Science.gov

Sample records for brilliant hard x-rays

  1. A practical method to generate brilliant hard x-rays with a tabletop electron storage ring

    SciTech Connect

    Yamada, H.; Amano, D.; Miyade, H.

    1995-12-31

    With electron storage rings not only synchrotron radiation(SR) but also bremsstrahlung(BS) from a thin target placed in the electron orbit are mechanisms to generate brilliant x-ray beams. The calculated brilliance of BS with a 50 MeV storage ring, which is nearly 10{sup 13} photons/s, mrad{sup 2}, mm{sup 2}, 0.1% band width for 100 keV x-rays, exceeds that of SR from a 1 GeV storage ring. This photon energy spectrum is almost constant and extend up to the electron energy. The reasons for this high brilliance with this new radiation scheme is that the electron beams penetrating the thin target are utilized repeatedly, the narrow angular divergence of BS is determined by the kinematics of relativistic electron as same as SR, and the x-ray source size of the order of 1 {mu}m is determined by the size of thin target instead of electron beam sizes. Continuous injection of electron beam to the storage ring at full energy is the way to keep high and constant beam current. Peak current and repetition rate determine x-ray out put power. Note that the power of x-ray beam is also provided from a RF cavity of the storage ring. In this paper we will report some experimental results and discuss further application on a coherent bremsstrahlung generated from a set of stacked foils placed in the electron orbit of the ring. Resulting from these investigations the photon storage ring which is based on a 50 MeV exact circular electron storage ring could provide wide range of coherent and incoherent radiations from far infrared to hard x-ray in a practical amount of radiation power.

  2. Hard X-Ray Emission of X-Ray Bursters

    NASA Technical Reports Server (NTRS)

    Kaaret, P.

    1999-01-01

    The primary goal of this proposal was to perform an accurate measurement of the broadband x-ray spectrum of a neutron-star low-mass x-ray binary found in a hard x-ray state. This goal was accomplished using data obtained under another proposal, which has provided exciting new information on the hard x-ray emission of neutron-star low-mass x-ray binaries. In "BeppoSAX Observations of the Atoll X-Ray Binary 4U0614+091", we present our analysis of the spectrum of 4U0614+091 over the energy band from 0.3-150 keV. Our data confirm the presence of a hard x-ray tail that can be modeled as thermal Comptonization of low-energy photons on electrons having a very high temperature, greater than 220 keV, or as a non-thermal powerlaw. Such a very hard x-ray spectrum has not been previously seen from neutron-star low-mass x-ray binaries. We also detected a spectral feature that can be interpreted as reprocessing, via Compton reflection, of the direct emission by an optically-thick disk and found a correlation between the photon index of the power-law tail and the fraction of radiation reflected which is similar to the correlation found for black hole candidate x-ray binaries and Seyfert galaxies. A secondary goal was to measure the timing properties of the x-ray emission from neutronstar low-mass x-ray binaries in their low/hard states.

  3. Hard X-ray astrophysics

    NASA Technical Reports Server (NTRS)

    Rothschild, R. E.

    1981-01-01

    Past hard X-ray and lower energy satellite instruments are reviewed and it is shown that observation above 20 keV and up to hundreds of keV can provide much valuable information on the astrophysics of cosmic sources. To calculate possible sensitivities of future arrays, the efficiencies of a one-atmosphere inch gas counter (the HEAO-1 A-2 xenon filled HED3) and a 3 mm phoswich scintillator (the HEAO-1 A-4 Na1 LED1) were compared. Above 15 keV, the scintillator was more efficient. In a similar comparison, the sensitivity of germanium detectors did not differ much from that of the scintillators, except at high energies where the sensitivity would remain flat and not rise with loss of efficiency. Questions to be addressed concerning the physics of active galaxies and the diffuse radiation background, black holes, radio pulsars, X-ray pulsars, and galactic clusters are examined.

  4. Hard X-ray imaging from Explorer

    NASA Technical Reports Server (NTRS)

    Grindlay, J. E.; Murray, S. S.

    1981-01-01

    Coded aperture X-ray detectors were applied to obtain large increases in sensitivity as well as angular resolution. A hard X-ray coded aperture detector concept is described which enables very high sensitivity studies persistent hard X-ray sources and gamma ray bursts. Coded aperture imaging is employed so that approx. 2 min source locations can be derived within a 3 deg field of view. Gamma bursts were located initially to within approx. 2 deg and X-ray/hard X-ray spectra and timing, as well as precise locations, derived for possible burst afterglow emission. It is suggested that hard X-ray imaging should be conducted from an Explorer mission where long exposure times are possible.

  5. Hard X-ray delays

    NASA Technical Reports Server (NTRS)

    Schwartz, Richard A.

    1986-01-01

    High time resolution hard X-ray rates with good counting statistics over 5 energy intervals were obtained using a large area balloon-borne scintillation detector during the 27 June 1980 solar flare. The impulsive phase of the flare was comprised of a series of major bursts of several to several tens of seconds long. Superimposed on these longer bursts are numerous smaller approximately 0.5 to 1.0 second spikes. The time profiles for different energies were cross-correlated for the major bursts. The rapid burst decay rates and the simultaneous peaks below 120 keV both indicate a rapid electron energy loss process. Thus, the flux profiles reflect the electron acceleration/injection process. The fast rate data was obtained by a burst memory in 8 and 32 msec resolution over the entire main impulsive phase. These rates will be cross-correlated to look for short time delays and to find rapid fluctuations. However, a cursory examination shows that almost all fluctuations, down to the 5% level, were resolved with 256 msec bins.

  6. Hard x ray highlights of AR 5395

    NASA Technical Reports Server (NTRS)

    Schwartz, R. A.; Dennis, Brian R.

    1989-01-01

    Active Region 5395 produced an exceptional series of hard x ray bursts notable for their frequency, intensity, and impulsivity. Over the two weeks from March 6 to 19, 447 hard x ray flares were observed by the Hard X Ray Burst Spectrometer on Solar Maximum Mission (HXRBS/SMM), a rate of approx. 35 per day which exceeded the previous high by more than 50 percent. During one 5 day stretch, more than 250 flares were detected, also a new high. The three largest GOES X-flares were observed by HXRBS and had hard x ray rates over 100,000 s(exp -1) compared with only ten flares above 100,000(exp -1) during the previous nine years of the mission. An ongoing effort for the HXRBS group has been the correlated analysis of hard x ray data with flare data at other wavelengths with the most recent emphasis on those measurements with spatial information. During a series of bursts from AR 5395 at 1644 to 1648 UT on 12 March 1989, simultaneous observations were made by HXRBS and UVSP (Ultra Violet Spectrometer Polarimeter) on SMM, the two-element Owens Valley Radio Observatory (OVRO) interferometric array, and R. Canfield's H-alpha Echelle spectrograph at the National Solar Observatory at Sacramento Peak. The data show strong correlations in the hard x ray, microwave, and UV lightcurves. This event will be the subject of a combined analysis.

  7. Solar hard X-ray bursts

    NASA Astrophysics Data System (ADS)

    Dennis, B. R.

    1985-10-01

    The major results from the Solar Maximum Mission (SMM) are presented as they relate to our understanding of the energy release and particle transportation processes that lead to the high-energy X-ray aspects of solar flares. Evidence is reviewed for a 152-158 day periodicity in various aspects of solar activity, including the rate of occurence of hard X-ray and gamma-ray flares. The statistical properties of over 7000 hard X-ray flares detected with the Hard X-Ray Burst Spectrometer are presented, including the spectrum of peak rates and the distribution of the photon number spectrum. A flare classification scheme introduced by Tanaka is used, and characteristics of the different types (types A, B, and C) are noted. A model based on the association of type C flares and coronal mass ejections is presented to explain many of the characteristics of these gradual flares.

  8. Hard X ray imaging telescope

    NASA Astrophysics Data System (ADS)

    Lubin, P.

    1990-03-01

    This final report covers the work carried out under the LLNL Contract Number B063682, Subcontractor Regents University of California at Santa Barbara. The research carried out under this contract involves the construction of a telemetry, target acquisition and guidance system, and of a light-weight gondola to house an x ray spectrometer. This work is part of the design and construction of the balloon experiment, GRATIS, which will perform the first arcminute imaging of cosmic sources in the 30 to 200 keV energy band. Observations conducted with GRATIS are expected to provide data relevant to several key problems in high energy astrophysics including the physical processes responsible for the high energy tail observed in the soft gamma-ray spectra of clusters of galaxies and the origin of both the diffuse and point source components of the gamma-ray emission from the Galactic Center. This report discusses the scientific motivations for this experiment, presents several aspects of the design and construction of the hardware components, gives an overview of the stabilized platform, and demonstrates the expected performance and sensitivity.

  9. Hard x-ray photoelectron spectroscopy and x-ray standing waves

    NASA Astrophysics Data System (ADS)

    Lee, Tien-Lin

    2006-03-01

    Using the brilliant undulator radiation available from the third generation synchrotron sources, hard x-ray photoelectron spectroscopy (HAXPES) has become an emerging field in the recent years. With the excitation energy used in HAXPES one can benefits from the large mean free path of fast electrons (˜ 5 nm for electrons of 6 keV kinetic energy) in probing the bulk electronic properties of materials. For high-resolution studies, photon energy bandwidth narrower than 100 meV is also readily achievable in the hard x-ray range with crystal monochromators. In addition, working with hard x-ray offers the possibility for combining photoelectron spectroscopy with x-ray standing wave (XSW) method. With the high spatial resolution from XSWs, this unique combination can provide site-specific, chemical and electronic information for studying surfaces, buried interfaces, thin films and bulk crystals. In this talk, I will briefly mention some HAXPES experiments detecting electrons up to 14.5 keV [1,2]. I will then sketch the principle of combining XSWs with HAXPES and present results from some recent applications using this combination: (1) chemical state-specific surface structure determination with core-level photoemission, (2) site-specific valence x-ray photoelectron spectroscopy and (3) XSW imaging with core-level photoemission. [1] S. Thiess, C. Kunz, B.C.C. Cowie, T.-L. Lee, M. Renier, and J. Zegenhagen. Solid State Communications 132, 589 (2004) [2] C. Kunz, S. Thiess, B.C.C. Cowie, T.-L. Lee, and J. Zegenhagen, Nuclear Instruments and Methods A 547, 73 (2005).

  10. Hard X-ray Laue monochromator

    NASA Astrophysics Data System (ADS)

    Kocharyan, V. R.; Gogolev, A. S.; Kiziridi, A. A.; Batranin, A. V.; Muradyan, T. R.

    2016-06-01

    Experimental studies of X-ray diffraction from reflecting atomic planes (10¯11) of X-cut quartz single crystal in Laue geometry influenced by the temperature gradient were carried out. It is shown that by using the temperature gradient it is possible to reflect a hard X- ray beam with photon energy near the 100 keV with high efficiency. It has been experimentally proved that the intensity of the reflected beam can be increased by more than order depending on the value of the temperature gradient.

  11. Hard X-Ray Radio Galaxies

    NASA Astrophysics Data System (ADS)

    Panessa, Francesca; Bassani, L.; Venturi, T.; Molina, M.; Dallacasa, D.; Ubertini, P.; Bazzano, A.; Malizia, A.; La Franca, F.; Landi, R.

    2016-10-01

    In order to investigate the role of absorption in AGN with jets, we have studied the column density distribution of a hard X-ray selected sample of radio galaxies, derived from the INTEGRAL/IBIS and Swift/BAT AGN catalogues. They represent 7-10% of the total AGN population and are characterized by high 20-100 keV luminosities and high Eddington ratios. The radio morphology is typical of FRII galaxies and all of them have an optical classification and a measure of the column density. The observed fraction of absorbed AGN is around 40% among the total sample, and 75% among type 2 AGN. The observed fraction of Compton thick AGN is 2-3%. In this talk we will discuss the obscuration characteristics of radio galaxies compared to non-radio galaxies selected at hard X-rays.

  12. Towards brilliant, compact x-ray sources: a new x-ray photonic device

    NASA Astrophysics Data System (ADS)

    Scherer, Brian; Mandal, Sudeep; Salisbury, Joshua; Edic, Peter; Hopkins, Forrest; Lee, Susanne M.

    2017-05-01

    General Electric has designed an innovative x-ray photonic device that concentrates a polychromatic beam of diverging x-rays into a less divergent, parallel, or focused x-ray beam. The device consists of multiple, thin film multilayer stacks. X-rays incident on a given multilayer stack propagate within a high refractive index transmission layer while undergoing multiple total internal reflections from a novel, engineered multilayer containing materials of lower refractive index. Development of this device could lead to order-of-magnitude flux density increases, over a large broadband energy range from below 20 keV to above 300 keV. In this paper, we give an overview of the device and present GE's progress towards fabricating prototype devices.

  13. Hard X Rays from Supernova 1993J

    DTIC Science & Technology

    1994-01-01

    extensively observed at many wavelengths and has yielded a wealth of new information about core - collapse supernovae (Wheeler & Filipenko 1994, and references...modelled as the result of a core collapse and subsequent explosion in a red supergiant that had lost almost all of its hydrogen-rich envelope (Nomoto...HARD X RAYS FROM SUPERNOVA 1993J M.D. Leising1, J.D. Kurfess2, D.D. Clayton1, D.A. Grabelsky3, J.E. Grove2, W.N. Johnson2, G.V. Jung4, R.L. Kinzer2

  14. The Hard X-Ray Telescope Mission

    NASA Astrophysics Data System (ADS)

    Gorenstein, P.; Joensen, K.; Romaine, S.; Worrall, D.; Cameron, R.; Weisskopf, M.; Ramsey, B.; Bilbro, J.; Kroeger, R.; Gehrels, N.; Parsons, A.; Smither, R.; Christensen, F.; Citterio, O.; von Ballmoos, P.

    1995-12-01

    The Hard X-Ray Telescope (HXT) mission concept contains focusing telescopes that collectively, observe simultaneously from the ultraviolet to 100 keV and in several narrow bands extending to 1 MeV. In pointed observations HXT is expected to have an order of magnitude more sensitivity and much finer angular resolution in the 10 to 100 keV band than all current and currently planned future missions, and considerably more sensitivity for detecting narrow lines in the 100 keV to 1 MeV regime. The detectors are small, cooled arrays of relatively low mass with very good energy resolution and some polarization sensitivity. HXT contains two types of hard X-ray telescopes. One type, called the modular modular telescope (MMT) utilizes a novel type of multilayer coating and small graze angles to extend the regime of focusing to 100keV. There is a two stage imaging detector at each focus, a CCD for X-rays < 10 keV followed down stream by either a germanium strip array or cadmium zinc telluride array for 10-100 keV X-rays. The other type of telescope, called the Laue Crystal Telescope (LCT) is a single adjustable array of several hundred Ge crystals that focus by Laue scattering. Individual picomotors adjust the angle of each crystal to diffract photons of a fixed energy to the same point along the optic axis where they converge upon a movable array of cooled germanium detectors. The LCT will have high sensitivity for detecting narrow X-ray lines of known energy such as those expected from Type 1 supernova. The UV monitor is a three telescope system that provides coverage in the ultraviolet band for study of time correlated changes across the broad electromagnetic spectrum of an AGN such as are expected in ``reverberation'' models. A WWW page will be created as a public bulletin board. This work is supported by NASA grant NAG8-1194

  15. Hard x ray/microwave spectroscopy of solar flares

    NASA Technical Reports Server (NTRS)

    Gary, Dale E.

    1992-01-01

    The joint study of hard x ray and microwave observations of solar flares is extremely important because the two complementary ways of viewing the accelerated electrons yield information that cannot be obtained using hard x rays or microwaves alone. The microwaves can provide spatial information lacking in the hard x rays, and the x ray data can give information on the energy distribution of electrons that remove ambiguities in the radio data. A prerequisite for combining the two data-sets, however, is to first understand which range of microwave frequencies correlate best with the hard x rays. This SMM Guest Investigator grant enabled us to combine multi-frequency OVRO data with calibrated hard x ray data to shed light on the relationship between the two emissions. In particular, the questions of which microwave frequencies correspond to which hard x ray energies, and what is the corresponding energy of the electrons that produce both types of emission are investigated.

  16. Hard X-Ray Footprint Source Sized

    NASA Technical Reports Server (NTRS)

    Dennis, Brian R.; Kontar, E. P.

    2010-01-01

    RHESSI has detected compact hard (25 - 100 keV) X-ray sources that are <4 arcseconds (FWHM) in extent for certain flares (Dennis and Pernak (2009). These sources are believed to be at magnetic loop footpoints that are known from observations at other wavelengths to be very small. Flare ribbons seen in the W with TRACE, for example, are approx. 1 arcsecond in width, and white light flares show structure at the approx. 1 arcsecond level. However, Kontar and Jeffrey (2010) have shown that the measured extent should be >6 arcseconds, even if the X-ray emitting thick-target source is point-like. This is because of the strong albedo contribution in the measured energy range for a source located at the expected altitude of 1 Mm near the top of the chromosphere. This discrepancy between observations and model predictions may indicate that the source altitude is significantly lower than assumed or that the RHESSI image reconstruction procedures are not sensitive to the more diffuse albedo patch in the presence of a strong compact source. Results will be presented exploring the latter possibility using the Pixon image reconstruction procedure and other methods based on visibilities.

  17. Blazars in Hard X-rays

    NASA Astrophysics Data System (ADS)

    Ghisellini, Gabriele

    2009-05-01

    Although blazars are thought to emit most of their luminosity in the γ-ray band, there are subclasses of them very prominent in hard X-rays. These are the best candidates to be studied by Simbol-X. They are at the extremes of the blazar sequence, having very small or very high jet powers. The former are the class of TeV emitting BL Lacs, whose synchrotron emission often peaks at tens of keV or more. The latter are the blazars with the most powerful jets, have high black hole masses accreting at high (i.e. close to Eddington) rates. These sources are predicted to have their high energy peak even below the MeV band, and therefore are very promising candidates to be studied with Simbol-X.

  18. Shielding a streak camera from hard x rays

    NASA Astrophysics Data System (ADS)

    Schneider, M. B.; Sorce, C.; Loughman, K.; Emig, J.; Bruns, C.; Back, C.; Bell, P. M.; Compton, S.; Hargrove, D.; Holder, J. P.; Landen, O. L.; Perry, T. S.; Shepherd, R.; Young, B. K.

    2004-10-01

    The targets used in the hot halfraum campaign at OMEGA create many hot electrons, which result in a large flux of hard x rays. The hard x rays produce a high background in the streak camera. The background was significantly reduced by wrapping the streak camera with a high-Z material; in this case, 1/8 in. of Pb. The large hard x-ray flux also adds noise to images from framing cameras which use charge-coupled devices.

  19. Shielding a Streak Camera from Hard X-rays

    SciTech Connect

    Schneider, M; Sorce, C; Loughman, K; Emig, J; Bruns, H; Back, C; Bell, P; Compton, S; Hargrove, D; Holder, J; Landen, O; Perry, T; Shepherd, R; Young, B

    2004-04-14

    The targets used in the Hot Halfraum Campaign at OMEGA create many hot electrons, which result in a large flux of hard x-rays. The hard x-rays produce a high background in the streak camera. The background was significantly reduced by wrapping the streak camera with a high-Z material; in this case, 1/8' of Pb. The large hard x-ray flux also adds noise to images from framing cameras which use CCDs.

  20. Hard X-ray Nano Patterning using a Sectioned Multilayer

    SciTech Connect

    S Lee; I Cho; J Kim; H Yan; R Conley; C Liu; A Macrander; J Maser; G Stephenson; et al.

    2011-12-31

    We report a hard x-ray patterning capable of drawing lines with a width below 100 nm using x-rays at 0.165 nm. A specially prepared mask based on multilayer growth technology was used as an x-ray mask effectively. The x-ray Talbot effect in near field was investigated and utilized in the patterning. Since multilayers with a few nanometer layer spacing are readily available, the proposed hard x-ray nano patterning, free of the limit imposed by the Rayleigh criterion in optical range, can potentially be an ultimate optical lithography technique.

  1. Subgroup report on hard x-ray microprobes

    SciTech Connect

    Ice, G.E.; Barbee, T.; Bionta, R.; Howells, M.; Thompson, A.C.; Yun, W.

    1994-09-01

    The increasing availability of synchrotron x-ray sources has stimulated the development of advanced hard x-ray (E{>=}5 keV) microprobes. New x-ray optics have been demonstrated which show promise for achieving intense submicron hard x-ray probes. These probes will be used for extraordinary elemental detection by x-ray fluorescence/absorption and for microdiffraction to identify phase and strain. The inherent elemental and crystallographic sensitivity of an x-ray microprobe and its inherently nondestructive and penetrating nature makes the development of an advanced hard x-ray microprobe an important national goal. In this workshop state-of-the-art hard x-ray microprobe optics were described and future directions were discussed. Gene Ice, Oak Ridge National Laboratory (ORNL), presented an overview of the current status of hard x-ray microprobe optics and described the use of crystal spectrometers to improve minimum detectable limits in fluorescent microprobe experiments. Al Thompson, Lawrence Berkeley Laboratory (LBL), described work at the Center for X-ray Optics to develop a hard x-ray microprobe based on Kirkpatrick-Baez (KB) optics. Al Thompson also showed the results of some experimental measurements with their KB optics. Malcolm Howells presented a method for bending elliptical mirrors and Troy Barbee commented on the use of graded d spacings to achieve highest efficiency in KB multilayer microfocusing. Richard Bionta, Lawrence Livermore National Laboratory (LLNL), described the development of the first hard x-ray zone plates and future promise of so called {open_quotes}jelly roll{close_quotes} or sputter slice zone plates. Wenbing Yun, Argonne National Laboratory (ANL), described characterization of jelly roll and lithographically produced zone plates and described the application of zone plates to focus extremely narrow bandwidths by nuclear resonance. This report summarizes the presentations of the workshop subgroup on hard x-ray microprobes.

  2. Hard X-ray Emission from White Dwarfs

    NASA Technical Reports Server (NTRS)

    Chu, You-Hua; Gruendl, Robert

    2004-01-01

    Hot white dwarfs may exhibit photospheric emission at X-ray wavelengths, but their X- ray emission should be soft, mutch less than 0.5 keV. Hard X-ray emission, at approx. 1 keV, is not expected from white dwarfs, unless they are in binary systems and the hard X-ray emission is produced by a late-type companion's coronal activity or by accretion of a companion's material onto the surface of the white dwarf. We proposed to use the ROSAT archive to search for hard X-ray emission from white dwarfs in order to determine whether hard X-ray emission may provide a sensitive diagnostic for the existence of a binary companion.

  3. The Hard X ray Telescope Mission

    NASA Technical Reports Server (NTRS)

    Gorenstein, Paul

    1997-01-01

    The Hard X Ray Telescope (HXT) was selected for study as a possible new intermediate size mission for the early 21st century. Its principal attributes are: (1) multiwavelength observing with a system of focussing telescopes that collectively observe from the UV to over 1 MeV, (2) much higher sensitivity and much better angular resolution in the 10100 keV band, and (3) higher sensitivity for detecting gamma ray lines of known energy in the 100 keV to 1 MeV band. The institutions collaborating in the study are: Smithsonian Astrophysical Observatory, Marshall Space Flight Center, Naval Research Laboratory, Goddard Space Flight Center, Argonne National Laboratory, Danish Space Research Institute, Osservatorio Astronomica di Brera (Merate), and Centre d'Etudes Spatiale des Rayonnements (Toulouse). The instrumentation includes several grazing incidence double conical telescopes with multilayer coatings that focus up to 100 keV and a single Laue crystal telescope that functions to 1 MeV. The detectors are CCDs, and germanium, and/or CdZnTe position sensitive arrays.

  4. Soft x-ray nanoscale imaging using highly brilliant laboratory sources and new detector concepts

    NASA Astrophysics Data System (ADS)

    Stiel, H.; Braenzel, J.; Dehlinger, A.; Jung, R.; Luebcke, A.; Regehly, M.; Ritter, S.; Tuemmler, J.; Schnuerer, M.; Seim, C.

    2017-05-01

    In this contribution, we report about nanoscale imaging using a laser produced plasma source based laboratory transmission X-ray microscope (LTXM) in the water window. The highly brilliant soft X-ray radiation of the LTXM is provided by a laser-produced nitrogen plasma source focused by a multilayer condenser mirror to the sample. An objective zone plate maps the magnified image of the sample on the super resolution camera. This camera employs a deep cooled soft-X-ray CCD imaging sensor sandwiched with a xy piezo stage to allow subpixel displacements of the detector. The camera is read out using a very low noise electronics platform, also directing low µm shifts of the sensor between subsequent image acquisitions. Finally an algorithm computes a high resolution image from the individual shifted low-resolution image frames.

  5. "X-Ray Transients in Star-Forming Regions" and "Hard X-Ray Emission from X-Ray Bursters"

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Kaaret, Philip

    1999-01-01

    This grant funded work on the analysis of data obtained with the Burst and Transient Experiment (BATSE) on the Compton Gamma-Ray Observatory. The goal of the work was to search for hard x-ray transients in star forming regions using the all-sky hard x-ray monitoring capability of BATSE. Our initial work lead to the discovery of a hard x-ray transient, GRO J1849-03. Follow-up observations of this source made with the Wide Field Camera on BeppoSAX showed that the source should be identified with the previously known x-ray pulsar GS 1843-02 which itself is identified with the x-ray source X1845-024 originally discovered with the SAS-3 satellite. Our identification of the source and measurement of the outburst recurrence time, lead to the identification of the source as a Be/X-ray binary with a spin period of 94.8 s and an orbital period of 241 days. The funding was used primarily for partial salary and travel support for John Tomsick, then a graduate student at Columbia University. John Tomsick, now Dr. Tomsick, received his Ph.D. from Columbia University in July 1999, based partially on results obtained under this investigation. He is now a postdoctoral research scientist at the University of California, San Diego.

  6. Hard x-ray nanoprobe based on refractive x-ray lenses

    SciTech Connect

    Schroer, C.G.; Kurapova, O.; Patommel, J.; Boye, P.; Feldkamp, J.; Lengeler, B.; Burghammer, M.; Riekel, C.; Vincze, L.; Hart, A. van der; Kuechler, M.

    2005-09-19

    Based on nanofocusing refractive x-ray lenses a hard x-ray scanning microscope is currently being developed and is being implemented at beamline ID13 of the European Synchrotron Radiation Facility (Grenoble, France). It can be operated in transmission, fluorescence, and diffraction mode. Tomographic scanning allows one to determine the inner structure of a specimen. In this device, a monochromatic (E=21 keV) hard x-ray nanobeam with a lateral extension of 47x55 nm{sup 2} was generated. Further reduction of the beam size to below 20 nm is targeted.

  7. Statistical Study of Hard X-ray Footpoint Region

    NASA Astrophysics Data System (ADS)

    Sato, J.

    2003-12-01

    We show statistical characteristics of hard X-ray footpoint sources derived from THE YOHKOH FLARE IMAGE CATALOGUE. We use many hard X-ray images over the whole YOHKOH mission period (1991/08 - 2001/12) and the study is concentrated on following two points. 1) Average height of hard X-ray footpoint sources in the four HXT(Hard X-ray Telescope) energy bands (14-23, 23-33, 33-53, 53-93 keV). 2) Spectral characteristics of hard X-ray footpoint sources. We mainly revealed that A) the hard X-ray emission comes from just above the Hα emitting region and the accelerated electrons loose their energy within 1000 km length leading to the high density around footpoints, and that B) Many hard X-ray footpoint sources show a broken power-law spectrum with very hard spectrum in the low energy range (20-30 keV), suggesting a cut off energy of accelerated electrons is around 20 keV - 30 keV at least.

  8. Recent applications of hard x-ray photoelectron spectroscopy

    SciTech Connect

    Weiland, Conan; Woicik, Joseph C.; Rumaiz, Abdul K.; Pianetta, Piero

    2016-05-15

    Recent applications of hard x-ray photoelectron spectroscopy (HAXPES) demonstrate its many capabilities in addition to several of its limitations. Examples are given, including measurement of buried interfaces and materials under in situ or in operando conditions, as well as measurements under x-ray standing-wave and resonant excitation. Physical considerations that differentiate HAXPES from photoemission measurements utilizing soft x-ray and ultraviolet photon sources are also presented.

  9. Recent applications of hard x-ray photoelectron spectroscopy

    DOE PAGES

    Weiland, Conan; Rumaiz, Abdul K.; Pianetta, Piero; ...

    2016-05-05

    Recent applications of hard x-ray photoelectron spectroscopy (HAXPES) demonstrate its many capabilities in addition to several of its limitations. Examples are given, including measurement of buried interfaces and materials under in-situ or in-operando conditions, as well as measurements under x-ray standing-wave and resonant excitation. We also present physical considerations that differentiate HAXPES from photoemission measurements utilizing soft and ultraviolet x rays.

  10. Hard X-Ray, Soft X-Ray, and EUV Studies of Solar Eruptions

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Wagner, William (Technical Monitor)

    2003-01-01

    Document study the hard X-ray (HXR), soft X-ray (SXR) ,EUV, and magnetic nature of solar eruptions, with the objective of elucidating the physics of the eruption process. In particular, it was examine the viability of two specific eruption mechanisms, detailed in our proposal. These mechanisms are the "breakout model", and the "tether cutting model". During the second year, it was a significant progress in the goals to Data Sets Utilized. In the publications during this second year of the grant period, the data was used from the E W Imaging Telescope (EIT) and the Michelson Doppler Imager (MDI) instruments on SOHO, and from the Soft X-ray Telescope (SXT), Hard X-ray Telescope (HXT), and the Bragg Crystal Spectrometer (BCS) on Yooh.

  11. Future Hard X-ray and Gamma-Ray Missions

    NASA Astrophysics Data System (ADS)

    Krawczynski, Henric; Physics of the Cosmos (PCOS) Gamma Ray Science Interest Group (GammaSIG) Team

    2017-01-01

    With four major NASA and ESA hard X-ray and gamma-ray missions in orbit (Swift, NuSTAR, INTEGRAL, and Fermi) hard X-ray and gamma-ray astronomy is making major contributions to our understanding of the cosmos. In this talk, I will summarize the current and upcoming activities of the Physics of the Cosmos Gamma Ray Science Interest Group and highlight a few of the future hard X-ray and gamma-ray mission discussed by the community. HK thanks NASA for the support through the awards NNX14AD19G and NNX16AC42G and for PCOS travel support.

  12. The hard X-ray perspective on the soft X-ray excess

    SciTech Connect

    Vasudevan, Ranjan V.; Mushotzky, Richard F.; Reynolds, Christopher S.; Lohfink, Anne M.; Zoghbi, Abderahmen; Fabian, Andrew C.; Gallo, Luigi C.; Walton, Dominic

    2014-04-10

    The X-ray spectra of many active galactic nuclei exhibit a 'soft excess' below 1 keV, whose physical origin remains unclear. Diverse models have been suggested to account for it, including ionized reflection of X-rays from the inner part of the accretion disk, ionized winds/absorbers, and Comptonization. The ionized reflection model suggests a natural link between the prominence of the soft excess and the Compton reflection hump strength above 10 keV, but it has not been clear what hard X-ray signatures, if any, are expected from the other soft X-ray candidate models. Additionally, it has not been possible up until recently to obtain high-quality simultaneous measurements of both soft and hard X-ray emission necessary to distinguish these models but upcoming joint XMM-NuSTAR programs provide precisely this opportunity. In this paper, we present an extensive analysis of simulations of XMM-NuSTAR observations, using two candidate soft excess models as inputs, to determine whether such campaigns can disambiguate between them by using hard and soft X-ray observations in tandem. The simulated spectra are fit with the simplest 'observer's model' of a blackbody and neutral reflection to characterize the strength of the soft and hard excesses. A plot of the strength of the hard excess against the soft excess strength provides a diagnostic plot which allows the soft excess production mechanism to be determined in individual sources and samples using current state-of-the-art and next generation hard X-ray enabled observatories. This approach can be straightforwardly extended to other candidate models for the soft excess.

  13. Solar Hard X-ray Observations with NuSTAR

    NASA Astrophysics Data System (ADS)

    Marsh, Andrew; Smith, D. M.; Krucker, S.; Hudson, H. S.; Hurford, G. J.; White, S. M.; Mewaldt, R. A.; Harrison, F. A.; Grefenstette, B. W.; Stern, D.

    2012-05-01

    High-sensitivity imaging of coronal hard X-rays allows detection of freshly accelerated nonthermal electrons at the acceleration site. A few such observations have been made with Yohkoh and RHESSI, but a leap in sensitivity could help pin down the time, place, and manner of reconnection. Around the time of this meeting, the Nuclear Spectroscopic Telescope ARray (NuSTAR), a NASA Small Explorer for high energy astrophysics that uses grazing-incidence optics to focus X-rays up to 80 keV, will be launched. Three weeks will be dedicated to solar observing during the baseline two-year mission. NuSTAR will be 200 times more sensitive than RHESSI in the hard X-ray band. This will allow the following new observations, among others: 1) Extrapolation of the micro/nanoflare distribution by two orders of magnitude down in flux; 2) Search for hard X-rays from network nanoflares (soft X-ray bright points) and evaluation of their role in coronal heating; 3) Discovery of hard X-ray bremsstrahlung from the electron beams driving type III radio bursts, and measurement of their electron spectrum; 4) Hard X-ray studies of polar soft X-ray jets and impulsive solar energetic particle events at the edge of coronal holes; 5) Study of coronal bremsstrahlung from particles accelerated by coronal mass ejections as they are first launched; 6) Study of particles at the coronal reconnection site when flare footpoints and loops are occulted; 7) Search for weak high-temperature coronal plasmas in active regions that are not flaring; and 8) Search for hypothetical axion particles created in the solar core via the hard X-ray signal from their conversion to X-rays in the coronal magnetic field. NuSTAR will also serve as a pathfinder for a future dedicated space mission with enhanced capabilities, such as a satellite version of the FOXSI sounding rocket.

  14. Solar Hard X-ray Observations with NuSTAR

    NASA Astrophysics Data System (ADS)

    Smith, David M.; Krucker, S.; Hudson, H. S.; Hurford, G. J.; White, S. M.; Mewaldt, R. A.; Stern, D.; Grefenstette, B. W.; Harrison, F. A.

    2011-05-01

    High-sensitivity imaging of coronal hard X-rays allows detection of freshly accelerated nonthermal electrons at the acceleration site. A few such observations have been made with Yohkoh and RHESSI, but a leap in sensitivity could help pin down the time, place, and manner of reconnection. In 2012, the Nuclear Spectroscopic Telescope Array (NuSTAR), a NASA Small Explorer for high energy astrophysics that uses grazing-incidence optics to focus X-rays up to 80 keV, will be launched. NuSTAR is capable of solar pointing, and three weeks will be dedicated to solar observing during the baseline two-year mission. NuSTAR will be 200 times more sensitive than RHESSI in the hard X-ray band. This will allow the following new observations, among others: 1) Extrapolation of the micro/nanoflare distribution by two orders of magnitude down in flux 2) Search for hard X-rays from network nanoflares (soft X-ray bright points) and evaluation of their role in coronal heating 3) Discovery of hard X-ray bremsstrahlung from the electron beams driving type III radio bursts, and measurement of their electron spectrum 4) Hard X-ray studies of polar soft X-ray jets and impulsive solar energetic particle events at the edge of coronal holes, and comparison of these events with observations of 3He and other particles in interplanetary space 5) Study of coronal bremsstrahlung from particles accelerated by coronal mass ejections as they are first launched 6) Study of particles at the coronal reconnection site when flare footpoints are occulted; and 7) Search for hypothetical axion particles created in the solar core via the hard X-ray signal from their conversion to X-rays in the coronal magnetic field. NuSTAR will also serve as a pathfinder for a future dedicated space mission with enhanced capabilities, such as a satellite version of the FOXSI sounding rocket.

  15. Direct-write X-ray lithography using a hard X-ray Fresnel zone plate.

    PubMed

    Lee, Su Yong; Noh, Do Young; Lee, Hae Cheol; Yu, Chung-Jong; Hwu, Yeukuang; Kang, Hyon Chol

    2015-05-01

    Results are reported of direct-write X-ray lithography using a hard X-ray beam focused by a Fresnel zone plate with an outermost zone width of 40 nm. An X-ray beam at 7.5 keV focused to a nano-spot was employed to write arbitrary patterns on a photoresist thin film with a resolution better than 25 nm. The resulting pattern dimension depended significantly on the kind of underlying substrate, which was attributed to the lateral spread of electrons generated during X-ray irradiation. The proximity effect originated from the diffuse scattering near the focus and electron blur was also observed, which led to an increase in pattern dimension. Since focusing hard X-rays to below a 10 nm spot is currently available, the direct-write hard X-ray lithography developed in this work has the potential to be a promising future lithographic method.

  16. Prepulse dependence in hard x-ray generation from microdroplets

    SciTech Connect

    Anand, M.; Kahaly, S.; Kumar, G. Ravindra; Sandhu, A. S.; Gibbon, P.; Krishnamurthy, M.

    2006-04-07

    We report on experiments which show that liquid microdroplets are very efficient in hard x-ray generation. We make a comparative study of hard x-ray emission from 15 {mu}m methanol microdroplets and a plain slab target of similar atomic composition at similar laser intensities. The hard X-ray yield from droplet plasmas is about 35 times more than that obtained from solid plasmas. A prepulse that is about 10ns and at least 2% in intensity of the main pulse is essential for hard x-ray generation from the droplets at about 1015 W cm-2. A hot electron temperature of 36 keV is measured from the droplets at 8 x 1014 W cm-2; three times higher intensity is needed to obtain similar hot electron temperature from solid plasmas that have similar atomic composition. We use 1D-PIC simulation to obtain qualitative correlation to the experimental observations.

  17. Hard X-ray observations of ultraluminous infrared galaxies

    NASA Technical Reports Server (NTRS)

    Rieke, G. H.

    1988-01-01

    X-ray flux upper limits of 2-10 keV for ultraluminous infrared galaxies were drawn from the HEAO A-1 data base. The hard X-ray luminosities of these sources are much weaker relative to their total luminosities than would be expected for Seyfert 1 galaxies or quasi-stellar objects. Because of the low level of interstellar extinction for hard X-rays, this result suggests that the ultraluminous galaxies are not powered by embedded QSOs that are otherwise similar to other QSOs. Three other possibilities are: (1) the infrared galaxies may contain a form of X-ray-quiet active nucleus; (2) the X-ray sources in active nuclei may not turn on until after the circumnuclear gas has cleared; or (3) the bulk of the infrared luminosity in these galaxies may be generated by intense circumnuclear star formation.

  18. Hard X-ray observations of ultraluminous infrared galaxies

    SciTech Connect

    Rieke, G.H.

    1988-08-01

    X-ray flux upper limits of 2-10 keV for ultraluminous infrared galaxies were drawn from the HEAO A-1 data base. The hard X-ray luminosities of these sources are much weaker relative to their total luminosities than would be expected for Seyfert 1 galaxies or quasi-stellar objects. Because of the low level of interstellar extinction for hard X-rays, this result suggests that the ultraluminous galaxies are not powered by embedded QSOs that are otherwise similar to other QSOs. Three other possibilities are: (1) the infrared galaxies may contain a form of X-ray-quiet active nucleus; (2) the X-ray sources in active nuclei may not turn on until after the circumnuclear gas has cleared; or (3) the bulk of the infrared luminosity in these galaxies may be generated by intense circumnuclear star formation. 27 references.

  19. A hard X-ray nanoprobe beamline for nanoscale microscopy

    PubMed Central

    Winarski, Robert P.; Holt, Martin V.; Rose, Volker; Fuesz, Peter; Carbaugh, Dean; Benson, Christa; Shu, Deming; Kline, David; Stephenson, G. Brian; McNulty, Ian; Maser, Jörg

    2012-01-01

    The Hard X-ray Nanoprobe Beamline (or Nanoprobe Beamline) is an X-ray microscopy facility incorporating diffraction, fluorescence and full-field imaging capabilities designed and operated by the Center for Nanoscale Materials and the Advanced Photon Source at Sector 26 of the Advanced Photon Source at Argonne National Laboratory. This facility was constructed to probe the nanoscale structure of biological, environmental and material sciences samples. The beamline provides intense focused X-rays to the Hard X-ray Nanoprobe (or Nanoprobe) which incorporates Fresnel zone plate optics and a precision laser sensing and control system. The beamline operates over X-ray energies from 3 to 30 keV, enabling studies of most elements in the periodic table, with a particular emphasis on imaging transition metals. PMID:23093770

  20. Solar Hard X-ray Observations with NuSTAR

    NASA Astrophysics Data System (ADS)

    Smith, David M.; Krucker, S.; Hurford, G.; Hudson, H.; White, S.; Mewaldt, R.; Grefenstette, B.; Harrison, F.; NuSTAR Science Team

    2011-09-01

    High-sensitivity imaging of solar hard X-rays allows detection of freshly accelerated nonthermal electrons at the acceleration site. A few such observations have been made with Yohkoh and RHESSI, but a leap in sensitivity could help pin down the time, place, and manner of reconnection. The Nuclear Spectroscopic Telescope Array (NuSTAR) Small Explorer will be capable of solar pointing, and three weeks will be dedicated to solar observing during the baseline two-year mission. NuSTAR will be 200 times more sensitive than RHESSI in the hard X-ray band. This will allow the following new solar observations, among others: 1) Extrapolation of the micro/nanoflare distribution by two orders of magnitude down in flux 2) Search for hard X-rays from network nanoflares (soft X-ray bright points) and evaluation of their role in coronal heating 3) Discovery of hard X-ray bremsstrahlung from the electron beams driving type III radio bursts, and measurement of their electron spectrum 4) Hard X-ray studies of polar soft X-ray jets and impulsive solar energetic particle events at the edge of coronal holes, and comparison of these events with observations of 3He and other particles in interplanetary space 5) Study of coronal bremsstrahlung from particles accelerated by coronal mass ejections as they are first launched 6) Study of particles at the coronal reconnection site when flare footpoints are occulted; and 7) Search for hypothetical axion particles created in the solar core via the hard X-ray signal from their conversion to X-rays in the coronal magnetic field.

  1. The Hard X-Ray Sky: Recent Observational Progress

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Cannizzo, John K.

    2010-01-01

    The last fifty years have witnessed the birth, development, and maturation to full potential of hard X-ray astrophysics. The primary force driving the history of the field has been the development of space-based instrumentation optimized for getting the maximum science out of observations of high-energy photons from astrophysical sources. Hard X-ray telescopes are leading research in areas such as galactic diffuse emission, galactic transients, and active galactic nuclei.

  2. The Hard X-ray Sky: Recent Observational Progress

    SciTech Connect

    Gehrels, Neil

    2009-05-11

    The last fifty years have witnessed the birth, development, and maturation to full potential of hard X-ray astrophysics. The primary force driving the history of the field has been the development of space-based instrumentation optimized for getting the maximum science out of observations of high-energy photons from astrophysical sources. Hard X-ray telescopes are leading research in areas such as galactic diffuse emission, galactic transients, and active galactic nuclei.

  3. Refractive Optics for Hard X-ray Transmission Microscopy

    SciTech Connect

    Simon, M.; Last, A.; Mohr, J.; Nazmov, V.; Reznikova, E.; Ahrens, G.; Voigt, A.

    2011-09-09

    For hard x-ray transmission microscopy at photon energies higher than 15 keV we design refractive condenser and imaging elements to be used with synchrotron light sources as well as with x-ray tube sources. The condenser lenses are optimized for low x-ray attenuation--resulting in apertures greater than 1 mm--and homogeneous intensity distribution on the detector plane, whereas the imaging enables high-resolution (<100 nm) full-field imaging. To obtain high image quality at reasonable exposure times, custom-tailored matched pairs of condenser and imaging lenses are being developed. The imaging lenses (compound refractive lenses, CRLs) are made of SU-8 negative resist by deep x-ray lithography. SU-8 shows high radiation stability. The fabrication technique enables high-quality lens structures regarding surface roughness and arrangement precision with arbitrary 2D geometry. To provide point foci, crossed pairs of lenses are used. Condenser lenses have been made utilizing deep x-ray lithographic patterning of thick SU-8 layers, too, whereas in this case, the aperture is limited due to process restrictions. Thus, in terms of large apertures, condenser lenses made of structured and rolled polyimide film are more attractive. Both condenser types, x-ray mosaic lenses and rolled x-ray prism lenses (RXPLs), are considered to be implemented into a microscope setup. The x-ray optical elements mentioned above are characterized with synchrotron radiation and x-ray laboratory sources, respectively.

  4. Atomic tungsten for ultrafast hard X-ray generation.

    PubMed

    Shan, Fang; Couch, Vernon A; Guo, Ting

    2005-05-19

    High-resolution X-ray absorption measurements (with an accuracy of +/-0.3 eV) of ZnSO(4) (aq) were performed with ultrafast selected energy X-ray absorption spectroscopy (USEXAS) using a laser-driven tungsten target X-ray source. The results were used to determine the absolute spectral positions of characteristic emission lines. By comparing these positions to those predicted for the line emission from tungsten of different oxidation states using the Dirac-Fock formula, the tungsten species responsible for ultrafast hard X-ray generation were found to be tungsten atoms. This finding provides the first direct evidence to support the mechanism of X-ray generation via high-energy electrons interacting with tungsten atoms in the solid target.

  5. Beyond hard x-ray photoelectron spectroscopy: Simultaneous combination with x-ray diffraction

    SciTech Connect

    Rubio-Zuazo, Juan; Castro, German R.

    2013-05-15

    Hard x-ray photoelectron spectroscopy (HAXPES) is a powerful and novel emerging technique for the nondestructive determination of electronic properties and chemical composition of bulk, buried interfaces and surfaces. It benefits from the exceptionally large escape depth of high kinetic energy photoelectrons, increasing the information depth up to several tens of nanometers. Complementing HAXPES with an atomic structure sensitive technique (such as x-ray diffraction) opens a new research field with major applications for materials science. At SpLine, the Spanish CRG beamline at the European Synchrotron Radiation Facility, we have developed a novel experimental set-up that combines HAXPES and x-ray diffraction (x-ray reflectivity, surface x-ray diffraction, grazing incidence x-ray diffraction, and reciprocal space maps). Both techniques can be operated simultaneously on the same sample and using the same excitation source. The set-up includes a robust 2S + 3D diffractometer hosting a ultrahigh vacuum chamber equipped with a unique photoelectron spectrometer (few eV < electron kinetic energy < 15 keV), x-ray tube (Mg/Ti), 15 keV electron gun, and auxiliary standard surface facilities (molecular beam epitaxy evaporator, ion gun, low energy electron diffraction, sample heating/cooling system, leak valves, load-lock sample transfer, etc.). This end-station offers the unique possibility of performing simultaneous HAXPES + x-ray diffraction studies. In the present work, we describe the experimental set-up together with two experimental examples that emphasize its outstanding capabilities: (i) nondestructive characterization of the Si/Ge and HfO{sub 2}/SiO{sub 2} interfaces on Ge-based CMOS devices, and (ii) strain study on La{sub 0.7}Ca{sub 0.3}MnO{sub 3} ultrathin films grown on SrTiO{sub 3}(001) substrate.

  6. Instrumentation and data analysis for hard X ray astronomy

    NASA Astrophysics Data System (ADS)

    Zhang, Shuang Nan

    The current status of hard x ray astronomy is reviewed. The applicability of various hard x ray detectors in such new telescopes are discussed and the current status of hard x ray telescope design is reviewed. Background production mechanisms in hard x ray telescopes are discussed and some techniques for background reduction are also discussed. A simple method for estimating the optimum detector thickness is presented and the use of some detector materials which should minimize the neutron background is proposed. Three imaging techniques are briefly described. A simple discussion about their relative merits has suggested that the rotating modulation collimator (RMC) technique based on an improved detector technique provides the best imaging system. The pulse shape discrimination (PSD) technique is essential for the realization of such new detectors. The basic principles of various PSD methods are made for hard x ray phoswich detector applications. A new fast-veto technique is proposed and may be used in a quadruple phoswich detector system to provide good energy resolution and efficient background rejection. A proposed satellite-borne hard x ray telescope (CHIXSAT), which would use such detectors as its main detection elements, is described. A range of statistical data analysis methods for hard x ray and gamma ray astronomy are studied. Fisher's fact test is found to give the most reliable significance test. Methods for parameter estimation, including upper limit calculations, are described. The sensitivity of a telescope is defined with clear statistical meaning and a method for estimating the sensitivity is derived. A new method, called the chi3-test is proposed to be unbiased and have a very high power for multiple on-off observations, especially in searching for transient sources.

  7. Hard X-ray Microscopic Imaging Of Human Breast Tissues

    NASA Astrophysics Data System (ADS)

    Park, Sung H.; Kim, Hong T.; Kim, Jong K.; Jheon, Sang H.; Youn, Hwa S.

    2007-01-01

    X-ray microscopy with synchrotron radiation will be a useful tool for innovation of x-ray imaging in clinical and laboratory settings. It helps us observe detailed internal structure of material samples non-invasively in air. And, it also has the potential to solve some tough problems of conventional breast imaging if it could evaluate various conditions of breast tissue effectively. A new hard x-ray microscope with a spatial resolution better than 100 nm was installed at Pohang Light Source, a third generation synchrotron radiation facility in Pohang, Korea. The x-ray energy was set at 6.95 keV, and the x-ray beam was monochromatized by W/B4C monochromator. Condenser and objective zone plates were used as x-ray lenses. Zernike phase plate next to condenser zone plate was introduced for improved contrast imaging. The image of a sample was magnified 30 times by objective zone plate and 20 times by microscope objective, respectively. After additional 10 times digital magnification, the total magnifying power was up to 6000 times in the end. Phase contrast synchrotron images of 10-μm-thick female breast tissue of the normal, fibroadenoma, fibrocystic change and carcinoma cases were obtained. By phase contrast imaging, hard x-rays enable us to observe many structures of breast tissue without sample preparations such as staining or fixation.

  8. A position sensitive phoswich hard X-ray detector system

    NASA Technical Reports Server (NTRS)

    Dean, A. J.; Hanson, C. G.; Hopkins, C. J.; Lewis, R. A.; Fraser-Mitchell, J.

    1985-01-01

    A prototype position sensitive phoswich hard X-ray detector, designed for eventual astronomical usage, was tested in the laboratory. The scintillation crystal geometry was designed on the basis of a Monte Carlo simulation of the internal optics and includes a 3mm thick NaI(T1) primary X-ray detector which is actively shielded by a 20 mm thick CsI(T1) scintillation crystal. This phoswich arrangement is viewed by a number two inch photomultipliers. Measured values of the positional and spectral resolution of incident X-ray photons are compared with calculation.

  9. The over-the-limb hard X-ray events

    NASA Technical Reports Server (NTRS)

    Hudson, H. S.

    1986-01-01

    Over-the-limb hard X-ray events offer a uniquely direct view of the hard X-ray emission from the solar corona during a major flare. Limb occultation at angles greater than about 10 deg (an arbitrary definition of this class of events) excludes any confusion with brighter chromospheric sources. Published observations of seven over-the-limb events, beginning with the prototype flare of March 30, 1969, are reviewed. The hard X-ray spectra appear to fall into two classes: hard events, with power-law index of about 2.0; and soft events, with power-law index about 5.4. This tendency towards bimodality is only significant at the 90-percent confidence level due to the smallness of the number of events observed to date. If borne out by future data, the bimodality would suggest the existence of two different acceleration mechanisms.

  10. Hard x-ray Zernike microscopy reaches 30 nm resolution.

    SciTech Connect

    Chen, Y.; Chen, T.; Yi, J.; Chu, Y.; Lee, W.-K.; Wang, C.; Kempson, I.; Hwu, Y.; Gajdosik, V.; Margaritondo, G.

    2011-03-30

    Since its invention in 1930, Zernike phase contrast has been a pillar in optical microscopy and more recently in x-ray microscopy, in particular for low-absorption-contrast biological specimens. We experimentally demonstrate that hard-x-ray Zernike microscopy now reaches a lateral resolution below 30?nm while strongly enhancing the contrast, thus opening many new research opportunities in biomedicine and materials science.

  11. Hard x-ray Zernike Microscopy Reaches 30 nm Resolution

    SciTech Connect

    Chen, Y.T.; Chu, Y.; Chen, T-Y.; Yi, J.; Lee, W-K.; Wang, C-L.; Kempson, I. M.; Hwu, Y.; Gajdosik, V.; Margaritondo, G.

    2011-03-30

    Since its invention in 1930, Zernike phase contrast has been a pillar in optical microscopy and more recently in x-ray microscopy, in particular for low-absorption-contrast biological specimens. We experimentally demonstrate that hard-x-ray Zernike microscopy now reaches a lateral resolution below 30 nm while strongly enhancing the contrast, thus opening many new research opportunities in biomedicine and materials science.

  12. A statistical analysis of hard X-Ray solar flares

    NASA Technical Reports Server (NTRS)

    Pearce, G.; Rowe, A. K.; Yeung, J.

    1993-01-01

    In this study we perform a statistical study on, 8319 X-Ray solar flares observed with the Hard X-Ray Spectrometer (HXRBS) on the Solar Maximum Mission satellite (SMM). The events are examined in terms of the durations, maximum intensities, and intensity profiles. It is concluded that there is no evidence for a correlation between flare intensity, flare duration, and flare asymmetry. However, we do find evidence for a rapid fall-of in the number of short-duration events.

  13. Magnetic circular dichroism in the hard X-ray range

    NASA Astrophysics Data System (ADS)

    Rogalev, A.; Wilhelm, F.

    2015-12-01

    An overview of X-ray magnetic circular dichroism (XMCD) spectroscopy in the hard X-ray range is presented. A short historical overview shows how this technique has evolved from the early days of X-ray physics to become a workhorse technique in the modern magnetism research As with all X-ray spectroscopies, XMCD has the advantage of being element specific. Interpretation of the spectra based on magneto-optical sum rules can provide unique information about spin and orbital moment carried by absorbing atom in both amplitude and direction, can infer magnetic interactions from element selective magnetization curves, can allow separation of magnetic and non-magnetic components in heterogeneous systems. The review details the technology currently available for XMCD measurements in the hard X-ray range referring to the ESRF beamline ID12 as an example. The strengths of hard X-ray magnetic circular dichroism technique are illustrated with a wide variety of representative examples, such as actinide based ferromagnets, paramagnetism in metals, pure metallic nanoparticles, exchange spring magnets, half metallic ferromagnets, magnetism at interfaces, and dilute magnetic semiconductors. In this way, we aim to encourage researchers from various scientific communities to consider XMCD as a tool to understanding the electronic and magnetic properties of their samples.

  14. Enhanced hard x-ray emission from microdroplet preplasma

    SciTech Connect

    Anand, M.; Kahaly, S.; Ravindra Kumar, G.; Krishnamurthy, M.; Sandhu, A.S.; Gibbon, P.

    2006-05-01

    We perform a comparative study of hard x-ray emission from femtosecond laser plasmas in 15 {mu}m methanol microdroplets and Perspex target. The hard x-ray yield from droplet plasmas is {approx_equal}68 times more than that obtained from solid plasmas at 2x10{sup 15} W cm{sup -2}. A 10 ns prepulse at about 5% of the main pulse appears to be essential for hard x-ray generation from droplets. Hot electron temperature of 36 keV is measured from the droplets at 8x10{sup 14} W cm{sup -2}, whereas a three times higher intensity is needed to obtain similar hot electron temperatures from Perspex plasmas. Particle-in-cell simulations with very long scale-length density profiles support experimental observations.

  15. Obscuration properties of hard X-ray selected AGN

    NASA Astrophysics Data System (ADS)

    Ricci, C.

    2015-09-01

    X-ray spectroscopy is a great tool to infer the characteristics of the circumnuclear material in AGN, which can be achieved by studying both absorbed and reprocessed X-ray radiation. Because of the limited effect of absorption, hard X-ray (>10 keV) selected samples of AGN are extremely well suited to study the char- acteristics and the evolution of the torus. In my talk I will report on the results obtained by studying the broad-band X-ray emission (0.3--150 keV) of the 830 AGN reported in the Swift/BAT 70 months catalog. Our work is to date the largest study of broad-band X-ray observations of AGN ever performed, and combines observations carried out by the major X-ray facilities of the past decade, for a total of more than 1,500 X-ray spectra. Our catalog is complemented by multi-wavelength data, spanning from radio to gamma-rays. In my presentation will focus on the evolution of the spectral and absorption properties of AGN, and discuss about the link between obscuration and the physical characteristics of the SMBH, such as Eddington ratio, luminosity and black hole mass.

  16. Hard X-Ray Nanoprobe based on Refractive X-Ray Lenses

    SciTech Connect

    Schroer, C. G.; Patommel, J.; Boye, P.; Feldkamp, J.; Kurapova, O.; Lengeler, B.; Burghammer, M.; Riekel, C.; Vincze, L.; Hart, A. van der; Kuechler, M.

    2007-01-19

    At synchrotron radiation sources, parabolic refractive x-ray lenses allow one to built both full field and scanning microscopes in the hard x-ray range. The latter microscope can be operated in transmission, fluorescence, and diffraction mode, giving chemical, elemental, and structural contrast. For scanning microscopy, a small and intensive microbeam is required. Parabolic refractive x-ray lenses with a focal distance in the centimeter range, so-called nanofocusing lenses (NFLs), can generate hard x-ray nanobeams in the range of 100 nm and below, even at short distances, i. e., 40 to 70 m from the source. Recently, a 47 x 55 nm2 beam with 1.7 {center_dot} 108 ph/s at 21 keV (monochromatic, Si 111) was generated using silicon NFLs in crossed geometry at a distance of 47m from the undulator source at beamline ID13 of ESRF. This beam is not diffraction limited, and smaller beams may become available in the future. Lenses made of more transparent materials, such as boron or diamond, could yield an increase in flux of one order of magnitude and have a larger numerical aperture. For these NFLs, diffraction limits below 20 nm are conceivable. Using adiabatically focusing lenses, the diffraction limit can in principle be pushed below 5 nm.

  17. Towards hard X-ray imaging at GHz frame rate

    SciTech Connect

    Wang, Zhehui; Morris, Christopher; Luo, Shengnian; Kwiatkowski, Kris K.; Kapustinsky, Jon S.

    2012-05-02

    Gigahertz (GHz) imaging using hard X-rays ({approx}> 10 keV) can be useful to high-temperature plasma experiments, as well as research using coherent photons from synchrotron radiation and X-ray free electron lasers. GHz framing rate can be achieved by using multiple cameras through multiplexing. The advantages and trade-offs of single-photon detection mode, when no more than one X-ray photon is detected per pixel, are given. Two possible paths towards X-ray imaging at GHz frame rates using a single camera are (a) Avalanche photodiode arrays of high-Z materials and (b) Microchannel plate photomultipliers in conjunction with materials with large indices of refraction.

  18. Towards hard x-ray imaging at GHz frame rate

    SciTech Connect

    Wang Zhehui; Morris, C. L.; Kapustinsky, J. S.; Kwiatkowski, K.; Luo, S.-N.

    2012-10-15

    Gigahertz (GHz) imaging using hard x-rays ( Greater-Than-Or-Equivalent-To 10 keV) can be useful to high-temperature plasma experiments, as well as research and applications using coherent photons from synchrotron radiation and x-ray free electron lasers. GHz framing rate can be achieved by using multiple cameras through multiplexing. The advantages and trade-offs of single-photon detection mode, when no more than one x-ray photon is detected per pixel, are given. Two possible paths towards x-ray imaging at GHz frame rates using a single camera are: (a) avalanche photodiode arrays of high-Z materials and (b) microchannel plate photomultipliers in conjunction with materials with large indices of refraction.

  19. Hard X-Ray And Wide Focusing Telescopes

    NASA Technical Reports Server (NTRS)

    Gorenstein, Paul; Johnson, William B. (Technical Monitor)

    2001-01-01

    The development of a hard X-ray telescope requires new technology for both substrates and coatings. Our activities in these two areas were carried out virtually in parallel during most of the past few years. They are converging on the production of our first integral conical, substrate electroformed mirror that will be coated with a graded d-spacing multilayer. Its imaging properties and effective area will be measured in hard X-ray beams. We discuss each of these activities separately in the following two sections.

  20. OV and hard X-rays, observations and model calculations

    NASA Technical Reports Server (NTRS)

    Poland, A. I.; Mariska, J. T.

    1986-01-01

    An amalgamation of two published works that discuss the observation and theoretical calculations of OV (T approx. 250,000K) and Hard X-rays (30 to 100keV) emitted during flares are presented. The papers are by Poland et al (1984) and Mariska and Poland (1985). The observations of Hard X-rays and OV show that the excitation processes for each type of emission are closely coupled. Except for small differences the two types of emission rise and fall together during a flare. Model calculations are able to reproduce this behavior to a large extent, only when conductive processes do not dominate the energy transport processes.

  1. Observational Aspects of Hard X-ray Polarimetry

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Tanmoy

    2016-04-01

    Sensitive polarization measurements in X-ray may address a wealth of astrophysical phenomena, which so far remain beyond our understanding through available X-ray spectroscopic, imaging, and timing studies. Though scientific potential of X-ray polarimetry was realized long ago, there has not been any significant advancement in this field for the last four decades since the birth of X-ray astronomy. The only successful polarization measurement in X-rays dates back to 1976, when a Bragg polarimeter onboard OSO-8 measured polarization of Crab nebula. Primary reason behind the lack in progress is its extreme photon hungry nature, which results in poor sensitivity of the polarimeters. Recently, in the last decade or so, with the advancement in detection technology, X-ray polarimetry may see a significant progress in near future, especially in soft X-rays with the invention of photoelectron tracking polarimeters. Though photoelectric polarimeters are expected to provide sensitive polarization measurements of celestial X-ray sources, they are sensitive only in soft X-rays, where the radiation from the sources is dominated by thermal radiation and therefore expected to be less polarized. On the other hand, in hard X-rays, sources are ex-pected to be highly polarized due to the dominance of nonthermal emission over its thermal counterpart. Moreover, polarization measurements in hard X-rays promises to address few interesting scientific issues regarding geometry of corona for black hole sources, emission mechanism responsible for the higher energy peak in the blazars, accretion geometry close to the magnetic poles in accreting neutron star systems and acceleration mechanism in solar flares. Compton polarimeters provide better sensitivity than photoelectric polarimeters in hard X-rays with a broad energy band of operation. Recently, with the development of hard X-ray focusing optics e.g. NuSTAR, Astro-H, it is now possible to conceive Compton polarimeters at the focal plane

  2. Hard x-ray imaging polarimeter for PolariS

    NASA Astrophysics Data System (ADS)

    Hayashida, Kiyoshi; Kim, Juyong; Sadamoto, Masaaki; Yoshinaga, Keigo; Gunji, Shuichi; Mihara, Tatehiro; Kishimoto, Yuji; Kubo, Hidetoshi; Mizuno, Tsunefumi; Takahashi, Hiromitsu; Dotani, Tadayasu; Yonetoku, Daisuke; Nakamori, Takeshi; Yoneyama, Tomokage; Ikeyama, Yuki; Kamitsukasa, Fumiyoshi

    2016-07-01

    Hard X-ray imaging polarimeters are developed for the X-ray γ-ray polaeimtery satellite PolariS. The imaging polarimter is scattering type, in which anisotropy in the direction of Compton scattering is employed to measure the hard X-ray (10-80 keV) polarization, and is installed on the focal planes of hard X-ray telescopes. We have updated the design of the model so as to cover larger solid angles of scattering direction. We also examine the event selection algorithm to optimize the detection efficiency of recoiled electrons in plastic scintillators. We succeed in improving the efficiency by factor of about 3-4 from the previous algorithm and criteria for 18-30 keV incidence. For 23 keV X-ray incidence, the recoiled electron energy is about 1 keV. We measured the efficiency to detect recoiled electrons in this case, and found about half of the theoretical limit. The improvement in this efficiency directly leads to that in the detection efficiency. In other words, however, there is still a room for improvement. We examine various process in the detector, and estimate the major loss is primarily that of scintillation light in a plastic scintillator pillar with a very small cross section (2.68mm squared) and a long length (40mm). Nevertheless, the current model provides the MDP of 6% for 10mCrab sources, which are the targets of PolariS.

  3. Hard X-ray Microscopy with Multilayer Laue Lenses

    NASA Astrophysics Data System (ADS)

    Kang, Hyon Chol

    2011-03-01

    The possibility of imaging at near-atomic resolution using x-rays has been a dream ever since the short-wavelength nature of x-rays was demonstrated by von Laue and coworkers nearly a century ago. Even today the scientific impact of atomic-scale focusing of electromagnetic radiation would be deep and broad, because x-ray microscopy provides capabilities (ability to penetrate, sensitive and accurate elemental and structural information) that are complementary to other high-resolution microscopies. Although hard x-rays can in principle be focused to spot sizes on the order of their wavelength (0.1 nm), this limit has never been approached because of the difficulty in fabricating the optics. Multilayer Laue lens(MLL) is a novel diffractive optic for hard x-ray nano-focusing, which can be fabricated by sputter deposition of zone plate structure on flat substrate. According to the theoretical results, MLL is capable of focusing x-rays to well below 1 nm. We have demonstrated 2-dimensional focusing of hard x-rays with MLLs to a spot size of 25 nm x 27 nm with an efficiency of 2% at a photon energy of 12 keV, while 1-dimensional focus of 16 nm has been achieved. In this talk, we will present an overview of MLL microscopy and recent accomplishments for the determination of chemical composition in nanoscale systems. Lastly, we will give the capabilities of MLL microscopy that have the potential to significantly advance materials science, nanoscience, bio-medical science and environmental science.

  4. A Hard X-Ray Telescope Science Enhancement Package for the Constellation X-Ray Mission

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian; Gorenstein, Paul

    2007-01-01

    Details of a hard-x-ray science enhancement package for the Constellation-X mission are presented. A scientific case is made for the inclusion of such an instrument on the planned mission and a detailed design is presented that will satisfy science requirements yet fall within the ground rules for enhancement packages: a cost of less than $100M and a mass of no more than 100 kg.

  5. Bonded multilayer Laue Lens for focusing hard x-rays.

    SciTech Connect

    Liu, C.; Conley, R.; Qian, J.; Kewish, C.M.; Macrander, A.T.; Maser, J.; Kang, H.C.; Yan, H.; Stephenson, G.B.; Advanced Photonics Research Institute; Gwangju Institute of Science and Technology

    2007-11-11

    We have fabricated partial Multilayer Laue Lens (MLL) linear zone plate structures with thousands of alternating WSi{sub 2} and Si layers and various outermost zone widths according to the Fresnel zone plate formula. Using partial MLL structures, we were able to focus hard X-rays to line foci with a width of 30 nm and below. Here, we describe challenges and approaches used to bond these multilayers to achieve line and point focusing. Bonding was done by coating two multilayers with AuSn and heating in a vacuum oven at 280-300 C. X-ray reflectivity measurements confirmed that there was no change in the multilayers after heating to 350 C. A bonded MLL was polished to a 5-25 {micro}m wedge without cracking. SEM image analyses found well-positioned multilayers after bonding. These results demonstrate the feasibility of a bonded full MLL for focusing hard X-rays.

  6. Fourier-Transform Ghost Imaging with Hard X Rays

    NASA Astrophysics Data System (ADS)

    Yu, Hong; Lu, Ronghua; Han, Shensheng; Xie, Honglan; Du, Guohao; Xiao, Tiqiao; Zhu, Daming

    2016-09-01

    Knowledge gained through x-ray crystallography fostered structural determination of materials and greatly facilitated the development of modern science and technology in the past century. However, it is only applied to crystalline structures and cannot resolve noncrystalline materials. Here we demonstrate a novel lensless Fourier-transform ghost imaging method with pseudothermal hard x rays that extends x-ray crystallography to noncrystalline samples. By measuring the second-order intensity correlation function of the light, Fourier-transform diffraction pattern of a complex amplitude sample is achieved at the Fresnel region in our experiment and the amplitude and phase distributions of the sample in the spatial domain are retrieved successfully. For the first time, ghost imaging is experimentally realized with x rays. Since a highly coherent x-ray source is not required, the method can be implemented with laboratory x-ray sources and it also provides a potential solution for lensless diffraction imaging with fermions, such as neutrons and electrons where intensive coherent sources usually are not available.

  7. Fourier-Transform Ghost Imaging with Hard X Rays.

    PubMed

    Yu, Hong; Lu, Ronghua; Han, Shensheng; Xie, Honglan; Du, Guohao; Xiao, Tiqiao; Zhu, Daming

    2016-09-09

    Knowledge gained through x-ray crystallography fostered structural determination of materials and greatly facilitated the development of modern science and technology in the past century. However, it is only applied to crystalline structures and cannot resolve noncrystalline materials. Here we demonstrate a novel lensless Fourier-transform ghost imaging method with pseudothermal hard x rays that extends x-ray crystallography to noncrystalline samples. By measuring the second-order intensity correlation function of the light, Fourier-transform diffraction pattern of a complex amplitude sample is achieved at the Fresnel region in our experiment and the amplitude and phase distributions of the sample in the spatial domain are retrieved successfully. For the first time, ghost imaging is experimentally realized with x rays. Since a highly coherent x-ray source is not required, the method can be implemented with laboratory x-ray sources and it also provides a potential solution for lensless diffraction imaging with fermions, such as neutrons and electrons where intensive coherent sources usually are not available.

  8. Hard X-ray emission of Sco X-1

    NASA Astrophysics Data System (ADS)

    Revnivtsev, Mikhail G.; Tsygankov, Sergey S.; Churazov, Eugene M.; Krivonos, Roman A.

    2014-12-01

    We study hard X-ray emission of the brightest accreting neutron star Sco X-1 with INTEGRAL observatory. Up to now INTEGRAL have collected ˜4 Ms of deadtime corrected exposure on this source. We show that hard X-ray tail in time average spectrum of Sco X-1 has a power-law shape without cutoff up to energies ˜200-300 keV. An absence of the high energy cutoff does not agree with the predictions of a model, in which the tail is formed as a result of Comptonization of soft seed photons on bulk motion of matter near the compact object. The amplitude of the tail varies with time with factor more than 10 with the faintest tail at the top of the so-called flaring branch of its colour-colour diagram. We show that the minimal amplitude of the power-law tail is recorded when the component, corresponding to the innermost part of optically thick accretion disc, disappears from the emission spectrum. Therefore, we show that the presence of the hard X-ray tail may be related with the existence of the inner part of the optically thick disc. We estimate cooling time for these energetic electrons and show that they cannot be thermal. We propose that the hard X-ray tail emission originates as a Compton upscattering of soft seed photons on electrons, which might have initial non-thermal distribution.

