Science.gov

Sample records for brillouin fiber laser

  1. Frequency spacing switchable multiwavelength Brillouin erbium fiber laser utilizing cascaded Brillouin gain fibers.

    PubMed

    Wang, Xiaorui; Yang, Yanfu; Liu, Meng; Yuan, Yijun; Sun, Yunxu; Gu, Yinglong; Yao, Yong

    2016-08-10

    A new hybrid Brillouin erbium fiber laser scheme that employs cascaded multiple Brillouin gain fibers in a ring cavity to realize multiwavelength laser output with switchable frequency spacing is proposed and experimentally investigated. The multiple frequency downshifting processes introduced by multiple stimulated Brillouin scattering (SBS) effects in one round-trip of the cavity make it possible to realize multiwavelength output with frequency spacing that is an integer multiple of the SBS frequency shifting. With two cascaded SBS fibers, the frequency spacing can be switched between single and double SBS frequency shifting by properly adjusting the Brillouin pump power. Multiwavelength outputs with triple or quadruple SBS frequency spacing are also demonstrated by employing three or four SBS gain fibers, respectively. PMID:27534498

  2. Frequency spacing switchable multiwavelength Brillouin erbium fiber laser utilizing cascaded Brillouin gain fibers.

    PubMed

    Wang, Xiaorui; Yang, Yanfu; Liu, Meng; Yuan, Yijun; Sun, Yunxu; Gu, Yinglong; Yao, Yong

    2016-08-10

    A new hybrid Brillouin erbium fiber laser scheme that employs cascaded multiple Brillouin gain fibers in a ring cavity to realize multiwavelength laser output with switchable frequency spacing is proposed and experimentally investigated. The multiple frequency downshifting processes introduced by multiple stimulated Brillouin scattering (SBS) effects in one round-trip of the cavity make it possible to realize multiwavelength output with frequency spacing that is an integer multiple of the SBS frequency shifting. With two cascaded SBS fibers, the frequency spacing can be switched between single and double SBS frequency shifting by properly adjusting the Brillouin pump power. Multiwavelength outputs with triple or quadruple SBS frequency spacing are also demonstrated by employing three or four SBS gain fibers, respectively.

  3. Double Brillouin frequency spaced multiwavelength Brillouin-erbium fiber laser with 50 nm tuning range

    NASA Astrophysics Data System (ADS)

    Zhao, J. F.; Liao, T. Q.; Zhang, C.; Zhang, R. X.; Miao, C. Y.; Tong, Z. R.

    2012-09-01

    A 50 nm tuning range multiwavelength Brillouin-erbium fiber laser (MWBEFL) with double Brillouin frequency spacing is presented. Two separated gain blocks with symmetrical architecture, consisted by erbium-doped fiber amplifiers (EDFAs) and Brillouin gain media, are used to generate double Brillouin frequency spacing. The wider tuning range is realized by eliminating the self-lasing cavity modes existing in conventional MWBEFLs because of the absence of the physical mirrors at the ends of the linear cavity. The Brillouin pump (BP) is preamplified by the EDFA before entering the single-mode fiber (SMF), which leads to the reduction of threshold power and the generation enhancement of Brillouin Stokes (BS) signals. Four channels with 0.176 nm spacing are achieved at 2 mW BP power and 280 mW 980 nm pump power which can be tuned from 1525 to 1575 nm.

  4. Microwave photonic filter using multiwavelength Brillouin-erbium fiber laser with double-Brillouin-frequency shift

    SciTech Connect

    Loh, K. K.; Yeo, K. S.; Shee, Y. G.

    2015-04-24

    A microwave photonic filter based on double-Brillouin-frequency spaced multiwavelength Brillouin-erbium fiber laser (BEFL) is experimentally demonstrated. The filter selectivity can be easily adjusted by tuning and apodizing the optical taps generated from the multiwavelength BEFL. Reconfiguration of different frequency responses are demonstrated.

  5. Four-wave-mixing-assisted Brillouin fiber laser with double-Brillouin-frequency spacing

    NASA Astrophysics Data System (ADS)

    Gan, G. K. W.; Yeo, K. S.; Adikan, F. R. Mahamd; Shee, Y. G.

    2015-01-01

    The generation of multiwavelength Brillouin fiber laser assisted by four wave mixing has been demonstrated. A maximum of 18 channels of laser Stokes lines are generated at a Brillouin Pump (BP) of 190 mW (∼22.5 dBm). The multiple peaks have a wavelength spacing of 0.176 nm (∼20 GHz). A tunable optical bandpass filter is incorporated to the design to suppress up to 6 dB of the noise floor hump exhibited at the multiwavelength laser spectrum while limiting the laser peaks attenuation thereby providing a much cleaner and better OSNR.

  6. A novel tunable multi-wavelength Brillouin fiber laser with switchable frequency spacing

    NASA Astrophysics Data System (ADS)

    Qian, Lifen; Fen, Danqi; Xie, Heng; Sun, Junqiang

    2015-04-01

    We propose and experimentally demonstrate a novel wavelength tunable and frequency spacing switchable multi-wavelength Brillouin fiber laser by employing optical gain and absorption during the Stimulated Brillouin scattering process. The frequency spacing can be switched by only varying the Brillouin pump power. Up to 16 Stokes lines with single Brillouin frequency spacing are observed under the lower Brillouin pump power, and 7 Stokes lines with double Brillouin frequency spacing are realized under the high Brillouin pump power by exploiting the Brillouin pump absorption. The proposed multi-wavelength laser can also be tuned from 1547 to 1569 nm and has the potential applications in the areas of optical communications and sensing.

  7. OSNR enhancement utilizing large effective area fiber in a multiwavelength Brillouin-Raman fiber laser

    NASA Astrophysics Data System (ADS)

    Sonee Shargh, R.; Al-Mansoori, M. H.; Anas, S. B. A.; Sahbudin, R. K. Z.; Mahdi, M. A.

    2011-02-01

    We propose a simple Brillouin-Raman multi-channel fiber laser with supportive Rayleigh scattering in a linear cavity without employing any feedback mirrors at the end of cavity. Brillouin and the consequences of Rayleigh scattering work as virtual mirrors. We employ a section of large effective area fiber in addition to a section of dispersion compensating fiber to enhance the optical signal-to-noise ratio of multi-channel Brillouin-Raman comb fiber laser. We able to produce a flat comb fiber laser with 37 nm bandwidth from 1539 to 1576 nm built-in 460 Stokes lines with 0.08 nm spacing. Furthermore, this Brillouin-Raman comb fiber laser has acceptable optical signal-to-noise ratio value of 16.8 dB for the entire bandwidth with excellent flatness and low discrepancies in power levels of about 2.3 dB between odd and even channels.

  8. Hybrid Brillouin/thulium multiwavelength fiber laser with switchable single- and double-Brillouin-frequency spacing.

    PubMed

    Hu, Kai; Kabakova, Irina V; Lefrancois, Simon; Hudson, Darren D; He, Sailing; Eggleton, Benjamin J

    2014-12-29

    We demonstrate a multiwavelength laser at 2 µm based on a hybrid gain scheme consisting of a Brillouin gain medium and a thulium-doped fiber. The laser has switchable frequency spacing, corresponding to the single and double Brillouin frequency shifts. In the 20 dB bandwidth, seven lasing channels with a frequency spacing of 0.1 nm (7.62 GHz) and eleven channels with a double-spacing of 0.2 nm (15.24 GHz) are obtained. A wavelength tunability of 1.3 nm is realized for both laser configurations by shifting the pump wavelength. Strong four wave mixing is observed in the double-spacing laser resulting in an improved performance: larger number of channels and better temporal stability.

  9. Brillouin-Erbium fiber laser with enhanced feedback coupling using common Erbium gain section.

    PubMed

    Samsuri, N M; Zamzuri, A K; Al-Mansoori, M H; Ahmad, A; Mahdi, M A

    2008-10-13

    We demonstrate an enhanced architecture of Brillouin-Erbium fiber laser utilizing the reverse-S-shaped fiber section as the coupling mechanism. The enhancement is made by locating a common section of Erbium-doped fiber next to the single-mode fiber to amplify the Brillouin pumps and the oscillating Stokes lines. The requirement of having two Erbium gain sections to enhance the multiple Brillouin Stokes lines generation is neglected by the proposed fiber laser structure. The mode competitions arise from the self-lasing cavity modes of the fiber laser are efficiently suppressed by the stronger pre-amplified Brillouin pump power before entering the single mode fiber section. The maximum output power of 20 mW is obtained from the proposed fiber laser with 10 laser lines that equally separated by 0.089 nm spacing.

  10. Tunable Brillouin-erbium fiber laser incorporating a low-cost biconic tapered fiber

    NASA Astrophysics Data System (ADS)

    Lin, H. S.; Mansoor, A.; Phua, Y. N.; Mokhtar, M. R.; Abdul-Rashid, H. A.; Yusoff, Z.

    2014-02-01

    A new method of tuning a multi-wavelength Brillouin-erbium fiber laser (BEFL) within a Fabry-Perot cavity by incorporating a low-cost biconic tapered fiber is reported. The biconic tapered fiber was fabricated using a flame elongation technique and it was incorporated into the BEFL system to position the self-lasing cavity modes over a tuning range of 5.5 nm within the erbium-doped fiber gain profile. By injecting the Brillouin pump near to the tunable self-lasing cavity modes, it suppresses the modes and generates stable cascaded Brillouin-Stokes lines with more than 20 dB signal-to-noise ratio.

  11. Study of mid IR fiber transmission and mode patterns under laser induced stimulated Brillouin scattering

    NASA Technical Reports Server (NTRS)

    Yu, C.; Chong, Yat C.; Zhou, Hongyi

    1990-01-01

    Mid IR fiber transmission and exit radiation mode patterns at various incident CO2 laser power levels appear to be effective diagnostic tools for monitoring laser induced stimulated Brillouin scattering in various mid IR fibers. Such processes are deemed to be essential mechanisms for fiber-optic amplifiers and switches as potential replacements of current repeaters and bistable devices.

  12. Stable and tunable self-seeded multiwavelength Brillouin-erbium fiber laser with higher OSNR

    NASA Astrophysics Data System (ADS)

    Zou, Hui; Yang, Ruilan; Shen, Xiao; Wei, Wei

    2016-07-01

    A stable and tunable self-seeded multiwavelength Brillouin-erbium fiber laser (BEFL) is designed and demonstrated based on a Single-Mode-Multimode-Single-Mode (SMS) fiber filter. The SMS filter is fabricated by splicing a 15 cm long multimode fiber between two single mode fibers. The self-excited Brillouin pump is internally achieved by cascaded stimulated Brillouin scattering (SBS) in the single mode fiber. By applying axial strain (from 0 to 466.7 μɛ) to the SMS filter with the same step of 66.7 μɛ , the multiwavelength of the output laser is tuned from 1553.58 to 1559.79 nm correspondingly, and the tunable range is 6.21 nm. The generation of up to 16 Brillouin Stokes wavelengths with 30 dB optical signal to noise ratio (OSNR) are obtained.

  13. Single Brillouin frequency shifted S-band multi-wavelength Brillouin-Raman fiber laser utilizing fiber Bragg grating and Raman amplifier in ring cavity

    NASA Astrophysics Data System (ADS)

    Reshak, A. H.; Hambali, N. A. M. Ahmad; Shahimin, M. M.; Wahid, M. H. A.; Anwar, Nur Elina; Alahmed, Zeyad A.; Chyský, J.

    2016-10-01

    This paper is focusing on simulation and analyzing of S-band multi-wavelength Brillouin-Raman fiber laser performance utilizing fiber Bragg grating and Raman amplifier in ring cavity. Raman amplifier-average power model is employed for signal amplification. This laser system is operates in S-band wavelength region due to vast demanding on transmitting the information. Multi-wavelength fiber lasers based on hybrid Brillouin-Raman gain configuration supported by Raman scattering effect have attracted significant research interest due to its ability to produced multi-wavelength signals from a single light source. In multi-wavelength Brillouin-Raman fiber, single mode fiber is utilized as the nonlinear gain medium. From output results, 90% output coupling ratio has ability to provide the maximum average output power of 43 dBm at Brillouin pump power of 20 dBm and Raman pump power of 14 dBm. Furthermore, multi-wavelength Brillouin-Raman fiber laser utilizing fiber Bragg grating and Raman amplifier is capable of generated 7 Brillouin Stokes signals at 1480 nm, 1510 nm and 1530 nm.

  14. Broadly tunable multiwavelength Brillouin-erbium fiber laser using a twin-core fiber coupler

    NASA Astrophysics Data System (ADS)

    Peng, Wanjing; Yan, Fengping; Li, Qi; Liu, Shuo; Tan, Siyu; Feng, Suchun; Feng, Ting

    2014-07-01

    A tunable multiwavelength Brillouin-erbium fiber laser (MW-BEFL) using a twin-core fiber (TCF) coupler is proposed and demonstrated. The TCF coupler is formed by splicing a section of TCF between two single-mode fibers. By simply applying bending curvature on the TCF coupler, the peak net gain is shifted close to the Brillouin pump (BP), which has advantage for suppressing self-lasing cavity modes with low-BP-power injection. In this work, the dependency of the Stokes signals tuning range on the free spectral range (FSR) of TCF coupler is studied. It is also found that the tuning range of MW-BEFL can exceed the FSR of TCF coupler by adopting proper BP power and 980-nm pump power. Up to 40 nm tuning range of MW-BEFL in the absence of self-lasing cavity modes is achieved.

  15. Photonic generation of tunable microwave signal using Brillouin fiber laser.

    PubMed

    Wang, Rugang; Zhang, Xuping; Hu, Junhui; Wang, Guanghui

    2012-03-10

    A simple approach to generate two bands of tunable microwave signal is proposed and demonstrated. In this scheme, two single-mode fibers with optimized Brillouin frequency shift spacing have been chosen as the scattering medium in two cascaded ring cavities. Two bands of tunable microwave signal from 390 to 453 MHz and 10.863 to 11.076 GHz can be obtained through adjusting the temperature of the fiber and the pump wavelength. The tunable frequency range can be further expanded by using a temperature controller with a wider adjustment range. The generated microwave signal exhibits high stability on frequency.

  16. Investigation on the effect of EDFA location in ring cavity Brillouin-Erbium fiber laser.

    PubMed

    Hambali, Nor Azura Malini A; Mahdi, Mohd Adzir; Al-Mansoori, Mohammed Hayder; Abas, Ahmad Fauzi; Saripan, M Iqbal

    2009-07-01

    We have investigated the characteristics of Brillouin-Erbium fiber laser (BEFL) with variation of Erbium-doped fiber amplifier (EDFA) locations in a ring cavity configuration. Three possible locations of the EDFA in the laser cavity have been studied. The experimental results show that the location of EDFA plays vital role in determining the output power and the tuning range. Besides the Erbium gain, Brillouin gain also contributes to the performance of the BEFL. By placing the EDFA next to the Brillouin gain medium (dispersion compensating fiber), the Brillouin pump signal is amplified thereby generating higher intensities of Brillouin Stokes line. This efficient process suppresses the free running self-lasing cavity modes from oscillating in cavity as a result of higher Stokes laser power and thus provide a wider tuning range. At the injected Brillouin pump power of 1.6 mW and the maximum 1480 nm pump power of 135 mW, the maximum Stokes laser power of 25.1 mW was measured and a tuning range of 50 nm without any self-lasing cavity modes was obtained.

  17. Enhanced multiwavelength generation in Brillouin fiber laser with pump noise suppression technique

    NASA Astrophysics Data System (ADS)

    Al-Alimi, A. W.; Cholan, N. A.; Yaacob, M. H.; Mahdi, M. A.

    2016-06-01

    A new multiwavelength Brillouin fiber laser (BFL) that provides a large number of Stokes lines with improved optical signal-to-noise ratio has been proposed and demonstrated. The BFL cavity is only formed by a nonlinear fiber loop mirror (NOLM) with 500 m long highly nonlinear fiber (HNLF). The BFL with improved performance is based on the suppression of the Brillouin pump noise floor utilizing a narrow tunable bandpass filter. The generation of Stokes lines covering up to a 33.67 nm wavelength range is achieved by setting the Brillouin pump signal within the HNLF’s zero dispersion wavelength and with power of 250 mW. This is owing to the combination of the stimulated Brillouin scattering and four-wave mixing effect in the NOLM structure.

  18. Millimeter wave carrier generation based on a double-Brillouin-frequency spaced fiber laser.

    PubMed

    Shee, Y G; Al-Mansoori, M H; Yaakob, S; Man, A; Zamzuri, A K; Adikan, F R Mahamd; Mahdi, M A

    2012-06-01

    An all-optical generation of a millimeter wave carrier from a multiwavelength Brillouin-erbium fiber laser is presented. Four-channel output with spacing of about 21.5 GHz is generated from the fiber laser by controlling the gain in the cavity. A dual-wavelength signal with spacing correspondent to six orders of Brillouin frequency shift is obtained by suppressing the two channels at the middle. Heterodyning these signals at the high-speed photodetector produces a millimeter wave carrier at 64.17 GHz. Temperature dependence characteristic of Brillouin frequency shift realize the flexibility of generated millimeter wave frequency to be tuned at 6.6 MHz/ °C.

  19. Contribution of Rayleigh scattering on Brillouin comb line generation in Raman fiber laser.

    PubMed

    Zamzuri, Abdul Kadir; Al-Mansoori, Mohammed Hayder; Samsuri, Norhakimah Md; Mahdi, Mohd Adzir

    2010-06-20

    We demonstrate the generation of multiple Brillouin Stokes lines generation assisted by Rayleigh scattering in Raman fiber laser. The linear cavity is utilized to take advantage of the Rayleigh scattering effect, and it also produces two strong spectral peaks at 1555 and 1565nm. Under a strong pumping condition, the Rayleigh backscatters contribute to the oscillation efficiency, which increases the Brillouin Stokes lines intensity between these two wavelength ranges. The multiple Stokes lines get stronger by suppressing the buildup of free-running longitudinal modes in the laser structure.

  20. Truly random bit generation based on a novel random Brillouin fiber laser.

    PubMed

    Xiang, Dao; Lu, Ping; Xu, Yanping; Gao, Song; Chen, Liang; Bao, Xiaoyi

    2015-11-15

    We propose a novel dual-emission random Brillouin fiber laser (RBFL) with bidirectional pumping operation. Numerical simulations and experimental verification of the chaotic temporal and statistical properties of the RBFL are conducted, revealing intrinsic unpredictable intensity fluctuations and two completely uncorrelated laser outputs. A random bit generator based on quantum noise sources in the random Fabry-Perot resonator of the RBFL is realized at a bit rate of 5 Mbps with verified randomness.

  1. Truly random bit generation based on a novel random Brillouin fiber laser.

    PubMed

    Xiang, Dao; Lu, Ping; Xu, Yanping; Gao, Song; Chen, Liang; Bao, Xiaoyi

    2015-11-15

    We propose a novel dual-emission random Brillouin fiber laser (RBFL) with bidirectional pumping operation. Numerical simulations and experimental verification of the chaotic temporal and statistical properties of the RBFL are conducted, revealing intrinsic unpredictable intensity fluctuations and two completely uncorrelated laser outputs. A random bit generator based on quantum noise sources in the random Fabry-Perot resonator of the RBFL is realized at a bit rate of 5 Mbps with verified randomness. PMID:26565888

  2. Power Scaling of Single-Frequency Hybrid Brillouin/Ytterbium Fiber Lasers

    SciTech Connect

    Guan, W.; Marciante, J.R.

    2010-06-22

    A coupled-wave rate-equation model, including multiple-order stimulated Brillouin scattering (SBS), is used to study power scaling of hybrid Brillouin/ytterbium fiber lasers. To validate the model, a single-frequency, Brillouin/ytterbium fiber laser was built with a laser output of 40 mW and an optical signal-to-noise ratio greater than 50 dB. The numerical model simulation agrees with the measurements in both fully and partially injection locked regimes. To scale up the laser’s output power, a dual-clad architecture is proposed. In this new configuration, the active Yb-doped fiber provides the nonlinear SBS gain as well as the gain resulting from the excited Yb ions. Numerical modeling including three Stokes orders shows that over 5 W of single-frequency laser output can be achieved with a side-mode suppression ratio (SMSR) of greater than 80 dB. Beyond this power, multi-order SBS affects the laser efficiency and SMSR.

  3. Mode-hopping suppression in long Brillouin fiber laser with non-resonant pumping.

    PubMed

    Danion, Gwennaël; Frein, Ludovic; Bacquet, Denis; Pillet, Grégoire; Molin, Stéphanie; Morvan, Loïc; Ducournau, Guillaume; Vallet, Marc; Szriftgiser, Pascal; Alouini, Mehdi

    2016-05-15

    We propose a reliable method for stabilizing narrow linewidth Brillouin fiber lasers with non-resonant pumping. Mode-hopping is suppressed by means of a phase-locked loop that locks the pump-Stokes detuning to a local radio-frequency (RF) oscillator. Stable single-mode operation of a 110-m-long Brillouin fiber laser oscillating at 1.55 μm is demonstrated for several hours. The beat note between two independent Stokes waves presents a phase noise level of -60  dBc/Hz at 100 Hz with a -20  dB/decade slope, and a FWHM linewidth lower than 50 Hz. PMID:27177003

  4. Low-noise Brillouin random fiber laser with a random grating-based resonator.

    PubMed

    Xu, Yanping; Gao, Song; Lu, Ping; Mihailov, Stephen; Chen, Liang; Bao, Xiaoyi

    2016-07-15

    A novel Brillouin random fiber laser (BRFL) with the random grating-based Fabry-Perot (FP) resonator is proposed and demonstrated. Significantly enhanced random feedback from the femtosecond laser-fabricated random grating overwhelms the Rayleigh backscattering, which leads to efficient Brillouin gain for the lasing modes and reduced lasing threshold. Compared to the intensity and frequency noises of the Rayleigh feedback resonator, those of the proposed random laser are effectively suppressed due to the reduced resonating modes and mode competition resulting from the random grating-formed filters. Using the heterodyne technique, the linewidth of the coherent random lasing spike is measured to be ∼45.8  Hz. PMID:27420494

  5. Dual-frequency Brillouin fiber laser for optical generation of tunable low-noise radio frequency/microwave frequency.

    PubMed

    Geng, Jihong; Staines, Sean; Jiang, Shibin

    2008-01-01

    We demonstrate a new approach, i.e., a cw dual-frequency Brillouin fiber laser pumped by two independent single-frequency Er-doped fiber lasers, for the generation of tunable low-noise rf/microwave optical signals. Its inherent features of both linewidth narrowing effect in a Brillouin fiber cavity and common mode noise cancellation between two laser modes sharing a common cavity allow us to achieve high frequency stability without using a supercavity. Beat frequency of the dual-frequency Brillouin fiber laser can be tuned from tens of megahertz up to 100 GHz by thermally tuning the wavelengths of the two pump lasers with tuning sensitivity of approximately 1.4 GHz/ degrees C. Allan variance measurements show the beat signals have the hertz-level frequency stability.

  6. Photonic methods of millimeter-wave generation based on Brillouin fiber laser

    NASA Astrophysics Data System (ADS)

    Al-Dabbagh, R. K.; Al-Raweshidy, H. S.

    2016-05-01

    In optical communication link, generation and delivering millimeter-wave (mm-waves) in radio over fiber (RoF) systems has limitation due to fiber non-linearity effects. To solve this problem, photonic methods of mm-wave generation based on characterizations of Brillouin fiber laser are proposed in this work for the first time. Three novel photonic approaches for mm-wave generation methods based on Brillouin fiber laser and phase modulator are proposed and demonstrated by simulation. According to our theoretical analysis and simulation, mm-waves with frequency up to 80 GHz and good signal to noise ratio (SNR) up to 90 dB are generated by new and cost effective methods of generation that make them suitable for applications of the fifth generation (5G) networks. The proposed configurations increase the stability and the quality of the mm-wave generation system by using a single laser source as a pump wave and the fiber non-linearity effects are reduced. A key advantage of this research is that proposed a number of very simple generation methods and cost effective which only use standard components of optical telecommunications. Stimulated Brillouin Scattering (SBS) effect that exists in the optical fiber is studied with the characterization of phase modulator. An all optically stable mm-wave carriers are achieved successfully in the three different methods with different frequencies from 20 GHz up to 80 GHz. Simulation results show that all these carriers have low phase noise, good SNR ranging between 60 and 90 dB and tuning capability in comparison with previous methods reported. This makes them suitable for mm-wave transmission in RoF systems to transmit data in the next generation networks.

  7. Experimental and numerical study of high order Stokes lines in Brillouin-erbium fiber laser

    SciTech Connect

    Yuan, Yijun; Yao, Yong Xiao, Jun Jun; Yang, Yanfu; Tian, Jiajun; Liu, Chao

    2014-01-28

    We experimentally study the dependences of high-order Stokes lines on the erbium-doped fiber (EDF) pump power P{sub EDF}, the Brillouin pump (BP) power P{sub BP}, and its working wavelength in a multiwavelength Brillouin erbium-doped fiber laser (MBEFL). By using the rate and propagation equations, and the coupled wave equations of stimulated Brillouin scattering, we establish a lumped model to describe the MBEFL. Numerical simulations show that the number of Stokes lines can be increased by decreasing the spacing between the BP wavelength and the EDF peak gain or P{sub BP} as long as it is larger than a critical value P{sub BP}{sup (cr)}=1.7 mW, or by increasing P{sub EDF} without reaching a saturation value P{sub EDF}{sup (cr)}=250 mW. However, when P{sub BP} and P{sub EDF} are varied beyond P{sub BP}{sup (cr)} and P{sub EDF}{sup (cr)}, respectively, the number of Stokes lines is reduced, accompanied by some self-lasing cavity modes. These results by numerical simulation are consistent with experimental observations from the MBEFL.

  8. Frequency switched narrow linewidth microwave signal photonic generation based on a double-Brillouin-frequency spaced fiber laser.

    PubMed

    Zhang, Peng; Wang, Tianshu; Jia, Qingsong; Sun, Hongwei; Dong, Keyan; Liu, Xin; Kong, Mei; Jiang, Huilin

    2014-04-10

    A simple photonic approach to generate microwave frequency switched microwave signal is proposed and experimentally demonstrated. In this scheme, a Brillouin fiber laser with double-Brillouin-frequency spacing is used. The Brillouin ring configuration suppresses incoming Brillouin pump and even-order Stokes signals in the cavity. In addition, it also allows propagation of the odd-order Brillouin Stokes signals from configuration to output coupler. A dual-wavelength optical signal is heterodyned at the high-speed photodetector to produce a microwave signal. Frequency switched microwave signals, at 10.75 and 21.39 GHz, respectively, can be obtained through adjusting the polarization controller (PC) and loss of the variable optical attenuator (VOA).

  9. Characteristics of multiwavelength L-band Brillouin-Raman fiber laser under forward and backward pumped environment.

    PubMed

    Abass, A K; Al-Mansoori, M H; Jamaludin, M Z; Abdullah, F; Al-Mashhadani, T F

    2013-06-01

    We experimentally investigate the performance of L-band multiwavelength Brillouin-Raman fiber laser (MBRFL) under forward and backward pumped environments utilizing a linear cavity. A short length of 1.18 km dispersion compensating fiber is used as a nonlinear gain medium for both Brillouin and Raman gain. Experimental results indicate that the gain in the copumped laser configuration is higher than the gain in the counterpumped configuration. A stable and constant number of Brillouin Stokes lines up to 23 Stokes, with channel spacing of 0.08 nm and more than 20 dB of optical signal to noise ratio, can be generated as well as tuning over 20 nm in the L-band region from 1570 to 1590 nm. The laser generating the Brillouin Stokes lines exhibits flat amplitude bandwidth and high average output power of 0.8 and 1.6 dBm for the copropagation and counterpropagation pumps, respectively. Moreover, the tuning range bandwidth of the MBRFL can be predicted from the oscillated Brillouin pump gain profile.

  10. Tunable millimeter-wave frequency synthesis up to 100 GHz by dual-wavelength Brillouin fiber laser.

    PubMed

    Gross, Michael C; Callahan, Patrick T; Clark, Thomas R; Novak, Dalma; Waterhouse, Rodney B; Dennis, Michael L

    2010-06-21

    We demonstrate the generation of microwave and millimeter-wave frequencies from 26 to 100 GHz by heterodyning the output modes of a dual-wavelength fiber laser based on stimulated Brillouin scattering. The output frequency is tunable in steps of 10.3 MHz, equal to the free spectral range of the resonator. The noise properties of the beat frequency indicate a microwave linewidth of <2 Hz. We discuss potential for operation into the terahertz regime.

  11. Random Fabry-Perot resonator-based sub-kHz Brillouin fiber laser to improve spectral resolution in linewidth measurement.

    PubMed

    Xu, Yanping; Xiang, Dao; Ou, Zhonghua; Lu, Ping; Bao, Xiaoyi

    2015-05-01

    For the first time, we propose a novel Brillouin random fiber laser with a narrow linewidth of ∼860  Hz based on the bi-directionally pumped stimulated Brillouin scattering (SBS) in a 10-km-long optical fiber. A random fiber Fabry-Perot (FP) resonator is built up through the pump depletion effects of SBS at both ends of the fiber. A theoretical model is developed to reveal the physics behind the unique random FP resonator that enables narrow random lasing emission. The novel laser is successfully applied for linewidth characterization beyond 860 Hz of light source under test. PMID:25927748

  12. Simulations of Brillouin Scattering in Optical Fibers

    NASA Astrophysics Data System (ADS)

    Mungan, Carl; Petersen, Eliot; Huang, Shuochen; White, Jeffrey

    2013-03-01

    Brillouin scattering arises when a laser beam generates density variations in a medium via electrostriction. The density variations modulate the refractive index, resulting in a grating that Bragg scatters pump light into a Stokes beam. The Stokes wave is downshifted in frequency by the Doppler effect because the grating is moving at the speed of acoustic phonons. To conserve both energy and momentum, the Brillouin photons are backscattered. This back-reflected radiation is a major factor limiting the transmission of laser power in optical fibers for practical applications. It is mathematically described by a set of coupled partial differential equations. I will describe some of the known analytic solutions of these equations, as well as how to find numeric solutions using MATLAB. JTO grant 11-SA-0405

  13. Temperature sensing using four-wavelength Fabry-Pérot Brillouin-erbium fiber laser by low frequency detection

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Zhang, Mingjiang; Wang, Peng; Zhang, Jianzhong; Wang, Yuncai

    2015-11-01

    A four-wavelength Fabry-Pérot Brillouin-erbium fiber laser (FP-BEFL) with sensing element of 10 m single mode fiber (SMF) and gain media of 6 m erbium-doped fiber (EDF) for temperature measurement is proposed and demonstrated. Stabilization of FP-BEFL is effectively improved by the modified FP structure with a Faraday rotation mirror (FRM). Then, temperature sensitivity of every wavelength is obtained by measuring the beat frequency shift between four-wavelength and reference light. 1.036 MHz/°C, 2.006 MHz/°C and 3.104 MHz/°C temperature elevation coefficient of the different wavelength respectively keep in good agreement with theoretical value. About  ±0.3 dB power fluctuation of different wavelength is achieved by optical spectrum analyzer (OSA) in 1 h. This new configuration has promising applications in temperature sensing with high stabilization, high sensitivity and cost effectiveness.

  14. Improved multiple-wavelength Brillouin-Raman fiber laser assisted by four-wave mixing with a micro-air cavity.

    PubMed

    Li, Xuejiao; Ren, Liyong; Lin, Xiao; Ju, Haijuan; Chen, Nana; Liang, Jian; Ren, Kaili; Xu, Yiping

    2015-11-20

    In this paper, a multiple-wavelength Brillouin-Raman fiber laser (MBRFL) with enhanced performance is presented. This is attributed to the improved Fresnel reflection, thus strengthening four-wave mixing in the fiber laser cavity due to the insertion of a micro-air cavity. As a result, compared with the conventional MBRFL without a micro-air cavity, the thresholds of Brillouin Stokes (BS) lines are observed to be reduced, and more BS lines can be generated. In the experiment, a MBRFL having 40 BS lines is achieved with good stability on laser wavelengths and output power. In view of the fact that more BS lines can be established with a simple scheme and low pump power, our MBRFL promises to be employed as a multiwavelength source for optical communication. PMID:26836558

  15. Improved multiple-wavelength Brillouin-Raman fiber laser assisted by four-wave mixing with a micro-air cavity.

    PubMed

    Li, Xuejiao; Ren, Liyong; Lin, Xiao; Ju, Haijuan; Chen, Nana; Liang, Jian; Ren, Kaili; Xu, Yiping

    2015-11-20

    In this paper, a multiple-wavelength Brillouin-Raman fiber laser (MBRFL) with enhanced performance is presented. This is attributed to the improved Fresnel reflection, thus strengthening four-wave mixing in the fiber laser cavity due to the insertion of a micro-air cavity. As a result, compared with the conventional MBRFL without a micro-air cavity, the thresholds of Brillouin Stokes (BS) lines are observed to be reduced, and more BS lines can be generated. In the experiment, a MBRFL having 40 BS lines is achieved with good stability on laser wavelengths and output power. In view of the fact that more BS lines can be established with a simple scheme and low pump power, our MBRFL promises to be employed as a multiwavelength source for optical communication.

  16. Temperature sensing based on a Brillouin fiber microwave generator

    NASA Astrophysics Data System (ADS)

    Yang, X. P.; Gan, J. L.; Xu, S. H.; Yang, Z. M.

    2013-04-01

    We propose and demonstrate a novel dual-frequency Brillouin fiber laser used for microwave generation. Based on this configuration, temperature sensing has been realized. The dual-frequency Brillouin lasing is generated independently from two pieces of fiber cascaded within one ring resonator. Microwave generation is acquired as the beat signal of the dual-frequency Brillouin fiber laser, with the beat frequency being linearly proportional to the temperature difference of the two fiber sections. In the experiment, the temperature coefficient of frequency shift is 1.015 ± 0.001 MHz °C-1. The temperature can be precisely measured by acquiring the frequency of the microwave generator, and this new configuration provides a promising application for temperature sensing.

  17. Investigation of stimulated Brillouin scattering switching in mid infrared fibers

    NASA Technical Reports Server (NTRS)

    Yu, Chung; Fong, Chee Kiong

    1988-01-01

    Backward stimulated Brillouin scattering (SBS) has been experimentally studied in midinfrared transparent AgCl and KRS-5 fibers. In the present scheme, pump transmission through the fibers and acoustooptic radiative effects are simultaneously observed. The SBS shifted scattered light spectrum is investigated by laser heterodyne spectroscopy using HgCdTe and very fast metal-oxide-metal diode broadband mixers. The results suggest that reflection under high incident laser power departs from simple Fresnel surface reflection.

  18. SBS (stimulated Brillouin scattering) pulse distortion in multimode optical fibers

    SciTech Connect

    Smith, J.R.; Hawkins, R.J.; Laumann, C.W.; Hatch, J. )

    1989-01-01

    We have observed sever temporal-pulse-shape distortion due to stimulated Brillouin scattering (SBS) in multimode optical fibers used to diagnose 351 m laser pulses on the Nova laser system. Our measurements can be fit by a basic model of SBS and provide a clear indication of the intensity and temporal regimes where significant SBS-induced temporal-pulse-shape distortion can be avoided. 15 refs., 3 figs., 1 tab.

  19. A novel-configuration multi-wavelength Brillouin erbium fiber laser and its application in switchable high-frequency microwave generation

    NASA Astrophysics Data System (ADS)

    Fu, J.; Chen, D.; Sun, B.; Gao, S.

    2010-10-01

    A novel configuration of compound-cavity multi-wavelength Brillouin erbium fiber laser is proposed and experimentally demonstrated. With an incident optical carrier power of 8 dBm, at least 14 lasing lines are obtained with a wavelength spacing of ˜0.08 nm. Stability and power uniformity of the multi-wave-length lasing are ensured by the flat hybrid gain of Brillouin and erbium, the compound-cavity structure, and the four-wave mixing suppression using a long (10 km) single-mode fiber. A stable and frequency-switchable microwave can be achieved by incorporating a fiber Bragg grating filter to select the desired nth-order Stokes wave and beating it with the optical carrier at a photodetector. In our experiment, the 1st-4th-order Stokes waves are filtered respectively and hence a high-quality microwave with a switchable frequency from ˜10 to ˜40 GHz and a tuning step of ˜10 GHz is achieved. The signal-to-noise ratio is measured to be >25 dB.

  20. Experimental observation of fundamental and harmonic self pulse generation of single high-order Stokes in Brillouin Erbium fiber laser

    NASA Astrophysics Data System (ADS)

    Wang, Xiaorui; Yang, Yanfu; Liu, Meng; Yao, Yong

    2016-07-01

    Fundamental and harmonic self-pulse generation was experimentally observed on both first order and higher order Stokes components. The generated pulses with the same order harmonic repetition rate are obtained on multiple Stokes components simultaneously. The pulse generation on first order Stokes component can be attributed to periodic pump depletion in Brillouin gain medium. The pulse generation of high order Stokes component can be considered as pulse oscillation pumped by the former order Stokes. With high Erbium pump power, by setting the proper attenuation between Brillouin medium and Faraday rotation mirror, the harmonic pulse generations up to fifth order have been achieved.

  1. Simultaneous measurement of strain and temperature based on hybrid EDF/Brillouin laser.

    PubMed

    Xie, Heng; Sun, Junqiang; Feng, Danqi

    2016-05-30

    Simultaneous temperature and strain sensing is experimentally demonstrated based on erbium-doped fiber laser (EDFL) and Brillouin erbium fiber laser (BEFL) incorporated in a single ring laser cavity. The EDFL can be switched to BEFL by injecting the Brillouin pump into the laser cavity. Longitudinal modes beat frequency and Brillouin frequency shift are monitored to discriminate strain and temperature. The longitudinal modes beat frequency is measured by observing the self-beating signals of the EDFL, while the Brillouin frequency shift is measured by monitoring the heterodyning signal of the BEFL. The simultaneous measurement errors of strain and temperature are within ± 25.8με and ± 0.8°C. The sensor is of simple structure and compact size. PMID:27410075

  2. Novel optical fibers for Brillouin-based distributed sensing

    NASA Astrophysics Data System (ADS)

    Dragic, Peter D.; Ballato, John; Morris, Stephanie; Evert, Alex; Rice, Robert R.; Hawkins, Thomas

    2013-05-01

    Optical fiber sensors utilizing Brillouin scattering rely on the principle that the Brillouin frequency shift is a function of the local temperature or strain. Conventional optical fibers, such as standard telecommunications single-mode fibers, have been successfully used in these applications, and most typically in the time domain, such as with BOTDR. Such conventional fibers however are susceptible simultaneously to both temperature and strain, requiring either at least two fibers or specialized cabling to distinguish the effects of a local stress from those of a local change in temperature. Recently, methods utilizing fibers possessing at least two Brillouin frequency shifts, each with different temperature or strain coefficients have been proposed. However, realizing such fibers is challenging, requiring fibers with regions of very different compositions, all of which must have substantial overlap with the optical field, posing significant manufacturing challenges. We present several new specialty optical fibers based on novel and unconventional fabrication techniques with significant potential for use in distributed fiber sensor systems. First, we describe a class of fibers fabricated from materials whose Brillouin frequency shifts are immune to either temperature or strain, with a demonstration of the former using fiber derived from sapphire crystal, and modeling and measurements predicting the latter. The `Brillouin-athermal' fiber enables the measurement of a local strain, independent of the local temperature. Second, we describe and demonstrate a novel group of longitudinally graded (chirped) fibers enabling easily-implemented frequency-domain systems; affording the potential to simplify and reduce the cost of Brillouin-based distributed sensors.

  3. Investigation on stimulated Brillouin scattering characteristics in a highly doped Bismuth-based Erbium-doped fiber

    NASA Astrophysics Data System (ADS)

    Parvizi, R.; Harun, S. W.; Ali, N. M.; Ahmad, H.

    2010-11-01

    Stimulated Brillouin scattering (SBS) characteristics in a 49 cm long highly doped Bismuth-based Erbium doped fiber (Bi-EDF) is investigated in the ring and linear cavity configurations. At Brillouin pump (BP) power of 6 dBm, the Brillouin laser peak power of the optimized ring Brillouin Erbium fiber laser (BEFL) is obtained at 23 dB higher than the peak power of the conventional linear cavity at an up shifted wavelength of 0.08 nm. This Bi-EDF ring cavity operates at nearly 1563 nm wavelength region, which is up-shifted by 0.08 nm from the Brillouin pump wavelength with the side mode suppression ratios (SMSR) of 29 and 23 dB in the forward and backward directions, respectively.

  4. Recent Progress in Brillouin Scattering Based Fiber Sensors

    PubMed Central

    Bao, Xiaoyi; Chen, Liang

    2011-01-01

    Brillouin scattering in optical fiber describes the interaction of an electro-magnetic field (photon) with a characteristic density variation of the fiber. When the electric field amplitude of an optical beam (so-called pump wave), and another wave is introduced at the downshifted Brillouin frequency (namely Stokes wave), the beating between the pump and Stokes waves creates a modified density change via the electrostriction effect, resulting in so-called the stimulated Brillouin scattering. The density variation is associated with a mechanical acoustic wave; and it may be affected by local temperature, strain, and vibration which induce changes in the fiber effective refractive index and sound velocity. Through the measurement of the static or dynamic changes in Brillouin frequency along the fiber one can realize a distributed fiber sensor for local temperature, strain and vibration over tens or hundreds of kilometers. This paper reviews the progress on improving sensing performance parameters like spatial resolution, sensing length limitation and simultaneous temperature and strain measurement. These kinds of sensors can be used in civil structural monitoring of pipelines, bridges, dams, and railroads for disaster prevention. Analogous to the static Bragg grating, one can write a moving Brillouin grating in fibers, with the lifetime of the acoustic wave. The length of the Brillouin grating can be controlled by the writing pulses at any position in fibers. Such gratings can be used to measure changes in birefringence, which is an important parameter in fiber communications. Applications for this kind of sensor can be found in aerospace, material processing and fine structures. PMID:22163842

  5. Recent progress in Brillouin scattering based fiber sensors.

    PubMed

    Bao, Xiaoyi; Chen, Liang

    2011-01-01

    Brillouin scattering in optical fiber describes the interaction of an electro-magnetic field (photon) with a characteristic density variation of the fiber. When the electric field amplitude of an optical beam (so-called pump wave), and another wave is introduced at the downshifted Brillouin frequency (namely Stokes wave), the beating between the pump and Stokes waves creates a modified density change via the electrostriction effect, resulting in so-called the stimulated Brillouin scattering. The density variation is associated with a mechanical acoustic wave; and it may be affected by local temperature, strain, and vibration which induce changes in the fiber effective refractive index and sound velocity. Through the measurement of the static or dynamic changes in Brillouin frequency along the fiber one can realize a distributed fiber sensor for local temperature, strain and vibration over tens or hundreds of kilometers. This paper reviews the progress on improving sensing performance parameters like spatial resolution, sensing length limitation and simultaneous temperature and strain measurement. These kinds of sensors can be used in civil structural monitoring of pipelines, bridges, dams, and railroads for disaster prevention. Analogous to the static Bragg grating, one can write a moving Brillouin grating in fibers, with the lifetime of the acoustic wave. The length of the Brillouin grating can be controlled by the writing pulses at any position in fibers. Such gratings can be used to measure changes in birefringence, which is an important parameter in fiber communications. Applications for this kind of sensor can be found in aerospace, material processing and fine structures. PMID:22163842

  6. High-power pulsed thulium fiber oscillator modulated by stimulated Brillouin scattering

    SciTech Connect

    Tang, Yulong Xu, Jianqiu

    2014-01-06

    A pulsed ∼2-μm thulium-doped fiber laser passively modulated by distributed stimulated Brillouin scattering achieves 10.2 W average power and >100 kHz repetition rate with a very simple all-fiber configuration. The maximum pulse energy and peak power surpass 100 μJ and 6 kW, respectively. Another distinct property is that the pulse width is clamped around 17 ns at all power levels. All the average-power, pulse energy, and peak power show the highest values from passively modulated fiber lasers in all wavelength regions.

  7. Brillouin Stokes comb generated in a distributed fiber Raman amplifier

    NASA Astrophysics Data System (ADS)

    Martins, Hugo F.; Marques, Manuel B.; Frazão, Orlando

    2011-05-01

    A Brillouin Stokes comb laser with increased flatness is reported. The feedback for the laser is provided by a distributed mirror combined with a narrowband seed laser. The Brillouin seed power and wavelength optimization is crucial in order to obtain a uniform power level between Stokes lines. The Brillouin seed must have a relatively large power and its wavelength must be located close to the Raman peak gain region. The flat-amplitude bandwidth is also determined by the choice of Raman pump wavelength. A flat-amplitude bandwidth of 34 nm from 1538 nm to 1572 nm is measured when Raman pump wavelength is set to 1455 nm. 425 uniform Brillouin Stokes lines with 0.08 nm spacing are generated across the wavelength range. The average signal-to-noise ratio of 15 dB is obtained for all the Brillouin Stokes lines. This type of laser can be used in optical communications as a multiwavelength source and also in metrology as a frequency ruler.

  8. Influence of laser phase noise on Brillouin optical time-domain analysis sensors

    NASA Astrophysics Data System (ADS)

    Minardo, A.; Zeni, L.

    2016-05-01

    This paper presents a numerical study of the phase noise from the laser in Brillouin Optical Time-Domain analysis (BOTDA) sensors. Due to laser phase noise, the phase shift cumulated by pump and probe beams during interaction in a generic fiber position is a stochastic variable, with zero mean and variance increasing with pulse duration. For negligibly small pulse leakage, the induced noise is independent of fiber length; otherwise, it increases with fiber length as long as the laser coherence length is longer than fiber.

  9. Characteristics of the Brillouin spectra in Erbium-Ytterbium fibers.

    PubMed

    Canat, G; Durécu, A; Lesueur, G; Lombard, L; Bourdon, P; Jolivet, V; Jaouën, Y

    2008-03-01

    This paper reports the main characteristics of the Stokes spectra for typical pumped and unpumped Erbium-Ytterbium doped fibers. Doped fibers show shorter Brillouin shifts and their spectra are up to 1.6 times broader than undoped fibers. Those spectra are composed of several peaks originating from several longitudinal acoustic modes. The effective Brillouin gain of the secondary modes can be as large as 20% of the main peak gain. They can merge into a more complex structure for the largest cores. Simulations allow to relate these characteristics to the influence of codoping and index profile inhomogeneity. An additional broadening of the Stokes spectrum in pumped fibers is reported and attributed to thermal effects.

  10. Probing axial orientation of collagen fibers with Brillouin microspectroscopy

    NASA Astrophysics Data System (ADS)

    Meng, Zhaokai; Yakovlev, Vladislav V.

    2015-03-01

    Collagen is an important structural component in many biological tissues including bone, teeth, skin, and vascular endothelial layer. Its fibrillar arrangement can produce tissues with distinct anisotropies and is responsible for its unique elastic properties. However, current methods of retrieving orientation of those fibers show low sensitivity to the out-of-plane orientations. In this report, we employed Brillouin microspectroscopy to probe the local sound velocity, which, in its turn, is found to have a strong correlation to the local fibrillar arrangements.

  11. Stimulated Brillouin scattering in ultra-long distributed feedback Bragg gratings in standard optical fiber.

    PubMed

    Loranger, Sébastien; Lambin-Iezzi, Victor; Wahbeh, Mamoun; Kashyap, Raman

    2016-04-15

    Distributed feedback (DFB) fiber Bragg gratings (FBG) are widely used as narrow-band filters and single-mode cavities for lasers. Recently, a nonlinear generation has been shown in 10-20 cm DFB gratings in a highly nonlinear fiber. First, we show in this Letter a novel fabrication technique of ultra-long DFBs in a standard fiber (SMF-28). Second, we demonstrate nonlinear generation in such gratings. A particular inscription technique was used to fabricate all-in-phase ultra-long FBG and to implement reproducible phase shift to form a DFB mode. We demonstrate stimulated Brillouin scattering (SBS) emission from this DFB mode and characterize the resulting laser. It seems that such a SBS based DFB laser stabilizes a pump's jittering and reduces its linewidth. PMID:27082348

  12. Preparation of Extracellular Matrix Protein Fibers for Brillouin Spectroscopy.

    PubMed

    Edginton, Ryan S; Mattana, Sara; Caponi, Silvia; Fioretto, Daniele; Green, Ellen; Winlove, C Peter; Palombo, Francesca

    2016-01-01

    Brillouin spectroscopy is an emerging technique in the biomedical field. It probes the mechanical properties of a sample through the interaction of visible light with thermally induced acoustic waves or phonons propagating at a speed of a few km/sec. Information on the elasticity and structure of the material is obtained in a nondestructive contactless manner, hence opening the way to in vivo applications and potential diagnosis of pathology. This work describes the application of Brillouin spectroscopy to the study of biomechanics in elastin and trypsin-digested type I collagen fibers of the extracellular matrix. Fibrous proteins of the extracellular matrix are the building blocks of biological tissues and investigating their mechanical and physical behavior is key to establishing structure-function relationships in normal tissues and the changes which occur in disease. The procedures of sample preparation followed by measurement of Brillouin spectra using a reflective substrate are presented together with details of the optical system and methods of spectral data analysis. PMID:27684584

  13. Tunable slow light via stimulated Brillouin scattering at 2 μm based on Tm-doped fiber amplifiers.

    PubMed

    Wang, Xiong; Zhou, Pu; Wang, Xiaolin; Xiao, Hu; Liu, Zejin

    2015-06-01

    We present a slow light system based on stimulated Brillouin scattering (SBS) at 2 μm. A single-frequency fiber laser with Tm-doped fiber amplifiers was used to generate the SBS signal laser and the Brillouin pump light at 1.971 μm. The maximum delay time reaches 16 ns for pulses with 43-ns width, and the pulse width is broadened to 56.4 ns. The maximum delay time for 57-ns pulses reaches 33.4 ns, and the pulse width is broadened to 77.6 ns. The relative delays are 0.37 and 0.58 for 43 and 57 ns pulses, respectively. This is the first demonstration, as far as we know, on a slow light system at 2 μm, which may be substantial for future optical communications and LIDAR systems employing laser sources near 2-μm band.

  14. Multimode Brillouin spectrum in a long tapered birefringent photonic crystal fiber.

    PubMed

    Tchahame, Joël Cabrel; Beugnot, Jean-Charles; Kudlinski, Alexandre; Sylvestre, Thibaut

    2015-09-15

    We investigate the stimulated Brillouin scattering (SBS) in a long tapered birefringent solid-core photonic crystal fiber (PCF) and compare our results with a similar but untapered PCF. It is shown that the taper generates a broadband and multipeaked Brillouin spectrum, while significantly increasing the threshold power. Furthermore, we observe that the strong fiber birefringence gives rise to a frequency shift of the Brillouin spectrum which increases along the fiber. Numerical simulations are also presented to account for the taper effect and the birefringence. Our findings open a new means to control or inhibit the SBS by tapering photonic crystal fibers. PMID:26371916

  15. Slow light of subnanosecond pulses via stimulated Brillouin scattering in nonuniform fibers

    SciTech Connect

    Kalosha, V. P.; Chen, Liang; Bao, Xiaoyi

    2007-02-15

    We have proposed a way to obtain large optically controlled delay for subnanosecond pulses and simultaneously avoid the pulse distortions via stimulated Brillouin scattering (SBS) in optical fibers at cw pumping by the use of longitudinally nonuniform fibers with the Brillouin frequency linearly varying with distance. If the range of Brillouin frequency variation along the fiber covers the whole pulse spectrum, the delay of subnanosecond pulses is linearly proportional to the gain, could be larger than the pulse duration, and the pulse broadening is minimum. We have shown this by solving three-wave SBS equations for realistic fiber lengths, both single subnanosecond pulses and sequences of subnanosecond pulses.

  16. Nanosecond pulse pumped, narrow linewidth all-fiber Raman amplifier with stimulated Brillouin scattering suppression

    NASA Astrophysics Data System (ADS)

    Su, Rongtao; Zhou, Pu; Wang, Xiaolin; Lü, Haibin; Xu, Xiaojun

    2014-01-01

    We report on a narrow linewidth nanosecond all-fiber Raman amplifier core pumped by a pulsed laser at approximately 1030 nm. The Raman amplifier was based on a standard single-mode fiber with a length of ∼1 km, and stimulated Brillouin scattering (SBS) was suppressed by employing pulses with a short pulse width. 1083 nm pulses with an average power of 32.6 mW, a repetition rate of 2 MHz, and pulse widths of ∼7.2 ns were achieved. A maximum slope efficiency of 46.1% and a gain of 31 dB were obtained. The output Raman power can be scaled further by using fiber with shorter lengths and pump pulses with a higher power.

  17. Dynamics of stimulated Brillouin scattering in optical fibers without external feedback induced by frequency detuning from resonance.

    PubMed

    Lü, Haibin; Zhou, Pu; Wang, Xiaolin; Jiang, Zongfu

    2015-07-13

    In optical fibers, stimulated Brillouin scattering are usually investigated in the regime of resonance. Whereas, in this paper, we discover for the first time that, without participation of Kerr effect, frequency detuning from resonance can give rise to rich dynamical behaviors for stimulated Brillouin scattering in optical fibers. Distinct from the dynamics presented in the conventional Brillouin lasers, this kind of phenomena does not need external feedback at all but also presents a variety of classifiable dynamical features for continuous-wave pumping, including steady state, periodic state and chaos. We analyze that the main mechanisms responsible for these dynamical behaviors include the transient response of acoustic wave, relaxation oscillation, frequency mixing effect induced by three-wave coherent coupling and Brillouin gain-induced group velocity change. Moreover, it should be pointed that it is the first time to discover in theory that there exists the frequency mixing effect induced by three-wave coherent coupling in the regime of non-resonance for the stimulated Brillouin scattering process, which as a consequence determines the periodic state. PMID:26191871

  18. High-resolution Brillouin analysis in a carbon-fiber-composite unmanned aerial vehicle model wing

    NASA Astrophysics Data System (ADS)

    Stern, Yonatan; London, Yosef; Preter, Eyal; Antman, Yair; Shlomi, Orel; Silbiger, Maayan; Adler, Gadi; Zadok, Avi

    2016-05-01

    Standard optical fibers are successfully embedded within a model wing of an unmanned aerial vehicle, constructed of carbon fiber and epoxy, during its production. Time-gated Brillouin optical correlation domain analysis along the embedded optical fibers is performed with a spatial resolution of 4 cm. Tests were carried out using a portable measurement setup prototype. The results represent an important step towards applications of high-resolution Brillouin analysis outside the research laboratory.

  19. Experimental observation of surface acoustic wave Brillouin scattering in a small-core photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Tchahame, Joël. Cabrel; Sylvestre, Thibaut; Phan Huy, Kien; Kudlinski, Alexandre; Laude, Vincent; Beugnot, Jean-Charles

    2016-04-01

    Light propagation in small-core photonic crystal fibers enables tight optical confinement over long propagation lengths to enhance light-matter interactions. Not only can photonic crystal fibers compress light spatially, they also provide a tunable means to control light-hypersound interactions. By exploring Brillouin light scattering in a small-core and high air-filling fraction microstructured fiber, we report the observation of Brillouin scattering from surface acoustic waves at lower frequencies than standard Brillouin scattering from bulk acoustic waves. This effect could find potential applications for optical sensing technologies that exploit surface acoustic waves.

  20. Impact wave monitoring in soil using a dynamic fiber sensor based on stimulated brillouin scattering.

    PubMed

    Cui, Qingsong; Pamukcu, Sibel; Pervizpour, Mesut

    2015-01-01

    The impact wave response of soil due to a ball drop is monitored on a 30.5 cm by 30.5 cm square soil box using a fiber sensor with dynamic strain sensing capability. The experiments are conducted in real time using a simple one-laser one-modulator configuration with stimulated Brillouin scattering. The embedded BOTDA sensor grid successfully monitored the distribution and evolution of the inner strains of a sand bed during a mass impact on its surface. The measurement of the distributed dynamic strains was possible in several milliseconds and with 1 cm actual location resolution. This paper presents a time-domain signal analysis utilized for determining the dynamic strains in embedded fiber sensor. The results demonstrate the method to be a promising one for detection of subsurface vibration and movement in geotechnical Structure Health Monitoring (SHM).

  1. Impact Wave Monitoring in Soil Using a Dynamic Fiber Sensor Based on Stimulated Brillouin Scattering

    PubMed Central

    Cui, Qingsong; Pamukcu, Sibel; Pervizpour, Mesut

    2015-01-01

    The impact wave response of soil due to a ball drop is monitored on a 30.5 cm by 30.5 cm square soil box using a fiber sensor with dynamic strain sensing capability. The experiments are conducted in real time using a simple one-laser one-modulator configuration with stimulated Brillouin scattering. The embedded BOTDA sensor grid successfully monitored the distribution and evolution of the inner strains of a sand bed during a mass impact on its surface. The measurement of the distributed dynamic strains was possible in several milliseconds and with 1 cm actual location resolution. This paper presents a time-domain signal analysis utilized for determining the dynamic strains in embedded fiber sensor. The results demonstrate the method to be a promising one for detection of subsurface vibration and movement in geotechnical Structure Health Monitoring (SHM). PMID:25856327

  2. Impact wave monitoring in soil using a dynamic fiber sensor based on stimulated brillouin scattering.

    PubMed

    Cui, Qingsong; Pamukcu, Sibel; Pervizpour, Mesut

    2015-01-01

    The impact wave response of soil due to a ball drop is monitored on a 30.5 cm by 30.5 cm square soil box using a fiber sensor with dynamic strain sensing capability. The experiments are conducted in real time using a simple one-laser one-modulator configuration with stimulated Brillouin scattering. The embedded BOTDA sensor grid successfully monitored the distribution and evolution of the inner strains of a sand bed during a mass impact on its surface. The measurement of the distributed dynamic strains was possible in several milliseconds and with 1 cm actual location resolution. This paper presents a time-domain signal analysis utilized for determining the dynamic strains in embedded fiber sensor. The results demonstrate the method to be a promising one for detection of subsurface vibration and movement in geotechnical Structure Health Monitoring (SHM). PMID:25856327

  3. Analysis of SNR penalty in Brillouin optical time-domain analysis sensors induced by laser source phase noise

    NASA Astrophysics Data System (ADS)

    Minardo, A.; Bernini, R.; Zeni, L.

    2016-02-01

    In this paper, we analyze numerically the effect of phase noise from the laser in Brillouin optical time-domain analysis (BOTDA) sensors. Due to laser phase noise, the phase shift between pump and probe beams is a stochastic variable with zero mean and variance changing with the position along the fiber. The numerical results, carried out for various fiber lengths and pump pulse durations, show that laser phase noise induces a reduction of the average Brillouin gain, as well as an increase of the overall system noise. Preliminary experimental results, carried out by use of a conventional BOTDA system and two DFB diode lasers having different linewidth (63 and 900 kHz), support the numerical analysis.

  4. 40nm tunable multi-wavelength fiber laser

    NASA Astrophysics Data System (ADS)

    Jia, Qingsong; Wang, Tianshu; Zhang, Peng; Dong, Keyan; Jiang, Huilin

    2014-12-01

    A Brillouin-Erbium multi-wavelength tunable fiber laser at C-band is demostrated. A 10 km long singlemode fiber(SMF), a 6 m long Erbium-doped fiber, two couplers, a wavelength division multiplexer, a isolator, an optical circulator, a 980nm pump laser and a narrow linewidth tunable laser are included in the structure. A segment of 10 km-long single-mode fiber (SMF) between the two ports of a 1×2 coupler is used as Brillouin gain. Ebiumdoped fiber amplifier (EDFA) consists of a segment of 6m er-doped fiber pumped by 980nm laser dioder . A narrow linewidth tunable laser from 1527 to 1607 nm as Brillouin bump, At the Brillouin pump power of 8mW and the 980 nm pump power of 400 mw, 16 output channels with 0.08 nm spacing and tuning range of 40 nm from 1527 nm to 1567 nm are achieved. We realize the tunable output of wavelength by adjusting the 980 nm pump power and the Brillouin pump wavelength. Stability of the multiwavelength fiber laser is also observed.

