathematical equation was conformed exponential curve for dye degradation.
Immobilization of laccase on a novel ZnO/SiO2 nano-composited support for dye decolorization
NASA Astrophysics Data System (ADS)
Li, Wei-Xun; Sun, Huai-Yan; Zhang, Rui-Feng
2015-07-01
ZnO nanowires were introduced into macroporous SiO2 by means of in situ hydrothermal growth. The obtained nano-composite was then used to immobilize laccase (secured from Trametes versicolor) through the process of static adsorption. The average loading amount was as high as 193.4 μmol-g-1. The immobilized laccase was proven to be an effective biocatalyst in the decolorization of two dyes: Remazol Brilliant Blue B, and Acid Blue 25. The decolorization percentage of Remazol Brilliant Blue B and Acid Blue 25 reached 93% and 82% respectively. The immobilized laccase exhibited enhanced thermal stability and pH adaptability compared to free laccase. After ten recycles, the immobilized laccase retained 42% decolorization catalytic activity.
Coomassie Brilliant Blue G-250 Dye: An Application for Forensic Fingerprint Analysis.
Brunelle, Erica; Le, Anh Minh; Huynh, Crystal; Wingfield, Kelly; Halámková, Lenka; Agudelo, Juliana; Halámek, Jan
2017-04-04
The Bradford reagent, comprised of the Coomassie Brilliant Blue G-250 dye, methanol, and phosphoric acid, has been traditionally used for quantifying proteins. Use of this reagent in the Bradford assay relies on the binding of the Coomassie Blue G-250 dye to proteins. However, the ability of the dye to react with a small group of amino acids (arginine, histidine, lysine, phenylalanine, tyrosine, and tryptophan) makes it a viable chemical assay for fingerprint analysis in order to identify the biological sex of the fingerprint originator. It is recognized that the identification of biological sex has been readily accomplished using two other methods; however, both of those systems are reliant upon a large group of amino acids, 23 to be precise. The Bradford assay, described here, was developed specifically to aid in the transition from targeting large groups of amino acids, as demonstrated in the previous studies, to targeting only a single amino acid without compromising the intensity of the response and/or the ability to differentiate between two attributes. In this work, we aim to differentiate between female fingerprints and male fingerprints.
Dhananasekaran, Solairaj; Palanivel, Rameshthangam; Pappu, Srinivasan
2015-01-01
Expelling of dyestuff into water resource system causes major thread to the environment. Adsorption is the cost effective and potential method to remove the dyes from the effluents. Therefore, an attempt was made to study the adsorption of dyestuff (Methylene Blue (MB), Bromophenol Blue (BPB) and Coomassie Brilliant Blue (CBB)) by α-chitin nanoparticles (CNP) prepared from Penaeus monodon (Fabricius, 1798) shell waste. On contrary to the most recognizable adsorption studies using chitin, this is the first study using unique nanoparticles of ⩽50 nm used for the dye adsorption process. The results showed that the adsorption process increased with increase in the concentration of CNP, contact time and temperature with the dyestuff, whereas the adsorption process decreased with increase in the initial dye concentration and strong acidic pH. The results from Fourier transform infrared (FTIR) spectroscopy confirmed that the interaction between dyestuff and CNP involved physical adsorption. The adsorption process obeys Langmuir isotherm (R2 values were 0.992, 0.999 and 0.992 for MB, BPB and CBB, and RL value lies between 0 and 1 for all the three dyes) and pseudo second order kinetics (R2 values were 0.996, 0.999 and 0.996 for MB, BPB and CBB) more effectively. The isotherm and kinetic models confirmed that CNP can be used as a suitable adsorbent material for the removal of dyestuff from effluents. PMID:26843977
Utilization of biogenic tea waste silver nanoparticles for the reduction of organic dyes
NASA Astrophysics Data System (ADS)
Kaur, H.; Jaryal, N.
2018-05-01
Eco-friendly synthesis of nanoparticles is the need of the society today. Present study has been undertaken to investigate the greener approach for the preparation of medicinally and chemically important nanoparticles. Tea waste has been taken to synthesis silver nanoparticles. The nanoparticles are characterized by x-ray Diffraction, and Transmission Emission Microscopy studies. The particle size varied from 2 to 34 nm. These silver nanoparticles were evaluated for their reducing activity against four organic dyes viz crystal violet, methylene blue, Congo red and brilliant green. The particles exhibited good catalytic activity against crystal violet, methylene blue and brilliant green but no activity was visible for Congo red. Furthermore, AgNPs shows very promising and prominent antioxidant activity.
The brilliant blue FCF ion-molecular forms in solutions according to the spectrophotometry data
NASA Astrophysics Data System (ADS)
Chebotarev, A. N.; Bevziuk, K. V.; Snigur, D. V.; Bazel, Ya. R.
2017-10-01
The brilliant blue FCF acid-base properties in aqueous solutions have been studied and its ionization constants have been defined by tristimulus colorimetry and spectrophotometry methods. The scheme of the acid-base dye equilibrium has been proposed and a diagram of the distribution of its ionic-molecular forms has been built. It has been established that the dominant form of the dye was the electroneutral form, which molar absorptivity (ɛ625 = 0.97 × 105) increases with the increase of the dielectric permittivity of the solvent. It has been shown that the replacement of polar solvents by less polar ones is causing a bathochromic shift of the maximum absorption band of the dye, the value of which is correlated with the value of the Hansen parameter. Tautomerization constants have been defined in a number of solvents and associated with the value of the Dimroth-Reichardt parameter.
da Silva, Júlio César Cardoso; Bispo, Glayson Leonardo; Pavanelli, Sérgio Pinton; Afonso, Robson José de Cássia Franco; Augusti, Rodinei
2012-06-15
Dyes have been widely used to accentuate or to provide different colors to foods. However, the high concentrations of dyes in effluents from the food industries can cause serious and unpredictable damages to aquatic life in general. Furthermore, since conventional biological treatments have been shown to be ineffective, the use of advanced oxidation processes to promote the depletion of such dyes in water bodies has turned out to be mandatory. The degradation of the food dye Brilliant Blue by ozone in aqueous solution is reported herein. The overall process was monitored in real time by using direct infusion electrospray ionization high-resolution mass spectrometry in the negative ion mode, ESI(-)-HRMS. Preliminary results (visual inspection and UV-vis spectra) showed the high efficiency of ozonation in causing the decoloration of an aqueous solution of the dye whereas TOC (total organic carbon) measurements revealed that such an oxidation process was unable to promote its complete mineralization. ESI(-)-HRMS data showed that the substrate consumption occurred concomitantly with the appearance of four by-products, all of them produced by an initial attack of hydroxyl radicals (generated via the decomposition of ozone) on the two imino moieties of the dye molecule. Structures were proposed for all the by-products based mainly on the high-resolution mass measurements and on the characteristic reactivity of typical functional groups towards hydroxyl radicals. An unprecedented degradation route of Brilliant Blue by ozone in aqueous solution could thus be proposed. A greater ecotoxicity against Artemia salina was observed for the by-products than for the original dye. This indicates that the identification of by-products arising from oxidation treatments is of primary importance since such compounds can be more hazardous than the precursor itself. Copyright © 2012 John Wiley & Sons, Ltd.
The study of synthetic food dyes by positron annihilation lifetime spectroscopy.
NASA Astrophysics Data System (ADS)
Pivtsaev, A. A.; Razov, V. I.
2015-06-01
By method of positron annihilation lifetime spectroscopy (PALS), substances are food dyes were studied: E-102 (Tartrazine), E-124 (Ponso 4R), E 132 (Indigo carmine), E-133 (Brilliant Blue), E-151 (Black Shiny). They are examined for the presence of carcinogenic properties. The difference between dyes having explicit carcinogenic properties and mutagenic properties (non-explicit carcinogens) is established.
Visual and anatomical outcome of macular hole surgery at a tertiary healthcare facility.
Kumari, Komalta; Tahir, Muhammad Ali; Cheema, Alyscia
2017-01-01
To assess visual and anatomical outcome of full thickness macular hole (FTMH) surgery with ILM peeling using brilliant blue G dye. Thirty patients who had clinically evident macular hole were selected. Pre-operative Optical Coherence Tomography (OCT) was done. In all cases vitrectomy was performed via 23guage 3 ports pars plana (3PPV) vitrectomy system and Brilliant blue G dye, 0.5ml dye was injected over macula which resulted in light blue stain of ILM and peeling was performed around hole in circular motion and after gas fluid exchange gas tamponade with SF6 was done. Final visual and anatomical outcome was measured as postoperative BCVA and postoperative OCT at three months respectively. Descriptive statistics were computed. Paired t-test was applied. P value≤0.05 were considered as significant. There were 12 male and 18 female patients. The mean age was 57.40±4.76 years. The mean size of macular hole was 452.20±242.33μm. The mean duration of symptoms was 16.73±13.49 weeks. Mean pre operative BCVA was 1.30±0.73 log MAR and post operative was 0.51±0.23 log MAR. Mean increased BCVA was found to be 0.22±0.13 log MAR. Primary closure of hole was achieved in 29(96.7%). Significant mean difference was found in pre operative and post operative BCVA. Brilliant blue G exhibits sufficient staining qualities and safety profile to peel ILM in the management of full thickness macular hole with significant visual and anatomical improvement.
Leba, Louis-Jérôme; Popovici, Jean; Estevez, Yannick; Pelleau, Stéphane; Legrand, Eric; Musset, Lise; Duplais, Christophe
2017-12-01
The search for safe antimalarial compounds acting against asexual symptom-responsible stages and sexual transmission-responsible forms of Plasmodium species is one of the major challenges in malaria elimination programs. So far, among current drugs approved for human use, only primaquine has transmission-blocking activity. The discovery of small molecules targeting different Plasmodium falciparum life stages remains a priority in antimalarial drug research. In this context, several independent studies have recently reported antiplasmodial and transmission-blocking activities of commonly used stains, dyes and fluorescent probes against P. falciparum including chloroquine-resistant isolates. Herein we have studied the antimalarial activities of dyes with different scaffold and we report that the triarylmethane dye (TRAM) Brilliant green inhibits the growth of asexual stages (IC 50 ≤ 2 μM) and has exflagellation-blocking activity (IC 50 ≤ 800 nM) against P. falciparum reference strains (3D7, 7G8) and chloroquine-resistant clinical isolate (Q206). In a second step we have investigated the antiplasmodial activities of two polysulfonated triarylmethane food dyes. Green S (E142) is weakly active against P. falciparum asexual stage (IC 50 ≃ 17 μM) whereas Patent Blue V (E131) is inactive in both antimalarial assays. By applying liquid chromatography techniques for the culture supernatant analysis after cell washings and lysis, we report the detection of Brilliant green in erythrocytes, the selective uptake of Green S (E142) by infected erythrocytes, whereas Patent Blue V (E131) could not be detected within non-infected and 3D7-infected erythrocytes. Overall, our results suggest that two polysulfonated food dyes might display different affinity with transporters or channels on infected RBC membrane. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Ho, Yen Cheng; Lee, Wendy W Y; Bell, Steven E J
2016-08-15
Highly swellable polymer films doped with Ag nanoparticle aggregates (poly-SERS films) have been used to record very high signal : noise ratio, reproducible surface-enhanced (resonance) Raman (SER(R)S) spectra of in situ dried ink lines and their constituent dyes using both 633 and 785 nm excitation. These allowed the chemical origins of differences in the SERRS spectra of different inks to be determined. Initial investigation of pure samples of the 10 most common blue dyes showed that the dyes which had very similar chemical structures such as Patent Blue V and Patent Blue VF (which differ only by a single OH group) gave SERRS spectra in which the only indications that the dye structure had been changed were small differences in peak positions or relative intensities of the bands. SERRS studies of 13 gel pen inks were consistent with this observation. In some cases inks from different types of pens could be distinguished even though they were dominated by a single dye such as Victoria Blue B (Zebra Surari) or Victoria Blue BO (Pilot Acroball) because their predominant dye did not appear in other inks. Conversely, identical spectra were also recorded from different types of pens (Pilot G7, Zebra Z-grip) because they all had the same dominant Brilliant Blue G dye. Finally, some of the inks contained mixtures of dyes which could be separated by TLC and removed from the plate before being analysed with the same poly-SERS films. For example, the Pentel EnerGel ink pen was found to give TLC spots corresponding to Erioglaucine and Brilliant Blue G. Overall, this study has shown that the spectral differences between different inks which are based on chemically similar, but nonetheless distinct dyes, are extremely small, so very close matches between SERRS spectra are required for confident identification. Poly-SERS substrates can routinely provide the very stringent reproducibility and sensitivity levels required. This, coupled with the awareness of the reasons underlying the observed differences between similarly coloured inks allows a more confident assessment of the evidential value of inks SERS and should underpin adoption of this approach as a routine method for the forensic examination of inks.
Decolorization and biodegradation of remazol brilliant blue R by bilirubin oxidase.
Liu, Youxun; Huang, Juan; Zhang, Xiaoyu
2009-12-01
The dye-decolorizing potential of bilirubin oxidase (BOX) was demonstrated for an anthraquinone dye, remazol brilliant blue R (RBBR). The dye was decolorized 40% within 4 h by the BOX alone, whereas it was more efficient in the presence of 2, 2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), showing 91.5% decolorization within 25 min. The effects of operational parameters on decolorization were examined. The results showed that the decolorization efficiency decreased with increasing RBBR concentration, and a marked inhibition effect was exhibited when the dye concentrations were above 100 mg l(-1). The optimum temperature for enzymatic decolorization was 40 degrees C. BOX showed efficient decolorization of the dye with a wide pH range of 5-8.5. The maximum decolorization activity occurred at pH 8 with ABTS and at pH 5 without ABTS. Analysis of RBBR ultraviolet and visible (UV-VIS) spectra after BOX treatment indicated that the decolorization of RBBR was due to biodegradation. Our results suggested that ABTS can serve as an electron mediator to facilitate the oxidation of RBBR, and the BOX-ABTS mediator-involved dye decolorization mechanism was similar to that of laccase. Operation over a wide range of pH and efficient decolorization suggested that the BOX can be used to decolorize synthetic dyes from effluents, especially for anthraquinonic dyes.
Al-Halafi, Ali M.
2013-01-01
The basic concept for the application of vital dyes during vitreoretinal surgery is to assist in highlighting preretinal membranes and tissues which are very thin and semitransparent and thus difficult to detect. The vital dyes may be classified according to different criteria, where the most commonly applied includes chemical classification. In ophthalmic surgery, vital dyes are widely used in cataract and vitreoretinal surgery. The vital dyes, indocyanine green, infracyanine green, and brilliant blue stain the internal limiting membrane, and trypan blue and triamcinolone acetonide help to visualize epiretinal membranes and vitreous, respectively. This review exhibits the current literature regarding the properties of vital dyes, techniques of application, indications, and toxicities during vitreoretinal surgery and, also suggests that the field of chromovitrectomy represents an expanding area of research. PMID:24371423
Gómez Ramírez, M; Rojas Avelizapa, L I; Rojas Avelizapa, N G; Cruz Camarillo, R
2004-02-01
A simple and sensitive method based on the use of colloidal chitin stained with Remazol Brilliant Blue R (RBB) is proposed to evaluate chitinase activity. If this colloidal-stained substrate is included as a carbon source in a liquid medium, this technique allows the selection or the comparison of chitinolytic microorganisms. The colloidal substrate is proportionally solubilized and the dye released is spectrophotometrically quantified at 595 nm. The procedures used for the staining and fixing of RBB in the colloidal chitin, and a comparison with the commercial substrate chitin-azure, are presented. The influence of several physicochemical and enzymatic parameters on the release of dyes is also shown. Both stained substrates were used for studying the effect of pH, substrate concentration, temperature and time on the chitinase reaction of Bacillus thuringiensis Bt-107.
Raghupathy, V; Oommen, Anna; Ramachandran, Anup
2014-06-15
Blue native gel electrophoresis (BN-PAGE) is used extensively for characterization of mitochondrial respiratory complexes and uses the binding of Coomassie brilliant blue G-250 to visualize proteins. Oxidative modification of sulfhydryl groups of such proteins can be evaluated by labeling with iodoacetamide conjugated to biotin (BIAM) and detected with streptavidin peroxidase on Western blots following BN-PAGE. However, dissolving BIAM in dimethylformamide, a recommended solvent, reduces Coomassie blue G staining to proteins during BN-PAGE. This interference is prevented by dissolving BIAM in dimethyl sulfoxide. Precautions in the use of the dye for protein staining subsequent to BIAM labeling are discussed. Copyright © 2014 Elsevier Inc. All rights reserved.
Epiretinal membrane negative staining and double peeling in a single block with Brilliant Blue G.
Martins, David; Neves, Pedro
2018-01-01
To describe a surgical technique for combined peeling of epiretinal and internal limiting membranes. The authors present their procedure of choice for epiretinal membrane surgery: negative staining effect using Brilliant Blue G and single block removal of the epiretinal and internal limiting membranes in a single step. A total of 26 eyes were operated with the described technique. In all cases, the peeling was performed successfully and with no complications. Minimum postoperative follow-up was 12 months. There were no recurrences of epiretinal membranes. The ideal surgical approach for epiretinal membranes should attempt to reduce mechanical trauma, light exposure, and dye toxicity.
Hocking, Kyle M.; Luo, Weifeng; Li, Fan Dong; Komalavilas, Padmini; Brophy, Colleen; Cheung-Flynn, Joyce
2015-01-01
BACKGROUND Injury to saphenous vein grafts during surgical preparation may contribute to the subsequent development of intimal hyperplasia, the primary cause of graft failure. Surgical skin markers currently used for vascular marking contain gentian violet and isopropanol that damage tissue and impair physiologic functions. Brilliant blue FCF (FCF) is a nontoxic dye alternative that may also ameliorate preparation-induced injury. METHODS Porcine saphenous vein (PSV) was used to evaluate the effect of FCF on physiologic responses in a muscle bath. Cytotoxicity of FCF was measured using human umbilical venous smooth muscle cells (HUVSMC). Effect of FCF on the development of intimal hyperplasia was evaluated in organ culture using PSV. Intracellular calcium fluxes and contractile responses were measured in response to agonist and inhibitors in rat aorta and human saphenous vein (HSV). RESULTS Marking with FCF did not impair smooth muscle contractile responses and restored stretch injury-induced loss in smooth muscle contractility of PSV. Gentian violet has cytotoxic effects on HUVSMC while FCF is nontoxic. FCF inhibited intimal thickening in PSV in organ culture. 2′(3′)-O-(4-Benzoylbenzoyl)adenosine-5′-triphosphate-induced contraction and intracellular calcium flux were inhibited by FCF, oxidized ATP, KN62, and brilliant blue G, suggesting that FCF may inhibit the purinergic receptor P2X7. CONCLUSIONS Our studies indicated that FCF is a non-toxic marking dye for vein grafts that ameliorates vein graft injury and prevents intimal thickening, possibly due to P2X7 receptor inhibition. FCF represents a non-toxic alternative for vein graft marking and a potentially therapeutic approach to enhance outcome in autologous transplantation of HSV into the coronary and peripheral arterial circulation. PMID:25704409
Brilliant Blue FCF as an Alternative Dye for Saphenous Vein Graft Marking Effect on Conduit Function
Voskresensky, Igor V.; Wise, Eric S.; Hocking, Kyle M.; Li, Fan Dong; Osgood, Michael J.; Komalavilas, Padmini; Brophy, Colleen; Cheung-Flynn, Joyce
2014-01-01
IMPORTANCE Surgical skin markers are used off-label to mark human saphenous veins (HSVs) to maintain orientation before implantation as aortocoronary or peripheral arterial bypass grafts. These surgical skin markers impair functional responses of the HSV tissue. OBJECTIVES To investigate the effect of brilliant blue dye 1 (brilliant blue FCF [for food coloring]; hereinafter, FCF) as a nontoxic alternative marking dye and to determine whether FCF has pharmacological properties. DESIGN, SETTING, AND PARTICIPANTS Segments of HSVs were collected in university hospitals from patients undergoing coronary artery bypass grafting procedures immediately after harvest (unmanipulated) or after typical intraoperative surgical graft preparation (after manipulation). Rat inferior venae cavae were used to determine the pharmacological properties and cellular targets of FCF. Endothelial and smooth muscle functional responses were determined in a muscle bath, and intimal thickening in HSVs was determined after 14 days in organ culture. MAIN OUTCOMES AND MEASURES Contractile responses were measured in force and converted to stress. Smooth muscle function was expressed as maximal responses to potassium chloride depolarization contractions. Endothelial function was defined as the percentage of relaxation of maximal agonist-induced contraction. Neointimal thickness was measured by histomorphometric analysis. RESULTS Human saphenous veins stored in the presence of FCF had no loss of endothelial or smooth muscle function. Unmanipulated HSVs preserved in the presence of FCF demonstrated a significant increase in endothelial-dependent relaxation (mean [SEM], 25.2% [6.4%] vs 30.2% [6.7%]; P = .02). Application of FCF to functionally nonviable tissue significantly enhanced the smooth muscle responses (mean [SEM], 0.018 [0.004] × 105N/m2 vs 0.057 [0.016] × 105 N/m2; P = .05). Treatment with FCF reduced intimal thickness in organ culture (mean [SEM], −17.5% [2.1%] for unmanipulated HSVs vs −27.9% [3.7%] for HSVs after manipulation; P < .001). In rat inferior venae cavae, FCF inhibited the contraction induced by the P2X7 receptor agonist 2′(3′)-O-(4-benzoyl)benzoyl-adenosine-5′-triphosphate (mean [SEM], 14.8% [2.2%] vs 6.5% [1.8%]; P = .02) to an extent similar to the P2X7 receptor antagonist oxidized adenosine triphosphate (mean [SEM], 5.0% [0.9%]; P < .02 vs control) or the pannexin hemichannel inhibitor probenecid (mean [SEM], 7.3% [1.6%] and 4.7% [0.9%] for 0.5mM and 2mM, respectively; P < .05). CONCLUSIONS AND RELEVANCE Treatment with FCF did not impair endothelial or smooth muscle function in HSVs. Brilliant blue FCF enhanced endothelial-dependent relaxation, restored smooth muscle function, and prevented intimal hyperplasia in HSVs in organ culture. These pharmacological properties of FCF may be due to P2X7 receptor or pannexin channel inhibition. Brilliant blue FCF is an alternative, nontoxic marking dye that may improve HSV conduit function and decrease intimal hyperplasia. PMID:25251505
Voskresensky, Igor V; Wise, Eric S; Hocking, Kyle M; Li, Fan Dong; Osgood, Michael J; Komalavilas, Padmini; Brophy, Colleen; Cheung-Flynn, Joyce
2014-11-01
Surgical skin markers are used off-label to mark human saphenous veins (HSVs) to maintain orientation before implantation as aortocoronary or peripheral arterial bypass grafts. These surgical skin markers impair functional responses of the HSV tissue. To investigate the effect of brilliant blue dye 1 (brilliant blue FCF [for food coloring]; hereinafter, FCF) as a nontoxic alternative marking dye and to determine whether FCF has pharmacological properties. Segments of HSVs were collected in university hospitals from patients undergoing coronary artery bypass grafting procedures immediately after harvest (unmanipulated) or after typical intraoperative surgical graft preparation (after manipulation). Rat inferior venae cavae were used to determine the pharmacological properties and cellular targets of FCF. Endothelial and smooth muscle functional responses were determined in a muscle bath, and intimal thickening in HSVs was determined after 14 days in organ culture. Contractile responses were measured in force and converted to stress. Smooth muscle function was expressed as maximal responses to potassium chloride depolarization contractions. Endothelial function was defined as the percentage of relaxation of maximal agonist-induced contraction. Neointimal thickness was measured by histomorphometric analysis. Human saphenous veins stored in the presence of FCF had no loss of endothelial or smooth muscle function. Unmanipulated HSVs preserved in the presence of FCF demonstrated a significant increase in endothelial-dependent relaxation (mean [SEM], 25.2% [6.4%] vs 30.2% [6.7%]; P = .02). Application of FCF to functionally nonviable tissue significantly enhanced the smooth muscle responses (mean [SEM], 0.018 [0.004] × 10⁵ N/m² vs 0.057 [0.016] × 10⁵ N/m²; P = .05). Treatment with FCF reduced intimal thickness in organ culture (mean [SEM], -17.5% [2.1%] for unmanipulated HSVs vs -27.9% [3.7%] for HSVs after manipulation; P < .001). In rat inferior venae cavae, FCF inhibited the contraction induced by the P2X7 receptor agonist 2'(3')-O-(4-benzoyl)benzoyl-adenosine-5'-triphosphate (mean [SEM], 14.8% [2.2%] vs 6.5% [1.8%]; P = .02) to an extent similar to the P2X7 receptor antagonist oxidized adenosine triphosphate (mean [SEM], 5.0% [0.9%]; P < .02 vs control) or the pannexin hemichannel inhibitor probenecid (mean [SEM], 7.3% [1.6%] and 4.7% [0.9%] for 0.5mM and 2mM, respectively; P < .05). Treatment with FCF did not impair endothelial or smooth muscle function in HSVs. Brilliant blue FCF enhanced endothelial-dependent relaxation, restored smooth muscle function, and prevented intimal hyperplasia in HSVs in organ culture. These pharmacological properties of FCF may be due to P2X7 receptor or pannexin channel inhibition. Brilliant blue FCF is an alternative, nontoxic marking dye that may improve HSV conduit function and decrease intimal hyperplasia.
Bellebia, S; Kacha, S; Bouberka, Z; Bouyakoub, A Z; Derriche, Z
2009-04-01
In this study, electrocoagulation of Marine Blue Erionyl MR (acid dye) and electrocoagulation followed by adsorption of Brilliant Blue Levafix E-BRA (reactive dye) from aqueous solutions were investigated, using aluminum electrodes and granular activated carbon (GAC). In the electrocoagulation and adsorption of dyestuff solutions, the effects of current density, loading charge, pH, conductivity, stirring velocity, contact time, and GAC concentration were examined. The optimum conditions for the electrocoagulation process were identified as loading charges 7.46 and 1.49 F/m3, for a maximum abatement of 200 mg/L reactive and acid dye, respectively. The residual reactive dye concentration was completely removed with 700 mg/L GAC. The results of this investigation provide important data for the development of a combined process to remove significant concentrations of recalcitrant dyes from water, using moderate activated carbon energy and aluminum consumption, and thereby lowering the cost of treatment.
Tognetto, Daniele; De Giacinto, Chiara; D'Aloisio, Rossella; Papagno, Claudia; Pastore, Marco; Zweyer, Marina
2018-01-01
To report on the combined use of trypan blue (TB) and brilliant blue G (BBG) for staining the epiretinal membrane (ERM) and internal limiting membrane (ILM) during vitrectomy and to describe the histopathological findings. 10 surgical specimens were removed from 10 eyes with macular pucker during vitrectomy using a commercially available combination of TB and BBG for ERM and ILM staining and peeling. Specimens were evaluated using light and transmission electron microscopy. In all cases the combination of TB and BBG was useful for identifying and delineating ERM and ILM. No complications related to the use of the dye were observed during or after surgery. Glial cells were present in all specimens. Hyalocytes were observed in 6 cases and myofibroblasts in 3 of them. In 7 cases native vitreous collagen fibrils were found on the ILM, while in 5 specimens newly formed collagen was present. No clinical evidence of toxicity was observed during the 3-month follow-up. The combined use of TB and BBG appeared to be very useful intraoperatively to improve the visualization of ERM and ILM, thus facilitating their complete removal. Anatomical and histopathological findings demonstrated the safety and the efficacy of this vital dye. © 2018 S. Karger AG, Basel.
Janović, Barbara S; Mićić Vićovac, Milica Lj; Vujčić, Zoran M; Vujčić, Miroslava T
2017-02-01
Peroxidases (EC 1.11.1.7) have enormous biotechnological applications. Usage of more abundant, basic isoforms of peroxidases in diagnostic kits and/or in immunochemistry has led to under exploitation and disregard of horseradish peroxidase (HRP) acidic isoforms. Therefore, acidic horseradish peroxidase (HRP-A) isoenzyme was used for the preparation of a biocatalyst with improved ability in dye decolorization. Ten biocatalysts were prepared by covalent binding of enzyme to chitosan and alginate, adsorption followed by cross-linking on inorganic support (aluminum oxide), and encapsulation in spherical calcium alginate beads via polyethylene glycol. Model dyes of 50 to 175 mg l -1 were removed by the biocatalysts. Among the tested biocatalysts, the three with the highest specific activity and biodegradation rate were further studied (Chitosan-HRP, Al-Gel-HRP and Al-HRP-Gel). The impact of hydrogen peroxide concentration on dye decolorization was examined on the Chitosan-HRP biocatalyst, since the HRP is susceptible to inhibition/inactivation by high H 2 O 2 . On the other hand, H 2 O 2 is needed as a co-substrate for the HRP, and the H 2 O 2 /dye ratio can greatly influence decolorization efficiency. Concentrations of H 2 O 2 ranging from 0.22 to 4.4 mM showed no difference in terms of impact on the biocatalyst decolorization efficiency. The high decolorization efficiency of the biocatalysts was validated by the removal of 25 and 100 mg l -1 anthraquinone (Remazol Brilliant Blue R (RBBR)), triphenylmethane (Coomassie Brilliant Blue (CBB)), acridine (Acridine Orange (AO)), and formazan metal complex dye (Reactive Blue 52 (RB52)). After the seven consecutive decolorization cycles, the decolorization was still 53, 78, and 67% of the initial dye for the Al-HRP-Gel, Al-Gel-HRP, and Chitosan-HRP immobilizate, respectively. The results obtained showed potential of otherwise neglected acidic HRP isoforms as a cost-effective biocatalyst with significant potential in wastewater dyestuff treatment.
Weimann, Stefanie; Skudlik, Christoph; John, Swen Malte
2010-10-01
A 44-year-old metalworker suffered from severe hand eczema in spite of treatment with corticosteroid ointments. He had been using protective cotton gloves with blue PVC anti-slip dots on the finger tips. On clinical examination, the backs of both hands were erythematous and thickened while the finger tips showed vesicles. There was a positive patch test reaction to the blue PVC dots of an unworn cotton glove at 72, 96, 120 hours. To identify the causative chemicals, we carried out further patch tests using ingredients of the glove and cupric sulfate. The patient reacted to the blue dye VYNAMON(®) Blue BX FW (PB 15) at two concentrations - 10% at 72 and 96 hours, and 50% at 48 and 72 hours. This dye is a very strong and brilliant blue with red-copper tones and resistant to fire and weathering. The cupric-phthalocyanine complexes are used as pigments in cosmetics (e. g. CI 74160, 74180, 74260). To the best of our knowledge, no allergic reactions to this dye have been described, particularly not in gloves. © The Authors • Journal compilation © Blackwell Verlag GmbH, Berlin.
The food dye FD&C Blue No. 1 is a selective inhibitor of the ATP release channel Panx1.
Wang, Junjie; Jackson, David George; Dahl, Gerhard
2013-05-01
The food dye FD&C Blue No. 1 (Brilliant Blue FCF [BB FCF]) is structurally similar to the purinergic receptor antagonist Brilliant Blue G (BBG), which is a well-known inhibitor of the ionotropic P2X7 receptor (P2X7R). The P2X7R functionally interacts with the membrane channel protein pannexin 1 (Panx1) in inflammasome signaling. Intriguingly, ligands to the P2X7R, regardless of whether they are acting as agonists or antagonists at the receptor, inhibit Panx1 channels. Thus, because both P2X7R and Panx1 are inhibited by BBG, the diagnostic value of the drug is limited. Here, we show that the food dye BB FCF is a selective inhibitor of Panx1 channels, with an IC50 of 0.27 µM. No significant effect was observed with concentrations as high as 100 µM of BB FCF on P2X7R. Differing by just one hydroxyl group from BB FCF, the food dye FD&C Green No. 3 exhibited similar selective inhibition of Panx1 channels. A reverse selectivity was observed for the P2X7R antagonist, oxidized ATP, which in contrast to other P2X7R antagonists had no significant inhibitory effect on Panx1 channels. Based on its selective action, BB FCF can be added to the repertoire of drugs to study the physiology of Panx1 channels. Furthermore, because Panx1 channels appear to be involved directly or indirectly through P2X7Rs in several disorders, BB FCF and derivatives of this "safe" food dye should be given serious consideration for pharmacological intervention of conditions such as acute Crohn's disease, stroke, and injuries to the central nervous system.
Arroz, Erin; Jordan, Michael; Dumancas, Gerard G
2017-07-01
An ultraviolet visible (UV-Vis) spectrophotometric and partial least squares (PLS) chemometric method was developed for the simultaneous determination of erythrosine B (red), Brilliant Blue, and tartrazine (yellow) dyes. A training set (n = 64) was generated using a full factorial design and its accuracy was tested in a test set (n = 13) using a Box-Behnken design. The test set garnered a root mean square error (RMSE) of 1.79 × 10 -7 for blue, 4.59 × 10 -7 for red, and 1.13 × 10 -6 for yellow dyes. The relatively small RMSE suggests only a small difference between predicted versus measured concentrations, demonstrating the accuracy of our model. The relative error of prediction (REP) for the test set were 11.73%, 19.52%, 19.38%, for blue, red, and yellow dyes, respectively. A comparable overlay between the actual candy samples and their replicated synthetic spectra were also obtained indicating the model as a potentially accurate method for determining concentrations of dyes in food samples.
Li, D; Huang, Y; Su, J
2011-04-01
Several novel heterocyclic compounds based on 1,2,3,4-tetrahydroquinoline and 2,3-dihydroindole have been investigated for their application of colour keratin fibres as blue oxidative dye precursors, especially to human hair. The colourants we studied contained anyone of these dyes (concentration range from 0.005% to 6%), and some common oxidative hair dyes, such as p-phenylenediamine, toluene-2,5-diamine sulphate. Experiments were carried out on the method of mixing hair colourants with H(2)O(2) gel at the ratio of 1 : 1, accompanied by pH = 8∼11. It is demonstrated that 1,2,3,4-tetrahydroquinoline derivatives could be considered as an excellent candidate for blue dyes, and N-methyl-7-amino-1,2,3,4-tetrahydroquinoline is the most outstanding one among this kind of compounds. They own significant advantages of colour purity, stability and fastness. On the other hand, 2,3-dihydroindoles show the similar colours but not stable and brilliant enough. © 2010 The Authors. ICS © 2010 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Treatment of complex Remazol dye effluent using sawdust- and coal-based activated carbons.
Vijayaraghavan, K; Won, Sung Wook; Yun, Yeoung-Sang
2009-08-15
A complex Remazol dye effluent, comprised of four reactive dyes and auxiliary chemicals, was decolorized using SPS-200 (sawdust-based) and SPC-100 (coal-based) activated carbons. A detailed characterization revealed that the pore diameter of the activated carbon played an important role in dye adsorption. The solution pH had no significant effect on the adsorption capacity in the pH range of 2-10.7. According to the Langmuir model, the maximum uptakes of SPS-200 were 415.4, 510.3, 368.5 and 453.0 mg g(-1) for Reactive Black 5 (RB5), Reactive Orange 16 (RO16), Remazol Brilliant Blue R (RBBR) and Remazol Brilliant Violet 5R (RBV), respectively. Conversely, those of SPC-100 were slightly lower, at 150.8, 197.4, 178.3 and 201.1 mg g(-1) for RB5, RO16, RBBR and RBV, respectively. In the case of Remazol effluent, SPS-200 exhibited a decolorization efficiency of 100% under unadjusted pH conditions at 10.7, compared to that of 52% for SPC-100.
Penha, Fernando M.; Pons, Marianne; Costa, Elaine Fiod; Barros, Nilana Meza Tenório; Rodrigues, Eduardo B.; Cardoso, Emmerson Badaró; Dib, Eduardo; Maia, Mauricio; Marin-Castaño, Maria E.; Farah, Michel Eid
2013-01-01
Purpose To investigate the in vitro effect of four vital dyes on toxicity and apoptosis in a human retinal pigment epithelial (RPE) cell line. Methods ARPE-19 cells were exposed to brilliant blue (BriB), methyl blue (MetB), acid violet (AcV) and indocyanine green (ICG). Balanced salt solution was used as control. Five different concentrations of each dye (1, 0.5, 0.25, 0.05 and 0.005 mg/mL) and two exposure times (3 and 30 min) were tested. Cell viability was determined by cell count and MTS assay and cell toxicity by LDH assay. Real-time PCR and Western blotting were used to access the apoptosis process. Results ICG significantly reduced cell viability after 3 minutes of exposure at all concentrations (p<0.01). BriB was safe at concentrations up to 0.25 mg/mL and MetB at concentrations up to 0.5 mg/mL, while AcV was safe up to 0.05 mg/ml, after 3 minutes of exposure. Toxicity was higher, when the cells were treated for 30 minutes. Expression of Bax, cytochrome c and caspase-9 was upregulated at the mRNA and protein level after ICG exposure, while Bcl-2 was downregulated. AcV and MetB were similar to control. However, BriB resulted in upregulation of Bcl-2, an antiapoptotic protein. Conclusions The safest dye used on RPE cells was MetB followed by BriB and AcV. ICG was toxic at all concentrations and exposure times tested. Moreover, ICG was the only dye that induced apoptosis in ARPE-19 cells. BriB significantly increased Bcl-2 protein levels, which might protect against the apoptosis process. PMID:23675521
Aminian, Mahdi; Nabatchian, Fariba; Vaisi-Raygani, Asad; Torabi, Mojgan
2013-03-15
The Bradford protein assay is a popular method because of its rapidity, sensitivity, and relative specificity. This method is subject to some interference by nonprotein compounds. In this study, we describe the interference of cetyltrimethylammonium bromide (CTAB) with the Bradford assay. This interference is based on the interaction of Coomassie Brilliant Blue G-250 (CBB) with this cationic detergent. This study suggests that both electrostatic and hydrophobic interactions are involved in the interaction of CTAB and CBB. The anionic and neutral forms of CBB bind to CTAB by electrostatic attraction, which accelerates hydrophobic interactions of these CBB forms and the hydrophobic tail of CTAB. Consequently, the hydrophobic regions of the dominant free cationic form of CBB dye compete for the tail of CTAB with two other forms of the dye and gradually displace the primary hydrophobic interactions and rearrange the primary CBB-CTAB complex. This interaction of CTAB and CBB dye produces a primary 650-nm-absorbing complex that then gradually rearranges to a complex that shows an absorbance shoulder at 800-950 nm. This study conclusively shows a strong response of CBB to CTAB that causes a time-dependent and nearly additive interference with the Bradford assay. This study also may promote an application of CBB for CTAB quantification. Copyright © 2012 Elsevier Inc. All rights reserved.
Effect of Heat on the Antimicrobial Activity of Brilliant Green Dye
Moats, W. A.; Kinner, J. A.; Maddox, S. E.
1974-01-01
Antimicrobial activity of brilliant green dye in Trypticase soy broth (BBL) is reduced and ultimately destroyed by prolonged autoclaving at 121 C. Loss of antimicrobial activity is accompanied by decolorization of the dye. This is consistent with other evidence that antimicrobial activity of brilliant green resides in the colored dye ion. The dye is not decolorized when heated in distilled water or peptone, but is decolorized by heating in glucose, glycine, or sodium dodecyl sulfate, showing that decolorization results from reaction with components of the medium. To ensure optimal results, it is recommended that bacteriological media be sterilized by heat prior to addition of brilliant green dye. PMID:4208510
NASA Astrophysics Data System (ADS)
Rajesh, Rajendiran; Iyer, Sahithya S.; Ezhilan, Jayabal; Kumar, S. Senthil; Venkatesan, Rengarajan
2016-09-01
Herein, we report a simple, one step synthesis of hybrid copper oxide nanoneedles on graphene oxide sheets (GO-CuONNs) through sonochemical method. The present method affords a facile mean for controlling effective concentration of the active CuO nanoneedles on the graphene oxide sheets, and also offers the necessary stability to the resulting GO-CuONNs structure for adsorption transformations.Furthermore, this hybrid GO-CuONNs is successfully employed in the removal of a series of hazardous ionic organic dyes namely coomassie brilliant blue, methylene blue, congo red and amidoblack 10B. Through careful investigation of the material, we found that the synergetic effect between CuONNs and GO play a significant role in the adsorption of all the dyes studied. The prepared hybrid material contains both hydrophobic and hydrophilic environment which is expected to enhance the electrostatic interaction between the adsorbent and the dye molecules, consequently favouring the adsorption process.
Brauch, J E; Zapata-Porras, S P; Buchweitz, M; Aschoff, J K; Carle, R
2016-11-01
Due to consumers' increasing health awareness, food industry aims at replacing synthetic dyes by natural counterparts. The substitution of blue synthetic dyes is particularly challenging since current natural alternatives such as phycocyanin (Spirulina) suffer from poor stability. Jagua blue (produced from Genipa americana L. fruit) might represent a potential novel blue pigment source. However, only little is known about its color properties, and application in food systems. Therefore, the blue color and the stability of Jagua blue were assessed for the first time and compared to commonly used colorants, namely, Spirulina, brilliant blue FCF (Blue no. 1), and indigo carmine (Blue no. 2). The reaction rate of Jagua blue was independent of its concentration, confirming thermal degradation to follow first-order kinetics. Between pH 3.6 and 5.0, the color hue of Jagua blue solutions was similar to that of Blue no. 2. However, Jagua blue revealed markedly higher storage stabilities (t 1/2 =86-105days) than Blue no. 2 (t 1 /2 ≤9days) and was less susceptible to acidic pH of 3.6 (t 1 /2 =86days) than Spirulina (t 1 /2 =70days). High negative b* values (blueness) of colored gelatin gels were only obtained for Jagua blue and Spirulina, and the former exhibited higher light stabilities (t 1 /2 =15days) than Spirulina gels (t 1 /2 =4days). Our findings indicate Jagua blue to be a most promising alternative to synthetic dyes, providing relevant information regarding potential food applications. Copyright © 2016 Elsevier Ltd. All rights reserved.
Biological treatment of model dyes and textile wastewaters.
Paz, Alicia; Carballo, Julia; Pérez, María José; Domínguez, José Manuel
2017-08-01
Previous works conducted in our laboratory, reveled that Bacillus aryabhattai DC100 produce ligninolytic enzymes such as laccases and/or peroxidases, opening new applications in different bioprocesses, including the treatment of disposal residues such as dyestuffs from textile processing industries. This work described the degradation of three commercial model dyes Coomassie Brilliant Blue G-250 (CBB), Indigo Carmine (IC) and Remazol Brilliant Blue R (RBBR) under different culture media and operational conditions. The process was optimized using a Central Composite Rotatable Design, and the desirability predicted complete decolorization of 150 mg/L CBB at 37 °C, 304.09 rpm and salt concentration of 19.204 g/L. The model was validated with concentrations up to 180 mg/L CBB and IC, not being able to remove high amount of RBBR. The procedure here developed also allowed Chemical Oxygen Demands (COD) reductions in CBB of about 42%, meanwhile tests on real effluents from a local textile industry involved COD reductions of 50% in a liquid wastewater and 14% in semi-liquid sludge. Thus, allow the authorized discharge of wastewater into the corresponding treatment plant. Decolorization efficiencies and COD reductions open on the potential application of B. aryabhattai DC100 on the bioremediation of real effluents from textile industries. Copyright © 2017 Elsevier Ltd. All rights reserved.
Qin, Xing; Zhang, Jie; Zhang, Xiaoyu; Yang, Yang
2014-01-01
Manganese peroxidase (MnP) is the one of the important ligninolytic enzymes produced by lignin-degrading fungi which has the great application value in the field of environmental biotechnology. Searching for new MnP with stronger tolerance to metal ions and organic solvents is important for the maximization of potential of MnP in the biodegradation of recalcitrant xenobiotics. In this study, it was found that oxalic acid, veratryl alcohol and 2,6-Dimehoxyphenol could stimulate the synthesis of MnP in the white-rot fungus Irpex lacteus CD2. A novel manganese peroxidase named as CD2-MnP was purified and characterized from this fungus. CD2-MnP had a strong capability for tolerating different metal ions such as Ca2+, Cd2+, Co2+, Mg2+, Ni2+ and Zn2+ as well as organic solvents such as methanol, ethanol, DMSO, ethylene glycol, isopropyl alcohol, butanediol and glycerin. The different types of dyes including the azo dye (Remazol Brilliant Violet 5R, Direct Red 5B), anthraquinone dye (Remazol Brilliant Blue R), indigo dye (Indigo Carmine) and triphenylmethane dye (Methyl Green) as well as simulated textile wastewater could be efficiently decolorized by CD2-MnP. CD2-MnP also had a strong ability of decolorizing different dyes with the coexistence of metal ions and organic solvents. In summary, CD2-MnP from Irpex lacteus CD2 could effectively degrade a broad range of synthetic dyes and exhibit a great potential for environmental biotechnology. PMID:25412169
Effect of vital dyes on human corneal endothelium and elasticity of Descemet’s membrane
Thomas, Peter B. M.; Dimov, Ivan B.; Franze, Kristian
2017-01-01
The purpose of this study was to evaluate the effects of vital dyes on human Descemet's membranes (DMs) and endothelia. DMs of 25 human cadaveric corneas with research consent were treated with dyes routinely used in Descemet membrane endothelial keratoplasty (DMEK), 0.05% Trypan blue (TB) or a combination of 0.15% Trypan blue, 0.025% Brilliant blue and 4% Polyethylene glycol (commercial name Membrane Blue Dual; MB). The effects of these two dyes on (i) endothelial cell viability, (ii) DM mechanical properties as assessed by atomic force microscopy, and iii) qualitative DM dye retention were tested for two varying exposure times (one or four minutes). No significant differences in cell toxicity were observed between treatments with TB and MB at the two different exposure times (P = 0.21). Further, both dyes led to a significant increase in DM stiffness: exposure to TB and MB for one minute increased the apparent elastic modulus of the DM by 11.2% (P = 8*10−3) and 17.7%, respectively (P = 4*10−6). A four-minute exposure led to an increase of 8.6% for TB (P = 0.004) and 13.6% for MB (P = 0.03). Finally, at 25 minutes, the dye retention of the DM was considerably better for MB compared to TB. Taken together, a one-minute exposure to MB was found to improve DM visibility compared to TB, with a significant increase in DM stiffness and without detrimental effects on endothelial cell viability. The use of MB could therefore improve (i) visibility of the DM scroll, and (ii) intraoperative unfolding, enhancing the probability of successful DMEK surgery. PMID:28902856
Zhang, Shici; Lu, Xujie
2018-09-01
Heterogeneous photocatalysis namely titanium dioxide (TiO 2 ) supported on coconut shell biochar (BC) was synthesized by sol-gel method (calcined at 450 °C) in the paper, which was innovatively applied to the decolorization of Reactive Brilliant Blue KN-R. The transmission electron microscopy (TEM) and X-ray diffraction patterns (XRD) results demonstrated that anatase TiO 2 film was firmly immobilized on the surface and pores of BC. The photocatalysis tests under UV high pressure xenon lamp (300 W) showed highest decolorization efficiency occurred at strong acid and alkali conditions (pH = 1 and 11) reached as 99.71% and 96.99% respectively within 60 min. Therefore, the TiO 2 /BC composites demonstrated both photocatalytic and adsorption capacity on KN-R decolorized, and presented quite durable and reusable in regeneration cycles, indicating a widely application possibility in anthraquinones dyeing wastewater treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.
Marim, R A; Oliveira, A C C; Marquezoni, R S; Servantes, J P R; Cardoso, B K; Linde, G A; Colauto, N B; Valle, J S
2016-10-17
Pycnoporus sanguineus is a white-rot basidiomycete that produces laccase as the only oxidoreductase; enzyme synthesis depends on cultivation variables, and fungal species and strain. Laccases have wide substrate specificity, oxidize a broad range of compounds, and show potential for use in dye decolorization. We evaluated laccase production in a recently isolated strain of P. sanguineus cultivated with sugarcane molasses as the only carbon source, and urea or yeast extract as the nitrogen source [at various nitrogen concentrations (0.4, 1.4, 2.4, 3.4, and 4.4 g/L)], supplemented with copper (0, 150, 200, 250, and 300 µM), with or without agitation. The enzymatic extract produced at laccase peak activity was tested for dye decolorization capability on Remazol Brilliant Blue R, Reactive Black 5, Reactive Red 195, and Reactive Yellow 145. The nitrogen source did not affect enzyme production and the higher nitrogen concentration (3.4 g/L nitrogen as urea) increased enzymatic activity. The addition of up to 300 µM of Cu did not affect laccase production, whereas cultivation with agitation increased the activity peak by 17%. The highest laccase activity was ~50,000 U/L on the ninth day of cultivation. After 24 h, decolorization was 80% for Remazol Brilliant Blue R, 9% for Reactive Yellow 145, 6% for Reactive Red 195, and 2% for Reactive Black 5. The enzymatic extract of P. sanguineus provides a potential alternative to wastewater treatment. A better understanding of the behavior of this fungus under various culture conditions would allow improvement of the enzyme production bioprocess.
Identification of runoff formation with two dyes in a mid-latitude mountain headwater
NASA Astrophysics Data System (ADS)
Vlcek, Lukas; Schneider, Philipp; Falatkova, Kristyna
2017-04-01
There have been numerous studies on subsurface flow in peat bog areas, as both water scarcity and floods have led to increased attention to this specific environment and its role within the hydrological cycle. In contrast, this experimental study identifies runoff formation at two opposite hillslopes in a peaty mountain headwater; a slope with organic soils (Peat / Histosol) and shallow groundwater ( 0.5 m below surface) complemented by a slope with mineral soils (Podzol) and no detectable groundwater within 2 m below surface. Differences in infiltration, percolation, and preferential flowpaths between both hillslopes could be identified by sprinkling experiments with two dyes - Brilliant Blue FCF and Fluorescein. By excavating dye-stained soil profiles parallel ("lateral") and perpendicular ("frontal") to the slopes' gradients - both within and downstream of the sprinkling plots - dye stained flow patterns in the soil could be clearly identified. The results show that biomat flow occurred at both hillslopes. The dye solutions infiltrated into the soil and continued either as lateral subsurface pipeflow (SSF), in the case of the Peat Bog, or percolated vertically towards the bedrock in the case of the Podzol. The study provides evidence that biomat flow (BMF) - shallow, lateral preferential flowpaths along decomposed tree roots or logs - is a major runoff formation process at the Peat Bog hillslope and in the adjacent riparian zone. This lateral flow through the organic soil hillslope (Peat Bog) towards the stream occurred mainly as shallow subsurface flow in organic layers above the groundwater level (BMF and SSF), but water partly percolates to the shallow groundwater via vertical macropores as well . In contrast, the mineral soil hillslope (Podzol) was mostly dominated by vertical percolation. Lateral flow occurred only on short distances in the organic topsoil as biomat flow (BMF). The sorptive tracer Brilliant Blue FCF successfully stained flowpaths in the soil at both hillslopes, whereas the identification of soil staining patterns by the relatively conservative tracer Fluorescein was limited on organic soil profiles.
Native red electrophoresis--a new method suitable for separation of native proteins.
Dráb, Tomáš; Kračmerová, Jana; Tichá, Ivana; Hanzlíková, Eva; Tichá, Marie; Ryšlavá, Helena; Doubnerová, Veronika; Maňásková-Postlerová, Pavla; Liberda, Jiří
2011-12-01
A new type of native electrophoresis was developed to separate and characterize proteins. In this modification of the native blue electrophoresis, the dye Ponceau Red S is used instead of Coomassie Brilliant Blue to impose uniform negative charge on proteins to enable their electrophoretic separation according to their relative molecular masses. As Ponceau Red S binds less tightly to proteins, in comparison with Coomassie Blue, it can be easily removed after the electrophoretic separation and a further investigation of protein properties is made possible (e.g. an enzyme detection or electroblotting). The tested proteins also kept their native properties (enzyme activity or aggregation state). Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kaneko, Keisuke; Sueyoshi, Noriyuki; Kameshita, Isamu; Ishida, Atsuhiko
2013-09-15
Blue-native electrophoresis (BNE) is a useful technique for analyzing protein complexes, but the Coomassie brilliant blue (CBB) dye used in BNE often hampers in-gel detection of enzymatic activity. Here we report an improved method, termed ink-native electrophoresis (INE), in which Pelikan 4001 fountain pen ink is used as a charge-shifting agent instead of CBB. INE is more suitable than BNE for in-gel detection of protein kinase activity after polyacrylamide gel electrophoresis (PAGE), and its performance in protein complex separation is comparable to that of conventional BNE. INE may provide a powerful tool to isolate and analyze various protein complexes. Copyright © 2013 Elsevier Inc. All rights reserved.
Cong, Wei-Tao; Wang, Xu; Hwang, Sun-Young; Jin, Li-Tai; Choi, Jung-Kap
2012-01-01
A fast and matrix-assisted laser desorption/ionization mass spectrometry compatible protein staining method in one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis is described. It is based on the counterion dye staining method that employs oppositely charged two dyes, zincon and ethyl violet, to form an ion-pair complex. The protocol, including fixing, staining, and quick washing steps, can be completed in 1-1.5 h, depending upon gel thickness. It has the sensitivity comparable to the colloidal Coomassie Brilliant Blue G stain using phosphoric acid as a component of staining solution (4-8 ng). The counterion dye stain does not induce protein modifications that complicate interpretation of peptide mapping data from mass spectrometry. Considering the speed, sensitivity, and compatibility with mass spectrometry, the counterion dye stain may be more practical than any other dye-based protein stains for routine proteomic researches.
Amino Acid-Assisted Incorporation of Dye Molecules within Calcite Crystals.
Marzec, Bartosz; Green, David C; Holden, Mark A; Coté, Alexander S; Ihli, Johannes; Khalid, Saba; Kulak, Alexander; Walker, Daniel; Tang, Chiu; Duffy, Dorothy M; Kim, Yi-Yeoun; Meldrum, Fiona C
2018-05-23
Biomineralisation processes invariably occur in the presence of multiple organic additives, which act in combination to give exceptional control over structures and properties. However, few synthetic studies have investigated the cooperative effects of soluble additives. This work addresses this challenge and focuses on the combined effects of amino acids and coloured dye molecules. The experiments demonstrate that strongly coloured calcite crystals only form in the presence of Brilliant Blue R (BBR) and four of the seventeen soluble amino acids, as compared with almost colourless crystals using the dye alone. The active amino acids are identified as those which themselves effectively occlude in calcite, suggesting a mechanism where they can act as chaperones for individual molecules or even aggregates of dyes molecules. These results provide new insight into crystal-additive interactions and suggest a novel strategy for generating materials with target properties. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Peroxide-assisted microwave activation of pyrolysis char for adsorption of dyes from wastewater.
Nair, Vaishakh; Vinu, R
2016-09-01
In this study, mesoporous activated biochar with high surface area and controlled pore size was prepared from char obtained as a by-product of pyrolysis of Prosopis juliflora biomass. The activation was carried out by a simple process that involved H2O2 treatment followed by microwave pyrolysis. H2O2 impregnation time and microwave power were optimized to obtain biochar with high specific surface area and high adsorption capacity for commercial dyes such as Remazol Brilliant Blue and Methylene Blue. Adsorption parameters such as initial pH of the dye solution and adsorbent dosage were also optimized. Pore size distribution, surface morphology and elemental composition of activated biochar were thoroughly characterized. H2O2 impregnation time of 24h and microwave power of 600W produced nanostructured biochar with narrow and deep pores of 357m(2)g(-1) specific surface area. Langmuir and Langmuir-Freundlich isotherms described the adsorption equilibrium, while pseudo second order model described the kinetics of adsorption. Copyright © 2016 Elsevier Ltd. All rights reserved.
Paswan, Meenakshi B; Chudasama, Meghna M; Mitra, Madhusree; Bhayani, Khushbu; George, Basil; Chatterjee, Shruti; Mishra, Sandhya
2016-03-01
Phycocyanin is a natural brilliant blue colored, fluorescent protein, which is commonly present in cyanobacteria. In this study, C-phycocyanin was extracted and purified from Spirulina platensis, which are multicellular and filamentous cyanobacteria of greater importance because of its various biological and pharmacological potential. It was analyzed for its binding affinity towards blood cells, algal cells, genomic DNA of microalgae, and bacteria at different temperature and incubation time. It showed good binding affinity with these components even at low concentration of 2.5 μM. The purpose of this study was to evaluate the applicability of C-phycocyanin as a green fluorescent dye substituting carcinogenic chemical dyes.
Mandal, Bidyadhar; Ray, Samit Kumar
2015-11-01
Several hydrogels were prepared by a free radical polymerization of acrylic acid (AA), sodium acrylate (SA) and AA/hydroxy ethyl methacrylate (HEMA) in the presence of starch in water. These starch incorporated acrylic gels were prepared by varying the concentration of the initiator, monomer, crosslinker and the starch. The resulting gels were characterized by FTIR, SEM, XRD, DTA-TGA, pH at point zero charge (PZC), swelling and the diffusion in water. The gels showed high adsorption and removal% of Safranine T (ST) and Brilliant Cresyl Blue (BCB) dyes from water. The swelling and the adsorption data were fitted to different kinetic models and isotherms. Amongst the three kinds of gels, the starch incorporated sodium polyacrylate gel showed the highest adsorption of 9.7-85.3mg/L (97-61% removal) of BCB dye and 9.1-83mg/L (91-60% removal) of ST dye for a feed dye concentration of 10-140mg/L. Copyright © 2015 Elsevier B.V. All rights reserved.
Rapid multi-wavelength optical assessment of circulating blood volume without a priori data
NASA Astrophysics Data System (ADS)
Loginova, Ekaterina V.; Zhidkova, Tatyana V.; Proskurnin, Mikhail A.; Zharov, Vladimir P.
2016-03-01
The measurement of circulating blood volume (CBV) is crucial in various medical conditions including surgery, iatrogenic problems, rapid fluid administration, transfusion of red blood cells, or trauma with extensive blood loss including battlefield injuries and other emergencies. Currently, available commercial techniques are invasive and time-consuming for trauma situations. Recently, we have proposed high-speed multi-wavelength photoacoustic/photothermal (PA/PT) flow cytometry for in vivo CBV assessment with multiple dyes as PA contrast agents (labels). As the first step, we have characterized the capability of this technique to monitor the clearance of three dyes (indocyanine green, methylene blue, and trypan blue) in an animal model. However, there are strong demands on improvements in PA/PT flow cytometry. As additional verification of our proof-of-concept of this technique, we performed optical photometric CBV measurements in vitro. Three label dyes—methylene blue, crystal violet and, partially, brilliant green—were selected for simultaneous photometric determination of the components of their two-dye mixtures in the circulating blood in vitro without any extra data (like hemoglobin absorption) known a priori. The tests of single dyes and their mixtures in a flow system simulating a blood transfusion system showed a negligible difference between the sensitivities of the determination of these dyes under batch and flow conditions. For individual dyes, the limits of detection of 3×10-6 M‒3×10-6 M in blood were achieved, which provided their continuous determination at a level of 10-5 M for the CBV assessment without a priori data on the matrix. The CBV assessment with errors no higher than 4% were obtained, and the possibility to apply the developed procedure for optical photometric (flow cytometry) with laser sources was shown.
Ghaedi, M; Zeinali, N; Ghaedi, A M; Teimuori, M; Tashkhourian, J
2014-05-05
In this study, graphite oxide (GO) nano according to Hummers method was synthesized and subsequently was used for the removal of methylene blue (MB) and brilliant green (BG). The detail information about the structure and physicochemical properties of GO are investigated by different techniques such as XRD and FTIR analysis. The influence of solution pH, initial dye concentration, contact time and adsorbent dosage was examined in batch mode and optimum conditions was set as pH=7.0, 2 mg of GO and 10 min contact time. Employment of equilibrium isotherm models for description of adsorption capacities of GO explore the good efficiency of Langmuir model for the best presentation of experimental data with maximum adsorption capacity of 476.19 and 416.67 for MB and BG dyes in single solution. The analysis of adsorption rate at various stirring times shows that both dyes adsorption followed a pseudo second-order kinetic model with cooperation with interparticle diffusion model. Subsequently, the adsorption data as new combination of artificial neural network was modeled to evaluate and obtain the real conditions for fast and efficient removal of dyes. A three-layer artificial neural network (ANN) model is applicable for accurate prediction of dyes removal percentage from aqueous solution by GO following conduction of 336 experimental data. The network was trained using the obtained experimental data at optimum pH with different GO amount (0.002-0.008 g) and 5-40 mg/L of both dyes over contact time of 0.5-30 min. The ANN model was able to predict the removal efficiency with Levenberg-Marquardt algorithm (LMA), a linear transfer function (purelin) at output layer and a tangent sigmoid transfer function (tansig) at hidden layer with 10 and 11 neurons for MB and BG dyes, respectively. The minimum mean squared error (MSE) of 0.0012 and coefficient of determination (R(2)) of 0.982 were found for prediction and modeling of MB removal, while the respective value for BG was the MSE and R(2) of 0.001 and 0.981, respectively. The ANN model results show good agreement with experimental data. Copyright © 2013 Elsevier B.V. All rights reserved.
Flotation Immunoassay: Masking the Signal from Free Reporters in Sandwich Immunoassays
Chen, Hui; Hagström, Anna E. V.; Kim, Jinsu; Garvey, Gavin; Paterson, Andrew; Ruiz-Ruiz, Federico; Raja, Balakrishnan; Strych, Ulrich; Rito-Palomares, Marco; Kourentzi, Katerina; Conrad, Jacinta C.; Atmar, Robert L.; Willson, Richard C.
2016-01-01
In this work, we demonstrate that signal-masking reagents together with appropriate capture antibody carriers can eliminate the washing steps in sandwich immunoassays. A flotation immunoassay (FI) platform was developed with horseradish peroxidase chemiluminescence as the reporter system, the dye Brilliant Blue FCF as the signal-masking reagent, and buoyant silica micro-bubbles as the capture antibody carriers. Only reporters captured on micro-bubbles float above the dye and become visible in an analyte-dependent manner. These FIs are capable of detecting proteins down to attomole levels and as few as 106 virus particles. This signal-masking strategy represents a novel approach to simple, sensitive and quantitative immunoassays in both laboratory and point-of-care settings. PMID:27075635
Inhibition of Neuronal Voltage-Gated Sodium Channels by Brilliant Blue G
Jo, Sooyeon
2011-01-01
Brilliant blue G (BBG), best known as an antagonist of P2X7 receptors, was found to inhibit voltage-gated sodium currents in N1E-115 neuroblastoma cells. Sodium currents elicited from a holding potential of −60 mV were blocked with an IC50 of 2 μM. Block was enhanced in a use-dependent manner at higher stimulation rates. The voltage-dependence of inactivation was shifted in the hyperpolarizing direction, and recovery from inactivation was slowed by BBG. The most dramatic effect of BBG was to slow recovery from inactivation after long depolarizations, with 3 μM BBG increasing half-time for recovery (measured at −120 mV) from 24 to 854 ms after a 10-s step to 0 mV. These results were mimicked by a kinetic model in which BBG binds weakly to resting channels (Kd = 170 μM) but tightly to fast-inactivated channels (Kd = 5 μM) and even more tightly (Kd = 0.2 μM) to slow-inactivated channels. In contrast to BBG, the structurally related food-coloring dye Brilliant Blue FCF had very little effect at concentrations up to 30 μM. These results show that BBG inhibits voltage-gated sodium channels at micromolar concentrations. Although BBG inhibition of sodium channels is less potent than inhibition of P2X7 receptors, there may be significant inhibition of sodium channels at BBG concentrations achieved in spinal cord or brain during experimental treatment of spinal cord injury or Huntington's disease. Considered as a sodium channel blocker, BBG is remarkably potent, acting with more than 10-fold greater potency than lacosamide, another blocker thought to bind to slow-inactivated channels. PMID:21536754
Isolation of bacterial strains able to metabolize lignin and lignin-related compounds.
Tian, J-H; Pourcher, A-M; Peu, P
2016-07-01
In this study, we identified five strains isolated from soil and sediments able to degrade kraft lignin, aromatic dyes and lignin derivatives. Using 16S rRNA gene sequencing, the isolates were identified as Serratia sp. JHT01, Serratia liquefacien PT01, Pseudomonas chlororaphis PT02, Stenotrophomonas maltophilia PT03 and Mesorhizobium sp. PT04. All the isolates showed significant growth on lignin with no water-extractable compounds. Synthetic aromatic dyes were used to assess the presence of oxidative enzymes. All the isolates were able to use the thiazine dye Methylene blue and the anthraquinone dye Remazol Brilliant Blue R as the sole carbon source. Guaiacol, veratryl alcohol and biphenyl were also mineralized by all the strains isolated. These results suggest they could be used for the treatment of aromatic pollutants and for the degradation of the lignocellulosic biomass. The valorization of waste lignin and lignocellulosic biomass by biocatalysis opens up new possibilities for the production of value-added substituted aromatics, biofuel and for the treatment of aromatic pollutants. Bacteria with ligninolytic potential could be a source of novel enzymes for controlled lignin depolymerization. In this work, five soil bacteria were isolated and studied. Every isolate showed significant growth on lignin and was able to degrade several lignin monomers and ligninolytic indicator dyes. They could thus be a source of novel ligninolytic enzymes as well as candidates for a bacterial consortium for the delignification of lignocellulosic biomass. © 2016 The Society for Applied Microbiology.
Lu, Ruoying; Ma, Li; He, Feng; Yu, Dong; Fan, Ruozhi; Zhang, Yangming; Long, Zheping; Zhang, Xiaoyu; Yang, Yang
2016-03-01
The ability of the white-rot fungus Ganoderma sp.En3 to decolorize different kinds of dyes widely applied in the textile and dyeing industry, including the anthraquinone dye Remazol Brilliant Blue R (RBBR), indigo dye indigo carmine and triphenylmethane dye methyl green, was evaluated in this study. Ganoderma sp.En3 had a strong capability of decolorizing high concentrations of RBBR, indigo carmine and methyl green. Obvious reduction of Chemical Oxygen Demand was observed after decolorization of different dyes. Ganoderma sp.En3 had a strong ability to tolerate RBBR, indigo carmine and methyl green with high concentrations. High concentrations of RBBR, indigo carmine and methyl green could also be efficiently decolorized by the crude enzyme of Ganoderma sp.En3. Different redox mediators such as syringaldehyde, acetosyringone and acetovanillone could enhance the decolorization capability for higher concentration of indigo carmine and methyl green. Different metal ions had little effect on the ability of the crude enzyme to decolorize indigo carmine and methyl green. Our study suggested that Ganoderma sp.En3 had a strong capability for decolorizing and tolerating high concentrations of different types of dyes such as RBBR, indigo carmine and methyl green.
Low frequency ultrasonic-assisted hydrolysis of starch in the presence of α-amylase.
Gaquere-Parker, Anne; Taylor, Tamera; Hutson, Raihannah; Rizzo, Ashley; Folds, Aubrey; Crittenden, Shastina; Zahoor, Neelam; Hussein, Bilal; Arruda, Aaron
2018-03-01
Hydrolysis of starch is an important process in the food industry and in the production of bioethanol or smaller carbohydrate molecules that can be used as starting blocks for chemical synthesis. Such hydrolysis can be enhanced by lowering the pH, heating the reaction mixture or catalyzing the reaction with enzymes. This study reports the effect of sonication on the reaction rate of starch hydrolysis at different temperatures, in the presence or absence of alpha-amylase. Starch Azure, a commercially available potato starch covalently linked with Remazol Brilliant Blue, has been chosen since its hydrolysis releases a blue dye, which concentration can be monitored by UV Vis spectroscopy. Ultrasounds, regardless of experimental conditions, provide the highest reaction rate for such hydrolysis. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Karam, Tony E.; Siraj, Noureen; Zhang, Zhenyu; Ezzir, Abdulrahman F.; Warner, Isiah M.; Haber, Louis H.
2017-10-01
The synthesis, characterization, ultrafast dynamics, and nonlinear spectroscopy of 30 nm nanospheres of brilliant green-bis(pentafluoroethylsulfonyl)imide ([BG][BETI]) in water are reported. These thermally stable nanoparticles are derived from a group of uniform materials based on organic salts (nanoGUMBOS) that exhibit enhanced near-infrared emission compared with the molecular dye in water. The examination of ultrafast transient absorption spectroscopy results reveals that the overall excited-state relaxation lifetimes of [BG][BETI] nanoGUMBOS are longer than the brilliant green molecular dye in water due to steric hindrance of the torsional degrees of freedom of the phenyl rings around the central carbon. Furthermore, the second harmonic generation signal of [BG][BETI] nanoGUMBOS is enhanced by approximately 7 times and 23 times as compared with colloidal gold nanoparticles of the same size and the brilliant green molecular dye in water, respectively. A very clear third harmonic generation signal is observed from the [BG][BETI] nanoGUMBOS but not from either the molecular dye or the gold nanoparticles. Overall, these results show that [BG][BETI] nanoGUMBOS exhibit altered ultrafast and nonlinear spectroscopy that is beneficial for various applications including nonlinear imaging probes, biomedical imaging, and molecular sensing.
Proskurnin, Mikhail A; Zhidkova, Tatyana V; Volkov, Dmitry S; Sarimollaoglu, Mustafa; Galanzha, Ekaterina I; Mock, Donald; Nedosekin, Dmitry A; Zharov, Vladimir P
2011-10-01
Recently, photoacoustic (PA) flow cytometry (PAFC) has been developed for in vivo detection of circulating tumor cells and bacteria targeted by nanoparticles. Here, we propose multispectral PAFC with multiple dyes having distinctive absorption spectra as multicolor PA contrast agents. As a first step of our proof-of-concept, we characterized high-speed PAFC capability to monitor the clearance of three dyes (Indocyanine Green [ICG], Methylene Blue [MB], and Trypan Blue [TB]) in an animal model in vivo and in real time. We observed strong dynamic PA signal fluctuations, which can be associated with interactions of dyes with circulating blood cells and plasma proteins. PAFC demonstrated enumeration of circulating red and white blood cells labeled with ICG and MB, respectively, and detection of rare dead cells uptaking TB directly in bloodstream. The possibility for accurate measurements of various dye concentrations including Crystal Violet and Brilliant Green were verified in vitro using complementary to PAFC photothermal (PT) technique and spectrophotometry under batch and flow conditions. We further analyze the potential of integrated PAFC/PT spectroscopy with multiple dyes for rapid and accurate measurements of circulating blood volume without a priori information on hemoglobin content, which is impossible with existing optical techniques. This is important in many medical conditions including surgery and trauma with extensive blood loss, rapid fluid administration, and transfusion of red blood cells. The potential for developing a robust clinical PAFC prototype that is safe for human, and its applications for studying the liver function are further highlighted. Copyright © 2011 International Society for Advancement of Cytometry.
Dashamiri, Somayeh; Ghaedi, Mehrorang; Dashtian, Kheibar; Rahimi, Mahmood Reza; Goudarzi, Alireza; Jannesar, Ramin
2016-07-01
Copper oxide nanoparticles loaded on activated carbon (CuO-NPs-AC) were prepared and fully analyzed and characterized with FE-SEM, XRD and FT-IR. Subsequently, this novel material was used for simultaneous ultrasound-assisted adsorption of brilliant green (BG), auramine O (AO), methylene blue (MB) and eosin yellow (EY) dyes. Problems regard to dyes spectra overlap in quaternary solution of this dyes were omitted by derivative spectrophotometric method. The best pH in quaternary system was studied by using one at a time method to achieved maximum dyes removal percentage. Subsequently, sonication time, adsorbent dosage and initial dyes concentrations influence on dyes removal was optimized by central composite design (CCD) combined with desirability function approach (DFA). Desirability score of 0.978 show optimum conditions set at sonication time (4.2 min), adsorbent mass (0.029 g), initial dyes concentration (4.5 mg L(-1)). Under this optimum condition the removal percentage for MB, AO, EY and BG dyes 97.58, 94.66, 96.22 and 94.93, respectively. The adsorption rate well fitted by pseudo second-order while adsorption capacity according to the Langmuir model as best equilibrium isotherm model for BG, MB, AO and EY was 20.48, 21.26, 22.34 and 21.29 mg g(-1), respectively. Copyright © 2016 Elsevier B.V. All rights reserved.
Salatino, Piero; Sannia, Giovanni
2014-01-01
In the present study, a crude laccase preparation from Pleurotus ostreatus was successfully immobilized on perlite, a cheap porous silica material, and tested for Remazol Brilliant Blue R (RBBR) decolourisation in a fluidized bed recycle reactor. Results showed that RBBR decolourisation is mainly due to enzyme action despite the occurrence of dye adsorption-related enzyme inhibition. Fine tuning of immobilization conditions allowed balancing the immobilization yield and the resulting rate of decolourisation, with the adsorption capacity of the solid biocatalyst. In the continuous lab scale reactor, a maximum conversion degree of 56.1% was achieved at reactor space-time of 4.2 h. Stability and catalytic parameters of the immobilized laccases were also assessed in comparison with the soluble counterparts, revealing an increase in stability, despite a reduction of the catalytic performances. Both effects are most likely ascribable to the occurrence of multipoint attachment phenomena. PMID:24895564
NASA Astrophysics Data System (ADS)
Aziz, A. A.; Ibrahim, S.
2018-05-01
A synergetic improved composite TiO2 photocatalysts was successfully synthesized by using nitrogen (N) as a dopant and activated carbon (AC) as synergetic compound. Two different types of AC prepared from Garcinia mangostana shell and commercial AC obtained from palm shell were chosen as synergetic compound. Thus synthesized composites was further characterized by Brunauer-Emmett-Teller (BET) surface analyzer and UV-visible light spectroscope. The doping of N resulted in a better solar light utilization potential. Furthermore, synergizing with AC contributed for the improved BET surface area and pore size distribution. The synergetic adsorption-photocatalytic activity was investigated by removing a commercial batik dye namely Remazol Brilliant Blue (RBB) under direct solar irradiation. The synergetic experiments showed that commercial AC synergized with N-TiO2 resulted with a maximum removal efficiency of ∼80% in 6 h.
NASA Astrophysics Data System (ADS)
Sankar, Renu; Manikandan, Perumal; Malarvizhi, Viswanathan; Fathima, Tajudeennasrin; Shivashangari, Kanchi Subramanian; Ravikumar, Vilwanathan
2014-03-01
Copper oxide (CuO) nanoparticles were synthesized by treating 5 mM cupric sulphate with Carica papaya leaves extract. The kinetics of the reaction was studied using UV-visible spectrophotometry. An intense surface Plasmon resonance between 250-300 nm in the UV-vis spectrum clearly reveals the formation of copper oxide nanoparticles. The results of scanning electron microscopy (SEM) and dynamic light scattering (DLS) exhibited that the green synthesized copper oxide nanoparticles are rod in shape and having a mean particle size of 140 nm, further negative zeta potential disclose its stability at -28.9 mV. The Fourier-transform infrared (FTIR) spectroscopy results examined the occurrence of bioactive functional groups required for the reduction of copper ions. X-ray diffraction (XRD) spectra confirmed the copper oxide nanoparticles crystalline nature. Furthermore, colloidal copper oxide nanoparticles effectively degrade the Coomassie brilliant blue R-250 dye beneath the sunlight.
Determination of synthetic food dyes in commercial soft drinks by TLC and ion-pair HPLC.
de Andrade, Francisca Ivani; Florindo Guedes, Maria Izabel; Pinto Vieira, Ícaro Gusmão; Pereira Mendes, Francisca Noélia; Salmito Rodrigues, Paula Alves; Costa Maia, Carla Soraya; Marques Ávila, Maria Marlene; de Matos Ribeiro, Luzara
2014-08-15
Synthetic food colourings were analyzed on commercial carbonated orange and grape soft drinks produced in Ceará State, Brazil. Tartrazine (E102), Amaranth (E123), Sunset Yellow (E110) and Brilliant Blue (E133) were extracted from soft drinks using C18 SPE and identified by thin layer chromatography (TLC), this method was used to confirm the composition of food colouring in soft drinks stated on label. The concentration of food colouring in soft drink was determined by ion-pair high performance liquid chromatography with photodiode array detection. The results obtained with the samples confirm that the identification and quantification methods are recommended for quality control of the synthetic colours in soft drinks, as well as to determine whether the levels and lables complies with the recommendations of food dyes legislation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ultrastructure of the membrana limitans interna after dye-assisted membrane peeling.