  9. Nanoplasma Formation by High Intensity Hard X-rays

    PubMed Central

    Tachibana, T.; Jurek, Z.; Fukuzawa, H.; Motomura, K.; Nagaya, K.; Wada, S.; Johnsson, P.; Siano, M.; Mondal, S.; Ito, Y.; Kimura, M.; Sakai, T.; Matsunami, K.; Hayashita, H.; Kajikawa, J.; Liu, X.-J.; Robert, E.; Miron, C.; Feifel, R.; Marangos, J. P.; Tono, K.; Inubushi, Y.; Yabashi, M.; Son, S.-K.; Ziaja, B.; Yao, M.; Santra, R.; Ueda, K.

    2015-01-01

    Using electron spectroscopy, we have investigated nanoplasma formation from noble gas clusters exposed to high-intensity hard-x-ray pulses at ~5 keV. Our experiment was carried out at the SPring-8 Angstrom Compact free electron LAser (SACLA) facility in Japan. Dedicated theoretical simulations were performed with the molecular dynamics tool XMDYN. We found that in this unprecedented wavelength regime nanoplasma formation is a highly indirect process. In the argon clusters investigated, nanoplasma is mainly formed through secondary electron cascading initiated by slow Auger electrons. Energy is distributed within the sample entirely through Auger processes and secondary electron cascading following photoabsorption, as in the hard x-ray regime there is no direct energy transfer from the field to the plasma. This plasma formation mechanism is specific to the hard-x-ray regime and may, thus, also be important for XFEL-based molecular imaging studies. In xenon clusters, photo- and Auger electrons contribute more significantly to the nanoplasma formation. Good agreement between experiment and simulations validates our modelling approach. This has wide-ranging implications for our ability to quantitatively predict the behavior of complex molecular systems irradiated by high-intensity hard x-rays. PMID:26077863

  10. Crab Nebula Variations in Hard X-rays

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2012-01-01

    The Crab Nebula was surprisingly variable from 2001-2010, with less variability before 2001 and since mid-2010. We presented evidence for spectral softening from RXTE, Swift/BAT, and Fermi GBM during the mid-2008-2010 flux decline. We see no clear connections between the hard X-ray variations and the GeV flares

  11. Studies in useful hard x-ray induced chemistry

    NASA Astrophysics Data System (ADS)

    Pravica, Michael; Bai, Ligang; Sneed, Daniel; Park, Changyong

    2013-06-01

    The observed rapid decomposition of potassium chlorate (via 2KClO3 + h ν --> 2KCl +3O2) via synchrotron hard x-ray irradiation (>10 keV) has enabled experiments that are developing novel and useful hard x-ray chemistry. We have observed a number of radiation-induced in situ decomposition reactions in various substances which release O2, H2, N2, NH3, and H2O in a diamond anvil cell (DAC) at ambient and high pressures. These novel acatalytic and isothermal reactions represent a highly controllable, penetrating, and focused method to initiate chemistry (including x-ray induced combustion) in sealed and/or isolated chambers which maintain matter under extreme conditions. During our studies, we have typically observed a slowing of decomposition with pressure including phase dependent decomposition of KClO3. Energy dependent studies have observed an apparent resonance near 15 keV at which the decomposition rate is maximized. This may enable use of much lower flux and portable x-ray sources (e.g. x-ray tubes) in larger scale experiments. These developments support novel means to load DACs and control chemical reactions providing novel routes of synthesis of novel materials under extreme conditions.

  12. Hard X-ray mirrors for Nuclear Security

    SciTech Connect

    Descalle, M. A.; Brejnholt, N.; Hill, R.; Decker, T.; Alameda, J.; Soufli, R.; Pivovaroff, M.; Pardini, T.

    2016-01-07

    Research performed under this LDRD aimed to demonstrate the ability to detect and measure hard X-ray emissions using multilayer X-ray reflective optics above 400 keV, to enable the development of inexpensive and high-accuracy mirror substrates, and to investigate applications of hard X-ray mirrors of interest to the nuclear security community. Experiments conducted at the European Synchrotron Radiation Facility demonstrated hard X-ray mirror reflectivity up to 650 keV for the first time. Hard X-ray optics substrates must have surface roughness under 3 to 4 Angstrom rms, and three materials were evaluated as potential substrates: polycarbonates, thin Schott glass and a new type of flexible glass called Willow Glass®. Chemical smoothing and thermal heating of the surface of polycarbonate samples, which are inexpensive but have poor intrinsic surface characteristics, did not yield acceptable surface roughness. D263 Schott glass was used for the focusing optics of the NASA NuSTAR telescope. The required specialized hardware and process were costly and motivated experiments with a modified non-contact slumping technique. The surface roughness of the glass was preserved and the process yielded cylindrical shells with good net shape pointing to the potential advantage of this technique. Finally, measured surface roughness of 200 and 130 μm thick Willow Glass sheets was between 2 and 2.5 A rms. Additional results of flexibility tests and multilayer deposition campaigns indicated it is a promising substrate for hard X-ray optics. The detection of U and Pu characteristics X-ray lines and gamma emission lines in a high background environment was identified as an area for which X-ray mirrors could have an impact and where focusing optics could help reduce signal to noise ratio by focusing signal onto a smaller detector. Hence the first one twelvetant of a Wolter I focusing optics for the 90 to 140 keV energy range based on aperiodic multilayer coating was designed. Finally

  13. HXMT satellite for space hard X-ray observation

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Ren, D.; You, Z.

    Space hard X-ray in the energy band from 10Kev to 250KeV is very important to the research of high energy astrophysical processes, especially some of the fundamental problems in astrophysics. Due to imaging difficulty in the hard X-ray band, Observations made over this band is comparatively less than other bands such as soft X-ray and gamma -ray. Up to now, there has been no hard X ray all sky- survey of high sensitivity. Based on the Direct Demodulation imaging method recently developed, the Hard X- ray Modulation Telescope(HXMT) mission is proposed under the Major State Basic Research Development Program of China. The scientific objective of HXMT mission is to realize the first hard X-ray all sky survey of high sensitivy and angular resolution in the world, and to present the first detailed sky map of hard X r a y - distribution. In this article, the physical basis, the imaging principle and the basic structure of HXMT are briefly introduced. The expected angular resolution of observation and position accuracy of radiant source are 2' and 0.2' respectively. Based on the analysis of the mission requirement of HXMT, the mission design of HXMT satellite is presented in which the concept of integrative design approach is presented and implemented. The design of spacecraft subsystems such as strcuture,C&DH and energy are also introduced. To meet the high precision demand of the attitude determination of HXMT, a new Attitude Determination &Control Subsystem(ADCS) scheme is presented in which the Microminiature Inertial Measurement Unit(MIMU) is employed as one of the key attitude sensors. Combined with star tracker, the expected attitude measurement accuracy is 0.01° in the normal mission mode. Based on all these thoughts, the ADCS is analyzed and its general design is presented in the paper. As the first chinese space hard X-ray observatory, the design approach of HXMT satellite is also helpful for other space exploration missions such as solar activity inspection

  14. Characterization of New Hard X-ray Cataclysmic Variables

    NASA Technical Reports Server (NTRS)

    Bernardini, F.; deMartino, D.; Falanga, M.; Mukai, K.; Matt, G.; Bonnet-Bidaud, J.-M.; Masetti, N.; Mouchet, M.

    2012-01-01

    Aims. We aim at characterizing a sample of nine new hard X-ray selected Cataclysmic Variable (CVs), to unambiguously identify them as magnetic systems of the Intermediate Polar (IP) type. Methods. We performed detailed timing and spectral analysis by using X-ray, and simultaneous UV and optical data collected by XMM-Newton, complemented with hard X-ray data provided by INTEGRAL and Swift. The pulse arrival time were used to estimate the orbital periods. The broad band X-ray spectra were fitted using composite models consisting of different absorbing columns and emission components. Results. Strong X-ray pulses at the White Dwarf (WD) spin period are detected and found to decrease with energy. Most sources are spin-dominated systems in the X-rays, though four are beat dominated at optical wavelengths. We estimated the orbital period in all system (except for IGR J16500-3307), providing the first estimate for IGRJ08390-4833, IGRJ18308-1232, and IGR J18173-2509. All X-ray spectra are multi-temperature. V2069 Cyg and RX J0636+3535 poses a soft X-ray optically thick component at kT approx. 80 eV. An intense K (sub alpha) Fe line at 6.4 keV is detected in all sources. An absorption edge at 0.76 keV from OVII is detected in IGR J08390-4833. The WD masses and lower limits to the accretion rates are also estimated. Conclusions. We found all sources to be IPs. IGR J08390-4833, V2069 Cyg, and IGR J16500-3307 are pure disc accretors, while IGR J18308-1232, IGR J1509-6649, IGR J17195-4100, and RX J0636+3535 display a disc-overflow accretion mode. All sources show a temperature gradient in the post-shock regions and a highly absorbed emission from material located in the pre-shock flow which is also responsible for the X-ray pulsations. Reflection at the WD surface is likely the origin of the fluorescent iron line. There is an increasing evidence for the presence of a warm absorber in IPs, a feature that needs future exploration. The addition of two systems to the subgroup of

  15. Hard X-ray Characteristics of Anomalous X-ray Pulsars: Results from RXTE and INTEGRAL

    NASA Astrophysics Data System (ADS)

    den Hartog, Peter R.

    Until recently anomalous X-ray pulsars (AXPs) were known as soft X-ray emitters. This has changed drastically since the discovery of hard X-ray emission (>10 keV) from several AXPs by INTEGRAL (Molkov et al. 2004, Revnivtsev et al. 2004 and den Hartog et al. 2004). Kuiper et al. (2004) discovered pulsed emission in the same energy range using RXTE (PCA and HEXTE) data. Currently four AXPs (1RXS J170849.0-400910, 1E 1841-045, 4U 0142+614 and 1E 2259+586) have been detected, some of them showing emission up to 200 keV. The spectra exhibit extremely hard power laws with photon indices < 1.0 and with apparent luminosities 2-3 orders of magnitude above the rotational energy loss. The origin of this behaviour is not yet understood. An overview containing the current observational status in the temporal and the spectral domains as well as future prospects of AXPs at high energies is presented.

  16. Complete Hard X-Ray Surveys, AGN Luminosity Functions and the X-Ray Background

    NASA Technical Reports Server (NTRS)

    Tueller, Jack

    2011-01-01

    AGN are believed to make up most of the Cosmic X-Ray Background (CXB) above a few keV, but this background cannot be fully resolved at energies less than 10 keV due to absorption. The Swift/BAT and INTEGRAL missions are performing the first complete hard x-ray surveys with minimal bias due to absorption. The most recent results for both missions will be presented. Although the fraction of the CXB resolved by these surveys is small, it is possible to derive unbiased number counts and luminosity functions for AGN in the local universe. The survey energy range from 15-150 keV contains the important reflection and cutoff spectral features dominate the shape of the AGN contribution to the CXB. Average spectral characteristics of survey detected AGN will be presented and compared with model distributions. The numbers of hard x-ray blazars detected in these surveys are finally sufficient to estimate this important component's contribution the cosmic background. Constraints on CXB models and their significance will be discussed.

  17. ANS hard X-ray experiment development program. [emission from X-ray sources

    NASA Technical Reports Server (NTRS)

    Parsignault, D.; Gursky, H.; Frank, R.; Kubierschky, K.; Austin, G.; Paganetti, R.; Bawdekar, V.

    1974-01-01

    The hard X-ray (HXX) experiment is one of three experiments included in the Dutch Astronomical Netherlands Satellite, which was launched into orbit on 30 August 1974. The overall objective of the HXX experiment is the detailed study of the emission from known X-ray sources over the energy range 1.5-30keV. The instrument is capable of the following measurements: (1) spectral content over the full energy range with an energy resolution of approximately 20% and time resolution down to 4 seconds; (2) source time variability down to 4 milliseconds; (3) silicon emission lines at 1.86 and 2.00keV; (4) source location to a limit of one arc minute in ecliptic latitude; and (5) spatial structure with angular resolution of the arc minutes. Scientific aspects of experiment, engineering design and implementation of the experiment, and program history are included.

  18. Applications of Hard X-ray Full-Field Transmission X-ray Microscopy at SSRL

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Andrews, J. C.; Meirer, F.; Mehta, A.; Gil, S. Carrasco; Sciau, P.; Mester, Z.; Pianetta, P.

    2011-09-01

    State-of-the-art hard x-ray full-field transmission x-ray microscopy (TXM) at beamline 6-2C of Stanford Synchrotron Radiation Lightsource has been applied to various research fields including biological, environmental, and material studies. With the capability of imaging a 32-micron field-of-view at 30-nm resolution using both absorption mode and Zernike phase contrast, the 3D morphology of yeast cells grown in gold-rich media was investigated. Quantitative evaluation of the absorption coefficient was performed for mercury nanoparticles in alfalfa roots exposed to mercury. Combining XANES and TXM, we also performed XANES-imaging on an ancient pottery sample from the Roman pottery workshop at LaGraufesenque (Aveyron).

  19. Applications of Hard X-ray Full-Field Transmission X-ray Microscopy at SSRL

    SciTech Connect

    Liu, Y.; Andrews, J. C.; Mehta, A.; Pianetta, P.; Meirer, F.; Gil, S. Carrasco; Sciau, P.; Mester, Z.

    2011-09-09

    State-of-the-art hard x-ray full-field transmission x-ray microscopy (TXM) at beamline 6-2C of Stanford Synchrotron Radiation Lightsource has been applied to various research fields including biological, environmental, and material studies. With the capability of imaging a 32-micron field-of-view at 30-nm resolution using both absorption mode and Zernike phase contrast, the 3D morphology of yeast cells grown in gold-rich media was investigated. Quantitative evaluation of the absorption coefficient was performed for mercury nanoparticles in alfalfa roots exposed to mercury. Combining XANES and TXM, we also performed XANES-imaging on an ancient pottery sample from the Roman pottery workshop at LaGraufesenque (Aveyron).

  20. Measurements of the hard-x-ray reflectivity of iridium

    SciTech Connect

    Romaine, S.; Bruni, R.; Gorenstein, P.; Zhong, Z

    2007-01-10

    In connection with the design of a hard-x-ray telescope for the Constellation X-Ray Observatory we measured the reflectivity of an iridium-coated zerodur substrate as a function of angle at 55, 60, 70, and 80 keV at the National Synchrotron Light Source of Brookhaven National Laboratory. The optical constants were derived from the reflectivity data. The real component of the index of refraction is in excellent agreement with theoretical values at all four energies. However, the imaginary component, which is related to the mass attenuation coefficient, is 50% to 70% larger at 55, 60, and 70 keV than theoretical values.

  1. Hard X-Ray Fourier Transform Holography with Zone Plates

    SciTech Connect

    Watanabe, Norio; Yokosuka, Hiroki; Ohigashi, Takuji; Aoki, Sadao; Takano, Hidekazu; Takeuchi, Akihisa; Suzuki, Yoshio

    2004-05-12

    Using two zone plates, a hard x-ray lens-less Fourier transform holographic microscope with cone-beam illumination was investigated at SPring-8 BL20XU. One zone plate was placed on the optical axis, and another zone plate was placed 16 mm downstream and 9 {mu}m off the optical axis. The diverging x-rays from the focus of the upstream zone plate illuminated a specimen where the focus of the downstream zone plate was placed. A hologram of a copper mesh of 12.7 {mu}m pitch could be obtained. The intensity and the phase could be successfully reconstructed with sub-micron resolution.

  2. Replicated Nickel Optics for the Hard-X-Ray Region

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian

    2005-01-01

    Replicated nickel optics has been used extensively in x-ray astronomy, most notable for the XMM/Newton mission. Thc combination of relative ease of fabrication and the inherent stability of full shell optics, make them FIJI attractive approach for medium-resolution, high-throughput applications. MSFC has been developing these optics for use in the hard-x-ray region. Efforts at improving the resolution of these, particularly the very-thin shells required to meet thc weight budget of future missions, will be described together with the prospects for significant improvements down to the 5-arcsec level.

  3. A hard X-ray polarimeter utilizing Compton scattering

    NASA Technical Reports Server (NTRS)

    Sakurai, H.; Noma, M.; Niizeki, H.

    1991-01-01

    The paper describes a 50-cm-diam prototype of a novel Compton-scattering-type polarimeter for hard X-rays in the energy range 30-100 keV. The characteristics of the prototype polarimeter were investigated for various conditions. It was found that, with polarized X-rays from a simple polarizer, the detection efficiency and the modulation factor of the polarimeter with a 40-mm thick scatterer were 3.2 percent and 0.57 percent, respectively, at about 60 keV.

  4. Phase contrast hard x-ray microscopy with submicron resolution

    SciTech Connect

    Lagomarsino, S.; Cedola, A.; Cloetens, P.; Di Fonzo, S.; Jark, W.; Soullie, G.; Riekel, C.

    1997-11-01

    In this letter we present a hard x-ray phase contrast microscope based on the divergent and coherent beam exiting an x-ray waveguide. It uses lensless geometrical projection to magnify spatial variations in optical path length more than 700 times. Images of a nylon fiber and a gold test pattern were obtained with a resolution of 0.14 {mu}m in one direction. Exposure times as short as 0.1 s gave already visible contrast, opening the way to high resolution, real time studies. {copyright} {ital 1997 American Institute of Physics.}

  5. Hard X-ray Sources for the Mexican Synchrotron Project

    NASA Astrophysics Data System (ADS)

    Reyes-Herrera, Juan

    2016-10-01

    One of the principal tasks for the design of the Mexican synchrotron was to define the storage ring energy. The main criteria for choosing the energy come from studying the electromagnetic spectrum that can be obtained from the synchrotron, because the energy range of the spectrum that can be obtained will determine the applications available to the users of the future light source. Since there is a public demand of hard X-rays for the experiments in the synchrotron community users from Mexico, in this work we studied the emission spectra from some hard X-ray sources which could be the best options for the parameters of the present Mexican synchrotron design. The calculations of the flux and the brightness for one Bending Magnet and four Insertion Devices are presented; specifically, for a Superconducting Bending Magnet (SBM), a Superconducting Wiggler (SCW), an In Vacuum Short Period Undulator (IV-SPU), a Superconducting Undulator (SCU) and for a Cryogenic Permanent Magnet Undulator (CPMU). Two commonly available synchrotron radiation programs were used for the computation (XOP and SRW). From the results, it can be concluded that the particle beam energy from the current design is enough to have one or more sources of hard X-rays. Furthermore, a wide range of hard X-ray region can be covered by the analyzed sources, and the choice of each type should be based on the specific characteristics of the X-ray beam to perform the experiments at the involved beamline. This work was done within the project Fomix Conacyt-Morelos ”Plan Estrategico para la construccion y operación de un Sincrotron en Morelos” (224392).

  6. Hard X-ray Imaging Polarimeter for PolariS

    NASA Astrophysics Data System (ADS)

    Hayashida, Kiyoshi

    2016-07-01

    We present the current status of development of hard X-ray imaging polarimeters for the small satellite mission PolariS. The primary aim of PolariS is hard X-ray (10-80keV) polarimetry of sources brighter than 10mCrab. Its targets include stellar black holes, neutron stars, super nova remnants, and active galactic nuclei. This aim is enabled with three sets of hard X-ray telescopes and imaging polarimeters installed on their focal planes. The imaging polarimeter consists of two kinds of (plastic and GSO) scintillator pillars and multi-anode photo multiplier tubes (MAPMTs). When an X-ray photon incident to a plastic scintillator cause a Compton scattering, a recoiled electron makes a signal on the corresponding MAPMT pixel, and a scatted X-rays absorbed in surrounding GSO makes another signal. This provide information on the incident position and the scattered direction. The latter information is employed for polarimetry. For 20keV X-ray incidence, the recoiled electron energy is as low as 1keV. Thus, the performance of this imaging polarimeter is primarily determined by the efficiency that we can detect low level signal of recoiled electrons generated in plastic scintillators. The efficiency could depend on multiple factors, e.g. quenching of light in scintillators, electric noise, pedestal error, cross talk of the lights to adjacent MAPMT pixels, MAPMT dark current etc. In this paper, we examined these process experimentally and optimize the event selection algorithm, in which single photo-electron events are selected. We then performed an X-ray (10-80keV monochromatic polarized beam) irradiation test at a synchrotron facility. The modulation contrast (M) is about 60% in 15-80keV range. We succeeded in detecting recoiled electrons for 10-80keV X-ray incidence, though detection efficiency is lower at lowest end of the energy range. Expected MDP will also be shown.

  7. Spatial resolution of a hard x-ray CCD detector

    SciTech Connect

    Seely, John F.; Pereira, Nino R.; Weber, Bruce V.; Schumer, Joseph W.; Apruzese, John P.; Hudson, Lawrence T.; Szabo, Csilla I.; Boyer, Craig N.; Skirlo, Scott

    2010-08-10

    The spatial resolution of an x-ray CCD detector was determined from the widths of the tungsten x-ray lines in the spectrum formed by a crystal spectrometer in the 58 to 70 keV energy range. The detector had 20{mu}m pixel, 1700 by 1200 pixel format, and a CsI x-ray conversion scintillator. The spectral lines from a megavolt x-ray generator were focused on the spectrometer's Rowland circle by a curved transmission crystal. The line shapes were Lorentzian with an average width after removal of the natural and instrumental line widths of 95{mu}m (4.75 pixels). A high spatial frequency background, primarily resulting from scattered gamma rays, was removed from the spectral image by Fourier analysis. The spectral lines, having low spatial frequency in the direction perpendicular to the dispersion, were enhanced by partially removing the Lorentzian line shape and by fitting Lorentzian curves to broad unresolved spectral features. This demonstrates the ability to improve the spectral resolution of hard x-ray spectra that are recorded by a CCD detector with well-characterized intrinsic spatial resolution.

  8. Method and apparatus for micromachining using hard X-rays

    DOEpatents

    Siddons, David Peter; Johnson, Erik D.; Guckel, Henry; Klein, Jonathan L.

    1997-10-21

    An X-ray source such as a synchrotron which provides a significant spectral content of hard X-rays is used to expose relatively thick photoresist such that the portions of the photoresist at an exit surface receive at least a threshold dose sufficient to render the photoresist susceptible to a developer, while the entrance surface of the photoresist receives an exposure which does not exceed a power limit at which destructive disruption of the photoresist would occur. The X-ray beam is spectrally shaped to substantially eliminate lower energy photons while allowing a substantial flux of higher energy photons to pass through to the photoresist target. Filters and the substrate of the X-ray mask may be used to spectrally shape the X-ray beam. Machining of photoresists such as polymethylmethacrylate to micron tolerances may be obtained to depths of several centimeters, and multiple targets may be exposed simultaneously. The photoresist target may be rotated and/or translated in the beam to form solids of rotation and other complex three-dimensional structures.

  9. Method and apparatus for micromachining using hard X-rays

    DOEpatents

    Siddons, D.P.; Johnson, E.D.; Guckel, H.; Klein, J.L.

    1997-10-21

    An X-ray source such as a synchrotron which provides a significant spectral content of hard X-rays is used to expose relatively thick photoresist such that the portions of the photoresist at an exit surface receive at least a threshold dose sufficient to render the photoresist susceptible to a developer, while the entrance surface of the photoresist receives an exposure which does not exceed a power limit at which destructive disruption of the photoresist would occur. The X-ray beam is spectrally shaped to substantially eliminate lower energy photons while allowing a substantial flux of higher energy photons to pass through to the photoresist target. Filters and the substrate of the X-ray mask may be used to spectrally shape the X-ray beam. Machining of photoresists such as polymethylmethacrylate to micron tolerances may be obtained to depths of several centimeters, and multiple targets may be exposed simultaneously. The photoresist target may be rotated and/or translated in the beam to form solids of rotation and other complex three-dimensional structures. 21 figs.

  10. Observing Solar Hard X-rays from Heliospheric Orbits

    NASA Astrophysics Data System (ADS)

    Hurford, Gordon J.; Benz, A.; Dennis, B.; Krucker, S.; Limousin, O.; Lin, R.; Vilmer, N.

    2010-05-01

    The coming decade provides two opportunities to acquire a different observational perspective on solar hard x-ray emission. Both ESA's Solar Orbiter and NASA's Solar Probe Plus missions will be in heliocentric orbits with perihelia of 0.28 au and 0.05 au respectively. This poster indicates the unique scientific advantages of hard x-ray imaging/spectroscopy observations from such platforms. These advantages stem from three factors: First, in combination with other payload elements, the hard x-rays provide the ability to observationally link accelerated electrons at the Sun to radio observations of the propagating electrons and to direct observations of in situ electrons. Second, the substantial gain in sensitivity afforded by close-in vantage points enables exploration of the origin of non-flare associated SEP events to be studied and the character of quiescent active-region heating and electron acceleration to be evaluated. Third, the different observational perspectives provided by the heliocentric orbits compared to low-Earth orbits enable improved separation of coronal and footpoint sources as well as measurements of the isotropy of the x-ray emission. Despite the limited payload resources (mass, power, telemetry) afforded by such missions, scientifically effective hard x-ray imaging spectroscopy from 5 keV to 150 keV is still feasible. The Spectrometer/Telescope for Imaging X-rays (STIX), accepted as part of the Solar Orbiter payload, combines high spectral resolution ( 1 keV FWHM at 10 keV) with spatial resolution as good as 1500 km, and can efficiently encode the data for several hundred optimized images per hour within a modest telemetry allocation and 4 kg / 4 watt budget. The X-ray Imaging Spectrometer (XIS) proposed for Solar Probe Plus, views the Sun through its thermal shield. It also features high spectral resolution from 6 to 150 keV and spatial resolution of 1500 km at perihelion. The poster describes the imaging principles and current configurations

  11. X-ray silicon detectors for measuring hard x-ray radiation damage effects

    NASA Astrophysics Data System (ADS)

    Wagner, Delia; Halmagean, Eugenia T.; Loukas, Dido Y.; Misiakos, K.; Tsoi, Elisabeth; Veron, A.; Ohanisian, M.

    1997-07-01

    For high sensitivity hard x-ray detector applications there is a solid-state alternative using high purity silicon as starting material. The paper presents some original results concerning a radiation hardened technology to be used for obtaining x-ray silicon detectors and the behavior of the special designed devices in a specific radiation environment. Original processing sequences were experimentally tested and results concerning the most performant technology suited for this specific application are presented. Specially designed gettering steps were applied by backside ion implantation and annealing for enhancing the minority carriers lifetime in the substrate material and for reducing leakage currents at orders less than 10 nA. After a complete presentation of the specific characteristics of the as obtained detectors, they were exposed and completely characterized in x-ray ambient up to dose levels of 10(superscript 8) rad (E greater than 50 keV). Solutions for increasing the detector sensitivity and stability in radiation environments are proposed.

  12. Theory of Angular Dispersive Imaging Hard X-ray Spectrographs

    SciTech Connect

    Shvyd'ko, Yury

    2015-05-13

    A spectrograph is an optical instrument that disperses photons of different energies into distinct directions and space locations and that images photon spectra on a position-sensitive detector. Spectrographs consist of collimating, angular dispersive, and focusing optical elements. Bragg reflecting crystals arranged in an asymmetric scattering geometry can be used as the dispersing elements in the hard-x-ray regime. A ray-transfer matrix technique is applied to propagate x-rays through the optical elements. Several optical designs of hard-x-ray spectrographs are proposed and their performance is analyzed. Spectrographs with an energy resolution of 0.1 meV and a spectral window of imaging up to a few tens of meVs are shown to be feasible for inelastic x-ray scattering (IXS) spectroscopy applications. In another example, a spectrograph with a 1-meV spectral resolution and 85-meV spectral window of imaging is considered for Cu K-edge resonant IXS.

  13. Stellar contributions to the hard X-ray galactic ridge

    NASA Technical Reports Server (NTRS)

    Worrall, S. M.; Marshall, F. E.

    1982-01-01

    The number density of serendipitous sources in galactic plane Einstein Observatory IPC fields are compared with predictions based on the intensity of the HEAO-1 A2 unresolved hrd X-ray galactic ridge emission. It is concluded that theoretically predicted X-ray source populations of luminosity 8 x 10 to the 32nd power to 3 x 10 to the 34th power ergs s have 2 KeV to 10 KeV local surface densities of less than approximately .0008 L(32) pc/2 and are unlikely to be the dominant contributors to the hard X-ray ridge. An estimate for Be/neutron star binary systems, such as X Persei, gives a 2 keV to 10 keV local surface density of approximately 26 x 10 to the -5 power L(32) pc/2. Stellar systems of low luminosity, are more likely contributors. Both RS CVn and cataclysmic variable systems contribute 43% + or - 18% of the ridge. A more sensitive measurement of the ridge's hard X-ray spectrum should reveal Fe-line emission. We speculate that dM stars are further major contributors.

  14. Hard x ray imaging graphics development and literature search

    NASA Technical Reports Server (NTRS)

    Emslie, A. Gordon

    1991-01-01

    This report presents work performed between June 1990 and June 1991 and has the following objectives: (1) a comprehensive literature search of imaging technology and coded aperture imaging as well as relevant topics relating to solar flares; (2) an analysis of random number generators; and (3) programming simulation models of hard x ray telescopes. All programs are compatible with NASA/MSFC Space Science LAboratory VAX Cluster and are written in VAX FORTRAN and VAX IDL (Interactive Data Language).

  15. X-ray photoelectron spectroscopy in the hard x-ray regime

    NASA Astrophysics Data System (ADS)

    Fadley, Charles S.

    2006-03-01

    Photoelectron spectroscopy is by now a very widely used tool for the study of atoms, molecules, solids, surfaces, and nanoscale structures. Until very recently, the exciting radiation has been limited to the energy range below about 2 keV. However, within the past few years, a few experimental projects have been initiated in which photon energies in the 5-15 keV range are employed. By matching the characteristics of undulator beamlines at third-generation synchrotron radiation sources to the optical properties of the electron spectrometer, it has proven possible to overcome the reduced photoelectric cross sections at such high energies and to study both core and valence electronic levels with resolutions down to ca. 50 meV [1]. Such hard x-ray photoelectron spectroscopy (HXPS or HAXPES) has the advantage of being more bulk sensitive, with electron inelastic attenuation lengths in the 50-150 Angstrom range. In this talk, I will discuss the advantages and disadvantages of this new direction, including highlights from recent work, as well as suggested future avenues for HXPS studies. [1] Nuclear Instruments and Methods A 547, 24 (2005), special issue dedicated to hard x-ray photoelectron spectroscopy, edited by J. Zegenhagen and C. Kunz.

  16. Bulk sensitive hard x-ray photoemission electron microscopy

    SciTech Connect

    Patt, M. Wiemann, C.; Weber, N.; Escher, M.; Merkel, M.; Gloskovskii, A.; Drube, W.; Schneider, C. M.

    2014-11-15

    Hard x-ray photoelectron spectroscopy (HAXPES) has now matured into a well-established technique as a bulk sensitive probe of the electronic structure due to the larger escape depth of the highly energetic electrons. In order to enable HAXPES studies with high lateral resolution, we have set up a dedicated energy-filtered hard x-ray photoemission electron microscope (HAXPEEM) working with electron kinetic energies up to 10 keV. It is based on the NanoESCA design and also preserves the performance of the instrument in the low and medium energy range. In this way, spectromicroscopy can be performed from threshold to hard x-ray photoemission. The high potential of the HAXPEEM approach for the investigation of buried layers and structures has been shown already on a layered and structured SrTiO{sub 3} sample. Here, we present results of experiments with test structures to elaborate the imaging and spectroscopic performance of the instrument and show the capabilities of the method to image bulk properties. Additionally, we introduce a method to determine the effective attenuation length of photoelectrons in a direct photoemission experiment.

  17. The Development of Hard-X-Ray Optics at MSFC

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian D.; Elsner, R. F.; Engelhaupt, D. E.; Kolodziejczak, J. J.; ODell, S. L.; Speegle, C. O.; Weisskopf, M. C.; Six, Frank (Technical Monitor)

    2002-01-01

    We are fabricating optics for the hard-x-ray region using electroless nickel replication. The attraction of this process, which has been widely used elsewhere, is that the resulting full shell optics are inherently table and thus can have very good angular resolution. The challenge with this process is to develop lightweight optics (nickel has a relatively high density of 8.9 g / cu cm), and to keep down the costs of mandrel fabrication. We accomplished the former through the development of high-strength nickel alloys that permit very thin shells without fabrication- and handling-induced deformations. For the latter, we have utilized inexpensive grinding and diamond turning to figure the mandrels and then purpose-built polishing machines to finish the surface. In-house plating tanks and a simple water-bath separation system complete the process. To date we have built shells ranging in size from 5 cm diameter to 50 cm, and with thickness down to 100 micron. For our HERO (high energy replicated optics) balloon program, we are fabricating over 200 iridium-coated shells, 250 microns thick, for hard-x-ray imaging up to 75 keV. Early test results on these have indicated half-power-diameters of 15 arcsec. The status of these and other hard-x-ray optics will be reviewed.

  18. The Development of Hard-X-Ray Optics at MSFC

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian D.; Elsner, R. F.; Engelhaupt, D. E.; Kolodziejczak, J. J.; ODell, S. L.; Speegle, C. O.; Weisskopf, M. C.; Six, Frank (Technical Monitor)

    2002-01-01

    We are fabricating optics for the hard-x-ray region using electroless nickel replication. The attraction of this process, which has been widely used elsewhere, is that the resulting full shell optics are inherently table and thus can have very good angular resolution. The challenge with this process is to develop lightweight optics (nickel has a relatively high density of 8.9 g / cu cm), and to keep down the costs of mandrel fabrication. We accomplished the former through the development of high-strength nickel alloys that permit very thin shells without fabrication- and handling-induced deformations. For the latter, we have utilized inexpensive grinding and diamond turning to figure the mandrels and then purpose-built polishing machines to finish the surface. In-house plating tanks and a simple water-bath separation system complete the process. To date we have built shells ranging in size from 5 cm diameter to 50 cm, and with thickness down to 100 micron. For our HERO (high energy replicated optics) balloon program, we are fabricating over 200 iridium-coated shells, 250 microns thick, for hard-x-ray imaging up to 75 keV. Early test results on these have indicated half-power-diameters of 15 arcsec. The status of these and other hard-x-ray optics will be reviewed.

  19. X-ray Properties of an Unbiased Hard X-ray Detected Sample of AGN

    NASA Technical Reports Server (NTRS)

    Winter, Lisa M.; Mushotzky, Richard F.; Tueller, Jack; Markwardt, Craig

    2007-01-01

    The SWIFT gamma ray observatory's Burst Alert Telescope (BAT) has detected a sample of active galactic nuclei (AGN) based solely on their hard X-ray flux (14-195keV). In this paper, we present for the first time XMM-Newton X-ray spectra for 22 BAT AGXs with no previously analyzed X-ray spectra. If our sources are a representative sample of the BAT AGN, as we claim, our results present for the first time global X-ray properties of an unbiased towards absorption (n(sub H) < 3 x 10(exp 25)/sq cm), local (< z >= 0.03), AGN sample. We find 9/22 low absorption (n(sub H) < 10(exp 23)/sq cm), simple power law model sources, where 4 of these sources have a statistically significant soft component. Among these sources, we find the presence of a warm absorber statistically significant for only one Seyfert 1 source, contrasting with the ASCA results of Reynolds (1997) and George et al. (1998), who find signatures of warm absorption in half or more of their Seyfert 1 samples at similar redshifts. Additionally, the remaining sources (13122) have more complex spectra, well-fit by an absorbed power law at E > 2.0 keV. Five of the complex sources (NGC 612, ESO 362-G018, MRK 417, ESO 506-G027, and NGC 6860) are classified as Compton-thick candidates. Further, we find four more sources (SWIFT J0641.3+3257, SWIFT J0911.2+4533, SWIFT J1200.8+0650, and NGC 4992) with properties consistent with the hidden/buried AGN reported by Ueda et al. (2007). Finally, we include a comparison of the XMM EPIC spectra with available SWIFT X-ray Telescope (XRT) observations. From these comparisons, we find 6/16 sources with varying column densities, 6/16 sources with varying power law indices, and 13/16 sources with varying fluxes, over periods of hours to months. Flux and power law index are correlated for objects where both parameters vary.

  20. The Swift-BAT Hard X-Ray Transient Monitor

    NASA Technical Reports Server (NTRS)

    Krimm, H. A.; Holland, S. T.; Corbet, R. H. D.; Pearlman, A. B.; Romano, P.; Kennea, J. A.; Bloom, J. S.; Barthelmy, S. D.; Baumgartner, W. H.; Cummings, J. R.; hide

    2013-01-01

    The Swift/Burst Alert Telescope (BAT) hard X-ray transient monitor provides near real-time coverage of the X-ray sky in the energy range 15-50 keV. The BAT observes 88% of the sky each day with a detection sensitivity of 5.3 mCrab for a full-day observation and a time resolution as fine as 64 s. The three main purposes of the monitor are (1) the discovery of new transient X-ray sources, (2) the detection of outbursts or other changes in the flux of known X-ray sources, and (3) the generation of light curves of more than 900 sources spanning over eight years. The primary interface for the BAT transient monitor is a public Web site. Between 2005 February 12 and 2013 April 30, 245 sources have been detected in the monitor, 146 of them persistent and 99 detected only in outburst. Among these sources, 17 were previously unknown and were discovered in the transient monitor. In this paper, we discuss the methodology and the data processing and filtering for the BAT transient monitor and review its sensitivity and exposure.We provide a summary of the source detections and classify them according to the variability of their light curves. Finally, we review all new BAT monitor discoveries. For the new sources that are previously unpublished, we present basic data analysis and interpretations.

  1. The Swift/BAT Hard X-ray Transient Monitor

    NASA Technical Reports Server (NTRS)

    Krimm, H. A.; Holland, S. T.; Corbet, R.H.D.; Pearlman, A. B.; Romano, P.; Kennea, J. A.; Bloom, J. S.; Barthelmy, S. D.; Baumgartner, W. H.; Cummings, J. R.; Gehrels, N.; Lien, A. Y.; Markwardt, C. B.; Palmer, D. M.; Sakamoto, T.; Stamatikos, M.; Ukwatta, N.

    2013-01-01

    The Swift/Burst Alert Telescope (BAT) hard X-ray transient monitor provides near real-time coverage of the X-ray sky in the energy range 15-50 keV. The BAT observes 88% of the sky each day with a detection sensitivity of 5.3 mCrab for a full-day observation and a time resolution as ne as 64 seconds. The three main purposes of the monitor are (1) the discovery of new transient X-ray sources, (2) the detection of outbursts or other changes in the ux of known X-ray sources, and (3) the generation of light curves of more than 900 sources spanning over eight years. The primary interface for the BAT transient monitor is a public web page. Since 2005 February, 242 sources have been detected in the monitor, 149 of them persistent and 93 detected only in outburst. Among these sources, 16 were previously unknown and discovered in the transient monitor. In this paper, we discuss the methodology and the data processing and ltering for the BAT transient monitor and review its sensitivity and exposure. We provide a summary of the source detections and classify them according to the variability of their light curves. Finally, we review all new BAT monitor discoveries and present basic data analysis and interpretations for those sources with previously unpublished results.

  2. The Swift-BAT Hard X-Ray Transient Monitor

    NASA Technical Reports Server (NTRS)

    Krimm, H. A.; Holland, S. T.; Corbet, R. H. D.; Pearlman, A. B.; Romano, P.; Kennea, J. A.; Bloom, J. S.; Barthelmy, S. D.; Baumgartner, W. H.; Cummings, J. R.; Gehrels, N.; Lien, A. Y.; Markwardt, C. B.; Palmer, D. M.; Sakamoto, T.; Stamatikos, M.; Ukwatta, T. N.

    2013-01-01

    The Swift/Burst Alert Telescope (BAT) hard X-ray transient monitor provides near real-time coverage of the X-ray sky in the energy range 15-50 keV. The BAT observes 88% of the sky each day with a detection sensitivity of 5.3 mCrab for a full-day observation and a time resolution as fine as 64 s. The three main purposes of the monitor are (1) the discovery of new transient X-ray sources, (2) the detection of outbursts or other changes in the flux of known X-ray sources, and (3) the generation of light curves of more than 900 sources spanning over eight years. The primary interface for the BAT transient monitor is a public Web site. Between 2005 February 12 and 2013 April 30, 245 sources have been detected in the monitor, 146 of them persistent and 99 detected only in outburst. Among these sources, 17 were previously unknown and were discovered in the transient monitor. In this paper, we discuss the methodology and the data processing and filtering for the BAT transient monitor and review its sensitivity and exposure.We provide a summary of the source detections and classify them according to the variability of their light curves. Finally, we review all new BAT monitor discoveries. For the new sources that are previously unpublished, we present basic data analysis and interpretations.

  3. The hard x-ray imager onboard IXO

    NASA Astrophysics Data System (ADS)

    Nakazawa, Kazuhiro; Takahashi, Tadayuki; Limousin, Olivier; Kokubun, Motohide; Watanabe, Shin; Laurent, Philippe; Arnaud, Monique; Tajima, Hiroyasu

    2010-07-01

    The Hard X-ray Imager (HXI) is one of the instruments onboard International X-ray Observatory (IXO), to be launched into orbit in 2020s. It covers the energy band of 10-40 keV, providing imaging-spectroscopy with a field of view of 8 x 8 arcmin2. The HXI is attached beneath the Wide Field Imager (WFI) covering 0.1-15 keV. Combined with the super-mirror coating on the mirror assembly, this configuration provides observation of X-ray source in wide energy band (0.1-40.0 keV) simultaneously, which is especially important for varying sources. The HXI sensor part consists of the semiconductor imaging spectrometer, using Si in the medium energy detector and CdTe in the high energy detector as its material, and an active shield covering its back to reduce background in orbit. The HXI technology is based on those of the Japanese-lead new generation X-ray observatory ASTRO-H, and partly from those developed for Simbol-X. Therefore, the technological development is in good progress. In the IXO mission, HXI will provide a major assets to identify the nature of the object by penetrating into thick absorbing materials and determined the inherent spectral shape in the energy band well above the structure around Fe-K lines and edges.

  4. THE SWIFT/BAT HARD X-RAY TRANSIENT MONITOR

    SciTech Connect

    Krimm, H. A.; Holland, S. T.; Corbet, R. H. D.; Pearlman, A. B.; Baumgartner, W. H.; Cummings, J. R.; Romano, P.; Kennea, J. A.; Bloom, J. S.; Barthelmy, S. D.; Gehrels, N.; Lien, A. Y.; Markwardt, C. B.; Ukwatta, T. N.; Palmer, D. M.; Sakamoto, T.; Stamatikos, M.

    2013-11-01

    The Swift/Burst Alert Telescope (BAT) hard X-ray transient monitor provides near real-time coverage of the X-ray sky in the energy range 15-50 keV. The BAT observes 88% of the sky each day with a detection sensitivity of 5.3 mCrab for a full-day observation and a time resolution as fine as 64 s. The three main purposes of the monitor are (1) the discovery of new transient X-ray sources, (2) the detection of outbursts or other changes in the flux of known X-ray sources, and (3) the generation of light curves of more than 900 sources spanning over eight years. The primary interface for the BAT transient monitor is a public Web site. Between 2005 February 12 and 2013 April 30, 245 sources have been detected in the monitor, 146 of them persistent and 99 detected only in outburst. Among these sources, 17 were previously unknown and were discovered in the transient monitor. In this paper, we discuss the methodology and the data processing and filtering for the BAT transient monitor and review its sensitivity and exposure. We provide a summary of the source detections and classify them according to the variability of their light curves. Finally, we review all new BAT monitor discoveries. For the new sources that are previously unpublished, we present basic data analysis and interpretations.

  5. X-ray microscopy of soft and hard human tissues

    SciTech Connect

    Müller, Bert Schulz, Georg Deyhle, Hans Stalder, Anja K. Ilgenstein, Bernd Holme, Margaret N. Hieber, Simone E.; Beckmann, Felix

    2016-01-28

    The simultaneous post mortem visualization of soft and hard tissues using absorption-based CT remains a challenge. If the photon energy is optimized for the visualization of hard tissue, the surrounding soft tissue components are almost X-ray transparent. Therefore, the combination with other modalities such as phase-contrast CT, magnetic resonance microscopy, and histology is essential to detect the anatomical features. The combination of the 2D and 3D data sets using sophisticated segmentation and registration tools allows for conclusions about otherwise inaccessible anatomical features essential for improved patient treatments.

  6. X-ray microscopy of soft and hard human tissues

    NASA Astrophysics Data System (ADS)

    Müller, Bert; Schulz, Georg; Deyhle, Hans; Stalder, Anja K.; Ilgenstein, Bernd; Holme, Margaret N.; Weitkamp, Timm; Beckmann, Felix; Hieber, Simone E.

    2016-01-01

    The simultaneous post mortem visualization of soft and hard tissues using absorption-based CT remains a challenge. If the photon energy is optimized for the visualization of hard tissue, the surrounding soft tissue components are almost X-ray transparent. Therefore, the combination with other modalities such as phase-contrast CT, magnetic resonance microscopy, and histology is essential to detect the anatomical features. The combination of the 2D and 3D data sets using sophisticated segmentation and registration tools allows for conclusions about otherwise inaccessible anatomical features essential for improved patient treatments.

  7. Hard x-ray scanning microscopy with coherent radiation: Beyond the resolution of conventional x-ray microscopes

    SciTech Connect

    Schropp, A.; Hoppe, R.; Patommel, J.; Samberg, D.; Seiboth, F.; Stephan, S.; Schroer, C. G.; Wellenreuther, G.; Falkenberg, G.

    2012-06-18

    We demonstrate x-ray scanning coherent diffraction microscopy (ptychography) with 10 nm spatial resolution, clearly exceeding the resolution limits of conventional hard x-ray microscopy. The spatial resolution in a ptychogram is shown to depend on the shape (structure factor) of a feature and can vary for different features in the object. In addition, the resolution and contrast are shown to increase with increasing coherent fluence. For an optimal ptychographic x-ray microscope, this implies a source with highest possible brilliance and an x-ray optic with a large numerical aperture to generate the optimal probe beam.

  8. The need for hard X-ray imaging observations at the next solar maximum

    NASA Technical Reports Server (NTRS)

    Emslie, A. Gordon

    1988-01-01

    Canonical models of solar hard X-ray bursts; associated length and time scales; the adequacies and inadequacies of previous observations; theoretical modeling predictions; arcsecond imaging of solar hard X-rays are outlined.

  9. Cumulative luminosity distributions of supergiant fast X-ray transients in hard X-rays

    NASA Astrophysics Data System (ADS)

    Paizis, A.; Sidoli, L.

    2014-04-01

    We have analysed in a systematic way about nine years of INTEGRAL data (17-100 keV) focusing on supergiant fast X-ray transients (SFXTs) and three classical high-mass X-ray binaries (HMXBs). Our approach has been twofold: image-based analysis, sampled over a ˜ks time frame to investigate the long-term properties of the sources and light-curve-based analysis, sampled over a 100 s time frame to seize the fast variability of each source during its ˜ ks activity. We find that while the prototypical SFXTs (IGR J17544-2619, XTE J1739-302 and SAX J1818.6-1703) are among the sources with the lowest ˜ ks-based duty cycle (<1 per cent activity over nine years of data), when studied at the 100 s level, they are the ones with the highest detection percentage, meaning that, when active, they tend to have many bright short-term flares with respect to the other SFXTs. To investigate in a coherent and self-consistent way all the available results within a physical scenario, we have extracted cumulative luminosity distributions for all the sources of the sample. The characterization of such distributions in hard X-rays, presented for the first time in this work for the SFXTs, shows that a power-law model is a plausible representation for SFXTs, while it can only reproduce the very high luminosity tail of the classical HMXBs, and even then, with a significantly steeper power-law slope with respect to SFXTs. The physical implications of these results within the frame of accretion in wind-fed systems are discussed.

  10. Hard X-ray spectrum of Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Nolan, P. L.; Gruber, D. E.; Knight, F. K.; Matteson, J. L.; Rothschild, R. E.; Marshall, F. E.; Levine, A. M.; Primini, F. A.

    1981-01-01

    Long-term measurements of the hard X-ray spectrum from 3 keV to 8 MeV of the black-hole candidate Cygnus X-1 in its low state are reported. Observations were made from October 26 to November 18, 1977 with the A2 (Cosmic X-ray) and A4 (Hard X-ray and Low-Energy Gamma-Ray) experiments on board HEAO 1 in the spacecraft's scanning mode. The measured spectrum below 200 keV is found to agree well with previous spectra which have been fit by a model of the Compton scattering of optical or UV photons in a very hot plasma of electron temperature 32.4 keV and optical depth 3.9 or 1.6 for spherical or disk geometry, respectively. At energies above 300 keV, however, flux excess is observed which may be accounted for by a distribution of electron temperatures from 15 to about 100 keV.

  11. Hard X-ray imaging spectroscopy of FOXSI microflares

    NASA Astrophysics Data System (ADS)

    Glesener, Lindsay; Krucker, Sam; Christe, Steven; Camilo Buitrago-Casas, Juan; Ishikawa, Shin-nosuke; Foster, Natalie

    2015-04-01

    The ability to investigate particle acceleration and hot thermal plasma in solar flares relies on hard X-ray imaging spectroscopy using bremsstrahlung emission from high-energy electrons. Direct focusing of hard X-rays (HXRs) offers the ability to perform cleaner imaging spectroscopy of this emission than has previously been possible. Using direct focusing, spectra for different sources within the same field of view can be obtained easily since each detector segment (pixel or strip) measures the energy of each photon interacting within that segment. The Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket payload has successfully completed two flights, observing microflares each time. Flare images demonstrate an instrument imaging dynamic range far superior to the indirect methods of previous instruments like the RHESSI spacecraft.In this work, we present imaging spectroscopy of microflares observed by FOXSI in its two flights. Imaging spectroscopy performed on raw FOXSI images reveals the temperature structure of flaring loops, while more advanced techniques such as deconvolution of the point spread function produce even more detailed images.

  12. The Swift/BAT Hard X-Ray Survey

    NASA Technical Reports Server (NTRS)

    Tueller, Jack; Markwardt, C. B.; Mushotzky, R. F.; Barthelmy, S. D.; Gehrels, N.; Krimm, H. A.; Skinner, G. K.; Falcone, A.; Kennea, J. A.

    2006-01-01

    The BAT instrument on Swift is a wide field (70 deg. '100 deg.) coded aperture instrument with a CdZnTe detector array sensitive to energies of 14-200 keV. Each day, the BAT survey typically covers 60% of the sky to a detection limit of 30 millicrab. BAT makes hard X-ray light curves of similar sensitivity and coverage to the X-ray light curves from XTE/ASM, but in an energy range where sources show remarkably different behavior. Integrating the BAT data produces an all sky map with a source detection limit at 15 months of a few 10(exp -11) ergs per square centimeter per second, depending on the exposure. This is the first uniform all-sky survey at energies high enough to be unaffected by absorption since HEAO 1 in 1977-8. BAT has detected greater than 200 AGN and greater than 180 galactic sources. At high galactic latitudes, the BAT sources are usually easy to identify, but many are heavily absorbed and there are a few quite surprising identifications. The BAT selected galaxies can be used to calculate LogN/LogS and the luminosity function for AGN which are complete and free from common systematics. Several crucial parameters for understanding the cosmic hard x-ray background are now determined.

  13. Hard X-ray spectrum of Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Nolan, P. L.; Gruber, D. E.; Knight, F. K.; Matteson, J. L.; Rothschild, R. E.; Marshall, F. E.; Levine, A. M.; Primini, F. A.

    1981-01-01

    Long-term measurements of the hard X-ray spectrum from 3 keV to 8 MeV of the black-hole candidate Cygnus X-1 in its low state are reported. Observations were made from October 26 to November 18, 1977 with the A2 (Cosmic X-ray) and A4 (Hard X-ray and Low-Energy Gamma-Ray) experiments on board HEAO 1 in the spacecraft's scanning mode. The measured spectrum below 200 keV is found to agree well with previous spectra which have been fit by a model of the Compton scattering of optical or UV photons in a very hot plasma of electron temperature 32.4 keV and optical depth 3.9 or 1.6 for spherical or disk geometry, respectively. At energies above 300 keV, however, flux excess is observed which may be accounted for by a distribution of electron temperatures from 15 to about 100 keV.

  14. The Swift/BAT Hard X-ray Survey

    NASA Technical Reports Server (NTRS)

    Tueller, Jack; Markwardt, C. B.; Mushotzky, R. F.; Barthelmy, S. D.; Gehrels, N.; Krimm, A.; Skinner, G. K.; Falcone, A.; Kennea, J. A.

    2006-01-01

    The BAT instrument on Swift is a wide field (70 deg. '100 deg.) coded aperture instrument with a CdZnTe detector array sensitive to energies of 14-200 keV. Each day, the BAT survey typically covers 60% of the sky to a detection limit of 30 millicrab. BAT makes hard X-ray light curves of similar sensitivity and coverage to the X-ray light curves from XTE/ASM, but in an energy range where sources show remarkably different behavior. Integrating the BAT data produces an all sky map with a source detection limit at 15 months of a few 10(exp -11) ergs per square centimeter per second, depending on the exposure. This is the first uniform all-sky survey at energies high enough to be unaffected by absorption since HEAO 1 in 1977-8. BAT has detected greater than 200 AGN and greater than 180 galactic sources. At high galactic latitudes, the BAT sources are usually easy to identify, but many are heavily absorbed and there are a few quite surprising identifications. The BAT selected galaxies can be used to calculate LogN/LogS and the luminosity function for AGN which are complete and free from common systematics. Several crucial parameters for understanding the cosmic hard x-ray background are now determined.

  15. Diffractive imaging at large Fresnel number: Challenge of dynamic mesoscale imaging with hard x rays

    NASA Astrophysics Data System (ADS)

    Barber, John L.; Barnes, Cris W.; Sandberg, Richard L.; Sheffield, Richard L.

    2014-05-01

    Real materials have structure at both the atomic or crystalline scale as well as at interfaces and defects at the larger scale of grains. There is a need for the study of materials at the "mesoscale," the scale at which subgranular physical processes and intergranular organization couple to determine microstructure, crucially impacting constitutive response at the engineering macroscale. Diffractive imaging using photons that can penetrate multiple grains of material would be a transformative technique for the study of the performance of materials in dynamic extremes. Thicker samples imply higher energy photons of shorter wavelength, and imaging of multiple grains implies bigger spot sizes. Such imaging requires the use of future planned and proposed hard x-ray free electron lasers (such as the European XFEL) to provide both the spatial coherence transverse to the large spots and the peak brilliance to provide the short illumination times. The result is that the Fresnel number of the system becomes large and is no longer in the Fraunhofer far-field limit. The interrelated issues of diffractive imaging at large Fresnel number are analyzed, including proof that diffractive imaging is possible in this limit and estimates of the signal-to-noise possible. In addition, derivation of the heating rates for brilliant pulses of x rays are presented. The potential and limitations on multiple dynamic images are derived. This paper will present a study of x-ray interactions with materials in this new regime of spatially coherent but relatively large mesoscale spots at very hard energies. It should provide the theory and design background for the experiments and facilities required to control materials in extreme environments, in particular for the next generation of very-hard-x-ray free electron lasers.

  16. Deducing Electron Properties from Hard X-Ray Observations

    NASA Technical Reports Server (NTRS)

    Kontar, E. P.; Brown, J. C.; Emslie, A. G.; Hajdas, W.; Holman, G. D.; Hurford, G. J.; Kasparova, J.; Mallik, P. C. V.; Massone, A. M.; McConnell, M. L.; Piana, M.; Prato, M.; Schmahl, E. J.; Suarez-Garcia, E.

    2011-01-01

    X-radiation from energetic electrons is the prime diagnostic of flare-accelerated electrons. The observed X-ray flux (and polarization state) is fundamentally a convolution of the cross-section for the hard X-ray emission process(es) in question with the electron distribution function, which is in turn a function of energy, direction, spatial location and time. To address the problems of particle propagation and acceleration one needs to infer as much information as possible on this electron distribution function, through a deconvolution of this fundamental relationship. This review presents recent progress toward this goal using spectroscopic, imaging and polarization measurements, primarily from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). Previous conclusions regarding the energy, angular (pitch angle) and spatial distributions of energetic electrons in solar flares are critically reviewed. We discuss the role and the observational evidence of several radiation processes: free-free electron-ion, free-free electron-electron, free-bound electron-ion, photoelectric absorption and Compton backscatter (albedo), using both spectroscopic and imaging techniques. This unprecedented quality of data allows for the first time inference of the angular distributions of the X-ray-emitting electrons and improved model-independent inference of electron energy spectra and emission measures of thermal plasma. Moreover, imaging spectroscopy has revealed hitherto unknown details of solar flare morphology and detailed spectroscopy of coronal, footpoint and extended sources in flaring regions. Additional attempts to measure hard X-ray polarization were not sufficient to put constraints on the degree of anisotropy of electrons, but point to the importance of obtaining good quality polarization data in the future.

  17. Deducing Electron Properties from Hard X-Ray Observations

    NASA Technical Reports Server (NTRS)

    Kontar, E. P.; Brown, J. C.; Emslie, A. G.; Hajdas, W.; Holman, G. D.; Hurford, G. J.; Kasparova, J.; Mallik, P. C. V.; Massone, A. M.; McConnell, M. L.; hide

    2011-01-01

    X-radiation from energetic electrons is the prime diagnostic of flare-accelerated electrons. The observed X-ray flux (and polarization state) is fundamentally a convolution of the cross-section for the hard X-ray emission process(es) in question with the electron distribution function, which is in turn a function of energy, direction, spatial location and time. To address the problems of particle propagation and acceleration one needs to infer as much information as possible on this electron distribution function, through a deconvolution of this fundamental relationship. This review presents recent progress toward this goal using spectroscopic, imaging and polarization measurements, primarily from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). Previous conclusions regarding the energy, angular (pitch angle) and spatial distributions of energetic electrons in solar flares are critically reviewed. We discuss the role and the observational evidence of several radiation processes: free-free electron-ion, free-free electron-electron, free-bound electron-ion, photoelectric absorption and Compton backscatter (albedo), using both spectroscopic and imaging techniques. This unprecedented quality of data allows for the first time inference of the angular distributions of the X-ray-emitting electrons and improved model-independent inference of electron energy spectra and emission measures of thermal plasma. Moreover, imaging spectroscopy has revealed hitherto unknown details of solar flare morphology and detailed spectroscopy of coronal, footpoint and extended sources in flaring regions. Additional attempts to measure hard X-ray polarization were not sufficient to put constraints on the degree of anisotropy of electrons, but point to the importance of obtaining good quality polarization data in the future.

  18. Fabrication of X-ray Mirror for Hard X-ray Diffraction Limited Nanofocusing

    SciTech Connect

    Yumoto, Hirokatsu; Mimura, Hidekazu; Matsuyama, Satoshi; Handa, Soichiro; Shibatani, Akihiko; Katagishi, Keiko; Yamamura, Kazuya; Sano, Yasuhisa; Endo, Katsuyoshi; Mori, Yuzo; Yamauchi, Kazuto; Yabashi, Makina

    2007-01-19

    We designed, fabricated and evaluated a total-reflection mirror having a designed focal size of 28 nm at 15keV. Line-focus tests on the fabricated mirror were carried out at the 1-km-long beamline (BL29XUL) of SPring-8. Nearly diffraction-limited performance with a full width at half maximum spot size of 30 nm was realized at 15 keV. We are planning to fabricate multilayer-coated mirror for realizing sub-10-nm focusing in hard x-ray region. We suggest a novel method of at-wavelength metrology. Wave-front error on the mirror surface can be estimated by a phase retrieval method using the intensity profile around the focal point. By correcting the estimated wave-front errors, sub-10-nm focusing is potentially feasible.

  19. Full Multilayer Laue Lens for Focusing Hard X-rays

    SciTech Connect

    Liu Chian; Shi, B.; Qian, J.; Conley, R.; Yan, H.; Wieczorek, M.; Macrander, A. T.; Maser, J.; Stephenson, G. B.

    2010-06-23

    Multilayer Laue Lenses (MLLs) were developed by us using dynamic diffraction effects to efficiently focus hard x-rays to very small spots. Using a partial MLL we were able to focus 19.5-keV hard x-rays to a line focus of 16 nm with an efficiency of 31%. A full MLL is a complete linear MLL structure. It can be fabricated by bonding two partial MLL wafers, or by growing the full structure using magnetron sputtering without bonding. A 40-{mu}m full MLL, with a total of 5166 layers of WSi{sub 2} and Si, has been successfully grown by sputter deposition. The layer thicknesses gradually vary from 4 nm to {approx}400 nm and then back to 4 nm. Two coating runs were used to grow the full structure, one for each half. It took over 56 h for each run. A 100-{mu}m nearly-full MLL was constructed by bonding. Each 50-{mu}m half-structure has 1788 WSi{sub 2} and Si layers with 12-nm to {approx}32-nm thicknesses and {approx}32-{mu}m total thickness, followed by a thick WSi{sub 2} layer of {approx}17 {mu}m, and an AuSn layer of {approx}1 {mu}m. Both full MLL structures survived dicing and polishing. The primary results demonstrate the feasibility and potential of a full MLL with a doubled numerical aperture and large beam acceptance for hard x-rays.

  20. Full Multilayer Laue Lens for focusing hard x-rays.

    SciTech Connect

    Liu, C.; Shi, B.; Qian, J.; Conley, R.; Yan, H.; Wieczorek, M.; Macrander, A. T.; Maser, J.; Stephenson, G. B.

    2010-06-01

    Multilayer Laue Lenses (MLLs) were developed by us using dynamic diffraction effects to efficiently focus hard x-rays to very small spots. Using a partial MLL we were able to focus 19.5-keV hard x-rays to a line focus of 16 nm with an efficiency of 31%. A full MLL is a complete linear MLL structure. It can be fabricated by bonding two partial MLL wafers, or by growing the full structure using magnetron sputtering without bonding. A 40-{micro}m full MLL, with a total of 5166 layers of WSi{sub 2} and Si, has been successfully grown by sputter deposition. The layer thicknesses gradually vary from 4 nm to {approx}400 nm and then back to 4 nm. Two coating runs were used to grow the full structure, one for each half. It took over 56 h for each run. A 100-{micro}m nearly-full MLL was constructed by bonding. Each 50-{micro}m half-structure has 1788 WSi{sub 2} and Si layers with 12-nm to {approx}32-nm thicknesses and {approx}32-{micro}m total thickness, followed by a thick WSi{sub 2} layer of {approx}17 {micro}m, and an AuSn layer of {approx}1 {micro}m. Both full MLL structures survived dicing and polishing. The primary results demonstrate the feasibility and potential of a full MLL with a doubled numerical aperture and large beam acceptance for hard x-rays.

  1. Measurements of Electron Diffusion via Hard X-ray Detection

    NASA Astrophysics Data System (ADS)

    Clayton, D. J.; O'Connell, R.; Burke, D. R.; Chapman, B. E.; Goetz, J. A.; Kaufman, M. C.; Gobbin, M.; Marrelli, L.; Martin, P.; Piovesan, P.; Harvey, R. W.

    2006-10-01

    An upgraded array of hard x-ray (HXR) detectors has been implemented on MST to measure electron particle diffusion in globally improved confinement pulsed parallel current drive (PPCD) plasmas and locally improved confinement quasi-single- helicity (QSH) plasmas. Each of these plasmas confines runaway electrons that emit HXRs. The diagnostic is a multichord array of CdZnTe detectors sensitive to 10-300 keV x-rays. Recently added lead shielding blocks x-rays from outside collimated lines of sight. The Fokker-Planck code CQL3D, now with HXR flux from the entire array as a constraint, is used to compute the diffusion coefficient as a function of radius during PPCD. In QSH plasmas, where one mode dominates the core tearing mode spectrum, HXRs are observed when a dominant island emerges, and the HXR flux oscillates in phase with the rotation of this island. Modeling with the ORBIT code shows that runaway electrons are better confined inside the island than in the exterior stochastic region.

  2. The impulsive hard X-rays from solar flares

    NASA Technical Reports Server (NTRS)

    Leach, J.

    1984-01-01

    A technique for determining the physical arrangement of a solar flare during the impulsive phase was developed based upon a nonthermal model interpretation of the emitted hard X-rays. Accurate values are obtained for the flare parameters, including those which describe the magnetic field structure and the beaming of the energetic electrons, parameters which have hitherto been mostly inaccessible. The X-ray intensity height structure can be described readily with a single expression based upon a semi-empirical fit to the results from many models. Results show that the degree of linear polarization of the X-rays from a flaring loop does not exceed 25 percent and can easily and naturally be as low as the polarization expected from a thermal model. This is a highly significant result in that it supersedes those based upon less thorough calculations of the electron beam dynamics and requires that a reevaluation of hopes of using polarization measurements to discriminate between categories of flare models.

  3. SIGHT - A balloon borne hard X-ray telescope

    NASA Technical Reports Server (NTRS)

    Wilkerson, J.; Edberg, T. K.; Hurley, K.; Lin, R. P.; Parsons, A.

    1991-01-01

    The authors report on progress toward developing a large-area, high-pressure xenon gas scintillator for use in hard X-ray astrophysics. Proof test results for a low-mass pressure vessel are presented. The design of a high-voltage multiplier board operating inside the scintillation chamber is discussed. The development of tetrakis-dimethylamine-thylene (TMAE)-based proportional tubes for detecting primary scintillation in the xenon is described. Finally, Monte Carlo tests of a scheme to use conventional photomultiplier tubes are discussed.

  4. Balloon program for hard-X-ray astronomy

    NASA Astrophysics Data System (ADS)

    Frontera, F.; dal Fiume, D.; Morelli, E.; Spada, G.

    1984-12-01

    The aims and progress of the program of balloon-borne NaI(Tl)-scintillator-array hard-X-ray (20-200-keV) astronomical observations using the payload described by Frontera et al. (1982) are surveyed, and some sample results from the three flights undertaken since 1980 are presented. The observations of the Crab pulsar in October 1980 are characterized in detail, and a power-law spectrum K(E/100) to the -alpha photons/sq cm s keV is derived, with K = 0.000637 + or - 0.000031 and alpha = 2.27 + or - 0.14.

  5. Probing deeper by hard x-ray photoelectron spectroscopy

    SciTech Connect

    Risterucci, P.; Renault, O. Martinez, E.; Delaye, V.; Detlefs, B.; Zegenhagen, J.; Gaumer, C.; Grenet, G.; Tougaard, S.

    2014-02-03

    We report an hard x-ray photoelectron spectroscopy method combining high excitation energy (15 keV) and improved modelling of the core-level energy loss features. It provides depth distribution of deeply buried layers with very high sensitivity. We show that a conventional approach relying on intensities of the core-level peaks is unreliable due to intense plasmon losses. We reliably determine the depth distribution of 1 ML La in a high-κ/metal gate stack capped with 50 nm a-Si. The method extends the sensitivity of photoelectron spectroscopy to depths beyond 50 nm.

  6. Young Stellar Objects from Soft to Hard X-rays

    NASA Astrophysics Data System (ADS)

    Güdel, Manuel

    2009-05-01

    Magnetically active stars are the sites of efficient particle acceleration and plasma heating, processes that have been studied in detail in the solar corona. Investigation of such processes in young stellar objects is much more challenging due to various absorption processes. There is, however, evidence for violent magnetic energy release in very young stellar objects. The impact on young stellar environments (e.g., circumstellar disk heating and ionization, operation of chemical networks, photoevaporation) may be substantial. Hard X-ray devices like those carried on Simbol-X will establish a basis for detailed studies of these processes.

  7. Powerful jets from black hole X-ray binaries in low/hard X-ray states

    NASA Astrophysics Data System (ADS)

    Fender, R. P.

    2001-03-01

    Four persistent (Cygnus X-1, GX 339-4, GRS 1758-258 and 1E 1740.7-2942) and three transient (GS 2023+38, GRO J0422+32 and GS 1354-64) black hole X-ray binary systems have been extensively observed at radio wavelengths during extended periods in the low/hard X-ray state, which is characterized in X-rays by a hard power-law spectrum and strong variability. All seven systems show a persistent flat or inverted (in the sense that α>~0, where Sν~να) radio spectrum in this state, markedly different from the optically thin radio spectra exhibited by most X-ray transients within days of outburst. Furthermore, in none of the systems is a high-frequency cut-off to this spectral component detected, and there is evidence that it extends to near-infrared or optical regimes. Luminous persistent hard X-ray states in the black hole system GRS 1915+105 produce a comparable spectrum. This spectral component is considered to arise in synchrotron emission from a conical, partially self-absorbed jet, of the same genre as those originally considered for active galactic nuclei. Whatever the physical origin of the low/hard X-ray states, these self-similar outflows are an ever-present feature. The power in the jet component is likely to be a significant (>=5per cent) and approximately fixed fraction of the total accretion luminosity. The correlation between hard X-ray and synchrotron emission in all the sources implies that the jets are intimately related to the Comptonization process, and do not have very large bulk Lorentz factors, unless the hard X-ray emission is also beamed by the same factor.

  8. Hard X-ray Emission from the NGC 5044 Group

    NASA Astrophysics Data System (ADS)

    Henriksen, Mark J.

    2011-01-01

    Observations made with the Rossi X-ray Timing Explorer Proportional Counter Array (PCA) to constrain the hard X-ray emission in the NGC 5044 group are reported here. Modeling a combined PCA and ROSAT position sensitive proportional counter spectrum with a 0.5-15 keV energy range shows excess hard emission above 4 keV. Addition of a power-law component with a spectral index of 2.6-2.8 and a luminosity of 2.6 × 1042 erg s-1 within 700 kpc in the observed energy band removes these residuals. Thus, there is a detection of a significant non-thermal component that is 32% of the total X-ray emission. Point-source emission makes up at most 14% of the non-thermal emission from the NGC 5044 group. Therefore, the diffuse, point-source-subtracted, non-thermal component is (2.2-3.0) × 1042 erg s-1. The cosmic-ray electron energy density is 3.6 × 10-12 erg cm-3 and the average magnetic field is 0.034 μG in the largest radio emitting region. The ratio of cosmic-ray electron energy density to magnetic field energy density, ~2.5 × 104, is significantly out of equipartition and is therefore atypical of radio lobes. In addition, the group's small size and low non-thermal energy density strongly contradicts the size-energy relationship found for radio lobes. Thus, it is unlikely related to the active galaxy and is most likely a relic of the merger. The energy in cosmic rays and magnetic field is consistent with simulations of cosmic-ray acceleration by merger shocks.

  9. Hard X-rays from SN 1993J

    NASA Technical Reports Server (NTRS)

    Leising, M. D.; Kurfess, J. D.; Clayton, D. D.; Grabelsky, D. A.; Grove, J. E.; Johnson, W. N.; Jung, G. V.; Kinzer, R. L.; Kroeger, R. A.; Purcell, W. R.