  5. Remote Water Temperature Measurements Based on Brillouin Scattering with a Frequency Doubled Pulsed Yb:doped Fiber Amplifier

    PubMed Central

    Schorstein, Kai; Popescu, Alexandru; Göbel, Marco; Walther, Thomas

    2008-01-01

    Temperature profiles of the ocean are of interest for weather forecasts, climate studies and oceanography in general. Currently, mostly in situ techniques such as fixed buoys or bathythermographs deliver oceanic temperature profiles. A LIDAR method based on Brillouin scattering is an attractive alternative for remote sensing of such water temperature profiles. It makes it possible to deliver cost-effective on-line data covering an extended region of the ocean. The temperature measurement is based on spontaneous Brillouin scattering in water. In this contribution, we present the first water temperature measurements using a Yb:doped pulsed fiber amplifier. The fiber amplifier is a custom designed device which can be operated in a vibrational environment while emitting narrow bandwidth laser pulses. The device shows promising performance and demonstrates the feasibility of this approach. Furthermore, the current status of the receiver is briefly discussed; it is based on an excited state Faraday anomalous dispersion optical filter.

  6. Nonstationary stimulated Brillouin scattering in a laser plasma

    SciTech Connect

    Chirokikh, A.V.; Kozochkin, S.M.; Streltsov, A.P. ); Ochirov, B.D.; Rubenchik, A.M. )

    1993-08-02

    The stimulated Brillouin scattering (SBS) of intense laser light is considered. We present experimental data demonstrating SBS nonstationarity of radiation directed at thick targets. The results are explained in terms of the interaction of light scattered and reflected from the critical surface. Numerical simulations supporting this interpretation are presented. It is demonstrated that the SBS evolution is neither sensitive to plasma density, size of plasma slab, or beam intensity variations. But it is sensitive enough to changes in the reflection coefficient and variations of the critical surface velocity.

  7. Stimulated brillouin backscatter of a short-pulse laser

    SciTech Connect

    Hinkel, D.E.; Williams, E.A.; Berger, R.L.

    1994-11-03

    Stimulated Brillouin backscattering (SBBS) from a short-pulse laser, where the pulse length is short compared to the plasma length, is found to be qualitatively different than in the long pulse regime, where the pulse length is long compared to the plasma length. We find that after an initial transient of order the laser pulse length transit time, the instability reaches a steady state in the variables x{prime} = x {minus} V{sub g}t, t{prime} = t, where V{sub g} is the pulse group velocity. In contrast, SBBS in a long pulse can be absolutely unstable and grows indefinitely, or until nonlinearities intervene. We find that the motion of the laser pulse induces Doppler related effects that substantially modify the backscattered spectrum at higher intensities, where the instability is strongly coupled (i.e. , has a growth rate large compared to the ion acoustic frequency).

  8. Research on distributed strain separation technology of fiber Brillouin sensing system combining an electric power optical fiber cable

    NASA Astrophysics Data System (ADS)

    Lei, Yuqing; Chen, Xi; Li, Jihui; Tong, Jie

    2013-12-01

    Brillouin-based optical fiber sensing system has been taken more and more attentions in power transmission line in recent years. However, there exists a temperature cross sensitivity problem in sensing system. Hence, researching on strain separation technology of fiber brillouin sensing system is an urgent requirement in its practical area. In this paper, a real-time online distributed strain separation calculation technology of fiber Brillouin sensing combining an electric power optical fiber cable is proposed. The technology is mainly composed of the Brillouin temperature-strain distributed measurement system and the Raman temperature distributed measurement system. In this technology, the electric power optical fiber cable is a special optical phase conductor (OPPC); the Brillouin sensing system uses the Brillouin optical time domain analysis (BOTDA) method. The optical unit of the OPPC includes single-mode and multimode fibers which can be used as sensing channel for Brillouin sensing system and Raman sensing system respectively. In the system networking aspect, the data processor of fiber Brillouin sensing system works as the host processor and the data processor of fiber Raman sensing system works as the auxiliary processor. And the auxiliary processor transfers the data to the host processor via the Ethernet interface. In the experiment, the BOTDA monitoring system and the Raman monitoring system work on the same optical unit of the OPPC simultaneously; In the data processing aspect, the auxiliary processor of Raman transfers the temperature data to the host processor of Brillouin via the Ethernet interface, and then the host processor of Brillouin uses the temperature data combining itself strain-temperature data to achieve the high sampling rate and high-precision strain separation via data decoupling calculation. The data decoupling calculation is achieved through the interpolation, filtering, feature point alignment, and the singular point prediction

  9. High spatial resolution distributed sensing in optical fibers by Brillouin gain-profile tracing.

    PubMed

    Sperber, Tom; Eyal, Avishay; Tur, Moshe; Thévenaz, Luc

    2010-04-12

    A novel BOTDA technique for distributed sensing of the Brillouin frequency in optical fibers with cm-order spatial resolution is proposed. The technique is based upon a simple modulation scheme, requiring only a single long pump pulse for acoustic excitation, and no subsequent interrogating pulse. Instead, the desired spatial mapping of the Brillouin response is extracted by taking the derivative of the probe signal. As a result, the spatial resolution is limited by the fall-time of the pump modulation, and the phenomena of secondary "echo" signals, typically appearing in BOTDA sensing methods based upon pre-excitation, is mitigated. Experimental demonstration of the detection of a Brillouin frequency variation significantly smaller than the natural Brillouin linewidth, with a 2cm spatial resolution, is presented.

  10. Microresonator Brillouin laser stabilization using a microfabricated rubidium cell.

    PubMed

    Loh, William; Hummon, Matthew T; Leopardi, Holly F; Fortier, Tara M; Quinlan, Frank; Kitching, John; Papp, Scott B; Diddams, Scott A

    2016-06-27

    We frequency stabilize the output of a miniature stimulated Brillouin scattering (SBS) laser to rubidium atoms in a microfabricated cell to realize a laser system with frequency stability at the 10-11 level over seven decades in averaging time. In addition, our system has the advantages of robustness, low cost and the potential for integration that would lead to still further miniaturization. The SBS laser operating at 1560 nm exhibits a spectral linewidth of 820 Hz, but its frequency drifts over a few MHz on the 1 hour timescale. By locking the second harmonic of the SBS laser to the Rb reference, we reduce this drift by a factor of 103 to the level of a few kHz over the course of an hour. For our combined SBS and Rb laser system, we measure a frequency noise of 4 × 104 Hz2/Hz at 10 Hz offset frequency which rapidly rolls off to a level of 0.2 Hz2/Hz at 100 kHz offset. The corresponding Allan deviation is ≤2 × 10-11 for averaging times spanning 10-4 to 103 s. By optically dividing the signal of the laser down to microwave frequencies, we generate an RF signal at 2 GHz with phase noise at the level of -76 dBc/Hz and -140 dBc/Hz at offset frequencies of 10 Hz and 10 kHz, respectively. PMID:27410604

  11. Fiber distributed feedback laser

    NASA Technical Reports Server (NTRS)

    Elachi, C.; Evans, G. A.; Yeh, C. (Inventor)

    1976-01-01

    Utilizing round optical fibers as communication channels in optical communication networks presents the problem of obtaining a high efficiency coupling between the optical fiber and the laser. A laser is made an integral part of the optical fiber channel by either diffusing active material into the optical fiber or surrounding the optical fiber with the active material. Oscillation within the active medium to produce lasing action is established by grating the optical fiber so that distributed feedback occurs.

  12. Few-mode fiber based distributed curvature sensor through quasi-single-mode Brillouin frequency shift.

    PubMed

    Wu, Hao; Wang, Ruoxu; Liu, Deming; Fu, Songnian; Zhao, Can; Wei, Huifeng; Tong, Weijun; Shum, Perry Ping; Tang, Ming

    2016-04-01

    We proposed and demonstrated a few-mode fiber (FMF) based optical-fiber sensor for distributed curvature measurement through quasi-single-mode Brillouin frequency shift (BFS). By central-alignment splicing FMF and single-mode fiber (SMF) with a fusion taper, a SMF-components-compatible distributed curvature sensor based on FMF is realized using the conventional Brillouin optical time-domain analysis system. The distributed BFS change induced by bending in FMF has been theoretically and experimentally investigated. The precise BFS response to the curvature along the fiber link has been calibrated. A proof-of-concept experiment is implemented to validate its effectiveness in distributed curvature measurement. PMID:27192275

  13. Distributed measurement of hydrostatic pressure based on Brillouin dynamic grating in polarization maintaining fibers.

    PubMed

    Kim, Yong Hyun; Kwon, Hong; Kim, Jeongjun; Song, Kwang Yong

    2016-09-19

    High-sensitivity distributed measurement of hydrostatic pressure is experimentally demonstrated by optical time-domain analysis of Brillouin dynamic grating (BDG) in polarization maintaining fibers (PMF's). The spectral shift of the BDG in four different types of PMF's are investigated under hydrostatic pressure variation from 14.5 psi (1 bar) to 884.7 psi (61 bar) with less than 2 m spatial resolution. The pressure sensitivity of BDG frequency is measured to be ‒1.69, + 0.65, + 0.78, and + 0.85 MHz/psi for a PM photonic crystal fiber (PM-PCF), two Bow-tie fibers, and a PANDA fiber, respectively, which is about 65 to 169 times larger than that of Brillouin frequency-based pressure sensing. PMID:27661881

  14. Acousto-opto-mechanical theory for polarization maintaining optical fibers in Brillouin based sensing

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoling; Ansari, Farhad; Meng, Dewei; Bao, Tengfei

    2015-01-01

    Change in phase or wavelength for interferometric and fiber Bragg Gratings (FBG) based sensors can be described by strain-optic effects. In Brillouin sensors, strain sensitivity need to be expressed in terms of acousto-opto-mechanical properties of fibers. It is then possible to formulate theoretical relationships that lead to the evaluation of strain sensitivities and establishment of gauge factors for Brillouin based sensors. This article reports on the derivation of generalized relationships describing the strain sensitivity in terms of acousto-optic effects in optical fibers. In particular, the formulations correspond to polarization maintaining fibers at various polarization angles with respect to the slow axis of the fiber. The scope of research encompassed theoretical and experimental studies involving both single mode as well as polarization maintaining optical fibers subjected to strain under isothermal conditions. A high resolution BOTDA was employed in the experiments in order to verify the validity of theoretical relationships between strain and Brillouin frequency shifts for different polarization angles.

  15. Harmonic signal generation and frequency upconversion using selective sideband Brillouin amplification in single-mode fiber.

    PubMed

    Lee, Kwang-Hyun; Choi, Woo-Young

    2007-06-15

    Harmonic signal generation and frequency upconversion at millimeter-wave bands are experimentally demonstrated by using selective sideband Brillouin amplification induced by stimulated Brillouin scattering in a single-mode fiber. The harmonic signals and frequency upconverted signals are simultaneously generated by the beating of optical sidebands, one of which is Brillouin amplified. By using this method, we successfully demonstrate generation of third-harmonic millimeter waves at 32.55 GHz with f(LO) of 10.85 GHz and upconversion of 10 Mbps quadrature-shift keyed data at f(IF) of 1.55 GHz into a 30 GHz band with more than 17 dB RF power gain.

  16. Effect of the geometric deformations on the Brillouin scattering in the standard single-mode optical fiber

    NASA Astrophysics Data System (ADS)

    Fajkus, Marcel; Nedoma, Jan; Kepak, Stanislav; Jaros, Jakub; Cubik, Jakub; Zboril, Ondrej; Novak, Martin; Vasinek, Vladimir

    2016-04-01

    Distributed optical fiber sensors monitor the measured variables over the entire fiber length. Distributed strain and temperature system (DSTS) scans the frequency change of Brillouin scattering which depends on the measured temperature and mechanical stress of the fiber. This paper deals with the effect of fiber geometric deformations on the Brillouin scattering. The points of maximum and minimum deformations were searched using the Brillouin frequency change. The optical fiber was installed into base geometric shapes and deformed by mechanical stress. Standard single-mode fiber G.652.D was used. The aim of this study was to verify if the standard optical fiber originally designed for telecommunication transmissions are suitable for sensor applications with DSTS. It turned out that these fibers are applicable for the deformation measurement and geometrical arrangement has great influence on the measurement sensitivity too.

  17. Brillouin Corrosion Expansion Sensors for Steel Reinforced Concrete Structures Using a Fiber Optic Coil Winding Method

    PubMed Central

    Zhao, Xuefeng; Gong, Peng; Qiao, Guofu; Lu, Jie; Lv, Xingjun; Ou, Jinping

    2011-01-01

    In this paper, a novel kind of method to monitor corrosion expansion of steel rebars in steel reinforced concrete structures named fiber optic coil winding method is proposed, discussed and tested. It is based on the fiber optical Brillouin sensing technique. Firstly, a strain calibration experiment is designed and conducted to obtain the strain coefficient of single mode fiber optics. Results have shown that there is a good linear relationship between Brillouin frequency and applied strain. Then, three kinds of novel fiber optical Brillouin corrosion expansion sensors with different fiber optic coil winding packaging schemes are designed. Sensors were embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion, and their performance was studied in a designed electrochemical corrosion acceleration experiment. Experimental results have shown that expansion strain along the fiber optic coil winding area can be detected and measured by the three kinds of sensors with different measurement range during development the corrosion. With the assumption of uniform corrosion, diameters of corrosion steel rebars were obtained using calculated average strains. A maximum expansion strain of 6,738 με was monitored. Furthermore, the uniform corrosion analysis model was established and the evaluation formula to evaluate mass loss rate of steel rebar under a given corrosion rust expansion rate was derived. The research has shown that three kinds of Brillouin sensors can be used to monitor the steel rebar corrosion expansion of reinforced concrete structures with good sensitivity, accuracy and monitoring range, and can be applied to monitor different levels of corrosion. By means of this kind of monitoring technique, quantitative corrosion expansion monitoring can be carried out, with the virtues of long durability, real-time monitoring and quasi-distribution monitoring. PMID:22346672

  18. Multiwavelength L-band fiber laser with bismuth-oxide EDF and photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Ramzia Salem, A. M.; Al-Mansoori, M. H.; Hizam, H.; Mohd Noor, S. B.; Abu Bakar, M. H.; Mahdi, M. A.

    2011-05-01

    A multiwavelength laser comb using a bismuth-based erbium-doped fiber and 50 m photonic crystal fiber is demonstrated in a ring cavity configuration. The fiber laser is solely pumped by a single 1455 nm Raman pump laser to exploit its higher power delivery compared to that of a single-mode laser diode pump. At 264 mW Raman pump power and 1 mW Brillouin pump power, 38 output channels in the L-band have been realized with an optical signal-to-noise ratio above 15 dB and a Stokes line spacing of 0.08 nm. The laser exhibits a tuning range of 12 nm and produces stable Stokes lines across the tuning range between Brillouin pump wavelengths of 1603 nm and 1615 nm.

  19. Athermal distributed Brillouin sensors utilizing all-glass optical fibers fabricated from rare earth garnets: LuAG

    NASA Astrophysics Data System (ADS)

    Dragic, P. D.; Pamato, M. G.; Iordache, V.; Bass, J. D.; Kucera, C. J.; Jones, M.; Hawkins, T. W.; Ballato, J.

    2016-01-01

    An all-glass optical fiber derived from single-crystal LuAG is investigated for its potential use in athermal Brillouin distributed strain sensors. Such sensor systems are comprised of fiber whose Brillouin frequency shift is independent of temperature, but not independent of strain. Bulk Brillouin spectroscopy measurements on the precursor LuAG crystal are performed to gain insight into the crystal-to-glass transition. Results suggest that both the mass density and acoustic velocity are reduced relative to the crystal phase, in common with the other rare earth aluminosilicates. Advantages of the LuAG derived fiber over other rare earth garnet-derived fibers for the sensing application are a stronger strain response and larger Brilloun gain with narrower Brillouin spectral width.

  20. Fiber optic laser rod

    DOEpatents

    Erickson, G.F.

    1988-04-13

    A laser rod is formed from a plurality of optical fibers, each forming an individual laser. Synchronization of the individual fiber lasers is obtained by evanescent wave coupling between adjacent optical fiber cores. The fiber cores are dye-doped and spaced at a distance appropriate for evanescent wave coupling at the wavelength of the selected dye. An interstitial material having an index of refraction lower than that of the fiber core provides the optical isolation for effective lasing action while maintaining the cores at the appropriate coupling distance. 2 figs.

  1. Dimensionality reduction and dynamical filtering: Stimulated Brillouin scattering in optical fibers.

    PubMed

    Setra, Rafael G; Arroyo-Almanza, Diana A; Ni, Zetian; Murphy, Thomas E; Roy, Rajarshi

    2015-08-01

    Stimulated Brillouin scattering (SBS) is a noise-driven nonlinear interaction between acoustical and optical waves. In optical fibers, SBS can be observed at relatively low optical powers and can severely limit signal transmission. Although SBS is initiated by high dimensional noise, it also exhibits many of the hallmarks of a complex nonlinear dynamical system. We report here a comprehensive experimental and numerical study of the fluctuations in the reflected Stokes wave produced by SBS in optical fibers. Using time series analysis, we demonstrate a reduction of dimensionality and dynamical filtering of the Stokes wave. We begin with a careful comparison of the measured average transmitted and reflected intensities from below the SBS threshold to saturation of the transmitted power. Initially the power spectra and correlation functions of the time series of the reflected wave fluctuations at the SBS threshold and above are measured and simulated. Much greater dynamical insight is provided when we study the scaling behavior of the intensity fluctuations using Hurst exponents and detrended fluctuation analysis for time scales extending over six orders of magnitude. At the highest input powers, we notice the emergence of three distinct dynamical scaling regimes: persistent, Brownian, and antipersistent. Next, we explore the Hilbert phase fluctuations of the intensity time series and amplitude-phase coupling. Finally, time-delay embedding techniques reveal a gradual reduction in dimensionality of the spatiotemporal dynamics as the laser input is increased toward saturation of the transmitted power. Through all of these techniques, we find a transition from noisier to smoother dynamics with increasing input power. We find excellent agreement between our experimental measurements and simulations. PMID:26382472

  2. Gamma radiation influence on silica optical fibers measured by optical backscatter reflectometry and Brillouin sensing technique

    NASA Astrophysics Data System (ADS)

    Wosniok, A.; Sporea, D.; Neguţ, D.; Krebber, K.

    2016-05-01

    We have studied the influence of gamma rays on physical properties of different commercially available silica optical fibers stepwise irradiated up to a total dose of 100 kGy. The detection of radiation-induced changes in silica glass offers the possibility of using selected optical fibers as distributed radiation sensors. The measurements performed by us were based on optical backscatter reflectometry and Brillouin distributed sensing. The measurement methods enable an analysis of radiation-induced modification of the group refractive index and density of the optical fibers. The most distinct physical effect observed by us concerns the increase of the optical attenuation with rising total radiation doses. Quantitative measurement results indicate a crucial impact of fiber dopants on radiation-induced physical and sensory characteristics of silica optical fibers affected by differences in fiber fabrication techniques. Based on the obtained results, the suitability of distributed Brillouin sensing for dosimetry applications seems to be improved by modifying the refractive index profile of the fiber core.

  3. Broadly tunable multiwavelength fiber laser with bismuth-oxide EDF using large effective area fiber

    NASA Astrophysics Data System (ADS)

    Ramzia Salem, A. M.; Al-Mansoori, M. H.; Hizam, H.; Mohd Noor, S. B.; Mahdi, M. A.

    2011-02-01

    A multiwavelength laser comb using 2.49 m Bismuth-oxide erbium-doped fiber (Bi-EDF) with different lengths of large effective area fiber (LEAF) in a ring cavity configuration is realized. The Bi-EDF is used as the linear gain medium and LEAF is used as the non-linear gain medium for stimulated Brillouin scattering. Out of the four different lengths, the longest length of 25 km LEAF exhibits the widest tuning range of 44 nm (1576 to 1620 nm) in the L-band at 264 mW pump power and 5 mW Brillouin pump power. In addition, a total of 15 output channels are achieved with total average output power of -8 dBm from this laser structure. All Brillouin Stokes signals exhibit high peak power of above -20 dBm per signal and their optical signal-to-noise ratio of greater than 15 dB.

  4. Stimulated Brillouin scattering of laser in semiconductor plasma embedded with nano-sized grains

    SciTech Connect

    Sharma, Giriraj; Dad, R. C.; Ghosh, S.

    2015-07-31

    A high power laser propagating through semiconductor plasma undergoes Stimulated Brillouin scattering (SBS) from the electrostrictively generated acoustic perturbations. We have considered that nano-sized grains (NSGs) ions are embedded in semiconductor plasma by means of ion implantation. The NSGs are bombarded by the surrounding plasma particles and collect electrons. By considering a negative charge on the NSGs, we present an analytically study on the effects of NSGs on threshold field for the onset of SBS and Brillouin gain of generated Brillouin scattered mode. It is found that as the charge on the NSGs builds up, the Brillouin gain is significantly raised and the threshold pump field for the onset of SBS process is lowered.

  5. Brillouin scattering in multi-core optical fibers for sensing applications

    PubMed Central

    Mizuno, Yosuke; Hayashi, Neisei; Tanaka, Hiroki; Wada, Yuji; Nakamura, Kentaro

    2015-01-01

    We measure the Brillouin gain spectra in two cores (the central core and one of the outer cores) of a ~3-m-long, silica-based, 7-core multi-core fiber (MCF) with incident light of 1.55 μm wavelength, and investigate the Brillouin frequency shift (BFS) and its dependence on strain and temperature. The BFSs of both the cores are ~10.92 GHz, and the strain- and temperature-dependence coefficients of the BFS in the central core are 484.8 MHz/% and 1.08 MHz/°C, respectively, whereas those in the outer core are 516.9 MHz/% and 1.03 MHz/°C. All of these values are not largely different from those in a silica single-mode fiber, which is expected because the cores are basically composed of the same material (silica). We then analyze the difference in structural deformation between the two cores when strain is applied to the fiber, and show that it does not explain the difference in the BFS dependence of strain in this case. The future prospect on distributed strain and temperature sensing based on Brillouin scattering in MCFs is finally presented. PMID:26065718

  6. Equidistance difference optimum method to enhance measuring space of Brillouin optical fiber sensor

    NASA Astrophysics Data System (ADS)

    He, Jianping; Zhou, Zhi; Ou, Jinping

    2013-09-01

    Brillouin optic time-domain analysis/reflectometry (BOTDA/R) is a fully distributed optical sensing technique that can provide strain or temperature information along the whole length of a single-mode fiber and has attracted worldwide attentions in recent years. However, both spatial and distance resolution of BOTDA/R are too low to satisfy the measurement of local damage, and enhancing the performance of spatial or distance resolution is considered to be a problem. A novel equidistance difference optimum method is proposed to compensate for the weak spatial and distance resolution of BOTDA/R. The principle of the proposed method is introduced, and two demonstration tests are carried out to validate the local damage detection ability. The experimental results show that the Brillouin optical fiber sensor measuring space can cover any part of the sensor without changing the default values of the Brillouin system, which can greatly enrich the information of measured elements and detect the local damages well.

  7. High speed data encryption and decryption using stimulated Brillouin scattering effect in optical fiber

    NASA Astrophysics Data System (ADS)

    Yi, Lilin; Zhang, Tao; Hu, Weisheng

    2011-11-01

    A novel all-optical encryption/decryption method based on stimulated Brillouin scattering (SBS) effect in optical fiber is proposed for the first time. The operation principle is explained in detail and the encryption and decryption performance is experimentally evaluated. The encryption keys could be the SBS gain amplitude, bandwidth, central wavelength and spectral shape, which are configurable and flexibly controlled by the users. We experimentally demonstrate the SBS encryption/decryption process of a 10.86-Gb/s non-return-to-zero (NRZ) data by using both phase-modulated and current-dithered Brillouin pumps for proof-of-concept. Unlike the traditional optical encryption methods of chaotic communications and optical code-division-multiplexing access (OCDMA), the SBS based encryption/decryption technique can directly upgrade the current optical communication system to a secure communication system without changing the terminal transceivers, which is completely compatible with the current optical communication systems.

  8. Nanoparticle doping for improved Er-doped fiber lasers

    NASA Astrophysics Data System (ADS)

    Baker, Colin C.; Friebele, E. Joseph; Askins, Charles G.; Hunt, Michael P.; Marcheschi, Barbara A.; Fontana, Jake; Peele, John R.; Kim, Woohong; Sanghera, Jasbinder; Zhang, Jun; Pattnaik, Radha K.; Merkle, Larry D.; Dubinskii, Mark; Chen, Youming; Dajani, Iyad A.; Mart, Cody

    2016-03-01

    A nanoparticle (NP) doping technique was used for making erbium-doped fibers (EDFs) for high energy lasers. The nanoparticles were doped into the silica soot of preforms, which were drawn into fibers. The Er luminescence lifetimes of the NP-doped cores are longer than those of corresponding solution-doped silica, and substantially less Al is incorporated into the NP-doped cores. Optical-to-optical slope efficiencies of greater than 71% have been measured. Initial investigations of stimulated Brillouin scattering (SBS) have indicated that SBS suppression is achieved by NP doping, where we observed a low intrinsic Brillouin gain coefficient, of ~1× 10-11 m/W and the Brillouin bandwidth was increased by 2.5x compared to fused silica.

  9. Cascaded gain fibers for increasing output power and the stimulated Brillouin scattering threshold of narrow linewidth fiber Raman amplifiers.

    PubMed

    Nagel, J A; Temyanko, V; Dobler, J T; Likhachev, M E; Bubnov, M M; Dianov, E M; Peyghambarian, N

    2016-05-20

    We show both experimentally and theoretically a method to increase the stimulated Brillouin scattering (SBS) threshold and output power of narrow linewidth fiber Raman amplifiers. This method employs two or more fibers with varying concentrations of the Raman gain material dopant such as GeO2 or P2O5 in silicate-based glasses. These fibers are then cascaded to form an amplifier gain stage, disrupting the buildup of SBS that normally occurs in single continuous fibers. The numerical model shown is applicable to arbitrary amplifier systems for gain stage optimization and increased power scaling. We give experimental results for phosphosilicate fibers that agree well with simulation predictions that support the numerical model used. PMID:27411133

  10. KrF laser amplifier with phase-conjugate Brillouin retroreflectors.

    PubMed

    Gower, M C

    1982-09-01

    We have demonstrated the use of phase-conjugate stimulated Brillouin scattering mirrors to produce high-quality, short-pulse KrF laser beams from angular multiplexed and regenerative amplifiers. The mirror was also shown to isolate systems optically from amplifier spontaneous emission. Automatic alignment of targets using this mirror as a retroreflector was also demonstrated.

  11. KrF laser amplifier with phase-conjugate Brillouin retroreflectors.

    PubMed

    Gower, M C

    1982-09-01

    We have demonstrated the use of phase-conjugate stimulated Brillouin scattering mirrors to produce high-quality, short-pulse KrF laser beams from angular multiplexed and regenerative amplifiers. The mirror was also shown to isolate systems optically from amplifier spontaneous emission. Automatic alignment of targets using this mirror as a retroreflector was also demonstrated. PMID:19714043

  12. High-efficiency laser-pulse compression by stimulated Brillouin scattering.

    PubMed

    Damzen, M J; Hutchinson, M H

    1983-06-01

    Highly efficient compression of laser pulses down to 1 nsec in duration by stimulated Brillouin scattering has been demonstrated. Compression ratios of ~10 and energy-conversion efficiencies >70% have been produced. Several compressor systems have been investigated, including the use of tapered waveguides, long-focal-length geometries, and generator-amplifier systems. PMID:19718098

  13. Characterization of temperature-dependent birefringence in polarization maintaining fibers based on Brillouin dynamic gratings

    NASA Astrophysics Data System (ADS)

    Kim, Yong Hyun; Song, Kwang Yong

    2015-07-01

    Temperature dependence of birefringence in various types of polarization-maintaining fibers (PMF's) is rigorously investigated by the spectral analysis of Brillouin dynamic grating (BDG). PANDA, Bowtie, and PM photonic crystal fibers are tested in the temperature range of -30 to 150 ºC, where nonlinear temperature dependence is quantified for each fiber to an accuracy of ±7.6 × 10-8. It is observed that the amount of deviation from the linearity varies according to the structural parameters of the PMF's and the existence of acrylate jacket. Experimental confirmation of the validity of the BDG-based birefringence measurement is also presented in comparison to the periodic lateral force method.

  14. Study of optical fibers strain-temperature sensitivities using hybrid Brillouin-Rayleigh system

    NASA Astrophysics Data System (ADS)

    Kishida, Kinzo; Yamauchi, Yoshiaki; Guzik, Artur

    2014-03-01

    In this paper, the most recent progress as well as challenges of distributed optical fiber sensing (DOFS) in industrial applications is discussed. Compared to the vast market of sensors used to measure strain or temperature, the success of distributed optical fiber sensing (DOFS) at the industrial level is very limited, at best. One of the reasons for this lack of the wider acceptance is the mismatch between the commercially available systems and actual industrial requirements, especially for the spatial resolution and precision. These requirements are organized and clarified in the paper. It also describes the hybrid Brillouin-Rayleigh system, which exhibits capabilities surpassing those of strain gauges. The principles of the system are illustrated considering the fiber calibration methodology. Formulas required for determining strain, temperature, and hydro-pressure are derived and discussed. Finally, the examples of applications are presented.

  15. Bandwidth-tunable narrowband rectangular optical filter based on stimulated Brillouin scattering in optical fiber.

    PubMed

    Wei, Wei; Yi, Lilin; Jaouën, Yves; Hu, Weisheng

    2014-09-22

    We propose a rectangular optical filter based on stimulated Brillouin scattering (SBS) in optical fiber with bandwidth tuning from 50 MHz to 4 GHz at less than 15-MHz resolution. The rectangular shape of the filter is precisely achieved utilizing digital feedback control of the comb-like pump spectral lines. The passband ripple is suppressed to ~1 dB by mitigating the nonlinearity influences of the comb-like pump lines generated in electrical and optical components and fibers. Moreover a fiber with a single Brillouin peak is employed to further reduce the in-band ripple and the out-of-band SBS gain at the same time. Finally, we analyze the noise performance of the filter at different bandwidth cases and demonstrate the system performance of the proposed filter with 2.1-GHz bandwidth and 19-dB gain by amplifying a 2-GHz orthogonal frequency-division-multiplexing (OFDM) signal with quadrature-phase-shift-keying (QPSK) and 16-quadrature-amplitude-modulation (16-QAM) on each subscriber.

  16. On-chip high sensitivity laser frequency sensing with Brillouin mutually-modulated cross-gain modulation.

    PubMed

    Gao, Feng; Pant, Ravi; Li, Enbang; Poulton, Christopher G; Choi, Duk-Yong; Madden, Stephen J; Luther-Davies, Barry; Eggleton, Benjamin J

    2013-04-01

    We report the first demonstration of a photonic-chip laser frequency sensor using Brillouin mutually-modulated cross-gain modulation (MMXGM). A large sensitivity (~9.5 mrad/kHz) of the modulation phase shift to probe carrier frequency is demonstrated at a modulation frequency of 50 kHz using Brillouin MMXGM in a ~7 cm long chalcogenide rib waveguide.

  17. Bruit d'intensité dans les lasers Brillouin à fibre

    NASA Astrophysics Data System (ADS)

    Stepien, L.; Randoux, S.; Zemmouri, J.

    2002-06-01

    Les caractéristiques du bruit d'intensité dans un laser Brillouin à fibre sont étudiées expérimentalement et théoriquement. Les fluctuations d'intensité de ce laser proviennent de deux sources de bruit : le bruit du laser de pompe et les fluctuations du coefficient de réinjection de la cavité. Le transfert du bruit d'une source sur l'intensité du laser Brillouin est défini par une fonction de gain qui a été déterminée expérimentalement et théoriquement.

  18. High spatial resolution, dynamic, and distributed fiber optic strain sensing based on phasorial Brillouin dynamic gratings reflectometry

    NASA Astrophysics Data System (ADS)

    Bergman, A.; Langer, T.; Tur, M.

    2016-05-01

    We present a novel fiber-optic sensing technique based on the distributed measurement of Brillouin-induced phase-shift in the reflection from Brillouin dynamic gratings in polarization-maintaining fibers. Subject to signal to noise considerations, the strain sensitivity of the phase-shift in the reflection of a pulsed probe, orthogonally polarized to the gratings-generating pumps, is independent of the pulse width, suggesting the potential to achieve higher spatial resolutions than those offered by slope-assisted, phasorial Brillouin sensing techniques in standard single-mode fibers. We report the measurement of 500Hz strain vibrations (at a sampling rate of 1MHz) with a spatial resolution of 20cm.

  19. Modeling the effects of laser-beam smoothing on filamentation and stimulated Brillouin backscattering

    SciTech Connect

    Berger, R.L.; Kaiser, T.B.; Lasinski, B.F.

    1996-06-01

    Using the three-dimensional code (F3D), the authors compute the filamentation and backscattering of laser light. The results show that filamentation can be controlled and stimulated Brillouin backscattering (SBBS) can be reduced by using random phase plates (RPP) and small f-numbers or smoothing by spectral dispersion (SSD) with large bandwidth. An interesting result is that, for uniform plasmas, the SBBS amplification takes place over several laser axial coherence lengths (coherence length = speckle length).

  20. Robust, Brillouin Active Embedded Fiber-Is-The-Sensor System in Smart Composite Structures

    NASA Technical Reports Server (NTRS)

    Yu, Chung

    1996-01-01

    Extensive review of our proposed sensing scheme, based mainly on the forward Guided Acoustic Wave Brillouin Scattering (GAWBS) with backward stimulated Brillouin scattering (sBs) as an auxiliary scheme for system fault tolerance has been completed during this project period. This preliminary study is conducted for a number of reasons. The most significant reasons lie in the essential capability of the system to measure temperature and pressure. These two measurands have been proposed to be sensed by sBs in our proposal. Temperature and pressure/strain are important measurands in structural monitoring, so that the effectiveness of sensing by sBs needs to be further examined. It has been pointed out initially that sBs shift will be dependent on temperature and pressure/strain simultaneously. The shift versus temperature or strain is linear. Now, the question is how can these two measurands be separated when sBs is used to sense an environment, in which both temperature and strain are changing simultaneously. Typical sBs shift plotted versus strain and varying temperature is shown in Fig. 1. As is clear, a fiber initially stressed will relax with rising temperature. This is verified by a displacement to the right with rising temperature of the sBs shift vs strain curves in the figure. A way to circumvent this ambiguity is by employing two fibers, one pre-stressed and the other is a free fiber. The latter will measure temperature and subtracting data in the latter fiber from those of the former will give us net strain readings. This is a laborious approach, since it involves the use of two identical fibers, and this is hard to accomplish, especially when many sensors are needed. Additional multiplexing of the data stream for data subtraction becomes a necessity.

  1. Femtosecond Fiber Lasers

    NASA Astrophysics Data System (ADS)

    Bock, Katherine J.

    This thesis focuses on research I have done on ytterbium-doped femtosecond fiber lasers. These lasers operate in the near infrared region, lasing at 1030 nm. This wavelength is particularly important in biomedical applications, which includes but is not limited to confocal microscopy and ablation for surgical incisions. Furthermore, fiber lasers are advantageous compared to solid state lasers in terms of their cost, form factor, and ease of use. Solid state lasers still dominate the market due to their comparatively high energy pulses. High energy pulse generation in fiber lasers is hindered by either optical wave breaking or by multipulsing. One of the main challenges for fiber lasers is to overcome these limitations to achieve high energy pulses. The motivation for the work done in this thesis is increasing the output pulse peak power and energy. The main idea of the work is that decreasing the nonlinearity that acts on the pulse inside the cavity will prevent optical wave breaking, and thus will generate higher energy pulses. By increasing the output energy, ytterbium-doped femtosecond fiber lasers can be competitive with solid state lasers which are used commonly in research. Although fiber lasers tend to lack the wavelength tuning ability of solid state lasers, many biomedical applications take advantage of the 1030 microm central wavelength of ytterbium-doped fiber lasers, so the major limiting factor of fiber lasers in this field is simply the output power. By increasing the output energy without resorting to external amplification, the cavity is optimized and cost can remain low and economical. During verification of the main idea, the cavity was examined for possible back-reflections and for components with narrow spectral bandwidths which may have contributed to the presence of multipulsing. Distinct cases of multipulsing, bound pulse and harmonic mode-locking, were observed and recorded as they may be of more interest in the future. The third

  2. Numerical study of all-optical slow-light delays via stimulated Brillouin scattering in an optical fiber

    NASA Astrophysics Data System (ADS)

    Zhu, Zhaoming; Gauthier, Daniel J.; Okawachi, Yoshitomo; Sharping, Jay E.; Gaeta, Alexander L.; Boyd, Robert W.; Willner, Alan E.

    2005-11-01

    We study numerically all-optical slow-light delays in room-temperature single-mode optical fibers induced by stimulated Brillouin scattering. We consider the propagation of a pulse through a cw-pumped Brillouin fiber amplifier, where the carrier frequency of the pulse is tuned near the Stokes resonance. Pulse delay and broadening of the Stokes pulse are studied in the small-signal and gain-saturation regimes. Pulse delay is shown to be limited by saturation of the Brillouin amplifier. In the small-signal regime, both time delay and pulse broadening increase with increasing gain. In the gain-saturation regime, both time delay and broadening decrease with increasing gain, and the pulse even achieves advancement. Time delay of more than one pulse-width is observed with modest pulse distortion, and over one pulse-width advancement can be obtained with larger pulse distortion in the gain-saturation regime.

  3. Multi-parameter sensor based on stimulated Brillouin scattering in inverse-parabolic graded-index fiber.

    PubMed

    Xu, Yanping; Ren, Meiqi; Lu, Yang; Lu, Ping; Lu, Ping; Bao, Xiaoyi; Wang, Lixian; Messaddeq, Younès; LaRochelle, Sophie

    2016-03-15

    We propose a unique multi-parameter optical fiber sensor based on intramodal stimulated Brillouin scattering of higher-order acoustic modes in inverse-parabolic graded-index fiber (IPGIF) without a mode converter. Both optical modes and acoustic modes guided in the IPGIF are characterized and demonstrated theoretically and experimentally. Simulation analysis shows that the multi-peak feature in the Brillouin gain spectrum of the IPGIF is attributed to the couplings between the guided optical mode and the higher-order acoustic modes. Thanks to the distinct acoustic properties of the peaks induced by the sharp refractive index profile of the IPGIF, the different temperature and strain dependences of the first three Brillouin peaks enable the discrimination of the temperature and strain at an accuracy of 0.85°C and 17.4 με. PMID:26977653

  4. Multi-parameter sensor based on stimulated Brillouin scattering in inverse-parabolic graded-index fiber.

    PubMed

    Xu, Yanping; Ren, Meiqi; Lu, Yang; Lu, Ping; Lu, Ping; Bao, Xiaoyi; Wang, Lixian; Messaddeq, Younès; LaRochelle, Sophie

    2016-03-15

    We propose a unique multi-parameter optical fiber sensor based on intramodal stimulated Brillouin scattering of higher-order acoustic modes in inverse-parabolic graded-index fiber (IPGIF) without a mode converter. Both optical modes and acoustic modes guided in the IPGIF are characterized and demonstrated theoretically and experimentally. Simulation analysis shows that the multi-peak feature in the Brillouin gain spectrum of the IPGIF is attributed to the couplings between the guided optical mode and the higher-order acoustic modes. Thanks to the distinct acoustic properties of the peaks induced by the sharp refractive index profile of the IPGIF, the different temperature and strain dependences of the first three Brillouin peaks enable the discrimination of the temperature and strain at an accuracy of 0.85°C and 17.4 με.

  5. Stimulated Brillouin scattering mirror system, high power laser and laser peening method and system using same

    DOEpatents

    Dane, C. Brent; Hackel, Lloyd; Harris, Fritz B.

    2007-04-24

    A laser system, such as a master oscillator/power amplifier system, comprises a gain medium and a stimulated Brillouin scattering SBS mirror system. The SBS mirror system includes an in situ filtered SBS medium that comprises a compound having a small negative non-linear index of refraction, such as a perfluoro compound. An SBS relay telescope having a telescope focal point includes a baffle at the telescope focal point which blocks off angle beams. A beam splitter is placed between the SBS mirror system and the SBS relay telescope, directing a fraction of the beam to an alternate beam path for an alignment fiducial. The SBS mirror system has a collimated SBS cell and a focused SBS cell. An adjustable attenuator is placed between the collimated SBS cell and the focused SBS cell, by which pulse width of the reflected beam can be adjusted.

  6. Single-crystal Brillouin spectroscopy with CO{sub 2} laser heating and variable q

    SciTech Connect

    Zhang, Jin S.; Bass, Jay D.; Zhu, Gaohua

    2015-06-15

    We describe a Brillouin spectroscopy system integrated with CO{sub 2} laser-heating and Raman spectroscopic capabilities. Temperature is determined by measurements of the grey-body thermal radiation emitted by the hot sample, with the system response calibrated relative to a standard tungsten ribbon lamp. High-pressure laser-heating Brillouin scattering measurements of acoustic velocities on liquid water and ice compressed in a diamond-anvil cell were performed at temperatures up to 2500 ± 150 K at high pressure. Single-crystal laser-heating Brillouin measurements were made on the (111) plane of San Carlos olivine at ∼13 GPa, 1300 ± 200 K. The pressure as measured by ruby fluorescence is shown to be within ±0.5 GPa of the pressure on the olivine sample during laser heating when KCl and KBr are used as pressure-transmitting media. In addition, the system is designed for continuously variable scattering angles from forward scattering (near 0° scattering angle) up to near back scattering (∼141°). This novel setup allows us to probe a wide range of wave vectors q for investigation of phonon dispersion on, for example, crystals with large unit cells (on the scale of hundreds of nm)

  7. Single-crystal Brillouin spectroscopy with CO2 laser heating and variable q

    NASA Astrophysics Data System (ADS)

    Zhang, Jin S.; Bass, Jay D.; Zhu, Gaohua

    2015-06-01

    We describe a Brillouin spectroscopy system integrated with CO2 laser-heating and Raman spectroscopic capabilities. Temperature is determined by measurements of the grey-body thermal radiation emitted by the hot sample, with the system response calibrated relative to a standard tungsten ribbon lamp. High-pressure laser-heating Brillouin scattering measurements of acoustic velocities on liquid water and ice compressed in a diamond-anvil cell were performed at temperatures up to 2500 ± 150 K at high pressure. Single-crystal laser-heating Brillouin measurements were made on the (111) plane of San Carlos olivine at ˜13 GPa, 1300 ± 200 K. The pressure as measured by ruby fluorescence is shown to be within ±0.5 GPa of the pressure on the olivine sample during laser heating when KCl and KBr are used as pressure-transmitting media. In addition, the system is designed for continuously variable scattering angles from forward scattering (near 0° scattering angle) up to near back scattering (˜141°). This novel setup allows us to probe a wide range of wave vectors q for investigation of phonon dispersion on, for example, crystals with large unit cells (on the scale of hundreds of nm).

  8. Experimental Evidence of the Collective Brillouin Scattering of Multiple Laser Beams Sharing Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Neuville, C.; Tassin, V.; Pesme, D.; Monteil, M.-C.; Masson-Laborde, P.-E.; Baccou, C.; Fremerye, P.; Philippe, F.; Seytor, P.; Teychenné, D.; Seka, W.; Katz, J.; Bahr, R.; Depierreux, S.

    2016-06-01

    The indirect-drive scheme to inertial confinement fusion uses a large number of laser beams arranged in a symmetric angular distribution. Collective laser plasma instabilities can therefore develop that couple all the incident laser waves located in a cone to the daughter wave growing along the cone symmetry axis [D. F. DuBois et al., Phys. Fluids B 4, 241 (1992)]. With complementary diagnostics of Thomson scattering and of the scattered light, we demonstrate the occurrence of collective stimulated Brillouin sidescattering driving collective acoustic waves in indirect-drive experiments.

  9. Experimental Evidence of the Collective Brillouin Scattering of Multiple Laser Beams Sharing Acoustic Waves.

    PubMed

    Neuville, C; Tassin, V; Pesme, D; Monteil, M-C; Masson-Laborde, P-E; Baccou, C; Fremerye, P; Philippe, F; Seytor, P; Teychenné, D; Seka, W; Katz, J; Bahr, R; Depierreux, S

    2016-06-10

    The indirect-drive scheme to inertial confinement fusion uses a large number of laser beams arranged in a symmetric angular distribution. Collective laser plasma instabilities can therefore develop that couple all the incident laser waves located in a cone to the daughter wave growing along the cone symmetry axis [D. F. DuBois et al., Phys. Fluids B 4, 241 (1992)]. With complementary diagnostics of Thomson scattering and of the scattered light, we demonstrate the occurrence of collective stimulated Brillouin sidescattering driving collective acoustic waves in indirect-drive experiments. PMID:27341238

  10. [INVITED] State of the art of Brillouin fiber-optic distributed sensing

    NASA Astrophysics Data System (ADS)

    Motil, Avi; Bergman, Arik; Tur, Moshe

    2016-04-01

    Fiber-optic distributed sensing, employing the Brillouin effect, is already a commercially available measurement technique for the accurate estimation of the static strain/temperature fields along tens of kilometers with a spatial resolution of the order of a meter. Furthermore, relentless research efforts are paving the way to even much wider usability of the technique through recently achieved enhanced performance in each of its critical dimensions: measurement range has been extended to hundreds of kilometers; spatial resolution is of the order of a centimeter or less, signal to noise ratio has been significantly improved; fast dynamic events can be captured at kHz's sampling rates; and a much better understanding of the underlying physics has been obtained, along with the formulation of figures of merit, and the preparation and early adoption of appropriate standards and guidelines. This paper describes the basics, as well as the state of the art, of the leading Brillouin interrogation methods, with emphasis on the significant progress made in the last 3 years. It also includes a short introduction to coding, which has proven instrumental in many of the recently obtained performance records.

  11. Beyond the random phase approximation: Stimulated Brillouin backscatter for finite laser coherence times

    SciTech Connect

    Korotkevich, Alexander O.; Lushnikov, Pavel M.; Rose, Harvey A.

    2015-01-15

    We developed a linear theory of backward stimulated Brillouin scatter (BSBS) of a spatially and temporally random laser beam relevant for laser fusion. Our analysis reveals a new collective regime of BSBS (CBSBS). Its intensity threshold is controlled by diffraction, once cT{sub c} exceeds a laser speckle length, with T{sub c} the laser coherence time. The BSBS spatial gain rate is approximately the sum of that due to CBSBS, and a part which is independent of diffraction and varies linearly with T{sub c}. The CBSBS spatial gain rate may be reduced significantly by the temporal bandwidth of KrF-based laser systems compared to the bandwidth currently available to temporally smoothed glass-based laser systems.

  12. Bandwidth-efficient phase modulation techniques for stimulated Brillouin scattering suppression in fiber optic parametric amplifiers.

    PubMed

    Coles, J B; Kuo, B P-P; Alic, N; Moro, S; Bres, C-S; Chavez Boggio, J M; Andrekson, P A; Karlsson, M; Radic, S

    2010-08-16

    Two novel bandwidth efficient pump-dithering Stimulated Brillouin Scattering (SBS) suppression techniques are introduced. The techniques employ a frequency-hopped chirp and an RF noise source to impart phase modulation on the pumps of a two pump Fiber Optical Parametric Amplifier (FOPA). The effectiveness of the introduced techniques is confirmed by measurements of the SBS threshold increase and the associated improvements relative to the current state of the art. Additionally, the effect on the idler signal integrity is presented as measured following amplification from a two pump FOPA employing both techniques. The measured 0.8 dB penalty with pumps dithered by an RF noise source, after accruing 160 ps/nm of dispersion with 38 dB conversion gain in a two-pump FOPA is the lowest reported to date.

  13. All-fiberized SBS-based high repetition rate sub-nanosecond Yb fiber laser for supercontinuum generation

    NASA Astrophysics Data System (ADS)

    Hua, Dacheng; Su, Jianjia; Cui, Wei; Yan, Yaxi; Jiang, Peipei

    2014-12-01

    We report an all-fiberized SBS-based high repetition rate sub-nanosecond Yb fiber laser for supercontinuum generation. The high repetition rate ns laser pulses were produced from a fiber Bragg grating (FBG)-constructed fiber laser cavity consisting of a piece of double cladding Yb fiber as the gain medium and a short piece of Bi/Cr-doped fiber as a saturable absorber (SA). By optimizing the fiber length of the Bi/Cr-doped fiber and the reflectivity of the FBG, the Q-switching state of the fiber laser can be adjusted so that the energy storing condition within the fiber cavity can assure the start of stimulated Brillouin scattering (SBS) and as a result, compress the laser pulse duration. The fiber laser had an average laser power output of 1.2 W at 1064 nm with pulse repetition rate of about 80 kHz, almost four times the reported results. The pulse duration was about 1 ns with peak power of about 15 kW. After one stage of amplification, the laser power was raised to about 3 W and was used to pump a 20 m long photonic crystal fiber (PCF). Supercontiuum (SC) laser output was obtained with average power up to 1.24 W and spectrum spanning from 550 to 2200 nm.

  14. A random Q-switched fiber laser.

    PubMed

    Tang, Yulong; Xu, Jianqiu

    2015-01-01

    Extensive studies have been performed on random lasers in which multiple-scattering feedback is used to generate coherent emission. Q-switching and mode-locking are well-known routes for achieving high peak power output in conventional lasers. However, in random lasers, the ubiquitous random cavities that are formed by multiple scattering inhibit energy storage, making Q-switching impossible. In this paper, widespread Rayleigh scattering arising from the intrinsic micro-scale refractive-index irregularities of fiber cores is used to form random cavities along the fiber. The Q-factor of the cavity is rapidly increased by stimulated Brillouin scattering just after the spontaneous emission is enhanced by random cavity resonances, resulting in random Q-switched pulses with high brightness and high peak power. This report is the first observation of high-brightness random Q-switched laser emission and is expected to stimulate new areas of scientific research and applications, including encryption, remote three-dimensional random imaging and the simulation of stellar lasing. PMID:25797520

  15. A microrod-resonator Brillouin laser with 240 Hz absolute linewidth

    NASA Astrophysics Data System (ADS)

    Loh, William; Becker, Joe; Cole, Daniel C.; Coillet, Aurelien; Baynes, Fred N.; Papp, Scott B.; Diddams, Scott A.

    2016-04-01

    We demonstrate an ultralow-noise microrod-resonator based laser that oscillates on the gain supplied by the stimulated Brillouin scattering optical nonlinearity. Microresonator Brillouin lasers are known to offer an outstanding frequency noise floor, which is limited by fundamental thermal fluctuations. Here, we show experimental evidence that thermal effects also dominate the close-to-carrier frequency fluctuations. The 6 mm diameter microrod resonator used in our experiments has a large optical mode area of ∼100 μm2, and hence its 10 ms thermal time constant filters the close-to-carrier optical frequency noise. The result is an absolute laser linewidth of 240 Hz with a corresponding white-frequency noise floor of 0.1 Hz2 Hz‑1. We explain the steady-state performance of this laser by measurements of its operation state and of its mode detuning and lineshape. Our results highlight a mechanism for noise that is common to many microresonator devices due to the inherent coupling between intracavity power and mode frequency. We demonstrate the ability to reduce this noise through a feedback loop that stabilizes the intracavity power.

  16. Discrete bisoliton fiber laser

    PubMed Central

    Liu, X. M.; Han, X. X.; Yao, X. K.

    2016-01-01

    Dissipative solitons, which result from the intricate balance between dispersion and nonlinearity as well as gain and loss, are of the fundamental scientific interest and numerous important applications. Here, we report a fiber laser that generates bisoliton – two consecutive dissipative solitons that preserve a fixed separation between them. Deviations from this separation result in its restoration. It is also found that these bisolitons have multiple discrete equilibrium distances with the quantized separations, as is confirmed by the theoretical analysis and the experimental observations. The main feature of our laser is the anomalous dispersion that is increased by an order of magnitude in comparison to previous studies. Then the spectral filtering effect plays a significant role in pulse-shaping. The proposed laser has the potential applications in optical communications and high-resolution optics for coding and transmission of information in higher-level modulation formats. PMID:27767075

  17. Dual-wavelength narrow-linewidth linearly polarized seed source and stimulated Brillouin scattering suppression in its high-power fiber amplification.

    PubMed

    Ding, Yaqian; Liu, Yuan; Qi, Yunfeng; Zhang, Lei; Guo, Baoling; Wang, Rui; Zhou, Jun; Chen, Guanghui

    2015-08-01

    In this paper, we demonstrate a dual-wavelength narrow-linewidth linearly polarized all-fiber amplifier emitting 1035 and 1030 nm wavelengths with a high power of 80.0 W. The seed source features two sets of fiber Bragg gratings fabricated on polarization maintaining fibers and a ytterbium-doped fiber as the gain medium. Two wavelengths propagate in one overlapping cavity and the power ratio can be tuned by a coiling fiber setup. A master oscillator power amplifier system consisting of a two-stage amplifier is employed. Longitudinally varied strains are applied on the gain fiber to suppress the back-scattered Stokes light in the main amplifier stage. With an appropriate seed power ratio, we are able to generate amplification power to 80.0 W comprised of 1035 and 1030 nm light while achieving an increase of at least six times that of the stimulated Brillouin scattering threshold. Since both frequencies are propagating in one cavity and amplified in one gain medium, the 1035 and 1030 nm lasers have good temporal and spatial overlapping characteristics. This high-power MHz-level linearly polarized structure affords a compact, novel, and high-efficiency approach to different frequency generation of mid-infrared or terahertz emission. PMID:26368072

  18. Design and analysis of single-mode tellurite photonic crystal fibers for stimulated Brillouin scattering based slow-light generation.

    PubMed

    Jain, Varsha; Sharma, Shubham; Saini, Than Singh; Kumar, Ajeet; Sinha, Ravindra Kumar

    2016-09-01

    We theoretically examine two designs of single-mode (i) Er-doped tellurite and (ii) undoped tellurite photonic crystal fiber (PCF) for generation of slow light with tunable features based on stimulated Brillouin scattering. We obtained (i) Brillouin gain up to 91 dB and time delay of ∼145  ns at maximum allowable pump power of ∼775  mW in a 2 m Er-doped tellurite PCF and (ii) Brillouin gain up to ∼88  dB and time delay of ∼154  ns at maximum allowable pump power ∼21  mW in a 100 m undoped tellurite photonic crystal fiber. Simulated results clearly indicate that the doped tellurite PCF with Er enhances the maximum allowable pump power and comparable time delay can be obtained even with reduced photonic crystal fiber length. We believe that the carried out examination and simulation have potential impact on design and development of slow-light-based photonic devices applicable in telecommunication systems, enhancement of optical forces, and quantum computing. PMID:27607250

  19. Design and analysis of single-mode tellurite photonic crystal fibers for stimulated Brillouin scattering based slow-light generation.

    PubMed

    Jain, Varsha; Sharma, Shubham; Saini, Than Singh; Kumar, Ajeet; Sinha, Ravindra Kumar

    2016-09-01

    We theoretically examine two designs of single-mode (i) Er-doped tellurite and (ii) undoped tellurite photonic crystal fiber (PCF) for generation of slow light with tunable features based on stimulated Brillouin scattering. We obtained (i) Brillouin gain up to 91 dB and time delay of ∼145  ns at maximum allowable pump power of ∼775  mW in a 2 m Er-doped tellurite PCF and (ii) Brillouin gain up to ∼88  dB and time delay of ∼154  ns at maximum allowable pump power ∼21  mW in a 100 m undoped tellurite photonic crystal fiber. Simulated results clearly indicate that the doped tellurite PCF with Er enhances the maximum allowable pump power and comparable time delay can be obtained even with reduced photonic crystal fiber length. We believe that the carried out examination and simulation have potential impact on design and development of slow-light-based photonic devices applicable in telecommunication systems, enhancement of optical forces, and quantum computing.

  20. Fiber Laser Development for LISA

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Chen, Jeffrey R.

    2009-01-01

    We have developed a linearly-polarized Ytterbium-doped fiber ring laser with single longitudinal-mode output at 1064nm for LISA and other space applications. Single longitudinal-mode selection was achieved by using a fiber Bragg grating (FBG) and a fiber Fabry-Perot (FFP). The FFP also serves as a frequency-reference within our ring laser. Our laser exhibits comparable low frequency and intensity noise to Non-Planar Ring Oscillator (NPRO). By using a fiber-coupled phase modulator as a frequency actuator, the laser frequency can be electro-optically tuned at a rate of 100kHz. It appears that our fiber ring laser is promising for space applications where robustness of fiber optics is desirable.

  1. Fiber laser development for LISA

    NASA Astrophysics Data System (ADS)

    Numata, Kenji; Chen, Jeffrey R.; Camp, Jordan

    2010-05-01

    We have developed a linearly-polarized Ytterbium-doped fiber ring laser with single longitudinal-mode output at 1064 nm for LISA and other space applications. Single longitudinal-mode selection was achieved by using a fiber Bragg grating (FBG) and a fiber Fabry-Perot (FFP). The FFP also serves as a frequency-reference within our ring laser. Our laser exhibits comparable low frequency and intensity noise to Non-Planar Ring Oscillator (NPRO). By using a fiber-coupled phase modulator as a frequency actuator, the laser frequency can be electro-optically tuned at a rate of 100 kHz. It appears that our fiber ring laser is promising for space applications where robustness of fiber optics is desirable.

  2. Distributed fiber optic sensors for monitoring reinforced concrete piles using Brillouin scattering

    NASA Astrophysics Data System (ADS)

    de Battista, N.; Kechavarzi, C.; Soga, K.

    2016-05-01

    In this paper we report on advances made in the installation and use of distributed fiber optic sensors to monitor reinforced concrete piles subjected to static load tests. Eight concrete test piles, at three construction sites in London, have recently been instrumented with embedded DFOS. The Brillouin optical time domain reflectometry (BOTDR) technique was used to measure the changes in internal strain and temperature of the piles, during concrete curing and during load testing. These data were used to assess the quality of the pile and derive the load capacity parameters to be used in the foundation design of tall buildings which are to be erected on these sites. The measurements obtained from the DFOS system agreed well with the measurements taken simultaneously using conventional point sensors embedded in the piles. Whereas the conventional sensors only provided measurements at a small number of locations within the piles, the DFOS system made it possible to record the complete strain / temperature profiles along the length of the piles.

  3. High-sensitivity distributed transverse load sensor with an elliptical-core fiber based on Brillouin dynamic gratings.

    PubMed

    Dong, Yongkang; Teng, Lei; Tong, Peilin; Jiang, Taofei; Zhang, Hongying; Zhu, Tao; Chen, Liang; Bao, Xiaoyi; Lu, Zhiwei

    2015-11-01

    A high-sensitivity distributed transverse load sensor based on Brillouin dynamic gratings (BDGs) is proposed and demonstrated experimentally for the first time, to the best of our knowledge. The principle is to measure the transverse-load-induced birefringence change through exciting and probing a BDG in an elliptical-core polarization-maintaining fiber. A distributed measurement of transverse load is demonstrated experimentally using a 10 m sensing fiber, which features high sensitivity to a transverse load with a measurement accuracy as high as 0.8×10(-3)  N/mm at a 20 cm spatial resolution. PMID:26512504

  4. Amplification of a seed pumped by a chirped laser in the strong coupling Brillouin regime

    SciTech Connect

    Schluck, F.; Lehmann, G.; Spatschek, K. H.

    2015-09-15

    Seed amplification via Brillouin backscattering of a long pump laser-pulse is considered. The interaction takes place in the so called strong coupling regime. Pump chirping is applied to mitigate spontaneous Raman backscattering of the pump before interacting with the seed. The strong coupling regime facilitates stronger exponential growth and narrower seeds compared to the so called weak coupling regime, although in the latter the scaling with pump amplitude is stronger. Strong coupling is achieved when the pump laser amplitude exceeds a certain threshold. It is shown how the chirp influences both the linear as well as the nonlinear amplification process. First, linear amplification as well as the seed profiles are determined in dependence of the chirping rate. In contrast to the weak coupling situation, the evolution is not symmetric with respect to the sign of the chirping rate. In the nonlinear stage of the amplification, we find an intrinsic chirp of the seed pulse even for an un-chirped pump. We show that chirping the pump may have a strong influence on the shape of the seed in the nonlinear amplification phase. Also, the influence of pump chirp on the efficiency of Brillouin seed amplification is discussed.

  5. A 1-Joule laser for a 16-fiber injection system

    SciTech Connect

    Honig, J

    2004-04-06

    A 1-J laser was designed to launch light down 16, multi-mode fibers (400-{micro}m-core dia.). A diffractive-optic splitter was designed in collaboration with Digital Optics Corporation (DOC), and was delivered by DOC. Using this splitter, the energy injected into each fiber varied <1%. The spatial profile out of each fiber was such that there were no ''hot spots,'' a flyer could successfully be launched and a PETN pellet could be initiated. Preliminary designs of the system were driven by system efficiency where a pristine TEM{sub 00} laser beam would be required. The laser is a master oscillator, power amplifier (MOPA) consisting of a 4-mm-dia. Nd:YLF rod in the stable, q-switched oscillator and a 9.5-mm-dia. Nd:YLF rod in the double-passed amplifier. Using a TEM{sub 00} oscillator beam resulted in excellent transmission efficiencies through the fibers at lower energies but proved to be quite unreliable at higher energies, causing premature fiber damage, flyer plate rupture, stimulated Raman scattering (SRS), and stimulated Brillouin scattering (SBS). Upon further investigation, it was found that both temporal and spatial beam formatting of the laser were required to successfully initiate the PETN. Results from the single-mode experiments, including fiber damage, SRS and SBS losses, will be presented. In addition, results showing the improvement that can be obtained by proper laser beam formatting will also be presented.