Brockmann, Tobias; Steger, Claudia; Westermann, Martin; Nietzsche, Sandor; Koenigsdoerffer, Ekkehart; Strobel, Juergen; Dawczynski, Jens
2011-01-01
The purpose of this study was to investigate the ultrastructure of the membrana limitans interna (internal limiting membrane, ILM) and to evaluate alterations to the retinal cell layers after membrane peeling with vital dyes. Twenty-five patients (25 eyes) who underwent macular hole surgery were included, whereby 12 indocyanine green (ICG)- and 13 brilliant blue G (BBG)-stained ILM were analyzed using light, transmission electron and scanning electron microscopy. Retinal cell fragments on the ILM were identified in both groups using immunohistochemistry. Comparing ICG- and BBG-stained membranes, larger cellular fragments were observed at a higher frequency in the BBG group. Thereby, the findings indicate that ICG permits an enhanced separation of the ILM from the underlying retina with less mechanical destruction. A possible explanation might be seen in the known photosensitivity of ICG, which induces a stiffening and shrinkage of the ILM but also generates retinal toxic metabolites. Copyright © 2011 S. Karger AG, Basel.
A dye binding method for measurement of total protein in microalgae.
Servaites, Jerome C; Faeth, Julia L; Sidhu, Sukh S
2012-02-01
Protein is a large component of the standing biomass of algae. The total protein content of algae is difficult to measure because of the problems encountered in extracting all of the protein from the cells. Here we modified an existing protein assay to measure total protein in microalgae cells that involves little or no extraction of protein from the cells. Aliquots of fresh or pretreated cells were spotted onto filter paper strips. After drying, the strips were stained in a 0.1% (w/v) solution of the protein stain Coomassie Brilliant Blue R-250 for 16 to 24 h and then destained. The stained protein spots were cut out from the paper, and dye was eluted in 1% (w/v) sodium dodecyl sulfate (SDS). Absorbance at 600 nm was directly proportional to protein concentration. Cells that were recalcitrant to taking up the dye could be either heated at 80°C for 10 min in 1% SDS or briefly sonicated for 3 min to facilitate penetration of the dye into the cells. Total protein measured in Chlorella vulgaris using this method compared closely with that measured using the total N method. Total protein concentrations were measured successfully in 12 algal species using this dye binding method. Copyright © 2011 Elsevier Inc. All rights reserved.
Shuib, Fatin Nur Sufinas; Husaini, Ahmad; Zulkharnain, Azham; Roslan, Hairul Azman; Guan, Tay Meng
2016-01-01
In many industrial areas such as in food, pharmaceutical, cosmetic, printing, and textile, the use of synthetic dyes has been integral with products such as azo dye, anthrax, and dyestuffs. As such, these industries produce a lot of waste by-products that could contaminate the environment. Bioremediation, therefore, has become an important emerging technology due to its cost-sustainable, effective, natural approach to cleaning up contaminated groundwater and soil via the use of microorganisms. The use of microorganisms in bioremediation requires the optimisation of parameters used in cultivating the organism. Thus the aim of the work was to assess the degradation of Remazol Brilliant Blue R (RBBR) dye on soil using Plackett-Burman design by the basidiomycete, M. cladophyllus UMAS MS8. Biodegradation analyses were carried out on a soil spiked with RBBR and supplemented with rice husk as the fungus growth enhancer. A two-level Plackett-Burman design was used to screen the medium components for the effects on the decolourization of RBBR. For the analysis, eleven variables were selected and from these four parameters, dye concentration, yeast extract concentration, inoculum size, and incubation time, were found to be most effective to degrade RBBR with up to 91% RBBR removal in soil after 15 days.
Shuib, Fatin Nur Sufinas
2016-01-01
In many industrial areas such as in food, pharmaceutical, cosmetic, printing, and textile, the use of synthetic dyes has been integral with products such as azo dye, anthrax, and dyestuffs. As such, these industries produce a lot of waste by-products that could contaminate the environment. Bioremediation, therefore, has become an important emerging technology due to its cost-sustainable, effective, natural approach to cleaning up contaminated groundwater and soil via the use of microorganisms. The use of microorganisms in bioremediation requires the optimisation of parameters used in cultivating the organism. Thus the aim of the work was to assess the degradation of Remazol Brilliant Blue R (RBBR) dye on soil using Plackett-Burman design by the basidiomycete, M. cladophyllus UMAS MS8. Biodegradation analyses were carried out on a soil spiked with RBBR and supplemented with rice husk as the fungus growth enhancer. A two-level Plackett-Burman design was used to screen the medium components for the effects on the decolourization of RBBR. For the analysis, eleven variables were selected and from these four parameters, dye concentration, yeast extract concentration, inoculum size, and incubation time, were found to be most effective to degrade RBBR with up to 91% RBBR removal in soil after 15 days. PMID:27803944
Moreira-Neto, S L; Mussatto, S I; Machado, K M G; Milagres, A M F
2013-04-01
The discharge of highly coloured synthetic dye effluents into rivers and lakes is harmful to the water bodies, and therefore, intensive researches have been focussed on the decolorization of wastewater by biological, physical or chemical treatments. In the present study, 12 basidiomycetes strains from the genus Pleurotus, Trametes, Lentinus, Peniophora, Pycnoporus, Rigidoporus, Hygrocybe and Psilocybe were evaluated for decolorization of the reactive dyes Cibacron Brilliant Blue H-GR and Cibacron Red FN-2BL, both in solid and liquid media. Among the evaluated fungi, seven showed great ability to decolorize the synthetic textile effluent, both in vivo (74-77%) or in vitro (60-74%), and laccase was the main ligninolytic enzyme involved on dyes decolorization. Pleurotus ostreatus, Trametes villosa and Peniophora cinerea reduced near to 60% of the effluent colour after only 1 h of treatment. The decolorization results were still improved by establishing the nitrogen source and amount to be used during the fungal strains cultivation in synthetic medium previous their action on the textile effluent, with yeast extract being a better nitrogen source than ammonium tartarate. These results contribute for the development of an effective microbiological process for decolorization of dye effluents with reduced time of treatment. © 2013 The Society for Applied Microbiology.
A dipeptide-based superhydrogel: Removal of toxic dyes and heavy metal ions from waste water.
Nandi, Nibedita; Baral, Abhishek; Basu, Kingshuk; Roy, Subhasish; Banerjee, Arindam
2017-01-01
A short peptide-based molecule has been found to form a strong hydrogel at phosphate buffer solution of pH 7.46. The hydrogel has been characterized thoroughly using various techniques including field emission scanning electron microscopy (FE-SEM), wide angle powder X-ray diffraction (PXRD), and rheological analysis. It has been observed from FE-SEM images that entangled nanofiber network is responsible for gelation. Rheological investigation demonstrates that the self-assembly of this synthetic dipeptide results in the formation of mechanically strong hydrogel with storage modulus (G') around 10 4 Pa. This gel has been used for removing both cationic and anionic toxic organic dyes (Brilliant Blue, Congo red, Malachite Green, Rhodamine B) and metal ions (Co 2+ and Ni 2+ ) from waste water. Moreover, only a small amount of the gelator is required (less than 1 mg/mL) for preparation of this superhydrogel and even this hydrogel can be reused three times for dye/metal ion absorption. This signifies the importance of the hydrogel towards waste water management. © 2016 Wiley Periodicals, Inc.
Decolorization of brilliant green dye using immersed lamp sonophotocatalytic reactor
NASA Astrophysics Data System (ADS)
Gole, Vitthal L.; Priya, Astha; Danao, Sanjay P.
2017-12-01
The textile and dye industries require an enormous amount of water for processing and produce a large volume of wastewater. Generated wastewater had potential hazards and a threat to the aquatic biota. The present work investigates the decolorization of brilliant green dye using a combination of two advanced oxidation techniques viz sonocatalysis and photocatalysis (immersed lamp) known as sonophotocatalysis (3 L capacity). The efficiency of decolorization is further improved in the presence of various additives viz. copper oxide, zinc oxide, and sodium chloride. The maximum decolorization of brilliant green (BG) (94.8% in 120 min) obtained in the presence of zinc oxide. The total organic carbon of the treated samples was measured to monitor complete mineralization of BG. The sonophotocatalytic process (in the presence of zinc oxide) shows maximum mineralization. Synergic combination of two oxidation processes increased the production of oxidizing radicals. Continuous cleaning of catalyst surface (due to sonolysis effect) improves the activity of the catalyst for photolysis operation. The present work is highly useful for the development of a sonophotocatalytic process.
Antibody labeling with Remazol Brilliant Violet 5R, a vinylsulphonic reactive dye.
Ferrari, Alejandro; Friedrich, Adrián; Weill, Federico; Wolman, Federico; Leoni, Juliana
2013-01-01
Colloidal gold is the first choice for labeling antibodies to be used in Point Of Care Testing. However, there are some recent reports on a family of textile dyes-named "reactive dyes"-being suitable for protein labeling. In the present article, protein labeling conditions were optimized for Remazol Brilliant Violet 5R, and the sensitivity of the labeled antibodies was assessed and compared with that of colloidal-gold labeled antibodies. Also, the accelerated stability was explored. Optimal conditions were pH 10.95, dye:Ab molar ratio of 264 and an incubation time of 132 min. Labeled antibodies were stable, and could be successfully used in a slot blot assay, detecting as low as 400 ng/mL. Therefore, the present work demonstrates that vinylsulphonic reactive dyes can be successfully used to label antibodies, and are excellent candidates for the construction of a new generation of Point of Care Testing kits.
Guerra, Denis L; Silva, Weber L L; Oliveira, Helen C P; Viana, Rúbia R; Airoldi, Claudio
2011-02-15
The objective of this study is to examine the adsorption behavior of Sumifix Brilliant Orange 3R textile dye from aqueous solution on smectite sample, an abundant Amazon clay. The original smectite clay mineral has been collected from Amazon region, Brazil. The compound 2-aminomethylpyridine was anchored onto smectite surface by heterogeneous route. The ability of these materials to remove the Sumifix Brilliant Orange 3R textile dye from aqueous solution was followed by a series of adsorption isotherms, using a batchwise process. The maximum number of moles adsorbed was determined to be 1.26 and 2.07 mmol g(-1) for natural and modified clay samples, respectively. The energetic effects caused by dye cations adsorption were determined through calorimetric titrations. Thermodynamics indicated the existence of favorable conditions for such dye-nitrogen interactions. Copyright © 2010. Published by Elsevier B.V.
Zimbardi, Ana L. R. L.; Camargo, Priscila F.; Carli, Sibeli; Aquino Neto, Sidney; Meleiro, Luana P.; Rosa, Jose C.; De Andrade, Adalgisa R.; Jorge, João A.; Furriel, Rosa P. M.
2016-01-01
Laccase production by Pycnoporus sanguineus RP15 grown in wheat bran and corncob under solid-state fermentation was optimized by response surface methodology using a Central Composite Rotational Design. A laccase (Lacps1) was purified and characterized and the potential of the pure Lacps1 and the crude culture extract for synthetic dye decolorization was evaluated. At optimal conditions (eight days, 26 °C, 18% (w/w) milled corncob, 0.8% (w/w) NH4Cl and 50 mmol·L−1 CuSO4, initial moisture 4.1 mL·g−1), the laccase activity reached 138.6 ± 13.2 U·g−1. Lacps1 was a monomeric glycoprotein (67 kDa, 24% carbohydrate). Optimum pH and temperature for the oxidation of 2,2’-azino-bis(3-ethylbenzthiazoline-6-sulfonate) (ABTS) were 4.4 and 74.4 °C, respectively. Lacps1 was stable at pH 3.0–8.0, and after two hours at 55–60 °C, presenting high redox potential (0.747 V vs. NHE). ABTS was oxidized with an apparent affinity constant of 147.0 ± 6.4 μmol·L−1, maximum velocity of 413.4 ± 21.2 U·mg−1 and catalytic efficiency of 3140.1 ± 149.6 L·mmol−1·s−1. The maximum decolorization percentages of bromophenol blue (BPB), remazol brilliant blue R and reactive blue 4 (RB4), at 25 or 40 °C without redox mediators, reached 90%, 80% and 60%, respectively, using either pure Lacps1 or the crude extract. This is the first study of the decolorization of BPB and RB4 by a P. sanguineus laccase. The data suggested good potential for treatment of industrial dye-containing effluents. PMID:27164083
Henrich, Paul B; Valmaggia, Christophe; Lang, Corina; Cattin, Philippe C
2014-03-01
Vitreoretinal surgeons have been slow to adopt the use of spectral filters for endoillumination to reduce retinal light toxicity. This study shows that spectral filters can be used without a loss in color contrast during brilliant blue G chromovitrectomy. To evaluate the influence of intra operative spectral light filters on perceivable contrast during Brilliant Blue G chromovitrectomy, a prospective, observational clinical study was carried out on 59 consecutive Brilliant Blue G chromovitrectomy interventions in 59 patients admitted for macular holes, macular pucker or vitreomacular traction syndromes. Subsequent to peeling of the internal limiting membrane, six different illumination modes were enabled consecutively: mercury vapor, mercury vapor/xenon, and xenon followed by xenon combined with an amber, green or yellow spectral filter. Main outcome measure was the chromaticity spread between stained internal limiting membrane and unstained retina as a measure for the color contrast perceived by the human eye. Mean chromaticity scores were similar for all light sources: mercury vapor 7.97, mercury vapor/xenon 7.96 (p = 0.96), and xenon 7.41 (p = 0.55). Compared to xenon, the additional use of endoillumination spectral filters did not change contrast recognizability: Chromaticity scores were 9.38 for the amber filter (p = 0.13), 6.63 for the green and 7.02 for the yellow filter (p = 0.37 and 0.64, respectively). When comparing the different filters head-to-head, the amber filter was superior to the green filter (p = 0.03), while the yellow was intermediate and not significantly different from either the amber (p = 0.08) or the green filter (p = 0.51). Color contrast perceptibility during Brilliant Blue G assisted chromovitrectomy is similar with mercury vapor, mercury vapor/xenon or xenon light sources. Spectral filters do not decrease color contrast recognizability. Head-to-head comparison shows a significant advantage for the amber over the green filter with respect to contrast generation, the yellow filter is intermediate. As spectral filters are known to greatly reduce retinal light toxicity, we suggest donor eye studies to validate whether the amber filter should be generally recommended for Brilliant Blue G chromovitrectomy.
Reduction of cytotoxicity of benzalkonium chloride and octenidine by Brilliant Blue G.
Bartok, Melinda; Tandon, Rashmi; Alfaro-Espinoza, Gabriela; Ullrich, Matthias S; Gabel, Detlef
2015-01-01
The irritative effects of preservatives found in ophthalmologic solution, or of antiseptics used for skin disinfection is a consistent problem for the patients. The reduction of the toxic effects of these compounds is desired. Brilliant Blue G (BBG) has shown to meet the expected effect in presence of benzalkonium chloride (BAK), a well known preservative in ophthalmic solutions, and octenidine dihydrochloride (Oct), used as antiseptic in skin and wound disinfection. BBG shows a significant protective effect on human corneal epithelial (HCE) cells against BAK and Oct toxicity, increasing the cell survival up to 51 % at the highest BAK or Oct concentration tested, which is 0.01 %, both at 30 min incubation. Although BBG is described as a P2x7 receptor antagonist, other selective P2x7 receptor antagonists, OxATP (adenosine 5'-triphosphate-2',3'-dialdehyde) and DPPH (N'-(3,5-dichloropyridin-4-yl)-3-phenylpropanehydrazide), did not reduce the cytotoxicity of neither BAK nor Oct. Therefore we assume that the protective effect of BBG is not due to its action on the P2x7 receptor. Brilliant Blue R (BBR), a dye similar to BBG, was also tested for protective effect on BAK and Oct toxicity. In presence of BAK no significant protective effect was observed. Instead, with Oct a comparable protective effect was seen with that of BBG. To assure that the bacteriostatic effect is not affected by the combinations of BAK/BBG, Oct/BBG and Oct/BBR, bacterial growth inhibition was analyzed on different Gram-negative and Gram-positive bacteria. All combinations of BAK or Oct with BBG hinder growth of Gram-positive bacteria. The combinations of 0.001 % Oct and BBR above 0.025 % do not hinder the growth of B. subtilis. For Gram-negative bacteria, BBG and BBR reduce, but do not abolish, the antimicrobial effect of BAK nor of Oct. In conclusion, the addition of BBG at bacterial inhibitory concentrations is suggested in the ready-to-use ophthalmic preparations and antiseptic solutions.
Reduction of cytotoxicity of benzalkonium chloride and octenidine by Brilliant Blue G
Bartok, Melinda; Tandon, Rashmi; Alfaro-Espinoza, Gabriela; Ullrich, Matthias S.; Gabel, Detlef
2015-01-01
The irritative effects of preservatives found in ophthalmologic solution, or of antiseptics used for skin disinfection is a consistent problem for the patients. The reduction of the toxic effects of these compounds is desired. Brilliant Blue G (BBG) has shown to meet the expected effect in presence of benzalkonium chloride (BAK), a well known preservative in ophthalmic solutions, and octenidine dihydrochloride (Oct), used as antiseptic in skin and wound disinfection. BBG shows a significant protective effect on human corneal epithelial (HCE) cells against BAK and Oct toxicity, increasing the cell survival up to 51 % at the highest BAK or Oct concentration tested, which is 0.01 %, both at 30 min incubation. Although BBG is described as a P2x7 receptor antagonist, other selective P2x7 receptor antagonists, OxATP (adenosine 5’-triphosphate-2’,3’-dialdehyde) and DPPH (N’-(3,5-dichloropyridin-4-yl)-3-phenylpropanehydrazide), did not reduce the cytotoxicity of neither BAK nor Oct. Therefore we assume that the protective effect of BBG is not due to its action on the P2x7 receptor. Brilliant Blue R (BBR), a dye similar to BBG, was also tested for protective effect on BAK and Oct toxicity. In presence of BAK no significant protective effect was observed. Instead, with Oct a comparable protective effect was seen with that of BBG. To assure that the bacteriostatic effect is not affected by the combinations of BAK/BBG, Oct/BBG and Oct/BBR, bacterial growth inhibition was analyzed on different Gram-negative and Gram-positive bacteria. All combinations of BAK or Oct with BBG hinder growth of Gram-positive bacteria. The combinations of 0.001 % Oct and BBR above 0.025 % do not hinder the growth of B. subtilis. For Gram-negative bacteria, BBG and BBR reduce, but do not abolish, the antimicrobial effect of BAK nor of Oct. In conclusion, the addition of BBG at bacterial inhibitory concentrations is suggested in the ready-to-use ophthalmic preparations and antiseptic solutions. PMID:26417355
Sankar, Renu; Manikandan, Perumal; Malarvizhi, Viswanathan; Fathima, Tajudeennasrin; Shivashangari, Kanchi Subramanian; Ravikumar, Vilwanathan
2014-01-01
Copper oxide (CuO) nanoparticles were synthesized by treating 5 mM cupric sulphate with Carica papaya leaves extract. The kinetics of the reaction was studied using UV-visible spectrophotometry. An intense surface Plasmon resonance between 250-300 nm in the UV-vis spectrum clearly reveals the formation of copper oxide nanoparticles. The results of scanning electron microscopy (SEM) and dynamic light scattering (DLS) exhibited that the green synthesized copper oxide nanoparticles are rod in shape and having a mean particle size of 140 nm, further negative zeta potential disclose its stability at -28.9 mV. The Fourier-transform infrared (FTIR) spectroscopy results examined the occurrence of bioactive functional groups required for the reduction of copper ions. X-ray diffraction (XRD) spectra confirmed the copper oxide nanoparticles crystalline nature. Furthermore, colloidal copper oxide nanoparticles effectively degrade the Coomassie brilliant blue R-250 dye beneath the sunlight. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dewi, E. N.; Kurniasih, R. A.; Purnamayati, L.
2018-02-01
Phycocyanin is a blue color pigment which can be extracted from Spirulina sp. makes it potential to use as an alternative natural dye in the food product. The aim of this research was to determine the application of microencapsulated phycocyanin processed using spray dried method to the jelly candy. As a natural blue colorant, phycocyanin was expected to be safe for the consumer. The jelly candy was evaluated on the characteristics of its moisture, ash, Aw, pH, color appearance, and phycocyanin spectra with FTIR. The phycocyanin was microencapsulated using maltodextrin and Na-alginate as the coating materials (maltodextrin and Na-alginate in ratio 9:1.0 w/w). The spray drying process was operated with an inlet temperature of 80°C. The various concentrations of microencapsulated phycocyanin were added to the jelly candy such as 0%, 1%, 3%, 5% and jelly candy with brilliant blue used as comparison, each called PC, PS, PT, PL, and PB. The results showed that the various concentrations of phycocyanin added on the jelly product had significantly different on moisture content, Aw, and blue color. The FTIR spectra indicated that phycocyanin still persisted on the jelly candy. PL was the best jelly candy with the bluest color under PB.
Tracer-monitored flow titrations.
Sasaki, Milton K; Rocha, Diogo L; Rocha, Fábio R P; Zagatto, Elias A G
2016-01-01
The feasibility of implementing tracer-monitored titrations in a flow system is demonstrated. A dye tracer is used to estimate the instant sample and titrant volumetric fractions without the need for volume, mass or peak width measurements. The approach was applied to spectrophotometric flow titrations involving variations of sample and titrant flow-rates (i.e. triangle programmed technique) or concentration gradients established along the sample zone (i.e. flow injection system). Both strategies required simultaneous monitoring of two absorbing species, namely the titration indicator and the dye tracer. Mixing conditions were improved by placing a chamber with mechanical stirring in the analytical path aiming at to minimize diffusional effects. Unlike most of flow-based titrations, the innovation is considered as a true titration, as it does not require a calibration curve thus complying with IUPAC definition. As an application, acidity evaluation in vinegars involving titration with sodium hydroxide was selected. Phenolphthalein and brilliant blue FCF were used as indicator and dye tracer, respectively. Effects of sample volume, titrand/titrant concentrations and flow rates were investigated aiming at improved accuracy and precision. Results were reliable and in agreement with those obtained by a reference titration procedure. Copyright © 2015 Elsevier B.V. All rights reserved.
Study of nonlinear refraction of organic dye by Z-scan technique using He-Ne laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medhekar, S.; Kumar, R.; Mukherjee, S.
2013-02-05
Laser induced third-order nonlinear optical responses of Brilliant Green solution has been investigated by utilizing single beam Z-scan technique with a continuous-wave He-Ne laser radiation at 632.8 nm. It was observed that the material exhibits self-defocusing type optical nonlinearity. The measurements of nonlinear refraction were carried out at different dye concentrations and found that the increase in solution concentration leads to the linear increase of the nonlinear refractive index. The experimental results confirm great potential of the Brilliant Green for the application in nonlinear optical devices.
NASA Astrophysics Data System (ADS)
Xiaoxu, SUN; Jin, XU; Xingyu, LI
2017-12-01
In this paper dyeing waste water was simulated by reactive brilliant blue XBR, activated carbon adsorption process, coagulation process and chemical oxidation process were used to treat dyeing waste water. In activated carbon adsorption process and coagulation process, the water absorbance values were measured. The CODcr value of water was determined in Fenton chemical oxidation process. Then, the decolorization rate and COD removal rate were calculated respectively. The results showed that the optimum conditions of activated carbon adsorption process were as follows: pH=2, the dosage of activated carbon was 1.2g/L, the adsorption reaction time was 60 min, and the average decolorization rate of the three parallel experiments was 85.30%. The optimum conditions of coagulation experiment were as follows: pH=8~9, PAC dosage was 70mg/L, stirring time was 20min, standing time was 45min, the average decolorization rate of the three parallel experiments was 74.48%. The optimum conditions for Fenton oxidation were Fe2+ 0.05g/L, H2O2 (30%) 14mL/L, pH=3, reaction time 40min. The average CODcr removal rate was 69.35% in three parallel experiments. It can be seen that in the three methods the activated carbon adsorption treatment of dyeing wastewater was the best one.
Da Silva, M; Passarini, M R Z; Bonugli, R C; Sette, L D
2008-12-01
Marine-derived fungi represent a valuable source of structurally novel and biologically active metabolites of industrial interest. They also have drawn attention for their capacity to degrade several pollutants, including textile dyes, organochlorides and polycyclic aromatic hydrocarbons (PAHs), among others. The fungal tolerance to higher concentrations of salt might be considered an advantage for bioremediation processes in the marine environment. Therefore, filamentous fungi were isolated from cnidarians (scleractinian coral and zoanthids) collected from the north coast of São Paulo State, Brazil. A total of 144 filamentous fungi were morphologically and molecularly characterised. Among them there were several species of Penicillium and Aspergillus, in addition to Cladosporium spp., Eutypella sp., Fusarium spp., Khuskia sp., Mucor sp., Peacilomyces sp., Phoma sp. and Trichoderma spp. These fungi were tested regarding their decolourisation activity for Remazol Brilliant Blue R (RBBR), a textile dye used as an initial screening for PAH-degrading fungi. The most efficient fungi for RBBR decolourisation after 12 days were Penicillium citrinum CBMAI 853 (100%), Aspergillus sulphureus CBMAI 849 (95%), Cladosporium cladosporioides CBMAI 857 (93%) and Trichoderma sp. CBMAI 852 (89%). Besides its efficiency for dye decolourisation within liquid media, C. cladosporioides CBMAI 857 also decolourised dye on solid media, forming a decolourisation halo. Further research on the biotechnological potential, including studies on PAH metabolism, of these selected fungi are in progress.
Kumari, Simpal; Naraian, Ram
2016-09-15
Aim of the present study was to evaluate the efficiency of fungal co-culture for the decolorization of synthetic brilliant green carpet industry dye. For this purpose two lignocellulolytic fungi Pleurotus florida (PF) and Rhizoctonia solani (RS) were employed. The study includes determination of enzyme profiles (laccase and peroxidase), dye decolorization efficiency of co-culture and crude enzyme extracts. Both fungi produced laccase and Mn peroxidase and successfully decolorized solutions of different concentrations (2.0, 4.0, 6.0, & 8.0(w/v) of dye. The co-culture resulted highest 98.54% dye decolorization at 2% (w/v) of dye as compared to monocultures (82.12% with PF and 68.89% with RS) during 12 days of submerged fermentation. The lower levels of dyes were rapidly decolorized, while higher levels in slow order as 87.67% decolorization of 8% dye. The promising achievement of the study was remarkable decolorizing efficiency of co-culture over monocultures. The direct treatment of the mono and co-culture enzyme extracts to dye also influenced remarkable. The highest enzymatic decolorization was through combined (PF and RS) extracts, while lesser by monoculture extracts. Based on the observations and potentiality of co-culture technology; further it can be exploited for the bioremediation of areas contaminated with hazardous environmental pollutants including textile and other industry effluents. Copyright © 2016 Elsevier Ltd. All rights reserved.
Perlatti, Bruno; da Silva, Maria Fátima das Graças Fernandes; Fernandes, João Batista; Forim, Moacir Rossi
2012-11-01
A novel analytical method using HPLC-MS/MS operating in selected reaction monitoring (SRM) for evaluation of fungi efficacy to decolorize Remazol Brilliant Blue R (RBBR) dye solution was developed, validated and applied. The method shows high sensibility allowing the detection of 4.6 pM of RBBR. Four fungal strains were tested in liquid medium, three strains of Aspergillus (Aspergillus aculeatus, Aspergillus flavus and Aspergillus fumigatus) and Phanerochaete chrysosporium. All fungi were able to degrade the dye, with efficiencies ranging from 40% for P. chrysosporium up to 99% for A. flavus during a 30-day incubation period. During the experiment, increased accumulation of degradation products was observed in A. flavus cultures containing RBBR. Through the use of full scan HPLC-MS technique it was possible to propose the biogenesis of the microbial metabolic degradation pathway. Screening using microorganisms and RBBR may be hereafter used to investigate microbial biodegradation of high toxicity molecules such as dioxins. Copyright © 2012 Elsevier Ltd. All rights reserved.
Oplatowska, Michalina; Donnelly, Ryan F; Majithiya, Rita J; Glenn Kennedy, D; Elliott, Christopher T
2011-08-01
Triphenylmethanes - Malachite Green (MG), Crystal Violet (CV) and Brilliant Green (BG) are dyes with known genotoxic and carcinogenic properties. Apart from being illegally used in aquaculture for treatment of fish diseases they are also applied in industry such as paper production to colour paper towels widely used in hospitals, factories and other locations for hand drying after washing. The present study provides evidence that the triphenylmethane dye (BG) present in green paper towels can migrate through the skin even when the exposure time is short (30-300 s). The transfer of the dye from the towel to food (fish) was also studied and a high amount of colour was found to migrate during overnight exposure. The risk to humans associated with these two dye transfer studies was assessed using a 'margin of exposure approach' on the basis of the toxicological data available for the closely related dye MG and its metabolite Leucomalachite Green. The data indicated that the risk associated with the use of triphenylmethane containing paper towels is of a similar proportion to the risk associated with consumption of fish contaminated with these dyes due to the illegal application in aquaculture. Copyright © 2011 Elsevier Ltd. All rights reserved.
Inhibition of (Na(+)/K(+))-ATPase by Cibacron Blue 3G-A and its analogues.
Breier, A; Bohácová, V; Docolomanský, P
2006-12-01
A specific feature of anthraquinone dyes (AD) is to mimic the adenine nucleotides ATP, ADP, NAD and NADH, enabling them to act as ligands in interaction with nucleotide-binding sites of several enzymes and receptors. In the present study, the interactions and/or inhibitory effects of eight AD, including Cibacron Blue 3G-A (Reactive Blue 2), Procion Blue MX-R (Reactive Blue 4) and Remazol Brilliant Blue R (Reactive Blue 19) on the activity of (Na(+)/K(+))-ATPase were investigated. The AD used in this paper could be divided into two groups: i) AD1-AD4 that do not contain the triazine moiety; ii) AD5-AD8 that contain the triazine moiety. Interaction affinity between the respective dye and (Na+/K+)-ATPase was characterized by means of enzyme kinetics. All AD, excluding AD1 and AD2 (which were practically ineffective) exerted effective competitive inhibition to the (Na(+)/K(+))-ATPase activity. Present study is devoted to elucidation of relationship between the inhibitory efficacy of AD against (Na(+)/K(+))-ATPase activity, their acid-basic properties and their three dimensional structure. From the results obtained, the following conclusions could be driven: 1. Similarities in the mutual position of positively and negatively charged parts of ATP and AD are responsible for their interaction with ATP-binding site of (Na(+)/K(+))-ATPase. This may be documented by fact that mutual position of 1-aminogroup of anthraquinone and -SO3(-) group of benzenesulphonate part of respective AD plays crucial role for inhibition of this enzyme. Distances of these two groups on all effective AD were found to be similar as the distance of the 6-aminogroup of adenine and the second phosphate group on ATP molecule. This similarity could be responsible for biomimetic recognition of AD in ATP-binding loci of (Na(+)/K(+))-ATPase. 2. The affinity of AD to ATP binding site of (Na(+)/K(+))-ATPase increases with increasing values of molar refractivity, i. e., with increasing molecular volume and polarizability.
NASA Astrophysics Data System (ADS)
Singh, Vandana; Singh, Jadveer; Srivastava, Preeti
2018-04-01
Acacia gum-Fe0Np-silica nanocomposite (GFS1) has been crafted through sol-gel technique using a two-step process that involved the reduction of iron salt to zerovalent iron nanoparticles (Fe0Nps) followed by their impregnation within Acacia gum-silica matrix. GFS1 was characterized using Fourier transform infrared spectroscopy (FTIR), high-resolution transmission electron microscopy (HR-TEM), energy dispersive X-ray analysis (EDX), field emission scanning electron microscopy (FE-SEM), vibrating sample magnetometry (VSM), and X-ray photoelectron spectroscopy (XPS) techniques. GFS1 is decorated with Fe0Nps of 5 nm average size. The VSM study revealed that GFS1 has ferromagnetic nature. GFS1 was used as a heterogeneous Fenton-like catalyst for the degradation of azo dyes using Remazol Brilliant Violet (RBV) dye as a model dye. In first 5 min of operation, > 86% dye degradation was achieved and 94% dye (from 100 mg L-1 dye solution) was successfully degraded in 50 min. The dye degradation followed pseudo-first-order kinetics. The GFS1 performed efficiently well over the wide range of dye concentrations (25-200 mg L-1). The catalyst was reused for eight repeated cycles where 12.5% dye degradation was possible even in the eighth cycle. The catalyst behaved fairly well for the degradation of Metanil Yellow (MY) and Orange G (OG) dyes also. Under the optimum conditions of RBV dye degradation, Metanil Yellow (MY) and Orange G (OG) dyes were degraded to the extent of 97 and 26.3%, respectively.
NASA Astrophysics Data System (ADS)
Kim, Jae Gon; Lee, Gyoo Ho; Lee, Jin-Soo; Chon, Chul-Min; Kim, Tack Hyun; Ha, Kyoochul
2006-02-01
We examined the infiltration pattern of water in a regolith-bedrock profile consisting of two overburdens (OB1 and OB2), a buried rice paddy soil (PS), two texturally distinctive weathered materials (WM1 and WM2) and a fractured sedimentary rock (BR), using a Brilliant Blue FCF dye tracer. A black-coloured coating in conducting fractures in WM1, WM2 and BR was analysed by X-ray diffraction and scanning electron microscopy. The dye tracer penetrated to greater than 2 m depth in the profile. The macropore flow and saturated interflow were the major infiltration patterns in the profile. Macropore flow and saturated interflow were observed along fractures in WM1, WM2 and BR and at the dipping interfaces of PS-WM1, PS-WM2 and PS-BR respectively. Heterogeneous matrix flow occurred in upper overburden (OB1) and PS. Compared with OB1, the coarser textured OB2 acted as a physical barrier for vertical flow of water. The PS with low bulk density and many fine roots was another major conducting route of water in the profile. Manganese oxide and iron oxide were positively identified in the black coating material and had low crystallinity and high surface area, indicating their high reactivity with conducting contaminants.
Buda, Alessandro; Crivellaro, Cinzia; Elisei, Federica; Di Martino, Giampaolo; Guerra, Luca; De Ponti, Elena; Cuzzocrea, Marco; Giuliani, Daniela; Sina, Federica; Magni, Sonia; Landoni, Claudio; Milani, Rodolfo
2016-07-01
To compare the detection rate (DR) and bilateral optimal mapping (OM) of sentinel lymph nodes (SLNs) in women with endometrial and cervical cancer using indocyanine green (ICG) versus the standard technetium-99m radiocolloid ((99m)Tc) radiotracer plus methylene or isosulfan blue, or blue dye alone. From October 2010 to May 2015, 163 women with stage I endometrial or cervical cancer (118 endometrial and 45 cervical cancer) underwent SLN mapping with (99m)Tc with blue dye, blue dye alone, or ICG. DR and bilateral OM of ICG were compared respectively with the results obtained using the standard (99m)Tc radiotracer with blue dye, or blue dye alone. SLN mapping with (99m)Tc radiotracer with blue dye was performed on 77 of 163 women, 38 with blue dye only and 48 with ICG. The overall DR of SLN mapping was 97, 89, and 100 % for (99m)Tc with blue dye, blue dye alone, and ICG, respectively. The bilateral OM rate for ICG was 85 %-significantly higher than the 58 % obtained with (99m)Tc with blue dye (p = 0.003) and the 54 % for blue dye (p = 0.001). Thirty-one women (19 %) had positive SLNs. Sensitivity and negative predictive value of SLN were 100 % for all techniques. SLNs mapping using ICG demonstrated higher DR compared to other modalities. In addition, ICG was significantly superior to (99m)Tc with blue dye in terms of bilateral OM in women with early stage endometrial and cervical cancer. The higher number of bilateral OM may consequently reduce the overall number of complete lymphadenectomies, reducing the duration and additional costs of surgical treatment.
Monteiro, Mônica S; de Farias, Robson F; Chaves, José Alberto Pestana; Santana, Sirlane A; Silva, Hildo A S; Bezerra, Cícero W B
2017-12-15
In this work the efficiency of two lignocellulosic waste materials, wood residues and coconut mesocarp, were investigated as adsorbents towards two representative textile dyes (Remazol Red, RR and Remazol Brilliant Violet, RBV). The moisture, carbohydrate, protein, lipid, ash and fiber contents of both natural matrices were characterized. The materials were also characterized by infrared spectroscopy, X-ray diffractometry, scanning electron microscopy, specific surface area analysis and thermogravimetry. The adsorption of dyes was monitored by using UV-Vis spectrophotometry. It was verified that both, coconut mesocarp (CM) and wood residues can act as effective adsorbents towards the investigated dyes. It is verified that the maximum adsorption capacity Γ M (mg g -1 ) for RBV and RR are 7.28 and 3.97 towards CM and 0.64 and 0.71 towrads SD. Furthermore, it was verified that the adsorption is strongly pH dependent and, as a general behavior, an increase in the pH value is associated with a decrease of the total amount of adsorbed dye. The adsorption of violet dye onto coconut mesocarp is well described by the Langmuir model, while all the remazol red fitted better with the Freundlich equation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Arredondo-Santoyo, Marina; Vázquez-Garcidueñas, Ma Soledad; Vázquez-Marrufo, Gerardo
2018-04-30
The isolation and characterization of fungal strains from poorly described taxa allows undercover attributes of their basic biology useful for biotechnology. Here, a wild fungal strain (CMU-196) from recently described Paraconiothyrium genus was analyzed. CMU-196 was identified as Paraconiothyrium brasiliense by phylogenetic analysis of the rDNA internal transcribed spacer region (ITS). CMU-196 metabolized 57 out of 95 substrates of the Biolog FF microplates. Efficient assimilation of dextrins and glycogen indicates that CMU-196 is a good producer of amylolytic enzymes. It showed a remarkably assimilation of α-D-lactose, substrate described as inducer of cellulolytic activity but poorly assimilated by several fungi. Metabolically active mycelium of the strain decolorized broth supplemented with direct blue 71, Chicago sky blue and remazol brilliant blue R dyes. The former two dyes were also well removed from broth by mycelium inactivated by autoclaving. Both mycelia had low efficiency for removing fuchsin acid from broth and for decolorizing wastewater from the paper industry. CMU-196 strain showed extracellular laccase activity when potato dextrose broth was supplemented with Cu +2 , reaching a maximum activity of 46.8 (±0.33) U/L. Studied strain antagonized phytopathogenic Colletotrichum spp. fungi and Phytophthora spp. oomycetes in vitro, but is less effective towards Fusarium spp. fungi. CMU-196 antagonism includes overgrowing the mycelia of phytopathogens and growth inhibition, probably by hydrosoluble extracellular metabolites. The biotechnological potential of strain CMU-196 here described warrants further studies to have a more detailed knowledge of the mechanisms associated with its metabolic versatility, capacity for environmental detoxification, extracellular laccase production and antagonism against phytopathogens. This article is protected by copyright. All rights reserved. © 2018 American Institute of Chemical Engineers.
Development of an ion-pair to improve the colon permeability of a low permeability drug: Atenolol.
Lozoya-Agullo, Isabel; González-Álvarez, Isabel; González-Álvarez, Marta; Merino-Sanjuán, Matilde; Bermejo, Marival
2016-10-10
To ensure the optimal performance of oral controlled release formulations, drug colon permeability is one of the critical parameters. Consequently developing this kind of formulations for low permeability molecules requires strategies to increase their ability to cross the colonic membrane. The objective of this work is to show if an ion-pair formation can improve the colon permeability of atenolol as a low permeability drug model. Two counter ions have been tested: brilliant blue and bromophenol blue. The Distribution coefficients at pH7.00 (DpH7) of atenolol, atenolol + brilliant blue and atenolol + bromophenol blue were experimentally determined in n-octanol. Moreover, the colonic permeability was determined in rat colon using in situ closed loop perfusion method based in Doluisio's Technique. To check the potential effects of the counter ions on the membrane integrity, a histological assessment of colonic tissue was done. The results of the partitioning studies were inconclusive about ion-pair formation; nevertheless colon permeability was significantly increased by both counter ions (from 0.232±0.021cm/s to 0.508±0.038cm/s in the presence of brilliant blue and to 0.405±0.044cm/s in the presence of bromophenol blue). Neither damage on the membrane was observed on the histological studies, nor any change on paracellular permeability suggesting that the permeability enhancement could be attributed to the ion-pair formation. Copyright © 2016 Elsevier B.V. All rights reserved.
Mizutani, Takaharu
2009-01-01
The synthetic food dyes studied were rose bengal (RB), phroxine (PL), amaranth, erythrosine B (ET), allura red, new coccine, acid red (AR), tartrazine, sunset yellow FCF, brilliant blue FCF, and indigo carmine. First, data confirmed that these dyes were not substrates for CYP2A6, UGT1A6, and UGT2B7. ET inhibited UGT1A6 (glucuronidation of p-nitrophenol) and UGT2B7 (glucuronidation of androsterone). We showed the inhibitory effect of xanthene dye on human UGT1A6 activity. Basic ET, PL, and RB in those food dyes strongly inhibited UGT1A6 activity, with IC(50) values = 0.05, 0.04, and 0.015 mM, respectively. Meanwhile, AR of an acidic xanthene food dye showed no inhibition. Next, we studied the inhibition of CYP3A4 of a major phase I drug-metabolizing enzyme and P-glycoprotein of a major transporter by synthetic food dyes. Human CYP3A4 and P-glycoprotein were also inhibited by basic xanthene food dyes. The IC(50) values of these dyes to inhibit CYP3A4 and P-glycoprotein were the same as the inhibition level of UGT1A6 by three halogenated xanthene food dyes (ET, PL, and RB) described above, except AR, like the results with UGT1A6 and UGT2B7. We also confirmed the noninhibition of CYP3A4 and P-gp by other synthetic food dyes. Part of this inhibition depended upon the reaction of (1)O(2) originating on xanthene dyes by light irradiation, because inhibition was prevented by (1)O(2) quenchers. We studied the influence of superoxide dismutase and catalase on this inhibition by dyes and we found prevention of inhibition by superoxide dismutase but not catalase. This result suggests that superoxide anions, originating on dyes by light irradiation, must attack drug-metabolizing enzymes. It is possible that red cosmetics containing phloxine, erythrosine, or rose bengal react with proteins on skin under lighting and may lead to rough skin.
Mizutani, Takaharu
2009-01-01
The synthetic food dyes studied were rose bengal (RB), phroxine (PL), amaranth, erythrosine B (ET), allura red, new coccine, acid red (AR), tartrazine, sunset yellow FCF, brilliant blue FCF, and indigo carmine. First, data confirmed that these dyes were not substrates for CYP2A6, UGT1A6, and UGT2B7. ET inhibited UGT1A6 (glucuronidation of p-nitrophenol) and UGT2B7 (glucuronidation of androsterone). We showed the inhibitory effect of xanthene dye on human UGT1A6 activity. Basic ET, PL, and RB in those food dyes strongly inhibited UGT1A6 activity, with IC50 values = 0.05, 0.04, and 0.015 mM, respectively. Meanwhile, AR of an acidic xanthene food dye showed no inhibition. Next, we studied the inhibition of CYP3A4 of a major phase I drug-metabolizing enzyme and P-glycoprotein of a major transporter by synthetic food dyes. Human CYP3A4 and P-glycoprotein were also inhibited by basic xanthene food dyes. The IC50 values of these dyes to inhibit CYP3A4 and P-glycoprotein were the same as the inhibition level of UGT1A6 by three halogenated xanthene food dyes (ET, PL, and RB) described above, except AR, like the results with UGT1A6 and UGT2B7. We also confirmed the noninhibition of CYP3A4 and P-gp by other synthetic food dyes. Part of this inhibition depended upon the reaction of 1O2 originating on xanthene dyes by light irradiation, because inhibition was prevented by 1O2 quenchers. We studied the influence of superoxide dismutase and catalase on this inhibition by dyes and we found prevention of inhibition by superoxide dismutase but not catalase. This result suggests that superoxide anions, originating on dyes by light irradiation, must attack drug-metabolizing enzymes. It is possible that red cosmetics containing phloxine, erythrosine, or rose bengal react with proteins on skin under lighting and may lead to rough skin. PMID:20041016
Peek, Mirjam Cl; Charalampoudis, Petros; Anninga, Bauke; Baker, Rose; Douek, Michael
2017-02-01
The combined technique (radioisotope and blue dye) is the gold standard for sentinel lymph node biopsy (SLNB) and there is wide variation in techniques and blue dyes used. We performed a systematic review and meta-analysis to assess the need for radioisotope and the optimal blue dye for SLNB. A total of 21 studies were included. The SLNB identification rates are high with all the commonly used blue dyes. Furthermore, methylene blue is superior to iso-sulfan blue and Patent Blue V with respect to false-negative rates. The combined technique remains the most accurate and effective technique for SLNB. In order to standardize the SLNB technique, comparative trials to determine the most effective blue dye and national guidelines are required.
Detection and identification of dyes in blue writing inks by LC-DAD-orbitrap MS.
Sun, Qiran; Luo, Yiwen; Yang, Xu; Xiang, Ping; Shen, Min
2016-04-01
In the field of forensic questioned document examination, to identify dyes detected in inks not only provides a solid foundation for ink discrimination in forged contents identification, but also facilitates the investigation of ink origin or the study regarding ink dating. To detect and identify potential acid and basic dyes in blue writing inks, a liquid chromatography-diode array detection-Orbitrap mass spectrometry (LC-DAD-Orbitrap MS) method was established. Three sulfonic acid dyes (Acid blue 1, Acid blue 9 and Acid red 52) and six triphenylmethane basic dyes (Ethyl violet, Crystal violet, Methyl violet 2B, Basic blue 7, Victoria blue B and Victoria blue R) were employed as reference dyes for method development. Determination of the nine dyes was validated to evaluate the instrument performance, and it turned out to be sensitive and stable enough for quantification. The method was then applied in the screening analysis of ten blue roller ball pen inks and twenty blue ballpoint pen inks. As a result, including TPR (a de-methylated product of Crystal violet), ten known dyes and four unknown dyes were detected in the inks. The latter were further identified as a de-methylated product of Victoria blue B, Acid blue 104, Acid violet 49 and Acid blue 90, through analyzing their characteristic precursor and product ions acquired by Orbitrap MS with good mass accuracy. The results showed that the established method is capable of detecting and identifying potential dyes in blue writing inks. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Linke, Diana; Leonhardt, Robin; Eisele, Nadine; Petersen, Laura M; Riemer, Stephanie; Nimtz, Manfred; Berger, Ralf G
2015-06-01
Four extracellular enzymes, a versatile peroxidase, a manganese peroxidase, a dye-decolorizing peroxidase and a lignin peroxidase were discovered in liquid cultures of the basidiomycete Bjerkandera adusta. All of them cleaved β-carotene effectively. Expression was enhanced in the presence of β-carotene or Coomassie Brilliant Blue and peaked after 7-9 days. The monomeric proteins were purified by ion exchange and size exclusion chromatography and exhibited molecular masses of 41, 43, 51 and 43 kDa, respectively. The coding sequences showed homologies from 61 to 89 % to peroxidases from other basidiomycetes. The novel enzymes retained strong activity even in the absence of hydrogen peroxide and at alkaline pH. De-staining of fabrics using detergent-tolerant enzymes may help to save the most important bio-resources, energy and water, in washing processes and led to green processes in textile cleaning.
Pawar, Radheshyam R; Lalhmunsiama; Gupta, Prabuddha; Sawant, Sandesh Y; Shahmoradi, B; Lee, Seung-Mok
2018-07-15
The present study deals with the preparation and characterization of mesoporous synthetic hectorite (MSH) clay which further encapsulated with Na-alginate for the preparation of mesoporous synthetic hectorite-alginate beads (MSH-AB) where Ca 2+ act as a cross-linking agent. The detail characterization of MSH and MSH-AB were carried out by various physicochemical techniques. The thermogravimetric analysis study showed better thermal stability results for MSH-AB. The textural properties results of MSH and MSH-AB showed the high surface area 468, 205m 2 /g, and the pore volume of 0.34, 0.29cm 3 /g respectively. The applicability of powder MSH and MSH-AB in wet (W) and dry (D) forms were assessed for the removal of cationic dye, methylene blue (MB) by optimizing various batch adsorption parameters. The Langmuir monolayer adsorption capacity obtained for MSH-AB-W showed significant high adsorption efficacy (i.e., 785.45mgMB/g) compared to the MSH-AB-D (357.14mgMB/g) and powder MSH materials (196.00mgMB/g). The adsorption isotherm studies showed that the Langmuir isotherm model was best suitable for MSH, whereas the Freundlich model was utilised to describe the adsorption behavior of organized hydrogel composite beads. The pseudo-second-order kinetics model was observed best for MB sorption onto MSH, whereas pseudo-first order useful to describe the kinetic behavior of MSH-AB. The regeneration experimental results revealed that MSH-AB-W could be recycled more than six cycles with high MB removal efficiency. Furthermore, the adsorption property of the MSH-AB-W was examined for the binary mixture of MB with other dye solutions such as Methyl Red (MR), Methyl Orange (MO), Alizarine Yellow (AY), and Remazol Brilliant Blue (RBB) to evaluate the selective adsorption efficiency. The MSH composite beads were found potentially suitable as an efficient, selective and recyclable adsorbent for the removal of MB from the aqueous solutions. Copyright © 2018 Elsevier B.V. All rights reserved.
Hao, Yan; Saygili, Yasemin; Cong, Jiayan; Eriksson, Anna; Yang, Wenxing; Zhang, Jinbao; Polanski, Enrico; Nonomura, Kazuteru; Zakeeruddin, Shaik Mohammed; Grätzel, Michael; Hagfeldt, Anders; Boschloo, Gerrit
2016-12-07
Blue and green dyes as well as NIR-absorbing dyes have attracted great interest because of their excellent ability of absorbing the incident photons in the red and near-infrared range region. A novel blue D-π-A dye (Dyenamo Blue), based on the diketopyrrolopyrrole (DPP)-core, has been designed and synthesized. Assembled with the cobalt bipyridine-based electrolytes, the device with Dyenamo Blue achieved a satisfying efficiency of 7.3% under one sun (AM1.5 G). The co-sensitization strategy was further applied on this blue organic dye together with a red D-π-A dye (D35). The successful co-sensitization outperformed a panchromatic light absorption and improved the photocurrent density; this in addition to the open-circuit potential result in an efficiency of 8.7%. The extended absorption of the sensitization and the slower recombination reaction between the blue dye and TiO 2 surface inhibited by the additional red sensitizer could be the two main reasons for the higher performance. In conclusion, from the results, the highly efficient cobalt-based DSSCs could be achieved with the co-sensitization between red and blue D-π-A organic dyes with a proper design, which showed us the possibility of applying this strategy for future high-performance solar cells.
Near-ultraviolet laser diodes for brilliant ultraviolet fluorophore excitation.
Telford, William G
2015-12-01
Although multiple lasers are now standard equipment on most modern flow cytometers, ultraviolet (UV) lasers (325-365 nm) remain an uncommon excitation source for cytometry. Nd:YVO4 frequency-tripled diode pumped solid-state lasers emitting at 355 nm are now the primary means of providing UV excitation on multilaser flow cytometers. Although a number of UV excited fluorochromes are available for flow cytometry, the cost of solid-state UV lasers remains prohibitively high, limiting their use to all but the most sophisticated multilaser instruments. The recent introduction of the brilliant ultraviolet (BUV) series of fluorochromes for cell surface marker detection and their importance in increasing the number of simultaneous parameters for high-dimensional analysis has increased the urgency of including UV sources in cytometer designs; however, these lasers remain expensive. Near-UV laser diodes (NUVLDs), a direct diode laser source emitting in the 370-380 nm range, have been previously validated for flow cytometric analysis of most UV-excited probes, including quantum nanocrystals, the Hoechst dyes, and 4',6-diamidino-2-phenylindole. However, they remain a little-used laser source for cytometry, despite their significantly lower cost. In this study, the ability of NUVLDs to excite the BUV dyes was assessed, along with their compatibility with simultaneous brilliant violet (BV) labeling. A NUVLD emitting at 375 nm was found to excite most of the available BUV dyes at least as well as a UV 355 nm source. This slightly longer wavelength did produce some unwanted excitation of BV dyes, but at sufficiently low levels to require minimal additional compensation. NUVLDs are compact, relatively inexpensive lasers that have higher power levels than the newest generation of small 355 nm lasers. They can, therefore, make a useful, cost-effective substitute for traditional UV lasers in multicolor analysis involving the BUV and BV dyes. Published 2015 Wiley Periodicals Inc. on behalf of ISAC.
Stachová, Ivana; Lhotská, Ivona; Solich, Petr; Šatínský, Dalibor
2016-07-01
Beer is one of the most popular alcoholic beverages worldwide. For consumer acceptance, significant factors are its taste, flavour and colour. This study determines selected synthetic green, blue and yellow food colorants in popular Easter herb-coloured green beers on tap produced in breweries on Holy Thursday. The abuse of beer colouring with Tartrazine (E 102), Quinoline yellow (E 104), Sunset yellow (E 110), Patent blue (E 131), Indigo carmine (E 132), Brilliant blue FCF (E 133), Green S (E 142) and Fast green FCF (E 143) was assessed in 11 green beer samples purchased in local restaurants. HPLC was used for the separation and detection of artificial colorants with diode-array detection and a Chromolith Performance CN 100 × 4.6 mm column with guard pre-column Chromolith CN 5 × 4.6 mm. Separation was performed in gradient elution with mobile phase containing methanol-aqueous 2% ammonium acetate at pH 7.0. The study showed that eight beers (70%) marketed in the Czech Republic contained artificial colorants (Tartrazine and Brilliant blue FCF). The concentration of colorants found in analysed green herb-coloured beers ranged from 1.58 to 3.49 mg l(-)(1) for Tartrazine, 0.45-2.18 mg l(-)(1) for Brilliant blue, while Indigo carmine was detected only once at concentration 2.36 mg l(-)(1). Only three beers showed no addition of the synthetic colorants. However, the levels of artificial colorants found in beers marketed in the Czech region were very low and did not show a serious risk for consumers' health.
USDA-ARS?s Scientific Manuscript database
Prior to conducting a collaborative study of AOAC First Action 2012.25 LC-MS/MS analytical method for the determination of residues of three triphenylmethane dyes (malachite green, crystal violet, and brilliant green) and their metabolites (leucomalachite green and leucocrystal violet) in seafood, a...
Evaluation of the individuality of white rot macro fungus for the decolorization of synthetic dye.
Pandey, Priyanka; Singh, Ram Praksh; Singh, Kailash Nath; Manisankar, Paramasivam
2013-01-01
A biosorbent was developed by simple dried Agaricus bisporus (SDAB) and effectively used for the biosorption of cationic dyes, Crystal Violet and Brilliant Green. For the evaluation of the biosorbent system, all the batch equilibrium parameters like pH, biomass dose, contact time, and temperature were optimized to determine the decolorization efficiency of the biosorbent. The maximum yields of dye removal were achieved at pH 4.0 for Crystal Violet (CV) and pH 5.0 for Brilliant Green (BG), which are closer to their natural pH also. Equilibrium was established at 60 and 40 min for CV and BG, respectively. Pseudo first-order, pseudo second-order, and intraparticle-diffusion kinetic models were studied at different temperatures. Isotherm models such as Freundlich, Langmuir, and Dubinin-Radushkevich were also studied. Biosorption processes were successfully described by Langmuir isotherm model and the pseudo second-order kinetic model. The biosorption capacity of A. bisporus over CV and BG were found as 21.74 and 12.16 mg gm(-1). Thermodynamic parameters indicated that the CV and BG dye adsorption onto A. bisporus is spontaneous and exothermic in the single and ternary systems. Scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy were used for the surface morphology, crystalline structure of biosorbent, and dye-biosorbent interaction, respectively. This analysis of the biosorption data confirmed that these biosorption processes are ecofriendly and economical. Thus, this biomass system may be useful for the removal of contaminating cationic dyes.
Quirks of dye nomenclature. 1. Evans blue.
Cooksey, C J
2014-02-01
The history, origin, identity, chemistry and use of Evans blue dye are described along with the first application to staining by Herbert McLean Evans in 1914. In the 1930s, the dye was marketed under the name, Evans blue dye, which was profoundly more acceptable than the ponderous chemical name.
[Exclusive use of blue dye to detect sentinel lymph nodes in breast cancer].
Bühler H, Simón; Rojas P, Hugo; Cayazzo M, Daniela; Cunill C, Eduardo; Vesperinas A, Gonzalo; Hamilton S, James
2008-08-01
The use of a dye and radiocolloid to detect sentinel lymph nodes in breast cancer increases the detection rates. However the use of either method alone does not modify the false negative rate. Therefore there is no formal contraindication for the exclusive use of dye to detect nodes. To report a prospective analysis of the exclusive blue dye technique for sentinel node biopsy in patients with early breast cancer. We analyzed the first 100 women with pathologically proven breast cancer who met the inclusion criteria. Patent blue dye was used as colorant. In the first 25 cases sentinel node was identified using radiocolloid and blue dye an then an axillary dissection performed. In the next 25 women, blue dye was used exclusively for detection and an axillary dissection was performed. In the next 50 cases, blue dye was used and only isolated sentinel node biopsy was performed. In 92 of the 100 women a sentinel node was successfully detected. In the first 50 women, the false negative rate of sentinel lymph node detection was 6.9%. No complications occurred. During follow-up, lasting three to 29 months, no axillary relapse was observed. Sentinel node biopsy in patients with early breast cancer using exclusively blue dye is feasible and safe.
Giraldo, M A; Stavenga, D G
2016-05-01
Butterflies belonging to the nymphalid subfamily, Morphinae, are famous for their brilliant blue wing coloration and iridescence. These striking optical phenomena are commonly explained as to originate from multilayer reflections by the ridges of the wing scales. Because the lower lamina of the scales of related nymphalid butterflies, the Nymphalinae, plays a dominant role in the wing coloration, by acting as a thin film reflector, we investigated single blue scales of three characteristic Morpho species: M. epistrophus, M. helenor and M. cypris. The experimental data obtained by spectrophotometry, scatterometry and scanning electron microscopy demonstrated that also in the Morpho genus the lower lamina of both the cover and ground scales acts as an optical thin film reflector, contributing importantly to the blue structural coloration of the wings. Melanin pigment has a contrast-enhancing function in a sub-class of ground scales.
Characteristics of Alcian-blue Dye Adsorption of Natural Biofilm Matrix
NASA Astrophysics Data System (ADS)
Kurniawan, A.; Yamamoto, T.; Sukandar; Guntur
2018-01-01
In this study, natural biofilm matrices formed on stones have been used for the adsorption of Alcian blue dye. Alcian blue is a member of polyvalent basic dyes that largely used from laboratory until industrial dying purposes. The adsorption of the dye onto the biofilm matrix has been carried out at different experimental conditions such as adsorption isotherm and kinetic of adsorption. The electric charge properties of biofilm matrix and its changes related to the adsorption of Alcian blue have been also investigated. Moreover, the results of Alcian blue adsorption to the biofilm were compared to those onto the acidic and neutral resin. The kinetics of adsorption result showed that the adsorption of the Alcian blue dye reached to a maximum adsorption amount within 60 minutes. The adsorption amount of Alcian blue to biofilm increased monotonously, and the maximum adsorption amount was greater compared to the resins. On the contrary, Alcian blue did not attach to the neutral resin having no electric charge. It seems that Alcian blue attached to the acidic resins due to electrostatic attractive force, and the same seems to be the case for adsorption of Alcian blue to biofilm. The adsorption of Alcian blue to the biofilm and acidic resins fitted to Langmuir type indicates that the binding of Alcian blue to the biofilm and acidic resins occurred in a monolayer like form. The maximum adsorption amount of Alcian blue on the biofilm (0.24 mmol/dry-g) was greater than those of acidic resin (0.025 mmol/dry-g). This indicates that the biofilm has many more sites for Alcian blue attachment than acidic resins. According to the result of this study, the biofilm matrix can be a good adsorbent for dye such as Alcian blue or other dyes that causing hazards in nature.
Hisatomi, Toshio; Notomi, Shoji; Tachibana, Takashi; Oishi, Seiichiro; Asato, Ryo; Yamashita, Takehiro; Murakami, Yusuke; Ikeda, Yasuhiro; Enaida, Hiroshi; Sakamoto, Taiji; Ishibashi, Tatsuro
2015-02-01
Brilliant Blue G is used as a surgical adjuvant for retinal surgery. Although BBG double or multiple staining was reported, the effectiveness and safety of repeated staining is still elusive. To further examine the effectiveness and safety, we examined BBG in clinical cases in vivo, primary cell culture in vitro, and surgically resected specimen ex vivo. A retrospective interventional case series with in vitro and ex vivo studies were performed. Vitrectomy was performed in 28 cases of epiretinal membrane with BBG single to multiple staining. The surgically resected membranes were stained by BBG with or without cellular fixation. Primary cell cultures were examined with BBG and live/death cell markers, such as Calcein AM and TUNEL. Single staining provided satisfactory staining in seven cases. Double or multiple staining substantially visualized internal limiting membrane (21 cases), especially the edges of remaining internal limiting membrane (11 cases). Adverse retinal staining was not noted and the final visual acuity showed no difference with multiple staining. The live cells barely stained with BBG, while some dead cells were stained. Brilliant Blue G multiple staining substantially enhanced the visualization of internal limiting membrane. The absence of abnormal staining supports the safety of repeated BBG staining.
2015-03-26
by low, direct current voltage, which are consistent with portable power sources such as batteries or photovoltaic cells (Crystal IS 2013...of Methylene Blue Adsorption on Power Output .................23 vii UV LED Quartz Lens Adsorption Experiment...29 Effect of Methylene Blue Adsorption on Power Output ............................................29 Figure 5 - Percent reduction of
Influence of macroporosity on preferential solute and colloid transport in unsaturated field soils.
Cey, Edwin E; Rudolph, David L; Passmore, Joanna
2009-06-26
Transport of solutes and colloids in soils, particularly those subject to preferential flow along macropores, is important for assessing the vulnerability of shallow groundwater to contamination. The objective of this study was to investigate flow and transport phenomena for dissolved and colloid tracers during large infiltration events in partially saturated, macroporous soils. Controlled tracer infiltration tests were completed at two field sites in southern Ontario. A tension infiltrometer (TI) was used to infiltrate water with dissolved Brilliant Blue FCF dye simultaneously with 3.7 microm and 0.53 microm diameter fluorescent microspheres. Infiltration was conducted under maximum infiltration pressure heads ranging from -5.2 to -0.4 cm. All infiltration test sites were excavated to examine and photograph dye-stained flow patterns, map soil features, and collect samples for microsphere enumeration. Results indicated that preferential transport of dye and microspheres via macropores occurred when maximum pressure heads were greater than -3.0 cm, and the corresponding infiltration rates exceeded 2.0 cm h(-1). Dye and microspheres were detected at depths greater than 70 cm under the highest infiltration rates from both sites. Microsphere concentrations in the top 5-10 cm of soil decreased by more than two orders of magnitude relative to input concentrations, yet remained relatively constant with depth thereafter. There was some evidence for increased retention of the 3.7 microm microspheres relative to the 0.53 microm microspheres, particularly at lower infiltration pressures where straining and attachment mechanisms are most prevalent. Microspheres were observed within dye stained soil matrix surrounding individual macropores, illustrating the significance of capillary pressures in controlling the vertical migration of both tracers in the vicinity of the macropores. Overall, microsphere distributions closely followed the dye patterns, with microsphere concentrations at all depths directly related to the intensity (or concentration) of dye staining. It is concluded that the flow system influenced transport to a much greater degree than differences between dissolved and colloidal species, and hence a dye tracer could serve as a reasonable surrogate for colloid distributions in the vadose zone following individual infiltration events.
Effect of antecedent soil moisture on preferential flow in a texture-contrast soil
NASA Astrophysics Data System (ADS)
Hardie, Marcus A.; Cotching, William E.; Doyle, Richard B.; Holz, Greg; Lisson, Shaun; Mattern, Kathrin
2011-02-01
SummaryThe effect of soil moisture status on preferential flow in a texture-contrast soil was investigated by applying 25 mm Brilliant Blue dye tracer to soil profiles at high and low antecedent soil moisture. Differences in soil morphology and chemistry between soil profiles had little effect on the depth of dye infiltration and dye distribution down the profile. Antecedent soil moisture strongly influenced the type, depth and rate of dye tracer movement. In the wet treatment, the dye tracer infiltrated to depths between 0.24 and 0.40 m, at an average rate of 120 mm h -1. Whilst in the dry treatment, the same volume of dye tracer infiltrated to between 0.85 and 1.19 m depth at an average rate of 1160 mm h -1. In dry antecedent conditions, finger flow developed in the A1 horizon as a result of water repellency. In the wet treatment, the wetting front developed permutations but did not break into fingers. Despite similar particle size distributions, flow in the A2 e was slower than the A1 horizon, due to the absence of macropores. In the dry treatment, the dye tracer ponded on the upper surface of the B21 horizon, which then spilled down the sides of the large clay columns as rivulets, at rates of between 2000 and 3000 mm h -1. The dye tracer accumulated at the base of the columns resulting in backfilling of the inter column shrinkage cracks, at an estimated rate of 750 mm h -1. In the subsoil, water movement occurred via shrinkage cracks which resulted in flow by-passing 99% of the soil matrix in the B21 horizon and 94% of the soil matrix in the B22 horizon. Evidence of rapid and deep infiltration in 'dry' texture-contrast soils has implications for water and solute management. This knowledge could be used to: (i) improve irrigation and fertilizer efficiency (ii) explain variations in crop yield (iii) reduce salinity through improved leaching practices, (iv) reduce the risk of agrochemicals contaminating shallow groundwater.
Factors Affecting Selectivity of Brilliant Green-Phenol Red Agar for Salmonellae
Moats, W. A.; Kinner, J. A.
1974-01-01
Commercial brilliant green (BG)-sulfa agar was found to be nonselective toward a test series of Enterobacteriaceae. Various formulations of BG were prepared by using Trypticase soy agar (BBL) as a base. Results were more reproducible when BG dye was added after sterilization than before. Sulfonamides improved selectivity as compared with brilliant green alone. Sulfanilamide (SN) was slightly more selective for salmonellae than other sulfonamides tested. Bile salts and sodium dodecyl sulfate markedly reduced the toxicity of BG to all the test bacteria. Enterobacter strains were most difficult to inhibit. A combination of 5 mg of BG and 1 g of SN/liter prevented growth of Proteus mirabilis and Escherichia coli and retarded growth of Enterobacter strains. The BG-SN agars were superior in selectivity to a series of commercial agars tested, and numbers of salmonellae recovered on BG-SN agar and Trypticase soy agar (BBL) were the same. Brilliant green agars with various degrees of selectivity are described. PMID:4589120
Liu, Huiping; Cheng, Yu; Du, Bing; Tong, Chaofan; Liang, Shuli; Han, Shuangyan; Zheng, Suiping; Lin, Ying
2015-01-01
Laccases have been used for the decolorization and detoxification of synthetic dyes due to their ability to oxidize a wide variety of dyes with water as the sole byproduct. A putative laccase gene (LacTT) from Thermus thermophilus SG0.5JP17-16 was screened using the genome mining approach, and it was highly expressed in Pichia pastoris, yielding a high laccase activity of 6130 U/L in a 10-L fermentor. The LacTT open reading frame encoded a protein of 466 amino acid residues with four putative Cu-binding regions. The optimal pH of the recombinant LacTT was 4.5, 6.0, 7.5 and 8.0 with 2,2'-azino-bis(3-ethylbenzothazoline-6-sulfonic acid) (ABTS), syringaldazine (SGZ), guaiacol, and 2,6-dimethoxyphenol (2,6-DMP) as the substrate, respectively. The optimal temperature of LacTT was 90°C with guaiacol as the substrate. LacTT was highly stable at pH 4.0-11.0 and thermostable at 40°C-90°C, confirming that it is a pH-stable and thermostable laccase. Furthermore, LacTT also exhibited high tolerance to halides such as NaCl, NaBr and NaF, and decolorized 100%, 94%, 94% and 73% of Congo Red, Reactive Black B and Reactive Black WNN, and Remazol Brilliant Blue R, respectively. Interestingly, addition of high concentration of NaCl increased the RBBR decolorization efficiency of LacTT. These results suggest that LacTT is a good candidate for industrial applications such as dyestuff processing and degradation of dyes in textile wastewaters.
Liu, Huiping; Cheng, Yu; Du, Bing; Tong, Chaofan; Liang, Shuli; Han, Shuangyan; Zheng, Suiping; Lin, Ying
2015-01-01
Laccases have been used for the decolorization and detoxification of synthetic dyes due to their ability to oxidize a wide variety of dyes with water as the sole byproduct. A putative laccase gene (LacTT) from Thermus thermophilus SG0.5JP17-16 was screened using the genome mining approach, and it was highly expressed in Pichia pastoris, yielding a high laccase activity of 6130 U/L in a 10-L fermentor. The LacTT open reading frame encoded a protein of 466 amino acid residues with four putative Cu-binding regions. The optimal pH of the recombinant LacTT was 4.5, 6.0, 7.5 and 8.0 with 2,2'-azino-bis(3-ethylbenzothazoline-6-sulfonic acid) (ABTS), syringaldazine (SGZ), guaiacol, and 2,6-dimethoxyphenol (2,6-DMP) as the substrate, respectively. The optimal temperature of LacTT was 90°C with guaiacol as the substrate. LacTT was highly stable at pH 4.0–11.0 and thermostable at 40°C–90°C, confirming that it is a pH-stable and thermostable laccase. Furthermore, LacTT also exhibited high tolerance to halides such as NaCl, NaBr and NaF, and decolorized 100%, 94%, 94% and 73% of Congo Red, Reactive Black B and Reactive Black WNN, and Remazol Brilliant Blue R, respectively. Interestingly, addition of high concentration of NaCl increased the RBBR decolorization efficiency of LacTT. These results suggest that LacTT is a good candidate for industrial applications such as dyestuff processing and degradation of dyes in textile wastewaters. PMID:25790466
Identification of runoff formation with two dyes in a mid-latitude mountain headwater
NASA Astrophysics Data System (ADS)
Vlček, Lukáš; Falátková, Kristýna; Schneider, Philipp
2017-06-01
Subsurface flow in peat bog areas and its role in the hydrologic cycle has garnered increased attention as water scarcity and floods have increased due to a changing climate. In order to further probe the mechanisms in peat bog areas and contextualize them at the catchment scale, this experimental study identifies runoff formation at two opposite hillslopes in a peaty mountain headwater; a slope with organic peat soils and a shallow phreatic zone (0.5 m below surface), and a slope with mineral Podzol soils and no detectable groundwater (> 2 m below surface). Similarities and differences in infiltration, percolation and preferential flow paths between both hillslopes could be identified by sprinkling experiments with Brilliant Blue and Fluorescein sodium. To our knowledge, this is the first time these two dyes have been compared in their ability to stain preferential flow paths in soils. Dye-stained soil profiles within and downstream of the sprinkling areas were excavated parallel (lateral profiles) and perpendicular (frontal profiles) to the slopes' gradients. That way preferential flow patterns in the soil could be clearly identified. The results show that biomat flow, shallow subsurface flow in the organic topsoil layer, occurred at both hillslopes; however, at the peat bog hillslope it was significantly more prominent. The dye solutions infiltrated into the soil and continued either as lateral subsurface pipe flow in the case of the peat bog, or percolated vertically towards the bedrock in the case of the Podzol. This study provides evidence that subsurface pipe flow, lateral preferential flow along decomposed tree roots or logs in the unsaturated zone, is a major runoff formation process at the peat bog hillslope and in the adjacent riparian zone.
Heidarizadi, Elham; Tabaraki, Reza
2016-01-01
A sensitive cloud point extraction method for simultaneous determination of trace amounts of sunset yellow (SY), allura red (AR) and brilliant blue (BB) by spectrophotometry was developed. Experimental parameters such as Triton X-100 concentration, KCl concentration and initial pH on extraction efficiency of dyes were optimized using response surface methodology (RSM) with a Doehlert design. Experimental data were evaluated by applying RSM integrating a desirability function approach. The optimum condition for extraction efficiency of SY, AR and BB simultaneously were: Triton X-100 concentration 0.0635 mol L(-1), KCl concentration 0.11 mol L(-1) and pH 4 with maximum overall desirability D of 0.95. Correspondingly, the maximum extraction efficiency of SY, AR and BB were 100%, 92.23% and 95.69%, respectively. At optimal conditions, extraction efficiencies were 99.8%, 92.48% and 95.96% for SY, AR and BB, respectively. These values were only 0.2%, 0.25% and 0.27% different from the predicted values, suggesting that the desirability function approach with RSM was a useful technique for simultaneously dye extraction. Linear calibration curves were obtained in the range of 0.02-4 for SY, 0.025-2.5 for AR and 0.02-4 μg mL(-1) for BB under optimum condition. Detection limit based on three times the standard deviation of the blank (3Sb) was 0.009, 0.01 and 0.007 μg mL(-1) (n=10) for SY, AR and BB, respectively. The method was successfully used for the simultaneous determination of the dyes in different food samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Is blue dye still required during sentinel lymph node biopsy for breast cancer?
Peek, Mirjam Cl; Kovacs, Tibor; Baker, Rose; Hamed, Hisham; Kothari, Ash; Douek, Michael
2016-01-01
In early breast cancer, the optimal technique for sentinel lymph node biopsy (SLNB) is the combined technique (radioisotope and Patent Blue V) which achieves high identification rates. Despite this, many centres have decided to stop using blue dye due to blue-dye-related complications (tattoo, anaphylaxis). We evaluated the SLNB identification rate using the combined technique with and without Patent Blue V and the blue-dye-related complication rates. Clinical and histological data were analysed on patients undergoing SLNB between March 2014 and April 2015. SLNB was performed following standard hospital protocols using the combined technique. A total of 208 patients underwent SLNB and 160 patients (342 nodes) with complete operation notes were available for final analysis. The identification rate with the combined technique was 98.8% ( n = 158/160), with blue dye alone 92.5% ( n = 148/160) and with radioisotope alone 97.5% ( n = 156/160). A total of 76.9% (263/342) of nodes were radioactive and blue, 15.5% (53/342) only radioactive and 2.3% (8/342) only blue, 5.3% (18/342) were neither radioactive nor blue. No anaphylactic reactions were reported and blue skin staining was reported in six (3.8%) patients. The combined technique should continue be the preferred technique for SLNB and should be standardised. Radioisotope alone (but not blue dye alone) has comparable sentinel node identification rates in experienced hands. National guidelines are required to optimise operative documentation.
Atmospheric Science Data Center
2013-04-17
... View Larger Image Vibrant reds, emerald greens, brilliant whites, and pastel blues ... Averill (Raytheon / Jet Propulsion Laboratory) and David J. Diner (Jet Propulsion Laboratory). Other formats available at JPL ...
Measurement of Human Blood and Plasma Volumes
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.; Szalkay, H. G. H.
1987-01-01
Report reviews techniques for measuring blood-plasma volume in humans. Common technique of using radioactive iodine isotope to label plasma albumin involves unwarranted risks from low-level radiation. Report emphasizes techniques using Evans-blue-dye (T-1824) labeling of albumin, hematocrit or hemoglobin/hematocrit measurements, or blood densitometry. In Evans-blue-dye technique, plasma volume determined from decrease in dye concentration occurring after small amount of dye solution injected into circulatory system. Subjection of Evans blue dye to test for carcinogenicity gave negative results.