    1994-01-01

    The Oriented Scintillation Spectrometer Experiment (OSSE) on the Compton Observatory observed SN 1993J during three intervals centered approximately 12, 30, and 108 days after its outburst. Hard X-ray emission was detected in the first two of these intervals. No emission was seen in the third observation or in two earlier observations in 1991 and 1992. The coincidence of the observed excess with the outburst of SN 1993J and the consistency of the spectra and time evolution with those seen at lower energies by ROSAT and ASCA (Astro-D) argue that the observed emission is indeed from SN 1993J. It is probably due to the interaction of the fast supernova ejecta with circumstellar material. The luminosity, 5 x 10(exp 40) ergs/sec (50-150 keV) in the first interval, is significantly larger than predicted. Extrapolating the spectrum to a few keV accounts for most or all of the observed emission at low energy. The observed high temperature, 10(exp 9) K, is easily obtained in the shocked circumstellar matter, but a surprisingly high density is required there to give the observed luminosity, and little or no additional X-ray emission from denser shocked supernova ejecta is allowed. The hard emission might also be explained in terms of the shocked supernova ejecta itself with unexpectedly high temperature.

  10. Aperiodic Mo/Si multilayers for hard x-rays

    DOE PAGES

    Pardini, Tom; Alameda, Jennifer; Platonov, Yuriy; ...

    2016-08-04

    In this work we have developed aperiodic Molybdenum/Silicon (Mo/Si) multilayers (MLs) to reflect 16.25 keV photons at a grazing angle of incidence of 0.6° ± 0.05°. To the best of our knowledge this is the first time this material system has been used to fabricate aperiodic MLs for hard x-rays. At these energies new hurdles arise. First of all a large number of bilayers is required to reach saturation. This poses a challenge from the manufacturing point of view, as thickness control of each ML period becomes paramount. The latter is not well defined a priori, due to the thicknessmore » of the interfacial silicide layers which has been observed to vary as a function of Mo and Si thickness. Additionally an amorphous-to-crystalline transition for Mo must be avoided in order maintain reasonably low roughness at the interfaces. This transition is well within the range of thicknesses pertinent to this study. Despite these difficulties our data demonstrates that we achieved reasonably flat ML response across the angular acceptance of ± 0.05°, with an experimentally confirmed average reflectivity of 28%. Such a ML prescription is well suited for applications in the field of hard x-ray imaging of highly diverging sources.« less

  11. Aperiodic Mo/Si multilayers for hard x-rays

    SciTech Connect

    Pardini, Tom; Alameda, Jennifer; Platonov, Yuriy; Robinson, Jeff; Soufli, Regina; Spiller, Eberhard; Walton, Chris; Hau-Riege, Stefan P.

    2016-08-04

    In this work we have developed aperiodic Molybdenum/Silicon (Mo/Si) multilayers (MLs) to reflect 16.25 keV photons at a grazing angle of incidence of 0.6° ± 0.05°. To the best of our knowledge this is the first time this material system has been used to fabricate aperiodic MLs for hard x-rays. At these energies new hurdles arise. First of all a large number of bilayers is required to reach saturation. This poses a challenge from the manufacturing point of view, as thickness control of each ML period becomes paramount. The latter is not well defined a priori, due to the thickness of the interfacial silicide layers which has been observed to vary as a function of Mo and Si thickness. Additionally an amorphous-to-crystalline transition for Mo must be avoided in order maintain reasonably low roughness at the interfaces. This transition is well within the range of thicknesses pertinent to this study. Despite these difficulties our data demonstrates that we achieved reasonably flat ML response across the angular acceptance of ± 0.05°, with an experimentally confirmed average reflectivity of 28%. Such a ML prescription is well suited for applications in the field of hard x-ray imaging of highly diverging sources.

  12. Scientific Applications of a Hard-X-Ray FEL

    NASA Astrophysics Data System (ADS)

    Arthur, John

    1998-04-01

    Free electron lasers are now being designed which will operate at wavelengths down to about 1 angstrom. Due to the physics of the high-gain, single pass FEL process that these sources will exploit, the radiation produced will have unique properties. In particular: -- The FEL peak intensity and peak brightness will be many orders of magnitude higher than can be produced by any other source. -- The pulse length will be less than 1 picosecond, orders of magnitude shorter than can be achieved with any other bright source such as a synchrotron. -- The FEL radiation will have full transverse coherence and a degeneracy parameter (photons/coherence volume) equal to 10^9 or more. No other source can produce hard x-radiation with a degeneracy parameter significantly greater than 1. These properties offer the chance to study chemical, biological, and condensed matter dynamical processes with sub-picosecond time resolution and angstrom spatial resolution. X-ray crystallography could be used to determine the structures of very-short-lived states of photosynthetic reaction centers. X-ray photon correlation spectroscopy could be used to study fluctuations in materials such as gels and glass-forming liquids, on a time scale complementary to that probed by neutron spin echo and dynamic light scattering techniques, but with better spatial resolution. Snap-shot x-ray scattering experiments could be performed on samples in extreme conditions such as ultra-high pulsed magnetic fields. Furthermore, the high peak power of the FEL radiation could be used to create precisely-controlled chemical and structural modifications inside samples. There is also the possibility that nonlinear x-ray interactions could be used to give increased resolution for spectroscopic studies, to greatly expand the parameter space for atomic physics studies, and to permit new fundamental tests of quantum mechanics. For example, the study of nonlinear photon interactions with core atomic electrons would test and

  13. Nonthermal hard X-ray emission from the Galactic Ridge

    NASA Astrophysics Data System (ADS)

    Dogiel, V. A.; Schönfelder, V.; Strong, A. W.

    2002-02-01

    We investigate the origin of the nonthermal X-ray emission from the Galactic ridge in the range 10-200 keV. We consider bremsstrahlung of subrelativistic cosmic ray protons and electrons as production processes. From the solution of the kinetic equations describing the processes of particle in situ acceleration and spatial propagation we derive parameters of the spectra for protons and electrons. It is shown that the spectra must be very hard and have a cut-off at an energy ~ 150-500 MeV for protons or <= 300 keV for electrons. For in situ acceleration the flux of accelerated particles consists mainly of protons since the ratio of the accelerated protons to electrons is large and the flux of nuclei with charges Z>1 is strongly suppressed. We show that the gamma-ray line flux generated by protons does not exceed the upper limit derived from observations if we assume that the X-ray ridge emission is due to proton bremsstrahlung. However, the flux of pi o photons produced by the accelerated protons is higher than the observed flux from the Galactic ridge if the cut-off is exponential for >= 150 MeV. If the cut-off in the spectrum is extremely steep its value can be as large as 400 MeV, just near the threshold energy for pi o photon production. In this case the flux of gamma-rays is negligible but these protons still produce X-rays up to 200 keV. If a significant part of the hard X-ray emission at energies ~ 100 keV is emitted by unresolved sources, then the energy of X-rays produced by the protons does not have to exceed several tens keV. Therefore, the cut-off energy can be as small as 30-50 MeV and in this case the flux of pi o photons is negligible too. But for small cutoff energies the flux of nuclear gamma-ray lines exceeds significantly the upper limit derived from the COMPTEL and OSSE data. Hence the cut-off of the proton spectrum has to be somewhere in between 50-150 MeV in order not to exceed both pi o and gamma-ray line fluxes. However the energy density of

  14. Evidence for beamed electrons in a limb X-ray flare observed by Hard X-Ray Imaging Spectrometer (HXIS)

    NASA Technical Reports Server (NTRS)

    Haug, Eberhard; Elwert, Gerhard

    1986-01-01

    The limb flare of November 18, 1980, 14:51 UT, was investigated on the basis of X-ray images taken by the Hard X-ray Imaging Spectrometer (HXIS) and of X-ray spectra from the Hard X-Ray Burst Spectrometer (HXRBS) aboard the Solar Maximum Mission (SMM). The impulsive burst was also recorded at microwave frequencies between 2 and 20 GHz whereas no optical flare and no radio event at frequencies below 1 GHz were reported. The flare occurred directly at the SW limb of the solar disk. Taking advantage of the spatial resolution of HXIS images, the time evolution of the X-radiation originating from relatively small source regions can be studied. Using Monte Carlo computations of the energy distribution of energetic electrons traversing the solar plasma, the bremsstrahlung spectra produced by the electrons were derived.

  15. Backscatter of hard X-rays in the solar atmosphere. [Calculating the reflectance of solar x ray emission

    NASA Technical Reports Server (NTRS)

    Bai, T.; Ramaty, R.

    1977-01-01

    The solar photosphere backscatters a substantial fraction of the hard X rays from solar flares incident upon it. This reflection was studied using a Monte Carlo simulation which takes into account Compton scattering and photo-electric absorption. Both isotropic and anisotropic X ray sources are considered. The bremsstrahlung from an anisotropic distribution of electrons are evaluated. By taking the reflection into account, the inconsistency is removed between recent observational data regarding the center-to-limb variation of solar X ray emission and the predictions of models in which accelerated electrons are moving down toward the photosphere.

  16. Discovery in Cygnus X-3 of correlated behavior between the hard X-ray and radio

    NASA Technical Reports Server (NTRS)

    McCollough, M. L.; Harmon, B. A.; Robinson, C. R.; Zhang, S. N.; Hjellming, R. M.; Waltman, E. B.; Ghigo, F. D.; Foster, R. S.; Johnston, K. J.

    1997-01-01

    Using the Compton Gamma Ray Observatory (CGRO)/burst and transient search experiment (BATSE) hard X-ray data together with GHz radio monitoring data, a long term study was performed on the unusual X-ray binary Cyg X-3. This study resulted in the discovery of a relationship between the two wavebands. The combined data show that the radio emission is linked to the hard X-ray production. Radio flares, preflare low radio states and quiescence radio emission can be associated with changes in the hard X-ray intensity. Jet production is directly related to changes in the hard X-ray emission.

  17. Quantized hard-x-ray phase vortices nucleated by aberrated nanolenses

    SciTech Connect

    Pavlov, Konstantin M.; Paganin, David M.; Vine, David J.; Schmalz, Jelena A.; Suzuki, Yoshio; Uesugi, Kentaro; Takeuchi, Akihisa; Yagi, Naoto; Jakubek, Jan; Altissimo, Matteo; Clark, Jesse N.

    2011-01-15

    Quantized x-ray phase vortices, namely, screw-type topological defects in the wave fronts of a coherent monochromatic scalar x-ray wave field, may be spontaneously nucleated by x-ray lenses. Phase retrieval is used to reconstruct the phase and amplitude of the complex disturbance created by aberrated gold nanolenses illuminated with hard x rays. A nanoscale quantized x-ray vortex-antivortex dipole is observed, manifest both as a pair of opposite-helicity branch points in the Riemann sheets of the multivalued x-ray phase map of the complex x-ray field and in the vorticity of the associated Poynting vector field.

  18. Hard X-ray-induced optical luminescence via biomolecule-directed metal clusters.

    PubMed

    Osakada, Yasuko; Pratx, Guillem; Sun, Conroy; Sakamoto, Masanori; Ahmad, Moiz; Volotskova, Olga; Ong, Qunxiang; Teranishi, Toshiharu; Harada, Yoshie; Xing, Lei; Cui, Bianxiao

    2014-04-07

    Here, we demonstrate that biomolecule-directed metal clusters are applicable in the study of hard X-ray excited optical luminescence, promising a new direction in the development of novel X-ray-activated imaging probes.

  19. Small pixel CZT detector for hard X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Wilson, Matthew David; Cernik, Robert; Chen, Henry; Hansson, Conny; Iniewski, Kris; Jones, Lawrence L.; Seller, Paul; Veale, Matthew C.

    2011-10-01

    A new small pixel cadmium zinc telluride (CZT) detector has been developed for hard X-ray spectroscopy. The X-ray performance of four detectors is presented and the detectors are analysed in terms of the energy resolution of each pixel. The detectors were made from CZT crystals grown by the travelling heater method (THM) bonded to a 20×20 application specific integrated circuit (ASIC) and data acquisition (DAQ) system. The detectors had an array of 20×20 pixels on a 250 μm pitch, with each pixel gold-stud bonded to an energy resolving circuit in the ASIC. The DAQ system digitised the ASIC output with 14 bit resolution, performing offset corrections and data storage to disc in real time at up to 40,000 frames per second. The detector geometry and ASIC design was optimised for X-ray spectroscopy up to 150 keV and made use of the small pixel effect to preferentially measure the electron signal. A 241Am source was used to measure the spectroscopic performance and uniformity of the detectors. The average energy resolution (FWHM at 59.54 keV) of each pixel ranged from 1.09±0.46 to 1.50±0.57 keV across the four detectors. The detectors showed good spectral performance and uniform response over almost all pixels in the 20×20 array. A large area 80×80 pixel detector will be built that will utilise the scalable design of the ASIC and the large areas of monolithic spectroscopic grade THM grown CZT that are now available. The large area detector will have the same performance as that demonstrated here.

  20. NuSTAR Hard X-Ray Survey of the Galactic Center Region. II. X-Ray Point Sources

    NASA Astrophysics Data System (ADS)

    Hong, JaeSub; Mori, Kaya; Hailey, Charles J.; Nynka, Melania; Zhang, Shuo; Gotthelf, Eric; Fornasini, Francesca M.; Krivonos, Roman; Bauer, Franz; Perez, Kerstin; Tomsick, John A.; Bodaghee, Arash; Chiu, Jeng-Lun; Clavel, Maïca; Stern, Daniel; Grindlay, Jonathan E.; Alexander, David M.; Aramaki, Tsuguo; Baganoff, Frederick K.; Barret, Didier; Barrière, Nicolas; Boggs, Steven E.; Canipe, Alicia M.; Christensen, Finn E.; Craig, William W.; Desai, Meera A.; Forster, Karl; Giommi, Paolo; Grefenstette, Brian W.; Harrison, Fiona A.; Hong, Dooran; Hornstrup, Allan; Kitaguchi, Takao; Koglin, Jason E.; Madsen, Kristen K.; Mao, Peter H.; Miyasaka, Hiromasa; Perri, Matteo; Pivovaroff, Michael J.; Puccetti, Simonetta; Rana, Vikram; Westergaard, Niels J.; Zhang, William W.; Zoglauer, Andreas

    2016-07-01

    We present the first survey results of hard X-ray point sources in the Galactic Center (GC) region by NuSTAR. We have discovered 70 hard (3-79 keV) X-ray point sources in a 0.6 deg{}2 region around Sgr A* with a total exposure of 1.7 Ms, and 7 sources in the Sgr B2 field with 300 ks. We identify clear Chandra counterparts for 58 NuSTAR sources and assign candidate counterparts for the remaining 19. The NuSTAR survey reaches X-ray luminosities of ˜4× and ˜8 × 10{}32 erg s{}-1 at the GC (8 kpc) in the 3-10 and 10-40 keV bands, respectively. The source list includes three persistent luminous X-ray binaries (XBs) and the likely run-away pulsar called the Cannonball. New source-detection significance maps reveal a cluster of hard (>10 keV) X-ray sources near the Sgr A diffuse complex with no clear soft X-ray counterparts. The severe extinction observed in the Chandra spectra indicates that all the NuSTAR sources are in the central bulge or are of extragalactic origin. Spectral analysis of relatively bright NuSTAR sources suggests that magnetic cataclysmic variables constitute a large fraction (>40%-60%). Both spectral analysis and logN-logS distributions of the NuSTAR sources indicate that the X-ray spectra of the NuSTAR sources should have kT > 20 keV on average for a single temperature thermal plasma model or an average photon index of Γ = 1.5-2 for a power-law model. These findings suggest that the GC X-ray source population may contain a larger fraction of XBs with high plasma temperatures than the field population.

  1. NuSTAR Hard X-Ray Survey of the Galactic Center Region. II. X-Ray Point Sources

    NASA Technical Reports Server (NTRS)

    Hong, Jaesub; Mori, Kaya; Hailey, Charles J.; Nynka, Melania; Zhang, Shou; Gotthelf, Eric; Fornasini, Francesca M.; Krivonos, Roman; Bauer, Franz; Perez, Kerstin; hide

    2016-01-01

    We present the first survey results of hard X-ray point sources in the Galactic Center (GC) region by NuSTAR. We have discovered 70 hard (3-79 keV) X-ray point sources in a 0.6 deg(sup 2) region around Sgr?A* with a total exposure of 1.7 Ms, and 7 sources in the Sgr B2 field with 300 ks. We identify clear Chandra counterparts for 58 NuSTAR sources and assign candidate counterparts for the remaining 19. The NuSTAR survey reaches X-ray luminosities of approx. 4× and approx. 8 ×10(exp 32) erg/s at the GC (8 kpc) in the 3-10 and 10-40 keV bands, respectively. The source list includes three persistent luminous X-ray binaries (XBs) and the likely run-away pulsar called the Cannonball. New source-detection significance maps reveal a cluster of hard (>10 keV) X-ray sources near the Sgr A diffuse complex with no clear soft X-ray counterparts. The severe extinction observed in the Chandra spectra indicates that all the NuSTAR sources are in the central bulge or are of extragalactic origin. Spectral analysis of relatively bright NuSTAR sources suggests that magnetic cataclysmic variables constitute a large fraction (>40%-60%). Both spectral analysis and logN-logS distributions of the NuSTAR sources indicate that the X-ray spectra of the NuSTAR sources should have kT > 20 keV on average for a single temperature thermal plasma model or an average photon index of Lambda = 1.5-2 for a power-law model. These findings suggest that the GC X-ray source population may contain a larger fraction of XBs with high plasma temperatures than the field population.

  2. CZT Detector Development for Hard X-ray Astronomy

    NASA Astrophysics Data System (ADS)

    Garson, Alfred, III; Li, Q.; Beilicke, M.; Bose, R.; Burger, A.; Dowkonnt, P.; Groza, M.; Simburger, G.; Krawczynski, H.

    2008-05-01

    Cadmium Zinc Telluride (CZT) has proven itself as an excellent material for detection of hard X-rays. Advances in crystal growth have increased the quality and size of available single CZT crystals. We report on our ongoing development and characterization of CZT detector systems. With our dedicated class-100 cleanroom, we fabricate detectors using CZT crystals from different manufactures. Using photolithography and e-beam evaporation, we can produce detectors with different contact designs (pixellated, strip, monolithic, steering grid), contact dimensions (down to 50 microns), and contact materials (In, Ti, Au, etc.) . In addition, we develop ASIC readouts for various CZT detector applications, including our characterization of the detectors. We measure I-V and C-V curves for the detectors as well as their spectroscopic performance. We compare measured results with those from detailed modelling and simulations. The CZT detector systems can then be optimized for applications such as X-ray imaging and polarimetry with satellite or balloon-borne instruments.

  3. CZT Detector Development for Hard X-ray Astronomy

    NASA Astrophysics Data System (ADS)

    Garson, A. B., III; Li, Q.; Beilicke, M.; Bose, R.; Burger, A.; Dowkonnt, P.; Groza, M.; Simburger, G.; Krawczynski, H.

    2008-04-01

    Cadmium Zinc Telluride (CZT) has proven itself as an excellent material for detection of hard X-rays. Advances in crystal growth have increased the quality and size of available single CZT crystals. We report on our ongoing development and characterization of CZT detector systems. With our dedicated class-100 cleanroom, we fabricate detectors using CZT crystals from different manufactures. Using photolithography and e-beam evaporation, we can produce detectors with different contact designs (pixellated, strip, monolithic, steering grid), contact dimensions (down to 50 microns), and contact materials (In, Ti, Au, etc.) . In addition, we develop ASIC readouts for various CZT detector applications, including our characterization of the detectors. We measure I-V and C-V curves for the detectors as well as their spectroscopic performance. We compare measured results with those from detailed modelling and simulations. The CZT detector systems can then be optimized for applications such as X-ray imaging and polarimetry with satellite or balloon-borne instruments.

  4. FY06 LDRD Final Report Next-generation x-ray optics: focusing hard x-rays

    SciTech Connect

    Pivovaroff, M; Soufli, R

    2007-03-01

    The original goal of our research was to open up a new class of scientific experiments by increasing the power of newly available x-ray sources by orders of magnitude. This was accomplished by developing a new generation of x-ray optics, based on hard x-ray (10-200 keV) reflective and diffractive focusing elements. The optical systems we envision begin with a core reflective optic, which has the ability to capture and concentrate x-rays across a wide range of energies and angles band, combined with diffractive optics, based on large-scale multilayer structures, that will further enhance the spatial, spectral and temporal resolving power of the system. Enabling technologies developed at LLNL such as precise mounting of thermally formed substrates, smoothing techniques and multilayer films of ultra-high reflectance and precision were crucial in the development and demonstration of our research objectives. Highlights of this phase of the project include: the design and fabrication of a concentrator optic for the Pleiades Thomson X-ray source located at LLNL, smoothing of glass substrates through application of polyimide films, and the design, fabrication and testing of novel volume multilayers structures. Part of our research into substrate smooth led to the development of a new technique (patent pending) to construct high-quality, inexpensive x-ray optics. This innovation resulted in LLNL constructing a x-ray optic for the CERN Axion Solar Telescope (CAST) and allowed LLNL to join the international experiment.

  5. Hard X-Ray and Wide Focusing Telescopes

    NASA Technical Reports Server (NTRS)

    Gorenstein, Paul

    1998-01-01

    Studies are being carried out to compare the performance of several different separation materials used in the replication process. This report presents the results obtained during the second year of a program which consists of replicating smooth, thin substrates, depositing multilayer coatings upon them, and evaluating their performance. Replication and multilayer coatings are both critically important to the development of focussing hard X-ray telescopes that function up to 100 keV. The activities of the current year include extending the comparison between sputtered amorphous carbon and evaporated gold to include sputtered as well as evaporated gold. The figure of merit being the smoothness of the replica which has a direct effect on the specular reflectivity. These results were obtained with epoxy replication, but they should be applicable to electroformed nickel, the process we expect to use for the ultimate replicated optics.

  6. Hard X-ray Microscopic Images of the Human Hair

    SciTech Connect

    Goo, Jawoong; Jeon, Soo Young; Oh, Tak Heon; Hong, Seung Phil; Lee, Won-Soo; Yon, Hwa Shik

    2007-01-19

    The better visualization of the human organs or internal structure is challenging to the physicist and physicians. It can lead to more understanding of the morphology, pathophysiology and the diagnosis. Conventionally used methods to investigate cells or architectures, show limited value due to sample processing procedures and lower resolution. In this respect, Zernike type phase contrast hard x-ray microscopy using 6.95keV photon energy has advantages. We investigated hair fibers of the normal healthy persons. Coherence based phase contrast images revealed three distinct structures of hair, medulla, cortex, and cuticular layer. Some different detailed characters of each sample were noted. And further details would be shown and these results would be utilized as basic data of morphologic study of human hair.

  7. Hard X-ray Microscopic Images of the Human Hair

    NASA Astrophysics Data System (ADS)

    Goo, Jawoong; Jeon, Soo Young; Oh, Tak Heon; Hong, Seung Phil; Yon, Hwa Shik; Lee, Won-Soo

    2007-01-01

    The better visualization of the human organs or internal structure is challenging to the physicist and physicians. It can lead to more understanding of the morphology, pathophysiology and the diagnosis. Conventionally used methods to investigate cells or architectures, show limited value due to sample processing procedures and lower resolution. In this respect, Zernike type phase contrast hard x-ray microscopy using 6.95keV photon energy has advantages. We investigated hair fibers of the normal healthy persons. Coherence based phase contrast images revealed three distinct structures of hair, medulla, cortex, and cuticular layer. Some different detailed characters of each sample were noted. And further details would be shown and these results would be utilized as basic data of morphologic study of human hair.

  8. Picosecond-resolved X-ray absorption spectroscopy at low signal contrast using a hard X-ray streak camera

    SciTech Connect

    Adams, Bernhard W.; Rose-Petruck, Christoph; Jiao, Yishuo

    2015-06-24

    A picosecond-resolving hard-X-ray streak camera has been in operation for several years at Sector 7 of the Advanced Photon Source (APS). Several upgrades have been implemented over the past few years to optimize integration into the beamline, reduce the timing jitter, and improve the signal-to-noise ratio. These include the development of X-ray optics for focusing the X-rays into the sample and the entrance slit of the streak camera, and measures to minimize the amount of laser light needed to generate the deflection-voltage ramp. For the latter, the photoconductive switch generating the deflection ramp was replaced with microwave power electronics. With these, the streak camera operates routinely at 88 MHz repetition rate, thus making it compatible with all of the APS fill patterns including use of all the X-rays in the 324-bunch mode. Sample data are shown to demonstrate the performance.

  9. Expectation maximization for hard X-ray count modulation profiles

    NASA Astrophysics Data System (ADS)

    Benvenuto, F.; Schwartz, R.; Piana, M.; Massone, A. M.

    2013-07-01

    Context. This paper is concerned with the image reconstruction problem when the measured data are solar hard X-ray modulation profiles obtained from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) instrument. Aims: Our goal is to demonstrate that a statistical iterative method classically applied to the image deconvolution problem is very effective when utilized to analyze count modulation profiles in solar hard X-ray imaging based on rotating modulation collimators. Methods: The algorithm described in this paper solves the maximum likelihood problem iteratively and encodes a positivity constraint into the iterative optimization scheme. The result is therefore a classical expectation maximization method this time applied not to an image deconvolution problem but to image reconstruction from count modulation profiles. The technical reason that makes our implementation particularly effective in this application is the use of a very reliable stopping rule which is able to regularize the solution providing, at the same time, a very satisfactory Cash-statistic (C-statistic). Results: The method is applied to both reproduce synthetic flaring configurations and reconstruct images from experimental data corresponding to three real events. In this second case, the performance of expectation maximization, when compared to Pixon image reconstruction, shows a comparable accuracy and a notably reduced computational burden; when compared to CLEAN, shows a better fidelity with respect to the measurements with a comparable computational effectiveness. Conclusions: If optimally stopped, expectation maximization represents a very reliable method for image reconstruction in the RHESSI context when count modulation profiles are used as input data.

  10. Low dose hard x-ray contact microscopy assisted by a photoelectric conversion layer

    SciTech Connect

    Gomella, Andrew; Martin, Eric W.; Lynch, Susanna K.; Wen, Han; Morgan, Nicole Y.

    2013-04-15

    Hard x-ray contact microscopy provides images of dense samples at resolutions of tens of nanometers. However, the required beam intensity can only be delivered by synchrotron sources. We report on the use of a gold photoelectric conversion layer to lower the exposure dose by a factor of 40 to 50, allowing hard x-ray contact microscopy to be performed with a compact x-ray tube. We demonstrate the method in imaging the transmission pattern of a type of hard x-ray grating that cannot be fitted into conventional x-ray microscopes due to its size and shape. Generally the method is easy to implement and can record images of samples in the hard x-ray region over a large area in a single exposure, without some of the geometric constraints associated with x-ray microscopes based on zone-plate or other magnifying optics.

  11. Low dose hard x-ray contact microscopy assisted by a photoelectric conversion layer

    PubMed Central

    Gomella, Andrew; Martin, Eric W.; Lynch, Susanna K.; Morgan, Nicole Y.; Wen, Han

    2013-01-01

    Hard x-ray contact microscopy provides images of dense samples at resolutions of tens of nanometers. However, the required beam intensity can only be delivered by synchrotron sources. We report on the use of a gold photoelectric conversion layer to lower the exposure dose by a factor of 40 to 50, allowing hard x-ray contact microscopy to be performed with a compact x-ray tube. We demonstrate the method in imaging the transmission pattern of a type of hard x-ray grating that cannot be fitted into conventional x-ray microscopes due to its size and shape. Generally the method is easy to implement and can record images of samples in the hard x-ray region over a large area in a single exposure, without some of the geometric constraints associated with x-ray microscopes based on zone-plate or other magnifying optics. PMID:23837131

  12. The Deep Look at the Hard X-Ray Sky: The Swift-INTEGRAL X-Ray (SIX) Survey

    NASA Astrophysics Data System (ADS)

    Bottacini, Eugenio; Ajello, Marco; Greiner, Jochen

    2012-08-01

    The supermassive black holes at the center of active galactic nuclei (AGNs) are surrounded by obscuring matter that can block nuclear radiation. Depending on the amount of blocked radiation, the flux from the AGN can be too faint to be detected by currently flying hard X-ray (above 15 keV) missions. At these energies only ~1% of the intensity of the cosmic X-ray background (CXB) can be resolved into point-like sources that are AGNs. In this work, we address the question of undetected sources contributing to the CXB with a very sensitive and new hard X-ray survey: the Swift-INTEGRAL X-ray survey, which is obtained with the new approach of combining the Swift/BAT and INTEGRAL/IBIS X-ray observations. We merge the observations of both missions, which enhances the exposure time and reduces systematic uncertainties. As a result, we obtain a new survey over a wide sky area of 6200 deg2 that is more sensitive than the surveys of Swift/BAT or INTEGRAL/IBIS alone. Our sample comprises 113 sources: 86 AGNs (Seyfert-like and blazars), 5 galaxies, 2 clusters of galaxies, 3 Galactic sources, 3 previously detected unidentified X-ray sources, and 14 unidentified sources. The scientific outcome from the study of the sample has been properly addressed to study the evolution of AGNs at redshift below 0.4. We do not find any evolution using the 1/V max method. Our sample of faint sources is a suitable target for the new generation hard X-ray telescopes with focusing techniques.

  13. THE DEEP LOOK AT THE HARD X-RAY SKY: THE SWIFT-INTEGRAL X-RAY (SIX) SURVEY

    SciTech Connect

    Bottacini, Eugenio; Ajello, Marco

    2012-08-01

    The supermassive black holes at the center of active galactic nuclei (AGNs) are surrounded by obscuring matter that can block nuclear radiation. Depending on the amount of blocked radiation, the flux from the AGN can be too faint to be detected by currently flying hard X-ray (above 15 keV) missions. At these energies only {approx}1% of the intensity of the cosmic X-ray background (CXB) can be resolved into point-like sources that are AGNs. In this work, we address the question of undetected sources contributing to the CXB with a very sensitive and new hard X-ray survey: the Swift-INTEGRAL X-ray survey, which is obtained with the new approach of combining the Swift/BAT and INTEGRAL/IBIS X-ray observations. We merge the observations of both missions, which enhances the exposure time and reduces systematic uncertainties. As a result, we obtain a new survey over a wide sky area of 6200 deg{sup 2} that is more sensitive than the surveys of Swift/BAT or INTEGRAL/IBIS alone. Our sample comprises 113 sources: 86 AGNs (Seyfert-like and blazars), 5 galaxies, 2 clusters of galaxies, 3 Galactic sources, 3 previously detected unidentified X-ray sources, and 14 unidentified sources. The scientific outcome from the study of the sample has been properly addressed to study the evolution of AGNs at redshift below 0.4. We do not find any evolution using the 1/V{sub max} method. Our sample of faint sources is a suitable target for the new generation hard X-ray telescopes with focusing techniques.

  14. X-ray emission from cataclysmic variables with accretion disks. I - Hard X-rays. II - EUV/soft X-ray radiation

    NASA Technical Reports Server (NTRS)

    Patterson, J.; Raymond, J. C.

    1985-01-01

    Theoretical models explaining the hard-X-ray, soft-X-ray, and EUV emission of accretion-disk cataclysmic variables in terms of the disk boundary layer (DBL) are developed on the basis of a survey of the published observational data. The data are compared with model predictions in graphs for systems with high or low (greater than or less than 10-Pg/s) accretion rates. Good agreement is obtained both at low accretion rates, where an optically thin rarefied hot (Te = 10 to the 8th K) DBL radiates most of its energy as hard X-rays, and at high accretion rates, where an optically thick 100,000-K DBL radiates most of its energy in the EUV and as soft X-rays. Detailed analysis of the old nova V603 Aql suggests that previous models predicting more detections of soft-X-ray/EUV emissions from thick-DBL objects (Ferland et al., 1982) used inappropriate dwarf masses, interstellar column densities, or classical-nova space densities.

  15. X-ray emission from cataclysmic variables with accretion disks. I - Hard X-rays. II - EUV/soft X-ray radiation

    NASA Technical Reports Server (NTRS)

    Patterson, J.; Raymond, J. C.

    1985-01-01

    Theoretical models explaining the hard-X-ray, soft-X-ray, and EUV emission of accretion-disk cataclysmic variables in terms of the disk boundary layer (DBL) are developed on the basis of a survey of the published observational data. The data are compared with model predictions in graphs for systems with high or low (greater than or less than 10-Pg/s) accretion rates. Good agreement is obtained both at low accretion rates, where an optically thin rarefied hot (Te = 10 to the 8th K) DBL radiates most of its energy as hard X-rays, and at high accretion rates, where an optically thick 100,000-K DBL radiates most of its energy in the EUV and as soft X-rays. Detailed analysis of the old nova V603 Aql suggests that previous models predicting more detections of soft-X-ray/EUV emissions from thick-DBL objects (Ferland et al., 1982) used inappropriate dwarf masses, interstellar column densities, or classical-nova space densities.

  16. NuSTAR Hard X-Ray Survey of the Galactic Center Region I: Hard X-Ray Morphology and Spectroscopy of the Diffuse Emission

    NASA Astrophysics Data System (ADS)

    Mori, Kaya; Hailey, Charles J.; Krivonos, Roman; Hong, Jaesub; Ponti, Gabriele; Bauer, Franz; Perez, Kerstin; Nynka, Melania; Zhang, Shuo; Tomsick, John A.; Alexander, David M.; Baganoff, Frederick K.; Barret, Didier; Barrière, Nicolas; Boggs, Steven E.; Canipe, Alicia M.; Christensen, Finn E.; Craig, William W.; Forster, Karl; Giommi, Paolo; Grefenstette, Brian W.; Grindlay, Jonathan E.; Harrison, Fiona A.; Hornstrup, Allan; Kitaguchi, Takao; Koglin, Jason E.; Luu, Vy; Madsen, Kristen K.; Mao, Peter H.; Miyasaka, Hiromasa; Perri, Matteo; Pivovaroff, Michael J.; Puccetti, Simonetta; Rana, Vikram; Stern, Daniel; Westergaard, Niels J.; Zhang, William W.; Zoglauer, Andreas

    2015-12-01

    We present the first sub-arcminute images of the Galactic Center above 10 keV, obtained with NuSTAR. NuSTAR resolves the hard X-ray source IGR J17456-2901 into non-thermal X-ray filaments, molecular clouds, point sources, and a previously unknown central component of hard X-ray emission (CHXE). NuSTAR detects four non-thermal X-ray filaments, extending the detection of their power-law spectra with Γ ˜ 1.3-2.3 up to ˜50 keV. A morphological and spectral study of the filaments suggests that their origin may be heterogeneous, where previous studies suggested a common origin in young pulsar wind nebulae (PWNe). NuSTAR detects non-thermal X-ray continuum emission spatially correlated with the 6.4 keV Fe Kα fluorescence line emission associated with two Sgr A molecular clouds: MC1 and the Bridge. Broadband X-ray spectral analysis with a Monte-Carlo based X-ray reflection model self-consistently determined their intrinsic column density (˜1023 cm-2), primary X-ray spectra (power-laws with Γ ˜ 2) and set a lower limit of the X-ray luminosity of Sgr A* flare illuminating the Sgr A clouds to LX ≳ 1038 erg s-1. Above ˜20 keV, hard X-ray emission in the central 10 pc region around Sgr A* consists of the candidate PWN G359.95-0.04 and the CHXE, possibly resulting from an unresolved population of massive CVs with white dwarf masses MWD ˜ 0.9 M⊙. Spectral energy distribution analysis suggests that G359.95-0.04 is likely the hard X-ray counterpart of the ultra-high gamma-ray source HESS J1745-290, strongly favoring a leptonic origin of the GC TeV emission.

  17. The origin of the hard X-ray tail in neutron-star X-ray binaries

    NASA Astrophysics Data System (ADS)

    Reig, P.; Kylafis, N.

    2016-06-01

    Context. Neutron star X-ray binaries emit a compact, optically thick, relativistic radio jet during low-luminosity, usually hard states, as Galactic black-hole X-ray binaries do. When radio emission is bright, a hard power-law tail without evidence for an exponential cutoff is observed in most systems. Aims: We have developed a jet model that explains many spectral and timing properties of black-hole binaries in the states where a jet is present. Our goal is to investigate whether our jet model can reproduce the hard tail, with the correct range of photon index and the absence of a high-energy cutoff, in neutron-star X-ray binaries. Methods: We performed Monte Carlo simulations of the Compton upscattering of soft, accretion-disk or boundary layer photons in the jet and computed the emergent energy spectra, as well as the time lag of hard photons with respect to softer ones as a function of Fourier frequency. We fit the energy spectra with a power law modified by an exponential cutoff at high energy. Results: We demonstrate that our jet model naturally explains the observed power-law distribution with photon index in the range 1.8-3. With an appropriate choice of the parameters, the cutoff expected from Comptonization is shifted to energies above ~300 keV, producing a pure power law without any evidence for a rollover, in agreement with the observations. Conclusions: Our results reinforce the idea that the link between the outflow (jet) and inflow (disk) in X-ray binaries does not depend on the nature of the compact object, but on the process of accretion. Furthermore, we address the differences between jets in black-hole and neutron-star X-ray binaries and predict that the break frequency in the spectral energy distribution of neutron-star X-ray binaries, as a class, will be lower than that of black-hole binaries.

  18. Investigation of the hard x-ray background in backlit pinhole imagers

    SciTech Connect

    Fein, J. R. Holloway, J. P.; Peebles, J. L.; Keiter, P. A.; Klein, S. R.; Kuranz, C. C.; Manuel, M. J.-E.; Drake, R. P.

    2014-11-15

    Hard x-rays from laser-produced hot electrons (>10 keV) in backlit pinhole imagers can give rise to a background signal that decreases signal dynamic range in radiographs. Consequently, significant uncertainties are introduced to the measured optical depth of imaged plasmas. Past experiments have demonstrated that hard x-rays are produced when hot electrons interact with the high-Z pinhole substrate used to collimate the softer He-α x-ray source. Results are presented from recent experiments performed on the OMEGA-60 laser to further study the production of hard x-rays in the pinhole substrate and how these x-rays contribute to the background signal in radiographs. Radiographic image plates measured hard x-rays from pinhole imagers with Mo, Sn, and Ta pinhole substrates. The variation in background signal between pinhole substrates provides evidence that much of this background comes from x-rays produced in the pinhole substrate itself. A Monte Carlo electron transport code was used to model x-ray production from hot electrons interacting in the pinhole substrate, as well as to model measurements of x-rays from the irradiated side of the targets, recorded by a bremsstrahlung x-ray spectrometer. Inconsistencies in inferred hot electron distributions between the different pinhole substrate materials demonstrate that additional sources of hot electrons beyond those modeled may produce hard x-rays in the pinhole substrate.

  19. Brilliant X-rays using a Two-Stage Plasma Insertion Device.

    PubMed

    Holloway, J A; Norreys, P A; Thomas, A G R; Bartolini, R; Bingham, R; Nydell, J; Trines, R M G M; Walker, R; Wing, M

    2017-06-21

    Particle accelerators have made an enormous impact in all fields of natural sciences, from elementary particle physics, to the imaging of proteins and the development of new pharmaceuticals. Modern light sources have advanced many fields by providing extraordinarily bright, short X-ray pulses. Here we present a novel numerical study, demonstrating that existing third generation light sources can significantly enhance the brightness and photon energy of their X-ray pulses by undulating their beams within plasma wakefields. This study shows that a three order of magnitude increase in X-ray brightness and over an order of magnitude increase in X-ray photon energy is achieved by passing a 3 GeV electron beam through a two-stage plasma insertion device. The production mechanism micro-bunches the electron beam and ensures the pulses are radially polarised on creation. We also demonstrate that the micro-bunched electron beam is itself an effective wakefield driver that can potentially accelerate a witness electron beam up to 6 GeV.

  20. Turning the Tide: Origin of the Hard X-rays from γ Cassiopeae

    NASA Astrophysics Data System (ADS)

    Smith, M. A.; de Oliveira, R. L.; Motch, C.

    2016-11-01

    The origin of the anomalous, hard X-rays from γ Cas is reviewed from data obtained from several X-ray, UV, and optical campaigns. We discuss correlations between X-ray and optical or UV fluxes ranging from rapid undulations to long-term periods and optical Be outbursts. All the evidence points to the X-rays originating from volumes close to where the UV diagnostics are formed, the Be star, and not for example from a binary companion.

  1. Curved focusing crystals for hard X-ray astronomy

    SciTech Connect

    Ferrari, C. Buffagni, E.; Bonnini, E.; Korytar, D.

    2013-12-15

    A lens made by a properly arranged array of crystals can be used to focus x-rays of energy ranging from 30 to 500 keV for x-ray astronomy. Mosaic or curved crystals can be employed as x-ray optical elements. In this work self standing curved focusing Si and GaAs crystals in which the lattice bending is induced by a controlled damaging process on one side of planar crystals are characterized. Diffraction profiles in Laue geometry have been measured in crystals at x-ray energies E = 17, 59 and 120 keV. An enhancement of diffraction efficiency is found in asymmetric geometries.

  2. High average power, highly brilliant laser-produced plasma source for soft X-ray spectroscopy

    SciTech Connect

    Mantouvalou, Ioanna; Grötzsch, Daniel; Neitzel, Michael; Günther, Sabrina; Baumann, Jonas; Kanngießer, Birgit; Witte, Katharina; Jung, Robert; Stiel, Holger; Sandner, Wolfgang

    2015-03-15

    In this work, a novel laser-produced plasma source is presented which delivers pulsed broadband soft X-radiation in the range between 100 and 1200 eV. The source was designed in view of long operating hours, high stability, and cost effectiveness. It relies on a rotating and translating metal target and achieves high stability through an on-line monitoring device using a four quadrant extreme ultraviolet diode in a pinhole camera arrangement. The source can be operated with three different laser pulse durations and various target materials and is equipped with two beamlines for simultaneous experiments. Characterization measurements are presented with special emphasis on the source position and emission stability of the source. As a first application, a near edge X-ray absorption fine structure measurement on a thin polyimide foil shows the potential of the source for soft X-ray spectroscopy.

  3. High average power, highly brilliant laser-produced plasma source for soft X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Mantouvalou, Ioanna; Witte, Katharina; Grötzsch, Daniel; Neitzel, Michael; Günther, Sabrina; Baumann, Jonas; Jung, Robert; Stiel, Holger; Kanngießer, Birgit; Sandner, Wolfgang

    2015-03-01

    In this work, a novel laser-produced plasma source is presented which delivers pulsed broadband soft X-radiation in the range between 100 and 1200 eV. The source was designed in view of long operating hours, high stability, and cost effectiveness. It relies on a rotating and translating metal target and achieves high stability through an on-line monitoring device using a four quadrant extreme ultraviolet diode in a pinhole camera arrangement. The source can be operated with three different laser pulse durations and various target materials and is equipped with two beamlines for simultaneous experiments. Characterization measurements are presented with special emphasis on the source position and emission stability of the source. As a first application, a near edge X-ray absorption fine structure measurement on a thin polyimide foil shows the potential of the source for soft X-ray spectroscopy.

  4. High average power, highly brilliant laser-produced plasma source for soft X-ray spectroscopy.

    PubMed

    Mantouvalou, Ioanna; Witte, Katharina; Grötzsch, Daniel; Neitzel, Michael; Günther, Sabrina; Baumann, Jonas; Jung, Robert; Stiel, Holger; Kanngiesser, Birgit; Sandner, Wolfgang

    2015-03-01

    In this work, a novel laser-produced plasma source is presented which delivers pulsed broadband soft X-radiation in the range between 100 and 1200 eV. The source was designed in view of long operating hours, high stability, and cost effectiveness. It relies on a rotating and translating metal target and achieves high stability through an on-line monitoring device using a four quadrant extreme ultraviolet diode in a pinhole camera arrangement. The source can be operated with three different laser pulse durations and various target materials and is equipped with two beamlines for simultaneous experiments. Characterization measurements are presented with special emphasis on the source position and emission stability of the source. As a first application, a near edge X-ray absorption fine structure measurement on a thin polyimide foil shows the potential of the source for soft X-ray spectroscopy.

  5. Weak hard X-ray emission from broad absorption line quasars: evidence for intrinsic X-ray weakness

    SciTech Connect

    Luo, B.; Brandt, W. N.; Scott, A. E.; Alexander, D. M.; Gandhi, P.; Stern, D.; Teng, S. H.; Arévalo, P.; Bauer, F. E.; Boggs, S. E.; Craig, W. W.; Christensen, F. E.; Comastri, A.; Farrah, D.; Hailey, C. J.; Harrison, F. A.; Koss, M.; Ogle, P.; Puccetti, S.; Saez, C.; and others

    2014-10-10

    We report NuSTAR observations of a sample of six X-ray weak broad absorption line (BAL) quasars. These targets, at z = 0.148-1.223, are among the optically brightest and most luminous BAL quasars known at z < 1.3. However, their rest-frame ≈2 keV luminosities are 14 to >330 times weaker than expected for typical quasars. Our results from a pilot NuSTAR study of two low-redshift BAL quasars, a Chandra stacking analysis of a sample of high-redshift BAL quasars, and a NuSTAR spectral analysis of the local BAL quasar Mrk 231 have already suggested the existence of intrinsically X-ray weak BAL quasars, i.e., quasars not emitting X-rays at the level expected from their optical/UV emission. The aim of the current program is to extend the search for such extraordinary objects. Three of the six new targets are weakly detected by NuSTAR with ≲ 45 counts in the 3-24 keV band, and the other three are not detected. The hard X-ray (8-24 keV) weakness observed by NuSTAR requires Compton-thick absorption if these objects have nominal underlying X-ray emission. However, a soft stacked effective photon index (Γ{sub eff} ≈ 1.8) for this sample disfavors Compton-thick absorption in general. The uniform hard X-ray weakness observed by NuSTAR for this and the pilot samples selected with <10 keV weakness also suggests that the X-ray weakness is intrinsic in at least some of the targets. We conclude that the NuSTAR observations have likely discovered a significant population (≳ 33%) of intrinsically X-ray weak objects among the BAL quasars with significantly weak <10 keV emission. We suggest that intrinsically X-ray weak quasars might be preferentially observed as BAL quasars.

  6. Exploring the Hard and Soft X-ray Emission of Magnetic Cataclysmic Variables

    NASA Astrophysics Data System (ADS)

    de Martino, D.; Anzolin, G.; Bonnet-Bidaud, J.-M.; Falanga, M.; Matt, G.; Mouchet, M.; Mukai, K.; Masetti, N.

    2009-05-01

    A non-negligible fraction of galactic hard (>20 keV) X-ray sources were identified as CVs of the magnetic Intermediate Polar type in INTEGRAL, SWIFT and RXTE surveys, that suggests a still hidden but potentially important population of faint hard X-ray sources. Simbol-X has the unique potential to simultaneously characterize their variable and complex soft and hard X-ray emission thus allowing to understand their putative role in galactic populations of X-ray sources.

  7. First Images from HERO: A Hard-X-Ray Focusing Telescope

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian D.; Alexander, Cheryl D.; Apple, Jeff A.; Benson, Carl M.; Dietz, Kurtis L.; Elsner, Ronald F.; Engelhaupt, Darell E.; Ghosh, Kajal K.; Kolodziejczak, Jeffery J.; ODell, Stephen L.; hide

    2001-01-01

    We are developing a balloon-borne hard-x-ray telescope that utilizes grazing incidence optics. Termed HERO, for High-Energy Replicated Optics, the instrument will provide unprecented sensitivity in the hard-x-ray region and will achieve milliCrab-level sensitivity in a typical 3-hour balloon-flight observation and 50 microCrab sensitivity on ultra-long-duration flights. A recent proof-of-concept flight, featuring a small number of mirror shells captured the first focused hard-x-ray images of galactic x-ray sources. Full details of the payload, its expected future performance and its recent measurements are provided.

  8. Multilayer on-chip stacked Fresnel zone plates: Hard x-ray fabrication and soft x-ray simulations

    SciTech Connect

    Li, Kenan; Wojcik, Michael J.; Ocola, Leonidas E.; Divan, Ralu; Jacobsen, Chris

    2015-11-01

    Fresnel zone plates are widely used as x-ray nanofocusing optics. To achieve high spatial resolution combined with good focusing efficiency, high aspect ratio nanolithography is required, and one way to achieve that is through multiple e-beam lithography writing steps to achieve on-chip stacking. A two-step writing process producing 50 nm finest zone width at a zone thickness of 1.14 µm for possible hard x-ray applications is shown here. The authors also consider in simulations the case of soft x-ray focusing where the zone thickness might exceed the depth of focus. In this case, the authors compare on-chip stacking with, and without, adjustment of zone positions and show that the offset zones lead to improved focusing efficiency. The simulations were carried out using a multislice propagation method employing Hankel transforms.

  9. The MIRAX Hard X-ray Transient Mission

    NASA Astrophysics Data System (ADS)

    Braga, João; Grindlay, Josh; Rothschild, Rick; Wilms, Joern; Remillard, Ron

    2012-09-01

    The MIRAX (Monitor e Imageador de Raios X) mission is designed to perform a hard X-ray (5-200 keV) survey of more than half of the sky with high localization power (~1') and high sensitivity (26 mCrab for one orbit and 0.3 mCrab for one year). This will be achieved by a set of 4 coded-mask imagers that will operate in scanning mode in a near-Equatorial circular LEO. The pointing directions will maximize the coverage of the Central Galactic Plane. The detectors are position-sensitive 5mm-thick CdZnTe with 0.6mm pitch with 756 square cm effective area at 10 keV (total for the 4 units). The energy resolution is ~2 keV at 60 keV. The main objective of MIRAX is to study with unprecedented depth and time coverage (milliseconds to years) a large sample of transient and variable phenomena on accreting neutron stars and black holes. The satellite bus and launch will be provided by Brazil, whereas the instrument development is a cooperative effort led by CfA, including INPE(Brazil), UCSD, MIT, GSFC, Caltech and the Univ. of Erlangen-Nuremberg in Germany.

  10. Magnified hard x-ray image in one dimension

    SciTech Connect

    Britten, James; Feng Zhechuan; Xu Gu

    2010-06-28

    The possibility of magnified x-ray imaging is explored, by the near-field attenuation of a sample intercepting a spherical wave-front, plus the beam profile modulation by Borrmann pyramid based on dynamic x-ray scattering. It is verified by experiments in one dimension as well as numerical simulation.

  11. The hard X-ray burst spectrometer event listing, 1980 - 1985

    NASA Technical Reports Server (NTRS)

    Dennis, B. R.; Orwig, L. E.; Kiplinger, A. L.; Gibson, B. R.; Kennard, G. S.; Tolbert, A. K.

    1985-01-01

    This event listing is a comprehensive reference for the hard X-ray bursts detected with the Hard X-Ray Burst Spectrometer on the Solar Maximum Mission from the time of launch on February 14, 1980 to September 1985. Over 8000 X-ray events were detected in the energy range from 30 to approx. 500 keV with the vast majority being solar flares. The listing includes the start time, peak time, duration and peak rate of each event.

  12. The hard X-ray burst spectrometer event listing 1980, 1981 and 1982

    NASA Technical Reports Server (NTRS)

    Dennis, B. R.; Frost, K. J.; Orwig, L. E.; Kiplinger, A.; Dennis, H. E.; Gibson, B. R.; Kennard, G. S.; Tolbert, A. K.

    1983-01-01

    A comprehensive reference for the hard X-ray bursts detected with the Hard X-Ray Burst Spectrometer on the Solar Maximum Mission for the time of launch on February 14, 1980 to March 1983 is provided. Over 6300 X-ray events were detected in the energy range from 30 to approx 500 keV with the vast majority being solar flares. The listing includes the start time, peak time, duration and peak rate of each event.

  13. The hard X-ray burst spectrometer event listing 1980-1987

    NASA Technical Reports Server (NTRS)

    Dennis, B. R.; Orwig, L. E.; Kiplinger, A. L.; Schwartz, R. A.; Gibson, B. R.; Kennard, G. S.; Tolbert, A. K.; Biesecker, D. A.; Labow, G. J.; Shaver, A.

    1988-01-01

    This event listing is a comprehensive reference for the Hard X-ray bursts detected with the Hard X-ray Burst Spectrometer on the Solar Maximum Mission from the time of launch 14 February 1980 to December 1987. Over 8600 X-ray events were detected in the energy range from 30 to approx. 600 keV with the vast majority being solar flares. The listing includes the start time, peak time, duration and peak rate of each event.

  14. Imaging the sun in hard x rays using Fourier telescopes

    NASA Technical Reports Server (NTRS)

    Campbell, J. W.

    1993-01-01

    For several years, solar flares have been observed with a variety of instruments confirming that tremendous amounts of energy are locally stored in the solar magnetic field and then rapidly released during the life of the flare. In concert with observations, theorists have attempted to describe the means by which these energetic events occur and evolve. Two competing theories have emerged and have stood the test of time. One theory describes the flare in terms of nonthermal, electron beam injection into a thick target while the other uses a thermal approach. Both theories provide results which are reasonably consistent with current observations; but to date, none have been able to provide conclusive evidence as to the validity of either model. Imaging on short time scales (1 s) and/or small size scales (1 arc s) should give definitive answers to these questions. In order to test whether a realistic telescope can indeed discriminate between models, we construct model sources based upon the thermal and the nonthermal models and calculate the emission as a function of time and energy in the range from 10 to 100 keV. In addition, we construct model telescopes representing both the spatial modulation collimator (SMC) and the rotating modulation collimator (RMC) techniques of observation using random photon counting statistics. With these two types of telescopes we numerically simulate the instrument response to the above two model flares to see if there are distinct x-ray signatures which may be discernable. We find that theoretical descriptions of the primary models of solar flares do indeed predict different hard x-ray signatures for 1 sec time scales and at 1-5 arc sec spatial resolution. However, these distinguishing signatures can best be observed early in the impulsive phase and from a position perpendicular to the plane of the loop. Furthermore, we find that Fourier telescopes with reasonable and currently attainable design characteristics can image these

  15. An Infrared Search for Binary Companions to White Dwarfs with Hard X-Ray Emission

    NASA Astrophysics Data System (ADS)

    O'Dwyer, Ian J.; Gruendl, Robert; Chu, You-Hua; Guerrero, Martin A.

    2002-08-01

    A white dwarf (WD) can emit soft (≪ 0.4 keV) X-rays, if it is hot enough, i.e., T_eff > 30,000 K for a pure hydrogen atmosphere or T_eff > 100,000 K for a hydrogen and helium atmosphere. A WD can also emit harder (> 0.5 keV) X-rays, if it has a close binary companion and mass transfer takes place, e.g., dwarf novae, polars, and cataclysmic variables. We found a large number of hard X-ray emitting WDs by cross-correlating the McCook & Sion (1999) catalog of WDs with the ROSAT point source database. We have verified the position of the WD, analysed the ROSAT data and extracted X-ray spectra to confirm the hard X-ray component. Since the only current explanation for hard X-ray emission from a WD involves a stellar companion and only five of the ~40 WDs that exhibit hard X-ray emission are known binary systems, we wish to investigate whether hard X-ray emssion is a useful diagnostic for the presence of companions to WDs. We request KPNO 2.1m SQIID near infrared photometric observations of a sample of 34 WDs, 23 of which exhibit hard X-ray emission, to look for an infrared excess consistent with the presence of a stellar companion.

  16. Hard X-ray Spectroscopic, Microwave and H-alpha Linear Polarization Studies with Hard X-Ray Observations from HESSI

    NASA Technical Reports Server (NTRS)

    Kiplinger, Alan L.

    2005-01-01

    The Principal Investigator (P.I.) has been pursuing a three year grant under NASA's Sun-Earth Connection Guest Investigator Program in support of the Ramaty High Energy Solar Spectroscopic Imager (RHESSI). An objective of these efforts is to combine X-ray and other data on solar flares, coronal mass ejections and interplanetary particle events in order to obtain a more comprehensive recognition of signatures, and understanding of interplanetary proton events. Thus, part of these efforts are to investigate if signatures seen in hard X-rays and microwaves can lead to better predictions of interplanetary proton events that can be dangerous to astronauts and spacecraft. The original proposal was written in May, 2000 and it discusses a three-pronged approach for data comparisons with three new types of instrumentation observing at X-ray, microwave and optical wavelengths. The major impetus behind this work and the proposal is that the P.I. discovered a strong correlation between a particular type of hard X-ray signature seen in spectral evolutions and interplanetary proton events (Kiplinger, 1995). The basic signature is that hard X-ray flux peaks either exhibit spectra that soften on their decays (Le. show fewer and fewer high energy X-rays with time) or they harden during decays (i.e. high energy X-rays decay significantly slower that lower energy X-rays). This signature is called progressive hardening. Studies were conducted over an eight-year period of data from the Hard X-Ray Burst Spectrometer (HXRBS) of the Solar maximum mission. Out of the 750 well observed flares studied, 41 flares had major associated proton events. Of these, 29 events were predicted on the basis of progressive hardening for a hit rate of 71%. The 152 largest flares had a hit rate of 82%.

  17. Fabrication of 200 nm Period Hard X-ray Phase Gratings

    PubMed Central

    2015-01-01

    Far field X-ray grating interferometry achieves extraordinary phase sensitivity in imaging weakly absorbing samples, provided that the grating period is within the transverse coherence length of the X-ray source. Here we describe a cost-efficient process to fabricate large area, 100 nm half-pitch hard X-ray phase gratings with an aspect ratio of 32. The nanometric gratings are suitable for ordinary compact X-ray sources having low spatial coherence, as demonstrated by X-ray diffraction experiments. PMID:24845537

  18. Hard x-ray phase contrast imaging using a tabletop Talbot-Lau interferometer with multiline embedded x-ray targets.

    PubMed

    Shimura, Takayoshi; Morimoto, Naoki; Fujino, Sho; Nagatomi, Takaharu; Oshima, Keni-chi; Harada, Jimpei; Omote, Kazuhiko; Osaka, Naohisa; Hosoi, Takuji; Watanabe, Heiji

    2013-01-15

    We demonstrate hard x-ray phase contrast imaging (XPCI) using a tabletop Talbot-Lau interferometer in which the x-ray source and source grating are replaced with an x-ray source with multiline metal targets embedded in a diamond substrate. This source realizes an array of linear x-ray sources of a few micrometers width without fabrication difficulty because of the shallow penetration depth of electrons irradiated to the metal targets. This enhances the coherence of x rays from each linear source and allows XPCI within 45 cm source-detector distance under 1.2 W input power for 8 keV x rays.

  19. Implications of stimulated resonant X-ray scattering for spectroscopy, imaging, and diffraction in the regime from soft to hard X-rays

    NASA Astrophysics Data System (ADS)

    Schreck, Simon; Beye, Martin; Föhlisch, Alexander

    2015-12-01

    The ultrahigh peak brilliance available at X-ray free-electron lasers opens the possibility to transfer nonlinear spectroscopic techniques from the optical and infrared into the X-ray regime. Here, we present a conceptual treatment of nonlinear X-ray processes with an emphasis on stimulated resonant X-ray scattering as well as a quantitative estimate for the scaling of stimulated X-ray scattering cross sections. These considerations provide the order of magnitude for the required X-ray intensities to experimentally observe stimulated resonant X-ray scattering for photon energies ranging from the extreme ultraviolet to the soft and hard X-ray regimes. At the same time, the regime where stimulated processes can safely be ignored is identified. With this basis, we discuss prospects and implications for spectroscopy, scattering, and imaging experiments at X-ray free-electron lasers.

  20. Pinhole interferometry with coherent hard X-rays.

    PubMed

    Leitenberger, Wolfram; Wendrock, Horst; Bischoff, Lothar; Weitkamp, Timm

    2004-03-01

    This paper discusses the experimental realisation of two types of X-ray interferometer based on pinhole diffraction. In both interferometers the beam splitter was a thin metal foil containing micrometer pinholes to divide the incident X-ray wave into two coherent waves. The interference pattern was studied using an energy-dispersive detector to simultaneously investigate in a large spectral range the diffraction properties of the white synchrotron radiation. For a highly absorbing pinhole mask the interference fringes from the classical Young's double-pinhole experiment were recorded and the degree of coherence of X-rays could be determined. In the case of low absorption of the metal foil at higher X-ray energies (>15 keV) the interference pattern of a point diffraction interferometer was observed using the same set-up. The spectral refraction index of the metal foil was determined.

  1. The Swift-BAT Hard X-ray Transient Monitor

    NASA Technical Reports Server (NTRS)

    Krimm, Hans; Markwardt, C. B.; Sanwal, D.; Tueller, J.

    2006-01-01

    The Burst Alert Telescope (BAT) on the Swift satellite is a large field of view instrument that continually monitors the sky to provide the gamma-ray burst trigger for Swift. An average of more than 70% of the sky is observed on a daily basis. The survey mode data is processed on two sets on time scales: from one minute to one day as part of the transient monitor program, and from one spacecraft pointing (approx.20 minutes) to the full mission duration for the hard X-ray survey program. The transient monitor has recently become public through the web site http:// swift.gsfc.nasa.gov/docs/swift/results/transients/. Sky images are processed to detect astrophysical sources in the 15-50 keV energy band and the detected flux or upper limit is calculated for >100 sources on time scales up to one day. Light curves are updated each time that new BAT data becomes available (approx.10 times daily). In addition, the monitor is sensitive to an outburst from a new or unknown source. Sensitivity as a function of time scale for catalog and unknown sources will be presented. The daily exposure for a typical source is approx.1500-3000 seconds, with a 1-sigma sensitivity of approx.4 mCrab. 90% of the sources are sampled at least every 16 days, but many sources are sampled daily. It is expected that the Swift-BAT transient monitor will become an important resource for the high energy astrophysics community.

  2. The Swift-BAT Hard X-ray Transient Monitor

    NASA Technical Reports Server (NTRS)

    Krimm, Hans; Markwardt, C. B.; Sanwal, D.; Tueller, J.

    2006-01-01

    The Burst Alert Telescope (BAT) on the Swift satellite is a large field of view instrument that continually monitors the sky to provide the gamma-ray burst trigger for Swift. An average of more than 70% of the sky is observed on a daily basis. The survey mode data is processed on two sets on time scales: from one minute to one day as part of the transient monitor program, and from one spacecraft pointing (approx.20 minutes) to the full mission duration for the hard X-ray survey program. The transient monitor has recently become public through the web site http:// swift.gsfc.nasa.gov/docs/swift/results/transients/. Sky images are processed to detect astrophysical sources in the 15-50 keV energy band and the detected flux or upper limit is calculated for >100 sources on time scales up to one day. Light curves are updated each time that new BAT data becomes available (approx.10 times daily). In addition, the monitor is sensitive to an outburst from a new or unknown source. Sensitivity as a function of time scale for catalog and unknown sources will be presented. The daily exposure for a typical source is approx.1500-3000 seconds, with a 1-sigma sensitivity of approx.4 mCrab. 90% of the sources are sampled at least every 16 days, but many sources are sampled daily. It is expected that the Swift-BAT transient monitor will become an important resource for the high energy astrophysics community.

  3. Hard x-ray phase contrastmicroscopy - techniques and applications

    NASA Astrophysics Data System (ADS)

    Holzner, Christian

    In 1918, Einstein provided the first description of the nature of the refractive index for X-rays, showing that phase contrast effects are significant. A century later, most x-ray microscopy and nearly all medical imaging remains based on absorption contrast, even though phase contrast offers orders of magnitude improvements in contrast and reduced radiation exposure at multi-keV x-ray energies. The work presented is concerned with developing practical and quantitative methods of phase contrast for x-ray microscopy. A theoretical framework for imaging in phase contrast is put forward; this is used to obtain quantitative images in a scanning microscope using a segmented detector, and to correct for artifacts in a commercial phase contrast x-ray nano-tomography system. The principle of reciprocity between scanning and full-field microscopes is then used to arrive at a novel solution: Zernike contrast in a scanning microscope. These approaches are compared on a theoretical and experimental basis in direct connection with applications using multi-keV x-ray microscopes at the Advanced Photon Source at Argonne National Laboratory. Phase contrast provides the best means to image mass and ultrastructure of light elements that mainly constitute biological matter, while stimulated x-ray fluorescence provides high sensitivity for studies of the distribution of heavier trace elements, such as metals. These approaches are combined in a complementary way to yield quantitative maps of elemental concentration from 2D images, with elements placed in their ultrastructural context. The combination of x-ray fluorescence and phase contrast poses an ideal match for routine, high resolution tomographic imaging of biological samples in the future. The presented techniques and demonstration experiments will help pave the way for this development.

  4. Hard X-ray Vela supernova observation on rocket experiment WRX-R

    NASA Astrophysics Data System (ADS)

    Stehlikova, V.; Urban, M.; Nentvich, O.; Daniel, V.; Sieger, L.; Tutt, J.

    2017-07-01

    This paper presents a hard X-ray telescope for the Vela nebula observation during a sounding rocket flight. The Water Recovery X-ray Rocket (WRX-R) experiment is organised by the Pennsylvania State University (PSU), USA with a primary payload of a soft X-ray spectroscope. The Czech team developed a hard X-ray Lobster-eye telescope as a secondary payload. The Czech experiment’s astrophysical object of study is the Vela pulsar in the centre of the Vela nebula.

  5. Hard X-ray Optics Technology Development for Astronomy at the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail; Ramsey, Brian; Kilaru, Kiranmayee

    2009-01-01

    Grazing-incidence telescopes based on Wolter 1 geometry have delivered impressive advances in astrophysics at soft-x-ray wavelengths, while the hard xray region remains relatively unexplored at fine angular resolution and high sensitivities. The ability to perform ground-breaking science in the hard-x-ray energy range had been the motivation for technology developments aimed at fabricating low-cost, light-weight, high-quality x-ray mirrors. Grazing-incidence x-ray optics for high-energy astrophysical applications is being developed at MSFC using the electroform-nickel replication process.

  6. Correlative Analysis of Hard and Soft X-ray Emissions in Solar Flares

    NASA Technical Reports Server (NTRS)

    Zarro, Dominic M.

    1997-01-01

    This report describes research performed under the Phase 3 Compton Gamma-Ray Observatory (CGRO) Guest Investigator Program. The objective of this work is to study different mechanisms of solar flare heating by comparing their predictions with simultaneous hard and soft X-ray observations. The datasets used in this work consist of hard X-ray observations from the CGRO Burst and Transient Source Experiment (BATSE) and soft X-ray observations from the Bragg Crystal Spectrometer (BCS) and Soft X-ray telescope (SXT) on the Japanese Yohkoh spacecraft.

  7. Coherent diffraction imaging using focused hard X-rays

    NASA Astrophysics Data System (ADS)

    Kim, Sunam; Kim, Sangsoo; Lee, Su Yong; Kim, Chan; Kim, Yoonhee; Noh, Do Young; Marathe, Shashidhara; Song, Changyong; Gallagher-Jones, Marcus; Kang, Hyon Chol

    2016-05-01

    A quantitative height profile image of a silicon nano-trench structure was obtained via coherent diffraction imaging (CDI) utilizing focused X-rays at a photon energy of 5.5 keV. The ability to optimize the spatial coherence and the photon flux density of a focused X-ray beam was the key technique for achieving such technical progress at a given X-ray photon flux. This was achieved by investigating the tunability of the focused beam's optical properties and performing a CDI experiment with the focused X-rays. The relationship between the focused X-rays' optical properties ( e.g., photon flux density and spatial coherence length) and the incident beam's size, which can be tuned by adjusting the slits in front of the Fresnel zone plate (FZP) was elucidated. We also obtained a quantitative image of a nano-trench sample produced via the reconstruction process of CDI, which utilizes carefully tuned, focused X-rays.

  8. Solar flare hard and soft x ray relationship determined from SMM HXRBS and BCS data

    NASA Technical Reports Server (NTRS)

    Toot, G. David

    1989-01-01

    The exact nature of the solar flare process is still somewhat a mystery. A key element to understanding flares if the relationship between the hard x rays emitted by the most energetic portions of the flare and the soft x rays from other areas and times. This relationship was studied by comparing hard x ray light curved from the Hard X-Ray Burst Spectrometer (HXRBS) with the soft x ray light curve and its derivation from the Bent Crystal Spectrometer (BCS) which is part of the X-Ray Polychrometer (XRP), these instruments being on the Solar Maximum Mission spacecraft (SMM). Data sample was taken from flares observed with the above instruments during 1980, the peak of the previous maximum of solar activity. Flares were chosen based on complete coverage of the event by several instruments. The HXRBS data covers the x ray spectrum from about 25 keV to about 440 keV in 15 spectral channels, while the BCS data used covers a region of the Spectrum around 3 angstroms including emission from the Ca XIX ion. Both sets of data were summed over their spectral ranges and plotted against time at a maximum time resolution of around 3 seconds. The most popular theory of flares holds that a beam of electrons produces the hard x rays by bremsstrahlung while the soft x rays are the thermal response to this energy deposition. The question is whether the rate of change of soft x ray emission might reflect the variability of the electron beam and hence the variability of the hard x rays. To address this, we took the time derivative of the soft x ray light curve and compared it to the hard flares, 12 of them showed very closed agreement between the soft x ray derivative and the hard x ray light curve. The other five did not show this behavior but were similar to each other in general soft x ray behavior. Efforts to determine basic differences between the two kinds of flares continue. In addition the behavior of soft x ray temperature of flares was examined.

  9. Solar flare hard and soft x ray relationship determined from SMM HXRBS and BCS data

    NASA Technical Reports Server (NTRS)

    Toot, G. David

    1989-01-01

    The exact nature of the solar flare process is still somewhat a mystery. A key element to understanding flares if the relationship between the hard x rays emitted by the most energetic portions of the flare and the soft x rays from other areas and times. This relationship was studied by comparing hard x ray light curved from the Hard X-Ray Burst Spectrometer (HXRBS) with the soft x ray light curve and its derivation from the Bent Crystal Spectrometer (BCS) which is part of the X-Ray Polychrometer (XRP), these instruments being on the Solar Maximum Mission spacecraft (SMM). Data sample was taken from flares observed with the above instruments during 1980, the peak of the previous maximum of solar activity. Flares were chosen based on complete coverage of the event by several instruments. The HXRBS data covers the x ray spectrum from about 25 keV to about 440 keV in 15 spectral channels, while the BCS data used covers a region of the Spectrum around 3 angstroms including emission from the Ca XIX ion. Both sets of data were summed over their spectral ranges and plotted against time at a maximum time resolution of around 3 seconds. The most popular theory of flares holds that a beam of electrons produces the hard x rays by bremsstrahlung while the soft x rays are the thermal response to this energy deposition. The question is whether the rate of change of soft x ray emission might reflect the variability of the electron beam and hence the variability of the hard x rays. To address this, we took the time derivative of the soft x ray light curve and compared it to the hard flares, 12 of them showed very closed agreement between the soft x ray derivative and the hard x ray light curve. The other five did not show this behavior but were similar to each other in general soft x ray behavior. Efforts to determine basic differences between the two kinds of flares continue. In addition the behavior of soft x ray temperature of flares was examined.