  6. Multichannel laser-fiber vibrometer

    NASA Astrophysics Data System (ADS)

    Dudzik, Grzegorz; Waz, Adam; Kaczmarek, Pawel; Antonczak, Arkadiusz; Sotor, Jaroslaw; Krzempek, Karol; Sobon, Grzegorz; Abramski, Krzysztof M.

    2013-01-01

    For the last few years we were elaborating the laser-fiber vibrometer working at 1550 nm. Our main stress was directed towards different aspects of research: analysis of scattered light, efficient photodetection, optimization of the fiber-free space interfaces and signal processing. As a consequence we proposed the idea of a multichannel fiber vibrometer based on well developed telecommunication technique - Wavelength Division Multiplexing (WDM). One of the most important parts of a fiber-laser vibrometer is demodulation electronic section. The distortion, nonlinearity, offset and added noise of measured signal come from electronic circuits and they have direct influence on finale measuring results. We present the results of finished project "Developing novel laser-fiber monitoring technologies to prevent environmental hazards from vibrating objects" where we have constructed a 4-channel WDM laser-fiber vibrometer.

  7. Dual-kind Q-switching of erbium fiber laser

    SciTech Connect

    Barmenkov, Yuri O. Kir'yanov, Alexander V.; Cruz, Jose L.; Andres, Miguel V.

    2014-03-03

    Two different regimes of Q-switching in the same implementation of an actively Q-switched erbium-doped fiber laser are demonstrated. Depending on the active fiber length and repetition rate of an intracavity Q-cell (acousto-optic modulator), the laser operates either in the regime of common, rather long and low-power, pulses composed of several sub-pulses or in the one of very short and powerful stimulated Brillouin scattering-induced pulses. The basic physical reason of the laser system to oscillate in one of these two regimes is the existence or absence of CW narrow-line “bad-cavity” lasing in the intervals when the Q-cell is blocked.

  8. Novel fiber lasers and applications

    NASA Astrophysics Data System (ADS)

    Zenteno, Luis A.; Walton, Donnell T.

    2003-07-01

    Glass fiber lasers were invented in the 60's by Elias Snitzer at Americal Optical, soon after the invention of the first solid-state glass laser. However, it was not until the 80's when these waveguide devices were deployed in industrial applications, driven largely by the technological success of the semiconductor laser diode, which provided practical and efficient pumps, and by the advent of low loss rare-earth-doped optical fiber.

  9. Multiwatts narrow linewidth fiber Raman amplifiers.

    PubMed

    Feng, Yan; Taylor, Luke; Bonaccini Calia, Domenico

    2008-07-21

    Up to 4.8 W, approximately 10 MHz, 1178 nm laser is obtained by Raman amplification of a distributed feedback diode laser in standard single mode fibers pumped by an 1120 nm Yb fiber laser. More than 10% efficiency and 27 dB amplification is achieved, limited by onset of stimulated Brillouin scattering. The ratio of Raman to Brillouin gain coefficient of a fiber is identified as a figure of merit for building a narrow linewidth fiber Raman amplifier.

  10. Multiwatts narrow linewidth fiber Raman amplifiers.

    PubMed

    Feng, Yan; Taylor, Luke; Bonaccini Calia, Domenico

    2008-07-21

    Up to 4.8 W, approximately 10 MHz, 1178 nm laser is obtained by Raman amplification of a distributed feedback diode laser in standard single mode fibers pumped by an 1120 nm Yb fiber laser. More than 10% efficiency and 27 dB amplification is achieved, limited by onset of stimulated Brillouin scattering. The ratio of Raman to Brillouin gain coefficient of a fiber is identified as a figure of merit for building a narrow linewidth fiber Raman amplifier. PMID:18648406

  11. Numerical investigation on buffer performance based on acoustic excitation by stimulated Brillouin scattering in an As 2Se 3 fiber

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiyao; Zhou, Xiaojun; Liang, Rui; Qin, Zujun; Liu, Yong

    2009-07-01

    Buffer performance of a 2.5 Gb/s bit stream with non-return-to-zero format is investigated based on acoustic excitation by stimulated Brillouin scattering in an As 2Se 3 fiber. The storage process and the retrieval process of the bit stream are separately controlled by a "Write" pulse and a "Read" pulse. The research results show that the output signal-to-noise ratio and the readout efficiency of the buffer are agreeable, and the pulse distortion is low, if both the "Write" and the "Read" pulses are with high enough peak power and spectrum wider than that of the signal pulse. Buffering of a consecutive 10-bit-long 2.5 Gb/s NRZ bit stream has also been demonstrated in the As 2Se 3 fiber with length of only 0.5 m. The storage of a long bit stream, such as the data packet containing about 1000 bits in the telecommunications, is limited by the high loss in the As 2Se 3 fiber. However, the development of the special optical fiber with high Brillouin gain coefficient, long acoustic lifetime and low loss can make this technology applicable for all-optical buffering in high speed optical networks.

  12. Optimization of interaction conditions for efficient short laser pulse amplification by stimulated Brillouin scattering in the strongly coupled regime

    NASA Astrophysics Data System (ADS)

    Chiaramello, M.; Riconda, C.; Amiranoff, F.; Fuchs, J.; Grech, M.; Lancia, L.; Marquès, J.-R.; Vinci, T.; Weber, S.

    2016-07-01

    Plasma amplification of low energy, a short (˜100-500 fs) laser pulse by an energetic long (˜10 ps) pulse via strong coupling Stimulated Brillouin Backscattering is investigated with an extensive analysis of one-dimensional particle-in-cell simulations. Parameters relevant to nowadays experimental conditions are investigated. The obtained seed pulse spectra are analyzed as a function of the interaction conditions such as plasma profile, pulses delay, and seed or pulse duration. The factors affecting the amount of energy transferred are determined, and the competition between Brillouin-based amplification and parasitic Raman backscattering is analyzed, leading to the optimization of the interaction conditions.

  13. Angular characteristics of the stimulated-Brillouin-scattering spectrum from a laser plasma with strong acoustic-wave damping

    SciTech Connect

    Saikia, P.

    1981-07-01

    The spectrum of stimulated Brillouin scattering from an inhomogeneous moving laser plasma is analyzed. The damping of acoustic waves and scattered electromagnetic waves is taken into account. Spectra are derived for various scattering angles and for various radii of the laser beam. For all observation angles the center of the spectral line is at an unshifted frequency. As the observation angle increases, the width of the red wing in the spectrum increases. The intensity of the scattered light is very anisotropic.

  14. Controlling the stimulated Brillouin scattering of self-focusing nanosecond laser pulses in silica glasses

    SciTech Connect

    Mauger, Sarah; Berge, Luc; Skupin, Stefan

    2011-06-15

    We numerically investigate the interplay between Kerr self-focusing (SF) and transient stimulated Brillouin scattering (SBS) for nanosecond pulses in bulk silica. The influences of the input power, phase, or amplitude modulations in the pump pulse together with the incident beam shape on the filamentation dynamics are discussed. We show that appropriate amplitude modulations dividing nanosecond laser pumps into picosecond-long pulse trains inhibit SBS at any power. In contrast, phase-modulated pulses with comparable spectral width undergo multiple filamentation and earlier beam collapse due to modulational instabilities. We demonstrate, however, the existence of a critical pump bandwidth above which SBS can be efficiently suppressed by phase modulations even at high powers. This observation also holds for squared beam shapes with much broader spatial spectra, which decay more easily into multiple filaments over short distances. Intensity profiles of the reflected Stokes waves for such broad pumps are finally discussed.

  15. Method for pulse control in a laser including a stimulated brillouin scattering mirror system

    DOEpatents

    Dane, C. Brent; Hackel, Lloyd; Harris, Fritz B.

    2007-10-23

    A laser system, such as a master oscillator/power amplifier system, comprises a gain medium and a stimulated Brillouin scattering SBS mirror system. The SBS mirror system includes an in situ filtered SBS medium that comprises a compound having a small negative non-linear index of refraction, such as a perfluoro compound. An SBS relay telescope having a telescope focal point includes a baffle at the telescope focal point which blocks off angle beams. A beam splitter is placed between the SBS mirror system and the SBS relay telescope, directing a fraction of the beam to an alternate beam path for an alignment fiducial. The SBS mirror system has a collimated SBS cell and a focused SBS cell. An adjustable attenuator is placed between the collimated SBS cell and the focused SBS cell, by which pulse width of the reflected beam can be adjusted.

  16. Cladding single crystal YAG fibers grown by laser heated pedestal growth

    NASA Astrophysics Data System (ADS)

    Bera, Subhabrata; Nie, Craig D.; Harrington, James A.; Chick, Theresa; Chakrabarty, Ayan; Trembath-Reichert, Stephen; Chapman, James; Rand, Stephen C.

    2016-03-01

    Rare-earth doped single-crystal (SC) Yttrium Aluminum Garnet (YAG) fibers are excellent candidates for high power lasers. These SC fiber optics combine the favorable low Stimulated Brillouin Scattering (SBS) gain coefficient and excellent thermal properties to make them an attractive alternative to glass fiber lasers and amplifiers. Various rare-earth doped SC fibers have been grown using the laser heated pedestal growth (LHPG) technique. Several cladding methods, including in-situ and post-growth cladding techniques, are discussed in this paper. A rod-in-tube approach has been used by to grow a fiber with an Erbium doped SC YAG fiber core inserted in a SC YAG tube. The result is a radial gradient in the distribution of rare-earth ions. Post cladding methods include sol-gel deposited polycrystalline.

  17. Surface-emitting fiber lasers

    NASA Astrophysics Data System (ADS)

    Shapira, Ofer; Kuriki, Ken; Orf, Nicholas D.; Abouraddy, Ayman F.; Benoit, Gilles; Viens, Jean F.; Rodriguez, Alejandro; Ibanescu, Mihai; Joannopoulos, John D.; Fink, Yoel; Brewster, Megan M.

    2006-05-01

    All fiber lasers to date emit radiation only along the fiber axis. Here a fiber that exhibits laser emission that is radially directed from its circumferential surface is demonstrated. A unique and controlled azimuthally anisotropic optical wave front results from the interplay between a cylindrical photonic bandgap fiber resonator, anisotropic organic dye gain, and a linearly polarized axial pump. Low threshold (86nJ) lasing at nine different wavelengths is demonstrated throughout the visible and near-infrared spectra. We also report the experimental realization of unprecedented layer thicknesses of 29.5 nm maintained throughout meter-long fibers. Such a device may have interesting medical applications ranging from photodynamic therapy to in vivo molecular imaging, as well as textile fabric displays.

  18. Distributed fiber strain and vibration sensor based on Brillouin optical time-domain reflectometry and polarization optical time-domain reflectometry.

    PubMed

    Wang, Feng; Zhang, Xuping; Wang, Xiangchuan; Chen, Haisheng

    2013-07-15

    A distributed fiber strain and vibration sensor which effectively combines Brillouin optical time-domain reflectometry and polarization optical time-domain reflectometry is proposed. Two reference beams with orthogonal polarization states are, respectively, used to perform the measurement. By using the signal obtained from either reference beam, the vibration of fiber can be measured from the polarization effect. After combining the signals obtained by both reference beams, the strain can be measured from the Brillouin effect. In the experiment, 10 m spatial resolution, 0.6 kHz frequency measurement range, 2.5 Hz frequency resolution, and 0.2 MHz uncertainty of Brillouin frequency measurement are realized for a 4 km sensing distance.

  19. Temperature-compensated distributed hydrostatic pressure sensor with a thin-diameter polarization-maintaining photonic crystal fiber based on Brillouin dynamic gratings.

    PubMed

    Teng, Lei; Zhang, Hongying; Dong, Yongkang; Zhou, Dengwang; Jiang, Taofei; Gao, Wei; Lu, Zhiwei; Chen, Liang; Bao, Xiaoyi

    2016-09-15

    A temperature-compensated distributed hydrostatic pressure sensor based on Brillouin dynamic gratings (BDGs) is proposed and demonstrated experimentally for the first time, to the best of our knowledge. The principle is to measure the hydrostatic pressure induced birefringence changes through exciting and probing the BDGs in a thin-diameter pure silica polarization-maintaining photonic crystal fiber. The temperature cross-talk to the hydrostatic pressure sensing can be compensated through measuring the temperature-induced Brillouin frequency shift (BFS) changes using Brillouin optical time-domain analysis. A distributed measurement of hydrostatic pressure is demonstrated experimentally using a 4-m sensing fiber, which has a high sensitivity, with a maximum measurement error less than 0.03 MPa at a 20-cm spatial resolution.

  20. Temperature-compensated distributed hydrostatic pressure sensor with a thin-diameter polarization-maintaining photonic crystal fiber based on Brillouin dynamic gratings.

    PubMed

    Teng, Lei; Zhang, Hongying; Dong, Yongkang; Zhou, Dengwang; Jiang, Taofei; Gao, Wei; Lu, Zhiwei; Chen, Liang; Bao, Xiaoyi

    2016-09-15

    A temperature-compensated distributed hydrostatic pressure sensor based on Brillouin dynamic gratings (BDGs) is proposed and demonstrated experimentally for the first time, to the best of our knowledge. The principle is to measure the hydrostatic pressure induced birefringence changes through exciting and probing the BDGs in a thin-diameter pure silica polarization-maintaining photonic crystal fiber. The temperature cross-talk to the hydrostatic pressure sensing can be compensated through measuring the temperature-induced Brillouin frequency shift (BFS) changes using Brillouin optical time-domain analysis. A distributed measurement of hydrostatic pressure is demonstrated experimentally using a 4-m sensing fiber, which has a high sensitivity, with a maximum measurement error less than 0.03 MPa at a 20-cm spatial resolution. PMID:27628411

  1. Laser peening with fiber optic delivery

    DOEpatents

    Friedman, Herbert W.; Ault, Earl R.; Scheibner, Karl F.

    2004-11-16

    A system for processing a workpiece using a laser. The laser produces at least one laser pulse. A laser processing unit is used to process the workpiece using the at least one laser pulse. A fiber optic cable is used for transmitting the at least one laser pulse from the laser to the laser processing unit.

  2. Brillouin/Raman compensation of the Kerr-effect-induced bias in a nonlinear ring laser gyroscope.

    PubMed

    Luo, Zhang; Yuan, Xiaodong; Zhu, Zhihong; Liu, Ken; Ye, Weimin; Zeng, Chun; Ji, Jiarong

    2013-04-01

    In this Letter, the beat frequency at rest of a ring laser gyroscope with nonlinear effects is discussed in detail. Even without an additional intensity-stabilizing system, the random nullshift bias induced by the Kerr effect is compensated by the phase shift associated with the stimulated Brillouin/Raman scattering. And the nonlinear stimulated scattering also serves as the gain mechanism of the gyroscope. And thus the influence of the fluctuation of the injected pump intensity on the beat frequency is eliminated.

  3. A High Power Frequency Doubled Fiber Laser

    NASA Technical Reports Server (NTRS)

    Thompson, Rob; Tu, Meirong; Aveline, Dave; Lundblad, Nathan; Maleki, Lute

    2003-01-01

    This slide presentation reviews the power frequencies for the doubled fiber laser. It includes information on the 780 nm laser, second harmonic generation in one crystal, cascading crystals, the tenability of laser systems, laser cooling, and directions for future work.

  4. 2 micron femtosecond fiber laser

    DOEpatents

    Liu, Jian; Wan, Peng; Yang, Lihmei

    2014-07-29

    Methods and systems for generating femtosecond fiber laser pulses are disclose, including generating a signal laser pulse from a seed laser oscillator; using a first amplifier stage comprising an input and an output, wherein the signal laser pulse is coupled into the input of the first stage amplifier and the output of the first amplifier stage emits an amplified and stretched signal laser pulse; using an amplifier chain comprising an input and an output, wherein the amplified and stretched signal laser pulse from the output of the first amplifier stage is coupled into the input of the amplifier chain and the output of the amplifier chain emits a further amplified, stretched signal laser pulse. Other embodiments are described and claimed.

  5. Optical transmission through a polarization preserving single mode optical fiber at two Ar(+) laser wavelengths

    NASA Technical Reports Server (NTRS)

    Tedjojuwono, Ken K.; Hunter, William W., Jr.

    1989-01-01

    The transmission characteristics of two Ar(+) laser wavelengths through a twenty meter Panda type Polarization Preserving Single Mode Optical Fiber (PPSMOF) were measured. The measurements were done with both single and multi-longitudinal mode radiation. In the single longitudinal mode case, a degrading Stimulated Brillouin Scattering (SBS) is observed as a backward scattering loss. By choosing an optimum coupling system and manipulating the input polarization, the threshold of the SBS onset can be raised and the transmission efficiency can be increased.

  6. Réalisation d'un laser Brillouin monomode pour la réduction de porteuse optique de signaux hyperfréquences

    NASA Astrophysics Data System (ADS)

    Norcia, S.; Tonda-Goldstein, S.; Dolfi, D.; Huignard, J.-P.

    2002-06-01

    A partir d'un laser de pompe à 1,55 μm, on réalise un laser Brillouin monomode. Ce laser permet la mise en oeuvre d'une expérience de réduction dynamique de la porteuse optique d'un signal hyperfréquence.

  7. Dynamical transition between weak and strong coupling in Brillouin laser pulse amplification

    NASA Astrophysics Data System (ADS)

    Schluck, F.; Lehmann, G.; Müller, C.; Spatschek, K. H.

    2016-08-01

    Short laser pulse amplification via stimulated Brillouin backscattering in plasma is considered. Previous work distinguishes between the weakly and strongly coupled regime and treats them separately. It is shown here that such a separation is not generally applicable because strong and weak coupling interaction regimes are entwined with each other. An initially weakly coupled amplification scenario may dynamically transform into strong coupling. This happens when the local seed amplitude grows and thus triggers the strongly driven plasma response. On the other hand, when in a strong coupling scenario, the pump pulse gets depleted, and its amplitude might drop below the strong coupling threshold. This may cause significant changes in the final seed pulse shape. Furthermore, experimentally used pump pulses are typically Gaussian-shaped. The intensity threshold for strong coupling may only be exceeded around the maximum and not in the wings of the pulse. Also here, a description valid in both strong and weak coupling regimes is required. We propose such a unified treatment which allows us, in particular, to study the dynamic transition between weak and strong coupling. Consequences for the pulse forms of the amplified seed are discussed.

  8. Wedged Fibers Suppress Feedback of Laser Beam

    NASA Technical Reports Server (NTRS)

    Ladany, I.

    1986-01-01

    When injected laser is coupled into optical fiber, emission instabilities arise because of optical feedback losses from fiber into laser. Coupling efficiencies as high as 80 percent, however, obtained by shaping end of multimode fiber into obtuse-angled wedge. Because slanted sides eliminate back reflection, such wedged fiber achieves high coupling efficiency.

  9. PCF based high power narrow line width pulsed fiber laser

    NASA Astrophysics Data System (ADS)

    Chen, H.; Yan, P.; Xiao, Q.; Wang, Y.; Gong, M.

    2012-09-01

    Based on semiconductor diode seeded multi-stage cascaded fiber amplifiers, we have obtained 88-W average power of a 1063-nm laser with high repetition rate of up to 1.5 MHz and a constant 2-ns pulse duration. No stimulated Brillouin scattering pulse or optical damage occurred although the maximum pulse peak power has exceeded 112 kW. The output laser exhibits excellent beam quality (M2x = 1.24 and M2y = 1.18), associated with a spectral line width as narrow as 0.065 nm (FWHM). Additionally, we demonstrate high polarization extinction ratio of 18.4 dB and good pulse stabilities superior to 1.6 % (RMS).

  10. Single-frequency gain-switched Ho-doped fiber laser.

    PubMed

    Geng, Jihong; Wang, Qing; Luo, Tao; Case, Bryson; Jiang, Shibin; Amzajerdian, Farzin; Yu, Jirong

    2012-09-15

    We demonstrate a single-frequency gain-switched Ho-doped fiber laser based on heavily doped silicate glass fiber fabricated in-house. A Q-switched Tm-doped fiber laser at 1.95 μm was used to gain-switch the Ho-doped fiber laser via in-band pumping. Output power of the single-frequency gain-switched pulses has been amplified in a cladding-pumped Tm-Ho-codoped fiber amplifier with 1.2 m active fiber pumped at 803 nm. Two different nonlinear effects, i.e., modulation instability and stimulated Brillouin scattering, could be seen in the 10 μm-core fiber amplifier when the peak power exceeds 3 kW. The single-frequency gain-switched fiber laser was operated at 2.05 μm, a popular laser wavelength for Doppler lidar application. This is the first demonstration of this kind of fiber laser.

  11. All fiber passively Q-switched laser

    DOEpatents

    Soh, Daniel B. S.; Bisson, Scott E

    2015-05-12

    Embodiments relate to an all fiber passively Q-switched laser. The laser includes a large core doped gain fiber having a first end. The large core doped gain fiber has a first core diameter. The laser includes a doped single mode fiber (saturable absorber) having a second core diameter that is smaller than the first core diameter. The laser includes a mode transformer positioned between a second end of the large core doped gain fiber and a first end of the single mode fiber. The mode transformer has a core diameter that transitions from the first core diameter to the second core diameter and filters out light modes not supported by the doped single mode fiber. The laser includes a laser cavity formed between a first reflector positioned adjacent the large core doped gain fiber and a second reflector positioned adjacent the doped single mode fiber.

  12. Optical turbulence in fiber lasers.

    PubMed

    Wabnitz, Stefan

    2014-03-15

    We analyze the nonlinear stage of modulation instability in passively mode-locked fiber lasers leading to chaotic or noise-like emission. We present the phase-transition diagram among different regimes of chaotic emission in terms of the key cavity parameters: amplitude or phase turbulence, and spatio-temporal intermittency. PMID:24690788

  13. The road to kilowatt fiber lasers

    NASA Astrophysics Data System (ADS)

    Carter, Adrian; Samson, Bryce N.; Tankala, Kanishka; Machewirth, David P.; Manyam, Upendra H.; Abramczyk, Jaroslaw; Farroni, Julia; Guertin, Douglas P.; Jacobson, Nils

    2004-06-01

    Although fiber amplifiers have been employed in communications systems for many years, until very recently the fiber laser was little more than a scientific curiosity. However the fiber laser format has a number of intrinsic advantages over lamp and diode pumped YAG lasers including size, reliability, wavelength selectivity, heat dissipation, wallplug efficiency and operational cost; and with kiloWatt output powers now possible fiber lasers are beginning to replace lamp and diode pumped YAG lasers in many industrial applications. In this paper we review the recent and ongoing advances in fiber design that have facilitated this revolution.

  14. Coherent Forward Stimulated-Brillouin Scattering of a Spatially Incoherent Laser Beam in a Plasma and Its Effect on Beam Spray

    SciTech Connect

    Grech, M.; Riazuelo, G.; Pesme, D.; Weber, S.; Tikhonchuk, V. T.

    2009-04-17

    A statistical model for forward stimulated-Brillouin scattering is developed for a spatially incoherent, monochromatic, laser beam propagating in a plasma. The threshold above which the laser beam spatial incoherence cannot prevent the coherent growth of forward stimulated-Brillouin scattering is computed. It is found to be well below the threshold for self-focusing. Three-dimensional simulations confirm its existence and reveal the onset of beam spray above it. From these results, we propose a new figure of merit for the control of propagation through a plasma of a spatially incoherent laser beam.

  15. 469nm Fiber Laser Source

    SciTech Connect

    Drobshoff, A; Dawson, J W; Pennington, D M; Payne, S A; Beach, R

    2005-01-20

    We have demonstrated 466mW of 469nm light from a frequency doubled continuous wave fiber laser. The system consisted of a 938nm single frequency laser diode master oscillator, which was amplified in two stages to 5 Watts using cladding pumped Nd{sup 3+} fiber amplifiers and then frequency doubled in a single pass through periodically poled KTP. The 3cm long PPKTP crystal was made by Raicol Crystals Ltd. with a period of 5.9 {micro}m and had a phase match temperature of 47 degrees Centigrade. The beam was focused to a 1/e{sup 2} diameter in the crystal of 29 {micro}m. Overall conversion efficiency was 11% and the results agreed well with standard models. Our 938nm fiber amplifier design minimizes amplified spontaneous emission at 1088nm by employing an optimized core to cladding size ratio. This design allows the 3-level transition to operate at high inversion, thus making it competitive with the 1088nm 4-level transition. We have also carefully chosen the fiber coil diameter to help suppress propagation of wavelengths longer than 938 nm. At 2 Watts, the 938nm laser had an M{sup 2} of 1.1 and good polarization (correctable with a quarter and half wave plate to >10:1).

  16. Self-focusing induced reduction of Stimulated Brillouin Scattering for the case of monospeckle laser beams interacting with a plasma

    NASA Astrophysics Data System (ADS)

    Masson-Laborde, Paul-Edouard; Hueller, Stefan; Pesme, Denis; Loiseau, Pascal; Labaune, Christine; Bandulet, Heidi

    2008-11-01

    The mechanism explaining the low level of Stimulated Brillouin Scattering observed in laser-plasma experiments with monospeckle laser beams, carried out at the LULI facility, is studied by means of numerical simulations. For the regime where the beam power is well above the self-focusing critical power, simulations carried out with the codes Harmony2D and HERA-ILP (in 2D and 3D geometry respectively), show time-averaged reflectivities of the order of only a few percent. Because of self-focusing and the filament resonant instability, SBS takes only place in self-focused hot spots located in the low-density front part of the plasma. The shortened hot spot sizes and the steepened flow-profile dramatically reduce SBS. This scenario may also applies to the most intense laser hot spots in a spatially smoothed laser beam.

  17. Controllable Dual-Wavelength Fiber Laser

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Zhou, Jun; He, Bing; Liu, Hou-Kang; Liu, Chi; Wei, Yun-Rong; Dong, Jing-Xing; Lou, Qi-Hong

    2012-07-01

    We demonstrate a controllable dual-wavelength fiber laser which contains a master laser and a slave laser. The master laser is a kind of ring cavity laser which can be injected into by the slave laser. The output laser wavelength is controlled by injected power of the slave laser; both single- and dual-wavelength operation can be achieved. Under free running, the master laser generates 1064 nm laser output. Here the slave laser is a 1072 nm fiber laser. The 1064 nm and 1072 nm laser coexist in output spectrum for relatively low injected power. Dual-wavelength and power-ratio-tunable operation can be achieved. If the injected power of the slave laser is high enough, the 1064 nm laser is extinguished automatically and there is only 1072 nm laser output.

  18. Experimental investigation of stimulated Raman and Brillouin scattering instabilities driven by two successive collinear picosecond laser pulses.

    PubMed

    Rousseaux, C; Baton, S D; Bénisti, D; Gremillet, L; Loupias, B; Philippe, F; Tassin, V; Amiranoff, F; Kline, J L; Montgomery, D S; Afeyan, B B

    2016-04-01

    Backward stimulated Raman and Brillouin scattering (SRS and SBS) are experimentally investigated by using two successive 1-μm, 1.5-ps FWHM laser pulses. The collinear pulses, separated by 3 or 6 ps and of moderate laser intensities (∼2×10^{16}Wcm^{-2}), are fired into a preionized He plasma of density ∼2.5-6×10^{19}cm^{-3}. The electron plasma waves and ion acoustic waves, respectively driven by SRS and SBS, are analyzed through space- and time-resolved Thomson scattering. Depending on the laser and plasma parameters, we observe the effect of the first pulse on the time-resolved SRS and SBS signals of the second pulse. The measurements are found to qualitatively agree with the results of a large-scale particle-in-cell simulation. PMID:27176420

  19. Fiber laser coupled optical spark delivery system

    DOEpatents

    Yalin, Azer; Willson, Bryan; Defoort, Morgan; Joshi, Sachin; Reynolds, Adam

    2008-03-04

    A spark delivery system for generating a spark using a laser beam is provided, and includes a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. The laser delivery assembly further includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. Other embodiments use a fiber laser to generate a spark. Embodiments of the present invention may be used to create a spark in an engine. Yet other embodiments include collecting light from the spark or a flame resulting from the spark and conveying the light for diagnostics. Methods of using the spark delivery systems and diagnostic systems are provided.

  20. Crystal fibers for high power lasers

    NASA Astrophysics Data System (ADS)

    Kim, W.; Florea, C.; Gibson, D.; Peele, J.; Askins, C.; Shaw, B.; Bowman, S.; O'Connor, S.; Bayya, S.; Aggarwal, I.; Sanghera, J. S.

    2013-02-01

    In this paper, we present our recent progress in developing single crystal fibers for high power single frequency fiber lasers. The optical, spectral and morphological properties as well as the loss and gain measured from these crystal fibers drawn by Laser Heated Pedestal Growth (LHPG) system are also discussed. Results on application of various cladding materials on the crystal core and the methods of fiber end-face polishing are also presented.

  1. Mode-locked fiber lasers based on doped fiber arrays.

    PubMed

    Zhang, Xiao; Song, Yanrong

    2014-05-10

    We designed a new kind of mode-locked fiber laser based on fiber arrays, where the central core is doped. A theoretical model is given for an all-fiber self-starting mode-locked laser based on this kind of doped fiber array. Two different kinds of fiber lasers with negative dispersion and positive dispersion are simulated and discussed. The stable mode-locked pulses are generated from initial noise conditions by the realistic parameters. The process of self-starting mode-locking multipulse transition and the relationship between the energy of the central core and the propagation distance of the pulses are discussed. Finally, we analyze the difference between the averaged mode-locked laser and the discrete mode-locked laser.

  2. Fiber lasers and their applications [Invited].

    PubMed

    Shi, Wei; Fang, Qiang; Zhu, Xiushan; Norwood, R A; Peyghambarian, N

    2014-10-01

    Fiber lasers have seen progressive developments in terms of spectral coverage and linewidth, output power, pulse energy, and ultrashort pulse width since the first demonstration of a glass fiber laser in 1964. Their applications have extended into a variety of fields accordingly. In this paper, the milestones of glass fiber laser development are briefly reviewed and recent advances of high-power continuous wave, Q-switched, mode-locked, and single-frequency fiber lasers in the 1, 1.5, 2, and 3 μm regions and their applications in such areas as industry, medicine, research, defense, and security are addressed in detail.

  3. Fiber Laser Front Ends for High Energy, Short Pulse Lasers

    SciTech Connect

    Dawson, J; Messerly, M; Phan, H; Siders, C; Beach, R; Barty, C

    2007-06-21

    We are developing a fiber laser system for short pulse (1-10ps), high energy ({approx}1kJ) glass laser systems. Fiber lasers are ideal for these systems as they are highly reliable and enable long term stable operation.

  4. 2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair.

    PubMed

    Dong, Yongkang; Zhang, Hongying; Chen, Liang; Bao, Xiaoyi

    2012-03-20

    We report a high-spatial-resolution and long-range distributed temperature sensor through optimizing differential pulse-width pair Brillouin optical time-domain analysis (DPP-BOTDA). In DPP-BOTDA, the differential signal suffers from a signal-to-noise ratio (SNR) reduction with respect to the original signals, and for a fixed pulse-width difference the SNR reduction increases with the pulse width. Through reducing the pulse width to a transient regime (near to or less than the phonon lifetime) to decrease the SNR reduction after the differential process, the optimized 8/8.2 ns pulse pair is applied to realize a 2 cm spatial resolution, where a pulse generator with a 150 ps fall-time is used to ensure the effective resolution of DPP-BOTDA. In the experiment, a 2 cm spatial-resolution hot-spot detection with a 2 °C temperature accuracy is demonstrated over a 2 km sensing fiber. PMID:22441465

  5. Stimulated Brillouin scattering reduction induced by self-focusing for a single laser speckle interacting with an expanding plasma

    SciTech Connect

    Masson-Laborde, P. E.; Depierreux, S.; Loiseau, P.; Hüller, S.; Pesme, D.; Labaune, Ch.; Bandulet, H.

    2014-03-15

    The origin of the low level of stimulated Brillouin scattering (SBS) observed in laser-plasma experiments carried out with a single laser speckle is investigated by means of three-dimensional simulations and modeling in the limit when the laser beam power P is well above the critical power for ponderomotive self-focusing We find that the order of magnitude of the time averaged reflectivities, together with the temporal and spatial SBS localization observed in our simulations, are correctly reproduced by our modeling. It is observed that, after a short transient stage, SBS reaches a significant level only (i) as long as the incident laser pulse is increasing in amplitude and (ii) in a single self-focused speckle located in the low-density front part of the plasma. In order to describe self-focusing in an inhomogeneous expanding plasma, we have derived a new Lagrangian density describing this process. Using then a variational approach, our model reproduces the position and the peak intensity of the self-focusing hot spot in the front part of the plasma density profile as well as the local density depletion in this hot spot. The knowledge of these parameters then makes it possible to estimate the spatial amplification of SBS as a function of the laser beam power and consequently to explain the experimentally observed SBS reflectivity, considerably reduced with respect to standard theory in the regime of large laser beam power.

  6. Amplification of stimulated Brillouin scattering of two collinear pulsed laser beams with orthogonal polarizations.

    PubMed

    Shi, Jinwei; Chen, Xudong; Ouyang, Min; Liu, Juan; Liu, Dahe

    2009-06-10

    A polarization-controlling device was developed based on the fact that there can be a time delay between the seeder and the pumping beams during the amplification of a stimulated Brillouin scattering signal. The device causes two coaxially transmitted pulsed beams with orthogonal polarizations to have the same polarization in order to implement amplification by the pumping effect. An experiment showed that good pumping amplification can be achieved by using this technique. PMID:19516374

  7. 2-μm fiber laser sources for sensing

    NASA Astrophysics Data System (ADS)

    Wang, Qing; Geng, Jihong; Jiang, Shibin

    2014-06-01

    2-μm fiber lasers have become a research topic with an increased emphasis due to a variety of applications including eye-safe LIDAR, spectroscopy, remote sensing, and mid-infrared (mid-IR) frequency generation. We review our latest development on various 2-μm fiber laser sources, including single-frequency fiber lasers, Q-switched fiber lasers, mode-locked fiber lasers, and mid-IR supercontinuum fiber sources. All these fiber laser sources are based on thulium and holmium ions using our proprietary glass fiber technology. Potential applications of these fiber laser sources for sensing are also briefly discussed.

  8. Watt-level short-length holmium-doped ZBLAN fiber lasers at 1.2  μm.

    PubMed

    Zhu, Xiushan; Zong, Jie; Wiersma, Kort; Norwood, R A; Prasad, Narasimha S; Obland, Michael D; Chavez-Pirson, Arturo; Peyghambarian, N

    2014-03-15

    In-band core-pumped Ho3+-doped ZBLAN fiber lasers at the 1.2 μm region were investigated with different gain fiber lengths. A 2.4 W 1190 nm all-fiber laser with a slope efficiency of 42% was achieved by using a 10 cm long gain fiber pumped at a maximum available 1150 nm pump power of 5.9 W. A 1178 nm all-fiber laser was demonstrated with an output power of 350 mW and a slope efficiency of 6.5%. High Ho3+ doping in ZBLAN is shown to be effective in producing single-frequency fiber lasers and short-length fiber amplifiers immune from stimulated Brillouin scattering.

  9. Multiwavelength fiber laser for the fiber link monitoring system

    NASA Astrophysics Data System (ADS)

    Peng, Peng-Chun; Lee, Wei-Yun; Wu, Shin-Shian; Hu, Hsuan-Lun

    2013-10-01

    This work proposes a novel fiber link monitoring system that uses a multiwavelength fiber laser for wavelength-division-multiplexed (WDM) passive optical network (PON). The multiwavelength fiber laser is based on an erbium-doped fiber amplifier (EDFA) and a semiconductor optical amplifier (SOA). Experimental results show the feasibility using the system to monitor a fiber link with a high and stable signal-to-noise ratio (SNR) of over 26 dB. The link quality of downstream signals as well as the fiber link on WDM channels can be monitored in real time. Favorable carrier-to-noise ratio (CNR), composite second-order (CSO), and composite triple beat (CTB) performance metrics were obtained for cable television (CATV) signals that were transported through 25 km of standard single-mode fiber (SMF).

  10. Nanosecond laser damage of optical multimode fibers

    NASA Astrophysics Data System (ADS)

    Mann, Guido; Krüger, Jörg

    2016-07-01

    For pulse laser materials processing often optical step index and gradient index multimode fibers with core diameters ranging from 100 to 600 μm are used. The design of a high power fiber transmission system must take into account limitations resulting from both surface and volume damage effects. Especially, breakdown at the fiber end faces and selffocusing in the fiber volume critically influence the fiber performance. At least operation charts are desirable to select the appropriate fiber type for given laser parameters. In industry-relevant studies the influence of fiber core diameter and end face preparation on laser-induced (surface) damage thresholds (LIDT) was investigated for frequently used all-silica fiber types (manufacturer LEONI). Experiments on preform material (initial fiber material) and compact specimens (models of the cladding and coating material) accompanied the tests performed in accordance with the relevant LIDT standards ISO 21254-1 and ISO 21254-2 for 1-on-1 and S-on-1 irradiation conditions, respectively. The relation beam diameter vs. LIDT was investigated for fused silica fibers. Additionally, laser-induced (bulk) damage thresholds of fused silica preform material F300 (manufacturer Heraeus) in dependence on external mechanical stress simulating fiber bending were measured. All experiments were performed with 10-ns laser pulses at 1064 and 532 nm wavelength with a Gaussian beam profile.

  11. Fiber optic applications for laser polarized targets

    SciTech Connect

    Cummings, W.J.; Kowalczyk, R.S.

    1997-10-01

    For the past two years, the laser polarized target group at Argonne has been used multi-mode fiber optic patch cords for a variety of applications. In this paper, the authors describe the design for transporting high power laser beams with optical fibers currently in use at IUCF.

  12. A 160 W single-frequency laser based on an active tapered double-clad fiber amplifier

    NASA Astrophysics Data System (ADS)

    Trikshev, A. I.; Kurkov, A. S.; Tsvetkov, V. B.; Filatova, S. A.; Kertulla, J.; Filippov, V.; Chamorovskiy, Yu K.; Okhotnikov, O. G.

    2013-06-01

    We present a CW single-frequency laser at 1062 nm (linewidth <3 MHz) with 160 W of total output power based on a two stage fiber amplifier. A GTWave fiber is used for the first stage of the amplifier. A tapered double-clad fiber (T-DCF) is used for the second stage of the amplifier. The high output power is achieved due to the amplified spontaneous emission (ASE) filtering and increased stimulated Brillouin scattering (SBS) threshold inherent to the axially non-uniform geometry.

  13. Microring embedded hollow polymer fiber laser

    SciTech Connect

    Linslal, C. L. Sebastian, S.; Mathew, S.; Radhakrishnan, P.; Nampoori, V. P. N.; Girijavallabhan, C. P.; Kailasnath, M.

    2015-03-30

    Strongly modulated laser emission has been observed from rhodamine B doped microring resonator embedded in a hollow polymer optical fiber by transverse optical pumping. The microring resonator is fabricated on the inner wall of a hollow polymer fiber. Highly sharp lasing lines, strong mode selection, and a collimated laser beam are observed from the fiber. Nearly single mode lasing with a side mode suppression ratio of up to 11.8 dB is obtained from the strongly modulated lasing spectrum. The microring embedded hollow polymer fiber laser has shown efficient lasing characteristics even at a propagation length of 1.5 m.

  14. Diode pumped alkali vapor fiber laser

    DOEpatents

    Payne, Stephen A.; Beach, Raymond J.; Dawson, Jay W.; Krupke, William F.

    2007-10-23

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  15. Diode pumped alkali vapor fiber laser

    DOEpatents

    Payne, Stephen A.; Beach, Raymond J.; Dawson, Jay W.; Krupke, William F.

    2006-07-26

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  16. Signatures of the Self-Similar Regime of Strongly Coupled Stimulated Brillouin Scattering for Efficient Short Laser Pulse Amplification.

    PubMed

    Lancia, L; Giribono, A; Vassura, L; Chiaramello, M; Riconda, C; Weber, S; Castan, A; Chatelain, A; Frank, A; Gangolf, T; Quinn, M N; Fuchs, J; Marquès, J-R

    2016-02-19

    Plasma-based laser amplification is considered as a possible way to overcome the technological limits of present day laser systems and achieve exawatt laser pulses. Efficient amplification of a picosecond laser pulse by stimulated Brillouin scattering (SBS) of a pump pulse in a plasma requires to reach the self-similar regime of the strongly coupled (SC) SBS. In this Letter, we report on the first observation of the signatures of the transition from linear to self-similar regimes of SC-SBS, so far only predicted by theory and simulations. With a new fully head-on collision geometry, subpicosecond pulses are amplified by a factor of 5 with energy transfers of few tens of mJ. We observe pulse shortening, frequency spectrum broadening, and down-shifting for increasing gain, signatures of SC-SBS amplification entering the self-similar regime. This is also confirmed by the power law dependence of the gain on the amplification length: doubling the interaction length increases the gain by a factor 1.4. Pump backward Raman scattering (BRS) on SC-SBS amplification has been measured for the first time, showing a strong decrease of the BRS amplitude and frequency bandwidth when SBS seed amplification occurs. PMID:26943539

  17. Stimulated Brillouin and Raman scattering from a randomized laser beam in large inhomogeneous collisional plasmas. I. Experiment

    NASA Astrophysics Data System (ADS)

    Fuchs, J.; Labaune, C.; Depierreux, S.; Tikhonchuk, V. T.; Baldis, H. A.

    2000-11-01

    Experiments have been conducted at the LULI (Laboratoire pour l'Utilisation des Lasers Intenses) multibeam laser facility to study in detail stimulated Brillouin (SBS) and Raman (SRS) scattering from an intense (mean average intensity up to 1014W/cm2) long (600 ps full width at half-maximum) laser beam interacting with thin exploded plastic foils. The plasmas are well characterized and the vacuum laser intensity distribution is well known due to using either random phase plates or polarization smoothing. Direct and simultaneous Thomson scattering measurements of the associated plasma waves allow us to obtain detailed information about the SBS and SRS temporal evolution and spatial localization. These data are being used to benchmark a statistical model of SBS and SRS from self-focused speckles. The results of this comparison will be presented in a companion paper. The analysis shows that both SBS and SRS are originated from self-focused speckles and reveals that plasma heating has an important effect on speckle self-focusing.

  18. Three-Dimensional Full-Beam Simulation of Ultrashort Laser Pulse Amplification by Brillouin Backscattering in the Strong Coupling Regime

    NASA Astrophysics Data System (ADS)

    Weichman, Kathleen; Berger, Richard; Chapman, Thomas; Langer, Steven; Riconda, Caterina

    2014-10-01

    Laser amplification by stimulated Brillouin scattering (SBS) has been previously proposed as a method of achieving high intensity sub-picosecond laser pulses. The 3D fluid simulation code pF3D is used to simulate the SBS interaction of two counterpropagating laser pulses in parameter regimes similar to current experiments. The optimal operating regime is explored by variation of the pump and seed intensity, pulse duration, and plasma properties. The sensitivity of seed intensity amplification, pulse compression, and wavefront quality are investigated with regards to spontaneous laser beam instabilities such as filamentation and amplified spontaneous emission. The influence of the spatial and temporal coherence of the pump and seed on the amplification process is presented. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and partly funded by the Laboratory Research and Development Program at LLNL under project tracking code 12-ERD-061.

  19. Self-tuning fiber lasers

    NASA Astrophysics Data System (ADS)

    Brunton, Steven L.; Kutz, J. N.; Fu, Xing

    2016-03-01

    Advanced methods in data science are driving the characterization and control of nonlinear dynamical systems in optics. In this work, we investigate the use of machine learning, sparsity methods and adaptive control to develop a self-tuning fiber laser, which automatically learns and adapts to maintain high-energy ultrashort pulses. In particular, a two-stage procedure is introduced consisting of a machine learning algorithm to recognize different dynamical regimes with distinct behavior, followed by an adaptive control algorithm to reject disturbances and track optimal solutions despite stochastically varying system parameters. The machine learning algorithm, called sparse representation for classification, comes from machine vision and is typically used for image recognition. The adaptive control algorithm is extremum-seeking control, which has been applied to a wide range of systems in engineering; extremum-seeking is beneficial because of rigorous stability guarantees and ease of implementation.

  20. Transform-limited pulses generated by an actively Q-switched distributed fiber laser.

    PubMed

    Cuadrado-Laborde, C; Pérez-Millán, P; Andrés, M V; Díez, A; Cruz, J L; Barmenkov, Yu O

    2008-11-15

    A single-mode, transform-limited, actively Q-switched distributed-feedback fiber laser is presented, based on a new in-line acoustic pulse generator. Our technique permits a continuous adjustment of the repetition rate that modulates the Q factor of the cavity. Optical pulses of 800 mW peak power, 32 ns temporal width, and up to 20 kHz repetition rates were obtained. The measured linewidth demonstrates that these pulses are transform limited: 6 MHz for a train of pulses of 10 kHz repetition rate, 80 ns temporal width, and 60 mW peak power. Efficient excitation of spontaneous Brillouin scattering is demonstrated.

  1. Mobile fiber-optic laser Doppler anemometer.

    PubMed

    Stieglmeier, M; Tropea, C

    1992-07-20

    A laser Doppler anemometer (LDA) has been developed that combines the compactness and low power consumption of laser diodes and avalanche photodiodes with the flexibility and possibility of miniaturization by using fiber-optic probes. The system has been named DFLDA for laser diode fiber LDA and is especially suited for mobile applications, for example, in trains, airplanes, or automobiles. Optimization considerations of fiber-optic probes are put forward and several probe examples are described in detail. Measurement results from three typical applications are given to illustrate the use of the DFLDA. Finally, a number of future configurations of the DFLDA concept are discussed.

  2. Temperature-dependent strain and temperature sensitivities of fused silica single mode fiber sensors with pulse pre-pump Brillouin optical time domain analysis

    NASA Astrophysics Data System (ADS)

    Bao, Yi; Chen, Genda

    2016-06-01

    This paper reports a distributed temperature and strain sensor based on pulse pre-pump Brillouin optical time domain analysis. An uncoated, telecom-grade fused silica single-mode fiber as a distributed sensor was calibrated for its sensitivity coefficients under various strains and temperatures up to 800 °C. The Brillouin frequency of fiber samples changed nonlinearly with temperature and linearly with strain. The temperature sensitivity decreased from 1.113 to 0.830 MHz /°C in the range of 22-800 °C. The strain sensitivity was reduced from 0.054 to 0.042 MHz /μɛ as the temperature increased from 22 to 700 °C and became unstable at higher temperatures due to creep effect. The strain measurement range was reduced from 19 100 to 6000 μɛ in the temperature range of 22-800 °C due to fused silica’s degradation. The calibrated fiber optic sensor demonstrated adequate accuracy and precision for strain and temperature measurements and stable performance in heating-cooling cycles. It was validated in an application setting.

  3. Temperature-dependent strain and temperature sensitivities of fused silica single mode fiber sensors with pulse pre-pump Brillouin optical time domain analysis

    NASA Astrophysics Data System (ADS)

    Bao, Yi; Chen, Genda

    2016-06-01

    This paper reports a distributed temperature and strain sensor based on pulse pre-pump Brillouin optical time domain analysis. An uncoated, telecom-grade fused silica single-mode fiber as a distributed sensor was calibrated for its sensitivity coefficients under various strains and temperatures up to 800 °C. The Brillouin frequency of fiber samples changed nonlinearly with temperature and linearly with strain. The temperature sensitivity decreased from 1.113 to 0.830 MHz /°C in the range of 22–800 °C. The strain sensitivity was reduced from 0.054 to 0.042 MHz /με as the temperature increased from 22 to 700 °C and became unstable at higher temperatures due to creep effect. The strain measurement range was reduced from 19 100 to 6000 με in the temperature range of 22–800 °C due to fused silica’s degradation. The calibrated fiber optic sensor demonstrated adequate accuracy and precision for strain and temperature measurements and stable performance in heating–cooling cycles. It was validated in an application setting.

  4. Visible fiber lasers excited by GaN laser diodes

    NASA Astrophysics Data System (ADS)

    Fujimoto, Yasushi; Nakanishi, Jun; Yamada, Tsuyoshi; Ishii, Osamu; Yamazaki, Masaaki

    2013-07-01

    This paper describes and discusses visible fiber lasers that are excited by GaN laser diodes. One of the attractive points of visible light is that the human eye is sensitive to it between 400 and 700 nm, and therefore we can see applications in display technology. Of course, many other applications exist. First, we briefly review previously developed visible lasers in the gas, liquid, and solid-state phases and describe the history of primary solid-state visible laser research by focusing on rare-earth doped fluoride media, including glasses and crystals, to clarify the differences and the merits of primary solid-state visible lasers. We also demonstrate over 1 W operation of a Pr:WPFG fiber laser due to high-power GaN laser diodes and low-loss optical fibers (0.1 dB/m) made by waterproof fluoride glasses. This new optical fiber glass is based on an AlF3 system fluoride glass, and its waterproof property is much better than the well known fluoride glass of ZBLAN. The configuration of primary visible fiber lasers promises highly efficient, cost-effective, and simple laser systems and will realize visible lasers with photon beam quality and quantity, such as high-power CW or tunable laser systems, compact ultraviolet lasers, and low-cost ultra-short pulse laser systems. We believe that primary visible fiber lasers, especially those excited by GaN laser diodes, will be effective tools for creating the next generation of research and light sources.

  5. Stimulated Brillouin Scattering Microscopic Imaging

    PubMed Central

    Ballmann, Charles W.; Thompson, Jonathan V.; Traverso, Andrew J.; Meng, Zhaokai; Scully, Marlan O.; Yakovlev, Vladislav V.

    2015-01-01

    Two-dimensional stimulated Brillouin scattering microscopy is demonstrated for the first time using low power continuous-wave lasers tunable around 780 nm. Spontaneous Brillouin spectroscopy has much potential for probing viscoelastic properties remotely and non-invasively on a microscopic scale. Nonlinear Brillouin scattering spectroscopy and microscopy may provide a way to tremendously accelerate the data aquisition and improve spatial resolution. This general imaging setup can be easily adapted for specific applications in biology and material science. The low power and optical wavelengths in the water transparency window used in this setup provide a powerful bioimaging technique for probing the mechanical properties of hard and soft tissue. PMID:26691398

  6. Stimulated Brillouin Scattering Microscopic Imaging.

    PubMed

    Ballmann, Charles W; Thompson, Jonathan V; Traverso, Andrew J; Meng, Zhaokai; Scully, Marlan O; Yakovlev, Vladislav V

    2015-01-01

    Two-dimensional stimulated Brillouin scattering microscopy is demonstrated for the first time using low power continuous-wave lasers tunable around 780 nm. Spontaneous Brillouin spectroscopy has much potential for probing viscoelastic properties remotely and non-invasively on a microscopic scale. Nonlinear Brillouin scattering spectroscopy and microscopy may provide a way to tremendously accelerate the data aquisition and improve spatial resolution. This general imaging setup can be easily adapted for specific applications in biology and material science. The low power and optical wavelengths in the water transparency window used in this setup provide a powerful bioimaging technique for probing the mechanical properties of hard and soft tissue.

  7. Stimulated Brillouin Scattering Microscopic Imaging

    NASA Astrophysics Data System (ADS)

    Ballmann, Charles W.; Thompson, Jonathan V.; Traverso, Andrew J.; Meng, Zhaokai; Scully, Marlan O.; Yakovlev, Vladislav V.

    2015-12-01

    Two-dimensional stimulated Brillouin scattering microscopy is demonstrated for the first time using low power continuous-wave lasers tunable around 780 nm. Spontaneous Brillouin spectroscopy has much potential for probing viscoelastic properties remotely and non-invasively on a microscopic scale. Nonlinear Brillouin scattering spectroscopy and microscopy may provide a way to tremendously accelerate the data aquisition and improve spatial resolution. This general imaging setup can be easily adapted for specific applications in biology and material science. The low power and optical wavelengths in the water transparency window used in this setup provide a powerful bioimaging technique for probing the mechanical properties of hard and soft tissue.

  8. Thulium fiber laser lithotripsy using small spherical distal fiber tips

    NASA Astrophysics Data System (ADS)

    Wilson, Christopher R.; Hardy, Luke A.; Kennedy, Joshua D.; Irby, Pierce B.; Fried, Nathaniel M.

    2016-02-01

    This study tests a 100-μm-core fiber with 300-μm-diameter ball tip during Thulium fiber laser (TFL) lithotripsy. The TFL was operated at 1908 nm wavelength with 35-mJ pulse energy, 500-μs pulse duration, and 300-Hz pulse rate. Calcium oxalate/phosphate stone samples were weighed, laser procedure times measured, and ablation rates calculated for ball tip fibers, with comparison to bare tip fibers. Photographs of ball tips were taken before and after each procedure to observe ball tip degradation and determine number of procedures completed before need to replace fiber. Saline irrigation rates and ureteroscope deflection were measured with and without TFL fiber present. There was no statistical difference (P > 0.05) between stone ablation rates for single-use ball tip fiber (1.3 +/- 0.4 mg/s) (n=10), multiple-use ball tip fiber (1.3 +/- 0.5 mg/s) (n=44), and conventional single-use bare tip fibers (1.3 +/- 0.2 mg/s) (n=10). Ball tip durability varied widely, but fibers averaged > 4 stone procedures before decline in stone ablation rates due to mechanical damage at front surface of ball tip. The small fiber diameter did not impact ureteroscope deflection or saline flow rates. The miniature ball tip fiber may provide a cost-effective design for safe fiber insertion through the ureteroscope working channel and the ureter without risk of scope damage or tissue perforation, and without compromising stone ablation efficiency during TFL ablation of kidney stones.

  9. Amplifier/compressor fiber Raman lasers.

    PubMed

    Islam, M N; Mollenauer, L F; Stolen, R H; Simpson, J R; Shang, H T

    1987-10-01

    We show that the chirp from cross-phase modulation (XPM) dominates the operation of fiber Raman lasers (FRL's). Thus a FRL in the anomalous group-velocity regime is best described as a XPM-chirped Raman amplifier followed by a linear fiber compressor. While the output of such a laser is generally a narrow pulse with a broad pedestal, we show both experimentally and by computer simulation that negligible background is achievable.

  10. Wideband ultrafast fiber laser sources for OCT and metrology

    NASA Astrophysics Data System (ADS)

    Nishizawa, Norihiko

    2016-09-01

    Fiber lasers, which use optical fibers as ideal waveguides, have been attracting a great deal of attention as stable, practical, and maintenance-free lasers. Using a combination of an ultrashort-pulse fiber laser and a nonlinear fiber, we can realize wideband highly functional ultrafast fiber laser sources. The generation of ultrashort pulses with wide wavelength tunability and supercontinua based on fiber lasers and nonlinear fibers has been demonstrated. These techniques are useful for laser applications, especially for imaging and metrology. In this topical review, the fundamentals of and recent progress in wideband ultrafast fiber laser sources and their applications are reviewed mainly based on the author’s work. First, a new pulse source based on a passively-mode-locked ultrashort-pulse fiber laser using carbon nanotubes is explained. Next, the development of wideband ultrafast fiber laser sources and their applications in ultrahigh-resolution optical coherence tomography, optical frequency combs, and nonlinear microscopy are reviewed.

  11. Two-dimensional particle-in-cell simulations of plasma cavitation and bursty Brillouin backscattering for nonrelativistic laser intensities

    SciTech Connect

    Riconda, C.; Weber, S.; Tikhonchuk, V. T.; Adam, J.-C.; Heron, A.

    2006-08-15

    Two-dimensional particle-in-cell simulations of laser-plasma interaction using a plane-wave geometry show strong bursty stimulated Brillouin backscattering, rapid filamentation, and subsequent plasma cavitation. It is shown that the cavitation is not induced by self-focusing. The electromagnetic fields below the plasma frequency that are excited are related to transient soliton-like structures. At the origin of these solitons is a three-wave decay process exciting new modes in the plasma. The cavitation is responsible for a strong local reduction of the reflectivity and goes along with an efficient but transient heating of the electrons. Once heating ceases, transmission starts to increase. Local as well as global average reflectivities attain a very low value due to strong plasma density variations brought about by the cavitation process. On the one hand, the simulations confirm the existence of a new mechanism of cavity and soliton formation in nonrelativistic laser-plasma interaction in two dimensions, which was shown to exist in one-dimensional simulations [S. Weber, C. Riconda, and V. T. Tikhonchuk, Phys. Rev. Lett. 94, 055005 (2005)]. On the other hand, new aspects are introduced inherently related to the additional degree of freedom.

  12. An experimental investigation of stimulated Brillouin scattering in laser-produced plasmas relevant to inertial confinement fusion

    SciTech Connect

    Bradley, K.S.

    1993-02-11

    Despite the apparent simplicity of controlled fusion, there are many phenomena which have prevented its achievement. One phenomenon is laser-plasma instabilities. An investigation of one such instability, stimulated Brillouin scattering (SBS), is reported here. SBS is a parametric process whereby an electromagnetic wave (the parent wave) decays into another electromagnetic wave and an ion acoustic wave (the daughter waves). SBS impedes controlled fusion since it can scatter much or all of the incident laser light, resulting in poor drive symmetry and inefficient laser-plasma coupling. It is widely believed that SBS becomes convectively unstable--that is, it grows as it traverses the plasma. Though it has yet to be definitively tested, convective theory is often invoked to explain experimental observations, even when one or more of the theory`s assumptions are violated. In contrast, the experiments reported here not only obeyed the assumptions of the theory, but were also conducted in plasmas with peak densities well below quarter-critical density. This prevented other competing or coexisting phenomena from occurring, thereby providing clearly interpretable results. These are the first SBS experiments that were designed to be both a clear test of linear convective theory and pertinent to controlled fusion research. A crucial part of this series of experiments was the development of a new instrument, the Multiple Angle Time Resolving Spectrometer (MATRS). MATRS has the unique capability of both spectrally and temporally resolving absolute levels of scattered light at many angles simultaneously, and is the first of its kind used in laser-plasma experiments. A detailed comparison of the theoretical predictions and the experimental observations is made.

  13. Brillouin lidar and related basic physics

    NASA Astrophysics Data System (ADS)

    Liu, Da-He; Shi, Jin-Wei; Chen, Xu-Dong; Ouyang, Min; Gong, Wen-Ping

    2010-03-01

    The principle of a lidar based on Brillouin scattering is introduced. The basic physics of the Brillouin lidar is discussed. The applications of the Brillouin lidar in remote sensing of the ocean, such as measurement of the sound speed and the bulk viscosity of water and detecting submerged objects are investigated. An actual Brillouin lidar system is developed. Also, several basic problems related to Brillouin lidar are studied in detail. The attenuation coefficient of a pulsed laser beam with high pulsed energy in water is investigated; it is helpful to reveal the propagation property of a laser beam in water. The investigations on the threshold value of SBS are made theoretically and experimentally. Finally, a novel phenomena is investigated experimentally, in which Stimulated Raman scattering can be enhanced by stimulated Brillouin scattering.

  14. Actively mode-locked Raman fiber laser.

    PubMed

    Yang, Xuezong; Zhang, Lei; Jiang, Huawei; Fan, Tingwei; Feng, Yan

    2015-07-27

    Active mode-locking of Raman fiber laser is experimentally investigated for the first time. An all fiber connected and polarization maintaining loop cavity of ~500 m long is pumped by a linearly polarized 1120 nm Yb fiber laser and modulated by an acousto-optic modulator. Stable 2 ns width pulse train at 1178 nm is obtained with modulator opening time of > 50 ns. At higher power, pulses become longer, and second order Raman Stokes could take place, which however can be suppressed by adjusting the open time and modulation frequency. Transient pulse evolution measurement confirms the absence of relaxation oscillation in Raman fiber laser. Tuning of repetition rate from 392 kHz to 31.37 MHz is obtained with harmonic mode locking. PMID:26367642

  15. Multi-wavelength narrow linewidth fiber laser based on distributed feedback fiber lasers

    NASA Astrophysics Data System (ADS)

    Lv, Jingsheng; Qi, Haifeng; Song, Zhiqiang; Guo, Jian; Ni, Jiasheng; Wang, Chang; Peng, Gangding

    2016-09-01

    A narrow linewidth laser configuration based on distributed feedback fiber lasers (DFB-FL) with eight wavelengths in the international telecommunication union (ITU) grid is presented and realized. In this laser configuration, eight phase-shifted gratings in series are bidirectionally pumped by two 980-nm laser diodes (LDs). The final laser output with over 10-mW power for each wavelength can be obtained, and the maximum power difference within eight wavelengths is 1.2 dB. The laser configuration with multiple wavelengths and uniform power outputs can be very useful in large scaled optical fiber hydrophone fields.