NASA Astrophysics Data System (ADS)
Sunar, N. M.; Mon, Z. K.; Rahim, N. A.; Leman, A. M.; Airish, N. A. M.; Khalid, A.; Ali, R.; Zaidi, E.; Azhar, A. T. S.
2018-04-01
Wastewater released from the textile industry contains variety substances, mainly dyes that contains a high concentration of color and organic. In this study the potential for bacterial decolorization of coractive blue dye was examined that isolated from textile wastewater. The optimum conditions were determined for pH, temperature and initial concentration of the dye. The bacteria isolated was Pseudomonas spp. The selected bacterium shows high decolorization in static condition at an optimum of pH 7.0. The Pseudomonas spp. could decolorize coractive blue dye by 70% within 24 h under static condition, with the optimum of pH 7.0. Decolorization was confirmed by using UV-VIS spectrophotometer. This present study suggests the potential of Pseudomonas spp. as an approach in sustainable bioremediation that provide an efficient method for decolorizing coractive blue dye.
Harvey, E. Newton
1926-01-01
1. Eosin, erythrosin, rose bengale, cyanosin, acridine, and methylene blue act photodynamically on the luminescence of a Cypridina luciferin-luciferase solution. In presence of these dyes inhibition of luminescence, which without the dye occurs only in blue-violet light, takes place in green, yellow, orange, or red light, depending on the position of the absorption bands of the dye. 2. Inhibition of Cypridina luminescence without photosensitive dye in blue-violet light, or with photosensitive dye in longer wave-lengths, does not occur in absence of oxygen. Light acts by accelerating the oxidation of luciferin without luminescence. Eosin or methylene blue act by making longer wave-lengths effective, but there is no evidence that these dyes become reduced in the process. 3. The luciferin-oxyluciferin system is similar to the methylene white-methylene blue system in many ways but not exactly similar in respect to photochemical change. Oxidation of the dye is favored in acid solution, reduction in alkaline solution. However, oxidation of luciferin is favored in all pH ranges from 4 to 10 but is much more rapid in alkaline solution, either in light or darkness. There is no evidence that reduction of oxyluciferin is favored in alkaline solution. Clark's observation that oxidation (blueing) of methylene white occurs in complete absence of oxygen has been confirmed for acid solutions. I observed no blueing in light in alkaline solution. PMID:19872301
Chaudhari, Ashvini U; Paul, Dhiraj; Dhotre, Dhiraj; Kodam, Kisan M
2017-10-01
Treatment of textile wastewater containing anthraquinone dye is quite a huge challenge due to its complex aromatic structure and toxicity. Present study deals with the degradation and detoxification of anthraquinone dye reactive blue 4 using aerobic bacterial granules. Bacterial granules effectively decolorized reactive blue 4 at wide range of pH (4.0-11.0) and temperature (20-55 °C) as well as decolorized and tolerated high concentration of reactive blue 4 dye upto 1000 mg l -1 with V max 6.16 ± 0.82 mg l -1 h -1 and K m 227 ± 41 mg l -1 . Metagenomics study evaluates important role of Clostridia, Actinobacteria, and Proteobacterial members in biotransformation and tolerance of high concentrations of reactive blue 4 dye. Up-regulation of xenobiotic degradation and environmental information processing pathways during dye exposure signifies their noteworthy role in dye degradation. Biotransformation of dye was confirmed by significant decrease in the values of total suspended solids, biological and chemical oxygen demand. The metabolites formed after biotransformation was characterized by FT-IR and GC-MS analysis. The reactive blue 4 dye was found to be phytotoxic, cytotoxic and genotoxic whereas its biotransformed product were non-toxic. This study comprehensively illustrates that, bacterial aerobic granules can be used for eco-friendly remediation and detoxification of wastewater containing high organic load of anthraquinone dye. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ji, Yinan; Luo, Ningbin; Jiang, Yi; Li, Qiuyun; Wei, Wei; Yang, Huawei; Liu, Jianlun
2017-07-01
Indocyanine green (ICG) is widely used as a tracer in sentinel lymph node biopsy (SLNB) of patients with breast cancer. Whether SLNB performance can be improved by supplementing ICG with methylene blue dye remains controversial. This study compared the performance of SLNB when ICG was used alone or with blue dye. Consecutive patients with T1-3 primary breast cancer at our hospital were recruited into our study and randomized to undergo SLNB with ICG alone (n = 62) or with the combination of ICG and blue dye (n = 65). We compared the two methods in terms of identification rate, number and detection time of sentinel lymph nodes (SLNs) removed. SLN identification rate were similar in the absence (95.2%) or presence of blue dye (98.5%, P = 0.578) but significantly, more average nodes were removed when blue dye was used (3.8 ± 1.5 versus 2.7 ± 1.2, P = 0.000), and the average time for detecting each SLN was significantly shorter (3.91 ± 1.87 versus 5.65 ± 2.95 min; P = 0.000). No patient in the study experienced severe adverse reactions or complications. Recurrence of axillary node was detected in one patient (1.6%) using ICG alone but not in any patients using ICG and blue dye. The efficiency and sensitivity of SLNB can be improved by combining ICG with blue dye. Copyright © 2017 Elsevier Inc. All rights reserved.
Yasumitsu, Hidetaro; Ozeki, Yasuhiro; Kawsar, Sarkar M A; Toda, Tosifusa; Kanaly, Robert
2010-11-01
Coomassie Brilliant Blue (CBB) protein stains are inexpensive but detect proteins at only at microgram levels. Because of acetic acid and methanol, they cause skin irritation and reduce work motivation by malodor. Recent mass spectrometric (MS) analyses demonstrated that nanogram-sensitive colloidal CBB staining resulted in in vitro methylations of proteins. We propose a rapid, inexpensive, sensitive, odorless, less harsh, and in vitro methylation-free CBB stain. CGP uses three components: citric acid, CBB G-250, and polyvinylpyrrolidone. CGP detects proteins at 12ng within 45min, and because it is nonalcohol, in principle in vitro methylation would be eliminated. Indeed, MS analysis of CGP-stained bands confirmed a lack of methylation. 2010 Elsevier Inc. All rights reserved.
Potential of roselle and blue pea in the dye-sensitized solar cell
NASA Astrophysics Data System (ADS)
Dayang, S.; Irwanto, M.; Gomesh, N.; Ismail, B.
2017-09-01
This paper discovers the use of natural dyes from Roselle flower and Blue Pea flower which act as a sensitizer in DSSC and in addition has a potential in absorbing visible light spectrum. The dyes were extracted using distilled water (DI) and ethanol (E) extract solvent in an ultrasonic cleaner for 30 minutes with a frequency of 37 Hz by using `degas' mode at the temperature of 30°C. Absorption spectra of roselle dye and blue pea dye with different extract solvent were tested using Evolution 201 UV-Vis Spectrophotometer. It was found that Roselle dye absorbs at a range of 400 nm - 620 nm and Blue Pea absorbs at the range of wavelength 500 nm - 680 nm. Fourier-Transform Infrared (FTIR) was used to identify the functional active group in extract dye. The concept of Dye-Sensitized Solar Cell (DSSC) similar to photosynthesis process has attracted much attention since it demonstrates a great potential due to the use of low-cost materials and environmentally friendly sources of technology.
Shen, Songjie; Xu, Qianqian; Zhou, Yidong; Mao, Feng; Guan, Jinghong; Sun, Qiang
2018-05-22
There were limited data available for a head-to-head comparison of the identification rate and survival between the combined method of indocyanine green fluorescence and blue dye versus the traditional blue dye alone method for sentinel lymph node (SLN) biopsy. From January 2013 to December 2015, 523 eligible breast cancer patients were included in this nonrandomized prospective analysis. The identification rates, the number of SLNs identified, and the disease-free survival (DFS) between the two mapping methods were compared. The identification rate of SLNs was significantly higher with the combined method than that with the blue dye alone method (99.2% vs 93.3%, respectively; P < 0.001). The average number of SLNs identified per patient in the combined method group was 3.7 ± 2.4, which was more than that in the blue dye alone group (3.2 ± 1.6; P = 0.004). With a median follow-up of 29 months, 0.5% patients in the combined group, and 1.3% patients in the blue dye group had axillary recurrences. The DFS between the two groups showed no significant difference (P = 0.161). The combined method achieved a higher identification rate and lower rate of axillary recurrence compared to the blue dye alone method. © 2018 Wiley Periodicals, Inc.
Assessing Urinary Tract Junction Obstruction Defects by Methylene Blue Dye Injection.
Yun, Kangsun
2017-10-12
Urinary tract junction obstruction defects are congenital anomalies inducing hydronephrosis and hydroureter. Murine urinary tract junction obstruction defects can be assessed by tracking methylene blue dye flow within the urinary system. Methylene blue dye is injected into the renal pelvis of perinatal embryonic kidneys and dye flow is monitored from the renal pelvis of the kidney through the ureter and into the bladder lumen after applying hydrostatic pressure. Dye accumulation will be evident in the bladder lumen of the normal perinatal urinary tract, but will be constrained between the renal pelvis and the end point of an abnormal ureter, if urinary tract obstructions occur. This method facilitates the confirmation of urinary tract junction obstructions and visualization of hydronephrosis and hydroureter. This manuscript describes a protocol for methylene blue dye injection into the renal pelvis to confirm urinary tract junction obstructions.
Asgher, Muhammad; Shah, Syed Agha Hassan; Iqbal, Hafiz Muhammad Nasir
2016-04-01
Trametes versicolor IBL-04 was used for biodegradation of Remazol Brilliant Yellow 3-GL (RBY3-GL) reactive textile dye in Kirk's basal salts medium. During the initial screening study, the maximum decolorization (93.5%) of RBY3-GL was achieved in 7 days' shaking incubation period at pH 4 and 30 °C. Different physical and nutritional factors were statistically optimized to enhance the efficiency of T. versicolor IBL-04 for maximum decolorization. Under optimal conditions T. versicolor IBL-04 completely decolorized (100%) the RBY3-GL in 2 days of incubation with negligible adsorption on fungal mycelia. Laccase was the major enzyme (938.3 U/mL) secreted by T. versicolor IBL-04 along with comparatively lower activities of MnP. In this article and for the first time, a statistical correlation has been successfully investigated between the ligninolytic enzymes from an indigenously isolated white rot fungi, T. versicolor IBL-04, and the degradation of RBY3-GL.
Corneal edema and permanent blue discoloration of a silicone intraocular lens by methylene blue.
Stevens, Scott; Werner, Liliana; Mamalis, Nick
2007-01-01
To report a silicone intraocular lens (IOL) stained blue by inadvertent intraoperative use of methylene blue instead of trypan blue and the results of experimental staining of various lens materials with different concentrations of the same dye. A "blue dye" was used to enhance visualization during capsulorhexis in a patient undergoing phacoemulsification with implantation of a three-piece silicone lens. Postoperatively, the patient presented with corneal edema and a discolored IOL. Various IOL materials were experimentally stained using methylene blue. Sixteen lenses (4 silicone, 4 hydrophobic acrylic, 4 hydrophilic acrylic, and 4 polymethylmethacrylate) were immersed in 0.5 mL of methylene blue at concentrations of 1%, 0.1%, 0.01%, and 0.001%. These lenses were grossly and microscopically evaluated for discoloration 6 and 24 hours after immersion. The corneal edema resolved within 1 month after the initial surgical procedure. After explantation, gross and microscopic analyses of the explanted silicone lens revealed that its surface and internal substance had been permanently stained blue. In the experimental study, all of the lenses except the polymethylmethacrylate lenses were permanently stained by methylene blue. The hydrophilic acrylic lenses showed the most intense blue staining in all dye concentrations. This is the first clinicopathological report of IOL discoloration due to intraocular use of methylene blue. This and other tissue dyes may be commonly found among surgical supplies in the operating room and due diligence is necessary to avoid mistaking these dyes for those commonly used during ocular surgery.
Greenland Coast in Holiday Colors
2003-12-23
Vibrant reds, emerald greens, brilliant whites, and pastel blues adorn this view of the area surrounding the Jakobshavn Glacier on the western coast of Greenland captured by NASA Terra spacecraft on June 18, 2003.
Marangoni, Rafael; Mikowski, Alexandre; Wypych, Fernando
2010-11-15
Zinc hydroxide nitrate (ZHN) was adsorbed with anions of blue dyes (Chicago sky blue, CSB; Evans blue, EB; and Niagara blue, NB) and intercalated with anions of orange dyes (Orange G, OG; Orange II, OII; methyl orange, MO). Transparent, homogeneous and colored nanocomposite films were obtained by casting after dispersing the pigments (dye-intercalated/adsorbed into LHSs) into commercial poly(vinyl alcohol) (PVA). The films were characterized by XRD, UV-Vis spectroscopy, and mechanical testing. The mechanical properties of the PVA compounded with the dye-intercalated/adsorbed ZHN were evaluated, and reasonable increases in Young's modulus and ultimate tensile strength were observed, depending on the amount and choice of layered filler. These results demonstrate the possibility of using a new class of layered hydroxide salts intercalated and adsorbed with anionic dyes to prepare multifunctional polymer nanocomposite materials. Copyright © 2010 Elsevier Inc. All rights reserved.
Babič, Janja; Likozar, Blaž; Pavko, Aleksander
2012-01-01
Response surface methodology (central composite design of experiments) was employed to simultaneously optimize enzyme production and productivities of two ligninolytic enzymes produced by Ceriporiopsis subvermispora. Concentrations of glucose, ammonium tartrate and Polysorbate 80 were varied to establish the optimal composition of liquid media (OLM), where the highest experimentally obtained activities and productivities were 41 U L−1 and 16 U L−1 day−1 for laccase (Lac), and 193 U L−1 and 80 U L−1 day−1 for manganese peroxidase (MnP). Considering culture growth in OLM on various types of immobilization support, the best results were obtained with 1 cm beech wood cubes (BWCM). Enzyme activities in culture filtrate were 152 U L−1 for Lac and 58 U L−1 for MnP, since the chemical composition of this immobilization material induced higher Lac activity. Lower enzyme activities were obtained with polyurethane foam. Culture filtrates of OLM and BWCM were applied for dye decolorization. Remazol Brilliant Blue R (RBBR) was decolorized faster and more efficiently than Copper(II)phthalocyanine (CuP) with BWCM (80% and 60%), since Lac played a crucial role. Decolorization of CuP was initially faster than that of RBBR, due to higher MnP activities in OLM. The extent of decolorization after 14 h was 60% for both dyes. PMID:23109859
Inoue, Tomoo; Nishi, Toshio; Nakano, Yoshiaki; Nishimae, Ayaka; Sawai, Yuka; Yamasaki, Masaru; Inaji, Hideo
2016-03-01
There is limited information on indocyanine green (ICG) fluorescence and blue dye for detecting sentinel lymph node (SLN) in early breast cancer. A retrospective study was conducted to assess the feasibility of an SLN biopsy using the combination of ICG fluorescence and the blue dye method. Seven hundred and fourteen patients with clinically node-negative breast cancer were included in this study. They underwent SLN biopsy using a combination of ICG fluorescence and the blue dye method from March 2007 to February 2014. The ICG (a fluorescence-emitting source) and patent blue (the blue dye) were injected into the patients' subareolar region. The removed lymph nodes that had ICG fluorescence and/or blue dye uptake were defined as SLNs. The results of the SLN biopsies and follow-up results of patients who underwent SLN biopsy alone were investigated. In 711 out of 714 patients, SLNs were identified by a combination of ICG fluorescence and the blue dye method (detection rate, 99.6 %). The average number of SLNs was 2.4 (range 1-7), and the average number of resected swollen para-SLNs was 0.4 (range 0-5). Ninety-nine patients with an SLN and/or para-SLN involvement during the intraoperative pathological diagnosis underwent axillary lymph node resection (ALND). In addition, two of three patients whose SLN was not identified also underwent ALND. In 46 of 101 patients with an ALND, non-SLN involvement was not found. Follow-up results were analyzed in 464 patients with invasive carcinoma excluding those with ductal carcinoma in situ (n = 148) and those who underwent ALND (n = 101). During the follow-up period (range 4.4-87.7 months; median, 38 months), two patients (0.4 %) developed axillary lymph node recurrence. They were successfully salvaged, and to date, no further locoregional recurrence has been observed. A high rate of SLN detection and low rate of axillary lymph node recurrence were confirmed by an SLN biopsy using a combination of ICG fluorescence and the blue dye method. Therefore, it is suggested that this method may replace the combination of dye and radioisotope methods.
Triple dye plus rubbing alcohol versus triple dye alone for umbilical cord care.
Suliman, Alawia K; Watts, Heidi; Beiler, Jessica; King, Tonya S; Khan, Sana; Carnuccio, Marybeth; Paul, Ian M
2010-01-01
Current practices for umbilical cord care vary across centers, but the evidence regarding these practices and their impact on cord separation, complications, and health care use are limited. The objective of this study was to compare the effect of triple dye alone (brilliant green, crystal violet, and proflavine hemisulfate) versus triple dye plus rubbing alcohol (isopropyl alcohol) twice daily on time to umbilical cord separation, complications, and health care use. For the 90 newborns who completed the study, there were no significant differences between treatment groups for time to cord separation, cord-related morbidities, or cord-related urgent care. Based on these study results, there does not appear to be significant benefit to the addition of twice daily applications of rubbing alcohol to neonatal umbilical cords following triple dye treatment after birth.
Removing Trypan blue dye using nano-Zn modified Luffa sponge.
Nadaroglu, Hayrunnisa; Cicek, Semra; Gungor, Azize Alayli
2017-02-05
This study has presented specific features that are examined to remove the Trypan blue dye from the waste using Luffa sponge (LS) and modified Luffa sponge with zinc nanoparticles (ZnNPs). Peroxidase enzyme was obtained from Euphorbia amygdaloides plant and it was used with the green synthesis of Zn nanoparticles. Luffa sponge was used to be a support material for immobilized nanoparticles and it also used in remediation work. The obtained membrane forms, fibrous materials, (LS, ZnNPs-LS) were characterized with SEM and XRD. LS and ZnNPs-LS were employed as adsorbent to be used for the removal of Trypan blue dye from aqueous via batch studies. Measurements were made for the equilibrium, pH, temperature, concentration of dye with UV-visible spectrometer (590nm; for Trypan blue dye). The optimum removal of Trypan blue dye was found at pH7, the equilibrium was attained within 30min. The thermodynamic properties ΔG 0 , ΔH 0 , and ΔS 0 showed that adsorption of Trypan blue dye onto LS and ZnNPs-LS were spontaneous and endothermic. The equilibrium isotherm data were analyzed using Langmuir and Freundlich models and the sorption process was described by the Langmuir isotherm with maximum monolayer adsorption capacity of 45.32 and 47.3mg/g for LS and LS-ZnNPs at 303±1°K, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.
The photokilling of bladder carcinoma cells in vitro by phenothiazine dyes.
Fowler, G J; Rees, R C; Devonshire, R
1990-09-01
The potential photodynamic therapy photosensitizers Methylene Blue, Azure C, Methylene Violet, Thionine, Methylene Green, Haematoporphyrin, Nile Blue A, chloroaluminium phthalocyanine and bis-aluminium phthalocyanine were examined for their photoeffects and dark toxicity against a human superficial bladder carcinoma cell-line. By examination of [3H]thymidine uptake into dye-treated cells after irradiation with a copper-vapour pumped dye laser, it was found that Methylene Blue was the most phototoxic and dark toxic of all the dyes tested, suggesting that the dye might be of some use as a topically applied photodrug for use in photodynamic therapy of superficial or early-recurring carcinomas.
Ragàs, Xavier; Dai, Tianhong; Tegos, George P.; Agut, Montserrat; Nonell, Santi; Hamblin, Michael R.
2010-01-01
Background and Objective Phenothiazinium dyes have been reported to be effective photosensitizers inactivating a wide range of microorganisms in vitro after illumination with red light. However, their application in vivo has not extensively been explored. This study evaluates the bactericidal activity of phenothiazinium dyes against multidrug-resistant Acinetobacter baumannii both in vitro and in vivo. Study Design/Materials and Methods We report the investigation of toluidine blue O, methylene blue, 1,9-dimethylmethylene blue, and new methylene blue for photodynamic inactivation of multidrug-resistant A. baumannii in vitro. The most effective dye was selected to carry out in vivo studies using third-degree mouse burns infected with a bioluminescent A. baumannii strain, upon irradiation with a 652 nm noncoherent light source. The mice were imaged daily for 2 weeks to observe differences in the bioluminescence–time curve between the photodynamic therapy (PDT)-treated mice in comparison with untreated burns. Results All the dyes were effective in vitro against A. baumannii after 30 J/cm2 irradiation of 635 or 652 nm red light had been delivered, with more effective killing when the dye remained in solution. New methylene blue was the most effective of the four dyes, achieving a 3.2-log reduction of the bacterial luminescence during PDT in vivo after 360 J/cm2 and an 800 μM dye dose. Moreover, a statistically significant reduction of the area under the bioluminescence–time curve of PDT-treated mice was observed showing that the infection did not recur after PDT. Conclusions Phenothiazinium dyes, and especially new methylene blue, are potential photosensitizers for PDT to treat burns infected with multidrug-resistant A. baumannii in vivo. PMID:20583252
Alkali, thermo and halo tolerant fungal isolate for the removal of textile dyes.
Kaushik, Prachi; Malik, Anushree
2010-11-01
In the present study potential of a fungal isolate Aspergillus lentulusFJ172995, was investigated for the removal of textile dyes. The removal percentages of dyes such as Acid Navy Blue, Orange-HF, Fast Red A, Acid Sulphone Blue and Acid Magenta were determined as 99.43, 98.82, 98.75, 97.67 and 69.98, respectively. None of the dyes inhibited the growth of A. lentulus. Detailed studies on growth kinetics, mechanism of dye removal and effect of different parameters on dye removal were conducted using Acid Navy Blue dye. It was observed that A. lentulus could completely remove Acid Navy Blue even at high initial dye concentrations, up to 900 mg/L. Highest uptake capacity of 212.92 mg/g was observed at an initial dye concentration of 900 mg/L. Dye removing efficiency was not altered with the variation of pH; and biomass production as well as dye removal was favored at higher temperatures. Dye removal was also efficient even at high salt concentration. Through growth kinetics studies it was observed that the initial exponential growth phase coincided with the phase of maximal dye removal. Microscopic studies suggest that bioaccumulation along with biosorption is the principle mechanism involved in dye removal by A. lentulus. Thus, it is concluded that being alkali, thermo and halo tolerant, A. lentulus isolate has a great potential to be utilized for the treatment of dye bearing effluents which are usually alkaline, hot and saline. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Berggren, K; Chernokalskaya, E; Steinberg, T H; Kemper, C; Lopez, M F; Diwu, Z; Haugland, R P; Patton, W F
2000-07-01
SYPRO Ruby dye is a permanent stain comprised of ruthenium as part of an organic complex that interacts noncovalently with proteins. SYPRO Ruby Protein Gel Stain provides a sensitive, gentle, fluorescence-based method for detecting proteins in one-dimensional and two-dimensional sodium dodecyl sulfate-polyacrylamide gels. Proteins are fixed, stained from 3h to overnight and then rinsed in deionized water or dilute methanol/acetic acid solution for 30 min. The stain can be visualized using a wide range of excitation sources commonly used in image analysis systems including a 302 nm UV-B transilluminator, 473 nm second harmonic generation (SHG) laser, 488 nm argon-ion laser, 532 nm yttrium-aluminum-garnet (YAG) laser, xenon arc lamp, blue fluorescent light bulb or blue light-emitting diode (LED). The sensitivity of SYPRO Ruby Protein Gel Stain is superior to colloidal Coomassie Brilliant Blue (CBB) stain or monobromobimane labeling and comparable with the highest sensitivity silver or zinc-imidazole staining procedures available. The linear dynamic range of SYPRO Ruby Protein Gel stain extends over three orders of magnitude, which is vastly superior to silver, zinc-imidazole, monobromobimane and CBB stain. The fluorescent stain does not contain superfluous chemicals (formaldehyde, glutaraldehyde, Tween-20) that frequently interfere with peptide identification in mass spectrometry. While peptide mass profiles are severely altered in protein samples prelabeled with monobromobimane, successful identification of proteins by peptide mass profiling using matrix-assisted laser desorption/ionization mass spectrometry was easily performed after protein detection with SYPRO Ruby Protein Gel stain.
Intense excitation source of blue-green laser
NASA Astrophysics Data System (ADS)
Han, K. S.
1985-10-01
An intense and efficient excitation source for blue-green lasers useful for the space-based satellite laser applications, underwater strategic communication, and measurement of ocean bottom profile is being developed. The source in use, hypocycloidal pinch plasma (HCP), and a newly designed dense-plasma focus (DPF) can produce intense UV photons (200 to 300 nm) which match the absorption spectra of both near UV and blue green dye lasers (300 to 400 nm). During the current project period, the successful enhancement of blue-green laser output of both Coumarin 503 and LD490 dye through the spectral conversion of the HCP pumping light has been achieved with a converter dye BBQ. The factor of enhancement in the blue-green laser output energy of both Coumarin 503 and LD490 is almost 73%. This enhancement will definitely be helpful in achieving the direct high power blue-green laser (> 1 MW) with the existing blue green dye laser. On the other hand the dense-plasma focus (DPF) with new optical coupling has been designed and constructed. For the optimization of the DPF device as the UV pumping light source, the velocity of current sheath and the formation of plasma focus have been measured as function of argon or argon-deuterium fill gas pressure. Finally, the blue-green dye laser (LD490) has been pumped with the DPF device for preliminary tests. Experimental results with the DPF device show that the velocity of the current sheath follows the inverse relation of sq st. of pressure as expected. The blue-green dye (LD490) laser output exceeded 3.1 m at the best cavity tuning of laser system. This corresponds to 3J/1 cu cm laser energy extraction.
Advanced Oxidation of Tartrazine and Brilliant Blue with Pulsed Ultraviolet Light Emitting Diodes
Scott, Robert; Mudimbi, Patrick; Miller, Michael E.; Magnuson, Matthew; Willison, Stuart; Phillips, Rebecca; Harper, Willie F.
2018-01-01
This study investigated the effect of ultraviolet light-emitting diodes (UVLEDs) coupled with hydrogen peroxide as an advanced oxidation process (AOP) for the degradation of two test chemicals. Brilliant Blue FCF consistently exhibited greater degradation than tartrazine, with 83% degradation after 300 minutes at the 100% duty cycle compared with only 17% degradation of tartrazine under the same conditions. These differences are attributable to the structural properties of the compounds. Duty cycle was positively correlated with the first-order rate constants (k) for both chemicals but, interestingly, negatively correlated with the normalized first-order rate constants (k/duty cycle). Synergistic effects of both hydraulic mixing and LED duty cycle were manifested as novel oscillations in the effluent contaminant concentration. Further, LED output and efficiency were dependent upon duty cycle and less efficient over time perhaps due to heating effects on semiconductor performance. PMID:28236826
Health safety issues of synthetic food colorants.
Amchova, Petra; Kotolova, Hana; Ruda-Kucerova, Jana
2015-12-01
Increasing attention has been recently paid to the toxicity of additives used in food. The European Parliament and the Council published the REGULATION (EC) No. 1333/2008 on food additives establishing that the toxicity of food additives evaluated before 20th January 2009 must be re-evaluated by European Food Safety Authority (EFSA). The aim of this review is to survey current knowledge specifically on the toxicity issues of synthetic food colorants using official reports published by the EFSA and other available studies published since the respective report. Synthetic colorants described are Tartrazine, Quinoline Yellow, Sunset Yellow, Azorubine, Ponceau 4R, Erythrosine, Allura Red, Patent Blue, Indigo Carmine, Brilliant Blue FCF, Green S, Brilliant Black and Brown HT. Moreover, a summary of evidence on possible detrimental effects of colorant mixes on children's behaviour is provided and future research directions are outlined. Copyright © 2015 Elsevier Inc. All rights reserved.
Bhim, Anupam; Laha, Sourav; Gopalakrishnan, Jagannatha; Natarajan, Srinivasan
2017-10-18
We explored garnet-structured oxide materials containing 3d transition-metal ions (e.g., Co 2+ , Ni 2+ , Cu 2+ , and Fe 3+ ) for the development of new inorganic colored materials. For this purpose, we synthesized new garnets, Ca 3 Sb 2 Ga 2 ZnO 12 (I) and Ca 3 Sb 2 Fe 2 ZnO 12 (II), that were isostructural with Ca 3 Te 2 Zn 3 O 12 . Substitution of Co 2+ , Ni 2+ , and Cu 2+ at the tetrahedral Zn 2+ sites in I and II gave rise to brilliantly colored materials (different shades of blue, green, turquoise, and red). The materials were characterized by optical absorption spectroscopy and CIE chromaticity diagrams. The Fe 3+ -containing oxides showed band-gap narrowing (owing to strong sp-d exchange interactions between Zn 2+ and the transition-metal ion), and this tuned the color of these materials uniquely. We also characterized the color and optical absorption properties of Ca 3 Te 2 Zn 3-x Co x O 12 (0
Comparison of five methods for determination of total plasma protein concentration.
Okutucu, Burcu; Dinçer, Ayşşe; Habib, Omer; Zihnioglu, Figen
2007-08-01
Quantitation of exact total protein content is often a key step and is common to many applications in general biochemistry research and routine clinical laboratory practice. Before embarking on any type of protein analysis, particularly comparative techniques, it is important to accurately quantitate the amount of protein in the sample. In order to assess the quality of total protein estimation results, five methods were tested and were applied to the same pooled plasma sample. For this aim, Bradford (Coomassie Brilliant Blue), Lowry (Folin-Ciocalteau), Biüret, Pesce and Strande (Ponceau-S/TCA), and modified method of Schaffner-Weismann (Amido Black 10B) were used. The last two methods employ simultaneous precipitation of proteins with the acid containing dye solutions followed by dissolution of precipitate in a NaOH solution. It is shown that each assay has advantages and disadvantages relative to sensitivity, ease of performance, acceptance in literature, accuracy and reproducibility/coefficient of variation. All of the methods tested show a CV %<6. Besides pooled plasma, a known concentration of human serum albumin was also analyzed and discussed by means of standardization of plasma total protein content.
Decolorization pathways of anthraquinone dye Disperse Blue 2BLN by Aspergillus sp. XJ-2 CGMCC12963.
Pan, Huiran; Xu, Xiaolin; Wen, Zhu; Kang, Yanshun; Wang, Xinhao; Ren, Youshan; Huang, Danqi
2017-09-03
Anthraquinone dye represents an important group of recalcitrant pollutants in dye wastewater. Aspergillus sp XJ-2 CGMCC12963 showed broad-spectrum decolorization ability, which could efficiently decolorize and degrade various anthraquinone dyes (50 mg L -1 ) under microaerophilic condition. And the decolorization rate of 93.3% was achieved at 120 h with Disperse Blue 2BLN (the target dye). Intermediates of degradation were detected by FTIR and GC-MS, which revealed the cleavage of anthraquinone chromophoric group and partial mineralization of target dye. In addition, extracellular manganese peroxidase showed the most closely related to the increasing of decolorization rate and biomass among intracellular and extracellular ligninolytic enzymes. Given these results, 2 possible degraded pathways of target dye by Aspergillus sp XJ-2 CGMCC12963 were proposed first in this work. The degradation of Disperse Blue 2BLN and broad spectrum decolorization ability provided the potential for Aspergillus sp XJ-2 CGMCC12963 in the treatment of wastewater containing anthraquinone dyes.
Kaushik, Prachi; Malik, Anushree
2013-05-01
Dyes used in various industries are discharged into the environment and pose major environmental concern. In the present study, fungal isolate Aspergillus lentulus was utilized for the treatment of various dyes, dye mixtures and dye containing effluent in dual modes, bioaccumulation (employing growing biomass) and biosorption (employing pre-cultivated biomass). The effect of dye toxicity on the growth of the fungal isolate was studied through phase contrast and scanning electron microscopy. Dye biosorption was studied using first and second-order kinetic models. Effects of factors influencing adsorption and isotherm studies were also conducted. During bioaccumulation, good removal was obtained for anionic dyes (100 mg/l), viz. Acid Navy Blue, Fast Red A and Orange-HF dye (99.4 %, 98.8 % and 98.7 %, respectively) in 48 h. Cationic dyes (10 mg/l), viz. Rhodamine B and Methylene Blue, had low removal efficiency (80.3 % [48 h] and 92.7 % [144 h], respectively) as compared to anionic dyes. In addition to this, fungal isolate showed toxicity response towards Methylene Blue by producing larger aggregates of fungal pellets. To overcome the limitations of bioaccumulation, dye removal in biosorption mode was studied. In this mode, significant removal was observed for anionic (96.7-94.3 %) and cationic (35.4-90.9 %) dyes in 24 h. The removal of three anionic dyes and Rhodamine B followed first-order kinetic model whereas removal of Methylene Blue followed second-order kinetic model. Overall, fungal isolate could remove more than 90 % dye from different dye mixtures in bioaccumulation mode and more than 70 % dye in biosorption mode. Moreover, significant color removal from handmade paper unit effluent in bioaccumulation mode (86.4 %) as well as in biosorption mode (77.1 %) was obtained within 24 h. This study validates the potential of fungal isolate, A. lentulus, to be used as the primary organism for treating dye containing wastewater.
Suppression of cucurbit scab on cucumber leaves by photodynamic dyes
USDA-ARS?s Scientific Manuscript database
The goal of this study was to test the ability of the photodynamic dyes bengal rose, toluidine blue, and methylene blue, to protect systemically cucumber plants from cucurbit scab. At the stage of one true leaf, water or aqueous solutions of the dyes were applied to the leaf as droplets. When the se...
Estrogenic and anti-estrogenic activity of 23 commercial textile dyes.
Bazin, Ingrid; Ibn Hadj Hassine, Aziza; Haj Hamouda, Yosra; Mnif, Wissem; Bartegi, Ahgleb; Lopez-Ferber, Miguel; De Waard, Michel; Gonzalez, Catherine
2012-11-01
The presence of dyes in wastewater effluent of textile industry is well documented. In contrast, the endocrine disrupting effects of these dyes and wastewater effluent have been poorly investigated. Herein, we studied twenty-three commercial dyes, usually used in the textile industry, and extracts of blue jean textile wastewater samples were evaluated for their agonistic and antagonistic estrogen activity. Total estrogenic and anti-estrogenic activities were measured using the Yeast Estrogen Screen bioassay (YES) that evaluates estrogen receptor binding-dependent transcriptional and translational activities. The estrogenic potencies of the dyes and wastewater samples were evaluated by dose-response curves and compared to the dose-response curve of 17β-estradiol (E2), the reference compound. The dose-dependent anti-estrogenic activities of the dyes and wastewater samples were normalized to the known antagonistic effect of 4-hydroxytamoxifen (4-OHT) on the induction of the lac Z reporter gene by E2. About half azo textile dyes have anti-estrogenic activity with the most active being Blue HFRL. Most azo dyes however have no or weak estrogenic activity. E2/dye or E2/waste water ER competitive binding assays show activity of Blue HFRL, benzopurpurine 4B, Everzol Navy Blue FBN, direct red 89 BNL 200% and waste water samples indicating a mechanism of action common to E2. Our results indicate that several textile dyes are potential endocrine disrupting agents. The presence of some of these dyes in textile industry wastewater may thus impact the aquatic ecosystem. Copyright © 2012 Elsevier Inc. All rights reserved.
Kamal, Tahseen; Khan, Sher Bahadar; Haider, Sajjad; Alghamdi, Yousef Gamaan; Asiri, Abdullah M
2017-11-01
A facile approach utilizing synthesis of cobalt nanoparticles in green polymers of chitosan (CS) coating layer on high surface area cellulose microfibers of filter paper (CFP) is described for the catalytic reduction of nitrophenol and an organic dye using NaBH 4 . Simple steps of CFP coating with 1wt% CS aqueous solution followed by Co 2+ ions adsorption from 0.2M CoCl 2 aqueous solution were carried out to prepare pre-catalytic strips. The Co 2+ loaded pre-catalytic strips of CS-CFP were treated with 0.19M NaBH 4 aqueous solution to convert the ions into nanoparticles. Successful Co nanoparticles formation was assessed by various characterization techniques of FESEM, EDX and XRD analyzes. TGA analyses were carried out on CFP, CS-CFP, and Co-CS-CFP for the determination of the amount of Co particles formed on the CS-FP, and to track their thermal properties. Furthermore, we demonstrated that the Co-CS-CFP showed an excellent catalytic activity and reusability in the reduction reactions a nitroaromatic compound of 2,6-dintirophenol (2,6-DNP) and brilliant cresyl blue (BCB) dye by NaBH 4 . The Co-CS-CFP catalyzed the reduction reactions of 2,6-DNP and BCB by NaBH 4 with psuedo-first order rate constants of 0.0451 and 0.1987min -1 , respectively. Copyright © 2017 Elsevier B.V. All rights reserved.
Shah-Khan, Miraj G; Lovely, Jenna; Degnim, Amy C
2012-11-01
Methylene blue dye has an important role in lymphatic mapping for sentinel lymph node surgery. A recent safety announcement from the US Food and Drug Administration warned physicians about possible serious central nervous system reactions in patients on serotonergic medications who received intravenous methylene blue for the identification of parathyroid glands. This report summarizes evidence from the Food and Drug Administration's announcement and methylene blue pharmacokinetics. The authors conclude that the use of methylene blue dye at low doses for lymphatic mapping likely carries very little risk for serotonin neurotoxicity, although breast surgeons should be aware of this potential complication in the event of mental status or neuromuscular changes in patients after lymphatic mapping. Copyright © 2012 Elsevier Inc. All rights reserved.
Abou-Gamra, Z M; Ahmed, M A
2016-07-01
Herein, we demonstrate a facile route for synthesis a new photocatalyst based on TiO2-curcumin nanoparticles for photodegradation of methylene blue dye under UV and visible light irradiation. The photocatalyst was prepared by sol-gel method using chitosan as biodegradable polymer. The crystalline and the nanostructure were characteristic X-ray diffraction [XRD], adsorption-desorption isotherm and high resolution transmission electron microscopy [HRTEM]. However, the optical features of the samples were investigated by a UV-visible spectrophotometer. It is obvious to notice the removal of the majority of methylene blue dye on a pure titania surface via adsorption mechanism owing to the high surface area and to the organized mesoporous nature of the solid sample. Incorporation of curcumin on titania surface changes the removal direction from adsorption to the photocatalytic pathway. Various photocatalytic experiments were performed to investigate the influence of initial dye concentration, weight of catalyst, stirring and light intensity on the photocatalytic degradation of methylene blue as primary pollutant model. Chemical oxygen demand [COD] test confirms the complete degradation of methylene blue dye. The exceptional photocatalytic reactivity of titania-curcumin nanoparticles is referred to reduction in band gap energy and to the facility of electron transfer from II* curcumin energy level to titania conduction band which increases the concentration of reactive oxygen superoxide radicals which in turn prevents the electron-hole recombination. The effect of various scavengers on the methylene blue dye degradation was investigated using ethanol, ascorbic acid and methyl viologen. The results have pointed out that O2(-) and HO(.) are considered the main active species in the degradation process. A plausible pathway and mechanism for the photocatalytic degradation of methylene blue by titania-curcumin nanoparticles were illustrated. Copyright © 2016 Elsevier B.V. All rights reserved.
Mehrabibahar, M; Azizi, S; Jangjoo, A; Saremi, E; Kakhki, V R Dabbagh; Sadeghi, R; Chicken, D W; Keshtgar, M
2014-01-01
We evaluated the concordance between peri-areolar blue dye and peri-incisional radiotracer injections for axillary sentinel node mapping of patients with the history of previous breast lesion excisional biopsy. 80 patients with the history of previous excisional biopsy of the breast lesions were included. All patients received two injections of 99mTc-antimony sulfide colloid in both ends of incision line in an intradermal fashion. 2 mL patient blue V dye was injection to all patients in the peri-areolar area of the index quadrant after induction of anesthesia. All blue or hot nodes were harvested as sentinel lymph nodes. At least one sentinel node could be detected during surgery in 79 patients. In total 94 sentinel nodes were detected. All detected sentinel nodes were hot. In three patients sentinel nodes were detected by gamma probe but not blue dye. The tumor location in all of these patients was in the upper lateral quadrant and the incision line was extended into the axillary tail of the breast in all of them. 91 out of 94 sentinel nodes were stained blue, which amounts to 95.8% concordance between blue dye and radiotracer on a per node analysis. Single peri-areolar injection in the index quadrant would suffice for sentinel node mapping of patients with history of excisional biopsy. Care should be taken in patients with large excisional biopsy in the extreme proximity to axilla.
Sequential batch culture studies for the decolorisation of reactive dye by Coriolus versicolor.
Sanghi, Rashmi; Dixit, Awantika; Guha, Sauymen
2006-02-01
The white rot fungus Coriolus versicolor could decolorise reactive dye Remazol Brilliant Violet to almost 90%. The fungal mycelia removed color as well as COD up to 95% and 75%, respectively, in a batch reactor. Decolorising activity was observed during the repeated reuse of the fungus. It was possible to substantially increase the dye decolorising activity of the fungus by carefully selecting the operational conditions such as media composition, age of fungus and nitrogen source. The fungal pellets could be used for eight cycles during the long term operation, where medium and dye was replenished at the end of each cycle and the fungus was recycled. Presence of a nitrogen source and nutrient content of media played an important role in sustaining the decolorisation activity of the fungus. The form of nitrogen source (e.g. peptone vs. urea) was also important to maintain the decolorising activity with peptone showing better decolorisation.
Mutagenicity of commercial hair dyes and detection of 2,7-diaminophenazine.
Watanabe, T; Hirayama, T; Fukui, S
1990-08-01
Four commercial oxidative-type hair dye formulations, A, B, C, and D, were treated with hydrogen peroxide (H2O2) to simulate normal conditions of use, and the oxidized hair dyes were tested for their mutagenicity in Salmonella typhimurium TA98 in the presence of a mammalian metabolic activation system (S9 mix). Most of them did not show obvious mutagenicity in the range of 1-25 microliters/plate and all exhibited bactericidal activity at 10 microliters/plate. In order to evaluate the mutagenicity of hair dyes both before and after H2O2 oxidation, rayon linked to a copper-phthalocyanine derivative (blue rayon) was used as an adsorbent for the elimination of interfering bactericidal compounds. Adsorbed compounds on blue rayon were eluted with ammoniacal methanol and eluents were subjected to the Ames test. The mutagenicity of the blue-rayon extracts in TA98 with S9 mix was increased by H2O2 oxidation. The blue-rayon extracts obtained from oxidized A and B were potent mutagens and reverted 334 and 999 colonies/10 microliters of original substance, respectively. In addition, 88 and 249 ng of 2,7-diaminophenazine, which was extremely mutagenic in TA98 with S9 mix, were detected in the extracts of 40 ml of the hair dye formulations A and B, respectively. The mutagenicity in oxidized hair dye formulations was successfully detected by use of blue-rayon extraction. 2,7-Diaminophenazine was only formed in the hair dye formulations containing m-phenylenediamine by H2O2 oxidation. Therefore, attention needs to be paid to the use of m-phenylenediamine as a hair dye component, not only for its own toxicity but also for that of its oxidation products.
Intense excitation source of blue-green laser
NASA Astrophysics Data System (ADS)
Han, Kwang S.
1986-10-01
An intense and efficient source for blue green laser useful for the space-based satellite laser applications, underwater strategic communication, and measurement of ocean bottom profile is being developed. The source in use, the hypocycloidal pinch plasma (HCP), and the dense plasma focus (DPF) can produce intense uv photons (200 to 400nm) which match the absorption spectra of both near UV and blue green dye lasers (300 to 400nm). As a result of optimization of the DPF light at 355nm, the blue green dye (LD490) laser output exceeding 4mJ was obtained at the best cavity tunning of the laser system. With the HCP pumped system a significant enhancement of the blue green laser outputs with dye LD490 and coumarin 503 has been achieved through the spectrum conversion of the pumping light by mixing a converter dye BBQ. The maximum increase of laser output with the dye mixture of LD490+BBQ and coumarin 503+BBQ was greater than 80%. In addition, the untunned near UV lasers were also obtained. The near UV laser output energy of P-terphenyl dye was 0.5mJ at lambda sub C=337nm with the bandwidth of 3n m for the pulse duration of 0.2us. Another near UV laser output energy obtained with BBQ dye was 25 mJ at lambda sub C=383nm with the bandwidth of 3nm for the pulse duration of 0.2us. Another near UV laser output energy obtained with BBQ dye was 25 mJ at lambda sub C=383nm with the bandwidth of 3nm for the pulse duration of 0.2microsec.
NASA Astrophysics Data System (ADS)
Chen, Jing; Abell, Justin; Huang, Yao-wen; Zhao, Yiping
2012-06-01
We demonstrate the potential use of silver nanorod (AgNR) array substrates for on-chip separation and detection of chemical mixtures by ultra-thin layer chromatography (UTLC) and surface enhanced Raman spectroscopy (SERS). The capability of the AgNR substrates to separate different compounds in a mixture was explored using a mixture of the food colorant Brilliant Blue FCF and lactic acid, and the mixtures of Methylene Violet and BSA at various concentrations. After the UTLC process, spatially-resolved SERS spectra were collected along the mobile phase development direction and the intensities of specific SERS peaks from each component were used to generate chromatograms. The AgNR substrates demonstrate the capability of separating Brilliant Blue from lactic acid, as well as revealing the SERS signal of Methylene Violet from the massive BSA background after a simple UTLC step. This technique may have significant practical implications in actual detection of small molecules from complex food or clinical backgrounds.
Papadia, Andrea; Gasparri, Maria Luisa; Buda, Alessandro; Mueller, Michael D
2017-10-01
Sentinel lymph node (SLN) mapping in endometrial cancer (EMCA) is rapidly gaining acceptance in the clinical community. As compared to a full lymphadenectomy in every patient, to a selective lymphadenectomy after frozen section of uterus in selected patients with intrauterine risk factors or to a strategy in which a lymphadenectomy is always omitted, SLN mapping seems to be a reasonable and oncologically safe middle ground. Various protocols can be used when applying an SLN mapping. In this manuscript we review the characteristics, toxicity and clinical impact of technetium-99m radiocolloid (Tc-99m), of the blue dyes (methylene blue, isosulfan blue and patent blue) and of indocyanine green (ICG). ICG has an excellent toxicity profile, has higher overall and bilateral detection rates as compared to blue dyes and higher bilateral detection rates as compared to a combination of Tc-99m and blue dye. The detrimental effect of BMI on the detection rates is attenuated when ICG is used as a tracer. The ease of use of the ICG SLN mapping is perceived by the patients as a better quality of care delivered. Whenever possible, ICG should be favored over the other tracers for SLN mapping in EMCA patients.
Decolorization and biodegradation of textile dye Navy blue HER by Trichosporon beigelii NCIM-3326.
Saratale, R G; Saratale, G D; Chang, J S; Govindwar, S P
2009-07-30
Navy blue HER was decolorized and degraded within 24h by Trichosporon beigelii NCIM-3326 under static condition. In the present study, we investigated various physicochemical parameters such as agitation, temperature, pH, cell concentration, initial dye concentration and different carbon and nitrogen sources to achieve maximum dye degradation by T. beigelii. Sequentially, decolorization and decrease in the total organic carbon (TOC) of Navy blue HER by T. beigelii were measured. Among five strains T. beigelii gave the better performance on the decolorization of Navy blue HER along with a 95% TOC reduction within 24h. A significant increase in the activities of NADH-DCIP (dichlorophenolindophenol) reductase and azoreductase in the cells obtained after complete decolorization presumably indicates involvement of these enzymes in decolorization process. UV-vis, TLC, HPLC and FTIR analysis of extracted products confirmed the biodegradation of Navy blue HER. Phytotoxicity study demonstrated no toxicity of the biodegraded products with respect to plants viz. Phaseolus mungo and Sorghum vulgare. In addition to Navy blue HER, this strain also shows ability to decolorize various industrial dyes, including Red HE7B, Golden yellow 4BD, Green HE4BD, Orange HE2R, Malachite green, Crystal violet and Methyl violet.
Hosseinzadeh, Reza; Khorsandi, Khatereh
2017-06-01
The aim of current study was to use methylene blue-curcumin ion pair nanoparticles and single dyes as photosensitizer for comparison of photodynamic therapy (PDT) efficacy on MDA-MB-231 cancer cells, also various light sources effect on activation of photosensitizer (PS) was considered. Ion pair nanoparticles were synthesized using opposite charge ions precipitation and lyophilized. The PDT experiments were designed and the effect of PSs and light sources (Red LED (630nm; power density: 30mWcm -2 ) and blue LED (465nm; power density: 34mWcm -2 )) on the human breast cancer cell line were examined. The effect of PS concentration (0-75μg.mL -1 ), incubation time, irradiation time and light sources, and priority in irradiation of blue or red lights were determined. The results show that the ion pairing of methylene blue and curcumin enhance the photodynamic activity of both dyes and the cytotoxicity of ion pair nanoparticles on the MDA-231 breast cancer cell line. Blue and red LED light sources were used for photo activation of photosensitizers. The results demonstrated that both dyes can activate using red light LED better than blue light LED for singlet oxygen producing. Nano scale ion pair precipitating of methylene blue-curcumin enhanced the cell penetrating and subsequently cytotoxicity of both dyes together. Copyright © 2017 Elsevier B.V. All rights reserved.
Kesraoui, Aida; Moussa, Asma; Ali, Ghada Ben; Seffen, Mongi
2016-08-01
The aim of the present work is to develop an effective and inexpensive pollutant-removal technology using lignocellulosic fibers: Luffa cylindrica, for the biosorption of an anionic dye: alpacide blue. The influence of some experimental parameters such as pH, temperature, initial concentration of the polluted solution, and mass of the sorbent L. cylindrica on the biosorption of alpacide blue by L. cylindrica fibers has been investigated. Optimal parameters for maximum quantity of biosorption dye were achieved after 2 h of treatment in a batch system using an initial dye concentration of 20 mg/L, a mass of 1 g of L. cylindrica fibers, and pH 2. In these conditions, the quantity of dye retained is 2 mg/g and the retention rate is 78 %. Finally, a mathematical modeling of kinetics and isotherms has been used for mathematical modeling; the model of pseudo-second order is more appropriate to describe this phenomenon of biosorption. Concerning biosorption isotherms, the Freundlich model is the most appropriate for a biosorption of alpacide blue dye by L. cylindrica fibers.
MANCHESTER MILLS, PRINT WORKS: BLUE DYE AND SOAPING; PRINTING AND ...
MANCHESTER MILLS, PRINT WORKS: BLUE DYE AND SOAPING; PRINTING AND BLEACHING BUILDINGS. PHOTOCOPY OF c. 1905 VIEW LOOKING NORTHEAST. From the collection of Mr. George Durette, Photographer, Manchester, N. H. - Amoskeag Millyard, Canal Street, Manchester, Hillsborough County, NH
Lade, Harshad; Kadam, Avinash; Paul, Diby; Govindwar, Sanjay
2015-03-25
Environmental release of benzidine-based dyes is a matter of health concern. Here, a microbial consortium was enriched from textile dye contaminated soils and investigated for biodegradation of the carcinogenic benzidine-based dye Trypan Blue using wheat bran (WB) as growth medium. The PCR-DGGE analysis of enriched microbial consortium revealed the presence of 15 different bacteria. Decolorization studies suggested that the microbial consortium has high metabolic activity towards Trypan Blue as complete removal of 50 mg∙L-1 dye was observed within 24 h at 30 ± 0.2 °C and pH 7. Significant reduction in TOC (64%) and COD (88%) of dye decolorized broths confirmed mineralization. Induction in azoreductase (500%), NADH-DCIP reductase (264%) and laccase (275%) proved enzymatic decolorization of dye. HPLC analysis of dye decolorized products showed the formation of six metabolites while the FTIR spectrum indicated removal of diazo bonds at 1612.30 and 1581.34 cm-1. The proposed dye degradation pathway based on GC-MS and enzyme analysis suggested the formation of two low molecular weight intermediates. Phytotoxicity and acute toxicity studies revealed the less toxic nature of the dye degradation products. These results provide experimental evidence for the utilization of agricultural waste as a novel low-cost growth medium for biodegradation of benzidine-based dyes, and suggested the potential of the microbial consortium in detoxification.
Lade, Harshad; Kadam, Avinash; Paul, Diby; Govindwar, Sanjay
2015-01-01
Environmental release of benzidine-based dyes is a matter of health concern. Here, a microbial consortium was enriched from textile dye contaminated soils and investigated for biodegradation of the carcinogenic benzidine-based dye Trypan Blue using wheat bran (WB) as growth medium. The PCR-DGGE analysis of enriched microbial consortium revealed the presence of 15 different bacteria. Decolorization studies suggested that the microbial consortium has high metabolic activity towards Trypan Blue as complete removal of 50 mg∙L−1 dye was observed within 24 h at 30 ± 0.2 °C and pH 7. Significant reduction in TOC (64%) and COD (88%) of dye decolorized broths confirmed mineralization. Induction in azoreductase (500%), NADH-DCIP reductase (264%) and laccase (275%) proved enzymatic decolorization of dye. HPLC analysis of dye decolorized products showed the formation of six metabolites while the FTIR spectrum indicated removal of diazo bonds at 1612.30 and 1581.34 cm−1. The proposed dye degradation pathway based on GC-MS and enzyme analysis suggested the formation of two low molecular weight intermediates. Phytotoxicity and acute toxicity studies revealed the less toxic nature of the dye degradation products. These results provide experimental evidence for the utilization of agricultural waste as a novel low-cost growth medium for biodegradation of benzidine-based dyes, and suggested the potential of the microbial consortium in detoxification. PMID:25815522
[Anaphylactic shock due to patent blue: four case report and review of literature].
Lucas, N; Interne, S Benay; Laine, P; Nicolie, B; Fondrinier, E
2010-04-01
Description of four cases of anaphylactic shock with blue dye injection (bleu patenté V Guerbet 2.5%) during sentinel node biopsy for breast cancer. Women with breast carcinoma and combined approach with radioactive tracer and blue patent injection. Four cases were observed, which means an incidence of 0.57%. We report one case of grade II anaphylactic reaction and three cases of grade III requiring active reanimation and adrenaline perfusion. One patient developed a pulmonary embolism during the postoperative period, but no death was observed. We find an incidence of 1.06% of allergy but only 0.25% of anaphylactic shock (grade III). These rare but serious cases must weigh up the benefits and risks of using blue dye. We suggest using blue dye injection only in case of radioisotope detection failure. Of course, this approach must be evaluated. (c) 2009 Elsevier Masson SAS. All rights reserved.
ERIC Educational Resources Information Center
Stanistreet, Paul
2008-01-01
The art works in Liverpool's Metropolitan Cathedral are meant to inspire. Its unique circular interior creates a remarkable space for art; plain and grey, with its cool, bleached walls dappled with occasionally brilliant light, yellow, pink, orange and blue. Sister Anthony Wilson is the cathedral's artistic director. When she arrived in 1981, with…
Bharathan, Rasiah; Madhuri, Kavitha; Fish, Andrew; Larsen-Disney, Peter; Chatterjee, Jayanthan; Butler-Manuel, Simon; Tailor, Anil; Kehoe, Sean
2018-02-09
Inguinal lymphadenectomy has significant morbidity. Blue dye-guided lymph channel ligation is an effective technique for resolving lymphocele. This was a feasibility study in a preventative setting. Patients with vulval cancer requiring bilateral inguinal lymphadenectomy were recruited. After lymphadenectomy, patent blue V dye was injected and the severed lymph channels leaking blue dye, on the randomly-designated side were ligated. The median age was 72.5 years and the median body mass index was 25. The median lymph node harvest was 18.5. There were no significant surgical procedural differences between the right and the left sides. There was no significant difference between the two arms in terms of the duration or the volume of drainage and post-operative complications. All patients were alive at the follow-up period of 40.5 months. In this feasibility study, blue dye-guided lymph channel ligation did not significantly impact on post-operative outcomes. Impact statement What is already known on this subject? Lymph channel ligation with blue dye-guidance is an effective strategy for managing recalcitrant inguinal lymphocyst. This strategy was prospectively-studied in a small series of patients with non-gynaecological cancers. This particular study by Nakamura et al. ( 2011 ) revealed that such a strategy might be efficacious in reducing wound drain output. What do the results of this study add? Our study is the first study to assess this technique exclusively in vulval cancer. Blue dye-guided lymph channel ligation at the time of inguinal lymphadenectomy does not appear to reduce wound drainage. However, this study suggests that primary lymphocyst predominantly results from inflammatory exudates, whereas persistent secondary lymphocysts are likely to result from lymphorrhoea. What are the implications of these findings for clinical practice and/or further research? Future studies, which aim to reduce the morbidity of open inguinal lymphadenectomy, should employ a composite strategy to reduce inflammatory secretions. In addition, a biochemical and cytological analysis on lymphocysts at various time points should be performed to characterise the natural history of groin lymphocysts.
ERIC Educational Resources Information Center
Anderson, Laurens; Wittkopp, Stacy M.; Painter, Christopher J.; Liegel, Jessica J.; Schreiner, Rodney; Bell, Jerry A.; Shakhashiri, Bassam Z.
2012-01-01
An investigation of the Blue Bottle Experiment, a well-known lecture demonstration reaction involving the dye-catalyzed air oxidation of a reducing sugar in alkaline solution, has delineated the sequence of reactions leading to the bleaching of the dye, the regeneration of color, and so forth. Enolization of the sugar is proposed as a key step in…
Plasma proteomics for biomarker discovery: a study in blue.
Di Girolamo, Francesco; Righetti, Pier Giorgio
2011-12-01
The performance of Cibacron Blue dye (HiTrapBlue or Affigel Blue) in depleting albumin from plasma, as a pre-treatment for biomarker searching in the low-abundance proteome, is here assessed. It is shown that (i) co-depletion of non-albumin species is an ever-present hazard; (ii) the only proper eluant able to release quantitatively the proteins bound to the dye is boiling 4% SDS-25 mM DTT, an ion shock (2 M NaCl) being quite ineffective in releasing the low-abundance species tightly bound to the dye moiety; (iii) the mechanism of dye-protein interaction, after an initial ion-ion docking, is a robust hydrophobic interaction, which progressively augments at lower and lower pH values; (iv) at pH 2.2 in the presence of 0.1% TFA, the blue resin behaves, for all practical purposes, just as a reverse-phase chromatography column, since all residual proteins present in plasma are completely harvested. However Cibacron Blue technology should not necessarily be discarded: As long as also the plasma fraction adsorbed is properly released and analyzed, together with the flow through, one should be able to perform a viable analysis of the low-abundance proteome. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chen, Xiaoqiang; Song, Wei; Zhao, Jin; Zhang, Zhifa; Zhang, Yuntian
2017-05-31
Polysaccharide conjugates were alkali-extracted from green tea (TPC-A). Although it contained 11.80% covalently binding proteins, TPC-A could not bind to the Coomassie Brilliant Blue dyes G250 and R250. TPC-A had no expected characteristic absorption peak of protein in the UV-vis spectrum scanning in the range of 200-700 nm. The UV-vis wavelength of 280 nm was not suitable to detect the presence of the protein portion of TPC-A. The zeta potential of TPC-A merely presented the negative charge properties of polysaccharides instead of the acid-base property of its protein section across the entire pH range. Furthermore, TPC-A was more stable when the pH of solution exceeded 4.0. In addition, no precipitation or haze was generated in the TPC-A/(-)-epigallocatechin gallate (EGCG) mixtures during 12 h storage. TPC-A has emulsifying activity, which indicated that its protein moiety formed hydrophobic groups. Thus, it was proposed that some physical properties of TPC-A protein were shielded by its olysaccharide, since the protein moiety was wrapped by its polysaccharide chains.
Dapson, R; Horobin, R W; Kiernan, J
2010-02-01
The origins of repeated hematoxylin shortages are outlined. Lack of integration in the hematoxylin trade exacerbates the problems inherent in using a natural product. Separate corporations are engaged in tree growth and harvesting, dye extraction, processing of extracts to yield hematoxylin, and formulation and sale of hematoxylin staining solutions to the end users in biomedical laboratories. Hematoxylin has many uses in biological staining and no single dye can replace it for all applications. Probably, the most satisfactory substitutes for aluminum-hematoxylin (hemalum) are the ferric complexes of celestine blue (CI 51050; mordant blue 14) and eriochrome cyanine R (CI 43820; mordant blue 3, also known as chromoxane cyanine R and solochrome cyanine R). The iron-celestine blue complex is a cationic dye that binds to nucleic acids and other polyanions, such as those of cartilage matrix and mast cell granules. Complexes of iron with eriochrome cyanine R are anionic and give selective nuclear staining similar to that obtained with acidic hemalum solutions. Iron complexes of gallein (CI 45445; mordant violet 25), a hydroxyxanthene dye, can replace iron-hematoxylin in formulations for staining nuclei, myelin, and protozoa.
Ghaedi, M; Ansari, A; Bahari, F; Ghaedi, A M; Vafaei, A
2015-02-25
In the present study, zinc sulfide nanoparticle loaded on activated carbon (ZnS-NP-AC) simply was synthesized in the presence of ultrasound and characterized using different techniques such as SEM and BET analysis. Then, this material was used for brilliant green (BG) removal. To dependency of BG removal percentage toward various parameters including pH, adsorbent dosage, initial dye concentration and contact time were examined and optimized. The mechanism and rate of adsorption was ascertained by analyzing experimental data at various time to conventional kinetic models such as pseudo-first-order and second order, Elovich and intra-particle diffusion models. Comparison according to general criterion such as relative error in adsorption capacity and correlation coefficient confirm the usability of pseudo-second-order kinetic model for explanation of data. The Langmuir models is efficiently can explained the behavior of adsorption system to give full information about interaction of BG with ZnS-NP-AC. A multiple linear regression (MLR) and a hybrid of artificial neural network and partial swarm optimization (ANN-PSO) model were used for prediction of brilliant green adsorption onto ZnS-NP-AC. Comparison of the results obtained using offered models confirm higher ability of ANN model compare to the MLR model for prediction of BG adsorption onto ZnS-NP-AC. Using the optimal ANN-PSO model the coefficient of determination (R(2)) were 0.9610 and 0.9506; mean squared error (MSE) values were 0.0020 and 0.0022 for the training and testing data set, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ghaedi, M.; Ansari, A.; Bahari, F.; Ghaedi, A. M.; Vafaei, A.
2015-02-01
In the present study, zinc sulfide nanoparticle loaded on activated carbon (ZnS-NP-AC) simply was synthesized in the presence of ultrasound and characterized using different techniques such as SEM and BET analysis. Then, this material was used for brilliant green (BG) removal. To dependency of BG removal percentage toward various parameters including pH, adsorbent dosage, initial dye concentration and contact time were examined and optimized. The mechanism and rate of adsorption was ascertained by analyzing experimental data at various time to conventional kinetic models such as pseudo-first-order and second order, Elovich and intra-particle diffusion models. Comparison according to general criterion such as relative error in adsorption capacity and correlation coefficient confirm the usability of pseudo-second-order kinetic model for explanation of data. The Langmuir models is efficiently can explained the behavior of adsorption system to give full information about interaction of BG with ZnS-NP-AC. A multiple linear regression (MLR) and a hybrid of artificial neural network and partial swarm optimization (ANN-PSO) model were used for prediction of brilliant green adsorption onto ZnS-NP-AC. Comparison of the results obtained using offered models confirm higher ability of ANN model compare to the MLR model for prediction of BG adsorption onto ZnS-NP-AC. Using the optimal ANN-PSO model the coefficient of determination (R2) were 0.9610 and 0.9506; mean squared error (MSE) values were 0.0020 and 0.0022 for the training and testing data set, respectively.
Wittig, Ilka; Karas, Michael; Schägger, Hermann
2007-07-01
Clear native electrophoresis and blue native electrophoresis are microscale techniques for the isolation of membrane protein complexes. The Coomassie Blue G-250 dye, used in blue native electrophoresis, interferes with in-gel fluorescence detection and in-gel catalytic activity assays. This problem can be overcome by omitting the dye in clear native electrophoresis. However, clear native electrophoresis suffers from enhanced protein aggregation and broadening of protein bands during electrophoresis and therefore has been used rarely. To preserve the advantages of both electrophoresis techniques we substituted Coomassie dye in the cathode buffer of blue native electrophoresis by non-colored mixtures of anionic and neutral detergents. Like Coomassie dye, these mixed micelles imposed a charge shift on the membrane proteins to enhance their anodic migration and improved membrane protein solubility during electrophoresis. This improved clear native electrophoresis offers a high resolution of membrane protein complexes comparable to that of blue native electrophoresis. We demonstrate the superiority of high resolution clear native electrophoresis for in-gel catalytic activity assays of mitochondrial complexes I-V. We present the first in-gel histochemical staining protocol for respiratory complex III. Moreover we demonstrate the special advantages of high resolution clear native electrophoresis for in-gel detection of fluorescent labeled proteins labeled by reactive fluorescent dyes and tagged by fluorescent proteins. The advantages of high resolution clear native electrophoresis make this technique superior for functional proteomics analyses.
Bektaş, İdris; Karaman, Şengül; Dıraz, Emel; Çelik, Mustafa
2016-12-01
Indigo blue is a natural dye used for thousands of years by civilizations to dye fabric blue and it is naturally obtained from Isatis tinctoria. I. tinctoria is not only used for extraction of indigo blue color but also used medicinally in Traditional Chinese Medicine because of its active compounds. Sodium dithionite (Na 2 S 2 O 4 ) is used in dye bath for indigo blue extraction, but this reducing agent and its derivatives are major pollutants of textile industry and subsequently have hazardous influences on public health. Herein, the present study was designed to obtain the high yield of natural indigo dye but with low possible toxic effect. In this context, genotoxic effects of particular combinations of natural dye solutions obtained from Isatis tinctoria subsp. tomentolla with Na 2 S 2 O 4 as reducing agent were investigated. Dye solutions were obtained using two different pH levels (pH 9 and 11) and three different concentrations of Na 2 S 2 O 4 (2.5, 5 and 10 mg/ml). In addition to the dye solutions and reducing agent, aqueous extracts of I. tinctoria were assessed for their genotoxicity on human lymphocytes. For in vitro testing of genotoxicity, chromosomal aberrations (CAs), sister chromatid exchanges (SCEs) and mitotic indexes (MI) assays were used. Accordingly, Na 2 S 2 O 4 caused significant increases in CA and SCE as well decrease in MI but the genotoxic effects of sodium dithionite were reduced with natural indigo dye. As a result, aqueous extracts of Isatis leaves removed the toxic effects of sodium dithionite and showed anti-genotoxic effect. For the optimal and desired quality but with less toxic effects of natural dye, 2.5 mg/ml (for wool yarn) and 5 mg/ml (for cotton yarn) of Na 2 S 2 O 4 doses were found to be the best doses for reduction in the dye bath at Ph 9.
Photo-catalytic decolourisation of toxic dye with N-doped titania: a case study with Acid Blue 25.
Chakrabortty, Dhruba; Gupta, Susmita Sen
2013-05-01
Dyes are one of the hazardous water pollutants. Toxic Acid Blue 25, an anthraquinonic dye, has been decolourised by photo-catalysing it with nitrogen doped titania in aqueous medium. The photo catalyst was prepared from 15% TiCl3 and 25% aqueous NH3 solution as precursor. XRD and TEM revealed the formation of well crystalline anatase phase having particle size in the nano-range. BET surface area of the sample was higher than that of pure anatase TiO2. DRS showed higher absorption of radiation in visible range compared to pure anatase TiO2. XPS revealed the presence of nitrogen in N-Ti-O environment. The experimental parameters, namely, photocatalyst dose, initial dye concentration as well as solution pH influence the decolourisation process. At pH 3.0, the N-TiO2 could decolourise almost 100% Acid Blue 25 within one hour. The influence of N-TiO2 dose, initial concentration of Acid Blue 25 and solution pH on adsorption-desorption equilibrium is also studied. The adsorption process follows Lagergren first order kinetics while the modified Langmuir-Hinselwood model is suitably fitted for photocatalytic decolourisation of Acid Blue 25.
Chaari, Islem; Feki, Mongi; Medhioub, Mounir; Bouzid, Jalel; Fakhfakh, Emna; Jamoussi, Fakher
2009-12-30
The adsorption of a textile dye, namely, Indanthrene Blue RS (C.I. Vat Blue 4) onto smectite-rich clayey rock (AYD) and its sulphuric acid-activated products (AYDS) in aqueous solution was studied in a batch system with respect to contact time, pH, and temperature. The adsorbents employed were characterized by X-ray diffraction, infrared spectroscopy and specific surface area, cation exchange capacity and point of zero charge were also estimated. The effect of contact time on dye adsorption showed that the equilibrium was reached after a contact time of 40 min for the both adsorbents. The optimum pH for dye retention was found 6.0 for AYDS and 7.3 for AYD. The equilibrium adsorption data were analysed using the Langmuir and Freundlich isotherms. The adsorption capacities (Q(m)) for AYD and AYDS were found 13.92 mg/g and 17.85 mg/g, respectively. The effect of temperature on the adsorption was also investigated; adsorption of Indanthrene Blue RS is an endothermic process. This study demonstrates that all the considered adsorbents can be used as an alternative emerging technology for water treatment.
Textile dyes can enter the water ecosystem through wastewater discharges potentially exposing humans through the consumption of water and food. The commercial disperse dye product C.I. Disperse Blue 291 containing the aminoazobenzene 2-[(2-bromo-4,6-dinitrophenyl)azo]-5(diethylam...
Phenothiaziniums as putative photobactericidal agents for red blood cell concentrates.
Wainwright, M; Phoenix, D A; Smillie, T E; Wareing, D R
2001-10-01
The antibacterial activities of Methylene Blue and several of its congeners were measured against Yersinia enterocolitica, a gram-negative pathogen known to exhibit significant growth at 4 degrees C and thus constituting a threat to red blood cell concentrates which are stored at this temperature. None of the derivatives was highly active in dark conditions, as expected, but on illumination using a lamp emitting light in the waveband 615-645 nm, considerable bactericidal activity was noted using similar photosensitizer concentrations to those used elsewhere to inactivate blood-borne viruses. Two novel compounds in this area, the phenothiazinium New Methylene Blue N and the phenoxazinium Brilliant Cresyl Blue, exhibited bactericidal activity at lower concentrations than both of the established phenothiaziniums, Methylene Blue and Toluidine Blue O and the recently published blood photovirucidal agent 1,9-Dimethyl Methylene Blue. The photoactivity of these compounds was undiminished in the presence of red blood cells.
Zhang, Xinying; Wu, Yan; Xiao, Gao; Tang, Zhenping; Wang, Meiyin; Liu, Fuchang; Zhu, Xuefeng
2017-01-01
Azo dyes are very resistant to light-induced fading and biodegradation. Existing advanced oxidative pre-treatment methods based on the generation of non-selective radicals cannot efficiently remove these dyes from wastewater streams, and post-treatment oxidative dye removal is problematic because it may leave many byproducts with unknown toxicity profiles in the outgoing water, or cause expensive complete mineralization. These problems could potentially be overcome by combining photocatalysis and biodegradation. A novel visible-light-responsive hybrid dye removal agent featuring both photocatalysts (g-C3N4-P25) and photosynthetic bacteria encapsulated in calcium alginate beads was prepared by self-assembly. This system achieved a removal efficiency of 94% for the dye reactive brilliant red X-3b and also reduced the COD of synthetic wastewater samples by 84.7%, successfully decolorized synthetic dye-contaminated wastewater and reduced its COD, demonstrating the advantages of combining photocatalysis and biocatalysis for wastewater purification. The composite apparently degrades X-3b by initially converting the dye into aniline and phenol derivatives whose aryl moieties are then attacked by free radicals to form alkyl derivatives, preventing the accumulation of aromatic hydrocarbons that might suppress microbial activity. These alkyl intermediates are finally degraded by the photosynthetic bacteria. PMID:28273118
Calcerrada, Matías; González-Herráez, Miguel; Garcia-Ruiz, Carmen
2015-06-26
This manuscript describes the development of a capillary electrophoresis (CE) method for the detection of acid and basic dyes and its application to real samples, blue-pen-ink strokes on office paper. First, a capillary zone electrophoresis (CZE) method was developed for the separation of basic and acid dyes, by studying the separation medium (buffer nature, pH and relative amount of additive) and instrumental parameters (temperature, voltage and capillary dimensions). The method performance was evaluated in terms of selectivity, resolution (above 5 and 2 for acid dyes and basic dyes, respectively, except for two basic dye standards), LOD (lower than 0.4 mg/L) and precision as intraday and interday RSD values of peak migration times (lower than 0.6%). The developed method was then applied to 34 blue pens from different technologies (rollerball, ballpoint, markers) and with different ink composition (gel, water-based, oil-based). A microdestructive sample treatment using a scalpel to scratch 0.3mg of ink stroke was performed. The entire electropherogram profile allowed the visual discrimination between different types of ink and brands, being not necessary a statistical treatment. A 100% of discrimination was achieved between pen technologies, brands, and models, although non-reproducible zones in the electropherograms were found for blue gel pen samples. The two different batches of blue oil-based pens were also differentiated. Thus, this method provides a simple, microdestructive, and rapid analysis of different blue pen technologies which may complement the current analysis of questioned documents performed by forensic laboratories. Copyright © 2015 Elsevier B.V. All rights reserved.
García, María C; Mora, Manuel; Esquivel, Dolores; Foster, John E; Rodero, Antonio; Jiménez-Sanchidrián, César; Romero-Salguero, Francisco J
2017-08-01
The degradation of methylene blue in aqueous solution as a model dye using a non thermal microwave (2.45 GHz) plasma jet at atmospheric pressure has been investigated. Argon has been used as feed gas and aqueous solutions with different concentrations of the dye were treated using the effluent from plasma jet in a remote exposure. The removal efficiency increased as the dye concentration decreased from 250 to 5 ppm. Methylene blue degrades after different treatment times, depending on the experimental plasma conditions. Thus, kinetic constants up to 0.177 min -1 were obtained. The higher the Ar flow, the faster the degradation rate. Optical emission spectroscopy (OES) was used to gather information about the species present in the gas phase, specifically excited argon atoms. Argon excited species and hydrogen peroxide play an important role in the degradation of the dye. In fact, the conversion of methylene blue was directly related to the density of argon excited species in the gas phase and the concentration of hydrogen peroxide in the aqueous liquid phase. Values of energy yield at 50% dye conversion of 0.296 g/kWh were achieved. Also, the use of two plasma applicators in parallel has been proven to improve energy efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.
2016-01-01
Malachite green (MG) is a fluorogenic dye that shows fluorescence enhancement upon binding to its engineered cognate protein, a fluorogen activating protein (FAP). Energy transfer donors such as cyanine and rhodamine dyes have been conjugated with MG to modify the spectral properties of the fluorescent complexes, where the donor dyes transfer energy through Förster resonance energy transfer to the MG complex resulting in binding-conditional fluorescence emission in the far-red region. In this article, we use a violet-excitable dye as a donor to sensitize the far-red emission of the MG-FAP complex. Two blue emitting fluorescent coumarin dyes were coupled to MG and evaluated for energy transfer to the MG-FAP complex via its secondary excitation band. 6,8-Difluoro-7-hydroxycoumarin-3-carboxylic acid (Pacific blue, PB) showed the most efficient energy transfer and maximum brightness in the far-red region upon violet (405 nm) excitation. These blue-red (BluR) tandem dyes are spectrally varied from other tandem dyes and are able to produce fluorescence images of the MG-FAP complex with a large Stokes shift (>250 nm). These dyes are cell-permeable and are used to label intracellular proteins. Used together with a cell-impermeable hexa-Cy3-MG (HCM) dye that labels extracellular proteins, we are able to visualize extracellular, intracellular, and total pools of cellular protein using one fluorogenic tag that combines with distinct dyes to effect different spectral characteristics. PMID:27159569
NASA Astrophysics Data System (ADS)
Chieli, A.; Sanyova, J.; Doherty, B.; Brunetti, B. G.; Miliani, C.