  10. X-ray characterization of curved crystals for hard x-ray astronomy

    NASA Astrophysics Data System (ADS)

    Buffagni, Elisa; Bonnini, Elisa; Ferrari, Claudio; Virgilli, Enrico; Frontera, Filippo

    2015-05-01

    Among the methods to focus photons the diffraction in crystals results as one of the most effective for high energy photons. An assembling of properly oriented crystals can form a lens able to focus x-rays at high energy via Laue diffraction in transmission geometry; this is a Laue lens. The x-ray diffraction theory provides that the maximum diffraction efficiency is achieved in ideal mosaic crystals, but real mosaic crystals show diffraction efficiencies several times lower than the ideal case due to technological problems. An alternative and convenient approach is the use of curved crystals. We have recently optimized an efficient method based on the surface damage of crystals to produce self-standing uniformly curved Si, GaAs and Ge tiles of thickness up to 2-3 mm and curvature radii R down to a few meters. We show that, for curved diffracting planes, such crystals have a diffraction efficiency nearly forty times higher than the diffraction efficiency of perfect similar flat crystals, thus very close to that of ideal mosaic crystals. Moreover, in an alternative configuration where the diffracting planes are perpendicular to the curved ones, a focusing effect occurs and will be shown. These results were obtained for several energies between 17 and 120 keV with lab sources or at high energy facilities such as LARIX at Ferrara (Italy), ESRF at Grenoble (France), and ANKA at Karlsruhe (Germany).

  11. The High Energy X-ray Imager Technology (HEXITEC) for Solar Hard X-ray Observations

    NASA Astrophysics Data System (ADS)

    Christe, Steven; Shih, Albert Y.; Gaskin, Jessica; Wilson-Hodge, Colleen; Seller, Paul; Wilson, Matthew

    2015-04-01

    High angular resolution HXR optics require detectors with a large number of fine pixels in order to adequately sample the telescope point spread function (PSF) over the entire field of view. Excessively over-sampling the PSF will increase readout noise and require more processing with no appreciable increase in image quality. An appropriate level of over-sampling is to have 3 pixels within the HPD. For current high resolution X-ray mirrors, the HPD is about 25 arcsec. Over a 6-m focal length this converts to 750 µm, the optimum pixel size is around 250 µm. Annother requirement are that the detectors must also have high efficiency in the HXR region, good energy resolution, low background, low power requirements, and low sensitivity to radiation damage. For solar observations, the ability to handle high counting rates is also extremely desirable. The Rutherford Appleton Laboratory (RAL) in the UK has been developing the electronics for such a detector. Dubbed HEXITEC, for High Energy X-Ray Imaging Technology, this Application Specific Integrated Circuit (ASIC), can be bonded to 1- or 2- mm-thick Cadmium Telluride (CdTe) or Cadmium-Zinc-Telluride (CZT), to create a fine (250 µm pitch) HXR detector. The NASA Marshall Space Flight CenterMSFC and the Goddard Space Flight Center (GSFC) has been working with RAL over the past few years to develop these detectors to be used with HXR focusing telescopes. We present on recent results and capabilities as applied to solar observations.

  12. Hard X-ray nanofocusing at low-emittance synchrotron radiation sources

    PubMed Central

    Schroer, Christian G.; Falkenberg, Gerald

    2014-01-01

    X-ray scanning microscopy relies on intensive nanobeams generated by imaging a highly brilliant synchrotron radiation source onto the sample with a nanofocusing X-ray optic. Here, using a Gaussian model for the central cone of an undulator source, the nanobeam generated by refractive X-ray lenses is modeled in terms of size, flux and coherence. The beam properties are expressed in terms of the emittances of the storage ring and the lateral sizes of the electron beam. Optimal source parameters are calculated to obtain efficient and diffraction-limited nanofocusing. With decreasing emittance, the usable fraction of the beam for diffraction-limited nanofocusing experiments can be increased by more than two orders of magnitude compared with modern storage ring sources. For a diffraction-limited storage ring, nearly the whole beam can be focused, making these sources highly attractive for X-ray scanning microscopy. PMID:25177988

  13. THE HARD X-RAY BEHAVIOR OF AQL X-1 DURING TYPE-I BURSTS

    SciTech Connect

    Chen, Yu-Peng; Zhang, Shu; Zhang, Shuang-Nan; Ji, Long; Li, Jian; Wang, Jian-Min; Torres, Diego F.; Kretschmar, Peter E-mail: szhang@ihep.ac.cn

    2013-11-01

    We report the discovery of an anti-correlation between the soft and hard X-ray light curves of the X-ray binary Aql X-1 when bursting. This behavior may indicate that the corona is cooled by the soft X-ray shower fed by the type-I X-ray bursts, and that this process happens within a few seconds. Stacking the Aql X-1 light curves of type-I bursts, we find a shortage in the 40-50 keV band, delayed by 4.5 ± 1.4 s with respect to the soft X-rays. The photospheric radius expansion bursts are different in that neither a shortage nor an excess shows up in the hard X-ray light curve.

  14. Design of a hard X-ray beamline and end-station for pump and probe experiments at Pohang Accelerator Laboratory X-ray Free Electron Laser facility

    NASA Astrophysics Data System (ADS)

    Park, Jaeku; Eom, Intae; Kang, Tai-Hee; Rah, Seungyu; Nam, Ki Hyun; Park, Jaehyun; Kim, Sangsoo; Kwon, Soonam; Park, Sang Han; Kim, Kyung Sook; Hyun, Hyojung; Kim, Seung Nam; Lee, Eun Hee; Shin, Hocheol; Kim, Seonghan; Kim, Myong-jin; Shin, Hyun-Joon; Ahn, Docheon; Lim, Jun; Yu, Chung-Jong; Song, Changyong; Kim, Hyunjung; Noh, Do Young; Kang, Heung Sik; Kim, Bongsoo; Kim, Kwang-Woo; Ko, In Soo; Cho, Moo-Hyun; Kim, Sunam

    2016-02-01

    The Pohang Accelerator Laboratory X-ray Free Electron Laser project, a new worldwide-user facility to deliver ultrashort, laser-like x-ray photon pulses, will begin user operation in 2017 after one year of commissioning. Initially, it will provide two beamlines for hard and soft x-rays, respectively, and two experimental end-stations for the hard x-ray beamline will be constructed by the end of 2015. This article introduces one of the two hard x-ray end-stations, which is for hard x-ray pump-probe experiments, and primarily outlines the overall design of this end-station and its critical components. The content of this article will provide useful guidelines for the planning of experiments conducted at the new facility.

  15. Low-energy shelf response in thin energy-dispersive X-ray detectors from Compton scattering of hard X-rays

    NASA Astrophysics Data System (ADS)

    Michel-Hart, N.; Elam, W. T.

    2017-08-01

    Silicon drift detectors have been successfully employed in both soft and hard X-ray spectroscopy. The response function to incident radiation at soft X-ray levels has been well studied and modeled, but less research has been published on response functions for these detectors to hard X-ray input spectra above 20 keV. When used with hard X-ray sources a significant low energy, non-peak response exists which can adversely affect detection limits for lighter elements in, for example, X-ray fluorescence spectroscopy. We present a numerical model that explains the non-peak response function of silicon drift detectors to hard X-rays based on incoherent Compton scattering within the detector volume. Experimental results are presented and numerically compared to model results.

  16. Optical holography in the hard X-ray domain

    NASA Astrophysics Data System (ADS)

    Watanabe, N.; Yokosuka, H.; Ohigashi, T.; Takano, H.; Takeuchi, A.; Suzuki, Y.; Aoki, S.

    2003-03-01

    Present status of our developments of x-ray holographie microscopes at SPring-8 BL20XU is described. A combination of the x-ray undulator and a zone plate enabled us to make a coherent x-ray source of around 0.1 μm size. Using this secondary source, two types of x-ray holographie microscopes were investigated. First, a Gabor microscope in point-projection geometry was tested. A tantalum 0. 2 llm line-and-space pattern could be resolved. Second, using a zone plate as a beam splitter, a Fourier transform holographie microscope was tested. A tantalum 0.2 μm line-and-space pattern could be observed. Polystyrene beads of 2.8 μm and 0.8 μm in diameter could be observed. In Fourier transform holography, a reconstructed image of a specimen that is located out of the plane of the reference source is blurred. Numerical focusing of such an x-ray hologram could be successfully demonstrated.

  17. Fluence thresholds for grazing incidence hard x-ray mirrors

    SciTech Connect

    Aquila, A.; Ozkan, C.; Sinn, H.; Tschentscher, T.; Mancuso, A. P.; Gaudin, J.; Sobierajski, R.; Klepka, M. T.; Dłużewski, P.; Morawiec, K.; Störmer, M.; Bajt, S.; Ohashi, H.; Koyama, T.; Tono, K.; Inubushi, Y. [RIKEN and others

    2015-06-15

    X-ray Free Electron Lasers (XFELs) have the potential to contribute to many fields of science and to enable many new avenues of research, in large part due to their orders of magnitude higher peak brilliance than existing and future synchrotrons. To best exploit this peak brilliance, these XFEL beams need to be focused to appropriate spot sizes. However, the survivability of X-ray optical components in these intense, femtosecond radiation conditions is not guaranteed. As mirror optics are routinely used at XFEL facilities, a physical understanding of the interaction between intense X-ray pulses and grazing incidence X-ray optics is desirable. We conducted single shot damage threshold fluence measurements on grazing incidence X-ray optics, with coatings of ruthenium and boron carbide, at the SPring-8 Angstrom compact free electron laser facility using 7 and 12 keV photon energies. The damage threshold dose limits were found to be orders of magnitude higher than would naively be expected. The incorporation of energy transport and dissipation via keV level energetic photoelectrons accounts for the observed damage threshold.

  18. Crystal cavity resonance for hard x rays: A diffraction experiment

    SciTech Connect

    Chang, S.-L.; Stetsko, Yu. P.; Tang, M.-T.; Shew, B.-Y.; Lee, Y.-R.; Sun, W.-H.; Wu, H.-H.; Kuo, T.-T.; Chen, S.-Y.; Chang, Y.-Y.; Shy, J.-T.; Yabashi, M.; Tamasaku, K.; Miwa, D.

    2006-10-01

    We report the details of the recent x-ray back diffraction experiments, in which interference fringes due to x-ray cavity resonance are unambiguously observed. The Fabry-Perot type cavities, the tested crystal devices of reflectivity R{approx_equal}0.5 and finesse F{approx_equal}2.3, consist of monolithic two-plate and eight-plate silicon crystals. They were prepared by using x-ray lithographic techniques. The thicknesses of the crystal plates and the gaps between the two adjacent plates are a few tens to hundreds {mu}m. The (12 4 0) back reflection and synchrotron x-radiation of energy resolution {delta}E=0.36 meV at 14.4388 keV are employed. Interference fringes in angle- and photon-energy scans for two-plate and eight-plate cavities are shown. Considerations on the temporal and spatial coherence for observable resonance interference fringes using synchrotron x-rays are presented. The details about the accompanied simultaneous 24-beam diffraction in relation to x-ray photon energy are also described.

  19. Stereoscopic observations of a solar flare hard X-ray source in the high corona

    SciTech Connect

    Kane, S.R.; Mctiernan, J.; Loran, J.; Fenimore, E.E.; Klebesadel, R.W.; Laros, J.G. Los Alamos National Laboratory, NM )

    1992-05-01

    The vertical structure of the impulsive and gradual hard X-ray sources in high coronae and the characteristics of the impulsive soft X-ray emission are investigated on the basis of PVE, ICE, and GOES observations of the energetic flare on February 16, 1984. The average photon spectra observed by these instruments during the impulsive and gradual hard X-ray bursts are summarized. A comparison of these unocculted and partially occulted spectra shows that the sources of the impulsive hard X-ray (greater than about 25 keV) and impulsive soft X-ray (2-5 keV) emissions in this flare extended to coronal altitudes greater than about 200,000 km above the photosphere. At about 100 keV, the ratio of the coronal source brightness to the total source brightness was 0.001 during the impulsive phase and less than about 0.01 during the gradual hard X-ray burst. The sources of the gradual hard X-ray burst and gradual soft X-ray burst were almost completely occulted, indicating that these sources were located at heights less than 200,000 km above the photosphere. 47 refs.

  20. Hard X-ray Emission and Efficient Particle Acceleration by Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Vink, Jacco

    2009-05-01

    I discuss the non-thermal X-ray emission from young supernova remnants. Over the last decade it has become clear from both X-ray and γ-ray observations that young supernovae accelerate particles up to 100 TeV. In soft X-rays the accelerated >10 TeV electrons produce synchrotron radiation, coming from narrow filaments located at the shock fronts. The width of these filaments shows that the magnetic fields are relatively high, thus providing evidence for magnetic field amplification. The synchrotron radiation of several remnants is known to extend into the hard X-ray regime. In particular Cas A, has a spectrum that appears as a power law up to almost 100 TeV. This is very surprising, as a steepening is expected going from the soft to the hard X-ray band. The spectrum is likely a result of many superimposed individual spectra, each steepening at different energies. This implies considerable spatial variation in hard X-rays, an obvious target for Simbol-X. The variations will be important to infer local shock acceleration properties, but also magnetic field fluctuations may cause spatial and temporal variations. Finally, I draw the attention to super bubbles and supernovae as sources of cosmic rays. As such they may be sources of hard X-ray emission. In particular, supernovae exploding inside the dense red supergiants winds of their progenitors ares promising candidates for hard X-ray emission.

  1. Hard X-ray Emission and Efficient Particle Acceleration by Supernova Remnants

    SciTech Connect

    Vink, Jacco

    2009-05-11

    I discuss the non-thermal X-ray emission from young supernova remnants. Over the last decade it has become clear from both X-ray and {gamma}-ray observations that young supernovae accelerate particles up to 100 TeV. In soft X-rays the accelerated >10 TeV electrons produce synchrotron radiation, coming from narrow filaments located at the shock fronts. The width of these filaments shows that the magnetic fields are relatively high, thus providing evidence for magnetic field amplification.The synchrotron radiation of several remnants is known to extend into the hard X-ray regime. In particular Cas A, has a spectrum that appears as a power law up to almost 100 TeV. This is very surprising, as a steepening is expected going from the soft to the hard X-ray band. The spectrum is likely a result of many superimposed individual spectra, each steepening at different energies. This implies considerable spatial variation in hard X-rays, an obvious target for Simbol-X. The variations will be important to infer local shock acceleration properties, but also magnetic field fluctuations may cause spatial and temporal variations.Finally, I draw the attention to super bubbles and supernovae as sources of cosmic rays. As such they may be sources of hard X-ray emission. In particular, supernovae exploding inside the dense red supergiants winds of their progenitors ares promising candidates for hard X-ray emission.

  2. Performance of hard X-ray zone plates at the Advanced Photon Source

    SciTech Connect

    Maser, J.; Lai, B.; Cai, Z.; Rodrigues, W.; Legnini, D.; Ilinski, P.; Yun, W.; Chen, Z.; Krasnoperova, A.A.; Vladimirsky, Y.; Cerrina, F.; Di, E.; Fabrizio, E.; Gentili, M.

    1999-12-20

    Fresnel zone plates have been highly successful as focusing and imaging optics for soft x-ray microscopes and microprobe. More recently, with the advent of third-generation high-energy storage rings, zone plates for the hard x-ray regime have been put to use as well. The performance of zone plates manufactured using a combination of electron-beam lithography and x-ray lithography is described.

  3. NuSTAR HARD X-RAY SURVEY OF THE GALACTIC CENTER REGION. I. HARD X-RAY MORPHOLOGY AND SPECTROSCOPY OF THE DIFFUSE EMISSION

    SciTech Connect

    Mori, Kaya; Hailey, Charles J.; Perez, Kerstin; Nynka, Melania; Zhang, Shuo; Canipe, Alicia M.; Krivonos, Roman; Tomsick, John A.; Barrière, Nicolas; Boggs, Steven E.; Craig, William W.; Hong, Jaesub; Ponti, Gabriele; Bauer, Franz; Alexander, David M.; Baganoff, Frederick K.; Barret, Didier; Christensen, Finn E.; Forster, Karl; Giommi, Paolo; and others

    2015-12-01

    We present the first sub-arcminute images of the Galactic Center above 10 keV, obtained with NuSTAR. NuSTAR resolves the hard X-ray source IGR J17456–2901 into non-thermal X-ray filaments, molecular clouds, point sources, and a previously unknown central component of hard X-ray emission (CHXE). NuSTAR detects four non-thermal X-ray filaments, extending the detection of their power-law spectra with Γ ∼ 1.3–2.3 up to ∼50 keV. A morphological and spectral study of the filaments suggests that their origin may be heterogeneous, where previous studies suggested a common origin in young pulsar wind nebulae (PWNe). NuSTAR detects non-thermal X-ray continuum emission spatially correlated with the 6.4 keV Fe Kα fluorescence line emission associated with two Sgr A molecular clouds: MC1 and the Bridge. Broadband X-ray spectral analysis with a Monte-Carlo based X-ray reflection model self-consistently determined their intrinsic column density (∼10{sup 23} cm{sup −2}), primary X-ray spectra (power-laws with Γ ∼ 2) and set a lower limit of the X-ray luminosity of Sgr A* flare illuminating the Sgr A clouds to L{sub X} ≳ 10{sup 38} erg s{sup −1}. Above ∼20 keV, hard X-ray emission in the central 10 pc region around Sgr A* consists of the candidate PWN G359.95–0.04 and the CHXE, possibly resulting from an unresolved population of massive CVs with white dwarf masses M{sub WD} ∼ 0.9 M{sub ⊙}. Spectral energy distribution analysis suggests that G359.95–0.04 is likely the hard X-ray counterpart of the ultra-high gamma-ray source HESS J1745–290, strongly favoring a leptonic origin of the GC TeV emission.

  4. Correlated hard x ray and UV variability in NGC 5548

    NASA Technical Reports Server (NTRS)

    Clavel, J.; Nandra, K.; Makino, F.; Pounds, K. A.; Reichert, G. A.; Urry, C. M.; Wamsteker, W.; Peracaula-Bosch, M.; Stewart, G. C.

    1992-01-01

    Observations of the nucleus of NGC5548 made at 11 different epochs during May - July 1990, in low resolution mode (1000 km/s) and through large apertures (10 by 20 inches) of the International Ultraviolet Explorer (IUE) spectrographs, are discussed. The patterns of variability are considered. Figures showing the following are given: light curves of the continuum in the X-ray and UV bands, together with the light curves of the strongest emission lines; the 2 to 10 KeV X-ray flux as a function of the 1350 A continuum for the 11 epochs of simultaneous X-ray and UV observations; the cross correlation and discrete correlation of F (sub 2 to 10) with F(sub 1350). Implications of the findings are discussed.

  5. Correlated hard x ray and UV variability in NGC 5548

    NASA Technical Reports Server (NTRS)

    Clavel, J.; Nandra, K.; Makino, F.; Pounds, K. A.; Reichert, G. A.; Urry, C. M.; Wamsteker, W.; Peracaula-Bosch, M.; Stewart, G. C.

    1992-01-01

    Observations of the nucleus of NGC5548 made at 11 different epochs during May - July 1990, in low resolution mode (1000 km/s) and through large apertures (10 by 20 inches) of the International Ultraviolet Explorer (IUE) spectrographs, are discussed. The patterns of variability are considered. Figures showing the following are given: light curves of the continuum in the X-ray and UV bands, together with the light curves of the strongest emission lines; the 2 to 10 KeV X-ray flux as a function of the 1350 A continuum for the 11 epochs of simultaneous X-ray and UV observations; the cross correlation and discrete correlation of F (sub 2 to 10) with F(sub 1350). Implications of the findings are discussed.

  6. Infrared identification of hard X-ray sources in the Galaxy

    NASA Astrophysics Data System (ADS)

    Nebot Gómez-Morán, A.; Motch, C.; Pineau, F.-X.; Carrera, F. J.; Pakull, M. W.; Riddick, F.

    2015-09-01

    The nature of the low- to intermediate-luminosity (LX ˜ 1032-34 erg s-1) source population revealed in hard band (2-10 keV) X-ray surveys of the Galactic plane is poorly understood. To overcome such problem, we cross-correlated the XMM-Newton 3XMM-DR4 survey with the infrared Two Micron All Sky Survey and Galactic Legacy Infrared Mid-Plane Survey Extraordinaire catalogues. We identified reliable X-ray-infrared associations for 690 sources. We selected 173 sources having hard X-ray spectra, typical of hard X-ray high-mass stars (kT > 5 keV), and 517 sources having soft X-ray spectra, typical of active coronae. About 18 per cent of the soft sources are classified in the literature: ˜91 per cent as stars, with a minor fraction of Wolf-Rayet (WR) stars. Roughly 15 per cent of the hard sources are classified in the literature: ˜68 per cent as high-mass X-ray stars single or in binary systems (WR, Be and high-mass X-ray binaries - HMXBs), with a small fraction of G and B stars. We carried out infrared spectroscopic pilot observations at the William Herschel Telescope for five hard X-ray sources. Three of them are high-mass stars with spectral types WN7-8h, Ofpe/WN9 and Be, and LX ˜ 1032-1033erg s-1. One source is a colliding-wind binary, while another source is a colliding-wind binary or a supergiant fast X-ray transient in quiescence. The Be star is a likely γ-Cas system. The nature of the other two X-ray sources is uncertain. The distribution of hard X-ray sources in the parameter space made of X-ray hardness ratio, infrared colours and X-ray-to-infrared flux ratio suggests that many of the unidentified sources are new γ-Cas analogues, WRs and low LX HMXBs. However, the nature of the X-ray population with Ks ≥ 11 and average X-ray-to-infrared flux ratio remains unconstrained.

  7. The MIRAX Hard X-Ray Transient Mission

    NASA Astrophysics Data System (ADS)

    Rodrigues, Barbara; Braga, J.; Grindlay, J. E.; Allen, B.; Hong, J.; Barthelmy, S. D.; Rothschild, R. E.; Wilms, J.

    2013-01-01

    The MIRAX (Monitor e Imageador de Raios X) mission is designed to perform a hard X-ray (5-200 keV) survey of more than half of the sky with high localization power 1') and high sensitivity (26 mCrab for one orbit and 0.3 mCrab for one year). This will be achieved by a set of 4 coded-mask imagers that will operate in scanning mode in a near-Equatorial circular LEO with a lifetime of 4+ years. The pointing directions will maximize the coverage of the Central Galactic Plane. The main objective of MIRAX is to study with unprecedented depth and time coverage (milliseconds to years) a large sample of transient and variable phenomena on accreting neutron stars and black holes. The high cadence of the MIRAX detections will be well suited for simultaneous and follow-up observations in other wavelengths. The satellite bus and launch will be provided by Brazil, whereas the instrument development is a cooperative effort led by CfA and including INPE (Brazil), UCSD, MIT, NASA's GSFC, Caltech and the University of Erlangen-Nuremberg in Germany. The MIRAX detectors, developed at CfA, are position-sensitive 5mm-thick CdZnTe with 0.6mm pitch with 756 cm2 effective area at 10 keV (total for the 4 units). The energy resolution is ~2 keV at 60 keV. For exposures near the center of the field of view the sensitivity of MIRAX will approach that of Swift/BAT in the 15-150 keV range, whereas the low threshold will enable ~70 mCrab sensitivity on time scales of 100s at energies inaccessible to Swift/BAT and INTEGRAL. The first unit of one MIRAX telescope has been developed and flown in the protoEXIST-2 (P2) balloon experiment in Fort Sumner, NM, in early October 2012. In this work we describe the MIRAX instruments and discuss results of detector calibration and preliminary results of the P2 balloon flight.

  8. Prospects for CW and LP operation of the European XFEL in hard X-ray regime

    NASA Astrophysics Data System (ADS)

    Brinkmann, R.; Schneidmiller, E. A.; Sekutowicz, J.; Yurkov, M. V.

    2014-12-01

    The European XFEL will operate nominally at 17.5 GeV in SP (short pulse) mode with 0.65 ms long bunch train and 10 Hz repetition rate. A possible upgrade of the linac to CW (continuous wave) or LP (long pulse) modes with a corresponding reduction of electron beam energy is under discussion for many years. Recent successes in the dedicated R&D program allow to forecast a technical feasibility of such an upgrade in the foreseeable future. One of the challenges is to provide sub-Ångström FEL operation in CW and LP modes. In this paper we perform a preliminary analysis of a possible operation of the European XFEL in the hard X-ray regime in CW and LP modes with electron energies of 7 GeV and 10 GeV, respectively. We consider lasing in the baseline XFEL undulator as well as in a new undulator with a reduced period. We show that, with reasonable requirements on electron beam quality, lasing on the fundamental will be possible in the sub-Ångström regime. As an option for generating brilliant photon beams at short wavelengths we also consider harmonic lasing that has recently attracted a significant attention.

  9. Long-term variability in bright hard X-ray sources: 5+ years of BATSE data

    NASA Technical Reports Server (NTRS)

    Robinson, C. R.; Harmon, B. A.; McCollough, M. L.; Paciesas, W. S.; Sahi, M.; Scott, D. M.; Wilson, C. A.; Zhang, S. N.; Deal, K. J.

    1997-01-01

    The operation of the Compton Gamma Ray Observatory (CGRO)/burst and transient source experiment (BATSE) continues to provide data for inclusion into a data base for the analysis of long term variability in bright, hard X-ray sources. The all-sky capability of BATSE provides up to 30 flux measurements/day for each source. The long baseline and the various rising and setting occultation flux measurements allow searches for periodic and quasi-periodic signals with periods of between several hours to hundreds of days to be conducted. The preliminary results from an analysis of the hard X-ray variability in 24 of the brightest BATSE sources are presented. Power density spectra are computed for each source and profiles are presented of the hard X-ray orbital modulations in some X-ray binaries, together with amplitude modulations and variations in outburst durations and intensities in recurrent X-ray transients.

  10. Suzaku Detection of Diffuse Hard X-Ray Emission Outside Vela X

    NASA Technical Reports Server (NTRS)

    Katsuda, Satoru; Mori, Koji; Petre, Robert; Yamaguchi, Hiroya; Tsunemi, Hiroshi; Bocchino, Fabrizio; Bamba, Aya; Miceli, Marco; Hewitt, John W.; Temim, Tea; Uchida, Hiroyuki; Yoshii, Rie

    2011-01-01

    Vela X is a large, 3 deg x 2 deg, radio-emitting pulsar wind nebula (PWN) powered by the Vela pulsar in the Vela supernova remnant. Using four Suzaku/XIS observations pointed just outside Vela X, we find hard X-ray emission extending throughout the fields of view. The hard X-ray spectra are well represented by a power-law. The photon index is measured to be constant at Gamma approximates 2.4, similar to that of the southern outer part of Vela X. The power-law flux decreases with increasing distance from the pulsar. These properties lead us to propose that the hard X-ray emission is associated with the Vela PWN. The larger X-ray extension found in this work strongly suggests that distinct populations relativistic electrons form the X-ray PWN and Vela X, as was recently inferred from multiwavelength spectral modeling of Vela X.

  11. The Hard X-ray Imager (HXI) for the ASTRO-H Mission

    NASA Astrophysics Data System (ADS)

    Sato, Goro; Kokubun, Motohide; Nakazawa, Kazuhiro; Enoto, Teruaki; Fukazawa, Yasushi; Harayama, Atsushi; Hayashi, Katsuhiro; Kataoka, Jun; Katsuta, Junichiro; Kawaharada, Madoka; Laurent, Philippe; Lebrun, François; Limousin, Olivier; Makishima, Kazuo; Mizuno, Tsunefumi; Mori, Kunishiro; Nakamori, Takeshi; Noda, Hirofumi; Odaka, Hirokazu; Ohno, Masanori; Ohta, Masayuki; Saito, Shinya; Sato, Rie; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shinichiro; Terada, Yukikatsu; Uchiyama, Hideki; Uchiyama, Yasunobu; Watanabe, Shin; Yamaoka, Kazutaka; Yatsu, Yoichi; Yuasa, Takayuki

    2014-07-01

    The 6th Japanese X-ray satellite, ASTRO-H, is scheduled for launch in 2015. The hard X-ray focusing imaging system will observe astronomical objects with the sensitivity for detecting point sources with a brightness of 1/100,000 times fainter than the Crab nebula at > 10 keV. The Hard X-ray Imager (HXI) is a focal plane detector 12 m below the hard X-ray telescope (HXT) covering the energy range from 5 to 80 keV. The HXI is composed of a stacked Si/CdTe semiconductor detector module and surrounding BGO scintillators. The latter work as active shields for efficient reduction of background events caused by cosmic-ray particles, cosmic X-ray background, and in-orbit radiation activation. In this paper, we describe the detector system, and present current status of flight model development, and performance of HXI using an engineering model of HXI.

  12. The hard X-ray shortages prompted by the clock bursts in GS 1826-238

    SciTech Connect

    Ji, Long; Zhang, Shu; Chen, YuPeng; Zhang, Shuang-Nan; Li, Jian; Torres, Diego F.; Kretschmar, Peter

    2014-02-10

    We report on a study of GS 1826-238 using all available Rossi X-Ray Timing Explorer observations, concentrating on the behavior of the hard X-rays during type-I bursts. We find a hard X-ray shortage at 30-50 keV prompted by the shower of soft X-rays coming from type-I bursts. This shortage happens with a time delay after the peak of the soft flux of 3.6 ± 1.2 s. The behavior of hard X-rays during bursts indicates cooling and reheating of the corona, during which a large amount of energy is required. We speculate that this energy originates from the feedback of the type-I bursts to the accretion process, resulting in a rapid temporary increase of the accretion rate.

  13. Development of a hard X-ray delay line for X-ray photon correlation spectroscopy and jitter-free pump-probe experiments at X-ray free-electron laser sources.

    PubMed

    Roseker, Wojciech; Franz, Hermann; Schulte-Schrepping, Horst; Ehnes, Anita; Leupold, Olaf; Zontone, Federico; Lee, Sooheyong; Robert, Aymeric; Grübel, Gerhard

    2011-05-01

    A hard X-ray delay line capable of splitting and delaying single X-ray pulses has been developed with the aim of performing X-ray photon correlation spectroscopy (XPCS) and X-ray pump-probe experiments at hard X-ray free-electron laser sources. The performance of the device was tested with 8.39 keV synchrotron radiation. Time delays up to 2.95 ns have been demonstrated. The feasibility of the device for performing XPCS studies was tested by recording static speckle patterns. The achieved speckle contrast of 56% indicates the possibility of performing ultra-fast XPCS studies with the delay line.

  14. Calibration of a time-resolved hard-x-ray detector using radioactive sources

    SciTech Connect

    Stoeckl, C. Theobald, W.; Regan, S. P.; Romanofsky, M. H.

    2016-11-15

    A four-channel, time-resolved, hard x-ray detector (HXRD) has been operating at the Laboratory for Laser Energetics for more than a decade. The slope temperature of the hot-electron population in direct-drive inertial confinement fusion experiments is inferred by recording the hard x-ray radiation generated in the interaction of the electrons with the target. Measuring the energy deposited by hot electrons requires an absolute calibration of the hard x-ray detector. A novel method to obtain an absolute calibration of the HXRD using single photons from radioactive sources was developed, which uses a thermoelectrically cooled, low-noise, charge-sensitive amplifier.

  15. Possible evidence for beaming in flares from microwave and hard X-ray imaging and spectra

    NASA Technical Reports Server (NTRS)

    Schmahl, E. J.; Kundu, M. R.; Dennis, B. R.

    1986-01-01

    The magnetic field strength and number of burst-producing energetic electrons are presently deduced for the impulsive phase of a solar flare at microwave wavelengths, with the VLA, and hard X-rays, with the SMM Hard X-ray Burst Spectrometer. The combined data indicate that the number of microwave-emitting electrons is at least three orders of magnitude smaller than the number of thick target electrons producing the hard X-rays; this is suggested to be due to the high beaming and inefficient radiation of gyrosynchrotron emission by comparison with isotropically distributed electrons.

  16. Hard X-ray and Hot Electron Environment in Vacuum Hohlraums at NIF

    SciTech Connect

    McDonald, J W; . Suter, L J; Landen, O L; Foster, J M; Celeste, J R; Holder, J P; Dewald, E L; Schneider, M B; Hinkel, D E; Kauffman, R L; Atherton, L J; Bonanno, R E; Dixit, S N; Eder, D C; Haynam, C A; Kalantar, D H; Koniges, A E; Lee, F D; MacGowan, B J; Manes, K R; Munro, D H; Murray, J R; Shaw, M J; Stevenson, R M; Parham, T G; Van Wonterghem, B M; Wallace, R J; Wegner, P J; Whitman, P K; Young, B K; Hammel, B A; Moses, E I

    2005-09-22

    Time resolved hard x-ray images (hv > 9 keV) and time integrated hard x-ray spectra (hv = 18-150 keV) from vacuum hohlraums irradiated with four 351 nm wavelength NIF laser beams are presented as a function of hohlraum size and laser power and duration. The hard x-ray images and spectra provide insight into the time evolution of the hohlraum plasma filling and the production of hot electrons. The fraction of laser energy detected as hot electrons (f{sub hot}) and a comparison to a filling model are presented.

  17. Bright, low debris, ultrashort hard x-ray table top source using carbon nanotubes

    SciTech Connect

    Bagchi, Suman; Kiran, P. Prem; Yang, K.; Rao, A. M.; Bhuyan, M. K.; Krishnamurthy, M.; Kumar, G. Ravindra

    2011-01-15

    We demonstrate that carbon nanotube coated surfaces produce two orders of magnitude brighter hard x-ray emission, in laser produced plasmas, than planar surfaces. It is accompanied by three orders of magnitude reduction in ion debris which is also low Z and nontoxic. The increased emission is a direct consequence of the enhancement in local fields and is via the simple and well known 'lightning rod' effect. We propose that this carbon nanotube hard x-ray source is a simple, inexpensive, and high repetition rate hard x-ray point source for a variety of applications in imaging, lithography, microscopy, and material processing.

  18. The Emerging Population of Pulsar Wind Nebulae in Hard X-rays

    NASA Astrophysics Data System (ADS)

    Mattana, F.; Götz, D.; Terrier, R.; Renaud, M.; Falanga, M.

    2009-05-01

    The hard X-ray synchrotron emission from Pulsar Wind Nebulae probes energetic particles, closely related to the pulsar injection power at the present time. INTEGRAL has disclosed the yet poorly known population of hard X-ray pulsar/PWN systems. We summarize the properties of the class, with emphasys on the first hard X-ray bow-shock (CTB 80 powered by PSR B1951+32), and highlight some prospects for the study of Pulsar Wind Nebulae with the Simbol-X mission.

  19. Calibration of a time-resolved hard-x-ray detector using radioactive sources

    NASA Astrophysics Data System (ADS)

    Stoeckl, C.; Theobald, W.; Regan, S. P.; Romanofsky, M. H.

    2016-11-01

    A four-channel, time-resolved, hard x-ray detector (HXRD) has been operating at the Laboratory for Laser Energetics for more than a decade. The slope temperature of the hot-electron population in direct-drive inertial confinement fusion experiments is inferred by recording the hard x-ray radiation generated in the interaction of the electrons with the target. Measuring the energy deposited by hot electrons requires an absolute calibration of the hard x-ray detector. A novel method to obtain an absolute calibration of the HXRD using single photons from radioactive sources was developed, which uses a thermoelectrically cooled, low-noise, charge-sensitive amplifier.

  20. Observational techniques for solar flare gamma-rays, hard X-rays, and neutrons

    NASA Technical Reports Server (NTRS)

    Lin, Robert P.

    1989-01-01

    The development of new instrumentation and techniques for solar hard X-ray, gamma ray and neutron observations from spacecraft and/or balloon-borne platforms is examined. The principal accomplishments are: (1) the development of a two segment germanium detector which is near ideal for solar hard X-ray and gamma ray spectroscopy; (2) the development of long duration balloon flight techniques and associated instrumentation; and (3) the development of innovative new position sensitive detectors for hard X-ray and gamma rays.

  1. Hard X-ray Spectroscopy of Obscured AGN with NuSTAR

    NASA Astrophysics Data System (ADS)

    Balokovic, Mislav; Harrison, Fiona; NuSTAR Extragalactic Surveys Team

    2017-01-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) has enabled studies of the local active galactic nuclei (AGN) to extend into the hard X-ray band, up to 79 keV, with unprecedented spatial resolution and sensitivity. As a part of its extragalactic program, NuSTAR is surveying the nearby population of AGN detected at hard X-ray energies by the Swift Burst Alert Telescope (Swift/BAT), selecting even the most obscured local AGN. I will highlight some of the results based on broadband X-ray spectroscopy of individual targets and present my work on the large representative sample of more than a hundred nearby obscured AGN, which constitutes the largest available atlas of hard X-ray spectra of obscured AGN to date. The high quality of the data allows us to probe the details of AGN structures such as the X-ray-emitting corona and the toroidal obscurer in the under-explored spectral window above 10 keV. I will present both phenomenological results important for synthesis models of the cosmic X-ray background, and a novel approach for constraining the geometry of the gas surrounding the supermassive black hole (including the accretion disk, the broad-line region, and the torus) from the hard X-ray band. Finally, I will discuss how what we learned from this survey of local AGN relates to deeper high-redshift X-ray surveys and AGN structure probes at other wavelengths.

  2. Hard X-Ray and IR Observations of Cygnus X-3

    DTIC Science & Technology

    1996-03-15

    1978), or an accretion disk corona (White & Holt 1982). See Bonnet- Bidaud & Chardin (1988) for a valuable review of many of the Cyg X{3 observations...over a longer period, co- inciding with hard X-ray, soft X-ray, and radio measure- ments. References Bonnet-Bidaud, J. M., & Chardin , G. 1988, Phys

  3. Deterministic retrieval of complex Green's functions using hard X rays.

    PubMed

    Vine, D J; Paganin, D M; Pavlov, K M; Uesugi, K; Takeuchi, A; Suzuki, Y; Yagi, N; Kämpfe, T; Kley, E-B; Förster, E

    2009-01-30

    A massively parallel deterministic method is described for reconstructing shift-invariant complex Green's functions. As a first experimental implementation, we use a single phase contrast x-ray image to reconstruct the complex Green's function associated with Bragg reflection from a thick perfect crystal. The reconstruction is in excellent agreement with a classic prediction of dynamical diffraction theory.

  4. Time-Resolved Hard X-Ray Spectrometer

    SciTech Connect

    Kenneth Moya; Ian McKennaa; Thomas Keenana; Michael Cuneob

    2007-03-01

    Wired array studies are being conducted at the SNL Z accelerator to maximize the x-ray generation for inertial confinement fusion targets and high energy density physics experiments. An integral component of these studies is the characterization of the time-resolved spectral content of the x-rays. Due to potential spatial anisotropy in the emitted radiation, it is also critical to diagnose the time-evolved spectral content in a space-resolved manner. To accomplish these two measurement goals, we developed an x-ray spectrometer using a set of high-speed detectors (silicon PIN diodes) with a collimated field-of-view that converged on a 1-cm-diameter spot at the pinch axis. Spectral discrimination is achieved by placing high Z absorbers in front of these detectors. We built two spectrometers to permit simultaneous different angular views of the emitted radiation. Spectral data have been acquired from recent Z shots for the radial and polar views. UNSPEC1 has been adapted to analyze and unfold the measured data to reconstruct the x-ray spectrum. The unfold operator code, UFO2, is being adapted for a more comprehensive spectral unfolding treatment.

  5. Time-resolved hard x-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Moy, Kenneth; Cuneo, Michael; McKenna, Ian; Keenan, Thomas; Sanford, Thomas; Mock, Ray

    2006-08-01

    Wired array studies are being conducted at the SNL Z accelerator to maximize the x-ray generation for inertial confinement fusion targets and high energy density physics experiments. An integral component of these studies is the characterization of the time-resolved spectral content of the x-rays. Due to potential spatial anisotropy in the emitted radiation, it is also critical to diagnose the time-evolved spectral content in a space-resolved manner. To accomplish these two measurement goals, we developed an x-ray spectrometer using a set of high-speed detectors (silicon PIN diodes) with a collimated field-of-view that converged on a 1-cm-diameter spot at the pinch axis. Spectral discrimination is achieved by placing high Z absorbers in front of these detectors. We built two spectrometers to permit simultaneous different angular views of the emitted radiation. Spectral data have been acquired from recent Z shots for the radial and axial (polar) views. UNSPEC 1 has been adapted to analyze and unfold the measured data to reconstruct the x-ray spectrum. The unfold operator code, UFO2, is being adapted for a more comprehensive spectral unfolding treatment.

  6. Hard X-ray irradiation of cosmic silicate analogs: structural evolution and astrophysical implications

    NASA Astrophysics Data System (ADS)

    Gavilan, L.; Jäger, C.; Simionovici, A.; Lemaire, J. L.; Sabri, T.; Foy, E.; Yagoubi, S.; Henning, T.; Salomon, D.; Martinez-Criado, G.

    2016-03-01

    Context. Protoplanetary disks, interstellar clouds, and active galactic nuclei contain X-ray-dominated regions. X-rays interact with the dust and gas present in such environments. While a few laboratory X-ray irradiation experiments have been performed on ices, X-ray irradiation experiments on bare cosmic dust analogs have been scarce up to now. Aims: Our goal is to study the effects of hard X-rays on cosmic dust analogs via in situ X-ray diffraction. By using a hard X-ray synchrotron nanobeam, we seek to simulate cumulative X-ray exposure on dust grains during their lifetime in these astrophysical environments and provide an upper limit on the effect of hard X-rays on dust grain structure. Methods: We prepared enstatite (MgSiO3) nanograins, which are analogs to cosmic silicates, via the melting-quenching technique. These amorphous grains were then annealed to obtain polycrystalline grains. These were characterized via scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) before irradiation. Powder samples were prepared in X-ray transparent substrates and were irradiated with hard X-rays nanobeams (29.4 keV) provided by beamline ID16B of the European Synchrotron Radiation Facility (Grenoble). X-ray diffraction images were recorded in transmission mode, and the ensuing diffractograms were analyzed as a function of the total X-ray exposure time. Results: We detected the amorphization of polycrystalline silicates embedded in an organic matrix after an accumulated X-ray exposure of 6.4 × 1027 eV cm-2. Pure crystalline silicate grains (without resin) do not exhibit amorphization. None of the amorphous silicate samples (pure and embedded in resin) underwent crystallization. We analyze the evolution of the polycrystalline sample embedded in an organic matrix as a function of X-ray exposure. Conclusions: Loss of diffraction peak intensity, peak broadening, and the disappearance of discrete spots and arcs reveal the amorphization

  7. Grating-based at-wavelength metrology of hard x-ray reflective optics.

    PubMed

    Berujon, Sebastien; Ziegler, Eric

    2012-11-01

    A mean of characterizing the tangential shape of a hard x-ray mirror is presented. Derived from a group of methods operating under visible light, its application in the x-ray domain using an x-ray absorption grating allows recovery of the mirror shape with nanometer accuracy and submillimeter spatial resolution. The method works with incoherent light, does not require any a priori information about the mirror characteristics and allows shape reconstruction of x-ray reflective optics under thermal and mechanical working conditions.

  8. Directional properties of hard x-ray sources generated by tightly focused ultrafast laser pulses

    SciTech Connect

    Hou Bixue; Mordovanakis, Aghapi; Easter, James; Krushelnick, Karl; Nees, John A.

    2008-11-17

    Directional properties of ultrafast laser-based hard x-ray sources are experimentally studied using tightly focused approximately millijoule laser pulses incident on a bulk Mo target. Energy distributions of K{alpha} and total x rays, as well as source-size distributions are directionally resolved in vacuum and in flowing helium, respectively. Directional distributions of x-ray emission is more isotropic for p-polarized pump than for s-polarized. Based on source-size measurements, a simple two-location model, with expanded plasma and bulk material, is employed to represent the x-ray source profile.

  9. Hard disk drive based microsecond x-ray chopper for characterization of ionization chambers and photodiodes

    NASA Astrophysics Data System (ADS)

    Müller, O.; Lützenkirchen-Hecht, D.; Frahm, R.

    2015-03-01

    A fast X-ray chopper capable of producing ms long X-ray pulses with a typical rise time of few μs was realized. It is ideally suited to investigate the temporal response of X-ray detectors with response times of the order of μs to ms, in particular, any kind of ionization chambers and large area photo diodes. The drive mechanism consists of a brushless DC motor and driver electronics from a common hard disk drive, keeping the cost at an absolute minimum. Due to its simple construction and small dimensions, this chopper operates at home lab based X-ray tubes and synchrotron radiation sources as well. The dynamics of the most important detectors used in time resolved X-ray absorption spectroscopy, namely, ionization chambers and Passivated Implanted Planar Silicon photodiodes, were investigated in detail. The results emphasize the applicability of this X-ray chopper.

  10. Hard disk drive based microsecond x-ray chopper for characterization of ionization chambers and photodiodes

    SciTech Connect

    Müller, O. Lützenkirchen-Hecht, D.; Frahm, R.

    2015-03-15

    A fast X-ray chopper capable of producing ms long X-ray pulses with a typical rise time of few μs was realized. It is ideally suited to investigate the temporal response of X-ray detectors with response times of the order of μs to ms, in particular, any kind of ionization chambers and large area photo diodes. The drive mechanism consists of a brushless DC motor and driver electronics from a common hard disk drive, keeping the cost at an absolute minimum. Due to its simple construction and small dimensions, this chopper operates at home lab based X-ray tubes and synchrotron radiation sources as well. The dynamics of the most important detectors used in time resolved X-ray absorption spectroscopy, namely, ionization chambers and Passivated Implanted Planar Silicon photodiodes, were investigated in detail. The results emphasize the applicability of this X-ray chopper.

  11. Hard disk drive based microsecond X-ray chopper for characterization of ionization chambers and photodiodes.

    PubMed

    Müller, O; Lützenkirchen-Hecht, D; Frahm, R

    2015-03-01

    A fast X-ray chopper capable of producing ms long X-ray pulses with a typical rise time of few μs was realized. It is ideally suited to investigate the temporal response of X-ray detectors with response times of the order of μs to ms, in particular, any kind of ionization chambers and large area photo diodes. The drive mechanism consists of a brushless DC motor and driver electronics from a common hard disk drive, keeping the cost at an absolute minimum. Due to its simple construction and small dimensions, this chopper operates at home lab based X-ray tubes and synchrotron radiation sources as well. The dynamics of the most important detectors used in time resolved X-ray absorption spectroscopy, namely, ionization chambers and Passivated Implanted Planar Silicon photodiodes, were investigated in detail. The results emphasize the applicability of this X-ray chopper.

  12. Spectral and temporal properties of the X-ray pulsar SMC X-1 at hard X-rays

    NASA Technical Reports Server (NTRS)

    Kunz, M.; Gruber, D. E.; Kendziorra, E .; Kretschmar, P.; Maisack, M.; Mony, B.; Staubert, R.; Doebereiner, S.; Englhauser, J.; Pietsch, W.

    1993-01-01

    The binary X-ray pulsar SMC X- 1 has been observed at hard X-rays with the High Energy X-Ray Experiment (HEXE) on nine occasions between Nov. 1987 and March 1989. A thin thermal bremsstrahlung fit to the phase averaged spectrum yields a plasma temperature (14.4 +/- 1.3) keV and a luminosity above (1.1 +/- 0.1) x 10 exp 38 erg/s in the 20-80 keV band. Pulse period values have been established for three observations, confirming the remarkably stable spin-up trend of SMC X-1. In one of the three observations the pulse profile was seen to deviate from a dominant double pulsation, while at the same time the pulsed fraction was unusually large. For one observation we determined for the first time the pulsed fraction in narrow energy bands. It increases with photon energy from about 20 percent up to over 60 percent in the energy range from 20 to 80 keV.

  13. H-alpha and hard X-ray development in two-ribbon flares

    NASA Technical Reports Server (NTRS)

    Dwivedi, B. N.; Hudson, H. S.; Kane, S. R.; Svestka, Z.

    1984-01-01

    Morphological features of two-ribbon flares have been studied, using simultaneous ISEE-3 hard X-ray records and high-resolution Big Bear H-alpha movies for more than 20 events. Long-lasting and complex hard X-ray bursts are almost invariably found associated with flares of the two-ribbon type. At least three events are found, namely March 31, 1979, April 10, 1980, and July 1, 1980, where the occurrence of individual spikes in hard X-ray radiation coincides with suddenly enhanced H-alpha emission covering the sunspot penumbra. There definitely exist important (greater than or equal to 1 B) two-ribbon flares without significant hard X-ray emission.

  14. Puzzling Hard X-ray Emission from Hot Single White Dwarfs

    NASA Astrophysics Data System (ADS)

    Chu, You-Hua

    2012-10-01

    The hot white dwarf WD2226-210 is the central star of the Helix Nebula. It shows soft X-ray photospheric emission and a hard component peaking near 1 keV, which is puzzling as WD2226-210 has neither a binary companion nor a fast wind. Such hard X-rays are rare among single WDs but more common among central stars of PNe. We request 300 ks XMM-Newton observations of WD2226-210, using RGS spectra to determine plasma temperatures, abundances, and ionization equilibrium, and using EPIC data to study temporal variations of the 1 keV emission. We also request short observations of three other WDs with hard X-ray emission. The results will allow us to critically address different emission mechanisms for hard X-rays and their implications on stellar evolution and binary mergers.

  15. The coevolution of decimetric millisecond spikes and hard X-ray emission during solar flares

    NASA Technical Reports Server (NTRS)

    Aschwanden, Markus J.; Guedel, Manuel

    1992-01-01

    Results are presented of an analysis of a comprehensive data set of 27 solar flares with decimetric millisecond spikes between 1980 and 1989, simultaneously observed with the Zuerich radio spectrometers and the Hard X-ray Burst Spectrometer on the SMM spacecraft. Two contradictory relationships of the coevolution of hard X-ray and spiky radio emissions during flares are found: the temporal evolution of both emissions reveals a close functional dependence, but there is a substantial time delay between the two emissions. Five possible scenarios for the hard-X-ray-associated radio spike emission which may account for both their detailed coevolution and their substantial intervening time delay are discussed. All five scenarios are able to explain both the close coevolution of hard X-ray and radio emission as well as their mutual delay to some degree, but none of them can explain all observational aspects in a simple way.

  16. Non-thermal Hard X-Ray Emission from Coma and Several Abell Clusters

    SciTech Connect

    Correa, C

    2004-02-05

    We report results of hard X-Ray observations of the clusters Coma, Abell 496, Abell754, Abell 1060, Abell 1367, Abell2256 and Abell3558 using RXTE data from the NASA HEASARC public archive. Specifically we searched for clusters with hard x-ray emission that can be fitted by a power law because this would indicate that the cluster is a source of non-thermal emission. We are assuming the emission mechanism proposed by Vahk Petrosian where the inter cluster space contains clouds of relativistic electrons that by themselves create a magnetic field and emit radio synchrotron radiation. These relativistic electrons Inverse-Compton scatter Microwave Background photons up to hard x-ray energies. The clusters that were found to be sources of non-thermal hard x-rays are Coma, Abell496, Abell754 and Abell 1060.

  17. The Fabrication of Replicated Optics for Hard X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Speegle, C. O.; Ramsey, B. D.; Engelhaupt, D.

    2000-01-01

    We describe the fabrication process for producing shallow-graze-angle mirrors for hard x-ray astronomy. This presentation includes the generation of the necessary super-polished mandrels, their metrology, and the subsequent mirror shell electroforming and testing.

  18. The interpretation of hard X-ray polarization measurements in solar flares

    NASA Technical Reports Server (NTRS)

    Leach, J.; Emslie, A. G.; Petrosian, V.

    1983-01-01

    Observations of polarization of moderately hard X-rays in solar flares are reviewed and compared with the predictions of recent detailed modeling of hard X-ray bremsstrahlung production by non-thermal electrons. The recent advances in the complexity of the modeling lead to substantially lower predicted polarizations than in earlier models and more fully highlight how various parameters play a role in determining the polarization of the radiation field. The new predicted polarizations are comparable to those predicted by thermal modeling of solar flare hard X-ray production, and both are in agreement with the observations. In the light of these results, new polarization observations with current generation instruments are proposed which could be used to discriminate between non-thermal and thermal models of hard X-ray production in solar flares.

  19. Hard X-ray Phase-Contrast Tomographic Nanoimaging

    NASA Astrophysics Data System (ADS)

    Stampanoni, M.; Marone, F.; Vila-Comamala, J.; Gorelick, S.; David, C.; Trtik, P.; Jefimovs, K.; Mokso, R.

    2011-09-01

    Synchrotron-based full-field tomographic microscopy established itself as a tool for noninvasive investigations. Many beamlines worldwide routinely achieve micrometer spatial resolution while the isotropic 100-nm barrier is reached and trespassed only by few instruments, mainly in the soft x-ray regime. We present an x-ray, full-field microscope with tomographic capabilities operating at 10 keV and with a 3D isotropic resolution of 144 nm recently installed at the TOMCAT beamline of the Swiss Light Source. Custom optical components, including a beam-shaping condenser and phase-shifting dot arrays, were used to obtain an ideal, aperture-matched sample illumination and very sensitive phase-contrast imaging. The instrument has been successfully used for the nondestructive, volumetric investigation of single, unstained cells.

  20. Incoherent Diffractive Imaging via Intensity Correlations of Hard X Rays

    NASA Astrophysics Data System (ADS)

    Classen, Anton; Ayyer, Kartik; Chapman, Henry N.; Röhlsberger, Ralf; von Zanthier, Joachim

    2017-08-01

    Established x-ray diffraction methods allow for high-resolution structure determination of crystals, crystallized protein structures, or even single molecules. While these techniques rely on coherent scattering, incoherent processes like fluorescence emission—often the predominant scattering mechanism—are generally considered detrimental for imaging applications. Here, we show that intensity correlations of incoherently scattered x-ray radiation can be used to image the full 3D arrangement of the scattering atoms with significantly higher resolution compared to conventional coherent diffraction imaging and crystallography, including additional three-dimensional information in Fourier space for a single sample orientation. We present a number of properties of incoherent diffractive imaging that are conceptually superior to those of coherent methods.

  1. Hard X-ray imaging of bacterial cells: nano-diffraction and ptychographic reconstruction.

    PubMed

    Wilke, R N; Priebe, M; Bartels, M; Giewekemeyer, K; Diaz, A; Karvinen, P; Salditt, T

    2012-08-13

    Ptychographic coherent X-ray diffractive imaging (PCDI) has been combined with nano-focus X-ray diffraction to study the structure and density distribution of unstained and unsliced bacterial cells, using a hard X-ray beam of 6.2keV photon energy, focused to about 90nm by a Fresnel zone plate lens. While PCDI provides images of the bacteria with quantitative contrast in real space with a resolution well below the beam size at the sample, spatially resolved small angle X-ray scattering using the same Fresnel zone plate (cellular nano-diffraction) provides structural information at highest resolution in reciprocal space up to 2nm(-1). We show how the real and reciprocal space approach can be used synergistically on the same sample and with the same setup. In addition, we present 3D hard X-ray imaging of unstained bacterial cells by a combination of ptychography and tomography.

  2. Efficient focusing of hard x rays to 25 nm by a total reflection mirror

    SciTech Connect

    Mimura, Hidekazu; Yumoto, Hirokatsu; Matsuyama, Satoshi; Sano, Yasuhisa; Yamamura, Kazuya; Mori, Yuzo; Yabashi, Makina; Nishino, Yoshinori; Tamasaku, Kenji; Ishikawa, Tetsuya; Yamauchi, Kazuto

    2007-01-29

    Nanofocused x rays are indispensable because they can provide high spatial resolution and high sensitivity for x-ray nanoscopy/spectroscopy. A focusing system using total reflection mirrors is one of the most promising methods for producing nanofocused x rays due to its high efficiency and energy-tunable focusing. The authors have developed a fabrication system for hard x-ray mirrors by developing elastic emission machining, microstitching interferometry, and relative angle determinable stitching interferometry. By using an ultraprecisely figured mirror, they realized hard x-ray line focusing with a beam width of 25 nm at 15 keV. The focusing test was performed at the 1-km-long beamline of SPring-8.

  3. Energetics and timing of the hard and soft X-ray emissions in white light flares

    NASA Technical Reports Server (NTRS)

    Neidig, Donald F.; Kane, Sharad R.

    1993-01-01

    By comparing the light curves in optical, hard X-ray, and soft X-ray wavelengths for eight well-observed flares, we confirm previous results indicating that the white light flare (WLF) is associated with the flare impulsive phase. The WLF emission peaks within seconds after the associated hard X-ray peak, and nearly two minutes before the 1-8 A soft X-ray peak. It is further shown that the peak power in nonthermal electrons above 50 keV is typically an order of magnitude larger, and the power in 1-8 A soft X-rays radiated over 2pi sr, at the time of the WLF peak, is an order of magnitude smaller than the peak WLF power.

  4. Extragalactic Hard X-ray Surveys: From INTEGRAL to Simbol-X

    NASA Astrophysics Data System (ADS)

    Paltani, S.; Dwelly, T.; Walter, R.; McHardy, I. M.; Courvoisier, T. J.-L.

    2009-05-01

    We present some results of the deepest extragalactic survey performed by the INTEGRAL satellite. The fraction of very absorbed AGN is quite large. The sharp decrease in the absorption fraction with X-ray luminosity observed at lower-energy X-rays is not observed. The current lack of truly Compton-thick objects, with an upper limit of 14% to the size of this population, is just compatible with recent modeling of the cosmic X-ray background. We also study the prospects for a future hard X-ray serendipitous survey with Simbol-X. We show that Simbol-X will easily detect a large number of serendipitous AGN, allowing us to study the evolution of AGN up to redshifts about 2, opening the door to the cosmological study of hard X-ray selected AGN, which is barely possible with existing satellites like Swift and INTEGRAL.

  5. New position-sensitive hard X-ray spectrometer

    NASA Technical Reports Server (NTRS)

    Yin, L. I.; Trombka, J. I.; Seltzer, S. M.

    1980-01-01

    The design and features of a new prototype Lixiscope (Low intensity X-ray imaging scope) is described. It is shown that in addition to good spatial and temporal resolution in the 20 keV to 200 keV region, it is capable of single-photon counting, imaging as well as good energy resolution. It is concluded that the device is well suited for future low-flux applications in astronomy, medicine, and industry.

  6. Relevance of the observation of UHE gammas to hard X-ray astronomy

    NASA Technical Reports Server (NTRS)

    Rana, N. C.; Wolfendale, A. W.; Sadzinska, M.; Wdowczyk, J.

    1985-01-01

    A number of consequences of the presence of sources of ultra high energy (UHE) gamma rays, exemplified by Cygnus X-3, are examined. It is shown that there should be a flux of hard X-rays at all Galactic latitudes; a significant flux of extragalactic hard X-rays may also result. Relevance to theories of cosmic ray particle origin and propagation is discussed.

  7. Grazing Incidence Nickel Replicated Optics for Hard X-ray Telescopes

    NASA Technical Reports Server (NTRS)

    Peturzzo, J. J., III; Elsner, R. F.; Joy, M. K.; ODell, S. L.; Weisskopf, M. C.

    1997-01-01

    The requirements for future hard x-ray (up to 50 keV) telescopes are lightweight, high angular resolution optics with large collecting areas. Grazing incidence replicated optics are an excellent candidate for this, type of mission, providing better angular resolution, comparable area/unit mass, and simpler fabrication than multilayer-coated foils. Most importantly, the technology to fabricate the required optics currently exists. A comparison of several hard x-ray telescope designs will be presented.

  8. The complete Hard X Ray Burst Spectrometer event list, 1980-1989

    NASA Technical Reports Server (NTRS)

    Dennis, B. R.; Orwig, L. E.; Kennard, G. S.; Labow, G. J.; Schwartz, R. A.; Shaver, A. R.; Tolbert, A. K.

    1991-01-01

    This event list is a comprehensive reference for all Hard X ray bursts detected with the Hard X Ray Burst Spectrometer on the Solar Maximum Mission from the time of launch on Feb. 14, 1980 to the end of the mission in Dec. 1989. Some 12,776 events were detected in the energy range 30 to 600 keV with the vast majority being solar flares. This list includes the start time, peak time, duration, and peak rate of each event.

  9. A monolithic Fresnel bimirror for hard X-rays and its application for coherence measurements.

    PubMed

    Leitenberger, Wolfram; Pietsch, Ullrich

    2007-03-01

    Experiments using a simple X-ray interferometer to measure the degree of spatial coherence of hard X-rays are reported. A monolithic Fresnel bimirror is used at small incidence angles to investigate synchrotron radiation in the energy interval 5-50 keV with monochromatic and white beam. The experimental set-up was equivalent to a Young's double-slit experiment for hard X-rays with slit dimensions in the micrometre range. From the high-contrast interference pattern the degree of coherence was determined.

  10. Mitigation of hard x-ray background in backlit pinhole imagers

    SciTech Connect

    Fein, J. R.; Keiter, P. A.; Holloway, J. P.; Klein, S. R.; Davis, J. S.; Drake, R. P.

    2016-09-16

    Experiments were performed to mitigate the hard x-ray background commonly observed in backlit pinhole imagers. The material of the scaffold holding the primary backlighter foil was varied to reduce the laser-plasma instabilities responsible for hot electrons and resulting hard x-ray background. Radiographic measurements with image plates showed a factor of >25 decrease in x-rays between 30 and 67 keV when going from a plastic to Al or V scaffold. Here, a potential design using V scaffold offers a signal-to-background ratio of 6:1, a factor of 2 greater than using the bare plastic scaffold.

  11. Mitigation of hard x-ray background in backlit pinhole imagers

    SciTech Connect

    Fein, J. R.; Keiter, P. A.; Holloway, J. P.; Klein, S. R.; Davis, J. S.; Drake, R. P.

    2016-09-16

    Experiments were performed to mitigate the hard x-ray background commonly observed in backlit pinhole imagers. The material of the scaffold holding the primary backlighter foil was varied to reduce the laser-plasma instabilities responsible for hot electrons and resulting hard x-ray background. Radiographic measurements with image plates showed a factor of >25 decrease in x-rays between 30 and 67 keV when going from a plastic to Al or V scaffold. Here, a potential design using V scaffold offers a signal-to-background ratio of 6:1, a factor of 2 greater than using the bare plastic scaffold.

  12. Modulation of hard x-ray beam profiles by Borrmann pyramid

    SciTech Connect

    Xu, G.; Britten, J.

    2008-01-15

    Spatial modulation of hard x-ray beam profiles is reported, using the 'Borrmann pyramid' formed in dual Bragg diffraction of a single crystal, where a small angular change of the incident beam is magnified to span the entire pyramid base. As an attempt, it is demonstrated using hard x rays by (1) the linear shift of a micrometer sized mask; (2) the partial blockade of a two micron beam; and (3) the millimeter shadow of a nanoscale gold strip, which shows the potential application of Borrmann pyramids in the form of an enlarged x-ray image.

  13. Hard X-Ray PHA System on the HT-7 Tokamak

    NASA Astrophysics Data System (ADS)

    Lin, Shiyao; Shi, Yuejiang; Wan, Baonian; Chen, Zhongyong; Hu, Liqun

    2006-05-01

    A new hard X-ray pulse-height analysis (PHA) system has been established on HT-7 tokamak for long pulse steady-state operation. This PHA system consists of hard X-ray diagnostics and multi-channel analysers (MCA). The hard X-ray diagnostics consists of a vertical X-ray detector array (CdTe) and a horizontal X-ray detector array (NaI). The hard X-ray diagnostics can provide the profile of power deposition and the distribution function of fast electron during radio frequency (RF) current drive. The MCA system is the electronic part of the PHA system, which has been modularized and linked to PC through LAN. Each module of MCA can connect with 8 X-ray detectors. The embedded Ethernet adapter in the MCA module makes the data communication between PC and MCA very convenient. A computer can control several modules of MCA through certain software and a hub. The RAM in MCA can store 1024 or more spectra for each detector and therefore the PHA system can be applied in the long pulse discharge of several minutes.

  14. Hard X-ray Flux from Low-Mass Stars in the Cygnus OB2 Association

    NASA Astrophysics Data System (ADS)

    Caramazza, M.; Drake, J. J.; Micela, G.; Flaccomio, E.

    2009-05-01

    We investigate the X-ray emission in the 20-40 keV band expected from the flaring low-mass stellar population in Cygnus OB2 assuming that the observed soft X-ray emission is due to a superposition of flares and that the ratio of hard X-ray to soft X-ray emission is described by a scaling found for solar flares by Isola and co-workers. We estimate a low-mass stellar hard X-ray flux in the 20-40 keV band in the range ~7×1031-7×1033 erg/s and speculate the limit of this values. Hard X-ray emission could lie at a level not much below the current observed flux upper limits for Cygnus OB2. Simbol-X, with its broad energy band (10-100 keV) and its sensitivity should be able to detect this emission and would provide insights into the hard X-ray production of flares on pre-main sequence stars.

  15. HARD X-RAY OBSERVATIONS OF A JET AND ACCELERATED ELECTRONS IN THE CORONA

    SciTech Connect

    Glesener, Lindsay; Lin, R. P.; Krucker, Saem

    2012-07-20

    We report the first hard X-ray observation of a solar jet on the limb with flare footpoints occulted, so that faint emission from accelerated electrons in the corona can be studied in detail. In this event on 2003 August 21, RHESSI observed a double coronal hard X-ray source in the pre-impulsive phase at both thermal and nonthermal energies. In the impulsive phase, the first of two hard X-ray bursts consists of a single thermal/nonthermal source coinciding with the lower of the two earlier sources, and the second burst shows an additional nonthermal, elongated source, spatially and temporally coincident with the coronal jet. Analysis of the jet hard X-ray source shows that collisional losses by accelerated electrons can deposit enough energy to generate the jet. The hard X-ray time profile above 20 keV matches that of the accompanying Type III and broadband gyrosynchrotron radio emission, indicating both accelerated electrons escaping outward along the jet path and electrons trapped in the flare loop. The double coronal hard X-ray source, the open field lines indicated by Type III bursts, and the presence of a small post-flare loop are consistent with significant electron acceleration in an interchange reconnection geometry.

  16. Hard X-ray bursts from flare behind the solar limb

    NASA Technical Reports Server (NTRS)

    Mckenzie, D. L.

    1975-01-01

    The determination of the location of the region of origin of hard X-rays is important in evaluating the importance of 10-100 keV electrons in solar flares and in understanding flare particle acceleration. At present only limb-occulted events are available to give some information on the height of X-ray emission. In fifteen months of OSO-7 operation, nine major soft X-ray events had no reported correlated H alpha flare. We examine the hard X-ray spectra of eight of these events with good candidate X-ray flare producing active regions making limb transit at the time of the soft X-ray bursts. All eight bursts had significant X-ray emission in the 30-44 keV range, but only one had flux at the 3 sigma level above 44 keV. The data are consistent with most X-ray emission occurring in the lower chromosphere, but some electron trapping at high altitudes is necessary to explain the small nonthermal fluxes observed.

  17. Studies of hard X-ray source variability using BATSE

    NASA Technical Reports Server (NTRS)

    Paciesas, W. S.; Harmon, B. A.; Pendleton, G. N.; Finger, M. H.; Fishman, G. J.; Meegan, C. A.; Rubin, B. C.; Wilson, R. B.

    1993-01-01

    The BATSE large-area detectors on the Compton Observatory can be used to monitor the variability of X-ray and gamma-ray sources on timescales longer than a few hours using the earth occultation technique. Spectral information is collected in 16 channels covering the energy range from about 25 to 2000 keV. Approximately 20 of the strongest sources are currently being monitored on a daily basis as part of standard BATSE operations. We discuss observations of the Crab Nebula, Cen A, and the Galactic center as examples of the current BATSE capabilities.

  18. Hard x-ray transient emitters as possible counterparts of unidentified mev sources

    NASA Astrophysics Data System (ADS)

    Sguera, Vito; Bird, Antony; Dean, Antony; Ubertini, Pietro; Bazzano, Angela; Bassani, Loredana

    We present preliminary IBIS results on two hard X-ray transient emitters, AX J1841.0-0535 and IGR J20188+3647, which are possible counterparts of two unidentified transient MeV sources. Specifically, IGR J20188+3647 is a fast hard X-ray transient likely associated with a strongly variable unidentified gamma-ray source detected by AGILE (E˜100 MeV) in the Cygnus region. AX J1841.0-0535 is instead a HMXB, with supergiant companion, characterized by fast hard X-ray transient activity and located in the error box of the complex and extended unidentified TeV source HESS J1841-055; we also discuss its likely association with the unidentified variable EGRET source 3EG J1837-0423. If these associations are confirmed, these X-ray transient emitters could be the prototype of a new class of variable galactic MeV sources.

  19. Lapex: A Phoswich balloon experiment for hard X-ray astronomy

    NASA Technical Reports Server (NTRS)

    Frontera, F.; Basin, A.; Dalfiume, D.; Franceschini, T.; Landini, G.; Morelli, E.; Poulsen, J. M.; Rubini, A.; Silvestri, S.; Costa, E.

    1985-01-01

    Satellite and balloon observations have shown that several classes of celestial objects are hard ( 15 keV) energy band with a sensitivity of approx 10 mCrab has been performed with the UCSD/MIT instrument (A4) on board the HEAO 1 satellite. About 70 X-ray sources were detected, including galactic and extragalactic objects. Hard X-ray emission has been detected in the Galaxy from X-ray pulsars. Extragalactic sources of hard X-ray emission include clusters of galaxies, QSOs, BL Lac objects, Seyfert galaxies. The essential characteristics of the Large Area Phoswich Experiment (LAPEX) for crowded sky field observations are described. It has: (1) a broad energy band of operation (20-300 keV); (2) a 3 sigma sensitivity of about 1 mCrab in 10,000 s of live observing time; and (3) imaging capabilities with an angular resolution of about 20'.

  20. Reionization by Hard Photons. I. X-Rays from the First Star Clusters

    NASA Astrophysics Data System (ADS)

    Oh, S. Peng

    2001-06-01

    Observations of the Lyα forest at z~3 reveal an average metallicity Z~10-2 Zsolar. The high-redshift supernovae that polluted the intergalactic medium also accelerated relativistic electrons. Since the energy density of the cosmic microwave background is proportional to (1+z)4, at high redshift these electrons cool via inverse Compton scattering. Thus, the first star clusters emit X-rays. Unlike stellar UV ionizing photons, these X-rays can escape easily from their host galaxies. This has a number of important physical consequences:1. Owing to their large mean free path, these X-rays can quickly establish a universal ionizing background and partially reionize the universe in a gradual, homogeneous fashion. If X-rays formed the dominant ionizing background, the universe would have more closely resembled a single-phase medium rather than a two-phase medium.2. X-rays can reheat the universe to higher temperatures than possible with UV radiation.3. X-rays counter the tendency of UV radiation to photodissociate H2, an important coolant in the early universe, by promoting gas-phase H2 formation.The X-ray production efficiency is calibrated to local observations of starburst galaxies, which imply that ~10% of the supernova energy is converted to X-rays. While direct detection of sources in X-ray emission is difficult, the presence of relativistic electrons at high redshift and thus a minimal level of X-ray emission may be inferred by synchrotron emission observations with the Square Kilometer Array. These sources may constitute a significant fraction of the unresolved hard X-ray background and can account for both the shape and amplitude of the gamma-ray background. This paper discusses the existence and observability of high-redshift X-ray sources, while a companion paper models the detailed reionization physics and chemistry.