  16. Black anneal marking with pulsed fiber lasers

    NASA Astrophysics Data System (ADS)

    Murphy, T.; Harrison, P.; Norman, S.

    2015-07-01

    High contrast marking of metals is used in a wide range of industries. Fiber laser marking of these metals provides non-contact marking with no consumables, offering many advantages over traditional methods of metal marking. The laser creates a permanent mark on the material surface combining heat and oxygen with no noticeable ablation. The focussed beam of the fiber laser in combination with precision control of the heat input is able to treat small areas of the material surface evenly and consistently, which is critical for producing black anneal marks. The marks are highly legible which is ideal for marking serial numbers or small data matrices where traceability is required. This paper reports the experimental study for producing black anneal marks on various grades of stainless steel using fiber lasers. The influence of metal surface finish, beam quality, spot size diameter and pulse duration are investigated for producing both smooth and decorative anneal marks.

  17. Fiber Delivery of mid-IR lasers

    SciTech Connect

    Kriesel, J.M.; Gat, N.; Bernacki, Bruce E.; Myers, Tanya L.; Bledt, Carlos M.; Harrington, James P.

    2011-08-24

    Fiber optics for the visible to near infrared (NIR) wavelength regimes (i.e. = 0.42 {mu}m) have proven to be extremely useful for a myriad of applications such as telecommunications, illumination, and sensors because they enable convenient, compact, and remote delivery of laser beams. Similarly, there is a need for fiber optics operating at longer wavelengths. For example, systems operating in the mid-IR regime (i.e., = 314 {mu}m) are being developed to detect trace molecular species with far-reaching applications, such as detecting explosives on surfaces, pollutants in the environment, and biomarkers in the breath of a patient. Furthermore, with the increasing availability of quantum cascade lasers (QCLs) which are semiconductor lasers that operate in the mid-IR regime additional uses are rapidly being developed. Here, we describe the development of hollow-core fibers for delivery of high-quality mid-IR laser beams across a broad spectral range.

  18. Femtosecond fiber laser additive manufacturing of tungsten

    NASA Astrophysics Data System (ADS)

    Bai, Shuang; Liu, Jian; Yang, Pei; Zhai, Meiyu; Huang, Huan; Yang, Lih-Mei

    2016-04-01

    Additive manufacturing (AM) is promising to produce complex shaped components, including metals and alloys, to meet requirements from different industries such as aerospace, defense and biomedicines. Current laser AM uses CW lasers and very few publications have been reported for using pulsed lasers (esp. ultrafast lasers). In this paper, additive manufacturing of Tungsten materials is investigated by using femtosecond (fs) fiber lasers. Various processing conditions are studied, which leads to desired characteristics in terms of morphology, porosity, hardness, microstructural and mechanical properties of the processed components. Fully dense Tungsten part with refined grain and increased hardness was obtained and compared with parts made with different pulse widths and CW laser. The results are evidenced that the fs laser based AM provides more dimensions to modify mechanical properties with controlled heating, rapid melting and cooling rates compared with a CW or long pulsed laser. This can greatly benefit to the make of complicated structures and materials that could not be achieved before.

  19. Compact Fiber Laser for 589nm Laser Guide Star Generation

    NASA Astrophysics Data System (ADS)

    Pennington, D.; Drobshoff, D.; Mitchell, S.; Brown, A.

    Laser guide stars are crucial to the broad use of astronomical adaptive optics, because they facilitate access to a large fraction of possible locations on the sky. Lasers tuned to the 589 nm atomic sodium resonance can create an artificial beacon at altitudes of 95-105 km, thus coming close to reproducing the light path of starlight. The deployment of multiconjugate adaptive optics on large aperture telescopes world-wide will require the use of three to nine sodium laser guide stars in order to achieve uniform correction over the aperture with a high Strehl value. Current estimates place the minimum required laser power at > 10 W per laser for a continuous wave source, though a pulsed format, nominally 6?s in length at ~ 16.7 kHz, is currently preferred as it would enable tracking the laser through the Na layer to mitigate spot elongation. The lasers also need to be compact, efficient, robust and turnkey. We are developing an all-fiber laser system for generating a 589 nm source for laser-guided adaptive optics. Fiber lasers are more compact and insensitive to alignment than their bulk laser counterparts, and the heat-dissipation characteristics of fibers, coupled with the high efficiencies demonstrated and excellent spatial mode characteristics, make them a preferred candidate for many high power applications. Our design is based on sum-frequency mixing an Er/Yb:doped fiber laser operating at 1583 nm with a 938 nm Nd:silica fiber laser in a periodically poled crystal to generate 589 nm. We have demonstrated 14 W at 1583 nm with an Er/Yb:doped fiber laser, based on a Koheras single frequency fiber oscillator amplified in an IPG Photonics fiber amplifier. The Nd:silica fiber laser is a somewhat more novel device, since the Nd3+ ions must operate on the resonance transition (i.e. 4F3/2-4I9/2), while suppressing ASE losses at the more conventional 1088 nm transition. Optimization of the ratio of the fiber core and cladding permits operation of the laser at room

  20. Technology and applications of ultrafast fiber lasers

    NASA Astrophysics Data System (ADS)

    Lang, Marion; Hellerer, Thomas; Stuhler, Juergen

    2011-11-01

    We briefly review the key technology of modern fiber based femtosecond laser sources summarizing advantages and disadvantages of different mode-locking solutions. A description of possible extensions of a FemtoFiber-type modelocked Er-doped fiber laser oscillator (1560 nm) reveals the flexibility with respect to wavelength coverage (488 nm .. 2200 nm) and pulse duration (10 fs .. 10 ps). The resulting FemtoFiber family and its versions for instrument integration allow one to use these state-of-the-art light sources in many important applications, e.g. THz spectroscopy and microscopy. We show that, depending on the fiber laser model and the THz emitter, THz radiation can be produced with 4-10 THz bandwidth and detected with up to 60 dB signal-to-noise ratio (SNR). Electronically controlled optical scanning (ECOPS) - a unique method for fast, precise and comfortable sampling of the THz pulse or other pump-probe experiments - is described and recommended for efficient data acquisition. As examples for modern microscopy with ultrafast fiber lasers we present results of two-photon fluorescence, coherent microscopy techniques (SHG/THG/CARS) and fluorescence lifetime imaging (FLIM).

  1. Technology and applications of ultrafast fiber lasers

    NASA Astrophysics Data System (ADS)

    Lang, Marion; Hellerer, Thomas; Stuhler, Juergen

    2012-03-01

    We briefly review the key technology of modern fiber based femtosecond laser sources summarizing advantages and disadvantages of different mode-locking solutions. A description of possible extensions of a FemtoFiber-type modelocked Er-doped fiber laser oscillator (1560 nm) reveals the flexibility with respect to wavelength coverage (488 nm .. 2200 nm) and pulse duration (10 fs .. 10 ps). The resulting FemtoFiber family and its versions for instrument integration allow one to use these state-of-the-art light sources in many important applications, e.g. THz spectroscopy and microscopy. We show that, depending on the fiber laser model and the THz emitter, THz radiation can be produced with 4-10 THz bandwidth and detected with up to 60 dB signal-to-noise ratio (SNR). Electronically controlled optical scanning (ECOPS) - a unique method for fast, precise and comfortable sampling of the THz pulse or other pump-probe experiments - is described and recommended for efficient data acquisition. As examples for modern microscopy with ultrafast fiber lasers we present results of two-photon fluorescence, coherent microscopy techniques (SHG/THG/CARS) and fluorescence lifetime imaging (FLIM).

  2. Evidence of plasma fluctuations and their effect on the growth of stimulated Brillouin and stimulated Raman scattering in laser plasmas

    SciTech Connect

    Montgomery, D.S.; Afeyan, B.B.; Cobble, J.A.; Fernandez, J.C.; Wilke, M.D.; Glenzer, S.H.; Kirkwood, R.K.; MacGowan, B.J.; Moody, J.D.; Lindman, E.L.; Munro, D.H.; Wilde, B.H.; Rose, H.A.; Dubois, D.F.; Bezzerides, B.; Vu, H.X.

    1998-05-01

    The reflectivity levels of stimulated Brillouin scattering (SBS) in recent large scale length laser plasma experiments is much lower than expected for conditions where the convective gain exponent is expected to be large [J. C. Fern{acute a}ndez {ital et al.}, Phys. Plasmas {bold 4}, 1849 (1997)]. Long-wavelength velocity fluctuations caused during the plasma formation process, or by parametric instabilities themselves, have been proposed as a mechanism to detune SBS in these experiments and reduce its gain [W. L. Kruer {ital et al.}, Phys. Plasmas {bold 3}, 382 (1996); H. A. Rose, Phys. Plasmas {bold 4}, 437 (1997)]. Evidence of large-velocity fluctuation levels is found in the time-resolved SBS spectra from these experiments, and correlates with observed changes in the reflectivity of both SBS and stimulated Raman scattering (SRS). Evidence of fluctuations that increase with increasing plasma density is presented, and their effect on the growth of parametric instabilities is discussed. {copyright} {ital 1998 American Institute of Physics.}

  3. Carbon Dioxide Laser Fiber Optics In Endoscopy

    NASA Astrophysics Data System (ADS)

    Fuller, Terry A.

    1982-12-01

    Carbon dioxide laser surgery has been limited to a great extent to surgical application on the integument and accessible cavities such as the cervix, vagina, oral cavities, etc. This limitation has been due to the rigid delivery systems available to all carbon dioxide lasers. Articulating arms (series of hollow tubes connected by articulating mirrors) have provided an effective means of delivery of laser energy to the patient as long as the lesion was within the direct line of sight. Even direct line-of-sight applications were restricted to physical dimension of the articulating arm or associated hand probes, manipulators and hollow tubes. The many attempts at providing straight endoscopic systems to the laser only stressed the need for a fiber optic capable of carrying the carbon dioxide laser wavelength. Rectangular and circular hollow metal waveguides, hollow dielectric waveguides have proven ineffective to the stringent requirements of a flexible surgical delivery system. One large diameter (1 cm) fiber optic delivery system, incorporates a toxic thalliumAbased fiber optic material. The device is an effective alternative to an articulating arm for external or conventional laser surgery, but is too large and stiff to use as a flexible endoscopic tool. The author describes the first highly flexible inexpensive series of fiber optic systems suitable for either conventional or endoscopic carbon dioxide laser surgery. One system (IRFLEX 3) has been manufactured by Medlase, Inc. for surgical uses capable of delivering 2000w, 100 mJ pulsed energy and 15w continuous wave. The system diameter is 0.035 inches in diameter. Surgically suitable fibers as small as 120 um have been manufactured. Other fibers (IRFLEX 142,447) have a variety of transmission characteristics, bend radii, etc.

  4. Ho:YLF Laser Pumped by TM:Fiber Laser

    NASA Astrophysics Data System (ADS)

    Mizutani, Kohei; Ishii, Shoken; Itabe, Toshikazu; Asai, Kazuhiro; Sato, Atsushi

    2016-06-01

    A 2-micron Ho:YLF laser end-pumped by 1.94-micron Tm:fiber laser is described. A ring resonator of 3m length is adopted for the oscillator. The laser is a master oscillator and an amplifier system. It is operated at high repetition rate of 200-5000 Hz in room temperature. The laser outputs were about 9W in CW and more than 6W in Q-switched operation. This laser was developed to be used for wind and CO2 measurements.

  5. Ultrafast fiber lasers for homeland security

    NASA Astrophysics Data System (ADS)

    Okhotnikov, O. G.

    2005-09-01

    Detecting weapons concealed underneath clothing, analyzing the contents of suspicious-looking envelopes, or even spotting the onset of cancer: these are just some of the exciting prospects that have been turning terahertz wave research into one of the most important topics in photonics. Most broadband pulsed THz sources are based on the excitation of different materials with ultrashort laser pulses. So far, generation of tunable narrow-band THz radiation has been demonstrated using ultrafast solid state lasers as a source of high-intensity optical pulses. The lack of a high-power, low-cost, portable room-temperature THz source is the most significant limitation of modern THz systems. Advances in fiber laser technology can be used to further the capabilities of the homeland security. Using semiconductor saturable absorber mirrors allows for reliable mode-locked operation with different values of cavity dispersion in a broad spectrum ranged from 900 to 1600 nm. Semiconductor saturable absorbers mirrors have been used successfully to initiate and to sustain mode-locking in a wide range of core-pumped fiber lasers. The main advantage of the semiconductor saturable absorber mirrors (SESAM) is the possibility to control important parameters such as absorption recovery time, saturation fluence and modulation depth through the device design, growth conditions and post-growth processing. The SESAM as a cavity mirror in the fiber laser results in compact size, environmentally stable and simple ultrashort pulse lasers that can cover wide wavelength range and generate optical pulses with durations from picoseconds to femtoseconds. Employing SESAM technology for mode-locking, the double-clad fiber laser promises superior pulse quality, high stability and pulse energy without need for power booster that eventually degrades the pulse quality due to nonlinear distortions in the amplifier fiber. We give an overview of recent achievements in ultrafast fiber lasers; discuss basic

  6. The crucial fiber components and gain fiber for high power ytterbium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Liao, Lei; Liu, Peng; Xing, Ying-Bin; Wang, Yi-Bo; Dai, Neng-Li; Li, Jin-Yan; He, Bing; Zhou, Jun

    2015-08-01

    We have demonstrated a kW continuous-wave ytterbium-doped all-fiber laser oscillator with 7×1 fused fiber bundle combiner, fiber Bragg grating (FBG) and double-clad gain fiber fabricated by corresponding technologies. The results of experiment that the oscillator had operated at 1079.48nm with 80.94% slope efficiency without the influence of temperature and non-linear effects indicate that fiber components and gain fiber were suitable to high power environment. No evidence of the signal power roll-over showed that this oscillator possess the capacity to highest output with available pump power.

  7. Coherent beam combination using self-phase locked stimulated Brillouin scattering phase conjugate mirrors with a rotating wedge for high power laser generation.

    PubMed

    Park, Sangwoo; Cha, Seongwoo; Oh, Jungsuk; Lee, Hwihyeong; Ahn, Heekyung; Churn, Kil Sung; Kong, Hong Jin

    2016-04-18

    The self-phase locking of a stimulated Brillouin scattering-phase conjugate mirror (SBS-PCM) allows a simple and scalable coherent beam combination of existing lasers. We propose a simple optical system composed of a rotating wedge and a concave mirror to overcome the power limit of the SBS-PCM. Its phase locking ability and the usefulness on the beam-combination laser are demonstrated experimentally. A four-beam combination is demonstrated using this SBS-PCM scheme. The relative phases between the beams were measured to be less than λ/24.7. PMID:27137299

  8. Coherent beam combination using self-phase locked stimulated Brillouin scattering phase conjugate mirrors with a rotating wedge for high power laser generation.

    PubMed

    Park, Sangwoo; Cha, Seongwoo; Oh, Jungsuk; Lee, Hwihyeong; Ahn, Heekyung; Churn, Kil Sung; Kong, Hong Jin

    2016-04-18

    The self-phase locking of a stimulated Brillouin scattering-phase conjugate mirror (SBS-PCM) allows a simple and scalable coherent beam combination of existing lasers. We propose a simple optical system composed of a rotating wedge and a concave mirror to overcome the power limit of the SBS-PCM. Its phase locking ability and the usefulness on the beam-combination laser are demonstrated experimentally. A four-beam combination is demonstrated using this SBS-PCM scheme. The relative phases between the beams were measured to be less than λ/24.7.

  9. Ceramic bracket debonding with ytterbium fiber laser.

    PubMed

    Sarp, Ayşe Sena Kabaş; Gülsoy, Murat

    2011-09-01

    Since the early 1990 s, lasers have been used experimentally for debonding ceramic brackets. Lasers reduce the required debonding force and risk of enamel damage. However, the thermal effect during the laser radiation on dental tissues can cause undesirable results. The aim of this study is to develop a laser debonding technique for ceramic brackets that is better than mechanical debonding and also to minimize the side-effects of laser applications. A new fiber laser (1,070-nm ytterbium fiber laser) was tested, debonding procedure was quantified with a universal testing machine, and intrapulpal temperature was monitored for limiting the injury or pain. Experiments were performed in two sections according to the type of lasing mode: continuous wave (CW) and modulated mode. In continuous wave (CW) mode, a laser was applied on samples with different constant power levels continuously. In the second set of experiments, brackets were irradiated in modulated mode, in which the laser energy was delivered with on-and-off cycles. Laser power and duty cycles were adjusted by controlling the current, which was set to 4.99 A of current for 18 W of emission. Debonding force, debonding time, and work done by a universal testing machine were all significantly decreased for both modalities of laser irradiation compared to the control group. When laser parameters were set to proper doses, a 50% of reduction in required load for debonding and a three-fold decrease in debonding time were observed. Intrapulpal temperature changes were below the accepted threshold value (5.5°C) until the level of 3.5 W of laser power in continuous wave mode. During debonding, the work done by the universal testing machine is decreased up to five times by irradiation. Parameters were compared for both modes of operations and it was concluded that modulated mode laser application (Group 300/900) provided faster and easier debonding with less temperature change.

  10. Power scaling analysis of fiber lasers and amplifiers based on non-silica materials

    SciTech Connect

    Dawson, J W; Messerly, M J; Heebner, J E; Pax, P H; Sridharan, A K; Bullington, A L; Beach, R J; Siders, C W; Barty, C P; Dubinskii, M

    2010-03-30

    A developed formalism for analyzing the power scaling of diffraction limited fiber lasers and amplifiers is applied to a wider range of materials. Limits considered include thermal rupture, thermal lensing, melting of the core, stimulated Raman scattering, stimulated Brillouin scattering, optical damage, bend induced limits on core diameter and limits to coupling of pump diode light into the fiber. For conventional fiber lasers based upon silica, the single aperture, diffraction limited power limit was found to be 36.6kW. This is a hard upper limit that results from an interaction of the stimulated Raman scattering with thermal lensing. This result is dependent only upon physical constants of the material and is independent of the core diameter or fiber length. Other materials will have different results both in terms of ultimate power out and which of the many limits is the determining factor in the results. Materials considered include silica doped with Tm and Er, YAG and YAG based ceramics and Yb doped phosphate glass. Pros and cons of the various materials and their current state of development will be assessed. In particular the impact of excess background loss on laser efficiency is discussed.

  11. Power scaling analysis of fiber lasers and amplifiers based on non-silica materials

    NASA Astrophysics Data System (ADS)

    Dawson, Jay W.; Messerly, Michael J.; Heebner, John E.; Pax, Paul H.; Sridharan, Arun K.; Bullington, Amber L.; Beach, Raymond J.; Siders, Craig W.; Barty, C. P. J.; Dubinskii, Mark

    2010-04-01

    A developed formalism1 for analyzing the power scaling of diffraction limited fiber lasers and amplifiers is applied to a wider range of materials. Limits considered include thermal rupture, thermal lensing, melting of the core, stimulated Raman scattering, stimulated Brillouin scattering, optical damage, bend induced limits on core diameter and limits to coupling of pump diode light into the fiber. For conventional fiber lasers based upon silica, the single aperture, diffraction limited power limit was found to be 36.6kW. This is a hard upper limit that results from an interaction of the stimulated Raman scattering with thermal lensing. This result is dependent only upon physical constants of the material and is independent of the core diameter or fiber length. Other materials will have different results both in terms of ultimate power out and which of the many limits is the determining factor in the results. Materials considered include silica doped with Tm and Er, YAG and YAG based ceramics and Yb doped phosphate glass. Pros and cons of the various materials and their current state of development will be assessed. In particular the impact of excess background loss on laser efficiency is discussed.

  12. Hybrid fiber-rod laser

    DOEpatents

    Beach, Raymond J.; Dawson, Jay W.; Messerly, Michael J.; Barty, Christopher P. J.

    2012-12-18

    Single, or near single transverse mode waveguide definition is produced using a single homogeneous medium to transport both the pump excitation light and generated laser light. By properly configuring the pump deposition and resulting thermal power generation in the waveguide device, a thermal focusing power is established that supports perturbation-stable guided wave propagation of an appropriately configured single or near single transverse mode laser beam and/or laser pulse.

  13. Supercontinuum fiber lasers: new developments and applications

    NASA Astrophysics Data System (ADS)

    Devine, Adam; Hooper, Lucy; Clowes, John

    2016-05-01

    In this talk we give an overview of recent advances in the development of high power supercontinuum fiber lasers with powers exceeding 50W and spectral brightness of tens of mW/nm. We also discuss the fundamental limitations of power scaling and spectral broadening and review the existing and emerging applications of this unique light source which combines the broadband properties of a light bulb with the spatial properties of a laser.

  14. Coiled Fiber Pulsed Laser Simulator

    2009-01-29

    This suite of codes simulates the transient output pulse from an optically-pumped coiled fiber amplifier. The input pulse is assumed to have a Gaussian time dependence and a spatial dependence that may be Gaussian or an eigenmode of the straight of bent fiber computed using bend10 or bend20. Only one field component is used (semivectorial approximation). The fully-spatially-dependent fiber gain profile is specified is subroutines "inversion" and "interp_inversion" and is presently read from a datamore » file, although other means of specifying fiber gain could be reallized through modification of these subroutines. The input pulse is propagated through the fiber, including the following physical effects: spatial and temporal gain saturation, self-focusing, bend losses, and confinement from a user-defined fiber index profile. The user can follow the propagation progress with 3D graphics that show an intensity profile via user-modifiable cutting planes through the time space axes. A restart capability is also included. Approximate solutions in the frequency domain may be obtained much faster using the auxilliary codes bendbpm10 (full vector), bendbpm20 (semivectoral), and bendbpm21 (semivectoral with gain sheet spproximation for gain and self-focusing). These codes all include bend loss and spatial (but not temporal) gain saturation.« less

  15. Filamentation and Forward Brillouin Scatter of Entire Smoothed and Aberrated Laser Beams

    SciTech Connect

    Still, C.H.; Berger, R.L.; Langdon, A.B.; Hinkel, D.E.; Williams, E.A.

    1999-10-29

    Laser-plasma interactions are sensitive to both the fine-scale speckle and the larger scale envelope intensity of the beam. For some time, simulations have been done on volumes taken from part of the laser beam cross-section, and the results from multiple simulations extrapolated to predict the behavior of the entire beam. However, extrapolation could very well miss effects of the larger scale structure on the fine-scale. The only definitive method is to simulate the entire beam. These very large calculations have been infeasible until recently, but they are now possible on massively parallel computers. Whole beam simulations show the dramatic difference in the propagation and break up of smoothed and aberrated beams.

  16. Cooperative stimulated Brillouin scattering driven by overlapping, large spot laser beams

    NASA Astrophysics Data System (ADS)

    Kruer, William; Kirkwood, Robert; Michel, Pierre; Turnbull, David

    2013-10-01

    In NIF hohlraums, large regions of plasma are irradiated with intense overlapping and large spot laser beams. In this regime, cooperative excitation of stimulated scattering can become a significant effect. Indeed, the potential importance of cooperative scattering has already been illustrated in calculations of cross beam energy transfer, where many crossing laser beams enhance the energy of another beam- a form of (generally nonresonant) cooperative SBS in the forward direction. Similarly, cooperative interactions are thought to play some role in scattering in the backward direction. Here we consider an interesting special case in which all the beams in a cone resonantly drive an ion sound wave along the hohlraum axis. This results in laser light being scattered backward along the cone. The frequency of this scattered light differs from that of the light directly backscattered by each beam, although there may be cross talk if the frequency of the backscattered light is sufficiently broad. A simple theory is presented, and some experiments to isolate and characterize cooperative scattering are discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  17. Ribbon Fiber Laser-Theory and Experiment

    SciTech Connect

    Beach, R J; Feit, M D; Brasure, L D; Payne, S A

    2002-05-10

    A scalable fiber laser approach is described based on phase-locking multiple gain cores in an antiguided structure. The waveguide is comprised of periodic sequences of gain- and no-gain-loaded segments having uniform index, within the cladding region. Initial experimental results are presented.

  18. Highly polarized all-fiber thulium laser with femtosecond-laser-written fiber Bragg gratings.

    PubMed

    Willis, Christina C C; McKee, Erik; Böswetter, Pascal; Sincore, Alex; Thomas, Jens; Voigtländer, Christian; Krämer, Ria G; Bradford, Joshua D; Shah, Lawrence; Nolte, Stefan; Tünnermann, Andreas; Richardson, Martin

    2013-05-01

    We demonstrate and characterize a highly linearly polarized (18.8 dB) narrow spectral emission (<80 pm) from an all-fiber Tm laser utilizing femtosecond-laser-written fiber Bragg gratings. Thermally-dependent anisotropic birefringence is observed in the FBG transmission, the effects of which enable both the generation and elimination of highly linearly polarized output. To our knowledge, this is the first detailed study of such thermal anisotropic birefringence in femtosecond-written FBGs.

  19. High power fiber delivery for laser ignition applications.

    PubMed

    Yalin, Azer P

    2013-11-01

    The present contribution provides a concise review of high power fiber delivery research for laser ignition applications. The fiber delivery requirements are discussed in terms of exit energy, intensity, and beam quality. Past research using hollow core fibers, solid step-index fibers, and photonic crystal and bandgap fibers is summarized. Recent demonstrations of spark delivery using large clad step-index fibers and Kagome photonic bandgap fibers are highlighted.

  20. Tapered fiber based high power random laser.

    PubMed

    Zhang, Hanwei; Du, Xueyuan; Zhou, Pu; Wang, Xiaolin; Xu, Xiaojun

    2016-04-18

    We propose a novel high power random fiber laser (RFL) based on tapered fiber. It can overcome the power scaling limitation of RFL while maintaining good beam quality to a certain extent. An output power of 26.5 W has been achieved in a half-open cavity with one kilometer long tapered fiber whose core diameter gradually changes from 8 μm to 20 μm. The steady-state light propagation equations have been modified by taking into account the effective core area to demonstrate the tapered RFL through numerical calculations. The numerical model effectively describes the power characteristics of the tapered fiber based RFL, and both the calculating and experimental results show higher power exporting potential compared with the conventional single mode RFL. PMID:27137338

  1. Actively Q-switched Raman fiber laser

    NASA Astrophysics Data System (ADS)

    Kuznetsov, A. G.; Podivilov, E. V.; Babin, S. A.

    2015-03-01

    A new scheme providing actively Q-switched operation of a Raman fiber laser (RFL) has been proposed and tested. The RFL consists of a 1 km single-mode fiber with a switchable loop mirror at one end and an angled cleaved output end. An 1080 nm pulse with microsecond duration is generated at the output by means of acousto-optic switching of the mirror at ~30 kHz in the presence of 6 W backward pumping at 1030 nm. In the proposed scheme, the generated pulse energy is defined by the pump energy distributed along the passive fiber, which amounts to 30 μJ in our case. The available pump energy may be increased by means of fiber lengthening. Pulse shortening is also expected.

  2. Transmission characteristics of high-power 589-nm laser beam in photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Ito, Meguru; Hayano, Yutaka; Saito, Norihito; Akagawa, Kazuyuki; Kato, Mayumi; Saito, Yoshihiko; Takazawa, Akira; Takami, Hideki; Iye, Masanori; Wada, Satoshi; Colley, Stephen A.; Dinkins, Matthew C.; Eldred, Michael; Golota, Taras I.; Guyon, Olivier; Hattori, Masayuki; Oya, Shin; Watanabe, Makoto

    2006-06-01

    We are developing Laser Guide Star Adaptive Optics (LGSAO) system for Subaru Telescope at Hawaii, Mauna Kea. We achieved an all-solid-state 589.159 nm laser in sum-frequency generation. Output power at 589.159 nm reached 4W in quasi-continuous-wave operation. To relay the laser beam from laser location to laser launching telescope, we used an optical fiber because the optical fiber relay is more flexible and easier than mirror train. However, nonlinear scattering effect, especially stimulated Raman scattering (SRS) and stimulated Brillouin scattering (SBS), will happen when the inputted laser power increases, i.e., intensity at the fiber core exceed each threshold. In order to raise the threshold levels of each nonlinear scattering, we adopt photonic crystal fiber (PCF). Because the PCF can be made larger core than usual step index fiber (SIF), one can reduce the intensity in the core. We inputted the high power laser into the PCF whose mode field diameter (MFD) is 14 μm and the SIF whose MFD is 5 μm, and measured the transmission characteristics of them. In the case of the SIF, the SRS was happen when we inputted 2 W. On the other hand, the SRS and the SBS were not induced in the PCF even for an input power of 4 W. We also investigated polarization of the laser beam transmitting through the PCF. Because of the fact that the backscattering efficiency of exciting the sodium layer with a narrowband laser is dependent on the polarization state of the incident beam, we tried to control the polarization of the laser beam transmitted the PCF. We constructed the system which can control the polarization of input laser and measure the output polarization. The PCF showed to be able to assume as a double refraction optical device, and we found that the output polarization is controllable by injecting beam with appropriate polarization through the PCF. However, the Laser Guide Star made by the beam passed through the PCF had same brightness as the state of the polarization.

  3. All-fiber passively mode-locked Ho-laser pumped by ytterbium fiber laser

    NASA Astrophysics Data System (ADS)

    Filatova, S. A.; Kamynin, V. A.; Zhluktova, I. V.; Trikshev, A. I.; Tsvetkov, V. B.

    2016-11-01

    We report an all-fiber mode-lock holmium-doped ring laser passively mode-locked by nonlinear polarization rotation without dispersion compensation. The laser produced picosecond pulses at 2.057 µm. The average output power was 4.5 mW.

  4. Use of hollow core fibers, fiber lasers, and photonic crystal fibers for spark delivery and laser ignition in gases

    SciTech Connect

    Joshi, Sachin; Yalin, Azer P.; Galvanauskas, Almantas

    2007-07-01

    The fiber-optic delivery of sparks in gases is challenging as the output beam must be refocused to high intensity ({approx}200 GW/cm2 for nanosecond pulses). Analysis suggests the use of coated hollow core fibers, fiber lasers, and photonic crystal fibers (PCFs). We study the effects of launch conditions and bending for 2 m long coated hollow fibers and find an optimum launch f of {approx}55 allowing spark formation with {approx}98% reliability for bends up to a radius of curvature of 1.5 m in atmospheric pressure air. Spark formation using the output of a pulsed fiber laser is described, and delivery of 0.55 mJ pulses through PCFs is shown.

  5. Fiber Coupled Laser Diodes with Even Illumination Pattern

    NASA Technical Reports Server (NTRS)

    Howard, Richard T. (Inventor)

    2007-01-01

    An optical fiber for evenly illuminating a target. The optical fiber is coupled to a laser emitting diode and receives laser light. The la ser light travels through the fiber optic and exits at an exit end. T he exit end has a diffractive optical pattern formed thereon via etch ing, molding or cutting, to reduce the Gaussian profile present in co nventional fiber optic cables The reduction of the Gaussian provides an even illumination from the fiber optic cable.

  6. All-Fiber Configuration Laser Self-Mixing Doppler Velocimeter Based on Distributed Feedback Fiber Laser.

    PubMed

    Wu, Shuang; Wang, Dehui; Xiang, Rong; Zhou, Junfeng; Ma, Yangcheng; Gui, Huaqiao; Liu, Jianguo; Wang, Huanqin; Lu, Liang; Yu, Benli

    2016-01-01

    In this paper, a novel velocimeter based on laser self-mixing Doppler technology has been developed for speed measurement. The laser employed in our experiment is a distributed feedback (DFB) fiber laser, which is an all-fiber structure using only one Fiber Bragg Grating to realize optical feedback and wavelength selection. Self-mixing interference for optical velocity sensing is experimentally investigated in this novel system, and the experimental results show that the Doppler frequency is linearly proportional to the velocity of a moving target, which agrees with the theoretical analysis commendably. In our experimental system, the velocity measurement can be achieved in the range of 3.58 mm/s-2216 mm/s with a relative error under one percent, demonstrating that our novel all-fiber configuration velocimeter can implement wide-range velocity measurements with high accuracy. PMID:27472342

  7. All-Fiber Configuration Laser Self-Mixing Doppler Velocimeter Based on Distributed Feedback Fiber Laser

    PubMed Central

    Wu, Shuang; Wang, Dehui; Xiang, Rong; Zhou, Junfeng; Ma, Yangcheng; Gui, Huaqiao; Liu, Jianguo; Wang, Huanqin; Lu, Liang; Yu, Benli

    2016-01-01

    In this paper, a novel velocimeter based on laser self-mixing Doppler technology has been developed for speed measurement. The laser employed in our experiment is a distributed feedback (DFB) fiber laser, which is an all-fiber structure using only one Fiber Bragg Grating to realize optical feedback and wavelength selection. Self-mixing interference for optical velocity sensing is experimentally investigated in this novel system, and the experimental results show that the Doppler frequency is linearly proportional to the velocity of a moving target, which agrees with the theoretical analysis commendably. In our experimental system, the velocity measurement can be achieved in the range of 3.58 mm/s–2216 mm/s with a relative error under one percent, demonstrating that our novel all-fiber configuration velocimeter can implement wide-range velocity measurements with high accuracy. PMID:27472342

  8. All-Fiber Configuration Laser Self-Mixing Doppler Velocimeter Based on Distributed Feedback Fiber Laser.

    PubMed

    Wu, Shuang; Wang, Dehui; Xiang, Rong; Zhou, Junfeng; Ma, Yangcheng; Gui, Huaqiao; Liu, Jianguo; Wang, Huanqin; Lu, Liang; Yu, Benli

    2016-07-27

    In this paper, a novel velocimeter based on laser self-mixing Doppler technology has been developed for speed measurement. The laser employed in our experiment is a distributed feedback (DFB) fiber laser, which is an all-fiber structure using only one Fiber Bragg Grating to realize optical feedback and wavelength selection. Self-mixing interference for optical velocity sensing is experimentally investigated in this novel system, and the experimental results show that the Doppler frequency is linearly proportional to the velocity of a moving target, which agrees with the theoretical analysis commendably. In our experimental system, the velocity measurement can be achieved in the range of 3.58 mm/s-2216 mm/s with a relative error under one percent, demonstrating that our novel all-fiber configuration velocimeter can implement wide-range velocity measurements with high accuracy.

  9. All fiber laser using a ring cavity

    NASA Astrophysics Data System (ADS)

    Flores, Alberto Varguez; Pérez, Georgina Beltrán; Aguirre, Severino Muñoz; Mixcóatl, Juan Castillo

    2008-04-01

    Mode-locked laser have a number of potential applications, depending on the wavelength and pulse width. They could be used as sources in communications systems for time division multiplexing (TDM) or wavelength-division-multiplexing (WDM) as spectroscopic tools in the laboratory for time-resolved studies of fast nonlinear phenomena in semiconductors, or as seeds for solid-state amplifers such as Nd:Glass, color center alexandrite, or Ti:Sapphire. Short pulses also have potential use in electro-optic sampling systems, as a source for pulsed sensors, or as tunable seed pulses for lasers in medical applications. Applications such as optical coherent tomography could take advantage of the broad bandwidth of a mode-locked fiber laser rather that the temporal ultra-short pulse width. This work shows the characterization of active mode-locking all-fiber laser by using an acousto-optic frequency shifter to the ring cavity, an erbium doped fiber (EDF) and polarization controllers (PC). The results shows a highly stable mode-locked, low noise of pulse generation with repetition rate of 10 MHz and width of 1.6 ns

  10. Polarization-modulated random fiber laser

    NASA Astrophysics Data System (ADS)

    Wu, Han; Wang, Zinan; He, Qiheng; Fan, Mengqiu; Li, Yunqi; Sun, Wei; Zhang, Li; Li, Yi; Rao, Yunjiang

    2016-05-01

    In this letter, we propose and experimentally demonstrate a polarization-modulated random fiber laser (RFL) for the first time. It is found that the output power of the half-opened RFL with polarized pumping is sensitive to the state of polarization (SOP) of the Stokes light in a fiber loop acting as a mirror. By inserting a polarization switch (PSW) in the loop mirror, the state of the random lasing can be switched between on/off states, thus such a polarization-modulated RFL can generate pulsed output with high extinction ratio.

  11. Multi-watt 589nm fiber laser source

    SciTech Connect

    DAWSON, J W; DROBSHOFF, A D; BEACH, R J; MESSERLY, M J; PAYNE, S A; BROWN, A; PENNINGTON, D M; BAMFORD, D J; SHARPE, S J; COOK, D J

    2006-01-19

    We have demonstrated 3.5W of 589nm light from a fiber laser using periodically poled stoichiometric Lithium Tantalate (PPSLT) as the frequency conversion crystal. The system employs 938nm and 1583nm fiber lasers, which were sum-frequency mixed in PPSLT to generate 589nm light. The 938nm fiber laser consists of a single frequency diode laser master oscillator (200mW), which was amplified in two stages to >15W using cladding pumped Nd{sup 3+} fiber amplifiers. The fiber amplifiers operate at 938nm and minimize amplified spontaneous emission at 1088nm by employing a specialty fiber design, which maximizes the core size relative to the cladding diameter. This design allows the 3-level laser system to operate at high inversion, thus making it competitive with the competing 1088nm 4-level laser transition. At 15W, the 938nm laser has an M{sup 2} of 1.1 and good polarization (correctable with a quarter and half wave plate to >15:1). The 1583nm fiber laser consists of a Koheras 1583nm fiber DFB laser that is pre-amplified to 100mW, phase modulated and then amplified to 14W in a commercial IPG fiber amplifier. As a part of our research efforts we are also investigating pulsed laser formats and power scaling of the 589nm system. We will discuss the fiber laser design and operation as well as our results in power scaling at 589nm.

  12. Multiwavelength erbium fiber ring laser using Sagnac loop and Fabry-Perot laser diode

    NASA Astrophysics Data System (ADS)

    Yeh, C.-H.; Shih, F.-Y.; Chen, C.-T.; Lee, C.-N.; Chi, S.

    2008-03-01

    We propose and demonstrate experimentally a simply multiple-wavelength erbium compound ring fiber laser employing a Sagnac interferometer with erbium-doped fiber amplifier (EDFA) and Fabry-Perot laser diode (FP-LD). The proposed laser has the advantage of simply structure and easy fabrication, lower insertion loss and cost-effective. Based on the Sagnac fiber laser scheme, the proposed laser can lase eight wavelengths simultaneously. Moreover, the optical output stability of the ring laser has been also discussed.

  13. Femtosecond Fiber Lasers Based on Dissipative Processes for Nonlinear Microscopy

    PubMed Central

    Wise, Frank W.

    2012-01-01

    Recent progress in the development of femtosecond-pulse fiber lasers with parameters appropriate for nonlinear microscopy is reviewed. Pulse-shaping in lasers with only normal-dispersion components is briefly described, and the performance of the resulting lasers is summarized. Fiber lasers based on the formation of dissipative solitons now offer performance competitive with that of solid-state lasers, but with the benefits of the fiber medium. Lasers based on self-similar pulse evolution in the gain section of a laser also offer a combination of short pulse duration and high pulse energy that will be attractive for applications in nonlinear bioimaging. PMID:23869163

  14. Femtosecond Fiber Lasers Based on Dissipative Processes for Nonlinear Microscopy.

    PubMed

    Wise, Frank W

    2012-01-01

    Recent progress in the development of femtosecond-pulse fiber lasers with parameters appropriate for nonlinear microscopy is reviewed. Pulse-shaping in lasers with only normal-dispersion components is briefly described, and the performance of the resulting lasers is summarized. Fiber lasers based on the formation of dissipative solitons now offer performance competitive with that of solid-state lasers, but with the benefits of the fiber medium. Lasers based on self-similar pulse evolution in the gain section of a laser also offer a combination of short pulse duration and high pulse energy that will be attractive for applications in nonlinear bioimaging.

  15. MOPA pulsed fiber laser for silicon scribing

    NASA Astrophysics Data System (ADS)

    Yang, Limei; Huang, Wei; Deng, Mengmeng; Li, Feng

    2016-06-01

    A 1064 nm master oscillator power amplifier (MOPA) pulsed fiber laser is developed with flexible control over the pulse width, repetition frequency and peak power, and it is used to investigate the dependence of mono-crystalline silicon scribe depth on the laser pulse width, scanning speed and repeat times. Experimental results indicate that long pulses with low peak powers lead to deep ablation depths. We also demonstrate that the ablation depth grows fast with the scanning repeat times at first and progressively tends to be saturated when the repeat times reach a certain level. A thermal model considering the laser pulse overlapping effect that predicts the silicon temperature variation and scribe depth is employed to verify the experimental conclusions with reasonably close agreement. These conclusions are of great benefits to the optimization of the laser material processing with high efficiency.

  16. Blackening of metals using femtosecond fiber laser.

    PubMed

    Huang, Huan; Yang, Lih-Mei; Bai, Shuang; Liu, Jian

    2015-01-10

    This study presents an unprecedented high throughput processing for super-blackening and superhydrophobic/hydrophilic surface on both planar and nonplanar metals surfaces. By using a high pulse repetition rate femtosecond (fs) fiber laser, a light trapping microstructure and nanostructure is generated to absorb light from UV, visible to long-wave infrared spectral region. Different types of surface structures are produced with varying laser scanning conditions (scanning speed and pitch). The modified surface morphologies are characterized using scanning electron microscope and the blackening effect is investigated through spectral measurements. Spectral measurements show that the reflectance of the processed materials decreases sharply in a wide wavelength range and the decrease occurs at different rates for different scanning pitches and speeds. Above 98% absorption over the entire visible wavelength region and above 95% absorption over the near-infrared, middle-wave infrared and long-wave infrared regions range has been demonstrated for the surface structures, and the absorption for specific wavelengths can go above 99%. Furthermore, the processing efficiency of this fs fiber laser blackening technique is 1 order of magnitude higher than that of solid-state fs laser and 4 times higher than that of picosecond (ps) laser. Further increasing of the throughput is expected by using higher repetition and higher scanning speed. This technology offers the great potential in applications such as constructing sensitive detectors and sensors, solar energy absorber, and biomedicine. PMID:25967633

  17. Broad-Area Laser Diode With Fiber-Optic Injection

    NASA Technical Reports Server (NTRS)

    Hazel, Geoffrey; Mead, Patricia; Davis, Christopher; Cornwell, Donald

    1992-01-01

    Fiber-optic injection-locked broad-area laser diode features single-mode output via fiber-optic injection and serves as compact, rugged, high-power near-infrared source. Useful in free-space and fiber-optic communication links, as communication-receiver preamplifier, and pump source for solid-state lasers.

  18. Laser and Optical Fiber Metrology in Romania

    SciTech Connect

    Sporea, Dan; Sporea, Adelina

    2008-04-15

    The Romanian government established in the last five years a National Program for the improvement of country's infrastructure of metrology. The set goal was to develop and accredit testing and calibration laboratories, as well as certification bodies, according to the ISO 17025:2005 norm. Our Institute benefited from this policy, and developed a laboratory for laser and optical fibers metrology in order to provide testing and calibration services for the certification of laser-based industrial, medical and communication products. The paper will present the laboratory accredited facilities and some of the results obtained in the evaluation of irradiation effects of optical and optoelectronic parts, tests run under the EU's Fusion Program.

  19. Drilling with fiber-transmitted, visible lasers

    SciTech Connect

    Kautz, D.D.; Berzins, L.V.; Dragon, E.P.; Werve, M.E.; Warner, B.E.

    1994-02-17

    High power and radiance copper-vapor laser technology developed at Lawrence Livermore National Laboratory shows great promise for many materials processing tasks. The authors recently transmitted the visible light produced by these lasers through fiber optics to perform hole drilling experiments. They found the tolerances on the hole circulatory and cylindricity to be excellent when compared to that produced by conventional optics. This technique lends itself to many applications that are difficult to perform when using conventional optics, including robotic manipulation and hole drilling in non-symmetric parts.

  20. Laser and Optical Fiber Metrology in Romania

    NASA Astrophysics Data System (ADS)

    Sporea, Dan; Sporea, Adelina

    2008-04-01

    The Romanian government established in the last five years a National Program for the improvement of country's infrastructure of metrology. The set goal was to develop and accredit testing and calibration laboratories, as well as certification bodies, according to the ISO 17025:2005 norm. Our Institute benefited from this policy, and developed a laboratory for laser and optical fibers metrology in order to provide testing and calibration services for the certification of laser-based industrial, medical and communication products. The paper will present the laboratory accredited facilities and some of the results obtained in the evaluation of irradiation effects of optical and optoelectronic parts, tests run under the EU's Fusion Program.

  1. Laser cutting of carbon fiber reinforced thermo-plastics (CFRTP) by single-mode fiber laser irradiation

    NASA Astrophysics Data System (ADS)

    Niino, Hiroyuki; Kawaguchi, Yoshizo; Sato, Tadatake; Narazaki, Aiko; Kurosaki, Ryozo; Muramatsu, Mayu; Harada, Yoshihisa; Anzai, Kenji; Aoyama, Mitsuaki; Matsushita, Masafumi; Furukawa, Koichi; Nishino, Michiteru; Fujisaki, Akira; Miyato, Taizo; Kayahara, Takashi

    2014-03-01

    We report on the laser cutting of carbon fiber reinforced thermo-plastics (CFRTP) with a cw IR fiber laser (single-mode fiber laser, average power: 350 W). CFRTP is a high strength composite material with a lightweight, and is increasingly being used various applications. A well-defined cutting of CFRTP which were free of debris and thermal-damages around the grooves, were performed by the laser irradiation with a fast beam galvanometer scanning on a multiple-scanpass method.

  2. Noise induced in optical fibers by double Rayleigh scattering of a laser with a 1/fν frequency noise.

    PubMed

    Fleyer, Michael; Heerschap, Seth; Cranch, Geoffrey A; Horowitz, Moshe

    2016-03-15

    We study, theoretically and experimentally, intensity noise induced by double Rayleigh scattering in long optical fibers. The results of the theoretical model are compared to experimental results performed with a high-coherence-length laser with a frequency noise spectrum that is dominated by 1/fν noise. Excellent quantitative agreement between theoretical and experimental RF spectra were obtained for frequencies as low as 10 Hz and for fiber lengths between 4 and 45 km. Strong low-frequency intensity noise that is induced by 1/fν frequency noise of the laser may limit the performance of interferometric fiber optic sensors that require high-coherence-length lasers. The intensity noise due to double Rayleigh backscattering can be suppressed by reducing the coherence length of the laser. Therefore, the intensity noise has a complex and non-monotonic dependence on the 1/fν frequency noise amplitude of the laser. Stimulated Brillouin scattering will add a significant noise for input powers greater than about 7 mW for a 30 km length fiber.

  3. Theory of a random fiber laser

    SciTech Connect

    Kolokolov, I. V. Lebedev, V. V.; Podivilov, E. V.; Vergeles, S. S.

    2014-12-15

    We develop the theory explaining the role of nonlinearity in generation of radiation in a fiber laser that is pumped by external light. The pumping energy is converted into the generating signal due to the Raman scattering supplying an effective gain for the signal. The signal is generated with frequencies near the one corresponding to the maximum value of the gain. Generation conditions and spectral properties of the generated signal are examined. We focus mainly on the case of a random laser where reflection of the signal occurs on impurities of the fiber. From the theoretical standpoint, kinetics of a wave system close to an integrable one are investigated. We demonstrate that in this case, the perturbation expansion in the kinetic equation has to use the closeness to the integrable case.

  4. High Power Fiber Lasers and Applications to Manufacturing

    NASA Astrophysics Data System (ADS)

    Richardson, Martin; McComb, Timothy; Sudesh, Vikas

    2008-09-01

    We summarize recent developments in high power fiber laser technologies and discuss future trends, particularly in their current and future use in manufacturing technologies. We will also describe our current research programs in fiber laser development, ultra-fast and new lasers, and will mention the expectations in these areas for the new Townes Laser Institute. It will focus on new core laser technologies and their applications in medical technologies, advanced manufacturing technologies and defense applications. We will describe a program on large mode area fiber development that includes results with the new gain-guiding approach, as well as high power infra-red fiber lasers. We will review the opportunities for high power fiber lasers in various manufacturing technologies and illustrate this with applications we are pursuing in the areas of femtosecond laser applications, advanced lithographies, and mid-IR technologies.

  5. Blue Pr{sup 3+}-doped ZBLAN fiber upconversion laser

    SciTech Connect

    Baney, D.M.; Rankin, G.; Chang, K.

    1996-09-01

    We demonstrate blue laser emission from a direct semiconductor laser-diode-pumped Pr{sup 3+}-doped upconversion fiber laser. This laser produced more than 1 mW of power at a wavelength of 492 nm from pump lasers operating at 830 and 1020 nm. {copyright} {ital 1996 Optical Society of America.}

  6. Transform-limited pulses generated by an actively Q-switched distributed fiber laser.

    PubMed

    Cuadrado-Laborde, C; Pérez-Millán, P; Andrés, M V; Díez, A; Cruz, J L; Barmenkov, Yu O

    2008-11-15

    A single-mode, transform-limited, actively Q-switched distributed-feedback fiber laser is presented, based on a new in-line acoustic pulse generator. Our technique permits a continuous adjustment of the repetition rate that modulates the Q factor of the cavity. Optical pulses of 800 mW peak power, 32 ns temporal width, and up to 20 kHz repetition rates were obtained. The measured linewidth demonstrates that these pulses are transform limited: 6 MHz for a train of pulses of 10 kHz repetition rate, 80 ns temporal width, and 60 mW peak power. Efficient excitation of spontaneous Brillouin scattering is demonstrated. PMID:19015677

  7. Multi-wavelength fiber laser based on a fiber Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Estudillo-Ayala, J. M.; Jauregui-Vazquez, D.; Haus, J. W.; Perez-Maciel, M.; Sierra-Hernandez, J. M.; Avila-Garcia, M. S.; Rojas-Laguna, R.; Lopez-Dieguez, Y.; Hernandez-Garcia, J. C.

    2015-12-01

    In this work we report experimental studies of an erbium-doped fiber laser design that simultaneously emits up to three wavelengths. The laser cavity configuration has an all-fiber, Fabry-Perot interferometer, based on the insertion of air cavities in the fiber, near one end of a conventional single-mode fiber. The laser emissions have a side-mode suppression ratio over 25 dB, wavelength variations around 0.04 nm, and 2 dB power fluctuations. By using a simple, controlled fiber curvature technique cavity losses are varied over a section of convectional single-mode fiber and the laser output is switched between single-, dual-, and triple-wavelength emission. Moreover, by applying a refractive index change over the fiber filter the emission wavelengths are shifted. The fiber laser offers a compact, simple, and low-cost design for a multiple wavelength outputs that can be adopted in future applications.

  8. Brillouin optical fiber distributed sensor for settlement monitoring while tunneling the metro line 3 in Cairo, Egypt

    NASA Astrophysics Data System (ADS)

    Dewynter, V.; Rougeault, S.; Magne, S.; Ferdinand, P.; Vallon, F.; Avallone, L.; Vacher, E.; De Broissia, M.; Canepa, Ch.; Poulain, A.

    2009-10-01

    Safety while tunneling is one of the main challenges for underground constructions, avoiding confinement losses, which remain an important risk for public works, leading to additional delays and high insurance costs. In such applications, usual surface instrumentations cannot be set up because of high building density in many overcrowded cities. Tunnelling deals with the challenge of requiring ground surface undisturbed. One original concept proposed in the framework of the European Tunconstruct project, consists in very early settlement detection close to the tunnel vault and before any detectable effect on the surface. The adopted solution is to set-up a sensing element inserted into a directional drilling excavated above the foreseen tunnel. The methodology is based on the well known Brillouin Optical Time Domain Reflectometry (B-OTDR) in singlemode optical fibres and a special cable design dedicated to bending measurement. Two cables, based on different industrial manufacturing processes, have been developed taking into account the strain sensitivity required, the flexibility and the robustness for borehole installation, a low power attenuation and storage on a drum. Industrial prototypes have been manufactured and validated with tests in open air where settlement profiles geometry can be accurately controlled. Demonstration on job site took place on The Greater Cairo Metro Line 3 (CML3) at the beginning of 2009.

  9. Temporal characterization of a multi-wavelength Brillouin–erbium fiber laser

    NASA Astrophysics Data System (ADS)

    Lambin Iezzi, Victor; Büttner, Thomas F. S.; Tehranchi, Amirhossein; Loranger, Sébastien; Kabakova, Irina V.; Eggleton, Benjamin J.; Kashyap, Raman

    2016-05-01

    This paper provides the first detailed temporal characterization of a multi-wavelength-Brillouin–erbium fiber laser (MWBEFL) by measuring the optical intensity of the individual frequency channels with high temporal resolution. It is found that the power in each channel is highly unstable due to the excitation of several cavity modes for typical conditions of operation. Also provided is the real-time measurements of the MWBEFL output power for two configurations that were previously reported to emit phase-locked picosecond pulse trains, concluded from their autocorrelation measurements. Real-time measurements reveal a high degree of instability without the formation of a stable pulse train. Finally, we model the MWBEFL using coupled wave equations describing the evolution of the Brillouin pump, Stokes and acoustic waves in the presence of stimulated Brillouin scattering, and the optical Kerr effect. A good qualitative consistency between the simulation and experimental results is evident, in which the interference signal at the output shows strong instability as well as the chaotic behavior due to the dynamics of participating pump and Stokes waves.

  10. Proximal fiber tip damage during Holmium:YAG and thulium fiber laser ablation of kidney stones

    NASA Astrophysics Data System (ADS)

    Wilson, Christopher R.; Hardy, Luke A.; Irby, Pierce B.; Fried, Nathaniel M.

    2016-02-01

    The Thulium fiber laser (TFL) is being studied as an alternative to Holmium:YAG laser for lithotripsy. TFL beam originates within an 18-μm-core thulium doped silica fiber, and its near single mode, Gaussian beam profile enables transmission of higher laser power through smaller fibers than possible during Holmium laser lithotripsy. This study examines whether TFL beam profile also reduces proximal fiber tip damage compared to Holmium laser multimodal beam. TFL beam at wavelength of 1908 nm was coupled into 105-μm-core silica fibers, with 35-mJ energy, 500-μs pulse duration, and pulse rates of 50-500 Hz. For each pulse rate, 500,000 pulses were delivered. Magnified images of proximal fiber surfaces were taken before and after each trial. For comparison, 20 single-use, 270-μm-core fibers were collected after clinical Holmium laser lithotripsy procedures using standard settings (600 mJ, 350 μs, 6 Hz). Total laser energy, number of laser pulses, and laser irradiation time were recorded, and fibers were rated for damage. For TFL studies, output power was stable, and no proximal fiber damage was observed after delivery of 500,000 pulses at settings up to 35 mJ, 500 Hz, and 17.5 W average power. In contrast, confocal microscopy images of fiber tips after Holmium lithotripsy showed proximal fiber tip degradation in all 20 fibers. The proximal fiber tip of a 105-μm-core fiber transmitted 17.5 W of TFL power without degradation, compared to degradation of 270-μm-core fibers after transmission of 3.6 W of Holmium laser power. The smaller and more uniform TFL beam profile may improve fiber lifetime, and potentially reduce costs for the surgical disposables as well.

  11. Thulium fiber laser damage to the ureter

    NASA Astrophysics Data System (ADS)

    Wilson, Christopher R.; Hardy, Luke A.; Irby, Pierce B.; Fried, Nathaniel M.

    2015-07-01

    Our laboratory is studying experimental thulium fiber laser (TFL) as a potential alternative lithotripter to the clinical gold standard Holmium:YAG laser. Safety studies characterizing undesirable Holmium laser-induced damage to ureter tissue have been previously reported. Similarly, this study characterizes TFL induced ureter and stone basket damage. A TFL beam with pulse energy of 35 mJ, pulse duration of 500 μs, and pulse rates of 150-500 Hz was delivered through a 100-μm-core, low-OH, silica optical fiber to the porcine ureter wall, in vitro. Ureter perforation times were measured and gross, histological, and optical coherence tomography images of the ablation zone were acquired. TFL operation at 150, 300, and 500 Hz produced mean ureter perforation times of 7.9, 3.8, and 1.8 s, respectively. Collateral damage averaged 510, 370, and 310 μm. TFL mean perforation time exceeded 1 s at each setting, which is a greater safety margin than previously reported during Holmium laser ureter perforation studies.

  12. Development of Fiber-Based Laser Systems for LISA

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Camp, Jordan

    2010-01-01

    We present efforts on fiber-based laser systems for the LISA mission at the NASA Goddard Space Flight Center. A fiber-based system has the advantage of higher robustness against external disturbances and easier implementation of redundancies. For a master oscillator, we are developing a ring fiber laser and evaluating two commercial products, a DBR linear fiber laser and a planar-waveguide external cavity diode laser. They all have comparable performance to a traditional NPRO at LISA band. We are also performing reliability tests of a 2-W Yb fiber amplifier and radiation tests of fiber laser/amplifier components. We describe our progress to date and discuss the path to a working LISA laser system design.

  13. All-glass optical fibers derived from sapphire

    NASA Astrophysics Data System (ADS)

    Dragic, Peter D.; Hawkins, Thomas; Foy, Paul; Morris, Stephanie; Ballato, John

    2013-02-01

    Increasing power levels and novel applications are demanding from fibers performance capabilities that have, to date, not been realized. One such example arises from the nascent push towards the 10-kW power threshold for narrow linewidth fiber lasers designed for applications including coherently-phased laser arrays and spectroscopic lidars. It is well-known that Brillouin scattering still restricts continued power scaling in these systems, despite several recent advances in acoustic-wave Brillouin management. Accordingly, novel fibers possessing a Brillouin gain coefficient 10 dB or more less than previously demonstrated would be of great practical benefit if they comprise novel materials in simple geometries and are manufactured using industry-accepted methods. Introducing a new and effective approach to the management of Brillouin scattering, we present on all-glass optical fibers derived from silica-clad sapphire with alumina concentrations up to 55 mole percent; considerably greater than conventionally possible enabling the design of optical fiber possessing a series of essential properties. Markedly, a Brillouin gain coefficient of 3.1 × 10-13 m/W was measured for a fiber with an average alumina concentration of 54 mole percent. This value is nearly 100 times lower than standard commercial single-mode fiber and is likely the lowest ever specified value. This reduction in Brillouin gain is enabled by a number of key material properties of the alumina-silica system, amazingly even leading to a predicted, but not yet demonstrated, composition with zero Brillouin gain. Optical fiber materials with these and other crucial properties will be discussed in the context high energy fiber laser systems.

  14. High energy pulsed fiber laser transmitters in the C- and L-band for coherent lidar applications

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Moor, Nick; Petersen, Eliot B.; Nguyen, Dan T.; Yao, Zhidong; Stephen, Mark A.; Chavez-Pirson, Arturo; Peyghambarian, Nasser

    2011-10-01

    We report a monolithic specialized high stimulated Brillouin scattering (SBS) threshold fiber laser/amplifier in the C and L band based on highly co-doped phosphate glass fibers. This represents an important new development for coherent LIDAR and remote sensing applications. By using single mode polarization-maintaining large core highly Er/Yb codoped phosphate fibers in the power amplifier stages, we have achieved the highest peak power of 2.02 kW at 1530 nm for 105 ns pulses with transform-limited linewidth, and with a corresponding pulse energy of about 0.212 mJ. The achieved high-energy pulses were frequency doubled by using a commercial periodically poled lithium niobate (PPLN) crystal, and the highest SHG peak power of 271 W has been achieved for the SHG pulses at 765 nm that can be used for oxygen coherent remote sensing. In the L band, more than 80 μJ fiber laser pulses at 1572 nm with 1-2 μs pulse width and transform-limited linewidth have been achieved by using a monolithic fiber laser system in MOPA configuration, which can be used for CO2 coherent remote sensing.

  15. Single-end simultaneous temperature and strain sensing techniques based on Brillouin optical time domain reflectometry in few-mode fibers.