2016-06-01
In this work a combined chromatographic and spectroscopic approach is used to provide a diagnostic assessment of semi-synthetic ammoniacal cochineal through the syntheses of its dyes and lakes according to art historical recipes. Commercially introduced in the late XIX century as a dye and pigment, it was used to obtain a brilliant purplish/violet nuance which provided a more stable option over carminic acid although its evidenced use in manufacts and artworks of heritage importance have been scarcely documented. Through HPLC-DAD, it has been possible to identify 4-aminocarminic acid as the main component of ammoniacal cochineal highlighting a chemical formula analogous to acid stable carmine, a recent patented food dye. FTIR clearly distinguishes the amine group in the ammoniacal cochineal dye preparation and TLC-SERS allows for an adequate separation and spectral differentiation in its main components to be evidenced. Colloidal SERS has permitted spectral markers useful in discerning ammoniacal cochineal over carminic acid to be highlighted and discussed. Finally, the methods experimented in this study for the identification of ammoniacal cochineal have been validated on analyzing a sample of dyed wool.
Azari-Dolatabad, Nima; Rahmani, H R; Hajian, M; Ostadhosseini, S; Hosseini, S M; Nasr-Esfahani, M H
2016-05-01
The relevance of low developmental competence of in vitro-matured oocyte to the incomplete/delayed cytoplasmic maturation, and the heterogeneity of retrieved oocytes is well established in several species. A short phase of prematuration culture was used to allow better oocyte cytoplasmic maturation. The preselection of growing and fully grown oocytes has been proposed to improve developmental competency. This study investigated the effects of phosphodiesterase type 3-specific inhibitor, cilostamide, and adenylate cyclase activator, forskolin, on the resumption of meiosis and developmental competence of growing ovine oocytes selected by brilliant cresyl blue (BCB) staining. Results indicate that cilostamide, forskolin, and their combination significantly (P < 0.05) increased the percentage of growing (BCB-) oocytes maintained at the germinal vesicle stage. However, only forskolin significantly (P < 0.05) increased the yield and quality of blastocysts derived from BCB- oocytes compared with non-BCB-treated oocytes. We conclude that a short prematuration culture with forskolin may improve the in vitro developmental competency of growing oocytes in ovine. Copyright © 2016 Elsevier Inc. All rights reserved.
Involvement of neutrophils and interleukin-18 in nociception in a mouse model of muscle pain.
Yoshida, Shinichirou; Hagiwara, Yoshihiro; Tsuchiya, Masahiro; Shinoda, Masamichi; Koide, Masashi; Hatakeyama, Hiroyasu; Chaweewannakorn, Chayanit; Yano, Toshihisa; Sogi, Yasuhito; Itaya, Nobuyuki; Sekiguchi, Takuya; Yabe, Yutaka; Sasaki, Keiichi; Kanzaki, Makoto; Itoi, Eiji
2018-01-01
Muscle pain is a common condition that relates to various pathologies. Muscle overuse induces muscle pain, and neutrophils are key players in pain production. Neutrophils also play a central role in chronic pain by secreting interleukin (IL)-18. The aim of this study was to investigate the involvement of neutrophils and IL-18 in a mouse model of muscle pain. The right hind leg muscles of BALB/c mice were stimulated electrically to induce excessive muscle contraction. The left hind leg muscles were not stimulated. The pressure pain threshold, number of neutrophils, and IL-18 levels were investigated. Furthermore, the effects of the IL-18-binding protein and Brilliant Blue G on pain were investigated. In stimulated muscles, pressure pain thresholds decreased, and neutrophil and IL-18 levels increased compared with that in non-stimulated muscles. The administration of IL-18-binding protein and Brilliant Blue G attenuated hyperalgesia caused by excessive muscle contraction. These results suggest that increased IL-18 secretion from larger numbers of neutrophils elicits mechanical hyperalgesia.
A new field method to characterise the runoff generation potential of burned hillslopes
NASA Astrophysics Data System (ADS)
Sheridan, Gary; Lane, Patrick; Langhans, Christoph
2016-04-01
The prediction of post fire runoff generation is critical for the estimation of post fire erosion processes and rates. Typical field measures for determining infiltration model parameters include ring infiltrometers, tension infiltrometers, rainfall simulators and natural runoff plots. However predicting the runoff generating potential of post-fire hillslopes is difficult due to the high spatial variability of soil properties relative to the size of the measurement method, the poorly understood relationship between water repellence and runoff generation, known scaling issues with all the above hydraulic measurements, and logistical limitations for measurements in remote environments. In this study we tested a new field method for characterizing surface runoff generation potential that overcomes these limitations and is quick, simple and cheap to apply in the field. The new field method involves the manual application of a 40mm depth of Brilliant Blue FCF food dye along a 10cm wide and 5m long transect along the contour under slightly-ponded conditions. After 24 hours the transect is excavated to a depth of 10cm and the percentage dyed area within the soil profile recorded manually. The dyed area is an index of infiltration potential of the soil during intense rainfall events, and captures both spatial variability and water repellence effects. The dye measurements were made adjacent to long term instrumented post fire rainfall-runoff plots on 7 contrasting soil types over a 6 month period, and the results show surprisingly strong correlations (r2 = 0.9) between the runoff-ratio from the plots and the dyed area. The results are used to develop an initial conceptual model that links the dye index with an infiltration model and parameters suited to burnt hillslopes. The capacity of this method to provide a simple, and reliable indicator of post fire runoff potential from different fire severities, soil types and treatments is explored in this presentation.
Validating the LASSO algorithm by unmixing spectral signatures in multicolor phantoms
NASA Astrophysics Data System (ADS)
Samarov, Daniel V.; Clarke, Matthew; Lee, Ji Yoon; Allen, David; Litorja, Maritoni; Hwang, Jeeseong
2012-03-01
As hyperspectral imaging (HSI) sees increased implementation into the biological and medical elds it becomes increasingly important that the algorithms being used to analyze the corresponding output be validated. While certainly important under any circumstance, as this technology begins to see a transition from benchtop to bedside ensuring that the measurements being given to medical professionals are accurate and reproducible is critical. In order to address these issues work has been done in generating a collection of datasets which could act as a test bed for algorithms validation. Using a microarray spot printer a collection of three food color dyes, acid red 1 (AR), brilliant blue R (BBR) and erioglaucine (EG) are mixed together at dierent concentrations in varying proportions at dierent locations on a microarray chip. With the concentration and mixture proportions known at each location, using HSI an algorithm should in principle, based on estimates of abundances, be able to determine the concentrations and proportions of each dye at each location on the chip. These types of data are particularly important in the context of medical measurements as the resulting estimated abundances will be used to make critical decisions which can have a serious impact on an individual's health. In this paper we present a novel algorithm for processing and analyzing HSI data based on the LASSO algorithm (similar to "basis pursuit"). The LASSO is a statistical method for simultaneously performing model estimation and variable selection. In the context of estimating abundances in an HSI scene these so called "sparse" representations provided by the LASSO are appropriate as not every pixel will be expected to contain every endmember. The algorithm we present takes the general framework of the LASSO algorithm a step further and incorporates the rich spatial information which is available in HSI to further improve the estimates of abundance. We show our algorithm's improvement over the standard LASSO using the dye mixture data as the test bed.
Intense Excitation Source of Blue-Green Laser.
1985-10-15
plasma focus (DPF) can produce intense uv photons (200-300nm) which match the absorption spectra of both near uv and blue green dye lasers (300-400nm...existing blue green dye laser. On the other hand the dense- plasma focus (DPF) with new optical coupling has been designed and constructed. For the...optimization of the DPF device as the uv pumping light source, the velocity of current sheath and the formation of plasma focus have been measured as
Holkar, Chandrakant R; Pandit, Aniruddha B; Pinjari, Dipak V
2014-12-01
In the present study, an attempt was made to evaluate the bacterial decolorisation of Reactive Blue 19 by an Enterobacter sp.F which was isolated from a mixed culture from anaerobic digester for biogas production. Phenotypic characterization and phylogenetic analysis based on DNA sequencing comparisons indicate that Enterobacter sp.F was 99.7% similar to Enterobacter cloacae ATCC13047. The kinetics of Reactive Blue 19 dye decolorisation by bacterium had been estimated. Effects of substrate concentration, oxygen, temperature, pH, glucose and glucose to microbe weight ratio on the rate of decolorisation were investigated to understand key factor that determines the performance of dye decolorisation. The maximum decolorisation efficiency of Reactive Blue 19 was 90% over period of 24 h for optimized parameter. To the best of our knowledge, this research study is the report where Enterobacter sp.F has been reported with about 90% decolorizing ability against anthraquinone based Reactive Blue 19 dye. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bitter, N C
1990-07-01
The effect on the permeability of prepared dentin treated with 25% tannic acid and 6% citric acid was compared with the untreated dentinal surface. Methylene blue was applied to the dentin surface after treatment to evaluate penetration into dentinal tubules. The tannic acid solution reduced or prevented dye penetration of the dentinal tubules. Citric acid treatment permitted severe penetration. The 25% tannic acid solution removed the smear layer while inhibiting penetration of the dye.
Marconi, G; Quintana, R
1998-12-01
The Fallopian tube can be damaged by different noxious substances that may change cellular ultrastructure and function. Alteration of the cell membrane allows the passage of certain aniline dyes, which can stain the nucleus. A total of 310 Fallopian tubes from 163 patients who underwent a surgical or diagnostic laparoscopy during fertility studies was analysed by salpingoscopy. Cellular nuclei were stained by injection of 20 ml of a 10% solution of methylene blue in saline solution (NaCl 10%) through the cervical cannula prior to salpingoscopy. Evaluation of nuclear staining with methylene blue, adhesions, vascular alterations, and the flattening of folds in relation to pregnancy outcome was undertaken. Quantification of salpingoscopic findings was carried out according to a score. Flattening of folds and vascular alterations showed no difference in the pregnant and non-pregnant groups. On the other hand, adhesions and nuclear dyeing were significantly greater in the non-pregnant group (adhesions 13.6 versus 26.8%, P < 0.004, and nuclear dyeing: 25 versus 41.7%, P < 0.009, pregnant versus non-pregnant). Methylene blue dye is a new tool to evaluate in vivo cyto-histological tubal damage, and is a useful and simple method to provide a prognosis of salpingean function.
Solid waste from leather industry as adsorbent of organic dyes in aqueous-medium.
Oliveira, Luiz C A; Gonçalves, Maraísa; Oliveira, Diana Q L; Guerreiro, Mário C; Guilherme, Luiz R G; Dallago, Rogério M
2007-03-06
The industrial tanning of leather usually produces considerable amounts of chromium-containing solid waste and liquid effluents and raises many concerns on its environmental effect as well as on escalating landfill costs. Actually, these shortcomings are becoming increasingly a limiting factor to this industrial activity that claims for alternative methods of residue disposals. In this work, it is proposed a novel alternative destination of the solid waste, based on the removal of organic contaminants from the out coming aqueous-residue. The adsorption isotherm pattern for the wet blue leather from the Aurea tanning industry in Erechim-RS (Brazil) showed that these materials present high activity on adsorbing the reactive red textile dye as well as other compounds. The adsorbent materials were characterized by IR spectroscopy and SEM and tested for the dye adsorption (reactive textile and methylene blue dyes). The concentrations of dyes were measured by UV-vis spectrophotometry and the chromium extraction from leather waste was realized by basic hydrolysis and determined by atomic absorption. As a low cost abundant adsorbent material with high adsorption ability on removing dye methylene blue (80mgg(-1)) and textile dye reactive red (163mgg(-1)), the leather waste is revealed to be a interesting alternative relatively to more costly adsorbent materials.
Hypersensitivity to contrast media and dyes.
Brockow, Knut; Sánchez-Borges, Mario
2014-08-01
This article updates current knowledge on hypersensitivity reactions to diagnostic contrast media and dyes. After application of a single iodinated radiocontrast medium (RCM), gadolinium-based contrast medium, fluorescein, or a blue dye, a hypersensitivity reaction is not a common finding; however, because of the high and still increasing frequency of those procedures, patients who have experienced severe reactions are nevertheless frequently encountered in allergy departments. Evidence on allergologic testing and management is best for iodinated RCM, limited for blue dyes, and insufficient for fluorescein. Skin tests can be helpful in the diagnosis of patients with hypersensitivity reactions to these compounds. Copyright © 2014 Elsevier Inc. All rights reserved.
Kalpana, Duraisamy; Shim, Jae Hong; Oh, Byung-Taek; Senthil, Kalaiselvi; Lee, Yang Soo
2011-12-30
The present study was conducted to evaluate the decolorization and degradation of the chromium metal complex dye Isolan Dark Blue 2SGL-01 by Irpex lacteus, a white rot lignolytic fungus. I. lacteus effectively decolorized the sulphonated reactive dye at a high concentration of 250 mg/l over a wide range of pH values of 5-9 and temperatures between 20 and 35°C. Complete (100%) decolorization occurred within 96h, and I. lacteus demonstrated resistance to the metallic dye. UV-vis spectroscopy, HPLC, GC-MS, and FT-IR analyses of the extracted metabolites confirmed that the decolorization process occurred due to degradation of the dye and not merely by adsorption. GC-MS analysis indicated the formation of 1(2H)-naphthalenone, 3,4-dihydro- and 2-naphthalenol as the main metabolite. ICP analysis demonstrated the removal of 13.49% chromium, and phytotoxicity studies using germinated seeds of Vigna radiata and Brassica juncea demonstrated the nontoxic nature of the metabolites formed during the degradation of Isolan Dark Blue 2SGL-01 dye. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Nurhidayani; Muzakkar, M. Z.; Maulidiyah; Wibowo, D.; Nurdin, M.
2017-11-01
A study of TiO2/Ti nanotubes arrays (NTAs) based on Dye-Sensitized Solar Cell (DSSC) used Asphalt Buton (Asbuton) extract and methylene blue (MB) as a photosensitizer dye has been conducted. The aim of this research is that the Asbuton extract and Methylene Blue (MB) performance as a dye on DSSC solar cells is able to obtain the voltage-currents produced by visible light irradiation. Electrode TiO2/Ti NTAs have been successfully synthesized by anodizing methods, then characterized by using XRD showed that the anatase crystals formed. Subsequently, the morphology showed that the nanotubes formed which has coated by Asbuton extract. The DSSC system was formed by a sandwich structure and tested by using Multimeter Digital with Potentiostat instrument. The characteristics of current (I) and potential (V) versus time indicated that the Asbuton was obtained in a high-performance in 30s of 14,000µV 0.844µA, meanwhile MB dyes were 8,000µV0.573µA. Based on this research, the Asbuton extract from Buton Island-Southeast Sulawesi-Indonesia was potential for natural dyes in DSSC system.
Khanday, W A; Asif, M; Hameed, B H
2017-02-01
Cross-linked beads of activated oil palm ash zeolite/chitosan (Z-AC/C) composite were prepared through the hydrothermal treatment of NaOH activated oil palm ash followed by beading with chitosan. The effects of initial dye concentration (50-400mg/L), temperature (30°C-50°C) and pH (3-13) on batch adsorption of methylene blue (MB) and acid blue 29 (AB29) were studied. Adsorption of both dyes was better described by Pseudo-second-order kinetics and Freundlich isotherm model. The maximum adsorption capacities of Z-AC/C were 151.51, 169.49, and 199.20mg/g for MB and 212.76, 238.09, and 270.27mg/g for AB29 at 30°C, 40°C, and 50°C, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ali, Farman; Ibrahim, Muhammad; Khan, Fawad; Bibi, Iram; Shah, Syed W. H.
2018-03-01
Binding preferences of cationic dyes malachite green and methylene blue in a mixed charcoal-sodium dodecyl sulfate system have been investigated using UV-visible absorption spectroscopy. The dye adsorption shows surfactant-dependent patterns, indicating diverse modes of interactions. At low surfactant concentration, a direct binding to charcoal is preferred. Comparatively greater quantities of surfactant lead to attachment of dye-surfactant complex to charcoal through hydrophobic interactions. A simple model was employed for determination of equilibrium constant K eq and concentration of dye-surfactant ion pair N DS for both dyes. The values of binding parameters revealed that malachite green was directly adsorbed onto charcoal, whereas methylene blue was bound through surfactant monomers. The model is valid for low surfactant concentrations in the premicellar region. These findings have significance for material and environmental sciences.
Albumin binds self-assembling dyes as specific polymolecular ligands.
Stopa, Barbara; Rybarska, Janina; Drozd, Anna; Konieczny, Leszek; Król, Marcin; Lisowski, Marek; Piekarska, Barbara; Roterman, Irena; Spólnik, Paweł; Zemanek, Grzegorz
2006-12-15
Self-assembling dyes with a structure related to Congo red (e.g. Evans blue) form polymolecular complexes with albumin. The dyes, which are lacking a self-assembling property (Trypan blue, ANS) bind as single molecules. The supramolecular character of dye ligands bound to albumin was demonstrated by indicating the complexation of dye molecules outnumbering the binding sites in albumin and by measuring the hydrodynamic radius of albumin which is growing upon complexation of self-assembling dye in contrast to dyes lacking this property. The self-assembled character of Congo red was also proved using it as a carrier introducing to albumin the intercalated nonbonding foreign compounds. Supramolecular, ordered character of the dye in the complex with albumin was also revealed by finding that self-assembling dyes become chiral upon complexation. Congo red complexation makes albumin less resistant to low pH as concluded from the facilitated N-F transition, observed in studies based on the measurement of hydrodynamic radius. This particular interference with protein stability and the specific changes in digestion resulted from binding of Congo red suggest that the self-assembled dye penetrates the central crevice of albumin.
Kikuchi, Shinsuke; Kenagy, Richard D; Gao, Lu; Wight, Thomas N; Azuma, Nobuyoshi; Sobel, Michael; Clowes, Alexander W
2014-01-01
Objective Markers containing dyes such as crystal violet (CAS 548-62-9) are routinely used on the adventitia of vein bypass grafts to avoid twisting during placement. Since little is known about how these dyes affect vein graft healing and function, we determined the effect of crystal violet on cell migration and proliferation, which are responses to injury after grafting. Methods Fresh human saphenous veins were obtained as residual specimens from leg bypass surgeries. Portions of the vein that had been surgically marked with crystal violet were analyzed separately from those that had no dye marking. In the laboratory, they were split into easily dissected inner and outer layers after removal of endothelium. This f cleavage plane was within the circular muscle layer of the media. Cell migration from explants was measured daily as either 1) % migration positive explants, which exclusively measures migration, or 2) the number of cells on the plastic surrounding each explant, which measures migration plus proliferation. Cell proliferation and apoptosis (Ki67 and TUNEL staining, respectively) were determined in dye-marked and unmarked areas of cultured vein rings. The dose-dependent effects of crystal violet were measured for cell migration from explants as well as proliferation, migration, and death of cultured outer layer cells. Dye was extracted from explants with ethanol and quantified by spectrophotometry. Results There was significantly less cell migration from visibly blue, compared to unstained, outer layer explants by both methods. There was no significant difference in migration from inner layer explants adjacent to blue-stained or unstained sections of vein, because dye did not penetrate to the inner layer. Ki67 staining of vein in organ culture, which is a measure of proliferation, progressively increased up to 6 days in non-blue outer layer and was abolished in the blue outer layer. Evidence of apoptosis (TUNEL staining) was present throughout the wall and not different in blue-stained and unstained vein wall segments. Blue outer layer explants had 65.9±8.0 ng dye/explant compared to 2.1±1.3 for non-blue outer layer explants. Dye applied in vitro to either outer or inner layer explants dose-dependently inhibited migration (IC50=8.5 ng/explant). The IC50s of crystal violet for outer layer cell proliferation and migration were 0.1 and 1.2 μg/ml, while the EC50 for death was between 1 and 10 μg/ml. Conclusion Crystal violet inhibits venous cell migration and proliferation indicating that alternative methods should be considered for marking vein grafts. PMID:25935273
3D-QSPR Method of Computational Technique Applied on Red Reactive Dyes by Using CoMFA Strategy
Mahmood, Uzma; Rashid, Sitara; Ali, S. Ishrat; Parveen, Rasheeda; Zaheer-ul-Haq; Ambreen, Nida; Khan, Khalid Mohammed; Perveen, Shahnaz; Voelter, Wolfgang
2011-01-01
Cellulose fiber is a tremendous natural resource that has broad application in various productions including the textile industry. The dyes, which are commonly used for cellulose printing, are “reactive dyes” because of their high wet fastness and brilliant colors. The interaction of various dyes with the cellulose fiber depends upon the physiochemical properties that are governed by specific features of the dye molecule. The binding pattern of the reactive dye with cellulose fiber is called the ligand-receptor concept. In the current study, the three dimensional quantitative structure property relationship (3D-QSPR) technique was applied to understand the red reactive dyes interactions with the cellulose by the Comparative Molecular Field Analysis (CoMFA) method. This method was successfully utilized to predict a reliable model. The predicted model gives satisfactory statistical results and in the light of these, it was further analyzed. Additionally, the graphical outcomes (contour maps) help us to understand the modification pattern and to correlate the structural changes with respect to the absorptivity. Furthermore, the final selected model has potential to assist in understanding the charachteristics of the external test set. The study could be helpful to design new reactive dyes with better affinity and selectivity for the cellulose fiber. PMID:22272108
Pan, Tao; Ren, Suizhou; Xu, Meiying; Sun, Guoping; Guo, Jun
2013-07-01
The biological treatment of triphenylmethane dyes is an important issue. Most microbes have limited practical application because they cannot completely detoxicate these dyes. In this study, the extractive biodecolorization of triphenylmethane dyes by Aeromonas hydrophila DN322p was carried out by introducing the cloud point system. The cloud point system is composed of a mixture of nonionic surfactants (20 g/L) Brij 30 and Tergitol TMN-3 in equal proportions. After the decolorization of crystal violet, a higher wet cell weight was obtained in the cloud point system than that of the control system. Based on the results of thin-layer chromatography, the residual crystal violet and its decolorized product, leuco crystal violet, preferred to partition into the coacervate phase. Therefore, the detoxification of the dilute phase was achieved, which indicated that the dilute phase could be discharged without causing dye pollution. The extractive biodecolorization of three other triphenylmethane dyes was also examined in this system. The decolorization of malachite green and brilliant green was similar to that of crystal violet. Only ethyl violet achieved a poor decolorization rate because DN322p decolorized it via adsorption but did not convert it into its leuco form. This study provides potential application of biological treatment in triphenylmethane dye wastewater.
NASA Astrophysics Data System (ADS)
Gunturu, Bhargavi; Rao Palukuri, Nageswara; Sahadevan, Renganathan
2018-03-01
In the present study, the efficiency of a biosorbent derived from seeds of Thespesia populnea was investigated towards the removal of basic textile dye Methylene Blue from an aqueous solution. Adsorption studies were carried out in batch system. Influence of experimental parameters such as adsorbent dosage (0.1g/L-0.3g/L), PH (2-10) and initial dye concentration (50-130mg/L) on adsorption of dye onto biosorbent was investigated. Maximum uptake of dye was observed with 0.1g/L adsorbent dosage at PH 8.0. Equilibrium uptake of methylene blue dye by the adsorbent was analyzed by Langmuir and Freundlich isotherm models. The data fitted best with Freundlich model, suggesting that adsorption of the dye was by multilayer model on the surface of the adsorbent. Experimental results obtained support that the biosorbent used in the present study can be a suitable low cost alternate for the removal of basic textile dyes.
Response surface optimization of the substance colour indigo production by amylase enzyme
NASA Astrophysics Data System (ADS)
Handayani, Prima Astuti; Megawati, Kusdianto, Nugraha, Deny Aditia; Novitasari, Lilis
2017-03-01
Indigofera leaf production in Indonesia reaches 30 tons of dry matter per hectare per year. Indigo which produce exclusive blue colour already used to dyeing textile, specially "Batik". Batik cloth using natural dyes has artistic value and distinctive colours, as well as ethnic and exclusive impression that have a high value. Indigofera leaves containing blue dye that can be obtained through hydrolysis and oxidation. The hydrolysis reaction using enzyme catalyst. The research objective is to obtain optimum operating conditions of the hydrolysis reaction in the extraction of blue dye with a cellulase enzyme catalyst. Indigofera used leaves 5 month old and tools used include reactors, stirrer, aerator, autoclaves, incubators and ovens. Optimization parameters are studied an α-amylase enzyme concentration of 2.5-10 wt%, pH 5-9 and a reaction time of 4-10 days. The concentration of blue dye was analyzed by gravimetric method. Experimental data were analyzed by the method of Response Surface Methodology and central composite design, the model corresponding linear model with a mathematical equation Y = 6.22763 - 0.02584X1 - 1.25889X2 - 0.42239X3+0.00694X12+ 0.08872X22+ 0.03747X32+ 0.01372X1X2 -0.00582X1X3 - 0.00208X2X3 The optimum operating conditions in the range of studied enzym concentration of 3.1 wt%, pH 7.4 and the hydrolysis reaction time of 5.6 days with a yield dye of 1,42 %.
Decolorization of textile dyes in an air-lift bioreactor inoculated with Bjerkandera adusta OBR105.
Sodaneath, Hong; Lee, Jung-In; Yang, Seung-Ok; Jung, Hyekyeng; Ryu, Hee Wook; Cho, Kyung-Suk
2017-09-19
A new decolorizing white-rot fungus, OBR105, was isolated from Mount Odae in South Korea and identified by the morphological characterization of its fruit body and spores and partial 18s rDNA sequences. The ligninolytic enzyme activity of OBR105 was studied to characterize their decolorizing mechanism using a spectrophotometric enzyme assay. For the evaluation of the decolorization capacity of OBR105, the isolate was incubated in an erlenmeyer flask and in an airlifte bioreator with potato dextrose broth (PDB) medium supplemented with each dye. In addition, the decolorization efficiency of real textile wastewater was evaluated in an airlift bioreactor inoculated with the isolate. The isolate was identified as Bjerkandera adusta and had ligninolytic enzymes such as laccase, lignin peroxidase (LiP), and Mn-dependent peroxidase (MnP). Its LiP activity was higher than its MnP and laccase activities. B. adusta OBR105 successfully decolorized reactive dyes (red 120, blue 4, orange 16, and black 5) and acid dyes (red 114, blue 62, orange 7, and black 172). B. adusta OBR105 decolorized 91-99% of 200 mg L -1 of each dye (except acid orange 7) within 3 days in a PDB medium at 28°C, pH 5, and 150 rpm. This fungus decolorized only 45% of 200 mg L -1 acid orange 7 (single azo-type dye) within 3 days, and the decolorization efficiency did not increase by prolonging the cultivation time. In the air-lift bioreactor, B. adusta OBR105 displayed a high decolorization capacity, greater than 90%, for 3 acid dyes (red 114, blue 62, and black 172) and 1 reactive dye (blue 4) within 10-15 h of treatment. B. adusta OBR105 could decolorize real textile wastewater in the air-lift bioreactor. This result suggests that an air-lift reactor employing B. adusta OBR105 is a promising bioreactor for the treatment of dye wastewater.
Ahuja, V; Platzek, T; Fink, H; Sonnenburg, A; Stahlmann, R
2010-09-01
Disperse dyes, which are suitable for dyeing synthetic fibres, are responsible for the great majority of allergic contact dermatitis (ACD) cases to textile dyes. The aim of the present study was to investigate the sensitising potential of various disperse dyes using a biphasic protocol of the local lymph node assay (LLNA). Briefly, mice were shaved over a surface of approximately 2 cm(2) on their backs and treated using a "sensitisation-challenge protocol". The shaved surface was treated once daily on days 1-3 with 50 microl of the test solution. Animals remained untreated on days 4-14. On days 15-17, mice were treated with 25 microl of the test solution on the dorsum of both ears. Mice were killed on day 19 with deep CO(2) anaesthesia, the lymph nodes prepared and various end points, such as ear thickness, ear punch weight, lymph node weight, lymph node cell count and the proportion of various lymphocyte subpopulations, were determined by flow cytometry. The results were compared to control group treated with the vehicle alone. Our results showed that almost all of the tested textile dyes caused a significant increase in lymph node cell count and lymph node weight. We also observed an increase in ear thickness and ear punch weight in most of the concentrations tested for various textile dyes. We observed a decrease in CD4+ and CD8+ cells and an increase in CD19+, CD45+ and CD45+/1A+ cells in most of the cases, which is characteristic for allergens. The CD4+/CD69+ cells increased in only few experiments mainly with Disperse Blue 124 and Disperse Blue 106. Based on our results, the disperse dyes could be arranged in four groups on the basis of their sensitising potency in the following decreasing order (in parenthesis: lowest concentration causing a significant increase in lymph node cell number): group 1, strong: Disperse Blue 124 and Disperse Blue 106 (0.003%); group 2, moderate: Disperse Red 1 and Disperse Blue 1 (3%); group 3, weak: Disperse Orange 37 and Disperse Blue 35 (10%); and group 4, very weak: Disperse yellow 3 and Disperse Orange 3 (increase at 30% or no increase at 30%). In conclusion, our study shows that the biphasic LLNA protocol was proficient enough to study the sensitisation potential of tested textile dyes and provides data allowing to discriminate them according to their potency.
NASA Astrophysics Data System (ADS)
Parvin, Fahmida; Sultana, Nargis; Habib, S. M. Ahsan; Bhoumik, Nikhil Chandra
2017-11-01
The aim of this study is to find out the facile and effective pretreatment technique to enhance the capacity of jute stick powder (JSP) in adsorbing dye from raw textile effluent. Hence, different pretreatment techniques, i.e., radiation treatment, alkali treatment, ammonia treatment, steam treatment and CaCl2 treatment were applied to JSP and the adsorbing performance were examined for synthetic dye solutions (Blue FCL and Red RL dye). Different gamma radiation doses were applied on JSP and optimum dye removal efficiency was found at 500 krad in removing these two dyes (50 ppm) from solutions. Among the different pretreatment techniques, gamma irradiated JSP (500 Krad) exhibits highest dye uptake capacity for RED RL dye, whereas steam-treated JSP shows highest performance in adsorbing blue FCL dye. Subsequently, we applied the gamma irradiated and steam-treated JSP on real textile effluent (RTE) and these two techniques shows potentiality in adsorbing dye from raw textile effluent and in reducing BOD5, COD load and TOC to some extent as well. Fourier transform infrared spectroscopy (FTIR) analysis also proved that dye has been adsorbed on pretreated JSP.
NASA Astrophysics Data System (ADS)
Farooqi, Izharul H.; Basheer, Farrukh; Tiwari, Pradeepika
2017-12-01
Laboratory scale experiments were carried out to access the feasibility of sequential anaerobic/aerobic biological treatment for the biodegradation of Methylene Blue (MB) dye. Anaerobic studies were performed using anaerobic hybrid reactor (consisting of UASB and Anaerobic filter) whereas submerged aerobic fixed film reactor was used as aerobic reactor. Degradation of MB dye was attempted using neutralized acetic acid (1000 mg/L) as co-substrate. MB dye concentration was stepwise increased from 10 to 70 mg/L after reaching steady state in each dye concentration. Such a gradual increase in the dye concentration helps in the proper acclimatization of the sludge to dyes thereby avoiding the possible inhibitory effects to biological activities at high dye concentrations. The overall treatment efficiency of MB through sequential anaerobic-aerobic reactor operation was 90% at maximum attempted dye concentration of 70 mg/L. The effluent from anaerobic reactor was analysed for intermediate biodegradation products through HPLC. It was observed that catechol, quinone, amino pyrine, 1,4 diamino benzene were present. However they were absent in final effluent.
NASA Astrophysics Data System (ADS)
Ishii, Mie; Moriyama, Takayoshi; Toda, Masahiro; Kohmoto, Kohtaro; Saito, Masako
White light-emitting diodes (LED) are well suited for museum lighting because they emit neither UV nor IR radiation, which damage artifacts. The color degradation of natural dyes and blue scale standards (JIS L 0841) by white LED lamps are examined, and the performance of white LED lamps for museum lighting is evaluated. Blue scale standard grades 1-6 and silk fabrics dyed with 22 types of natural dyes classified as mid to highly responsive in a CIE technical report (CIE157:2004) were exposed to five types of white LED lamps using different luminescence methods and color temperatures. Color changes were measured at each 15000 lx·hr (500 lx at fabric surface × 300 hr) interval ten times. The accumulated exposure totaled 150000 lx·hr. The data on conventional white LED lamps and previously reported white fluorescent (W) and museum fluorescent (NU) lamps was evaluated. All the white LED lamps showed lower fading rates compared with a W lamp on a blue scale grade 1. The fading rate of natural dyes in total was the same between an NU lamp (3000 K) and a white LED lamp (2869 K). However, yellow natural dyes showed higher fading rates with the white LED lamp. This tendency is due to the high power characteristic of the LED lamp around 400-500 nm, which possibly contributes to the photo-fading action on the dyes. The most faded yellow dyes were Ukon (Curcuma longa L.) and Kihada (Phellodendron amurense Rupr.), and these are frequently used in historic artifacts such as kimono, wood-block prints, and scrolls. From a conservation point of view, we need to continue research on white LED lamps for use in museum lighting.
Use of vital dyes to assess embryonic viability in the hamster, Mesocricetus auratus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutz, R.J.; DeMayo, F.J.; Dukelow, W.R.
1985-05-01
Experiments were designed to assess the use of the vital dyes trypan blue and fluorescein diacetate as indicators of the viability of hamster ova and embryos. Exclusion of trypan blue and fluorescence with fluorescein diacetate showed high correlations with uptake of (/sup 3/H)uridine by ova and further development of embryos in vitro. Ova killed by freezing and thawing incorporated (/sup 3/H)uridine at background levels. Trypan blue exclusion and fluorescein diacetate uptake were highly correlated with each other (r = 0.99). Trypan blue and fluorescein diacetate serve as excellent indices of viability in ova and early embryos of hamsters.
Removal of dissolved textile dyes from wastewater by a compost sorbent
Tsui, L.S.; Roy, W.R.; Cole, M.A.
2003-01-01
The objective of this study was to evaluate the potential for treating dye-contaminated waste streams by sorption using compost as a low-cost sorbent. A mature, thermophilic compost sample was used to sorb CI Acid Black 24, CI Acid Orange 74, CI Basic Blue 9, CI Basic Green 4, CI Direct Blue 71, CI Direct Orange 39, CI Reactive Orange 16 and CI Reactive Red 2 from solution using a batch-sorption method. With the exception of the two reactive dyes, the sorption kinetics were favourable for a continuous-flow treatment process with the compost-dye mixtures reaching a steady state within 3-5 h. Based on limited comparisons, the affinity of the compost for each dye appeared to be competitive with other non-activated carbon sorbents. The results suggest that additional research on using compost as a sorbent for dye-contaminated solutions is warranted.
Módenes, Aparecido N; Espinoza-Quiñones, Fernando R; Geraldi, Claudinéia A Q; Manenti, Diego R; Trigueros, Daniela E G; Oliveira, Ana Paula de; Borba, Carlos E; Kroumov, Alexander D
2015-01-01
In this work, the removal of reactive blue 5G (RB5G) dye using the drying biomass of banana pseudostem (BPS) was investigated. The characterization of BPS particles was performed. Improvement in the RB5G dye removal performance at the following sorption conditions was evidenced: pH 1, 30°C sorption temperature and 40 rpm shaking, regardless of the particle size range. Kinetic RB5G dye sorption data obtained at better conditions fit well in an Elovich model. A combined Langmuir-BET isotherm model provides a good representation of the RB5G dye equilibrium sorption data, which shows the evidence of a physical sorption process on the BPS surface. Based on the results, the removal of RB5G dye molecules by BPS is based on a physical sorption process.
[Acute blue urticaria following subcutaneous injection of patent blue dye].
Hamelin, A; Vial-Dupuy, A; Lebrun-Vignes, B; Francès, C; Soria, A; Barete, S
2015-11-01
Patent blue (PB) is a lymphatic vessel dye commonly used in France for sentinel lymph node detection in breast cancer, and less frequently in melanoma, and which may induce hypersensitivity reactions. We report a case of acute blue urticaria occurring within minutes of PB injection. Ten minutes after PB injection for sentinel lymph node detection during breast cancer surgery, a 49-year-old woman developed generalised acute blue urticaria and eyelid angioedema without bronchospasm or haemodynamic disturbance, but requiring discontinuation of surgery. Skin testing using PB and the anaesthetics given were run 6 weeks after the episode and confirmed PB allergy. PB was formally contra-indicated. Immediate hypersensitivity reactions to PB have been reported for between 0.24 and 2.2% of procedures. Such reactions are on occasion severe, chiefly involving anaphylactic shock. Two mechanisms are probably associated: non-specific histamine release and/or an IgE-mediated mechanism. Skin tests are helpful in confirming the diagnosis of PB allergy. Blue acute urticaria is one of the clinical manifestations of immediate hypersensitivity reactions to patent blue dye. Skin tests must be performed 6 weeks after the reaction in order to confirm the diagnosis and formally contra-indicate this substance. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Patch testing to a textile dye mix by the international contact dermatitis research group.
Isaksson, Marléne; Ale, Iris; Andersen, Klaus E; Diepgen, Thomas; Goh, Chee-Leok; Goossens R, An; Jerajani, Hemangi; Maibach, Howard I; Sasseville, Denis; Bruze, Magnus
2015-01-01
Disperse dyes are well-known contact sensitizers not included in the majority of commercially available baseline series. To investigate the outcome of patch testing to a textile dye mix (TDM) consisting of 8 disperse dyes. Two thousand four hundred ninety-three consecutive dermatitis patients in 9 dermatology clinics were patch tested with a TDM 6.6%, consisting of Disperse (D) Blue 35, D Yellow 3, D Orange 1 and 3, D Red 1 and 17, all 1.0% each, and D Blue 106 and D Blue 124, each 0.3%. 90 reacted positively to the TDM. About 92.2% of the patients allergic to the TDM were also tested with the 8 separate dyes. Contact allergy to TDM was found in 3.6% (1.3-18.2) Simultaneous reactivity to p-phenylenediamine was found in 61.1% of the TDM-positive patients. Contact allergy to TDM and not to other p-amino-substituted sensitizers was diagnosed in 1.2%. The most frequent dye allergen in the TDM-positive patients was D Orange 3. Over 30% of the TDM allergic patients had been missed if only the international baseline series was tested. Contact allergy to TDM could explain or contribute to dermatitis in over 20% of the patients. Textile dye mix should be considered for inclusion into the international baseline series.
Meads, C; Sutton, A; Małysiak, S; Kowalska, M; Zapalska, A; Rogozinska, E; Baldwin, P; Rosenthal, A; Ganesan, R; Borowiack, E; Barton, P; Roberts, T; Sundar, S; Khan, K
2013-12-01
Vulval cancer causes 3-5% of all gynaecological malignancies and requires surgical removal and inguinofemoral lymphadenectomy (IFL). Complications affect > 50% of patients, including groin wound infection, lymphoedema and cellulitis. A sentinel lymph node (SLN) is the first groin node with the highest probability of malignancy. SLN biopsy would be useful if it could accurately identify patients in whom cancer has spread to the groin, without removing all groin nodes. SLNs can be identified by isosulfan blue dye and/or technetium-99 ((99m)Tc) radioactive tracer during lymphoscintigraphy. The blue dye/(99m)Tc procedure only detects SLN, not metastases - this requires histological examination, which can include ultrastaging and staining with conventional haematoxylin and eosin (H&E) or immunohistochemistry. To determine the test accuracy and cost-effectiveness of the SLN biopsy with (99m)Tc and/or blue dye compared with IFL or clinical follow-up for test negatives in vulval cancer, through systematic reviews and economic evaluation. Standard medical databases, including MEDLINE, EMBASE, Science Citation Index and The Cochrane Library, medical search gateways, reference lists of review articles and included studies were searched to January 2011. For accuracy and effectiveness, standard methods were used and reported according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Searches were to January 2011, with no language restrictions. Meta-analyses were carried out with Meta-Disc version 1.4 (Javier Zamora, Madrid, Spain) for accuracy; none was appropriate for effectiveness. The economic evaluation from a NHS perspective used a decision-tree model in DATA TreeAge Pro Healthcare 2001 (TreeAge Software, Inc., Williamstown, MA, USA). Six options (blue dye with H&E, blue dye with ultrastaging, (99m)Tc with H&E, (99m)Tc with ultrastaging, blue dye/(99m)Tc with H&E, blue dye/(99m)Tc with ultrastaging) were compared with IFL. Deterministic and probabilistic sensitivity analyses were conducted. For accuracy, of the 26 included studies, most evaluated (99m)Tc/blue dye combined. Four studies had clinical follow-up only for test negatives and five had clinical follow-up for all and IFL for test negatives. Numbers with no SLN found were difficult to distinguish from those with negative SLN biopsies. The largest group of 11 studies using (99m)Tc/blue dye, ultrastaging and immunohistochemistry had a pooled sensitivity of 95.6% [95% confidence interval (CI) 91.5% to 98.1%] and a specificity of 100% (95% CI 99.0% to 100%). Mean SLN detection rates were 94.6% for (99m)Tc, 68.7% for blue dye and 97.7% for both. One study measured global health status quality of life (QoL) and found no difference between SLN biopsy and IFL. One patient preference evaluation showed that 66% preferred IFL rather than a 5% false-negative rate from SLN biopsy. For effectiveness, of 14,038 references, one randomised controlled trial, three case-control studies and 13 case series were found. Approximately 50% died from vulval cancer and 50% from other causes during follow-ups. Recurrences were in the ratio of approximately 4 : 2 : 1 vulval, groin and distant, with more recurrences in node-positive patients. No studies reported QoL. For cost per death averted, IFL was less costly and more effective than strategies using SLN biopsy. For morbidity-free survival and long-term morbidity-free survival, (99m)Tc with ultrastaging was most cost-effective. Strategies with blue dye only and H&E only were never cost-effective. The incremental cost-effectiveness ratio for (99m)Tc with ultrastaging compared with IFL was £4300 per case of morbidity-free survival and £7100 per long-term morbidity-free survival. The main limitations of this study include the lack of good-quality evidence on accuracy, effectiveness and QoL. A large project such as this takes time to publish, so the most recent studies are not included. A sensitive and specific combined metastatic SLN detection test and information on generic QoL in vulval cancer is urgently required. The National Institute for Health Research Health Technology Assessment programme.
Molecular mechanism of tau aggregation induced by anionic and cationic dyes.
Lira-De León, Karla I; García-Gutiérrez, Ponciano; Serratos, Iris N; Palomera-Cárdenas, Marianela; Figueroa-Corona, María Del P; Campos-Peña, Victoria; Meraz-Ríos, Marco A
2013-01-01
Abnormal tau filaments are a hallmark of Alzheimer's disease. Anionic dyes such as Congo Red, Thiazine Red, and Thioflavin S are able to induce tau fibrillization in vitro. SH-SY5Y cells were incubated with each dye for seven days leading to intracellular aggregates of tau protein, with different morphological characteristics. Interestingly, these tau aggregates were not observed when the Methylene Blue dye was added to the cell culture. In order to investigate the molecular mechanisms underlying this phenomenon, we developed a computational model for the interaction of the tau paired helical filament (PHF) core with every dye by docking analysis. The polar/electrostatic and nonpolar contribution to the free binding energy in the tau PHF core-anionic dye interaction was determined. We found that the tau PHF core can generate a positive net charge within the binding site localized at residuesLys311 and Lys340 (numbering according to the longest isoform hTau40). These residues are important for the binding affinity of the negative charges present in the anionic dyes causing an electrostatic environment that stabilizes the complex. Tau PHF core protofibril-Congo Red interaction has a stronger binding affinity compared to Thiazine Red or Thioflavin S. By contrast, the cationic dye Methylene Blue does not bind to nor stabilize the tau PHF core protofibrils. These results characterize the driving forces responsible for the binding of tau to anionic dyes leading to their self-aggregation and suggest that Methylene Blue may act as a destabilizing agent of tau aggregates.
Solar light induced and TiO2 assisted degradation of textile dye reactive blue 4.
Neppolian, B; Choi, H C; Sakthivel, S; Arabindoo, B; Murugesan, V
2002-03-01
Aqueous solutions of reactive blue 4 textile dye are totally mineralised when irradiated with TiO2 photocatalyst. A solution containing 4 x 10(-4) M dye was completely degraded in 24 h irradiation time. The intensity of the solar light was measured using Lux meter. The results showed that the dye molecules were completely degraded to CO2, SO4(2-), NO3-, NH4+ and H2O under solar irradiation. The addition of hydrogen peroxide and potassium persulphate influenced the photodegradation efficiency. The rapidity of photodegradation of dye intermediates were observed in the presence of hydrogen peroxide than in its absence. The auxiliary chemicals such as sodium carbonate and sodium chloride substantially affected the photodegradation efficiency. High performance liquid chromatography and chemical oxygen demand were used to study the mineralisation and degradation of the dye respectively. It is concluded that solar light induced degradation of textile dye in wastewater is a viable technique for wastewater treatment.
Lu, Jiao Yang; Zhang, Xin Xing; Huang, Wei Tao; Zhu, Qiu Yan; Ding, Xue Zhi; Xia, Li Qiu; Luo, Hong Qun; Li, Nian Bing
2017-09-19
The most serious and yet unsolved problems of molecular logic computing consist in how to connect molecular events in complex systems into a usable device with specific functions and how to selectively control branchy logic processes from the cascading logic systems. This report demonstrates that a Boolean logic tree is utilized to organize and connect "plug and play" chemical events DNA, nanomaterials, organic dye, biomolecule, and denaturant for developing the dual-signal electrochemical evolution aptasensor system with good resettability for amplification detection of thrombin, controllable and selectable three-state logic computation, and keypad lock security operation. The aptasensor system combines the merits of DNA-functionalized nanoamplification architecture and simple dual-signal electroactive dye brilliant cresyl blue for sensitive and selective detection of thrombin with a wide linear response range of 0.02-100 nM and a detection limit of 1.92 pM. By using these aforementioned chemical events as inputs and the differential pulse voltammetry current changes at different voltages as dual outputs, a resettable three-input biomolecular keypad lock based on sequential logic is established. Moreover, the first example of controllable and selectable three-state molecular logic computation with active-high and active-low logic functions can be implemented and allows the output ports to assume a high impediment or nothing (Z) state in addition to the 0 and 1 logic levels, effectively controlling subsequent branchy logic computation processes. Our approach is helpful in developing the advanced controllable and selectable logic computing and sensing system in large-scale integration circuits for application in biomedical engineering, intelligent sensing, and control.
St John's wort (Hypericum perforatum) products - an assessment of their authenticity and quality.
Booker, Anthony; Agapouda, Anastasia; Frommenwiler, Débora A; Scotti, Francesca; Reich, Eike; Heinrich, Michael
2018-02-01
St John's wort products (Hypericum perforatum L.) are widely available for sale in many countries including the UK via the internet. In the UK, these products are required to hold either a marketing authorisation or Traditional herbal registration (THR) to be sold legally. The THR and other regulatory schemes help to ensure product safety and quality providing an example of best practice but there is a risk if both regulated and un-regulated products continue to be available to consumers. The project is embedded in a larger study aiming to investigate the quality of different herbal medicinal products along diverse value chains. Here we focus on a comparison of the quality of the finished products and assess phytochemical variation between registered products (THRs) and products obtained from the market without any registration. 47 commercial products (granulated powders and extracts) were sourced from different suppliers. We analysed these samples using high performance thin layer chromatography (HPTLC) and 1 H NMR spectroscopy coupled with multi-variate analysis software following a method previously developed by our group. The consistency of the products varies significantly. Adulteration of the products (36%), possibly with other Hypericum species obtained from China or use of chemically distinct H. perforatum cultivars or chemotypes, and adulteration of the products (19%) with food dyes (tartrazine, amaranth, brilliant blue, sunset yellow) were the principle findings of this study. There is significant compositional variation among commercial finished products and two main causative quality problems were identified as adulteration by incorrect species or adulteration with food dyes. Generally, food supplements and unlicensed products were found to be of poorer quality than the regulated ones including THRs. Copyright © 2017 Elsevier GmbH. All rights reserved.
Sorokina, Anastasia; Danilevskaya, Olesya; Averyanov, Alexander; Zabozlaev, Fedor; Sazonov, Dmitry; Yarmus, Lonny; Lee, Hans J
2014-08-01
Probe-based confocal laser endoscopy (pCLE) allows for real-time non-invasive histological imaging via bronchoscopy. Interpreting CLE images and correlating with traditional histopathology remains challenging. We performed an ex vivo study to evaluate the correlation between light microscopy findings and pCLE imaging of primary lung carcinoma. Post-lobectomy specimens for lung cancer nodules were examined ex vivo by pCLE. The examined areas were marked with brilliant green dye, and the surrounding tissues were stained by methylene blue dye. Lung tissue segments were resected and histopathological specimens were generated with 50-μm thickness from the marked areas and stained with haematoxylin and eosin. Pathologists and pulmonologists reviewed the images for correlating features. Eighteen lobectomy specimens from 18 different patients were collected. Three primary features were observed in all samples using pCLE in the cancer surroundings: alveolar dystelectasis with thickening of alveolar walls, alveolar edema and a large amount of macrophages. The stromal and parenchymal components of the studied subtypes of non-small-cell lung cancer differed from each other. The stromal component for all nine adenocarcinoma specimens had a highly fluorescent field penetrated by dark hollows. All six squamous cell carcinoma specimens had the stromal component appeared as 'biparously' branching, highly fluorescent fibres. No stromal component was observed in any small-cell carcinoma specimen, and at low power field, the cellular component was dominant with an observed light scattering pattern. pCLE can identify lung carcinoma in ex vivo samples. Certain light microscopy features of lung carcinoma can be visualized with pCLE. © 2014 Asian Pacific Society of Respirology.
Ingvertsen, Simon T; Cederkvist, Karin; Jensen, Marina B; Magid, Jakob
2012-01-01
Use of roadside infiltration systems using engineered filter soil for optimized treatment has been common practice in Germany for decades, but little documentation is available regarding their long-term treatment performance. Here we present the results of laboratory leaching experiments with intact soil columns (15 cm i.d., 25-30 cm length) collected from two German roadside infiltration swales constructed in 1997. The columns were irrigated with synthetic solutions of unpolluted or polluted (dissolved heavy metals and fine suspended solids) road runoff, as well as a soluble nonreactive tracer (bromide) and a dye (brilliant blue). The experiments were performed at two irrigation rates corresponding to catchment rainfall intensities of approximately 5.1 and 34 mm/h. The bromide curves indicated that preferential flow was more pronounced at high irrigation rates, which was supported by the flow patterns revealed in the dye tracing experiment. Nonetheless, the soils seemed to be capable of retaining most of the dissolved heavy metals from the polluted road runoff at both low and high irrigation rates, except for Cr, which appears to pass through the soil as chromate. Fluorescent microspheres (diameter = 5 μm) used as surrogates for fine suspended solids were efficiently retained by the soils (>99%). However, despite promising treatment abilities, internal mobilization of heavy metals and P from the soil was observed, resulting in potentially critical effluent concentrations of Cu, Zn, and Pb. This is mainly ascribed to high concentrations of in situ mobilized dissolved organic carbon (DOC). Suggestions are provided for possible improvements and further research to minimize DOC mobilization in engineered filter soils. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Quirks of dye nomenclature. 8. Methylene blue, azure and violet.
Cooksey, C J
2017-01-01
Methylene blue was synthesized in 1877 and soon found application in medicine, staining for microscopy and as an industrial dye and pigment. An enormous literature has accumulated since its introduction. Early on, it was known that methylene blue could be degraded easily by demethylation; consequently, the purity of commercial samples often was low. Therefore, demethylation products, such as azures and methylene violet, also are considered here. The names and identity of the components, their varying modes of manufacture, analytical methods and their contribution to biological staining are discussed.
Candiano, Giovanni; Santucci, Laura; Petretto, Andrea; Lavarello, Chiara; Inglese, Elvira; Bruschi, Maurizio; Ghiggeri, Gian Marco; Boschetti, Egisto; Righetti, Pier Giorgio
2015-01-01
Combinatorial peptide ligand libraries (CPLLs) tend to bind complex molecules such as dyes due to their aromatic, heterocyclic, hydrophobic, and ionic nature that may affect the protein capture specificity. In this experimental work Alcian Blue 8GX, a positively charged phthalocyanine dye well-known to bind to glycoproteins and to glucosaminoglycans, was adsorbed on a chemically modified CPLL solid phase, and the behavior of the resulting conjugate was then investigated. The control and dye-adsorbed beads were used to harvest the human urinary proteome at physiological pH, this resulting in a grand total of 1151 gene products identified after the capture. Although the Alcian Blue-modified CPLL incremented the total protein capture by 115 species, it particularly enriched some families among the harvested proteins, such as glycoproteins and nucleotide-binding proteins. This study teaches that it is possible, via the two combined harvest mechanisms, to drive the CPLL capture toward the enrichment of specific protein categories.
Degradation of disperse blue 79 in anaerobic sediment-water systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, E.J.
1988-09-01
In recent years, concern over the environmental fate of the disperse azo dyes in natural water systems has grown. This concern arises from the fact that these dyes are very hydrophobic compounds, suggesting that they will partition strongly to bottom sediments where reductive cleavage of the azo linkage may occur. This transformation process could result in the release of potentially hazardous aromatic amines into the water column. Earlier studies in this laboratory demonstrated that the reductive cleavage of simple substituted azobenzenes in anaerobic sediment-water systems is a facile process. To determine whether reductive transformation of disperse azo dyes in naturalmore » water systems is an important environmental process, the fate of disperse Blue 79 in anaerobic sediment-water systems was studied. Disperse Blue 79 was selected for study for several reasons. It is by far the largest volume dye on the market today; the average annual production in the US from 1983 to 1985 was approximately 3.2 million kilograms. Furthermore, the reductive cleavage of the azo linkage of Disperse Blue 79 results in the formation of 2-bromo-4,6-dinitroaniline (BDNA), which has been shown to be both toxic and mutagenic. Recently, the Interagency Testing Committee, a Federal body established under the Toxic Substances Control Act, selected Disperse Blue 79 as a compound needing study with respect to its environmental fate and impact.« less
Alay, Asli; Usta, Taner A; Ozay, Pinar; Karadugan, Ozgur; Ates, Ugur
2014-05-01
The objective of this study was to compare classical blind endometrial tissue sampling with hysteroscopic biopsy sampling following methylene blue dyeing in premenopausal and postmenopausal patients with abnormal uterine bleeding. A prospective case-control study was carried out in the Office Hysteroscopy Unit. Fifty-four patients with complaints of abnormal uterine bleeding were evaluated. Data of 38 patients were included in the statistical analysis. Three groups were compared by examining samples obtained through hysteroscopic biopsy before and after methylene blue dyeing, and classical blind endometrial tissue sampling. First, uterine cavity was evaluated with office hysteroscopy. Methylene blue dye was administered through the hysteroscopic inlet. Tissue samples were obtained from stained and non-stained areas. Blind endometrial sampling was performed in the same patients immediately after the hysteroscopy procedure. The results of hysteroscopic biopsy from methylene blue stained and non-stained areas and blind biopsy were compared. No statistically significant differences were determined in the comparison of biopsy samples obtained from methylene-blue stained, non-stained areas and blind biopsy (P > 0.05). We suggest that chromohysteroscopy is not superior to endometrial sampling in cases of abnormal uterine bleeding. Further studies with greater sample sizes should be performed to assess the validity of routine use of endometrial dyeing. © 2014 The Authors. Journal of Obstetrics and Gynaecology Research © 2014 Japan Society of Obstetrics and Gynecology.
3D Oxidized Graphene Frameworks: An Efficient Adsorbent for Methylene Blue
NASA Astrophysics Data System (ADS)
Pandey, Abhishek; Deb, Madhurima; Tiwari, Shreya; Pawar, Pranav Bhagwan; Saxena, Sumit; Shukla, Shobha
2018-04-01
Extraordinary properties of graphene and its derivatives have found application in varied areas such as energy, electronics, optical devices and sensors, to name a few. Large surface area along with specialized functional groups make these materials attractive for removal of dye molecules in solution via adsorption. Industrial effluents contain large amounts of toxic chemicals resulting in pollution of water bodies, which pose environmental hazards in general. Here we report application of 3D oxidized graphene frameworks in the efficient removal of cationic dye molecules such as methylene blue via adsorption. Systematic parametric studies investigating the effect of the initial dye concentration, pH and contact time have been performed. Spectroscopic analysis of the filtrate suggests that tortuous paths in 3D oxidized graphene frameworks result in efficient removal of dye molecules due to enhanced interaction. The hydroxyl groups retained in these 3D oxidized graphene frameworks facilitate adsorption of the dye molecules while passing through the adsorbent. pH studies suggest that maximum removal efficiency for methylene blue was achieved at pH value of 9. The results suggest that these 3D oxidized graphene frameworks can be used for purification of large volumes of contaminated water from cationic dyes in waste water treatment plants.
Competitive adsorption of dyes and heavy metals on zeolitic structures.
Hernández-Montoya, V; Pérez-Cruz, M A; Mendoza-Castillo, D I; Moreno-Virgen, M R; Bonilla-Petriciolet, A
2013-02-15
The adsorption of Acid blue 25, basic blue 9, basic violet 3, Pb(2+), Ni(2+), Zn(2+) and Cd(2+) ions has been studied in single and dye-metal binary solutions using two mineral materials: Clinoptilolite (CL) and ER (Erionite). These zeolites were characterized by FT-IR spectroscopy; potentiometric titration and nitrogen adsorption isotherms at 77 K to obtain their textural parameters. Results indicated that ER has an acidic character and a high specific surface (401 m(2) g(-1)) in contrast with the zeolite CL (21 m(2) g(-1)). Surprisingly, the removal of dyes was very similar for the two zeolites and they showed a considerable selectivity by the basic dyes in comparison with the acid dyes. In the case of heavy metals, ER was more effective in the adsorption process showing a selectivity of: Pb(2+) > Ni(2+) > Zn(2+) > Cd(2+). In the multicomponent adsorption experiments an antagonistic effect was observed in the removal of basic dyes and heavy metals. Particularly, the adsorbed amount of basic violet 3 decreased more significantly when the heavy metals are presents in contrast with the basic blue 9. Copyright © 2012 Elsevier Ltd. All rights reserved.
Degradation of azo dye active brilliant red X-3B by composite ferrate solution.
Xu, G R; Zhang, Y P; Li, G B
2009-01-30
Composite ferrate(VI) solution (CFS) with improved stability was successfully prepared in this study. The stability of Fe(VI) increased from hours for potassium ferrate at pH 9-10 to 16d for 1 mmol L(-1) Fe(VI) in CFS at 25 degrees C, decomposing 24%. The Fe(VI) was more stable at low concentration (1 mmol L(-1)) than that at high concentration (10 mmol L(-1)). The degradation of the azo dye reactive brilliant red X-3B (X-3B) by CFS was investigated. The results showed that pH, initial dye concentration and CFS dosage affected the degradation efficiency. For 0.08 mmol L(-1) X-3B simulate wastewater, the optimal pH and CFS dosage were 8.4 and 25 mg L(-1) (as K(2)FeO(4)), and about 99% X-3B was decolorized after 20 min under this conditions. The color decay was considerably faster than the decrease in COD and TOC, which was attributed to the ease of chromophore destruction. Compared with the decolorization, the removal percentage of COD and TOC were 42% and 9% after 60 min, respectively. The Fe(VI) and ClO(-) were contained in CFS, which have synergetic effect for the degradation of X-3B. Additionally, phthalic acid and muconic acid were identified as intermediates by GC/MS, which was in accordance with the lowered pH with the reaction time. The complete mineralization of X-3B cannot be achieved under the oxidation by CFS. And a tentative pathway for the oxidative degradation of X-3B was postulated.
Diketopyrrolopyrrole: brilliant red pigment dye-based fluorescent probes and their applications.
Kaur, Matinder; Choi, Dong Hoon
2015-01-07
The development of fluorescent probes for the detection of biologically relevant species is a burgeoning topic in the field of supramolecular chemistry. A number of available dyes such as rhodamine, coumarin, fluorescein, and cyanine have been employed in the design and synthesis of new fluorescent probes. However, diketopyrrolopyrrole (DPP) and its derivatives have a distinguished role in supramolecular chemistry for the design of fluorescent dyes. DPP dyes offer distinctive advantages relative to other organic dyes, including high fluorescence quantum yields and good light and thermal stability. Significant advancements have been made in the development of new fluorescent probes based on DPP in recent years as a result of tireless research efforts by the chemistry scientific community. In this tutorial review, we highlight the recent progress in the development of DPP-based fluorescent probes for the period spanning 2009 to the present time and the applications of these probes to recognition of biologically relevant species including anions, cations, reactive oxygen species, thiols, gases and other miscellaneous applications. This review is targeted toward providing the readers with deeper understanding for the future design of DPP-based fluorogenic probes for chemical and biological applications.
Chieli, A; Sanyova, J; Doherty, B; Brunetti, B G; Miliani, C
2016-06-05
In this work a combined chromatographic and spectroscopic approach is used to provide a diagnostic assessment of semi-synthetic ammoniacal cochineal through the syntheses of its dyes and lakes according to art historical recipes. Commercially introduced in the late XIX century as a dye and pigment, it was used to obtain a brilliant purplish/violet nuance which provided a more stable option over carminic acid although its evidenced use in manufacts and artworks of heritage importance have been scarcely documented. Through HPLC-DAD, it has been possible to identify 4-aminocarminic acid as the main component of ammoniacal cochineal highlighting a chemical formula analogous to acid stable carmine, a recent patented food dye. FTIR clearly distinguishes the amine group in the ammoniacal cochineal dye preparation and TLC-SERS allows for an adequate separation and spectral differentiation in its main components to be evidenced. Colloidal SERS has permitted spectral markers useful in discerning ammoniacal cochineal over carminic acid to be highlighted and discussed. Finally, the methods experimented in this study for the identification of ammoniacal cochineal have been validated on analyzing a sample of dyed wool. Copyright © 2016 Elsevier B.V. All rights reserved.
Ciesielczyk, Filip; Bartczak, Przemysław; Zdarta, Jakub; Jesionowski, Teofil
2017-12-15
A comparative analysis was performed concerning the removal of two different organic dyes from model aqueous solution using an inorganic oxide adsorbent. The key element of the study concerns evaluation of the influence of the dyes' structure and their acid-base character on the efficiency of the adsorption process. The selection of sorbent material for this research - an MgO-SiO 2 oxide system synthesized via a modified sol-gel route - is also not without significance. The relatively high porous structure parameters of this material (A BET = 642 m 2 /g, V p = 1.11 mL and S p = 9.8 nm) are a result of the proposed methodology for its synthesis. Both organic dyes (C.I. Acid Blue 29 and C.I. Basic Blue 9) were subjected to typical batch adsorption tests, including investigation of such process parameters as time, initial adsorbate concentration, adsorbent dose, pH and temperature. An attempt was also made to estimate the sorption capacity of the oxide material with respect to the analyzed organic dyes. To achieve the objectives of the research - determine the efficiency of adsorption - it was important to perform a thorough physicochemical analysis of the adsorbents (e.g. FTIR, elemental analysis and porous structure parameters). The results confirmed the significantly higher affinity of the basic dye to the oxide adsorbents compared with the acidic dye. The regeneration tests, which indirectly determine the nature of the adsorbent/adsorbate interactions, provide further evidence for this finding. On this basis, a probable mechanism of dyes adsorption on the MgO-SiO 2 oxide adsorbent was proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Physicochemical properties and cell-based bioactivity of Pu'erh tea polysaccharide conjugates.
Chen, Xiao-Qiang; Zhang, Zhi-Fa; Gao, Zhi-Ming; Huang, Yi; Wu, Zheng-Qi
2017-11-01
Polysaccharide conjugates were prepared from Pu'erh tea and fractionated by DEAE-cellulose DE-52 column chromatography to yield one unexplored polysaccharide-conjugate fraction termed TPC-P with a molecular weight of 251,200Da. DVS (dynamic vapour sorption) result discovered that the humidity condition of long-term preservation for TPC-P is below 70% RH. Although it contained proteins, TPC-P could not bind to the Coomassie Brilliant Blue dyes G250 and R250. The "shoulder-shaped" ultroviolet absorption peak in TPC-P UV-vis scanning spectum ascribe theabrownins that inevitably adsorbed the polysaccharide conjugate. Zeta potential results demonstrated TPC-P aqueous solution merely presented the negative charge properties of polysaccharides instead of acid-base property of its protein section, and had more stability in greater than pH 5.5. No precipitation or haze occurred in the three TPC-P/EGCG aqueous mixtures during their being stored for 12h. The phase separation was observed in aqueous mixtures of TPC-P and type B gelatin. TPC-P possessed the fine stability as a function of temperature heating and cooling between 0 and 55°C. It is proposed that some properties of the covalent binding protein of TPC-P were "shielded" by its polysaccharide chains. Copyright © 2017 Elsevier B.V. All rights reserved.
High-resolution microscope for tip-enhanced optical processes in ultrahigh vacuum
NASA Astrophysics Data System (ADS)
Steidtner, Jens; Pettinger, Bruno
2007-10-01
An optical microscope based on tip-enhanced optical processes that can be used for studies on adsorbates as well as thin layers and nanostructures is presented. The microscope provides chemical and topographic informations with a resolution of a few nanometers and can be employed in ultrahigh vacuum as well as gas phase. The construction involves a number of improvements compared to conventional instruments. The central idea is to mount, within an UHV system, an optical platform with all necessary optical elements to a rigid frame that also carries the scanning tunneling microscope unit and to integrate a high numerical aperture parabolic mirror between the scanning probe microscope head and the sample. The parabolic mirror serves to focus the incident light and to collect a large fraction of the scattered light. The first experimental results of Raman measurements on silicon samples as well as brilliant cresyl blue layers on single crystalline gold and platinum surfaces in ultrahigh vacuum are presented. For dye adsorbates a Raman enhancement of ˜106 and a net signal gain of up to 4000 was observed. The focus diameter (˜λ/2) was measured by Raman imaging the focal region on a Si surface. The requirements of the parabolic mirror in terms of alignment accuracy were experimentally determined as well.
NASA Astrophysics Data System (ADS)
Khan, Asma Yasmeen; Saha, Baishakhi; Kumar, Gopinatha Suresh
2014-10-01
A comprehensive study on the binding of phenazinium dyes viz. janus green B, indoine blue, safranine O and phenosafranine with double stranded poly(A) using various spectroscopic and calorimetric techniques is presented. A higher binding of janus green B and indoine blue over safranine O and phenosafranine to poly(A) was observed from all experiments. Intercalative mode of binding of the dyes was inferred from fluorescence polarization anisotropy, iodide quenching and viscosity experiments. Circular dichroism study revealed significant perturbation of the secondary structure of poly(A) on binding of these dyes. Results from isothermal titration calorimetry experiments suggested that the binding was predominantly entropy driven with a minor contribution of enthalpy to the standard molar Gibbs energy. The results presented here may open new opportunities in the application of these dyes as RNA targeted therapeutic agents.
González, Antonia Sandoval; Martínez, Susana Silva
2008-09-01
The sonophotocatalytic degradation of basic blue 9 industrial textile dye has been studied in the presence of ultrasound (20 kHz) over a TiO(2) slurry employing an UV lamp (15 W, 352 nm). It was observed that the color removal efficiency was influenced by the pH of the solution, initial dye concentration and TiO(2) amount. It was found that the dye degradation followed apparent first order kinetics. The rate constant increased by decreasing dye concentration and was affected by the pH of the solution with the highest degradation obtained at pH 7. The first order rate constants obtained with sonophotocatalysis were twofold and tenfold than those obtained under photocatalysis and sonolysis, respectively. The chemical oxygen demand was abated over 80%.
Acute Generalized Exanthematous Pustulosis Due to Oral Use of Blue Dyes
Sener, Osman; Kose, Ösman; Safali, Mukerrem
2011-01-01
Acute generalized exanthematous pustulosis is a rare severe pustular cutaneous adverse reaction characterized by a rapid clinical course with typical histological findings. It is accompanied by fever and acute eruption of non-follicular pustules overlying erythrodermic skin. The causative agents are most frequently antibacterial drugs. We present a patient with acute generalized exanthematous pustulosis caused by methylene blue and indigotin dyes. PMID:22016599
Decolorization of acid, disperse and reactive dyes by Trametes versicolor CBR43.
Yang, Seung-Ok; Sodaneath, Hong; Lee, Jung-In; Jung, Hyekyeng; Choi, Jin-Hee; Ryu, Hee Wook; Cho, Kyung-Suk
2017-07-29
The mycoremediation has been considered as a promising method for decolorizing dye wastewater. To explore new bioresource for mycoremediation, a new white-rot fungus that could decolorize various dyes commonly used in textile industries was isolated, and its ligninolytic enzyme activity and decolorization capacity were characterized. The isolated CBR43 was identified as Trametes versicolor based on the morphological properties of its fruit body and spores, as well as through partial 18S rDNA gene sequences. Isolated CBR43 displayed high activities of laccase and Mn-dependent peroxidase, whereas its lignin peroxidase activity was relatively low. These ligninolytic enzyme activities in potato dextrose broth (PDB) medium were enhanced by the addition of yeast extract (1-10 g L -1 ). In particular, lignin peroxidase activity was increased more than 5 times in the PDB medium amended with 10 g L -1 of yeast extract. The CBR43 decolorized more than 90% of 200 mg L -1 acid dyes (red 114, blue 62 and black 172) and reactive dyes (red 120, blue 4, orange 16 and black 5) within 6 days in the PDB medium. CBR43 decolorized 67% of 200 mg L -1 acid orange 7 within 9 days. The decolorization efficiencies for disperse dyes (red 1, orange 3 and black 1) were 51-80% within 9 days. The CBR43 could effectively decolorize high concentrations of acid blue 62 and acid black 172 (500-700 mg L -1 ). The maximum dye decolorization rate was obtained at 28°C, pH 5, and 150 rpm in the PDB medium. T. versicolor CBR43 had high laccase and Mn-dependent peroxidase activities, and could decolorize a wide variety of dyes such as acid, disperse and reactive textile dyes. This fungus had decolorizing activities of azo-type dyes as well as anthraquinone-type dyes. T. versicolor CBR43 is one of promising bioresources for the decolorization of textile wastewater including various dyes.
PAMAM templated N,Pt co-doped TiO2 for visible light photodegradation of brilliant black.
Nzaba, Sarre Kadia Myra; Ntsendwana, Bulelwa; Mamba, Bhekie Brilliance; Kuvarega, Alex Tawanda
2018-05-01
This study examined the photocatalytic degradation of an azo dye brilliant black (BB) using non-metal/metal co-doped TiO 2 . N,Pt co-doped TiO 2 photocatalysts were prepared by a modified sol-gel method using amine-terminated polyamidoamine dendrimer generation 0 (PG0) as a template and source of nitrogen. Structural, morphological, and textural properties were evaluated using scanning electron microscopy coupled to energy-dispersive X-ray spectroscopy (SEM/EDX), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction spectroscopy (XRD), X-ray photoelectron spectroscopy (XPS), thermal gravimetric analysis (TGA), Fourier transform infrared (FTIR), Raman spectroscopy (RS), photoluminescence (PL) and ultra-violet/visible spectroscopy (UV-Vis). The synthesized photocatalysts exhibited lower band gap energies as compared to the Degussa P-25, revealing a red shift in band gap towards the visible light absorption region. Photocatalytic activity of N,Pt co-doped TiO 2 was measured by the reaction of photocatalytic degradation of BB dye. Enhanced photodegradation efficiency of BB was achieved after 180-min reaction time with an initial concentration of 50 ppm. This was attributed to the rod-like shape of the materials, larger surface area, and enhanced absorption of visible light induced by N,Pt co-doping. The N,Pt co-doped TiO 2 also exhibited pseudo-first-order kinetic behavior with half-life and rate constant of 0.37 and 0.01984 min -1 , respectively. The mechanism of the photodegradation of BB under the visible light irradiation was proposed. The obtained results prove that co-doping of TiO 2 with N and Pt contributed to the enhanced photocatalytic performances of TiO 2 for visible light-induced photodegradation of organic contaminants for environmental remediation. Therefore, this work provides a new approach to the synthesis of PAMAM templated N,Pt co-doped TiO 2 for visible light photodegradation of brilliant black.
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Tayeb, A., E-mail: ahmed.khalil@ejust.edu.eg; El-Shazly, A. H.; Elkady, M. F.
In this article, a dual pin-to-plate high-voltage corona discharge system is introduced to study experimentally the gap distance, the contact time, the effect of pin and plate materials, the thickness of ground plate and the conductivity on the amount of Acid Blue 25 dye color removal efficiency from polluted water. A study for the optimum air gap distance between dual pin and surface of Acid Blue 25 dye solution is carried out using 3D-EM simulator to find maximum electric field intensity at the tip of both pins. The outcomes display that the best gap for corona discharge is approximately 5more » mm for 15-kV source. This separation is constant during the study of other factors. In addition, an investigation of the essential reactive species responsible for oxidation of the dye organic compounds (O{sub 3} in air discharge, O{sub 3} in water, and H{sub 2}O{sub 2}) during the experimental time is conducted. Three various materials such as: stainless steel, copper and aluminum are used for pins and plate. The maximum color removal efficiencies of Acid Blue 25 dyes are 99.03, 82.04, and 90.78% after treatment time 15 min for stainless steel, copper, and aluminum, respectively. Measurement results for the impact of thickness of an aluminum ground plate on color removal competence show color removal efficiencies of 86.3, 90.78, and 98.06% after treatment time 15 min for thicknesses of 2, 0.5, and 0.1 mm, respectively. The increasing of the solution conductivity leads to the reduction of decolorization efficiency. A kinetic model is used to define the performance of corona discharge system. The models of pseudo-zero-order, pseudo-first-order, and pseudo-second-order reaction kinetics are utilized to investigate the decolorization of Acid Blue 25 dye. The rate of degradation of Acid Blue 25 dye follows the pseudo-first-order kinetics in the dye concentration.« less
Pad ultrasonic batch dyeing of causticized lyocell fabric with reactive dyes.
Babar, Aijaz Ahmed; Peerzada, Mazhar Hussain; Jhatial, Abdul Khalique; Bughio, Noor-Ul-Ain
2017-01-01
Conventionally, cellulosic fabric dyed with reactive dyes requires significant amount of salt. However, the dyeing of a solvent spun regenerated cellulosic fiber is a critical process. This paper presents the dyeing results of lyocell fabrics dyed with conventional pad batch (CPB) and pad ultrasonic batch (PUB) processes. The dyeing of lyocell fabrics was carried out with two commercial dyes namely Drimarine Blue CL-BR and Ramazol Blue RGB. Dyeing parameters including concentration of sodium hydroxide, sodium carbonate and dwell time were compared for the two processes. The outcomes show that PUB dyed samples offered reasonably higher color yield and dye fixation than CPB dyed samples. A remarkable reduction of 12h in batching time, 18ml/l in NaOH and 05g/l in Na 2 CO 3 quantity was observed for PUB processed samples producing similar results compared to CPB process, making PUB a more economical, productive and an environment friendly process. Color fastness examination witnessed identical results for both PUB and CPB methods. No significant change in surface morphology of PUB processed samples was observed through scanning electron microscope (SEM) analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jones, Guilford, II; Huang, Zhennian; Pacheco, Dennis P., Jr.; Russell, Jeffrey A.