  1. Temporal and spectral characteristics of solar flare hard X-ray emission

    NASA Technical Reports Server (NTRS)

    Dennis, B. R.; Kiplinger, A. L.; Orwig, L. E.; Frost, K. J.

    1985-01-01

    Solar Maximum Mission observations of three flares that impose stringent constraints on physical models of the hard X-ray production during the impulsive phase are presented. Hard X-ray imaging observations of the flares on 1980 November 5 at 22:33 UT show two patches in the 16 to 30 keV images that are separated by 70,000 km and that brighten simultaneously to within 5 s. Observations to O V from one of the footprints show simultaneity of the brightening in this transition zone line and in the total hard X-ray flux to within a second or two. These results suggest but do not require the existence of electron beams in this flare. The rapid fluctuations of the hard X-ray flux within some flares on the time scales of 1 s also provide evidence for electron beams and limits on the time scale of the energy release mechanism. Observations of a flare on 1980 June 6 at 22:34 UT show variations in the 28 keV X-ray counting rate from one 20 ms interval to the next over a period of 10 s. The hard X-ray spectral variations measured with 128 ms time resolution for one 0.5 s spike during this flare are consistent with the predictions of thick-target non-thermal beam model.

  2. Fabrication of 200 nanometer period centimeter area hard x-ray absorption gratings by multilayer deposition

    PubMed Central

    Lynch, S K; Liu, C; Morgan, N Y; Xiao, X; Gomella, A A; Mazilu, D; Bennett, E E; Assoufid, L; de Carlo, F; Wen, H

    2012-01-01

    We describe the design and fabrication trials of x-ray absorption gratings of 200 nm period and up to 100:1 depth-to-period ratios for full-field hard x-ray imaging applications. Hard x-ray phase-contrast imaging relies on gratings of ultra-small periods and sufficient depth to achieve high sensitivity. Current grating designs utilize lithographic processes to produce periodic vertical structures, where grating periods below 2.0 μm are difficult due to the extreme aspect ratios of the structures. In our design, multiple bilayers of x-ray transparent and opaque materials are deposited on a staircase substrate, and mostly on the floor surfaces of the steps only. When illuminated by an x-ray beam horizontally, the multilayer stack on each step functions as a micro-grating whose grating period is the thickness of a bilayer. The array of micro-gratings over the length of the staircase works as a single grating over a large area when continuity conditions are met. Since the layers can be nanometers thick and many microns wide, this design allows sub-micron grating periods and sufficient grating depth to modulate hard x-rays. We present the details of the fabrication process and diffraction profiles and contact radiography images showing successful intensity modulation of a 25 keV x-ray beam. PMID:23066175

  3. Zone Plates for Hard X-Ray FEL Radiation

    SciTech Connect

    Nilsson, D.; Holmberg, A.; Vogt, U.; Sinn, H.

    2011-09-09

    We investigated theoretically the use of zone plates for the focusing of the European X-ray Free Electron Laser (XFEL). In a finite-element simulation the heat load on zone plates placed in the high intensity x-ray beam was simulated for four different zone plate materials: gold, iridium, tungsten, and CVD diamond. The main result of the calculations is that all zone plates remain below the melting temperature throughout a full XFEL pulse train of 3000 pulses. However, if the zone plate is placed in the direct beam it will experience large and rapid temperature fluctuations on the order of 300 K. The situation is relaxed if the optic is placed behind a monochromator and the fluctuations are reduced to around 20 K. Besides heat load, the maximization of the total efficiency of the complete optical system is an important issue. We calculated the efficiency of different zone plates and monochromator systems and found that the final beam size of the XFEL in combination with its monochromaticity will be important parameters.

  4. Development of Compton X-ray spectrometer for high energy resolution single-shot high-flux hard X-ray spectroscopy

    SciTech Connect

    Kojima, Sadaoki E-mail: sfujioka@ile.osaka-u.ac.jp; Ikenouchi, Takahito; Arikawa, Yasunobu; Sakata, Shohei; Zhang, Zhe; Abe, Yuki; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Fujioka, Shinsuke E-mail: sfujioka@ile.osaka-u.ac.jp; Azechi, Hiroshi; Ozaki, Tetsuo; Miyamoto, Shuji; Yamaguchi, Masashi; Takemoto, Akinori

    2016-04-15

    Hard X-ray spectroscopy is an essential diagnostics used to understand physical processes that take place in high energy density plasmas produced by intense laser-plasma interactions. A bundle of hard X-ray detectors, of which the responses have different energy thresholds, is used as a conventional single-shot spectrometer for high-flux (>10{sup 13} photons/shot) hard X-rays. However, high energy resolution (Δhv/hv < 0.1) is not achievable with a differential energy threshold (DET) X-ray spectrometer because its energy resolution is limited by energy differences between the response thresholds. Experimental demonstration of a Compton X-ray spectrometer has already been performed for obtaining higher energy resolution than that of DET spectrometers. In this paper, we describe design details of the Compton X-ray spectrometer, especially dependence of energy resolution and absolute response on photon-electron converter design and its background reduction scheme, and also its application to the laser-plasma interaction experiment. The developed spectrometer was used for spectroscopy of bremsstrahlung X-rays generated by intense laser-plasma interactions using a 200 μm thickness SiO{sub 2} converter. The X-ray spectrum obtained with the Compton X-ray spectrometer is consistent with that obtained with a DET X-ray spectrometer, furthermore higher certainly of a spectral intensity is obtained with the Compton X-ray spectrometer than that with the DET X-ray spectrometer in the photon energy range above 5 MeV.

  5. Development of Compton X-ray spectrometer for high energy resolution single-shot high-flux hard X-ray spectroscopy.

    PubMed

    Kojima, Sadaoki; Ikenouchi, Takahito; Arikawa, Yasunobu; Sakata, Shohei; Zhang, Zhe; Abe, Yuki; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Ozaki, Tetsuo; Miyamoto, Shuji; Yamaguchi, Masashi; Takemoto, Akinori; Fujioka, Shinsuke; Azechi, Hiroshi

    2016-04-01

    Hard X-ray spectroscopy is an essential diagnostics used to understand physical processes that take place in high energy density plasmas produced by intense laser-plasma interactions. A bundle of hard X-ray detectors, of which the responses have different energy thresholds, is used as a conventional single-shot spectrometer for high-flux (>10(13) photons/shot) hard X-rays. However, high energy resolution (Δhv/hv < 0.1) is not achievable with a differential energy threshold (DET) X-ray spectrometer because its energy resolution is limited by energy differences between the response thresholds. Experimental demonstration of a Compton X-ray spectrometer has already been performed for obtaining higher energy resolution than that of DET spectrometers. In this paper, we describe design details of the Compton X-ray spectrometer, especially dependence of energy resolution and absolute response on photon-electron converter design and its background reduction scheme, and also its application to the laser-plasma interaction experiment. The developed spectrometer was used for spectroscopy of bremsstrahlung X-rays generated by intense laser-plasma interactions using a 200 μm thickness SiO2 converter. The X-ray spectrum obtained with the Compton X-ray spectrometer is consistent with that obtained with a DET X-ray spectrometer, furthermore higher certainly of a spectral intensity is obtained with the Compton X-ray spectrometer than that with the DET X-ray spectrometer in the photon energy range above 5 MeV.

  6. INTEGRAL/IBIS observations of a hard X-ray outburst in high-mass X-ray binary 4U 2206+54

    NASA Astrophysics Data System (ADS)

    Wang, W.

    2010-09-01

    Aims: 4U 2206+54 is a wind-fed high-mass X-ray binary with a main-sequence donor star. The nature of its compact object has been recently identified as a slow-pulsation magnetized neutron star. Methods: INTEGRAL/IBIS observations have a long-term hard X-ray monitoring of 4U 2206+54 and detected a hard X-ray outburst around 15 December 2005 combined with the RXTE/ASM data. Results: The hard X-ray outburst had a double-flare feature with a duration of ~2 days. The first flare showed a fast rise and long-term decaying light curve about 15 h with a peak luminosity of ~4 × 1036 erg s-1 from 1.5-12 keV and a hard spectrum (only significantly seen above 5 keV). The second one had the mean hard X-ray luminosity of 1.3 × 1036 erg s-1 from 20-150 keV with a modulation period at ~5550 s which is the pulse period of the neutron star in 4U 2206+54. Its hard X-ray spectrum from 20-300 keV can be fitted by a broken power-law model with the photon indexes Γ1 ~ 2.3, and Γ2 ~ 3.3, and the break energy is Eb ~ 31 keV or by a bremsstrahlung model of kT ~ 23 keV. Conclusions: We suggest that the hard X-ray flare could be induced by suddenly enhanced accreting dense materials from stellar winds hitting the polar cap region of the neutron star. This hard X-ray outburst may be a link to supergiant fast X-ray transients though 4U 2206+54 has a different type of companion.

  7. Correlative Analysis of hard and Soft X-rays in Solar Flares using CGRO/BATSE and YOHKOH

    NASA Technical Reports Server (NTRS)

    Zarro, Dominic M.

    1996-01-01

    The objective of this work is to study different mechanisms of solar flare heating by comparing their predictions with simultaneous hard and soft X-ray observations. The datasets used in this work consist of hard X-ray observations from the Bragg Crystal Spectrometer (BCS) and Soft X-ray telescope (SXT) on the Japanese Yohkoh spacecraft.

  8. Observation of a Soft Tissue by a Zernike Phase Contrast Hard X-ray Microscope

    SciTech Connect

    Aoki, Sadao; Namikawa, Tadahiro; Hoshino, Masato; Watanabe, Norio

    2007-01-19

    A Zernike-type phase contrast hard X-ray microscope was constructed at the Photon Factory BL3C2 (KEK). A white beam from a bending magnet was monochromatized by a silicon double crystal monochromator. Monochromatic parallel X-ray beam illuminated a sample, and transmitted and diffracted X-ray beams were imaged by a Fresnel zone plate (FZP) which had the outer zone width of 100 nm. A phase plate made of a thin aluminum foil with a pinhole was set at the back focal plane of the FZP. The phase plate modulated the diffraction beam from the FZP, whereas a direct beam passed through the pinhole. The resolution of the microscope was measured by observing a tantalum test pattern at an X-ray energy of 9 keV. A 100nm line-and-space pattern could be resolved. X-ray montage pictures of growing eggs of artemia (plankton) were obtained.

  9. Observation of a Soft Tissue by a Zernike Phase Contrast Hard X-ray Microscope

    NASA Astrophysics Data System (ADS)

    Aoki, Sadao; Namikawa, Tadahiro; Hoshino, Masato; Watanabe, Norio

    2007-01-01

    A Zernike-type phase contrast hard X-ray microscope was constructed at the Photon Factory BL3C2 (KEK). A white beam from a bending magnet was monochromatized by a silicon double crystal monochromator. Monochromatic parallel X-ray beam illuminated a sample, and transmitted and diffracted X-ray beams were imaged by a Fresnel zone plate (FZP) which had the outer zone width of 100 nm. A phase plate made of a thin aluminum foil with a pinhole was set at the back focal plane of the FZP. The phase plate modulated the diffraction beam from the FZP, whereas a direct beam passed through the pinhole. The resolution of the microscope was measured by observing a tantalum test pattern at an X-ray energy of 9 keV. A 100nm line-and-space pattern could be resolved. X-ray montage pictures of growing eggs of artemia (plankton) were obtained.

  10. [The Development of Luminescent Nano-probes on Hard X-ray Irradiation].

    PubMed

    Osakada, Yasuko

    2016-01-01

      X-rays are widely used in imaging applications such as diffraction imaging of crystals and medical imaging. In particular, X-ray computed tomography (CT) is a critical tool for clinical and disease diagnostics. The principle of conventional CT is based on X-ray attenuation caused by photoelectric absorption and scattering. In addition to conventional CT, a number of novel methodologies are presently under development, including state-of-the-art instrument technologies and chemical probes to fulfill diagnosis criteria. Among these novel methodologies, we have utilized hard X-ray-excited optical luminescence (hXEOL) as a new methodology to enhance the contrast of the image. Herein, we explored the possibility of hXEOL via iridium-doped polymer nanoparticles and biomolecule-directed metal clusters and propose it as a potential platform for new X-ray imaging.

  11. Optimal focusing for a linac-based hard x-ray source

    SciTech Connect

    Liu, C.; Krafft, G.; Talman, R.

    2011-03-28

    In spite of having a small average beam current limit, a linac can have features that make it attractive as an x-ray source: high energy, ultralow emittance and energy spread, and flexible beamline optics. Unlike a storage ring, in which an (undulator) radiation source is necessarily short and positioned at an electron beam waist, in a linac the undulator can be long and the electron beam can be adjusted to have a (virtual) waist far downstream toward the x-ray target. Using a planned CEBAF beamline as an example, this paper shows that a factor of 2000 in beam current can be overcome to produce a monochromatic hard x-ray source comparable with, or even exceeding, the performance of an x-ray line at a third generation storage ring. Optimal electron beam focusing conditions for x-ray flux density and brilliance are derived, and are verified by simulations using the SRW code.

  12. Angular resolution measurements at SPring-8 of a hard x-ray optic for the New Hard X-ray Mission

    NASA Astrophysics Data System (ADS)

    Spiga, D.; Raimondi, L.; Furuzawa, A.; Basso, S.; Binda, R.; Borghi, G.; Cotroneo, V.; Grisoni, G.; Kunieda, H.; Marioni, F.; Matsumoto, H.; Mori, H.; Miyazawa, T.; Negri, B.; Orlandi, A.; Pareschi, G.; Salmaso, B.; Tagliaferri, G.; Uesugi, K.; Valsecchi, G.; Vernani, D.

    2011-09-01

    The realization of X-ray telescopes with imaging capabilities in the hard (> 10 keV) X-ray band requires the adoption of optics with shallow (< 0.25 deg) grazing angles to enhance the reflectivity of reflective coatings. On the other hand, to obtain large collecting area, large mirror diameters (< 350 mm) are necessary. This implies that mirrors with focal lengths >=10 m shall be produced and tested. Full-illumination tests of such mirrors are usually performed with onground X-ray facilities, aimed at measuring their effective area and the angular resolution; however, they in general suffer from effects of the finite distance of the X-ray source, e.g. a loss of effective area for double reflection. These effects increase with the focal length of the mirror under test; hence a "partial" full-illumination measurement might not be fully representative of the in-flight performances. Indeed, a pencil beam test can be adopted to overcome this shortcoming, because a sector at a time is exposed to the X-ray flux, and the compensation of the beam divergence is achieved by tilting the optic. In this work we present the result of a hard X-ray test campaign performed at the BL20B2 beamline of the SPring-8 synchrotron radiation facility, aimed at characterizing the Point Spread Function (PSF) of a multilayer-coated Wolter-I mirror shell manufactured by Nickel electroforming. The mirror shell is a demonstrator for the NHXM hard X-ray imaging telescope (0.3 - 80 keV), with a predicted HEW (Half Energy Width) close to 20 arcsec. We show some reconstructed PSFs at monochromatic X-ray energies of 15 to 63 keV, and compare them with the PSFs computed from post-campaign metrology data, self-consistently treating profile and roughness data by means of a method based on the Fresnel diffraction theory. The modeling matches the measured PSFs accurately.

  13. Performance of ASTRO-H Hard X-Ray Telescope (HXT)

    NASA Technical Reports Server (NTRS)

    Awaki, Hisamitsu; Kunieda, Hideyo; Ishida, Manabu; Matsumoto, Hironori; Furuzawa, Akihiro; Haba, Yohsito; Hayashi, Takayuki; Iizuka, Ryo; Ishibashi, Kazunori; Itoh, Masayuki; hide

    2016-01-01

    The Japanese X-ray Astronomy Satellite, Hitomi (ASTRO-H) carries hard X-ray imaging system, covering the energy band from 5 keV to 80 keV. The hard X-ray imaging system consists of two hard X-ray telescopes (HXT) and two hard X-ray imagers (HXI). The HXT employs tightly-nested, conically-approximated thin foil Wolter-I optics. The mirror surfaces of HXT were coated with PtC depth-graded multilayers. We carried out ground calibrations of HXTs at the synchrotron radiation facility SPring-8 BL20B2 in Japan, and found that total effective area of two HXTs was about 350 sq cm at 30 keV, and the half power diameter of HXT was about 1.9. After the launch of Hitomi, Hitomi observed several targets during the initial functional verification of the onboard instruments. The Hitomi software and calibration team (SCT) provided the Hitomis data of G21.5-0.9, a pulsar wind nebula, to the hardware team for the purpose of the instrument calibration. Through the analysis of the in-flight data, we have confirmed that the X-ray performance of HXTs in orbit was consistent with that estimated by the ground calibrations.

  14. Current status of ASTRO-H Hard X-ray Telescopes (HXTs)

    NASA Astrophysics Data System (ADS)

    Awaki, Hisamitsu; Kunieda, Hideyo; Furuzawa, Akihiro; Haba, Yoshito; Hayashi, Takayuki; Iizuka, Ryo; Ishibashi, Kazunori; Ishida, Manabu; Itoh, Masayuki; Kosaka, Tatsuro; Maeda, Yoshitomo; Matsumoto, Hironori; Miyazawa, Takuya; Mori, Hideyuki; Nagano, Hosei; Namba, Yoshiharu; Ogasaka, Yasushi; Ogi, Keiji; Okajima, Takashi; Sugita, Satoshi; Suzuki, Yoshio; Tamura, Keisuke; Tawara, Yuzuru; Uesugi, Kentaro; Yamashita, Koujun; Yamauchi, Shigeo

    2012-09-01

    ASTRO-H is an international X-ray mission of ISAS/JAXA, which will be launched in 2014. One of the main characteristics of ASTRO-H is imaging spectroscopy in the hard X-ray band above 10 keV. ASTRO-H will carry two identical Hard X-ray telescopes (HXTs), whose mirror surfaces are coated with Pt/C depth-graded multilayers to enhance hard X-ray effective area up to 80 keV. HXT was designed based on the telescope on board the SUMIT balloon borne experiment. After feasibility study of the HXT design, the FM design has been deteremined. Mass production of the mirror shells at Nagoya University has been going on since August 2010, and production of mirror shells for HXT-1 was completed in March 2012. After the integation of X-ray mirrors for HXT-1, we measured hard X-ray performance of selected mirror shells for HXT-1 at a synchrotron radiation facility, SPring-8 beamline BL20B2. We will perform environment tests and ground calibarations at SPring-8 for HXT-1. In HXT-2, foil production is going on.

  15. The hard X-ray spectrum of X Persei

    NASA Technical Reports Server (NTRS)

    Worrall, D. M.; Knight, F. K.; Nolan, P. L.; Rothschild, R. E.; Levine, A. M.; Primini, F. A.; Lewin, W. H. G.

    1981-01-01

    Results of observations of 3U 0352 + 30, the source associated with the X Persei system, in the energy range 12-180 keV are reported. The measurements were made on 1978 August 22 with the UCSD/MIT High-Energy X-ray and Low-Energy Gamma-ray Experiment on HEAO 1. Data taken simultaneously in the energy range 2-50 keV indicate that, in addition to a 7 keV thermal bremsstrahlung component, there is a second component of higher energy. It is found that this higher energy component fits a power law of photon index 1.3 (+0.4, -0.5) and is pulsed at the 13.95 minute period of the lower energy component.

  16. Coherent Diffraction Imaging with Hard X-Ray Waveguides

    NASA Astrophysics Data System (ADS)

    Caro, Liberato De; Giannini, Cinzia; Pelliccia, Daniele; Cedola, Alessia; Lagomarsino, Stefano

    2013-01-01

    Coherent X-ray diffraction imaging (CXDI) has been widely applied in the nanoscopic world, offering nanometric-scale imaging of noncrystallographic samples, and permitting the next-generation structural studies on living cells, single virus particles and biomolecules. The use of curved wavefronts in CXDI has caused a tidal wave in the already promising application of this emergent technique. The non-planarity of the wavefront allows to accelerate any iterative phase-retrieval process and to guarantee a reliable and unique solution. Nowadays, successful experiments have been performed with Fresnel zone plates and planar waveguides as optical elements. Here we describe the use of a single planar waveguide as well as two crossed waveguides in the experiments which first showed this optical element a promising tool for producing a line- or point-like coherent source, respectively.

  17. Hard X-ray micro-spectroscopy at Berliner Elektronenspeicherring für Synchrotronstrahlung II

    NASA Astrophysics Data System (ADS)

    Erko, A.; Zizak, I.

    2009-09-01

    The capabilities of the X-ray beamlines at Berliner Elektronenspeicherring für Synchrotronstrahlung II (BESSY II) for hard X-ray measurements with micro- and nanometer spatial resolution are reviewed. The micro-X-ray fluorescence analysis (micro-XRF), micro-extended X-ray absorption fine structure (micro-EXAFS), micro-X-ray absorption near-edge structure (micro-XANES) as well as X-ray standing wave technique (XSW), X-ray beam induced current (XBIC) in combination with micro-XRF and micro-diffraction as powerful methods for organic and inorganic sample characterization with synchrotron radiation are discussed. Mono and polycapillary optical systems were used for fine X-ray focusing down to 1 µm spot size with monochromatic and white synchrotron radiation. Polycapillary based confocal detection was applied for depth-resolved micro-XRF analysis with a volume resolution down to 3.4 · 10 - 6 mm 3. Standing wave excitation in waveguides was also applied to nano-EXAFS measurements with depth resolution on the order of 1 nm. Several examples of the methods and its applications in material research, biological investigations and metal-semiconductor interfaces analysis are given.

  18. Hard X-Rays from a Complete Sample of the Brightest Ultraluminous Infrared Galaxies

    NASA Technical Reports Server (NTRS)

    Sanders, David B.

    2003-01-01

    We were awarded 70kS of XMM-Newton spacecraft time using the Epic pn camera to observe three ultraluminous infrared galaxies (ULIGs) in order to measure the spectral shape of their hard X-Ray emission, and to use this information to search for the presence of an highly obscured active galactic nucleus (AGN), and to separate out the contributions from a putative starburst. By observing three objects we hope to be able to better assess the role of AGN in the complete class of ULIGs and therefore to better constrain their contribution to the X-ray background. XMM-Newton was deemed to be better suited to our proposed measurements of ULIGs than the Chandra X-ray observatory due to its larger aperture and better sensitivity to hard (2-10 keV) X-rays.

  19. Thick-target bremsstrahlung interpretation of short time-scale solar hard X-ray features

    NASA Technical Reports Server (NTRS)

    Emslie, A. G.

    1983-01-01

    Steady-state analyses of bremsstrahlung hard X-ray production in solar flares are appropriate only if the lifetime of the high energy electrons in the X-ray source is much shorter than the duration of the observed X-ray burst. For a thick-target nonthermal model, this implies that a full time-dependent analysis is required when the duration of the burst is comparable to the collisional lifetime of the injected electrons, in turn set by the lengths and densities of the flaring region. In this paper we present the results of such a time-dependent analysis, and we point out that the intrinsic temporal signature of the thick-target production mechanism, caused by the finite travel time of the electrons through the target, may indeed rule out such a mechanism for extremely short duration hard X-ray events.

  20. eHXI: A permanently installed, hard x-ray imager for the National Ignition Facility

    SciTech Connect

    Doppner, T.; Bachmann, B.; Albert, F.; Bell, P.; Burns, S.; Celeste, J.; Chow, R.; Divol, L.; Dewald, E. L.; Hohenberger, M.; Izumi, N.; LaCaille, G.; Landen, O. L.; Palmer, N.; Park, H. -S.; Thomas, C. A.; Huntington, C.

    2016-06-14

    We have designed and built a multi-pinhole imaging system for high energy x-rays (≥ 50 keV) that is permanently installed in the equatorial plane outside of the target chamber at the National Ignition Facility (NIF). It records absolutely-calibrated, time-integrated x-ray images with the same line-of-sight as the multi-channel, spatially integrating hard x-ray detector FFLEX [McDonald et al., Rev. Sci. Instrum. 75 (2004) 3753], having a side view of indirect-drive inertial confinement fusion (ICF) implosion targets. The equatorial hard x-ray imager (eHXI) has recorded images on the majority of ICF implosion experiments since May 2011. Lastly, eHXI provides valuable information on hot electron distribution in hohlraum experiments, target alignment, potential hohlraum drive asymmetries and serves as a long term reference for the FFLEX diagnostics.

  1. Design and Tests of the Hard X-Ray Polarimeter X-Calibur

    NASA Technical Reports Server (NTRS)

    Beilicke, M.; Binns, W. R.; Buckley, J.; Cowsik, R.; Dowkontt, P.; Garson, A.; Guo, Q.; Israel, M. H.; Lee, K.; Krawczynski, H.; hide

    2011-01-01

    X-ray polarimetry promises to give new information about high-energy astrophysical sources, such as binary black hole systems, micro-quasars, active galactic nuclei, and gamma-ray bursts. We designed, built and tested a hard X-ray polarimeter X-Calibur to be used in the focal plane of the InFOC(mu)S grazing incidence hard X-ray telescope. X-Calibur combines a low-Z Compton scatterer with a CZT detector assembly to measure the polarization of 10-80 keV X-rays making use of the fact that polarized photons Compton scatter preferentially perpendicular to the electric field orientation. X-Calibur achieves a high detection efficiency of order unity.

  2. Hard X-Rays from a Complete Sample of the Brightest Ultraluminous Infrared Galaxies

    NASA Technical Reports Server (NTRS)

    Sanders, David B.

    2003-01-01

    We were awarded 70kS of XMM-Newton spacecraft time using the Epic pn camera to observe three ultraluminous infrared galaxies (ULIGs) in order to measure the spectral shape of their hard X-Ray emission, and to use this information to search for the presence of an highly obscured active galactic nucleus (AGN), and to separate out the contributions from a putative starburst. By observing three objects we hope to be able to better assess the role of AGN in the complete class of ULIGs and therefore to better constrain their contribution to the X-ray background. XMM-Newton was deemed to be better suited to our proposed measurements of ULIGs than the Chandra X-ray observatory due to its larger aperture and better sensitivity to hard (2-10 keV) X-rays.

  3. A hard x-ray nanoprobe for scanning and projection nanotomography

    SciTech Connect

    Bleuet, Pierre; Cloetens, Peter; Tucoulou, Remi; Susini, Jean; Gergaud, Patrice; Mariolle, Denis; Chevalier, Nicolas; Chabli, Amal

    2009-05-15

    To fabricate and qualify nanodevices, characterization tools must be developed to provide a large panel of information over spatial scales spanning from the millimeter down to the nanometer. Synchrotron x-ray-based tomography techniques are getting increasing interest since they can provide fully three-dimensional (3D) images of morphology, elemental distribution, and crystallinity of a sample. Here we show that by combining suitable scanning schemes together with high brilliance x-ray nanobeams, such multispectral 3D volumes can be obtained during a single analysis in a very efficient and nondestructive way. We also show that, unlike other techniques, hard x-ray nanotomography allows reconstructing the elemental distribution over a wide range of atomic number and offers truly depth resolution capabilities. The sensitivity, 3D resolution, and complementarity of our approach make hard x-ray nanotomography an essential characterization tool for a large panel of scientific domains.

  4. Design and Tests of the Hard X-Ray Polarimeter X-Calibur

    NASA Technical Reports Server (NTRS)

    Beilicke, M.; Baring, M. G.; Barthelmy, S.; Binns, W. R.; Buckley, J.; Cowsik, R.; Dowkontt, P.; Garson, A.; Guo, Q.; Haba, Y.; Israel, M. H.; Kunieda, H.; Lee, K.; Matsumoto, H.; Miyazawa, T.; Okajima, T.; Schnittman, J.; Tamura, K.; Tueller, J.; Krawczynski, H.

    2012-01-01

    X-ray polarimetry promises to give qualitatively new information about high-energy astrophysical sources, such as binary black hole systems, micro-quasars, active galactic nuclei, and gamma-ray bursts. We designed, built and tested a hard X-ray polarimeter X-Calibur to be used in the focal plane of the InFOC(mu)S grazing incidence hard X-ray telescope. X-Calibur combines a low-Z Compton scatterer with a CZT detector assembly to measure the polarization of 10 - 80 keY X-rays making use of the fact that polarized photons Compton scatter preferentially perpendicular to the electric field orientation. X-Calibur achieves a high detection efficiency of order unity.

  5. eHXI: a permanently installed, hard x-ray imager for the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Döppner, T.; Bachmann, B.; Albert, F.; Bell, P.; Burns, S.; Celeste, J.; Chow, R.; Divol, L.; Dewald, E. L.; Hohenberger, M.; Huntington, C. M.; Izumi, N.; LaCaille, G.; Landen, O. L.; Palmer, N.; Park, H.-S.; Thomas, C. A.

    2016-06-01

    We have designed and built a multi-pinhole imaging system for high energy x-rays (>= 50 keV) that is permanently installed in the equatorial plane outside of the target chamber at the National Ignition Facility (NIF). It records absolutely-calibrated, time-integrated x-ray images with the same line-of-sight as the multi-channel, spatially integrating hard x-ray detector FFLEX [McDonald et al., Rev. Sci. Instrum. 75 (2004) 3753], having a side view of indirect-drive inertial confinement fusion (ICF) implosion targets. The equatorial hard x-ray imager (eHXI) has recorded images on the majority of ICF implosion experiments since May 2011. eHXI provides valuable information on hot electron distribution in hohlraum experiments, target alignment, potential hohlraum drive asymmetries and serves as a long term reference for the FFLEX diagnostics.

  6. Development of High Resolution Hard X-Ray Telescope with Multilayer Coatings

    NASA Technical Reports Server (NTRS)

    Brinton, John C. (Technical Monitor); Gorenstein, Paul

    2004-01-01

    The major objective of this program is the development of a focusing hard X-ray telescope with moderately high angular resolution, i .e. comparable to the telescopes of XMM-Newton. The key ingredients of the telescope are a depth graded multilayer coatings and electroformed nickel substrates that are considerably lighter weight than those of previous missions such as XMM-Newton, which have had conventional single metal layer reflective coatings and have operated at much lower energy X-rays. The ultimate target mission for this technology is the Hard X-Ray Telescope (HXT) of the Constellation X-Ray Mission. However, it is applicable to potential SMEX and MIDEX programs as well.

  7. Thick-target bremsstrahlung interpretation of short time-scale solar hard X-ray features

    NASA Technical Reports Server (NTRS)

    Emslie, A. G.

    1983-01-01

    Steady-state analyses of bremsstrahlung hard X-ray production in solar flares are appropriate only if the lifetime of the high energy electrons in the X-ray source is much shorter than the duration of the observed X-ray burst. For a thick-target nonthermal model, this implies that a full time-dependent analysis is required when the duration of the burst is comparable to the collisional lifetime of the injected electrons, in turn set by the lengths and densities of the flaring region. In this paper we present the results of such a time-dependent analysis, and we point out that the intrinsic temporal signature of the thick-target production mechanism, caused by the finite travel time of the electrons through the target, may indeed rule out such a mechanism for extremely short duration hard X-ray events.

  8. eHXI: A permanently installed, hard x-ray imager for the National Ignition Facility

    DOE PAGES

    Doppner, T.; Bachmann, B.; Albert, F.; ...

    2016-06-14

    We have designed and built a multi-pinhole imaging system for high energy x-rays (≥ 50 keV) that is permanently installed in the equatorial plane outside of the target chamber at the National Ignition Facility (NIF). It records absolutely-calibrated, time-integrated x-ray images with the same line-of-sight as the multi-channel, spatially integrating hard x-ray detector FFLEX [McDonald et al., Rev. Sci. Instrum. 75 (2004) 3753], having a side view of indirect-drive inertial confinement fusion (ICF) implosion targets. The equatorial hard x-ray imager (eHXI) has recorded images on the majority of ICF implosion experiments since May 2011. Lastly, eHXI provides valuable information onmore » hot electron distribution in hohlraum experiments, target alignment, potential hohlraum drive asymmetries and serves as a long term reference for the FFLEX diagnostics.« less

  9. eHXI: A permanently installed, hard x-ray imager for the National Ignition Facility

    SciTech Connect

    Doppner, T.; Bachmann, B.; Albert, F.; Bell, P.; Burns, S.; Celeste, J.; Chow, R.; Divol, L.; Dewald, E. L.; Hohenberger, M.; Izumi, N.; LaCaille, G.; Landen, O. L.; Palmer, N.; Park, H. -S.; Thomas, C. A.; Huntington, C.

    2016-06-14

    We have designed and built a multi-pinhole imaging system for high energy x-rays (≥ 50 keV) that is permanently installed in the equatorial plane outside of the target chamber at the National Ignition Facility (NIF). It records absolutely-calibrated, time-integrated x-ray images with the same line-of-sight as the multi-channel, spatially integrating hard x-ray detector FFLEX [McDonald et al., Rev. Sci. Instrum. 75 (2004) 3753], having a side view of indirect-drive inertial confinement fusion (ICF) implosion targets. The equatorial hard x-ray imager (eHXI) has recorded images on the majority of ICF implosion experiments since May 2011. Lastly, eHXI provides valuable information on hot electron distribution in hohlraum experiments, target alignment, potential hohlraum drive asymmetries and serves as a long term reference for the FFLEX diagnostics.

  10. Spectral and Timing Investigations of Dwarf Novae Selected in Hard X-Rays

    NASA Technical Reports Server (NTRS)

    Thorstensen, John; Remillard, Ronald A.

    2000-01-01

    There are 9 dwarf novae (DN) among the 43 cataclysmic variables (accreting white dwarfs in close binary systems) that were detected during the HEAO-1 all-sky X-ray survey (1977-1979). On the other hand, there are roughly one hundred dwarf novae that are closer and/or optically brighter and yet they were not detected as hard X-ray sources. Two of the HEAO-1 DN show evidence for X-ray pulsations that imply strong magnetic fields on the white dwarf surface, and magnetic CVs are known to be strong X-ray sources. However, substantial flux in hard X-rays may be caused by non-magnetic effects, such as an optically thin boundary layer near a massive white dwarf. We proposed RXTE observations to measure plasma temperatures and to search for X-ray pulsations. The observations would distinguish whether these DN belong to one of (rare) magnetic subclasses. For those that do not show pulsations, the observations support efforts to define empirical relations between X-ray temperature, the accretion rate, and the mass of the white dwarf. The latter is determined via optical studies of the dynamics of the binary constituents.

  11. Impact of a Vertically Polarized Undulator on LCLS Hard X-ray Experiments

    SciTech Connect

    Fritz, David

    2014-11-14

    The LCLS-II project will install two variable gap, horizontally polarized undulators into the LCLS undulator hall. One undulator is designed to produce soft x-rays spanning an energy range of 200-1250 eV (SXU) while the other is designed for the hard spectral range of 1-25 keV (HXU). The hard x-ray LCLS instruments (X-ray Pump- Probe [XPP], X-ray correlation Spectroscopy [XCS], Coherent X-ray Imaging [CXI], Matter in Extreme Conditions [MEC]) will be repurposed to operate on the HXU line while two new soft x-ray beamlines will be created for the SXU line. An alternate HXU undulator design is being considered that could provide advantages over the present design choice. In particular, the project team is collaborating with Argonne National Laboratory to develop a vertically polarized undulator (VPU). A 1-m prototype VPU device was successfully constructed this year and a full size prototype is in process. A decision to alter the project baseline, which is the construction of a horizontally polarized device, must be made in the coming weeks to not impact the present project schedule. Please note that a change to the soft x-ray undulator is not under discussion at the moment.

  12. The nature of fifty Palermo Swift-BAT hard X-ray objects through optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Rojas, A. F.; Masetti, N.; Minniti, D.; Jiménez-Bailón, E.; Chavushyan, V.; Hau, G.; McBride, V. A.; Bassani, L.; Bazzano, A.; Bird, A. J.; Galaz, G.; Gavignaud, I.; Landi, R.; Malizia, A.; Morelli, L.; Palazzi, E.; Patiño-álvarez, V.; Stephen, J. B.; Ubertini, P.

    2017-07-01

    We present the nature of 50 unidentified hard X-ray emitting objects detected with Swift-BAT and listed as of unidentified nature in the 54-month Palermo BAT catalogue. We found 45 extragalactic sources: 26 type 1 AGN, 15 type 2 AGN, one type 1 QSO, one starburst galaxy, one X-ray bright optically normal galaxy, and one LINER. We report 30 new redshift measurements, 13 confirmations and 2 more accurate redshift values. The remaining five objects are galactic sources: three are Cataclismic Variables, one is a X-ray Binary, and one is an active star.

  13. Upper limits from hard X-ray observations of five BL Lacertae objects

    NASA Technical Reports Server (NTRS)

    Bezler, M.; Gruber, D. E.; Rothschild, R. E.

    1988-01-01

    Results are presented from hard X-ray observations of the five brightest X-ray BL Lacertae objects: PKS 0548-322, Mrk 421 (=1101+384), 2A 1219+305, Mrk 501 (=1652+398), and PKS 2155-304. The observations covered the energy range 15-165 keV from August 1977 to December 1978. The results are compared with previous studies.

  14. The development of focusing optics for the hard-X-ray region

    NASA Astrophysics Data System (ADS)

    Ramsey, Brian D.

    2006-01-01

    Grazing-incidence optics has revolutionized soft-X-ray astronomy yet the scientifically important hard-X-ray region has gone relatively unexplored at high sensitivity and fine angular scales. This situation is now changing with several flight-ready balloon-borne focusing telescopes and planned satellite-borne observatories. This review discusses some of the developments in mirror and focal plane technologies that are making these payloads possible.

  15. Upper limits from hard X-ray observations of five BL Lacertae objects

    NASA Technical Reports Server (NTRS)

    Bezler, M.; Gruber, D. E.; Rothschild, R. E.

    1988-01-01

    Results are presented from hard X-ray observations of the five brightest X-ray BL Lacertae objects: PKS 0548-322, Mrk 421 (=1101+384), 2A 1219+305, Mrk 501 (=1652+398), and PKS 2155-304. The observations covered the energy range 15-165 keV from August 1977 to December 1978. The results are compared with previous studies.

  16. Experimental strategies for imaging bioparticles with femtosecond hard X-ray pulses

    SciTech Connect

    Daurer, Benedikt, J.

    2016-12-09

    Facilitating the very short and intense pulses from an X-ray laser for the purpose of imaging small bioparticles carries the potential for structure determination at atomic resolution without the need for crystallization. In this study, we explore experimental strategies for this idea based on data collected at the Linac Coherent Light Source from 40 nm virus particles injected into a hard X-ray beam.

  17. Analysis of coronal and chromospheric hard X-ray sources in an eruptive solar flare

    NASA Astrophysics Data System (ADS)

    Zimovets, Ivan; Golovin, Dmitry; Livshits, Moisey; Vybornov, Vadim; Sadykov, Viacheslav; Mitrofanov, Igor

    We have analyzed hard X-ray emission of an eruptive solar flare on 3 November 2010. The entire flare region was observed by the STEREO-B spacecraft. This gave us an information that chromospheric footpoints of flare magnetic loops were behind the east solar limb for an earth observer. Hard X-ray emission from the entire flare region was detected by the High Energy Neutron Detector (HEND) onboard the 2001 Mars Odyssey spacecraft while hard X-rays from the coronal part of the flare region were detected by the RHESSI. This rare situation has allowed us to investigate both coronal and chromospheric sources of hard X-ray emission separately. Flare impulsive phase was accompanied by eruption of a magnetic flux rope and formation of a plasmoid detected by the AIA/SDO in the EUV range. Two coronal hard X-ray sources (S_{1} and S_{2}) were detected by the RHESSI. The upper source S_{1} coincided with the plasmoid and the lower source S_{2} was near the tops of the underlying flare loops that is in accordance with the standard model of eruptive flares. Imaging spectroscopy with the RHESSI has allowed to measure energetic spectra of hard X-ray emission from the S_{1} and S_{2} sources. At the impulsive phase peak they have power-law shape above ≈ 15 keV with spectral slopes gamma_{S_{1}}=3.46 ± 1.58 and gamma_{S_{2}}=4.64 ± 0.12. Subtracting spatially integrated spectrum of coronal hard X-ray emission measured by the RHESSI from the spectrum measured by the HEND we found spectrum of hard X-rays emitted from the footpoints of the flare loops (source S_{0}). This spectrum has a power-law shape with gamma_{S_{0}}=2.21 ± 0.57. It is shown that it is not possible to explain the measured spectra of the S_{2} and S_{0} sources in frames of the thin and thick target models respectively if we assume that electrons were accelerated in the energy release site situated below the plasmoid and above the flare loops as suggested by the standard flare model. To resolve the contradiction

  18. Runaway electron energy measurement using hard x-ray spectroscopy in "Damavand" tokamak.

    PubMed

    Rasouli, C; Iraji, D; Farahbod, A H; Akhtari, K; Rasouli, H; Modarresi, H; Lamehi, M

    2009-01-01

    Set of experiments has been developed to study existing runaway electrons in "Damavand" tokamak plasma upon characteristics of hard x-ray emissions produced by collision of the runaway electrons with the plasma particles and limiters. As a first step, spatial distribution of hard x-ray emissions on the equatorial plane of the torus was considered. Obtained spectra of hard x-ray emissions for different alignments of shielded detector indicate isotropic emissivity in the equatorial plane. This is in agreement with wide angle cone of bremsstrahlung radiations, deduced from the mean value of energy of the runaway electrons. The mean energy was calculated from the slope of the energy spectrum of hard x-ray photons. In the second stage in order to investigate time evolution of energy of the runaway electrons, similar technique were applied to obtain hard x-ray energy in every 3 ms intervals, from the beginning to the end of plasma. The mean energy of the runaway electrons increases during the ramp up phase and reaches its maximum between 3 and 9 ms after plasma formation. Also considering the time dependence of the counted photons in each energy range shows that energetic photons are emitted during the ramp up phase of the plasma current in Damavand tokamak.

  19. Runaway electron energy measurement using hard x-ray spectroscopy in 'Damavand' tokamak

    SciTech Connect

    Rasouli, C.; Farahbod, A. H.; Rasouli, H.; Lamehi, M.; Iraji, D.; Akhtari, K.; Modarresi, H.

    2009-01-15

    Set of experiments has been developed to study existing runaway electrons in ''Damavand'' tokamak plasma upon characteristics of hard x-ray emissions produced by collision of the runaway electrons with the plasma particles and limiters. As a first step, spatial distribution of hard x-ray emissions on the equatorial plane of the torus was considered. Obtained spectra of hard x-ray emissions for different alignments of shielded detector indicate isotropic emissivity in the equatorial plane. This is in agreement with wide angle cone of bremsstrahlung radiations, deduced from the mean value of energy of the runaway electrons. The mean energy was calculated from the slope of the energy spectrum of hard x-ray photons. In the second stage in order to investigate time evolution of energy of the runaway electrons, similar technique were applied to obtain hard x-ray energy in every 3 ms intervals, from the beginning to the end of plasma. The mean energy of the runaway electrons increases during the ramp up phase and reaches its maximum between 3 and 9 ms after plasma formation. Also considering the time dependence of the counted photons in each energy range shows that energetic photons are emitted during the ramp up phase of the plasma current in Damavand tokamak.

  20. Optimization of phase contrast imaging using hard x rays

    SciTech Connect

    Zabler, S.; Cloetens, P.; Guigay, J.-P.; Baruchel, J.; Schlenker, M.

    2005-07-15

    X ray radiography and tomography are important tools in medicine as well as in life science and materials science. Not long ago an approach called in-line holography based on simple propagation became possible using partially coherent synchrotron beams like the ones available at the European Synchrotron Radiation Facility (ESRF). Theoretical and experimental work by Cloetens et al. [Appl. Phys. Lett 75, 2912 (1999)] have shown that quantitative retrieval of the optical phase, from a set of radiographs taken at different sample-to-detector distances, is feasible. Mathematically speaking we are dealing with a direct method based on linearization in order to solve an inverse nonlinear problem. The phase retrieval can be combined with classical tomography in order to obtain a three-dimensional representation of the object's electron density (holotomography). In order to optimize the image contrast for the numerical phase retrieval process, we have carried out calculations resulting in an optimized choice of value and number of the sample-to-detector distances as well as of the photon energy. These results were then confirmed by experiments on the ESRF long beamline ID19.

  1. Generalized prism-array lenses for hard X-rays.

    PubMed

    Cederström, Björn; Ribbing, Carolina; Lundqvist, Mats

    2005-05-01

    A Fresnel-like X-ray lens can be constructed by a triangular array of identical prisms whose base corresponds to the 2pi-shift length. Each column of prisms is progressively shifted from the optical axis by an arbitrary fraction of the prism height. Similarly to the multi-prism lens, quasi-parabolic profiles are formed by a superposition of straight-line segments. The resulting projected lens profile is approximately linear with a Fresnel-lens pattern superimposed on it to provide the focusing. This geometry exhibits a significantly larger effective aperture than conventional parabolic refractive lenses. Prototype lenses were fabricated by deep reactive ion etching of silicon. These one-dimensionally focusing lenses were tested at a synchrotron beamline and provided focal line-widths down to 1.4 microm FWHM and an intensity gain of 39 at a photon energy of 13.4 keV. Fabrication imperfections gave rise to unwanted interference effects resulting in several intensity maxima in the focal plane. The presented design allows the focal length to be shortened without decreasing the feature size of the lens. Furthermore, this feature size does not limit the resolution as for real Fresnel optics.

  2. Hard X-ray imaging and the relative contribution of thermal and nonthermal emission in flares

    NASA Technical Reports Server (NTRS)

    Holman, G. D.

    1986-01-01

    The question of whether the impulsive 25 to 100 keV X-ray emission from solar flares is thermal or nonthermal has been a long-standing controversy. Both thermal and nonthermal (beam) models have been developed and applied to the hard X-ray data. It now seems likely that both thermal and nonthermal emission have been observed at hard X-ray energies. The Hinotori classification scheme, for example, is an attempt to associate the thermal-nonthermal characteristics of flare hard X-ray emission with other flare properties. From a theoretical point of view, it is difficult to generate energetic, nonthermal electrons without dumping an equal or greater amount of energy into plasma heating. On the other hand, any impulsive heating process will invariably generate at least some nonthermal particles. Hence, strictly speaking, although thermal or nonthermal emission may dominate the hard X-ray emission in a given energy range for a given flare, there is no such thing as a purely thermal or nonthermal flare mechanism.

  3. Correlation of Hard X-Ray and White Light Emission in Solar Flares

    NASA Astrophysics Data System (ADS)

    Kuhar, Matej; Krucker, Säm; Martínez Oliveros, Juan Carlos; Battaglia, Marina; Kleint, Lucia; Casadei, Diego; Hudson, Hugh S.

    2016-01-01

    A statistical study of the correlation between hard X-ray and white light emission in solar flares is performed in order to search for a link between flare-accelerated electrons and white light formation. We analyze 43 flares spanning GOES classes M and X using observations from the Reuven Ramaty High Energy Solar Spectroscopic Imager and Helioseismic and Magnetic Imager. We calculate X-ray fluxes at 30 keV and white light fluxes at 6173 Å summed over the hard X-ray flare ribbons with an integration time of 45 s around the peak hard-X ray time. We find a good correlation between hard X-ray fluxes and excess white light fluxes, with a highest correlation coefficient of 0.68 for photons with energy of 30 keV. Assuming the thick target model, a similar correlation is found between the deposited power by flare-accelerated electrons and the white light fluxes. The correlation coefficient is found to be largest for energy deposition by electrons above ∼50 keV. At higher electron energies the correlation decreases gradually while a rapid decrease is seen if the energy provided by low-energy electrons is added. This suggests that flare-accelerated electrons of energy ∼50 keV are the main source for white light production.

  4. CORRELATION OF HARD X-RAY AND WHITE LIGHT EMISSION IN SOLAR FLARES

    SciTech Connect

    Kuhar, Matej; Krucker, Säm; Battaglia, Marina; Kleint, Lucia; Casadei, Diego; Oliveros, Juan Carlos Martinez; Hudson, Hugh S.

    2016-01-01

    A statistical study of the correlation between hard X-ray and white light emission in solar flares is performed in order to search for a link between flare-accelerated electrons and white light formation. We analyze 43 flares spanning GOES classes M and X using observations from the Reuven Ramaty High Energy Solar Spectroscopic Imager and Helioseismic and Magnetic Imager. We calculate X-ray fluxes at 30 keV and white light fluxes at 6173 Å summed over the hard X-ray flare ribbons with an integration time of 45 s around the peak hard-X ray time. We find a good correlation between hard X-ray fluxes and excess white light fluxes, with a highest correlation coefficient of 0.68 for photons with energy of 30 keV. Assuming the thick target model, a similar correlation is found between the deposited power by flare-accelerated electrons and the white light fluxes. The correlation coefficient is found to be largest for energy deposition by electrons above ∼50 keV. At higher electron energies the correlation decreases gradually while a rapid decrease is seen if the energy provided by low-energy electrons is added. This suggests that flare-accelerated electrons of energy ∼50 keV are the main source for white light production.

  5. Correlative analysis of hard and soft x ray observations of solar flares

    NASA Technical Reports Server (NTRS)

    Zarro, Dominic M.

    1994-01-01

    We have developed a promising new technique for jointly analyzing BATSE hard X-ray observations of solar flares with simultaneous soft X-ray observations. The technique is based upon a model in which electric currents and associated electric fields are responsible for the respective heating and particle acceleration that occur in solar flares. A useful by-product of this technique is the strength and evolution of the coronal electric field. The latter permits one to derive important flare parameters such as the current density, the number of current filaments composing the loop, and ultimately the hard X-ray spectrum produced by the runaway electrons. We are continuing to explore the technique by applying it to additional flares for which we have joint BATSE/Yohkoh observations. A central assumption of our analysis is the constant of proportionality alpha relating the hard X-ray flux above 50 keV and the rate of electron acceleration. For a thick-target model of hard X-ray production, it can be shown that cv is in fact related to the spectral index and low-energy cutoff of precipitating electrons. The next step in our analysis is to place observational constraints on the latter parameters using the joint BATSE/Yohkoh data.

  6. A hard X-ray view of the soft-excess in AGN

    NASA Astrophysics Data System (ADS)

    Boissay, R.; Paltani, S.; Ricci, C.

    2015-07-01

    The origin of the soft-excess in many Seyfert 1-1.5s spectra remains debated, as several models have been suggested to explain it, including warm Comptonization and blurred ionized reflection. In order to constrain the origin of this component, we use the fact that these models predict different behaviors in the hard X-rays. Ionized reflection indeed covers a broad energy range, from the soft X-rays to the hard X-rays around a few tens of keV, while Comptonization from a warm plasma drops very quickly above a few keV. We present here the results of a study done on 102 Seyfert 1s (Sy 1.0, 1.2, 1.5, and NLSy1) from the Swift BAT 70-Month Hard X-ray Survey catalog. The joint spectral analysis of Swift/BAT and XMM-Newton PN and MOS data allows a hard X-ray view of the soft-excess that is present in about 80% of the objects of our sample. We discuss how the soft-excess strength is linked to the reflection at high energy and to the photon index of the primary continuum, and show that our results are in contradiction with those obtained from simulations of blurred ionized-reflection models.

  7. Great microwave bursts and hard X-rays from solar flares

    NASA Technical Reports Server (NTRS)

    Wiehl, H. J.; Batchelor, D. A.; Crannell, C. J.; Dennis, B. R.; Price, P. N.

    1983-01-01

    The microwave and hard X-ray charateristics of 13 solar flares that produced microwave fluxes greater than 500 Solar Flux Units were analyzed. These Great Microwave Bursts were observed in the frequency range from 3 to 35 GHz at Berne, and simultaneous hard X-ray observations were made in the energy range from 30 to 500 keV with the Hard X-Ray Burst Spectrometer on the Solar Maximum Mission spacecraft. The principal aim of this analysis is to determine whether or not the same distribution of energetic electrons can explain both emissions. Correlations were found between respective temporal characteristics and, for the first time, between microwave and hard X-ray spectral characteristics. A single-temperature and a multi-temperature model from the literature were tested for consistency with the coincident X-ray and microwave spectra at microwave burst maximum. Four events are inconsistent with both of the models tested, and neither of the models attempts to explain the high-frequency part of the microwave spectrum. A model in which the emissions above and below the peak frequency originate in two different parts of a diverging magnetic loop is proposed. With this model the entire microwave spectrum of all but one of the events is explained.

  8. An investigation of small goes flares with intense hard x-ray bursts

    NASA Astrophysics Data System (ADS)

    McDonald, L.; Harra-Murnion, L. K.; Culhane, J. L.; Schwartz, A.

    1997-01-01

    Most solar flare observations show that intense hard X-ray bursts come from large flares that have a large GOES classification (large peak 1 - 8 A˚ flux). This correlation, known as the ``Big Flare Syndrome'', suggests that more intense flares tend to have harder spectra. We have observed 7 flares that are exceptions to this. These flares have small GOES classifications ranging from B1.4 to C5.5 and peak hard X-ray count rates similar to those often observed from M class flares. This paper examines the cause of this anomoly using the Yohkoh Soft X-Ray Telescope, Hard X-Ray Telescope, and Bragg Crystal Spectrometer. Two hypotheses are proposed for the exceptions: (1) flares with multiple magnetic loops and common footpoints, producing multiple hard X-ray emission regions and low density thermal plasma distributed over a large volume, and (2) high densities in the magnetic loops restricting the propagation of the non-thermal electrons in the loop after magnetic reconnection has occurred and suppressing chromospheric evaporation. Two of the flares support the first hypothesis. The other flares either have data missing or are too small to be properly analysed by the Yohkoh instruments.

  9. Intercalibration of the hard X-ray spectrometers on the PVO and ICE (ISEE-3) spacecraft

    NASA Technical Reports Server (NTRS)

    Kane, S. R.; Klebesadel, R. W.; Fenimore, E. E.; Laros, J. G.

    1988-01-01

    The energetic photon spectrometers aboard the ICE and PVO (Pioneer Venus Orbiter) are described briefly, and the procedure for their in-flight calibrations is discussed. Successful intercalibration of these two instruments led to stereoscopic observations of 100 keV-2 MeV photon sources in solar flares and the study of the directivity and height structure of these sources. The impulsive hard X-ray source is found to extend from the chromosphere to the corona, the brightness of the source decreasing rapidly with increase in height above the chromosphere. The analysis so far indicates no systematic directivity for the hard X-ray source. The observations are consistent with energetic electrons accelerated in the corona propagating downward toward the chromosphere. However, when avaraged over the duration of an impulsive hard X-ray flare, the 'beaming' of electrons is found to be small in most flares.

  10. Characterization of an ultrafast Bragg-Switch for shortening hard x-ray pulses

    NASA Astrophysics Data System (ADS)

    Sander, M.; Koc, A.; Kwamen, C. T.; Michaels, H.; Reppert, A. v.; Pudell, J.; Zamponi, F.; Bargheer, M.; Sellmann, J.; Schwarzkopf, J.; Gaal, P.

    2016-11-01

    We present a nanostructured device that functions as photoacoustic hard x-ray switch. The device is triggered by femtosecond laser pulses and allows for temporal gating of hard x-rays on picosecond (ps) timescales. It may be used for pulse picking or even pulse shortening in 3rd generation synchrotron sources. Previous approaches mainly suffered from insufficient switching contrasts due to excitation-induced thermal distortions. We present a new approach where thermal distortions are spatially separated from the functional switching layers in the structure. Our measurements yield a switching contrast of 14, which is sufficient for efficient hard x-ray pulse shortening. The optimized structure also allows for utilizing the switch at high repetition rates of up to 208 kHz.

  11. Hard x-ray and hot electron environment in vacuum hohlraums at the National Ignition Facility

    SciTech Connect

    McDonald, J.W.; Suter, L.J.; Landen, O.L.; Foster, J.M.; Celeste, J.R.; Holder, J.P.; Dewald, E.L.; Schneider, M.B.; Hinkel, D.E.; Kauffman, R.L.; Atherton, L.J.; Bonanno, R.E.; Dixit, S.N.; Eder, D.C.; Haynam, C.A.; Kalantar, D.H.; Koniges, A.E.; Lee, F.D.; MacGowan, B.J.; Manes, K.R.

    2006-03-15

    Time resolved hard x-ray images (hv>9 keV) and time integrated hard x-ray spectra (hv=18-150 keV) from vacuum hohlraums irradiated with four 351 nm wavelength National Ignition Facility [J. A. Paisner, E. M. Campbell, and W. J. Hogan, Fusion Technol. 26, 755 (1994)] laser beams are presented as a function of hohlraum size, laser power, and duration. The hard x-ray images and spectra provide insight into the time evolution of the hohlraum plasma filling and the production of hot electrons. The fraction of laser energy detected as hot electrons (F{sub hot}) shows a correlation with laser intensity and with an empirical hohlraum plasma filling model. In addition, the significance of Au K-alpha emission and Au K-shell reabsorption observed in some of the bremsstrahlung dominated spectra is discussed.

  12. Two-colour hard X-ray free-electron laser with wide tunability.

    PubMed

    Hara, Toru; Inubushi, Yuichi; Katayama, Tetsuo; Sato, Takahiro; Tanaka, Hitoshi; Tanaka, Takashi; Togashi, Tadashi; Togawa, Kazuaki; Tono, Kensuke; Yabashi, Makina; Ishikawa, Tetsuya

    2013-01-01

    Ultrabrilliant, femtosecond X-ray pulses from X-ray free-electron lasers (XFELs) have promoted the investigation of exotic interactions between intense X-rays and matters, and the observation of minute targets with high spatio-temporal resolution. Although a single X-ray beam has been utilized for these experiments, the use of multiple beams with flexible and optimum beam parameters should drastically enhance the capability and potentiality of XFELs. Here we show a new light source of a two-colour double-pulse (TCDP) XFEL in hard X-rays using variable-gap undulators, which realizes a large and flexible wavelength separation of more than 30% with an ultraprecisely controlled time interval in the attosecond regime. Together with sub-10-fs pulse duration and multi-gigawatt peak powers, the TCDP scheme enables us to elucidate X-ray-induced ultrafast transitions of electronic states and structures, which will significantly contribute to the advancement of ultrafast chemistry, plasma and astronomical physics, and quantum X-ray optics.

  13. Identification of Hard X-ray Sources in Galactic Globular Clusters: Simbol-X Simulations

    NASA Astrophysics Data System (ADS)

    Servillat, M.

    2009-05-01

    Globular clusters harbour an excess of X-ray sources compared to the number of X-ray sources in the Galactic plane. It has been proposed that many of these X-ray sources are cataclysmic variables that have an intermediate magnetic field, i.e. intermediate polars, which remains to be confirmed and understood. We present here several methods to identify intermediate polars in globular clusters from multiwavelength analysis. First, we report on XMM-Newton, Chandra and HST observations of the very dense Galactic globular cluster NGC 2808. By comparing UV and X-ray properties of the cataclysmic variable candidates, the fraction of intermediate polars in this cluster can be estimated. We also present the optical spectra of two cataclysmic variables in the globular cluster M 22. The HeII (4868 Å) emission line in these spectra could be related to the presence of a magnetic field in these objects. Simulations of Simbol-X observations indicate that the angular resolution is sufficient to study X-ray sources in the core of close, less dense globular clusters, such as M 22. The sensitivity of Simbol-X in an extended energy band up to 80 keV will allow us to discriminate between hard X-ray sources (such as magnetic cataclysmic variables) and soft X-ray sources (such as chromospherically active binaries).

  14. THE HARD X-RAY SPECTRUM OF NGC 1365: SCATTERED LIGHT, NOT BLACK HOLE SPIN

    SciTech Connect

    Miller, L.; Turner, T. J.

    2013-08-10

    Active galactic nuclei (AGNs) show excess X-ray emission above 10 keV compared with extrapolation of spectra from lower energies. Risaliti et al. have recently attempted to model the hard X-ray excess in the type 1.8 AGN NGC 1365, concluding that the hard excess most likely arises from Compton-scattered reflection of X-rays from an inner accretion disk close to the black hole. Their analysis disfavored a model in which the hard excess arises from a high column density of circumnuclear gas partially covering a primary X-ray source, despite such components being required in the NGC 1365 data below 10 keV. Using a Monte Carlo radiative transfer approach, we demonstrate that this conclusion is invalidated by (1) use of slab absorption models, which have unrealistic transmission spectra for partial covering gas, (2) neglect of the effect of Compton scattering on transmitted spectra, and (3) inadequate modeling of the spectrum of scattered X-rays. The scattered spectrum is geometry-dependent and, for high global covering factors, may dominate above 10 keV. We further show that, in models of circumnuclear gas, the suppression of the observed hard X-ray flux by reprocessing may be no larger than required by the ''light bending'' model invoked for inner disk reflection, and the expected emission line strengths lie within the observed range. We conclude that the time-invariant ''red wing'' in AGN X-ray spectra is probably caused by continuum transmitted through and scattered from circumnuclear gas, not by highly redshifted line emission, and that measurement of black hole spin is not possible.

  15. TRACING THE REVERBERATION LAG IN THE HARD STATE OF BLACK HOLE X-RAY BINARIES

    SciTech Connect

    De Marco, B.; Ponti, G.; Nandra, K.; Muñoz-Darias, T.

    2015-11-20

    We report results obtained from a systematic analysis of X-ray lags in a sample of black hole X-ray binaries, with the aim of assessing the presence of reverberation lags and studying their evolution during outburst. We used XMM-Newton and simultaneous Rossi X-ray Timing Explorer (RXTE) observations to obtain broadband energy coverage of both the disk and the hard X-ray Comptonization components. In most cases the detection of reverberation lags is hampered by low levels of variability-power signal-to-noise ratio (typically when the source is in a soft state) and/or short exposure times. The most detailed study was possible for GX 339-4 in the hard state, which allowed us to characterize the evolution of X-ray lags as a function of luminosity in a single source. Over all the sampled frequencies (∼0.05–9 Hz), we observe the hard lags intrinsic to the power-law component, already well known from previous RXTE studies. The XMM-Newton soft X-ray response allows us to detail the disk variability. At low frequencies (long timescales) the disk component always leads the power-law component. On the other hand, a soft reverberation lag (ascribable to thermal reprocessing) is always detected at high frequencies (short timescales). The intrinsic amplitude of the reverberation lag decreases as the source luminosity and the disk fraction increase. This suggests that the distance between the X-ray source and the region of the optically thick disk where reprocessing occurs gradually decreases as GX 339-4 rises in luminosity through the hard state, possibly as a consequence of reduced disk truncation.

  16. A hard X-ray view of the soft excess in AGN

    NASA Astrophysics Data System (ADS)

    Boissay, Rozenn; Ricci, Claudio; Paltani, Stéphane

    2016-04-01

    An excess of X-ray emission below 1 keV, called soft excess, is detected in a large fraction of Seyfert 1-1.5s. The origin of this feature remains debated, as several models have been suggested to explain it, including warm Comptonization and blurred ionized reflection. In order to constrain the origin of this component, we exploit the different behaviors of these models above 10 keV. Ionized reflection covers a broad energy range, from the soft X-rays to the hard X-rays, while Comptonization drops very quickly in the soft X-rays. We present here the results of a study done on 102 Seyfert 1s (Sy 1.0, 1.2, 1.5 and NLSy1) from the Swift BAT 70-Month Hard X-ray Survey catalog. The joint spectral analysis of Swift/BAT and XMM-Newton data allows a hard X-ray view of the soft excess that is present in about 80% of the objects of our sample. We discuss how the soft-excess strength is linked to the reflection at high energy, to the photon index of the primary continuum and to the Eddington ratio. In particular, we find a positive dependence of the soft excess intensity on the Eddington ratio. We compare our results to simulations of blurred ionized-reflection models and show that they are in contradiction. By stacking both XMM-Newton and Swift/BAT spectra per soft-excess strength, we see that the shape of reflection at hard X-rays stays constant when the soft excess varies, showing an absence of link between reflection and soft excess. We conclude that the ionized-reflection model as the origin of the soft excess is disadvantaged in favor of the warm Comptonization model in our sample of Seyfert 1s.

  17. Design of Compact Monochromatic Tunable Hard X-Ray Source Based on X-band Linac

    NASA Astrophysics Data System (ADS)

    Dobashi, Katsuhiro; Fukasawa, Atsushi; Uesaka, Mitsuru; Iijima, Hokuto; Imai, Takayuki; Sakamoto, Fumito; Ebina, Futaro; Urakawa, Junji; Akemoto, Mitsuo; Higo, Toshiyasu; Hayano, Hitoshi

    2005-04-01

    A compact tunable monochromatic (1 to 10 percent bandwidth rms) hard X-ray source based on laser-electron collisions for medicine is proposed. An X-band linac is introduced to realize a remarkably compact system. We have designed a compact monochromatic tunable hard X-ray source as a demonstration. An X-band (11.424 GHz) linac for the purpose is being manufactured. Numerical considerations using CAIN code and luminosity calculations have been performed to estimate the X-ray yield. An X-band thermionic-cathode RF gun and an RDS (round detuned structure) X-band accelerating structure are applied to generate a 50 MeV electron beam with 20 pC/micro-bunch, 1 μs macro-pulse. The total X-ray yield by laser-electron collision with the electron beam and Q-switch Nd:YAG laser with a pulse intensity of 2 J/10 ns is 107 photons/RF-pulse (108 photons/s in 10 pps). We will adapt the technique of laser pulse circulating to increase the X-ray yield up to 108 photons/pulse (109 photons/s). Twenty eight percent of the photons with an energy spread of 10% rms are expected to be available by collimating the scattering angles of X-ray photons.

  18. Extended hard-X-ray emission in the inner few parsecs of the Galaxy.

    PubMed

    Perez, Kerstin; Hailey, Charles J; Bauer, Franz E; Krivonos, Roman A; Mori, Kaya; Baganoff, Frederick K; Barrière, Nicolas M; Boggs, Steven E; Christensen, Finn E; Craig, William W; Grefenstette, Brian W; Grindlay, Jonathan E; Harrison, Fiona A; Hong, Jaesub; Madsen, Kristin K; Nynka, Melania; Stern, Daniel; Tomsick, John A; Wik, Daniel R; Zhang, Shuo; Zhang, William W; Zoglauer, Andreas

    2015-04-30

    The Galactic Centre hosts a puzzling stellar population in its inner few parsecs, with a high abundance of surprisingly young, relatively massive stars bound within the deep potential well of the central supermassive black hole, Sagittarius A* (ref. 1). Previous studies suggest that the population of objects emitting soft X-rays (less than 10 kiloelectronvolts) within the surrounding hundreds of parsecs, as well as the population responsible for unresolved X-ray emission extending along the Galactic plane, is dominated by accreting white dwarf systems. Observations of diffuse hard-X-ray (more than 10 kiloelectronvolts) emission in the inner 10 parsecs, however, have been hampered by the limited spatial resolution of previous instruments. Here we report the presence of a distinct hard-X-ray component within the central 4 × 8 parsecs, as revealed by subarcminute-resolution images in the 20-40 kiloelectronvolt range. This emission is more sharply peaked towards the Galactic Centre than is the surface brightness of the soft-X-ray population. This could indicate a significantly more massive population of accreting white dwarfs, large populations of low-mass X-ray binaries or millisecond pulsars, or particle outflows interacting with the surrounding radiation field, dense molecular material or magnetic fields. However, all these interpretations pose significant challenges to our understanding of stellar evolution, binary formation, and cosmic-ray production in the Galactic Centre.

  19. HX-POL-A Balloon-Borne Hard X-Ray Polarimeter

    NASA Technical Reports Server (NTRS)

    Krawczynski, H.; Garson, A., III; Martin, J.; Li, Q.; Beilicke, M.; Dowkontt, P.; Lee, K.; Wulf, E.; Kurfess, J.; Novikova, E. I.; hide

    2009-01-01

    We report on the design and estimated performance of a balloon-borne hard X-ray polarimeter called HX-POL. The experiment uses a combination of Si and Cadmium Zinc Telluride detectors to measure the polarization of 50 keV-400 keV X-rays from cosmic sources through the dependence of the angular distribution of Compton scattered photons on the polarization direction. On a one-day balloon flight, HX-POL would allow us to measure the polarization of bright Crab-like sources for polarization degrees well below 10%. On a longer (15-30 day) flight from Australia or Antarctica, HX-POL would be be able to measure the polarization of bright galactic X-ray sources down to polarization degrees of a few percent. Hard X-ray polarization measurements provide unique venues for the study of particle acceleration processes by compact objects and relativistic outflows. In this paper, we discuss the overall instrument design and performance. Furthermore, we present results from laboratory tests of the Si and CZT detectors. Index Terms Gamma-ray astronomy, gamma-ray astronomy detectors, polarization, semiconductor radiation detectors, X-ray astronomy, X-ray astronomy detectors.

  20. Achieving hard X-ray nanofocusing using a wedged multilayer Laue lens

    DOE PAGES

    Huang, Xiaojing; Conley, Raymond; Bouet, Nathalie; ...

    2015-05-04

    We report on the fabrication and the characterization of a wedged multilayer Laue lens for x-ray nanofocusing. The lens was fabricated using a sputtering deposition technique, in which a specially designed mask was employed to introduce a thickness gradient in the lateral direction of the multilayer. X-ray characterization shows an efficiency of 27% and a focus size of 26 nm at 14.6 keV, in a good agreement with theoretical calculations. These results indicate that the desired wedging is achieved in the fabricated structure. We anticipate that continuous development on wedged MLLs will advance x-ray nanofocusing optics to new frontiers andmore » enrich capabilities and opportunities for hard X-ray microscopy.« less

  1. Cosmological evolution of supermassive black holes in galactic centers unveiled by hard X-ray observations.

    PubMed

    Ueda, Yoshihiro

    2015-01-01

    We review the current understanding of the cosmological evolution of supermassive black holes in galactic centers elucidated by X-ray surveys of active galactic nuclei (AGNs). Hard X-ray observations at energies above 2 keV are the most efficient and complete tools to find "obscured" AGNs, which are dominant populations among all AGNs. Combinations of surveys with various flux limits and survey area have enabled us to determine the space number density and obscuration properties of AGNs as a function of luminosity and redshift. The results have essentially solved the origin of the X-ray background in the energy band below ∼10 keV. The downsizing (or anti-hierarchical) evolution that more luminous AGNs have the space-density peak at higher redshifts has been discovered, challenging theories of galaxy and black hole formation. Finally, we summarize unresolved issues on AGN evolution and prospects for future X-ray missions.