    PubMed

    Weng, Yi; Ip, Ezra; Pan, Zhongqi; Wang, Ting

    2015-04-01

    Recently there is a growing interest in developing few-mode fiber (FMF) based distributed sensors, which can attain higher spatial resolution and sensitivity compared with the conventional single-mode approaches. However, current techniques require two lightwaves injected into both ends of FMF, resulting in their complicated setup and high cost, which causes a big issue for geotechnical and petroleum applications. In this paper, we present a single-end FMF-based distributed sensing system that allows simultaneous temperature and strain measurement by Brillouin optical time-domain reflectometry (BOTDR) and heterodyne detection. Theoretical analysis and experimental assessment of multi-parameter discriminative measurement techniques applied to distributed FMF sensors are presented. Experimental results confirm that FM-BOTDR has similar performance with two-end methods such as FM-BOTDA, but with simpler setup and lower cost. The temperature-induced expansion strain (TIES) in response to different modes is discussed as well. Furthermore, we optimized the FMF design by exploiting modal profile and doping concentration, which indicates up to fivefold enhancement in measurement accuracy. This novel distributed FM-sensing system endows with good sensitivity characteristics and can prevent catastrophic failure in many applications. PMID:25968738

  16. Novel fiber optic tip designs and devices for laser surgery

    NASA Astrophysics Data System (ADS)

    Hutchens, Thomas Clifton

    Fiber optic delivery of laser energy has been used for years in various types of surgical procedures in the human body. Optical energy provides several benefits over electrical or mechanical surgery, including the ability to selectively target specific tissue types while preserving others. Specialty fiber optic tips have also been introduced to further customize delivery of laser energy to the tissue. Recent evolution in lasers and miniaturization has opened up opportunities for many novel surgical techniques. Currently, ophthalmic surgeons use relatively invasive mechanical tools to dissect retinal deposits which occur in proliferative diabetic retinopathy. By using the tight focusing properties of microspheres combined with the short optical penetration depth of the Erbium:YAG laser and mid-IR fiber delivery, a precise laser scalpel can be constructed as an alternative, less invasive and more precise approach to this surgery. Chains of microspheres may allow for a self limiting ablation depth of approximately 10 microm based on the defocusing of paraxial rays. The microsphere laser scalpel may also be integrated with other surgical instruments to reduce the total number of handpieces for the surgeon. In current clinical laser lithotripsy procedures, poor input coupling of the Holmium:YAG laser energy frequently damages and requires discarding of the optical fiber. However, recent stone ablation studies with the Thulium fiber laser have provided comparable results to the Ho:YAG laser. The improved spatial beam profile of the Thulium fiber laser can also be efficiently coupled into a fiber approximately one third the diameter and reduces the risk of damaging the fiber input. For this reason, the trunk optical fiber minus the distal fiber tip can be preserved between procedures. The distal fiber tip, which degrades during stone ablation, could be made detachable and disposable. A novel, low-profile, twist-locking, detachable distal fiber tip interface was designed

  17. Property and Shape Modulation of Carbon Fibers Using Lasers.

    PubMed

    Blaker, Jonny J; Anthony, David B; Tang, Guang; Shamsuddin, Siti-Ros; Kalinka, Gerhard; Weinrich, Malte; Abdolvand, Amin; Shaffer, Milo S P; Bismarck, Alexander

    2016-06-29

    An exciting challenge is to create unduloid-reinforcing fibers with tailored dimensions to produce synthetic composites with improved toughness and increased ductility. Continuous carbon fibers, the state-of-the-art reinforcement for structural composites, were modified via controlled laser irradiation to result in expanded outwardly tapered regions, as well as fibers with Q-tip (cotton-bud) end shapes. A pulsed laser treatment was used to introduce damage at the single carbon fiber level, creating expanded regions at predetermined points along the lengths of continuous carbon fibers, while maintaining much of their stiffness. The range of produced shapes was quantified and correlated to single fiber tensile properties. Mapped Raman spectroscopy was used to elucidate the local compositional and structural changes. Irradiation conditions were adjusted to create a swollen weakened region, such that fiber failure occurred in the laser treated region producing two fiber ends with outwardly tapered ends. Loading the tapered fibers allows for viscoelastic energy dissipation during fiber pull-out by enhanced friction as the fibers plough through a matrix. In these tapered fibers, diameters were locally increased up to 53%, forming outward taper angles of up to 1.8°. The tensile strength and strain to failure of the modified fibers were significantly reduced, by 75% and 55%, respectively, ensuring localization of the break in the expanded region; however, the fiber stiffness was only reduced by 17%. Using harsher irradiation conditions, carbon fibers were completely cut, resulting in cotton-bud fiber end shapes. Single fiber pull-out tests performed using these fibers revealed a 6.75-fold increase in work of pull-out compared to pristine carbon fibers. Controlled laser irradiation is a route to modify the shape of continuous carbon fibers along their lengths, as well as to cut them into controlled lengths leaving tapered or cotton-bud shapes. PMID:27227575

  18. Property and Shape Modulation of Carbon Fibers Using Lasers.

    PubMed

    Blaker, Jonny J; Anthony, David B; Tang, Guang; Shamsuddin, Siti-Ros; Kalinka, Gerhard; Weinrich, Malte; Abdolvand, Amin; Shaffer, Milo S P; Bismarck, Alexander

    2016-06-29

    An exciting challenge is to create unduloid-reinforcing fibers with tailored dimensions to produce synthetic composites with improved toughness and increased ductility. Continuous carbon fibers, the state-of-the-art reinforcement for structural composites, were modified via controlled laser irradiation to result in expanded outwardly tapered regions, as well as fibers with Q-tip (cotton-bud) end shapes. A pulsed laser treatment was used to introduce damage at the single carbon fiber level, creating expanded regions at predetermined points along the lengths of continuous carbon fibers, while maintaining much of their stiffness. The range of produced shapes was quantified and correlated to single fiber tensile properties. Mapped Raman spectroscopy was used to elucidate the local compositional and structural changes. Irradiation conditions were adjusted to create a swollen weakened region, such that fiber failure occurred in the laser treated region producing two fiber ends with outwardly tapered ends. Loading the tapered fibers allows for viscoelastic energy dissipation during fiber pull-out by enhanced friction as the fibers plough through a matrix. In these tapered fibers, diameters were locally increased up to 53%, forming outward taper angles of up to 1.8°. The tensile strength and strain to failure of the modified fibers were significantly reduced, by 75% and 55%, respectively, ensuring localization of the break in the expanded region; however, the fiber stiffness was only reduced by 17%. Using harsher irradiation conditions, carbon fibers were completely cut, resulting in cotton-bud fiber end shapes. Single fiber pull-out tests performed using these fibers revealed a 6.75-fold increase in work of pull-out compared to pristine carbon fibers. Controlled laser irradiation is a route to modify the shape of continuous carbon fibers along their lengths, as well as to cut them into controlled lengths leaving tapered or cotton-bud shapes.

  19. Fiber laser front end for high energy petawatt laser systems

    SciTech Connect

    Dawson, J W; Messerly, M J; Phan, H; Mitchell, S; Drobshoff, A; Beach, R J; Siders, C; Lucianetti, A; Crane, J K; Barty, C J

    2006-06-15

    We are developing a fiber laser front end suitable for high energy petawatt laser systems on large glass lasers such as NIF. The front end includes generation of the pulses in a fiber mode-locked oscillator, amplification and pulse cleaning, stretching of the pulses to >3ns, dispersion trimming, timing, fiber transport of the pulses to the main laser bay and amplification of the pulses to an injection energy of 150 {micro}J. We will discuss current status of our work including data from packaged components. Design detail such as how the system addresses pulse contrast, dispersion trimming and pulse width adjustment and impact of B-integral on the pulse amplification will be discussed. A schematic of the fiber laser system we are constructing is shown in figure 1 below. A 40MHz packaged mode-locked fiber oscillator produces {approx}1nJ pulses which are phase locked to a 10MHz reference clock. These pulses are down selected to 100kHz and then amplified while still compressed. The amplified compressed pulses are sent through a non-linear polarization rotation based pulse cleaner to remove background amplified spontaneous emission (ASE). The pulses are then stretched by a chirped fiber Bragg grating (CFBG) and then sent through a splitter. The splitter splits the signal into two beams. (From this point we follow only one beam as the other follows an identical path.) The pulses are sent through a pulse tweaker that trims dispersion imbalances between the final large optics compressor and the CFBG. The pulse tweaker also permits the dispersion of the system to be adjusted for the purpose of controlling the final pulse width. Fine scale timing between the two beam lines can also be adjusted in the tweaker. A large mode area photonic crystal single polarization fiber is used to transport the pulses from the master oscillator room to the main laser bay. The pulses are then amplified a two stage fiber amplifier to 150mJ. These pulses are then launched into the main amplifier

  20. A review of Thulium fiber laser ablation of kidney stones

    NASA Astrophysics Data System (ADS)

    Fried, Nathaniel M.; Blackmon, Richard L.; Irby, Pierce B.

    2011-02-01

    The clinical solid-state Holmium:YAG laser lithotripter (λ=2120 nm) is capable of operating at high pulse energies, but its efficient operation is limited to low pulse rates during lithotripsy. The diode-pumped experimental Thulium Fiber Laser (λ=1908 nm) is limited to low pulse energies, but can operate at high pulse rates. This review compares stone ablation threshold, ablation rate, and retropulsion effects for Ho:YAG and TFL. Laser lithotripsy complications also include optical fiber bending failure resulting in endoscope damage and low irrigation rates leading to poor visibility. Both problems are related to fiber diameter and limited by Ho:YAG laser multimode spatial beam profile. This study exploits TFL spatial beam profile for higher power transmission through smaller fibers. A short taper is also studied for expanding TFL beam at the distal tip of a small-core fiber. Stone mass loss, stone crater depths, fiber transmission losses, fiber burn-back, irrigation rates, and deflection through a flexible ureteroscope were measured for tapered fiber and compared with conventional fibers. The stone ablation threshold for TFL was four times lower than for Ho:YAG. Stone retropulsion with Ho:YAG increased linearly with pulse energy. Retropulsion with TFL was minimal at pulse rates < 150 Hz, then rapidly increased at higher pulse rates. TFL beam profile provides higher laser power through smaller fibers than Ho:YAG laser, potentially reducing fiber failure and endoscope damage and allowing greater irrigation rates for improved visibility and safety. Use of a short tapered distal fiber tip also allows expansion of the laser beam, resulting in decreased fiber tip damage compared to conventional fibers, without compromising fiber bending, stone ablation efficiency, or irrigation rates.

  1. Femtosecond fiber laser welding of dissimilar metals.

    PubMed

    Huang, Huan; Yang, Lih-Mei; Bai, Shuang; Liu, Jian

    2014-10-01

    In this paper, welding of dissimilar metals was demonstrated for the first time, to the best of our knowledge, by using a high-energy high-repetition-rate femtosecond fiber laser. Metallurgical and mechanical properties were investigated and analyzed under various processing parameters (pulse energy, repetition rate, and welding speed). Results showed that the formation of intermetallic brittle phases and welding defects could be effectively reduced. Strong welding quality with more than 210 MPa tensile strength for stainless steel-aluminum and 175 MPa tensile strength for stainless steel-magnesium has been demonstrated. A minimal heat affected zone and uniform and homogenous phase transformation in the welding region have been demonstrated. This laser-welding technique can be extended for various applications in semiconductor, automobile, aerospace, and biomedical industries.

  2. Growing Crystaline Sapphire Fibers By Laser Heated Pedestal Techiques

    DOEpatents

    Phomsakha, Vongvilay; Chang, Robert S. F.; Djeu, Nicholas I.

    1997-03-04

    An improved system and process for growing crystal fibers comprising a means for creating a laser beam having a substantially constant intensity profile through its cross sectional area, means for directing the laser beam at a portion of solid feed material located within a fiber growth chamber to form molten feed material, means to support a seed fiber above the molten feed material, means to translate the seed fiber towards and away from the molten feed material so that the seed fiber can make contact with the molten feed material, fuse to the molten feed material and then be withdrawn away from the molten feed material whereby the molten feed material is drawn off in the form of a crystal fiber. The means for creating a laser beam having a substantially constant intensity profile through its cross sectional area includes transforming a previously generated laser beam having a conventional gaussian intensity profile through its cross sectional area into a laser beam having a substantially constant intensity profile through its cross sectional area by passing the previously generated laser beam through a graded reflectivity mirror. The means for directing the laser beam at a portion of solid feed material is configured to direct the laser beam at a target zone which contains the molten feed material and a portion of crystal fiber drawn off the molten feed material by the seed fiber. The means to support the seed fiber above the molten feed material is positioned at a predetermined height above the molten feed material. This predetermined height provides the seed fiber with sufficient length and sufficient resiliency so that surface tension in the molten feed material can move the seed fiber to the center of the molten feed material irrespective of where the seed fiber makes contact with the molten feed material. The internal atmosphere of the fiber growth chamber is composed substantially of Helium gas.

  3. CW single transverse mode all-fiber Tm3+-doped silica fiber laser

    NASA Astrophysics Data System (ADS)

    Song, E. Z.; Li, W. H.; You, L.

    2012-04-01

    The CW 25.6 W output power with a slope efficiency of 30.6% respected to the pump power from a CW single transverse mode all-fiber Tm3+-doped Silica Fiber Laser is reported. The all-fiber laser is made up by progressively splicing the pigtail fiber, matched FBG fiber and Tm fiber. The reflective FBG and Tm3+-doped fiber end Fresnel reflection build up the laser resonance cavity. Due to the multi-mode FBG as the reflective mirror, the output laser spectrum is multi-peaks at high output power, but the spectrum width is less than 2 nm at 1.94 μm. We estimate the beam quality to be M 2 = 2.39, clearly indicating nearly diffraction-limited beam propagation.

  4. Self-focusing and stimulated Brillouin back-scattering of a long intense laser pulse in a finite temperature relativistic plasma

    SciTech Connect

    Niknam, A. R.; Barzegar, S.; Hashemzadeh, M.

    2013-12-15

    The nonlinear dynamics of electromagnetic waves propagating through a plasma considering the effects of relativistic mass and ponderomotive nonlinearities is investigated. The modified electron density distribution, the dispersion relation, and the spatial profiles of electromagnetic wave amplitude in the plasma are obtained. It is shown that the cut-off frequency decreases, and there is an intensity range in which the ponderomotive self-focusing takes place. In the upper limit of this range, the laser beam is defocused due to the relativistic ponderomotive force. In addition, the stability of electromagnetic waves to stimulated Brillouin scattering is studied, and the backscattered wave resulting from decay of high power electromagnetic beam is resolved in relativistic regime. The study of effects of electron density and temperature on the growth rate of backscattered wave has been shown that by increasing these effects, the growth rate of instability increases.

  5. Design of highly doped Yb3+ fiber ring laser

    NASA Astrophysics Data System (ADS)

    Huang, Xiu-jiang; Liu, Yong-zhi; Sui, Zhan; Li, Ming-zhong; Lin, Hong-huan; Wang, Jian-jun; Zhao, De-shuang; Wang, Feng-rui; Chen, Ji-xin

    2005-01-01

    Ytterbium-doped silica fibers exhibit very broad absorption and emission bands, from 800nm to 1064nm for absorption and 970nm to 1200nm for emission. Therefore wide band lasers can be obtained using a wide variety of pump lasers. In this paper, the characteristics of high-doped Yb3+ fiber are analyzed and verified by experiment and a highly-doped Yb3+ fiber ring laser with short cavity has been presented. Comparing with normal Yb3+doped fiber, the relationship between the important characteristics of the Yb3+doped fiber laser such as threshold power, output power and laser parameters such as pump power, fiber length, output couple ratio is analyzed. Numerical results are coincident with the experiment phenomenon very well. A 1053 nm pulse has been achieved in our fiber laser. The output power is 6mW as pump power is 110mW and the slope efficiency is 17%. The Yb3+ fiber laser we produced can be used as a stable source in obtaining ultrafast pulse, fiber sense and optical communications.

  6. Distributed Raman amplification using ultra-long fiber laser with a ring cavity: characteristics and sensing application.

    PubMed

    Jia, Xin-Hong; Rao, Yun-Jiang; Wang, Zi-Nan; Zhang, Wei-Li; Yuan, Cheng-Xu; Yan, Xiao-Dong; Li, Jin; Wu, Han; Zhu, Ye-Yu; Peng, Fei

    2013-09-01

    Distributed Raman amplification (DRA) based on ultra-long fiber laser (UL-FL) pumping with a ring cavity is promising for repeaterless transmission and sensing. In this work, the characteristics (including gain, nonlinear impairment and noise figure) for forward and backward pumping of the ring-cavity based DRA scheme are fully investigated. Furthermore, as a typical application of the proposed configuration, ultra-long-distance distributed sensing with Brillouin optical time-domain analysis (BOTDA) over 142.2 km fiber with 5m spatial resolution and ± 1.5 °C temperature uncertainty is achieved, without any repeater. The key point for the significant performance improvement is the system could offer both of uniform gain distribution and considerably suppressed pump-probe relative intensity noise (RIN) transfer, by optimized design of system structure and parameters.

  7. Visible upconversion lasers in praseodymium-ytterbium-doped fibers

    NASA Astrophysics Data System (ADS)

    Zellmer, H.; Riedel, P.; Tünnermann, A.

    We report on a ZBLAN-fiber-based praseodymium-ytterbium-doped upconversion fiber laser operating in the blue-green with diffraction-limited beam quality. cw output powers of more than 150 mW at 491 nm are achieved for several hours without degradation. The spectroscopic data of the active material and laser parameters including the amplitude noise are discussed.

  8. Latest developments of ultrafast fiber laser and its material applications

    NASA Astrophysics Data System (ADS)

    Cho, G. C.; Liu, B.; Shah, L.; Liu, Z.; Che, Y.; Xu, J.

    2009-02-01

    We address recent fiber-based femtosecond laser technology. Specifically, fiber-chirped pulse amplifier is discussed for the enabling the concept of real-world applications. We review recent selected material applications demonstrating advantages of ultrafast dynamics of highly repetitive pulse train in nanoparticle generation in pulsed-laser deposition and reliable Si wafer singulation.

  9. Profiling atmospheric water vapor using a fiber laser lidar system.

    PubMed

    De Young, Russell J; Barnes, Norman P

    2010-02-01

    A compact, lightweight, and efficient fiber laser lidar system has been developed to measure water vapor profiles in the lower atmosphere of Earth or Mars. The line narrowed laser consist of a Tm:germanate fiber pumped by two 792 nm diode arrays. The fiber laser transmits approximately 0.5 mJ Q- switched pulses at 5 Hz and can be tuned to water vapor lines near 1.94 microm with linewidth of approximately 20 pm. A lightweight lidar receiver telescope was constructed of carbon epoxy fiber with a 30 cm Fresnel lens and an advanced HgCdTe APD detector. This system has made preliminary atmospheric measurements.

  10. Polarization dependence of laser interaction with carbon fibers and CFRP.

    PubMed

    Freitag, Christian; Weber, Rudolf; Graf, Thomas

    2014-01-27

    A key factor for laser materials processing is the absorptivity of the material at the laser wavelength, which determines the fraction of the laser energy that is coupled into the material. Based on the Fresnel equations, a theoretical model is used to determine the absorptivity for carbon fiber fabrics and carbon fiber reinforced plastics (CFRP). The surface of each carbon fiber is considered as multiple layers of concentric cylinders of graphite. With this the optical properties of carbon fibers and their composites can be estimated from the well-known optical properties of graphite.

  11. 2μm single frequency fiber laser based on thulium-doped silica fiber

    NASA Astrophysics Data System (ADS)

    Fu, Shijie; Shi, Wei; Lin, Jichao; Fang, Qiang; Sheng, Quan; Zhang, Haiwei; Wen, Jinwei; Yao, Jianquan

    2016-03-01

    Single-frequency fiber laser operating at 1950 nm has been demonstrated in an all-fiber distributed Bragg reflection (DBR) laser cavity by using a 1.9-cm commercial available Thulium-doped silica fiber, for the first time. The laser was pumped by a 793-nm single-mode diode laser and had a threshold pump power of 75 mW. The maximum output power of the single longitudinal mode laser was 18 mW and the slope efficiency with respect to the launched pump power was 11%. Moreover, the linewidth and relative intensity noise (RIN) at different pump power has been measured and analyzed. The successful demonstration with the Thulium-doped silica fiber used here is considered to further promote the commercialization of single frequency fiber laser at 2 μm.

  12. Experimental and Numerical Investigation of Single Frequency Amplifier with Photonic Bandgap Fiber at 1178 nm

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Hua; Cui, Shu-Zhen; Hu, Jin-Meng; Cao, Fen; Fang, Yong; Lu, Hui-Ling

    2014-06-01

    A single frequency photonic bandgap fiber amplifier at 1178 nm is investigated experimentally and numerically. With a pump power of 81 W, a single frequency 1178 nm fiber laser of 10.3 W is obtained with a 3W seed laser and a 20 m gain fiber. Numerical simulation is conducted with a rate equation model taking amplified spontaneous emission and stimulated Brillouin scattering (SBS) into consideration. Temperature distribution along the fiber is applied for SBS suppression, more than 50 W single frequency fiber laser at 1178 nm is predicted theoretically with a 5W seed laser and a 40 m long gain fiber with five temperature steps.

  13. 150 W highly-efficient Raman fiber laser.

    PubMed

    Feng, Yan; Taylor, Luke R; Calia, Domenico Bonaccini

    2009-12-21

    We report a more than 150 W spectrally-clean continuous wave Raman fiber laser at 1120 nm with an optical efficiency of 85%. A approximately 30 m standard single mode silica fiber is used as Raman gain fiber to avoid second Stokes emission. A spectrally asymmetric resonator (in the sense of mirror reflection bandwidth) with usual fiber Bragg gratings is designed to minimize the laser power lost into the unwanted direction, even when the effective reflectivity of the rear fiber Bragg grating becomes as low as 81.5%. PMID:20052078

  14. 150 W highly-efficient Raman fiber laser.

    PubMed

    Feng, Yan; Taylor, Luke R; Calia, Domenico Bonaccini

    2009-12-21

    We report a more than 150 W spectrally-clean continuous wave Raman fiber laser at 1120 nm with an optical efficiency of 85%. A approximately 30 m standard single mode silica fiber is used as Raman gain fiber to avoid second Stokes emission. A spectrally asymmetric resonator (in the sense of mirror reflection bandwidth) with usual fiber Bragg gratings is designed to minimize the laser power lost into the unwanted direction, even when the effective reflectivity of the rear fiber Bragg grating becomes as low as 81.5%.

  15. High performance distributed feedback fiber laser sensor array system

    NASA Astrophysics Data System (ADS)

    He, Jun; Li, Fang; Xu, Tuanwei; Wang, Yan; Liu, Yuliang

    2009-11-01

    Distributed feedback (DFB) fiber lasers have their unique properties useful for sensing applications. This paper presents a high performance distributed feedback (DFB) fiber laser sensor array system. Four key techniques have been adopted to set up the system, including DFB fiber laser design and fabrication, interferometric wavelength shift demodulation, digital phase generated carrier (PGC) technique and dense wavelength division multiplexing (DWDM). Experimental results confirm that a high dynamic strain resolution of 305 fɛ/√Hz (@ 1 kHz) has been achieved by the proposed sensor array system. And the multiplexing of eight channel DFB fiber laser sensor array has been demonstrated. The proposed DFB fiber laser sensor array system is suitable for ultra-weak signal detection, and has potential applications in the field of petroleum seismic explorations, earthquake prediction, and security.

  16. Nanosecond square pulse generation in fiber lasers with normal dispersion

    NASA Astrophysics Data System (ADS)

    Zhao, L. M.; Tang, D. Y.; Cheng, T. H.; Lu, C.

    2007-04-01

    We report on the generation of nanosecond square pulses in a passively mode-locked fiber ring laser made of purely normal dispersive fibers. Different to the noise-like pulse operation of the laser, the generated square pulses are stable and have no internal structures. We show that the formation of the square pulse is due to the combined action of the pulse peak clamping effect caused by the cavity and the almost linear pulse propagation in the normal dispersive fibers.

  17. 280  GHz dark soliton fiber laser.

    PubMed

    Song, Y F; Guo, J; Zhao, L M; Shen, D Y; Tang, D Y

    2014-06-15

    We report on an ultrahigh repetition rate dark soliton fiber laser. We show both numerically and experimentally that by taking advantage of the cavity self-induced modulation instability and the dark soliton formation in a net normal dispersion cavity fiber laser, stable ultrahigh repetition rate dark soliton trains can be formed in a dispersion-managed cavity fiber laser. Stable dark soliton trains with a repetition rate as high as ∼280  GHz have been generated in our experiment. Numerical simulations have shown that the effective gain bandwidth limitation plays an important role on the stabilization of the formed dark solitons in the laser.

  18. Dark pulse generation in fiber lasers incorporating carbon nanotubes.

    PubMed

    Liu, H H; Chow, K K

    2014-12-01

    We demonstrate the generation of dark pulses from carbon nanotube (CNT) incorporated erbium-doped fiber ring lasers with net anomalous dispersion. A side-polished fiber coated with CNT layer by optically-driven deposition method is embedded into the laser in order to enhance the birefringence and nonlinearity of the laser cavity. The dual-wavelength domain-wall dark pulses are obtained from the developed CNT-incorporated fiber laser at a relatively low pump threshold of 50.6 mW. Dark pulses repeated at the fifth-order harmonic of the fundamental cavity frequency are observed by adjusting the intra-cavity polarization state.

  19. Brillouin Optical Microscopy for Corneal Biomechanics

    PubMed Central

    Scarcelli, Giuliano; Pineda, Roberto

    2012-01-01

    Purpose. The mechanical properties of corneal tissue are linked to prevalent ocular diseases and therapeutic procedures. Brillouin microscopy is a novel optical technology that enables three-dimensional mechanical imaging. In this study, the feasibility of this noncontact technique was tested for in situ quantitative assessment of the biomechanical properties of the cornea. Methods. Brillouin light-scattering involves a spectral shift proportional to the longitudinal modulus of elasticity of the tissue. A 532-nm single-frequency laser and a custom-developed ultrahigh-resolution spectrometer were used to measure the Brillouin frequency. Confocal scanning was used to perform Brillouin elasticity imaging of the corneas of whole bovine eyes. The longitudinal modulus of the bovine corneas was compared before and after riboflavin corneal collagen photo-cross-linking. The Brillouin measurements were then compared with conventional stress–strain mechanical test results. Results. High-resolution Brillouin images of the cornea were obtained, revealing a striking depth-dependent variation of the elastic modulus across the cornea. Along the central axis, the Brillouin frequency shift varied gradually from 8.2 GHz in the epithelium to 7.5 GHz near the endothelium. The coefficients of the down slope were measured to be approximately 1.09, 0.32, and 2.94 GHz/mm in the anterior, posterior, and innermost stroma, respectively. On riboflavin collagen cross-linking, marked changes in the axial Brillouin profiles (P < 0.001) were noted before and after cross-linking. Conclusions. Brillouin imaging can assess the biomechanical properties of cornea in situ with high spatial resolution. This novel technique has the potential for use in clinical diagnostics and treatment monitoring. PMID:22159012

  20. Fiber-optic Doppler velocimeter based on a dual-polarization fiber grating laser

    NASA Astrophysics Data System (ADS)

    Kuang, Zeyuang; Cheng, Linghao; Liang, Yizhi; Liang, Hao; Guan, Bai-Ou

    2015-07-01

    A fiber-optic Doppler velocimeter based on a dual-polarization fiber grating laser is demonstrated. The fiber grating laser produces two orthogonally polarized laser outputs with their frequency difference proportional to the intra-cavity birefringence. When the laser outputs are reflected from a moving targets, the laser frequencies will be shifted due to the Doppler effect. It shows that the frequency difference between the beat note of the laser outputs and the beat note of the reflected lasers is proportional to the velocity. The proposed fiber-optic Doppler velocimeter shows a high sensitivity of 0.64 MHz/m/s and is capable of measurement of wide range of velocity.

  1. Characteristics research on self-amplified distributed feedback fiber laser

    NASA Astrophysics Data System (ADS)

    Song, Zhiqiang; Qi, Haifeng; Guo, Jian; Wang, Chang; Peng, Gangding

    2014-09-01

    A distributed feedback (DFB) fiber laser with a ratio of the backward to forward output power of 1:100 was composed by a 45-mm-length asymmetrical phase-shifted fiber grating fabricated on the 50-mm erbium-doped photosensitive fiber. Forward output laser was amplified using a certain length of Nufern EDFL-980-Hp erbium-doped fiber to absorb the surplus pump power after the active phase-shifted fiber grating and get population inversion. By using OptiSystem software, the best fiber length of the EDFL to get the highest gain was simulated. In order to keep the amplified laser with the narrow line-width and low noise, a narrow-band light filter consisting of a fiber Bragg grating (FBG) with the same Bragg wavelength as the laser and an optical circulator was used to filter the amplified spontaneous emission (ASE) noise of the out-cavity erbium-doped fiber. The designed laser structure sufficiently utilized the pump power, and a DFB fiber laser with the 32.5-mW output power, 11.5-kHz line width, and -87-dB/Hz relative intensity noise (RIN) at 300 mW of 980 nm pump power was brought out.

  2. High Average Power, High Energy Short Pulse Fiber Laser System

    SciTech Connect

    Messerly, M J

    2007-11-13

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  3. A Fermat's spiral multifilament-core fiber

    NASA Astrophysics Data System (ADS)

    Tartara, L.; Codemard, C.

    2013-02-01

    A multifilament-core optical fiber where the microstructure is arranged in a Fermat's spiral is presented. The properties of such a fiber to be exploited for laser light amplification are numerically investigated by means of a full-vectorial finite-element method. Thanks to this peculiar microstructure, the fiber is shown to have an increased Brillouin threshold power and very low bending losses, while preserving a very good beam spatial quality.

  4. Hollow steel tips for reducing distal fiber burn-back during thulium fiber laser lithotripsy.

    PubMed

    Hutchens, Thomas C; Blackmon, Richard L; Irby, Pierce B; Fried, Nathaniel M

    2013-07-01

    The use of thulium fiber laser (TFL) as a potential alternative laser lithotripter to the clinical holmium:YAG laser is being studied. The TFL's Gaussian spatial beam profile provides efficient coupling of higher laser power into smaller core fibers without proximal fiber tip degradation. Smaller fiber diameters are more desirable, because they free up space in the single working channel of the ureteroscope for increased saline irrigation rates and allow maximum ureteroscope deflection. However, distal fiber tip degradation and "burn-back" increase as fiber diameter decreases due to both excessive temperatures and mechanical stress experienced during stone ablation. To eliminate fiber tip burn-back, the distal tip of a 150-μm core silica fiber was glued inside 1-cm-long steel tubing with fiber tip recessed 100, 250, 500, 1000, or 2000 μm inside the steel tubing to create the hollow-tip fiber. TFL pulse energy of 34 mJ with 500-μs pulse duration and 150-Hz pulse rate was delivered through the hollow-tip fibers in contact with human calcium oxalate monohydrate urinary stones during ex vivo studies. Significant fiber tip burn-back and degradation was observed for bare 150-μm core-diameter fibers. However, hollow steel tip fibers experienced minimal fiber burn-back without compromising stone ablation rates. A simple, robust, compact, and inexpensive hollow fiber tip design was characterized for minimizing distal fiber burn-back during the TFL lithotripsy. Although an increase in stone retropulsion was observed, potential integration of the hollow fiber tip into a stone basket may provide rapid stone vaporization, while minimizing retropulsion.

  5. Raman soliton generation in microstructured tellurite fiber pumped by hybrid Erbium/Thulium fiber laser system

    NASA Astrophysics Data System (ADS)

    Anashkina, E. A.; Koptev, M. Y.; Muravyev, S. V.; Dorofeev, V. V.; Andrianov, A. V.; Kim, A. V.

    2016-08-01

    We demonstrate a fibre laser source generating ultrashort pulses tunable in the range 2-2.5 μm. The source is based on a hybrid Er/Tm fiber laser system and microstructured suspended-core tellurite fiber where Raman soliton shifting occurs. Nonlinear soliton dynamics is studied and possibility of tuning beyond 3 μm is shown.

  6. Endovenous laser ablation with TM-fiber laser

    NASA Astrophysics Data System (ADS)

    Somunyudan, Meral Filiz; Topaloglu, Nermin; Ergenoglu, Mehmet Umit; Gulsoy, Murat

    2011-03-01

    Endovenous Laser Ablation (EVLA) has become a popular minimally invasive alternative to stripping in the treatment of saphenous vein reflux. Several wavelengths have been proposed; of which 810, 940 and 980- nm are the most commonly used. However, the most appropriate wavelength is still the subject of debate. Thermal shrinkage of collagenous tissue during EVLA plays a significant role in the early and late results of the treatment. The aim of this study is to compare the efficacy of 980 and 1940-nm laser wavelengths in the treatment of varicose veins. In this study, 980 and 1940-nm lasers at different power settings (8/10W for 980-nm, 2/3W for 1940-nm) were used to irradiate stripped human veins. The most prominent contraction and narrowing in outer and inner diameter were observed with the 1940-nm at 2W, following 980-nm at 8W, 1940-nm at 3W and finally 980-nm at 10W. The minimum carbonization was observed with the 1940-nm at 2W. As a conclusion, 1940-nm Tm-fiber laser which has a significant effect in the management of varicose veins due to more selective energy absorption in water and consequently in the vein is a promising method in the management of varicose veins.

  7. Influence of the UV-induced fiber loss on the distributed feedback fiber lasers

    NASA Astrophysics Data System (ADS)

    Fan, Wei; Chen, Bai; Qiao, Qiquan; Chen, Jialing; Lin, Zunqi

    2003-06-01

    It was found that the output power of the distributed feedback fiber lasers would be improved after annealing or left unused for several days after the laser had been fabricated, and the output of the fundamental mode would not increase but be clamped while the ±1 order modes would be predominant with the enhancement of the coupling coefficient during the fabrication. The paper discussed the influence of UV-induced fiber loss on the fiber phase-shifted DFB lasers. Due to the gain saturation and fiber internal loss, which included the temperament loss and permanent loss, there was an optimum coupling coefficient for the DFB fiber lasers that the higher internal fiber loss corresponded to the lower optimum values of coupling coefficient.

  8. Microscopic analysis of laser-induced proximal fiber tip damage during holmium:YAG and thulium fiber laser lithotripsy

    NASA Astrophysics Data System (ADS)

    Wilson, Christopher R.; Hardy, Luke A.; Irby, Pierce B.; Fried, Nathaniel M.

    2016-04-01

    The thulium fiber laser (TFL) is being studied as an alternative to the standard holmium:YAG laser for lithotripsy. The TFL beam originates within an 18-μm-core thulium-doped silica fiber, and its near single mode, Gaussian beam profile enables transmission of higher laser power through smaller (e.g., 50- to 150-μm core) fibers than possible during holmium laser lithotripsy. This study examines whether the more uniform TFL beam profile also reduces proximal fiber tip damage compared with the holmium laser multimodal beam. Light and confocal microscopy images were taken of the proximal surface of each fiber to inspect for possible laser-induced damage. A TFL beam at a wavelength of 1908 nm was coupled into 105-μm-core silica fibers, with 35-mJ energy, and 500-μs pulse duration, and 100,000 pulses were delivered at each pulse rate setting of 50, 100, 200, 300, and 400 Hz. For comparison, single use, 270-μm-core fibers were collected after clinical holmium laser lithotripsy procedures performed with standard settings (600 mJ, 350 μs, 6 Hz). Total laser energy, number of laser pulses, and laser irradiation time were recorded, and fibers were rated for damage. For TFL studies, output pulse energy and average power were stable, and no proximal fiber damage was observed at settings up to 35 mJ, 400 Hz, and 14 W average power (n=5). In contrast, confocal microscopy images of fiber tips after holmium lithotripsy showed proximal fiber tip degradation, indicated by small ablation craters on the scale of several micrometers in all fibers (n=20). In summary, the proximal fiber tip of a 105-μm-core fiber transmitted up to 14 W of TFL power without degradation, compared to degradation of 270-μm-core fibers after transmission of 3.6 W of holmium laser power. The smaller and more uniform TFL beam profile may improve fiber lifetime, and potentially translate into lower costs for the surgical disposables as well.

  9. Design and refinement of rare earth doped multicore fiber lasers

    NASA Astrophysics Data System (ADS)

    Prudenzano, F.; Mescia, L.; Di Tommaso, A.; Surico, M.; De Sario, M.

    2013-09-01

    A novel multicore ytterbium doped fiber laser is designed, with the target of maximizing both the effective mode area and the beam quality, by means of a complete home-made computer code. It can be employed to construct high power and Quasi-Gaussian beam lasers. The novel laser configuration exploits a single mode multicore fiber and does not need Talbot cavity or other in-phase mode selection mechanisms. This is an innovative solution, because to the best of our knowledge, for the first time, we have designed a truly single-mode multicore fiber laser. For comparison we have optimized two other laser configurations which are well known in literature, both employing a multimode multicore fiber and a Talbot cavity as a feedback for the in-phase supermode selection. All three multicore fibers, constituted by the same glass, are doped with the same ytterbium ion concentration and pumped with the same input power. Multimodal fiber lasers exhibit lower beam quality, i.e. a higher beam quality factor M2, with respect to the single mode one, even if suitable Talbot cavities are designed, but they are very competitive when a more compact laser cavity is required for the same output power. The novel single mode nineteen core laser exhibits a simulated effective mode area Aeff = 703 μm2 and a beam quality factor M2 = 1.05, showing better characteristics than the other two lasers.

  10. High Strength, Large Core Pure Silica Fibers For Laser Surgery

    NASA Astrophysics Data System (ADS)

    Skutnik, B. J.; Hodge, M. H.; Clarkin, J. P.

    1988-06-01

    Recently many researchers, doctors and instrument companies have begun developing fiber optic laser power delivery systems to accomplish less traumatic surgery or localized irradiation treatment(1). With high power levels, particularly in short bursts, large core fibers are needed to keep the power densities from approaching the damage threshold of silica. Among the many advantages of using optical fibers in laser surgery are the following: microsurgery can be employed, trauma is reduced, access to interior through catheter introduction into vascular, gastrointestinal or respiratory tracts, accurate application of laser power through a flexible lightweight medium to provide localized irradiation as well as surgical removal, and the devices are sterilizable and of moderate cost permitting one-time use (disposable) probes. To achieve these wonderful gains in surgical procedures, the optical fibers must satisfy many optical and mechanical requirements. In use the optical fibers are often required to bend around curves or obstructions to reach the desired application area. Large tensile stresses can occur on the outer radius of the bent fiber, especially with large core fibers, thus high strength fibers are needed. Furthermore, since body fluids are primarily water, stress corrosion and fatigue(2-6) will occur. Therefore, the fibers should have excellent fatigue resistance as well as high strength. This paper further describes these requirements and presents details about an optical fiber which meets these requirements and provides additional very useful properties. These fibers with pure silica cores are called Hard Clad Silica, HCS*, fibers because of their hard bonded cladding over silica structure.

  11. OEM fiber laser rangefinder for long-distance measurement

    NASA Astrophysics Data System (ADS)

    Corman, Alexandre; Chiquet, Frédéric; Avisse, Thomas; Le Flohic, Marc

    2015-05-01

    SensUp designs and manufactures electro-optical systems based on laser technology, in particular from fiber lasers. Indeed, that kind of source enables us to get a significant peak power with huge repetition rates at the same time, thus combining some characteristics of the two main technologies on the telemetry field today: laser diodes and solid-state lasers. The OEM (Original Equipment Manufacturer) fiber Laser RangeFinder (LRF) set out below, aims to fit the SWaP (Size Weight and Power) requirements of military markets, and might turn out to be a real alternative to other technologies usually used in range finding systems.

  12. Characteristics research of self-amplified distributed feedback fiber laser

    NASA Astrophysics Data System (ADS)

    Song, Zhiqiang; Qi, Haifeng; Guo, Jian; Wang, Chang; Peng, Gangding

    2013-09-01

    A distributed feedback (DFB) fiber laser with a ratio of backward to forward output power of 1:100 was composed by a 45mm length asymmetrical phase-shifted fiber grating fabricated on 50mm erbium-doped photosensitive fiber. Forward output laser was amplified using a certain length of Nufern EDFL980-Hp erbium-doped fiber to absorb surplus pump power after the active phase-shifted fiber grating and get population inversion. Using OptiSystem software, the best fiber length of the EDFL to get the highest gain was simulated. In order to keep the amplified laser with narrow line-width and low noise, a narrow-band light filter consisted of a FBG with the same Bragg wavelength as the laser and an optical circulator was used to filter the ASE noise of the out-cavity erbium-doped fiber. The designed laser structure sufficiently utilized the pump power, a DFB fiber laser of 32.5mW output power, 11.5 kHz line width, and -87dB/Hz relative intensity noise (RIN) at 300mW of 980 nm pump power was brought out.

  13. Hole drilling with fiber-optically delivered visible lasers

    SciTech Connect

    Kautz, D.D.; Berzins, L.V.; Dragon, E.P.

    1994-12-31

    The use of lasers for high-speed drilling of holes in materials is well documented. To allow easier use of lasers in manufacturing processes, fiber-optically delivered beams are preferable to the use of conventional optics. Lawrence Livermore National Laboratory (LLNL) has adapted fiber-optic technology to its visible light, copper vapor lasers for use in hole drilling studies. Visible lasers afford better coupling of light to the workpiece and when fiber-optically delivered, allow high quality holes to be drilled in difficult accessibility areas and with easier setup. A fiber-optic delivery system was attached to the presently hard-optic copper vapor laser system. This system consisted of a 0.6 mm (0.024 in.) fiber that was then telescoped and refocused by a hard optics package at the workstation end of the fiber. The optics package produced a 0.2 mm (0.008 in.) focused spot size at the workpiece. This system was then run down to a 3-axis CNC machining table to allow part movement for these studies. The fiber-optically delivered light was found to work extremely well for drilling small diameter holes. In summary, it was found that fiber-optically delivered, visible laser beams have several advantages in drilling over those same beams delivered through conventional hard optics. These include much easier setup, reduced system maintenance, and typically higher hole quality.

  14. Fiber Optic Laser Delivery For Endarterectomy Of Experimental Atheromas

    NASA Astrophysics Data System (ADS)

    Eugene, John; Pollock, Marc E.; McColgan, Stephen J.; Hammer-Wilson, Marie; Berns, Michael W.

    1986-08-01

    Fiber optic delivery of argon ion laser energy and Nd-YAG laser energy were compared by the performance of open laser endarterectomy in the rabbit arteriosclerosis model. In Group I, 6 open laser endarterectomies were performed with an argon ion laser (488 nm and 514.5 nm) with the laser beam directed through a 400 pm quartz fiber optic. In Group II, 6 open laser endarterectomies were performed with a Nd-YAG laser (1.06 pm) with the laser beam directed through a 600 pm quartz fiber optic. Gross and light microscopic examination revealed smooth endarterectomy surfaces with tapered end points in Group I. In Group II, the endarterectomy surfaces were uneven and perforation occurred at 5/6 end points. Although energy could be precisely delivered with each laser by fiber optics, satisfactory results could only be achieved with the argon ion laser because argon ion energy was well absorbed by atheromas. Successful intravascular laser use requires a strong interaction between wavelength and atheroma as well as a precise delivery system.

  15. Methods and devices based on brillouin selective sideband amplification

    NASA Technical Reports Server (NTRS)

    Yao, X. Steve (Inventor)

    2003-01-01

    Opto-electronic devices and techniques using Brillouin scattering to select a sideband in a modulated optical carrier signal for amplification. Two lasers respectively provide a carrier signal beam and a Brillouin pump beam which are fed into an Brillouin optical medium in opposite directions. The relative frequency separation between the lasers is adjusted to align the frequency of the backscattered Brillouin signal with a desired sideband in the carrier signal to effect a Brillouin gain on the sideband. This effect can be used to implement photonic RF signal mixing and conversion with gain, conversion from phase modulation to amplitude modulation, photonic RF frequency multiplication, optical and RF pulse generation and manipulation, and frequency-locking of lasers.

  16. Process observation in fiber laser-based selective laser melting

    NASA Astrophysics Data System (ADS)

    Thombansen, Ulrich; Gatej, Alexander; Pereira, Milton

    2015-01-01

    The process observation in selective laser melting (SLM) focuses on observing the interaction point where the powder is processed. To provide process relevant information, signals have to be acquired that are resolved in both time and space. Especially in high-power SLM, where more than 1 kW of laser power is used, processing speeds of several meters per second are required for a high-quality processing results. Therefore, an implementation of a suitable process observation system has to acquire a large amount of spatially resolved data at low sampling speeds or it has to restrict the acquisition to a predefined area at a high sampling speed. In any case, it is vitally important to synchronously record the laser beam position and the acquired signal. This is a prerequisite that allows the recorded data become information. Today, most SLM systems employ f-theta lenses to focus the processing laser beam onto the powder bed. This report describes the drawbacks that result for process observation and suggests a variable retro-focus system which solves these issues. The beam quality of fiber lasers delivers the processing laser beam to the powder bed at relevant focus diameters, which is a key prerequisite for this solution to be viable. The optical train we present here couples the processing laser beam and the process observation coaxially, ensuring consistent alignment of interaction zone and observed area. With respect to signal processing, we have developed a solution that synchronously acquires signals from a pyrometer and the position of the laser beam by sampling the data with a field programmable gate array. The relevance of the acquired signals has been validated by the scanning of a sample filament. Experiments with grooved samples show a correlation between different powder thicknesses and the acquired signals at relevant processing parameters. This basic work takes a first step toward self-optimization of the manufacturing process in SLM. It enables the

  17. High Power 938nm Cladding Pumped Fiber Laser

    SciTech Connect

    Dawson, J; Beach, R; Brobshoff, A; Liao, Z; Payne, S; Pennington, D; Taylor, L; Hackenberg, W; Bonaccini, D

    2002-12-26

    We have developed a Nd:doped cladding pumped fiber amplifier, which operates at 938nm with greater than 2W of output power. The core co-dopants were specifically chosen to enhance emission at 938nm. The fiber was liquid nitrogen cooled in order to achieve four-level laser operation on a laser transition that is normally three level at room temperature, thus permitting efficient cladding pumping of the amplifier. Wavelength selective attenuation was induced by bending the fiber around a mandrel, which permitted near complete suppression of amplified spontaneous emission at 1088nm. We are presently seeking to scale the output of this laser to 10W. We will discuss the fiber and laser design issues involved in scaling the laser to the 10W power level and present our most recent results.

  18. Completely monolithic linearly polarized high-power fiber laser oscillator

    NASA Astrophysics Data System (ADS)

    Belke, Steffen; Becker, Frank; Neumann, Benjamin; Ruppik, Stefan; Hefter, Ulrich

    2014-03-01

    We have demonstrated a linearly polarized cw all-in-fiber oscillator providing 1 kW of output power and a polarization extinction ratio (PER) of up to 21.7 dB. The design of the laser oscillator is simple and consists of an Ytterbium-doped polarization maintaining large mode area (PLMA) fiber and suitable fiber Bragg gratings (FBG) in matching PLMA fibers. The oscillator has nearly diffraction-limited beam quality (M² < 1.2). Pump power is delivered via a high power 6+1:1 pump coupler. The slope efficiency of the laser is 75 %. The electro/optical efficiency of the complete laser system is ~30 % and hence in the range of Rofin's cw non-polarized fiber lasers. Choosing an adequate bending diameter for the Yb-doped PLMA fiber, one polarization mode as well as higher order modes are sufficiently supressed1. Resulting in a compact and robust linearly polarized high power single mode laser without external polarizing components. Linearly polarized lasers are well established for one dimensional cutting or welding applications. Using beam shaping optics radially polarized laser light can be generated to be independent from the angle of incident to the processing surface. Furthermore, high power linearly polarized laser light is fundamental for nonlinear frequency conversion of nonlinear materials.

  19. Mechanical loss of laser-welded fused silica fibers

    NASA Astrophysics Data System (ADS)

    Harry, Gregory; Corbitt, Thomas; Freytsis, Marat; Ottaway, David; Mavalvala, Nergis; Penn, Steve

    2006-02-01

    The mechanical quality factor of a carbon dioxide laser-welded fiber was measured and compared to flame-welded fibers to determine the suitability of laser welding for attaching suspension fibers to test masses in precision experiments. The loss in the fiber was found to be limited primarily by thermoelastic damping and surface loss, rather than loss from the weld. This technique is attractive for the attachment of fused silica suspensions where low thermal noise and precision location of the weld are considered.

  20. High power 938 nanometer fiber laser and amplifier

    DOEpatents

    Dawson, Jay W.; Liao, Zhi Ming; Beach, Raymond J.; Drobshoff, Alexander D.; Payne, Stephen A.; Pennington, Deanna M.; Hackenberg, Wolfgang; Calia, Domenico Bonaccini; Taylor, Luke

    2006-05-02

    An optical fiber amplifier includes a length of silica optical fiber having a core doped with neodymium, a first cladding and a second cladding each with succeeding lower refractive indices, where the first cladding diameter is less than 10 times the diameter of the core. The doping concentration of the neodymium is chosen so that the small signal absorption for 816 nm light traveling within the core is less than 15 dB/m above the other fiber losses. The amplifier is optically pumped with one laser into the fiber core and with another laser into the first cladding.

  1. Multi-kW cw fiber oscillator pumped by wavelength stabilized fiber coupled diode lasers

    NASA Astrophysics Data System (ADS)

    Becker, Frank; Neumann, Benjamin; Winkelmann, Lutz; Belke, Steffen; Ruppik, Stefan; Hefter, Ulrich; Köhler, Bernd; Wolf, Paul; Biesenbach, Jens

    2013-02-01

    High power Yb doped fiber laser sources are beside CO2- and disk lasers one of the working horses of industrial laser applications. Due to their inherently given robustness, scalability and high efficiency, fiber laser sources are best suited to fulfill the requirements of modern industrial laser applications in terms of power and beam quality. Pumping Yb doped single-mode fiber lasers at 976nm is very efficient. Thus, high power levels can be realized avoiding limiting nonlinear effects like SRS. However the absorption band of Yb doped glass around 976nm is very narrow. Therefore, one has to consider the wavelength shift of the diode lasers used for pumping. The output spectrum of passively cooled diode lasers is mainly defined by the applied current and by the heat sink temperature. Furthermore the overall emission line width of a high power pump source is dominated by the large number of needed diode laser emitters, each producing an individual spectrum. Even though it is possible to operate multi-kW cw single-mode fiber lasers with free running diode laser pumps, wavelength stabilizing techniques for diode lasers (e.g. volume holographic gratings, VHG) can be utilized in future fiber laser sources to increase the output power level while keeping the energy consumption constant. To clarify the benefits of wavelength stabilized diode lasers with integrated VHG for wavelength locking the performance of a dual side pumped fiber oscillator is discussed in this article. For comparison, different pumping configurations consisting of stabilized and free-running diode lasers are presented.

  2. Stimulated Brillouin side-scattering of the beat wave excited by two counter-propagating X-mode lasers in magnetized plasma

    NASA Astrophysics Data System (ADS)

    Verma, Kanika; Sajal, Vivek; Baliyan, Sweta; Kumar, Ravindra; Sharma, Navneet K.

    2015-06-01

    The stimulated Brillouin scattering (SBS) of nonresonant beat mode in the presence of static magnetic field is investigated in a plasma. Two counter-propagating lasers of frequencies ( ω 1 and ω 2 ) and wave vectors ( k 1 and k 2 ) drive a nonresonant space charge beat mode at the phase matching condition of frequency ω 0 ≈ ω 1 ˜ ω 2 and wave number k → 0 ≈ k → 1 + k → 2 . The driver wave parametrically excites a pair of ion acoustic wave ( ω , k → ) and a sideband electromagnetic wave ( ω 3 , k → 3 ) . The beat wave couples with the sideband electromagnetic wave to exert a nonlinear ponderomotive force at the frequency of ion acoustic wave. Density perturbations due to ion acoustic wave and ponderomotive force couple with the oscillatory motion of plasma electron due to velocity of beat wave to give rise to a nonlinear current (by feedback mechanism) responsible for the growth of sideband wave at resonance. The growth rate of SBS was reduced (from ˜ 10 12 s - 1 to 10 10 s - 1 ) by applying a transverse static magnetic field ˜ 90 T. The present study can be useful for the excitation of fast plasma waves (for the purpose of electron acceleration) by two counter-propagating laser beams.

  3. Reflectivity variation in asymmetric random distributed feedback Raman fiber laser

    NASA Astrophysics Data System (ADS)

    Abidin, N. H. Z.; Abu Bakar, M. H.; Tamchek, N.; Mahamd Adikan, F. R.; Mahdi, M. A.

    2016-01-01

    This paper demonstrates and discusses the effect of reflectivity on the intracavity power development and spectral profile of a 41.1 km asymmetric (half-opened cavity) random distributed feedback fiber laser with different pumping schemes. The laser cavity is confined by a fiber Bragg grating and the Rayleigh feedback amplified by Raman scattering effect that serves as virtual random distributed mirrors. The laser performance was observed by integrating a variety of power couplers while employing forward and backward pumping schemes. Forward pumping exhibits greater susceptibility to reflectivity variation compared to backward pumping. Meanwhile, higher reflectivity produced better threshold conditions but at the expense of lower saturation power. A power-saturated laser also manifested a broader spectrum than a laser conducted outside the saturation regime. These research findings will be beneficial in understanding the role of reflectivity and pumping configurations in enhancing asymmetric random distributed feedback fiber laser.

  4. Theoretical investigation on the pumping effect of stimulated Brillouin scattering on stimulated Raman scattering in water

    NASA Astrophysics Data System (ADS)

    Shi, J.; Chen, X.; Ouyang, M.; Gong, W.; Su, Y.; Liu, D.

    2012-02-01

    The pumping effect of stimulated Brillouin scattering on stimulated Raman scattering is investigated theoretically through the coupled wave equations of stimulated Brillouin scattering and stimulated Raman scattering. The numerical simulations are in agreement with the experimental results. They indicate that the backward stimulated Raman scattering is excited and amplified collectively by both pump laser and stimulated Brillouin scattering.

  5. High power, high efficiency diode pumped Raman fiber laser

    NASA Astrophysics Data System (ADS)

    Glick, Yaakov; Fromzel, Viktor; Zhang, Jun; Dahan, Asaf; Ter-Gabrielyan, Nikolay; Pattnaik, Radha K.; Dubinskii, Mark

    2016-06-01

    We demonstrate a high power high efficiency Raman fiber laser pumped directly by a laser diode module at 976 nm. 80 Watts of CW power were obtained at a wavelength of 1020 nm with an optical-to-optical efficiency of 53%. When working quasi-CW, at a duty cycle of 30%, 85 W of peak power was produced with an efficiency of 60%. A commercial graded-index (GRIN) core fiber acts as the Raman fiber in a power oscillator configuration, which includes spectral selection to prevent generation of the 2nd Stokes. In addition, significant brightness enhancement of the pump beam is attained due to the Raman gain distribution profile in the GRIN fiber. To the best of our knowledge, this is the highest power Raman fiber laser directly pumped by laser diodes, which also exhibits a record efficiency for such a laser. In addition, it is the highest power Raman fiber laser (regardless of pumping source) demonstrated based on a GRIN fiber.

  6. Laser transmission welding of long glass fiber reinforced thermoplastics

    NASA Astrophysics Data System (ADS)

    van der Straeten, Kira; Engelmann, Christoph; Olowinsky, Alexander; Gillner, Arnold

    2015-03-01

    Joining fiber reinforced polymers is an important topic for lightweight construction. Since classical laser transmission welding techniques for polymers have been studied and established in industry for many years joint-strengths within the range of the base material can be achieved. Until now these processes are only used for unfilled and short glass fiber-reinforced thermoplastics using laser absorbing and laser transparent matrices. This knowledge is now transferred to joining long glass fiber reinforced PA6 with high fiber contents without any adhesive additives. As the polymer matrix and glass fibers increase the scattering of the laser beam inside the material, their optical properties, changing with material thickness and fiber content, influence the welding process and require high power lasers. In this article the influence of these material properties (fiber content, material thickness) and the welding parameters like joining speed, laser power and clamping pressure are researched and discussed in detail. The process is also investigated regarding its limitations. Additionally the gap bridging ability of the process is shown in relation to material properties and joining speed.

  7. Beam combinable, kilowatt, all-fiber amplifier based on phase-modulated laser gain competition.

    PubMed

    Naderi, Nader A; Flores, Angel; Anderson, Brian M; Dajani, Iyad

    2016-09-01

    We report power scaling results of a highly efficient narrow-linewidth monolithic Yb-doped fiber amplifier seeded with two signals, operating at 1038 and 1064 nm. With the appropriate seed power ratio applied, this technique was shown to suppress stimulated Brillouin scattering in conjunction with phase modulation, while generating the output power in predominantly the longer wavelength signal. Notably, the integration of laser gain competition with pseudo-random bit sequence phase modulation, set at a clock rate of 2.5 GHz and utilizing an optimized pattern to match the shortened effective nonlinear length, yielded 1 kW of output power. The beam quality was measured to be near the diffraction limit with no sign of transverse mode instability. Furthermore, the coherent beam combination performance of the amplifier provided a 90% combining efficiency with no indication of spectral broadening when compared to the single-tone case. Overall, the power scaling results represent a significant reduction in spectral linewidth compared to that of commercially available narrow-linewidth Yb-doped fiber amplifiers. PMID:27607948

  8. The development of novel Ytterbium fiber lasers and their applications

    NASA Astrophysics Data System (ADS)

    Nie, Bai

    The aim of my Ph.D. research is to push the fundamental limits holding back the development of novel Yb fiber lasers with high pulse energy and short pulse duration. The purpose of developing these lasers is to use them for important applications such as multiphoton microscopy and laser-induced breakdown spectroscopy. My first project was to develop a short-pulse high-energy ultrafast fiber laser for multiphoton microscopy. To achieve high multiphoton efficiency and depth resolved tissue imaging, ultrashort pulse duration and high pulse energy are required. In order to achieve this, an all-normal dispersion cavity design was adopted. Output performances of the built lasers were investigated by varying several cavity parameters, such as pump laser power, fiber length and intra-cavity spectral filter bandwidth. It was found that the length of the fiber preceding the gain fiber is critical to the laser performance. Generally, the shorter the fiber is, the broader the output spectrum is. The more interesting parameter is the intra-cavity spectral filter bandwidth. Counter intuitively, laser cavities using narrower bandwidth spectral filters generated much broader spectra. It was also found that fiber lasers with very narrow spectral filters produced laser pulses with parabolic profile, which are referred to as self-similar pulses or similaritons. This type of pulse can avoid wave-breaking and is an optimal approach to generate pulses with high pulse energy and ultrashort pulse duration. With a 3nm intra-cavity spectral filter, output pulses with about 20 nJ pulse energy were produced and compressed to about 41 fs full-width-at-half-maximum (FWHM) pulse duration. Due to the loss in the compression device, the peak power of the compressed pulses is about 250 kW. It was the highest peak power generated from a fiber oscillator when this work was published. This laser was used for multiphoton microscopy on living tissues like Drosophila larva and fruit fly wings. Several

  9. Fiber ring laser incorporating a pair of rotary long-period fiber gratings for torsion measurement

    NASA Astrophysics Data System (ADS)

    Shi, Leilei; Zhu, Tao; Chen, Fangyuan; Chiang, Kinseng; Rao, Yunjiang

    2012-02-01

    We demonstrate a fiber ring laser for high-resolution torsion measurement, where the laser cavity consists of a Mach-Zehnder interferometer (MZI) formed with a pair of long-period fiber gratings written in a twisted single-mode fiber (SMF) by a CO2 laser. The emitting wavelength of the laser provides a measure of the rate of the torsion applied to the grating pair, while the direction of the wavelength shift indicates the sense direction of the applied torsion. The narrow linewidth and the large side-mode suppression ratio of the laser can provide a much more precise measurement of torsion, compared with passive fiber-optic torsion sensors. The torsion sensitivity achieved is 0.084 nm/(rad/m) in the torsion range +/-100 rad/m, which corresponds to a torsion resolution of 0.12 rad/m, assuming a wavelength resolution of 10 pm for a typical optical spectrum analyzer.

  10. All fiber actively mode-locked fiber laser emitting cylindrical vector beam

    NASA Astrophysics Data System (ADS)

    Zhou, Yong; Wang, Anting; Gu, Chun; Xu, Lixin; Zhan, Qiwen

    2015-08-01

    We demonstrated an all fiber actively mode-locked laser emitting cylindrical vector beam. A few-mode fiber Bragg grating is adopted to achieve mode selecting and spectrum filtering. An offset splicing of single-mode fiber with fourmode fiber is utilized as a mode coupler in the laser cavity. A LiNbO3 Mach-Zehnder modulator is used to achieve active mode locking in the laser. The laser operates at 1547nm with 30 dB spectrum width of 0.3nm. The emitted modelocked pulses have a duration of 1ns and repetition of 12.06MHz. Both radially and azimuthally polarized beams have been obtained with very good modal symmetry by adjusting the polarization in the laser cavity.