2004-07-01
Tunable solid-state dye lasers operating in the blue-green spectral region are attractive for a variety of applications. An important consideration in assessing the viability of this technology is the service life of the gain medium, which is presently limited by dye photodegradation. In this study, solid polymeric samples consisting of the coumarin dye C540A in modified PMMA were subjected to controlled photodegradation tests. The excitation laser was a flashlamp-pumped dye laser operating at 440 nm with a pulse duration of 1 μs. A complementary set of data was obtained for dye in solution phase for comparison purposes. Photophysical properties of C540A in water solution of polymethacrylic acid (PMAA) have been investigated with a view to assess the suitability of the sequestering polymer (PMAA) as an effective additive to facilitate use of a water medium for highly efficient blue-green dye lasers. Lasing action of C540A in aqueous PMAA has been realized using flashlamp-pumped laser system, yielding excellent laser efficiencies superior to that achieved in ethanolic solutions with the same dye. Laser characterization of dye in media included measurement of laser threshold, slope efficiency, pulse duration and output wavelength.
NASA Astrophysics Data System (ADS)
Bolotin, P. A.; Baranovsky, S. F.; Evstigneev, M. P.
2006-06-01
The self-association of thiazine dye, Methylene Blue (MB), and its hetero-association with Caffeine (CAF), were studied in aqueous solution by means of spectrophotometry in the visible range of spectrum. Concentration and temperature dependences of molar absorption of the interacting molecules were used to analyse dynamic equilibrium in solution in terms of two-component model of molecular hetero-association. The magnitudes of equilibrium dimerization and hetero-association constants as well as thermodynamic parameters, enthalpy and entropy, were determined. The calculation of the fraction of different types of associates in the mixed solution, containing Methylene Blue and Caffeine, was done. It was concluded that the hetero-association of Methylene Blue and Caffeine molecules results in lower effective concentration of the dye in solution, which may account for the alteration of its biological activity.
Sundararaman, B; Muthuramu, K L
2016-11-01
The waste mango seed generated from mango pulp industry in India is a major problem in handling the waste and hence, conversion of mango seed kernel. Mango seeds were collected and processed for oil extraction. Decolorization of methylene blue was achieved by mango seed kernel powder, mango leaf powder and Manilkara zapota seed powder. Higher efficiency was attained in mango seed kernel powder when compared to mango leaf powder and Manilkara zapota seed powder. A 60 to 95 % of removal efficiency was achieved by varying concentration. Effect of pH, dye concentration, adsorbent dosage and temperature were studied. Mango seed kernel powder is a better option that can be used as an adsorbent for the removal of methylene blue and basic red dye from its aqueous solutions.
Variations on the "Blue-Bottle" Demonstration Using Food Items That Contain FD&C Blue #1
ERIC Educational Resources Information Center
Staiger, Felicia A.; Peterson, Joshua P.; Campbell, Dean J.
2015-01-01
Erioglaucine dye (FD&C Blue #1) can be used instead of methylene blue in the classic "blue-bottle" demonstration. Food items containing FD&C Blue #1 and reducing species such as sugars can therefore be used at the heart of this demonstration, which simply requires the addition of strong base such as sodium hydroxide lye.
Photodynamic therapy: a synergy between light and colors
NASA Astrophysics Data System (ADS)
Merigo, Elisabetta; Sozzi, Michele; Ciociola, Tecla; Conti, Stefania; Fornaini, Carlo; Vescovi, Paolo; Selleri, Stefano; Cucinotta, Annamaria
2015-02-01
In this work the application of different laser wavelengths, in combination with different photosensitizing dyes, to bacterial cultures, in liquid or solid mean, has been investigated. Two types of Streptococcus mutans cultures have been used for the experiments, inside agar and saline solution. Three different laser wavelengths have been applied to the bacterial cultures together with a photosensitizing dye: red diode (650 nm) on cultures stained with Toluidine Blue, blueviolet diode (450 nm) on cultures stained with Curcumin and KTP laser (532 nm) on cultures stained with Erythrosine. The choice of the dye has been made considering the color affinity with the used wavelength. Tests without dyes have also been performed. Experimental results show that the maximum inhibition of bacterial growth with the blue laser has been obtained in a saline solution with a growth of 40.77%. While the combination with Curcumin lead to an inhibition growth of about 99.1%, for a laser fluence of 30J/cm2. No inhibition has been observed using the red laser in saline solution without dye, while the combination with Toluidine Blue resulted in a 100% inhibition growth for 20 and 30 J/cm2 fluences. An inhibition growth of just 16.26% has been obtained with the use of KTP laser in saline solution without dye. The use of Erythrosine had the effect of a complete inhibition growth. From the obtained results it is possible to observe that the combination of laser wavelength with a particular photosensitizing dye can dramatically increase the bacterial growth.
New observations on endometrial physiology after transcervical injection of methylene blue dye.
Marconi, Guillermo; Vilela, Martín; Quintana, Ramiro; Diradourián, Marco; Young, Edgardo; Sueldo, Carlos
2004-12-01
We describe the in vivo features of endometrium stained with methylene blue dye and observed via microhysteroscopy, showing the patterns of endometrial glands and superficial cell changes during the midproliferative, periovulatory, and midluteal phases. These preliminary observations have allowed us to identify a series of changes occurring in the different phases of the ovulatory cycle of potential value in reproductive medicine for specific groups of infertile patients.
Improved panels for clinical immune phenotyping: Utilization of the violet laser.
Ryherd, Mark; Plassmeyer, Matthew; Alexander, Connor; Eugenio, Ines; Kleschenko, Yuliya; Badger, Ariel; Gupta, Raavi; Alpan, Oral; Sønder, Søren Ulrik
2017-05-10
Clinical diagnostic laboratories are subject to numerous regulations imposed by government agencies. Laboratory developed tests for flow cytometry panels are essentially restricted to the use of analyte-specific reagents (ASR) antibodies. With the advances in clinical flow cytometry systems, there is a trend toward the utilization of blue/red/violet laser flow systems and 8 to 10-color panels. Currently, the selection of commercially available ASR antibodies for the violet laser is very limited. The market is dominated by Brilliant Violet 421 (BV421) manufactured by BD Biosciences and Pacific Blue (PB) manufactured by Beckman Coulter. In this study, we compare BV421 and PB conjugated ASR antibodies. Whole blood was stained and acquired on a Gallios flow cytometer system. For single color staining, the stain index (SI) was calculated. For the two panels, the compensation matrix was calculated and the performance of the antibody cocktails analyzed in FCS Express. The results show that five out of six tested BV421 conjugated antibodies have significantly higher SI than their PB counterparts. Furthermore, BV421 antibodies require less compensation for spillover than PB. Finally, BV421 conjugated antibodies give better separation between negative and positive populations in the context of an 8 and 10 color panel without affecting the intensity of the other dyes. Overall, using BV421 conjugated antibodies results in better separation between populations compared to PB conjugated antibodies without negatively affecting other fluorochromes in our panels. We conclude that the BV421 conjugated ASR antibodies are currently the better available option for clinical flow panels. © 2017 International Clinical Cytometry Society. © 2017 International Clinical Cytometry Society.
40 CFR Appendix B to Part 414 - Complexed Metal-Bearing Waste Streams
Code of Federal Regulations, 2010 CFR
2010-07-01
..., metallized/Azo dye + metal acetate Direct dyes, Azo Disperse dyes, Azo and Vat Organic pigment Green 7/Copper phthalocyanine Organic pigments Organic pigments/Phthalocyanine pigments Organic pigments/Copper phthalocyanine (Blue Crude) Organic pigments, miscellaneous lakes and toners Lead Organic pigments, Quinacridines...
40 CFR Appendix B to Part 414 - Complexed Metal-Bearing Waste Streams
Code of Federal Regulations, 2011 CFR
2011-07-01
..., metallized/Azo dye + metal acetate Direct dyes, Azo Disperse dyes, Azo and Vat Organic pigment Green 7/Copper phthalocyanine Organic pigments Organic pigments/Phthalocyanine pigments Organic pigments/Copper phthalocyanine (Blue Crude) Organic pigments, miscellaneous lakes and toners Lead Organic pigments, Quinacridines...
Carbon composite lignin-based adsorbents for the adsorption of dyes.
Wang, Xiaohong; Jiang, Chenglong; Hou, Bingxia; Wang, Yingying; Hao, Chen; Wu, Jingbo
2018-05-10
Carbon composite lignin-based adsorbent were prepared through hydrothermal method with glucose as carbon source, calcium lignosulfonate and triethylene tetramine as raw materials, respectively. The optimum synthesis conditions were determined by investigating the addition of carbon and triethylene tetramine. The adsorbent was used for the adsorption of azo dyes Congo red and Eriochrome blue black R, and the five factors affecting the adsorption were discussed, including pH of dyes, initial concentration, adsorption time, adsorption temperature and adsorbent dosage. The corresponding adsorption mechanism such as pseudo first order kinetics, pseudo second order kinetics, intraparticle diffusion, Langmuir adsorption isotherm, Freundlich isotherm, Temkin isotherm, Dubinin-Radushkevich adsorption isotherm, thermodynamics were also studied. When the dye concentration is 40 mg L -1 , Congo red and Eriochrome blue black R dye removal rates reach 99%. Moreover, the adsorption process of two kinds of dyes follow the pseudo second order kinetics and the Langmuir adsorption isotherm. Copyright © 2018 Elsevier Ltd. All rights reserved.
Qu, Song; Huang, Fei; Yu, Shaoning; Chen, Gang; Kong, Jilie
2008-12-30
The Fe2O3 nanoparticles have been introduced into the multi-walled carbon nanotubes (MWCNTs) via wet chemical method. The resulting products are characterized by TEM, EDX, XRD and VSM. The magnetic MWCNTs have been employed as adsorbent for the magnetic separation of dye contaminants from water. The adsorption test of dyes (Methylene Blue and Neutral Red) demonstrates that it only takes 60min to attain equilibrium and the adsorption capacities for Methylene Blue and Neutral Red in the concentration range studied are 42.3 and 77.5mg/g, respectively. The magnetic MWCNTs can be easily manipulated in magnetic field for desired separation, leading to the removal of dyes from polluted water. The integration of MWCNTs with Fe2O3 nanoparticles has great potential application to remove organic dyes from polluted water.
Kozler, P; Pokorný, J
2003-01-01
The aim was to study the blood-brain permeability according to the distribution in the rat brain of Evans blue (EB) and sodium fluorescein (NaFl) administered by an intracarotid injection. Eighteen animals were divided into six groups according to the state of the blood-brain barrier (BBB) at the moment when the dyes were being applied. In the first two groups, the BBB was intact, in groups 3 and 4 the barrier had been opened osmotically prior to the application of the dyes, and in groups 5 and 6 a cellular edema was induced by hyperhydration before administration of the dyes. The intracellular and extracellular distribution of the dyes was studied by fluorescence microscopy. The histological picture thus represented the morphological correlate of the way BBB permeability had been changed before the application of the dyes.
2017-01-01
The removal of methylene blue (MB) dye from water was investigated using synthetic nano-clay magadiite (SNCM). SNCM was synthesized by a hydrothermal treatment under autogenous pressure. A rosette-shaped single mesoporous magadiite phase with 16.63 nm average crystallite size and 33 m2∙g−1 Braunauer-Emmet-Teller (BET)-surface area was recorded. The adsorption results indicated the pronounced affinity of the SNCM to the MB dye molecules, which reached an adsorption uptake of 20.0 mg MB dye/g of SNCM. The elimination of MB dye by the SNCM was kinetically and thermodynamically considered; a pseudo-second-order kinetic model was attained, and its spontaneous, chemical, and endothermic nature was verified. SNCM was shown to be robust without a detectable reduction in the adsorption capacity after up to four times re-use. PMID:28773120
Study on Photocatalytic Properties of TiO2 Nanoparticle in various pH condition
NASA Astrophysics Data System (ADS)
Nasikhudin; Diantoro, M.; Kusumaatmaja, A.; Triyana, K.
2018-04-01
Titanium dioxide has been widely studied for its ability to photocatalytic and applications have high performance for photovoltaic applications. In this paper TiO2 nanoparticle was investigated for the degradation of methylene blue under UV light in various pH condition. The TiO2 nanoparticle was characterized by SEM and XRD. The results showed that TiO2 nanoparticle has the structure of anatase and have a particle size of 27 nm. The photocatalytic activity of TiO2 nanoparticle show that the degradation of methylene blue under UV light have dye removal of 97% dye was degraded in 3 h, but the degradation of methylene blue without UV light have dye removal of 15% dye was degraded in 3 h. It indicated that The photocatalytic activity of TiO2 nanoparticle could occur if there the UV light. If not UV light the photocatalytic activity cannot occurs, the degradation of Methylene Blue 15% is not a photocatalytic activity but it is adsorption of Methylene Blue by TiO2 nanoparticle. The photocatalytic activity of TiO2 nanoparticle has pH-sensitive. The photocatalytic activity of TiO2 nanoparticle in acid condition (pH 4.1) is 40%, in neutral condition (pH 7.0) is 90%, and in base condition (pH 9.7) is 97%. The highest photocatalytic activity occurs in base condition, it causes in base condition OH- can be direct reaction with a hole to produce hydroxyl radical (OH*).
Albadarin, Ahmad B; Mangwandi, Chirangano
2015-12-01
The biosorption process of anionic dye Alizarin Red S (ARS) and cationic dye methylene blue (MB) as a function of contact time, initial concentration and solution pH onto olive stone (OS) biomass has been investigated. Equilibrium biosorption isotherms in single and binary systems and kinetics in batch mode were also examined. The kinetic data of the two dyes were better described by the pseudo second-order model. At low concentration, ARS dye appeared to follow a two-step diffusion process, while MB dye followed a three-step diffusion process. The biosorption experimental data for ARS and MB dyes were well suited to the Redlich-Peterson isotherm. The maximum biosorption of ARS dye, qmax = 16.10 mg/g, was obtained at pH 3.28 and the maximum biosorption of MB dye, qmax = 13.20 mg/g, was observed at basic pH values. In the binary system, it was indicated that the MB dye diffuses firstly inside the biosorbent particle and occupies the biosorption sites forming a monodentate complex and then the ARS dye enters and can only bind to untaken sites; forms a tridentate complex with OS active sites. Copyright © 2015 Elsevier Ltd. All rights reserved.
Tabaraki, Reza; Sadeghinejad, Negar
2017-06-01
Biosorption of Methyl Blue (MB), Fuchsin Acid (FA), Rhodamine B (RB), Methylene Blue (MEB), Bromocresol purple (BC) and Methyl Orange (MO) onto Sargassum ilicifolium was studied in a batch system. Effect of dye structure on biosorption by Sargassum ilicifolium was studied to define the correlation between chemical structure and biosorption capacity. Different dye groups such as triarylmethane (MB, FA and BC), monoazo (MO), thiazine (MEB) and xanthene (RB) were studied. At optimum experimental conditions for each dye, biosorption capacity was determined and compared. The results indicate that the chemical structure (triarylmethane, monoazo, thiazine, xanthene), number of sulfonic groups, basicity (element of chromophore group: S, N, O) and molecular weight of dye molecules influence their biosorption capacity. Experimental parameters such as biosorbent dose, pH, contact time, and initial dye concentration were optimized for each dye. The biosorption kinetic data were successfully described by the pseudo second-order model. The biosorption results were also analyzed by the Langmuir and Freundlich isotherms. Finally, biosorption capacities obtained using Sargassum ilicifolium were compared with the ones presented in the literature.
Fast photocatalytic degradation of methylene blue dye using a low-power diode laser.
Liu, Xianhua; Yang, Yulou; Shi, Xiaoxuan; Li, Kexun
2015-01-01
This study focused on the application of diode lasers as alternative light sources for the fast photocatalytic degradation of methylene blue. The photocatalytic decomposition of methylene blue in aqueous solution under 443 nm laser light irradiation was found to be technically feasible using Ag/AgCl nanoparticles as photocatalysts. The effects of various experimental parameters, such as irradiation time, light source, catalyst loading, initial dye concentration, pH, and laser energy on decolorization and degradation were investigated. The mineralization of methylene blue was confirmed by chemical oxygen demand analysis. The results demonstrate that the laser-induced photocatalytic process can effectively degrade methylene blue under the optimum conditions (pH 9.63, 4 mg/L MB concentration, and 1.4 g/L Ag/AgCl nanoparticles). Copyright © 2014 Elsevier B.V. All rights reserved.
Taheri, M; Alavi Moghaddam, M R; Arami, M
2013-10-15
In this research, Response Surface Methodology (RSM) and Adaptive Neuro Fuzzy Inference System (ANFIS) models were applied for optimization of Reactive Blue 19 removal using combined electrocoagulation/coagulation process through Multi-Objective Particle Swarm Optimization (MOPSO). By applying RSM, the effects of five independent parameters including applied current, reaction time, initial dye concentration, initial pH and dosage of Poly Aluminum Chloride were studied. According to the RSM results, all the independent parameters are equally important in dye removal efficiency. In addition, ANFIS was applied for dye removal efficiency and operating costs modeling. High R(2) values (≥85%) indicate that the predictions of RSM and ANFIS models are acceptable for both responses. ANFIS was also used in MOPSO for finding the best techno-economical Reactive Blue 19 elimination conditions according to RSM design. Through MOPSO and the selected ANFIS model, Minimum and maximum values of 58.27% and 99.67% dye removal efficiencies were obtained, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.
1984-10-10
41G-34-036 (5-13 Oct 1984) --- When in space, Space Shuttle astronauts experience 18-dawns to every one on terra firma. The crew of NASA's STS-41G mission captured these spectacular colors just prior to passing through one of those orbital dawns in October of 1984. The scene is over the Pacific Ocean, approximately 2,000 miles from Tokyo. The bands of color represent the various layers of aerosol which surround the planet. The brilliant red is the atmosphere; the overlap between red and blue is the stratosphere; the blue layer is the ionosphere. With increased altitude, the electrons and ions are reduced in number, leaving the vast blackness of space.
Sorption of hydrophilic dyes on anodic aluminium oxide films and application to pH sensing.
Silina, Yuliya E; Kuchmenko, Tatyana A; Volmer, Dietrich A
2015-02-07
The sorption of selected hydrophilic pH-sensitive dyes (bromophenol blue, bromothymol blue, bromocresol purple, alizarin red, methyl orange, congo red, rhodamine 6G) on films of anodized aluminium oxide (AAO) was investigated in this study. Depth and pore structure of the AAO channels were adjusted by changing electrolysis time and current density during treatment of aluminium foil in oxalic acid, sulfosalycilic acid and sulfuric acid at concentration levels between 0.2 and 0.6 M. The dyes were immobilized on the AAO surface by direct saturation of the films in dye solutions. It was shown by scanning electron microscopy and X-ray spectral analysis that the dyes penetrated into the AAO channels by more than 1.5 μm, even at static saturation conditions. The anionic dyes linked to the porous AAO surface exhibited differential shifts of the UV absorption bands in their acidic/basic forms. By combining several dyes, the films have an application range between pH = 0.5-9 in aqueous media. The dye-modified AAO film was a simple, portable, inexpensive and reusable pH sensor with very fast response time and clear colour transitions.
Metachromasy: An Experimental and Theoretical Reevaluation
Bergeron, John A.; Singer, Marcus
1958-01-01
Non-chromotropic substances such as fibrin and gelatin and most tissue and cellular structures stain orthochromatically with internal dye concentrations of such metachromatic dyes as methylene blue and toluidine blue which, if in solution, would be metachromatic. Therefore, at ordinary levels of staining these substances depress the natural tendency of these dyes to change color. However, at elevated levels of dye-binding metachromasy eventually occurs. This phenomenon is explained on the basis of the distribution of dye-binding sites. In these substrates, by contrast with chromotropic substances, many binding sites are too far removed for dye interaction, consequently the interaction frequency can become high enough to produce a color change only as saturation of the available sites is approached. It is also shown that the destruction of color is a characteristic of metachromasy and that water molecules intercalated between approximated dye ions are responsible for the loss and change of color. A concept of metachromasy is proposed in which the interaction between water molecules and suitably approximated dye ions plays an essential role. The experimental studies are described against a background of the history and evolution of ideas on metachromasy. The literature is reviewed and reassessed particularly from the physicochemical viewpoint. PMID:13563551
Homogenous and heterogenous advanced oxidation of two commercial reactive dyes.
Balcioglu, I A; Arslan, I; Sacan, M T
2001-07-01
Two commercial reactive dyes, the azo dye Reactive Black 5 and the copper phythalocyanine dye Reactive Blue 21, have been treated at a concentration of 75 mg l(-1) by titanium dioxide mediated photocatalytic (TiO2/UV), dark and UV-light assisted Fenton (Fe2+/H2O2) and Fenton-like (Fe3+/H2O2) processes in acidic medium. For the treatment of Reactive Black 5, all investigated advanced oxidation processes were quite effective in terms of colour, COD as well as TOC removal. Moreover, the relative growth inhibition of the azo dye towards the marine algae Dunaliella tertiolecta that was initially 70%, did not exhibit an increase during the studied advanced oxidation reactions and complete detoxification at the end of the treatment period could be achieved for all investigated treatment processes. However, for Reactive Blue 21, abatement in COD and UV-VIS absorbance values was mainly due to the adsorption of the dye on the photocatalyst surface and/or the coagulative effect of Fe3+/Fe2+ ions. Although only a limited fraction of the copper phythalocyanine dye underwent oxidative degradation, 47% of the total copper in the dye was already released after 1 h photocatalytic treatment.
[Degradation of anthraquinone blue by Trametes trogii].
Levin, L; Jordan, A; Forchiassin, F; Viale, A
2001-01-01
The ability of the white rot fungus Trametes trogii BAFC 463 (high producer of ligninolytic enzymes, especially laccase and manganese peroxidase) to degrade the dye anthraquinone blue, refractory to bacterial attack, was evaluated. Both tropho- and idiophasic T. trogii cultures in synthetic medium (glucose/asparagine) and complex medium (malt extract/glucose) were able to transform up to 88% dye in 4 hours. The activity of laccase, an oxygen-dependent phenoloxidase which was present at high levels in all the conditions assayed, might be related to the ability of the fungus to degrade the colorant. This is supported by the fact that in bioreactor experiences carried out at pH 4.5 the addition of anthraquinone blue caused a decrease in the levels of soluble oxygen. However, although high levels of laccase were produced at pH 7.5, the enzyme was not active, and neither dye transformation nor loss in the levels of soluble oxygen were quantified.
Doke, Suresh M; Yadav, Ganapati D
2014-12-01
In this study, titania nanoparticles were synthesized by combustion and used to make ultrafiltration membrane. Characteristics of titania membranes such as textural evaluation, surface morphology, pure water permeability and protein rejection were investigated. Titania membrane sintered at 450 °C showed pure water permeability 11 × 10−2 L h−1 m−2 kPa−1 and 76% protein rejection. The membrane presented good water flux and retention properties with regards to protein and methylene blue dye. Ultrafiltration process was operated at lower pressure (100 kPa) and showed 99% removal of methylene blue using adsorptive micellar flocculation at sodium dodecyl sulfate concentration below its critical micellar concentration. Ferric chloride was used as the coagulant. The method of making titania membrane and its use are new. These studies can be extended to other dyes and pollutants.
Solar-Pumping Upconversion of Interfacial Coordination Nanoparticles.
Ishii, Ayumi; Hasegawa, Miki
2017-01-30
An interfacial coordination nanoparticle successfully exhibited an upconversion blue emission excited by very low-power light irradiation, such as sunlight. The interfacial complex was composed of Yb ions and indigo dye, which formed a nano-ordered thin shell layer on a Tm 2 O 3 nanoparticle. At the surface of the Tm 2 O 3 particle, the indigo dye can be excited by non-laser excitation at 640 nm, following the intramolecular energy transfer from the indigo dye to the Yb ions. Additionally, the excitation energy of the Yb ion was upconverted to the blue emission of the Tm ion at 475 nm. This upconversion blue emission was achieved by excitation with a CW Xe lamp at an excitation power of 0.14 mW/cm 2 , which is significantly lower than the solar irradiation power of 1.4 mW/cm 2 at 640 ± 5 nm.
Facile synthesis of microporous SiO2/triangular Ag composite nanostructures for photocatalysis
NASA Astrophysics Data System (ADS)
Sirohi, Sidhharth; Singh, Anandpreet; Dagar, Chakit; Saini, Gajender; Pani, Balaram; Nain, Ratyakshi
2017-11-01
In this article, we present a novel fabrication of microporous SiO2/triangular Ag nanoparticles for dye (methylene blue) adsorption and plasmon-mediated degradation. Microporous SiO2 nanoparticles with pore size <2 nm were synthesized using cetyltrimethylammonium bromide as a structure-directing agent and functionalized with APTMS ((3-aminopropyl) trimethoxysilane) to introduce amine groups. Amine-functionalized microporous silica was used for adsorption of triangular silver (Ag) nanoparticles. The synthesized microporous SiO2 nanostructures were investigated for adsorption of different dyes including methylene blue, congo red, direct green 26 and curcumin crystalline. Amine-functionalized microporous SiO2/triangular Ag nanostructures were used for plasmon-mediated photocatalysis of methylene blue. The experimental results revealed that the large surface area of microporous silica facilitated adsorption of dye. Triangular Ag nanoparticles, due to their better charge carrier generation and enhanced surface plasmon resonance, further enhanced the photocatalysis performance.
Abbaci, Muriel; Casiraghi, Odile; Temam, Stephane; Ferchiou, Malek; Bosq, Jacques; Dartigues, Peggy; De Leeuw, Frederic; Breuskin, Ingrid; Laplace-Builhé, Corinne
2015-11-01
Primary upper aerodigestive tract malignancy remains a cancer having a poor prognosis, despite current progress in treatment, due to a generally late diagnosis. We conducted a preliminary assessment of five dyes approved for human use for the imaging of head and neck tissues at the cellular level, which could be considered for clinical examination. We investigated fluorescence endomicroscopic images on fresh samples obtained from head and neck surgeries after staining with hypericin, methylene blue, toluidine blue, patent blue or indocyanine green to provide a preliminary consideration as to whether these images contain enough information for identification of non-pathologic and pathologic tissues. The distribution pattern of dye has been examined using probe-based confocal laser endomicroscopy (pCLE) in ex vivo specimens and compared with corresponding histology. In most samples, the image quality provided by pCLE with both dyes allowed pathologists to recognize histological characteristics to identify the tissues. The combination of pCLE imaging with these dyes provides interpretable images close to conventional histology; a promising clinical tool to assist physicians in examination of upper aerodigestive tract, as long as depth imaging issues can be overcome. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Erpelding, Todd N.; Kim, Chulhong; Pramanik, Manojit; Guo, Zijian; Dean, John; Jankovic, Ladislav; Maslov, Konstantin; Wang, Lihong V.
2010-02-01
Sentinel lymph node biopsy (SLNB) has become the standard method for axillary staging in breast cancer patients, relying on invasive identification of sentinel lymph nodes (SLNs) following injection of blue dye and radioactive tracers. While SLNB achieves a low false negative rate (5-10%), it is an invasive procedure requiring ionizing radiation. As an alternative to SLNB, ultrasound-guided fine needle aspiration biopsy has been tested clinically. However, ultrasound alone is unable to accurately identify which lymph nodes are sentinel. Therefore, a non-ionizing and noninvasive detection method for accurate SLN mapping is needed. In this study, we successfully imaged methylene blue dye accumulation in vivo in rat axillary lymph nodes using a Phillips iU22 ultrasound imaging system adapted for photoacoustic imaging with an Nd:YAG pumped, tunable dye laser. Photoacoustic images of rat SLNs clearly identify methylene blue dye accumulation within minutes following intradermal dye injection and co-registered photoacoustic/ultrasound images illustrate lymph node position relative to surrounding anatomy. To investigate clinical translation, the imaging depth was extended up to 2.5 cm by adding chicken breast tissue on top of the rat skin surface. These results raise confidence that photoacoustic imaging can be used clinically for accurate, noninvasive SLN mapping.
Zhao, Rui; Wang, Yong; Li, Xiang; Sun, Bolun; Jiang, Ziqiao; Wang, Ce
2015-12-01
A novel water-insoluble sericin/β-cyclodextrin/poly (vinyl alcohol) composite nanofiber adsorbent was prepared by electrospinning and followed by thermal crosslinking for removal of cationic dye methylene blue from aqueous solution. Fourier transform infrared spectroscopy and solubility experiments confirmed that sericin and β-cyclodextrin were incorporated into the nanofibers and the crosslinking reaction occurred successfully. Kinetics, isotherms and thermodynamics analysis were studied for adsorption of methylene blue. The adsorption process is better fitted with the pseudo-second-order model and Langmuir isotherm model. The maximum adsorption capacities are 187.97, 229.89, and 261.10mg/g at the temperatures 293, 313 and 333 K, respectively. Thermodynamic parameters showed that methylene blue adsorption was endothermic and spontaneous. In addition, the fiber membrane adsorbent could be easily separated from dye solution and showed high recyclable removal efficiency. All these results suggest that crosslinked sericin/β-cyclodextrin/poly(vinyl alcohol) composite nanofibers could be potential recyclable adsorbents in dye wastewater treatment. Copyright © 2015 Elsevier B.V. All rights reserved.
[Allergic reaction to patent blue dye in breast surgery - case report].
Maranhão, Marcius Vinícius M; Nóbrega, Dyluzia Kelly Amaral da; Anunciação, Carlos Eduardo Caiado; Maia, Barbara de Alcântara Brito; Mariano, Paulo Virgílio Dantas
2016-01-01
We present a case of allergic reaction to patent blue in a patient who underwent excision of sentinel lymph node associated with segmental breast resection. About 20minutes after the dye injection, the patient developed hypotension (BP=70×30mmHg) associated with increased heart frequency. The patient was treated successfully with decreased inspired fraction of inhaled anesthetic and fluid replacement. At the end of the procedure, she presented with bluish urticarial - like plaques on the head, neck, upper limbs, and trunk; hydrocortisone was then used. The patient recovered uneventfully and was discharged from the PACU two hours after the end of surgery without skin changes, and was discharged from hospital on the morning after surgery. The incidence of allergic reactions with the use of patent blue is far superior to the hypersensitivity reactions seen with anesthetic and adjuvant drugs. Therefore, the anesthesiologist must be aware of cardiovascular instability associated with skin changes during the use of patent blue, for early diagnosis and appropriate treatment of this hypersensitivity reaction to this dye. Copyright © 2014 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.
Allergic reaction to patent blue dye in breast surgery - case report.
Maranhão, Marcius Vinícius M; da Nóbrega, Dyluzia Kelly Amaral; Anunciação, Carlos Eduardo Caiado; Maia, Barbara de Alcântara Brito; Mariano, Paulo Virgílio Dantas
2016-01-01
We present a case of allergic reaction to patent blue in a patient who underwent excision of sentinel lymph node associated with segmental breast resection. About 20min after the dye injection, the patient developed hypotension (BP=70×30mmHg) associated with increased heart frequency. The patient was treated successfully with decreased inspired fraction of inhaled anesthetic and fluid replacement. At the end of the procedure, she presented with bluish urticarial-like plaques on the head, neck, upper limbs, and trunk; hydrocortisone was then used. The patient recovered uneventfully and was discharged from the PACU 2h after the end of surgery without skin changes, and was discharged from hospital on the morning after surgery. The incidence of allergic reactions with the use of patent blue is far superior to the hypersensitivity reactions seen with anesthetic and adjuvant drugs. Therefore, the anesthesiologist must be aware of cardiovascular instability associated with skin changes during the use of patent blue, for early diagnosis and appropriate treatment of this hypersensitivity reaction to this dye. Copyright © 2014 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.
Chromatic shifts in the fluorescence emitted by murine thymocytes stained with Hoechst 33342.
Petersen, Timothy W; Ibrahim, Sherrif F; Diercks, Alan H; van den Engh, Ger
2004-08-01
Many methods in flow cytometry rely on staining DNA with a fluorescent dye to gauge DNA content. From the relative intensity of the fluorescence signature, one can then infer position in cell cycle, amount of DNA (i.e., for sperm selection), or, as in the case of flow karyotyping, to distinguish individual chromosomes. This work examines the staining of murine thymocytes with a common DNA dye, Hoechst 33342, to investigate nonlinearities in the florescence intensity as well as chromatic shifts. Murine thymocytes were stained with Hoechst 33342 and measured in a flow cytometer at two fluorescence emission bands. In other measurements, cells were stained at different dye concentrations, and then centrifuged. The supernatant was then used for a second round of staining to test the amount of dye uptake. Finally, to test for resonant energy transfer, we measured fluorescence anisotropy at two different wavelengths. The fluorescence of cells stained with Hoechst 33342 is a nonlinear process that shows an overall decrease in intensity with increased dye uptake, and spectral shift to the red. Along with the spectral shift of the fluorescence to the longer wavelengths, we document decreases in the fluorescence anisotropy that may indicate resonant energy transfer. At low concentrations, Hoechst 33342 binds to the minor groove of DNA and shows an increase in fluorescence and a blue shift upon binding. At higher concentrations, at which the dye molecules can no longer bind without overlapping, the blue fluorescence decreases and the red fluorescence increases until there is approximately one dye molecule per DNA base pair. The ratio of the blue fluorescence to the red fluorescence is an accurate indicator of the cellular dye concentration.
NASA Astrophysics Data System (ADS)
Afzali Nezhad, Ali; Alimoradi, Mohammad; Ramezani, Majid
2018-02-01
Herein, we report a novel one-step strategy to construct magnetic nanocomposite (polypyrrole/GO@Fe3O4) via a simple and effective chemical method. First, the GO nanosheets were fabricated through modified Hummers method, and then, the Fe3O4 nanoparticles and polypyrrole were decorated on surface of the GO nanosheets by coprecipitation of ferrous salts and pyrrole monomer in GO suspension. The ferric chloride could act both as oxidizing agent and also for preparation of magnetic Fe3O4 nanoparticles. The prepared nanomaterials were characterized by transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), Fourier-transform infrared spectroscopy, x-ray diffraction, and TGA measurements. The prepared magnetic nanocomposite had a much higher thermal stability than pure graphene oxide. The magnetic nanocomposite has been employed as adsorbent for the magnetic separation of Methylene Blue dye from water. The adsorption test of Methylene Blue (MB) demonstrates that it only takes few minutes for MB to attain equilibrium. The effect of experimental conditions such as contact time and pH as well as kinetic and isotherm of adsorption of MB dye was also studied. The highest adsorption capacity for MB was 323.2 mg g-1. The pH optimization experiments showed that pH = 8 is optimum pH for investigation of MB dye adsorption. It is also must be mentioned that most of adsorption of MB dye achieved within first 10 min of exposure to MB dye which indicated the strong interaction between dye molecules and adsorbent and high rate of adsorption of dye on magnetic nanocomposite. Adsorption procedure of dye were fitted well by pseudo-second-order kinetic and Langmuir isotherm models. The cycling reusability of magnetic nanocomposite showed comparable values to other studies. Results showed that the prepared new magnetic nanocomposite has great potential application for removal of organic dyes from polluted water.
[The decolorization and biodegrading metabolism of azo dyes by Pseudomonas S-42].
Liu, Z P; Yang, H F
1989-12-01
Pseudomonas S-42 was capable of decolorizing azo dyes such as Diamira Brilliant Orange RR(DBO-RR), Direct Brown M (DBM), Eriochrome Brown R(EBR) and so on. The cell suspension, cell-free extract and purified enzyme of Pseud. S-42 could decolorize azo dyes under similar conditions: the optimum pH and temperature laid 7.0 and 37 degrees C respectively. The efficiencies of decolorizing of DBO-RR, DBM, EBR by intact cells stood more than 90%. When the cell concentration was 15 mg(wet)/ml and the reaction time was 5 hours, the decolorizing activity for above three azo dyes by intact cells were 1.75, 2.4, 0.95 micrograms dye/mg cell, respectively. Cell-free extract and purified enzyme could well express the decolorizing activity only under the anaerobic condition and added NADH. Purified enzyme belongs to azoreductase, its molecular weight is about 34,000-2000 daltons, and its Vmax and Km for DBO-RR are 13 mumol.mg protein-1.min-1 and 54 mumol/L. The results of the detection of the biodegrading products of DBO-RR by spectrophotometric and NaNO2 reactional methods showed that the biodegradation of azo dyes was initiated by the reduction cleavage of azo bonds. It was hypothesized that biodegrading metabolism pathway of DBO-RR by Pseudomonas S-42.
Riond, B; Steffen, F; Schmied, O; Hofmann-Lehmann, R; Lutz, H
2014-03-01
In veterinary clinical laboratories, qualitative tests for total protein measurement in canine cerebrospinal fluid (CSF) have been replaced by quantitative methods, which can be divided into dye-binding assays and turbidimetric methods. There is a lack of validation data and reference intervals (RIs) for these assays. The aim of the present study was to assess agreement between the turbidimetric benzethonium chloride method and 2 dye-binding methods (Pyrogallol Red-Molybdate method [PRM], Coomassie Brilliant Blue [CBB] technique) for measurement of total protein concentration in canine CSF. Furthermore, RIs were determined for all 3 methods using an indirect a posteriori method. For assay comparison, a total of 118 canine CSF specimens were analyzed. For RIs calculation, clinical records of 401 canine patients with normal CSF analysis were studied and classified according to their final diagnosis in pathologic and nonpathologic values. The turbidimetric assay showed excellent agreement with the PRM assay (mean bias 0.003 g/L [-0.26-0.27]). The CBB method generally showed higher total protein values than the turbidimetric assay and the PRM assay (mean bias -0.14 g/L for turbidimetric and PRM assay). From 90 of 401 canine patients, nonparametric reference intervals (2.5%, 97.5% quantile) were calculated (turbidimetric assay and PRM method: 0.08-0.35 g/L (90% CI: 0.07-0.08/0.33-0.39); CBB method: 0.17-0.55 g/L (90% CI: 0.16-0.18/0.52-0.61). Total protein concentration in canine CSF specimens remained stable for up to 6 months of storage at -80°C. Due to variations among methods, RIs for total protein concentration in canine CSF have to be calculated for each method. The a posteriori method of RIs calculation described here should encourage other veterinary laboratories to establish RIs that are laboratory-specific. ©2014 American Society for Veterinary Clinical Pathology and European Society for Veterinary Clinical Pathology.
NASA Astrophysics Data System (ADS)
Volkmann, Till; Haberer, Kristine; Gessler, Arthur; Weiler, Markus
2014-05-01
The predicted changes of climate and land-use could have drastic effects on the water balance of ecosystems, particularly under frequent drought and subsequent rewetting conditions. Yet, inference of these effects and related consequences for the structure and functioning of ecosystems, groundwater recharge, leaching of nutrients and pollutants, drinking water availability, and the water cycle is currently impeded by gaps in our understanding of the manifold interactions between vegetation and soil water dynamics. While plants require water and nutrients, they also exert, for instance, important below-ground controls on the distribution and movement of water and chemicals in the rooted soil horizons via uptake and redistribution of water, modification of soil hydraulic properties, and formation of conduits for rapid preferential water flow. This work aims to contribute to fill existing gaps by assessing the effects of different plant types and their rooting systems on the soil water dynamics. Therefore, we conducted artificial drought and subsequent rewetting experiments using isotopically and dye (Brilliant Blue FCF) labeled water on plots of various surface cover (bare soil, grass, beech, oak, vine) established on relatively homogeneous luvisol on loess in southwestern Germany. Detailed insight into the short-term dynamics of event water infiltration and root uptake during the field experiments was facilitated by the application of novel techniques for high-frequency in-situ monitoring of stable isotope signatures in pore and transpiration water using commercial laser-based spectrometers, augmenting conventional observations of soil physicochemical states (soil water content, matric potential, electrical conductivity). The temporal point information is complemented by dye staining profiles, providing a detailed picture of spatial infiltration patterns, and by root density observations. The results of the experiments allow for a comprehensive spatiotemporal characterization of the effects of differing vegetation cover and rooting systems on infiltration, preferential flow path characteristics, and water storage in the rooted soil horizons. This will contribute to an improved ability to estimate environmental change impacts on the fate of water, nutrients, and pollutants in this critical zone and associated feedbacks within the soil-vegetation-atmosphere system.
Zhao, Yongbiao; Chen, Jiangshan; Ma, Dongge
2013-02-01
In this paper, highly efficient and simple monochrome blue, green, orange, and red organic light emitting diodes (OLEDs) based on ultrathin nondoped emissive layers (EMLs) have been reported. The ultrathin nondoped EML was constructed by introducing a 0.1 nm thin layer of pure phosphorescent dyes between a hole transporting layer and an electron transporting layer. The maximum external quantum efficiencies (EQEs) reached 17.1%, 20.9%, 17.3%, and 19.2% for blue, green, orange, and red monochrome OLEDs, respectively, indicating the universality of the ultrathin nondoped EML for most phosphorescent dyes. On the basis of this, simple white OLED structures are also demonstrated. The demonstrated complementary blue/orange, three primary blue/green/red, and four color blue/green/orange/red white OLEDs show high efficiency and good white emission, indicating the advantage of ultrathin nondoped EMLs on constructing simple and efficient white OLEDs.
Gumus, Metehan; Gumus, Hatice; Jones, Sue E; Jones, Peter A; Sever, Ali R; Weeks, Jennifer
2013-01-01
Summary Background Blue dye used for sentinel lymph node biopsy (SLNB) in breast cancer patients may cause prolonged skin discoloration at the site of injection. The aim of this study was to assess the duration of such skin discoloration. Patients and Methods 236 consecutive patients who had undergone breast conserving surgery and SLNB for breast cancer were reviewed prospectively from January 2007 to December 2009. Results Of the 236 patients, 2 had undergone bilateral surgery, and 41 had been examined in consecutive yearly reviews. Blue discoloration remained visible at the injection site after 12, 24, and > 36 months in 36.5, 23.6, and 8.6% of the patients, respectively. Conclusion The use of patent blue for identification of the sentinel lymph node in patients undergoing breast cancer surgery may result in prolonged discoloration of the skin at the injection site. PMID:24415970
Lang, Weeranuch; Sirisansaneeyakul, Sarote; Martins, Lígia O; Ngiwsara, Lukana; Sakairi, Nobuo; Pathom-aree, Wasu; Okuyama, Masayuki; Mori, Haruhide; Kimura, Atsuo
2014-01-01
This study reports the characterization of the ability of Dermacoccus spp. isolated from the deepest point of the world's oceans for azo dye decolorization. A detailed investigation of Dermacoccus abyssi MT1.1(T) with respect to the azoreductase activity and enzymatic mechanism as well as the potential role of the bacterial strain for biocleaning of industrial dye baths is reported. Resting cells with oxygen-insensitive azoreductase resulted in the rapid decolorization of the polysulfonated dye Brilliant Black BN (BBN) which is a common food colorant. The highest specific decolorization rate (vs) was found at 50 °C with a moderately thermal tolerance for over 1 h. Kinetic analysis showed the high rates and strong affinity of the enzymatic system for the dye with a Vmax = 137 mg/g cell/h and a Km = 19 mg/L. The degradation of BBN produces an initial orange intermediate, 8-amino-5-((4-sulfonatophenyl)diazenyl)naphthalene-2-sulfonic acid, identified by mass spectrometry which is later converted to 4-aminobenzene sulfonic acid. Nearly 80% of the maximum vs is possible achieved in resting cell treatment with the salinity increased up to 5.0% NaCl in reaction media. Therefore, this bacterial system has potential for dye decolorization bioprocesses occurring at high temperature and salt concentrations e.g. for cleaning dye-containing saline wastewaters. Copyright © 2013 Elsevier Ltd. All rights reserved.
Martínez-Palones, José M; Gil-Moreno, Antonio; Pérez-Benavente, María A; Roca, Isabel; Xercavins, Jordi
2004-03-01
We investigated the feasibility of sentinel lymph node identification using radioisotopic lymphatic mapping with technetium-99m-labeled human serum albumin and isosulfan blue dye injection in patients undergoing radical hysterectomy with pelvic lymphadenectomy for treatment of early cervical cancer. Between September 2000 and October 2002, 25 patients with cervical cancer FIGO stage I (n=24) or stage II (n=1) underwent sentinel lymph node detection with preoperative lymphoscintigraphy (technetium-99m colloid albumin injection around the tumor) and intraoperative lymphatic mapping with blue dye and a handheld or laparoscopic gamma probe. Complete pelvic or paraaortic lymphadenectomy was performed in all cases by open surgery or laparoscopic surgery. In 23 evaluable patients, a total of 51 sentinel lymph nodes were detected by lymphoscintigraphy (mean 2.21 nodes per patient). Intraoperatively, 61 sentinel lymph nodes were identified, with a mean of 2.52 nodes per patient by gamma probe and a mean of 1.94 nodes per patient after isosulfan blue injection. Forty percent of sentinel nodes were found in the interiliac region and 25% in the external iliac area. Microscopic nodal metastases (four nodes) were confirmed in 12% of cases. All these lymph nodes were previously detected as sentinel lymph nodes. The remaining 419 nodes after pelvic lymphadenectomy were histologically negative. Sentinel lymph node identification with technetium-99m-labeled nanocolloid combined with blue dye injection is feasible and showed a 100% negative predictive value, and potentially identified women in whom lymph node dissection can be avoided.
Fu, Jie; Wen, Teng; Wang, Qing; Zhang, Xue-Wei; Zeng, Qing-Fu; An, Shu-Qing; Zhu, Hai-Liang
2010-06-01
Degradation of Active Brilliant Red X-3B (X-3B) in aqueous solution by a microwave discharge electrodeless lamp (MDEL) in the presence of activated carbon was investigated. The preliminary results proved this method could effectively degrade X-3B in aqueous solution. The removal percentages of colour and chemical oxygen demand were up to approximately 99% and 66%, respectively, at the conditions of 0.8 g/L dye concentration, 20 g/L activated carbon, pH 7.0 and 8 min microwave irradiation time. The degradation basically belonged to first-order reaction kinetics and its rate constant was 0.42 min(-1). No aromatic organics were detected in the final treated solution, indicating that the mineralization was relatively complete. By studying the change in solution properties, it could be concluded that MDEL-assisted oxidation was the dominant reaction mechanism. In addition, the influence of operational parameters and reuse of activated carbon were also discussed.
Textile dye decolorization using cyanobacteria.
Parikh, Amit; Madamwar, Datta
2005-03-01
Cyanobacterial cultures isolated from sites polluted by industrial textile effluents were screened for their ability to decolorize cyclic azo dyes. Gloeocapsa pleurocapsoides and Phormidium ceylanicum decolorized Acid Red 97 and FF Sky Blue dyes by more than 80% after 26 days. Chroococcus minutus was the only culture which decolorized Amido Black 10B (55%). Chlorophyll a synthesis in all cultures was strongly inhibited by the dyes. Visible spectroscopy and TLC confirmed that color removal was due to degradation of the dyes.
Manousaridis, Kleanthis; Peter, Silvia; Mennel, Stefan
2016-06-01
To compare the anatomical and visual outcomes of 20 gauge (g) pars plana vitrectomy (PPV) with indocyanine green (ICG)-assisted internal limiting membrane (ILM) peeling and 23 g PPV with brilliant blue G (BBG)-assisted ILM peeling for idiopathic epiretinal membrane (ERM). 38 eyes of 38 patients with idiopathic ERM were included. They were divided in two groups: group 1 (18 eyes) underwent 20 g PPV with ICG-assisted ILM peeling and group 2 (20 eyes) 23 g PPV with BBG-assisted ILM peeling. Postoperative best-corrected visual acuity (BCVA) and central macular thickness (CMT) were compared. Average BCVA in group 1 improved significantly from 0.60 logarithm of the minimal angle of resolution (log MAR) at baseline to 0.3 log MAR postoperatively. Average BCVA in group 2 improved significantly from 0.60 log MAR at baseline to 0.3 log MAR postoperatively. Mean CMT reduced significantly from 473 to 375 μm in group 1 and from 486 to 396 μm in group 2. There were no significant differences in the BCVA and CMT between the groups. Both surgical methods appeared to be safe and provided similar anatomical and visual outcomes.
Notomi, Shoji; Hisatomi, Toshio; Kanemaru, Takaaki; Takeda, Atsunobu; Ikeda, Yasuhiro; Enaida, Hiroshi; Kroemer, Guido; Ishibashi, Tatsuro
2011-01-01
Stressed cells release ATP, which participates in neurodegenerative processes through the specific ligation of P2RX7 purinergic receptors. Here, we demonstrate that extracellular ATP and the more specific P2RX7 agonist, 2′- and 3′-O-(4-benzoylbenzoyl)-ATP, both induce photoreceptor cell death when added to primary retinal cell cultures or when injected into the eyes from wild-type mice, but not into the eyes from P2RX7−/− mice. Photoreceptor cell death was accompanied by the activation of caspase-8 and -9, translocation of apoptosis-inducing factor from mitochondria to nuclei, and TUNEL-detectable chromatin fragmentation. All hallmarks of photoreceptor apoptosis were prevented by premedication or co-application of Brilliant Blue G, a selective P2RX7 antagonist that is already approved for the staining of internal limiting membranes during ocular surgery. ATP release is up-regulated by nutrient starvation in primary retinal cell cultures and seems to be an initializing event that triggers primary and/or secondary cell death via the positive feedback loop on P2RX7. Our results encourage the potential application of Brilliant Blue G as a novel neuroprotective agent in retinal diseases or similar neurodegenerative pathologies linked to excessive extracellular ATP. PMID:21983632
FTIR Spectroscopy Applied in Remazol Blue Dye Oxidation by Laccases
NASA Astrophysics Data System (ADS)
Juárez-Hernández, J.; Zavala-Soto, M. E.; Bibbins-Martínez, M.; Delgado-Macuil, R.; Díaz-Godinez, G.; Rojas-López, M.
2008-04-01
We have used FTIR with attenuated total reflectance (ATR) technique to analyze the decolourization process of Remazol Blue dye (RB19) caused by the oxidative activity of laccase enzyme. It is known that laccases catalyze the oxidation of a large range of phenolic compounds and aromatic amines carrying out one-electron oxidations, although also radicals could be formed which undergo subsequent nonenzymatic reactions. The enzyme laccase is a copper-containing polyphenol oxidase (EC 1.10.3.2) which has been tested as a potential alternative in detoxification of environmental pollutants such as dyes present in wastewaters generated for the textile industry. In order to ensure degradation or avoid formation of toxic compounds it is important to establish the mechanism by which laccase oxidizes dyes. In this research individual ATR-FTIR spectra have been recorded for several reaction times between 0 to 236 hours, and the temporal dependence of the reaction was analyzed through the relative diminution of the intensity of the infrared band at 1127 cm-1 (associated to C-N vibration), with respect to the intensity of the band at 1104 cm-1 (associated to S = O) from sulphoxide group. Decolourization process of this dye by laccase could be attributed to its accessibility on the secondary amino group, which is a potential point of attack of laccases, abstracting the hydrogen atom. This decolourization process of remazol blue dye by laccase enzyme might in a future replace the traditionally high chemical, energy and water consuming textile operations.
Wawrzkiewicz, Monika; Bartczak, Przemysław; Jesionowski, Teofil
2017-06-01
A new biomaterial based on chitin and lignin was prepared and applied for the removal of hazardous dye C.I. Direct Blue 71 (DB71) from aqueous solutions and wastewaters. The dye sorption on the chitin/lignin biosorbent (Ch/L) was examined depending on the initial dye concentration (50-200mg/L), phase contact time (1-1440min), kind of auxiliaries (NaCl, Na 2 SO 4 , anionic surfactant SDS) and their concentrations (1-20g/L salts, 0.1-0.75g/L SDS), initial solution pH as well as temperature (20-50°C). The equilibrium and kinetic characteristics of C.I. Direct Blue 71 uptake by chitin/lignin followed by the Freundlich isotherm model and the pseudo-second order model rather than the Langmuir, Tempkin models, and pseudo-first order model. C.I. Direct Blue 71 adsorption on chitin/lignin was spontaneous (-2.86 to -8.14kJ/mol) and endothermic (60.1kJ/mol). The possibilities of dye elution and reuse by means of the batch method were investigated and as follows the chemical reaction is an inseparable sorption mechanism. Purification of wastewaters containing direct dyes was made with 91% efficiency after 1h of phase contact time. For comparison, data obtained or obtained results in the DB71-chitin (Ch) system were also presented. Copyright © 2017 Elsevier B.V. All rights reserved.
Almazán-Sánchez, Perla Tatiana; Solache-Ríos, Marcos J; Linares-Hernández, Ivonne; Martínez-Miranda, Verónica
2016-01-01
Indigo blue dye is mainly used in dyeing of denim clothes and its presence in water bodies could have adverse effects on the aquatic system; for this reason, the objective of this study was to promote the removal of indigo blue dye from aqueous solutions by iron and copper electrochemically modified clay and activated carbon and the saturated materials were regenerated by a Fenton-like process. Montmorillonite clay was modified at pH 2 and 7; activated carbon at pH 2 and pH of the system. The elemental X-ray dispersive spectroscopy analysis showed that the optimum pH for modification of montmorillonite with iron and copper was 7 and for activated carbon was 2. The dye used in this work was characterized by infrared. Unmodified and modified clay samples showed the highest removal efficiencies of the dye (90-100%) in the pH interval from 2 to 10 whereas the removal efficiencies decrease as pH increases for samples modified at pH 2. Unmodified clay and copper-modified activated carbon at pH 2 were the most efficient activated materials for the removal of the dye. The adsorption kinetics data of all materials were best adjusted to the pseudo-second-order model, indicating a chemisorption mechanism and the adsorption isotherms data showed that the materials have a heterogeneous surface. The iron-modified clay could be regenerated by a photo-Fenton-like process through four adsorption-regeneration cycles, with 90% removal efficiency.
Khosravi, Morteza; Arabi, Simin
In this study, iron zero-valent nanoparticles were synthesized, characterized and studied for removal of methylene blue dye in water solution. The reactions were mathematically described as the function of parameters such as nano zero-valent iron (NZVI) dose, pH, contact time and initial dye concentration, and were modeled by the use of response surface methodology. These experiments were carried out as a central composite design consisting of 30 experiments determined by the 2(4) full factorial designs with eight axial points and six center points. The results revealed that the optimal conditions for dye removal were NZVI dose 0.1-0.9 g/L, pH 3-11, contact time 20-100 s, and initial dye concentration 10-50 mg/L, respectively. Under these optimal values of process parameters, the dye removal efficiency of 92.87% was observed, which very close to the experimental value (92.21%) in batch experiment. In the optimization, R(2) and R(2)adj correlation coefficients for the model were evaluated as 0.96 and 0.93, respectively.
Pai, Sudipta; Das, Mili; Banerjee, Rahul; Dasgupta, Dipak
2011-08-01
T7 RNA polymerase (T7 RNAP) is an enzyme that utilizes ribonucleotides to synthesize the nascent RNA chain in a template-dependent manner. Here we have studied the interaction of T7 RNAP with cibacron blue, an anthraquinone monochlorotriazine dye, its effect on the function of the enzyme and the probable mode of binding of the dye. We have used difference absorption spectroscopy and isothermal titration calorimetry to show that the dye binds T7 RNAP in a biphasic manner. The first phase of the binding is characterized by inactivation of the enzyme. The second binding site overlaps with the common substrate-binding site of the enzyme. We have carried out docking experiment to map the binding site of the dye in the promoter bound protein. Competitive displacement of the dye from the high affinity site by labeled GTP and isothermal titration calorimetry of high affinity GTP bound enzyme with the dye suggests a strong correlation between the high affinity dye binding and the high affinity GTP binding in T7 RNAP reported earlier from our laboratory.
Ultrasound-enhanced mass transfer in Halal compared with non-Halal chicken.
Leal-Ramos, Martha Y; Alarcon-Rojo, Alma D; Mason, Timothy J; Paniwnyk, Larysa; Alarjah, Mohammed
2011-01-15
Halal foods are often perceived as wholesome products that are specially selected and processed to achieve the highest standards of quality. In this study, dye penetration from an aqueous solution of methylene blue (1 mol L(-1)) was used as a model for the marination process of Halal and non-Halal chicken breast. The effect of dye penetration was evaluated by three techniques: (1) the mass of methylene blue solution in the samples was quantified by mass gain, (2) the amount of dye absorbed was determined by spectroscopy and (3) the penetration distance of dye inside the samples was measured. For non-Halal meat, ultrasound increased the amount of dye inside the samples by 6 and 13% after 15 and 30 min respectively. The effect on Halal meat was much more pronounced, with an increase in dye uptake of over 60% being observed for both time periods. Dye penetration is an indication of meat permeability and so can be used as an estimate of marinading of meat. Thus the use of high-power ultrasound has potential in poultry-processing methods, in particular that of Halal chicken marination. Copyright © 2010 Society of Chemical Industry.
Kara, P Pelin; Ayhan, Ali; Caner, Biray; Gültekin, Murat; Ugur, Omer; Bozkurt, M Fani; Usubutun, Alp
2008-07-01
The objective of this prospective study was to determine the feasibility of sentinel lymph node (SLN) detection in patients with cervical cancer using lymphoscintigraphy (LS), gamma probe, and blue dye. A total of 32 patients with early stage cervical cancer (FIGO IA2-IIA) who were treated with total abdominal hysterectomy and bilateral pelvic and paraortic lymphadenectomy underwent SLN biopsy. LS was performed on all the patients following the injection of 74 MBq technetium-99m-nanocolloid pericervically. The first appearing persistent focal accumulation on either dynamic or static images of LS was considered to be an SLN. Blue dye was injected just prior to surgical incision in 16 patients (50%) at the same locations as the radioactive isotope injection. During the operation, blue-stained node(s) were excised as SLNs. For gamma probe, a lymph node was accepted as an SLN, if its ex vivo radioactive counts were at least 10-fold above background radioactivity. SLNs, which were negative by routine hematoxylin and eosin (H&E) examination, were histopathologically reevaluated for the presence of micrometastases by step sectioning and immunohistochemical staining with pancytokeratin. At least one SLN was identified for each patient by gamma probe. Intraoperative gamma probe was the most sensitive method with a technical success rate of SLN detection of 100% (32/32), followed by LS 87.5% (28/32) and blue dye 68.8% (11/16), respectively. The average number of SLNs per patient detected by gamma probe was 2.09 (range 1-5). The localizations of the SLNs were external iliac 47.8%, obturatory 32.8%, common iliac 9%, paraaortic 4.4%, and paracervical 6%. Micrometastases, not detected by routine H&E were found by immunohistochemistry in one patient. On the basis of the histopathological analysis, the negative predictive value for predicting metastases was 100%, and there were no false-negative results. Preoperative LS with radiocolloids, intraoperative lymphatic mapping with blue dye and gamma probe are all feasible methods comparable with each other for SLN detection in early stage cervical cancer patients, but gamma probe is the most useful method in terms of technical success.
Toxicity of textile dyes and their degradation by the enzyme horseradish peroxidase (HRP).
Ulson de Souza, Selene Maria Arruda Guelli; Forgiarini, Eliane; Ulson de Souza, Antônio Augusto
2007-08-25
The enzyme peroxidase is known for its capacity to remove phenolic compounds and aromatic amines from aqueous solutions and also to decolorize textile effluents. This study evaluates the potential of the enzyme horseradish peroxidase (HRP) in the decolorization of textile dyes and effluents. Some factors such as pH and the amount of H(2)O(2) and the enzyme were evaluated in order to determine the optimum conditions for the enzyme performance. For the dyes tested, the results indicated that the decolorization of the dye Remazol Turquoise Blue G 133% was approximately 59%, and 94% for the Lanaset Blue 2R; for the textile effluent, the decolorization was 52%. The tests for toxicity towards Daphnia magna showed that there was a reduction in toxicity after the enzymatic treatment. However, the toxicity of the textile effluent showed no change towards Artemia salina after the enzyme treatment. This study verifies the viability of the use of the enzyme horseradish peroxidase in the biodegradation of textile dyes.
Dye to use with virus challenge for testing barrier materials.
Lytle, C D; Felten, R P; Truscott, W
1991-01-01
Can FD&C Blue no. 1 dye photoinactivate bacteriophages phi X174, T7, PRD1, and phi 6 under laboratory lighting conditions? At high levels of light, the dye (500 microM) photoinactivated only phi 6. Thus, this dye can be used at concentrations up to 500 microM with bacteriophages phi X174, T7, and PRD1 to test barrier material integrity. PMID:1872612
Bergsten-Torralba, L.R.; Nishikawa, M.M.; Baptista, D.F.; Magalhães, D.P.; da Silva, M.
2009-01-01
The objective of this study was to investigate the capacity of decolorization and detoxification of the textile dyes Reactive Red 198 (RR198), Reactive Blue 214 (RB214), Reactive Blue 21 (RB21) and the mixture of the three dyes (MXD) by Penicillium simplicissimum INCQS 40211. The dye RB21, a phthalocyanine, was totally decolorized in 2 days, and the others, the monoazo RR198, the diazo RB214 and MXD were decolorized after 7 days by P. simplicissimum. Initially the dye decolorization involved dye adsorption by the biomass followed by degradation. The acute toxicity after fungal treatment was monitored with the microcrustacean Daphnia pulex and measured through Effective Concentration 50% (EC50). P. simplicissimum reduced efficiently the toxicity of RB21 from moderately acutely toxic to minor acutely toxic and it also reduced the toxicity of RB214 and MXD, which remained minor acutely toxic. Nevertheless, the fungus increased the toxicity of RR198 despite of the reduction of MXD toxicity, which included this dye. Thus, P. simplicissimum INCQS 40211 was efficient to decolorize different textile dyes and the mixture of them with a significant reduction of their toxicity. In addition this investigation also demonstrated the need of toxicological assays associated to decolorization experiments. PMID:24031428
Photolysis of Diazo Dye in Aqueous Solutions of Metal Nitrates
NASA Astrophysics Data System (ADS)
Volkova, N. A.; Evstrop'ev, S. K.; Istomina, O. V.; Kolobkova, E. V.
2018-04-01
The photolysis of Chicago Blue Sky diazo dye is studied. It is experimentally shown that the presence of metal nitrates in aqueous solutions changes the photolysis mechanism and sharply increases the photolysis rate.
Tumor implantation model for rapid testing of lymphatic dye uptake from paw to node in small animals
NASA Astrophysics Data System (ADS)
DSouza, Alisha V.; Elliott, Jonathan T.; Gunn, Jason R.; Barth, Richard J.; Samkoe, Kimberley S.; Tichauer, Kenneth M.; Pogue, Brian W.
2015-03-01
Morbidity and complexity involved in lymph node staging via surgical resection and biopsy calls for staging techniques that are less invasive. While visible blue dyes are commonly used in locating sentinel lymph nodes, since they follow tumor-draining lymphatic vessels, they do not provide a metric to evaluate presence of cancer. An area of active research is to use fluorescent dyes to assess tumor burden of sentinel and secondary lymph nodes. The goal of this work was to successfully deploy and test an intra-nodal cancer-cell injection model to enable planar fluorescence imaging of a clinically relevant blue dye, specifically methylene blue - used in the sentinel lymph node procedure - in normal and tumor-bearing animals, and subsequently segregate tumor-bearing from normal lymph nodes. This direct-injection based tumor model was employed in athymic rats (6 normal, 4 controls, 6 cancer-bearing), where luciferase-expressing breast cancer cells were injected into axillary lymph nodes. Tumor presence in nodes was confirmed by bioluminescence imaging before and after fluorescence imaging. Lymphatic uptake from the injection site (intradermal on forepaw) to lymph node was imaged at approximately 2 frames/minute. Large variability was observed within each cohort.
Rapid flow cytometry analysis of antimicrobial properties of nettle powder and cranberry powder
NASA Astrophysics Data System (ADS)
Hattuniemi, Maarit; Korhonen, Johanna; Jaakkola, Mari; Räty, Jarkko; Virtanen, Vesa
2010-11-01
Both nettle (Urtica dioica) and cranberry (Vaccinium oxycoccus) are widely known to have good influence on health. The aim of this study was to investigate antimicrobial properties of nettle powder and cranberry powder against Escherichia coli (E. coli) and monitor the growth of the bacteria by a rapid flow cytometry (FCM) method. For FCM measurements samples were stained with fluorescent dyes. The inhibitory effects of plant material on growth of E. coli were estimated by comparing the results of control sample (E. coli) to E. coli samples with plant material. FCM offers both a brilliant tool to investigate the kinetics of the growth of bacterium, since subsamples can be taken from the same liquid medium during the growing period and with fluorescent dyes a rapid method to investigate viability of the bacterium.
10 % fluorescein sodium vs 1 % isosulfan blue in breast sentinel lymph node biopsy.
Ren, Lidong; Liu, Zhao; Liang, Mengdi; Wang, Li; Song, Xingli; Wang, Shui
2016-11-03
Sentinel lymph node biopsy (SLNB) is well accepted to be a standard procedure in breast cancer surgery with clinically negative lymph nodes. Isosulfan blue is the first dye approved by the USA Food and Drug Administration for the localization of the lymphatic system. Few alternative tracers have been investigated. In this study, we aimed to compare the differences between 10 % fluorescein sodium and 1 % isosulfan blue in breast sentinel lymph node biopsy and to investigate the feasibility of using 10 % fluorescein sodium as a new dye for breast sentinel lymph node biopsy. A total of 30 New Zealand rabbits were randomly divided into the fluorescein sodium group and the isosulfan blue group (15 rabbits per group). Fluorescein sodium or isosulfan blue was injected subcutaneously into the second pair of mammary areolas. The average fading time of the second lymph nodes in the isosulfan blue group was significantly shorter than that in the fluorescein sodium group. Moreover, the detection rates of SLNs were higher in the fluorescein sodium group than in the isosulfan blue group. No significant differences between the fluorescein sodium group and isosulfan blue group were observed regarding the distances between the detected sentinel lymph nodes and second pair of mammary areolas, the distances between the second lymph nodes and second pair of mammary areolas, the number of detected sentinel lymph nodes and second lymph nodes, the average dyeing time of the sentinel and the second lymph nodes, and the average fading time of the second lymph nodes. In summary, we first reported that fluorescein sodium is a potential new tracer for breast sentinel lymph node biopsy.
Structural locus of transmucosal albumin efflux in canine ileum. A fluorescent study.
Granger, D N; Cook, B H; Taylor, A E
1976-12-01
This study demonstrates the effects of elevated intestinal venous pressure on the intestinal tissue spaces and the histological locus of the transmucosal albumin flux under such conditions. The authors were able to localize albumin in the tissues using an Evans blue-albumin fluorescence technique. This technique makes use of the fluorescence properties and albumin affinity of Evans blue dye (T-1824). Evans blue dye has a high affinity for albumin and emits a red-orange fluorescence at a wavelength of 720 nm. Evans blue was mixed with a solution of bovine serum albumin at concentrations that yield negligible amounts of free dye. Control ileal samples were obtained in order to visualize the natural tissue morphology and fluorescence. The Evans blue-albumin solution was injected and tissue samples were obtained 15 and 60 min postinjection, then venous outflow was occluded and after 15 and 60 min the tissues were sampled. Each sample was immediately frozen, freeze dried, embedded in paraffin, and 7-mu sections were made. The Evans blue-albumin was demonstrated histologically with a fluorescence microscope. No leakage sites were apparent at normal venous pressures. However, after elevation of venous pressure, Evans blue-albumin was observed in the interepithelial and/or intraepithelial spaces of villus tips, but no Evans blue-albumin was observed either between or within the epithelial cells of the crypts, or within the tubular crypt lumina. These results indicate that at elevated venous pressures, the transmucosal albumin flux occurs exclusively at the villus tip region, suggesting a great vulnerability of the cells found in this region to elevations in tissue pressure as compared to the crypt epithelial cells.
Salivary fistula: Blue dye testing as part of an algorithm for early diagnosis
Kiong, Kimberley L.; Tan, Ngian Chye; Skanthakumar, Thakshayeni; Teo, Constance E.H.; Soo, Khee Chee; Tan, Hiang Khoon; Roche, Elizabeth; Yee, Kaisin
2017-01-01
Objective Orocutaneous and pharyngocutaneous fistula (OPCF) is a debilitating complication of head and neck surgery for squamous cell carcinoma (SCC), resulting in delayed adjuvant treatment and prolonged hospitalization. As yet, there is no established test that can help in prompt and accurate diagnosis of OPCF. This study aims to determine the accuracy of bedside blue dye testing and its role as part of an algorithm for early diagnosis. We also analyze the risk factors predisposing to OPCF. Study Design Retrospective cohort study from 2012 to 2014. Methods Patients with head and neck SCC who underwent major resection and reconstruction, at risk of OPCF, were included. Results of blue‐dye and video‐fluoroscopic swallow‐studies (VFSS) testing for OPCF were recorded. For the patients that were noted to develop OPCF, the length of time to diagnosis of fistula and subsequent mode of management were examined. Results Of the 93 patients in this study, 25 (26.9%) developed OPCF. Advanced T‐classification (T3/T4) was the only significant predisposing risk factor (p = 0.013). The sensitivity and specificity of the bedside blue dye testing was found to be 36.4% and 100%, respectively. The test positive patients were diagnosed with OPCF at a median of postoperative day (POD) 9.5 as compared to POD 13 for the test negative patients (p = 0.001). Early diagnosis was associated with faster fistula resolution with treatment. Conclusion Blue dye testing is a simple bedside test that can assist in the early diagnosis of OPCF in patients, allowing treatment to be instituted earlier with improved outcomes. Level of Evidence 3 PMID:29299509
Carrilho, Emanuel; Phillips, Scott T; Vella, Sarah J; Martinez, Andres W; Whitesides, George M
2009-08-01
This paper describes 96- and 384-microzone plates fabricated in paper as alternatives to conventional multiwell plates fabricated in molded polymers. Paper-based plates are functionally related to plastic well plates, but they offer new capabilities. For example, paper-microzone plates are thin (approximately 180 microm), require small volumes of sample (5 microL per zone), and can be manufactured from inexpensive materials ($0.05 per plate). The paper-based plates are fabricated by patterning sheets of paper, using photolithography, into hydrophilic zones surrounded by hydrophobic polymeric barriers. This photolithography used an inexpensive formulation photoresist that allows rapid (approximately 15 min) prototyping of paper-based plates. These plates are compatible with conventional microplate readers for quantitative absorbance and fluorescence measurements. The limit of detection per zone loaded for fluorescence was 125 fmol for fluorescein isothiocyanate-labeled bovine serum albumin, and this level corresponds to 0.02 the quantity of analyte per well used to achieve comparable signal-to-noise in a 96-well plastic plate (using a solution of 25 nM labeled protein). The limits of detection for absorbance on paper was approximately 50 pmol per zone for both Coomassie Brilliant Blue and Amaranth dyes; these values were 0.4 that required for the plastic plate. Demonstration of quantitative colorimetric correlations using a scanner or camera to image the zones and to measure the intensity of color, makes it possible to conduct assays without a microplate reader.
Wang, Zhiye; Wang, Zi; Lin, Bangjiang; Hu, XueFu; Wei, YunFeng; Zhang, Cankun; An, Bing; Wang, Cheng; Lin, Wenbin
2017-10-11
A dye@metal-organic framework (MOF) hybrid was used as a fluorophore in a white-light-emitting diode (WLED) for fast visible-light communication (VLC). The white light was generated from a combination of blue emission of the 9,10-dibenzoate anthracene (DBA) linkers and yellow emission of the encapsulated Rhodamine B molecules. The MOF structure not only prevents dye molecules from aggregation-induced quenching but also efficiently transfers energy to the dye for dual emission. This light-emitting material shows emission lifetimes of 1.8 and 5.3 ns for the blue and yellow components, respectively, which are significantly shorter than the 200 ns lifetime of Y 3 Al 5 O 12 :Ce 3+ in commercial WLEDs. The MOF-WLED device exhibited a modulating frequency of 3.6 MHz for VLC, six times that of commercial WLEDs.
Early pre-Hispanic use of indigo blue in Peru.
Splitstoser, Jeffrey C; Dillehay, Tom D; Wouters, Jan; Claro, Ana
2016-09-01
Archaeological research has identified the use of cultivated cotton (Gossypium barbadense) in the ancient Andes dating back to at least 7800 years ago. Because of unusual circumstances of preservation, 6000-year-old cotton fabrics from the Preceramic site of Huaca Prieta on the north coast of Peru retained traces of a blue pigment that was analyzed and positively identified as an indigoid dye (indigotin), making it the earliest known use of indigo in the world, derived most likely from Indigofera spp. native to South America. This predates by ~1500 years the earliest reported use of indigo in the Old World, from Fifth Dynasty Egypt [ca. 4400 BP (before present)]. Indigo is one of the most valued and most globally widespread dyes of antiquity and of the present era (it being the blue of blue jeans).
Early pre-Hispanic use of indigo blue in Peru
Splitstoser, Jeffrey C.; Dillehay, Tom D.; Wouters, Jan; Claro, Ana
2016-01-01
Archaeological research has identified the use of cultivated cotton (Gossypium barbadense) in the ancient Andes dating back to at least 7800 years ago. Because of unusual circumstances of preservation, 6000-year-old cotton fabrics from the Preceramic site of Huaca Prieta on the north coast of Peru retained traces of a blue pigment that was analyzed and positively identified as an indigoid dye (indigotin), making it the earliest known use of indigo in the world, derived most likely from Indigofera spp. native to South America. This predates by ~1500 years the earliest reported use of indigo in the Old World, from Fifth Dynasty Egypt [ca. 4400 BP (before present)]. Indigo is one of the most valued and most globally widespread dyes of antiquity and of the present era (it being the blue of blue jeans). PMID:27652337
The effects of Patent Blue dye on peripheral and cerebral oxyhaemoglobin saturations.
Ishiyama, T; Kotoda, M; Asano, N; Ikemoto, K; Mitsui, K; Sato, H; Matsukawa, T; Sessler, D I
2015-04-01
We measured the effect of Patent Blue dye on oxyhaemoglobin saturations after injection into breast tissue: 40 women had anaesthesia for breast surgery maintained with sevoflurane or propofol (20 randomly allocated to each). Saturations were recorded with a digital pulse oximeter, in arterial blood samples and with a cerebral tissue oximeter before dye injection and 10, 20, 30, 40, 50, 60, 75, 90, 105 and 120 min afterwards. Patent Blue did not decrease arterial blood oxyhaemoglobin saturation, but it did reduce mean (SD) digital and cerebral oxyhaemoglobin saturations by 1.1 (1.1) % and 6.8 (7.0) %, p < 0.0001 for both. The falsely reduced oximeter readings persisted for at least 2 h. The mean (SD) intra-operative digital pulse oxyhaemoglobin readings were lower with sevoflurane than propofol, 97.8 (1.2) % and 98.8 (1.0) %, respectively, p < 0.0001. © 2014 The Association of Anaesthetists of Great Britain and Ireland.
NASA Astrophysics Data System (ADS)
Gill, G. K.; Mubarak, N. M.; Nizamuddin, S.; Al-Salim, H. S.; Sahu, J. N.
2017-06-01
Environmental issues have always been a major issue among human kind for the past decades. As the time passes by, the technology field has grown and has helped a lot in order to reduce these environmental issues. Industries such as metal plating facilities, mining operations and batteries production are a few examples that involves in the environmental issues. Carbon nanotube is proven to possess excellent adsorption capacity for the removal of methylene blue and orange red dyes. The effect of process parameters such as pH and contact time was investigated The results revealed that optimized conditions for the highest removal for methylene blue (MB) (97%) and orange red (94%) are at pH 10, CNTs dosage of 1 grams, and 15 minutes for each dyes removal respectively. The equilibrium adsorption data obtained was best fit to Freundlich model, while kinetic data can be characterized by the pseudo second-order rate kinetics.