  2. Achieving Hard X-ray Nanofocusing Using a Wedged Multilayer Laue Lens

    SciTech Connect

    Huang, Xiaojing; Conley, Raymond; Bouet, Nathalie; Zhou, Juan; Macrander, Albert; Maser, Jorg; Yan, Hanfei; Nazaretski, Evgeny; Lauer, Kenneth; Harder, Ross; Robinson, Ian K.; Kalbfleisch, Sebastian; Chu, Yong S.

    2015-05-04

    Here, we report on the fabrication and the characterization of a wedged multilayer Laue lens for x-ray nanofocusing. The lens was fabricated using a sputtering deposition technique, in which a specially designed mask was employed to introduce a thickness gradient in the lateral direction of the multilayer. X-ray characterization shows an efficiency of 27% and a focus size of 26 nm at 14.6 keV, in a good agreement with theoretical calculations. Our results indicate that the desired wedging is achieved in the fabricated structure. Furthermore, we anticipate that continuous development on wedged MLLs will advance x-ray nanofocusing optics to new frontiers and enrich capabilities and opportunities for hard X-ray microscopy.

  3. Achieving hard X-ray nanofocusing using a wedged multilayer Laue lens

    SciTech Connect

    Huang, Xiaojing; Conley, Raymond; Bouet, Nathalie; Zhou, Juan; Macrander, Albert; Maser, Jorg; Yan, Hanfei; Nazaretski, Evgeny; Lauer, Kenneth; Harder, Ross; Robinson, Ian K.; Kalbfleisch, Sebastian; Chu, Yong S.

    2015-05-04

    We report on the fabrication and the characterization of a wedged multilayer Laue lens for x-ray nanofocusing. The lens was fabricated using a sputtering deposition technique, in which a specially designed mask was employed to introduce a thickness gradient in the lateral direction of the multilayer. X-ray characterization shows an efficiency of 27% and a focus size of 26 nm at 14.6 keV, in a good agreement with theoretical calculations. These results indicate that the desired wedging is achieved in the fabricated structure. We anticipate that continuous development on wedged MLLs will advance x-ray nanofocusing optics to new frontiers and enrich capabilities and opportunities for hard X-ray microscopy.

  4. Single shot speckle and coherence analysis of the hard X-ray free electron laser LCLS.

    PubMed

    Lee, Sooheyong; Roseker, W; Gutt, C; Fischer, B; Conrad, H; Lehmkühler, F; Steinke, I; Zhu, D; Lemke, H; Cammarata, M; Fritz, D M; Wochner, P; Castro-Colin, M; Hruszkewycz, S O; Fuoss, P H; Stephenson, G B; Grübel, G; Robert, A

    2013-10-21

    The single shot based coherence properties of hard x-ray pulses from the Linac Coherent Light Source (LCLS) were measured by analyzing coherent diffraction patterns from nano-particles and gold nanopowder. The intensity histogram of the small angle x-ray scattering ring from nano-particles reveals the fully transversely coherent nature of the LCLS beam with a number of transverse mode 〈Ms〉 = 1.1. On the other hand, the speckle contrasts measured at a large wavevector yields information about the longitudinal coherence of the LCLS radiation after a silicon (111) monochromator. The quantitative agreement between our data and the simulation confirms a mean coherence time of 2.2 fs and a x-ray pulse duration of 29 fs. Finally the observed reduction of the speckle contrast generated by x-rays with pulse duration longer than 30 fs indicates ultrafast dynamics taking place at an atomic length scale prior to the permanent sample damage.

  5. Laser-driven powerful kHz hard x-ray source

    NASA Astrophysics Data System (ADS)

    Li, Minghua; Huang, Kai; Chen, Liming; Yan, Wenchao; Tao, Mengze; Zhao, Jiarui; Ma, Yong; Li, Yifei; Zhang, Jie

    2017-08-01

    A powerful hard x-ray source based on laser plasma interaction is developed. By introducing the kHz, 800 nm pulses onto a rotating molybdenum (Mo) disk target, intense Mo Kα x-rays are emitted with suppressed bremsstrahlung background. Results obtained with different laser intensities suggest that the dominant absorption mechanism responsible for the high conversion efficiency is vacuum heating (VH). The high degree of spatial coherence is verified. With the high average flux and a source size comparable to the laser focus spot, absorption contrast imaging and phase contrast imaging are carried out to test the imaging capability of the source. Not only useful for imaging application, this compact x-ray source is also holding great potential for ultrafast x-ray diffraction (XRD) due to the intrinsic merits such as femtosecond pulse duration and natural synchronization with the driving laser pulses.

  6. Cosmological evolution of supermassive black holes in galactic centers unveiled by hard X-ray observations

    PubMed Central

    UEDA, Yoshihiro

    2015-01-01

    We review the current understanding of the cosmological evolution of supermassive black holes in galactic centers elucidated by X-ray surveys of active galactic nuclei (AGNs). Hard X-ray observations at energies above 2 keV are the most efficient and complete tools to find “obscured” AGNs, which are dominant populations among all AGNs. Combinations of surveys with various flux limits and survey area have enabled us to determine the space number density and obscuration properties of AGNs as a function of luminosity and redshift. The results have essentially solved the origin of the X-ray background in the energy band below ∼10 keV. The downsizing (or anti-hierarchical) evolution that more luminous AGNs have the space-density peak at higher redshifts has been discovered, challenging theories of galaxy and black hole formation. Finally, we summarize unresolved issues on AGN evolution and prospects for future X-ray missions. PMID:25971656

  7. A method of hard X-ray phase-shifting digital holography.

    PubMed

    Park, So Yeong; Hong, Chung Ki; Lim, Jun

    2016-07-01

    A new method of phase-shifting digital holography is demonstrated in the hard X-ray region. An in-line-type phase-shifting holography setup was installed in a 6.80 keV hard X-ray synchrotron beamline. By placing a phase plate consisting of a hole and a band at the focusing point of a Fresnel lens, the relative phase of the reference and objective beams could be successfully shifted for use with a three-step phase-shift algorithm. The system was verified by measuring the shape of a gold test pattern and a silica sphere.

  8. Periodicities of hard x-ray burst during the last solar cycle

    NASA Technical Reports Server (NTRS)

    Hady, Ahmed A.

    1995-01-01

    By using power spectrum and standard FFT time series analysis, the Hard X-ray burst during solar cycle -22 were studied. This data of Hard X-ray burst spectrometer (HXRBS) on the solar maximum mission from Launch and February 14, 1980, through re-entry on December 2, 1989, by NASA artificial satellite. The results indicate that there are short and intermediate solar periodicities. Also it is found that there is a relation between the short periodicities (few minutes) with similar periodicities in solar radio emissions and in good agreement with the theoretical mode of solar oscillations.

  9. Hard x-ray photoelectron spectroscopy of chalcopyrite solar cell components

    NASA Astrophysics Data System (ADS)

    Gloskovskii, A.; Jenkins, C. A.; Ouardi, S.; Balke, B.; Fecher, G. H.; Dai, X.-F.; Gruhn, T.; Johnson, B.; Lauermann, I.; Caballero, R.; Kaufmann, C. A.; Felser, C.

    2012-02-01

    Hard x-ray photoelectron spectroscopy is used to examine the partial density of states of Cu(In,Ga)Se2 (CIGSe), a semiconducting component of solar cells. The investigated, thin Cu(In,Ga)Se2 films were produced by multi-stage co-evaporation. Details of the measured core level and valence band spectra are compared to the calculated density of states. The semiconducting type electronic structure of Cu(In,Ga)Se2 is clearly resolved in the hard x-ray photoelectron spectra.

  10. Relative angle determinable stitching interferometry for hard x-ray reflective optics

    SciTech Connect

    Mimura, Hidekazu; Yumoto, Hirokatsu; Matsuyama, Satoshi; Yamamura, Kazuya; Sano, Yasuhisa; Ueno, Kazumasa; Endo, Katsuyoshi; Mori, Yuzo; Yabashi, Makina; Tamasaku, Kenji; Nishino, Yoshinori; Ishikawa, Tetsuya; Yamauchi, Kazuto

    2005-04-01

    Metrology plays an important role in surface figuring with subnanometer accuracy. We have developed relative angle determinable stitching interferometry for the surface figuring of elliptical mirrors, in order to realize hard x-ray nanofocusing. In a stitching system, stitching angles are determined not by the general method using a common area between neighboring shots, but by the new method using the mirror's tilt angles measured at times when profile data are acquired. The high measurement accuracy of approximately 4 nm (peak-to-valley) was achieved in the measurement of a cylindrical surface having the same curvature as the elliptically designed shape to enable hard x-ray nanofocusing.

  11. Full-field hard x-ray microscopy below 30 nm : a challenging nanofabrication achievement.

    SciTech Connect

    Chen, Y.; Lo, T.; Chu, Y.; Yi, J.; Liu, C.; Wang, J.; Wang, C.; Chiu, C.; Hua, T.; Hwu, Y.; Shen, Q.; Yin, G.; Liang, K.; Lin, H.; Je, J.; Margaritondo, G.; X-Ray Science Division; Academia Sinica; Tatung Univ.; National Tsing Hua Univ.; National Taiwan Ocean Univ.; National Synchrotron Radiation Research Center; Pohang Univ. of Science and Technology; Ecole Polytechnique Federale de Lausanne

    2008-01-01

    The fabrication of devices to focus hard x-rays is one of the most difficult--and important--challenges in nanotechnology. Here we show that Fresnel zone plates combining 30 nm external zones and a high aspect ratio finally bring hard x-ray microscopy beyond the 30 nm Rayleigh spatial resolution level and measurable spatial frequencies down to 20-23 nm feature size. After presenting the overall nanofabrication process and the characterization test results, we discuss the potential research impact of these resolution levels.

  12. Pulse energy measurement at the hard x-ray laser in Japan

    SciTech Connect

    Kato, M.; Tanaka, T.; Saito, N.; Kurosawa, T.; Richter, M.; Sorokin, A. A.; Tiedtke, K.; Kudo, T.; Yabashi, M.; Tono, K.; Ishikawa, T.

    2012-07-09

    The pulse energies of a free electron laser have accurately been measured in the hard x-ray spectral range. In the photon energy regime from 4.4 keV to 16.8 keV, pulse energies up to 100 {mu}J were obtained at the hard x-ray laser facility SACLA (SPring-8 Angstrom Compact free-electron LAser). Two independent methods, using a cryogenic radiometer and a gas monitor detector, were applied and agreement within 3.3% was achieved. Based on our validated pulse energy measurement, a SACLA online monitor detector could be calibrated for all future experiments.

  13. Gas scintillation drift chambers with wave shifter read-out for hard X-ray astronomy

    NASA Technical Reports Server (NTRS)

    Sadoulet, Bernard; Lin, Robert P.; Weiss, Steven C.

    1987-01-01

    A major improvement in hard X-ray and gamma ray astrophysics could be provided by high pressure xenon time projection chambers where gas scintillation is used both for the measurement of the time of interaction and for the detection of the extracted electrons. This allows three dimensional imaging of naturally complex events (photoelectric interaction with escape photon, Compton scatter, and pair production). A novel read-out system based on wave shifter fibers, which is well suited to the high pressures and large areas required of a hard X-ray telescope is proposed. Expected performances are computed, potential problems are outlined, and the experimental effort to solve these problems are described.

  14. Hard X-ray imaging observation of fluctuating bursts

    NASA Technical Reports Server (NTRS)

    Ohki, K.; Harada, M.

    1986-01-01

    Measurements were done to obtain the one-dimensional sizes of rapidly fluctuating bursts with fast spikes whose rise times are typically about one second, and in some extreme cases less than 0.1 second. The results of two bursts with fast spikes are presented. One has a soft spectrum, and the other has a very hard spectrum. The measured one-dimensional size of both events indicates relatively a small size and simple structure. It can be said, however, that the source size is not so small as expected from its rapid time variations. Therefore, a thermal explanation of these bursts seems to be excluded.

  15. A comparison of the height distributions of solar flare hard X-rays in thick target and thermal models

    NASA Technical Reports Server (NTRS)

    Emslie, A. G.

    1980-01-01

    The height structure of hard X-ray bremsstrahlung emission in solar flares is computed for two different models of bremsstrahlung production: emission from a descending beam of nonthermal electrons, and thermal emission from a coronally confined hot plasma. It is shown how these models give rise to hard X-ray spatial distributions which are distinguishable by current instrumentation, and that, therefore, the models may be distinguished by such spatially resolved hard X-ray measurements.

  16. Refractive microlens array for wave-front analysis in the medium to hard x-ray range.

    PubMed

    Mayo, Sheridan C; Sexton, Brett

    2004-04-15

    We report an alternative approach to x-ray wave-front analysis that uses a refractive microlens array as a Shack-Hartmann sensor. The sensor was manufactured by self-assembly and electroplating techniques and is suitable for high-resolution wave-front analysis of medium to hard x rays. We demonstrate its effectiveness at an x-ray energy of 3 keV for analysis of x-ray wave-front perturbations caused by microscopic objects. The sensor has potential advantages over other methods for x-ray phase imaging and will also be useful for the characterization of x-ray beams and optics.

  17. A HARD X-RAY POWER-LAW SPECTRAL CUTOFF IN CENTAURUS X-4

    SciTech Connect

    Chakrabarty, Deepto; Nowak, Michael A.; Tomsick, John A.; Boggs, Steven E.; Craig, William W.; Grefenstette, Brian W.; Fürst, Felix; Harrison, Fiona A.; Rana, Vikram; Psaltis, Dimitrios; Bachetti, Matteo; Barret, Didier; Christensen, Finn E.; Hailey, Charles J.; Kaspi, Victoria M.; Miller, Jon M.; Stern, Daniel; Wik, Daniel R.; Zhang, William W.; Wilms, Jörn

    2014-12-20

    The low-mass X-ray binary (LMXB) Cen X-4 is the brightest and closest (<1.2 kpc) quiescent neutron star transient. Previous 0.5-10 keV X-ray observations of Cen X-4 in quiescence identified two spectral components: soft thermal emission from the neutron star atmosphere and a hard power-law tail of unknown origin. We report here on a simultaneous observation of Cen X-4 with NuSTAR (3-79 keV) and XMM-Newton (0.3-10 keV) in 2013 January, providing the first sensitive hard X-ray spectrum of a quiescent neutron star transient. The 0.3-79 keV luminosity was 1.1×10{sup 33} D{sub kpc}{sup 2} erg s{sup –1}, with ≅60% in the thermal component. We clearly detect a cutoff of the hard spectral tail above 10 keV, the first time such a feature has been detected in this source class. We show that thermal Comptonization and synchrotron shock origins for the hard X-ray emission are ruled out on physical grounds. However, the hard X-ray spectrum is well fit by a thermal bremsstrahlung model with kT{sub e} = 18 keV, which can be understood as arising either in a hot layer above the neutron star atmosphere or in a radiatively inefficient accretion flow. The power-law cutoff energy may be set by the degree of Compton cooling of the bremsstrahlung electrons by thermal seed photons from the neutron star surface. Lower thermal luminosities should lead to higher (possibly undetectable) cutoff energies. We compare Cen X-4's behavior with PSR J1023+0038, IGR J18245–2452, and XSS J12270–4859, which have shown transitions between LMXB and radio pulsar modes at a similar X-ray luminosity.

  18. Study of runaway electrons using dosimetry of hard x-ray radiations in Damavand tokamak

    SciTech Connect

    Rasouli, C.; Pourshahab, B.; Rasouli, H.; Hosseini Pooya, S. M.; Orouji, T.

    2014-05-15

    In this work several studies have been conducted on hard x-ray emissions of Damavand tokamak based on radiation dosimetry using the Thermoluminescence method. The goal was to understand interactions of runaway electrons with plasma particles, vessel wall, and plasma facing components. Total of 354 GR-200 (LiF:Mg,Cu,P) thermoluminescence dosimeter (TLD) crystals have been placed on 118 points – three TLDs per point – to map hard x-ray radiation doses on the exterior of the vacuum vessel. Results show two distinctive levels of x-ray radiations doses on the exterior of the vessel. The low-dose area on which measured dose is about 0.5 mSv/shot. In the low-dose area there is no particular component inside the vessel. On the contrary, on high-dose area of the vessel, x-ray radiations dose exceeds 30 mSv/shot. The high-dose area coincides with the position of limiters, magnetic probe ducts, and vacuum vessel intersections. Among the high-dose areas, the highest level of dose is measured in the position of the limiter, which could be due to its direct contact with the plasma column and with runaway electrons. Direct collisions of runaway electrons with the vessel wall and plasma facing components make a major contribution for production of hard x-ray photons in Damavand tokamak.

  19. Reconnection Electric Field and Hardness of X-ray Emission of Solar Flares

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Wang, H.

    2009-05-01

    Magnetic reconnection is believed to be the prime mechanism to trigger solar flares and accelerate electrons up to energies of MeV. In the classical two-dimensional reconnection model, the separation motion of chromospheric ribbons manifests the successive reconnection that takes place higher up in the corona. Meanwhile, downward traveling energetic electrons bombard the dense chromosphere and create hard X-ray emissions, which provide a valuable diagnostic of electron acceleration. Analyses of ribbon dynamics and hard X-ray spectrum have been carried out separately. We here report a study of the comparison of reconnection electric field measured from ribbon motion and hardness (spectral index) of X-ray emission derived from X-ray spectrum. Our survey of the maximum average reconnection electric field and the minimum overall spectral index for 13 two-ribbon flares show that they are strongly anti-correlated. The former is also strongly correlated with flare magnitude measured using the peak flux of soft X-ray emissions. These support the hypothesis that direct acceleration by the electric field generated by magnetic reconnection may play an important role in producing energetic electrons in flares. This work is supported by NSF grants ATM 08-19662 and ATM 07-45744, and NASA grants NNX 08AQ90G and NNX 07AH78G.

  20. Hard X-ray Detectability of Small Impulsive Heating Events in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Glesener, L.; Klimchuk, J. A.; Bradshaw, S. J.; Marsh, A.; Krucker, S.; Christe, S.

    2015-12-01

    Impulsive heating events ("nanoflares") are a candidate to supply the solar corona with its ~2 MK temperature. These transient events can be studied using extreme ultraviolet and soft X-ray observations, among others. However, the impulsive events may occur in tenuous loops on small enough timescales that the heating is essentially not observed due to ionization timescales, and only the cooling phase is observed. Bremsstrahlung hard X-rays could serve as a more direct and prompt indicator of transient heating events. A hard X-ray spacecraft based on the direct-focusing technology pioneered by the Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket could search for these direct signatures. In this work, we use the hydrodynamical EBTEL code to simulate differential emission measures produced by individual heating events and by ensembles of such events. We then directly predict hard X-ray spectra and consider their observability by a future spaceborne FOXSI, and also by the RHESSI and NuSTAR spacecraft.

  1. Performance of ASTRO-H hard x-ray telescope (HXT)

    NASA Astrophysics Data System (ADS)

    Awaki, Hisamitsu; Kunieda, Hideyo; Ishida, Manabu; Matsumoto, Hironori; Furuzawa, Akihiro; Haba, Yoshito; Hayashi, Takayuki; Iizuka, Ryo; Ishibashi, Kazunori; Itoh, Masayuki; Kosaka, Tatsuro; Maeda, Yoshitomo; Mitsuishi, Ikuyuki; Miyazawa, Takuya; Mori, Hideyuki; Nagano, Hosei; Namba, Yoshiharu; Ogasaka, Yasushi; Ogi, Keiji; Okajima, Takashi; Sugita, Satoshi; Suzuki, Yoshio; Tamura, Keisuke; Tawara, Yuzuru; Uesugi, Kentaro; Yamauchi, Shigeo

    2016-07-01

    The Japanese X-ray Astronomy Satellite, Hitomi (ASTRO-H) carries hard X-ray imaging system, covering the energy band from 5 keV to 80 keV. The hard X-ray imaging system consists of two hard X-ray telescopes (HXT) and the focal plane detectors (HXI). The HXT employs tightly-nested, conically-approximated thin foil Wolter-I optics. The mirror surfaces of HXT were coated with Pt/C depth-graded multilayers. We carried out ground calibrations of HXTs at the synchrotron radiation facility SPring-8/ BL20B2 Japan, and found that total effective area of two HXTs was about 350 cm2 at 30 keV, and the half power diameter of HXT was about 1.'9. After the launch of Hitomi, Hitomi observed several targets during the initial functional verification of the onboard instruments. The Hitomi software and calibration team (SCT) provided the Hitomi's data of G21.5-0.9, a pulsar wind nebula, to the hardware team for the purpose of the instrument calibration. Through the analysis of the in-flight data, we have confirmed that the X-ray performance of HXTs in orbit was consistent with that obtained by the ground calibrations.

  2. Study of runaway electrons using dosimetry of hard x-ray radiations in Damavand tokamak.

    PubMed

    Rasouli, C; Pourshahab, B; Hosseini Pooya, S M; Orouji, T; Rasouli, H

    2014-05-01

    In this work several studies have been conducted on hard x-ray emissions of Damavand tokamak based on radiation dosimetry using the Thermoluminescence method. The goal was to understand interactions of runaway electrons with plasma particles, vessel wall, and plasma facing components. Total of 354 GR-200 (LiF:Mg,Cu,P) thermoluminescence dosimeter (TLD) crystals have been placed on 118 points--three TLDs per point--to map hard x-ray radiation doses on the exterior of the vacuum vessel. Results show two distinctive levels of x-ray radiations doses on the exterior of the vessel. The low-dose area on which measured dose is about 0.5 mSv/shot. In the low-dose area there is no particular component inside the vessel. On the contrary, on high-dose area of the vessel, x-ray radiations dose exceeds 30 mSv/shot. The high-dose area coincides with the position of limiters, magnetic probe ducts, and vacuum vessel intersections. Among the high-dose areas, the highest level of dose is measured in the position of the limiter, which could be due to its direct contact with the plasma column and with runaway electrons. Direct collisions of runaway electrons with the vessel wall and plasma facing components make a major contribution for production of hard x-ray photons in Damavand tokamak.

  3. Hard X-ray variability of V404 Cygni during the 2015 outburst

    NASA Astrophysics Data System (ADS)

    Sánchez-Fernández, C.; Kajava, J. J. E.; Motta, S. E.; Kuulkers, E.

    2017-06-01

    Aims: Hard X-ray spectra of black hole binaries (BHB) are produced by Comptonization of soft seed photons by hot electrons near the black hole. The slope of the resulting energy spectra is governed by two main parameters: the electron temperature (Te) and optical depth (τ) of the emitting plasma. Given the extreme brightness of V404 Cyg during the 2015 outburst, we aim to constrain the source spectral properties using an unprecedented time resolution in hard X-rays, and to monitor the evolution of Te and τ over the outburst. Methods: We have extracted and analysed 602 X-ray spectra of V404 Cyg obtained by the IBIS/ISGRI instrument on-board INTEGRAL during the 2015 June outburst, using effective integration times ranging between 8 and 176 000 s. We fitted the resulting spectra in the 20-200 keV energy range. Results: We find that while the light curve and soft X-ray spectra of V404 Cyg are remarkably different from those of other BHBs, the spectral evolution of V404 Cyg in hard X-rays and the relations between the spectral parameters are consistent with those observed in other BHBs. We identify a hard branch in which the Te is anti-correlated with the hard X-ray flux, and a soft flaring branch in which the relation reverses. In addition, we find that during long X-ray plateaus detected at intermediate fluxes, the thermal Comptonization models fail to describe the spectra. However, the statistics improve if we allow NH to vary freely in the fits to these spectra. Conclusions: We conclude that the hard branch in V404 Cyg is analogous to the canonical hard state of BHBs. V404 Cyg never seems to enter the canonical soft state, although the soft flaring branch bears resemblance to the BHB intermediate state and ultra-luminous state. The X-ray plateaus are likely the result of absorption by a Compton-thick outflow (NH ≳ 1024 cm-2) which reduces the observed flux by a factor of about 10. Variable covering of the central source by this Compton-thick material may be the

  4. Development of soft and hard x-ray optics for astronomy

    NASA Astrophysics Data System (ADS)

    Citterio, Oberto; Conconi, Paolo; Ghigo, Mauro; Mazzoleni, Franco; Pareschi, Giovanni; Peverini, L.

    2000-11-01

    For the next generation X-ray astronomy missions two main technological goals have to be achieved: (1) the possibility of making soft X-ray (0.1 - 10 keV) optics with much larger effective areas compared to the missions Chandra and XMM- Newton but still maintaining good angular resolution (better than 15 arcsec); (2) the extension of the use of focusing optics to the hard X-ray energy band (E equals 10 - 100 keV) by means of multilayer coating optics. The Brera Astronomical Observatory (Italy) is currently involved in technological development activities for the achievement of both these objectives. Concerning the realization of large diameter soft X-ray optics with low weight and good imaging capabilities, our efforts are devoted to the development of carriers made of ceramic materials like SiC and Alumina (Al2O3). The low density and the good mechanical parameters of these materials are very promising for this purpose. The technology for manufacturing hard X-ray optics based on multilayer mirrors, will be instead directly derived, with opportune modifications, from the replication process based on Nickel electroforming. This approach was already successfully used for the fabrication of the soft X-ray optics with Au coating of the Beppo-SAX, JET-X, SWIFT and XMM-Newton space experiments. In this case the use of Nickel instead of ceramics for the realization of the mirror carriers remains appropriate, due to the fact that, also for long focal length, hard X-ray telescopes are characterized by small diameters. In this paper we will present the more recent progresses achieved in pursuing these studies.

  5. Hard X-ray Detectability of Small-Scale Coronal Heating Events

    NASA Astrophysics Data System (ADS)

    Marsh, A.; Glesener, L.; Klimchuk, J. A.; Bradshaw, S. J.; Smith, D. M.; Hannah, I. G.

    2016-12-01

    The nanoflare heating theory predicts the ubiquitous presence of hot ( >5 MK) plasma in the solar corona, but evidence for this high-temperature component has been scarce. Current hard x-ray instruments such as RHESSI lack the sensitivity to see the trace amounts of this plasma that are predicted by theoretical models. New hard X-ray instruments that use focusing optics, such as FOXSI (the Focusing Optics X-ray Solar Imager) and NuSTAR (the Nuclear Spectroscopic Telescope Array) can extend the visible parameter space of nanoflare "storms" that create hot plasma. We compare active-region data from FOXSI and NuSTAR with a series of EBTEL hydrodynamic simulations, and constrain nanoflare properties to give good agreement with observations.

  6. Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution

    DOE PAGES

    Yan, Hanfei; Nazaretski, Evgeny; Lauer, Kenneth R.; ...

    2016-02-05

    Here, we developed a scanning hard x-ray microscope using a new class of x-ray nano-focusing optic called a multilayer Laue lens and imaged a chromosome with nanoscale spatial resolution. The combination of the hard x-ray's superior penetration power, high sensitivity to elemental composition, high spatial-resolution and quantitative analysis creates a unique tool with capabilities that other microscopy techniques cannot provide. Using this microscope, we simultaneously obtained absorption-, phase-, and fluorescence-contrast images of Pt-stained human chromosome samples. The high spatial-resolution of the microscope and its multi-modality imaging capabilities enabled us to observe the internal ultra-structures of a thick chromosome without sectioningmore » it.« less

  7. Fabrication of elliptically figured mirror for focusing hard x rays to size less than 50 nm

    SciTech Connect

    Yumoto, Hirokatsu; Mimura, Hidekazu; Matsuyama, Satoshi; Hara, Hideyuki; Yamamura, Kazuya; Sano, Yasuhisa; Ueno, Kazumasa; Endo, Katsuyoshi; Mori, Yuzo; Yabashi, Makina; Nishino, Yoshinori; Tamasaku, Kenji; Ishikawa, Tetsuya; Yamauchi, Kazuto

    2005-06-15

    In this study, we designed, fabricated, and evaluated a hard x-ray focusing mirror having an ideally focused beam with a full width at half maximum in the intensity profile of 36 nm at an x-ray energy of 15 keV. The designed elliptically curved shape was fabricated by a computer-controlled fabrication system using plasma chemical vaporization machining and elastic emission machining, on the basis of surface profiles accurately measured by combining microstitching interferometry with relative angle determinable stitching interferometry. A platinum-coated surface was employed for hard x-ray focusing with a large numerical aperture. Line-focusing tests on the fabricated elliptical mirror are carried out at the 1-km-long beamline of SPring-8. A full width at half maximum of 40 nm was achieved in the focused beam intensity profile under the best focus conditions.

  8. Coherent hard x-ray diffractive imaging of nonisolated objects confined by an aperture

    SciTech Connect

    Kim, Sunam; Kim, Chan; Lee, Suyong; Marathe, Shashidhara; Noh, D. Y.; Kang, H. C.; Kim, S. S.; Sandy, A.; Narayanan, S.

    2010-04-15

    Coherent hard x-ray imaging of nonisolated weak phase objects is demonstrated by confining x-ray beam in a region of a few micrometers in cross section using a micrometer-sized aperture. Two major obstacles in the hard x-ray coherent diffraction imaging, isolating samples and obtaining central speckles, are addressed by using the aperture. The usefulness of the proposed method is illustrated by reconstructing the exit wave field of a nanoscale trench structure fabricated on silicon which serves as a weak phase object. The quantitative phase information of the exit wave field was used to reconstruct the depth profile of the trench structure. The scanning capability of this method was also briefly discussed.

  9. Evaluation of a ''CMOS'' Imager for Shadow Mask Hard X-ray Telescope

    NASA Technical Reports Server (NTRS)

    Desai, Upendra D.; Orwig, Larry E.; Oergerle, William R. (Technical Monitor)

    2002-01-01

    We have developed a hard x-ray coder that provides high angular resolution imaging capability using a coarse position sensitive image plane detector. The coder consists of two Fresnel zone plates. (FZP) Two such 'FZP's generate Moire fringe patterns whose frequency and orientation define the arrival direction of a beam with respect to telescope axis. The image plane detector needs to resolve the Moire fringe pattern. Pixilated detectors can be used as an image plane detector. The recently available 'CMOS' imager could provide a very low power large area image plane detector for hard x-rays. We have looked into a unit made by Rad-Icon Imaging Corp. The Shadow-Box 1024 x-ray camera is a high resolution 1024xl024 pixel detector of 50x50 mm area. It is a very low power, stand alone camera. We present some preliminary results of our investigation of evaluation of such camera.

  10. Hard X-ray Detectability of Small-Scale Coronal Heating Events

    NASA Astrophysics Data System (ADS)

    Marsh, Andrew; Glesener, Lindsay; Klimchuk, James A.; Bradshaw, Stephen; Smith, David; Hannah, Iain

    2016-05-01

    The nanoflare heating theory predicts the ubiquitous presence of hot (~>5 MK) plasma in the solar corona, but evidence for this high-temperature component has been scarce. Current hard x-ray instruments such as RHESSI lack the sensitivity to see the trace amounts of this plasma that are predicted by theoretical models. New hard X-ray instruments that use focusing optics, such as FOXSI (the Focusing Optics X-ray Solar Imager) and NuSTAR (the Nuclear Spectroscopic Telescope Array) can extend the visible parameter space of nanoflare “storms” that create hot plasma. We compare active-region data from FOXSI and NuSTAR with a series of EBTEL hydrodynamic simulations, and constrain nanoflare properties to give good agreement with observations.

  11. SIGMA discovery of a transient hard X-ray source in the galactic center region.

    NASA Astrophysics Data System (ADS)

    Vargas, M.; Goldwurm, A.; Paul, J.; Denis, M.; Borrel, V.; Bouchet, L.; Roques, J. P.; Jourdain, E.; Trudolyubov, S.; Gilfanov, M.; Churazov, E.; Sunyaev, R.; Khavenson, N.; Dyachkov, A.; Novikov, B.; Chulkov, I.

    1996-09-01

    A new X-ray transient source, GRS 1730-312 (=KS 1730-312), was discovered by the hard X-ray/soft γ-ray coded mask telescope SIGMA/GRANAT in the Galactic Center region during observations performed in September 1994. The flare started on September 22 and lasted approximately 3days, during which the source became the brightest object of the region at energies above 35keV. The average 35-200keV spectrum can be described by a power law with photon index of -2.5 or by a thermal bremsstrahlung model with kT_e_=~70keV. SIGMA data have been found consistent with the spectral shape and with the spectral evolution observed by the TTM/Mir-Kvant telescope at lower energies. This new source belongs to the population of hard X-ray sources already detected by SIGMA in the direction of the Galactic Bulge region.

  12. Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution

    SciTech Connect

    Yan, Hanfei; Nazaretski, Evgeny; Lauer, Kenneth R.; Huang, Xiaojing; Wagner, Ulrich; Rau, Christoph; Yusuf, Mohammed; Robinson, Ian K.; Kalbfleisch, Sebastian; Li, Li; Bouet, Nathalie; Zhou, Juan; Conley, Ray; Chu, Yong S.

    2016-02-05

    Here, we developed a scanning hard x-ray microscope using a new class of x-ray nano-focusing optic called a multilayer Laue lens and imaged a chromosome with nanoscale spatial resolution. The combination of the hard x-ray's superior penetration power, high sensitivity to elemental composition, high spatial-resolution and quantitative analysis creates a unique tool with capabilities that other microscopy techniques cannot provide. Using this microscope, we simultaneously obtained absorption-, phase-, and fluorescence-contrast images of Pt-stained human chromosome samples. The high spatial-resolution of the microscope and its multi-modality imaging capabilities enabled us to observe the internal ultra-structures of a thick chromosome without sectioning it.

  13. Hard x-ray nanoprobe of beamline P06 at PETRA III

    SciTech Connect

    Schroer, C. G.; Baumbach, C.; Döhrmann, R.; Kahnt, M.; Reinhardt, J.; Scholz, M.; Schropp, A.; Seyrich, M.; Wittwer, F.; Falkenberg, G.; Klare, S.; Hoppe, R.; Patommel, J.; Ritter, S.; Samberg, D.; Seiboth, F.

    2016-07-27

    The hard x-ray scanning microscope at beamline P06 of PETRA III at DESY in Hamburg serves a large user community, from physics, chemistry, and nanotechnology to the bio-medical, materials, environmental, and geosciences. It has been in user operation since 2012, and is mainly based on nanofocusing refractive x-ray lenses. Using refractive optics, nearly gaussian-limited nanobeams in the range from 50 to 100 nm can be generated in the hard x-ray energy range from 8 to 30 keV. The degree of coherence can be traded off against the flux in the nanobeam by a two-stage focusing scheme. We give a brief overview on published results from this instrument and describe its most important components and parameters.

  14. Recent advances in synchrotron-based hard x-ray phase contrast imaging

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Nelson, J.; Holzner, C.; Andrews, J. C.; Pianetta, P.

    2013-12-01

    Ever since the first demonstration of phase contrast imaging (PCI) in the 1930s by Frits Zernike, people have realized the significant advantage of phase contrast over conventional absorption-based imaging in terms of sensitivity to ‘transparent’ features within specimens. Thus, x-ray phase contrast imaging (XPCI) holds great potential in studies of soft biological tissues, typically containing low Z elements such as C, H, O and N. Particularly when synchrotron hard x-rays are employed, the favourable brightness, energy tunability, monochromatic characteristics and penetration depth have dramatically enhanced the quality and variety of XPCI methods, which permit detection of the phase shift associated with 3D geometry of relatively large samples in a non-destructive manner. In this paper, we review recent advances in several synchrotron-based hard x-ray XPCI methods. Challenges and key factors in methodological development are discussed, and biological and medical applications are presented.

  15. Evaluation of a ''CMOS'' Imager for Shadow Mask Hard X-ray Telescope

    NASA Technical Reports Server (NTRS)

    Desai, Upendra D.; Orwig, Larry E.; Oergerle, William R. (Technical Monitor)

    2002-01-01

    We have developed a hard x-ray coder that provides high angular resolution imaging capability using a coarse position sensitive image plane detector. The coder consists of two Fresnel zone plates. (FZP) Two such 'FZP's generate Moire fringe patterns whose frequency and orientation define the arrival direction of a beam with respect to telescope axis. The image plane detector needs to resolve the Moire fringe pattern. Pixilated detectors can be used as an image plane detector. The recently available 'CMOS' imager could provide a very low power large area image plane detector for hard x-rays. We have looked into a unit made by Rad-Icon Imaging Corp. The Shadow-Box 1024 x-ray camera is a high resolution 1024xl024 pixel detector of 50x50 mm area. It is a very low power, stand alone camera. We present some preliminary results of our investigation of evaluation of such camera.

  16. Accelerated Electrons in Cassiopeia A: An Explanation for the Hard X-Ray Tail

    NASA Astrophysics Data System (ADS)

    Laming, J. Martin

    2001-01-01

    We propose a model for the hard X-ray (>10 keV) emission observed from the supernova remnant Cas A. Lower hybrid waves are generated in strong (mG) magnetic fields, generally believed to reside in this remnant, by shocks reflected from density inhomogeneities. These then accelerate electrons to energies of several tens of keV. Around 4% of the X-ray-emitting plasma electrons need to be in this accelerated distribution, which extends up to electron velocities of order the electron Alfvén speed and is directed along magnetic field lines. Bremsstrahlung from these electrons produces the observed hard X-ray emission. Such waves and accelerated electrons have been observed in situ at comet Halley, and we discuss the viability of the extrapolation from this case to the parameters relevant to Cas A.

  17. High-resolution hard x-ray magnetic imaging with dichroic ptychography

    NASA Astrophysics Data System (ADS)

    Donnelly, Claire; Scagnoli, Valerio; Guizar-Sicairos, Manuel; Holler, Mirko; Wilhelm, Fabrice; Guillou, Francois; Rogalev, Andrei; Detlefs, Carsten; Menzel, Andreas; Raabe, Jörg; Heyderman, Laura J.

    2016-08-01

    Imaging the magnetic structure of a material is essential to understanding the influence of the physical and chemical microstructure on its magnetic properties. Magnetic imaging techniques, however, have been unable to probe three-dimensional micrometer-size systems with nanoscale resolution. Here we present the imaging of the magnetic domain configuration of a micrometer-thick FeGd multilayer with hard x-ray dichroic ptychography at energies spanning both the Gd L3 edge and the Fe K edge, providing a high spatial resolution spectroscopic analysis of the complex x-ray magnetic circular dichroism. With a spatial resolution reaching 45 nm , this advance in hard x-ray magnetic imaging is a first step towards the investigation of buried magnetic structures and extended three-dimensional magnetic systems at the nanoscale.

  18. Energetics of impulsive solar flares: Correlating BATSE hard x-ray bursts and the solar atmosphere's soft x-ray response

    NASA Technical Reports Server (NTRS)

    Newton, Elizabeth

    1996-01-01

    This investigation has involved the correlation of BATSE-observed solar hard X-ray emission with the characteristics of soft X-ray emitting plasma observed by the Yohkoh Bragg Crystal Spectrometers. The goal was to test the hypothesis that localized electron beam heating is the dominant energy transport mechanism in impulsive flares, as formulated in the thick-target electron-heated model of Brown.

  19. Hard X-Ray Burst Detected From Caltech Plasma Jet Experiment Magnetic Reconnection Event

    NASA Astrophysics Data System (ADS)

    Marshall, Ryan S.; Bellan, Paul M.

    2016-10-01

    In the Caltech plasma jet experiment a 100 kA MHD driven jet becomes kink unstable leading to a Rayleigh-Taylor instability that quickly causes a magnetic reconnection event. Movies show that the Rayleigh-Taylor instability is simultaneous with voltage spikes across the electrodes that provide the current that drives the jet. Hard x-rays between 4 keV and 9 keV have now been observed using an x-ray scintillator detector mounted just outside of a kapton window on the vacuum chamber. Preliminary results indicate that the timing of the x-ray burst coincides with a voltage spike on the electrodes occurring in association with the Rayleigh-Taylor event. The x-ray signal accompanies the voltage spike and Rayleigh-Taylor event in approximately 50% of the shots. A possible explanation for why the x-ray signal is sometimes missing is that the magnetic reconnection event may be localized to a specific region of the plasma outside the line of sight of the scintillator. The x-ray signal has also been seen accompanying the voltage spike when no Rayleigh-Taylor is observed. This may be due to the interframe timing on the camera being longer than the very short duration of the Rayleigh-Taylor instability.

  20. The Relationship Between Solar Radio and Hard X-Ray Emission

    NASA Technical Reports Server (NTRS)

    White, S. M.; Benz, A. O.; Christe, S.; Farnik, F.; Kundu, M. R.; Mann, G.; Ning, Z.; Raulin, J.-P.; Silva-Valio, A. V. R.; Saint-Hilaire, P.; Vilmer, N.; Warmuth, A.

    2011-01-01

    This review discusses the complementary relationship between radio and hard Xray observations of the Sun using primarily results from the era of the Reuven Ramaty High Energy Solar Spectroscopic Imager satellite. A primary focus of joint radio and hard X-ray studies of solar flares uses observations of nonthermal gyrosynchrotron emission at radio wavelengths and bremsstrahlung hard X-rays to study the properties of electrons accelerated in the main flare site, since it is well established that these two emissions show very similar temporal behavior. A quantitative prescription is given for comparing the electron energy distributions derived separately from the two wavelength ranges: this is an important application with the potential for measuring the magnetic field strength in the flaring region, and reveals significant differences between the electrons in different energy ranges. Examples of the use of simultaneous data from the two wavelength ranges to derive physical conditions are then discussed, including the case of microflares, and the comparison of images at radio and hard X-ray wavelengths is presented. There have been puzzling results obtained from observations of solar flares at millimeter and submillimeter wavelengths, and the comparison of these results with corresponding hard X-ray data is presented. Finally, the review discusses the association of hard X-ray releases with radio emission at decimeter and meter wavelengths, which is dominated by plasma emission (at lower frequencies) and electron cyclotron maser emission (at higher frequencies), both coherent emission mechanisms that require small numbers of energetic electrons. These comparisons show broad general associations but detailed correspondence remains more elusive.

  1. Universal camera with a time-analyzing ICT sensitive to UV and hard x rays

    NASA Astrophysics Data System (ADS)

    Lebedev, Vitaly B.; Zhilkina, Vera M.; Feldman, Gregory G.

    1995-05-01

    Design of universal camera operating in streak and four-, six-, and eightframe modes is reported; the camera is intended for recording high speed phenomena in ultra violet and hard X-rays with limiting temporal resolution of 2 X 10-10 s and 5 X 10-9 s for streak and frame modes, respectively.

  2. Study of runaway electrons with Hard X-ray spectrometry of tokamak plasmas

    SciTech Connect

    Shevelev, A.; Chugunov, I.; Khilkevitch, E.; Gin, D.; Doinikov, D.; Naidenov, V.; Kiptily, V.; Collaboration: EFDA-JET Contributors

    2014-08-21

    Hard-X-ray spectrometry is a tool widely used for diagnostic of runaway electrons in existing tokamaks. In future machines, ITER and DEMO, HXR spectrometry will be useful providing information on runaway electron energy, runaway beam current and its profile during disruption.

  3. The Hard X-ray Emission from Scorpius X-1 as Seen by INTEGRAL

    NASA Technical Reports Server (NTRS)

    Sturner, S. J.; Shrader, C. R.; Weidenspointner, G.

    2008-01-01

    We present the results of our hard X-ray and gamma-ray study of the LMXB Sco X-1 utilizing INTEGRAL data as well as contemporaneous RXTE PCA data. We have concentrated on investigating the hard X-ray spectral properties of Sco X-1 including the nature of the high-energy, nonthermal component of the spectrum and its possible correlations with the location of the source on the X-ray color-color diagram. We find that Sco X-1 has two distinct spectral when the 20-40 keV count rate is greater than 140 counts/second. One state is a hard state which exhibits a significant high-energy, powerlaw tail to the lower energy thermal spectrum. The other state shows no evidence for a powerlaw tail whatsoever. We found suggestive evidence for a correlation of these hard and soft high-energy states with the position of Sco X-1 on the low-energy X-ray color-color diagram.

  4. Theoretical motivation for high spatial resolution, hard X-ray observations during solar flares

    NASA Technical Reports Server (NTRS)

    Emslie, A. G.

    1986-01-01

    The important role played by hard X-ray radiation as a diagnostic of impulsive phase energy transport mechanism is reviewed. It is argued that the sub-arc second resolution offered by an instrument such as the Pinhole/Occulter Facility (P/OF) can greatly increase our understanding of such mechanisms.

  5. A robot-based detector manipulator system for a hard x-ray nanoprobe instrument.

    SciTech Connect

    Shu, D., Maser, J., Holt, M. , Winarski, R., Preissner, C.,Lai, B., Vogt, S., Stephenson, G.B.

    2007-11-11

    This paper presents the design of a robot-based detector manipulator for microdiffraction applications with a hard X-ray nanoprobe instrument system being constructed at the Advanced Photon Source (APS) for the Center for Nanoscale Materials (CNM) being constructed at Argonne National Laboratory (ANL). Applications for detectors weighing from 1.5 to 100 kg were discussed in three configurations.

  6. Identifying Return-Current Losses in Flare Hard X-ray Spectra

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.

    2011-01-01

    I will report on theoretical studies and a data analysis program aimed at identifying and physically interpreting breaks in hard X-ray spectra resulting from return-current energy losses, as well as heating of the flare plasma resulting from these losses.

  7. Hard X-ray imaging facility for space shuttle: A scientific and conceptual engineering study

    NASA Technical Reports Server (NTRS)

    Peterson, L. E.; Hudson, H. S.; Hurford, G.; Schneible, D.

    1976-01-01

    A shuttle-accommodated instrument for imaging hard X-rays in the study of nonthermal particles and high temperature particles in various solar and cosmic phenomena was defined and its feasibility demonstrated. The imaging system configuration is described as well as the electronics, aspect systems, mechanical and thermal properties and the ground support equipment.

  8. Atomic physics with hard X-rays from high brilliance synchrotron light sources

    SciTech Connect

    Southworth, S.; Gemmell, D.

    1996-08-01

    A century after the discovery of x rays, the experimental capability for studying atomic structure and dynamics with hard, bright synchrotron radiation is increasing remarkably. Tempting opportunities arise for experiments on many-body effects, aspects of fundamental photon-atom interaction processes, and relativistic and quantum-electrodynamic phenomena. Some of these possibilities are surveyed in general terms.

  9. Quantitative analysis of flare accelerated electrons through their hard X-ray and microwave radiation

    NASA Technical Reports Server (NTRS)

    Klein, K. L.; Trottet, G.

    1985-01-01

    Hard X-ray and microwave modelling that takes into account the temporal evolution of the electron spectrum as well as the inhomogeneity of the magnetic field and the ambient medium in the radio source is presented. This method is illustrated for the June 29 1980 10:41 UT event. The implication on the process of acceleration/injection is discussed.

  10. The Hard X-Ray Emission from Scorpius X-1 Seen by INTEGRAL

    NASA Technical Reports Server (NTRS)

    Sturner, Steve; Shrader, C. R.

    2008-01-01

    We present the results of our hard X-ray and gamma-ray study of the LMXB Sco X-1 utilizing INTEGRAL data as well as contemporaneous RXTE PCA data. We have investigated the hard X-ray spectral properties of Sco X-1 including the nature of the high-energy, nonthermal component and its possible correlations with the location of the source on the soft X-ray color-color diagram. We find that Sco X-1 follows two distinct spectral tracks when the 20-40 keV count rate is greater than 130 counts/second. One state is a hard state which exhibits a significant high-energy, powerlaw tail to the lower energy thermal spectrum. The other state shows a much less significant high-energy component. We found suggestive evidence for a correlation of these hard and soft high-energy states with the position of Sco X-1 on the low-energy X-ray color-color diagram. We have searched for similar behavior in 2 other Z sources: GX 17+2 and GX 5-1 with negative results.

  11. HEXITEC: A Next Generation Hard X-ray Detector for Solar Observations

    NASA Astrophysics Data System (ADS)

    Ryan, Daniel; Christe, Steven; Shih, Albert; Inglis, Andrew R.; Gregory, Kyle; Baumgartner, Wayne H.; Gaskin, Jessica; Wilson-Hodge, Colleen; Seller, Paul; Wilson, Matthew; Veale, Matthew C.; Panessa, Marco

    2016-05-01

    There is an increasing demand in solar physics for high resolution X-ray spectroscopic imaging. Such observations would present ground-breaking opportunities to study the poorly understood high energy processes in the solar corona such as solar flares, coronal heating, etc. However, such observations require a new breed of solid-state detectors sensititve to high energy X-rays with fine independent pixels to subsample the point spread function (PSF) of the X-ray optics. They must also be capable of handling very high count rates as photon fluxes from solar flares often cause pileup in current detectors. The Rutherford Appleton Laboratory (RAL) has recently developed a new Cadmium Telluride (CdTe) detector system, dubbed HEXITEC (High Energy X-ray Imaging Technology). It is an 80x80 array of 250 micron independent pixels sensitive in the 4--80 keV band and capable of a high full frame readout rate of 10 kHz. HEXITEC provides the smallest independently read out pixels currently available, and are well matched to the few arcsecond PSF produced by the current and next generation hard X-ray focusing optics. NASA's Goddard and Marshall Space Flight Centers are collaborating with RAL to develop these detectors for use on future space-borne hard X-ray focusing telescopes. In this poster we show the latest results on HEXITEC's imaging capability, high read out rate, and energy sensitivity and reveal it to be ideal for such future instruments. The potential observations obtained by combining HEXITEC with the next generation of X-ray focusing optics could to revolutionize our understanding of high energy processes in the solar corona.

  12. The HEXITEC Hard X-Ray Pixelated CdTe Imager for Fast Solar Observations

    NASA Technical Reports Server (NTRS)

    Baumgartner, Wayne H.; Christe, Steven D.; Ryan, Daniel; Inglis, Andrew R.; Shih, Albert Y.; Gregory, Kyle; Wilson, Matt; Seller, Paul; Gaskin, Jessica; Wilson-Hodge, Colleen

    2016-01-01

    There is an increasing demand in solar and astrophysics for high resolution X-ray spectroscopic imaging. Such observations would present ground breaking opportunities to study the poorly understood high energy processes in our solar system and beyond, such as solar flares, X-ray binaries, and active galactic nuclei. However, such observations require a new breed of solid state detectors sensitive to high energy X-rays with fine independent pixels to sub-sample the point spread function (PSF) of the X-ray optics. For solar observations in particular, they must also be capable of handling very high count rates as photon fluxes from solar flares often cause pile up and saturation in present generation detectors. The Rutherford Appleton Laboratory (RAL) has recently developed a new cadmium telluride (CdTe) detector system, called HEXITEC (High Energy X-ray Imaging Technology). It is an 80 x 80 array of 250 micron independent pixels sensitive in the 2-200 keV band and capable of a high full frame read out rate of 10 kHz. HEXITEC provides the smallest independently read out CdTe pixels currently available, and are well matched to the few arcsecond PSF produced by current and next generation hard X-ray focusing optics. NASA's Goddard and Marshall Space Flight Centers are collaborating with RAL to develop these detectors for use on future space borne hard X-ray focusing telescopes. We show the latest results on HEXITEC's imaging capability, energy resolution, high read out rate, and reveal it to be ideal for such future instruments.

  13. The HEXITEC hard x-ray pixelated CdTe imager for fast solar observations

    NASA Astrophysics Data System (ADS)

    Baumgartner, Wayne H.; Christe, Steven D.; Ryan, Daniel F.; Inglis, Andrew R.; Shih, Albert Y.; Gregory, Kyle; Wilson, Matt; Seller, Paul; Gaskin, Jessica; Wilson-Hodge, Colleen

    2016-08-01

    There is an increasing demand in solar and astrophysics for high resolution X-ray spectroscopic imaging. Such observations would present ground breaking opportunities to study the poorly understood high energy processes in our solar system and beyond, such as solar flares, X-ray binaries, and active galactic nuclei. However, such observations require a new breed of solid state detectors sensitive to high energy X-rays with fine independent pixels to sub-sample the point spread function (PSF) of the X-ray optics. For solar observations in particular, they must also be capable of handling very high count rates as photon fluxes from solar flares often cause pile up and saturation in present generation detectors. The Rutherford Appleton Laboratory (RAL) has recently developed a new cadmium telluride (CdTe) detector system, called HEXITEC (High Energy X-ray Imaging Technology). It is an 8080 array of 250 μm independent pixels sensitive in the 2-200 keV band and capable of a high full frame read out rate of 10 kHz. HEXITEC provides the smallest independently read out CdTe pixels currently available, and are well matched to the few arcsecond PSF produced by current and next generation hard X-ray focusing optics. NASA's Goddard and Marshall Space Flight Centers are collaborating with RAL to develop these detectors for use on future space borne hard X-ray focusing telescopes. We show the latest results on HEXITEC's imaging capability, energy resolution, high read out rate, and reveal it to be ideal for such future instruments.

  14. Ultrafast Time-Resolved Hard X-Ray Emission Spectroscopy on a Tabletop

    NASA Astrophysics Data System (ADS)

    Miaja-Avila, Luis; O'Neil, Galen C.; Joe, Young I.; Alpert, Bradley K.; Damrauer, Niels H.; Doriese, William B.; Fatur, Steven M.; Fowler, Joseph W.; Hilton, Gene C.; Jimenez, Ralph; Reintsema, Carl D.; Schmidt, Daniel R.; Silverman, Kevin L.; Swetz, Daniel S.; Tatsuno, Hideyuki; Ullom, Joel N.

    2016-07-01

    Experimental tools capable of monitoring both atomic and electronic structure on ultrafast (femtosecond to picosecond) time scales are needed for investigating photophysical processes fundamental to light harvesting, photocatalysis, energy and data storage, and optical display technologies. Time-resolved hard x-ray (>3 keV ) spectroscopies have proven valuable for these measurements due to their elemental specificity and sensitivity to geometric and electronic structures. Here, we present the first tabletop apparatus capable of performing time-resolved x-ray emission spectroscopy. The time resolution of the apparatus is better than 6 ps. By combining a compact laser-driven plasma source with a highly efficient array of microcalorimeter x-ray detectors, we are able to observe photoinduced spin changes in an archetypal polypyridyl iron complex [Fe (2 ,2'-bipyridine)3]2 + and accurately measure the lifetime of the quintet spin state. Our results demonstrate that ultrafast hard x-ray emission spectroscopy is no longer confined to large facilities and now can be performed in conventional laboratories with 10 times better time resolution than at synchrotrons. Our results are enabled, in part, by a 100- to 1000-fold increase in x-ray collection efficiency compared to current techniques.

  15. In-Orbit Performance of the Hard X-Ray Detector on Borad Suzaku

    SciTech Connect

    Kokubun, Motohide; Makishima, Kazuo; Takahashi, Tadayuki; Murakami, Toshio; Tashiro, Makoto; Fukazawa, Yasushi; Kamae, Tuneyoshi; M.Madejski, Greg; Nakazawa, Kazuhiro; Yamaoka, Kazutaka; Terada, Yukikatsu; Yonetoku, Daisuke; Watanabe, Shin; Tamagawa, Toru; Mizuno, Tsunefumi; Kubota, Aya; Isobe, Naoki; Takahashi, Isao; Sato, Goro; Takahashi, Hiromitsu; Hong, Soojing; /Tokyo U. /Wako, RIKEN /JAXA, Sagamihara /Kanazawa U. /Saitama U. /Hiroshima U. /Aoyama Gakuin U. /Nihon U., Narashino /SLAC

    2007-10-26

    The in-orbit performance and calibration of the Hard X-ray Detector (HXD) on board the X-ray astronomy satellite Suzaku are described. Its basic performances, including a wide energy bandpass of 10-600 keV, energy resolutions of {approx}4 keV (FWHM) at 40 keV and {approx}11% at 511 keV, and a high background rejection efficiency, have been confirmed by extensive in-orbit calibrations. The long-term gains of PIN-Si diodes have been stable within 1% for half a year, and those of scintillators have decreased by 5-20%. The residual non-X-ray background of the HXD is the lowest among past non-imaging hard X-ray instruments in energy ranges of 15-70 and 150-500 keV. We provide accurate calibrations of energy responses, angular responses, timing accuracy of the HXD, and relative normalizations to the X-ray CCD cameras using multiple observations of the Crab Nebula.

  16. Hard X-ray Focusing less than 50nm for Nanoscopy/spectroscopy

    SciTech Connect

    Yamauchi, Kazuto; Mimura, Hidekazu; Matsuyama, Satoshi; Yumoto, Hirokatsu; Handa, Soichiro; Sano, Yasuhisa; Yamamura, Kazuya; Endo, Katsuyoshi; Mori, Yuzo; Nishino, Yoshinori; Tamasaku, Kenji

    2007-01-19

    X-ray focusing using a Kirkpatrick-Baez (KB) setup with two total reflection mirrors is a promising method, allowing highly efficient and energy-tunable focusing. Fabricated mirrors having a figure accuracy of 1 nm peak-to-valley height gave ideal diffraction-limited focusing of hard X-rays. The focal size, defined as the full width at half maximum of the intensity profile, was 36 nm x 48 nm at an X-ray energy of 15 keV. Fluorescence X-ray microscopy with KB mirrors was also developed, targeting cell biological applications. The distribution of various elements in a single cell was successfully observed with high resolution. The developed microscopy is already used for various applications in the medical field. Our next main project is the realization of sub-10-nm-level hard X-ray focusing. At-wavelength metrology is being developed, in which a phase-retrieval simulator is coded for the determination of phase errors on mirror surfaces from only the intensity profiles of a focused beam.

  17. Characterization of ultrafast hard x-ray pulses for LCLS using gas phase techniques

    NASA Astrophysics Data System (ADS)

    Hertlein, Marcus P.; Kienberger, Reinhard; Adaniya, Hidehito

    2005-05-01

    The availability of ultrafast (sub-100 fs) hard x-ray pulses (E > 1000 eV) promises new experimental opportunities, but also requires new techniques for their use. The Linac Coherent Light Source (LCLS) at the Stanford Linear Accelerator Center (SLAC) is such a source that is expected to provide a high flux of 230 fs monochromatic x-ray photons with energy between 0.8 and 8 keV. Characterization methods for beams with such characteristics still need to be developed. We are presenting several techniques that show promise for the spatial and temporal characterization of ultrafast hard x-rays. They were developed and used at the Advanced Light Source (ALS), and will undergo further testing at the Sub-Picosecond Photon Source (SPPS) at SLAC. Our methods exploit effects such as ultrafast core-hole binding energy changes in atoms after laser excitation, and creation of energy sidebands on Auger electrons that are emitted in a laser field. We have demonstrated the usefulness of these effects on a picosecond time scale, but their use can be extended well into the femtosecond domain. We will also discuss time-of-flight techniques which offer the possibility of nondestructive x-ray spatial mode characterization. Our focus is on gas phase experiments, since they offer the possibility of nondestructive, transparent monitoring of the x-rays, leaving the main beam nearly undisturbed and available for experiments.

  18. A hard X-ray study of the Jovian magnetosphere with NuSTAR

    NASA Astrophysics Data System (ADS)

    Mori, Kaya; Hailey, Charles James; Nynka, Melania; Grefenstette, Brian

    2016-01-01

    We report the first high-resolution hard X-ray observation of Jupiter with Nuclear Spectroscopic Telescope Array (NuSTAR) in February 2015. This observation was targeted to probing a high energy extension of the X-ray continuum component detected from the Jovian aurorae by XMM-Newton, while the previous in-situ observation by the Ulysses failed to detect hard X-ray emission in the 27-48 keV band. NuSTAR has the unique capabilities of spatially resolving the two polar regions above 10 keV and detecting a spectral break which is expected between the XMM-Newton and Ulysses energy band. With 100 ksec exposure, our detection of X-ray emission from the south pole was only marginal possibly due to time variation of the auroral X-ray emission, while the north pole was hidden during our observation. In this poster, we present our imaging and spectral analysis, then discuss follow-up deeper NuSTAR observations.

  19. Probing bismuth ferrite nanoparticles by hard x-ray photoemission: Anomalous occurrence of metallic bismuth

    SciTech Connect

    Chaturvedi, Smita; Rajendra, Ranguwar; Ballav, Nirmalya; Kulkarni, Sulabha; Sarkar, Indranil; Shirolkar, Mandar M.; Jeng, U-Ser; Yeh, Yi-Qi

    2014-09-08

    We have investigated bismuth ferrite nanoparticles (∼75 nm and ∼155 nm) synthesized by a chemical method, using soft X-ray (1253.6 eV) and hard X-ray (3500, 5500, and 7500 eV) photoelectron spectroscopy. This provided an evidence for the variation of chemical state of bismuth in crystalline, phase pure nanoparticles. X-ray photoelectron spectroscopy analysis using Mg Kα (1253.6 eV) source showed that iron and bismuth were present in both Fe{sup 3+} and Bi{sup 3+} valence states as expected for bismuth ferrite. However, hard X-ray photoelectron spectroscopy analysis of the bismuth ferrite nanoparticles using variable photon energies unexpectedly showed the presence of Bi{sup 0} valence state below the surface region, indicating that bismuth ferrite nanoparticles are chemically inhomogeneous in the radial direction. Consistently, small-angle X-ray scattering reveals a core-shell structure for these radial inhomogeneous nanoparticles.

  20. Novel High Efficiency Microcolumnar LuI3:Ce for Hard X-ray Imaging

    NASA Astrophysics Data System (ADS)

    Marton, Z.; Nagarkar, Vivek V.; Miller, Stuart R.; Brecher, Charles; Bhandari, Harish B.; Kenesei, Peter; Ross, Stephen K.; Almer, Jonathan D.; Singh, Bipin

    2014-03-01

    We have developed a structured scintillator using a vacuum deposition technique that is suitable for manufacturing large area scintillators in a microcolumnar form. While providing high absorption efficiency, it also allows great temporal and spatial resolution X-ray imaging. Microcolumnar films of extremely fast and bright cerium-doped lutetium iodide (LuI3:Ce) scintillator were synthesized. It has high density (~5.6 g/cm3), high effective atomic number (59.7), bright green emission (540 nm range, well matched to commercial optics and CCD sensors), light yield exceeding 115,000 ph/MeV, and rapid, afterglow-free decay (~28 ns). This new scintillator could resolve the 153 ns bunch structure of the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). Due to the fast, afterglow-free decay, and high efficiency of LuI3:Ce, during the experiments performed at the 1-ID hard X-ray beamline at the APS, single 65 keV X-ray photons could be resolved with high signal-to-noise ratio and with temporal resolution better than 20ns. In the future, it will enable a wide range of hard X-ray (20 keV to 100 keV) imaging and/or high frame-rate applications such as dynamic studies of the structural and electrochemical properties of batteries using microtomographic X-ray imaging, internal corrosion in fuel cells, and time-resolved muscle diffraction experiments.

  1. Hard X-ray photoelectron and X-ray absorption spectroscopy characterization of oxidized surfaces of iron sulfides

    NASA Astrophysics Data System (ADS)

    Mikhlin, Yuri; Tomashevich, Yevgeny; Vorobyev, Sergey; Saikova, Svetlana; Romanchenko, Alexander; Félix, Roberto

    2016-11-01

    Hard X-ray photoelectron spectroscopy (HAXPES) using an excitation energy range of 2 keV to 6 keV in combination with Fe K- and S K-edge XANES, measured simultaneously in total electron (TEY) and partial fluorescence yield (PFY) modes, have been applied to study near-surface regions of natural polycrystalline pyrite FeS2 and pyrrhotite Fe1-xS before and after etching treatments in an acidic ferric chloride solution. It was found that the following near-surface regions are formed owing to the preferential release of iron from oxidized metal sulfide lattices: (i) a thin, no more than 1-4 nm in depth, outer layer containing polysulfide species, (ii) a layer exhibiting less pronounced stoichiometry deviations and low, if any, concentrations of polysulfide, the composition and dimensions of which vary for pyrite and pyrrhotite and depend on the chemical treatment, and (iii) an extended almost stoichiometric underlayer yielding modified TEY XANES spectra, probably, due to a higher content of defects. We suggest that the extended layered structure should heavily affect the near-surface electronic properties, and processes involving the surface and interfacial charge transfer.

  2. A conceptual design of hard X-ray focal plane detector for simultaneous x-ray polarimetric, spectroscopic, and timing measurements

    NASA Astrophysics Data System (ADS)

    Vadawale, S. V.; Chattopadhyay, T.; Pendharkar, J.

    2012-09-01

    Importance of polarisation measurement of X-rays from celestial sources has been realized for long time. Such measurements can provide unique opportunity to study the behaviour of matter and radiation under extreme magnetic and gravitational fields. However sensitivity of the X-ray polarimeters has always been an issue and as a result no X-ray polarization measurement has been flown in last three decades. The situation is expected to change in near future with launch of GEMS, but these polarisation measurements will be limited to energies below 10KeV. On the other hand most of the X-ray sources are expected to have higher degree of polarisation at higher energies. With the advent of high energy focussing telescopes (e.g. NuSTAR, ASTRO-H), it is now possible to design a focal plane Compton polarimeter which can be sensitive upto 80KeV. However, X-ray polarisation measurement is extremely photon hungry. Therefore, a dedicated X-ray polarimeter always has lower sensitivity when compared to any other type of X-ray detector for equal collecting area and time. In this context, we explore a new design of hard X-ray focal plane detector which can provide simultaneous measurements of X-ray polarisation measurements along with high resolution X-ray spectroscopy as well as timing. This design employs a sandwich of a 0.5mm thick Si detector and 10mm thick plastic detector which is surrounded by a cylindrical array of scintillator detectors. Here we present results of detailed Geant4 simulations for estimating sensitivity of this configuration.

  3. Femtosecond response of polyatomic molecules to ultra-intense hard X-rays.

    PubMed

    Rudenko, A; Inhester, L; Hanasaki, K; Li, X; Robatjazi, S J; Erk, B; Boll, R; Toyota, K; Hao, Y; Vendrell, O; Bomme, C; Savelyev, E; Rudek, B; Foucar, L; Southworth, S H; Lehmann, C S; Kraessig, B; Marchenko, T; Simon, M; Ueda, K; Ferguson, K R; Bucher, M; Gorkhover, T; Carron, S; Alonso-Mori, R; Koglin, J E; Correa, J; Williams, G J; Boutet, S; Young, L; Bostedt, C; Son, S-K; Santra, R; Rolles, D

    2017-06-01

    X-ray free-electron lasers enable the investigation of the structure and dynamics of diverse systems, including atoms, molecules, nanocrystals and single bioparticles, under extreme conditions. Many imaging applications that target biological systems and complex materials use hard X-ray pulses with extremely high peak intensities (exceeding 10(20) watts per square centimetre). However, fundamental investigations have focused mainly on the individual response of atoms and small molecules using soft X-rays with much lower intensities. Studies with intense X-ray pulses have shown that irradiated atoms reach a very high degree of ionization, owing to multiphoton absorption, which in a heteronuclear molecular system occurs predominantly locally on a heavy atom (provided that the absorption cross-section of the heavy atom is considerably larger than those of its neighbours) and is followed by efficient redistribution of the induced charge. In serial femtosecond crystallography of biological objects-an application of X-ray free-electron lasers that greatly enhances our ability to determine protein structure-the ionization of heavy atoms increases the local radiation damage that is seen in the diffraction patterns of these objects and has been suggested as a way of phasing the diffraction data. On the basis of experiments using either soft or less-intense hard X-rays, it is thought that the induced charge and associated radiation damage of atoms in polyatomic molecules can be inferred from the charge that is induced in an isolated atom under otherwise comparable irradiation conditions. Here we show that the femtosecond response of small polyatomic molecules that contain one heavy atom to ultra-intense (with intensities approaching 10(20) watts per square centimetre), hard (with photon energies of 8.3 kiloelectronvolts) X-ray pulses is qualitatively different: our experimental and modelling results establish that, under these conditions, the ionization of a molecule is

  4. Femtosecond response of polyatomic molecules to ultra-intense hard X-rays

    NASA Astrophysics Data System (ADS)

    Rudenko, A.; Inhester, L.; Hanasaki, K.; Li, X.; Robatjazi, S. J.; Erk, B.; Boll, R.; Toyota, K.; Hao, Y.; Vendrell, O.; Bomme, C.; Savelyev, E.; Rudek, B.; Foucar, L.; Southworth, S. H.; Lehmann, C. S.; Kraessig, B.; Marchenko, T.; Simon, M.; Ueda, K.; Ferguson, K. R.; Bucher, M.; Gorkhover, T.; Carron, S.; Alonso-Mori, R.; Koglin, J. E.; Correa, J.; Williams, G. J.; Boutet, S.; Young, L.; Bostedt, C.; Son, S.-K.; Santra, R.; Rolles, D.

    2017-06-01

    X-ray free-electron lasers enable the investigation of the structure and dynamics of diverse systems, including atoms, molecules, nanocrystals and single bioparticles, under extreme conditions. Many imaging applications that target biological systems and complex materials use hard X-ray pulses with extremely high peak intensities (exceeding 1020 watts per square centimetre). However, fundamental investigations have focused mainly on the individual response of atoms and small molecules using soft X-rays with much lower intensities. Studies with intense X-ray pulses have shown that irradiated atoms reach a very high degree of ionization, owing to multiphoton absorption, which in a heteronuclear molecular system occurs predominantly locally on a heavy atom (provided that the absorption cross-section of the heavy atom is considerably larger than those of its neighbours) and is followed by efficient redistribution of the induced charge. In serial femtosecond crystallography of biological objects—an application of X-ray free-electron lasers that greatly enhances our ability to determine protein structure—the ionization of heavy atoms increases the local radiation damage that is seen in the diffraction patterns of these objects and has been suggested as a way of phasing the diffraction data. On the basis of experiments using either soft or less-intense hard X-rays, it is thought that the induced charge and associated radiation damage of atoms in polyatomic molecules can be inferred from the charge that is induced in an isolated atom under otherwise comparable irradiation conditions. Here we show that the femtosecond response of small polyatomic molecules that contain one heavy atom to ultra-intense (with intensities approaching 1020 watts per square centimetre), hard (with photon energies of 8.3 kiloelectronvolts) X-ray pulses is qualitatively different: our experimental and modelling results establish that, under these conditions, the ionization of a molecule is

  5. Femtosecond response of polyatomic molecules to ultra-intense hard X-rays

    DOE PAGES

    Rudenko, A.; Inhester, L.; Hanasaki, K.; ...