  11. High-power synchronously pumped femtosecond Raman fiber laser.

    PubMed

    Churin, D; Olson, J; Norwood, R A; Peyghambarian, N; Kieu, K

    2015-06-01

    We report a high-power synchronously pumped femtosecond Raman fiber laser operating in the normal dispersion regime. The Raman laser is pumped by a picosecond Yb(3+)-doped fiber laser. It produces highly chirped pulses with energy up to 18 nJ, average power of 0.76 W and 88% efficiency. The pulse duration is measured to be 147 fs after external compression. We observed two different regimes of operation of the laser: coherent and noise-like regime. Both regimes were experimentally characterized. Numerical simulations are in a good agreement with experimental results. PMID:26030549

  12. Polarimetric optical fiber sensor using a frequency stabilized semiconductor laser

    SciTech Connect

    Tsuchida, H.; Mitsuhashi, Y.; Ishihara, S. )

    1989-05-01

    The authors discuss the performance of a polarimetric optical fiber sensor for remote temperature measurement improved by the use of a frequency stabilized semiconductor laser. The temperature change is measured from the phase delay between two orthogonally polarized modes in a polarization maintaining fiber. The sensor output signal is demodulated utilizing direct modulation of the laser frequency. The center frequency of the modulated laser is locked to a Fabry-Perot interferometer by controlling the injection current. The minimum detectable temperature change is evaluated experimentally to be less than 0.005{sup 0}C, which is seven times smaller than that obtained with the freerunning laser.

  13. Fast low-noise Brillouin spectroscopy measurements of elasticity for corneal crosslinking

    NASA Astrophysics Data System (ADS)

    Bukshtab, Michael; Paranjape, Amit; Friedman, Marc; Muller, David

    2015-03-01

    The Brillouin scattering spectra of biological systems have shown to be inherently related to the intrinsic elasticity and molecular constants of tissues involved. Our approach of combining confocal microscopy and high-resolution Brillouin spectroscopy via a virtual imaging phase array enabled 10-microsecond single-pixel acquisition time without dedicated spatial filtering. Such an approach is adapted via a single-frequency fiber-coupled 780-nm wavelength laser, frequency stabilized by Rb-D2 absorption line, polarization extinction scheme, ASE filtering, heated Rb-vapor Rayleigh-scattering absorbent, and spectroscopic EMCCD camera, unified as CMS-VIPA: confocal virtual-imaging phase array microscopespectrometer. Steady strengthening of corneal bulk modulus was observed via spectral shifts of Brillouin scattering from 5.0-5.2 GHz in untreated porcine eyes to 5.7-5.9 GHz in ones cross-linked in riboflavin plus UV-A light ? at 0.7-0.9 GHz level of enhancement. The cross-linking depths reaching 300-400 microns were measured, as predicted by modeling. A noncontact Brillouin spectroscopic microscopy system for in-vivo corneal elasticity measurement is under development.

  14. Small core fiber coupled 60-W laser diode

    NASA Astrophysics Data System (ADS)

    Fernie, Douglas P.; Mannonen, Ilkka; Raven, Anthony L.

    1995-05-01

    Semiconductor laser diodes are compact, efficient and reliable sources of laser light and 25 W fiber coupled systems developed by Diomed have been in clinical use for over three years. For certain applications, particularly in the treatment of benign prostatic hyperplasia and flexible endoscopy, higher powers are desirable. In these applications the use of flexible optical fibers of no more than 600 micrometers core diameter is essential for compatibility with most commercial delivery fibers and instrumentation. A high power 60 W diode laser system for driving these small core fibers has been developed. The design requirements for medical applications are analyzed and system performance and results of use in gastroenterology and urology with small core fibers will be presented.

  15. Wavelength switchable graphene Q-switched fiber laser with cascaded fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Wu, Man; Chen, Shuqing; Chen, Yu; Li, Ying

    2016-06-01

    We have demonstrated a wavelength switchable graphene Q-switched fiber laser with two cascaded fiber Bragg gratings. Stable Q-switching operation with central wavelength 1542.9 nm (1543.7 nm), repetition rate 28.4 kHz (22.58 kHz), and pulse duration 2.16 μs (2.65 μs) can be obtained by adjusting the intra-cavity birefringence. Moreover, stable dual-wavelength operation with wavelength spacing 0.8 nm can also be observed. The cascaded fiber gratings combined with the graphene saturable absorber provide a simple and feasible way to get versatile pulsed fiber laser.

  16. Fiber Sensor Systems Based on Fiber Laser and Microwave Photonic Technologies

    PubMed Central

    Fu, Hongyan; Chen, Daru; Cai, Zhiping

    2012-01-01

    Fiber-optic sensors, especially fiber Bragg grating (FBG) sensors are very attractive due to their numerous advantages over traditional sensors, such as light weight, high sensitivity, cost-effectiveness, immunity to electromagnetic interference, ease of multiplexing and so on. Therefore, fiber-optic sensors have been intensively studied during the last several decades. Nowadays, with the development of novel fiber technology, more and more newly invented fiber technologies bring better and superior performance to fiber-optic sensing networks. In this paper, the applications of some advanced photonic technologies including fiber lasers and microwave photonic technologies for fiber sensing applications are reviewed. FBG interrogations based on several kinds of fiber lasers, especially the novel Fourier domain mode locking fiber laser, have been introduced; for the application of microwave photonic technology, examples of microwave photonic filtering utilized as a FBG sensing interrogator and microwave signal generation acting as a transversal loading sensor have been given. Both theoretical analysis and experimental demonstrations have been carried out. The comparison of these advanced photonic technologies for the applications of fiber sensing is carried out and important issues related to the applications have been addressed and the suitable and potential application examples have also been discussed in this paper. PMID:22778591

  17. High-Power Fiber Lasers Using Photonic Band Gap Materials

    NASA Technical Reports Server (NTRS)

    DiDomenico, Leo; Dowling, Jonathan

    2005-01-01

    High-power fiber lasers (HPFLs) would be made from photonic band gap (PBG) materials, according to the proposal. Such lasers would be scalable in the sense that a large number of fiber lasers could be arranged in an array or bundle and then operated in phase-locked condition to generate a superposition and highly directed high-power laser beam. It has been estimated that an average power level as high as 1,000 W per fiber could be achieved in such an array. Examples of potential applications for the proposed single-fiber lasers include welding and laser surgery. Additionally, the bundled fibers have applications in beaming power through free space for autonomous vehicles, laser weapons, free-space communications, and inducing photochemical reactions in large-scale industrial processes. The proposal has been inspired in part by recent improvements in the capabilities of single-mode fiber amplifiers and lasers to produce continuous high-power radiation. In particular, it has been found that the average output power of a single strand of a fiber laser can be increased by suitably changing the doping profile of active ions in its gain medium to optimize the spatial overlap of the electromagnetic field with the distribution of active ions. Such optimization minimizes pump power losses and increases the gain in the fiber laser system. The proposal would expand the basic concept of this type of optimization to incorporate exploitation of the properties (including, in some cases, nonlinearities) of PBG materials to obtain power levels and efficiencies higher than are now possible. Another element of the proposal is to enable pumping by concentrated sunlight. Somewhat more specifically, the proposal calls for exploitation of the properties of PBG materials to overcome a number of stubborn adverse phenomena that have impeded prior efforts to perfect HPFLs. The most relevant of those phenomena is amplified spontaneous emission (ASE), which causes saturation of gain and power

  18. Eye-safe single-frequency single-mode polarized all-fiber pulsed laser with peak power of 361  W.

    PubMed

    Zhang, Xin; Diao, Weifeng; Liu, Yuan; Zhu, Xiaopeng; Yang, Yan; Liu, Jiqiao; Hou, Xia; Chen, Weibiao

    2014-04-10

    An all-fiber, single-frequency, single-mode linearly polarized, high peak power pulsed laser at 1540 nm for coherent Doppler wind lidar is demonstrated. A narrow-linewidth seed laser is pulse modulated by an acousto-optic modulator and then amplified by two-stage cascade amplifiers. An 0.8 m long erbium/ytterbium co-doped polarization-maintaining fiber with a core diameter of 10 μm is used as the gain fiber of a power amplifier, and longitudinally varied strains are applied on the gain fiber to realize approximately 3.4 times enhancement of the stimulated Brillouin scattering threshold. Peak power of 361 W pulse width of 200 ns at 10 kHz repetition rate is achieved with transform-limited linewidth and diffraction-limited beam quality. To the best of our knowledge, it is the highest peak power of an eye-safe, single-mode narrow-linewidth pulsed fiber laser based on 10 μm core diameter silica fiber.

  19. Novel technique for mode selection in a multimode fiber laser.

    PubMed

    Daniel, J M O; Chan, J S P; Kim, J W; Sahu, J K; Ibsen, M; Clarkson, W A

    2011-06-20

    A simple technique for transverse mode selection in a large-mode-area (multimode) fiber laser is described. The technique exploits the different spectral responses of feedback elements based on a fiber Bragg grating and a volume Bragg grating to achieve wavelength-dependent mode filtering. This approach has been applied to a cladding-pumped thulium-doped fiber laser with a multimode core to achieve a single-spatial-mode output beam with a beam propagation factor (M2) of 1.05 at 1923 nm. Without mode selection the free-running fiber laser has a multimode output beam with an M2 parameter of 3.3. Selective excitation of higher order modes is also possible via the technique and preliminary results for laser oscillation on the LP11 mode are also discussed along with the prospects for scaling to higher power levels.

  20. SURFACE MORPHOLOGY OF CARBON FIBER POLYMER COMPOSITES AFTER LASER STRUCTURING

    SciTech Connect

    Sabau, Adrian S; Chen, Jian; Jones, Jonaaron F.; Alexandra, Hackett; Jellison Jr, Gerald Earle; Daniel, Claus; Warren, Charles David; Rehkopf, Jackie D.

    2015-01-01

    The increasing use of Carbon Fiber Polymer Composite (CFPC) as a lightweight material in automotive and aerospace industries requires the control of surface morphology. In this study, the composites surface was prepared by ablating the resin in the top fiber layer of the composite using an Nd:YAG laser. The CFPC specimens with T700S carbon fiber and Prepreg - T83 resin (epoxy) were supplied by Plasan Carbon Composites, Inc. as 4 ply thick, 0/90o plaques. The effect of laser fluence, scanning speed, and wavelength was investigated to remove resin without an excessive damage of the fibers. In addition, resin ablation due to the power variation created by a laser interference technique is presented. Optical property measurements, optical micrographs, 3D imaging, and high-resolution optical profiler images were used to study the effect of the laser processing on the surface morphology.

  1. Application of fiber laser for a Higgs factory

    SciTech Connect

    Chou, W.

    2014-06-04

    This paper proposes a medium size(~6km) circular Higgs factory based on a photon collider. The recent breakthrough in fiber laser technology by means of a coherent amplifier network makes such a collider feasible and probably also affordable.

  2. High-brightness fiber-coupled diode laser module

    NASA Astrophysics Data System (ADS)

    Dorsch, Friedhelm; Hennig, Petra; Nickel, Michael

    1998-05-01

    Based on a pair of step-mirrors for beam rearranging we coupled the emission of three high-power diode laser arrays into an optical fiber of 800 micrometer diameter. We compressed the fast axis collimated beams of three diode lasers in respect to their fast axes by means of a step prism and symmetrized the beam parameter product by reordering the radiation which is focused into a fiber then. By simple optimization a coupling efficiency of 70% can be obtained.

  3. Even Illumination from Fiber-Optic-Coupled Laser Diodes

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.

    2006-01-01

    A method of equipping fiber-optic-coupled laser diodes to evenly illuminate specified fields of view has been proposed. The essence of the method is to shape the tips of the optical fibers into suitably designed diffractive optical elements. One of the main benefits afforded by the method would be more nearly complete utilization of the available light. Diffractive optics is a relatively new field of optics in which laser beams are shaped by use of diffraction instead of refraction.

  4. Simplified method for numerical modeling of fiber lasers.

    PubMed

    Shtyrina, O V; Yarutkina, I A; Fedoruk, M P

    2014-12-29

    A simplified numerical approach to modeling of dissipative dispersion-managed fiber lasers is examined. We present a new numerical iteration algorithm for finding the periodic solutions of the system of nonlinear ordinary differential equations describing the intra-cavity dynamics of the dissipative soliton characteristics in dispersion-managed fiber lasers. We demonstrate that results obtained using simplified model are in good agreement with full numerical modeling based on the corresponding partial differential equations.

  5. Self-Frequency-Doubling Glass-Fiber Laser

    NASA Technical Reports Server (NTRS)

    Selker, Mark D.; Dallas, Joseph L.

    1993-01-01

    Specially prepared germanium and phosphorous-doped glass optical fiber doped with neodymium shown to act as self-frequency-doubling laser. Self-frequency-doubling fiber laser with further refinements, eliminates need for expensive, easily damaged, nonlinear crystals currently used. Enables one to avoid loss and damage mechanisms associated with interfaces of nonlinear crystals as well as to eliminate angle/temperature phase-matching tuning.

  6. Ho-doped fiber for high energy laser applications

    NASA Astrophysics Data System (ADS)

    Friebele, E. Joseph; Askins, Charles G.; Peele, John R.; Wright, Barbara Marcheschi; Condon, Nicholas J.; O'Connor, Shawn; Brown, Christopher G.; Bowman, Steven R.

    2014-03-01

    Ho-doped fiber lasers are of interest for high energy laser applications because they operate in the eye safer wavelength range and in a window of high atmospheric transmission. Because they can be resonantly pumped for low quantum defect operation, thermal management issues are anticipated to be tractable. A key issue that must be addressed in order to achieve high efficiency and minimize thermal issues is parasitic absorption in the fiber itself. Hydroxyl contamination arising from the process for making the Ho-doped fiber core is the principal offender due to a combination band of Si-O and O-H vibrations that absorbs at 2.2 μm in the Ho3+ emission wavelength region. We report significant progress in lowering the OH content to 0.16 ppm, which we believe is a record level. Fiber experiments using a 1.94 μm thulium fiber laser to resonantly clad pump a triple clad Ho-doped core fiber have shown a slope efficiency of 62%, which we also believe is a record for a cladding-pumped laser. Although pump-power limited, the results of these studies demonstrate the feasibility of power scaling Ho-doped fiber lasers well above the currently-reported 400-W level.1

  7. Application and the key technology on high power fiber-optic laser in laser weapon

    NASA Astrophysics Data System (ADS)

    Qu, Zhou; Li, Qiushi; Meng, Haihong; Sui, Xin; Zhang, Hongtao; Zhai, Xuhua

    2014-12-01

    The soft-killing laser weapon plays an important role in photoelectric defense technology. It can be used for photoelectric detection, search, blinding of photoelectric sensor and other devices on fire control and guidance devices, therefore it draws more and more attentions by many scholars. High power fiber-optic laser has many virtues such as small volume, simple structure, nimble handling, high efficiency, qualified light beam, easy thermal management, leading to blinding. Consequently, it may be used as the key device of soft-killing laser weapon. The present study introduced the development of high power fiber-optic laser and its main features. Meanwhile the key technology of large mode area (LMA) optical fiber design, the beam combination technology, double-clad fiber technology and pumping optical coupling technology was stated. The present study is aimed to design high doping LMA fiber, ensure single mode output by increasing core diameter and decrease NA. By means of reducing the spontaneous emission particle absorbed by fiber core and Increasing the power density in the optical fiber, the threshold power of nonlinear effect can increase, and the power of single fiber will be improved. Meantime, high power will be obtained by the beam combination technology. Application prospect of high power fiber laser in photoelectric defense technology was also set forth. Lastly, the present study explored the advantages of high power fiber laser in photoelectric defense technology.

  8. Applications Of Plastic Hollow Fibers In CO2 Laser Surgery

    NASA Astrophysics Data System (ADS)

    Kaplan, Isaac; Giller, Shamai; Dror, Jacob; Gannot, Israel; Croitoru, Nathan I.

    1989-06-01

    Plastic hollow fibers for the transmission of CO2 laser energy in curved path were produced by plating the inner face of plastic tubes with a metal film and a dielectric film. These fibers could transmit high power (25 watts) with low losses even through bendings. Bleeding ulcers in dogs' stomachs were successfully treated with the fibers which were inserted into the stomach through the oesophagus.

  9. Picosecond laser surface micropatterning of ceramics by optical fiber induction

    NASA Astrophysics Data System (ADS)

    Li, Jian; Ji, Lingfei; Hu, Yan; Wu, Yan; Yan, Yinzhou

    2015-06-01

    Parallel microgrooves and mesh structure with a line width of about 16 μm, which is much smaller than the diameter of the laser focus spot of 50 μm, are fabricated on Al2O3 ceramic surfaces by picosecond laser patterning with optical fiber induction. The patterned grooves are of high quality without burr, recasting or thermally induced cracks. Grain refinement of the groove surfaces caused by the rapid condensation and redeposition during picosecond laser irradiation with optical fiber induction improved the smoothness and mechanical strength of the grooves. Different patterns can be fabricated by adjusting the optical fiber layout, which is independent of the laser scanning direction. The regions etched by the laser are kept in near-field contact with the optical fibers when the laser beam passes through the fibers and irradiates the ceramic surface. This results in localized field enhancement between the transparent optic fiber and ceramic surface, which produces the precise microgrooves. The developed technique allows high-resolution micromachining of the surfaces of hard and brittle ceramic-type materials.

  10. New laser side fiber linked with resectoscope for transurethral surgery

    NASA Astrophysics Data System (ADS)

    Tasca, Andrea; Guazzieri, Stefano; Cecchetti, Walter; Zattoni, Filiberto; Pagano, Francesco

    1994-12-01

    Optical fiber systems with lateral emission of laser radiation are currently used for laser treatment of benign prostatic hyperplasia (BPH). They can be classified in reflective or refractive systems in which a mirror or a prism, respectively, is connected to the fiber tip. Both systems are disposable making the cost of treatment too high. An alternative solution for refractive systems is the prismatic cut of the fiber tip. A side fiber of this type was conceived at the Department of Chemical Physics of the University of Venice and then patented. An Olympus 27ch transurethral resectoscope was also modified for use with our side fiber as well as with the resecting blade. Our modified resectoscope with a Nd-YAG laser has been clinically used for the laser treatment of BPH (6 cases), as well as in high risk patients with bulky bleeding bladder tumors (4 cases), and in transitional tumors of the prostate infiltrating the parenchyma (2 cases). Laser treatment with our resectoscope resembles traditional endoscopic treatment, guarantees the precision of fiber tip translation, and permits combined treatments with laser and traditional blade.

  11. A high efficiency architecture for cascaded Raman fiber lasers.

    PubMed

    Supradeepa, V R; Nichsolson, Jeffrey W; Headley, Clifford E; Yan, Man F; Palsdottir, Bera; Jakobsen, Dan

    2013-03-25

    We demonstrate a new high efficiency architecture for cascaded Raman fiber lasers based on a single pass cascaded amplifier configuration. Conversion is seeded at all intermediate Stokes wavelengths using a multi-wavelength seed source. A lower power Raman laser based on the conventional cascaded Raman resonator architecture provides a convenient seed source providing all the necessary wavelengths simultaneously. In this work we demonstrate a 1480nm laser pumped by an 1117nm Yb-doped fiber laser with maximum output power of 204W and conversion efficiency of 65% (quantum-limited efficiency is ~75%). We believe both the output power and conversion efficiency (relative to quantum-limited efficiency) are the highest reported for cascaded Raman fiber lasers.

  12. Visible continuum generation using a femtosecond erbium-doped fiber laser and a silica nonlinear fiber.

    PubMed

    Nicholson, J W; Bise, R; Alonzo, J; Stockert, T; Trevor, D J; Dimarcello, F; Monberg, E; Fini, J M; Westbrook, P S; Feder, K; Grüner-Nielsen, L

    2008-01-01

    Supercontinuum extending to visible wavelengths is generated in a hybrid silica nonlinear fiber pumped at 1560 nm by a femtosecond, erbium-doped fiber laser. The hybrid nonlinear fiber consists of a short length of highly nonlinear, germano-silicate fiber (HNLF) spliced to a length of photonic crystal fiber (PCF). A 2 cm length of HNLF provides an initial stage of continuum generation due to higher-order soliton compression and dispersive wave generation before launching into the PCF. The visible radiation is generated in the fundamental mode of the PCF. PMID:18157247

  13. High-brightness, fiber-coupled pump modules in fiber laser applications

    NASA Astrophysics Data System (ADS)

    Hemenway, Marty; Urbanek, Wolfram; Hoener, Kylan; Kennedy, Keith W.; Bao, Ling; Dawson, David; Cragerud, Emily S.; Balsley, David; Burkholder, Gary; Reynolds, Mitch; Price, Kirk; Haden, Jim; Kanskar, Manoj; Kliner, Dahv A.

    2014-03-01

    High-power, high-brightness, fiber-coupled pump modules enable high-performance industrial fiber lasers with simple system architectures, multi-kW output powers, excellent beam quality, unsurpassed reliability, and low initial and operating costs. We report commercially available (element™), single-emitter-based, 9xx nm pump sources with powers up to 130 W in a 105 μm fiber and 250 W in a 200 μm fiber. This combination of high power and high brightness translates into improved fiber laser performance, e.g., simultaneously achieving high nonlinear thresholds and excellent beam quality at kW power levels. Wavelength-stabilized, 976 nm versions of these pumps are available for applications requiring minimization of the gain-fiber length (e.g., generation of high-peak-power pulses). Recent prototypes have achieved output powers up to 300 W in a 200 μm fiber. Extensive environmental and life testing at both the chip and module level under accelerated and real-world operating conditions have demonstrated extremely high reliability, with innovative designs having eliminated package-induced-failure mechanisms. Finally, we report integrated Pump Modules that provide < 1.6 kW of fiber-coupled power conveniently formatted for fiber-laser pumping or direct-diode applications; these 19" rack-mountable, 2U units combine the outputs of up to 14 elements™ using fused-fiber combiners, and they include high-efficiency diode drivers and safety sensors.

  14. Ceramic bracket debonding with Tm:fiber laser

    NASA Astrophysics Data System (ADS)

    Demirkan, İrem; Sarp, Ayşe Sena Kabaş; Gülsoy, Murat

    2016-06-01

    Lasers have the potential for reducing the required debonding force and can prevent the mechanical damage given to the enamel surface as a result of conventional debonding procedure. However, excessive thermal effects limit the use of lasers for debonding purposes. The aim of this study was to investigate the optimal parameters of 1940-nm Tm:fiber laser for debonding ceramic brackets. Pulling force and intrapulpal temperature measurements were done during laser irradiation simultaneously. A laser beam was delivered in two different modes: scanning the fiber tip on the bracket surface with a Z shape movement or direct application of the fiber tip at one point in the center of the bracket. Results showed that debonding force could be decreased significantly compared to the control samples, in which brackets were debonded by only mechanical force. Intrapulpal temperature was kept equal or under the 5.5°C threshold value of probable thermal damage to pulp. Scanning was found to have no extra contribution to the process. It was concluded that using 1940-nm Tm:fiber laser would facilitate the debonding of ceramic brackets and can be proposed as a promising debonding tool with all the advantageous aspects of fiber lasers.

  15. Demodulation of a fiber Bragg grating strain sensor by a multiwavelength fiber laser

    NASA Astrophysics Data System (ADS)

    Cong, Shan; Sun, Yunxu; Zhao, Yuxi; Pan, Lifeng

    2012-04-01

    A fiber Bragg grating (FBG) sensors system utilizing a multi-wavelength erbium-doped fiber lasers (EDFL) with frequency shifter is proposed. The system is one fiber laser cavity with two FBG sensors as its filters. One is for strain sensing, and the other one is for temperature compensation. A frequency shifter is used to suppress the mode competition to lase two wavelengths that correspond with FBGs. The wavelength shift of the EDFL represents the sensing quantity, which is demodulated by Fiber Fabry-Perot (FFP) filter. The sensor's response to strain is measured by experiment. Because of exploiting the dual-wavelength fiber laser with a frequency shifter forming the feedback as the light source, many advantages of this system are achieved, especially high signal-to-noise ratio, high detected power, and low power consuming comparing with conventional FBG sensor system utilizing broadband light as the light source. What's more, this structure is also easy to combine with FBG array.

  16. Demodulation of a fiber Bragg grating strain sensor by a multiwavelength fiber laser

    NASA Astrophysics Data System (ADS)

    Cong, Shan; Sun, Yunxu; Zhao, Yuxi; Pan, Lifeng

    2011-11-01

    A fiber Bragg grating (FBG) sensors system utilizing a multi-wavelength erbium-doped fiber lasers (EDFL) with frequency shifter is proposed. The system is one fiber laser cavity with two FBG sensors as its filters. One is for strain sensing, and the other one is for temperature compensation. A frequency shifter is used to suppress the mode competition to lase two wavelengths that correspond with FBGs. The wavelength shift of the EDFL represents the sensing quantity, which is demodulated by Fiber Fabry-Perot (FFP) filter. The sensor's response to strain is measured by experiment. Because of exploiting the dual-wavelength fiber laser with a frequency shifter forming the feedback as the light source, many advantages of this system are achieved, especially high signal-to-noise ratio, high detected power, and low power consuming comparing with conventional FBG sensor system utilizing broadband light as the light source. What's more, this structure is also easy to combine with FBG array.

  17. Infrared glass fiber cables for CO laser medical applications

    NASA Astrophysics Data System (ADS)

    Arai, Tsunenori; Mizuno, Kyoichi; Sensaki, Koji; Kikuchi, Makoto; Watanabe, Tamishige; Utsumi, Atsushi; Takeuchi, Kiyoshi; Akai, Yoshiro

    1993-05-01

    We developed the medical fiber cables which were designed for CO laser therapy, i.e., angioplasty and endoscopic therapy. As-S chalcogenide glass fibers were used for CO laser delivery. A 230 micrometers core-diameter fiber was used for the angioplasty laser cable. The outer diameter of this cable was 600 micrometers . The total length and insertion length of the angioplasty laser cable were 2.5 m and 1.0 m, respectively. Typically, 2.0 W of fiber output was used in the animal experiment in vivo for the ablation of the model plaque which consisted of human atheromatous aorta wall. The transmission of the angioplasty laser cable was approximately 35%, because the reflection loss occurred at both ends of the fiber and window. Meanwhile, the core diameter of the energy delivery fiber for the endoscopic therapy was 450 micrometers . The outer diameter of this cable was 1.7 mm. Approximately 4.5 W of fiber output was used for clinical treatment of pneumothorax through a pneumoscope. Both types of the cables had the ultra-thin thermocouples for temperature monitoring at the tip of the cables. This temperature monitoring was extremely useful to prevent the thermal destruction of the fiber tip. Moreover, the As-S glass fibers were completely sealed by the CaF2 windows and outer tubes. Therefore, these cables were considered to have sufficient safety properties for medical applications. These laser cables were successfully used for the in vivo animal experiments and/or actual clinical therapies.

  18. Optical power supply unit utilizing high power laser diode module developed for fiber laser pumping

    NASA Astrophysics Data System (ADS)

    Sakamoto, Akira; Kiyoyama, Wataru; Yamauchi, Ryozo

    2014-05-01

    High power laser diode developed for fiber laser pumping is evaluated as a light source for an optical power supply unit. The output power of the newly developed laser diode module exceeds 15 W with 105 μm core fiber. It is estimated that more than 1600 mW power supply can be achieved with the single emitter laser diode module and a polycrystalline silicon cell over 1 km away from the light source. This unit can be used for sensor nodes in the fiber sensor network.

  19. Optical Frequency Comb Generation based on Erbium Fiber Lasers

    NASA Astrophysics Data System (ADS)

    Droste, Stefan; Ycas, Gabriel; Washburn, Brian R.; Coddington, Ian; Newbury, Nathan R.

    2016-06-01

    Optical frequency combs have revolutionized optical frequency metrology and are being actively investigated in a number of applications outside of pure optical frequency metrology. For reasons of cost, robustness, performance, and flexibility, the erbium fiber laser frequency comb has emerged as the most commonly used frequency comb system and many different designs of erbium fiber frequency combs have been demonstrated. We review the different approaches taken in the design of erbium fiber frequency combs, including the major building blocks of the underlying mode-locked laser, amplifier, supercontinuum generation and actuators for stabilization of the frequency comb.

  20. Optical characteristics of modified fiber tips in single fiber, laser Doppler flowmetry

    NASA Astrophysics Data System (ADS)

    Oberg, P. Ake; Cai, Hongming; Rohman, Hakan; Larsson, Sven-Erik

    1994-02-01

    Percutaneous laser Doppler flowmetry (LDF) and bipolar surface electromyography (EMG) were used simultaneously for measurement of skeletal muscle (trapezius) perfusion in relation to static load and fatigue. On-line computer (386 SX) processing of the LDF- and EMG- signals made possible interpretation of the relationship between the perfusion and the activity of the muscle. The single fiber laser Doppler technique was used in order to minimize the trauma. A ray-tracing program was developed in the C language by which the optical properties of the fiber and fiber ends could be simulated. Isoirradiance graphs were calculated for three fiber end types and the radiance characteristics were measured for each fiber end. The three types of fiber-tips were evaluated and compared in flow model measurements.

  1. Design of fiber optic probes for laser light scattering

    NASA Technical Reports Server (NTRS)

    Dhadwal, Harbans S.; Chu, Benjamin

    1989-01-01

    A quantitative analysis is presented of the role of optical fibers in laser light scattering. Design of a general fiber optic/microlens probe by means of ray tracing is described. Several different geometries employing an optical fiber of the type used in lightwave communications and a graded index microlens are considered. Experimental results using a nonimaging fiber optic detector probe show that due to geometrical limitations of single mode fibers, a probe using a multimode optical fiber has better performance, for both static and dynamic measurements of the scattered light intensity, compared with a probe using a single mode fiber. Fiber optic detector probes are shown to be more efficient at data collection when compared with conventional approaches to measurements of the scattered laser light. Integration of fiber optic detector probes into a fiber optic spectrometer offers considerable miniaturization of conventional light scattering spectrometers, which can be made arbitrarily small. In addition static and dynamic measurements of scattered light can be made within the scattering cell and consequently very close to the scattering center.

  2. Fiber Laser Front Ends for High-Energy Short Pulse Lasers

    SciTech Connect

    Dawson, J W; Liao, Z M; Mitchell, S; Messerly, M; Beach, R; Jovanovic, I; Brown, C; Payne, S A; Barty, C J

    2005-01-18

    We are developing an all fiber laser system optimized for providing input pulses for short pulse (1-10ps), high energy ({approx}1kJ) glass laser systems. Fiber lasers are ideal solutions for these systems as they are highly reliable and once constructed they can be operated with ease. Furthermore, they offer an additional benefit of significantly reduced footprint. In most labs containing equivalent bulk laser systems, the system occupies two 4'x8' tables and would consist of 10's if not a 100 of optics which would need to be individually aligned and maintained. The design requirements for this application are very different those commonly seen in fiber lasers. High energy lasers often have low repetition rates (as low as one pulse every few hours) and thus high average power and efficiency are of little practical value. What is of high value is pulse energy, high signal to noise ratio (expressed as pre-pulse contrast), good beam quality, consistent output parameters and timing. Our system focuses on maximizing these parameters sometimes at the expense of efficient operation or average power. Our prototype system consists of a mode-locked fiber laser, a compressed pulse fiber amplifier, a ''pulse cleaner'', a chirped fiber Bragg grating, pulse selectors, a transport fiber system and a large flattened mode fiber amplifier. In our talk we will review the system in detail and present theoretical and experimental studies of critical components. We will also present experimental results from the integrated system.

  3. Detachable fiber optic tips for use in thulium fiber laser lithotripsy

    NASA Astrophysics Data System (ADS)

    Hutchens, Thomas C.; Blackmon, Richard L.; Irby, Pierce B.; Fried, Nathaniel M.

    2013-03-01

    The thulium fiber laser (TFL) has recently been proposed as an alternative to the Holmium:YAG (Ho:YAG) laser for lithotripsy. The TFL's Gaussian spatial beam profile provides higher power transmission through smaller optical fibers with reduced proximal fiber tip damage, and improved saline irrigation and flexibility through the ureteroscope. However, distal fiber tip damage may still occur during stone fragmentation, resulting in disposal of the entire fiber after the procedure. A novel design for a short, detachable, distal fiber tip that can fit into an ureteroscope's working channel is proposed. A prototype, twist-lock, spring-loaded mechanism was constructed using micromachining methods, mating a 150-μm-core trunk fiber to 300-μm-core fiber tip. Optical transmission measuring 80% was observed using a 30-mJ pulse energy and 500-μs pulse duration. Ex vivo human calcium oxalate monohydrate urinary stones were vaporized at an average rate of 187 μg/s using 20-Hz modulated, 50% duty cycle 5 pulse packets. The highest stone ablation rates corresponded to the highest fiber tip degradation, thus providing motivation for use of detachable and disposable distal fiber tips during lithotripsy. The 1-mm outer-diameter prototype also functioned comparable to previously tested tapered fiber tips.

  4. Detachable fiber optic tips for use in thulium fiber laser lithotripsy.

    PubMed

    Hutchens, Thomas C; Blackmon, Richard L; Irby, Pierce B; Fried, Nathaniel M

    2013-03-01

    The thulium fiber laser (TFL) has recently been proposed as an alternative to the Holmium:YAG (Ho:YAG) laser for lithotripsy. The TFL's Gaussian spatial beam profile provides higher power transmission through smaller optical fibers with reduced proximal fiber tip damage, and improved saline irrigation and flexibility through the ureteroscope. However, distal fiber tip damage may still occur during stone fragmentation, resulting in disposal of the entire fiber after the procedure. A novel design for a short, detachable, distal fiber tip that can fit into an ureteroscope's working channel is proposed. A prototype, twist-lock, spring-loaded mechanism was constructed using micromachining methods, mating a 150-μm-core trunk fiber to 300-μm-core fiber tip. Optical transmission measuring 80% was observed using a 30-mJ pulse energy and 500-μs pulse duration. Ex vivo human calcium oxalate monohydrate urinary stones were vaporized at an average rate of 187  μg/s using 20-Hz modulated, 50% duty cycle 5 pulse packets. The highest stone ablation rates corresponded to the highest fiber tip degradation, thus providing motivation for use of detachable and disposable distal fiber tips during lithotripsy. The 1-mm outer-diameter prototype also functioned comparable to previously tested tapered fiber tips.

  5. Frequency noise induced by fiber perturbations in a fiber-linked stabilized laser

    NASA Technical Reports Server (NTRS)

    Pang, YI; Hamilton, Jeffrey J.; Richard, Jean-Paul

    1992-01-01

    The effects of acoustic perturbations on an optical fiber that links a stabilized laser to its reference cavity are studied. An extrapolation indicates that 69 dB of acoustic noise impinging on a 1-m segment of the 10-m fiber contribute frequency noise at the level of 1 Hz/(Hz)1/2 in the 1100-2100-Hz band.

  6. Cascaded combiners for a high power CW fiber laser

    NASA Astrophysics Data System (ADS)

    Tan, Qirui; Ge, Tingwu; Zhang, Xuexia; Wang, Zhiyong

    2016-02-01

    We report cascaded combiners for a high power continuous wave (CW) fiber laser in this paper. The cascaded combiners are fabricated with an improved lateral splicing process. During the fusing process, there is no stress or tension between the pump fiber and the double-cladding fiber. Thus, the parameters of the combiner are better than those that have been reported. The coupling efficiency is 98.5%, and the signal insertion loss is 1%. The coupling efficiency of the cascaded combiners is 97.5%. The pump lights are individually coupled into the double-cladding fiber via five combiners. The thermal effects cannot cause damage to the combiners and the cascaded combiners can operate stably in high power CW fiber lasers. We also develop a high power CW fiber laser that generates a maximum 780 W of CW signal power at 1080 nm with 71% optical-to-optical conversion efficiency. The fiber laser is pumped via five intra-cavity cascaded combiners and five extra-cavity cascaded combiners with a maximum pump power of 1096 W and a pump wavelength of 975 nm.

  7. New fiber laser for lidar developments in disaster management

    NASA Astrophysics Data System (ADS)

    Besson, C.; Augere, B.; Canat, G.; Cezard, N.; Dolfi-Bouteyre, A.; Fleury, D.; Goular, D.; Lombard, L.; Planchat, C.; Renard, W.; Valla, M.

    2014-10-01

    Recent progress in fiber technology has enabled new laser designs along with all fiber lidar architectures. Their asset is to avoid free-space optics, sparing lengthy alignment procedures and yielding compact setups that are well adapted for field operations and on board applications thanks to their intrinsic vibration-resistant architectures. We present results in remote sensing for disaster management recently achieved with fiber laser systems. Field trials of a 3-paths lidar vibrometer for the remote study of modal parameters of buildings has shown that application-related constraints were fulfilled and that the obtained results are consistent with simultaneous in situ seismic sensors measurements. Remote multi-gas detection can be obtained using broadband infrared spectroscopy. Results obtained on methane concentration measurement using an infrared supercontinuum fiber laser and analysis in the 3-4 μm band are reported. For gas flux retrieval, air velocity measurement is also required. Long range scanning all-fiber wind lidars are now available thanks to innovative laser architectures. High peak power highly coherent pulses can be extracted from Er3+:Yb3+ and Tm3+ active fibers using methods described in the paper. The additional laser power provides increased coherent lidar capability in range and scanning of large areas but also better system resistance to adverse weather conditions. Wind sensing at ranges beyond 10 km have been achieved and on-going tests of a scanning system dedicated to airport safety is reported.

  8. Mode Selection for a Single-Frequency Fiber Laser

    NASA Technical Reports Server (NTRS)

    Liu, Jian

    2010-01-01

    A superstructured fiber-grating-based mode selection filter for a single-frequency fiber laser eliminates all free-space components, and makes the laser truly all-fiber. A ring cavity provides for stable operations in both frequency and power. There is no alignment or realignment required. After the fibers and components are spliced together and packaged, there is no need for specially trained technicians for operation or maintenance. It can be integrated with other modules, such as telescope systems, without extra optical alignment due to the flexibility of the optical fiber. The filter features a narrow line width of 1 kHz and side mode suppression ratio of 65 dB. It provides a high-quality laser for lidar in terms of coherence length and signal-to-noise ratio, which is 20 dB higher than solid-state or microchip lasers. This concept is useful in material processing, medical equipment, biomedical instrumentation, and optical communications. The pulse-shaping fiber laser can be directly used in space, airborne, and satellite applications including lidar, remote sensing, illuminators, and phase-array antenna systems.

  9. Single-frequency fiber laser at 1950 nm based on thulium-doped silica fiber.

    PubMed

    Fu, Shijie; Shi, Wei; Lin, Jichao; Fang, Qiang; Sheng, Quan; Zhang, Haiwei; Wen, Jinwei; Yao, Jianquan

    2015-11-15

    A single-frequency fiber laser operating at 1950 nm has been demonstrated in an all-fiber distributed Bragg reflection laser cavity by using a 1.9 cm commercially available thulium-doped silica fiber, for the first time, to the best of our knowledge. The laser was pumped by a 793 nm single-mode diode laser and had a threshold pump power of 75 mW. The maximum output power of the single longitudinal mode laser was 18 mW and the slope efficiency with respect to the launched pump power was 11%. Moreover, the linewidth and relative intensity noise at different pump power have been measured and analyzed. PMID:26565855

  10. All-fiber ring Raman laser generating parabolic pulses

    SciTech Connect

    Kruglov, V. I.; Mechin, D.; Harvey, J. D.

    2010-02-15

    We present theoretical and numerical results for an all-fiber laser using self-similar parabolic pulses ('similaritons') designed to operate using self-similar propagation regimes. The similariton laser features a frequency filter and a Sagnac loop which operate together to generate an integrated all-fiber mode-locked laser. Numerical studies show that this laser generates parabolic pulses with linear chirp in good agreement with analytical predictions. The period for propagating similariton pulses in stable regimes can vary from one to two round trips for different laser parameters. Two-round-trip-period operation in the mode-locked laser appears at bifurcation points for certain cavity parameters. The stability of the similariton regimes has been confirmed by numerical simulations for large numbers of round trips.

  11. 25 W Raman-fiber-amplifier-based 589 nm laser for laser guide star.

    PubMed

    Feng, Yan; Taylor, Luke R; Calia, Domenico Bonaccini

    2009-10-12

    We report on a 25 W continuous wave narrow linewidth (< 2.3 MHz) 589 nm laser by efficient (> 95%) coherent beam combination of two narrow linewidth (< 1.5 MHz) Raman fiber amplifiers with a Mach-Zehnder interferometer scheme and frequency doubling in an external resonant cavity with an efficiency of 86%. The results demonstrate the narrow linewidth Raman fiber amplifier technology as a promising solution for developing laser for sodium laser guide star adaptive optics. PMID:20372636

  12. 25 W Raman-fiber-amplifier-based 589 nm laser for laser guide star.

    PubMed

    Feng, Yan; Taylor, Luke R; Calia, Domenico Bonaccini

    2009-10-12

    We report on a 25 W continuous wave narrow linewidth (< 2.3 MHz) 589 nm laser by efficient (> 95%) coherent beam combination of two narrow linewidth (< 1.5 MHz) Raman fiber amplifiers with a Mach-Zehnder interferometer scheme and frequency doubling in an external resonant cavity with an efficiency of 86%. The results demonstrate the narrow linewidth Raman fiber amplifier technology as a promising solution for developing laser for sodium laser guide star adaptive optics.

  13. Recent Advances in Fiber Lasers for Nonlinear Microscopy

    PubMed Central

    Xu, C.; Wise, F. W.

    2013-01-01

    Nonlinear microscopy techniques developed over the past two decades have provided dramatic new capabilities for biological imaging. The initial demonstrations of nonlinear microscopies coincided with the development of solid-state femtosecond lasers, which continue to dominate applications of nonlinear microscopy. Fiber lasers offer attractive features for biological and biomedical imaging, and recent advances are leading to high-performance sources with the potential for robust, inexpensive, integrated instruments. This article discusses recent advances, and identifies challenges and opportunities for fiber lasers in nonlinear bioimaging. PMID:24416074

  14. Laser based microstructuring of polymer optical fibers for sensors optimization

    NASA Astrophysics Data System (ADS)

    Athanasekos, Loukas; Vasileiadis, Miltiadis; El Sachat, Alexandros; Vainos, Nikolaos A.; Riziotis, Christos

    2015-03-01

    Microstructuring of Polymer Optical Fibers-POF through surface modification with UV excimer laser radiation has been performed and studied. The laser modified surface cavities on fibers act as material receptors of exact volume allowing highly controllable and repeatable structures. The effect of Laser writing conditions on different etching characteristics of cladding and core materials of the fibres are presented. Ablated structures on the fibres are examined for optimised sensors' response characteristics. As a case study humidity and ammonia sensors are demonstrated by employing sensitive block copolymer materials on suitably micromachined segments of fibres.

  15. Tm:germanate Fiber Laser: Tuning And Q-switching

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.; Walsh, Brian M.; Reichle, Donald J.; DeYoung, R. J.; Jiang, Shibin

    2007-01-01

    A Tm:germanate fiber laser produced >0.25 mJ/pulse in a 45 ns pulse. It is capable of producing multiple Q-switched pulses from a single p ump pulse. With the addition of a diffraction grating, Tm:germanate f iber lasers produced a wide, but length dependent, tuning range. By s electing the fiber length, the tuning range extends from 1.88 to 2.04 ?m. These traits make Tm:germanate lasers suitable for remote sensin g of water vapor.

  16. Linearly polarized random fiber laser with ultimate efficiency.

    PubMed

    Zlobina, E A; Kablukov, S I; Babin, S A

    2015-09-01

    Linearly polarized pumping of a random fiber laser made of a 500-m PM fiber with PM fiber-loop mirror at one fiber end results in generation of linearly polarized radiation at 1.11 μm with the polarization extinction ratio as high as 25 dB at the output power of up to 9.4 W. The absolute optical efficiency of pump-to-Stokes wave conversion reaches 87%, which is close to the quantum limit and sets a record for Raman fiber lasers with random distributed feedback and with a linear cavity as well. Herewith, the output linewidth at high powers tends to saturation at a level of 1.8 nm. PMID:26368715

  17. Mode-locked fiber laser based on chalcogenide microwires.

    PubMed

    Al-Kadry, Alaa; El Amraoui, Mohammed; Messaddeq, Younès; Rochette, Martin

    2015-09-15

    We report the first mode-locked fiber laser using a chalcogenide microwire as the nonlinear medium. The laser is passively mode-locked with nonlinear polarization rotation and can be adjusted for the emission of solitons or noise-like pulses. The use of the microwire leads to a mode-locking threshold at the microwatt level and shortens the cavity length by 4 orders of magnitude with respect to other lasers of its kind. The controlled birefringence of the microwire, combined with a linear polarizer in the cavity, enables multiwavelength laser operation with tunable central wavelength, switchable wavelength separation, and a variable number of laser wavelengths. PMID:26371923

  18. Mode-locked fiber laser based on chalcogenide microwires.

    PubMed

    Al-Kadry, Alaa; El Amraoui, Mohammed; Messaddeq, Younès; Rochette, Martin

    2015-09-15

    We report the first mode-locked fiber laser using a chalcogenide microwire as the nonlinear medium. The laser is passively mode-locked with nonlinear polarization rotation and can be adjusted for the emission of solitons or noise-like pulses. The use of the microwire leads to a mode-locking threshold at the microwatt level and shortens the cavity length by 4 orders of magnitude with respect to other lasers of its kind. The controlled birefringence of the microwire, combined with a linear polarizer in the cavity, enables multiwavelength laser operation with tunable central wavelength, switchable wavelength separation, and a variable number of laser wavelengths.

  19. Laser speckle imaging of atherosclerotic plaques through optical fiber bundles.

    PubMed

    Nadkarni, Seemantini K; Bouma, Brett E; Yelin, Dvir; Gulati, Amneet; Tearney, Guillermo J

    2008-01-01

    Laser speckle imaging (LSI), a new technique that measures an index of plaque viscoelasticity, has been investigated recently to characterize atherosclerotic plaques. These prior studies demonstrated the diagnostic potential of LSI for detecting high-risk plaques and were conducted ex vivo. To conduct intracoronary LSI in vivo, the laser speckle pattern must be transmitted from the coronary wall to the image detector in the presence of cardiac motion. Small-diameter, flexible optical fiber bundles, similar to those used in coronary angioscopy, may be incorporated into an intravascular catheter for this purpose. A key challenge is that laser speckle is influenced by inter-fiber leakage of light, which may be exacerbated during bundle motion. In this study, we tested the capability of optical fiber bundles to transmit laser speckle patterns obtained from atherosclerotic plaques and evaluated the influence of motion on the diagnostic accuracy of fiber bundle-based LSI. Time-varying helium-neon laser speckle images of aortic plaques were obtained while cyclically moving the flexible length of the bundle to mimic coronary motion. Our results show that leached fiber bundles may reliably transmit laser speckle images in the presence of cardiac motion, providing a viable option to conduct intracoronary LSI. PMID:19021396

  20. Fiber optics interface for a dye laser oscillator and method

    DOEpatents

    Johnson, Steve A.; Seppala, Lynn G.

    1986-01-01

    A dye laser oscillator in which one light beam is used to pump a continuous tream of dye within a cooperating dye chamber for producing a second, different beam is generally disclosed herein along with a specific arrangement including an optical fiber and a fiber optics interface for directing the pumping beam into the dye chamber. The specific fiber optics interface illustrated includes three cooperating lenses which together image one particular dimension of the pumping beam into the dye chamber from the output end of the optical fiber in order to insure that the dye chamber is properly illuminated by the pumping beam.

  1. Fiber optics interface for a dye laser oscillator and method

    DOEpatents

    Johnson, S.A.; Seppala, L.G.

    1984-06-13

    A dye laser oscillator in which one light beam is used to pump a continuous stream of dye within a cooperating dye chamber for producing a second, different beam is generally disclosed herein along with a specific arrangement including an optical fiber and a fiber optics interface for directing the pumping beam into the dye chamber. The specific fiber optics interface illustrated includes three cooperating lenses which together image one particular dimension of the pumping beam into the dye chamber from the output end of the optical fiber in order to insure that the dye chamber is properly illuminated by the pumping beam.

  2. Stimulated Brillouin side-scattering of the beat wave excited by two counter-propagating X-mode lasers in magnetized plasma

    SciTech Connect

    Verma, Kanika; Sajal, Vivek Kumar, Ravindra; Sharma, Navneet K.; Baliyan, Sweta

    2015-06-15

    The stimulated Brillouin scattering (SBS) of nonresonant beat mode in the presence of static magnetic field is investigated in a plasma. Two counter-propagating lasers of frequencies (ω{sub 1} and ω{sub 2}) and wave vectors (k{sub 1} and k{sub 2}) drive a nonresonant space charge beat mode at the phase matching condition of frequency ω{sub 0}≈ω{sub 1}∼ω{sub 2} and wave number k{sup →}{sub 0}≈k{sup →}{sub 1}+k{sup →}{sub 2}. The driver wave parametrically excites a pair of ion acoustic wave (ω,k{sup →}) and a sideband electromagnetic wave (ω{sub 3},k{sup →}{sub 3}). The beat wave couples with the sideband electromagnetic wave to exert a nonlinear ponderomotive force at the frequency of ion acoustic wave. Density perturbations due to ion acoustic wave and ponderomotive force couple with the oscillatory motion of plasma electron due to velocity of beat wave to give rise to a nonlinear current (by feedback mechanism) responsible for the growth of sideband wave at resonance. The growth rate of SBS was reduced (from ∼10{sup 12}s{sup −1} to 10{sup 10}s{sup −1}) by applying a transverse static magnetic field ∼90 T. The present study can be useful for the excitation of fast plasma waves (for the purpose of electron acceleration) by two counter-propagating laser beams.

  3. Laser fiber migration into the pelvic cavity: A rare complication of endovenous laser ablation.

    PubMed

    Lun, Yu; Shen, Shikai; Wu, Xiaoyu; Jiang, Han; Xin, Shijie; Zhang, Jian

    2015-10-01

    Endovenous laser ablation is an established alternative to surgery with stripping for the treatment of varicose veins. Ecchymoses and pain are frequently reported side effects of endovenous laser ablation. Device-related complications are rare but serious. We describe here an exceptional complication, necessitating an additional surgical procedure to remove a segment of laser fiber that had migrated into the pelvic cavity. Fortunately, severe damage had not occurred. This case highlights the importance of checking the completeness of the guidewire, catheter, and laser fiber after endovenous laser ablation.

  4. Making custom fiber lasers for use in an atomic physics experiment

    NASA Astrophysics Data System (ADS)

    Khademian, Ali; Cameron, Garnet; Nault, Kyla; Shiner, David

    2016-05-01

    Fiber lasers can be a reasonable choice for a laser source in atomic physics. Our particular applications involve the optical pumping and in some applications cooling of various transitions in atomic helium. Doped fiber with emission at the required wavelengths is necessary. Readily available fiber and approximate wavelength emission ranges include Yb (990 - 1150 nm), Er/Yb (1530 - 1625 nm) and Th (1900 -2100 nm). High efficiency conversion of pump photons into stable single frequency laser emission at the required wavelength is the function of the fiber laser. A simple fiber laser cavity uses a short (~ few mm) fiber grating high reflector mirror, a doped fiber section for the laser cavity, and a long (~ few cm) fiber grating output coupler. To ensure reliable single frequency operation, the laser cavity length should be within 2-3 times the output grating length. However the cavity length must be long enough for round trip gains to compensate for the output mirror transmission loss. Efficiency can be maximized by avoiding fiber splices in the fiber laser cavity. This requires that the gratings be written into the doped fiber directly. In our previous designs, back coupling of the fiber laser into the pump laser contributes to instability and sometimes caused catastrophic pump failure. Current designs use a fiber based wavelength splitter (WDM) to study and circumvent this problem. Data will be presented on the fiber lasers at 1083 nm. Work on a Thulium 2057 nm fiber laser will also be discussed. This work is supported by NSF Grant # 1404498.

  5. All-fiber passively mode-locked laser based on a chiral fiber grating.

    PubMed

    Du, Yueqing; Shu, Xuewen; Xu, Zuowei

    2016-01-15

    A novel passively mode-locked all-fiber laser using a chiral fiber grating as a polarization-selective element is demonstrated for the first time, to the best of our knowledge. The chiral fiber grating serves as a key component to form an artificial saturable absorber to realize mode locking through nonlinear polarization rotation in the cavity. The laser generates stable short pulses with energy of 0.34 nJ, a fundamental repetition rate of 3.27 MHz, and an FWHM bandwidth of 28 nm. We also show that harmonic mode-locked pulse trains of different orders can be obtained by increasing the pump power.

  6. 954 nm Raman fiber laser with multimode laser diode pumping

    NASA Astrophysics Data System (ADS)

    Zlobina, E. A.; Kablukov, S. I.; Skvortsov, M. I.; Nemov, I. N.; Babin, S. A.

    2016-03-01

    CW Raman fiber laser emitting at 954 nm under direct pumping by a high-power multimode laser diode at 915 nm is demonstrated. A cavity of the laser is formed with 2.5 km-long multimode graded-index fiber and two mirrors: highly reflective fiber Bragg grating (FBG) at one side and normally cleaved fiber end at the other side. The laser generates low-index transverse modes at the Stokes wavelength with output power above 4 W at a slope efficiency above 40%. It is shown that utilization of a narrowband FBG mirror with low reflectivity instead of the cleaved fiber end with Fresnel reflection leads to stronger spectral mode selection, but the generated power is reduced in this case.

  7. Tunable Fiber Bragg Grating Ring Lasers using Macro Fiber Composite Actuators

    NASA Technical Reports Server (NTRS)

    Geddis, Demetris L.; Allison, Sidney G.; Shams, Qamar A.

    2006-01-01

    The research reported herein includes the fabrication of a tunable optical fiber Bragg grating (FBG) fiber ring laser (FRL)1 from commercially available components as a high-speed alternative tunable laser source for NASA Langley s optical frequency domain reflectometer (OFDR) interrogator, which reads low reflectivity FBG sensors. A Macro-Fiber Composite (MFC) actuator invented at NASA Langley Research Center (LaRC) was selected to tune the laser. MFC actuators use a piezoelectric sheet cut into uniaxially aligned rectangular piezo-fibers surrounded by a polymer matrix and incorporate interdigitated electrodes to deliver electric fields along the length of the piezo-fibers. This configuration enables MFC actuators to produce displacements larger than the original uncut piezoelectric sheet. The FBG filter was sandwiched between two MFC actuators, and when strained, produced approximately 3.62 nm of wavelength shift in the FRL when biasing the MFC actuators from 500 V to 2000 V. This tunability range is comparable to that of other tunable lasers and is adequate for interrogating FBG sensors using OFDR technology. Three different FRL configurations were studied. Configuration A examined the importance of erbium-doped fiber length and output coupling. Configuration B demonstrated the importance of the FBG filter. Configuration C added an output coupler to increase the output power and to isolate the filter. Only configuration C was tuned because it offered the best optical power output of the three configurations. Use of Plastic Optical Fiber (POF) FBG s holds promise for enhanced tunability in future research.

  8. Tunable fiber Bragg grating ring lasers using macro fiber composite actuators

    NASA Astrophysics Data System (ADS)

    Geddis, Demetris L.; Allison, Sidney G.; Shams, Qamar A.

    2006-10-01

    The research reported herein includes the fabrication of a tunable optical fiber Bragg grating (FBG) fiber ring laser (FRL)1 from commercially available components as a high-speed alternative tunable laser source for NASA Langley's optical frequency domain reflectometer (OFDR) interrogator, which reads low reflectivity FBG sensors. A Macro-Fiber Composite (MFC) actuator invented at NASA Langley Research Center (LaRC) was selected to tune the laser. MFC actuators use a piezoelectric sheet cut into uniaxially aligned rectangular piezo-fibers surrounded by a polymer matrix and incorporate interdigitated electrodes to deliver electric fields along the length of the piezo-fibers. This configuration enables MFC actuators to produce displacements larger than the original uncut piezoelectric sheet. The FBG filter was sandwiched between two MFC actuators, and when strained, produced approximately 3.62 nm of wavelength shift in the FRL when biasing the MFC actuators from -500 V to 2000 V. This tunability range is comparable to that of other tunable lasers and is adequate for interrogating FBG sensors using OFDR technology. Three different FRL configurations were studied. Configuration A examined the importance of erbium-doped fiber length and output coupling. Configuration B demonstrated the importance of the FBG filter. Configuration C added an output coupler to increase the output power and to isolate the filter. Only configuration C was tuned because it offered the best optical power output of the three configurations. Use of Plastic Optical Fiber (POF) FBG's holds promise for enhanced tunability in future research.

  9. High power tandem-pumped thulium-doped fiber laser.

    PubMed

    Wang, Yao; Yang, Jianlong; Huang, Chongyuan; Luo, Yongfeng; Wang, Shiwei; Tang, Yulong; Xu, Jianqiu

    2015-02-01

    We propose a cascaded tandem pumping technique and show its high power and high efficient operation in the 2-μm wavelength region, opening up a new way to scale the output power of the 2-μm fiber laser to new levels (e.g. 10 kW). Using a 1942 nm Tm(3+) fiber laser as the pump source with the co- (counter-) propagating configuration, the 2020 nm Tm(3+) fiber laser generates 34.68 W (35.15W) of output power with 84.4% (86.3%) optical-to-optical efficiency and 91.7% (92.4%) slope efficiency, with respect to launched pump power. It provides the highest slope efficiency reported for 2-μm Tm(3+)-doped fiber lasers, and the highest output power for all-fiber tandem-pumped 2-μm fiber oscillators. This system fulfills the complete structure of the proposed cascaded tandem pumping technique in the 2-μm wavelength region (~1900 nm → ~1940 nm → ~2020 nm). Numerical analysis is also carried out to show the power scaling capability and efficiency of the cascaded tandem pumping technique. PMID:25836159

  10. All-fiber amplifier similariton laser based on a fiber Bragg grating filter.

    PubMed

    Olivier, Michel; Gagnon, Mathieu; Duval, Simon; Bernier, Martin; Piché, Michel

    2015-12-01

    This article presents, for the first time to our knowledge, an all-fiber amplifier similariton laser based on a fiber Bragg grating filter. The laser emits 2.9 nJ pulses at a wavelength of 1554 nm with a repetition rate of 31 MHz. The dechirped pulses have a duration of 89 fs. The characteristic features of the pulse profile and spectrum along with the dynamics of the laser are highlighted in representative simulations. These simulations also address the effect of the filter shape and detuning with respect to the gain spectral peak. PMID:26625073

  11. Cavitation bubble dynamics during thulium fiber laser lithotripsy

    NASA Astrophysics Data System (ADS)

    Hardy, Luke A.; Kennedy, Joshua D.; Wilson, Christopher R.; Irby, Pierce B.; Fried, Nathaniel M.

    2016-02-01

    The Thulium fiber laser (TFL) is being explored for lithotripsy. TFL parameters differ from standard Holmium:YAG laser in several ways, including smaller fiber delivery, more strongly absorbed wavelength, low pulse energy/high pulse rate operation, and more uniform temporal pulse structure. High speed imaging of cavitation bubbles was performed at 105,000 fps and 10 μm spatial resolution to determine influence of these laser parameters on bubble formation. TFL was operated at 1908 nm with pulse energies of 5-75 mJ, and pulse durations of 200-1000 μs, delivered through 100-μm-core fiber. Cavitation bubble dynamics using Holmium laser at 2100 nm with pulse energies of 200-1000 mJ and pulse duration of 350 μs was studied, for comparison. A single, 500 μs TFL pulse produced a bubble stream extending 1090 +/- 110 μm from fiber tip, and maximum bubble diameters averaged 590 +/- 20 μm (n=4). These observations are consistent with previous studies which reported TFL ablation stallout at working distances < 1.0 mm. TFL bubble dimensions were five times smaller than for Holmium laser due to lower pulse energy, higher water absorption coefficient, and smaller fiber diameter used.

  12. Medical Applications Of CO2 Laser Fiber Optics

    NASA Astrophysics Data System (ADS)

    McCord, R. C.

    1981-07-01

    In 1978, Hughes Laboratories reported development of fiber optics that were capable of transmitting CO2 laser energy. These fibers are now being tested for medical applications. Wide ranging medical investigation with CO2 lasers has occurred during the twelve years since the first observations of laser hemostasis. Specialists in ophthalmology, neurosurgery, urology, gynecology, otolaryngology, maxillo-facial/plastic surgery, dermatology, and oncology among others, have explored its use. In principle, all these specialists use CO2 laser radiation at 10.6 microns to thermally destroy diseased tissues. As such, CO2 lasers compare and compete with electrosurgical devices. The fundamental difference between these modalities lies in how they generate heat in treated tissue.