Large laser projection displays utilizing all-solid-state RGB lasers
NASA Astrophysics Data System (ADS)
Xu, Zuyan; Bi, Yong
2005-01-01
RGB lasers projection displays have the advantages of producing large color triangle, high color saturation and high image resolution. In this report, with more than 4W white light synthesized by red (671nm), green (532nm) and blue (473nm) lasers, a RGB laser projection display system based on diode pumped solid-state lasers is developed and the performance of brilliant and vivid DVD dynamitic pictures on 60 inch screen is demonstrated.
Rauch, Philippe; Merlin, Jean-Louis; Leufflen, Lea; Salleron, Julia; Harlé, Alexandre; Olivier, Pierre; Marchal, Frédéric
2016-09-01
Although morbidity is reduced when sentinel lymph node (SLN) biopsy is performed with dual isotopic and blue dye identification, the effectiveness of adding blue dye to radioisotope remains debated because side effects including anaphylactic reactions. Using data from a prospectively maintained database, 1884 lymph node-negative breast cancer patients who underwent partial mastectomy with SLN mapping by a dual-tracer using patent blue dye (PBD) and radioisotope were retrospectively studied between January 2000 and July 2013. Patients with tumors <3 cm and with >1 node detected by one of the two techniques (N = 1024) were included in this real-life cross-sectional study. Among the 1024 patients, 274 had positive SLN detected by isotopic and/or PBD staining. Only 4 patients having no detectable radioactivity in the axilla had SLN identified only by PBD staining (blue-only) while 26 patients had SLN only identified by isotopic detection (hot-only) illustrating failure rates of 9.5% (26/274) and 1.5% (4/274), respectively. Among these four patients, two had negative lymphoscintigraphy. Therefore, the contribution of PBD to metastatic nodes identification was relevant for only 2/274 patients (0.8%). Three patients (0.3%) had an allergic reaction with PBD, and anaphylactic shock occurred in two cases (0.2%). The added-value of PBD to reduce the false-negative rate of SLN mapping is only limited to the rare cases in which no radioactivity is detectable in the axilla (<1%). When a radioisotope mapping agent is available, the use of PBD should be avoided, because it can induce anaphylaxis. Copyright © 2016 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Wei; Gao, Pin; Xie, Jimin, E-mail: xiejm391@sohu.com
2013-08-15
Using the solution phase method without any surfactants or templates, the hierarchical of Cu{sub 2}Cl(OH){sub 3} microspheres were synthesized by freeze drying. The size and surface area of the microspheres are ca. 1–2 µm and 76.61 m{sup 2} g{sup −1}, respectively. A possible formation mechanism is presented based on the experimental results. Methylene blue was chosen to investigate the adsorption capacity of the as-prepared adsorbent. The effects of various experimental parameters, such as pH, initial dye concentration, and contact time were investigated. The results showed that the dye removal increased with the increasing in the initial concentration of the dyemore » and also increased in the amount of microspheres used and initial pH. Adsorption data fitted well with the Freundlich adsorption isotherm. The thermodynamic analysis presented the exothermic, spontaneous and more ordered arrangement process. The microspheres could be employed effective for removal of dyes from aqueous solution. - Graphical abstract: The single-crystalline hierarchical Cu{sub 2}Cl(OH){sub 3} spheres can be prepared for the first time by using a template-free process through freeze-drying. Meanwhile, the hierarchical spheres exhibited high adsorption capacity to methylene blue. Display Omitted - Highlights: • Cu{sub 2}Cl(OH){sub 3} microspheres were successfully synthesized through a freeze drying process. • A possible formation mechanism of hierarchical microspheres was presented. • The Cu{sub 2}Cl(OH){sub 3} microspheres have high methylene blue adsorption capacity. • Methylene blue adsorption is a spontaneous and exothermic process. • The adsorption mechanism of microspheres onto dye was proposed in detail.« less
Hirano, Akira; Kamimura, Mari; Ogura, Kaoru; Kim, Naomi; Hattori, Akinori; Setoguchi, Yumika; Okubo, Fumie; Inoue, Hiroaki; Miyamoto, Reiko; Kinoshita, Jun; Fujibayashi, Mariko; Shimizu, Tadao
2012-12-01
To evaluate two methods of sentinel node navigation surgery (SNNS) using blue dye with and without indocyanine green (ICG) fluorescence imaging (FI) to determine the usefulness of combined ICG and blue dye. Between 2005 and 2010, a total of 501 patients underwent SNNS in our hospital. Detection of sentinel lymph node (SLN) was performed with sulfan blue (SB) alone until 2008 and with a combination of SB and ICG-FI since 2009. ICG 5 mg and SB 15 mg were injected in the subareolar region, and FI was obtained by a fluorescence imaging device. We attempted to identify SLNs in 393 patients by SB alone and in 108 patients by a combination of SB and FI. The mean number of SLNs detected was 1.6 (0-5) for SB alone and 2.2 (1-6) for the combination method. The SLN identification rate was 95.7 % for SB alone and 100 % for the combination method so that the combination was significantly superior to SB in terms of the identification rate (p = 0.0037). In patients who received the combination method, detection of SLN was made through only SB in 1 patient, only ICG in 8 patients, and both in 99 patients. Lymph node metastasis was found in 56 patients with SB alone and in 16 patients with the combination method. Recurrence of an axillary node was observed in 3 patients (0.8 %) with SB alone and in no patients with the combination method. ICG-FI is a useful method and is especially recommended in cases where no radiotracers are available.
Senthilvelan, T; Kanagaraj, J; Panda, R C
2014-11-01
"Dyeing" is a common practice used to color the hides during the post-tanning operations in leather processing generating plenty of wastewater. The waste stream containing dye as pollutant is severely harmful to living beings. An azo dye (C.I. Acid Blue 113) has been biodegraded effectively by bacterial culture mediated with azoreductase enzyme to reduce the pollution load in the present investigation. The maximum rate of dye degradation was found to be 96 ± 4 and 92 ± 4 % for the initial concentrations of 100 and 200 mg/l, respectively. The enzyme activity was measured using NADH as a substrate. Fourier transform infrared spectroscopy (FT-IR) analysis was confirmed that the transformation of azo linkage could be transformed into N2 or NH3 or incorporated into complete biomass. Breaking down of dye molecules to various metabolites (such as aniline, naphthalene-1,4-diamine, 3-aminobenzenesulfonic acid, naphthalene-1-sulfonic acid, 8-aminonaphthalene-1-sulfonic acid, 5,8-diaminonaphthalene-1-sulfonic acid) was confirmed by gas chromatography and mass spectra (GC-MS) and mass (electrospray ionization (ESI)) spectra analysis. The treated wastewater could be reused for dyeing operation in the leather processing, and the properties of produced leather were evaluated by conventional methods that revealed to have improved dye penetration into the grain layer of experimental leather sample and resulted in high levelness of dyeing, which helps to obtain the desired smoothness and soft leather properties.
Yildirim, Seval Cing; Yesilada, Ozfer
2015-11-01
The objective of the present study was to investigate decolorization of Acid Blue 74 and Reactive Blue 198 dyes by free and immobilized white rot fungal pellets in order to confirm the possibility of practical application via repeated-batch cultivation. Decolorization studies were conducted using free pellets (FP), fungal cells immobilized on activated carbon (IFCAC) and pinewood (IFCP), and also fungal cells entrapped in alginate beads (FCEAB). No additional nitrogen and carbon source was used and high decolorization rates were achieved in only dye-contained media without pH adjustment. Acid Blue 74 was decolorized 96 and 94% within 2 hr by Trametes versicolor and Funalia trogii free pellets, respectively. These values were 87 and 84% for Reactive Blue 198, in this respect. Immobilization of fungal cells on pinewood increased the usability of pellets and the average decolorization efficiency of both dyes. The micro environment changed in the presence of pinewood and increased the stability of immobilized pellets. Decolorization was performed rapidly and efficiently. Laccase activity enhanced with availability of pinewood, and high laccase production with F. trogii was obtained. After separation by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), the molecular weight of T versicolor and F. trogii laccase bands was determined 64 and 61 kDa approximately. Green bands were obtained by the activity staining process with laccase substrate (ABTS) after gel renaturation step.
A Spectrophotometric Assay Optimizing Conditions for Pepsin Activity.
ERIC Educational Resources Information Center
Harding, Ethelynda E.; Kimsey, R. Scott
1998-01-01
Describes a laboratory protocol optimizing the conditions for the assay of pepsin activity using the Coomasie Blue dye binding assay of protein concentration. The dye bonds through strong, noncovalent interactions to basic and aromatic amino acid residues. (DDR)
Sani, R K; Azmi, W; Banerjee, U C
1998-01-01
Decolorization of several dyes (Red HE-8B, Malachite Green, Navy Blue HE-2R, Magenta, Crystal Violet) and an industrial effluent with growing cells of Phanerochaete chrysosporium in shake and static culture was demonstrated. All the dyes and the industrial effluent were decolorized to some extent with varying percentages of decolorization (20-100%). The rate of decolorization was very rapid with Red HE-8B, an industrial dye. Decolorization rates for all the dyes in static condition were found to be less than the shake culture and also dependent on biomass concentration.
Chronic toxicity of azo and anthracenedione dyes to embryo-larval fathead minnow.
Parrott, Joanne L; Bartlett, Adrienne J; Balakrishnan, Vimal K
2016-03-01
The toxicity of selected azo and anthracenedione dyes was studied using chronic exposures of embryo-larval fathead minnows (Pimephales promelas). Newly fertilized fathead minnow embryos were exposed through the egg stage, past hatching, through the larval stage (until 14 days post-hatch), with dye solutions renewed daily. The anthracenedione dyes Acid Blue 80 (AB80) and Acid Blue 129 (AB129) caused no effects in larval fish at the highest measured concentrations tested of 7700 and 6700 μg/L, respectively. Both azo dyes Disperse Yellow 7 (DY7) and Sudan Red G (SRG) decreased survival of larval fish, with LC50s (based on measured concentrations of dyes in fish exposure water) of 25.4 μg/L for DY7 and 16.7 μg/L for SRG. Exposure to both azo dyes caused a delayed response, with larval fish succumbing 4-10 days after hatch. If the exposures were ended at the embryo stage or just after hatch, the potency of these two dyes would be greatly underestimated. Concentrations of dyes that we measured entering the Canadian environment were much lower than those that affected larval fish survival in the current tests. In a total of 162 samples of different municipal wastewater effluents from across Canada assessed for these dyes, all were below detection limits. The similarities of the structures and larval fish responses for the two azo and two anthracenedione dyes in this study support the use of read-across data for risk assessment of these classes of compounds. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Biosorption of textile dye reactive blue 221 by capia pepper (Capsicum annuum L.) seeds.
Gürel, Levent
2017-04-01
Peppers are very important foodstuffs in the world for direct and indirect consumption, so they are extensively used. The seeds of these peppers are waste materials that are disposed of from houses and factories. To evaluate the performance of this biomass in the treatment of wastewaters, a study was conducted to remove a textile dye, reactive blue 221, which is commercially used in textile mills. Raw seed materials were used without any pre-treatment. The effects of contact time, initial concentration of dye, pH and dose of biosorbent were studied to determine the optimum conditions for this biomass on color removal from wastewaters. The optimum pH value for dye biosorption was found to be 2.0. At an initial dye concentration of 217 mg L -1 , treatment efficiency and biosorption capacity were 96.7% and 95.35 mg g -1 , respectively. A maximum biosorption capacity of 142.86 mg g -1 was also obtained. Equilibrium biosorption of dye by capia seeds was well described by the Langmuir isotherm with a correlation coefficient above 99%. The biosorption process was also successfully explained with the pseudo-second order kinetic model. This biomass was found to be effective in terms of textile dye removal from aqueous solutions.
Triphenylmethane dye activation of beta-arrestin.
Barak, Larry S; Bai, Yushi; Snyder, Joshua C; Wang, Jiangbo; Chen, Wei; Caron, Marc G
2013-08-13
β-Arrestins regulate G protein-coupled receptor signaling as competitive inhibitors and protein adaptors. Low molecular weight biased ligands that bind receptors and discriminate between the G protein dependent arm and β-arrestin, clathrin-associated arm of receptor signaling are considered therapeutically valuable as a result of this distinctive pharmacological behavior. Other than receptor agonists, compounds that activate β-arrestins are not available. We show that within minutes of exposure to the cationic triphenylmethane dyes malachite green and brilliant green, tissue culture cells recruit β-arrestins to clathrin scaffolds in a receptor-activation independent manner. In the presence of these compounds, G protein signaling is inhibited, ERK and GSK3β signaling are preserved, and the recruitment of the beta2-adaptin, AP2 adaptor complex to clathrin as well as transferrin internalization is reduced. Moreover, malachite green binds β-arrestin2-GFP coated immunotrap beads relative to GFP only coated beads. Triphenylmethane dyes are FDA approved for topical use on newborns as components of triple-dye preparations and are not approved but used effectively as aqueous antibiotics in fish husbandry. As possible carcinogens, their chronic ingestion in food preparations, particularly through farmed fish, is discouraged in the U.S. and Europe. Our results indicate triphenylmethane dyes as a result of novel pharmacology may have additional roles as β-arrestin/clathrin pathway signaling modulators in both pharmacology research and clinical therapy.
Triphenylmethane Dye Activation of Beta-Arrestin
2013-01-01
β-Arrestins regulate G protein-coupled receptor signaling as competitive inhibitors and protein adaptors. Low molecular weight biased ligands that bind receptors and discriminate between the G protein dependent arm and β-arrestin, clathrin-associated arm of receptor signaling are considered therapeutically valuable as a result of this distinctive pharmacological behavior. Other than receptor agonists, compounds that activate β-arrestins are not available. We show that within minutes of exposure to the cationic triphenylmethane dyes malachite green and brilliant green, tissue culture cells recruit β-arrestins to clathrin scaffolds in a receptor-activation independent manner. In the presence of these compounds, G protein signaling is inhibited, ERK and GSK3β signaling are preserved, and the recruitment of the beta2-adaptin, AP2 adaptor complex to clathrin as well as transferrin internalization is reduced. Moreover, malachite green binds β-arrestin2-GFP coated immunotrap beads relative to GFP only coated beads. Triphenylmethane dyes are FDA approved for topical use on newborns as components of triple-dye preparations and are not approved but used effectively as aqueous antibiotics in fish husbandry. As possible carcinogens, their chronic ingestion in food preparations, particularly through farmed fish, is discouraged in the U.S. and Europe. Our results indicate triphenylmethane dyes as a result of novel pharmacology may have additional roles as β-arrestin/clathrin pathway signaling modulators in both pharmacology research and clinical therapy. PMID:23865508
Honorio, Jacqueline Ferandin; Veit, Márcia Teresinha; Gonçalves, Gilberto da Cunha; de Campos, Élvio Antonio; Fagundes-Klen, Márcia Regina
2016-01-01
The textile industry is known for the high use of chemicals, such as dyes, and large volumes of effluent that contaminate waters, a fact that has encouraged research and improved treatment techniques. In this study, we used unprocessed soybean hulls for the removal of reactive blue BF-5G dye. The point of zero charge of soybean hulls was 6.76. Regarding the speed of agitation in the adsorption process, the resistance to mass transfer that occurs in the boundary layer was eliminated at 100 rpm. Kinetics showed an experimental amount of dye adsorbed at equilibrium of 57.473 mg g(-1) obtained under the following conditions: dye initial concentration = 400 mg L(-1); diameter of particle = 0.725 mm; dosage = 6 g L(-1); pH 2; 100 rpm; temperature = 30 °C; and duration of 24 hours. The pseudo-second order best showed the dye removal kinetics. The adsorption isotherms performed at different temperatures (20, 30, 40 and 50 °C) showed little variation in the concentration range assessed, being properly adjusted by the Langmuir isotherm model. The maximum capacity of dye adsorption was 72.427 mg g(-1) at 30 °C. Since soybean hull is a low-cost industrial byproduct, it proved to be a potential adsorbent for the removal of the textile dye assessed.
Dye injection for predicting pesticide movement in micro-irrigated polyethylene film mulch beds.
Csinos, Alex S; Laska, James E; Childers, Stan
2002-04-01
A new method is described for tracing water movement in polyethylene film covered soil beds. Dye was delivered via a drip tape micro-irrigation system which was placed in the bed as the soil beds were shaped and covered with polyethylene film. The dye was injected into the system and irrigated with water for 4-24 h at 0.41-1.38 bar (41-138 kPa) pressure depending on the experiment. The dye appeared as blue circles on the soil surface within 20 min of injection and produced a three-dimensional pattern in the soil profile. Injection-irrigation-pressure scenarios were evaluated by measuring dye movement directly below and between emitters by sliding fabricated blades vertically into the bed at the desired examination point and excavating the soil away from the blade. The dye typically produced a U shape on the face of the bed and the area was calculated for each of these exposed faces. The area increased as the length of irrigation and water pressure increased. Interrupted irrigation (pulsing) scenarios did not alter the calculated areas encompassed by the dye compared to uninterrupted irrigation scenarios. The blue dye provided a direct, inexpensive and easy method of visualizing water movement in soil beds. This information will be used to optimize application of emulsifiable plant-care products in polyethylene film mulch beds.
Nandhikonda, Premchendar; Heagy, Michael D
2010-11-14
The synthesis and photophysical characterization of a new white-light fluorophore is described. The optimization of excitation wavelengths allows the naphthalimide (NI) dyes to display blue, green or white light emission depending on the excitation wavelength.
The Blue Bottle Experiment--Simple Demonstration of Self-Organization.
ERIC Educational Resources Information Center
Adamcikova, L'ubica; Sevcik, Peter
1998-01-01
Explains a way of observing pattern formation in the Blue Bottle chemistry demonstration by pouring a solution containing sodium hydroxide, glucose, and dye into a Petri dish and placing the dish on an overhead projector. (WRM)
Trypan blue staining of the anterior capsule under an air bubble with a modified cannula.
Toprak, Ahmet Baris; Erkin, Esin Fatma; Guler, Cenap
2003-01-01
To attain good visibility of the anterior capsule in the advanced or white cataract, trypan blue 0.1% is used to stain the anterior capsule. The dye is usually injected under an air bubble. However, it is difficult to inject the dye properly due to capillary forces. An ordinary anterior chamber cannula was modified and its coverage area increased to facilitate the staining of the anterior capsule under an air bubble. The anterior capsule was stained properly by using the modified cannula in all of the cases.
Interaction of nucleic acids with Coomassie Blue G-250 in the Bradford assay.
Wenrich, Broc R; Trumbo, Toni A
2012-09-15
The Bradford assay has been used reliably for decades to quantify protein in solution. The analyte is incubated in acidic solution of Coomassie Blue G-250 dye, during which reversible ionic and nonionic binding interactions form. Bradford assay color yields were determined for salmon, bovine, shrimp, and kiwi fruit genomic DNA; baker's yeast RNA; bovine serum albumin (BSA); and hen egg lysozyme. Pure DNA and RNA bound the dye, with color yields of 0.0017 mg⁻¹ cm⁻¹ and 0.0018 mg⁻¹ cm⁻¹, respectively. The nucleic acid-Coomassie Blue response was significant, at roughly 9% of that for BSA and 18% of that for lysozyme. Copyright © 2012 Elsevier Inc. All rights reserved.
A solvent-based intelligence ink for oxygen.
Mills, Andrew; Hazafy, David
2008-02-01
A solvent-based, irreversible oxygen indicator ink is described, comprising semiconductor photocatalyst nanoparticles, a solvent-soluble redox dye, mild reducing agent and polymer. Based on such an ink, a film -- made of titanium dioxide, a blue, solvent-soluble, coloured ion-paired methylene blue dye, glycerol and the polymer zein -- loses its colour rapidly (<30 s) upon exposure to UVA light and remains colourless in an oxygen-free atmosphere, returning to its original blue colour upon exposure to air. In the latter step the rate of colour recovery is proportional to the level of ambient oxygen and the same film can be UV-activated repeatedly. The mechanism of this novel, UV-activated, solvent-based, colorimetric oxygen indicator is discussed, along with its possible applications.
Removal of Reactofix Navy Blue 2 GFN from aqueous solutions using adsorption techniques.
Gupta, Vinod Kumar; Jain, Rajeev; Varshney, Shaily; Saini, Vipin Kumar
2007-03-15
The wheat husk, an agricultural by-product, has been activated and used as an adsorbent for the adsorption of Reactofix Navy Blue 2 GFN from aqueous solution. In this work, adsorption of Reactofix Navy Blue 2 GFN on wheat husk and charcoal has been studied by using batch studies. The equilibrium adsorption level was determined to be a function of the solution pH, adsorbent dosage, dye concentration and contact time. The equilibrium adsorption capacities of wheat husk and charcoal for dye removal were obtained using Freundlich and Langmuir isotherms. Thermodynamic parameters such as the free energies, enthalpies and entropies of adsorption were also evaluated. Adsorption process is considered suitable for removing color, COD from waste water.
Chubinidze, Ketevan; Partsvania, Besarion; Sulaberidze, Tamaz; Khuskivadze, Aleksandre; Davitashvili, Elene; Koshoridze, Nana
2014-11-01
We have experimentally demonstrated that the emission of visible light from the polymer matrix doped with luminescent dye and gold nanoparticles (GNPs) can be enhanced with the use of surface plasmon coupling. GNPs can enhance the luminescence intensity of nearby luminescent dye because of the interactions between the dipole moments of the dye and the surface plasmon field of the GNPs. The electric charge on the GNPs and the distance between GNPs and luminescent dye molecules have a significant effect on the luminescence intensity, and this enhancement depends strongly upon the excitation wavelength of the pumping laser source. In particular, by matching the plasmon frequency of GNPs to the frequency of the laser light source we have observed a strong luminescence enhancement of the nanocomposite consisting of GNPs coupled with luminescent dye Nile blue 690 perchlorate. This ability of controlling luminescence can be beneficially used in developing contrast agents for highly sensitive and specific optical sensing and imaging. This opens new possibilities for plasmonic applications in the solar energy field.
NASA Astrophysics Data System (ADS)
Tran, Hoang V.; Bui, Lieu T.; Dinh, Thuy T.; Le, Dang H.; Huynh, Chinh D.; Trinh, Anh X.
2017-03-01
In this research, the potential of chitosan/Fe3O4/graphene oxide (CS/Fe3O4/GO) nanocomposite for efficient removal of methylene blue (MB) as a cationic dye from aqueous solutions was investigated. For this purpose, first, graphene oxide (GO) was prepared from pencil’s graphite by Hummer’s method, then after, CS/Fe3O4/GO was synthesized via chemical co-precipitation method from a mixture solution of GO, Fe3+, Fe2+ and chitosan. The synthesized CS/Fe3O4/GO was characterized by XRD, VSM and SEM techniques. Also, the various parameters affecting dye removal were investigated. Dye adsorption equilibrium data were fitted well to the Langmuir isotherm rather than Freundlich isotherm. The maximum monolayer capacity (q max), was calculated from the Langmuir as 30.10 mg · g-1. The results show that, CS/Fe3O4/GO nanocomposite, can be used as a cheap and efficient adsorbent for removal of cationic dyes from aqueous solutions.
Mohapatra, Sushil K; Sandhu, Anjit; Neerukattu, Venkata S; Singh, Karn P; Selokar, Naresh L; Singla, Suresh K; Chauhan, Manmohan S; Manik, Radhey S; Palta, Prabhat
2015-04-01
We compared handmade cloned (HMC) buffalo blastocysts produced from oocytes stained with Brilliant Cresyl Blue (BCB) and classified into those with blue (BCB+) or colorless cytoplasm (BCB-). The blastocyst rate was higher (p<0.001) for BCB+ than for BCB- oocytes (43.41 ± 2.54 vs. 22.74 ± 1.76%). BCB+ blastocysts had inner cell mass (ICM) cell number, ICM-to-trophectoderm ratio, global level of H3K18ac, apoptotic index, and expression level of BCL-XL, but not that of CASPASE-3, similar to that of blastocysts produced through in vitro fertilization (IVF), which was higher (p<0.05) than that of BCB- blastocysts. The global level of H3K9me2, which was similar in BCB+ and BCB- blastocysts, was higher (p<0.01) than that in IVF blastocysts. The expression level of OCT4 and SOX2 was higher (p<0.05) and that of GATA2 was lower (p<0.05) in BCB+ than that in BCB- blastocysts, whereas that of DNMT1, DNMT3a, NANOG, and CDX2 was not significantly different between the two groups. The expression level of DNMT1, OCT4, NANOG, and SOX2 was lower (p<0.05) and that of CDX2 was higher (p<0.05) in BCB+ than in IVF blastocysts. In conclusion, because BCB+ blastocysts have better developmental competence and are closer to IVF blastocysts in terms of quality, epigenetic status, and gene expression than BCB- blastocysts, BCB staining can be used effectively for selection of developmentally competent oocytes for HMC.
Mohapatra, Sushil K.; Sandhu, Anjit; Neerukattu, Venkata S.; Singh, Karn P.; Selokar, Naresh L.; Singla, Suresh K.; Chauhan, Manmohan S.; Manik, Radhey S.
2015-01-01
Abstract We compared handmade cloned (HMC) buffalo blastocysts produced from oocytes stained with Brilliant Cresyl Blue (BCB) and classified into those with blue (BCB+) or colorless cytoplasm (BCB−). The blastocyst rate was higher (p<0.001) for BCB+ than for BCB− oocytes (43.41±2.54 vs. 22.74±1.76%). BCB+ blastocysts had inner cell mass (ICM) cell number, ICM-to-trophectoderm ratio, global level of H3K18ac, apoptotic index, and expression level of BCL-XL, but not that of CASPASE-3, similar to that of blastocysts produced through in vitro fertilization (IVF), which was higher (p<0.05) than that of BCB− blastocysts. The global level of H3K9me2, which was similar in BCB+ and BCB− blastocysts, was higher (p<0.01) than that in IVF blastocysts. The expression level of OCT4 and SOX2 was higher (p<0.05) and that of GATA2 was lower (p<0.05) in BCB+ than that in BCB− blastocysts, whereas that of DNMT1, DNMT3a, NANOG, and CDX2 was not significantly different between the two groups. The expression level of DNMT1, OCT4, NANOG, and SOX2 was lower (p<0.05) and that of CDX2 was higher (p<0.05) in BCB+ than in IVF blastocysts. In conclusion, because BCB+ blastocysts have better developmental competence and are closer to IVF blastocysts in terms of quality, epigenetic status, and gene expression than BCB− blastocysts, BCB staining can be used effectively for selection of developmentally competent oocytes for HMC. PMID:25826727
Protocol for vital dye staining of corneal endothelial cells.
Park, Sunju; Fong, Alan G; Cho, Hyung; Zhang, Cheng; Gritz, David C; Mian, Gibran; Herzlich, Alexandra A; Gore, Patrick; Morganti, Ashley; Chuck, Roy S
2012-12-01
To describe a step-by-step methodology to establish a reproducible staining protocol for the evaluation of human corneal endothelial cells. Four procedures were performed to determine the best protocol. (1) To determine the optimal trypan blue staining method, goat corneas were stained with 4 dilutions of trypan blue (0.4%, 0.2%, 0.1%, and 0.05%) and 1% alizarin red. (2) To determine the optimal alizarin red staining method, goat corneas were stained with 2 dilutions of alizarin red (1% and 0.5%) and 0.2% trypan blue. (3) To ensure that trypan blue truly stains damaged cells, goat corneas were exposed to either 3% hydrogen peroxide or to balanced salt solution, and then stained with 0.2% trypan blue and 0.5% alizarin red. (4) Finally, fresh human corneal buttons were examined; 1 group was stained with 0.2% trypan blue and another group with 0.4% trypan blue. For the 4 procedures performed, the results are as follows: (1) trypan blue staining was not observed in any of the normal corneal samples; (2) 0.5% alizarin red demonstrated sharper cell borders than 1% alizarin red; (3) positive trypan blue staining was observed in the hydrogen peroxide exposed tissue in damaged areas; (4) 0.4% trypan blue showed more distinct positive staining than 0.2% trypan blue. We were able to determine the optimal vital dye staining conditions for human corneal endothelial cells using 0.4% trypan blue and 0.5% alizarin red.
Mansur, Rusnam; Gusmanizar, Neni; Roslan, Muhamad Akhmal Hakim; Ahmad, Siti Aqlima; Shukor, Mohd Yunus
2017-01-01
A molybdenum reducing bacterium with the novel ability to decolorise the azo dye Metanil Yellow is reported. Optimal conditions for molybdenum reduction were pH 6.3 and at 34°C. Glucose was the best electron donor. Another requirement includes a narrow phosphate concentration between 2.5 and 7.5 mM. A time profile of Mo-blue production shows a lag period of approximately 12 hours, a maximum amount of Mo-blue produced at a molybdate concentration of 20 mM, and a peak production at 52 h of incubation. The heavy metals mercury, silver, copper and chromium inhibited reduction by 91.9, 82.7, 45.5 and 17.4%, respectively. A complete decolourisation of the dye Metanil Yellow at 100 and 150 mg/L occurred at day three and day six of incubations, respectively. Higher concentrations show partial degradation, with an approximately 20% decolourisation observed at 400 mg/L. The bacterium is partially identified based on biochemical analysis as Bacillus sp. strain Neni-10. The absorption spectrum of the Mo-blue suggested the compound is a reduced phosphomolybdate. The isolation of this bacterium, which shows heavy metal reduction and dye-decolorising ability, is sought after, particularly for bioremediation.
Mansur, Rusnam; Gusmanizar, Neni; Roslan, Muhamad Akhmal Hakim; Ahmad, Siti Aqlima; Shukor, Mohd Yunus
2017-01-01
A molybdenum reducing bacterium with the novel ability to decolorise the azo dye Metanil Yellow is reported. Optimal conditions for molybdenum reduction were pH 6.3 and at 34°C. Glucose was the best electron donor. Another requirement includes a narrow phosphate concentration between 2.5 and 7.5 mM. A time profile of Mo-blue production shows a lag period of approximately 12 hours, a maximum amount of Mo-blue produced at a molybdate concentration of 20 mM, and a peak production at 52 h of incubation. The heavy metals mercury, silver, copper and chromium inhibited reduction by 91.9, 82.7, 45.5 and 17.4%, respectively. A complete decolourisation of the dye Metanil Yellow at 100 and 150 mg/L occurred at day three and day six of incubations, respectively. Higher concentrations show partial degradation, with an approximately 20% decolourisation observed at 400 mg/L. The bacterium is partially identified based on biochemical analysis as Bacillus sp. strain Neni-10. The absorption spectrum of the Mo-blue suggested the compound is a reduced phosphomolybdate. The isolation of this bacterium, which shows heavy metal reduction and dye-decolorising ability, is sought after, particularly for bioremediation. PMID:28228917
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryukhanov, V V; Borkunov, R Yu; Tsarkov, M V
The fluorescence and phosphorescence of dyes in thin polymethylmethacrylate (PMMA) films in the presence of ablated silver nanoparticles has been investigated in a wide temperature range by methods of femtosecond and picosecond laser photoexcitation. The fluorescence and phosphorescence times, as well as spectral and kinetic characteristics of rhodamine 6G (R6G) molecules in PMMA films are measured in a temperature range of 80 – 330 K. The temperature quenching activation energy of the fluorescence of R6G molecules in the presence of ablated silver nanoparticles is found. The vibrational relaxation rate of R6G in PMMA films is estimated, the efficiency of themore » dipole – dipole electron energy transfer between R6G and brilliant green molecules (enhanced by plasmonic interaction with ablated silver nanoparticles) is analysed, and the constants of this energy transfer are determined. (nanophotonics)« less
Balcha, Abebe; Yadav, Om Prakash; Dey, Tania
2016-12-01
Zinc oxide (ZnO) nanoparticles were synthesized by precipitation and sol-gel methods. The aim of this study was to understand how different synthetic methods can affect the photocatalytic activity of ZnO nanoparticles. As-synthesized ZnO nanoparticles were characterized by X-ray diffraction (XRD) and UV-Visible spectroscopic techniques. XRD patterns of ZnO powders synthesized by precipitation and sol-gel methods revealed their hexagonal wurtzite structure with crystallite sizes of 30 and 28 nm, respectively. Their photocatalytic activities were evaluated by photocatalytic degradation of methylene blue, a common water pollutant, under UV radiation. The effects of operational parameters such as photocatalyst load and initial concentration of the dye on photocatalytic degradation of methylene blue were investigated. While the degradation of dye decreased over the studied dye concentration range of 20 to 100 mg/L, an optimum photocatalyst load of 250 mg/L was needed to achieve dye degradation as high as 81 and 92.5 % for ZnO prepared by precipitation and sol-gel methods, respectively. Assuming pseudo first-order reaction kinetics, this corresponded to rate constants of 8.4 × 10 -3 and 12.4 × 10 -3 min -1 , respectively. Hence, sol-gel method is preferred over precipitation method in order to achieve higher photocatalytic activity of ZnO nanostructures. Photocatalytic activity is further augmented by better choice of capping ligand for colloidal stabilization, starch being more effective than polyethylene glycol (PEG).
Notomi, Shoji; Hisatomi, Toshio; Kanemaru, Takaaki; Takeda, Atsunobu; Ikeda, Yasuhiro; Enaida, Hiroshi; Kroemer, Guido; Ishibashi, Tatsuro
2011-12-01
Stressed cells release ATP, which participates in neurodegenerative processes through the specific ligation of P2RX7 purinergic receptors. Here, we demonstrate that extracellular ATP and the more specific P2RX7 agonist, 2'- and 3'-O-(4-benzoylbenzoyl)-ATP, both induce photoreceptor cell death when added to primary retinal cell cultures or when injected into the eyes from wild-type mice, but not into the eyes from P2RX7(-/-) mice. Photoreceptor cell death was accompanied by the activation of caspase-8 and -9, translocation of apoptosis-inducing factor from mitochondria to nuclei, and TUNEL-detectable chromatin fragmentation. All hallmarks of photoreceptor apoptosis were prevented by premedication or co-application of Brilliant Blue G, a selective P2RX7 antagonist that is already approved for the staining of internal limiting membranes during ocular surgery. ATP release is up-regulated by nutrient starvation in primary retinal cell cultures and seems to be an initializing event that triggers primary and/or secondary cell death via the positive feedback loop on P2RX7. Our results encourage the potential application of Brilliant Blue G as a novel neuroprotective agent in retinal diseases or similar neurodegenerative pathologies linked to excessive extracellular ATP. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Vryzas, Zisis; Papadakis, Emmanuel Nikolaos; Papadopoulou-Mourkidou, E
2012-04-15
An extensive four-year research program has been carried out to explore and acquire knowledge about the fundamental agricultural practices and processes affecting the mobility and bioavailability of pesticides in soils under semi-arid Mediterranean conditions. Pesticide leaching was studied under field conditions at five different depths using suction cups. Monitoring of metolachlor, alachlor, atrazine, deethylatrazine (DEA), deisopropylatrazine (DIA), and bromide ions in soil water, as well as dye patterns made apparent the significant role of preferential flow to the mobility of the studied compounds. Irrespective to their adsorption capacities and degradation rates, atrazine, metolachlor and bromide ions were simultaneously detected to 160 cm depth. Following 40 mm irrigation, just after their application, both alachlor and atrazine were leached to 160 cm depth within 18 h, giving maximum concentrations of 211 and 199 μg L(-1), respectively. Metolachlor was also detected in all depth when its application was followed by a rainfall event (50 mm) two weeks after its application. The greatest concentrations of atrazine, alachlor and metolachlor in soil water were 1795, 1166 and 845 μg L(-1), respectively. The greatest concentrations of atrazine's degradation products (both DEA and DIA) appeared later in the season compared to the parent compound. Metolachlor exhibited the greatest persistence with concentrations up to 10 μg L(-1) appearing in soil water 18 months after its application. Brilliant blue application followed by 40 mm irrigation clearly depict multi-branching network of preferential flow paths allowing the fast flow of the dye down to 150 cm within 24 h. This network was created by soil cracks caused by shrinking of dry soils, earthworms and plant roots. Chromatographic flow of the stained soil solution was evident only in the upper 10-15 cm of soil. Copyright © 2012 Elsevier Ltd. All rights reserved.
Delineation of the vitreous and posterior hyaloid using bromophenol blue.
Haritoglou, Christos; Strauss, Rupert; Priglinger, Siegfried G; Kreutzer, Thomas; Kampik, Anselm
2008-02-01
To describe visualization of the vitreous and the posterior hyaloid membrane using bromophenol blue during vitrectomy for macular hole and retinal detachment. Six patients with macular holes and four with retinal detachments were included in the study. Before and after surgery, complete clinical examination, including funduscopy and measurements of best-corrected visual acuity and intraocular pressure, was performed. Additional functional tests, such as fluorescein angiography, optical coherence tomography (Stratus OCT; Carl Zeiss Meditec, Jena, Germany, Germany), Goldmann perimetry, and multifocal electroretinography as well as photography of the posterior pole, were performed for macular hole patients. Bromophenol blue was used in concentrations of 0.2%. During macular hole surgery, the dye was injected into the air-filled globe, while during surgery for retinal detachment, the globe was partially filled with perfluorocarbon before dye injection after induction of a posterior vitreous detachment to stain the vitreous peripherally. Bromophenol blue provided sufficient staining of the attached posterior hyaloid membrane and vitreous remnants in the periphery. This was especially helpful for patients in whom a posterior vitreous detachment could not be induced mechanically by suction using the vitrectomy probe alone, as seen in three of six interventions for a macular hole in this series. In addition, staining of the vitreous or vitreous remnants in the periphery and at the vitreous base was seen in all patients and helped to completely remove the vitreous in a controlled fashion. After macular hole surgery, increase of visual acuity from 20/100 (mean) to 20/40 was seen during follow-up up to 6 months. In one case, the hole persisted and required a second operation. Finally, closure of the hole was achieved in all patients. After retinal detachment surgery, reattachment was achieved in all cases. No dye-related adverse events were seen during follow-up as shown by the functional tests (visual acuity measurement, electroretinography, and perimetry) applied. Delineation of the vitreous and the posterior hyaloid using bromophenol blue staining greatly facilitates vitreoretinal procedures. Bromophenol blue appeared to be a very helpful and safe tool to visualize the posterior hyaloid membrane in macular hole surgery and assured its complete separation from the retinal surface. The dye also helped to remove vitreous at the vitreous base during retinal detachment surgery. Therefore, bromophenol blue appears as a very good alternative to triamcinolone, which has been used for this purpose, because the dye has no pharmacological properties and no side effects are likely to occur such as cataract formation and increase in intraocular pressure. Further studies including larger numbers of patients are mandatory.
Rapid alkaline methylene blue supravital staining for assessment of anterior segment infections.
Kiuchi, Katsuji
2016-01-01
To present the Löffler's alkaline methylene blue technique of staining eye discharges in eyes with anterior segment infections. The Löffler's alkaline methylene blue staining method is a simple staining technique that can be used to differentiate bacterial, viral, and fungal infections. It is a cationic dye that stains cells blue because the positively charged dye is attracted to negatively charged particles such as polyphosphates, DNAs, and RNAs. Specimens collected from patients by swabbing are smeared onto microscope slides and the methylene blue solution is dropped on the slide. The slide is covered with a glass cover slip and examined under a microscope. The entire time from the collection to the viewing is about 30 seconds. Histopathological images of the conjunctival epithelial cells and neutrophils in eye discharges were dyed blue and the nuclei were stained more intensely blue. Bacterial infections consisted mainly of neutrophils, and viral infections consisted mainly of lymphocytes. Löffler's alkaline methylene blue staining can be done in about 30 seconds for diagnosis. Even though this is a one color stain, it is possible to infer the cause of the infection by detection of the absence of bacteria and/or fungi in context of the differential distribution of neutrophils and lymphocytes.
2000-02-11
The brilliant exhaust from the solid rocket boosters (center) and blue mach diamonds from the main engine nozzles mark the perfect launch of Space Shuttle Endeavour from Launch Pad 39A. Launch of Endeavour into a clear blue Florida sky occurred at 12:43:40 p.m. EST. Known as the Shuttle Radar Topography Mission (SRTM), STS-99 will chart a new course to produce unrivaled 3-D images of the Earth's surface. The result of the SRTM could be close to 1 trillion measurements of the Earth's topography. The mission is expected to last 11days, with Endeavour landing at KSC Tuesday, Feb. 22, at 4:36 p.m. EST. This is the 97th Shuttle flight and 14th for Shuttle Endeavour
2000-02-11
The brilliant exhaust from the solid rocket boosters (center) and blue mach diamonds from the main engine nozzles mark the perfect launch of Space Shuttle Endeavour from Launch Pad 39A. Launch of Endeavour into a clear blue Florida sky occurred at 12:43:40 p.m. EST. Known as the Shuttle Radar Topography Mission (SRTM), STS-99 will chart a new course to produce unrivaled 3-D images of the Earth's surface. The result of the SRTM could be close to 1 trillion measurements of the Earth's topography. The mission is expected to last 11days, with Endeavour landing at KSC Tuesday, Feb. 22, at 4:36 p.m. EST. This is the 97th Shuttle flight and 14th for Shuttle Endeavour
Azo Dye Biodecolorization Enhanced by Echinodontium taxodii Cultured with Lignin
Meng, Jing; Yu, Hongbo; Zhang, Xiaoyu
2014-01-01
Lignocellulose facilitates the fungal oxidization of recalcitrant organic pollutants through the extracellular ligninolytic enzymes induced by lignin in wood or other plant tissues. However, available information on this phenomenon is insufficient. Free radical chain reactions during lignin metabolism are important in xenobiotic removal. Thus, the effect of lignin on azo dye decolorization in vivo by Echinodontium taxodii was evaluated. In the presence of lignin, optimum decolorization percentages for Remazol Brilliant Violet 5R, Direct Red 5B, Direct Black 38, and Direct Black 22 were 91.75% (control, 65.96%), 76.89% (control, 43.78%), 43.44% (control, 17.02%), and 44.75% (control, 12.16%), respectively, in the submerged cultures. Laccase was the most important enzyme during biodecolorization. Aside from the stimulating of laccase activity, lignin might be degraded by E. taxodii, and then these degraded low-molecular-weight metabolites could act as redox mediators promoting decolorization of azo dyes. The relationship between laccase and lignin degradation was investigated through decolorization tests in vitro with purified enzyme and dozens of aromatics, which can be derivatives of lignin and can function as laccase mediators or inducers. Dyes were decolorized at triple or even higher rates in certain laccase–aromatic systems at chemical concentrations as low as 10 µM. PMID:25285777
NASA Astrophysics Data System (ADS)
Zhang, T.; Xu, Z.; Qian, L.; Tao, D. L.; Teng, F.; Xu, X. R.
2006-11-01
The luminescent properties of fluorescent dye-doped polymer dispersed with ZnO nanorods were investigated. Embedding ZnO nanorods in blend film results in a blue-shifted emission of fluorescent dye. It is accounted for in terms of the difference in permittivity between inorganic oxide nano-material and dye-doped polymer. Moreover, polymer light-emitting diodes with the addition of ZnO nanorods showed the lower threshold voltage and the higher charge current and electroluminescence efficiency.
NASA Astrophysics Data System (ADS)
Kusmiyati, L., Puspita Adi; Deni, V.; Robi Indra, S.; Islamica, Dlia; Fuadi, M.
2016-04-01
Removal of vertigo blue dye from batik textile wastewater was studied by adsorptionprocess onto activated carbon (AC) and coal bottom ash (CBA).The influence of experimental conditions (pH solution, dye concentration, and contact time) were studied on the both adsorbents. At equilibrium conditions, the data were fitted to Langmuir and Freundlich adsorption models. The maximum adsorption capacity calculated from the Langmuir model for carbon active was 6.29mg/g at pH that found to be considerably higher than that obtained for coal bottom ash 3.72mg/g pH 9. From Freundlich model, the maximum adsorption capacity is less for coal bottom ash (pH 9) than that for carbon active (pH4).
Brar, Harinder; Hogen, Liat; Covens, Al
2017-05-15
The objective of this study was to determine the cost-effectiveness of radical hysterectomy (RH) and sentinel lymph node biopsy (SLNB) for the management of early-stage cervical cancer (stage IA2-IB1). A simple decision tree model was developed to follow a simulated cohort of patients with early-stage cervical cancer treated with RH and 1 of 3 lymph node assessment strategies: systematic pelvic lymph node dissection (PLND), SLNB using technetium 99 (Tc99) and blue dye, and SLNB using Tc99 only. SLNB using indocyanine green (ICG) was used as an exploratory strategy. Relevant studies were identified to extract the probability data and utility parameters and to estimate quality-adjusted life-years (QALYs) and absolute life-years (ALYs). Only direct medical costs were modeled, and the time horizon for the study was 5 years. SLNB using Tc99 and blue dye cost $21,089 and yielded 4.54 QALYs and 4.90 ALYs. PLND cost $22,353 and yielded 4.47 QALYs and 4.91 ALYs. SLNB using blue dye and Tc99 was the most cost-effective strategy when ALYs were considered with an incremental cost-effectiveness ratio (ICER) of $144,531. When QALYs were considered, the SLNB technique using Tc99 and blue dye dominated all other strategies. SLNB using ICG cost $20,624 and yielded 4.90 ALYs and 4.54 QALYs. It was clinically superior to and less expensive than all other strategies when QALYs were the outcome of interest and had an ICER of $221,171 per ALY in comparison with RH plus PLND. SLNB using Tc99 and blue dye with ultrastaging is considered the most cost-effective strategy with respect to 5-year progression-free survival and morbidity-free survival. Although it was included only as an exploratory strategy in this study, SLNB with ICG has the potential to be the most cost-effective strategy. Cancer 2017;123:1751-1759. © 2017 American Cancer Society. © 2017 American Cancer Society.
Bydlon, Torre M.; Barry, William T.; Kennedy, Stephanie A.; Brown, J. Quincy; Gallagher, Jennifer E.; Wilke, Lee G.; Geradts, Joseph; Ramanujam, Nimmi
2012-01-01
Breast conserving surgery (BCS) is a recommended treatment for breast cancer patients where the goal is to remove the tumor and a surrounding rim of normal tissue. Unfortunately, a high percentage of patients return for additional surgeries to remove all of the cancer. Post-operative pathology is the gold standard for evaluating BCS margins but is limited due to the amount of tissue that can be sampled. Frozen section analysis and touch-preparation cytology have been proposed to address the surgical needs but also have sampling limitations. These issues represent an unmet clinical need for guidance in resecting malignant tissue intra-operatively and for pathological sampling. We have developed a quantitative spectral imaging device to examine margins intra-operatively. The context in which this technology is applied (intra-operative or post-operative setting) is influenced by time after excision and surgical factors including cautery and the presence of patent blue dye (specifically Lymphazurin™, used for sentinel lymph node mapping). Optical endpoints of hemoglobin ([THb]), fat ([β-carotene]), and fibroglandular content via light scattering (<µs’>) measurements were quantified from diffuse reflectance spectra of lumpectomy and mastectomy specimens using a Monte Carlo model. A linear longitudinal mixed-effects model was used to fit the optical endpoints for the cautery and kinetics studies. Monte Carlo simulations and tissue mimicking phantoms were used for the patent blue dye experiments. [THb], [β-carotene], and <µs’> were affected by <3.3% error with <80 µM of patent blue dye. The percent change in [β-carotene], <µs’>, and [β-carotene]/<µs’> was <14% in 30 minutes, while percent change in [THb] was >40%. [β-carotene] and [β-carotene]/<µs’> were the only parameters not affected by cautery. This work demonstrates the importance of understanding the post-excision kinetics of ex-vivo tissue and the presence of cautery and patent blue dye for breast tumor margin assessment, to accurately interpret data and exploit underling sources of contrast. PMID:23251526
Effect of initial treatment in the preparation of natural indigo dye from Indigofera tinctoria
NASA Astrophysics Data System (ADS)
Purnama, Herry; Hidayati, Nur; Safitri, Dyah S.; Rahmawati, Sofia
2017-06-01
The current tinting industries return to the use of natural dyes because of their characteristics including safe and environmentally friendly. Indonesia can widely promote the potential of natural colours due to the availability of abundant natural dye plants. One of the potential plants that generates blue colour is Indigofera tinctoria. This research was conducted to improve the quality and quantity of natural indigo dye for batik production that supports the environment sustainability. The indigo dark blue paste was produced by initial treatment of soaking in cold water for 48 hours. The 48 hours fermentation anaerobic conditions reached optimum temperature, due to time and pH were also met by nutrients. Aeration was done in ten minutes using an aquarium air pump to increase mixing in water immersion with solution of calcium oxide. Indoxyl in the fermented leaves of Indigofera tinctoria is easily oxidized by air in alkali solution that will form pigment indigo. In that condition, lime (CaO) can be used in the manufacture of indigo paste. In this study, the higher concentrated of blue colour was achieved by lesser amount of lime. The soaking treatment in cold water produced high amount of dyes rather than the initial treatment by both hot water and grounding the indigo leaves. Analysis were done by using UV-Vis Spectrophotometry which showed the value of absorbance. The sample that was soaked in 5 liters of water added by a kilogram of Indigofera tinctoria leaves and 15 grams of lime for 48 hours, obtained the highest absorbance or concentration level. The application of the indigo dyes with or without mordanting agent was also tested for colour fastness.
Experimental and kinetic studies on methylene blue adsorption by coir pith carbon.
Kavitha, D; Namasivayam, C
2007-01-01
Varying the parameters such as agitation time, dye concentration, adsorbent dose, pH and temperature carried out the potential feasibility of thermally activated coir pith carbon prepared from coconut husk for removal of methylene blue. Greater percentage of dye was removed with decrease in the initial concentration of dye and increase in amount of adsorbent used. Kinetic study showed that the adsorption of dye on coir pith carbon was a gradual process. Lagergren first-order, second-order, intra particle diffusion model and Bangham were used to fit the experimental data. Equilibrium isotherms were analysed by Langmuir, Freundlich, Dubnin-Radushkevich, and Tempkin isotherm. The adsorption capacity was found to be 5.87 mg/g by Langmuir isotherm for the particle size 250-500 microm. The equilibrium time was found to be 30 and 60 min for 10 and 20 mg/L and 100 min for 30, 40 mg/L dye concentrations, respectively. A maximum removal of 97% was obtained at natural pH 6.9 for an adsorbent dose of 100 mg/50 mL and 100% removal was obtained for an adsorbent dose of 600 mg/50 mL of 10 mg/L dye concentration. The pH effect and desorption studies suggest that chemisorption might be the major mode of the adsorption process. The change in entropy (DeltaS0) and heat of adsorption (DeltaH0) of coir pith carbon was estimated as 117.20 J/mol/K and 30.88 kJ/mol, respectively. The high negative value of change in Gibbs free energy indicates the feasible and spontaneous adsorption of methylene blue on coir pith carbon.
Adverse drug reaction, patent blue V dye and anaesthesia.
Tripathy, Swagata; Nair, Priya V
2012-11-01
Patent blue vital (PBV) dye is used for varied perioperative indications, and has a potential for causing life-threatening allergic reactions. In this retrospective case series study, at a tertiary level neurosciences centre, we analysed the nature, management and outcome of adverse drug reaction to the preoperative use of PBV for marking vertebral level prior to back surgeries. Patients were identified from the theatre and radiology database. Data were collected from the patients' notes retrieved from the medical records division. Eleven of 1247 (0.88%) patients experienced adverse reactions: 6 (0.48%) patients had minor grade I reactions (urticaria, blue hives, pruritis or generalised rash), 4 (0.32%) had grade II reactions (transient hypotension/bronchospasm/laryngospasm) and grade III reaction (hypotension requiring prolonged vasopressor support) was noted in 1 (0.08%) patient. No mortality was seen. The time of onset (range 10-45 min) frequently coincided with induction of anaesthesia or prone positioning of patient. Seven (63.6%) cases were cancelled or postponed (range 2-63 days). Treatment varied independent of the grade of reaction. Allergy workup (often incomplete) was done for 6 (54%) patients. An awareness of the time of onset and infrequency of life-threatening reactions to patent blue dye may result in better management, less postponement, more complete workup and referral of these events.
Durability of switchable QR code carriers under hydrolytic and photolytic conditions
NASA Astrophysics Data System (ADS)
Ecker, Melanie; Pretsch, Thorsten
2013-09-01
Following a guest diffusion approach, the surface of a shape memory poly(ester urethane) (PEU) was either black or blue colored. Bowtie-shaped quick response (QR) code carriers were then obtained from laser engraving and cutting, before thermo-mechanical functionalization (programming) was applied to stabilize the PEU in a thermo-responsive (switchable) state. The stability of the dye within the polymer surface and long-term functionality of the polymer were investigated against UVA and hydrolytic ageing. Spectrophotometric investigations verified UVA ageing-related color shifts from black to yellow-brownish and blue to petrol-greenish whereas hydrolytically aged samples changed from black to greenish and blue to light blue. In the case of UVA ageing, color changes were accompanied by dye decolorization, whereas hydrolytic ageing led to contrast declines due to dye diffusion. The Michelson contrast could be identified as an effective tool to follow ageing-related contrast changes between surface-dyed and laser-ablated (undyed) polymer regions. As soon as the Michelson contrast fell below a crucial value of 0.1 due to ageing, the QR code was no longer decipherable with a scanning device. Remarkably, the PEU information carrier base material could even then be adequately fixed and recovered. Hence, the surface contrast turned out to be the decisive parameter for QR code carrier applicability.
Sentinel Lymph Node (SLN) laparoscopic assessment early stage in endometrial cancer.
Gargiulo, T; Giusti, M; Bottero, A; Leo, L; Brokaj, L; Armellino, F; Palladin, L
2003-06-01
The aim of the study was to demonstrate the validity of sentinel lymph node (SLN) detection after injection of radioactive isotope and patent blue dye in patients affected by early stage endometrial cancer. The second purpose was to compare radioactive isotope and patent blue dye migration. Between September 2000 and May 2001, 11 patients with endometrial cancer FIGO stage Ib (n=10) and IIa (n=1) underwent laparoscopic SLN detection during laparoscopic assisted vaginal hysterectomy with bilateral salpingo-oophorectomy and pelvic bilateral systematic lymphadenectomy. Radioactive isotope injection was performed 24 ours before surgery and blue dye injection was performed just before surgery in the cervix at 3, 6, 9 and 12 hours. A 350 mm laparoscopic gamma-scintiprobe MR 100 type 11, (99m)Tc setted (Pol.Hi.Tech.), was used intraoperatively for detecting SLN. Seventeen SLN were detected at lymphoscintigraphy (6 bilateral and 5 monolateral). At laparoscopic surgery the same locations were found belonging at internal iliac lymph nodes (the so called "Leveuf-Godard" area, lateral to the inferior vescical artery, ventral to the origin of uterine artery and medial or caudal to the external iliac vein). Fourteen SLN were negative at histological analysis and only 3 positive for micrometastasis (mean SLN sections = 60. All the other pelvic lymph nodes were negative at histological analysis. The same SLN locations detected with g-scintiprobe were observed during laparoscopy after patent blue dye injection. If the sensitivity of the assessment of SLN is confirmed to be 100%, this laparoscopic approach could change the management of early stage endometrial cancer. The clinical validity of this technique must be evaluated prospectively.
Ultrasonic-assisted dyeing of Nylon-6 nanofibers.
Jatoi, Abdul Wahab; Ahmed, Farooq; Khatri, Muzamil; Tanwari, Anwaruddin; Khatri, Zeeshan; Lee, Hoik; Kim, Ick Soo
2017-11-01
We first time report ultrasonic dyeing of the Nylon 6 nanofibers with two disperse dyes CI Disperse blue 56 and CI Disperse Red 167:1 by utilising ultrasonic energy during dyeing process. The Nylon 6 nanofibers were fabricated via electrospinning and dyed via batchwise method with and without sonication. Results revealed that ultrasonic dyeing produce higher color yield (K/S values) and substantially reduces dyeing time from 60min for conventional dyeing to 30min can be attributed to breakage of dye aggregate, transient cavitation near nanofiber surface and mass transfer within/between nanofibers. Color fastness results exhibited good to very good dye fixation. SEM images exhibit insignificant effect of sonication on morphology of the nanofibers. Our research results demonstrate ultrasonic dyeing as a better dyeing technique for Nylon 6 nanofibers with higher color yield and substantially reduced dyeing time. Copyright © 2017 Elsevier B.V. All rights reserved.
Smectite clays of Serbia and their application in adsorption of organic dyes
NASA Astrophysics Data System (ADS)
Milošević, Maja; Logar, Mihovil
2014-05-01
Colorants and dyes are currently available in over a 100.000 different species and several biggest industries are using them daily in their manufacture processes (textile, cosmetics, food industry, etc.). Since colorants are easily dissoluble in water they pass through filter membranes without further decomposing and in that manner they end up in the environment. The main goal of this work is to apply certain methods in determining the suitability of individual clay in adsorbing and removing colorants from polluted waters. For this study we have chosen four different raw clays from three regions in Serbia: Svrljig (B), Bogovina (Bo) and Slatina-Ub (C and V) and as colorant - methylene blue dye (MB (MERCK, for analytical purposes)). Experiments where carried out to determine the sample structure (XRD and IR), grain size (granulometry), cationic exchange capacity (CEC via spectrophotometry using MB) and adsorption capabilities (spectrophotometry and fluorimetry using MB). XRD and IR data are showing that the samples are smectite clays where samples B i Bo are mainly montmorillonite while C and V are montmorillonite-illite clays. Granulometric distribution results indicate that samples B i Bo have smaller grain size, less that 1μ (over 60%) whereas the samples C and V are more coarse grained (40% over 20μ). This grain distribution is affecting their specific surface area in the manner that those coarse grained samples have smaller specific surface area. Cationic exchange capacity determined with methylene blue indicate that montmorillonite samples have larger CEC (B = 37 meq/100g, Bo = 50 meq/100g) and montmorillonite-illite samples smaller CEC (V = 5 meq/100g, V = 3 meq/100g). Fluorimetry measurement results gave us a clear distinction between those with higher and smaller adsorption capability. Montmorillonite samples (B and Bo) with higher CEC values and smaller grain size are adsorbing large amounts of methylene blue witch is visible by absence of fluorimetric band corresponding to methylene blue. Montmorillonite-illite samples with smaller CEC values and coarser grain size are adsorbing very small amounts of methylene blue from the suspension which is visible by appearance of the methylene blue band. Untreated, raw smectite clays of Serbia are efficient adsorbent material for removal of dyes from polluted waters. Samples from two regions especially, Bogovina and Svrljig, are showing favorable adsorption results and they are representing good raw materials for purification of waste-waters containing dyes. References: - Jović-Jovičić, N., Milutinović-Nikolić, A., Gržetić, I., Jovanović, D.; Organobentonite as efficient textile dye sorbent; Chem. Eng. Technol. 2008, 31, No. 4, 567-574 - Žunić, M.J., Milutinović-Nikolić, A.D., Jović-Jovičić, N.P., Banković, P.T., Mojović, Z.D., Manojlović, D.D., Jovanović, D.M.; Modified bentonite as adsorbent and catalyst for purification of wastewaters containing dyes; Hem. ind. 2010, 64 ,No. 3, 193-199
Two-photon excited photoconversion of cyanine-based dyes
NASA Astrophysics Data System (ADS)
Kwok, Sheldon J. J.; Choi, Myunghwan; Bhayana, Brijesh; Zhang, Xueli; Ran, Chongzhao; Yun, Seok-Hyun
2016-03-01
The advent of phototransformable fluorescent proteins has led to significant advances in optical imaging, including the unambiguous tracking of cells over large spatiotemporal scales. However, these proteins typically require activating light in the UV-blue spectrum, which limits their in vivo applicability due to poor light penetration and associated phototoxicity on cells and tissue. We report that cyanine-based, organic dyes can be efficiently photoconverted by nonlinear excitation at the near infrared (NIR) window. Photoconversion likely involves singlet-oxygen mediated photochemical cleavage, yielding blue-shifted fluorescent products. Using SYTO62, a biocompatible and cell-permeable dye, we demonstrate photoconversion in a variety of cell lines, including depth-resolved labeling of cells in 3D culture. Two-photon photoconversion of cyanine-based dyes offer several advantages over existing photoconvertible proteins, including use of minimally toxic NIR light, labeling without need for genetic intervention, rapid kinetics, remote subsurface targeting, and long persistence of photoconverted signal. These findings are expected to be useful for applications involving rapid labeling of cells deep in tissue.
Peach gum for efficient removal of methylene blue and methyl violet dyes from aqueous solution.
Zhou, Li; Huang, Jiachang; He, Benzhao; Zhang, Faai; Li, Huabin
2014-01-30
This study investigated the potential use of natural peach gum (PG) as alternative adsorbent for the removal of dyes from aqueous solutions. The PG showed high adsorption capacities and selectivity for cationic dyes (e.g., methylene blue (MB) and methyl violet (MV)) in the pH range 6-10. 98% of MB and MV could be adsorbed within 5 min, and both of the adsorptions reached equilibrium within 30 min. The dye uptake process followed the pseudo-second-order kinetic model. The intraparticle diffusion was not the sole rate controlling step. Equilibrium adsorption isotherm data indicated a good fit to the Langmuir isotherm model. Regeneration study revealed that PG could be well regenerated in acid solution. The recovered PG still exhibited high adsorption capacity even after five cycles of desorption-adsorption. On the basis of its excellent adsorption performance and facile availability, PG can be employed as an efficient low cost adsorbent for environmental cleanup. Copyright © 2013 Elsevier Ltd. All rights reserved.
Moutaouakkil, A; Blaghen, M
2011-01-01
Coprinus cinereus, which was able to decolorize the anthraquinone dye Cibacron Blue 3G-A (CB) enzymatically, was used as a biocatalyst for the decolorization of synthetic solutions containing this reactive dye. Coprinus cinereus was immobilized in both calcium alginate and polyacrylamide gels, and was used for the decolorization of CB from synthetic water by using a fluidized bed bioreactor. The highest specific decolorization rate was obtained when Coprinus cinereus was entrapped in calcium alginate beads, and was of about 3.84 mg g(-1) h(-1) with a 50% conversion time (t1/2) of about 2.60 h. Moreover, immobilized fungal biomass in calcium alginate continuously decolorized CB even after 7 repeated experiments without significant loss of activity, while polyacrylamide-immobilized fungal biomass retained only 67% of its original activity. The effects of some physicochemical parameters such as temperature, pH and dye concentration on decolorization performance of isolated fungal strain were also investigated.
Adsorption of dyes onto carbonaceous materials produced from coffee grounds by microwave treatment.
Hirata, Mizuho; Kawasaki, Naohito; Nakamura, Takeo; Matsumoto, Kazuoki; Kabayama, Mineaki; Tamura, Takamichi; Tanada, Seiki
2002-10-01
Organic wastes have been burned for reclamation. However, they have to be recycled and reused for industrial sustainable development. Carbonaceous materials were produced from coffee grounds by microwave treatment. There are many phenolic hydroxyl and carboxyl groups on the surface of carbonaceous materials. The base consumption of the carbonaceous materials was larger than that of the commercially activated carbon. The carbonaceous materials produced from coffee grounds were applied to the adsorbates for the removal of basic dyes (methylene blue and gentian violet) in wastewater. This result indicated that the adsorption of dyes depended upon the surface polar groups on the carbonaceous materials. Moreover, the Freundlich constants of isotherms for the adsorption of methylene blue and gentian violet onto the carbonaceous materials produced from coffee grounds were greater than those for adsorption onto activated carbon or ceramic activated carbon. The interaction was greatest between the surface or porosity of the carbonaceous materials and methylene blue and gentian violet. The microwave treatment would be useful for the carbonization of organic wastes to save energy.
Li, Jie; Lin, Jing; Huang, Yang; Xu, Xuewen; Liu, Zhenya; Xue, Yanming; Ding, Xiaoxia; Luo, Han; Jin, Peng; Zhang, Jun; Zou, Jin; Tang, Chengchun
2015-01-01
We report an effective and rare-earth free light conversion material synthesized via a facile fabrication route, in which organic fluorescent dyes, i.e. Rhodamine B (RhB) and fluorescein isothiocyanate (FITC) are embedded into activated boron nitride (αBN) to form a composite phosphor. The composite phosphor shows highly efficient Förster resonance energy transfer and greatly improved thermal stability, and can emit at broad visible wavelengths of 500–650 nm under the 466 nm blue-light excitation. By packaging of the composite phosphors and a blue light-emitting diode (LED) chip with transparent epoxy resin, white LED with excellent thermal conductivity, current stability and optical performance can be realized, i.e. a thermal conductivity of 0.36 W/mk, a Commission Internationale de 1'Eclairage color coordinates of (0.32, 0.34), and a luminous efficiency of 21.6 lm·W−1. Our research opens the door toward to the practical long-life organic fluorescent dyes-based white LEDs. PMID:25682730
Gürses, A; Doğar, C; Karaca, S; Açikyildiz, M; Bayrak, R
2006-04-17
An activated carbon was developed from Rosa canina sp. seeds, characterized and used for the removal of methylene blue (basic dye) from aqueous solutions. Adsorption studies were carried out at 20 degrees C and various initial dye concentrations (20, 40, 60, 80, and 100 mg/L) for different times (15, 30, 60, and 120 min). The adsorption isotherm was obtained from data. The results indicate that the adsorption isotherm of methylene blue is typically S-shaped. The shape of isotherm is believed to reflect three distinct modes of adsorption. In region 1, the adsorption of methylene blue is carried out mainly by ion exchange. In region 2 by polarizations of pi-electrons established at cyclic parts of the previously adsorbed methylene blue molecules is occurred. However, it is not observed any change at the sign of the surface charge although zeta potential value is decreased with increase of amount adsorbed. In region 3, the slope of the isotherm is reduced, because adsorption now must overcome electrostatic repulsion between oncoming ions and the similarly charged solid. Adsorption in this fashion is usually complete when the surface is covered with a monolayer of methylene blue. To reveal the adsorptive characteristics of the produced active carbon, porosity and BET surface area measurements were made. Structural analysis was performed using SEM-EDS. The produced active carbon has the specific surface area of 799.2 m2 g-1 and the iodine number of 495 mg/g.
Pang, Yean Ling; Abdullah, Ahmad Zuhairi
2012-05-01
Sonocatalytic degradation of various organic dyes (Congo Red, Reactive Blue 4, Methyl Orange, Rhodamine B and Methylene Blue) catalyzed by powder and nanotubes TiO(2) was studied. Both catalysts were characterized using transmission electron microscope (TEM), surface analyzer, Raman spectroscope and thermal gravimetric analyzer (TGA). Sonocatalytic activity of powder and nanotubes TiO(2) was elucidated based on the degradation of various organic dyes. The former catalyst was favorable for treatment of anionic dyes, while the latter was more beneficial for cationic dyes. Sonocatalytic activity of TiO(2) nanotubes could be up to four times as compared to TiO(2) powder under an ultrasonic power of 100 W and a frequency of 42 kHz. This was associated with the higher surface area and the electrostatic attraction between dye molecules and TiO(2) nanotubes. Fourier transform-infrared spectrometer (FT-IR) was used to identify changes that occurred on the functional group in Rhodamine B molecules and TiO(2) nanotubes after the reaction. Sonocatalytic degradation of Rhodamine B by TiO(2) nanotubes apparently followed the Langmuir-Hinshelwood adsorption kinetic model with surface reaction rate of 1.75 mg/L min. TiO(2) nanotubes were proven for their high potential to be applied in sonocatalytic degradation of organic dyes. Copyright © 2011 Elsevier B.V. All rights reserved.
Naghipour, Daryush; Taghavi, Kamran; Moslemzadeh, Mehrdad
2016-01-01
In this study, adsorption of methylene blue (MB) dye onto Artist's Bracket (AB) fungi was investigated in aqueous solution. Fourier transform infrared and scanning electron microscopy were used to investigate surface characteristic of AB fungi. Influence of operational parameters such as pH, contact time, biosorbent dosage, dye concentration, inorganic salts and temperature was studied on dye removal efficiency. With the increase of pH from 3 to 9, removal efficiency increased from 74.0% to 90.4%. Also, it reduced from 99.8% to 81.8% with increasing initial MB concentration from 25 mg L(-1) to 100 mg L(-1), whereas it increased from 54.7% to 98.7% and from 98.5% to 99.9% with increasing biosorbent dosage from 0.5 g L(-1) to 2 g L(-1) and with increasing temperature from 25 °C to 50 °C, respectively. Isotherm studies have shown adsorption of MB dye over the AB fungi had a better coefficient of determination (R(2)) of 0.98 for Langmuir isotherm. In addition, the maximum monolayer adsorption capacity (qm) was 100 mg g(-1). Also, the MB dye adsorption process followed pseudo-second-order kinetic. In general, AB fungi particles can be favorable for removal of MB dye from dye aqueous solution with natural pH and high temperature.
ERIC Educational Resources Information Center
Martins, Angela; Nunes, Nelson
2015-01-01
In this study, an adsorption experiment is proposed using commercial activated carbon as adsorbent and a textile azo dye, Mordant Blue-9, as adsorbate. The surface chemistry of the activated carbon is changed through a simple oxidation treatment and the ionic strength of the dye solution is also modified, simulating distinct conditions of water…
Sorption Behavior of Dye Compounds onto Natural Sediment of Qinghe River.
Liu, Ruixia; Liu, Xingmin; Tang, Hongxiao; Su, Yongbo
2001-07-15
The objective of this study is to assess the adsorption behavior of C.I. Basic Yellow X-5GL, C.I. Basic Red 13, C.I. Direct Blue 86, C.I. Vat Yellow 2, and C.I. Mordant Black 11 on natural sediment and to identify sediment characteristics that play a predominant role in the adsorption of the dyes. The potentiometric titration experiment is used to investigate acid-base properties of the sediment surface with a constant capacitance surface complexation model. The parameters controlling the sorption such as solution pH and ion strength, as well as the influence of organic carbon and Ca(2+) ion on the adsorption, are evaluated. It is shown that the titration data can be successfully described by the surface protonation and deprotonation model with the least-squares FITEQL program 2.0. The sorption isotherm data are fitted to the Freundlich equation in a nonlinear form (1/n=0.3-0.9) for all tested dyes. With increasing pH value, the sorption of C.I. Mordant Black 11 and C.I. Direct Blue 86 on the sediment decreases, while for C.I. Basic Yellow X-5GL and C.I. Basic Red 13, the extent of sorption slightly increases. In addition, ion strength also exhibits a considerably different effect on the sorption behavior of these dye compounds. The addition of Ca(2+) can greatly reduce the sorption of C.I. Basic Red 13 on the sediment surface, while it enhances the sorption of C.I. Direct Blue 6. The removal of organic carbon decreases the sorption of C.I. Mordant Black 11 and C.I. Direct Blue 86. In contrast, the sorption of C.I. Basic Red 13 and C.I. Basic Yellow X-5GL is obviously enhanced after the removal of organic carbon. The differences in adsorption behavior are mainly attributed to the physicochemical properties of these dye compounds. Copyright 2001 Academic Press.
Creech Blue: Gen Bill Creech and the Reformation of the Tactical Air Forces, 1978-1984
2004-10-01
formation that, in large measure, built the Air Force that has fought so brilliantly in campaigns from Operation Desert Storm to the present global war...than eight years for LeMay and more than six for Creech. In LeMay’s case , it was the Strategic Air Command (SAC) during its formative years, when...nuclear weapons, bombers, and intercontinental ballistic missiles were the order of the day. In Creech’s case , it was TAC during the post-Vietnam defense
Šekuljica, Nataša Ž.; Prlainović, Nevena Ž.; Stefanović, Andrea B.; Žuža, Milena G.; Čičkarić, Dragana Z.; Mijin, Dušan Ž.; Knežević-Jugović, Zorica D.
2015-01-01
Two anthraquinonic dyes, C.I. Acid Blue 225 and C.I. Acid Violet 109, were used as models to explore the feasibility of using the horseradish peroxidase enzyme (HRP) in the practical decolorization of anthraquinonic dyes in wastewater. The influence of process parameters such as enzyme concentration, hydrogen peroxide concentration, temperature, dye concentration, and pH was examined. The pH and temperature activity profiles were similar for decolorization of both dyes. Under the optimal conditions, 94.7% of C.I. Acid Violet 109 from aqueous solution was decolorized (treatment time 15 min, enzyme concentration 0.15 IU/mL, hydrogen peroxide concentration 0.4 mM, dye concentration 30 mg/L, pH 4, and temperature 24°C) and 89.36% of C.I. Acid Blue 225 (32 min, enzyme concentration 0.15 IU/mL, hydrogen peroxide concentration 0.04 mM, dye concentration 30 mg/L, pH 5, and temperature 24°C). The mechanism of both reactions has been proven to follow the two substrate ping-pong mechanism with substrate inhibition, revealing the formation of a nonproductive or dead-end complex between dye and HRP or between H2O2 and the oxidized form of the enzyme. Both chemical oxygen demand and total organic carbon values showed that there was a reduction in toxicity after the enzymatic treatment. This study verifies the viability of use of horseradish peroxidase for the wastewaters treatment of similar anthraquinonic dyes. PMID:25685837
1988-06-01
Reaction MeOH, A (11) 40 7 - CH2 N2 No Reaction 0 0 cresol red (22) 8 Q12 N2 Complex Mixture bromoophenol blue (23) -I...of other analogues, e.g. cresol and thymolghthalein alkyl esters were not as succesfull since the oxidation step at the end was !ound to be more...this compound has both ortho positions blocked so the condensation reaction could occur only at the para position. Nevertheless, as the investigation
Guided surgical debridement: staining tissues with methylene blue.
Dorafshar, Amir H; Gitman, Marina; Henry, Ginard; Agarwal, Shailesh; Gottlieb, Lawrence J
2010-01-01
Precise surgical debridement of wounds is required to achieve wound closure. The authors describe their experience with a technique using topical methylene blue to facilitate precise surgical debridement. In this technique, methylene blue dye is applied topically to the wound surface at the onset of surgery. The stained wound site is then wiped to remove dye from the surface of normal epithelium; eschar, nonviable tissue, and granulation tissue remain stained. The methylene blue-stained tissue is surgically removed, and the newly debrided surface of the wound is assessed for adequate vascularity and biopsied to verify presence of bacteriologic balance before closure. The authors have used this technique in more than 200 wound debridements during the past year, including acute surgical or traumatic wounds, acute and subacute burn wounds, chronic granulating wounds, partially epithelialized wounds, sinus tracts, and fistulae. No adverse reactions have been noted, even on patients undergoing multiple applications through serial operations. Topical application of methylene blue to wounds with mixed tissue content helps to distinguish between viable and nonviable tissue and between epithelialized and nonepithelialized areas, facilitating more precise and complete wound debridement.
Sirianuntapiboon, Suntud; Sadahiro, Ohmomo; Salee, Paneeta
2007-10-01
Resting (living) bio-sludge from a domestic wastewater treatment plant was used as an adsorbent of both direct dyes and organic matter in a sequencing batch reactor (SBR) system. The dye adsorption capacity of the bio-sludge was not increased by acclimatization with direct dyes. The adsorption of Direct Red 23 and Direct Blue 201 onto the bio-sludge was almost the same. The resting bio-sludge showed higher adsorption capacity than the autoclaved bio-sludge. The resting bio-sludge that was acclimatized with synthetic textile wastewater (STWW) without direct dyes showed the highest Direct Blue 201, COD, and BOD(5) removal capacities of 16.1+/-0.4, 453+/-7, and 293+/-9 mg/g of bio-sludge, respectively. After reuse, the dye adsorption ability of deteriorated bio-sludge was recovered by washing with 0.1% sodium dodecyl sulfate (SDS) solution. The direct dyes in the STWW were also easily removed by a GAC-SBR system. The dye removal efficiencies were higher than 80%, even when the system was operated under a high organic loading of 0.36kgBOD(5)/m(3)-d. The GAC-SBR system, however, showed a low direct dye removal efficiency of only 57+/-2.1% with raw textile wastewater (TWW) even though the system was operated with an organic loading of only 0.083kgBOD(5)/m(3)-d. The dyes, COD, BOD(5), and total kjeldalh nitrogen removal efficiencies increased up to 76.0+/-2.8%, 86.2+/-0.5%, 84.2+/-0.7%, and 68.2+/-2.1%, respectively, when 0.89 g/L glucose (organic loading of 0.17kgBOD(5)/m(3)-d) was supplemented into the TWW.