    2017-05-31

    We report x-ray free-electron lasers enable the investigation of the structure and dynamics of diverse systems, including atoms, molecules, nanocrystals and single bioparticles, under extreme conditions. Many imaging applications that target biological systems and complex materials use hard X-ray pulses with extremely high peak intensities (exceeding 1020 watts per square centimetre). However, fundamental investigations have focused mainly on the individual response of atoms and small molecules using soft X-rays with much lower intensities. Studies with intense X-ray pulses have shown that irradiated atoms reach a very high degree of ionization, owing to multiphoton absorption, which in a heteronuclear molecular systemmore » occurs predominantly locally on a heavy atom (provided that the absorption cross-section of the heavy atom is considerably larger than those of its neighbours) and is followed by efficient redistribution of the induced charge. In serial femtosecond crystallography of biological objects—an application of X-ray free-electron lasers that greatly enhances our ability to determine protein structure—the ionization of heavy atoms increases the local radiation damage that is seen in the diffraction patterns of these objects and has been suggested as a way of phasing the diffraction data. On the basis of experiments using either soft or less-intense hard X-rays, it is thought that the induced charge and associated radiation damage of atoms in polyatomic molecules can be inferred from the charge that is induced in an isolated atom under otherwise comparable irradiation conditions. Here we show that the femtosecond response of small polyatomic molecules that contain one heavy atom to ultra-intense (with intensities approaching 1020 watts per square centimetre), hard (with photon energies of 8.3 kiloelectronvolts) X-ray pulses is qualitatively different: our experimental and modelling results establish that, under these conditions, the ionization of

  6. HARD X-RAY AND ULTRAVIOLET EMISSION DURING THE 2011 JUNE 7 SOLAR FLARE

    SciTech Connect

    Inglis, A. R.; Gilbert, H. R.

    2013-11-01

    The relationship between X-ray and UV emission during flares, particularly in the context of quasi-periodic pulsations, remains unclear. To address this, we study the impulsive X-ray and UV emission during an eruptive flare on 2011 June 7 utilizing X-ray imaging from RHESSI and UV 1700 Å imaging from SDO/AIA. This event is associated with quasi-periodic pulsations in X-ray and possibly UV emission, as well as substantial parallel and perpendicular motion in the hard X-ray footpoints. The motion of the footpoints parallel to the flare ribbons is unusual; it reverses direction on at least two occasions. However, there is no associated short timescale motion of the UV bright regions. Over the same time interval, the footpoints also gradually move apart at v ≈ 12 km s{sup –1}, consistent with the gradual outward expansion of the UV ribbons and the standard flare model. Additionally, we find that the locations of the brightest X-ray and UV regions are different, particularly during the early portion of the flare impulsive phase, despite their integrated emission being strongly correlated in time. Correlation analysis of measured flare properties, such as the footpoint separation, flare shear, photospheric magnetic field, and coronal reconnection rate, reveals that—in the impulsive phase—the 25-50 keV hard X-ray flux is only weakly correlated with these properties, in contrast with previous studies. We characterize this event in terms of long-term behavior, where the X-ray non-thermal, thermal, and UV emission sources appear temporally and spatially consistent, and short-term behavior, where the emission sources are inconsistent and quasi-periodic pulsations are a dominant feature requiring explanation. We suggest that the short timescale behavior of hard X-ray footpoints and the nature of the observed quasi-periodic pulsations are determined by fundamental, as yet unobserved properties of the reconnection region and particle acceleration sites. This presents a

  7. Hard X-ray and microwave sources located around the apex of a solar flare loop

    NASA Astrophysics Data System (ADS)

    Masuda, S.; Shimojo, M.; Watanabe, K.; Minoshima, T.; Yaji, K.

    2010-12-01

    The apex of a flare loop is one of important regions to understand particle acceleration in solar flares, under the framework of the flare model based on magnetic reconnection. At that portion, nonthermal emissions are observed in hard X-rays and microwave. These two emissions are originated from electrons accelerated/energized in different energy ranges. Hard X-rays (~ 50 - 100 keV ) are emitted by relatively lower-energy (~ 100 keV) accelerated electrons. On the other hand, microwaves (17 GHz) are emitted by relatively higher-energy (~ 1 MeV) electrons. The locations (heights) of these two emitting regions impose considerable constraints on the acceleration/transport/loss processes of electrons in solar flares. To compare hard X-ray and microwave sources, we chose twenty-three events among all events detected by Nobeyama Radio Heliograph (NoRH) during the almost whole period of its operation (1992 - 2008). The criteria are (1) limb event, (2) simultaneous observation with Yohkoh/HXT or RHESSI, (3) enough number of photons in the energy range of 33 - 53 keV, and (4) microwave source large enough to resolve the flare loop into footpoint and looptop sources. However, only seven events among them can be used for this study. The remaining sixteen events are displaced from the list due to no hard X-ray looptop source, too complex structure of multiple loops, and so force. Among the seven events, six events show that the looptop hard X-ray source is located at a higher altitude than the looptop microwave source. This result suggests that lower-energy accelerated electrons (~ 100 keV) are located at a higher altitude than higher-energy (~ 1 MeV) electrons. What makes this height difference? We discuss the cause of it from various kinds of viewpoints, e.g. emission mechanism, trapping effect, transport process, loss process.

  8. Temporal evolution of an energetic electron population in an inhomogeneous medium: Application to solar hard X-ray bursts

    NASA Technical Reports Server (NTRS)

    Vilmer, N.; Mackinnon, A. L.; Trottet, G.

    1985-01-01

    Energetic electrons accelerated during solar flares can be studied through the hard X-ray emission they produce when interacting with the solar ambient atmosphere. In the case of the non thermal hard X-ray emission, the instanteous X-ray flux emitted at one point of the atmosphere is related to the instantaneous fast electron spectrum at that point. A hard X-ray source model then requires the understanding of the evolution in space and time of the fast particle distribution. The physical processes involved here are energy losses due to Coulomb collisions and pitch angle scattering due to both collisions and magnetic field gradients.

  9. Hard x-ray phase contrast imaging of black lipid membranes

    SciTech Connect

    Beerlink, A.; Mell, M.; Tolkiehn, M.; Salditt, T.

    2009-11-16

    We report hard x-ray phase contrast imaging of black lipid membranes, freely suspended over a micromachined aperture in an aqueous solution. Biomolecular and organic substances can thus be probed in hydrated environments by parallel beam propagation imaging, using coherent multi-kilo-electronvolt x-ray radiation. The width of the thinning film can be resolved from analysis of the intensity fringes in the Fresnel diffraction regime down to about 200 nm. The thinning process, in which solvent is expelled from the space in between two opposing monolayers, is monitored, and the domain walls between coexisting domains of swollen and thinned membrane patches are characterized.

  10. Hard x-ray nanofocusing using total-reflection zone plates

    SciTech Connect

    Takano, Hidekazu Matsumura, Atsuyuki; Sakka, Kenji; Tsusaka, Yoshiyuki; Kagoshima, Yasushi; Tsuji, Takuya

    2016-01-28

    A total-reflection zone plate (TRZP), which is a reflective grating that generates a line focus of hard X-rays, was developed. Newly designed TRZPs, introducing a laminar grating concept, were fabricated with various zone parameters. The focusing performances with regard to the beam size and the diffraction efficiency were evaluated using synchrotron radiation X-rays of 10 keV energy. Although the beam sizes measured are insufficient in comparison with the ideal value, the maximum diffraction efficiency, measured at 20%, exceeds the limitations of conventional TRZPs based on a binary grating.

  11. The hard X-ray emission spectra from accretion columns in intermediate polars

    NASA Technical Reports Server (NTRS)

    Yi, Insu; Vishniac, Ethan T.

    1994-01-01

    We consider the hard (greater than 2 keV) X-ray emission from accretion columns in an intermediate polar system, GK Per, using a simple settling solution. The rate of photon emission per logarithmic energy interval can be fitted with a power law, E(exp -gamma), with gamma approximately 2.0, in agreement with observations. This index is only weakly dependent on the mass accretion rate, dot-M, for dot-M in the range of a few times 10(exp 16-18) g/s. The peak energy of the photon spectra (after photoelectric absorption) is expected to be E(sub p) approximately (5 keV) gamma(exp -1/3) (N(sub H)/10(exp 23)/sq cm)(exp 1/3) where N(sub H) is the hydrogen column density along the line of sight. The observed spectra of GK Per and possibly of V1223 Sgr suggest N(sub H) approximately 10(exp 23)/sq cm. This large N(sub H) may be due to partially ionized preshock column material. Alternatively, we also consider absorption by the cool outer parts of an accretion disk. In this case the photoelectric absorption depth in the disk is a sensitive function of inclination. For GK Per the required inclination is approximately 83 deg. For mass accretion rates larger than a critical rate of approximately 10(exp 18) g/s, X-ray emission from the column accretion is significantly affected by radiation drag. Although the mass accretion rate increases dramatically during outbursts, the observed hard (greater than 2 keV) X-ray luminosity will not rise proportionately. The slope and peak energy of the outburst spectra are only weakly affected. We conclude that the observed X-ray spectra can be explained by this simple analytic solution and that the production of hard X-rays from the accretion shock at the magnetic poles in the intermediate polars is in general agreement with the observations. However, since the X-ray emission and absorption depend on the mass accretion rate in a complicated manner, observed hard X-ray luminosities (greater than 2 keV) are not a good indicator of the mass

  12. Towards multi-order hard X-ray imaging with multilayer zone plates.

    PubMed

    Osterhoff, Markus; Eberl, Christian; Döring, Florian; Wilke, Robin N; Wallentin, Jesper; Krebs, Hans-Ulrich; Sprung, Michael; Salditt, Tim

    2015-02-01

    This article describes holographic imaging experiments using a hard X-ray multilayer zone plate (MZP) with an outermost zone width of 10 nm at a photon energy of 18 keV. An order-sorting aperture (OSA) is omitted and emulated during data analysis by a 'software OSA'. Scanning transmission X-ray microscopy usually carried out in the focal plane is generalized to the holographic regime. The MZP focus is characterized by a three-plane phase-retrieval algorithm to an FWHM of 10 nm.

  13. All dielectric hard x-ray mirror by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Szeghalmi, Adriana; Senz, Stephan; Bretschneider, Mario; Gösele, Ulrich; Knez, Mato

    2009-03-01

    Mirrors consisting of Al2O3 and Ta2O5 (˜2 nm film thickness) nanolaminates for hard x-ray wavelengths were produced by atomic layer deposition and characterized. Atomic force microscopy and transmission electron microscopy (TEM) proved extremely smooth surfaces of the mirrors, which are critical for highest reflectance. TEM images showed sharp interfaces between the oxides. The experimental x-ray reflectivity data were theoretically modeled and indicated minimal random thickness variations in the individual layers. Additionally, a depth graded sample with a total thickness of ˜4 μm for focusing applications in transmission (Laue) geometry and capillaries was coated.

  14. A simple hard x-ray ''nanoslit'' for measuring wavefront intensity

    SciTech Connect

    Takano, Hidekazu; Hashimoto, Takuto; Tsuji, Takuya; Koyama, Takahisa; Tsusaka, Yoshiyuki; Kagoshima, Yasushi

    2010-07-15

    A new method is proposed for nanoscale hard x-ray measurements. This method uses a reflection on a heavy-metal wire that functions as a single slit with a nanoscale aperture for a parallel x-ray beam. This ''nanoslit'' can be used to perform high-spatial-resolution measurements of the intensity distribution of a wavefront that diverges from an aperture. In experiments, Fresnel fringes generated by a rectangular aperture were measured using a 300-{mu}m-diameter platinum wire as the nanoslit. In these experiments, the finest fringes with a period of 26 nm could be successfully resolved.

  15. Measuring optical constants of multilayer materials for current and future hard X-ray space telescopes

    NASA Astrophysics Data System (ADS)

    Brejnholt, Nicolai

    With the launch of the NuSTAR space telescope in 2012, a new era in X-ray astronomy began. NuSTAR provides astronomers unprecedented sensitivity in the hard X-ray band, operating from 6-79 keV through the use of multilayers. At lower energies, NuSTAR has an effective area comparable to previous missions, such as the XMM-Newton and Chandra. The overlap allows soft X-ray observations to be combined with hard X-ray ones, providing new constraints on theoretical models and allowing accurate determination of the properties of thermal and non-thermal processes. To successfully predict the performance of a hard X-ray multilayer telescope, precise knowledge of the optical properties of the constituent materials of the multilayers is required. Tungsten and platinum are the two high-density, high-Z materials in the NuSTAR multilayer systems, but early observations with NuSTAR showed that essential atomic parameters , i.e. the optical constants, of these materials are not correct. Specifically, there are significant residuals in spectral fits near the L absorption edges of both materials from 10-14 keV. This situation is not a surprise, as the optical constants for these materials are derived from tabulated photon-interaction cross sections, which does not properly capture the physics of the X-ray absorption fine structure (XAFS). As a result, the NuSTAR team is using an empirical correction to predict performance. The correction does not completely remove spectral features in the 10-14 keV region and is only good for weak sources. We propose to accurately measure the optical constants for tungsten and platinum in the hard X-ray region from 6-28.5 keV, replacing the empirical correction and providing a significant improvement to NuSTAR's response model. The improvement will be achieved by two independent and complementary routes to increase accuracy. One method relies on transmission measurements while the other utilizes reflection measurements. The proposing team leverages

  16. One-dimensional hard x-ray field retrieval using a moveable structure

    SciTech Connect

    Guizar-Sicairos, M.; Evans-Lutterodt, K.; Isakovic, A.F.; Stein, A.; Warren, J.B.; Sandy, A.R.; Narayanan, S.; Fienup, J.R.

    2010-08-16

    We present a technique that allows measuring the field of an x-ray line focus using far-field intensity measurements only. One-dimensional phase retrieval with transverse translation diversity is used to recover a hard x-ray beam focused by a compound kinoform lens. The reconstruction is found to be in good agreement with independent knife-edge scan measurements taken at separated planes. The approach avoids the need for measuring the beam profile at focus and allows narrower beams to be measured than the traditional knife-edge scan.

  17. The hard X-ray emission spectra from accretion columns in intermediate polars

    NASA Technical Reports Server (NTRS)

    Yi, Insu; Vishniac, Ethan T.

    1994-01-01

    We consider the hard (greater than 2 keV) X-ray emission from accretion columns in an intermediate polar system, GK Per, using a simple settling solution. The rate of photon emission per logarithmic energy interval can be fitted with a power law, E(exp -gamma), with gamma approximately 2.0, in agreement with observations. This index is only weakly dependent on the mass accretion rate, dot-M, for dot-M in the range of a few times 10(exp 16-18) g/s. The peak energy of the photon spectra (after photoelectric absorption) is expected to be E(sub p) approximately (5 keV) gamma(exp -1/3) (N(sub H)/10(exp 23)/sq cm)(exp 1/3) where N(sub H) is the hydrogen column density along the line of sight. The observed spectra of GK Per and possibly of V1223 Sgr suggest N(sub H) approximately 10(exp 23)/sq cm. This large N(sub H) may be due to partially ionized preshock column material. Alternatively, we also consider absorption by the cool outer parts of an accretion disk. In this case the photoelectric absorption depth in the disk is a sensitive function of inclination. For GK Per the required inclination is approximately 83 deg. For mass accretion rates larger than a critical rate of approximately 10(exp 18) g/s, X-ray emission from the column accretion is significantly affected by radiation drag. Although the mass accretion rate increases dramatically during outbursts, the observed hard (greater than 2 keV) X-ray luminosity will not rise proportionately. The slope and peak energy of the outburst spectra are only weakly affected. We conclude that the observed X-ray spectra can be explained by this simple analytic solution and that the production of hard X-rays from the accretion shock at the magnetic poles in the intermediate polars is in general agreement with the observations. However, since the X-ray emission and absorption depend on the mass accretion rate in a complicated manner, observed hard X-ray luminosities (greater than 2 keV) are not a good indicator of the mass

  18. A study of starting time in great hard X-ray flares

    NASA Technical Reports Server (NTRS)

    Klein, K. L.; Pick, M.; Magun, A.

    1986-01-01

    An analysis of the starting time in ten great hard X-ray bursts observed with the X-Ray Burst Spectrometer (HXRBS) is presented. It is shown that the impulsive phase of nine of them is composed of a preflash phase, during which the burst is observed up to an energy limit ranging from some tens of keV to 200 keV, followed ten to some tens of seconds afterwards by a flash phase, where the count rate rises simultaneously in all detector channels. For two events strong gamma-ray line emission is observed and is shown to start close to the onset of the flash phase.

  19. Quasi-periodic pulsations in solar hard X-ray and microwave flares

    NASA Technical Reports Server (NTRS)

    Kosugi, Takeo; Kiplinger, Alan L.

    1986-01-01

    For more than a decade, various studies have pointed out that hard X-ray and microwave time profiles of some solar flares show quasi-periodic fluctuations or pulsations. Nevertheless, it was not until recently that a flare displaying large amplitude quasi-periodic pulsations in X-rays and microwaves was observed with good spectral coverage and with a sufficient time resolution. The event occurred on June 7, 1980, at approximately 0312 UT, and exhibits seven intense pulses with a quasi-periodicity of approximately 8 seconds in microwaves, hard X-rays, and gamma-ray lines. On May 12, 1983, at approximately 0253 UT, another good example of this type of flare was observed both in hard X-rays and in microwaves. Temporal and spectral characteristics of this flare are compared with the event of June 7, 1980. In order to further explore these observational results and theoretical scenarios, a study of nine additional quasi-periodic events were incorporated with the results from the two flares described. Analysis of these events are briefly summarized.

  20. Hard X-ray observations of GRS/KS 1730-312 with GRANAT/SIGMA.

    NASA Astrophysics Data System (ADS)

    Trudolyubov, S.; Gilfanov, M.; Churazov, E.; Sunyaev, R.; Borozdin, K.; Alexandrovich, N.; Khavenson, N.; Novikov, B.; Vargas, M.; Goldwurm, A.; Paul, J.; Denis, M.; Mandrou, P.; Roques, J.-P.; Jourdain, E.; Borrel, V.

    1996-02-01

    The results of transient X-ray source KS/GRS 1730-312 observations with GRANAT/SIGMA are reported. The source was discovered on September 23, 1994 and at the maximum of the light curve was the brightest one in the Galactic Center region in the 35-200 keV energy domain. Within ≡5 d the hard X-ray flux from GRS/KS 1730-312 declined below the SIGMA sensitivity limit. The average 35-200 keV spectrum can be approximated by the power law spectrum with photon index ≡2.5 or by bremsstrahlung model with temperature ≡70 keV. Some steepening of the 35-200 keV spectrum with time was marginally detected. According to the TTM (Mir-KVANT) data the decline of hard X-ray flux was accompanied by notable increase of the flux in the standard X-ray band (2-10 keV). During 5 d the 2-10 keV band contribution to the 2-300 keV luminosity increased from ≡20-25% to ≡80-90%. Combined TTM and SIGMA data indicate that the broad band (2-300 keV) spectrum evolution may be described in terms of appearance and fast increase of the soft spectral component accompanied with decrease and possible steepening of the hard component.

  1. HARD X-RAY AND MICROWAVE EMISSIONS FROM SOLAR FLARES WITH HARD SPECTRAL INDICES

    SciTech Connect

    Kawate, T.; Nishizuka, N.; Oi, A.; Ohyama, M.; Nakajima, H.

    2012-03-10

    We analyze 10 flare events that radiate intense hard X-ray (HXR) emission with significant photons over 300 keV to verify that the electrons that have a common origin of acceleration mechanism and energy power-law distribution with solar flares emit HXRs and microwaves. Most of these events have the following characteristics. HXRs emanate from the footpoints of flare loops, while microwaves emanate from the tops of flare loops. The time profiles of the microwave emission show delays of peak with respect to those of the corresponding HXR emission. The spectral indices of microwave emissions show gradual hardening in all events, while the spectral indices of the corresponding HXR emissions are roughly constant in most of the events, though rather rapid hardening is simultaneously observed in some for both indices during the onset time and the peak time. These characteristics suggest that the microwave emission emanates from the trapped electrons. Then, taking into account the role of the trapping of electrons for the microwave emission, we compare the observed microwave spectra with the model spectra calculated by a gyrosynchrotron code. As a result, we successfully reproduce the eight microwave spectra. From this result, we conclude that the electrons that have a common acceleration and a common energy distribution with solar flares emit both HXR and microwave emissions in the eight events, though microwave emission is contributed to by electrons with much higher energy than HXR emission.

  2. Hard X-ray-induced damage on carbon-binder matrix for in situ synchrotron transmission X-ray microscopy tomography of Li-ion batteries.

    PubMed

    Lim, Cheolwoong; Kang, Huixiao; De Andrade, Vincent; De Carlo, Francesco; Zhu, Likun

    2017-05-01

    The electrode of Li-ion batteries is required to be chemically and mechanically stable in the electrolyte environment for in situ monitoring by transmission X-ray microscopy (TXM). Evidence has shown that continuous irradiation has an impact on the microstructure and the electrochemical performance of the electrode. To identify the root cause of the radiation damage, a wire-shaped electrode is soaked in an electrolyte in a quartz capillary and monitored using TXM under hard X-ray illumination. The results show that expansion of the carbon-binder matrix by the accumulated X-ray dose is the key factor of radiation damage. For in situ TXM tomography, intermittent X-ray exposure during image capturing can be used to avoid the morphology change caused by radiation damage on the carbon-binder matrix.

  3. Resonant Compton Upscattering Models of Magnetar Hard X-ray Emission and Polarization

    NASA Astrophysics Data System (ADS)

    Baring, Matthew G.; Wadiasingh, Zorawar; Gonthier, Peter L.; Kust Harding, Alice

    2017-08-01

    Non-thermal quiescent X-ray emission extending between 10 keV and around 150 keV has been seen in about 10 magnetars by RXTE, INTEGRAL, Suzaku and Fermi-GBM. For inner magnetospheric models of such hard X-ray signals, resonant Compton upscattering is anticipated to be the most efficient process for generating the continuum radiation. This is because the scattering becomes resonant at the cyclotron frequency, and the effective cross section exceeds the classical Thomson value by over two orders of magnitude. We present angle-dependent hard X-ray upscattering model spectra for uncooled monoenergetic relativistic electrons injected in inner regions of pulsar magnetospheres. These spectra are integrated over closed field lines and obtained for different observing perspectives. The spectral cut-off energies are critically dependent on the observer viewing angles and electron Lorentz factor. We find that electrons with energies less than around 15 MeV will emit most of their radiation below 250 keV, consistent with the observed turnovers in magnetar hard X-ray tails. Moreover, electrons of higher energy still emit most of the radiation below around 1 MeV, except for quasi-equatorial emission locales for select pulses phases. In such cases, attenuation mechanisms such as pair creation will be prolific, thereby making it difficult to observe signals extending into the Fermi-LAT band. Our spectral computations use new state-of-the-art, spin-dependent formalism for the QED Compton scattering cross section in strong magnetic fields. The emission exhibits strong polarization above around 30 keV that is anticipated to be dependent on pulse phase, thereby defining science agendas for future hard X-ray polarimeters.

  4. The column density distribution of hard X-ray radio galaxies

    NASA Astrophysics Data System (ADS)

    Panessa, F.; Bassani, L.; Landi, R.; Bazzano, A.; Dallacasa, D.; La Franca, F.; Malizia, A.; Venturi, T.; Ubertini, P.

    2016-09-01

    In order to investigate the role of absorption in active galactic nuclei (AGN) with jets, we have studied the column density distribution of a hard X-ray selected sample of radio galaxies, derived from the INTEGRAL/Imager on Board the Integral Satellite (IBIS) and Swift/The Burst Alert Telescope (BAT) AGN catalogues (˜7-10 per cent of the total AGN population). The 64 radio galaxies have a typical FR II radio morphology and are characterized by high 20-100 keV luminosities (from 1042 to 1046 erg s-1) and high Eddington ratios (log LBol/LEdd typically larger than ˜0.01). The observed fraction of absorbed AGN (NH > 1022 cm-2) is around 40 per cent among the total sample, and ˜75 per cent among type 2 AGN. The majority of obscured AGN are narrow-line objects, while unobscured AGN are broad-line objects, obeying to the zeroth-order predictions of unified models. A significant anti-correlation between the radio core dominance parameter and the X-ray column density is found. The observed fraction of Compton thick AGN is ˜2-3 per cent, in comparison with the 5-7 per cent found in radio-quiet hard X-ray selected AGN. We have estimated the absorption and Compton thick fractions in a hard X-ray sample containing both radio galaxies and non-radio galaxies and therefore affected by the same selection biases. No statistical significant difference was found in the absorption properties of radio galaxies and non-radio galaxies sample. In particular, the Compton thick objects are likely missing in both samples and the fraction of obscured radio galaxies appears to decrease with luminosity as observed in hard X-ray non-radio galaxies.

  5. Hard X-ray detection with a gallium phosphide Schottky diode

    NASA Astrophysics Data System (ADS)

    Owens, Alan; Andersson, S.; den Hartog, R.; Quarati, F.; Webb, A.; Welter, E.

    2007-11-01

    We report on the detection of hard X-rays using a GaP Schottky diode at the HASYLAB synchrotron radiation research facility. Exposure to alpha particles from an 214Am source showed that the device was spectroscopic at room temperature with a FWHM energy resolution of 3.5% at 5.5 MeV. It was also found to be responsive to X-rays in the range 11-100 keV. Although individual energies are not spectrally resolved there is a proportionality of response to increasing X-ray energy. A two-dimensional scan of the sensitive area using a 30×30 μm 2 30 keV pencil beam showed the spatial response of the detector to be uniform at the few percent level, consistent with statistics.

  6. Interferometric hard x-ray phase contrast imaging at 204 nm grating period

    SciTech Connect

    Wen Han; Gomella, Andrew A.; Miao, Houxun; Lynch, Susanna K.; Wolfe, Douglas E.; Xiao Xianghui; Liu Chian; Morgan, Nicole

    2013-01-15

    We report on hard x-ray phase contrast imaging experiments using a grating interferometer of approximately 1/10th the grating period achieved in previous studies. We designed the gratings as a staircase array of multilayer stacks which are fabricated in a single thin film deposition process. We performed the experiments at 19 keV x-ray energy and 0.8 {mu}m pixel resolution. The small grating period resulted in clear separation of different diffraction orders and multiple images on the detector. A slitted beam was used to remove overlap of the images from the different diffraction orders. The phase contrast images showed detailed features as small as 10 {mu}m, and demonstrated the feasibility of high resolution x-ray phase contrast imaging with nanometer scale gratings.

  7. Multiphoton ionization and fragmentation of iodine-containing molecules by femtosecond ultraintense hard X-rays

    NASA Astrophysics Data System (ADS)

    Robatjazi, S. J.; Li, X.; Rolles, D.; Rudenko, A.; Erk, B.; Boll, R.; Bomme, C.; Savelyev, E.; Rudek, B.; Foucar, L.; Bostedt, Ch.; Southworth, S.; Lehmann, C. S.; Kraessig, B.; Young, L.; Marchenko, T.; Simon, M.; Ueda, K.; Ferguson, K. R.; Bucher, M.; Gorkhover, T.; Carron, S.; Alonso-Mori, R.; Williams, G.; Boutet, S.

    2016-05-01

    We present ion charge state distributions and kinetic energy spectra resulting from the breakup of CH3 I and C6 H5 I molecules induced by femtosecond X-ray pulses from the Linac Coherent Light Source (LCLS) at 8.3 keV photon energy. Using a few-hundred nm focus of the LCLS CXI beamline, we reach peak intensities of up to 1020 W/ cm2, resulting in stripping of more than 50 electrons per molecule within few tens of fs. We find that in this regime the interplay between multiphoton absorption and subsequent charge rearrangement considerably differs from earlier observations for soft X-rays or for weaker hard X-rays. We discuss the pulse duration dependence of the data, and compare the results for seeded and unseeded LCLS pulses. Supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U. S. DOE.

  8. Interferometric hard x-ray phase contrast imaging at 204 nm grating period

    NASA Astrophysics Data System (ADS)

    Wen, Han; Wolfe, Douglas E.; Gomella, Andrew A.; Miao, Houxun; Xiao, Xianghui; Liu, Chian; Lynch, Susanna K.; Morgan, Nicole

    2013-01-01

    We report on hard x-ray phase contrast imaging experiments using a grating interferometer of approximately 1/10th the grating period achieved in previous studies. We designed the gratings as a staircase array of multilayer stacks which are fabricated in a single thin film deposition process. We performed the experiments at 19 keV x-ray energy and 0.8 μm pixel resolution. The small grating period resulted in clear separation of different diffraction orders and multiple images on the detector. A slitted beam was used to remove overlap of the images from the different diffraction orders. The phase contrast images showed detailed features as small as 10 μm, and demonstrated the feasibility of high resolution x-ray phase contrast imaging with nanometer scale gratings.

  9. Interferometric hard x-ray phase contrast imaging at 204 nm grating period.

    PubMed

    Wen, Han; Wolfe, Douglas E; Gomella, Andrew A; Miao, Houxun; Xiao, Xianghui; Liu, Chian; Lynch, Susanna K; Morgan, Nicole

    2013-01-01

    We report on hard x-ray phase contrast imaging experiments using a grating interferometer of approximately 1/10th the grating period achieved in previous studies. We designed the gratings as a staircase array of multilayer stacks which are fabricated in a single thin film deposition process. We performed the experiments at 19 keV x-ray energy and 0.8 μm pixel resolution. The small grating period resulted in clear separation of different diffraction orders and multiple images on the detector. A slitted beam was used to remove overlap of the images from the different diffraction orders. The phase contrast images showed detailed features as small as 10 μm, and demonstrated the feasibility of high resolution x-ray phase contrast imaging with nanometer scale gratings.

  10. Nanofocusing of hard X-ray free electron laser pulses using diamond based Fresnel zone plates.

    PubMed

    David, C; Gorelick, S; Rutishauser, S; Krzywinski, J; Vila-Comamala, J; Guzenko, V A; Bunk, O; Färm, E; Ritala, M; Cammarata, M; Fritz, D M; Barrett, R; Samoylova, L; Grünert, J; Sinn, H

    2011-01-01

    A growing number of X-ray sources based on the free-electron laser (XFEL) principle are presently under construction or have recently started operation. The intense, ultrashort pulses of these sources will enable new insights in many different fields of science. A key problem is to provide x-ray optical elements capable of collecting the largest possible fraction of the radiation and to focus into the smallest possible focus. As a key step towards this goal, we demonstrate here the first nanofocusing of hard XFEL pulses. We developed diamond based Fresnel zone plates capable of withstanding the full beam of the world's most powerful x-ray laser. Using an imprint technique, we measured the focal spot size, which was limited to 320 nm FWHM by the spectral band width of the source. A peak power density in the focal spot of 4×10(17)W/cm(2) was obtained at 70 fs pulse length.

  11. The Swift BAT Hard X-ray Survey - A New Window on the Local AGN Universe

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard

    2009-01-01

    The Swift Burst and Transient telescope (BAT) has surveyed the entire sky for the last 3.5 years obtaining the first sensitive all sky survey of the 14-195 keV sky. At high galactic latitudes the vast majority of the detected sources are AGN. Since hard x-rays penetrate all but Compton thick obscuring material (Column densities of 1.6E24 atms/cm2) this survey is unbiased with respect to obscuration, host galaxy type, optical , radio or IR properties. We will present results on the broad band x-ray properties, the nature of the host galaxies, the luminosity function and will discuss a few of the optical, IR and x-ray results in detail.

  12. New hard X-ray sources observed with HEAO-A2

    NASA Technical Reports Server (NTRS)

    Marshall, F. E.; Boldt, E. A.; Holt, S. S.; Mushotzky, R. F.; Pravdo, S. H.; Rothschild, R. E.; Serlemitsos, P. J.

    1978-01-01

    A search for new hard X-ray sources using data from the first complete view of the sky with the HEAO-A2 experiment discovered 47 new sources, detected 7 sources recently discovered with other experiments, and significantly reduced the size of the error boxes for 6 previously known sources. Intensities and error boxes are given for each of these sources; identifications are suggested when an error contains an object similar to known X-ray sources. The new identifications consist of seven Type 1 Seyfert galaxies, including two whose Seyfert characteristics were discovered due to their location in an X-ray error box; one intermediate Seyfert galaxy; three Abell clusters; five N-galaxies; two bursting radio sources; and an additional three nearby galaxies with bright nuclei and narrow emission lines.

  13. The Swift BAT Hard X-ray Survey - A New Window on the Local AGN Universe

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard

    2009-01-01

    The Swift Burst and Transient telescope (BAT) has surveyed the entire sky for the last 3.5 years obtaining the first sensitive all sky survey of the 14-195 keV sky. At high galactic latitudes the vast majority of the detected sources are AGN. Since hard x-rays penetrate all but Compton thick obscuring material (Column densities of 1.6E24 atms/cm2) this survey is unbiased with respect to obscuration, host galaxy type, optical , radio or IR properties. We will present results on the broad band x-ray properties, the nature of the host galaxies, the luminosity function and will discuss a few of the optical, IR and x-ray results in detail.

  14. The Variable Crab Nebula: Evidence for a Connection Between GeV Flares and Hard X-ray Variations

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Harding, A. K.; Hays, E. A.; Cherry, M. L.; Case, G. L.; Finger, M. H.; Jenke, P.; Zhang, X.

    2016-01-01

    In 2010, hard X-ray variations (Wilson-Hodge et al. 2011) and GeV flares (Tavani et al 2011, Abdo et al. 2011) from the Crab Nebula were discovered. Connections between these two phenomena were unclear, in part because the timescales were quite different, with yearly variations in hard X-rays and hourly to daily variations in the GeV flares. The hard X-ray flux from the Crab Nebula has again declined since 2014, much like it did in 2008-2010. During both hard X-ray decline periods, the Fermi LAT detected no GeV flares, suggesting that injection of particles from the GeV flares produces the much slower and weaker hard X-ray variations. The timescale for the particles emitting the GeV flares to lose enough energy to emit synchrotron photons in hard X-rays is consistent with the yearly variations observed in hard X-rays and with the expectation that the timescale for variations slowly increases with decreasing energy. This hypothesis also predicts even slower and weaker variations below 10 keV, consistent with the non-detection of counterparts to the GeV flares by Chandra (Weisskopf et al 2013). We will present a comparison of the observed hard X-ray variations and a simple model of the decay of particles from the GeV flares to test our hypothesis.

  15. The Variable Crab Nebula: Evidence for a Connection between GeV flares and Hard X-ray Variations

    NASA Astrophysics Data System (ADS)

    Wilson-Hodge, Colleen A.; Kust Harding, Alice; Hays, Elizabeth A.; Cherry, Michael L.; Case, Gary L.; Finger, Mark H.; Jenke, Peter; Zhang, Xiao-Ling

    2016-04-01

    In 2010, hard X-ray variations (Wilson-Hodge et al. 2011) and GeV flares (Tavani et al 2011, Abdo et al. 2011) from the Crab Nebula were discovered. Connections between these two phenomena were unclear, in part because the timescales were quite different, with yearly variations in hard X-rays and hourly to daily variations in the GeV flares. The hard X-ray flux from the Crab Nebula has again declined since 2014, much like it did in 2008-2010. During both hard X-ray decline periods, the Fermi LAT detected no GeV flares, suggesting that injection of particles from the GeV flares produces the much slower and weaker hard X-ray variations. The timescale for the particles emitting the GeV flares to lose enough energy to emit synchrotron photons in hard X-rays is consistent with the yearly variations observed in hard X-rays and with the expectation that the timescale for variations slowly increases with decreasing energy. This hypothesis also predicts even slower and weaker variations below 10 keV, consistent with the non-detection of counterparts to the GeV flares by Chandra (Weisskopf et al 2013). We will present a comparison of the observed hard X-ray variations and a simple model of the decay of particles from the GeV flares to test our hypothesis.

  16. Broad-band characteristics of seven new hard X-ray selected cataclysmic variables

    NASA Astrophysics Data System (ADS)

    Bernardini, F.; de Martino, D.; Mukai, K.; Russell, D. M.; Falanga, M.; Masetti, N.; Ferrigno, C.; Israel, G.

    2017-10-01

    We present timing and spectral analysis of a sample of seven hard X-ray selected cataclysmic variable candidates based on simultaneous X-ray and optical observations collected with XMM-Newton, complemented with Swift/BAT and INTEGRAL /IBIS hard X-ray data and ground-based optical photometry. For six sources, X-ray pulsations are detected for the first time in the range of ˜296-6098 s, identifying them as members of the magnetic class. Swift J0927.7-6945, Swift J0958.0-4208, Swift J1701.3-4304, Swift J2113.5+5422 and possibly PBC J0801.2-4625 are intermediate polars (IPs), while Swift J0706.8+0325 is a short (1.7 h) orbital period polar, the 11th hard X-ray-selected identified so far. X-ray orbital modulation is also observed in Swift J0927.7-6945 (5.2 h) and Swift J2113.5+5422 (4.1 h). Swift J1701.3-4304 is discovered as the longest orbital period (12.8 h) deep eclipsing IP. The spectra of the magnetic systems reveal optically thin multitemperature emission between 0.2 and 60 keV. Energy-dependent spin pulses and the orbital modulation in Swift J0927.7-6945 and Swift J2113.5+5422 are due to intervening local high-density absorbing material (NH ˜ 1022 - 23 cm-2). In Swift J0958.0-4208 and Swift J1701.3-4304, a soft X-ray blackbody (kT ˜ 50 and ˜80 eV) is detected, adding them to the growing group of `soft' IPs. White dwarf masses are determined in the range of ˜ 0.58-1.18 M⊙, indicating massive accreting primaries in five of them. Most sources accrete at rates lower than the expected secular value for their orbital period. Formerly proposed as a long-period (9.4 h) nova-like CV, Swift J0746.3-1608 shows peculiar spectrum and light curves suggesting either an atypical low-luminosity CV or a low-mass X-ray binary.

  17. Development of a hard x-ray wavefront sensor for the EuXFEL

    NASA Astrophysics Data System (ADS)

    Berujon, Sebastien; Ziegler, Eric; Cojocaru, Ruxandra; Martin, Thierry

    2017-05-01

    We present developments on a hard X-ray wavefront sensing instrument for characterizing and monitoring the beam of the European X-ray Free Electron Lasers (EuXFEL). The pulsed nature of the intense X-ray beam delivered by this new class of facility gives rise to strong challenges for the optics and their diagnostic. In the frame of the EUCALL project Work Package 7, we are developing a sensor able to observe the beam in the X-ray energy range [8-40] keV without altering it. The sensor is based on the speckle tracking principle and employs two semi-transparent optics optimized such that their X-ray absorption is reduced. Furthermore, this instrument requires a scattering object with small random features placed in the beam and two cameras to record images of the beam at two different propagation distances. The analysis of the speckle pattern and its distortion from one image to the other allows absolute or differential wavefront recovery from pulse to pulse. Herein, we introduce the stakes and challenges of wavefront sensing at an XFEL source and explain the strategies adopted to fulfil the high requirements set by such a source.

  18. The multi-purpose hard X-ray beamline BL10 at the DELTA storage ring.

    PubMed

    Lützenkirchen-Hecht, D; Wagner, R; Szillat, S; Hüsecken, A K; Istomin, K; Pietsch, U; Frahm, Ronald

    2014-07-01

    The layout and the characteristics of the hard X-ray beamline BL10 at the superconducting asymmetric wiggler at the 1.5 GeV Dortmund Electron Accelerator DELTA are described. This beamline is equipped with a Si(111) channel-cut monochromator and is dedicated to X-ray studies in the spectral range from ∼4 keV to ∼16 keV photon energy. There are two different endstations available. While X-ray absorption studies in different detection modes (transmission, fluorescence, reflectivity) can be performed on a designated table, a six-axis kappa diffractometer is installed for X-ray scattering and reflectivity experiments. Different detector set-ups are integrated into the beamline control software, i.e. gas-filled ionization chambers, different photodiodes, as well as a Pilatus 2D-detector are permanently available. The performance of the beamline is illustrated by high-quality X-ray absorption spectra from several reference compounds. First applications include temperature-dependent EXAFS experiments from liquid-nitrogen temperature in a bath cryostat up to ∼660 K by using a dedicated furnace. Besides transmission measurements, fluorescence detection for dilute sample systems as well as surface-sensitive reflection-mode experiments are presented.

  19. DISCOVERY OF DIFFUSE HARD X-RAY EMISSION AROUND JUPITER WITH SUZAKU

    SciTech Connect

    Ezoe, Y.; Ishikawa, K.; Ohashi, T.; Miyoshi, Y.; Terada, N.; Uchiyama, Y.; Negoro, H.

    2010-02-01

    We report the discovery of diffuse hard (1-5 keV) X-ray emission around Jupiter in a deep 160 ks Suzaku X-ray Imaging Spectrometer data. The emission is distributed over {approx}16 x 8 Jovian radius and spatially associated with the radiation belts and the Io Plasma Torus (IPT). It shows a flat power-law spectrum with a photon index of 1.4 {+-} 0.2 with the 1-5 keV X-ray luminosity of (3.3 {+-} 0.5)x10{sup 15} erg s{sup -1}. We discussed its origin and concluded that it seems to be truly diffuse, although a possibility of multiple background point sources cannot be completely rejected with a limited angular resolution. If it is diffuse, the flat continuum indicates that X-rays arise by the nonthermal electrons in the radiation belts and/or the IPT. The synchrotron and bremsstrahlung models can be rejected from the necessary electron energy and X-ray spectral shape, respectively. The inverse-Compton scattering off solar photons by ultra-relativistic (several tens MeV) electrons can explain the energy and the spectrum but the necessary electron density is {approx}>10 times larger than the value estimated from the empirical model of Jovian charge particles.

  20. Sub-micron Hard X-ray Fluorescence Imaging of Synthetic Elements

    PubMed Central

    Jensen, Mark P.; Aryal, Baikuntha P.; Gorman-Lewis, Drew; Paunesku, Tatjana; Lai, Barry; Vogt, Stefan; Woloschak, Gayle E.

    2013-01-01

    Synchrotron-based X-ray fluorescence microscopy (SXFM) using hard X-rays focused into sub-micron spots is a powerful technique for elemental quantification and mapping, as well as microspectroscopic measurement such as μ-XANES (X-ray absorption near edge structure). We have used SXFM to image and simultaneously quantify the transuranic element plutonium at the L3 or L2 edge as well as lighter biologically essential elements in individual rat pheochromocytoma (PC12) cells after exposure to the long-lived plutonium isotope 242Pu. Elemental maps reveal that plutonium localizes principally in the cytoplasm of the cells and avoids the cell nucleus, which is marked by the highest concentrations of phosphorus and zinc, under the conditions of our experiments. The minimum detection limit under typical acquisition conditions for an average 202 μm2 cell is 1.4 fg Pu/cell or 2.9 × 10−20 moles Pu/μm2, which is similar to the detection limit of K-edge SXFM of transition metals at 10 keV. Copper electron microscopy grids were used to avoid interference from gold X-ray emissions, but traces of strontium present in naturally occurring calcium can still interfere with plutonium detection using its Lα X-ray emission. PMID:22444530

  1. ON THE NATURE OF HARD X-RAY EXTRAGALACTIC SOURCES OBSERVED WITH XMM-NEWTON

    SciTech Connect

    Jimenez-Bailon, E.; Huerta, E. M.; Krongold, Y.; Chavushyan, V.; Schartel, N.; Santos-Lleo, M.

    2012-03-15

    Over the last decade, X-ray surveys have provided outstanding new results due to the lack of the common selection effects present at other wavelengths. Here, we have selected a sample of unidentified sources from the XMM-Newton Slew Survey Catalog, likely to be extragalactic. Five of them were observed with the XMM-Newton observatory. In this work, we present the results of the spectral analysis of these objects in the X-ray and optical bands. Only three of them had useful spectroscopic X-ray data, and follow up observations were carried out in the optical range to determine their coordinates, classification, and redshift. The sources are different types of active galactic nuclei (AGNs) with redshifts ranging from 0.059 to 0.386. The properties at both spectral ranges (X-rays and optical) are compatible with the common properties of their types of AGNs. Although the sources were selected by their hard X-ray properties, none of the three detected objects turned out to be an obscured AGN.

  2. Hard X-Ray Emission and the Ionizing Source in LINERs

    NASA Technical Reports Server (NTRS)

    Terashima, Yuichi; Ho, Luis C.; Ptak, Andrew F.

    2000-01-01

    We report X-ray fluxes in the 2-10 keV band from LINERs (low-ionization nuclear emission-line regions) and low-luminosity Seyfert galaxies obtained with the ASCA satellite. Observed X-ray luminosities are in the range between 4 x 10(exp 39) and 5 x 10(exp 41) ergs/s, which are significantly smaller than that of the "classical" low-luminosity Seyfert 1 galaxy NGC 4051. We found that X-ray luminosities in 2-10 keV of LINERs with broad H.alpha emission in their optical spectra (LINER 1s) are proportional to their Ha luminosities. This correlation strongly supports the hypothesis that the dominant ionizing source in LINER 1s is photoionization by hard photons from low-luminosity AGNs. On the other hand, the X-ray luminosities of most LINERs without broad H.alpha emission (LINER 2s) in our sample are lower than LINER 1s at a given H.alpha luminosity. The observed X-ray luminosities in these objects are insufficient to power their H.alpha luminosities, suggesting that their primary ionizing source is other than an AGN, or that an AGN, if present, is obscured even at energies above 2 keV.

  3. WEAK HARD X-RAY EMISSION FROM TWO BROAD ABSORPTION LINE QUASARS OBSERVED WITH NuSTAR: COMPTON-THICK ABSORPTION OR INTRINSIC X-RAY WEAKNESS?

    SciTech Connect

    Luo, B.; Brandt, W. N.; Alexander, D. M.; Hickox, R.; Harrison, F. A.; Fuerst, F.; Grefenstette, B. W.; Madsen, K. K.; Stern, D.; Bauer, F. E.; Boggs, S. E.; Craig, W. W.; Christensen, F. E.; Comastri, A.; Fabian, A. C.; Farrah, D.; Fiore, F.; Hailey, C. J.; Matt, G.; Ogle, P.; and others

    2013-08-01

    We present Nuclear Spectroscopic Telescope Array (NuSTAR) hard X-ray observations of two X-ray weak broad absorption line (BAL) quasars, PG 1004+130 (radio loud) and PG 1700+518 (radio quiet). Many BAL quasars appear X-ray weak, probably due to absorption by the shielding gas between the nucleus and the accretion-disk wind. The two targets are among the optically brightest BAL quasars, yet they are known to be significantly X-ray weak at rest-frame 2-10 keV (16-120 times fainter than typical quasars). We would expect to obtain Almost-Equal-To 400-600 hard X-ray ({approx}> 10 keV) photons with NuSTAR, provided that these photons are not significantly absorbed (N{sub H} {approx}< 10{sup 24} cm{sup -2}). However, both BAL quasars are only detected in the softer NuSTAR bands (e.g., 4-20 keV) but not in its harder bands (e.g., 20-30 keV), suggesting that either the shielding gas is highly Compton-thick or the two targets are intrinsically X-ray weak. We constrain the column densities for both to be N{sub H} Almost-Equal-To 7 Multiplication-Sign 10{sup 24} cm{sup -2} if the weak hard X-ray emission is caused by obscuration from the shielding gas. We discuss a few possibilities for how PG 1004+130 could have Compton-thick shielding gas without strong Fe K{alpha} line emission; dilution from jet-linked X-ray emission is one likely explanation. We also discuss the intrinsic X-ray weakness scenario based on a coronal-quenching model relevant to the shielding gas and disk wind of BAL quasars. Motivated by our NuSTAR results, we perform a Chandra stacking analysis with the Large Bright Quasar Survey BAL quasar sample and place statistical constraints upon the fraction of intrinsically X-ray weak BAL quasars; this fraction is likely 17%-40%.

  4. Weak Hard X-Ray Emission from Two Broad Absorption Line Quasars Observed with NuStar: Compton-Thick Absorption or Intrinsic X-Ray Weakness?

    NASA Technical Reports Server (NTRS)

    Luo, B.; Brandt, W. N.; Alexander, D. M.; Harrison, F. A.; Stern, D.; Bauer, F. E.; Boggs, S. E.; Christensen, F. E.; Comastri, A.; Craig, W. W..; Fabian, A. C.; Farrah, D.; Fiore, F.; Fuerst, F.; Grefenstette, B. W.; Hailey, C. J.; Hickox, R.; Madsen, K. K.; Matt, G.; Ogle, P.; Risaliti, G.; Saez, C.; Teng, S. H.; Walton, D. J.; Zhang, W. W.

    2013-01-01

    We present Nuclear Spectroscopic Telescope Array (NuSTAR) hard X-ray observations of two X-ray weak broad absorption line (BAL) quasars, PG 1004+130 (radio loud) and PG 1700+518 (radio quiet). Many BAL quasars appear X-ray weak, probably due to absorption by the shielding gas between the nucleus and the accretion-disk wind. The two targets are among the optically brightest BAL quasars, yet they are known to be significantly X-ray weak at rest-frame 2-10 keV (16-120 times fainter than typical quasars). We would expect to obtain approx. or equal to 400-600 hard X-ray (is greater than or equal to 10 keV) photons with NuSTAR, provided that these photons are not significantly absorbed N(sub H) is less than or equal to 10(exp24) cm(exp-2). However, both BAL quasars are only detected in the softer NuSTAR bands (e.g., 4-20 keV) but not in its harder bands (e.g., 20-30 keV), suggesting that either the shielding gas is highly Compton-thick or the two targets are intrinsically X-ray weak. We constrain the column densities for both to be N(sub H) 7 × 10(exp 24) cm(exp-2) if the weak hard X-ray emission is caused by obscuration from the shielding gas. We discuss a few possibilities for how PG 1004+130 could have Compton-thick shielding gas without strong Fe Ka line emission; dilution from jet-linked X-ray emission is one likely explanation. We also discuss the intrinsic X-ray weakness scenario based on a coronal-quenching model relevant to the shielding gas and disk wind of BAL quasars. Motivated by our NuSTAR results, we perform a Chandra stacking analysis with the Large Bright Quasar Survey BAL quasar sample and place statistical constraints upon the fraction of intrinsically X-ray weak BAL quasars; this fraction is likely 17%-40%.

  5. Microwave and hard X-ray imaging of a solar flare on 1980 November 5

    NASA Technical Reports Server (NTRS)

    Hoyng, P.; Marsh, K. A.; Zirin, H.; Dennis, B. R.

    1983-01-01

    VLA and SMM hard X ray data on the solar flares of November 5, 1980 are analyzed and compared with data from other sources. The VLA provided measurements at 15 GHz at 10 sec intervals, using left and right circular polarizations with a 0.6 arcsec resolution. The hard X ray imaging spectrometer on the SMM obtained data in six bands from 3.5-30 keV, with 8 x 8 arcsec resolution and 1.5 sec separation. The data were examined for a possible nonthermal source for the microwave component of the emissions detected, the origin of 16-30 keV excess fluxes, the relation between the X ray and microwave sources, the magnetic connection between observed loops, and the physical characteristics of the radiating loop. The data were consistent with a model that assumes fast electrons are accelerated to a single power-law energy distribution and freely stream along the magnetic field. The data also agreed with a thick-target model for solar flare X ray emission.

  6. Hard X-ray Point Sources Detected in the NuSTAR Galactic Plane Survey

    NASA Astrophysics Data System (ADS)

    Hailey, Chuck

    The Nuclear Spectroscopic Telescope Array (NuSTAR) has surveyed the Galactic Center and Norma region with total exposure of approximately 2 Msec and 50 pointings. Hard X-ray spectroscopy with NuSTAR is a powerful tool to identify sources previously discovered by Chandra, and thus perform comparative population studies in the Galactic Center and Norma region. The NuSTAR survey, with a depth ranging from 20 to 40 ksec, detected dozens of point source above 10 keV including three known X-ray transients (GRS 1741-2853, AXJ1745.6-2901 and CXOGC J174540.0-29005) during their outbursts in 2013. Some of the NuSTAR point sources exhibit remarkably hard X-ray spectra extending beyond 40 keV, indicating that they are either hot intermediate polars with temperatures greater than 50 keV or X-ray binaries with either a neutron star or black hole. We will present our spectral and timing analysis of the NuSTAR sources as well as results of IR counterpart searches.

  7. Focusing Solar Hard X-rays: Expected Results from a FOXSI Spacecraft

    NASA Astrophysics Data System (ADS)

    Glesener, L.; Christe, S.; Shih, A. Y.; Dennis, B. R.; Krucker, S.; Saint-Hilaire, P.; Hudson, H. S.; Ryan, D.; Inglis, A. R.; Hannah, I. G.; Caspi, A.; Klimchuk, J. A.; Drake, J. F.; Kontar, E.; Holman, G.; White, S. M.; Alaoui, M.; Battaglia, M.; Vilmer, N.; Allred, J. C.; Longcope, D. W.; Gary, D. E.; Jeffrey, N. L. S.; Musset, S.; Swisdak, M.

    2016-12-01

    Over the course of two solar cycles, RHESSI has examined high-energy processes in flares via high-resolution spectroscopy and imaging of soft and hard X-rays (HXRs). The detected X-rays are the thermal and nonthermal bremsstrahlung from heated coronal plasma and from accelerated electrons, respectively, making them uniquely suited to explore the highest-energy processes that occur in the corona. RHESSI produces images using an indirect, Fourier-based method and has made giant strides in our understanding of these processes, but it has also uncovered intriguing new mysteries regarding energy release location, acceleration mechanisms, and energy propagation in flares. Focusing optics are now available for the HXR regime and stand poised to perform another revolution in the field of high-energy solar physics. With two successful sounding rocket flights completed, the Focusing Optics X-ray Solar Imager (FOXSI) program has demonstrated the feasibility and power of direct solar HXR imaging with its vastly superior sensitivity and dynamic range. Placing this mature technology aboard a spacecraft will offer a systematic way to explore high-energy aspects of the solar corona and to address scientific questions left unanswered by RHESSI. Here we present examples of such questions and show simulations of expected results from a FOXSI spaceborne instrument to demonstrate how these questions can be addressed with the focusing of hard X-rays.

  8. Hard x-ray holographic microscopy using refractive prism and Fresnel zone plate objective

    SciTech Connect

    Suzuki, Yoshio; Takeuchi, Akihisa

    2005-09-15

    An optics for hard x-ray holographic microscopy has been developed and preliminary experiments have been done at SPring-8 undulator beamline 20XU. The optical system consists of an x-ray objective lens (Fresnel zone plate) and a wave front-division-type interferometer with prism optics. The illuminating x-ray beam is coherent with parallel radiation, and the spatially coherent area is much larger than the aperture of the objective lens. The refractive prism is placed behind the back focal plane of the objective lens in order to configure the wavefront-dividing interferometer. Half of the illuminating radiation is used for illuminating an object, and the other half is used for forming a reference wave. The magnified image of the object is generated at an image plane, and the reference wave is superimposed on the magnified image of the object. The recorded interferogram includes both amplitude and phase information of the object. The spatial resolution is determined by the numerical aperture of the objective lens. Therefore, in principle, this method enables holographic imaging at nanometer scale to be carried out in the hard x-ray region.

  9. A Preliminary Research on the Development of the Hard X-ray Imaging Telescope

    NASA Astrophysics Data System (ADS)

    Zheng, Chun-Xiao; Cai, Ming-Sheng; Hu, Yi-Ming; Huang, Yong-Yi; Gong, Yi-Zhong

    2014-10-01

    The hard X-ray imaging telescope based on the Fourier transform imaging technique is introduced. The double-layer parallel gratings are used to make the modulation and coding on the light emerging from a celestial X-ray source, the modulated light is acquired, to make the optoelectronic conversion by scintillation crystal detectors, and finally read out by the electronic system. The modulation collimator X-ray telescopes can be divided into two types: the spatial modulation and temporal modulation. The temporal modulation system requires the scanning motion of the detector system, but the spatial modulation system requires no motion. The technology of grating fabrication is investigated, and the basic structure design of the collimators is given. The principal compo- nents of the prototype hard X-ray imaging telescope of spatial modulation type are successfully developed, including the 8 CsI crystal detector modules (contain- ing photomultipliers or PMTs), 8-channel shaping amplifiers (two of them are prepared for experiments), and the data acquisition system. And the preliminary test results of the electronic system are also given.

  10. HX-POL - A Balloon-Bourne Hard X-Ray Polarimeter

    SciTech Connect

    Krawczynski, H.; De Geronimo, G.; Garson, A., III, Martin, J.; Li, Q.; Beilicke, M,; Dowkontt, P.; Lee, K.; Wulf, E.; Kurfess, J.; Novikova, E.; Baring, M.G.; Harding, A.K.; Grindlay, J.; Hong, J.S.

    2009-12-09

    We report on the design and estimated performance of a balloon-borne hard X-ray polarimeter called HX-POL. The experiment uses a combination of Si and Cadmium Zinc Telluride detectors to measure the polarization of 50 keV-400 keV X-rays from cosmic sources through the dependence of the angular distribution of Compton scattered photons on the polarization direction. On a one-day balloon flight, HX-POL would allow us to measure the polarization of bright Crab-like sources for polarization degrees well below 10%. On a longer (15-30 day) flight from Australia or Antarctica, HX-POL would be be able to measure the polarization of bright galactic X-ray sources down to polarization degrees of a few percent. Hard X-ray polarization measurements provide unique venues for the study of particle acceleration processes by compact objects and relativistic outflows. In this paper, we discuss the overall instrument design and performance. Furthermore, we present results from laboratory tests of the Si and CZT detectors.

  11. Balloon-borne hard x-ray imaging and future surveys

    NASA Astrophysics Data System (ADS)

    Grindlay, Jonathan E.

    Several payloads for hard X-ray (20-600 keV) imaging with coded aperture telescopes have been developed for balloon flight observations of cosmic x-ray sources. We briefly review the characteristics of these, particularly the EXITE2 system. The recent NASA program to develop an extended long duration (100d) balloon flight capability employing super-pressure balloons would allow a qualitatively new hard x-ray imaging experiment: the Energetic X-ray Imaging Survey Telescope-Long Integration Time Experiment (EXIST-LITE). The longer continuous viewing times (per source) available from an LDB platform than from low earth orbit would enable both surveys and objectives complementary to the EXIST mission proposed for a MIDEX satellite. We summarize the scientific objectives of EXIST-LITE, a possible instrumentation approach incorporating a large area array of Cd-Zn-Te (CZT) detectors, and our program for the development and balloon flight testing of relatively thick (5mm) CZT detector arrays.

  12. Time-resolved hard X-ray magnetic microprobe at SPring-8

    NASA Astrophysics Data System (ADS)

    Suzuki, Motohiro; Kawamura, Naomi; Osawa, Hitoshi; Takagaki, Masafumi; Ono, Kanta; Taniuchi, Toshiaki; Isogami, Shinji; Tsunoda, Masakiyo

    2010-06-01

    An instrument for hard X-ray magnetometry with spatial and time resolutions of 400-ps and sub-2-μm was developed at BL39XU, SPring-8.The technique is based on X-ray magnetic circular dichroism measurements combined with KB focusing mirrors and a fast current source, which generates a pulsed magnetic field of 400-ps duration that is synchronized with the X-ray pulses provided from the storage ring in the 203-bunch operation (42 MHz) with a jitter of 50 ps. By fully using the bulk-sensitivity and element-specificity of hard X-ray dichroism, we have demonstrated that the magnetization reversing process in the nanosecond time scale of the free NiFe and pinned CoFeB/CoFe layers were separated in a 10-μm dot sample with a NiFe/MgO/CoFeB/CoFe/MgO structure mimicking a magnetic tunnel junction device.

  13. A novel synthesis of polymeric CO via useful hard X-ray photochemistry

    DOE PAGES

    Pravica, Michael; Sneed, Daniel; Smith, Quinlan; ...

    2016-03-30

    We report on the synchrotron hard X-ray-induced decomposition of strontium oxalate (SrC2O4) pressurized to 7 GPa inside a diamond anvil cell (DAC). After some 4 h of irradiation in a white X-ray synchrotron beam, a dark reddish/brown region formed in the area of irradiation which was surrounded by a yellowish brown remainder in the rest of the sample. Upon depressurization of the sample to ambient conditions, the reacted/decomposed sample was recoverable as a dark brown/red and yellow waxy solid. Synchrotron infrared spectroscopy confirmed the strong presence of CO2 even under ambient conditions with the sample exposed to air and othermore » strongly absorbing regions, suggesting that the sample may likely be polymerized CO (in part) with dispersed CO2 and SrO trapped within the polymer. These results will have significant implications in the ability to readily produce and trap CO2 in situ via irradiation of a simple powder for useful hard X-ray photochemistry and in the ability to easily manufacture polymeric CO (via loading of powders in a DAC or high volume press) without the need for the dangerous and complex loading of toxic CO. As a result, a novel means of X-ray-induced polymerization under extreme conditions has also been demonstrated.« less

  14. A novel synthesis of polymeric CO via useful hard X-ray photochemistry

    SciTech Connect

    Pravica, Michael; Sneed, Daniel; Smith, Quinlan; Billinghurst, Brant; May, Tim; White, Melanie; Dziubek, Kamil; Ahuja, Rajeev

    2016-03-30

    We report on the synchrotron hard X-ray-induced decomposition of strontium oxalate (SrC2O4) pressurized to 7 GPa inside a diamond anvil cell (DAC). After some 4 h of irradiation in a white X-ray synchrotron beam, a dark reddish/brown region formed in the area of irradiation which was surrounded by a yellowish brown remainder in the rest of the sample. Upon depressurization of the sample to ambient conditions, the reacted/decomposed sample was recoverable as a dark brown/red and yellow waxy solid. Synchrotron infrared spectroscopy confirmed the strong presence of CO2 even under ambient conditions with the sample exposed to air and other strongly absorbing regions, suggesting that the sample may likely be polymerized CO (in part) with dispersed CO2 and SrO trapped within the polymer. These results will have significant implications in the ability to readily produce and trap CO2 in situ via irradiation of a simple powder for useful hard X-ray photochemistry and in the ability to easily manufacture polymeric CO (via loading of powders in a DAC or high volume press) without the need for the dangerous and complex loading of toxic CO. As a result, a novel means of X-ray-induced polymerization under extreme conditions has also been demonstrated.

  15. Development of High Resolution Hard X-Ray Telescope with Multi-Layer Coatings

    NASA Technical Reports Server (NTRS)

    Gorenstein, Paul; Brinton, John C. (Technical Monitor)

    2005-01-01

    This is the annual report for the third year of a three-year program. Previous annual reports have described progress achieved in the first and second years. The major objective of this program is the development of a focusing hard X-ray telescope with moderately high angular resolution, i.e. comparable to the telescopes of XMM-Newton. The key ingredients of the telescope are a depth graded multilayer coatings and electroformed nickel substrates that are considerably lighter weight than those of previous missions such as XMM-Newton, which have had conventional single metal layer reflective coatings and have operated at much lower energy X-rays. The ultimate target mission for this technology is the Hard X-Ray Telescope (HXT) of the Constellation X-Ray Mission. However, it is applicable to potential SMEX and MIDEX programs as well. We are building upon technology that has proven to be successful in the XMM-Newton and SWIFT missions. The improvements that we are adding are a significant reduction in mass without much loss of angular resolution and an order of magnitude extension of the bandwidth through the use of multilayer coatings. The distinctive feature of this approach compared to those of other hard X-ray telescope programs is that we expect the angular resolution to be superior than telescopes made by other methods thanks to the structural integrity of the substrates. They are thin walled complete cylinders of revolution with a Wolter Type 1 figure; the front half is a parabola, the rear half a hyperbola.

  16. Comparison of hard and soft x-ray photoelectron spectra of silicon

    NASA Astrophysics Data System (ADS)

    Offi, F.; Werner, W. S. M.; Sacchi, M.; Torelli, P.; Cautero, M.; Cautero, G.; Fondacaro, A.; Huotari, S.; Monaco, G.; Paolicelli, G.; Smekal, W.; Stefani, G.; Panaccione, G.

    2007-08-01

    A detailed comparison of the surface sensitivity of x-ray photoemission spectroscopy for hard and soft x rays is presented and discussed. Electron scattering parameters and their energy dependence are given for Si and two Si spectra are analyzed: a MgKα (hν=1253.6eV) excited spectrum of the Si2p and 2s lines and a hard x-ray excited spectrum (hν=5925eV) of the Si1s line. The differential inelastic scattering characteristics for Si are extracted from reflection electron energy loss spectra taken at energies of 1500 and 4000eV . Using these scattering characteristics and electron mean free paths from the literature, simulated spectra are compared with experiment. The experimental spectra are deconvoluted to give the true intrinsic line shape corresponding to the theoretical collision statistics when interference effects between intrinsic and extrinsic scattering are neglected. The magnitude of interference effects cannot be assessed by our analysis. Within the (unknown) uncertainty introduced by neglecting interference effects, it is possible to determine the relative intensity of intrinsic and extrinsic excitations. In this way, it is found that in the case of the soft x-ray excited photoelectron spectrum of the shallower electronic shells ( 2p and 2s ), intrinsic plasmon creation is rather weak, and the apparent asymmetric line shape of the spectrum might be interpreted as the fact that electron-hole pair creation dominates the intrinsic loss spectrum, while an alternative explanation in terms of surface core level shifted components is also proposed. For the deeper core electronic shell, probed with hard x rays, the opposite situation is observed: while intrinsic electron-hole pair creation was not observed, a strong contribution of intrinsic plasmon losses of about 30% was seen.

  17. THE 22 MONTH SWIFT-BAT ALL-SKY HARD X-RAY SURVEY

    SciTech Connect

    Tueller, J.; Baumgartner, W. H.; Markwardt, C. B.; Skinner, G. K.; Mushotzky, R. F.; Barthelmy, S.; Cummings, J.; Gehrels, N.; Holland, S.; Beardmore, A.; Evans, P.; Godet, O.; Chincarini, G.; Campana, S.

    2010-02-01

    We present the catalog of sources detected in the first 22 months of data from the hard X-ray survey (14-195 keV) conducted with the Burst Alert Telescope (BAT) coded mask imager on the Swift satellite. The catalog contains 461 sources detected above the 4.8{sigma} level with BAT. High angular resolution X-ray data for every source from Swift-XRT or archival data have allowed associations to be made with known counterparts in other wavelength bands for over 97% of the detections, including the discovery of {approx}30 galaxies previously unknown as active galactic nuclei and several new Galactic sources. A total of 266 of the sources are associated with Seyfert galaxies (median redshift z {approx} 0.03) or blazars, with the majority of the remaining sources associated with X-ray binaries in our Galaxy. This ongoing survey is the first uniform all-sky hard X-ray survey since HEAO-1 in 1977. Since the publication of the nine-month BAT survey we have increased the number of energy channels from four to eight and have substantially increased the number of sources with accurate average spectra. The BAT 22 month catalog is the product of the most sensitive all-sky survey in the hard X-ray band, with a detection sensitivity (4.8{sigma}) of 2.2 x 10{sup -11} erg cm{sup -2} s{sup -1} (1 mCrab) over most of the sky in the 14-195 keV band.

  18. Diagnostics of underwater electrical wire explosion through a time- and space-resolved hard x-ray source.

    PubMed

    Sheftman, D; Shafer, D; Efimov, S; Gruzinsky, K; Gleizer, S; Krasik, Ya E

    2012-10-01

    A time- and space-resolved hard x-ray source was developed as a diagnostic tool for imaging underwater exploding wires. A ~4 ns width pulse of hard x-rays with energies of up to 100 keV was obtained from the discharge in a vacuum diode consisting of point-shaped tungsten electrodes. To improve contrast and image quality, an external pulsed magnetic field produced by Helmholtz coils was used. High resolution x-ray images of an underwater exploding wire were obtained using a sensitive x-ray CCD detector, and were compared to optical fast framing images. Future developments and application of this diagnostic technique are discussed.

  19. First hard X-ray detection and broad-band X-ray study of the unidentified transient AX J1949.8+2534

    NASA Astrophysics Data System (ADS)

    Sguera, V.; Sidoli, L.; Paizis, A.; Masetti, N.; Bird, A. J.; Bazzano, A.

    2017-08-01

    We present the results from INTEGRAL and Swift/XRT observations of the hitherto poorly studied unidentified X-ray transient AX J1949.8+2534, and on archival multiwavelength observations of field objects. Bright hard X-ray outbursts have been discovered above 20 keV for the first time, the measured duty cycle and dynamic range are of the order of ˜4 per cent and ≥ 630, respectively. The source was also detected during a low soft X-ray state (˜2 × 10-12 erg cm-2 s-1) thanks to a Swift/XRT followup, which allowed for the first time to perform a soft X-ray spectral analysis as well as significantly improve the source positional uncertainty from arcminute to arcsecond size. From archival near-infrared data, we pinpointed two bright objects as most likely counterparts whose photometric properties are compatible with an early-type spectral nature. This strongly supports a high-mass X-ray binary (HMXB) scenario for AX J1949.8+2534, specifically a Supergiant Fast X-ray Transient (more likely) or alternatively a Be HMXB.

  20. Quantitative analysis of hard X-ray 'footpoint' flares observed by the solar maximum mission

    NASA Technical Reports Server (NTRS)

    Mackinnon, A. L.; Brown, J. C.; Hayward, J.

    1985-01-01

    Amplifier gain and collimator hole size variations across the field of view, amplifier/filter efficiency, variations in effective collimator hole size and angular response with photon energy, dead-time, and hard X-ray plate transmission, are among the factors for which instrumental corrections have to be incorporated to effect reliable correction and deconvolution of images from the SMM satellite's Hard X-ray Imaging Spectrometer (HXIS). Attention is given to the substantial Poisson noise in these energy bands. The maximum entropy deconvolution/correction routine developed for establishing the spatial structure reliably inferrable from HXIS data is presented, together with the results of the application of this routine to the three impulsive flares reported by Duijemian et al. (1982) from April 10, May 21, and November 5, 1980.

  1. Spatial and temporal evolution of soft and hard X-ray emission in a solar flare

    NASA Technical Reports Server (NTRS)

    Machado, M. E.; Duijveman, A.; Dennis, B. R.

    1982-01-01

    Hard X-ray burst spectrometer and imaging spectrometer data are used to study the spatial and temporal characteristics of the 3.5-30.0 keV emission in an Apr. 10, 1980 solar flare. It is found that: (1) continuous energy release is needed to sustain the increase of the emission through the flare's rising phase, before and after the impulsive phase in hard X-rays, and the release is characterized by the production of 50 million-150 million K thermal regions within the flare loop structures; (2) the observational parameters which characterize the impulsive burst indicate that it is probably associated with nonthermal processes, such as particle acceleration; and (3) the continuous energy release is associated with strong chromospheric evaporation, in view of spectral line behavior. Both particle acceleration and chromospheric evaporation stop just before flare maximum, and the subsequent evolution is probably governed by the radiative cooling of the flare plasma.

  2. On the hard X-ray spatial structure during the impulsive phase of solar flares

    NASA Technical Reports Server (NTRS)

    Emslie, A. Gordon; Machado, Marcos E.

    1987-01-01

    A simplified form of the bremsstrahlung cross-section is used to obtain an analytic expression for the intensity of electron-beam-produced hard X-ray emission with depth in solar flares which can be used in a first-order analysis of imaging data. The results indicate that the conditions for the appearance of bright footpoint emission, in terms of loop parameters such as density and length, are much less restrictive than previously suggested. The analysis shows that the observed footpoint structure of many flares in hard X-rays is consistent with the thick-target bombardment model, and that the intensity of the footpoint emission relative to the spatially integrated flux can be used as a diagnostic tool of coronal column density.