  13. Etalon filters for Brillouin microscopy of highly scattering tissues.

    PubMed

    Shao, Peng; Besner, Sebastien; Zhang, Jitao; Scarcelli, Giuliano; Yun, Seok-Hyun

    2016-09-19

    Brillouin imaging of turbid biological tissues requires an effective rejection of the background noise due to elastic scattering of probe laser light. We have developed a narrowband spectral notch filter based on a pair of a free-space Fabry-Perot etalon and a mirror. The etalon filter in a 4-pass configuration is able to suppress elastically-scattered laser light with a high extinction ratio of > 40 dB and transmit inelastically-scattered light in a frequency shift range of 2-14 GHz with only 2 dB insertion loss. We also describe a simple etalon that enables us to use semiconductor diode laser sources for Brillouin microscopy by removing spontaneous emission noise. Using a clinically-viable Brillouin microscope employing these filters, we demonstrate the first Brillouin confocal imaging of the sclera and conjunctiva of the porcine eye. PMID:27661957

  14. A phase-stabilized carbon nanotube fiber laser frequency comb.

    PubMed

    Lim, Jinkang; Knabe, Kevin; Tillman, Karl A; Neely, William; Wang, Yishan; Amezcua-Correa, Rodrigo; Couny, François; Light, Philip S; Benabid, Fetah; Knight, Jonathan C; Corwin, Kristan L; Nicholson, Jeffrey W; Washburn, Brian R

    2009-08-01

    A frequency comb generated by a 167 MHz repetition frequency erbium-doped fiber ring laser using a carbon nanotube saturable absorber is phase-stabilized for the first time. Measurements of the in-loop phase noise show an integrated phase error on the carrier envelope offset frequency of 0.35 radians. The carbon nanotube fiber laser comb is compared with a CW laser near 1533 nm stabilized to the nu(1) + nu(3) overtone transition in an acetylene-filled kagome photonic crystal fiber reference, while the CW laser is simultaneously compared to another frequency comb based on a Cr:Forsterite laser. These measurements demonstrate that the stability of a GPS-disciplined Rb clock is transferred to the comb, resulting in an upper limit on the locked comb's frequency instability of 1.2 x 10(-11) in 1 s, and a relative instability of <3 x 10(-12) in 1 s. The carbon nanotube laser frequency comb offers much promise as a robust and inexpensive all-fiber frequency comb with potential for scaling to higher repetition frequencies.

  15. Precision laser processing for micro electronics and fiber optic manufacturing

    NASA Astrophysics Data System (ADS)

    Webb, Andrew; Osborne, Mike; Foster-Turner, Gideon; Dinkel, Duane W.

    2008-02-01

    The application of laser based materials processing for precision micro scale manufacturing in the electronics and fiber optic industry is becoming increasingly widespread and accepted. This presentation will review latest laser technologies available and discuss the issues to be considered in choosing the most appropriate laser and processing parameters. High repetition rate, short duration pulsed lasers have improved rapidly in recent years in terms of both performance and reliability enabling flexible, cost effective processing of many material types including metal, silicon, plastic, ceramic and glass. Demonstrating the relevance of laser micromachining, application examples where laser processing is in use for production will be presented, including miniaturization of surface mount capacitors by applying a laser technique for demetalization of tracks in the capacitor manufacturing process and high quality laser machining of fiber optics including stripping, cleaving and lensing, resulting in optical quality finishes without the need for traditional polishing. Applications include telecoms, biomedical and sensing. OpTek Systems was formed in 2000 and provide fully integrated systems and sub contract services for laser processes. They are headquartered in the UK and are establishing a presence in North America through a laser processing facility in South Carolina and sales office in the North East.

  16. All-fiber 7 × 1 signal combiner for high power fiber lasers.

    PubMed

    Zhou, Hang; Chen, Zilun; Zhou, Xuanfeng; Hou, Jing; Chen, Jinbao

    2015-04-10

    We present an all-fiber 7×1 signal combiner for high power fiber lasers. Through theoretical analysis, the fabrication method is confirmed and the taper length of the fiber bundle is chosen to be 1 cm to ensure a high transmission efficiency of the combiner. Based on the theoretical results, an all-fiber 7×1 signal combiner with high transmission efficiency is fabricated. A capillary with low refractive index is fused around the bundle of signal fibers to make an additional cladding layer. Then the fiber bundle is tapered to match the core of the output fiber and then spliced with the output fiber. The combiner is tested with a 500 W fiber laser and a temperature increase of 13°C/kW without any active cooling is observed in the combiner. The power transmission efficiency is measured to be close to 99% for each input port and the beam quality M2 is around 10. PMID:25967291

  17. Power scaling of passively phased fiber amplifier arrays

    NASA Astrophysics Data System (ADS)

    Shakir, Sami A.; Culver, Bill; Nelson, Burke; Starcher, Yuji; Bates, George M.; Hedrick, Jerry W., Jr.

    2008-08-01

    Passive phasing of fiber amplifier arrays are promising for the power scaling of high power fiber laser systems. The broadband operation of passively phased systems mitigates nonlinear effects such as Stimulated Brillouin Scattering. This leads to the possibility of scaling the individual fiber amplifiers in the passively phased arrays to multi-kilowatt power levels. In effect, a smaller number of fiber amplifiers can be used compared to other methods of fiber amplifiers combining. We report the passive phasing of 16 Yb-doped fiber amplifiers at 5W each for a total of 80W.

  18. Thin gas cell with GRIN fiber lens for intra-cavity fiber laser gas sensors

    NASA Astrophysics Data System (ADS)

    Li, Mo; Dai, Jing-min; Peng, Gang-ding

    2009-07-01

    Fiber laser gas sensors based on the intra-cavity absorption spectroscopy require the use of gas cells. We propose a simple and reliable gas cell using graded-index fiber lens (GFL) based all-fiber collimator. Conventional gas cells usually utilize direct fiber-to-fiber coupling without collimators or graded-index (GRIN) lens as collimators. Direct fiberto- fiber gas cell has simple configuration, but it suffers from high coupling loss and stray light interference. Gas cells applying fiber pigtailed GRIN lens are advantageous to achieve low coupling loss. However, fiber pigtailed GRIN lens requires accurate and complicated alignment and glue packaging which could compromise long term reliability and thermal stability. The proposed technique fabricates all-fiber collimators by simply splicing a short section of gradedindex fiber to single mode fiber which is both compact and durable. With that collimator, the gas cell can be fabricated very thin and are suitable for extreme environments with high temperature and vibration. In this paper, we have carried out experiment and analysis to evaluate the proposed technique. The coupling efficiency is studied versus different GFL gradient parameter profiles using ray matrix transformation of the complex beam parameter. Experiments are also done to prove the practical feasibility of the collimator. The analysis indicates that gas cell using GFLs can overcome the disadvantages of traditional design; it may replace the conventional gas cells in practical applications.

  19. Double nanosecond pulses generation in ytterbium fiber laser.

    PubMed

    Veiko, V P; Lednev, V N; Pershin, S M; Samokhvalov, A A; Yakovlev, E B; Zhitenev, I Yu; Kliushin, A N

    2016-06-01

    Double pulse generation mode for nanosecond ytterbium fiber laser was developed. Two sequential 60-200 ns laser pulses with variable delay between them were generated by acousto-optic modulator opening with continuous diode pumping. A custom radio frequency generator was developed to produce two sequential "opening" radio pulses with a delay of 0.2-1 μs. It was demonstrated that double pulse generation did not decrease the average laser power while providing the control over the laser pulse power profile. Surprisingly, a greater peak power in the double pulse mode was observed for the second laser pulse. Laser crater studies and plasma emission measurements revealed an improved efficiency of laser ablation in the double pulse mode. PMID:27370433

  20. Double nanosecond pulses generation in ytterbium fiber laser

    NASA Astrophysics Data System (ADS)

    Veiko, V. P.; Lednev, V. N.; Pershin, S. M.; Samokhvalov, A. A.; Yakovlev, E. B.; Zhitenev, I. Yu.; Kliushin, A. N.

    2016-06-01

    Double pulse generation mode for nanosecond ytterbium fiber laser was developed. Two sequential 60-200 ns laser pulses with variable delay between them were generated by acousto-optic modulator opening with continuous diode pumping. A custom radio frequency generator was developed to produce two sequential "opening" radio pulses with a delay of 0.2-1 μs. It was demonstrated that double pulse generation did not decrease the average laser power while providing the control over the laser pulse power profile. Surprisingly, a greater peak power in the double pulse mode was observed for the second laser pulse. Laser crater studies and plasma emission measurements revealed an improved efficiency of laser ablation in the double pulse mode.

  1. Long-term laser frequency stabilization using fiber interferometers

    SciTech Connect

    Kong, Jia; Lucivero, Vito Giovanni; Jiménez-Martínez, Ricardo; Mitchell, Morgan W.

    2015-07-15

    We report long-term laser frequency stabilization using only the target laser and a pair of 5 m fiber interferometers, one as a frequency reference and the second as a sensitive thermometer to stabilize the frequency reference. When used to stabilize a distributed feedback laser at 795 nm, the frequency Allan deviation at 1000 s drops from 5.6 × 10{sup −8} to 6.9 × 10{sup −10}. The performance equals that of an offset lock employing a second, atom-stabilized laser in the temperature control.

  2. Reference beam laser Doppler velocimeter incorporating fiber optic components

    SciTech Connect

    James, S.W.; Lockey, R.A.; Egan, D.; Tatam, R.P.

    1995-12-31

    A compact reference beam laser Doppler velocimeter, constructed using a semiconductor laser diode, optical fiber components and semiconductor detectors, is reported. The device has been designed to overcome many of the problems commonly associated with reference beam configurations. The anemometer may be operated with the laser diode operating in cw and pulsed modes, demonstrating its applicability to wavelength and time division multiplexing schemes for 3D laser Doppler velocimetry. The probe is used to measure the velocity of a spinning disk in the range {minus}20 m/s to +20 m/s.

  3. Highly efficient mid-infrared dysprosium fiber laser.

    PubMed

    Majewski, Matthew R; Jackson, Stuart D

    2016-05-15

    A new, highly efficient and power scalable pump scheme for 3 μm class fiber lasers is presented. Using the free-running 2.8 μm emission from an Er3+-doped fluoride fiber laser to directly excite the upper laser level of the H13/26→H15/26 transition of the Dy3+ ion, output at 3.04 μm was produced with a record slope efficiency of 51%. Using comparatively long lengths of Dy3+-doped fluoride fiber, a maximum emission wavelength of 3.26 μm was measured. PMID:27176955

  4. Miniature ball-tip optical fibers for use in thulium fiber laser ablation of kidney stones

    NASA Astrophysics Data System (ADS)

    Wilson, Christopher R.; Hardy, Luke A.; Kennedy, Joshua D.; Irby, Pierce B.; Fried, Nathaniel M.

    2016-01-01

    Optical fibers, consisting of 240-μm-core trunk fibers with rounded, 450-μm-diameter ball tips, are currently used during Holmium:YAG laser lithotripsy to reduce mechanical damage to the inner lining of the ureteroscope working channel during fiber insertion and prolong ureteroscope lifetime. Similarly, this study tests a smaller, 100-μm-core fiber with 300-μm-diameter ball tip during thulium fiber laser (TFL) lithotripsy. TFL was operated at a wavelength of 1908 nm, with 35-mJ pulse energy, 500-μs pulse duration, and 300-Hz pulse rate. Calcium oxalate/phosphate stone samples were weighed, laser procedure times were measured, and ablation rates were calculated for ball tip fibers, with comparison to bare tip fibers. Photographs of ball tips were taken before and after each procedure to track ball tip degradation and determine number of procedures completed before need for replacement. A high speed camera also recorded the cavitation bubble dynamics during TFL lithotripsy. Additionally, saline irrigation rates and ureteroscope deflection were measured with and without the presence of TFL fiber. There was no statistical difference (P>0.05) between stone ablation rates for single-use ball tip fiber (1.3±0.4 mg/s) (n=10), multiple-use ball tip fiber (1.3±0.5 mg/s) (n=44), and conventional single-use bare tip fibers (1.3±0.2 mg/s) (n=10). Ball tip durability varied widely, but fibers averaged greater than four stone procedures before failure, defined by rapid decline in stone ablation rates. Mechanical damage at the front surface of the ball tip was the limiting factor in fiber lifetime. The small fiber diameter did not significantly impact ureteroscope deflection or saline flow rates. The miniature ball tip fiber may provide a cost-effective design for safe fiber insertion through the ureteroscope working channel and into the ureter without risk of instrument damage or tissue perforation, and without compromising stone ablation efficiency during TFL lithotripsy.

  5. A wavelength-tunable fiber laser based on a twin-core fiber comb filter

    NASA Astrophysics Data System (ADS)

    Zou, Hui; Lou, Shuqin; Yin, Guolu

    2013-02-01

    A wavelength-tunable fiber laser based on a twin-core fiber (TCF) comb filter is proposed and demonstrated. The TCF comb filter is fabricated by splicing a 0.85 m long TCF between two standard single mode fibers (SMFs) and with exhibits a good linear strain characteristic with a sensitivity of 1.23 pm/μɛ. The wavelength of the laser can be linearly tuned from 1558.04 nm to 1553.62 nm by applying an axial strain to the TCF comb filter. The optical signal-to-noise ratio (OSNR) of the fiber laser reaches 45 dB. The 3 dB bandwidth is 0.02 nm. The fluctuation of the laser peak in the output power and the wavelength is less than 0.5 dB and within 0.05 nm, respectively. The fiber laser has the advantages of having a simple structure and stable operation under room temperature.

  6. All-optical fiber anemometer based on laser heated fiber Bragg gratings.

    PubMed

    Gao, Shaorui; Zhang, A Ping; Tam, Hwa-Yaw; Cho, L H; Lu, Chao

    2011-05-23

    A fiber-optic anemometer based on fiber Bragg gratings (FBGs) is presented. A short section of cobalt-doped fiber was utilized to make a fiber-based "hot wire" for wind speed measurement. Fiber Bragg gratings (FBGs) were fabricated in the cobalt-doped fiber using 193 nm laser pulses to serve as localized temperature sensors. A miniature all-optical fiber anemometer is constructed by using two FBGs to determine the dynamic thermal equilibrium between the laser heating and air flow cooling through monitoring the FBGs' central wavelengths. It was demonstrated that the sensitivity of the sensor can be adjusted through the power of pump laser or the coating on the FBG. Experimental results reveal that the proposed FBG-based anemometer exhibits very good performance for wind speed measurement. The resolution of the FBG-based anemometer is about 0.012 m/s for wind speed range between 2.0 m/s and 8.0 m/s.

  7. Wavelength-switchable fiber laser based on temperature-dependent transmittance of a LPFG

    NASA Astrophysics Data System (ADS)

    Anzueto-Sánchez, G.; Castrellon-Uribe, J.; Torres-Gómez, I.; Martínez-Rios, A.; Osuna-Galán, I.

    2011-09-01

    A wavelength-switchable erbium-doped fiber ring laser is demonstrated and reported. The erbium-doped fiber net gain of the fiber laser is modified by controlled heating of a Long Period Fiber Grating (LPFG) inserted into the laser cavity. The rejection band of the LPFG is altered in the resonant wavelength and loss according to the exposed temperature and consequently, the operating wavelength of the fiber laser can be switched from a single wavelength operation at 1563 nm to a simultaneous operation at 1527 and 1563 nm. The laser system can be used as a temperature fiber sensor as well.

  8. Laser diode pumped high efficiency Yb:YAG crystalline fiber waveguide lasers

    NASA Astrophysics Data System (ADS)

    Mu, Xiaodong; Meissner, Stephanie; Meissner, Helmuth

    2015-02-01

    Single-clad and double-clad Yb:YAG crystalline fiber waveguides (CFWs) have been prepared with Adhesive-Free Bonding (AFB®) technology. By using a fiber coupled laser diode as pump source, a single-mode laser with near diffraction limited beam quality M2=1.02 has been demonstrated in a double-clad CFW. The laser output power and efficiency are 13.2 W and 34%, respectively. In a single-clad CFW, core pumping was used. The laser output has top-hat beam profile. An output power of 28 W and a slope efficiency of 78% have been achieved respectively.

  9. Reflectivity of transient Bragg reflection gratings in fiber laser with laser-wavelength self-sweeping.

    PubMed

    Peterka, P; Honzátko, P; Koška, P; Todorov, F; Aubrecht, J; Podrazký, O; Kašík, I

    2014-12-01

    We present a method for the estimation of the reflection spectra of transient gratings in rare-earth doped fiber lasers having a self-sweeping of laser wavelength. We show that high reflectivities of several tens of percent can be achieved. An example of this is demonstrated through the use of an experimental Yb-doped Fabry-Perot fiber laser. The gratings' spectra are highly asymmetric due to the apodization of the refractive index modulation. The importance of the self-sweeping regime for triggering self-Q-switched laser instabilities is discussed. PMID:25606932

  10. Microstructured optical fiber for in-phase mode selection in multicore fiber lasers.

    PubMed

    Chuncan, Wang; Fan, Zhang; Chu, Liu; Shuisheng, Jian

    2008-04-14

    The mode-selection method based on a single-mode microstructured optical fiber (MOF) in the multicore fiber (MCF) lasers is presented. With an appropriate choice of the designed parameters of the MOF, the power coupling coefficient between the fundamental mode (FM) of the MOF and the in-phase mode can be much higher than those between the FM and the other supermodes. As a result, the in-phase mode has the highest power reflection on the right-hand side of the MCF laser cavity, and dominates the output laser power. Compared to the MCF lasers based on the free-space Talbot cavity method, the MCF lasers with the MOF as a mode-selection component have higher effectiveness of the in-phase mode selection.

  11. Parabolic similariton Yb-fiber laser with triangular pulse evolution

    NASA Astrophysics Data System (ADS)

    Wang, Sijia; Wang, Lei

    2016-04-01

    We propose a novel mode-locked fiber laser design which features a passive nonlinear triangular pulse formation and self-similar parabolic pulse amplification intra cavity. Attribute to the nonlinear reshaping progress in the passive fiber, a triangular-profiled pulse with negative-chirp is generated and paved the way for rapid and efficient self-similar parabolic evolution in a following short-length high-gain fiber. In the meanwhile, the accompanied significantly compressed narrow spectrum from this passive nonlinear reshaping also gives the promise of pulse stabilization and gain-shaping robustness without strong filtering. The resulting short average intra-cavity pulse duration, low amplified spontaneous emission (ASE) and low intra-cavity power loss are essential for the low-noise operation. Simulations predict this modelocked fiber laser allows for high-energy ultra-short transform-limited pulse generation exceeding the gain bandwidth. The output pulse has a de-chirped duration (full-width at half maximum, FWHM) of 27 fs. In addition to the ultrafast laser applications, the proposed fiber laser scheme can support low-noise parabolic and triangular pulse trains at the same time, which are also attractive in optical pulse shaping, all-optical signal processing and high-speed communication applications.

  12. Diffusing fiber tips for high-power medical laser applications

    NASA Astrophysics Data System (ADS)

    Schmitz, Christoph H.; Spaniol, Stefan B.; Abraham, Volkhard; Ashraf, Naim; Neuberger, Wolfgang; Ertmer, Wolfgang

    1995-01-01

    For most applications in laser medicine suitable delivery systems are required. We developed fiber optic based diffusing tips especially for photodynamic therapy (PDT) and laser induced thermotherapy (LITT). To realize an adequate emitting cylindrical diffuser the fiber core was abraded by a precision cutter. Hence, the use of scattering media such as TiO2-doped polymers is avoided. Because the diffuser size is mainly determined by the manipulated fiber and a surrounding glass capillary, one can realize small diameters ((phi) approximately equals 3 mm). The laser light is distributed mainly by surface scattering and total reflection at the fiber air boundary. Because the use of absorbing media is avoided, it is possible to apply high laser power as necessary in LITT and pulsed PDT. We produced diffusing tips with lengths of several centimeters and typical diameters of 3 mm. By controlling the fiber-shaping process, a homogeneous intensity profile or even special designs can be achieved. The control is done by either on-line camera surveillance or calculated predictions. A delivery system especially for the photodynamical treatment of female cervix dysplasia has been designed.

  13. Laser heated pedestal growth system commissioning and fiber processing

    NASA Astrophysics Data System (ADS)

    Buric, Michael; Yip, M. J.; Chorpening, Ben; Ohodnicki, Paul

    2016-05-01

    A new Laser Heated Pedestal Growth system was designed and fabricated using various aspects of effective legacy designs for the growth of single-crystal high-temperature-compatible optical fibers. The system is heated by a 100-watt, DC driven, CO2 laser with PID power control. Fiber diameter measurements are performed using a telecentric video system which identifies the molten zone and utilizes edge detection algorithms to report fiber-diameter. Beam shaping components include a beam telescope; along with gold-coated reflaxicon, turning, and parabolic focusing mirrors consistent with similar previous systems. The optical system permits melting of sapphire-feedstock up to 1.5mm in diameter for growth. Details regarding operational characteristics are reviewed and properties of single-crystal sapphire fibers produced by the system are evaluated. Aspects of the control algorithm efficacy will be discussed, along with relevant alternatives. Finally, some new techniques for in-situ processing making use of the laser-heating system are discussed. Ex-situ fiber modification and processing are also examined for improvements in fiber properties.

  14. Laser to single-mode-fiber coupling: A laboratory guide

    NASA Technical Reports Server (NTRS)

    Ladany, I.

    1992-01-01

    All the information necessary to achieve reasonably efficient coupling of semiconductor lasers to single mode fibers is collected from the literature, reworked when necessary, and presented in a mostly tabular form. Formulas for determining the laser waist radius and the fiber mode radius are given. Imaging relations connecting these values with the object and image distances are given for three types of lenses: ball, hemisphere, and Gradient Index (GRIN). Sources for these lenses are indicated, and a brief discussion is given about ways of reducing feedback effects.

  15. Fiber optic coherent laser radar 3d vision system

    SciTech Connect

    Sebastian, R.L.; Clark, R.B.; Simonson, D.L.

    1994-12-31

    Recent advances in fiber optic component technology and digital processing components have enabled the development of a new 3D vision system based upon a fiber optic FMCW coherent laser radar. The approach includes a compact scanner with no moving parts capable of randomly addressing all pixels. The system maintains the immunity to lighting and surface shading conditions which is characteristic of coherent laser radar. The random pixel addressability allows concentration of scanning and processing on the active areas of a scene, as is done by the human eye-brain system.

  16. Multichannel polarization stabilization for coherently combined fiber laser arrays.

    PubMed

    Goodno, Gregory D; McNaught, Stuart J; Weber, Mark E; Weiss, S Benjamin

    2012-10-15

    We demonstrate a simplified approach toward active polarization control in coherently combined laser architectures. By leveraging optical phase dithers applied by a phase controller, polarization error signals are generated for an entire laser array from a single beam sample of the combined output, enabling closed-loop polarization locking of non-polarization-maintaining fibers. The concept is shown to be compatible with both hill-climbing and synchronous multidither phase control methods. Simultaneous phase locking and polarization locking was demonstrated for a five-fiber array with >99% phasing efficiency and >20 dB polarization extinction ratio.

  17. A novel fiber laser development for photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Yavas, Seydi; Aytac-Kipergil, Esra; Arabul, Mustafa U.; Erkol, Hakan; Akcaalan, Onder; Eldeniz, Y. Burak; Ilday, F. Omer; Unlu, Mehmet B.

    2013-03-01

    Photoacoustic microscopy, as an imaging modality, has shown promising results in imaging angiogenesis and cutaneous malignancies like melanoma, revealing systemic diseases including diabetes, hypertension, tracing drug efficiency and assessment of therapy, monitoring healing processes such as wound cicatrization, brain imaging and mapping. Clinically, photoacoustic microscopy is emerging as a capable diagnostic tool. Parameters of lasers used in photoacoustic microscopy, particularly, pulse duration, energy, pulse repetition frequency, and pulse-to-pulse stability affect signal amplitude and quality, data acquisition speed and indirectly, spatial resolution. Lasers used in photoacoustic microscopy are typically Q-switched lasers, low-power laser diodes, and recently, fiber lasers. Significantly, the key parameters cannot be adjusted independently of each other, whereas microvasculature and cellular imaging, e.g., have different requirements. Here, we report an integrated fiber laser system producing nanosecond pulses, covering the spectrum from 600 nm to 1100 nm, developed specifically for photoacoustic excitation. The system comprises of Yb-doped fiber oscillator and amplifier, an acousto-optic modulator and a photonic-crystal fiber to generate supercontinuum. Complete control over the pulse train, including generation of non-uniform pulse trains, is achieved via the AOM through custom-developed field-programmable gate-array electronics. The system is unique in that all the important parameters are adjustable: pulse duration in the range of 1-3 ns, pulse energy up to 10 μJ, repetition rate from 50 kHz to 3 MHz. Different photocoustic imaging probes can be excited with the ultrabroad spectrum. The entire system is fiber-integrated; guided-beam-propagation rendersit misalignment free and largely immune to mechanical perturbations. The laser is robust, low-cost and built using readily available components.

  18. Gain enhanced L-band optical fiber amplifiers and tunable fiber lasers with erbium-doped fibers

    NASA Astrophysics Data System (ADS)

    Chen, H.; Leblanc, M.; Schinn, G. W.

    2003-02-01

    We report on the experimental investigation of gain enhanced L-band erbium-doped fiber amplifiers (EDFA) by either recycling residual ASE or using a second C-band wavelength pump laser and on the experimental demonstration of L-band tunable erbium-doped fiber ring lasers. We observed that by reflecting ASE from pumped erbium-doped fiber (EDF) the L-band EDFA gain can be enhanced of 2-15 dB depending on amplifier designs. We also studied wavelength and power dependence of second pump laser on the gain enhanced L-band EDFA and found that an optimum wavelength for second pump laser was between 1550 and 1560 nm. Finally, a L-band tunable erbium-doped fiber laser was also constructed in which lazing oscillation was observed closed to 1624 nm by recycling residual ASE. This L-band tunable laser has a line-width of about 300 MHz, an output power of 1 mW, and a signal to source spontaneous emission ratio of 60 dB.

  19. Remote Fiber Laser Cutting System for Dismantling Glass Melter - 13071

    SciTech Connect

    Mitsui, Takashi; Miura, Noriaki; Oowaki, Katsura; Kawaguchi, Isao; Miura, Yasuhiko; Ino, Tooru

    2013-07-01

    Since 2008, the equipment for dismantling the used glass melter has been developed in High-level Liquid Waste (HLW) Vitrification Facility in the Japanese Rokkasho Reprocessing Plant (RRP). Due to the high radioactivity of the glass melter, the equipment requires a fully-remote operation in the vitrification cell. The remote fiber laser cutting system was adopted as one of the major pieces of equipment. An output power of fiber laser is typically higher than other types of laser and so can provide high-cutting performance. The fiber laser can cut thick stainless steel and Inconel, which are parts of the glass melter such as casings, electrodes and nozzles. As a result, it can make the whole of the dismantling work efficiently done for a shorter period. Various conditions of the cutting test have been evaluated in the process of developing the remote fiber cutting system. In addition, the expected remote operations of the power manipulator with the laser torch have been fully verified and optimized using 3D simulations. (authors)

  20. Regimes of operation states in passively mode-locked fiber soliton ring laser

    NASA Astrophysics Data System (ADS)

    Gong, Y. D.; Shum, P.; Tang, D. Y.; Lu, C.; Guo, X.; Paulose, V.; Man, W. S.; Tam, H. Y.

    2004-06-01

    The principal of passively mode-locked fiber soliton ring lasers is summarized, including its three output operation states: normal soliton, bound-solitons and noise-like pulse. The experimental results of the passively mode-locked fiber soliton ring lasers developed by us are given. Bound-solitons with different discrete separations and three-bound-solitons state have been observed in our fiber laser for the first time. The relationship among three operation states in fiber soliton laser is analyzed.

  1. Single-Frequency Narrow Linewidth 2 Micron Fiber Laser

    NASA Technical Reports Server (NTRS)

    Jiang, Shibin (Inventor); Spiegelberg, Christine (Inventor); Luo, Tao (Inventor)

    2006-01-01

    A compact single frequency, single-mode 2 .mu.m fiber laser with narrow linewidth, <100 kHz and preferably <100 kHz, is formed with a low phonon energy glass doped with triply ionized rare-earth thulium and/or holmium oxide and fiber gratings formed in sections of passive silica fiber and fused thereto. Formation of the gratings in passive silica fiber both facilitates splicing to other optical components and reduces noise thus improving linewidth. An increased doping concentration of 0.5 to 15 wt. % for thulium, holmium or mixtures thereof produces adequate gain, hence output power levels for fiber lengths less than 5 cm and preferably less than 3 cm to enable single-frequency operation.

  2. Ultrafast pulses from a mid-infrared fiber laser.

    PubMed

    Hu, Tomonori; Jackson, Stuart D; Hudson, Darren D

    2015-09-15

    Ultrafast laser pulses at mid-infrared wavelengths (2-20 μm) interact strongly with molecules due to the resonance with their vibration modes. This enables their application in frequency comb-based sensing and laser tissue surgery. Fiber lasers are ideal to achieve these pulses, as they are compact, stable, and efficient. We extend the performance of these lasers with the production of 6.4 kW at a wavelength of 2.8 μm with complete electric field retrieval using frequency-resolved optical gating techniques. Contrary to the problems associated with achieving a high average power, fluoride fibers have now shown the capability of operating in the ultrafast, high-peak-power regime. PMID:26371902

  3. Fiber-laser-based photoacoustic microscopy and melanoma cell detection

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Maslov, Konstantin; Zhang, Yu; Hu, Song; Yang, Lihmei; Xia, Younan; Liu, Jian; Wang, Lihong V.

    2011-01-01

    For broad applications in biomedical research involving functional dynamics and clinical studies, a photoacoustic microscopy system should be compact, stable, and fast. In this work, we use a fiber laser as the photoacoustic irradiation source to meet these goals. The laser system measures 45×56×13 cm3. The stability of the laser is attributed to the intrinsic optical fiber-based light amplification and output coupling. Its 50-kHz pulse repetition rate enables fast scanning or extensive signal averaging. At the laser wavelength of 1064 nm, the photoacoustic microscope still has enough sensitivity to image small blood vessels while providing high optical absorption contrast between melanin and hemoglobin. Label-free melanoma cells in flowing bovine blood are imaged in vitro, yielding measurements of both cell size and flow speed.

  4. Defect visualization in carbon fiber composite using laser ultrasound

    SciTech Connect

    Dewhurst, R.J.; He, Ruhua; Shan, Qing . Dept. of Instrumentation and Analytical Science)

    1993-08-01

    A non-contacting laser ultrasound system has been developed to visualize laminar defects in carbon fiber composite materials. Laser-generated ultrasound (LGU) was produced from a Nd:YAG Q-switched laser. Ultrasound was detected with the use of an actively stabilized Fabry-Perot interferometer using a 400 mW argon-ion laser source. It detected ultrasound in a typical frequency range of 1 to 10 MHz. Through-transmission C-scan measurements were made in carbon fiber composite materials of thickness 1 to 20 mm. Peak-to-peak amplitudes of the first longitudinal ultrasonic pulse were measured, with attenuation used as the basis of defect examination. Digital filtering was adopted to enhance defect visibility. Results showed that images with size resolution better than 1 mm can be achieved. Such measurements take into account any variation of surface reflectivity which can arise in industrial materials.

  5. Laser Processing of Carbon Fiber Reinforced Plastics - Release of Carbon Fiber Segments During Short-pulsed Laser Processing of CFRP

    NASA Astrophysics Data System (ADS)

    Walter, Juergen; Brodesser, Alexander; Hustedt, Michael; Bluemel, Sven; Jaeschke, Peter; Kaierle, Stefan

    Cutting and ablation using short-pulsed laser radiation are promising technologies to produce or repair CFRP components with outstanding mechanical properties e.g. for automotive and aircraft industry. Using sophisticated laser processing strategies and avoiding excessive heating of the workpiece, a high processing quality can be achieved. However, the interaction of laser radiation and composite material causes a notable release of hazardous substances from the process zone, amongst others carbon fiber segments or fibrous particles. In this work, amounts and geometries of the released fiber segments are analyzed and discussed in terms of their hazardous potential. Moreover, it is investigated to what extent gaseous organic process emissions are adsorbed at the fiber segments, similar to an adsorption of volatile organic compounds at activated carbon, which is typically used as filter material.

  6. Fiber laser beam combining and power scaling progress: Air Force Research Laboratory Laser Division

    NASA Astrophysics Data System (ADS)

    Wagner, T. J.

    2012-02-01

    Numerous achievements have been made recently by researchers in the areas of fiber laser beam combining and power scaling. Industry has demonstrated multi-kW power from a single fiber amplifier, and a US national laboratory has coherently combined eight fiber amplifiers totaling 4 kW. This paper will survey the recent literature and then focus on fiber laser results from the Laser Division, Directed Energy Directorate of the Air Force Research Laboratory (AFRL). Progress has been made in the power scaling of narrow-linewidth fiber amplifiers, and we are transitioning lessons learned from PCF power scaling into monolithic architectures. SBS suppression has been achieved using a variety of techniques to lower the Brillioun gain, including acoustically tailored fiber, laser gain competition resulting from multitone seeding and inducing a longitudinal thermal gradient. We recently demonstrated a 32-channel coherent beam combination result using AFRL's phaselocking technique and are focused on exploring the limitations of this technique including linewidth broadening, kW-induced phase nonlinearities and auto-tuning methods for large channel counts. Additionally, we have recently refurbished our High Energy Laser Joint Technology Office-sponsored 16-amplifier fiber testbed to meet strict PER, spatial drift, power stability and beam quality requirements.

  7. [INVITED] Multiwavelength operation of erbium-doped fiber-ring laser for temperature measurements

    NASA Astrophysics Data System (ADS)

    Diaz, S.; Lopez-Amo, M.

    2016-04-01

    In this work, simultaneous lasing at up to eight wavelengths is demonstrated in a multi-wavelength erbium-doped fiber ring laser previously reported. This is achieved by introducing a feedback fiber loop in a fiber ring cavity. Eight-wavelength laser emission lines were obtained simultaneously in single-longitudinal mode operation showing a power instability lower than 0.8 dB, and an optical signal-to-noise ratio higher than 42 dB for all the emitted wavelengths. The fiber Bragg gratings give this source the possibility to be also used as sensor-network multiplexing scheme. The application of this system for remote temperature measurements has been demonstrated obtaining good time stability results.

  8. Torsion sensing characteristics of long period fiber gratings fabricated by femtosecond laser in optical fiber

    NASA Astrophysics Data System (ADS)

    Duan, Ji'an; Xie, Zheng; Wang, Cong; Zhou, Jianying; Li, Haitao; Luo, Zhi; Chu, Dongkai; Sun, Xiaoyan

    2016-09-01

    With the alignment of the fiber core systems containing dual-CCDs and high-precision electric displacement platform, twisted long period fiber gratings (T-LPFGs) were fabricated in two different twisted SMF-28 fibers by femtosecond laser. The torsion characteristics of the T-LPFGs were experimentally and theoretical investigated and demonstrated in this study. The achieved torsion sensitivity is 117.4 pm/(rad/m) in the torsion range -105-0 rad/m with a linearity of 0.9995. Experimental results show that compared with the ordinary long period fiber gratings, the resonance wavelength of the gratings presents an opposite symmetrical shift depending on the twisting direction after the applied torsion is removed. In addition, high sensitivity could be obtained, which is very suitable for the applications in the torsion sensor. These results are important for the design of new torsion sensors based on T-LPFGs fabricated by femtosecond laser.

  9. A High Power Frequency Doubled Fiber Laser

    NASA Technical Reports Server (NTRS)

    Thompson, Robert J.; Tu, Meirong; Aveline, Dave; Lundblad, Nathan; Maleki, Lute

    2003-01-01

    This viewgraph presentation reports on the development of a high power 780 nm laser suitable for space applications of laser cooling. A possible solution is to use frequency doubling of high power 1560 nm telecom lasers. The presentation shows a diagram of the frequency conversion, and a graph of the second harmonic generation in one crystal, and the use of the cascading crystals. Graphs show the second harmonic power as a function of distance between crystals, second harmonic power vs. pump power, tunability of laser systems.

  10. Chaotic dynamics in erbium-doped fiber ring lasers

    SciTech Connect

    Abarbanel, H.D.; Kennel, M.B.; Buhl, M.; Lewis, C.T. )

    1999-09-01

    Chaotically oscillating rare-earth-doped fiber ring lasers (DFRLs) may provide an attractive way to exploit the broad bandwidth available in an optical communications system. Recent theoretical and experimental investigations have successfully shown techniques to modulate information onto the wide-band chaotic oscillations, transmit that signal along an optical fiber, and demodulate the information at the receiver. We develop a theoretical model of a DFRL and discuss an efficient numerical simulation which includes intrinsic linear and nonlinear induced birefringence, both transverse polarizations, group velocity dispersion, and a finite gain bandwidth. We analyze first a configuration with a single loop of optical fiber containing the doped fiber amplifier, and then, as suggested by Roy and VanWiggeren, we investigate a system with two rings of optical fiber[emdash]one made of passive fiber alone. The typical round-trip time for the passive optical ring connecting the erbium-doped amplifier to itself is 200 ns, so [approx]10[sup 5] round-trips are required to see the slow effects of the population inversion dynamics in this laser system. Over this large number of round-trips, physical effects like GVD and the Kerr nonlinearity, which may appear small at our frequencies and laser powers via conventional estimates, may accumulate and dominate the dynamics. We demonstrate from our model that chaotic oscillations of the ring laser with parameters relevant to erbium-doped fibers arises from the nonlinear Kerr effect and not from interplay between the atomic population inversion and radiation dynamics. thinsp [copyright] [ital 1999] [ital The American Physical Society

  11. Characterization of holmium fibers with various concentrations for fiber laser applications around 2.1 μm

    NASA Astrophysics Data System (ADS)

    Aubrecht, Jan; Peterka, Pavel; Honzatko, Pavel; Baravets, Yauhen; Jelinek, Michal; Kubecek, Vaclav; Pawliszewska, Maria; Sotor, Jaroslaw; Sobon, Grzegorz; Abramski, Krzysztof M.; Kasik, Ivan

    2016-04-01

    In this work, we present experimental results of characterization of the developed holmium-doped silica-based optical fibers with holmium ions concentrations in the range from 1000 to 10000 ppm. The fibers were fabricated by the modified chemical vapor deposition and solution doping method. They were characterized in terms of their spectral attenuation, refractive index profile, and especially performance in fiber laser. Simultaneously, two different fiber laser setups were tested. In the first one, holmium-doped fiber in Fabry-Perot configuration was pumping by in house developed thulium-doped fiber laser in ring arrangement. In the second one, bulk-optic pump-coupling configuration, consisted of a commercially available thulium fiber laser emitting at 1940 nm and system of lenses and mirrors was used. We have focused on comparison of laser output powers, slope efficiencies, and laser thresholds for individual holmiumdoped fiber in these different laser arrangements. Finally, the application of the developed fiber in subpicosecond fiber laser with graphene-based saturable absorber for mode-locking operation was investigated.

  12. Advanced experiments with an erbium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Marques, Paulo V. S.; Marques, Manuel B.; Rosa, Carla C.

    2014-07-01

    This communication describes an optical hands-on fiber laser experiment aimed at advanced college courses. Optical amplifiers and laser sources represent very important optical devices in numerous applications ranging from telecommunications to medicine. The study of advanced photonics experiments is particularly relevant at undergraduate and master level. This paper discusses the implementation of an optical fiber laser made with a cavity built with two tunable Bragg gratings. This scheme allows the students to understand the laser working principles as a function of the laser cavity set-up. One or both of the gratings can be finely tuned in wavelength through applied stress; therefore, the degree of spectral mismatch of the two gratings can be adjusted, effectively changing the cavity feedback. The impact of the cavity conditions on the laser threshold, spectrum and efficiency is analyzed. This experiment assumes that in a previous practice, the students should had already characterized the erbium doped fiber in terms of absorption and fluorescent spectra, and the spectral gain as a function of pump power.

  13. High-brightness power delivery for fiber laser pumping: simulation and measurement of low-NA fiber guiding

    NASA Astrophysics Data System (ADS)

    Yanson, Dan; Levy, Moshe; Peleg, Ophir; Rappaport, Noam; Shamay, Moshe; Dahan, Nir; Klumel, Genady; Berk, Yuri; Baskin, Ilya

    2015-02-01

    Fiber laser manufacturers demand high-brightness laser diode pumps delivering optical pump energy in both a compact fiber core and narrow angular content. A pump delivery fiber of a 105 μm core and 0.22 numerical aperture (NA) is typically used, where the fiber NA is under-filled to ease the launch of laser diode emission into the fiber and make the fiber tolerant to bending. At SCD, we have developed multi-emitter fiber-coupled pump modules that deliver 50 W output from a 105 μm, 0.15 NA fiber at 915, 950 and 976 nm wavelengths enabling low-NA power delivery to a customer's fiber laser network. In this work, we address the challenges of coupling and propagating high optical powers from laser diode sources in weakly guiding step-index multimode fibers. We present simulations of light propagation inside the low-NA multimode fiber for different launch conditions and fiber bend diameters using a ray-racing tool and demonstrate how these affect the injection of light into cladding-bounded modes. The mode filling at launch and source NA directly limit the bend radius at which the fiber can be coiled. Experimentally, we measure the fiber bend loss using our 50 W fiber-coupled module and establish a critical bend diameter in agreement with our simulation results. We also employ thermal imaging to investigate fiber heating caused by macro-bends and angled cleaving. The low mode filling of the 0.15 NA fiber by our brightness-enhanced laser diodes allows it to be coiled with diameters down to 70 mm at full operating power despite the low NA and further eliminates the need for mode-stripping at fiber combiners and splices downstream from our pump modules.

  14. Wavelength-tunable, passively mode-locked fiber laser based on graphene and chirped fiber Bragg grating.

    PubMed

    He, Xiaoying; Liu, Zhi-bo; Wang, D N

    2012-06-15

    We demonstrate a wavelength-tunable, passively mode-locked erbium-doped fiber laser based on graphene and chirped fiber Bragg grating. The saturable absorber used to enable passive mode-locking in the fiber laser is a section of microfiber covered by graphene film, which allows light-graphene interaction via the evanescent field of the microfiber. The wavelength of the laser can be continuously tuned by adjusting the chirped fiber Bragg grating, while maintaining mode-locking stability. Such a system has high potential in tuning the mode-locked laser pulses across a wide wavelength range.

  15. Fiber-coupled laser-driven flyer plates system.

    PubMed

    Zhao, Xing-hai; Zhao, Xiang; Shan, Guang-cun; Gao, Yang

    2011-04-01

    A system for the launch of hypervelocity flyer plates has been developed and characterized. Laser-driven flyers were launched from the substrate backed aluminum-alumina-aluminum sandwiched films. A laser-induced plasma is used to drive flyers with typical thickness of 5.5 μm and diameters of less than 1 mm, to achieve velocities of a few km/s. These flyer plates have many applications, from micrometeorite simulation to laser ignition. The flyer plates considered here have up to three layers: an ablation layer, to form plasma; an insulating layer; and a final, thicker layer that forms the final flyer plates. This technique was developed aiming at improving the energy efficiency of the system. The kinetic energy of flyers launched with the additional layer was found to be enhanced by a factor of near 2 (up to 30%). The optical fiber delivery system governs the output spatial profile of the laser spot and power capacity. Moreover, a technique for coupling high-power laser pulses into an optical fiber has been developed. This fiber optic system has been successfully used to launch flyer plates, and the surface finishing quality of the fiber was found to be an important factor. Importantly, measurements of the flyer performance including the mean velocities and planarity were made by an optical time-of-arrival technique using an optical fiber array probe, demonstrating the good planarity of the flyer and the achievable average velocity of 1.7 km/s with approaching 1 mm diameter. Finally, the relationship between flyer velocities and incident laser pulses energy was also investigated.

  16. Fiber-coupled laser-driven flyer plates system

    NASA Astrophysics Data System (ADS)

    Zhao, Xing-hai; Zhao, Xiang; Shan, Guang-cun; Gao, Yang

    2011-04-01

    A system for the launch of hypervelocity flyer plates has been developed and characterized. Laser-driven flyers were launched from the substrate backed aluminum-alumina-aluminum sandwiched films. A laser-induced plasma is used to drive flyers with typical thickness of 5.5 μm and diameters of less than 1 mm, to achieve velocities of a few km/s. These flyer plates have many applications, from micrometeorite simulation to laser ignition. The flyer plates considered here have up to three layers: an ablation layer, to form plasma; an insulating layer; and a final, thicker layer that forms the final flyer plates. This technique was developed aiming at improving the energy efficiency of the system. The kinetic energy of flyers launched with the additional layer was found to be enhanced by a factor of near 2 (up to 30%). The optical fiber delivery system governs the output spatial profile of the laser spot and power capacity. Moreover, a technique for coupling high-power laser pulses into an optical fiber has been developed. This fiber optic system has been successfully used to launch flyer plates, and the surface finishing quality of the fiber was found to be an important factor. Importantly, measurements of the flyer performance including the mean velocities and planarity were made by an optical time-of-arrival technique using an optical fiber array probe, demonstrating the good planarity of the flyer and the achievable average velocity of 1.7 km/s with approaching 1 mm diameter. Finally, the relationship between flyer velocities and incident laser pulses energy was also investigated.

  17. Fiber-optic manipulation of urinary stone phantoms using holmium:YAG and thulium fiber lasers

    NASA Astrophysics Data System (ADS)

    Blackmon, Richard L.; Case, Jason R.; Trammell, Susan R.; Irby, Pierce B.; Fried, Nathaniel M.

    2013-02-01

    Fiber-optic attraction of urinary stones during laser lithotripsy may be exploited to manipulate stone fragments inside the urinary tract without mechanical grasping tools, saving the urologist time and space in the ureteroscope working channel. We compare thulium fiber laser (TFL) high pulse rate/low pulse energy operation to conventional holmium:YAG low pulse rate/high pulse energy operation for fiber-optic suctioning of plaster-of-paris (PoP) stone phantoms. A TFL (wavelength of 1908 nm, pulse energy of 35 mJ, pulse duration of 500 μs, and pulse rate of 10 to 350 Hz) and a holmium laser (wavelength of 2120 nm, pulse energy of 35 to 360 mJ, pulse duration of 300 μs, and pulse rate of 20 Hz) were tested using 270-μm-core optical fibers. A peak drag speed of ˜2.5 mm/s was measured for both TFL (35 mJ and 150 to 250 Hz) and holmium laser (210 mJ and 20 Hz). Particle image velocimetry and thermal imaging were used to track water flow for all parameters. Fiber-optic suctioning of urinary stone phantoms is feasible. TFL operation at high pulse rates/low pulse energies is preferable to holmium operation at low pulse rates/high pulse energies for rapid and smooth stone pulling. With further development, this novel technique may be useful for manipulating stone fragments in the urinary tract.

  18. Distributed feedback imprinted electrospun fiber lasers.

    PubMed

    Persano, Luana; Camposeo, Andrea; Del Carro, Pompilio; Fasano, Vito; Moffa, Maria; Manco, Rita; D'Agostino, Stefania; Pisignano, Dario

    2014-10-01

    Imprinted, distributed feedback lasers are demonstrated on individual, active electrospun polymer nanofibers. In addition to advantages related to miniaturization, optical confinement and grating nanopatterning lead to a significant threshold reduction compared to conventional thin-film lasers. The possibility of imprinting arbitrary photonic crystal geometries on electrospun lasing nanofibers opens new opportunities for realizing optical circuits and chips.

  19. Diode-pumped, electrically tunable erbium-doped fiber-ring laser with fiber Fabry-Perot etalon

    SciTech Connect

    Zyskind, J.L.; Sulfoff, J.W.; Stone, J.; DiGiovanni, D.J.; Stulz, L.W.

    1992-05-22

    An all fiber, diode-pumped, electrically tunable ring laser is reported. Gain is provided by an erbium-doped fiber and tuning by a Fiber Fabry-Perot etalon. The threshold at 1.566 um is 2.9 mW, the slope efficiency is 0.15 and the output 4.2 mW with 32 mW of pump power. The output wavelength can be tuned from 1.525 to 1.586 um with a variation in power of less than 3.5 dB.

  20. Multi-parameter sensor based on random fiber lasers

    NASA Astrophysics Data System (ADS)

    Xu, Yanping; Zhang, Mingjiang; Lu, Ping; Mihailov, Stephen; Bao, Xiaoyi

    2016-09-01

    We demonstrate a concept of utilizing random fiber lasers to achieve multi-parameter sensing. The proposed random fiber ring laser consists of an erbium-doped fiber as the gain medium and a random fiber grating as the feedback. The random feedback is effectively realized by a large number of reflections from around 50000 femtosecond laser induced refractive index modulation regions over a 10cm standard single mode fiber. Numerous polarization-dependent spectral filters are formed and superimposed to provide multiple lasing lines with high signal-to-noise ratio up to 40dB, which gives an access for a high-fidelity multi-parameter sensing scheme. The number of sensing parameters can be controlled by the number of the lasing lines via input polarizations and wavelength shifts of each peak can be explored for the simultaneous multi-parameter sensing with one sensing probe. In addition, the random grating induced coupling between core and cladding modes can be potentially used for liquid medical sample sensing in medical diagnostics, biology and remote sensing in hostile environments.

  1. Optical characteristics of side-firing fibers for laser prostatectomy

    NASA Astrophysics Data System (ADS)

    van Vliet, Remco J.; Molenaar, David G.; van Swol, Christiaan F. P.; Boon, Tom A.; Verdaasdonck, Rudolf M.

    1994-12-01

    Various side firing fibers have been developed in the past two years for Nd:YAG laser treatment of Benign Prostatic Hyperplasia (BPH). The method to deflect the beam laterally determines the power density at the urethral wall and consequent tissue effects. In this study the optical characteristics of eight different side firing fibers were evaluated by measuring transmission and bean profiles. A scanning device was developed which consisted of a sensor that was translated in two directions in front of the side firing fiber, while submerged in water. The transmission of the devices was measured by placing them in a transparent water filled tank in front of a power meter. The scans provided a three dimensional power density distribution of the fibers. The exit angle varied from 41 to 100 degrees, with respect to the fiber axis. The divergence of the beams was different in two directions, resulting in an elliptical spot at the urethral wall. The spot size ranged from 6.6 to 17.5 mm2 for a clinically relevant situation at 5 mm from the tip. The transmission of a new side firing fiber ranged from 43 to 83 percent compared to a bare fiber. Due to the unique optical characteristics of each device, there is a large variation in the power density at the tissue and thus a specific dosimetry protocol for each fiber is required.

  2. High-power soliton fiber laser based on pulse width control with chirped fiber Bragg gratings

    SciTech Connect

    Fermann, M.E.; Sugden, K.; Bennion, I.

    1995-01-15

    Chirped fiber Bragg gratings control the pulse width and energy in Kerr mode-locked erbium fiber soliton lasers. We create high-energy pulses by providing large amounts of excessive negative dispersion, which increases the pulse width while keeping the nonlinearity of the cavity constant. With a chirped fiber grating of 3.4-ps{sup 2} dispersion, 3-ps pulses with an energy content higher than 1 nJ are generated at a repetition rate of 27 MHz. By controlling the polarization state in the cavity, we obtain a tuning range from 1.550 to 1.562 {mu}m.

  3. Ultra-flat supercontinuum generation in cascaded photonic crystal fiber with picosecond fiber laser pumping

    NASA Astrophysics Data System (ADS)

    Zhang, Huanian; Li, Ping

    2016-08-01

    In this letter, a new method for achieving ultra-flat supercontinuum generation is proposed. A picosecond fiber laser was used as the pump source, in a cascaded photonic crystal fiber, ultra-flat supercontinuum generation spectrum at 3 dB level from 1070 up to 1630 nm is obtained, to our knowledge, the 3 dB bandwidth of 560 nm is the most flat supercontinuum generation obtained in photonic crystal fibers, the results indicated that our method is efficient for achieving ultra-flat supercontinuum, which will promote the technical applications of supercontinuum.

  4. Optical-fiber-coupled optical bistable semiconductor lasers

    SciTech Connect

    Zhing Lichen; Tang Yunxin; Qin Ying; Guo Yili

    1986-12-01

    A compact, low input power optical bistable device, consisting of a photodetector, an optical fiber directional coupler, and a semiconductor laser diode, was presented. The principle is described graphically to explain the observed effects such as hysteresis, differential operational gain and memory functions.

  5. Frequency chirping in semiconductor-optical fiber ring laser

    SciTech Connect

    Zhang, Jiangping; Ye, Peida )

    1990-01-01

    In this letter, a complete small-signal analysis for frequency chirping in the semiconductor-optical fiber ring laser is presented. It shows that chirp-to-power ratio (CPR) strongly depends on the junction phase shift, the optical coupling, and the phase detuning between two cavities, especially if the modulation frequency is below the gigahertz range. 7 refs.

  6. Constant Refractive Index Multi-Core Fiber Laser

    SciTech Connect

    Beach, R J; Feit, M D; Brasure, L D; Payne, S A; Mead, R W; Hayden, J S; Krashkevich, D; Alunni, D A

    2002-03-18

    A scalable fiber laser approach is described based on phase-locking multiple gain cores in an antiguided structure. The waveguide is comprised of periodic sequences of gain- and no-gain-loaded segments having uniform index, within the cladding region. Initial experimental results are presented.

  7. Development of pulse laser processing for mounting fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Nishimura, Aikihko; Shimada, Yukihiro; Yonemoto, Yukihiro; Suzuki, Hirokazu; Ishibashi, Hisayoshi

    2012-07-01

    Pulse laser processing has been developed for the application of industrial plants in monitoring and maintenance. Surface cleaning by nano-second laser ablation was demonstrated for decontamination of oxide layers of Cr contained steel. Direct writing by femtosecond processing induced a Bragg grating in optical fiber to make it a seismic sensor for structural health monitoring. Adhesive cement was used to fix the seismic sensor on the surface of reactor coolant pipe material. Pulse laser processing and its related technologies were presented to overcome the severe accidents of nuclear power plants.

  8. Development of pulse laser processing for mounting fiber Bragg grating

    SciTech Connect

    Nishimura, Aikihko; Shimada, Yukihiro; Yonemoto, Yukihiro; Suzuki, Hirokazu; Ishibashi, Hisayoshi

    2012-07-11

    Pulse laser processing has been developed for the application of industrial plants in monitoring and maintenance. Surface cleaning by nano-second laser ablation was demonstrated for decontamination of oxide layers of Cr contained steel. Direct writing by femtosecond processing induced a Bragg grating in optical fiber to make it a seismic sensor for structural health monitoring. Adhesive cement was used to fix the seismic sensor on the surface of reactor coolant pipe material. Pulse laser processing and its related technologies were presented to overcome the severe accidents of nuclear power plants.

  9. Tunable ring laser using a tapered single mode fiber tip.

    PubMed

    Wang, Xiaozhen; Li, Yi; Bao, Xiaoyi

    2009-12-10

    A tunable ring laser using a tapered single mode fiber tip as a bandpass filter has been proposed and demonstrated for the first time to our knowledge. This is a simple and cost-effective tunable source. It is found that the tuning range and bandwidth of the laser are related to the relaxation time of the optical amplifier, the current of the amplifier, and the steepness of the tip shape. The calculations and experimental results show that the laser has a tuning range of 9 nm in the L-band and the spectral linewidth can be varied from 0.06 nm to 0.17 nm. PMID:20011024

  10. Highly Efficient Operation of Tm:fiber Laser Pumped Ho:YLF Laser

    NASA Technical Reports Server (NTRS)

    Bai, Yingxin; Petros, M.; Yu, Jirong; Petzar, Paul; Trieu, Bo; Chen, Sam; Lee, Hyung; Singh, U.

    2006-01-01

    A 19 W, TEM(sub 00) mode, Ho:YLF laser pumped by continuous wave Tm:fiber laser has been demonstrated at the room temperature. The slope efficiency and optical-to-optical efficiency are 65% and 55%, respectively.

  11. 600-Hz linewidth short-linear-cavity fiber laser.

    PubMed

    Mo, Shupei; Huang, Xiang; Xu, Shanhui; Li, Can; Yang, Changsheng; Feng, Zhouming; Zhang, Weinan; Chen, Dongdan; Yang, Zhongmin

    2014-10-15

    We proposed a short-linear-cavity (SLC) fiber laser based on a virtual-folded-ring (VFR) resonator and a fiber Bragg grating Fabry-Perot filter. Spatial hole burning effect was reduced by retarding the polarization state of the counter-propagating light waves utilizing the VFR structure. The photon lifetime of the resonator was extended due to the multi-reflection inside the FBG FP, which increased the intra-cavity power and relatively suppressed the contribution of phase diffusion from spontaneous emission. The relaxation oscillation frequency is around 160 kHz due to the slow light effect. The linewidth of the SLC fiber laser was measured to be less than 600 Hz.

  12. DFB fiber laser hydrophone with band-pass response.

    PubMed

    Zhang, Faxiang; Zhang, Wentao; Li, Fang; Liu, Yuliang

    2011-11-15

    A distributed-feedback fiber laser hydrophone with band-pass response is presented. The design of the hydrophone aims to equalize static pressure and eliminate signal aliasing of high-frequency acoustic components. Theoretical analysis is presented based on electro-acoustic theory. The experimental results agree well with the theory. The measured underwater responses show that the hydrophone has a pressure sensitivity of -170 dB re:pm/μPa over a bandwidth between 100 Hz and 500 Hz. A sensitivity reduction exceeding -35 dB is observed at 2500 Hz. The tested static pressure sensitivity of the hydrophone is -226 dB. The proposed fiber laser hydrophone of this kind is expected to have important application in deep water fiber-optic sonar systems with anti-aliasing, and the understanding gained through this work can be extended to a guide of hydrophone design for required filtering bandwidth.

  13. Novel fiber-MOPA-based high power blue laser

    NASA Astrophysics Data System (ADS)

    Engin, Doruk; Fouron, Jean-Luc; Chen, Youming; Huffman, Andromeda; Fitzpatrick, Fran; Burnham, Ralph; Gupta, Shantanu

    2012-06-01

    5W peak power at 911 nm is demonstrated with a pulsed Neodymium (Nd) doped fiber master oscillator power amplifier (MOPA). This result is the first reported high gain (16dB) fiber amplifier operation at 911nm. Pulse repetition frequency (PRF) and duty-cycle dependence of the all fiber system is characterized. Negligible performance degreadation is observed down to 1% duty cycle and 10 kHz PRF, where 2.5μJ of pulse energy is achieved. Continuous wave (CW) MOPA experiments achieved 55mW average power and 9dB gain with 15% optical to optical (o-o) efficiency. Excellent agreement is established between dynammic fiber MOPA simulation tool and experimental results in predicting output amplified spontaneous emission (ase) and signal pulse shapes. Using the simulation tool robust Stimulated Brillion Scattering (SBS) free operation is predicted out of a two stage all fiber system that generates over 10W's of peak power with 500 MHz line-width. An all fiber 911 nm pulsed laser source with >10W of peak power is expected to increase reliability and reduce complexity of high energy 455 nm laser system based on optical parametric amplification for udnerwater applications. The views expressed are thos of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government.