Fabrication and characterization of nanowalls CdS/dye sensitized solar cells
NASA Astrophysics Data System (ADS)
Abdulelah, Haider; Ali, Basil; Mahdi, M. A.; Hassan, J. J.; Al-Taay, H. F.; Jennings, P.
2017-06-01
A microwave assisted chemical bath deposition (MA-CBD) was adopted to fabricate nanowalls CdS nanocrystalline thin film. Nanomaterials (such as nanowalls structure) have attracted significant attention due to their fascinating properties and unique applications, especially in optoelectronic nanodevices. Here we describe the fabrication of dye sensitized solar cells (DSSCs) based nanowalls cadmium sulfide (CdS) nanocrystalline thin films. The surface morphology, crystalline structure, and optical properties of the prepared nanocrystalline thin films are investigated. Rhodamine B, Malachite green, Eosin methylene blue, and Cresyl violet perchlorate dyes are used to fabricate the DSSCS devices. Current-voltage (I-V) characteristics show that the nanowall CdS/Eosin methylene blue device is the highest conversion efficiency of 0.89% under 100 mW/cm2. However, heat treatment of the fabricated solar cells causes significant enhancement in the output of all devices.
Adsorption of Acid Blue 25 dye by bentonite and surfactant modified bentonite
NASA Astrophysics Data System (ADS)
Jeeva, Mark; Wan Zuhairi, W. Y.
2018-04-01
Adsorption of Acid Blue (AB 25) from water via batch adsorption experiments onto Na-Bentonite (NB) and CTAB-modified bentonite (CTAB-Ben) was investigated. Studies concerning the factors influencing the adsorption capacities of NB and CTAB-Ben, such as initial dye concentration, adsorbent dosage, pH, contact time and temperature were investigated and discussed. The results revealed that CTAB-modified bentonite demonstrated high adsorption capacities toward acid dyes, while NB exhibited sorption capacities lower than CTAB-Ben. The maximum adsorption efficiency was found to be 50% at an AB 25 concentration of 50 mg/L, adsorbent dosage of 1.8 g/L, reaction time of 90 min and equilibrium pH of 11. The results of isotherm study fit the Langmuir and Freundlich models (R2 > 0.93) and (R2 > 0.9) respectively.
Sensitizing of TiO2 with a merocyanine dye in the photocatalytic reduction of methylene blue
NASA Astrophysics Data System (ADS)
Kobasa, I. M.; Kondratyeva, I. V.; Kropelnytska, Yu. V.
Three merocyanine dyes (D) with various polymethine chain lengths were checked for their applicability as sensitizers for TiO2. Based on the absorption data and cyclic voltammetric redox potentials, the lower unoccupied molecular orbital (LUMO) energy was calculated. The LUMO energy was higher than the conductance band edge energy of the anatase-type TiO2 for all the dyes, meaning that they all can act as efficient sensitizers for various functional materials to be used in the wide-zone visible light solar cells, toxic wastes decontamination technologies and other similar applications. Merocyanines applicability as effective sensitizing agents was approved by construction of the heterostructures (HS) D/TiO2 consisting of the merocyanines and acting as photocatalysts in the test reaction of methylene blue (MB) reduction by formaldehyde.
Adsorption of Dyes in Studying the Surface Chemistry of Ultradispersed Diamond
NASA Astrophysics Data System (ADS)
Khokhlova, T. D.; Yunusova, G. R.; Lanin, S. N.
2018-05-01
The effect the surface chemistry of ultradispersed diamond (UDD) has on the adsorption of watersoluble dyes is considered. A comparison is made to adsorption on graphitized thermal carbon black (GTCB), which has a homogeneous and nonporous surface. The adsorption isotherms of dyes and the dependence of the adsorption on the pH of solutions are measured. It is found that UDD adsorbs acid (anionic) dyes—acid orange (AO) and acid anthraquinone blue (AAB)—but barely adsorbs a basic (cationic) dye, methylene blue (MB), because of the predominance of positively charged basic groups on the surface of UDD. The maximum adsorption of AO is much lower on UDD than on GTCB, while the maximum adsorption of AAB is similar for both surfaces. The adsorption of AO on UDD depends strongly on the pH of the solution, while the adsorption of AAB is independent of this parameter. It is suggested that the adsorption of AAB is determined not only by ionic and hydrophobic interactions but also by coordination interactions with impurity metal ions on a UDD surface. It is concluded that the adsorption of dyes characterizes the chemistry of a UDD surface with high sensitivity.
NASA Astrophysics Data System (ADS)
Hua, Yani; Xiao, Juan; Zhang, Qinqin; Cui, Chang; Wang, Chuan
2018-04-01
A new magnetic nano-adsorbent, polycatechol modified Fe3O4 magnetic nanoparticles (Fe3O4/PCC MNPs) were prepared by a facile chemical coprecipitation method using iron salts and catechol solution as precursors. Fe3O4/PCC MNPs owned negatively charged surface with oxygen-containing groups and showed a strong adsorption capacity and fast adsorption rates for the removal of cationic dyes in water. The adsorption capacity of methylene blue (MB), cationic turquoise blue GB (GB), malachite green (MG), crystal violet (CV) and cationic pink FG (FG) were 60.06 mg g- 1, 70.97 mg g- 1, 66.84 mg g- 1, 66.01 mg g- 1 and 50.27 mg g- 1, respectively. The adsorption mechanism was proposed by the analyses of the adsorption isotherms and adsorption kinetics of cationic dyes on Fe3O4/PCC MNPs. Moreover, the cationic dyes adsorbed on the MNPs as a function of contact time, pH value, temperature, coexisting cationic ions and ion strength were also investigated. These results suggested that the Fe3O4/PCC MNPs is promising to be used as a magnetic adsorbent for selective adsorption of cationic dyes in wastewater treatment.
A switchable digital microfluidic droplet dye-laser.
Kuehne, Alexander J C; Gather, Malte C; Eydelnant, Irwin A; Yun, Seok-Hyun; Weitz, David A; Wheeler, Aaron R
2011-11-07
Digital microfluidic devices allow the manipulation of droplets between two parallel electrodes. These electrodes can act as mirrors generating a micro-cavity, which can be exploited for a droplet dye-laser. Three representative laser-dyes with emission wavelengths spanning the whole visible spectrum are chosen to show the applicability of this concept. Sub-microlitre droplets of laser-dye solution are moved in and out of a lasing site on-chip to down-convert the UV-excitation light into blue, green and red laser-pulses. This journal is © The Royal Society of Chemistry 2011
Paulinelli, Régis Resende; Freitas-Junior, Ruffo; Rahal, Rosemar Macedo de Souza; Oliveira, Luis Fernando de Pádua; Vilela, Maria Helena Tavares; Moreira, Marise Amaral Rebouças; Alves, Katyane Larissa; Peleja, Marina Berquó; Resende, Tatiane Coelho Capel de
2017-02-01
Methylene blue is more widely available and less expensive than patent blue, with an apparently lower risk of anaphylaxis. The two dyes were compared regarding detection of the sentinel lymph node (SLN). A prospective, randomized trial involved 142 patients with invasive breast carcinoma. Sixty-nine (49.3%) assigned to patent blue (group A) and 71 (50.70%) to methylene blue (group B). Thirty-five patients (25.0%) were clinical stage III or IV; 55 (38.7%) had axillary lymph nodes affected; and 69 (49.3%) underwent neoadjuvant chemotherapy. Two patients were excluded because the dye type was not recorded. Patients and tumor characteristics were similar in both groups. SLNs were identified in 47 women (68.1%) in group A and 43 (60.6%) in group B (p=0.35). SLNs were affected in 22 cases (51.2%) in group A and 21 (48.8%) in group B (p=0.62). The SLN was the only node affected in 12 cases (54.5%) in group A and six (33.3%) in group B (p=0.18). The time and degree of difficulty involved in identifying the SLN were similar in both groups. There were no complications or allergies. Methylene blue performed as well as patent blue in identifying the SLN in breast cancer patients.
The Blue Coma: The Role of Methylene Blue in Unexplained Coma After Cardiac Surgery.
Martino, Enrico Antonio; Winterton, Dario; Nardelli, Pasquale; Pasin, Laura; Calabrò, Maria Grazia; Bove, Tiziana; Fanelli, Giovanna; Zangrillo, Alberto; Landoni, Giovanni
2016-04-01
Methylene blue commonly is used as a dye or an antidote, but also can be used off label as a vasopressor. Serotonin toxicity is a potentially lethal and often misdiagnosed condition that can result from drug interaction. Mild serotonin toxicity previously was reported in settings in which methylene blue was used as a dye. The authors report 3 cases of life-threatening serotonin toxicity in patients undergoing chronic selective serotonin reuptake inhibitor (SSRI) therapy who also underwent cardiac surgery and received methylene blue to treat vasoplegic syndrome. An observational study. A cardiothoracic intensive care unit (ICU) in a teaching hospital. Three patients who received methylene blue after cardiac surgery, later discovered to be undergoing chronic SSRI therapy. None. All 3 patients received high doses of fentanyl during general anesthesia. They all developed vasoplegic syndrome and consequently were given methylene blue in the ICU. All 3 patients developed serotonin toxicity, including coma, after this administration and diagnostic tests were negative for acute intracranial pathology. Coma lasted between 1 and 5 days. Two patients were discharged from the ICU shortly after awakening, whereas the third patient experienced a complicated postoperative course for concomitant refractory low-cardiac-output syndrome. Patients undergoing chronic SSRI therapy should not be administered methylene blue to treat vasoplegic syndrome. Copyright © 2016 Elsevier Inc. All rights reserved.
Novel Claycunbic to Eliminate Micropollutants and Vibrio fischeri from Water
Montmorillonite clay (K10) was used as a precursor for the synthesis of a catalytic adsorbent, Claycunbic (Bi/Cu-pillared K10), which was characterized by SEM (EDS), TEM, XRD, BET, TGA and XPS analysis. The catalytic adsorption of cationic dye methylene blue (MB), anionic dye met...
New Electrorelease Systems Based on Microporous Membranes
1990-08-02
correspondence (6) we demonstrated the validity of the concept by showing that insulin and vitamin B-12 can be electroreleased from a composite membrane...applied to the membrane. The dye reservoir contained an aqueous solution of either methylene blue dye (Aldrich), K3 Fe(CN)6 (Baker), or bovine insulin
Optical fibre PH sensor based on immobilized indicator
NASA Astrophysics Data System (ADS)
Cai, Defu; Cao, Qiang; Han, JingHong; Cai, Jine; Li, YaTing; Zhu, ZeMin; Fan, Jie; Gao, Ning
1991-08-01
An optical fiber pH sensor which has the immobilized pH sensitive indicator dye reagents on the tip of the optical fiber has been studied. The probe is made by covalently immobilizing the phenol red, bromine phenol blue, or bromothymol blue on the polyacrylamide microsphere fixed by polyterafluoroethylene (PTFE) film. A gap between the dye and optical fiber was used to make the diffusion of the hydrogen ions easier. The parameters of the optical fiber pH sensor have been given completely. The ranges of measurement are 3.0 - 5.0 pH, 7.0 - 8.5 pH, and 8.0 - 10.0 pH for bromine phenol blue, phenol red, and bromothymol blue, respectively. The sensitivity is 66.6 mV/pH. The probe has a precision of better than 0.55 pH. The linear correlation coefficient is 0.999. The response time is 1 - 2 min. The hysteresis is 0.52%. The repeatability is 0.013 mV, while the stability is 0.015 pH/h.
Buzzini, Patrick; Massonnet, Genevieve
2013-11-01
Raman spectroscopy has been applied to characterize fiber dyes and determine the discriminating ability of the method. Black, blue, and red acrylic, cotton, and wool samples were analyzed. Four excitation sources were used to obtain complementary responses in the case of fluorescent samples. Fibers that did not provide informative spectra using a given laser were usually detected using another wavelength. For any colored acrylic, the 633-nm laser did not provide Raman information. The 514-nm laser provided the highest discrimination for blue and black cotton, but half of the blue cottons produced noninformative spectra. The 830-nm laser exhibited the highest discrimination for red cotton. Both visible lasers provided the highest discrimination for black and blue wool, and NIR lasers produced remarkable separation for red and black wool. This study shows that the discriminating ability of Raman spectroscopy depends on the fiber type, color, and the laser wavelength. © 2013 American Academy of Forensic Sciences.
Wang, Shaozhen; Sun, Junyong; Gao, Feng
2015-06-21
A turn-on fluorescent chemosensor of Pb(2+) in the near-infrared (NIR) region, which is based on the Pb(2+)-tuned restored fluorescence of a weakly fluorescent fluorophore-gold nanoparticle (AuNPs) assembly, has been reported. In this fluorophore-AuNP assembly, NIR fluorescent dye brilliant cresyl blue (BCB) molecules act as fluorophores and are used for signal transduction of fluorescence, while AuNPs act as quenchers to quench the nearby fluorescent BCB molecules via electron transfer. In the presence of Pb(2+), fluorescent BCB molecules detached from AuNPs and restored their fluorescence due to the formation of a chelating complex between Pb(2+) and glutathione confined on AuNPs. Under the optimal conditions, the present BCB-AuNP assembly is capable of detecting Pb(2+) with a concentration ranging from 7.5 × 10(-10) to 1 × 10(-8) mol L(-1) (0.16-2.1 ng mL(-1)) and a detection limit of 0.51 nM (0.11 ng mL(-1)). The present BCB-AuNP assembly can be used in aqueous media for the determination of Pb(2+) unlike common organic fluorescent reagents, and also shows advantages of NIR fluorescence spectrophotometry such as less interference, lower detection limit, and higher sensitivity. Moreover, the present method was successfully applied for the detection of Pb(2+) in water samples with satisfactory results.
Multitracing Experiment With Solved and Particulate Tracers In An Unsaturated Field Soil
NASA Astrophysics Data System (ADS)
Burkhardt, M.; Kasteel, R.; Vereecken, H.
Solute movement and colloid migration follow preferential flow paths in structured soils at the field scale. The use of microsphreres is a possible option to mimic colloid transport through the vadose zone into the groundwater. We present results of multi- tracing experiments conducted in an Orthic Luvisol using bromide (Br-), the reactive dye tracer Brilliant Blue (BB) and microspheres. The fluorescent microspheres (1 and 10 µm in diameter) were functionalized with a negative surface charge. Eight field plots (about 2 m2) were irrigated with 10 mm and 40 mm during 6 h. Four field plots were sampled directly after the irrgation, the others were exposed for 90 days to natural wheather conditions. Photographs of horizontal cross-sections and disturbed soil sam- ples were taken every 5 to 10 cm down to a depth of 160 cm. Image analysis was used to derive concentration distributions of BB using a calibration relationship between concentration and color spectra. The microspheres were quantified after desorption of the soil samples by fluorescent microscopy and image analysis. We used moment analysis to characterize transport phenomena. We found that transport through the soil matrix was affected by sorption, but all of the applied compounds were transported through preferential flow paths (earthworm burrows) down to a depth of 160 cm irre- spective of their chemical properties. Furthermore, this study shows that microspheres can be used to mimic colloid facilitated transport under unsaturated conditions in a field soil.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romero, V.H.; De la Rosa, E., E-mail: elder@cio.mx; Salas, P.
In this paper, we report the obtained strong broadband blue photoluminescence (PL) emission centered at 427 nm for undoped BaZrO{sub 3} observed after 266 nm excitation of submicron crystals prepared by hydrothermal/calcinations method. This emission is enhanced with the introduction of Tm{sup 3+} ions and is stronger than the characteristic PL blue emission of such lanthanide. The proposed mechanism of relaxation for host lattice emission is based on the presence of oxygen vacancies produced during the synthesis process and the charge compensation due to the difference in the electron valence between dopant and substituted ion in the host. Brilliant whitemore » light emission with a color coordinate of (x=0.29, y=0.32) was observed by combining the blue PL emission from the host with the green and red PL emission from Tb{sup 3+} and Eu{sup 3+} ions, respectively. The color coordinate can be tuned by changing the ratio between blue, green and red band by changing the concentration of lanthanides. - Graphical abstract: Strong blue emission from undoped BaZrO{sub 3} phosphor and white light emission by doping with Tb{sup 3+} (green) and Eu{sup 3+} (red) after 266 nm excitation. Highlights: Black-Right-Pointing-Pointer Blue emission from BaZrO{sub 3} phosphor. Black-Right-Pointing-Pointer Blue emission enhanced with Tm{sup 3+}. Black-Right-Pointing-Pointer White light from BaZrO{sup 3+} phosphor.« less
Dil, Ebrahim Alipanahpour; Ghaedi, Mehrorang; Ghezelbash, Gholam Reza; Asfaram, Arash
2017-05-01
Present study is based on application of live yeast Yarrowia lipolytica 70562 as new biosorbent was investigated for the simultaneous biosorption of Crystal Violet (CV) and Brilliant Green (BG) from wastewater. The effect of operating parameters such as initial dye concentrations (6-14mgL -1 ), solution pH (4.0-8.0) and contact time (4-20h) was investigated by response surface methodology (RSM) for modeling and optimization of biosorption process and accordingly the best operational conditions was set as: initial CV and BG concentration of 8.0, and 10mgL -1 , pH of 7.0 and contact time of 16h. Above specified conditions lead to achievement of maximum biosorption of 98.823% and 99.927% for CV and BG dyes, respectively. The experimental equilibrium data well explained according to Langmuir isotherm model with maximum biosorption capacity of 65.359 and 56.497mgg -1 for BG and CV, respectively. The second order and intraparticle diffusion models as cooperative mechanism has high efficiency and performance for interpretation of real data. Copyright © 2017. Published by Elsevier Inc.
Hurtaud-Pessel, Dominique; Couëdor, Pierrick; Verdon, Eric; Dowell, Dawn
2013-01-01
During the AOAC Annual Meeting held from September 30 to October 3, 2012 in Las Vegas, NV, the Expert Review Panel (ERP) on Veterinary Drug Residues reviewed data for the method for determination of residues of three triphenylmethane dyes and their metabolites (malachite green, leuco malachite green, crystal violet, leuco crystal violet, and brilliant green) in aquaculture products by LC/MS/MS, previously published in the Journal of Chromatography A 1218, 1632-1645 (2006). The method data were reviewed and compared to the standard method performance requirements (SMPRs) found in SMPR 2009.001, published in AOAC's Official Methods of Analysis, 19th Ed. (2012). The ERP determined that the data were acceptable, and the method was approved AOAC Official First Action. The method uses acetonitrile to isolate the analyte from the matrix. Then determination is conducted by LCIMS/MS with positive electrospray ionization. Accuracy ranged from 100.1 to 109.8% for samples fortified at levels of 0.5, 0.75, 1.0, and 2.0 microg/kg. Precision ranged from 2.0 to 10.3% RSD for the intraday samples and 1.9 to 10.6% for the interday samples analyzed over 3 days. The described method is designed to accurately operate in the analytical range from 0.5 to 2 microg/kg, where the minimum required performance limit for laboratories has been fixed in the European Union at 2.0 microg/kg for these banned substances and their metabolites. Upper levels of concentrations (1-100 microg/kg) can be analyzed depending on the different optional calibrations used.
Kohlbrenner, Erik; Henckaerts, Els; Rapti, Kleopatra; Gordon, Ronald E; Linden, R Michael; Hajjar, Roger J; Weber, Thomas
2012-06-01
Adeno-associated virus (AAV)-based vectors have gained increasing attention as gene delivery vehicles in basic and preclinical studies as well as in human gene therapy trials. Especially for the latter two-for both safety and therapeutic efficacy reasons-a detailed characterization of all relevant parameters of the vector preparation is essential. Two important parameters that are routinely used to analyze recombinant AAV vectors are (1) the titer of viral particles containing a (recombinant) viral genome and (2) the purity of the vector preparation, most commonly assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) followed by silver staining. An important, third parameter, the titer of total viral particles, that is, the combined titer of both genome-containing and empty viral capsids, is rarely determined. Here, we describe a simple and inexpensive method that allows the simultaneous assessment of both vector purity and the determination of the total viral particle titer. This method, which was validated by comparison with established methods to determine viral particle titers, is based on the fact that Coomassie Brilliant Blue, when bound to proteins, fluoresces in the infrared spectrum. Viral samples are separated by SDS-PAGE followed by Coomassie Brilliant Blue staining and gel analysis with an infrared laser-scanning device. In combination with a protein standard, our method allows the rapid and accurate determination of viral particle titers simultaneously with the assessment of vector purity.
An evaluation of novel vital dyes for intraocular surgery.
Haritoglou, Christos; Yu, Alice; Freyer, Wolfgang; Priglinger, Siegfried G; Alge, Claudia; Eibl, Kirsten; May, Christian A; Welge-Luessen, Ulrich; Kampik, Anselm
2005-09-01
To evaluate systematically the staining characteristics and safety of potential new dyes for intraocular surgery. Six dyes were included in the investigation: light green SF (LGSF) yellowish, E68, bromophenol blue (BPB), Chicago blue (CB), rhodamine 6G, rhodulinblau-basic 3 (RDB-B3). All dyes were dissolved and diluted in a balanced saline saline solution. The light-absorbing properties of each dye were measured at a concentration of 0.05% between 200 and 1000 nm. Staining characteristics were examined by staining lens capsule tissue and epiretinal membranes (ERMs), removed intraoperatively, with dye concentrations of 1.0%, 0.5%, 0.2%, and 0.05%. Enucleated porcine eyes (postmortem time, 9 hours) were also stained. Dye-related toxicity was evaluated by a colorimetric test (MTT) measuring the inhibition of retinal pigment epithelium (RPE) cell proliferation (ARPE-19 and primary human RPE cells, passages 3-6). Cell viability was also quantified based on a two-color fluorescence cell-viability assay. Dyes were investigated in concentrations of 0.2% and 0.02%. All dyes investigated in this study stained human lens capsules, removed intraoperatively; ERMs, peeled during macular pucker surgery; and enucleated porcine eyes, depending on the concentration applied. The long-wavelength absorption maximum of the dyes was within the range of 527 to 655 nm at concentrations of 0.05%. Rhodamine G6 and RDB-B3 showed adverse effects on ARPE-19 cell proliferation at a concentration of 0.2% and were excluded from further investigation in primary RPE cells. The remaining four dyes showed no toxic effect on ARPE-19 and primary RPE cell proliferation at concentrations of 0.2% and 0.02%. Cell viability was affected by LGSF yellowish (0.2%) and CB (0.2% and 0.02%). Two dyes (E68 and BPB) showed no relevant toxicity in vitro. The systematic evaluation of dyes for intraocular use seems mandatory. In this study four dyes were identified with effective staining characteristics, with two of these dyes having no detectable toxic effect on RPE cells in vitro.
NASA Astrophysics Data System (ADS)
Siddique, Radwanul H.; Faisal, Abrar; Hünig, Ruben; Bartels, Carolin; Wacker, Irene; Lemmer, Uli; Hoelscher, Hendrik
2014-09-01
The famous non-iridescent blue of the Morpho butter by is caused by a `Christmas tree' like nanostructure which is a challenge for common fabrication techniques. Here, we introduce a method to fabricate this complex morphology utilizing dual beam interference lithography. We add a reflective coating below the photoresist to create a second interference pattern in vertical direction by exploiting the back reflection from the substrate. This vertical pattern exposes the lamella structure into the photosensitive polymer while the horizontal interference pattern determines the distance of the ridges. The photosensitive polymer is chosen accordingly to create the Christmas tree' like tapered shape. The resulting artificial Morpho replica shows brilliant non-iridescent blue up to an incident angle of 40. Its optical properties are close to the original Morpho structure because the refractive index of the polymer is close to chitin. Moreover, the biomimetic surface is water repellent with a contact angle of 110.
Binding of 3O2 and 1O2 to dyes used in photodynamic therapy in gas phase and aqueous media
NASA Astrophysics Data System (ADS)
Kushwaha, P. S.; Mishra, P. C.
Density functional theory (DFT) was employed at the B3LYP/6-31+G* level to study complexes of 1O2 and 3O2 with the dye molecules proflavine, methylene blue, and acridine orange, which are useful in photodynamic therapy. It was found that the most stable complex between 1O2 and proflavine are formed when 1O2 is located above the central ring, while the most stable complex between 1O2 and methylene blue is formed when 1O2 is located above the molecular plane, but not above any of the rings, near the sulfur atom. 1O2 can make a stable complex with acridine orange, as it is located above the outer ring of the dye. The binding energies of the complexes of 1O2 with all three dyes are enhanced considerably in going from gas phase to aqueous media. The complexes of 3O2 with the dyes will be unstable in all cases, while those of 1O2 with the same will be quite stable and will not be dissociated due to thermal fluctuations at room temperature. In the complexes of 1O2 and 3O2 with the dyes, charge transfer occurs from the dyes to the O2 moiety, the amount of charge transfer being much more to 1O2 than to 3O2 in each case.
Optical properties of cyanine dyes in nanotubes of chrysotile asbestos
NASA Astrophysics Data System (ADS)
Starovoytov, Anton A.; Vartanyan, Tigran A.; Belotitskii, Vladimir I.; Kumzerov, Yuri A.; Sysoeva, Anna A.
2017-08-01
Optical properties of cyanine dye molecules incorporated in nanotubes of natural chrysotile asbestos are studied. The absorption and fluorescence spectra of dye in asbestos have the similar shapes as in the ethanol solution, apart from small blue shift of the maxima. The Stokes shift in asbestos is smaller than in the ethanol solution. The fluorescence decay times of the dyes in asbestos nanotubes are found to be larger than that in the case of thin films of the same dyes formed on the transparent dielectric supports. This observation is rationalized in terms of the stereoisomerization hindrance in the excited electronic state of dye molecules. At the same time linear dichroism and fluorescence anisotropy observed in the experiment indicate that the embedded dye molecules are well-isolated monomer oriented predominantly along asbestos nanotubes.
Affinity Chromatography in Nonionic Detergent Solutions
NASA Astrophysics Data System (ADS)
Robinson, Jack B.; Strottmann, James M.; Wick, Donald G.; Stellwagen, Earle
1980-10-01
Anionic dye affinity chromatography is commonly unproductive in the presence of nonionic detergents used to extract particulate proteins. Using lactate dehydrogenase as a model protein, Cibacron blue F3GA as a model dye, and Triton X-100 as a model detergent, we find that the dye is encapsulated in nonionic detergent micelles, rendering the dye incapable of ligation with the enzyme. However, the dye can be liberated from the micelles without altering the nonionic detergent concentration by addition of an anionic detergent, such as deoxycholate or sodium dodecyl sulfate, forming mixed anionic/nonionic micelles that displace the anionic dye. Encapsulation of the anionic detergents prevents their activity as protein denaturants. These observations have been successfully translated to the dye affinity chromatography of a detergent extract of brain particulate cyclic nucleotide phosphodiesterase.
Lansdowne, Jennifer L; Kerr, Carolyn L; Bouré, Ludovic P; Pearce, Simon G
2005-08-01
To determine the relationship between epidural cranial migration and injectate volume of an isotonic solution containing dye in laterally recumbent foal cadavers and evaluate the cranial migration and dermatome analgesia of an epidural dye solution during conditions of laparoscopy in foals. 19 foal cadavers and 8 pony foals. Foal cadavers received an epidural injection of dye solution (0.05, 0.1, 0.15, or 0.2 mL/kg) containing 1.2 mg of new methylene blue (NMB)/mL of saline (0.9% NaCl) solution. Length of the dye column and number of intervertebral spaces cranial and caudal to the injection site were measured. Anesthetized foals received an epidural injection of dye solution (0.2 mL/kg) containing saline solution or 2% mepivacaine. Foals were placed in a 100 head-down position, and pneumoperitoneum was induced. Dermatome analgesia was determined by use of a described electrical stimulus technique. Foals were euthanatized, and length of the dye column was measured. Epidural cranial migration of dye solution in foal cadavers increased with increasing volume injected. No significant difference was found in epidural cranial migration of a dye solution (0.2 mL/kg) between anesthetized foals undergoing conditions of laparoscopy and foal cadavers in lateral recumbency. Further craniad migration of the dye column occurred than indicated by dermatome analgesia. Epidural cranial migration increases with volume of injectate. On the basis of dermatome analgesia, an epidural injection of 2% mepivacaine (0.2 mL/kg) alone provides analgesia up to at least the caudal thoracic dermatome and could permit caudal laparoscopic surgical procedures in foals.
[pH sensors based on rubbery ormosils preparation and their spectrum studies].
Chen, Xi; Dai, Yuan-jing; Li, Wei; Zhuang, Zhi-xia; Wang, Xiao-ru
2002-02-01
A new type of methyl substituted ormosils as a matrix for bromophenol blue (BPhB) and bromocresol green (BCG) is described. The new ormosils combine features of classical TEOS sol-gel material such as solvability in organic solvent and those of sol-gel glasses such as transparent and a porous structure, the ormosils also make a good mechanical stability. The influence of the conditions during the polymerisation process on the photochemical properties of BPhB and BCG has been studied. This sol-gel material was wed to immobilize pH-sensitive absorption dyes, bromothymol blue and bromocresol green, to prepare pH sensing films. The several aspects of the sensing films, including the leaching of the dye from gel, response time to different pH buffer solution, absorption spectra and the improvement of the immobilization of the dyes to filmo, were also discussed.
Intravital multiphoton photoconversion with a cell membrane dye.
Turcotte, Raphaël; Wu, Juwell W; Lin, Charles P
2017-02-01
Photoconversion, an irreversible shift in a fluorophore emission spectrum after light exposure, is a powerful tool for marking cellular and subcellular compartments and tracking their dynamics in vivo. This paper reports on the photoconversion properties of Di-8-ANEPPS, a commercially available membrane dye. When illuminated with near-infrared femtosecond laser pulses, Di-8-ANEPPS undergoes multiphoton photoconversion as indicated by the supralinear dependence of the conversion rate ρ pc on the incident power (ρpc∝Iexc2.27), and by the ability to photoconvert a thin optical section in a three-dimensional matrix. The characteristic emission spectrum changed from red to blue, and ratiometric analysis on single cells in vitro revealed a 65-fold increase in the blue to red wavelength ratio after photoconversion. The spectral shift is preserved in vivo for hours, making Di-8-ANEPPS a useful dye for intravital cell marking and tracking applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kinetic study of gold nanoparticle mediated photocatalytic degradation of Victoria blue.
Jishma, P; Roshmi, Thomas; Snigdha, S; Radhakrishnan, E K
2018-02-01
In the study, biogenic gold nanoparticles (AuNPs) were used for the photocatalytic degradation of triphenylmethane dyes Victoria blue B (VBB) and R (VBR). The process was found to result in an approximate degradation of 65 and 52%, respectively, for VBB and VBR within a period of 8 h. The relative rate of photocatalytic degradation of VBB and VBR was identified to be 0.0195 ± 0.0031/min and 0.0295 ± 0.0025/min, respectively, by using the Langmuir-Hinshelwood model. By using the Vigna unguiculata model system, the degradation products were demonstrated to have non-toxic effect. Moreover, the less toxic nature of AuNPs used for dye removal highlights its feasibility for large-scale application. Hence, the AuNPs-based photocatalytic dye degradation as described in the study is cost-effective, rapid and environment-friendly.
Biodegradation of Direct Blue 15 by free and immobilized Trametes versicolor.
Pazarlioglu, Nurdan Kasikara; Akkaya, Alper; Akdogan, Hatice Ardag; Gungor, Burcin
2010-07-01
To investigate biodegradability by Trametes versicolor, five structurally different direct azo-dyes--Direct Black 38, Direct Blue 15 (DB 15), Direct Orange 26, Direct Green 6, and Direct Yellow 12--were studied. The DB 15 was determined as the best biodegradable dye by this white-rot fungus. Laccase and manganese peroxidase activities were monitored with the biodegradation process; it was observed that laccase played an important role in the dye degradation, while manganese peroxidase activity could not be detected. Possible degradation products also were examined by gas chromatography-mass spectrometry, but no metabolite was detected after the degradation and/or decolorization process. To enhance performance of the fungi during the degradation, Trametes versicolor cells were immobilized in alginate beads. Then, DB 15 decolorization by immobilized Trametes versicolor was studied in a small-scale packed-bed reactor. The color removal efficiency in repeated batches was found to be 98 and 93% for 50 mg/L DB 15.
Self-Normalized Photoacoustic Technique for the Quantitative Analysis of Paper Pigments
NASA Astrophysics Data System (ADS)
Balderas-López, J. A.; Gómez y Gómez, Y. M.; Bautista-Ramírez, M. E.; Pescador-Rojas, J. A.; Martínez-Pérez, L.; Lomelí-Mejía, P. A.
2018-03-01
A self-normalized photoacoustic technique was applied for quantitative analysis of pigments embedded in solids. Paper samples (filter paper, Whatman No. 1), attached with the pigment: Direct Fast Turquoise Blue GL, were used for this study. This pigment is a blue dye commonly used in industry to dye paper and other fabrics. The optical absorption coefficient, at a wavelength of 660 nm, was measured for this pigment at various concentrations in the paper substrate. It was shown that Beer-Lambert model for light absorption applies well for pigments in solid substrates and optical absorption coefficients as large as 220 cm^{-1} can be measured with this photoacoustic technique.
Zinc sulfide quantum dots for photocatalytic and sensing applications
NASA Astrophysics Data System (ADS)
Sergeev, Alexander A.; Leonov, Andrei A.; Zhuikova, Elena I.; Postnova, Irina V.; Voznesenskiy, Sergey S.
2017-09-01
Herein, we report the photocatalytic and sensing applications of pure and Mn-doped ZnS quantum dots. The quantum dots were prepared by a chemical precipitation in an aqueous solution in the presence of glutathione as a stabilizing agent. The synthesized quantum dots were used as effective photocatalyst for the degradation of methylene blue dye. Interestingly, fully degradation of methylene blue dye was achieved in 5 min using pure ZnS quantum dots. Further, the synthesized quantum dots were used as efficient sensing element for methane fluorescent sensor. Interfering studies confirmed that the developed sensor possesses very good sensitivity and selectivity towards methane.
Teixeira, Ricardo Sposina S.; Pereira, Patrícia Maia; Ferreira-Leitão, Viridiana S.
2010-01-01
Oxidases are able to degrade organic pollutants; however, high costs associated with biocatalysts production still hinder their use in environmental biocatalysis. Our study compared the action of a commercial laccase from Aspergillus oryzae and a rich extract from Pleurotus ostreatus cultivation residues in decolourisation of reactive dyes: Drimaren Blue X-3LR (DMBLR), Drimaren Blue X-BLN (DMBBLN), Drimaren Rubinol X-3LR (DMR), and Drimaren Blue C-R (RBBR). The colour removal was evaluated by considering dye concentration, reaction time, absence or presence of the mediator ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), and the source of laccase. The presence of ABTS was essential for decolourisation of DMR (80–90%, 1 h) and RBBR (80–90%, 24 h) with both laccases. The use of ABTS was not necessary in reactions containing DMBLR (85–97%, 1 h) and DMBBLN (63–84%, 24 h). The decolourisation of DMBBLN by commercial laccase showed levels near 60% while the crude extract presented 80% in 24 h. PMID:21052547
Fluorescence imaging to study cancer burden on lymph nodes
NASA Astrophysics Data System (ADS)
D'Souza, Alisha V.; Elliott, Jonathan T.; Gunn, Jason R.; Samkoe, Kimberley S.; Tichauer, Kenneth M.; Pogue, Brian W.
2015-03-01
Morbidity and complexity involved in lymph node staging via surgical resection and biopsy calls for staging techniques that are less invasive. While visible blue dyes are commonly used in locating sentinel lymph nodes, since they follow tumor-draining lymphatic vessels, they do not provide a metric to evaluate presence of cancer. An area of active research is to use fluorescent dyes to assess tumor burden of sentinel and secondary lymph nodes. The goal of this work was to successfully deploy and test an intra-nodal cancer-cell injection model to enable planar fluorescence imaging of a clinically relevant blue dye, specifically methylene blue along with a cancer targeting tracer, Affibody labeled with IRDYE800CW and subsequently segregate tumor-bearing from normal lymph nodes. This direct-injection based tumor model was employed in athymic rats (6 normal, 4 controls, 6 cancer-bearing), where luciferase-expressing breast cancer cells were injected into axillary lymph nodes. Tumor presence in nodes was confirmed by bioluminescence imaging before and after fluorescence imaging. Lymphatic uptake from the injection site (intradermal on forepaw) to lymph node was imaged at approximately 2 frames/minute. Large variability was observed within each cohort.
Removal of anionic and cationic dyes with bioadsorbent oxidized chitosans.
León, Orietta; Muñoz-Bonilla, Alexandra; Soto, Diana; Pérez, Daniela; Rangel, Medarda; Colina, Marinela; Fernández-García, Marta
2018-08-15
Different oxidized chitosans were prepared following various approaches, by thermo-acid oxidation or by using KMnO 4 /NaHSO 3 , (NH 4 ) 2 S 2 O 8 /NaHSO 3 and K 2 Cr 2 O 7 /NaHSO 3 redox pairs added sequentially or simultaneously. All these reactions pursue the formation of carboxylic groups which enhance their capability to remove model cationic and anionic dyes such as methylene blue and methyl orange, respectively. The resulting oxidized chitosans were structurally and thermally characterized by elemental analysis, infrared spectroscopy, nuclear magnetic resonance, scanning electron microscopy and thermogravimetry. The swelling capacity of these hydrogels was also determined as well as the remediation ability of dyes in different conditions. The results showed that the adsorption of methylene blue followed a pseudo second-order kinetics model, while the adsorption behavior was in agreement with the Langmuir isotherm model. Remarkably, the oxidized chitosans showed removal ability for both dyes cationic and anionic, which of great importance for application of these materials as versatile bioadsorbents. Copyright © 2018 Elsevier Ltd. All rights reserved.
Yang, Ji-Min; Ying, Rong-Jian; Han, Chun-Xiang; Hu, Qi-Tu; Xu, Hui-Min; Li, Jian-Hui; Wang, Qiang; Zhang, Wei
2018-03-12
Herein, we report the synthesis and characterization of Ce(iii)-doped UiO-66 nanocrystals, revealing their potential to efficiently remove organic dyes such as methylene blue (MB), methyl orange (MO), Congo red (CR), and acid chrome blue K (AC) from aqueous solutions. Specifically, the room-temperature adsorption capacities of Ce(iii)-doped UiO-66 equaled 145.3 (MB), 639.6 (MO), and 826.7 (CR) mg g -1 , exceeding those reported for pristine UiO-66 by 490, 270, and 70%, respectively. The above behavior was rationalized based on zeta potential and adsorption isotherm investigations, which revealed that Ce(iii) doping increases the number of adsorption sites and promotes π-π interactions between the adsorbent and the adsorbate, thus improving the adsorption capacity for cationic and anionic dyes and overriding the effect of electrostatic interactions. The obtained results shed light on the mechanism of organic dye adsorption on metal-organic frameworks, additionally revealing that the synergetic interplay of electrostatic, π-π, and hydrophobic interactions results in the operation of two distinct adsorption regimes depending on adsorbate concentration.
Enhanced Azo-Dyes Degradation Performance of Fe-Si-B-P Nanoporous Architecture
Weng, Nan; Wang, Feng; Qin, Fengxiang; Tang, Wanying; Dan, Zhenhua
2017-01-01
Nanoporous structures were fabricated from Fe76Si9B10P5 amorphous alloy annealed at 773 K by dealloying in 0.05 M H2SO4 solution, as a result of preferential dissolution of α-Fe grains in form of the micro-coupling cells between α-Fe and cathodic residual phases. Nanoporous Fe-Si-B-P powders exhibit much better degradation performance to methyl orange and direct blue azo dyes compared with gas-atomized Fe76Si9B10P5 amorphous powders and commercial Fe powders. The degradation reaction rate constants of nanoporous powders are almost one order higher than those of the amorphous counterpart powders and Fe powders, accompanying with lower activation energies of 19.5 and 26.8 kJ mol−1 for the degradation reactions of methyl orange and direct blue azo dyes, respectively. The large surface area of the nanoporous structure, and the existence of metalloids as well as residual amorphous phase with high catalytic activity are responsible for the enhanced azo-dyes degradation performance of the nanoporous Fe-Si-B-P powders. PMID:28846622
Afzal, S M; Asiri, Abdullah M; Razvi, M A N; Bakry, Ahmed H; Khan, Salman A; Zayed, Mohie E M
2016-03-01
Blue emitting 2-amino-4-(3, 4, 5-tri methoxyphenyl)-9-methoxy-5,6 dihydrobenzo[f]isoquinoline-1-carbonitrile (AMQC) dye was synthesized by one-pot multicomponent reactions (MCRs) of 3,4,5-trimethoxybenzaldehyd, malononitrile, 6-methoxy-1,2,3,4-tetrahydro-naphthalin-1-one and ammonium acetate. Results obtained from spectroscopic and elemental analysis of synthesized AMQC was in good agreement with their chemical structures. Fluorescence polarity study demonstrated that AMQC was sensitive to the polarity of the microenvironment provided by different solvents. In addition, spectroscopic and physicochemical parameters, including electronic absorption, excitation coefficient, stokes shift, oscillator strength, transition dipole moment and fluorescence quantum yield were investigated in order to explore the analytical potential of AMQC. Dye undergoes solubilization in different micelles and may be used as a quencher and a probe to determine the critical micelle concentration (CMC) of SDS and CTAB. Nonlinear optical parameters of AMQC dye shows relatively lower nonlinear refractive index and nonlinear absorption coefficient at the power levels. Variation of n2 with concentration is linear in the concentration range used in the present study.
NASA Astrophysics Data System (ADS)
Ma, Dongzhuo; Zhu, Baodong; Cao, Bo; Wang, Jian; Zhang, Jianwei
2017-11-01
The novel hydrogel based on waste corn stalk was synthetized by aqueous solution polymerization technique with functional monomers in the presence of organic montmorillonite (OMMT) under ultrasonic. In this study, batch adsorption experiments were carried out to research the effect of initial dye concentration, the dosage of hydrogel, stirring speed, contact time and temperature on the adsorption of methylene blue (MB) dye. The adsorption process was best described by the pseudo-second-order kinetic model, which confirmed that it should be a chemical process. Furthermore, we ascertained the rate controlling step by establishing the intraparticle diffusion model and the liquid film diffusion model. The adsorption and synthesis mechanisms were vividly depicted in our work as well. Structural and morphological characterizations by virtue of FTIR, FESEM, and Biomicroscope supported the relationship between the adsorption performance and material's microstructure. This research is a valuable contribution for the environmental protection, which not only converts waste corn stalks into functional materials, but improves the removal of organic dye from sewage water.
Removal of acid blue 062 on aqueous solution using calcinated colemanite ore waste.
Atar, Necip; Olgun, Asim
2007-07-19
Colemanite ore waste (CW) has been employed as adsorbent for the removal of acid blue 062 anionic dye (AB 062) from aqueous solution. The adsorption of AB 062 onto CW was examined with respect to contact time, calcination temperature, particle size, pH, adsorbent dosage and temperature. The physical and chemical properties of the CW, such as particle sizes and calcinations temperature, play important roles in dye adsorption. The dye adsorption largely depends on the initial pH of the solution with maximum uptake occurring at pH 1. Three simplified kinetics models, namely, pseudo-first order, pseudo-second order, and intraparticle diffusion models were tested to investigate the adsorption mechanisms. The kinetic adsorption of AB 062 on CW follows a pseudo-second order equation. The adsorption data have been analyzed using Langmuir and Freundlich isotherms. The results indicate that the Langmuir model provides the best correlation of the experimental data. Isotherms have also been used to obtain the thermodynamic parameters such as free energy, enthalpy and entropy of the adsorption of dye onto CW.
NASA Astrophysics Data System (ADS)
Wang, Xiangyu; Wang, Pei; Ma, Jun; Liu, Huiling; Ning, Ping
2015-08-01
Nano zero-valent iron (NZVI) was innovatively and successfully modified by using hydroxyethyl cellulose (HEC) and hydroxypropylmethyl cellulose (HPMC) as dispersants. The systematic characterization observations (including XRD, SEM and TEM) illustrate that, compared with bare nano zero-valent iron particles (BNZVI), the particle sizes of hydroxyethyl cellulose modified (ENZVI) and hydroxypropylmethyl cellulose modified (PNZVI) were decreased, while the dispersity and antioxidizability of ENZVI and PNZVI particles were increased. The discoloration efficiencies of ENZVI, PNZVI, and BNZVI were compared by using dyes (including orange II, methyl orange, methyl blue, and methylene blue) as target pollutant. The results show that both the discoloration efficiency and reaction rate of ENZVI and PNZVI are higher than that of BNZVI. In addition, effects of dispersant content, dye type, pH value, initial dye concentration, iron dosage, and reaction temperature on discoloration efficiencies were studied. The results show that discoloration efficiency was decreased by increasing initial pH value and dye concentration, and it was increased with the increase the iron dosage and reaction temperature. Under optimized NZVI addition of 0.7 g L-1, the discoloration efficiencies of ENZVI and PNZVI were increased to 96.33% and 98.62%, respectively. And the possible discoloration pathway and dispersant modification mechanism of NZVI were discussed. This study suggests hydroxyethyl cellulose and hydroxypropylmethyl cellulose dispersed NZVI can be utilized as a promising modified nano-material for degradation of dye wastewater.
AEROBIC AND ANAEROBIC TREATMENT OF C.I. DISPERSE BLUE 79 - VOLUME I
This study was conducted to determine the fate of C.I. Disperse Blue 79, one of the largest production volume dyes, and select biodegradation products in a conventionally operated activated sludge process and an anaerobic sludge digestion system. To achieve this objective, a pilo...
AEROBIC AND ANAEROBIC TREATMENT OF C.I. DISPERSE BLUE 79 - VOLUME II, APPENDICES
This study was conducted to determine the fate of C.I. Disperse Blue 79, one of the largest production volume dyes, and select biodegradation products in a conventionally operated activated sludge process and an anaerobic sludge digestion system. To achieve this objective, a pilo...
Textile Dye Removal from Aqueous Solution using Modified Graphite Waste/Lanthanum/Chitosan Composite
NASA Astrophysics Data System (ADS)
Kusrini, E.; Wicaksono, B.; Yulizar, Y.; Prasetyanto, EA; Gunawan, C.
2018-03-01
We investigated various pre-treatment processes of graphite waste using thermal, mechanical and chemical methods. The aim of this work is to study the performance of modified graphite waste/lanthanum/chitosan composite (MG) as adsorbent for textile dye removal from aqueous solution. Effect of graphite waste resources, adsorbent size and lanthanum concentration on the dye removal were studied in batch experiments. Selectivity of MG was also investigated. Pre-heated graphite waste (NMG) was conducted at 80°C for 1 h, followed by mechanical crushing of the resultant graphite to 75 μm particle size, giving adsorption performance of ˜58%, ˜67%, ˜93% and ˜98% of the model dye rhodamine B (concentration determined by UV-vis spectroscopy at 554 nm), methyl orange (464 nm), methylene blue (664 nm) and methyl violet (580 nm), respectively from aqueous solution. For this process, the system required less than ˜5 min for adsorbent material to be completely saturated with the adsorbate. Further chemical modification of the pre-treated graphite waste (MG) with lanthanum (0.01 – V 0.03 M) and chitosan (0.5% w/w) did not improve the performance of dye adsorption. Under comparable experimental conditions, as those of the ‘thermal-mechanical-pre-treated-only’ (NMG), modification of graphite waste (MG) with 0.03 M lanthanum and 0.5% w/w chitosan resulted in ˜14%, ˜47%, ˜72% and ˜85% adsorption of rhodamine B, methyl orange, methylene blue and methyl violet, respectively. Selective adsorption of methylene blue at most to ˜79%, followed by methyl orange, methyl violet and rhodamine B with adsorption efficiency ˜67, ˜38, and ˜9% sequentially using MG with 0.03 M lanthanum and 0.5% w/w chitosan.
Korpan, Nikolai N; Xu, Kecheng; Schwarzinger, Philipp; Watanabe, Masashi; Breitenecker, Gerhard; Patrick, Le Pivert
2018-01-01
The aim of the study was to perform cryosurgery on a primary breast tumor, coupled with simultaneous peritumoral and intratumoral tracer injection of a blue dye, to evaluate lymphatic mapping. We explored the ability of our strategy to prevent tumor cells, but not that of injected tracers, to migrate to the lymphovascular drainage during conventional resection of frozen breast malignancies. Seventeen patients aged 51 (14) years (mean [standard deviation]), presenting primary breast cancer with stage I to IV, were randomly selected and treated in The Rudolfinerhaus Private Clinic in Vienna, Austria, and included in this preliminary clinical study. Under intraoperative ultrasound, 14 patients underwent curative cryo-assisted tumor resection en bloc, coupled with peritumoral tracer injection, which consisted of complete tumor freezing and concomitant peritumor injection with a blue dye, before resection and sentinel lymph node dissection (group A). Group B consists of 3 patients previously refused any standard therapy and had palliative tumor cryoablation in situ combined with intratumoral tracer injection. The intraoperative ultrasound facilitated needle positioning and dye injection timing. In group A, the frozen site extruded the dye that was distributed through the unfrozen tumor, the breast tissue, and the resection cavity for 12 patients. One to 4 lymph nodes were stained for 10 of 14 patients. The resection margin was evaluable. Our intraoperative ultrasound-guided performance revealed the injection and migration of a blue dye during the frozen resection en bloc and cryoablation in situ of primary breast tumors. Sentinel lymph node mapping, pathological determination of the tumor, and resection margins were achievable. The study paves the way for intraoperative cryo-assisted therapeutic strategies for breast cancer.
NASA Astrophysics Data System (ADS)
Maurya, Ishwar Chandra; Singh, Shalini; Neetu; Gupta, Arun Kumar; Srivastava, Pankaj; Bahadur, Lal
2018-01-01
Natural dyes extracted from four different flowers, namely, Cassia surattensis, Cassia tora, Cassia alata and Cassia occidentalis were used as sensitizers for TiO2-based dye-sensitized solar cells (DSSC). The dye extracts from flowers were obtained by a simple extraction technique and used without any further purification. Optical characteristics of dye extracts were studied. Fourier-transform infrared (FTIR) spectra were used to identify the constituents of extracted dyes. The photovoltaic performance of DSSC employing dye-capped TiO2 photoanodes was measured. The sensitization performance related to anchoring groups present and interaction between dyes with TiO2 surface is demonstrated. An attempt has been made to rationalize the observations by light absorption of the dye extracts and their adsorption on TiO2. The short-circuit current density ( I SC) values ranged from 0.06 mA/cm2 to 0.20 mA/cm2; open circuit voltage ( V OC) from 0.292 V to 0.833 V; fill factor (FF) from 0.7 to 0.9; efficiencies ( η) from 0.013% to 0.15% and incident photon-to-current conversion efficiency from 13% to 20%, were obtained for DSSC using these natural dye extracts. Cassia occidentalis showed the highest current density of 0.20 mA/cm2 and power conversion efficiency of 0.15%, which was due to better interaction between the carbonyl and hydroxyl group of the anthocyanin molecule of C. occidentalis and surface of TiO2 film. The red and blue shift of absorption wavelength of C. surattensis and the blue shift of absorption wavelength of the C. tora, C. alata and C. occidentalis extract in ethanol solution compared to that on TiO2 film has been used for the interpretation of obtained results.
Removal of reactive blue 19 dye by sono, photo and sonophotocatalytic oxidation using visible light.
Khan, Muhammad Abdul Nasir; Siddique, Maria; Wahid, Fazli; Khan, Romana
2015-09-01
An efficient sonophotocatalytic degradation of reactive blue 19 (RB 19) dye was successfully carried out using sulfur-doped TiO2 (S-TiO2) nanoparticles. The effect of various treatment processes that is sonolysis, photolysis, catalysis, sonocatalysis, photocatalysis, and sonophotocatalysis were investigated for RB 19 removal. S-TiO2 were synthesized in 1, 3 and 5 wt.% of sulfur by sol-gel process and characterized by X-ray diffraction (XRD) and scanning electron microscopy coupled with energy dispersive X-ray (SEM-EDX), UV-Visible diffuse reflectance spectra (DRS). The results confirm anatase phase of TiO2, porous agglomerate structure, and a red shift in the absorbance spectra of S-TiO2. The dye degradation was studied by using UV-Vis spectrophotometer at λ max=594 nm. The reaction parameters such as pH, catalyst dosage, initial dye concentration, ultrasonic power and effect of sulfur doping in different weight percent were studied to find out the optimum degradation conditions. Optimum conditions were found as: S-TiO2=5 wt.%, catalyst (S-TiO2 5 wt.%)=50mg, RB 19 solution concentration=20 mg L(-1), pH=3, ultrasound power=100 and operating temperature=25°C. The response of 5 wt.% S-TiO2 was found better than 1 and 3 wt.% S-TiO2 and other forms TiO2. The sonophotocatalysis process was superior to other methods. During this process the ultrasound cavitation and photocatalysis water splitting takes place which leads to the generation of OH. As reveled by the GCMS results the reactive blue 19 (20 mg L(-1)) was degraded to 90% within 120 min. The S-TiO2 sonophotocatalysis system was studied for the first time for dye degradation and was found practicable, efficient and cost effective for the degradation of complex and resistant dyes such as RB19. Copyright © 2015. Published by Elsevier B.V.
Pakrasi, Pranab Lal; Tiwari, Anjana
2007-09-01
Early embryonic development and implantation were studied in tropical short-nosed fruit bat Cyanopterus sphinx. We report preimplantation development and embryo implantation. Different stages of cleavage were observed in embryo by direct microscopic examination of fresh embryos after retrieving them either from the oviduct or the uterus at different days, up to the day of implantation. Generally, the embryos enter the uterus at the 8-cell stage. Embryonic development continued without any delay and blastocyst were formed showing attachment to the uterine epithelium at the mesometrial side of the uterus. A distinct blue band was formed in the uterus. The site of blastocyst attachment was visualized as a blue band following intravenous injection of pontamine blue. Implantation occurred 9+/-0.7 days after mating. This study reports that bat embryonic development can be studied like other laboratory animals and that this bat shows blue dye reaction, indicating the site and exact time of implantation. This blue dye reaction can be used to accurately find post-implantational delay. We prove conclusively that this species of tropical bat does not have any type of embryonic diapause.
Jeffet, U; Nasrallah, R; Sterer, N
2016-11-21
Oral malodour is considered to be caused mainly by the production of volatile sulfide compounds (VSC) by anaerobic Gram-negative oral bacteria. Previous study showed that these bacteria were susceptible to blue light (wavelengths of 400-500 nm). In the present study, we tested the effect of blue light in the presence of red dyes on malodour production in an experimental oral biofilm. Biofilms were exposed to a plasma-arc light source for 30, 60, and 120 s (i.e. fluences of 41, 82, and 164 J cm -2 , respectively) with the addition of erythrosine, natural red and rose bengal (0.01, 0.1 and 1% w/v). Following light exposure biofilm samples were examined for malodour production (Odour judge), VSC production (Halimeter ™ ), VSC producing bacteria quantification using microscopy sulfide assay (MSA) and reactive oxygen species (ROS) production. Results showed that the exposure of experimental oral biofilm to blue light in the presence of rose bengal caused an increased reduction in VSC and malodour production concomitant with an increase in ROS production. These results suggest that rose bengal might be effective as a blue light photosensitizer against VSC producing bacteria.
Rahman, Qazi Inamur; Ahmad, Musheer; Misra, Sunil Kumar; Lohani, Minaxi
2012-09-01
Visible light induced photocatalysts of Cu doped SrTiO3 (Cu/SrTiO3) nanoparticles with the size -60-75 nm were prepared via facile sol-gel method. The morphological, optical, crystalline properties and compositions of synthesized Cu/SrTiO3 nanoparticles were thoroughly characterized by field emission scanning electron microscopy (FE-SEM), powder X-ray diffraction (XRD), ultra violet-visible spectroscopy (UV-Vis) and energy dispersive X-ray (EDX). A significant red shift in the UV-diffused reflectance spectrum was observed and the absorption edge shifted to visible region by the Cu doping. Surprisingly, the band gap of SrTiO3 was changed from 3.2 eV drop to 2.96 eV. The photocatalytic activity of the synthesized Cu/SrTiO3 nanoparticles was demonstrated for the degradation of Methylene Blue dye under visible light irradiation. The formation of new acceptor region in Cu/SrTiO3 was responsible for high photocatalytic activity of Cu/SrTiO3 nanoparticles. The results showed that the Methylene Blue dye was degraded by -66% within time span of 2 h over the Cu/SrTiO3 nanoparticles. This dye degradation reaction followed the Langmuir-Hinshelwood kinetics and also exhibited first order reaction rate. The calculated rate constant for the degradation reaction following first order kinetics was k = 0.0016 min(-1).
Hokimoto, Norihiro; Sugimoto, Takeki; Namikawa, Tsutomu; Funakoshi, Taku; Oki, Toyokazu; Ogawa, Maho; Fukuhara, Hideo; Inoue, Keiji; Sato, Takayuki; Hanazaki, Kazuhiro
2018-01-01
This study evaluated the clinical efficacy of a novel imaging system (HyperEye Medical System [HEMS]; Mizuho Corp., Tokyo, Japan) that uses the near-infrared (NIR) fluorescence of indocyanine green to analyze sentinel lymph node (SLN) biopsies for the staging of breast cancer. This study enrolled 91 patients with histologically confirmed breast cancer that was clinically node negative with a tumor size <3 cm. We compared SLN identification rates between HEMS and conventional methods (gamma probe scanning using a colloidal radioisotope [RI] and a blue dye method) by analyzing the relationships of lymphatic to axillary lesions and SLNs. The identification rate of SLNs was 100% using HEMS, 97.8% using the RI method, and 95.6% using the blue dye method. Two types of lymphatic pathway (LP) were detected in 39 patients (42.9%) and also clearly identified using HEMS-captured color and NIR fluorescence. The incidence of two or more SLNs was significantly higher in patients with a two-route LP to the axilla group than in those with only one route (p < 0.001; 43.6 vs. 9.6%). The HEMS NIR fluorescence color imaging method is a promising potential modality for higher-level identification of SLNs than a standard combination of the RI and blue dye methods. © 2017 S. Karger AG, Basel.
A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging
Antaris, Alexander L.; Chen, Hao; Diao, Shuo; Ma, Zhuoran; Zhang, Zhe; Zhu, Shoujun; Wang, Joy; Lozano, Alexander X.; Fan, Quli; Chew, Leila; Zhu, Mark; Cheng, Kai; Hong, Xuechuan; Dai, Hongjie; Cheng, Zhen
2017-01-01
Fluorescence imaging in the second near-infrared window (NIR-II) allows visualization of deep anatomical features with an unprecedented degree of clarity. NIR-II fluorophores draw from a broad spectrum of materials spanning semiconducting nanomaterials to organic molecular dyes, yet unfortunately all water-soluble organic molecules with >1,000 nm emission suffer from low quantum yields that have limited temporal resolution and penetration depth. Here, we report tailoring the supramolecular assemblies of protein complexes with a sulfonated NIR-II organic dye (CH-4T) to produce a brilliant 110-fold increase in fluorescence, resulting in the highest quantum yield molecular fluorophore thus far. The bright molecular complex allowed for the fastest video-rate imaging in the second NIR window with ∼50-fold reduced exposure times at a fast 50 frames-per-second (FPS) capable of resolving mouse cardiac cycles. In addition, we demonstrate that the NIR-II molecular complexes are superior to clinically approved ICG for lymph node imaging deep within the mouse body. PMID:28524850
A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antaris, Alexander L.; Chen, Hao; Diao, Shuo
Fluorescence imaging in the second near-infrared window (NIR-II) allows visualization of deep anatomical features with an unprecedented degree of clarity. NIR-II fluorophores draw from a broad spectrum of materials spanning semiconducting nanomaterials to organic molecular dyes, yet unfortunately all water-soluble organic molecules with 41,000 nm emission suffer from low quantum yields that have limited temporal resolution and penetration depth. We report tailoring the supramolecular assemblies of protein complexes with a sulfonated NIR-II organic dye (CH-4T) to produce a brilliant 110-fold increase in fluorescence, resulting in the highest quantum yield molecular fluorophore thus far. The bright molecular complex allowed for themore » fastest video-rate imaging in the second NIR window with B50-fold reduced exposure times at a fast 50 frames-per-second (FPS) capable of resolving mouse cardiac cycles. Additionally, we demonstrate that the NIR-II molecular complexes are superior to clinically approved ICG for lymph node imaging deep within the mouse body.« less
A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging
Antaris, Alexander L.; Chen, Hao; Diao, Shuo; ...
2017-05-19
Fluorescence imaging in the second near-infrared window (NIR-II) allows visualization of deep anatomical features with an unprecedented degree of clarity. NIR-II fluorophores draw from a broad spectrum of materials spanning semiconducting nanomaterials to organic molecular dyes, yet unfortunately all water-soluble organic molecules with 41,000 nm emission suffer from low quantum yields that have limited temporal resolution and penetration depth. We report tailoring the supramolecular assemblies of protein complexes with a sulfonated NIR-II organic dye (CH-4T) to produce a brilliant 110-fold increase in fluorescence, resulting in the highest quantum yield molecular fluorophore thus far. The bright molecular complex allowed for themore » fastest video-rate imaging in the second NIR window with B50-fold reduced exposure times at a fast 50 frames-per-second (FPS) capable of resolving mouse cardiac cycles. Additionally, we demonstrate that the NIR-II molecular complexes are superior to clinically approved ICG for lymph node imaging deep within the mouse body.« less
Flexible graphene composites for removal of methylene blue dye-contaminant from water
NASA Astrophysics Data System (ADS)
Oliva, J.; Martinez, A. I.; Oliva, A. I.; Garcia, C. R.; Martinez-Luevanos, A.; Garcia-Lobato, M.; Ochoa-Valiente, R.; Berlanga, A.
2018-04-01
This work presents the use of flexible graphene composites (FGCs) fabricated by a casting method for the removal of Methylene blue (MB) dye from water. Those FGCs with elastic modulus of 15 MPa had enough mechanical resistance to support the Al2O3:Eu3+ and SrAl2O4:Bi3+ photocatalytic powders. After the incorporation of those powders in the FGCs, their photocatalytic activity was evaluated by monitoring the degradation of MB dye under solar irradiation. Scanning electron microscopy (SEM) images demonstrate that the surface of FGCs with catalysts powders presents pores with sizes in the range of 15-40 μm, which favored the sunlight absorption by scattering effects. Moreover, X-Ray diffraction measurements confirmed the formation of the composites by displacements of their diffraction peaks. The MB dye was completely removed (by photocatalysis and by physical adsorption) from the water after 180 min and 270 min by using the FGCs with Al2O3:Eu3+ and SrAl2O4:Bi3+ catalysts respectively. Hence, the results of photocatalytic activity suggest that our FGCs could be used as an effective support of catalyst powders for the easy removal of dye contaminants in wastewater treatment plants.
Method for long-term preservation of thin-layer polyacrylamide gels by producing a gelatine coating.
Hofmann, K
1991-02-01
Thin-layer polyacrylamide gels can be preserved and stored for unlimited periods by covering them with a gelatine coating. The method is inexpensive and simple. After air-drying, the gel is immersed in an aqueous 10% solution of highly viscous gelatine between 55 and 60 degrees C. The coated gel is dried by hanging it in air. The method was checked successfully with gels of different thicknesses (0.15-0.50 mm) and after using different staining methods, e.g., with silver, Coomassie Brilliant Blue and pseudoperoxidase.
Breast Cancer in African American Women: Molecular Analysis of Differences in Incidence and Outcomes
2005-10-01
supporting proteins derived from serum used in the culture me- bone cell growth than collagen dip coated PHBV and dium. In the absence of natural ...medium suspension. Earlier, Concentration (mM) Medium Stock solution we had done a 10:1 dilution with trypan blue dye , the dye that allows us to...cancer model has to the tube. Vortex. traditionally used CyQUANT because of its simplicity, but 6. Using a repeater, add 200 pL of your dye mixture to
A DNA Crystal Designed to Contain Two Molecules per Asymmetric Unit
DOE Office of Scientific and Technical Information (OSTI.GOV)
T Wang; R Sha; J Birktoft
2011-12-31
We describe the self-assembly of a DNA crystal that contains two tensegrity triangle molecules per asymmetric unit. We have used X-ray crystallography to determine its crystal structure. In addition, we have demonstrated control over the colors of the crystals by attaching either Cy3 dye (pink) or Cy5 dye (blue-green) to the components of the crystal, yielding crystals of corresponding colors. Attaching the pair of dyes to the pair of molecules yields a purple crystal.
1995-01-01
Act and Regulations of Food Safety and index number or a foreign prototype number shall Inspection Service, USDA. consist of the basic name Dye followed...DYE, INDATHRENE BLUE GCD (c) In order to comply with USDA labeling DYE, PONTACYLE CARMINE requirements for meat and poultry food products, the 2B number...name actions will include a written justification which supports baker’ cthe request technically and procedurally. DLER’ S See CAP, FOOD See FIIG
Importance of rodents for hydrology: lessons learnt from various field experiments
NASA Astrophysics Data System (ADS)
van Schaik, Loes; Zangerlé, Anne; Schneider, Anne-Kathrin; Schröder, Boris; Eccard, Jana
2017-04-01
organisms are known to create soil macropores of different sizes and with varying extent and orientation: most commonly earthworms, rodents, moles and roots. Preferential flow through macropore networks is dynamic and typically occurs when short individual macropores become connected at the hillslope scale as the nodes between the macropores become wet. Large lateral macropores may contribute to rapid subsurface stormflow of water and solutes at hillslope scale and supply a significant part of the catchment scale discharge during high intensity rainfall events even under relatively dry catchment state. Outflow from soil pipes, especially in the valley bottom or along the banking near to streams, is frequently observed, however, it remains a challenge to measure the spatial distribution, extent and connectivity of macropores at hill slope scales. We hypothesize that local information on organism abundances may be used as an indicator for spatial variability in infiltration, water storage and fluxes at the small scale and that knowledge on the landscape scale spatial distribution of organisms can provide information on connectivity of macropores at hillslope scale. Here we summarize the lessons learnt during three years of measurements aimed at determining the influence of rodent burrows on soil hydrology in a meso-scale catchment. Within the Attert Catchment (297 km2) in Luxembourg we performed sprinkling experiments with a brilliant blue tracer on twelve plots, of which six directly above rodent burrow openings and six on a surface without a rodent burrow opening, in order to examine the influence of the burrow openings on the infiltration pattern. Then we tested the extent of flow through mice burrows in different forest types, with varying geology and slope, by supplying 5 Liters of water with brilliant blue tracer directly to 24 burrow openings at soil surface. We excavated the burrows to measure how far the water was transported laterally in the burrow. Though we have serendipitous evidence of lateral water flow through large macropores in deeper soil layers from other projects, with the experiments we performed with the purpose to characterize this, the water did not seem to infiltrate into the burrow openings at the soil surface at all and the infiltration pattern under burrows was not different from that in soils without these openings. The five liter of brilliant blue dyed water which we poured into burrow openings did not flow far into the burrows, it generally infiltrated straight away into the surrounding soil. These results seem to show that the infiltration of water to rodent macropores during high intensity events does not take place at the soil surface but rather through other macropores, e.g. earthworm channels, which connect to deeper lateral channels. Also the lateral flow of water through the rodent burrows is apparently more effective in the deeper soils, where we occasionally saw a burrow with completely blue walls but little infiltration into the surrounding matrix.
Bio-inspired materials for electrochemical devices
NASA Astrophysics Data System (ADS)
Pawlicka, A.; Firmino, A.; Sentanin, F.; Sabadini, R. C.; Jimenez, D. E. Q.; Jayme, C. C.; Mindroiu, M.; Zgarian, R. G.; Tihan, G. T.; Rau, I.; Silva, M. M.; Nogueira, A. F.; Kanicki, J.; Kajzar, F.
2015-10-01
Natural macromolecules are very promising row materials to be used in modern technology including security and defense. They are abundant in nature, easy to extract and possess biocompatibility and biodegradability properties. These materials can be modified throughout chemical or physical processes, and can be doped with lithium and rare earth salts, ionic liquids, organic and inorganic acids. In this communication samples of DNA and modified DNA were doped with Prussian Blue (PB), poly(ethylene dioxythiophene) (PEDOT), europium and erbium triflate and organic dyes such as Nile Blue (NB), Disperse Red 1 (DR1) and Disperse Orange 3 (DO3). The colored or colorless membranes were characterized by electrochemical and spectroscopic measurements, and they were applied in electrochromic devices (ECDs) and dye sensitized solar cells (DSSC). ECDs change the color under applied potential, so they can modulate the intensity of transmitted light of 15 to 35%. As the electrochromic materials, WO3 or Prussian blue (PB), are usually blue colored, the color change is from transparent to blue. DNA, and the complexes: DNA-CTMA, DNA-DODA and DNAPEDOT: PSS were also investigated as either hole carrier material (HTM) or polymer electrolyte in dye-sensitized solar cells (DSSC). The DNA-based samples as HTM in small DSSCs revealed a solar energy conversion efficiency of 0.56%. Polymer electrolytes of DNA-CTMA and DNA-DODA, both with 10 wt% of LiI/I2, applied in small DSSC, exhibited the efficiencies of 0.18 and 0.66%, respectively. The obtained results show that natural macromolecules-based membranes are not only environmentally friendly but are also promising materials to be investigated for several electrochemical devices. However, to obtain better performances more research is still needed.
50 CFR 665.815 - Pelagic longline seabird mitigation measures.
Code of Federal Regulations, 2014 CFR
2014-10-01
... rate; (vi) Use completely thawed bait that has been dyed blue to an intensity level specified by a... 1 lb size) containing blue dye on board the vessel; and (viii) Follow the requirements in paragraphs... complete the deployment no later than local sunrise, using only the minimum vessel lights to conform with...
50 CFR 665.815 - Pelagic longline seabird mitigation measures.
Code of Federal Regulations, 2013 CFR
2013-10-01
... rate; (vi) Use completely thawed bait that has been dyed blue to an intensity level specified by a... 1 lb size) containing blue dye on board the vessel; and (viii) Follow the requirements in paragraphs... complete the deployment no later than local sunrise, using only the minimum vessel lights to conform with...
50 CFR 665.815 - Pelagic longline seabird mitigation measures.
Code of Federal Regulations, 2011 CFR
2011-10-01
... rate; (vi) Use completely thawed bait that has been dyed blue to an intensity level specified by a... 1 lb size) containing blue dye on board the vessel; and (viii) Follow the requirements in paragraphs... complete the deployment no later than local sunrise, using only the minimum vessel lights to conform with...
50 CFR 665.815 - Pelagic longline seabird mitigation measures.
Code of Federal Regulations, 2012 CFR
2012-10-01
... rate; (vi) Use completely thawed bait that has been dyed blue to an intensity level specified by a... 1 lb size) containing blue dye on board the vessel; and (viii) Follow the requirements in paragraphs... complete the deployment no later than local sunrise, using only the minimum vessel lights to conform with...
Citrus pectin derived porous carbons as a superior adsorbent toward removal of methylene blue
NASA Astrophysics Data System (ADS)
Zhang, Wenlin; Zhang, Lian Ying; Zhao, Xi Juan; Zhou, Zhiqin
2016-11-01
An adsorbent, citrus pectin derived porous carbons with ultra-high adsorption capacity, rapid adsorption rate and good reusability toward removal of methylene blue, was synthesized by a facile zinc chloride activation approach in this study. The materials hold a great potential for treatment of dye wastewater.
Methylene Blue: The Long and Winding Road from Stain to Brain: Part 1.
Howland, Robert H
2016-09-01
Methylene blue, first discovered and used as a dye in the textile industry, has long been used for biological staining in histology, bacteriology, and hematology. Because of its unique physiochemical properties, it was the first synthetic drug used in medicine, having been used to treat malaria more than one century ago. Methylene blue was also one of the first drugs used for the treatment of patients with psychosis at the end of the 19th century and was the lead drug in the serendipitous development of phenothiazine antipsychotic drugs in the mid-20th century. It was studied in bipolar disorder in the 1980s and has been investigated in neurodegenerative disorders in recent years. The history of methylene blue from its discovery as a dye to its use as a stain and then its therapeutic application in medicine is an example of how a drug's use can evolve over time through careful observation, clinical needs, serendipity, and the integration of concepts from different disciplines. [Journal of Psychosocial Nursing and Mental Health Services, 54(9), 21-24.]. Copyright 2016, SLACK Incorporated.
Removal of organic dyes using Cr-containing activated carbon prepared from leather waste.
Oliveira, Luiz C A; Coura, Camila Van Zanten; Guimarães, Iara R; Gonçalves, Maraisa
2011-09-15
In this work, hydrogen peroxide decomposition and oxidation of organics in aqueous medium were studied in the presence of activated carbon prepared from wet blue leather waste. The wet blue leather waste, after controlled pyrolysis under CO(2) flow, was transformed into chromium-containing activated carbons. The carbon with Cr showed high microporous surface area (up to 889 m(2)g(-1)). Moreover, the obtained carbon was impregnated with nanoparticles of chromium oxide from the wet blue leather. The chromium oxide was nanodispersed on the activated carbon, and the particle size increased with the activation time. It is proposed that these chromium species on the carbon can activate H(2)O(2) to generate HO radicals, which can lead to two competitive reactions, i.e. the hydrogen peroxide decomposition or the oxidation of organics in water. In fact, in this work we observed that activated carbon obtained from leather waste presented high removal of methylene blue dye combining the adsorption and oxidation processes. Copyright © 2011 Elsevier B.V. All rights reserved.
Andleeb, Saadia; Atiq, Naima; Robson, Geoff D; Ahmed, Safia
2012-06-01
Biodegradation and biodecolorization of Drimarene blue K(2)RL (anthraquinone) dye by a fungal isolate Aspergillus flavus SA2 was studied in lab-scale immobilized fluidized bed bioreactor (FBR) system. Fungus was immobilized on 0.2-mm sand particles. The reactor operation was carried out at room temperature and pH 5.0 in continuous flow mode with increasing concentrations (50, 100, 150, 200, 300, 500 mg l(-1)) of dye in simulated textile effluent on the 1st, 2nd, 5th, 8th, 11th, and 14th days. The reactors were run on fill, react, settle, and draw mode, with hydraulic retention time (HRT) of 24-72 h. Total run time for reactor operation was 17 days. The average overall biological oxygen demand (BOD), chemical oxygen demand (COD), and color removal in the FBR system were up to 85.57%, 84.70%, and 71.3%, respectively, with 50-mg l(-1) initial dye concentration and HRT of 24 h. Reductions in BOD and COD levels along with color removal proved that the mechanism of biodecolorization and biodegradation occurred simultaneously. HPLC and LC-MS analysis identified phthalic acid, benzoic acid, 1, 4-dihydroxyanthraquinone, 2,3-dihydro-9,10-dihydroxy-1,4-anthracenedione, and catechol as degradation products of Drimarene blue K(2)RL dye. Phytotoxicity analysis of bioreactor treatments provided evidence for the production of less toxic metabolites in comparison to the parent dye. The present fluidized bed bioreactor setup with indigenously isolated fungal strain in its immobilized form is efficiently able to convert the parent toxic dye into less toxic by-products.