  3. The effect of beam-driven return current instability on solar hard X-ray bursts

    NASA Technical Reports Server (NTRS)

    Cromwell, D.; Mcquillan, P.; Brown, J. C.

    1986-01-01

    The problem of electrostatic wave generation by a return current driven by a small area electron beam during solar hard X-ray bursts is discussed. The marginal stability method is used to solve numerically the electron and ion heating equations for a prescribed beam current evolution. When ion-acoustic waves are considered, the method appears satisfactory and, following an initial phase of Coulomb resistivity in which T sub e/T sub i rise, predicts a rapid heating of substantial plasma volumes by anomalous ohmic dissipation. This hot plasma emits so much thermal bremsstrahlung that, contrary to previous expectations, the unstable beam-plasma system actually emits more hard X-rays than does the beam in the purely collisional thick target regime relevant to larger injection areas. Inclusion of ion-cyclotron waves results in ion-acoustic wave onset at lower T sub e/T sub i and a marginal stability treatment yields unphysical results.

  4. Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution

    NASA Astrophysics Data System (ADS)

    Yan, Hanfei; Nazaretski, Evgeny; Lauer, Kenneth; Huang, Xiaojing; Wagner, Ulrich; Rau, Christoph; Yusuf, Mohammed; Robinson, Ian; Kalbfleisch, Sebastian; Li, Li; Bouet, Nathalie; Zhou, Juan; Conley, Ray; Chu, Yong S.

    2016-02-01

    We developed a scanning hard x-ray microscope using a new class of x-ray nano-focusing optic called a multilayer Laue lens and imaged a chromosome with nanoscale spatial resolution. The combination of the hard x-ray’s superior penetration power, high sensitivity to elemental composition, high spatial-resolution and quantitative analysis creates a unique tool with capabilities that other microscopy techniques cannot provide. Using this microscope, we simultaneously obtained absorption-, phase-, and fluorescence-contrast images of Pt-stained human chromosome samples. The high spatial-resolution of the microscope and its multi-modality imaging capabilities enabled us to observe the internal ultra-structures of a thick chromosome without sectioning it.

  5. Hard X-ray and low-energy gamma-ray spectrometers

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Crannell, C. J.; Orwig, L. E.; Forrest, D. J.; Lin, R. P.; Starr, R.

    1988-01-01

    Basic principles of operation and characteristics of scintillation and semi-conductor detectors used for solar hard X-ray and gamma-ray spectrometers are presented. Scintillation materials such as NaI offer high stopping power for incident gamma rays, modest energy resolution, and relatively simple operation. They are, to date, the most often used detector in solar gamma-ray spectroscopy. The scintillator BGO has higher stopping power than NaI, but poorer energy resolution. The primary advantage of semi-conductor materials such as Ge is their high-energy resolution. Monte-Carlo simulations of the response of NaI and Ge detectors to model solar flare inputs show the benefit of high resoluton for studying spectral lines. No semi-conductor material besides Ge is currently available with adequate combined size and purity to make general-use hard X-ray and gamma-ray detectors for solar studies.

  6. Extending synchrotron-based atomic physics experiments into the hard X-ray region

    SciTech Connect

    LeBrun, T.

    1996-12-31

    The high-brightness, hard x-ray beams available from third-generation synchrotron sources are opening new opportunities to study the deepest inner shells of atoms, an area where little work has been done and phenomena not observed in less tightly bound inner-shells are manifested. In addition scattering processes which are weak at lower energies become important, providing another tool to investigate atomic structure as well as an opportunity to study photon/atom interactions beyond photoabsorption. In this contribution the authors discuss some of the issues related to extending synchrotron-based atomic physics experiments into the hard x-ray region from the physical and the experimental point of view. They close with a discussion of a technique, resonant Raman scattering, that may prove invaluable in determining the spectra of the very highly-excited states resulting from the excitation of deep inner shells.

  7. Hard X-ray and low-energy gamma-ray spectrometers

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Crannell, C. J.; Orwig, L. E.; Forrest, D. J.; Lin, R. P.; Starr, R.

    1988-01-01

    Basic principles of operation and characteristics of scintillation and semi-conductor detectors used for solar hard X-ray and gamma-ray spectrometers are presented. Scintillation materials such as NaI offer high stopping power for incident gamma rays, modest energy resolution, and relatively simple operation. They are, to date, the most often used detector in solar gamma-ray spectroscopy. The scintillator BGO has higher stopping power than NaI, but poorer energy resolution. The primary advantage of semi-conductor materials such as Ge is their high-energy resolution. Monte-Carlo simulations of the response of NaI and Ge detectors to model solar flare inputs show the benefit of high resoluton for studying spectral lines. No semi-conductor material besides Ge is currently available with adequate combined size and purity to make general-use hard X-ray and gamma-ray detectors for solar studies.

  8. Wiggler-base Hard X-ray Spectroscopy Beamline at CLS

    SciTech Connect

    Jiang, D. T.; Chen, N.; Sheng, W.

    2007-01-19

    The CLS 06ID-1 Hard X-ray Micro-Analysis Beamline (HXMA) is a general purpose hard X-ray spectroscopy beamline (5 to 40 keV) designed to serve users in XAFS, diffraction and microprobe communities. The beamline uses the synchrotron radiation from a superconducting wiggler. The primary beamline optics include a 1.2 m water-cooled silicon collimating mirror (separate Rh and Pt coating stripes), a liquid nitrogen cooled double crystal monochromator (Kohzu CMJ-1) housing two crystal pairs (Si 111 and 220), and a 1.15 m long water-cooled silicon toroidal focusing mirror (separate Rh and Pt coating stripes). All mirrors are equipped with dynamical meridian benders. The experimental hutch hosts three experimental setups for XAFS, diffraction and microprobe, respectively. Primary design considerations and some commissioning results are discussed.

  9. Current status of the dissipative thermal model for solar hard X-ray bursts

    NASA Technical Reports Server (NTRS)

    Smith, D. F.

    1985-01-01

    The existing dissipative thermal models for hard X-ray bursts are briefly examined, and it is shown that the model with additional acceleration is the best candidate for explaining the whole hard X-ray burst. In both phases, but especially in the thermal phase, the plasma beta approaches unity, and two-dimensional modeling of the hydrodynamics is required. Following the accelerated electrons only, without taking into account the response of the bulk of the plasma, is inadequate. It is suggested that a useful approach might be a multifluid one using approximately 15 fluids with the possibility of transfer between fluids in one and two dimensions. It is concluded that, while the model is a promising one, many details remain to be worked out.

  10. A source of hard X-ray radiation based on hybrid X pinches

    NASA Astrophysics Data System (ADS)

    Shelkovenko, T. A.; Pikuz, S. A.; Hoyt, C. L.; Cahill, A. D.; Atoyan, L.; Hammer, D. A.; Tilikin, I. N.; Mingaleev, A. R.; Romanova, V. M.; Agafonov, A. V.

    2016-10-01

    X pinches are well known to produce very small, dense plasma pinches ("hot spots") that emit sub-nanosecond bursts of 1-8 keV radiation. Hard X-ray radiation in the range from 8 to 300 keV or more is also emitted, and only a small portion of which is associated with the X-pinch hot spot. In hybrid X-pinches (HXP), the 10 ns hard X-ray pulse is terminated by fast closure of the gap between the two conical electrodes of the HXP by rapidly expanding electrode plasmas. The temporal, spectral, and spatial properties of this higher energy radiation have been studied. This radiation was used for point-projection imaging with magnification between 1.5 and 6, and spatial resolution of 20-100 μm was demonstrated.

  11. Imaging the sun in hard X-rays - Spatial and rotating modulation collimators

    NASA Technical Reports Server (NTRS)

    Campbell, Jonathan W.; Davis, John M.; Emslie, A. G.

    1991-01-01

    Several approaches to imaging hard X-rays emitted from solar flares have been proposed or are planned for the nineties including the spatial modulation collimator (SMC) and the rotating modulation collimator (RMC). A survey of current solar flare theoretical literature indicates the desirability of spatial resolutions down to 1 arcsecond, field of views greater than the full solar disk (i.e., 32 arcminutes), and temporal resolutions down to 1 second. Although the sun typically provides relatively high flux levels, the requirement for 1 second temporal resolution raises the question as to the viability of Fourier telescopes subject to the aforementioned constraints. A basic photon counting, Monte Carlo 'end-to-end' model telescope was employed using the Astronomical Image Processing System (AIPS) for image reconstruction. The resulting solar flare hard X-ray images compared against typical observations indicated that both telescopes show promise for the future.

  12. Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution

    PubMed Central

    Yan, Hanfei; Nazaretski, Evgeny; Lauer, Kenneth; Huang, Xiaojing; Wagner, Ulrich; Rau, Christoph; Yusuf, Mohammed; Robinson, Ian; Kalbfleisch, Sebastian; Li, Li; Bouet, Nathalie; Zhou, Juan; Conley, Ray; Chu, Yong S.

    2016-01-01

    We developed a scanning hard x-ray microscope using a new class of x-ray nano-focusing optic called a multilayer Laue lens and imaged a chromosome with nanoscale spatial resolution. The combination of the hard x-ray’s superior penetration power, high sensitivity to elemental composition, high spatial-resolution and quantitative analysis creates a unique tool with capabilities that other microscopy techniques cannot provide. Using this microscope, we simultaneously obtained absorption-, phase-, and fluorescence-contrast images of Pt-stained human chromosome samples. The high spatial-resolution of the microscope and its multi-modality imaging capabilities enabled us to observe the internal ultra-structures of a thick chromosome without sectioning it. PMID:26846188

  13. STATISTICAL STUDY of HARD X-RAY SPECTRAL CHARACTERISTICS OF SOLAR FLARES

    NASA Astrophysics Data System (ADS)

    Alaoui, M.; Krucker, S.; Saint-Hilaire, P.; Lin, R. P.

    2009-12-01

    We investigate the spectral characteristics of 75 solar flares at the hard X-ray peak time observed by RHESSI (Ramaty High Energy Solar Spectroscopic Imager) in the energy range 12-150keV. At energies above 40keV, the Hard X-ray emission is mostly produced by bremsstrahlung of suprathermal electrons as they interact with the ambient plasma in the chromosphere. The observed photon spectra therefore provide diagnostics of electron acceleration processes in Solar flares. We will present statistical results of spectral fitting using two models: a broken power law plus a thermal component which is a direct fit of the photon spectrum and a thick target model plus a thermal component which is a fit of the photon spectra with assumptions on the electrons emitting bremsstrahlung in the thick target approximation.

  14. Imaging the sun in hard X-rays - Spatial and rotating modulation collimators

    NASA Technical Reports Server (NTRS)

    Campbell, Jonathan W.; Davis, John M.; Emslie, A. G.

    1991-01-01

    Several approaches to imaging hard X-rays emitted from solar flares have been proposed or are planned for the nineties including the spatial modulation collimator (SMC) and the rotating modulation collimator (RMC). A survey of current solar flare theoretical literature indicates the desirability of spatial resolutions down to 1 arcsecond, field of views greater than the full solar disk (i.e., 32 arcminutes), and temporal resolutions down to 1 second. Although the sun typically provides relatively high flux levels, the requirement for 1 second temporal resolution raises the question as to the viability of Fourier telescopes subject to the aforementioned constraints. A basic photon counting, Monte Carlo 'end-to-end' model telescope was employed using the Astronomical Image Processing System (AIPS) for image reconstruction. The resulting solar flare hard X-ray images compared against typical observations indicated that both telescopes show promise for the future.

  15. A FOCUSED, HARD X-RAY LOOK AT ARP 299 WITH NuSTAR

    SciTech Connect

    Ptak, A.; Hornschemeier, A.; Lehmer, B.; Yukita, M.; Wik, D.; Tatum, M.; Zezas, A.; Antoniou, V.; Argo, M. K.; Ballo, L.; Della Ceca, R.; Bechtol, K.; Boggs, S.; Craig, W. W.; Krivonos, R.; Christensen, F. E.; Hailey, C. J.; Harrison, F. A.; Maccarone, T. J.; Stern, D.; and others

    2015-02-20

    We report on simultaneous observations of the local starburst system Arp 299 with NuSTAR and Chandra, which provides the first resolved images of this galaxy up to energies of ∼45 keV. Fitting the 3-40 keV spectrum reveals a column density of N {sub H} ∼ 4 × 10{sup 24} cm{sup –2}, characteristic of a Compton-thick active galactic nucleus (AGN), and a 10-30 keV luminosity of 1.2 × 10{sup 43} erg s{sup –1}. The hard X-rays detected by NuSTAR above 10 keV are centered on the western nucleus, Arp 299-B, which previous X-ray observations have shown to be the primary source of neutral Fe-K emission. Other X-ray sources, including Arp 299-A, the eastern nucleus also thought to harbor an AGN, as well as X-ray binaries, contribute ≲ 10% to the 10-20 keV emission from the Arp 299 system. The lack of significant emission above 10 keV other than that attributed to Arp 299-B suggests that: (1) any AGN in Arp 299-A must be heavily obscured (N {sub H} > 10{sup 24} cm{sup –2}) or have a much lower luminosity than Arp 299-B and (2) the extranuclear X-ray binaries have spectra that cut-off above ∼10 keV. Such soft spectra are characteristic of ultraluminous X-ray sources observed to date by NuSTAR.

  16. AGN in the Swift/BAT and INTEGRAL Hard X-ray Surveys

    NASA Technical Reports Server (NTRS)

    Beckmann, Volker; Tueller, Jack; Baumgartner, Wayne; Markwardt, Craig; Mushotzky, Richard; Skinner, Gerry

    2008-01-01

    Two hard X-ray surveys are in progress at this time. They provide a unique new window on compact objects and black holes. I will discuss how these two surveys complement each other and the potential for improved coordination that could yield significant near term results in both sensitivity and time coverage. I will pay particular attention to the discovery of faint sources including new results from the 36 month survey from Swift/Burst Alert Telescope (BAT).

  17. Self-standing quasi-mosaic crystals for focusing hard X-rays

    NASA Astrophysics Data System (ADS)

    Camattari, Riccardo; Guidi, Vincenzo; Bellucci, Valerio; Neri, Ilaria; Frontera, Filippo; Jentschel, Michael

    2013-05-01

    A quasi mosaic bent crystal for high-resolution diffraction of X and γ rays has been realized. A net curvature was imprinted to the crystal thanks to a series of superficial grooves to keep the curvature without external devices. The crystal highlights very high diffraction efficiency due to quasi mosaic curvature. Quasi mosaic crystals of this kind are proposed for the realization of a high-resolution focusing Laue lens for hard X-rays.

  18. HARD X-RAY TAIL DISCOVERED IN THE CLOCKED BURSTER GS 1826–238

    SciTech Connect

    Rodi, J.; Jourdain, E.; Roques, J. P.

    2016-02-01

    The low-mass X-ray binary (LMXB) neutron star (NS) GS 1826–238 was discovered by Ginga in 1988 September. Due to the presence of quasi-periodicity in the type I X-ray burst rate, the source has been a frequent target of X-ray observations for almost 30 years. Though the bursts were too soft to be detected by INTEGRAL/SPI, the persistent emission from GS 1826–238 was detected over 150 keV during the ∼10 years of observations. Spectral analysis found a significant high-energy excess above a Comptonization model that is well fit by a power law, indicating an additional spectral component. Most previously reported spectra with hard tails in LMXB NS have had an electron temperature of a few keV and a hard tail dominating above ∼50 keV with an index of Γ ∼ 2–3. GS 1826–238 was found to have a markedly different spectrum with kT{sub e} ∼ 20 keV and a hard tail dominating above ∼150 keV with an index of Γ ∼ 1.8, more similar to black hole X-ray binaries. We report on our search for long-term spectral variability over the 25–370 keV energy range and on a comparison of the GS 1826–238 average spectrum to the spectra of other LMXB NSs with hard tails.

  19. Faint Radio Source Constraints on the Origin of the Hard X-ray Background

    NASA Astrophysics Data System (ADS)

    Moran, E. C.; Helfand, D. J.

    1999-04-01

    ASCA and BeppoSAX have greatly expanded our understanding of the hard X-ray properties of nearby starburst and Seyfert galaxies, allowing, for the first time, detailed estimates of their respective contributions to the hard X-ray background (XRB) to be made. Unfortunately, the sensitivities of these instruments are insufficient to probe either population directly at intermediate and high redshifts, where the majority of the XRB originates. As a result, discrete-source XRB models must typically rely on highly uncertain assumptions about the evolution of potential contributors with cosmic time. Clearly, it would be helpful to identify an observational constraint that minimizes (or eliminates) the need for these assumptions. Since X-ray galaxies of all types produce radio emission in conjunction with their particular brand of activity, we propose that the faint radio source population may provide such a constraint. Existing deep radio surveys, which extend to the microjansky level, should contain both starburst and Seyfert galaxies at cosmological distances. However, optical identification programs carried out to date have revealed that the majority of sub-mJy radio sources are associated with star-forming galaxies rather than AGNs, suggesting that the starburst contribution to the XRB could be significant. By combining hard X-ray and radio data for nearby starburst galaxies with the measured log N--log S relation for sub-mJy radio sources, we estimate that starburst galaxies may produce as much as 15--45% of the 5 keV XRB. Preliminary results of a similar analysis for Seyfert galaxies are complimentary, indicating that these objects cannot be responsible for all of the hard XRB.

  20. Swift/BAT calibration and the estimated BAT hard x-ray survey sensitivity

    NASA Astrophysics Data System (ADS)

    Parsons, Ann M.; Tueller, Jack; Krimm, Hans; Barthelmy, Scott D.; Cummings, James; Markwardt, Craig; Hullinger, Derek; Gehrels, Neil; Fenimore, Ed; Palmer, David; Sato, Goro; Nakazawa, Kazuhiro; Takahashi, Tadayuki; Watanabe, Shin; Okada, Yuu; Takahashi, Hiromitsu; Suzuki, Masaya; Tashiro, Makoto

    2004-02-01

    In addition to providing the initial gamma-ray burst trigger and location, the Swift Burst Alert Telescope (BAT) will also perform an all-sky hard x-ray survey based on serendipitous pointings resulting from the study of gamma-ray bursts. BAT was designed with a very wide field-of-view (FOV) so that it can observe roughly 1/7 of the sky at any time. Since gamma-ray bursts are uniformly distributed over the sky, the final BAT survey coverage is expected to be nearly uniform. BAT's large effective area and long sky exposures will produce a 15 - 150 keV survey with up to 30 times better sensitivity than any previous hard x-ray survey (e.g. HEAO A4). Since the sensitivity of deep exposures in this energy range is systematics limited, the ultimate survey sensitivity depends on the relative sizes of the statistical and systematic errors in the data. Many careful calibration experiments were performed at NASA/Goddard Space Flight Center to better understand the BAT instrument's response to 15-150 keV gamma-rays incident from any direction within the FOV. Using radioactive sources of gamma-rays with known locations and energies, the Swift team can identify potential systematic errors in the telescope's performance and estimate the actual Swift hard x-ray survey sensitivity in flight. These calibration results will be discussed and a preliminary parameterization of the BAT instrument response will be presented. While the details of the individual BAT CZT detector response will be presented elsewhere in these proceedings, this talk will focus on the translation of the calibration experimental data into overall hard x-ray survey sensitivity.

  1. The protoMIRAX hard X-ray imaging balloon experiment

    NASA Astrophysics Data System (ADS)

    Braga, João; D'Amico, Flavio; Avila, Manuel A. C.; Penacchioni, Ana V.; Rodrigo Sacahui, J.; de Santiago, Valdivino A.; Mattiello-Francisco, Fátima; Strauss, Cesar; Fialho, Márcio A. A.

    2015-08-01

    Context. The protoMIRAX hard X-ray imaging telescope is a balloon-borne experiment developed as a pathfinder for the MIRAX satellite mission. The experiment consists essentially in a coded-aperture hard X-ray (30-200 keV) imager with a square array (13 × 13) of 2 mm-thick planar CZT detectors with a total area of 169 cm2. The total, fully-coded field-of-view is 21° × 21° and the angular resolution is 1°43'. Aims: The main objective of protoMIRAX is to carry out imaging spectroscopy of selected bright sources to demonstrate the performance of a prototype of the MIRAX hard X-ray imager. In this paper we describe the protoMIRAX instrument and all the subsystems of its balloon gondola, and we show simulated results of the instrument performance. Methods: Detailed background and imaging simulations were performed for protoMIRAX balloon flights. The 3σ sensitivity for the 30-200 keV range is ~1.9 × 10-5 photons cm-2 s-1 for an integration time of 8 h at an atmospheric depth of 2.7 g cm-2 and an average zenith angle of 30°. We developed an attitude-control system for the balloon gondola and new data handling and ground systems that also include prototypes for the MIRAX satellite. Results: We present the results of Monte Carlo simulations of the camera response at balloon altitudes, showing the expected background level and the detailed sensitivity of protoMIRAX. We also present the results of imaging simulations of the Crab region. Conclusions: The results show that protoMIRAX is capable of making spectral and imaging observations of bright hard X-ray source fields. Furthermore, the balloon observations will carry out very important tests and demonstrations of MIRAX hardware and software in a near space environment.

  2. Fast temporal correlation between hard X-ray and ultraviolet continuum brightenings

    NASA Technical Reports Server (NTRS)

    Machado, Marcos E.; Mauas, Pablo J.

    1986-01-01

    Recent Solar Maximum Mission (SMM) observations have shown fast and simultaneous increases in hard X-rays (HXR, E25 keV) and ultraviolet continuum (UVC, lambda lambda approx. equals 1600 and 1388 A) radiation. A simple and natural explanation is given for this phenomenon to happen, which does not involve extreme conditions for energy transport processes, and confirms earlier results on the effect of XUV photoionization in the solar atmosphere.

  3. AGN in the Swift/BAT and INTEGRAL Hard X-ray Surveys

    NASA Technical Reports Server (NTRS)

    Beckmann, Volker; Tueller, Jack; Baumgartner, Wayne; Markwardt, Craig; Mushotzky, Richard; Skinner, Gerry

    2008-01-01

    Two hard X-ray surveys are in progress at this time. They provide a unique new window on compact objects and black holes. I will discuss how these two surveys complement each other and the potential for improved coordination that could yield significant near term results in both sensitivity and time coverage. I will pay particular attention to the discovery of faint sources including new results from the 36 month survey from Swift/Burst Alert Telescope (BAT).

  4. A DEEP RADIO SURVEY OF HARD STATE AND QUIESCENT BLACK HOLE X-RAY BINARIES

    SciTech Connect

    Miller-Jones, J. C. A.; Jonker, P. G.; Maccarone, T. J.; Calvelo, D. E.; Nelemans, G.

    2011-09-20

    We have conducted a deep radio survey of a sample of black hole X-ray binaries in the hard and quiescent states to determine whether any systems were sufficiently bright for astrometric follow-up with high-sensitivity very long baseline interferometric arrays. The one hard-state system, Swift J1753.5-0127, was detected at a level of 0.5 mJy beam{sup -1}. All 11 quiescent systems were not detected. In the three cases with the highest predicted quiescent radio brightnesses (GRO J0422+32, XTE J1118+480, and GRO J1655-40), the new capabilities of the Expanded Very Large Array were used to reach noise levels as low as 2.6 {mu}Jy beam{sup -1}. None of the three sources were detected to 3{sigma} upper limits of 8.3, 7.8, and 14.2 {mu}Jy beam{sup -1}, respectively. These observations represent the most stringent constraints to date on quiescent radio emission from black hole X-ray binaries. The uncertainties in the source distances, quiescent X-ray luminosities at the times of the observations, and the power-law index of the empirical correlation between radio and X-ray luminosities make it impossible to determine whether these three sources are significantly less luminous in the radio band than expected. Thus it is not clear whether that correlation holds all the way down to quiescence for all black hole X-ray binaries.

  5. Simbol-X: A New Generation Soft/Hard X-ray Telescope

    NASA Astrophysics Data System (ADS)

    Slane, Patrick O.; Romaine, S.; Murray, S. S.; Brissenden, R.; Elvis, M.; Gorenstein, P.; Steel, S.; O'Dell, S.; Kolodziejczak, J.; Ramsey, B.; Angelini, L.; Citterio, O.; Pareschi, G.

    2008-03-01

    Simbol-X is arguably the most powerful broad-band focusing hard (0.5-80 keV) X-ray telescope operating in the 2013 timeframe. The combination of good angular resolution, broad energy response, and efficient observing provided by a good field of view and high orbit will provide a very large increase in sensitivity in a hitherto relatively unexplored spectral region. This will enable key scientific investigations including a census of supermassive black holes in the crucial energy range in which the cosmic X-ray background peaks, measurements of the geometry and dynamics of accretion in black hole binaries, characterization of hard X-ray sources in the Galactic center, and the nature and origin of energetic particles in galaxy clusters and supernova remnants. Its single optics module contains a set of nested nickel shells coated with multilayers to boost the high-energy response and the field of view. Its focal plane detectors are a novel hybrid configuration, with thick-depletion silicon providing the low energy response, and Cadmium Telluride the high energy response. To achieve the long focal length necessary for large collecting areas at high energies, the optics and detectors are on separate high-earth-orbit formation-flying spacecrafts, 20 m apart. We describe a proposed US participation in the Simbol-X program to provide technical expertise in the area of multilayer coatings for the X-ray optics; expertise in science and the X-ray testing and calibration of the flight optics; and support as a data analysis, Guest Investigator, and archiving center. The use of the NASA DSN Goldstone station, as a complement to the Malindi tracking station,will also be provided.

  6. Prospects of hard X-ray polarimetry with Astrosat-CZTI

    NASA Astrophysics Data System (ADS)

    Vadawale, Santosh V.; Chattopadhyay, Tanmoy; Rao, A. R.

    2014-06-01

    Astrosat is the first Indian satellite mission dedicated for astronomical studies. It is planned for launch during 2014 and will have five instruments for multi-wavelength observations from optical to hard X-rays. Cadmium Zing Telluride Imager (CZTI) is one of the five instruments aiming for simultaneous X-ray spectroscopy and imaging in the energy range of 10 to 100 keV (along with all sky photometric capability unto 250 keV). It is based on pixilated CZT detector array with total geometric area of 10^24 cm2. It will have two-dimensional coded mask for medium resolution X-ray imaging. The CZT detector plane will be realized using CZT detector modules having integrated readout electronics. Each CZT detector module consists of 4 cm × 4 cm CZT with thickness of 5 mm which is further pixilated into 16 × 16 array of pixels. Thus each pixel has size of 2.5 mm × 2.5 mm and thickness of 5 mm. Such pixilated detector plane can in principle be used for hard X-ray polarization measurements based on the principle of Compton scattering by measuring azimuthal distribution of simultaneous events in two adjacent pixels. We have carried out detailed Geant4 simulations for estimating polarimetric capabilities of CZTI detector plane. The results indicate that events in the energy range of 100 to 250 keV, where the 5 mm thick CZT detector has significant detection efficiency, can be used for polarimetric studies. Our simulation results indicate the minimum detectable polarization (MDP) at the level of 5 % can be achieved for bright Crab like X-ray sources with exposure time of 500 ks. We also carried out preliminary experiments to verify the results from our simulations. Here we present detailed method and results of our simulations as well as preliminary results from the experimental verification of polarimetric capabilities of CZT detector modules used in Astrosat CZTI.

  7. The generation of rapid solar flare hard X-ray and microwave fluctuations in current sheets

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.

    1986-01-01

    The generation of rapid fluctuations, or spikes, in hard X-ray and microwave bursts via the disruption of electron heating and acceleration in current sheets is studied. It is found that 20 msec hard X-ray fluctuations can be thermally generated in a current sheet if the resistivity in the sheet is highly anomalous, the plasma density in the emitting region is relatively high, and the volume of the emitting region is greater than that of the current sheet. A specific mechanism for producing the fluctuations, involving heating in the presence of ion acoustic turbulence and a constant driving electric field, and interruption of the heating by a strong two-stream instability, is discussed. Variations upon this mechanism are also discussed. This mechanism also modulates electron acceleration, as required for the microwave spike emission. If the hard X-ray emission at energies less than approx. 1000 keV is nonthermal bremsstrahlung, the coherent modulation of electron acceleration in a large number of current sheets is required.

  8. Positional characteristics of meter-decameter wavelength bursts associated with hard X-ray bursts

    NASA Technical Reports Server (NTRS)

    Kundu, M. R.; Gergely, T. E.; Kane, S. R.

    1982-01-01

    Isolated and grouped type III bursts have been observed in temporal association with impulsive hard X-ray bursts in the 26-154 keV range, down to frequencies as low as 30 MHz and out to a distance of 3.1 solar radii from the disk center. The bursts occurred in regions whose electron density may have been as much as 20 times higher than that of the Newkirk-Saito model. The present observations indicate that electron acceleration/injection occurs over a region covering a wide range of magnetic field lines. It is noted that, of the two gradual hard X-ray bursts observed in association with type IV bursts, one was accompanied by a type II event, while the other was not, although both exhibited the same characteristics. It is suggested that the gradual burst associated with a type IV only involved electrons which are trapped in the plasmoid which produces the meter-decameter emission, while another fraction of the population is trapped in the low-lying loops which produce the hard X-ray and centimeter radiation.

  9. The generation of rapid solar flare hard X-ray and microwave fluctuations in current sheets

    NASA Astrophysics Data System (ADS)

    Holman, Gordon D.

    The generation of rapid fluctuations, or spikes, in hard X-ray and microwave bursts via the disruption of electron heating and acceleration in current sheets is studied. It is found that 20 msec hard X-ray fluctuations can be thermally generated in a current sheet if the resistivity in the sheet is highly anomalous, the plasma density in the emitting region is relatively high, and the volume of the emitting region is greater than that of the current sheet. A specific mechanism for producing the fluctuations, involving heating in the presence of ion acoustic turbulence and a constant driving electric field, and interruption of the heating by a strong two-stream instability, is discussed. Variations upon this mechanism are also discussed. This mechanism also modulates electron acceleration, as required for the microwave spike emission. If the hard X-ray emission at energies less than approx. 1000 keV is nonthermal bremsstrahlung, the coherent modulation of electron acceleration in a large number of current sheets is required.

  10. SENSITIVITY OF STACKED IMAGING DETECTORS TO HARD X-RAY POLARIZATION

    SciTech Connect

    Muleri, Fabio; Campana, Riccardo

    2012-06-01

    The development of multi-layer optics which allow to focus photons up to 100 keV and more promises an enormous jump in sensitivity in the hard X-ray energy band. This technology is already planned to be exploited by future missions dedicated to spectroscopy and imaging at energies >10 keV, e.g., Astro-H and NuSTAR. Nevertheless, our understanding of the hard X-ray sky would greatly benefit from carrying out contemporaneous polarimetric measurements, because the study of hard spectral tails and of polarized emission are often two complementary diagnostics of the same non-thermal and acceleration processes. At energies above a few tens of keV, the preferred technique to detect polarization involves the determination of photon directions after a Compton scattering. Many authors have asserted that stacked detectors with imaging capabilities can be exploited for this purpose. If it is possible to discriminate those events which initially interact in the first detector by Compton scattering and are subsequently absorbed by the second layer, then the direction of scattering is singled out from the hit pixels in the two detectors. In this paper, we give the first detailed discussion of the sensitivity of such a generic design to the X-ray polarization. The efficiency and the modulation factor are calculated analytically from the geometry of the instruments and then compared with the performance as derived by means of Geant4 Monte Carlo simulations.

  11. Hard X-ray Polarimetry With Wide Band Laue Lens Telescopes

    NASA Astrophysics Data System (ADS)

    Caroli, E.

    2011-09-01

    Polarimetry is today considered a key observational parameter which can be used to help solve important scientific issues that are still open in the hard X-ray domain (above 10 keV). Therefore the ability to perform high sensitivity polarisation measurements has become a mandatory requirement for the next generation of space telescopes operating in this energy range. In particular the development of new high energy focusing optics, such as wide band Laue lenses operating from ~60 keV up to several hundred keV, with their 50-100 times better sensitivity with respect to current instrumentation, opens a real possibility to make hard X-ray polarimetry an almost standard measurement. Hard X-ray polarimetry can be performed using highly segmented focal plane detectors operated as scattering polarimeters. In this work we summarize results obtained by our group in a series of experiments with CZT/CdTe pixel detector prototypes operating as scattering polarimeters in the range between ~100-700 keV as well as Montecarlo evaluations of the achievable performance in polarisation measurements for Laue lens telescopes using focal planes based on CdTe/CZT pixel detectors.

  12. THE 70 MONTH SWIFT-BAT ALL-SKY HARD X-RAY SURVEY

    SciTech Connect

    Baumgartner, W. H.; Tueller, J.; Markwardt, C. B.; Skinner, G. K.; Barthelmy, S.; Gehrels, N.; Evans, P. A.

    2013-08-15

    We present the catalog of sources detected in 70 months of observations with the Burst Alert Telescope (BAT) hard X-ray detector on the Swift gamma-ray burst observatory. The Swift-BAT 70 month survey has detected 1171 hard X-ray sources (more than twice as many sources as the previous 22 month survey) in the 14-195 keV band down to a significance level of 4.8{sigma}, associated with 1210 counterparts. The 70 month Swift-BAT survey is the most sensitive and uniform hard X-ray all-sky survey and reaches a flux level of 1.03 Multiplication-Sign 10{sup -11} erg s{sup -1} cm{sup -2} over 50% of the sky and 1.34 Multiplication-Sign 10{sup -11} erg s{sup -1} cm{sup -2} over 90% of the sky. The majority of new sources in the 70 month survey continue to be active galactic nuclei, with over 700 in the catalog. As part of this new edition of the Swift-BAT catalog, we also make available eight-channel spectra and monthly sampled light curves for each object detected in the survey in the online journal and at the Swift-BAT 70 month Web site.

  13. Positional characteristics of meter-decameter wavelength bursts associated with hard X-ray bursts

    NASA Technical Reports Server (NTRS)

    Kundu, M. R.; Gergely, T. E.; Kane, S. R.

    1982-01-01

    Isolated and grouped type III bursts have been observed in temporal association with impulsive hard X-ray bursts in the 26-154 keV range, down to frequencies as low as 30 MHz and out to a distance of 3.1 solar radii from the disk center. The bursts occurred in regions whose electron density may have been as much as 20 times higher than that of the Newkirk-Saito model. The present observations indicate that electron acceleration/injection occurs over a region covering a wide range of magnetic field lines. It is noted that, of the two gradual hard X-ray bursts observed in association with type IV bursts, one was accompanied by a type II event, while the other was not, although both exhibited the same characteristics. It is suggested that the gradual burst associated with a type IV only involved electrons which are trapped in the plasmoid which produces the meter-decameter emission, while another fraction of the population is trapped in the low-lying loops which produce the hard X-ray and centimeter radiation.

  14. Machine learning from hard x-ray surveys: applications to magnetic cataclysmic variable studies

    NASA Astrophysics Data System (ADS)

    Scaringi, Simone

    2009-11-01

    Within this thesis are discussed two main topics of contemporary astrophysics. The first is that of machine learning algorithms for astronomy whilst the second is that of magnetic cataclysmic variables (mCVs). To begin, an overview is given of ISINA: INTEGRAL Scouce Identifiction Network Algorithm. This machine learning algorithm, using random forests, is applied to the IBIS/ISGRI data set in order to ease the production of unbiased future soft gamma-ray source catalogues. The feature extraction process on an initial candidate list is described together with feature merging. Three trainng and testing sets are created in order to deal with the diverse time-scales encountered when dealing with the gamma-ray sky: one dealing with faint persistent source recognition, one dealing with strong persistent sources and a final one dealing with transients. For the latter, a new transient detection technique is introduced and described: the transient matrix. Finally the performance of the network is assessed and discussed using the testing set and some illustrative source examples. ISINA is also compared to the more conventional approach of visual inspection. Next mCVs are discussed, and in particular the properties arising from a hard X-ray selected sample which has proven remarkably efficient in detecting intermediate polars and asynchronous polars, two of the rarest type of cataclysmic variables (CVs). This thesis focuses particularly on the link between hard X-ray properties and spin/orbital periods. To this end, a new sample of these objects is constructed by cross-corelating candidate sources detected in INTEGRAL/IBIS observations against catalogues of known CVs. Also included in the analysis are hard X-ray Observations from Swift/BAT and SUZAKU/HXD in order to make the study more complete. It is found that most hard X-ray detected mCVs have Pspin/Porb<0.1 above the period gap. In this respect, attention is given to the very low number of detected systems in any ban

  15. Eta Carinae's Hard X-ray Tail Measured with XMM-Newton and NuSTAR

    NASA Astrophysics Data System (ADS)

    Hamaguchi, Kenji; Corcoran, Michael F.; Sharma, Neetika; Gull, Theodore R.; Takahashi, Hiromitsu; Grefenstette, Brian; Yuasa, Takayuki; Stuhlinger, Martin; Russell, Christopher Michael Post; Moffat, Anthony F. J.; Madura, Thomas; Richardson, Noel; Groh, Jose; Pittard, Julian; Owocki, Stan

    2016-04-01

    Massive binary stellar systems drive shock plasma heating via the collision of winds from two stars (wind-wind collision: WWC). With typical (pre-shock) wind speeds of ≥1000 km s-1, temperatures can reach as high as several tens of millions of Kelvin. X-ray emission from these stable shocks provides important tests of shock physics. While the spectrum below 10 keV is complicated by discrete line emission and absorption components, the X-ray spectrum above 10 keV is relatively simple. This high-energy emission therefore provides important clues on the condition of the maximum thermalized plasma where the winds collide head-on, while also providing important information about particle acceleration through the shock.We obtained two coordinated X-ray observations of the super massive binary system η Carinae with XMM-Newton and NuSTAR, during the elevated X-ray flux state and just before the X-ray minimum flux state around the periastron passage in the summer of 2014. These NuSTAR observations clearly detected X-ray emission associated with η Car extending up to ~50 keV for the first time. The NuSTAR spectrum above 10 keV can be fit with the bremsstrahlung tail from a kT ~6 keV plasma, about 2 keV higher than those measured from the iron K emission line complex. This result may suggest that the companion star's pre-shock wind velocity is underestimated. The NuSTAR observation near the X-ray minimum state showed a gradual decline in the >5 keV emission by 40% in a day. The extreme absorption to the hardest emission component (NH~1e24 cm-2) suggests increased obscuration of the WWC X-ray emission by the thick primary stellar wind prior to superior conjunction. Neither observation detected the power-law component in the extremely hard band that INTEGRAL and Suzaku observed prior to 2011. If the non-detection by NuSTAR is caused by absorption, the power-law source must be small and located very near the WWC apex. Alternatively, it may be that the power-law source is not

  16. Starburst Galaxies: Hard X-ray spectra and contribution to the diffuse background

    NASA Technical Reports Server (NTRS)

    Gruber, Duane E.

    1993-01-01

    During the period of this grant two main tasks were performed: a determination of a selection criterion for starburst galaxies most likely to emit X-rays, and performance of a pilot study of the X-ray emission from nine such systems. Starburst galaxies may be expected to emit flat-spectrum X-ray at energies above 10 keV resulting from the various remnants of the short-lived massive stars which characterize the starburst. The investigation to determine the optimum sample resulted in a change from an X-ray selected (HEAO-2) sample to infrared selection based on the IRAS catalogue. A much broader sample thereby available for study, and selection could be limited to only the nearest objects and still obtain a reasonably large sample. A sample of 99 of the brightest infrared starburst galaxies was settled on for the X-ray survey. For a set of practical size, this was then reduced to a subset of 53, based on luminosity and nearness. X-ray emission from these objects was individually measured from the UCSD HEAO-1 all-sky survey in four energy bands between 13 keV to 160 keV. This data base consists of about 20 optical disk volumes. Net significance for the result was roughly two sigma, and a very hard spectral shape is indicated for the net spectrum of the surveyed galaxies. With the possibility of detection of the class, it was then felt worthwhile to examine fluxes from these sources in other archival data. This was performed with the HEAO-1 A2 data and the HEAO-2 (EINSTEIN) main archive and slew survey. Positive results were also obtained for the sample, but again at weak significance. With three independent measures of weak X-ray fluxes from nearby starburst galaxies, we wrote a letter to the Astrophysical Journal (enclosed) discussing these results and their likely significance, in particular, for the contribution to the cosmic diffuse x-ray background, perhaps as much as 25 percent.

  17. The GALAXIES beamline at the SOLEIL synchrotron: inelastic X-ray scattering and photoelectron spectroscopy in the hard X-ray range.

    PubMed

    Rueff, J P; Ablett, J M; Céolin, D; Prieur, D; Moreno, Th; Balédent, V; Lassalle-Kaiser, B; Rault, J E; Simon, M; Shukla, A

    2015-01-01

    The GALAXIES beamline at the SOLEIL synchrotron is dedicated to inelastic X-ray scattering (IXS) and photoelectron spectroscopy (HAXPES) in the 2.3-12 keV hard X-ray range. These two techniques offer powerful complementary methods of characterization of materials with bulk sensitivity, chemical and orbital selectivity, resonant enhancement and high resolving power. After a description of the beamline components and endstations, the beamline capabilities are demonstrated through a selection of recent works both in the solid and gas phases and using either IXS or HAXPES approaches. Prospects for studies on liquids are discussed.

  18. Experimental study of hard-X ray emission from laboratory sparks

    NASA Astrophysics Data System (ADS)

    Marisaldi, Martino; Rizzi, Rolando; Levi, Giuseppe; Malgesini, Roberto; Villa, Andrea; Mazza, Paolo; Labanti, Claudio; Fuschino, Fabio; Campana, Riccardo; Bianchini, David; Brancaccio, Rossella; Montanari, Alessandro; Patrizii, Laura

    2014-05-01

    We present the characterization of hard-X rays produced by meter-long laboratory sparks carried out at the high-voltage laboratory of RSE, Milano, Italy. Sparks are known to emit X-rays when positive and negative streamers connect, before breakdown. Numerical simulations suggest that X-rays are produced by Bremsstrahlung in air by electrons accelerated to the runaway regime in the high electric field at the streamers tip. Positive meter-long discharges are produced by a Marx generator loaded by a meter-long air gap formed by a spherical anode and a conical-shaped cathode. Maximum voltage at breakdown is about 1 MV. We investigate the production of X-rays by means of an array of scintillation detectors deployed around the cathode. Each detector is a 2'' NaI(Tl) scintillating crystal coupled to a photomultiplier tube (PMT). Each detector is battery-powered and enclosed in a metallic housing for EM shielding. Analog signal output is trasmitted to a shielded control room by means of optical fibre tranceivers, and then collected by a fast digitizer. We present the experimental setup and first results concerning detection efficiency, energy spectra, and geometrical distribution of the emission.

  19. PLEIADES: High Peak Brightness, Subpicosecond Thomson Hard-X-ray source

    SciTech Connect

    Kuba, J; Anderson, S G; Barty, C J; Betts, S M; Booth, R; Brown, W J; Crane, J K; Cross, R R; Fittinghoff, D N; Gibson, D J; Harteman, F V; Le Sage, G P; Rosenzweig, J B; Tremaine, A M; Springer, P T

    2003-12-15

    The Picosecond Laser-Electron Inter-Action for the Dynamic Evaluation of Structures (PLEIADES) facility, is a unique, novel, tunable (10-200 keV), ultrafast (ps-fs), hard x-ray source that greatly extends the parameter range reached by existing 3rd generation sources, both in terms of x-ray energy range, pulse duration, and peak brightness at high energies. First light was observed at 70 keV early in 2003, and the experimental data agrees with 3D codes developed at LLNL. The x-rays are generated by the interaction of a 50 fs Fourier-transform-limited laser pulse produced by the TW-class FALCON CPA laser and a highly focused, relativistic (20-100 MeV), high brightness (1 nC, 0.3-5 ps, 5 mm.mrad, 0.2% energy spread) photo-electron bunch. The resulting x-ray brightness is expected to exceed 10{sup 20} ph/mm{sup 2}/s/mrad{sup 2}/0.1% BW. The beam is well-collimated (10 mrad divergence over the full spectrum, 1 mrad for a single color), and the source is a unique tool for time-resolved dynamic measurements in matter, including high-Z materials.

  20. Hard x-ray tomographic studies of the destruction of an energetic electron ring

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Gekelman, W.; Pribyl, P.

    2013-05-01

    A tomography system was designed and built at the Large Plasma Device to measure the spatial distribution of hard x-ray (100 KeV-3 MeV) emissivity. The x-rays were generated when a hot electron ring was significantly disrupted by a shear Alfvén wave. The plasma is pulsed at 1 Hz (1 shot/s). A lead shielded scintillator detector with an acceptance angle defined by a lead pinhole is mounted on a rotary gimbal and used to detect the x-rays. The system measures one chord per plasma shot using only one detector. A data plane usually consists of several hundred chords. A novel Dot by Dot Reconstruction (DDR) method is introduced to calculate the emissivity profile from the line integrated data. In the experiments, there are often physical obstructions, which make measurements at certain angles impossible. The DDR method works well even in this situation. The method was tested with simulated data, and was found to be more effective than previously published methods for the specific geometry of this experiment. The reconstructed x-ray emissivity from experimental data by this method is shown.

  1. Resonantly Enhanced Betatron Hard X-rays from Ionization Injected Electrons in a Laser Plasma Accelerator

    NASA Astrophysics Data System (ADS)

    Huang, K.; Li, Y. F.; Li, D. Z.; Chen, L. M.; Tao, M. Z.; Ma, Y.; Zhao, J. R.; Li, M. H.; Chen, M.; Mirzaie, M.; Hafz, N.; Sokollik, T.; Sheng, Z. M.; Zhang, J.

    2016-06-01

    Ultrafast betatron x-ray emission from electron oscillations in laser wakefield acceleration (LWFA) has been widely investigated as a promising source. Betatron x-rays are usually produced via self-injected electron beams, which are not controllable and are not optimized for x-ray yields. Here, we present a new method for bright hard x-ray emission via ionization injection from the K-shell electrons of nitrogen into the accelerating bucket. A total photon yield of 8 × 108/shot and 108 photons with energy greater than 110 keV is obtained. The yield is 10 times higher than that achieved with self-injection mode in helium under similar laser parameters. The simulation suggests that ionization-injected electrons are quickly accelerated to the driving laser region and are subsequently driven into betatron resonance. The present scheme enables the single-stage betatron radiation from LWFA to be extended to bright γ-ray radiation, which is beyond the capability of 3rd generation synchrotrons.

  2. Ultra-high aspect ratio high-resolution nanofabrication for hard X-ray diffractive optics.

    PubMed

    Chang, Chieh; Sakdinawat, Anne

    2014-06-27

    Although diffractive optics have played a major role in nanoscale soft X-ray imaging, high-resolution and high-efficiency diffractive optics have largely been unavailable for hard X-rays where many scientific, technological and biomedical applications exist. This is owing to the long-standing challenge of fabricating ultra-high aspect ratio high-resolution dense nanostructures. Here we report significant progress in ultra-high aspect ratio nanofabrication of high-resolution, dense silicon nanostructures using vertical directionality controlled metal-assisted chemical etching. The resulting structures have very smooth sidewalls and can be used to pattern arbitrary features, not limited to linear or circular. We focus on the application of X-ray zone plate fabrication for high-efficiency, high-resolution diffractive optics, and demonstrate the process with linear, circular, and spiral zone plates. X-ray measurements demonstrate high efficiency in the critical outer layers. This method has broad applications including patterning for thermoelectric materials, battery anodes and sensors among others.

  3. Hard X-ray measurement from a plasma focus of low energy

    NASA Astrophysics Data System (ADS)

    Silva, Patricio; Farías, Cristián; L'Huissier, Patricio; Pinto, Victor; Zambra, Marcelo; Soto, Leopoldo

    2008-11-01

    Hard X-ray emission in the plasma focus device PF-400J [1-3] is studied using a stepped filters array of different materials and thickness leaned to a radiographic commercial cassette, Agfa Curix [4, 5]. This diagnostic is located in the axial symmetrical axis at 45 cm away from pinch zone. Different targets are used (Cu, Mo, Ag, Pb) at the bottom of the central hole of the anode. The device was run using Hydrogen like filling gas at a charging voltage between 28 kV to 30 kV. Accumulating X radiation over a X-ray film by means of a sequence of electrical discharges, effective energies are obtained whose values are between 30 keV to close 100 keV. The obtained energy is discussed and interpreted like an effective energy, when it is compared with the results that would be obtained by means of X-ray generators based on a conventional accelerator. X-ray photographies of organic bodies are obtained showing possible applications.

  4. Hard X-rays as pump and probe of atomic motion in oxide glasses.

    PubMed

    Ruta, B; Zontone, F; Chushkin, Y; Baldi, G; Pintori, G; Monaco, G; Rufflé, B; Kob, W

    2017-06-21

    Nowadays powerful X-ray sources like synchrotrons and free-electron lasers are considered as ultimate tools for probing microscopic properties in materials. However, the correct interpretation of such experiments requires a good understanding on how the beam affects the properties of the sample, knowledge that is currently lacking for intense X-rays. Here we use X-ray photon correlation spectroscopy to probe static and dynamic properties of oxide and metallic glasses. We find that although the structure does not depend on the flux, strong fluxes do induce a non-trivial microscopic motion in oxide glasses, whereas no such dependence is found for metallic glasses. These results show that high fluxes can alter dynamical properties in hard materials, an effect that needs to be considered in the analysis of X-ray data but which also gives novel possibilities to study materials properties since the beam can not only be used to probe the dynamics but also to pump it.

  5. Hard X-Ray Emission from Partially Occulted Solar Flares: RHESSI Observations in Two Solar Cycles

    NASA Astrophysics Data System (ADS)

    Effenberger, Frederic; Rubio da Costa, Fatima; Oka, Mitsuo; Saint-Hilaire, Pascal; Liu, Wei; Petrosian, Vahé; Glesener, Lindsay; Krucker, Säm

    2017-02-01

    Flares close to the solar limb, where the footpoints are occulted, can reveal the spectrum and structure of the coronal looptop source in X-rays. We aim at studying the properties of the corresponding energetic electrons near their acceleration site, without footpoint contamination. To this end, a statistical study of partially occulted flares observed with Reuven Ramaty High-Energy Solar Spectroscopic Imager is presented here, covering a large part of solar cycles 23 and 24. We perform detailed spectra, imaging, and light curve analyses for 116 flares and include contextual observations from SDO and STEREO when available, providing further insights into flare emission that were previously not accessible. We find that most spectra are fitted well with a thermal component plus a broken power-law, non-thermal component. A thin-target kappa distribution model gives satisfactory fits after the addition of a thermal component. X-ray imaging reveals small spatial separation between the thermal and non-thermal components, except for a few flares with a richer coronal source structure. A comprehensive light curve analysis shows a very good correlation between the derivative of the soft X-ray flux (from GOES) and the hard X-rays for a substantial number of flares, indicative of the Neupert effect. The results confirm that non-thermal particles are accelerated in the corona and estimated timescales support the validity of a thin-target scenario with similar magnitudes of thermal and non-thermal energy fluxes.

  6. Resonantly Enhanced Betatron Hard X-rays from Ionization Injected Electrons in a Laser Plasma Accelerator

    PubMed Central

    Huang, K.; Li, Y. F.; Li, D. Z.; Chen, L. M.; Tao, M. Z.; Ma, Y.; Zhao, J. R.; Li, M. H.; Chen, M.; Mirzaie, M.; Hafz, N.; Sokollik, T.; Sheng, Z. M.; Zhang, J.

    2016-01-01

    Ultrafast betatron x-ray emission from electron oscillations in laser wakefield acceleration (LWFA) has been widely investigated as a promising source. Betatron x-rays are usually produced via self-injected electron beams, which are not controllable and are not optimized for x-ray yields. Here, we present a new method for bright hard x-ray emission via ionization injection from the K-shell electrons of nitrogen into the accelerating bucket. A total photon yield of 8 × 108/shot and 108 photons with energy greater than 110 keV is obtained. The yield is 10 times higher than that achieved with self-injection mode in helium under similar laser parameters. The simulation suggests that ionization-injected electrons are quickly accelerated to the driving laser region and are subsequently driven into betatron resonance. The present scheme enables the single-stage betatron radiation from LWFA to be extended to bright γ-ray radiation, which is beyond the capability of 3rd generation synchrotrons. PMID:27273170

  7. Resonantly Enhanced Betatron Hard X-rays from Ionization Injected Electrons in a Laser Plasma Accelerator.

    PubMed

    Huang, K; Li, Y F; Li, D Z; Chen, L M; Tao, M Z; Ma, Y; Zhao, J R; Li, M H; Chen, M; Mirzaie, M; Hafz, N; Sokollik, T; Sheng, Z M; Zhang, J

    2016-06-08

    Ultrafast betatron x-ray emission from electron oscillations in laser wakefield acceleration (LWFA) has been widely investigated as a promising source. Betatron x-rays are usually produced via self-injected electron beams, which are not controllable and are not optimized for x-ray yields. Here, we present a new method for bright hard x-ray emission via ionization injection from the K-shell electrons of nitrogen into the accelerating bucket. A total photon yield of 8 × 10(8)/shot and 10(8 )photons with energy greater than 110 keV is obtained. The yield is 10 times higher than that achieved with self-injection mode in helium under similar laser parameters. The simulation suggests that ionization-injected electrons are quickly accelerated to the driving laser region and are subsequently driven into betatron resonance. The present scheme enables the single-stage betatron radiation from LWFA to be extended to bright γ-ray radiation, which is beyond the capability of 3(rd) generation synchrotrons.

  8. Electron trapping in evolving coronal structures during a large gradual hard X-ray/radio burst

    NASA Technical Reports Server (NTRS)

    Bruggmann, G.; Vilmer, N.; Klein, K.-L.; Kane, S. R.

    1994-01-01

    Gradual hard X-ray/radio bursts are characterized by their long duration, smooth time profile, time delays between peaks at different hard X-ray energies and microwaves, and radiation from extended sources in the low and middle corona. Their characteristic properties have been ascribed to the dynamic evolution of the accelerated electrons in coronal magnetic traps or to the separate acceleration of high-energy electrons in a 'second step' process. The information available so far was drawn from quality considerations of time profiles or even only from the common occurrence of emissions in different spectral ranges. This paper presents model computations of the temporal evolution of hard X-ray and microwave spectra, together with a qualitative discussion of radio lightcurves over a wide spectral range, and metric imaging observations. The basis hypothesis investigated is that the peculiar 'gradual' features can be related to the dynamical evolution of electrons injected over an extended time interval in a coronal trap, with electrons up to relativistic energies being injected simultaneously. The analyzed event (26 April. 1981) is particularly challenging to this hypothesis because of the long time delays between peaks at different X-ray energies and microwave frequencies. The observations are shown to be consistent with the hypothesis, provided that the electrons lose their energy by Coulomb collisions and possibly betatron deceleration. The access of the electrons to different coronal structures varies in the course of the event. The evolution and likely destabilization of part of the coronal plasma-magnetic field configuration is of crucial influence in determining the access to these structures and possibly the dynamical evolution of the trapped electrons through betatron deceleration in the late phase of the event.

  9. Hard X-Ray Emission of the Luminous Infrared Galaxy NGC 6240 as Observed by Nustar

    NASA Technical Reports Server (NTRS)

    Puccetti, S.; Comastri, A.; Bauer, F. E.; Brandt, W. N.; Fiore, F.; Harrison, F. A.; Luo, B.; Stern, D.; Urry, C. M.; Alexander, D. M.; Annuar, A.; Arévalo, P.; Balokovic, M.; Boggs, S. E.; Brightman, M.; Christensen, F. E.; Craig, W. W.; Gandhi, P.; Hailey, C. J.; Koss, M. J.; La Massa, S.; Marinucci, A.; Ricci, C.; Walton, D. J.; Zappacosta, L.; Zhang, W.

    2016-01-01

    We present a broadband (approx.0.3-70 keV) spectral and temporal analysis of NuSTAR observations of the luminous infrared galaxy NGC 6240 combined with archival Chandra, XMM-Newton, and BeppoSAX data. NGC 6240 is a galaxy in a relatively early merger state with two distinct nuclei separated by approx.1.5. Previous Chandra observations resolved the two nuclei and showed that they are both active and obscured by Compton-thick material. Although they cannot be resolved by NuSTAR, we were able to clearly detect, for the first time, both the primary and the reflection continuum components thanks to the unprecedented quality of the NuSTAR data at energies >10 keV. The NuSTAR hard X-ray spectrum is dominated by the primary continuum piercing through an absorbing column density which is mildly optically thick to Compton scattering (tau approx. = 1.2, NH approx. 1.5×10(exp 24)/sq cm. We detect moderately hard X-ray (>10 keV) flux variability up to 20% on short (15-20 ks) timescales. The amplitude of the variability is largest at approx..30 keV and is likely to originate from the primary continuum of the southern nucleus. Nevertheless, the mean hard X-ray flux on longer timescales (years) is relatively constant. Moreover, the two nuclei remain Compton-thick, although we find evidence of variability in the material along the line of sight with column densities NH < or = 2×10(exp 23)/sq cm over long (approx.3-15 yr) timescales. The observed X-ray emission in the NuSTAR energy range is fully consistent with the sum of the best-fit models of the spatially resolved Chandra spectra of the two nuclei.

  10. Hard X-Ray Emission of the Luminous Infrared Galaxy NGC 6240 as Observed by Nustar

    NASA Technical Reports Server (NTRS)

    Puccetti, S.; Comastri, A.; Bauer, F. E.; Brandt, W. N.; Fiore, F.; Harrison, F. A.; Luo, B.; Stern, D.; Urry, C. M.; Alexander, D. M.; hide

    2016-01-01

    We present a broadband (approx.0.3-70 keV) spectral and temporal analysis of NuSTAR observations of the luminous infrared galaxy NGC 6240 combined with archival Chandra, XMM-Newton, and BeppoSAX data. NGC 6240 is a galaxy in a relatively early merger state with two distinct nuclei separated by approx.1.5. Previous Chandra observations resolved the two nuclei and showed that they are both active and obscured by Compton-thick material. Although they cannot be resolved by NuSTAR, we were able to clearly detect, for the first time, both the primary and the reflection continuum components thanks to the unprecedented quality of the NuSTAR data at energies >10 keV. The NuSTAR hard X-ray spectrum is dominated by the primary continuum piercing through an absorbing column density which is mildly optically thick to Compton scattering (tau approx. = 1.2, NH approx. 1.5×10(exp 24)/sq cm. We detect moderately hard X-ray (>10 keV) flux variability up to 20% on short (15-20 ks) timescales. The amplitude of the variability is largest at approx..30 keV and is likely to originate from the primary continuum of the southern nucleus. Nevertheless, the mean hard X-ray flux on longer timescales (years) is relatively constant. Moreover, the two nuclei remain Compton-thick, although we find evidence of variability in the material along the line of sight with column densities NH < or = 2×10(exp 23)/sq cm over long (approx.3-15 yr) timescales. The observed X-ray emission in the NuSTAR energy range is fully consistent with the sum of the best-fit models of the spatially resolved Chandra spectra of the two nuclei.

  11. Modelling a C-type flare observed in microwaves and hard X-rays

    NASA Technical Reports Server (NTRS)

    Schmahl, E. J.; Kundu, M. R.; Dennis, Brian R.

    1988-01-01

    Using the very large array (VLA) at 6 and 20 cm wavelength and the hard X-ray burst spectrometer on the Solar Maximum Mission, a two-ribbon flare was observed from the onset phase through the maximum and decline on November 14, 1981. Because of the extensive size of the microwave source and the gradual variations in hard X-rays whose spectrum becomes progressively flatter with time, the flare is classified as a C-type flare. Considering the hardening of the X-ray spectrum and its non-impulsive nature, a coronal trap model was invoked for the energetic electrons. The microwave emission is easily accounted for by gyrosynchronous radiation from mildly relativistic electrons. It was found that the source must be optically thick at 20 cm during the maximum phase, but as the source evolved toward an optically thin regime, the intensity decreased while the degree of circular polarization increased. In an initial homogeneous model, we found that the computed microwave spectrum was too narrow to match the patrol spectrum from 606 to 15400 MHz. In the model, the magnetic field consists of a dipolar arcade bridging the H alpha ribbons, and extending to heights of order 40,000 to 50,000 km. The variation of the magnetic field strength from footpoints to apex causes the gyrosynchrotron spectrum to be broader. Preliminary conclusions regarding the electron distributions producing the hard X-rays and the microwaves, and the suitability of this model for C-type flares is presented.

  12. Mechanical design of thin-film diamond crystal mounting apparatus for coherence preservation hard x-ray optics

    SciTech Connect

    Shu, Deming Shvyd’ko, Yuri V.; Stoupin, Stanislav; Kim, Kwang-Je

    2016-07-27

    A new thin-film diamond crystal mounting apparatus has been designed at the Advanced Photon Source (APS) for coherence preservation hard x-ray optics with optimized thermal contact and minimized crystal strain. This novel mechanical design can be applied to new development in the field of: x-ray optics cavities for hard x-ray free-electron laser oscillators (XFELOs), self-seeding monochromators for hard x-ray free-electron laser (XFEL) with high average thermal loading, high heat load diamond crystal monochromators and beam-sharing/beam-split-and-delay devices for XFEL facilities and future upgraded high-brightness coherent x-ray source in the MBA lattice configuration at the APS.

  13. The evolution of the spatial structure of thick-target hard X-ray emission in solar flares

    NASA Technical Reports Server (NTRS)

    Emslie, A. G.; Fennelly, J. A.; Machado, M. E.

    1986-01-01

    The spatial distribution of hard X-ray bremsstrahlung emission from an electron-heated target is examined, using a self-consistent calculation of the hydrodynamic response of the atmosphere to heating by the electrons to compute the density-height structure of the target atmosphere at various times. In this way the temporal evolution of the hard X-ray spatial structure at various photon energies is predicted. These results are compared with existing observations from the SMM Hard X-Ray Imaging Spectrometer to give a prognosis for the type of structure to be expected at the subarcsec resolution planned for future instrumentation.

  14. A Spectral Analysis of the Masuda Flare Using Yohkoh Hard X-Ray Telescope Pixon Reconstruction

    NASA Astrophysics Data System (ADS)

    Alexander, David; Metcalf, Thomas R.

    1997-11-01

    Masuda's discovery of a compact hard X-ray impulsive source at the apex of a flaring coronal loop has received a great deal of recent attention in the solar physics community. The Masuda flare, which occurred on 1992 January 13, exhibited evidence of energy deposition in a compact region some distance above the soft X-ray loop, suggesting, to some authors, a flare process similar to the classical model for two-ribbon flares proposed by Shibata et al. These conclusions were made on the basis of a maximum entropy method (MEM) reconstruction of the Yohkoh Hard X-Ray Telescope (HXT) observations. Recently, a new approach has been developed for reconstructing the spatial information from the HXT: that of pixon reconstruction, proposed by Metcalf et al. In this paper, we apply the pixon reconstruction technique to the event of 1992 January 13 and determine the temporal and spectral characteristics of the loop-top source. While our emphasis here is on the spectral properties of the Masuda flare, we also provide a brief comparison between the pixon reconstruction and that of MEM for the hard X-ray loop top. In carrying out the comparison between the methods, we have applied recent improvements to the instrument response functions and reconstruction algorithms. We have also identified a previously unknown effect of weak source suppression that was inherent in previous analyses and that significantly compromised the ability to study weak sources of hard X-ray emission in the presence of strong sources. The improved response functions and the better flux estimation used in this paper reduce (but do not eliminate) the effects of this suppression, and consequently, it should be noted that the MEM analysis presented in this paper is quite distinct from any that have been carried out previously. Our conclusions are that (a) a compact loop-top hard X-ray source exists with an impulsive temporal profile spanning the peak of the flare; (b) the loop-top source is nonthermal in nature

  15. Very hard states in neutron star low-mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Parikh, A. S.; Wijnands, R.; Degenaar, N.; Altamirano, D.; Patruno, A.; Gusinskaia, N. V.; Hessels, J. W. T.

    2017-07-01

    We report on unusually very hard spectral states in three confirmed neutron-star low-mass X-ray binaries (1RXS J180408.9-342058, EXO 1745-248 and IGR J18245-2452) at a luminosity between ˜1036 and 1037 erg s-1. When fitting the Swift X-ray spectra (0.5-10 keV) in those states with an absorbed power-law model, we found photon indices of Γ ˜ 1, significantly lower than the Γ = 1.5-2.0 typically seen when such systems are in their so called hard state. For individual sources, very hard spectra were already previously identified, but here we show for the first time that likely our sources were in a distinct spectral state (i.e. different from the hard state) when they exhibited such very hard spectra. It is unclear how such very hard spectra can be formed; if the emission mechanism is similar to that operating in their hard states (i.e. up-scattering of soft photons due to hot electrons), then the electrons should have higher temperatures or a higher optical depth in the very hard state compared to those observed in the hard state. By using our obtained Γ as a tracer for the spectral evolution with luminosity, we have compared our results with those obtained by Wijnands et al. Our sample of sources follows the same track as the other neutron star systems in Wijnands et al., confirming their general results. However, we do not find that the accreting millisecond pulsars are systematically harder than the non-pulsating systems.

  16. Microwave, soft and hard X-ray imaging observations of two solar flares

    NASA Technical Reports Server (NTRS)

    Kundu, M. R.; Erskine, F. T.; Schmahl, E. J.; Machado, M. E.; Rovira, M. G.

    1984-01-01

    A set of microwave and hard X-ray observations of two flares observed simultaneously with the Very Large Array (VLA) and the Solar Maximum Mission Hard X-ray Imaging Spectrometer (SMM-HXIS) are presented. The LVA was used at 6 cm to map the slowly varying and burst components in three neighboring solar active regions (Boulder Nos. 2522, 2530, and 2519) from approximately 14:00 UT until 01:00 UT on June 24-25, 1980. Six microwave bursts less than 30 sfu were observed, and for the strongest of these, two-dimensional 'snapshot' (10 s) maps with spatial resolution of 5 in. were synthesized. HXIS data show clear interconnections between regions 2522 and 2530. The X-ray observations present a global picture of flaring activity, while the VLA data show the complexity of the small magnetic structures associated with the impulsive phase phenomena. It is seen that energy release did not occur in a single isolated magnetic structure, but over a large area of intermingled loop structures.

  17. SCO X-1: Origin of the radio and hard X-ray emissions

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Cheng, C. C.; Tsuruta, S.

    1973-01-01

    The consequences of models for the central radio source and the hard X-ray ( 30 keV) emitting region in Sco X-1 are examined. It was found that the radio emission could result from noncoherent synchrotron radiation and that the X-rays may be produced by bremsstrahlung. It is shown that both mechanisms require a mass outflow from Sco X-1. The radio source is located at r approximately 3x10 to the 12th power cm from the center of the star, and its linear dimensions do not exceed 3x10 to the 13th power cm. The magnetic field in the radio source is on the order of 1 gauss. If the hard X-rays are produced by thermal bremsstrahlung, their source is located at 10 to the 9th power approximately r approximately 5x10 to the 9th power cm, the temperature is 2x10 to the 9th power K, and the emission measure is 2x10 to the 56th power/cu cm. This hot plasma loses energy inward by conduction and outward by supersonic expansion. The rates of energy loss for both processes are about 10 to the 36th power erg/s, comparable to the total luminosity of Sco X-1.

  18. A hard X-ray view of the hidden AGN population with NuSTAR

    NASA Astrophysics Data System (ADS)

    Lansbury, George; Aird, James; Alexander, David M.; Stern, Daniel; Koss, Michael; Gandhi, Poshak; Harrison, Fiona; Tomsick, John; Treister, Ezequiel

    2017-08-01

    New insights into AGNs are being provided by NuSTAR, the first focusing telescope with high sensitivity at hard X-ray energies (E>10 keV), and therefore at the peak energies of the cosmic X-ray background (CXB). I will present results from the 40-month NuSTAR serendipitous survey, which has yielded a large sample of ~500 hard X-ray sources (primarily AGNs), and will compare with results from targeted NuSTAR samples. A crucial part of the AGN census is to identify and characterise the most highly obscured (Compton-thick) AGNs, which may contribute a large fraction of the overall cosmic growth of black holes, but are normally hidden from view by gas and dust. I will show that NuSTAR is identifying new Compton-thick AGNs, which wouldn't have been identified at other wavelengths. These can inform us about the prevalence of such extreme systems in the general AGN population.

  19. SuperHERO: The Next Generation Hard X-Ray HEROES Telescope

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Gaskin, Jessica A.; Christe, Steven D.; Elsner, Ronald F.; Ramsey, Brian D.; Seller, Paul; Shih, Albert Y.; Stuchlik, David W.; Swartz, Douglas A.; Tenant, Allyn F.; hide

    2014-01-01

    SuperHERO is a new high-sensitivity Long Duration Balloon (LDB)-capable, hard-x-ray (20-75 keV) telescope for making novel astrophysics and heliophysics observations. The proposed SuperHERO payload will be developed jointly by the Astrophysics Office at NASA Marshall Space Flight Center, the Solar Physics Laboratory and Wallops Flight Facility at NASA Goddard Space Flight Center. SuperHERO is a follow-on payload to the High Energy Replicated Optics to Explore the Sun (HEROES) balloon-borne telescope that recently launched from Fort Sumner, NM in September of 2013. The HEROES core instrument is a hard x-ray telescope consisting of x-ray 109 optics configured into 8 modules. Each module is aligned to a matching gas-filled detector at a focal length of 6 m. SuperHERO will make significant improvements to the HEROES payload, including: new solid-state multi-pixel CdTe detectors, additional optics, the Wallops Arc-Second Pointer, alignment monitoring systems and lighter gondola.

  20. Hard X-ray spectra of neutron stars and black hole candidates

    NASA Technical Reports Server (NTRS)

    Durouchoux, P.; Mahoney, W.; Clenet, Y.; Ling, J.; Wallyn, P.; Wheaton, W.; Corbet, S.; Chapuis, C.

    1997-01-01

    The hard X-ray behavior of several X-ray binary systems containing a neutron star or a black hole candidate is analyzed in an attempt to determine the specific signature of these categories of compact objects. Limiting the consideration to two subclasses of neutron stars, Atoll sources and non-pulsating Z sources, it appears that only the Atoll sources have a spectral behavior similar to black holes. It is proposed that Atoll sources are weakly magnetized neutron stars, whereas Z sources are small radius moderate magnetized neutron stars. Large magnetic fields funnel the accreting matter, thus preventing spherical accretion and free fall if the neutron star radius is smaller than the last stable accreting orbit. Weak magnetic fields do not have this effect, and blackbody soft photons from the stellar surface are upscattered on the relativistic infalling matter, leading to excess hard X-rays. This excess is visible in two of the observed Atoll sources and in the spectrum of a black hole candidate. In the case of a Z source, a lack of photons was remarked, providing a possible signature to distinguish between these classes of objects.