Sentinel lymph node detection by an optical method using scattered photons
Tellier, Franklin; Ravelo, Rasata; Simon, Hervé; Chabrier, Renée; Steibel, Jérôme; Poulet, Patrick
2010-01-01
We present a new near infrared optical probe for the sentinel lymph node detection, based on the recording of scattered photons. A two wavelengths setup was developed to improve the detection threshold of an injected dye: the Patent Blue V dye. The method used consists in modulating each laser diode at a given frequency. A Fast Fourier Transform of the recorded signal separates both components. The signal amplitudes are used to compute relative Patent Blue V concentration. Results on the probe using phantoms model and small animal experimentation exhibit a sensitivity threshold of 3.2 µmol/L, which is thirty fold better than the eye visible threshold. PMID:21258517
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witkin, E M
1961-12-01
Post treatment with basic dyes, in concentrations that retard cell division, was found to influence the tnduction of mutations to prototrophy by UV light in a tyrosine-requirtng strain of E.Coli. Pyronin, which is unique among the dyes in tts selective affinity for RNA, was found to duplicate the effects of chloramphenicol or amino acfd deprtvatfon in causfng the rapid and irreversible loss of potential prototrophs (mutation frequency decline, or MFD). Acriflavtne, methyl green. crystal violet, methylene blue, and toluidine blue, all of which are known to combine with DNA, delay or retard the occurrence of MFD under conditions of aminomore » acid deprivation. When acriflavine is removed from its combination with cellular components by the addition of an excess of sodium deoxyrtbonucleate, MFD begins promptly. The same basic dyes that delay MFD were also found to interfere with the fixation of mutations (MF) in an amino acid- enriched medium, and to cause marked enhancement of the mutagenic potency of low doses of UV light. While showing no independent mutagenic activity for unirradiated bacteria, all the dyes except pyronin increased the yield of induced mutations signtficantly when added to the enriched medium upon which trradiated bacteria were incubated.These results were interpreted as evidence that UV light initiates mutagenesis by producing unstable changas directly in genic DNA. MFD is interpreted as a repair process, blocked by the machinery of RNA and protein synthesis and by the presence of certain basic dyes.« less
Prola, Lizie D T; Machado, Fernando M; Bergmann, Carlos P; de Souza, Felipe E; Gally, Caline R; Lima, Eder C; Adebayo, Matthew A; Dias, Silvio L P; Calvete, Tatiana
2013-11-30
Multi-walled carbon nanotubes (MWCNT) and powder activated carbon (PAC) were used as adsorbents for adsorption of Direct Blue 53 dye (DB-53) from aqueous solutions. The adsorbents were characterised using Raman spectroscopy, N2 adsorption/desorption isotherms, and scanning and transmission electron microscopy. The effects of initial pH, contact time and temperature on adsorption capacity of the adsorbents were investigated. At pH 2.0, optimum adsorption of the dye was achieved by both adsorbents. Equilibrium contact times of 3 and 4 h were achieved by MWCNT and PAC adsorbents, respectively. The general order kinetic model provided the best fit of the experimental data compared to pseudo-first order and pseudo-second order kinetic adsorption models. For DB-53 dye, the equilibrium data (298-323 K) were best fitted to the Sips isotherm model. The maximum sorption capacity for adsorption of the dye occurred at 323 K, with the values of 409.4 and 135.2 mg g(-1) for MWCNT and PAC, respectively. Studies of adsorption/desorption were conducted and the results showed that DB-53 loaded MWCNT could be regenerated (97.85%) using a mixture 50% acetone + 50% of 3 mol L(-1) NaOH. Simulated dye house effluents were used to evaluate the application of the adsorbents for effluent treatment (removal of 99.87% and 97.00% for MWCNT and PAC, respectively, were recorded). Copyright © 2013 Elsevier Ltd. All rights reserved.
Singh, Anuja; Pati, Avik Kumar; Mishra, Ashok Kumar
2018-05-30
Push-pull organic fluorophores are important owing to their interesting optoelectronical properties. Here we report the photophysics of a new cross-conjugated push-pull enediynyl dye which belongs to an unexplored class of π-conjugated donor-acceptor systems. Two N,N-dimethylaniline moieties serve as donors and one pyrene ring functions as an acceptor via a common Y-shaped 'enediyne' bridge which facilitates the cross-electronic communication. The dye exhibits dual emission from locally excited (LE) and intramolecular charge transfer (ICT) states. While the LE emission is dominant in non-polar solvents, the ICT emission predominates in polar solvents. Time-resolved fluorescence decay experiments reveal a relatively shorter lifetime component (∼0.5-0.9 ns) belonging to an ICT state and a relatively longer lifetime species (∼1.6-2.8 ns) corresponding to the LE state. The strong ICT behavior of the dye is manifested through the huge red-shift (4166 cm-1) of the emission spectra from non-polar cyclohexane to polar N,N-dimethylformamide. In contrast to many small push-pull organic dyes, the LE and ICT states of the push-pull enediynyl dye follow the same excitation pathway. The dominant red-shifted ICT emission (∼550 nm) intensity of the dye in polar solvent decreases with a concomitant appearance of the blue-shifted LE emission (∼385 nm) upon prolonged exposure to photons. This opens up a new photophysical strategy of achieving high contrast two fluorescence color conversion from yellow to blue.
Combined blood cell counting and classification with fluorochrome stains and flow instrumentation.
Shapiro, H M; Schildkraut, E R; Curbelo, R; Laird, C W; Turner, B; Hirschfeld, T
1976-01-01
A multiparameter flow cytophotometer was used to count and classify fixed human blood cells fluorochromed with a mixture of ethidium bromide (EB), brilliant sulfaflavine and a blue fluorescent stilbene disulfonic acid derivative (LN). The system measures light scattered by the cells and absorption at 420 nm for all cells. In addition, nuclear EB fluorescence (540 leads to 610 nm) and cytoplasmic fluorescence from LN (366 leads to 470 nm), brilliant sulfaflavine (420 leads to 520 nm) and EB exicted by energy transfer from LN (366 leads to 610 nm) are measured for all nucleated cells. This information is sufficient to perform red and white blood cell counts and to classify leukocytes as lymphocytes, monocytes, basophils, eosinophils or neutrophils. Light scattering and/or nuclear and cytoplasmic fluorescence values may be further analyzed to obtain the ratio of immature to mature neutrophils. Counts produced by the system are in reasonable agreement with those obtained by electronic cells counting and examination of Wright's-stained blood smears; some discrepancies appear to be due to systematic errors in the manual counting method.
NASA Astrophysics Data System (ADS)
Kim, Taek-Seung; Song, Hee Jo; Dar, Mushtaq Ahmad; Lee, Hack-Jun; Kim, Dong-Wan
2018-05-01
Magnetic metal/carbon nano-materials are attractive for pollutant adsorption and removal. In this study, ultrafine nickel/carbon nanoparticles are successfully prepared via electrical wire explosion processing in ethanol media for the elimination of pollutant organic dyes such as Rhodamine B and methylene blue in aqueous solutions. High specific surface areas originating from both the nano-sized particles and the existence of carbon on the surface of Ni nanoparticles enhance dye adsorption capacity. In addition to this, the excellent dispersity of Ni/C nanoparticles in aqueous dye solutions leads to superior adsorption rates. The adsorption kinetics for the removal of organic dyes by Ni/C nanoparticles agree with a pseudo-second-order model and follow Freundlich adsorption isotherm behavior.
Sentinel lymph node detection in patients with early cervical cancer.
Acharya, B C; Jihong, L
2009-01-01
Lymph node status is the most important independent prognostic factor in early stage cervical cancer. Intraoperative lymphatic mapping and sentinel lymph node detection have been increasingly evaluated in the treatment of a variety of solid tumors, particularly breast cancer and cutaneous melanoma. This study evaluated the feasibility of these procedures in patients undergoing radical hysterectomy with pelvic lymphadenectomy for early cervical cancer. A total of 30 patients with histologically diagnosed FIGO stage IA to IIA cervical cancer were enrolled to this study. They were scheduled to undergo radical abdominal hysterectomy and pelvic lymphadenectomy after injecting patent blue dye in cervix. A total of 60 SLNs (mean 2.5) were detected in 24 patients with detection rate of 80%. Bilateral SLNs were detected in 70.1% of cases. SLNs were identified in obturator and external iliac areas in 50% and 31.7%, respectively; no SLNs were discovered in the common iliac region. Seven patients (23.3%) had lymph node metastases; one of these had false negative SLN.The false negative rate and negative predictive value were 14.3% and 94.4%, respectively. SLN detection procedure with blue dye technique is a feasible procedure in cervical cancer. Patent blue dye is cheap, safe and effective tracer to detect sentinel node in carcinoma of cervix.
Sentinel lymph nodes detection with an imaging system using Patent Blue V dye as fluorescent tracer
NASA Astrophysics Data System (ADS)
Tellier, F.; Steibel, J.; Chabrier, R.; Rodier, J. F.; Pourroy, G.; Poulet, P.
2013-03-01
Sentinel lymph node biopsy is the gold standard to detect metastatic invasion from primary breast cancer. This method can help patients avoid full axillary chain dissection, thereby decreasing the risk of morbidity. We propose an alternative to the traditional isotopic method, to detect and map the sentinel lymph nodes. Indeed, Patent Blue V is the most widely used dye in clinical routine for the visual detection of sentinel lymph nodes. A Recent study has shown the possibility of increasing the fluorescence quantum yield of Patent Blue V, when it is bound to human serum albumin. In this study we present a preclinical fluorescence imaging system to detect sentinel lymph nodes labeled with this fluorescent tracer. The setup is composed of a black and white CCD camera and two laser sources. One excitation source with a laser emitting at 635 nm and a second laser at 785 nm to illuminate the region of interest. The prototype is operated via a laptop. Preliminary experiments permitted to determine the device sensitivity in the μmol.L-1 range as regards the detection of PBV fluorescence signals. We also present a preclinical evaluation performed on Lewis rats, during which the fluorescence imaging setup detected the accumulation and fixation of the fluorescent dye on different nodes through the skin.
Botta, Sergio Brossi; Ana, Patricia Aparecida; Gonçalves, Marcela Leticia Leal; Fernandes, Kristianne Porta Santos; Mesquita-Ferrari, Raquel Agnelli; de Araújo Prates, Renato; Brugnera, Aldo; Bussadori, Sandra Kalil
2018-02-01
The aim of this in vitro study was to evaluate the degradation of type I collagen fibers after treatment with a papain-based gel associated with a blue dye (PapaMBlue™) for use in antimicrobial photodynamic therapy. For such, 60 bioabsorbable membrane sponge discs were used. Group 1 was the negative control group. In groups 2, 3, and 4, the papain-based gel PapaMBlue gel was applied all over the samples for 4 min and irradiated using red laser (660 ± 10 nm) with 15, 30, and 40 J/cm 2 , respectively. In group 5, the papain-based gel was applied all over the samples for 4 min. In group 6, the photosensitizing dye was applied all over the samples for 4 min. The compositional analysis of the samples was performed using ATR-FTIR (attenuated total reflectance-Fourier transformed infrared spectroscopy). The data were statistically analyzed using ANOVA and Tukey's test (p < 0.05). Neither classic Papacarie™ nor the modified product with a photosensitizing agent (PapaMBlue) promoted collagen degradation. The irradiation of methylene blue added to papain gel with red light did not alter the chemical structure of type I collagen.
Chitosan-edible oil based materials as upgraded adsorbents for textile dyes.
Dos Santos, Clayane Carvalho; Mouta, Rodolpho; Junior, Manoel Carvalho Castro; Santana, Sirlane Aparecida Abreu; Silva, Hildo Antonio Dos Santos; Bezerra, Cícero Wellington Brito
2018-01-15
Biopolymer chitosan is a low cost, abundant, environmentally friendly, very selective and efficient anionic dyes adsorbent, being a promising material for large-scale removal of dyes from wastewater. However, raw chitosan (CS) is an ineffective cationic dyes adsorbent and its performance is pH sensitive, thus, CS modifications that address these issues need to be developed. Here, we report the preparation and characterization of two new CS modifications using edible oils (soybean oil or babassu oil), and their adsorption performance for two dyes, one anionic (remazol red, RR) and one cationic (methylene blue, MB). Both modifications extended the pH range of RR adsorption. The babassu oil modification increased adsorption capacity of the cationic dye MB, whereas the soybean oil modification increased that of RR. Such improvements demonstrate the potential of these two new CS modifications as adsorbent candidates for controlling dyes pollution in effluents. Copyright © 2017 Elsevier Ltd. All rights reserved.
Visual Outcomes of Macular Hole Surgery.
Khaqan, Hussain Ahmad; Lubna; Jameel, Farrukh; Muhammad
2016-10-01
To determine the mean visual improvement after internal limiting membrane (ILM) peeling assisted with brilliant blue staining of ILM in macular hole, and stratify the mean visual improvement in different stages of macular hole. Quasi-experimental study. Eye outpatient department (OPD), Lahore General Hospital, Lahore from October 2013 to December 2014. Patients with macular hole underwent measurement of best corrected visual acuity (BCVA) and fundus examination with indirect slit lamp biomicroscopy before surgery. The diagnosis of all patients was confirmed on optical coherence tomography. All patients had 23G trans-conjunctival three ports pars plana vitrectomy, ILM peeling, and endotamponade of SF6. The mean visual improvement of different stages of macular hole was noted. Paired t-test was applied. There were 30 patients, 15 males and 15 females (50%). The mean age was 62 ±10.95 years. They presented with low mean preoperative visual acuity (VA) of 0.96 ±0.11 logMar. The mean postoperative VAwas 0.63 ±0.24 logMar. The mean visual increase was 0.33 ±0.22 logMar (p < 0.001). In patients with stage 2 macular hole, mean visual increase was 0.35 ±0.20 logMar (p < 0.001). In patients with stage 3 macular hole, mean visual increase was 0.44 ±0.21 logMar (p < 0.001), and in patients with stage 4 macular hole it was 0.13 ± 0.1 logMar (p = 0.004). ILM peeling assisted with brilliant blue is a promising surgery for those patients who have decreased vision due to macular hole, in 2 - 4 stages of macular hole.
Fathi, Mohamed; Ashry, Mohamed; Salama, Ali; Badr, Magdy R
2017-08-01
The objectives of the present studies were to investigate the developmental capacity of dromedary camel oocytes selected by brilliant cresyl blue (BCB) staining and to investigate the expression of select transcripts in germinal vesicle (GV) stage oocytes. These transcripts included BMP15 and GDF9 as important transcripts for folliculogenesis and oocyte development, Zar1 and Mater as maternal transcripts required for embryonic development, Cyclin B1 and CDK1 as cell cycle regulators and Oct4 and STAT3 as transcription factors. Dromedary camel oocytes were retrieved from ovaries collected at a local slaughterhouse. After exposure to BCB staining, cumulus-oocyte complexes (COCs) from BCB+, BCB- and control (selected based on morphological criteria) groups were subjected to in vitro maturation, in vitro fertilization and in vitro culture. For gene expression studies, after BCB staining cumulus cells were stripped off and the completely denuded GV stage oocytes were used for RT-PCR analysis of selected transcripts. BCB+ oocytes showed higher maturation, and fertilization rates compared with BCB- and control groups. Indices of early embryonic development, namely, cleavage at 48 hours post insemination (hpi), and development to morula at day 5 and day 7 blastocyst rates were also significantly higher in the BCB+ group. RT-PCR revealed a higher expression of BMP15, GDF9, Zar1, Mater, Cyclin B1, CDK1, OCT4 and STAT3 in good quality oocytes that stained positively for BCB (BCB+). Collectively, results provide novel information about the use of BCB screening for selecting good quality oocytes to improve in vitro embryo production in the dromedary camel.
Osugi, Marli E; Umbuzeiro, Gisela A; De Castro, Francisco J V; Zanoni, Maria Valnice B
2006-09-21
The ability of photoelectrocatalytic oxidation to degrade the commercially important copper-phtalocyanine dye, remazol turquoise blue 15 (RTB) was investigated. The best experimental condition was optimized, evaluating the performance of Ti/TiO2 thin-film electrodes prepared by sol-gel method in the decolourization of 32 mg L(-1) RTB dye in 0.5 mol L(-1) Na2SO4 pH 8 and applied potential of +1.5 V versus SCE under UV irradiation. Spectrophotometric measurements, high performance liquid chromatography, dissolved organic carbon (TOC) evaluation and stripping analysis of yielding solution obtained after 3 h of photoelectrolysis leads to 100% of absorbance removal from wavelength of 250-800 nm, 79.6% of TOC reduction and the releasing of up to 54.6% dye-bound copper (0.85 mg L(-1)) into the solution. Both, original and oxidized dye solution did not presented mutagenic activity with the strains TA98 and TA100 of Salmonella in the presence and absence of S9 mix at the tested doses. Nevertheless, the yielding photoelectrocatalytic oxidized solution showed an increase in the acute toxicity for Vibrio fischeri bacteria, explained by copper liberation during treatment.
Efficient removal of dyes from aqueous solutions using a novel hemoglobin/iron oxide composite.
Essandoh, Matthew; Garcia, Rafael A
2018-05-10
Magnetic particles entrapped in different matrices that display high thermal stability, low toxicity, interactive functions at the surface, and high saturation magnetization are of great interest. The objective of this work was to synthesize a novel hemoglobin/iron oxide composite (Hb/Fe 3 O 4 ) for the removal of different dyes (indigo carmine, naphthol blue black, tartrazine, erythrosine, eriochrome black T and bromophenol blue) from aqueous solutions. The Hb/Fe 3 O 4 composite was characterized using scanning electron microscopy (SEM), laser diffraction particle size analysis, FT-IR spectroscopy, isoelectric point determination and thermogravimetric analysis (TGA). The Hb/Fe 3 O 4 composite showed high removal efficiency toward all the different classes of dyes studied and the mechanism of adsorption was dominated by electrostatic interaction. Adsorption was found to follow pseudo-second order kinetic model and Langmuir isotherm. The Langmuir monolayer adsorption capacities for all the dyes range from 80 to 178 mg/g. The Hb/Fe 3 O 4 composite possesses extra advantage of being easily isolated from aqueous suspension using an external magnet. The stability of the prepared Hb/Fe 3 O 4 composite was also demonstrated. Copyright © 2018 Elsevier Ltd. All rights reserved.
Co-metabolic degradation of diazo dye- reactive blue 160 by enriched mixed cultures BDN.
Balapure, Kshama H; Jain, Kunal; Chattaraj, Sananda; Bhatt, Nikhil S; Madamwar, Datta
2014-08-30
Mixed cultures BDN (BDN) proficient in decolourizing diazo dye-reactive blue 160 (RB160) consist of eight bacterial strains, was developed through culture enrichment method from soil samples contaminated with anthropogenic activities. The synthrophic interactions of BDN have led to complete decolourization and degradation of RB160 (100mg/L) within 4h along with co-metabolism of yeast extract (0.5%) in minimal medium. BDN microaerophilicaly decolourized even 1500mg/L of RB160 under high saline conditions (20g/L NaCl) at 37°C and pH 7.0. BDN exhibited broad substrate specificity and decolourized 27 structurally different dyes. The reductase enzymes symmetrically cleaved RB160 and oxidative enzymes further metabolised the degraded products and five different intermediates were identified using FTIR, (1)HNMR and GC-MS. The phytotoxicity assay confirmed that intact RB160 was more toxic than dye degraded intermediates. The BDN was able to colonize and decolourized RB160 in soil model system in presence of indigenous miocroflora as well as in sterile soil without any amendment of additional nutrients, which signifies it useful and potential application in bioremediation. Copyright © 2014 Elsevier B.V. All rights reserved.
Tetrachromacy of human vision: spectral channels and primary colors
NASA Astrophysics Data System (ADS)
Gavrik, Vitali V.
2002-06-01
Full-color imaging requires four channels as, in contrast to a colorimeter, can add no primary to matched scene colors themselves. An ideal imaging channel should have the same spectral sensitivity of scene recording as a retinal receptor and evoke the same primary color sensation. The alternating matching functions of a triad of real primaries are inconsistent with the three cones but explicable of two pairs of independent opponent receptors with their alternating blue-yellow and green-red chromatic axes in the color space. Much other controversy of trichromatic approach can also be explained with the recently proposed intra- receptor processes in the photopic rod and cone, respectively. Each of their four primary sensations, unmixed around 465, 495, 575, and 650 nm, is evoked within a different spectral region. The current trichromatic photographic systems have been found separately to approximate the blue and red receptors, as well as their spectral opponency against the respective yellow and blue- green receptors simulated with a single middle-wave imaging channel. The channel sensitivities are delimited by the neutral points of rod and cone and cannot simulate the necessary overlap of non-opponent channels for properly to render some mixed colors. The yellow and cyan positive dyes closely control the brightness of blue and red sensations, respectively. Those red and blue respectively to control the yellow and blue-green sensations on brightness scales are replaced by magenta dye, controlling them together. Accurate rendering of natural saturation metameric colors, problematic blue-green, purple-red, and low-illumination colors requires to replace the hybrid 'green' channel with the blue-green and yellow channels.
[Sentinel node detection in early stage of cervical carcinoma using 99mTc-nanocolloid and blue dye].
Sevcík, L; Klát, J; Gráf, P; Koliba, P; Curík, R; Kraft, O
2007-04-01
The aim of the study was to analyse the feasibility of intraoperative sentinel lymph nodes (SLN) detection using gamma detection probe and blue dye in patients undergoing radical hysterectomy for treatment of early stage of cervical cancer. Prospective case observational study. In the period from May 2004 to February 2006 77 patients with early stage of cervical cancer who underwent a radical surgery were included into the study. Patients were divided into three groups according to the tumour volume. First group consists of patients FIGO IA2 and FIGO IB1 with tumour diameter less than 2 cm, second group tumours FIGO IB1 with tumour diameter more than 2 cm and third group stadium IB2. SLN was detected by blue dye and Tc99. Preoperative lymphoscintigraphy was done after Tc99 colloid injection, intraoperative detection was performed by visual observation and by hand-held gamma-detection probe. SLN were histologically and immunohistochemically analysed. A total number of 2764 lymph nodes with an average 36 and 202 SLN with an average 2.6 were identified. The SLN detection rate was 94.8% per patient and 85.1% for the side of dissection and depends on the tumor volume. SLN were identified in obturator area in 48%, in external iliac area in 15%, in common iliac and internal iliac both in 9%, in interiliac region in 8%, in praesacral region in 6% and in parametrial area in 5%. Metastatic disease was detected in 31 patients (40.2%), metastatic involvement of SLN only in 12 patients (15.6%). False negative rate was 2.6%, sensitivity and negative predictive value calculated by patient were 923% and 95.7%. Intraoperative lymphatic mapping using combination of technecium-99-labeled nanocolloid and blue dye are feasible, safe and accurate techniques to identified SLN in early stage of cervical cancer.
Sahoo, Chittaranjan; Gupta, Ashok K
2015-01-01
Commercially available microcrystalline TiO2 was doped with silver, ferrous and ferric ion (1.0 mol %) using silver nitrate, ferrous sulfate and ferric nitrate solutions following the liquid impregnation technology. The catalysts prepared were characterised by FESEM, XRD, FTIR, DRS, particle size and micropore analysis. The photocatalytic activity of the prepared catalysts was tested on the degradation of two model dyes, methylene blue (3,7-bis (Dimethylamino)-phenothiazin-5-ium chloride, a cationic thiazine dye) and methyl blue (disodium;4-[4-[[4-(4-sulfonatoanilino)phenyl]-[4-(4-sulfonatophenyl)azaniumylidenecyclohexa-2,5-dien-1-ylidene]methyl]anilino]benzene sulfonate, an anionic triphenyl methane dye) under irradiation by UV and visible light in a batch reactor. The efficiency of the photocatalysts under UV and visible light was compared to ascertain the light range for effective utilization. The catalysts were found to have the anatase crystalline structure and their particle size is in a range of 140-250 nm. In the case of Fe(2+) doped TiO2 and Fe(3+) doped TiO2, there was a greater shift in the optical absorption towards the visible range. Under UV light, Ag(+) doped TiO2 was the most efficient catalyst and the corresponding decolorization was more than 99% for both the dyes. Under visible light, Fe(3+) doped TiO2 was the most efficient photocatalyst with more than 96% and 90% decolorization for methylene blue and methyl blue, respectively. The kinetics of the reaction under both UV and visible light was investigated using the Langmuir-Hinshelwood pseudo-first-order kinetic model. Kinetic measurements confirmed that, Ag(+) doped TiO2 was most efficient in the UV range, while Fe(3+) doped TiO2 was most efficient in the visible range.
Mu, Bin; Tang, Jie; Zhang, Long; Wang, Aiqin
2017-07-13
Using graphene as adsorbent for removal of pollutants from polluted water is commonly recognized to be costly because the graphene is usually produced by a very complex process. Herein, a simple and eco-friendly method was employed to fabricate efficient superparamagnetic graphene/polyaniline/Fe 3 O 4 nanocomposites for removal of dyes. The exfoliation of graphite as nanosheets and the functionalization of nanosheets with polyaniline and Fe 3 O 4 nanoparticles were simultaneously achieved via a one-pot reaction process combining the intercalation polymerization of aniline and the co-precipitation of the residual Fe 3+ and the generated Fe 2+ . The obtained graphene/polyaniline/Fe 3 O 4 nanocomposites exhibited excellent adsorption performance for Congo red, even in the presence of Brilliant green. The adsorption kinetics and adsorption isotherms were well fitted with pseudo second-order kinetic model and Langmuir isotherm model, respectively. In a word, this method is simple and industrially feasible, which provides a new approach to fabricate highly efficient graphene-based adsorbents on large scale for removal of dyes. In addition, it also can be used to exfoliate other two-dimensional materials, such as boron nitride, carbon nitride and MoS 2 for a range of possible applications.
Trypan blue to assess Baerveldt tube patency after repair of its obstruction.
Grigg, John; Jang, John D W; Fung, Adrian T; Hunyor, Alex P; Wilson, Trevor
2011-12-01
Tubal obstruction is a recognized complication of glaucoma drainage implants. In correcting a blocked tube, the surgeon may be uncertain about shunt competence even after removing the suspected cause of obstruction. We report the use of trypan blue dye to show tubal patency directly after the repair of a blocked Baerveldt tube.
Gusmão, Karla Aparecida Guimarães; Gurgel, Leandro Vinícius Alves; Melo, Tânia Márcia Sacramento; Gil, Laurent Frédéric
2013-03-30
In this study the adsorption of cationic dyes by modified sugarcane bagasse with EDTA dianhydride (EB) was examined using methylene blue (MB) and gentian violet (GV) as model compounds in aqueous single solutions. The synthesized adsorbent (EB) was characterized by FTIR, elemental analysis, and BET. The capacity of EB to adsorb dyes was evaluated at different contact times, pH values, and initial dye concentrations. According to the obtained results, the adsorption processes could be described by a pseudo-second-order kinetic model. The adsorption isotherms were well fitted by the Langmuir model. Maximum adsorption capacities for MB and GV on EB were found to be 202.43 and 327.83 mg/g, respectively. The free energy change during adsorption of MB and GV was found to be -22.50 and -24.21 kJ/mol, respectively, suggesting that chemisorption is the main mechanism controlling the adsorption process. Copyright © 2013 Elsevier Ltd. All rights reserved.
Bechtold, T; Turcanu, A; Geissler, S; Ganglberger, E
2002-02-01
Indigo is the most important blue component in the class of natural dyes for cellulose and protein fibres. In the moderate European climate Polygonum tinctorium Ait. could be an interesting source for natural indigo (Vat blue 1). Following a cultivation of the plant material a simple procedure for the extraction of the indigo precursor indican was investigated with regard to crop and quality of dye obtained. The dependence of the crop on the storage conditions of the harvested plant material was investigated. The results quantify the distinct sensitivity of the fresh material to the time of storage before extraction with regard to the amount of natural indigo obtained, the photometrically determined indigo content in the product and the shade and colour depth observed in standardised dyeing experiments. A basic set of data is presented, which describes the process in terms of consumption of energy, water and chemicals and organic waste released from the extraction step.
Dotto, G L; Lima, E C; Pinto, L A A
2012-01-01
The biosorption of food dyes FD&C red no. 40 and acid blue 9 onto Spirulina platensis nanoparticles was studied at different conditions of pH and temperature. Four isotherm models were used to evaluate the biosorption equilibrium and the thermodynamic parameters were estimated. Infra red analysis (FT-IR) and energy dispersive X-ray spectroscopy (EDS) were used to verify the biosorption behavior. The maximum biosorption capacities of FD&C red no. 40 and acid blue 9 were found at pH 4 and 298 K, and the values were 468.7 mg g(-1) and 1619.4 mg g(-1), respectively. The Sips model was more adequate to fit the equilibrium experimental data (R2>0.99 and ARE<5%). Thermodynamic study showed that the biosorption was exothermic, spontaneous and favorable. FT-IR and EDS analysis suggested that at pH 4 and 298 K, the biosorption of both dyes onto nanoparticles occurred by chemisorption. Copyright © 2011 Elsevier Ltd. All rights reserved.
Thioindigo Interaction with Palygorskite and Sepiolite
NASA Astrophysics Data System (ADS)
Ramirez, Alejandra; Chianelli, Russell; Komarneni, Sridhar; Kumar, Swati
2007-10-01
Pigments developed by the Mayan civilization are now known to be significantly `environmentally friendly' a technical skill developed circa 250-900 C.E! [1]. One such pigment called Maya Blue, has been the focus of numerous studies and is believed to be a mixture of palygorskite clay and indigo dye [2,3]. Several derivatives of this pigment have been now developed with intriguing properties. For instance, the dye, textitthioindigo, reacts with the palygorskite clay to exhibit a broad range of colors from red to blue under UV-Vis excitation. The range of colors produced with sepiolite clays is smaller. We present spectroscopic analyses of pigments derived from thioindigo:palygorskite and thioindigo:sepiolite mixtures. ^27Al MAS-NMR spectra of sepiolite mixtures clearly showed changes in the Al coordination upon reacting with thioindigo. However, palygorskite-dye mixtures showed only slight changes in Al coordination. Future work will involve ^27Al MAS-NMR analyses of thioindigo and clays rich in tetrahedrally coordinated Al to confirm the coordination changes in Al in the presence of thioindigo.
Evans Blue Dye: A Revisit of Its Applications in Biomedicine.
Yao, Linpeng; Xue, Xing; Yu, Peipei; Ni, Yicheng; Chen, Feng
2018-01-01
Evans blue (EB) dye has owned a long history as a biological dye and diagnostic agent since its first staining application by Herbert McLean Evans in 1914. Due to its high water solubility and slow excretion, as well as its tight binding to serum albumin, EB has been widely used in biomedicine, including its use in estimating blood volume and vascular permeability, detecting lymph nodes, and localizing the tumor lesions. Recently, a series of EB derivatives have been labeled with PET isotopes and can be used as theranostics with a broad potential due to their improved half-life in the blood and reduced release. Some of EB derivatives have even been used in translational applications in clinics. In addition, a novel necrosis-avid feature of EB has recently been reported in some preclinical animal studies. Given all these interesting and important advances in EB study, a comprehensive revisiting of EB has been made in its biomedical applications in the review.
NASA Astrophysics Data System (ADS)
Keong, Choo Cheng; Sunitha Vivek, Yamini; Salamatinia, Babak; Amini Horri, Bahman
2017-04-01
In this study, zinc oxide (ZnO) was prepared via extrusion-dripping method through an ion exchange mediated process using sodium alginate. The samples were synthesized at 500 °C and 600 °C to study the effect of calcination temperature. The morphology, microstructure and optical activity of the calcined ZnO nanoparticles were analyzed by TGA, FESEM and XRD. It was found that ZnO nanoparticles synthesized at 600 °C was of higher purity with high crystallinity. To enhance the photocatalytic efficiency of zinc oxide, ZnO/NCC films were synthesized at varying ZnO loading fractions of 10 wt%, 15 wt%, 20 wt% and 25 wt% and were evaluated by photodegradation of Methylene blue dye and the highest dye percentage removal is found to be 96% which is obtained at ZnO loadings of 25 wt%. The usage of ion-exchange process has shown promising results in producing ZnO of desirable characteristics.
NASA Astrophysics Data System (ADS)
Kooh, Muhammad Raziq Rahimi; Dahri, Muhammad Khairud; Lim, Linda B. L.; Lim, Lee Hoon; Chan, Chin Mei
2018-05-01
Three plant-based materials, namely water lettuce (WL), tarap peel (TP) and cempedak peel (CP), were used to investigate their potentials as adsorbents using acid blue 25 (AB25) dye as a model for acidic dye. The adsorbents were characterised using Fourier transform infrared spectroscopy, X-ray fluorescence and scanning electron microscope. Batch experiments involving parameters such as pH, temperature, contact time, and initial dye concentration were done to investigate the optimal conditions for the adsorption of AB25 onto the adsorbents. Thermodynamics study showed that the uptake of AB25 by the three adsorbents was feasible and endothermic in nature. Both the Langmuir and Freundlich isotherm models can be used to describe the adsorption process of AB25 onto WL and CP while pseudo-second-order fitted the kinetics data, suggesting that chemisorptions were majorly involved. The use of 0.1 M of NaOH showed the best results in regenerating of the WL, TP and CP's adsorption ability after AB25 treatment.
Lee, Bo-Ram; Joo, Kyung-Il; Choi, Eun Sook; Jahng, Junghoon; Kim, Hyunmin
2017-01-01
We performed dye-enhanced imaging of mouse brain microvessels using spectral focusing coherent anti-Stokes Raman scattering (SF-CARS) microscopy. The resonant signals from C-H stretching in forward CARS usually show high background intensity in tissues, which makes CARS imaging of microvessels difficult. In this study, epi-detection of back-scattered SF-CARS signals showed a negligible background, but the overall intensity of resonant CARS signals was too low to observe the network of brain microvessels. Therefore, Evans blue (EB) dye was used as contrasting agent to enhance the back-scattered SF-CARS signals. Breakdown of brain microvessels by inducing hemorrhage in a mouse was clearly visualized using backward SF-CARS signals, following intravenous injection of EB. The improved visualization of brain microvessels with EB enhanced the sensitivity of SF-CARS, detecting not only the blood vessels themselves but their integrity as well in the brain vasculature. PMID:29049299
NASA Astrophysics Data System (ADS)
Eljiedi, Arwa Alseddig Ahmed; Kamari, Azlan
2017-05-01
Textile effluents are considered as potential sources of water pollution because they contain toxic dyes. In the present study, lala clam shell was used as an alternative low-cost adsorbent for the removal of two harmful dyes, namely methyl orange (MO) and methylene blue (MB) from aqueous solution. Batch adsorption studies were carried out by varying experimental parameters such as solution pH, initial concentration and adsorbent dosage. The optimum pH values for MO and MB removal were pH 2.0 and pH 8.0, respectively. At an initial MO and MB concentration of 20 mg/L, the maximum removal percentage of MO and MB were 18.9 % and 81.3 %, respectively. The adsorption equilibrium data were correlated with both Langmuir and Freundlich isotherm models. The biomass adsorbent was characterised using Field Emission Scanning Electron Microscope (FESEM) and Fourier Transform Infrared Spectrometer (FTIR). Results from this study suggest that lala clam shell, a fishery waste, can be beneficial for water treatment.
Labrou, N E; Eliopoulos, E; Clonis, Y D
1996-01-01
Molecular modelling and kinetic inhibition studies, as well as KD determinations by both difference-spectra and enzyme-inactivation studies, were employed to assess the ability of purpose-designed chimaeric biomimetic dyes (BM dyes) to act as affinity ligands for bovine heart L-malate dehydrogenase (MDH). Each BM dye was composed of two enzyme-recognition moieties. The terminal biomimetic moiety bore a carboxyl or a keto acid structure linked to the triazine ring, thus mimicking the substrate of MDH. The chromophore anthraquinone moiety remained unchanged and the same as that of the parent dye Vilmafix Blue A-R (VBAR), recognizing the nucleotide-binding site of MDH. The monochlorotriazine BM dyes did not inactivate MDH but competitively inhibited inactivation by the parent dichlorotriazine dye VBAR. Dye binding to MDH was accompanied by a characteristic spectral change in the range 500-850 nm. This phenomenon was reversed after titration with increasing amounts of NADH. When compared with VBAR, Cibacron Blue 3GA and two control non-biomimetic anthraquinone dyes, all BM dyes exhibited lower KD values and therefore higher affinity for MDH. The enzyme bound preferably to BM ligands substituted with a biomimetic aromatic moiety bearing an alpha-keto acid group and an amide linkage, rather than a monocarboxyl group. Thus the biomimetic dye bearing p-aminobenzyloxanilic acid as its terminal biomimetic moiety (BM5) exhibited the highest affinity (KD 1.3 microM, which corresponded to a 219-fold decrease over the KD of a control dye). BM5 displayed competitive inhibition with respect to both NADH (Ki 2.7 microM) and oxaloacetate (Ki 9.6 microM). A combination of molecular modelling and experimental studies has led to certain conclusions. The positioning of the dye in the enzyme is primarily achieved by the recognition and positioning of the nucleotide-pseudomimetic anthraquinone moiety. The hydrophobic groups of the dye provide the driving force for positioning of the ketocarboxyl biomimetic moiety. A match between the alternating polar and hydrophobic regions of the enzyme binding site with those of the biomimetic moiety is desirable. The length of the biomimetic moiety should be conserved in order for the keto acid to approach the enzyme active site and form charge-charge interactions. PMID:8615849
Fabrication and characterization of dichroic fine crystals by the reprecipitation method
NASA Astrophysics Data System (ADS)
Iino, Tatsuya; Mori, Shunsuke; Shito, Keiji; Kimura, Ayaka; Morishita, Yoshii; Chiba, Takayuki; Katagiri, Hiroshi; Okada, Shuji; Masuhara, Akito
2018-06-01
Suspended particle devices can rapidly switch from a dark blue state to a clear state by applying AC voltage, but their maximum transmittance has to be improved. In this work, we have targeted dichroic dyes and applied the reprecipitation method to KPD-503, a trisazo dye showing little dichroism in bulk crystals despite the dye molecules having large dichroism. As a result, microcrystals showing large dichroism were obtained. These microcrystals were considered to have a kinetically stable structure and oriented by voltage in a dispersing medium.
MoO3 nanoparticle anchored graphene as bifunctional agent for water purification
NASA Astrophysics Data System (ADS)
Lahan, Homen; Roy, Raju; Namsa, Nima D.; Das, Shyamal K.
2016-10-01
We report here a facile one step hydrothermal method to anchor MoO3 nanoparticles in graphene. The bifunctionality of graphene-MoO3 nanoparticles is demonstrated via dye adsorption and antibacterial activities. The nanocomposite showed excellent adsorption of methylene blue, a cationic dye, from water compared to pristine MoO3 and graphene. However, it showed negligible adsorption of methyl orange, an anionic dye. Again, the graphene-MoO3 nanoparticles exhibited bacteriostatic property against both Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria.
Shaibu, Solomon E.; Adekola, Folahan A.; Adegoke, Halimat I.; Ayanda, Olushola S.
2014-01-01
In this study, bamboo impregnated with nanoscale zero-valent iron (nZVI) and nanoscale manganese (nMn) were prepared by the aqueous phase borohydride reduction method and characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and PIXE analysis. The synthesized nMn-bamboo and nZVI-bamboo composites were subsequently applied to the sorption of methylene blue (MB) dye from aqueous solution. The adsorption of MB dye was investigated under various experimental conditions such as pH, contact time, initial concentration of MB dye and adsorbent dosage. The results showed that the synthesized nZVI-bamboo composite was more effective than nMn-bamboo composite in terms of higher MB dye adsorption capacity of 322.5 mg/g compared to 263.5 mg/g of nMn-bamboo composite. At a concentration of 140 mg/L MB dye, 0.02 g of nZVI-bamboo and nMn-bamboo composites resulted in 79.6% and 78.3% removal, respectively, at 165 rpm, contact time of 120 min and at a solution pH of 7.6. The equilibrium data was best represented by Freundlich isotherm model and the pseudo-second order kinetic model better explained the kinetic data for both nZVI-bamboo and nMn-bamboo composites. PMID:28788688
Dursun, Arzu Y; Tepe, Ozlem; Dursun, Gülbeyi
2013-01-01
Carbonised beet pulp (BPC) produced from agricultural solid waste by-product in sugar industry was used as adsorbent for the removal of Remazol Turquoise Blue-G 133 (RTB-G 133) dye in this study. The kinetics and equilibrium of sorption process were investigated with respect to pH, temperature and initial dye concentration. Adsorption studies with real textile wastewater were also performed. The results showed that adsorption was a strongly pH-dependent process, and optimum pH was determined as 1.0. The maximum dye adsorption capacity was obtained as 47.0 mg g(-1)at the temperature of 25 °C at this pH value. The Freundlich and Langmuir adsorption models were used for describing the adsorption equilibrium data of the dye, and isotherm constants were evaluated depending on sorption temperature. Equilibrium data of RTB-G 133 sorption fitted very well to the Freundlich isotherm. Mass transfer and kinetic models were applied to the experimental data to examine the mechanisms of adsorption and potential rate-controlling steps. It was found that both external mass transfer and intra-particle diffusion played an important role in the adsorption mechanisms of dye and adsorption kinetics followed the pseudo second-order type kinetic model. The thermodynamic analysis indicated that the sorption process was exothermic and spontaneous in nature.
Coupled Soil-Plant Water Dynamics During Drought-Rewetting Transitions
NASA Astrophysics Data System (ADS)
Volkmann, T. H.; Haberer, K.; Gessler, A.; Weiler, M.
2013-12-01
The predicted climate and land-use changes could have dramatic effects on the water balance of the soil-vegetation system, particularly under frequent drought and subsequent rewetting conditions. Yet, estimation of these effects and associated consequences for the structure and functioning of ecosystems, groundwater recharge, drinking water availability, and the water cycle is currently impeded by gaps in our understanding of the spatiotemporal dynamics of soil water in the rooted soil horizons, the dynamics and driving physiological processes of plant water acquisition, and the transpiration from plant leaves under changing environmental conditions. Combining approaches from the disciplines of plant ecophysiology and soil and isotope hydrology, this work aims to fill this gap by quantitatively characterizing the interaction between plant water use - as affected by rooting patterns and ecophysiology of different plant functional groups - and the water balance of variably complex ecosystems with emphasis on drought and rewetting phases. Results from artificial drought and subsequent rewetting in field experiments using isotopically and dye (Brilliant Blue FCF) labeled water conducted on plots of various surface cover (bare soil, grass, beech, oak, vine) established on luvisol on loess in southwestern Germany are presented. Detailed spatiotemporal insights into the coupled short-term (hours to days) dynamics of soil and plant water during the experiments is facilitated by the application of newly developed techniques for high-frequency in-situ monitoring of stable isotope signatures in both pore water and transpired water using commercial laser-based spectrometers in conjunction with plant ecophysiological, soil physical state, and dye staining observations. On the one hand, the spatiotemporal patterns of plant water uptake are assessed and related to morphological and physiological traits driving plant water uptake, functional adaptations of plants to changes of soil water availability, and intra- and interspecies competition for water resources access. On the other hand, the effects of vegetation cover on infiltration, preferential flow paths characteristics, and soil water storage in the rooted soil horizons are investigated. The results of the experiments and the developed methodology will contribute to an improved understanding of ecosystem response and adaptation to drought and short-term changes in environmental conditions.
Short-term in vivo evaluation of novel vital dyes for intraocular surgery.
Haritoglou, Christos; Tadayoni, Ramin; May, Christian A; Gass, Carolin A; Freyer, Wolfgang; Priglinger, Siegfried G; Kampik, Anselm
2006-01-01
To evaluate the staining characteristics and safety of potential new dyes for intraocular surgery in porcine eyes. Four dyes in different solutions (light green SF yellowish [LGSF]: 2%; copper(II) phthalocyanine-tetrasulfonic acid [E68]: 2% and 0.5%; bromophenol blue [BPB]: 2%, 1%, and 0.2%; and Chicago blue [CB]: 2% and 0.5%) were included in this investigation. All dyes were dissolved and diluted using balanced salt solution (BSS plus; Alcon Laboratories, Inc., Fort Worth, TX). After triamcinolone-assisted vitrectomy on 10 porcine eyes in vivo, the dyes were first injected into the air-filled vitreous cavity. After 1 minute, the dye was removed by irrigation with BSS, and the staining effect was graded by two examiners. After vitrectomy, the same dyes and concentrations were injected in the air-filled anterior chamber to stain the lens capsule of the same eye. After surgery, the eyes were enucleated and underwent fixation for light and electron microscopy. The animals were killed by injection of pentobarbital (50 mg/kg). For controls, each BSS plus alone and indocyanine green 0.5% were applied in one eye. On the retinal surface, bright staining of the retinal surface was seen after application of BPB 2% and 1%. The staining effect was less pronounced but still very good using E68 2%, and CB 2% and weak using BPB 0.2%, E68 0.5% and CB 0.5% as well as indocyanine green 0.5%. No staining of the retinal surface but of the vitreous was seen after application of LGSF 2%. The lens capsule stained very well with E68 2%, CB 2% and 0.5%, and BPB 2%, 1%, and 0.2% but not with LGSF. No histologic abnormalities were seen after the application in any eye after dye injection. No dye-related complications occurred during surgery. In this study, we identified three dyes with satisfying staining characteristics in both anterior and posterior segments. Because BPB stained the retinal surface and lens capsule at a low concentration (0.2%) with no signs of toxicity, this dye seems to be the most promising candidate for application in humans.
Administration of novel dyes for intraocular surgery: an in vivo toxicity animal study.
Schuettauf, Frank; Haritoglou, Christos; May, Christian A; Rejdak, Robert; Mankowska, Anna; Freyer, Wolfgang; Eibl, Kirsten; Zrenner, Eberhart; Kampik, Anselm; Thaler, Sebastian
2006-08-01
To investigate the effect of intravitreal injections of new vital dyes on the retina, the retinal pigment epithelium (RPE) and the choroid in an in vivo rat model. Rats were injected intravitreally with four dyes: light-green SF yellowish (LGSF), copper(II)phthalocyanine-tetrasulfonic acid (E68), bromphenol blue (BPB), and Chicago blue (CB) dissolved in physiologic saline solution (PSS) at concentrations of 0.5% and 0.02%. PSS served as the control. Additional animals were treated with single injections of 0.5%, 0.02%, 0.002%, and 0.0002% ICG or 0.002% E68 into one eye. Adverse effects on anterior and posterior segments were evaluated by slit lamp biomicroscopy and ophthalmoscopy. Retinal toxicity was assessed by histology and retinal ganglion cell (RGC) quantification 7 days after dye administration. Eyes treated with 0.5% E68, 0.5% ICG, or 0.5% CB showed discrete staining of both cornea and lens not seen at lower concentrations or with other dyes. Histology revealed dose-dependent reactions after E68 administration. ICG 0.5% induced significant thinning of inner retinal layers compared with PSS. ICG 0.02% caused focal degenerative changes of the outer retina in three of seven eyes, whereas 0.002% and 0.0002% ICG did not. CB led to heterogeneous morphologic alterations. BPB- or LGSF-treated eyes showed normal retinal morphology. ICG at all tested concentrations induced significant RGC loss, as did E68 at 0.5% but not at lower concentrations. BPB or LGSF produced no significantly detectable toxic effects on the retina in vivo. The safety of these new dyes must be established in other models and/or in preclinical studies before the clinical use of any of these dyes.
Nguyen, D.C.; Faulkner, G.E.
1990-08-14
A blue-green laser (450--550 nm) uses a host crystal doped with Tm[sup 3+]. The Tm[sup 3+] is excited through upconversion by a red pumping laser and an IR pumping laser to a state which transitions to a relatively lower energy level through emissions in the blue-green band, e.g., 450.20 nm at 75 K. The exciting laser may be tunable dye lasers or may be solid-state semiconductor laser, e.g., GaAlAs and InGaAlP. 3 figs.
Nguyen, Dinh C.; Faulkner, George E.
1990-01-01
A blue-green laser (450-550 nm) uses a host crystal doped with Tm.sup.3+. The Tm.sup.+ is excited through upconversion by a red pumping laser and an IR pumping laser to a state which transitions to a relatively lower energy level through emissions in the blue-green band, e.g., 450.20 nm at 75 K. The exciting laser may be tunable dye lasers or may be solid-state semiconductor laser, e.g., GaAlAs and InGaAlP.
NASA Astrophysics Data System (ADS)
Debnath, Chandan; Shil, Ashis; Hussain, S. A.; Bhattacharjee, D.
2018-01-01
Present communication reports the effect of amphiphilic matrices and nano-clay platelets on the aggregation properties of a water soluble cationic fluorescent dye Nile Blue Chloride (NBC) in Langmuir-Blodgett (LB) films. In-situ Brewster Angle Microscopic (BAM) studies showed distinct domain structures of complex and hybrid Langmuir monolayer at the air-water interface. UV-vis absorption spectra showed non-fluorescent H-dimeric band in concentrated aqueous solution of NBC and in complex LB film of NBC with stearic acid. By changing various parameters, a great control over H-dimeric states has been achieved in clay incorporated hybrid LB films. These films can act as efficient fluorescence probe.
Evans blue dye-enhanced capillary-resolution photoacoustic microscopy in vivo
NASA Astrophysics Data System (ADS)
Yao, Junjie; Maslov, Konstantin; Hu, Song; Wang, Lihong V.
2009-09-01
Complete and continuous imaging of microvascular networks is crucial for a wide variety of biomedical applications. Photoacoustic tomography can provide high resolution microvascular imaging using hemoglobin within red blood cells (RBCs) as an endogenic contrast agent. However, intermittent RBC flow in capillaries results in discontinuous and fragmentary capillary images. To overcome this problem, we use Evans blue (EB) dye as a contrast agent for in vivo photoacoustic imaging. EB has strong optical absorption and distributes uniformly in the blood stream by chemically binding to albumin. With the help of EB, complete and continuous microvascular networks--especially capillaries--are imaged. The diffusion dynamics of EB leaving the blood stream and the clearance dynamics of the EB-albumin complex are also quantitatively investigated.
Breathing Monitor Using Dye-Doped Optical Fiber
NASA Astrophysics Data System (ADS)
Muto, Shinzo; Fukasawa, Akihiko; Ogawa, Takayuki; Morisawa, Masayuki; Ito, Hiroshi
1990-08-01
A new monitoring system of human breathing using umbelliferon dye-doped plastic fiber has been studied. Under UV light pumping, the fiber which was used as a sensor head generates blue fluorescence depending on human expiration. By converting the light signal to electronic pulses, the counting of breathing and real-time monitoring of abnormal breathing such as a heavy cough or a cloggy sputum have easily been obtained.
Marangoni, Rafael; Ramos, Luiz Pereira; Wypych, Fernando
2009-02-15
Different anionic blue and orange dyes have been immobilized on a zinc hydroxide nitrate (Zn(5)(OH)(8)(NO(3))(2)nH(2)O--Zn-OH-NO(3)) by anion exchange with interlayer and/or outer surface nitrate ions of the layered matrix. Orange G (OG) was totally intercalated, orange II (OII) was partially intercalated, while Niagara blue 3B (NB) and Evans blue (EV) were only adsorbed at the outer surface. Several composite films of poly(vinyl alcohol)--PVA were prepared by casting through the dispersion of the hybrid material (Zn-OH-OG) into a PVA aqueous solution and evaporation of water in a vacuum oven. The obtained composite films were transparent, colored, and capable of absorbing UV radiation. Improved mechanical properties were also obtained in relation to the nonfilled PVA films. These results demonstrate the onset of a new range of potential applications for layered hydroxide salts in the preparation of polymer composite multifunctional materials.
Degradation of immobilized azo dyes by Klebsiella sp. UAP-b5 isolated from maize bioadsorbent.
Elizalde-González, M P; Fuentes-Ramírez, L E; Guevara-Villa, M R G
2009-01-30
The degradation of two immobilized dyes by Klebsiella sp. UAP-b5 was studied. In batch experiments, the azo dyestuffs Basic Blue 41 and Reactive Black 5 were immobilized onto corn cobs by adsorption, and the adsorption process was characterized by a pseudo-second-order kinetic equation. Klebsiella sp. UAP-b5 was previously isolated from the corn waste and shown to decolorize these dyes in liquid systems. Here, we demonstrate anaerobic decolorization and reductive biodegradation of these dyes by means of spectrophotometry, HPLC, and IR spectroscopy of the solid waste and desorption solutions. We also demonstrate adsorption of compounds that resemble known degradation products.
Zheng, Kai; Zhang, Jubo; Wang, Yan; Gao, Longxue; Di, Mingyu; Yuan, Fang; Bao, Wenhui; Yang, Tao; Liang, Daxin
2018-06-01
In order to deal with pollution of organic dyes, magnetic Fe3O4 nanospheres (NPs) with an average diameter of 202 ± 0.5 nm were synthesized by a solvothermal method at 200 °C, and they can efficiently degrade organic dyes (methylene blue (MB), rhodamine B (RhB) and xylenol orange (XO)) aqueous solutions (20 mg/L) within 1 min. Based on this Fenton reagent, Fe3O4 NPs/biomass composite degradation column was made using sawdust as substrate, and it can efficiently degrade organic dyes continually. More importantly, the composite can be regenerated just by an ultrasonic treatment, and its degradation performance almost remains the same.
Measuring the Enzyme Activity of Arabidopsis Deubiquitylating Enzymes.
Kalinowska, Kamila; Nagel, Marie-Kristin; Isono, Erika
2016-01-01
Deubiquitylating enzymes, or DUBs, are important regulators of ubiquitin homeostasis and substrate stability, though the molecular mechanisms of most of the DUBs in plants are not yet understood. As different ubiquitin chain types are implicated in different biological pathways, it is important to analyze the enzyme characteristic for studying a DUB. Quantitative analysis of DUB activity is also important to determine enzyme kinetics and the influence of DUB binding proteins on the enzyme activity. Here, we show methods to analyze DUB activity using immunodetection, Coomassie Brilliant Blue staining, and fluorescence measurement that can be useful for understanding the basic characteristic of DUBs.
Parker Solar Probe Delta IV Heavy LVOS
2018-04-17
A brilliant blue sky serves as a backdrop as the United Launch Alliance Delta IV Heavy first stage is being lifted to the vertical position at the Vertical Integration Facility near Space Launch 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.
Parker Solar Probe Delta IV Heavy LVOS
2018-04-17
A brilliant blue sky serves as a backdrop as the United Launch Alliance Delta IV Heavy first stage is being lifted to the vertical position at the Vertical Integration Facility near Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.
Steinberg, T H; Lauber, W M; Berggren, K; Kemper, C; Yue, S; Patton, W F
2000-02-01
SYPRO Tangerine stain is an environmentally benign alternative to conventional protein stains that does not require solvents such as methanol or acetic acid for effective protein visualization. Instead, proteins can be stained in a wide range of buffers, including phosphate-buffered saline or simply 150 mM NaCl using an easy, one-step procedure that does not require destaining. Stained proteins can be excited by ultraviolet light of about 300 nm or with visible light of about 490 nm. The fluorescence emission maximum of the dye is approximately 640 nm. Noncovalent binding of SYPRO Tangerine dye is mediated by sodium dodecyl sulfate (SDS) and to a lesser extent by hydrophobic amino acid residues in proteins. This is in stark contrast to acidic silver nitrate staining, which interacts predominantly with lysine residues or Coomassie Blue R, which in turn interacts primarily with arginine and lysine residues. The sensitivity of SYPRO Tangerine stain is similar to that of the SYPRO Red and SYPRO Orange stains - about 4-10 ng per protein band. This detection sensitivity is comparable to colloidal Coomassie blue staining and rapid silver staining procedures. Since proteins stained with SYPRO Tangerine dye are not fixed, they can easily be eluted from gels or utilized in zymographic assays, provided that SDS does not inactivate the protein of interest. This is demonstrated with in-gel detection of rabbit liver esterase activity using alpha-naphthyl acetate and Fast Blue BB dye as well as Escherichia coli beta-glucuronidase activity using ELF-97 beta-D-glucuronide. The dye is also suitable for staining proteins in gels prior to their transfer to membranes by electroblotting. Gentle staining conditions are expected to improve protein recovery after electroelution and to reduce the potential for artifactual protein modifications such as the alkylation of lysine and esterification of glutamate residues, which complicate interpretation of peptide fragment profiles generated by mass spectrometry.
21 CFR 73.3121 - Poly(hydroxyethyl methacrylate)-dye copolymers.
Code of Federal Regulations, 2011 CFR
2011-04-01
...-naphthalenedisulfonic acid, 4-amino-5-hydroxy-3,6-bis((4-((2-(sulfooxy)ethyl)sulfonyl)phenyl)azo)-tetrasodium salt] (CAS...)-] (CAS Reg. No. 60958-41-0); (5) Reactive Blue No. 19 [2-anthracene-sulfonic acid, 1-amino-9,10-dihydro-9...); (6) Reactive Blue No. 4 [2-anthracenesulfonic acid, 1-amino-4-(3-((4,6-dichloro-s-triazin-2-yl)amino...
21 CFR 73.3121 - Poly(hydroxyethyl methacrylate)-dye copolymers.
Code of Federal Regulations, 2010 CFR
2010-04-01
...-naphthalenedisulfonic acid, 4-amino-5-hydroxy-3,6-bis((4-((2-(sulfooxy)ethyl)sulfonyl)phenyl)azo)-tetrasodium salt] (CAS...)-] (CAS Reg. No. 60958-41-0); (5) Reactive Blue No. 19 [2-anthracene-sulfonic acid, 1-amino-9,10-dihydro-9...); (6) Reactive Blue No. 4 [2-anthracenesulfonic acid, 1-amino-4-(3-((4,6-dichloro-s-triazin-2-yl)amino...
Long Duration Exposure Facility
1988-06-30
Blue and Oxazine Dyes- Name Absorption -mazimu= Lasing Wavelengths un. un. (solvent) (solvent) Nile Blue A, 635 690 Perchlorate (ethanol) (ethanol...Fluence(/cm Etching 5 Al 3.5 MeV 5x10 6 N NaOH 6 o BI8 PrQtons Ixl0 50 C, 15 hr. 6 C9 (normal 3x10 (2 sided) incidence) 01 (unirradiated) 5 DIS 2.0
Body water compartments during bed rest: Evaluation of analytical methods
NASA Technical Reports Server (NTRS)
Young, H. L.; Juhos, L.; Castle, B. L.; Yusken, J.; Greenleaf, J. E.
1973-01-01
Nine healthy young men were studied to determine the reproducibility and interchangeability of the use of radio-iodinated human serum albumin and Evans Blue dye for estimating plasma volume, sodium bromide for extracellular fluid volume, and deuterium oxide for total body water volume. All subjects were tested in a semibasal condition and allowed to rest for at least 30 min. after arriving at the laboratory. The results indicate that there was uniform distribution of I131 and Evans Blue dye 10 min. after injection and of NaBr and D2O 3 hours after oral ingestion; the buildup of residual tracer did not interfere appreciably with the measurement of either or Evans Blue spaces when they are administered at equal intervals, and the buildup of background tracer after ingestion of NaBr and D2O once per week for three consecutive weeks did not affect the accuracy of the measurement. It was found that I131 and Evans Blue may be used interchangeably for estimating plasma volume; for estimating bromide and D2O spaces, one 3-hour equilibrium blood sample gives results similar to the extrapolation of multiple samples.
NASA Astrophysics Data System (ADS)
Danish, Mohammed; Ahmad, Tanweer; Nadhari, W. N. A. W.; Ahmad, Mehraj; Khanday, Waheed Ahmad; Ziyang, Lou; Pin, Zhou
2018-03-01
This experiment was run to characterize the banana trunk-activated carbon through methylene blue dye adsorption property. The H3PO4 chemical activating agent was used to produce activated carbons from the banana trunk. A small rotatable central composite design of response surface methodology was adopted to prepare chemically (H3PO4) activated carbon from banana trunk. Three operating variables such as activation time (50-120 min), activation temperature (450-850 °C), and activating agent concentration (1.5-7.0 mol/L) play a significant role in the adsorption capacities ( q) of activated carbons against methylene blue dye. The results implied that the maximum adsorption capacity of fixed dosage (4.0 g/L) banana trunk-activated carbon was achieved at the activation time of 51 min, the activation temperature of 774 °C, and H3PO4 concentration of 5.09 mol/L. At optimum conditions of preparation, the obtained banana trunk-activated carbon has adsorption capacity 64.66 mg/g against methylene blue. Among the prepared activated carbons run number 3 (prepared with central values of the operating variables) was characterized through Fourier transform infrared spectroscopy, field emission scanning microscopy, and powder X-ray diffraction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taufik, Ardiansyah; Saleh, Rosari, E-mail: rosari.saleh@gmail.com, E-mail: rosari.saleh@ui.ac.id; Integrated Laboratory of Energy and Environment, Fakultas MIPA-Universitas Indonesia, 16424 Depok
2016-04-19
The Fe{sub 3}O{sub 4}/ZnO/CuO nanocatalyst with various CuO loading were synthesized by sol-gel method and were characterized by powder X-ray diffraction, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, UV-Vis spectroscopy, and vibrating sample magnetometry. The findings demonstrate that all samples exhibit ferromagnetic behavior at room temperatureand containa well-crystalline ternary oxide nanocatalyst. Methylene blue was taken as the model of organic dye to evaluate its photocatalytic and sonocatalytic degradation in the presence of Fe{sub 3}O{sub 4}/ZnO/CuO nanocatalyst. The observed degradation activity indicate that the order of degradation of methylene blue issonocatalysis> photocatalysis. Fe{sub 3}O{sub 4}/ZnO/CuO nanocatalyst with the lowest CuOmore » loading exhibit the highest rate of degradation of methylene blue during the sono- and photocatalytic processes. The experimental data shows that holes are the predominant oxidative species involved in the sono- and photodegradation of methylene blue.« less
NASA Astrophysics Data System (ADS)
Casadio, F.; Mauck, K.; Chefitz, M.; Freeman, R.
2010-09-01
Fourier Transform (FT)-Raman spectroscopy was used for the non-invasive, direct identification of colorants used to dye historical printed papers, overcoming obstacles such as low concentration of the dye, faded colors and fluorescence interference of the aged paper substrate. Based on a newly created FT-Raman reference database of 20 widely used dyes in the 19th century paper industry, the detectability of these dyes on aged biomaterials was determined by studying dyed paper samples from contemporary dye manuals, and identifying diagnostic peaks detectable on those substrates. Lastly, the method was applied to analyze the colorants used to dye the papers of a group of prints illustrated by the influential Mexico City artist José Guadalupe Posada, active 1876-1913. Unambiguous identification of the synthetic organic colorants Malachite Green (a triarylmethane dye), Orange II and Metanil Yellow (two acid monoazo dyes), Cotton Scarlet (an acid diazo dye), Phloxine (a xanthene dye) and Victoria Blue (a triarylmethane dye) in several of Posada’s prints challenged previous art-historical assumptions that these artworks were colored with natural dyes. The acquired knowledge has important conservation implications given that aniline dyes are sensitive to light and to aqueous treatments otherwise commonly carried out on works of art on paper.
Bichromophoric dyes for wavelength shifting of dye-protein fluoromodules.
Pham, Ha H; Szent-Gyorgyi, Christopher; Brotherton, Wendy L; Schmidt, Brigitte F; Zanotti, Kimberly J; Waggoner, Alan S; Armitage, Bruce A
2015-03-28
Dye-protein fluoromodules consist of fluorogenic dyes and single chain antibody fragments that form brightly fluorescent noncovalent complexes. This report describes two new bichromophoric dyes that extend the range of wavelengths of excitation or emission of existing fluoromodules. In one case, a fluorogenic thiazole orange (TO) was attached to an energy acceptor dye, Cy5. Upon binding to a protein that recognizes TO, red emission due to efficient energy transfer from TO to Cy5 replaces the green emission observed for monochromophoric TO bound to the same protein. Separately, TO was attached to a coumarin that serves as an energy donor. The same green emission is observed for coumarin-TO and TO bound to a protein, but efficient energy transfer allows violet excitation of coumarin-TO, versus longer wavelength, blue excitation of monochromophoric TO. Both bichromophores exhibit low nanomolar KD values for their respective proteins, >95% energy transfer efficiency and high fluorescence quantum yields.
Bichromophoric Dyes for Wavelength Shifting of Dye-Protein Fluoromodules
Pham, Ha H.; Szent-Gyorgyi, Christopher; Brotherton, Wendy L.; Schmidt, Brigitte F.; Zanotti, Kimberly J.; Waggoner, Alan S.
2015-01-01
Dye-protein fluoromodules consist of fluorogenic dyes and single chain antibody fragments that form brightly fluorescent noncovalent complexes. This report describes two new bichromophoric dyes that extend the range of wavelengths of excitation or emission of existing fluoromodules. In one case, a fluorogenic thiazole orange (TO) was attached to an energy acceptor dye, Cy5. Upon binding to a protein that recognizes TO, red emission due to efficient energy transfer from TO to Cy5 replaces the green emission observed for monochromophoric TO bound to the same protein. Separately, TO was attached to a coumarin that serves as an energy donor. The same green emission is observed for coumarin-TO and TO bound to a protein, but efficient energy transfer allows violet excitation of coumarin-TO, versus longer wavelength, blue excitation of monochromophoric TO. Both bichromophores exhibit low nanomolar KD values for their respective proteins, >95% energy transfer efficiency and high fluorescence quantum yields. PMID:25679477
Usage of FTIR-ATR as Non-Destructive Analysis of Selected Toxic Dyes
NASA Astrophysics Data System (ADS)
Bartošová, Alica; Blinová, Lenka; Sirotiak, Maroš; Michalíková, Anna
2017-06-01
The degradation of the environment which is due to the discharge of polluting wastewater from industrial sources poses a real problem in several countries. Textile industries use large volumes of water in their operations, discharging thus large volume of wastewater into the environment, most of which is untreated. The wastewater contains a variety of chemicals from various stages of process operations, including desizing, scouring, bleaching and dyeing. The main purpose of this paper is to introduce Infrared Spectrometry with Fourier transformation as a non-destructive method for study, identifation and rapid determination of selected representatives of cationic (Methylene Blue), azo (Congo Red, Eriochrome Black T) and nitroso (Naphthol Green B) dyes. In conjunction with the ATR technique, FTIR offers a reliable detection method of dyes without extraction by other dangerous substances. Spectral interpretation of dye spectra revealed valuable information about the identification and characterization of each group of dyes.
Aoyama, Toru; Fujikawa, Hirohito; Cho, Haruhiko; Ogata, Takashi; Shirai, Junya; Hayashi, Tsutomu; Rino, Yasushi; Masuda, Munetaka; Oba, Mari S; Morita, Satoshi; Yoshikawa, Takaki
2015-02-01
Harvesting lymph nodes (LNs) after gastrectomy is essential for accurate staging. This trial evaluated the efficiency and quality of a conventional method and a methylene blue-assisted method in a randomized manner. The key eligibility criteria were as follows: (i) histologically proven adenocarcinoma of the stomach; (ii) clinical stage I-III; (iii) R0 resection planned by gastrectomy with D1+ or D2 lymphadenectomy. The primary endpoint was the ratio of the pathologic number of harvested LNs per time (minutes) as an efficacy measure. The secondary endpoint was the number of harvested LNs, as a quality measure. Between August 2012 and December 2012, 60 patients were assigned to undergo treatment using the conventional method (n=29) and the methylene blue dye method (n=31). The baseline demographics were mostly well balanced between the 2 groups. The number of harvested LNs (mean±SD) was 33.6±11.9 in the conventional arm and 43.4±13.9 in the methylene blue arm (P=0.005). The ratio of the number of the harvested LNs per time was 1.12±0.46 LNs/min in the conventional arm and 1.49±0.59 LNs/min in the methylene blue arm (P=0.010). In the subgroup analyses, the quality and efficacy were both superior for the methylene blue dye method compared with the conventional method. The methylene blue technique is recommended for harvesting LNs during gastric cancer surgery on the basis of both the quality and efficacy.
... than normal with certain dyes. The extra staining is due to too many immature red blood cells (RBCs) called reticulocytes. These cells have a blue-colored center. Increased reticulocytes are the result of ...
Fluorescent carbon nanoparticles from Citrus sinensis as efficient sorbents for pollutant dyes.
Adedokun, Oluwaseun; Roy, Anurag; Awodugba, Ayodeji O; Devi, P Sujatha
2017-02-01
Here, we report a simple, green and economic process for the synthesis of highly fluorescent carbon nanoparticles (CPs) through low-temperature carbonization of a fruit waste, Citrus sinensis peel. This approach allows the large-scale production of aqueous CPs dispersions without any additives and post-treatment processes. The as-prepared CPs were of small particle size, exhibited bright blue fluorescence under UV irradiation (λ max = 365 nm) with excellent colloidal stability in water. The chemical composition, structure and morphology of the as-prepared CPs were analyzed using various spectroscopic techniques such as X-ray diffraction, transmission electron microscopy and raman spectroscopy. The formed CPs were turbostratic in nature, with a large number of functional groups on the surface. We explored the adsorption characteristics of the formed CPs for wastewater treatment. Because of the negative surface of the CPs, as evident from the zeta value, it is possible to use them for selective adsorption of the cationic dye methylene blue from a mixture of dyes. The equilibrium adsorption isotherm revealed that the Langmuir model better describes the adsorption process than the Freundlich model. As-prepared CPs rapidly adsorbed ~84% of the methylene blue within 1 min and can be regenerated and used repeatedly. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Comparison of Photocatalytic Performance of Different Types of Graphene in Fe3O4/SnO2 Composites
NASA Astrophysics Data System (ADS)
Paramarta, Valentinus; Taufik, Ardiansyah; Saleh, Rosari
2017-03-01
We have reported the role of annealing temperature Fe3O4/SnO2 nanocomposites as a photocatalyst for remove methylene blue (MB) dye from aqueous solution. However, how to enhanced the degradation performance of Fe3O4/SnO2 nanocomposites is important to its photocatalytic application. Therefore, in this work Fe3O4/SnO2 nanocomposites was combined with two different types of graphene materials (NGP and grahene) to improve the photocatalytic performance for remove methylene blue (MB) dye. Fe3O4/SnO2/NGP and Fe3O4/SnO2/graphene have been successfully synthesized by co-precipitation method. The influence of two types graphene on Fe3O4/SnO2 nanocomposites properties were systematically investigated by means of X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and Thermal gravimetric analysis (TGA). Degradation of methylene Blue (MB) in aqueous solution was studied in detail under photocatalytic process. Effect of catalyst dosage (0.1-0.4 g/L) and scavengers on dye degradation were carried out to check the efficiency of photocatalyst. The results indicated Fe3O4/SnO2/graphene displayed higher photocatalytic activity than other catalyst. The reusability tests have also been done to ensure the stability of the used photocatalyst.
Fixed-bed adsorption study of methylene blue onto pyrolytic tire char
NASA Astrophysics Data System (ADS)
Makrigianni, Vassiliki; Giannakas, Aris; Papadaki, Maria; Albanis, Triantafyllos; Konstantinou, Ioannis
2016-04-01
In this work, the adsorption efficiency of acid treated pyrolytic tire char to cationic methylene blue (MB) dye adsorption from aqueous solutions was investigated by fixed-bed adsorption column experiments. The effects of the initial dye concentration (10 - 40 mg L-1) and feed flow rate (50 - 150 mL min -1) with a fixed bed height (15 cm) were studied in order to determine the breakthrough characteristics of the adsorption system. The Adams-Bohart, Yoon-Nelson and Thomas model were applied to the adsorption of MB onto char at different operational conditions to predict the breakthrough curves and to determine the characteristic parameters of the column. The results showed that the maximum adsorbed quantities decreased with increasing flow rate and increased with increasing initial MB concentration. Breakthrough time and exhaustion time increased with decreasing inlet dye concentration and flow rate. In contrast with Adams-Bohart model, Yoon-Nelson model followed by Thomas model were found more suitable to describe the fixed-bed adsorption of methylene blue by char. The correlation coefficient values R2 for both models at different operating conditions are higher than 0.9 and the low average relative error values provided very good fittings of experimental data at different operating conditions. Higher adsorption capacity of 3.85 mg g -1 was obtained at 15 cm of adsorbent bed height, flow rate of 100 mL min -1and initial MB concentration of 40 mg L-1. Although that activated carbons exhibited higher adsorption capacities in the literature, acid-treated pyrolytic tire char was found to be considerably efficient adsorbent for the removal of MB dye column taking into account the advantages of the simpler production process compared to activated carbons, as well as, the availability of waste tire feedstock and concurrent waste tire management.
Zhang, Yaobin; Liu, Yiwen; Jing, Yanwen; Zhao, Zhiqiang; Quan, Xie
2012-01-01
Zero valent iron (ZVI) is expected to help create an enhanced anaerobic environment that might improve the performance of anaerobic treatment. Based on this idea, a novel ZVI packed upflow anaerobic sludge blanket (ZVI-UASB) reactor was developed to treat azo dye wastewater with variable influent quality. The results showed that the reactor was less influenced by increases of Reactive Brilliant Red X-3B concentration from 50 to 1000 mg/L and chemical oxygen demand (COD) from 1000 to 7000 mg/L in the feed than a reference UASB reactor without the ZVI. The ZVI decreased oxidation-reduction potential in the reactor by about 80 mV. Iron ion dissolution from the ZVI could buffer acidity in the reactor, the amount of which was related to the COD concentration. Fluorescence in situ hybridization test showed the abundance of methanogens in the sludge of the ZVI-UASB reactor was significantly greater than that of the reference one. Denaturing gradient gel electrophoresis showed that the ZVI increased the diversity of microbial strains responsible for high efficiency.
Optimization of Evans blue quantitation in limited rat tissue samples
Wang, Hwai-Lee; Lai, Ted Weita
2014-01-01
Evans blue dye (EBD) is an inert tracer that measures plasma volume in human subjects and vascular permeability in animal models. Quantitation of EBD can be difficult when dye concentration in the sample is limited, such as when extravasated dye is measured in the blood-brain barrier (BBB) intact brain. The procedure described here used a very small volume (30 µl) per sample replicate, which enabled high-throughput measurements of the EBD concentration based on a standard 96-well plate reader. First, ethanol ensured a consistent optic path length in each well and substantially enhanced the sensitivity of EBD fluorescence spectroscopy. Second, trichloroacetic acid (TCA) removed false-positive EBD measurements as a result of biological solutes and partially extracted EBD into the supernatant. Moreover, a 1:2 volume ratio of 50% TCA ([TCA final] = 33.3%) optimally extracted EBD from the rat plasma protein-EBD complex in vitro and in vivo, and 1:2 and 1:3 weight-volume ratios of 50% TCA optimally extracted extravasated EBD from the rat brain and liver, respectively, in vivo. This procedure is particularly useful in the detection of EBD extravasation into the BBB-intact brain, but it can also be applied to detect dye extravasation into tissues where vascular permeability is less limiting. PMID:25300427
Khani, Rouhollah; Sobhani, Sara; Beyki, Mostafa Hossein; Miri, Simin
2018-04-15
This research focuses on removing Direct Blue 71 (DB 71) from aqueous solution in an efficient and very fast route by ionic liquid mediated γ-Fe 2 O 3 magnetic ionomer. 2-hydroxyethylammonium sulphonate immobilized on γ-Fe 2 O 3 nanoparticles (γ-Fe 2 O 3 -2-HEAS) was used for this purpose. The influence of shaking time, medium pH, the concentration of sorbent and NaNO 3 on removal was evaluated to greatly influence removal extent. The optimal removal conditions were determined by response surface methodology based on the four-variable central composite design to obtain maximum removal efficiency and determine the significance and interaction effect of the variables on the removal of target triazo dye. The results have shown that an amount of 98.2% as % removal under the optimum conditions. The adsorption kinetics and isotherms were well fitted to a pseudo-second order model and Freundlich model, respectively. Based on these models, the maximum dye adsorption capacity (Q m ) of 47.60mgg -1 was obtained. Finally, the proposed nano-adsorbent was applied satisfactorily for removal of target triazo dye from different water samples. Copyright © 2017 Elsevier Inc. All rights reserved.