  14. Components for monolithic fiber chirped pulse amplification laser systems

    NASA Astrophysics Data System (ADS)

    Swan, Michael Craig

    The first portion of this work develops techniques for generating femtosecond-pulses from conventional fabry-perot laser diodes using nonlinear-spectral-broadening techniques in Yb-doped positive dispersion fiber ampliers. The approach employed an injection-locked fabry-perot laser diode followed by two stages of nonlinear-spectral-broadening to generate sub-200fs pulses. This thesis demonstrated that a 60ps gain-switched fabry-perot laser-diode can be injection-locked to generate a single-longitudinal-mode pulse and compressed by nonlinear spectral broadening to 4ps. Two problems have been identified that must be resolved before moving forward with this approach. First, gain-switched pulses from a standard diode-laser have a number of characteristics not well suited for producing clean self-phase-modulation-broadened pulses, such as an asymmetric temporal shape, which has a long pulse tail. Second, though parabolic pulse formation occurs for any arbitrary temporal input pulse profile, deviation from the optimum parabolic input results in extensively spectrally modulated self-phase-modulation-broadened pulses. In conclusion, the approach of generating self-phase-modulation-broadened pulses from pulsed laser diodes has to be modified from the initial approach explored in this thesis. The first Yb-doped chirally-coupled-core ber based systems are demonstrated and characterized in the second portion of this work. Robust single-mode performance independent of excitation or any other external mode management techniques have been demonstrated in Yb-doped chirally-coupled-core fibers. Gain and power efficiency characteristics are not compromised in any way in this novel fiber structure up to the 87W maximum power achieved. Both the small signal gain at 1064nm of 30.3dB, and the wavelength dependence of the small signal gain were comparable to currently deployed large-mode-area-fiber technology. The efficiencies of the laser and amplifier were measured to be 75% and 54

  15. Influence of laser irradiation on fiber post retention.

    PubMed

    Nagase, Denis Y; de Freitas, Patricia M; Morimoto, Susana; Oda, Margareth; Vieira, Glauco F

    2011-05-01

    The purpose of this in vitro study was to compare the bond strength between fiber post and laser-treated root canals. Forty single-rooted bovine teeth were endodontically treated and randomly divided into four groups of equal size according to the root canal treatment: group 1 conventional treatment (without laser irradiation); group 2 Nd:YAG laser (1.5 W, 10 Hz, 100 mJ); group 3 Er,Cr:YSGG laser (0.75 W, 20 Hz); and group 4 Nd:YAG + Er,Cr:YSGG lasers. The fiber posts were cemented with an adhesive system + resin cement, in accordance with the manufacturer's instructions. A mini acrylic pipe was fixed on the coronal section of the post using a light-polymerized resin. Specimens were mounted on an acrylic pipe with a self-polymerized resin. Retention forces were determined using a universal testing machine (0.5 mm/min). Data were analyzed using one-way ANOVA and Tukey tests (p <0.05). The post retention force in group 2 was found to be lower than that in the other experimental groups. Fractures were observed at the interface between the dentin and the resin in all groups. High-intensity lasers can be used in conventional endodontic treatment; however, root canal surface irradiation using the Nd:YAG laser was shown to negatively affect the post retention force.

  16. Core-pumped single-frequency fiber amplifier with an output power of 158  W.

    PubMed

    Theeg, Thomas; Ottenhues, Christoph; Sayinc, Hakan; Neumann, Jörg; Kracht, Dietmar

    2016-01-01

    Single-frequency laser sources at a wavelength of 1 μm are typically scaled in power with Ytterbium-doped double-clad fiber amplifiers. The main limitations are stimulated Brillouin scattering, transversal mode instabilities and, from a technical point of view, the degree of fiber integration for a rugged setup. Addressing these limitations, we propose an alternative high-power single-frequency amplifier concept based on core pumping. A nonplanar ring oscillator with 2 W of output power at 1 kHz spectral linewidth was scaled by a fiber amplifier up to a power of 158 W without any indication of stimulated Brillouin scattering-using a standard Ytterbium-doped single-mode fiber with a mode field area of only ∼100  μm2. A short active fiber length and a strong temperature gradient along the gain fiber yield to efficient suppression of stimulated Brillouin scattering. For deeper understanding of the Brillouin scattering mitigation mechanism, we studied the Brillouin gain spectra with a Fabry-Perot interferometer at different output power levels of the fiber amplifier. PMID:26696145

  17. Compact frequency-quadrupled pulsed 1030nm fiber laser

    NASA Astrophysics Data System (ADS)

    McIntosh, Chris; Goldberg, Lew; Cole, Brian; DiLazaro, Tom; Hays, Alan D.

    2016-03-01

    A compact 1030nm fiber laser for ultraviolet generation at 257.5nm is presented. The laser employs a short length of highly-doped, large core (20μm), coiled polarization-maintaining ytterbium-doped double-clad fiber pumped by a wavelength-stabilized 975nm diode. It is passively Q-switched via a Cr4+:YAG saturable absorber and generates 2.4W at 1030nm in a 110μJ pulse train. Lithium triborate (LBO) and beta-barium borate (BBO) are used to achieve 325mW average power at the fourth harmonic. The laser's small form factor, narrow linewidth and modest power consumption are suitable for use in a man-portable ultraviolet Raman explosives detection system.

  18. Frequency doubling of Raman fiber lasers with random distributed feedback.

    PubMed

    Dontsova, E I; Kablukov, S I; Vatnik, I D; Babin, S A

    2016-04-01

    This Letter presents what we believe is the first experimental study of frequency doubling of a Raman fiber laser (RFL) with random distributed feedback (RDFB) in an MgO:PPLN crystal. We compared two laser configurations, each with a half-open cavity. The cavity contained either a broadband Sagnac mirror or a narrowband fiber Bragg grating (FBG). We found that spectral broadening in the studied configurations of the RDFB RFLs differed from that found in a conventional RFL with a linear cavity, as well as from each other. We also compared the second harmonic generation (SHG) efficiency for these three types of lasers. The highest SHG efficiency was obtained for the RDFB RFL with the FBG delivering >100  mW power at 654 nm. PMID:27192256

  19. 980 nm narrow linewidth Yb-doped phosphate fiber laser

    NASA Astrophysics Data System (ADS)

    Li, Pingxue; Yao, Yifei; Hu, Haowei; Chi, Junjie; Yang, Chun; Zhao, Ziqiang; Zhang, Guangju

    2014-12-01

    A narrow-linewidth ytterbium (Yb)-doped phosphate fiber laser based on fiber Bragg grating (FBG) operating around 980 nm is reported. Two different kinds of cavity are applied to obtain the 980 nm narrow-linewidth output. One kind of the cavity consists of a 0.35 nm broadband lindwidth high-reflection FBG and the Yb-doped phosphate fiber end with 0° angle, which generates a maximum output power of 25 mW. The other kind of resonator is composed of a single mode Yb-doped phosphate fiber and a pair of FBGs. Over 10.7 mW stable continuous wave are obtained with two longitudinal modes at 980 nm. We have given a detailed analysis and discussion for the results.

  20. Laser-diode pumped glass-clad Ti:sapphire crystal fiber laser.

    PubMed

    Wang, Shih-Chang; Hsu, Chun-Yang; Yang, Tzu-Te; Jheng, Dong-Yo; Yang, Teng-I; Ho, Tuan-Shu; Huang, Sheng-Lung

    2016-07-15

    Efficient glass-clad crystal fiber (CF) lasers were demonstrated using a Ti:sapphire crystalline core as the gain medium. With a core diameter of 18 μm, the laser diode (LD) pump source can be effectively coupled and guided throughout the crystal fiber for a low threshold and high slope efficiency laser operation. The advantage of high heat dissipation efficiency of the fiber structure can be derived from the low core temperature rising measurement (i.e., 17 K/W) with passive cooling. At an output transmittance of 23%, the lowest absorbed threshold of 118.2 mW and highest slope efficiency of 29.6% were achieved, with linear laser polarization.

  1. Laser-diode pumped glass-clad Ti:sapphire crystal fiber laser.

    PubMed

    Wang, Shih-Chang; Hsu, Chun-Yang; Yang, Tzu-Te; Jheng, Dong-Yo; Yang, Teng-I; Ho, Tuan-Shu; Huang, Sheng-Lung

    2016-07-15

    Efficient glass-clad crystal fiber (CF) lasers were demonstrated using a Ti:sapphire crystalline core as the gain medium. With a core diameter of 18 μm, the laser diode (LD) pump source can be effectively coupled and guided throughout the crystal fiber for a low threshold and high slope efficiency laser operation. The advantage of high heat dissipation efficiency of the fiber structure can be derived from the low core temperature rising measurement (i.e., 17 K/W) with passive cooling. At an output transmittance of 23%, the lowest absorbed threshold of 118.2 mW and highest slope efficiency of 29.6% were achieved, with linear laser polarization. PMID:27420499

  2. High-power ultralong-wavelength Tm-doped silica fiber laser cladding-pumped with a random distributed feedback fiber laser.

    PubMed

    Jin, Xiaoxi; Du, Xueyuan; Wang, Xiong; Zhou, Pu; Zhang, Hanwei; Wang, Xiaolin; Liu, Zejin

    2016-01-01

    We demonstrated a high-power ultralong-wavelength Tm-doped silica fiber laser operating at 2153 nm with the output power exceeding 18 W and the slope efficiency of 25.5%. A random distributed feedback fiber laser with the center wavelength of 1173 nm was employed as pump source of Tm-doped fiber laser for the first time. No amplified spontaneous emissions or parasitic oscillations were observed when the maximum output power reached, which indicates that employing 1173 nm random distributed feedback fiber laser as pump laser is a feasible and promising scheme to achieve high-power emission of long-wavelength Tm-doped fiber laser. The output power of this Tm-doped fiber laser could be further improved by optimizing the length of active fiber, reflectivity of FBGs, increasing optical efficiency of pump laser and using better temperature management. We also compared the operation of 2153 nm Tm-doped fiber lasers pumped with 793 nm laser diodes, and the maximum output powers were limited to ~2 W by strong amplified spontaneous emission and parasitic oscillation in the range of 1900-2000 nm. PMID:27416893

  3. High-power ultralong-wavelength Tm-doped silica fiber laser cladding-pumped with a random distributed feedback fiber laser

    PubMed Central

    Jin, Xiaoxi; Du, Xueyuan; Wang, Xiong; Zhou, Pu; Zhang, Hanwei; Wang, Xiaolin; Liu, Zejin

    2016-01-01

    We demonstrated a high-power ultralong-wavelength Tm-doped silica fiber laser operating at 2153 nm with the output power exceeding 18 W and the slope efficiency of 25.5%. A random distributed feedback fiber laser with the center wavelength of 1173 nm was employed as pump source of Tm-doped fiber laser for the first time. No amplified spontaneous emissions or parasitic oscillations were observed when the maximum output power reached, which indicates that employing 1173 nm random distributed feedback fiber laser as pump laser is a feasible and promising scheme to achieve high-power emission of long-wavelength Tm-doped fiber laser. The output power of this Tm-doped fiber laser could be further improved by optimizing the length of active fiber, reflectivity of FBGs, increasing optical efficiency of pump laser and using better temperature management. We also compared the operation of 2153 nm Tm-doped fiber lasers pumped with 793 nm laser diodes, and the maximum output powers were limited to ~2 W by strong amplified spontaneous emission and parasitic oscillation in the range of 1900–2000 nm. PMID:27416893

  4. High-power ultralong-wavelength Tm-doped silica fiber laser cladding-pumped with a random distributed feedback fiber laser

    NASA Astrophysics Data System (ADS)

    Jin, Xiaoxi; Du, Xueyuan; Wang, Xiong; Zhou, Pu; Zhang, Hanwei; Wang, Xiaolin; Liu, Zejin

    2016-07-01

    We demonstrated a high-power ultralong-wavelength Tm-doped silica fiber laser operating at 2153 nm with the output power exceeding 18 W and the slope efficiency of 25.5%. A random distributed feedback fiber laser with the center wavelength of 1173 nm was employed as pump source of Tm-doped fiber laser for the first time. No amplified spontaneous emissions or parasitic oscillations were observed when the maximum output power reached, which indicates that employing 1173 nm random distributed feedback fiber laser as pump laser is a feasible and promising scheme to achieve high-power emission of long-wavelength Tm-doped fiber laser. The output power of this Tm-doped fiber laser could be further improved by optimizing the length of active fiber, reflectivity of FBGs, increasing optical efficiency of pump laser and using better temperature management. We also compared the operation of 2153 nm Tm-doped fiber lasers pumped with 793 nm laser diodes, and the maximum output powers were limited to ~2 W by strong amplified spontaneous emission and parasitic oscillation in the range of 1900–2000 nm.

  5. A dual-wavelength erbium-doped fiber laser based on fiber grating pair

    NASA Astrophysics Data System (ADS)

    Sun, Hongwei; Wang, Tianshu; Jia, Qingsong; Zhang, Peng; Jiang, Huilin

    2014-12-01

    A dual-wavelength linear cavity erbium-doped fiber (EDF) laser based on a fiber grating pair is demonstrated experimentally. A circulator, a 980nm/1550nm wavelength division multiplexing (WDM) coupler, a 1×2 coupler, a polarization controller, a 6m long erbium-doped fiber and a fiber grating pair for wavelength interval of 0.3nm are included in the structure. A circulator connected at two ports as reflecting mirror structure. A 980nm pump source pump an erbium-doped fiber with a length of 6m consist of an erbium doped fiber amplifier. Through adjusting the state of the polarization controller, the transmission characteristic of cavity is changed. In both polarization and wavelength, the feedback from the fiber grating pair results in the laser operating on two longitudinal modes that are separated. The birefringence induced by the fiber grating pair is beneficial to diversify the polarization states of different wavelength in the erbium-doped fiber. So it is enhanced the polarization hole burning effect. This polarization hole burning effect greatly reduced the wavelength competition. Then, it was possible to achieve stable dual-wavelength. It turns out the structure generated the stable dual-wavelength with the 0.3nm wavelength interval and the output power is 0.13dBm in the end. The whole system have a simple and compact structure, it can work stably and laid a foundation for microwave/millimeter wave generator. It has a good application performance in the future for scientific research and daily life.

  6. All-fiber nonlinearity- and dispersion-managed dissipative soliton nanotube mode-locked laser

    SciTech Connect

    Zhang, Z.; Popa, D. Wittwer, V. J.; Milana, S.; Hasan, T.; Jiang, Z.; Ferrari, A. C.; Ilday, F. Ö.

    2015-12-14

    We report dissipative soliton generation from an Yb-doped all-fiber nonlinearity- and dispersion-managed nanotube mode-locked laser. A simple all-fiber ring cavity exploits a photonic crystal fiber for both nonlinearity enhancement and dispersion compensation. The laser generates stable dissipative solitons with large linear chirp in the net normal dispersion regime. Pulses that are 8.7 ps long are externally compressed to 118 fs, outperforming current nanotube-based Yb-doped fiber laser designs.

  7. Measurement error analysis of Brillouin lidar system using F-P etalon and ICCD

    NASA Astrophysics Data System (ADS)

    Yao, Yuan; Niu, Qunjie; Liang, Kun

    2016-09-01

    Brillouin lidar system using Fabry-Pérot (F-P) etalon and Intensified Charge Coupled Device (ICCD) is capable of real time remote measuring of properties like temperature of seawater. The measurement accuracy is determined by two key parameters, Brillouin frequency shift and Brillouin linewidth. Three major errors, namely the laser frequency instability, the calibration error of F-P etalon and the random shot noise are discussed. Theoretical analysis combined with simulation results showed that the laser and F-P etalon will cause about 4 MHz error to both Brillouin shift and linewidth, and random noise bring more error to linewidth than frequency shift. A comprehensive and comparative analysis of the overall errors under various conditions proved that colder ocean(10 °C) is more accurately measured with Brillouin linewidth, and warmer ocean (30 °C) is better measured with Brillouin shift.

  8. Thulium fiber laser lithotripsy in an in vitro ureter model.

    PubMed

    Hardy, Luke A; Wilson, Christopher R; Irby, Pierce B; Fried, Nathaniel M

    2014-12-01

    Using a validated in vitro ureter model for laser lithotripsy, the performance of an experimental thulium fiber laser (TFL) was studied and compared to the clinical gold standard holmium:YAG laser. The holmium laser (λ = 2120 nm) was operated with standard parameters of 600 mJ, 350 μs, 6 Hz, and 270-μm-core optical fiber. The TFL (λ=1908 nm) was operated with 35 mJ, 500 μs, 150 to 500 Hz, and a 100-μm-core fiber. Urinary stones (60% calcium oxalate monohydrate/40% calcium phosphate) of uniform mass and diameter (4 to 5 mm) were laser ablated with fibers through a flexible video-ureteroscope under saline irrigation with flow rates of 22.7 and 13.7 ml/ min for the TFL and holmium laser, respectively. The temperature 3 mm from the tube's center and 1 mm above the mesh sieve was measured by a thermocouple and recorded throughout each experiment for both lasers. Total laser and operation times were recorded once all stone fragments passed through a 1.5-mm sieve. The holmium laser time measured 167±41 s (n=12). TFL times measured 111±49, 39±11, and 23±4 s, for pulse rates of 150, 300, and 500 Hz, respectively (n=12 each). Mean peak saline irrigation temperatures reached 24±1°C for holmium, and 33±3°C, 33±7°C, and 39±6°C, for TFL at pulse rates of 150, 300, and 500 Hz, respectively. To avoid thermal buildup and provide a sufficient safety margin, TFL lithotripsy should be performed with pulse rates below 500 Hz and/or increased saline irrigation rates. The TFL rapidly fragmented kidney stones due in part to its high pulse rate, high power density, high average power, and observation of reduced stone retropulsion and may provide a clinical alternative to the conventional holmium laser for lithotripsy. PMID:25518001

  9. Thulium fiber laser lithotripsy in an in vitro ureter model

    NASA Astrophysics Data System (ADS)

    Hardy, Luke A.; Wilson, Christopher R.; Irby, Pierce B.; Fried, Nathaniel M.

    2014-12-01

    Using a validated in vitro ureter model for laser lithotripsy, the performance of an experimental thulium fiber laser (TFL) was studied and compared to the clinical gold standard holmium:YAG laser. The holmium laser (λ=2120 nm) was operated with standard parameters of 600 mJ, 350 μs, 6 Hz, and 270-μm-core optical fiber. The TFL (λ=1908 nm) was operated with 35 mJ, 500 μs, 150 to 500 Hz, and a 100-μm-core fiber. Urinary stones (60% calcium oxalate monohydrate/40% calcium phosphate) of uniform mass and diameter (4 to 5 mm) were laser ablated with fibers through a flexible video-ureteroscope under saline irrigation with flow rates of 22.7 and 13.7 ml/min for the TFL and holmium laser, respectively. The temperature 3 mm from the tube's center and 1 mm above the mesh sieve was measured by a thermocouple and recorded throughout each experiment for both lasers. Total laser and operation times were recorded once all stone fragments passed through a 1.5-mm sieve. The holmium laser time measured 167±41 s (n=12). TFL times measured 111±49, 39±11, and 23±4 s, for pulse rates of 150, 300, and 500 Hz, respectively (n=12 each). Mean peak saline irrigation temperatures reached 24±1°C for holmium, and 33±3°C, 33±7°C, and 39±6°C, for TFL at pulse rates of 150, 300, and 500 Hz, respectively. To avoid thermal buildup and provide a sufficient safety margin, TFL lithotripsy should be performed with pulse rates below 500 Hz and/or increased saline irrigation rates. The TFL rapidly fragmented kidney stones due in part to its high pulse rate, high power density, high average power, and observation of reduced stone retropulsion and may provide a clinical alternative to the conventional holmium laser for lithotripsy.

  10. Thulium fiber laser lithotripsy in an in vitro ureter model.

    PubMed

    Hardy, Luke A; Wilson, Christopher R; Irby, Pierce B; Fried, Nathaniel M

    2014-12-01

    Using a validated in vitro ureter model for laser lithotripsy, the performance of an experimental thulium fiber laser (TFL) was studied and compared to the clinical gold standard holmium:YAG laser. The holmium laser (λ = 2120 nm) was operated with standard parameters of 600 mJ, 350 μs, 6 Hz, and 270-μm-core optical fiber. The TFL (λ=1908 nm) was operated with 35 mJ, 500 μs, 150 to 500 Hz, and a 100-μm-core fiber. Urinary stones (60% calcium oxalate monohydrate/40% calcium phosphate) of uniform mass and diameter (4 to 5 mm) were laser ablated with fibers through a flexible video-ureteroscope under saline irrigation with flow rates of 22.7 and 13.7 ml/ min for the TFL and holmium laser, respectively. The temperature 3 mm from the tube's center and 1 mm above the mesh sieve was measured by a thermocouple and recorded throughout each experiment for both lasers. Total laser and operation times were recorded once all stone fragments passed through a 1.5-mm sieve. The holmium laser time measured 167±41 s (n=12). TFL times measured 111±49, 39±11, and 23±4 s, for pulse rates of 150, 300, and 500 Hz, respectively (n=12 each). Mean peak saline irrigation temperatures reached 24±1°C for holmium, and 33±3°C, 33±7°C, and 39±6°C, for TFL at pulse rates of 150, 300, and 500 Hz, respectively. To avoid thermal buildup and provide a sufficient safety margin, TFL lithotripsy should be performed with pulse rates below 500 Hz and/or increased saline irrigation rates. The TFL rapidly fragmented kidney stones due in part to its high pulse rate, high power density, high average power, and observation of reduced stone retropulsion and may provide a clinical alternative to the conventional holmium laser for lithotripsy.

  11. Environmentally stable high-power soliton fiber lasers that use chirped fiber Bragg gratings

    SciTech Connect

    Fermann, M.E.; Sugden, K.; Bennion, I.

    1995-08-01

    Environmentally stable high-power erbium fiber soliton lasers are constructed by Kerr or carrier-type mode locking. We obtain high-energy pulses by using relatively short fiber lengths and providing large amounts of negative dispersion with chirped fiber Bragg gratings. The pulse energies and widths generated with both types of soliton laser are found to scale with the square root of the cavity dispersion. Kerr mode locking requires pulses with an approximately three times higher nonlinear phase shift in the cavity than carrier mode locking, which leads to the generation of slightly shorter pulses with as much as seven times higher pulse energies at the mode-locking threshold. {copyright} {ital 1995} {ital Optical} {ital Society} {ital of} {ital America}.

  12. Developing high energy dissipative soliton fiber lasers at 2 micron

    PubMed Central

    Huang, Chongyuan; Wang, Cong; Shang, Wei; Yang, Nan; Tang, Yulong; Xu, Jianqiu

    2015-01-01

    While the recent discovered new mode-locking mechanism - dissipative soliton - has successfully improved the pulse energy of 1 μm and 1.5 μm fiber lasers to tens of nanojoules, it is still hard to scale the pulse energy at 2 μm due to the anomalous dispersion of the gain fiber. After analyzing the intracavity pulse dynamics, we propose that the gain fiber should be condensed to short lengths in order to generate high energy pulse at 2 μm. Numerical simulation predicts the existence of stable 2 μm dissipative soliton solutions with pulse energy over 10 nJ, comparable to that achieved in the 1 μm and 1.5 μm regimes. Experimental operation confirms the validity of the proposal. These results will advance our understanding of mode-locked fiber lasers at different wavelengths and lay an important step in achieving high energy ultrafast laser pulses from anomalous dispersion gain media. PMID:26348563

  13. Modeling and measurement of ytterbium fiber laser generation spectrum

    NASA Astrophysics Data System (ADS)

    Kablukov, Sergey I.; Zlobina, Ekaterina A.; Podivilov, Evgeniy V.; Babin, Sergey A.

    2012-06-01

    A generation spectrum of a fiber laser becomes broader with increasing generation power. The spectra are rather narrow at low power and become comparable with fiber Bragg gratings (FBG) width at high power. It has been shown that the spectral broadening of a fiber laser can be described analytically if the generation spectrum is much narrower than the FBG width. The developed theory has been compared with experiment. Double clad Yb-doped fiber laser of up to 10 W output power is used in the experiment. Scanning Fabry-Perot interferometer with resolution down to 1.2 pm is applied for accurate spectral measurements. At power level less then 1 W a self-sustained pulsation regime accompanied by a narrow-line self-sweeping is observed. At higher power a quasi-CW generation regime with multiple longitudinal modes is established. Investigation of the regime shows linear increase of the generation width with generation power growth. Slope of the dependence has excellent agreement with the theory, but an additive quantity should be added to describe an absolute value that makes significant contribution at low powers. It has been shown that at low powers a spatial hole burning has to be considered. Theoretical model describing the hole burning effect for multimode cw generation is also developed. After inclusion of the hole burning effect the model starts to agree quantitatively with the linewidth measurements both at low and high powers.

  14. Reflection Effects in Multimode Fiber Systems Utilizing Laser Transmitters

    NASA Technical Reports Server (NTRS)

    Bates, Harry E.

    1991-01-01

    A number of optical communication lines are now in use at NASA-Kennedy for the transmission of voice, computer data, and video signals. Now, all of these channels use a single carrier wavelength centered near 1300 or 1550 nm. Engineering tests in the past have given indications of the growth of systematic and random noise in the RF spectrum of a fiber network as the number of connector pairs is increased. This noise seems to occur when a laser transmitter is used instead of a LED. It has been suggested that the noise is caused by back reflections created at connector fiber interfaces. Experiments were performed to explore the effect of reflection on the transmitting laser under conditions of reflective feedback. This effort included computer integration of some of the instrumentation in the fiber optic lab using the Lab View software recently acquired by the lab group. The main goal was to interface the Anritsu Optical and RF spectrum analyzers to the MacIntosh II computer so that laser spectra and network RF spectra could be simultaneously and rapidly acquired in a form convenient for analysis. Both single and multimode fiber is installed at Kennedy. Since most are multimode, this effort concentrated on multimode systems.

  15. Influence of cooling on a bismuth-doped fiber laser and amplifier performance.

    PubMed

    Kalita, Mridu P; Yoo, Seongwoo; Sahu, Jayanta K

    2009-11-01

    We characterize bismuth-doped fibers under different excitation wavelengths. The fiber laser performance at 1179 nm was investigated, incorporating different cooling arrangements. Effective heat extraction can reduce the temperature-dependent unsaturable loss in fiber, resulting in increased laser performance. The operation of a bismuth-doped fiber amplifier at 1179 nm, at both low and high input signals, is also examined. The amplifier efficiency and the saturation power both depend on effective fiber cooling. PMID:19881653

  16. Dual-wavelength erbium-doped fiber laser with tunable wavelength spacing using a twin core fiber-based filter

    NASA Astrophysics Data System (ADS)

    Yin, Guolu; Lou, Shuqin; Wang, Xin; Han, Bolin

    2014-05-01

    A dual-wavelength erbium-doped fiber laser with tunable wavelength spacing was proposed and experimentally demonstrated by using a twin core fiber (TCF)-based filter. Benefiting from the polarization dependence of the TCF-based filter, the laser operated in dual-wavelength oscillation with two orthogonal polarization states. By adjusting the polarization controller, the wavelength spacing was tuned from 0.1 nm to 1.2 nm without shifting the centre position of the two wavelengths. By stretching the TCF, the two wavelengths were simultaneously tuned with fixed wavelength spacing. Such a dual-wavelength fiber laser could find applications in optical fiber sensors and microwave photonics generation.

  17. High-brightness 800nm fiber-coupled laser diodes

    NASA Astrophysics Data System (ADS)

    Berk, Yuri; Levy, Moshe; Rappaport, Noam; Tessler, Renana; Peleg, Ophir; Shamay, Moshe; Yanson, Dan; Klumel, Genadi; Dahan, Nir; Baskin, Ilya; Shkedi, Lior

    2014-03-01

    Fiber-coupled laser diodes have become essential sources for fiber laser pumping and direct energy applications. Single emitters offer reliable multi-watt output power from a 100 m lateral emission aperture. By their combination and fiber coupling, pump powers up to 100 W can be achieved from a low-NA fiber pigtail. Whilst in the 9xx nm spectral range the single emitter technology is very mature with <10W output per chip, at 800nm the reliable output power from a single emitter is limited to 4 W - 5 W. Consequently, commercially available fiber coupled modules only deliver 5W - 15W at around 800nm, almost an order of magnitude down from the 9xx range pumps. To bridge this gap, we report our advancement in the brightness and reliability of 800nm single emitters. By optimizing the wafer structure, laser cavity and facet passivation process we have demonstrated QCW device operation up to 19W limited by catastrophic optical damage to the 100 μm aperture. In CW operation, the devices reach 14 W output followed by a reversible thermal rollover and a complete device shutdown at high currents, with the performance fully rebounded after cooling. We also report the beam properties of our 800nm single emitters and provide a comparative analysis with the 9xx nm single emitter family. Pump modules integrating several of these emitters with a 105 μm / 0.15 NA delivery fiber reach 35W in CW at 808 nm. We discuss the key opto-mechanical parameters that will enable further brightness scaling of multi-emitter pump modules.

  18. Nonlinear Silicon Waveguides for Integrated Fiber Laser Systems

    NASA Astrophysics Data System (ADS)

    Wong, Chi Yan

    Silicon-on-insulator (SOI) based photonic devices have attracted great interest from photonics community because of its compatibility with state-of-the-art CMOS fabrication processes and its potential of making energy efficient and low cost photonic integrated circuits (PICs) for high bandwidth optical interconnects and integrated optical sensors. Wavelength division multiplexing (WDM) is already widely used in optical communications and is also of interest for optical sensors, providing advantages of low cost, and high speed compared with single wavelength approach. However, the cost and the bulkiness of WDM systems increase proportionally with the number of wavelengths if conventional external laser source is used. Therefore, low cost and compact laser source with stable and high line quality is of great interest for integrated sensors. In this thesis, we investigate the incorporation of silicon photonic devices as intracavity elements in fiber lasers for various applications. Therefore, the high flexibly and rich functionalities of fiber lasers can be directly used in the PIC. Also, high-speed feedback control of the cavity becomes possible. The possibility of applying nonlinear SOI waveguides to fiber lasers is investigated. We propose and demonstrate a multiwavelength erbium-doped fiber laser stabilized by four-wave mixing (FWM) in a nonlinear SOI waveguide. Such multiwavelength lasers are potentially suitable for WDM sensing. The wavelength selectivity was achieved by an intracavity Fabry-Perot comb filter. Making use of the nonlinearity of the SOI waveguide, a multiwavelength laser with six output wavelengths at 0.8 nm spacing was achieved. We study a passive mode-locked erbium-doped fiber ring laser based on a nonlinear SOI microring resonator (MRR). By using the MRR as the comb filter and the nonlinear medium, a stable mode-locked pulse train at 100 GHz was produced by filter-driven four-wave mixing. Such lasers can act as high repetition rate optical

  19. Femtosecond laser inscription of asymmetric directional couplers for in-fiber optical taps and fiber cladding photonics.

    PubMed

    Grenier, Jason R; Fernandes, Luís A; Herman, Peter R

    2015-06-29

    Precise alignment of femtosecond laser tracks in standard single mode optical fiber is shown to enable controllable optical tapping of the fiber core waveguide light with fiber cladding photonic circuits. Asymmetric directional couplers are presented with tunable coupling ratios up to 62% and bandwidths up to 300 nm at telecommunication wavelengths. Real-time fiber monitoring during laser writing permitted a means of controlling the coupler length to compensate for micron-scale alignment errors and to facilitate tailored design of coupling ratio, spectral bandwidth and polarization properties. Laser induced waveguide birefringence was harnessed for polarization dependent coupling that led to the formation of in-fiber polarization-selective taps with 32 dB extinction ratio. This technology enables the interconnection of light propagating in pre-existing waveguides with laser-formed devices, thereby opening a new practical direction for the three-dimensional integration of optical devices in the cladding of optical fibers and planar lightwave circuits. PMID:26191688

  20. Latest development of high-power fiber lasers in SPI

    NASA Astrophysics Data System (ADS)

    Norman, Stephen; Zervas, Mikhail N.; Appleyard, Andrew; Durkin, Michael K.; Horley, Ray; Varnham, Malcolm P.; Nilsson, Johan; Jeong, Yoonchan

    2004-06-01

    High Power Fiber Lasers (HPFLs) and High Power Fiber Amplifiers (HPFAs) promise a number of benefits in terms of their high optical efficiency, degree of integration, beam quality, reliability, spatial compactness and thermal management. These benefits are driving the rapid adoption of HPFLs in an increasingly wide range of applications and power levels ranging from a few Watts, in for example analytical applications, to high-power >1kW materials processing (machining and welding) applications. This paper describes SPI"s innovative technologies, HPFL products and their performance capabilities. The paper highlights key aspects of the design basis and provides an overview of the applications space in both the industrial and aerospace domains. Single-fiber CW lasers delivering 1kW output power at 1080nm have been demonstrated and are being commercialized for aerospace and industrial applications with wall-plug efficiencies in the range 20 to 25%, and with beam parameter products in the range 0.5 to 100 mm.mrad (corresponding to M2 = 1.5 to 300) tailored to application requirements. At power levels in the 1 - 200 W range, SPI"s proprietary cladding-pumping technology, GTWaveTM, has been employed to produce completely fiber-integrated systems using single-emitter broad-stripe multimode pump diodes. This modular construction enables an agile and flexible approach to the configuration of a range of fiber laser / amplifier systems for operation in the 1080nm and 1550nm wavelength ranges. Reliability modeling is applied to determine Systems martins such that performance specifications are robustly met throughout the designed product lifetime. An extensive Qualification and Reliability-proving programme is underway to qualify the technology building blocks that are utilized for the fiber laser cavity, pump modules, pump-driver systems and thermo-mechanical management. In addition to the CW products, pulsed fiber lasers with pulse energies exceeding 1mJ with peak pulse

  1. A novel laser angioplasty guided hollow fiber using mid-infrared laser

    NASA Astrophysics Data System (ADS)

    Yoshihashi-Suzuki, Sachiko; Yamada, Shinya; Sato, Izuru; Awazu, Kunio

    2006-02-01

    We have proposed selective removal of cholesterol ester by infrared laser of wavelength with 5.75 μm irradiation; the wavelength of 5.75 μm correspond with the ester bond C=O stretching vibration. The flexible laser guiding line and a compact light source are required for our proposal. We used a compact mid-infrared tunable laser by difference frequency generation; DFG laser was developed for substitute light source of free electron laser. In the present work, first, we have developed hollow optical fiber with a diamond lens-tip to deliver DFG laser in the blood vessel and evaluated the transmission of DFG laser from 5.5 μm to 7.5 μm. The transmission of 5.75 μm is about 65%, the DFG beam was focused on the tip of fiber by diamond lens-tip. Secondly, we performed the selective removal experiment of cholesterol ester using the hollow optical fiber with diamond lens-tip and DFG laser. The sample used a two layer model, cholesterol oleate and gelatin. The cholesterol oleate was decomposed by 5.75 μm DFG irradiation with 3.8 W/cm2.

  2. Optical generation of tunable microwave and millimeter waves by using asymmetric fiber Bragg grating Fabry-Perot cavity fiber laser

    NASA Astrophysics Data System (ADS)

    Chen, Cong; Wang, Meng; Li, Qi; Huang, Kaiqiang; Chen, Haiyan

    2014-10-01

    In this presentation, we propose and experimentally demonstrate a novel optical generation of microwave and millimeter wave signals by using asymmetric fiber Bragg grating Fabry-Perot cavity fiber laser, dual-wavelength emission can be achieved with wavelength separation of 0.68nm corresponding to the millimeter wave signal at 85GHz. By appropriately adjusting the operation temperature of intracavity fiber Bragg grating, the frequency of millimeter wave signal generated can be tunable. Our experimental results demonstrate the new concept of optical generation of microwave and millimeter wave signals by using asymmetric fiber Bragg grating Fabry-Perot cavity dual-wavelength fiber laser and the technical feasibility.

  3. Sub-100 fs mode-locked erbium-doped fiber laser using a 45°-tilted fiber grating.

    PubMed

    Zhang, Zuxing; Mou, Chengbo; Yan, Zhijun; Zhou, Kaiming; Zhang, Lin; Turitsyn, Sergei

    2013-11-18

    We demonstrate generation of sub-100 fs pulses at 1.5 µm in a mode-locked erbium-doped fiber laser using a 45°-tilted fiber grating element. The laser features a genuine all-fiber configuration. Based on the unique polarization properties of the 45°-tilted fiber grating, we managed to produce sub-100 fs laser pulses through proper dispersion management. To the best of our knowledge, this is the shortest pulse generated from mode-locked lasers with fiber gratings. The output pulse has an average power of 8 mW, with a repetition rate of 47.8 MHz and pulse energy of 1.68 nJ. The performance of laser also matches well the theoretical simulations.

  4. Fiber Laser Component Testing for Space Qualification Protocol Development

    NASA Astrophysics Data System (ADS)

    Falvey, S.; Buelow, M.; Nelson, B.; Starcher, Y.; Thienel, L.; Rhodes, C.; Tull, Jackson; Drape, T.; Westfall, C.

    A test protocol for the space qualifying of Ytterbium-doped diode-pumped fiber laser (DPFL) components was developed under the Bright Light effort, sponsored by AFRL/VSE. A literature search was performed and summarized in an AMOS 2005 conference paper that formed the building blocks for the development of the test protocol. The test protocol was developed from the experience of the Bright Light team, the information in the literature search, and the results of a study of the Telcordia standards. Based on this protocol developed, test procedures and acceptance criteria for a series of vibration, thermal/vacuum, and radiation exposure tests were developed for selected fiber laser components. Northrop Grumman led the effort in vibration and thermal testing of these components at the Aerospace Engineering Facility on Kirtland Air Force Base, NM. The results of the tests conducted have been evaluated. This paper discusses the vibration and thermal testing that was executed to validate the test protocol. The lessons learned will aid in future assessments and definition of space qualification protocols. Components representative of major items within a Ytterbium-doped diode-pumped fiber laser were selected for testing; including fibers, isolators, combiners, fiber Bragg gratings, and laser diodes. Selection of the components was based on guidelines to test multiple models of typical fiber laser components. A goal of the effort was to test two models (i.e. different manufacturers) of each type of article selected, representing different technologies for the same type of device. The test articles did not include subsystems or systems. These components and parts may not be available commercial-off-the-shelf (COTS), and, in fact, many are custom articles, or newly developed by the manufacturer. The primary goal for this effort is a completed taxonomy that lists all relevant laser components, modules, subsystems, and interfaces, and cites the documentation for space

  5. Soliton generation from an actively mode-locked fiber laser incorporating an electro-optic fiber modulator.

    PubMed

    Malmström, Mikael; Margulis, Walter; Tarasenko, Oleksandr; Pasiskevicius, Valdas; Laurell, Fredrik

    2012-01-30

    This work demonstrates an actively mode-locked fiber laser operating in soliton regime and employing an all-fiber electro-optic modulator. Nonlinear polarization rotation is utilized for femtosecond pulse generation. Stable operation of the all-fiber ring laser is readily achieved at a fundamental repetition rate of 2.6 MHz and produces 460 fs pulses with a spectral bandwidth of 5.3 nm.

  6. Fiber-optic laser sensor for mine detection and verification

    SciTech Connect

    Bohling, Christian; Scheel, Dirk; Hohmann, Konrad; Schade, Wolfgang; Reuter, Matthias; Holl, Gerhard

    2006-06-01

    What we believe to be a new optical approach for the identification of mines and explosives by analyzing the surface materials and not only bulk is developed. A conventional manually operated mine prodder is upgraded by laser-induced breakdown spectroscopy (LIBS). In situ and real-time information of materials that are in front of the prodder are obtained during the demining process in order to optimize the security aspects and the speed of demining. A Cr4+:Nd3+:YAG microchip laser is used as a seed laser for an ytterbium-fiber amplifier to generate high-power laser pulses at 1064 nm with pulse powers up to Ep=1 mJ, a repetition rate of frep.=2-20 kHz and a pulse duration of tp=620 ps. The recorded LIBS signals are analyzed by applying neural networks for the data analysis.

  7. Fiber-optic laser sensor for mine detection and verification.

    PubMed

    Bohling, Christian; Scheel, Dirk; Hohmann, Konrad; Schade, Wolfgang; Reuter, Matthias; Holl, Gerhard

    2006-06-01

    What we believe to be a new optical approach for the identification of mines and explosives by analyzing the surface materials and not only bulk is developed. A conventional manually operated mine prodder is upgraded by laser-induced breakdown spectroscopy (LIBS). In situ and real-time information of materials that are in front of the prodder are obtained during the demining process in order to optimize the security aspects and the speed of demining. A Cr4+:Nd3+:YAG microchip laser is used as a seed laser for an ytterbium-fiber amplifier to generate high-power laser pulses at 1064 nm with pulse powers up to E(p) = 1 mJ, a repetition rate of f(rep.) = 2-20 kHz and a pulse duration of t(p) = 620 ps. The recorded LIBS signals are analyzed by applying neural networks for the data analysis. PMID:16724144

  8. Hydroxylapatite nanoparticles obtained by fiber laser-induced fracture

    NASA Astrophysics Data System (ADS)

    Boutinguiza, M.; Lusquiños, F.; Riveiro, A.; Comesaña, R.; Pou, J.

    2009-03-01

    This work presents the results of laser-induced fragmentation of hydroxylapatite microparticles in water dissolution. Calcined fish bones in form of powder, which were previously milled to achieve microsized particles, were used as precursor material. Two different laser sources were employed to reduce the size of the suspended particles: a pulsed Nd:YAG laser and a Ytterbium doped fiber laser working in continuous wave mode. The morphology as well as the composition of the obtained particles was characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy and conventional and high resolution transmission electron microscopy (TEM, HRTEM). The results show that nanometric particles of hydroxylapatite and β-tricalcium phosphate as small as 10 nm diameter can be obtained.

  9. Study of laser-induced damage to large core silica fiber by Nd:YAG and Alexandrite lasers

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoguang; Li, Jie; Hokansson, Adam; Whelan, Dan; Clancy, Michael

    2009-02-01

    As a continuation of our earlier study at 2.1 μm wavelength, we have investigated the laser damage to several types of step-index, large core (1500 μm) silica fibers at two new wavelengths by high power long pulsed Nd:YAG (1064 nm) and Alexandrite (755 nm) lasers. It was observed that fibers with different designs showed a significant difference in performance at these wavelengths. We will also report a correlation of damage to the fibers between the two laser wavelengths. The performance analyses of different fiber types under the given test conditions will enable optimization of fiber design for specific applications.

  10. Pulse-shaping mechanisms in passively mode-locked thulium-doped fiber lasers.

    PubMed

    Li, Huihui; Liu, Jiang; Cheng, Zhaochen; Xu, Jia; Tan, Fangzhou; Wang, Pu

    2015-03-01

    Different pulse-shaping mechanisms were investigated experimentally and numerically in passively mode-locked thulium-doped fiber lasers. Conventional solitons were demonstrated in a passively semiconductor saturable absorber mirror mode-locked anomalous dispersion thulium-doped fiber laser. With normal dispersion fiber and spectral filter added in cavity, pulse-shaping processes were theoretically analyzed in the presence of dispersion map and dissipation in thulium-doped fiber lasers. The existence of parabolic pulse as nonlinear attraction was proved and distinct pulse intensity profiles evolution from Gaussian shape to parabolic shape was proposed in dissipative dispersion-managed thulium-doped fiber lasers.

  11. Beam shaping design for compact and high-brightness fiber-coupled laser-diode system.

    PubMed

    Yu, Junhong; Guo, Linui; Wu, Hualing; Wang, Zhao; Tan, Hao; Gao, Songxin; Wu, Deyong; Zhang, Kai

    2015-06-20

    Fiber-coupled laser diodes have become essential sources for fiber laser pumping and direct energy applications. A compact and high-brightness fiber-coupled system has been designed based on a significant beam shaping method. The laser-diode stack consists of eight mini-bars and is effectively coupled into a standard 100 μm core diameter and NA=0.22 fiber. The simulative result indicates that the module will have an output power over 440 W. Using this technique, compactness and high-brightness production of a fiber-coupled laser-diode module is possible.

  12. Polarization properties of fiber lasers with twist-induced circular birefringence

    SciTech Connect

    Kim, Ho Young; Lee, El Hang Kim, Byoung Yoon

    1997-09-01

    We have experimentally observed and theoretically analyzed the polarization properties of fiber lasers with twist-induced birefringence. Twisting a fiber induces the circular birefringence of a fiber laser cavity, and this birefringence reduces the effects of intrinsic linear birefringence on the polarization properties of fiber lasers. The frequencies of their polarization eigenmodes coincide with each other gradually as the twist rate increases, and the directions of polarization eigenmodes deviate from the birefringence axis at a much larger twist rate than the magnitude of intrinsic linear birefringence. We describe the successful experimental results for Nd and Er fiber lasers. {copyright} 1997 Optical Society of America

  13. Wavelength agile holmium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Simakov, N.; Daniel, J. M. O.; Ward, J.; Clarkson, W. A.; Hemming, A.; Haub, J.

    2016-03-01

    For the first time, an electronically-controlled, wavelength-agile tuneable holmium-doped fibre laser is presented. A narrow-band acousto-optic tuneable filter was characterized and used as the wavelength selective element to avoid any inertial effects associated with opto-mechanical tuning mechanisms. We demonstrate operation over a 90 nm wavelength range spanning 2040 - 2130 nm. The laser produced >150 mW over this entire range with a signal-to-noise ratio of >45 dB and line-width of ~0.16 nm. Switching times of ~35 μs and sweep rates of up to 9 nm/ms were also demonstrated.

  14. All-fiber widely tunable thulium laser

    NASA Astrophysics Data System (ADS)

    Stevens, G.; Legg, T.

    2016-03-01

    We present results from an all-fibre thulium laser system that can be tuned to any wavelength between 1710 - 2110 nm, without using any moving mechanical parts. An Acousto-Optic Tunable Filter (AOTF) is used as the tuning element, which allows for the wavelength to be tuned in ~ 20 μs. Core-pumped and cladding pumped thulium fibres are used to enable lasing action across the wavelength range. We use in-house fabricated fused fibre couplers and combiners that have a flattened coupling response with wavelength to allow for the system to be built in an all fibre design. These couplers have a coupling response that only varies by +/- 10% over the 400 nm operating range. The laser can output powers between 1-5 mW over 1710 - 2110 nm and has a linewidth of <0.2 nm. An Acousto-optic modulator is used as a switch on the output of the laser to switch the signal between core-pumped and cladding-pumped amplifier stages. This allows for the output signals to be amplified to ~1W levels.

  15. Endometrial ablation using SideFire laser fiber

    NASA Astrophysics Data System (ADS)

    Everett, Royice B.

    1996-05-01

    The first successful report using the neodymium:yttrium-aluminum-garnet (Nd:YAG) Laser to control hypermenorrhea was reported in 1981. Variations on the treatment technique have been attempted to improve the amenorrhea rate. Reports using the Nd:YAG laser with the blanching or non-touch technique seem to result in a better outcome and higher rate of total amenorrhea than using the dragging technique. Due to the report of improved rates of amenorrhea when using the blanching technique and the Nd:YAG laser, a fiber was developed to direct the laser energy at right angles to the axis of the fiber, therefore allowing a total treatment of the entire uterus in a perpendicular fashion. The theoretic benefit of this would be a more complete and predictable destruction of the endometrial lining, avoiding fluid overload by coagulating and sealing of the vessels and lymphatic. After a follow-up of 12 to 36 months, 56 of the 60 patients (93%) who underwent complete endometrial ablation with the SideFireTM technique had excellent results. Total absolute amenorrhea resulted in 50 patients (83%). Contrary to earlier reports, using the rollerball electrode, this procedure technique resulted in no decrease in results in younger patients. In conclusion, this seems to be a reasonable alternative which offers improved results when compared to previously available methods using electrosurgery or the Nd:YAG laser without the use of the SideFireTM device.

  16. Dissipative soliton in actively mode-locked fiber laser.

    PubMed

    Wang, Ruixin; Dai, Yitang; Yan, Li; Wu, Jian; Xu, Kun; Li, Yan; Lin, Jintong

    2012-03-12

    A dissipative soliton in an all-normal-dispersion actively mode-locked ytterbium-doped fiber laser is reported for the first time. Pulses with 10-ps duration and edge-to-edge bandwidth of 9 nm are generated, and then extra-cavity compressed down to 560 fs due to the large chirp. Widely wavelength tuning between 1031 and 1080 nm is achieved by adjusting the driving frequency only. Our simulation shows that the proposed laser operates in the dissipative soliton shaping regime.

  17. Dynamic fiber Bragg grating strain sensor using a wavelength-locked tunable fiber ring laser

    NASA Astrophysics Data System (ADS)

    Zhu, Yinian; Krishnaswamy, Sridhar

    2012-04-01

    The interrogation systems based on fiber-optic sensors are very attractive for the practical applications in structural health monitoring owing to a number of advantages of optical fiber elements over their electronic counterparts. Among the fiber-optic sensors, the fiber Bragg gratings (FBGs) have their own unique features to be widely used for detection of acoustic emission. We have developed a dynamic strain sensing system by using a tunable single longitudinal mode Erbium-doped fiber ring laser to be locked to the middle-reflection wavelength of the FBG as the demodulation technique. A proportional-integral-derivative device continuously controls the laser wavelength that is kept at the FBG middle-reflection wavelength, thus stabilizing the operating point against quasi-static perturbation, while the high frequency dynamic strain shifts the FBG reflection profile. The reflected power varies in proportion to the applied strain which can be derived directly from AC photocurrent of the reflected signal. We have designed and assembled a fourchannel demodulator system for simultaneous high frequency dynamic strain sensing.

  18. Switchable and tunable erbium-doped fiber lasers using a hollow-core Bragg fiber

    NASA Astrophysics Data System (ADS)

    Zhao, Tanglin; Lian, Zhenggang; Wang, Xin; Shen, Yan; Lou, Shuqin

    2016-11-01

    A switchable and tunable erbium-doped fiber laser (EDFL) is proposed and experimentally demonstrated in this paper. A novel comb filter, which consists of a section of hollow-core Bragg fiber cascaded with Sagnac loop based on a polarization-maintaining fiber (PMF), is developed to suppress the mode competition in the EDFL. By carefully adjusting the polarization controllers, switchable and tunable single- or dual-wavelength lasing outputs with side-mode suppression ratios as high as 50 dB can be achieved. Single-wavelength lasing outputs with a 3 dB linewidth of 0.02 nm can be tuned within the wavelength range from 1562.4 nm to 1565.8 nm. Two kinds of dual-wavelength lasing outputs with different wavelength intervals of 1 nm and 2.1 nm can be obtained and the corresponding tunable wavelength range is 0.5 nm. Moreover, the wavelength shift and peak power fluctuation of both the single- and dual-wavelength lasing outputs are less than 0.1 nm and 2 dB over half an hour at room temperature, which indicates that the proposed fiber laser has good stability. To the best of our knowledge, it is the first time that a hollow-core Bragg fiber has been used as a comb filter in the EDFL.

  19. Switchable multi-wavelength fiber laser based on modal interference

    NASA Astrophysics Data System (ADS)

    Ma, Lin; Jiang, Sun; Qi, Yan-Hui; Kang, Ze-Xin; Jian, Shui-Sheng

    2015-08-01

    A comb fiber filter based on modal interference is proposed and demonstrated in this paper. Here two cascaded up-tapers are used to excite the cladding mode, and a core-offset jointing point is used to act as an interference component. Experimental results show that this kind of structure possesses a comb filter property in a range of the C-band. The measured extinction ratio is better than 12 dB with an insertion loss of about 11 dB. A switchable multi-wavelength erbium-doped fiber laser based on this novel comb filter is demonstrated. By adjusting the polarization controller, the output laser can be switched among single-, dual-, and three-wavelengths with a side mode suppression ratio of better than 45 dB.

  20. Generation of 8 nJ pulses from a normal-dispersion thulium fiber laser.

    PubMed

    Tang, Yuxing; Chong, Andy; Wise, Frank W

    2015-05-15

    We report a study of a mode-locked thulium (Tm) fiber laser with varying normal dispersion. It is difficult to reach the high-energy dissipative-soliton regime due to the anomalous dispersion of most fibers at 2 μm. With large normal dispersion, the laser exhibits elements of self-similar pulse evolution, and is the first Tm fiber laser to achieve the performance benefits of normal-dispersion operation. The laser generates 7.6 nJ pulses, which can be dechirped to 130 fs duration. The resulting peak power is 4 times higher than that of previous Tm fiber lasers.

  1. Multimode fiber laser beam cleanup based on stochastic parallel gradient descent algorithm

    NASA Astrophysics Data System (ADS)

    Zhao, Hai-Chuan; Ma, Hao-Tong; Zhou, Pu; Wang, Xiao-Lin; Ma, Yan-Xing; Li, Xiao; Xu, Xiao-Jun; Zhao, Yi-Jun

    2011-01-01

    We present experimental research on multimode fiber laser beam cleanup based on a stochastic parallel gradient descent (SPGD) algorithm. The multimode laser is obtained by injecting a 1064 nm central wavelength single mode fiber laser into a multimode fiber and the system is setup by using phase only liquid crystal spatial light modulators (LC-SLM). The quality evaluation function is increased by a factor of 10.5 and 65% of the laser energy is encircled in the central lobe when the system evolves from open-loop into close-loop state. Experimental results indicate the feasibility of the multimode fiber laser beam cleanup by adaptive optics (AO).

  2. Generation of 8 nJ pulses from a normal-dispersion thulium fiber laser.

    PubMed

    Tang, Yuxing; Chong, Andy; Wise, Frank W

    2015-05-15

    We report a study of a mode-locked thulium (Tm) fiber laser with varying normal dispersion. It is difficult to reach the high-energy dissipative-soliton regime due to the anomalous dispersion of most fibers at 2 μm. With large normal dispersion, the laser exhibits elements of self-similar pulse evolution, and is the first Tm fiber laser to achieve the performance benefits of normal-dispersion operation. The laser generates 7.6 nJ pulses, which can be dechirped to 130 fs duration. The resulting peak power is 4 times higher than that of previous Tm fiber lasers. PMID:26393739

  3. Multi-meter fiber-delivery and pulse self-compression of milli-Joule femtosecond laser and fiber-aided laser-micromachining.

    PubMed

    Debord, B; Alharbi, M; Vincetti, L; Husakou, A; Fourcade-Dutin, C; Hoenninger, C; Mottay, E; Gérôme, F; Benabid, F

    2014-05-01

    We report on damage-free fiber-guidance of milli-Joule energy-level and 600-femtosecond laser pulses into hypocycloid core-contour Kagome hollow-core photonic crystal fibers. Up to 10 meter-long fibers were used to successfully deliver Yb-laser pulses in robustly single-mode fashion. Different pulse propagation regimes were demonstrated by simply changing the fiber dispersion and gas. Self-compression to ~50 fs, and intensity-level nearing petawatt/cm(2) were achieved. Finally, free focusing-optics laser-micromachining was also demonstrated on different materials.

  4. Delivery of Erbium:YAG laser radiation through side-firing germanium oxide optical fibers

    NASA Astrophysics Data System (ADS)

    Ngo, Anthony K.; Fried, Nathaniel M.

    2006-02-01

    The Erbium:YAG laser is currently being tested experimentally for endoscopic applications in urology, including more efficient laser lithotripsy and more precise incision of urethral strictures than the Holmium:YAG laser. While side-firing silica fibers are available for use with the Ho:YAG laser in urology, no such fibers exist for use with the Er:YAG laser. These applications may benefit from the availability of a side-firing, mid-infrared optical fiber capable of delivering the laser radiation at a 90-degree angle to the tissue. The objective of this study is to describe the simple construction and characterization of a side-firing germanium oxide fiber for potential use in endoscopic laser surgery. Side-firing fibers were constructed from 450-micron-core germanium oxide fibers of 1.45-m-length by polishing the distal tip at a 45-degree angle and placing a 1-cm-long protective quartz cap over the fiber tip. Er:YAG laser radiation with a wavelength of 2.94 microns, pulse duration of 300 microseconds, pulse repetition rate of 3 Hz, and pulse energies of from 5 to 550 mJ was coupled into the fibers. The fiber transmission rate and damage threshold measured 48 +/- 4 % and 149 +/- 37 mJ, respectively (n = 6 fibers). By comparison, fiber transmission through normal germanium oxide trunk fibers measured 66 +/- 3 %, with no observed damage (n = 5 fibers). Sufficient pulse energies were transmitted through the side-firing fibers for contact tissue ablation. Although these initial tests are promising, further studies will need to be conducted, focusing on assembly of more flexible, smaller diameter fibers, fiber bending transmission tests, long-term fiber reliability tests, and improvement of the fiber output spatial beam profile.

  5. Polarization maintaining linear cavity Er-doped fiber femtosecond laser

    NASA Astrophysics Data System (ADS)

    Jang, Heesuk; Jang, Yoon-Soo; Kim, Seungman; Lee, Keunwoo; Han, Seongheum; Kim, Young-Jin; Kim, Seung-Woo

    2015-10-01

    We present a polarization-maintaining (PM) type of Er-doped fiber linear oscillator designed to produce femtosecond laser pulses with high operational stability. Mode locking is activated using a semiconductor saturable absorber mirror (SESAM) attached to one end of the linear PM oscillator. To avoid heat damage, the SESAM is mounted on a copper-silicon-layered heat sink and connected to the linear oscillator through a fiber buffer dissipating the residual pump power. A long-term stability test is performed to prove that the proposed oscillator design maintains a soliton-mode single-pulse operation without breakdown of mode locking over a week period. With addition of an Er-doped fiber amplifier, the output power is raised to 180 mW with 60 fs pulse duration, from which an octave-spanning supercontinuum is produced.

  6. Intricate solitons state in passively mode-locked fiber lasers.

    PubMed

    Amrani, Foued; Salhi, Mohamed; Leblond, Hervé; Haboucha, Adil; Sanchez, François

    2011-07-01

    We report a novel spontaneous soliton pattern formation in a figure-of-eight passively mode-locked erbium-doped double-clad fiber laser. It consists in a condensate phase in which there is almost periodic arrangement of alternate crystal and liquid soliton phases. Thanks to an adapted ansatz for the electric field, we perform a reconstruction allowing to clearly identify the soliton distribution along the cavity.

  7. Waveform reconstruction for an ultrasonic fiber Bragg grating sensor demodulated by an erbium fiber laser.

    PubMed

    Wu, Qi; Okabe, Yoji

    2015-02-01

    Fiber Bragg grating (FBG) demodulated by an erbium fiber laser (EFL) has been used for ultrasonic detection recently. However, due to the inherent relaxation oscillation (RO) of the EFL, the detected ultrasonic signals have large deformations, especially in the low-frequency range. We proposed a novel data processing method to reconstruct an actual ultrasonic waveform. The noise spectrum was smoothed first; the actual ultrasonic spectrum was then obtained by deconvolution in order to mitigate the influence of the RO of the EFL. We proved by experiment that this waveform reconstruction method has high precision, and demonstrated that the FBG sensor demodulated by the EFL will have large practical applications in nondestructive testing.

  8. Erbium nanoparticle doped fibers for efficient, resonantly-pumped Er-doped fiber lasers

    NASA Astrophysics Data System (ADS)

    Friebele, E. Joseph; Baker, Colin C.; Askins, Charles G.; Fontana, Jake P.; Hunt, Michael P.; Peele, John R.; Marcheschi, Barbara A.; Oh, Euneku; Kim, Woohong; Sanghera, Jasbinder; Zhang, Jun; Pattnaik, Radha K.; Merkle, Larry D.; Dubinskii, Mark

    2015-03-01

    Nanoparticle (NP) doping is a new technique for making erbium-doped fibers (EDFs); the Er ions are surrounded by a cage of aluminum and oxygen ions, substantially reducing Er3+ ion-ion energy exchange and its deleterious effects on laser performance. Er-Al-doped NPs have been synthesized and doped in-situ into the silica soot of the preform core. We report the first known measurements of NP-doped EDFs in a resonantly-core pumped master oscillator-power amplifier (MOPA) configuration; the optical-to-optical slope efficiency was 80.4%, which we believe is a record for this type of fiber.

  9. Thulium fiber laser ablation of kidney stones using a 50-μm-core silica optical fiber

    NASA Astrophysics Data System (ADS)

    Blackmon, Richard L.; Hutchens, Thomas C.; Hardy, Luke A.; Wilson, Christopher R.; Irby, Pierce B.; Fried, Nathaniel M.

    2015-01-01

    Our laboratory is currently studying the experimental thulium fiber laser (TFL) as a potential alternative laser lithotripter to the gold standard, clinical Holmium:YAG laser. We have previously demonstrated the efficient coupling of TFL energy into fibers as small as 100-μm-core-diameter without damage to the proximal end. Although smaller fibers have a greater tendency to degrade at the distal tip during lithotripsy, fiber diameters (≤200 μm) have been shown to increase the saline irrigation rates through the working channel of a flexible ureteroscope, to maximize the ureteroscope deflection, and to reduce the stone retropulsion during laser lithotripsy. In this study, a 50-μm-core-diameter, 85-μm-outer-diameter, low-OH silica fiber is characterized for TFL ablation of human calcium oxalate monohydrate urinary stones, ex vivo. The 50-μm-core fiber consumes approximately 30 times less cross-sectional area inside the single working channel of a ureteroscope than the standard 270-μm-core fiber currently used in the clinic. The ureteroscope working channel flow rate, including the 50-μm fiber, decreased by only 10% with no impairment of ureteroscope deflection. The fiber delivered up to 15.4±5.9 W under extreme bending (5-mm-radius) conditions. The stone ablation rate measured 70±22 μg/s for 35-mJ-pulse-energy, 500-μs-pulse-duration, and 50-Hz-pulse-rate. Stone retropulsion and fiber burnback averaged 201±336 and 3000±2600 μm, respectively, after 2 min. With further development, thulium fiber laser lithotripsy using ultra-small, 50-μm-core fibers may introduce new integration and miniaturization possibilities and potentially provide an alternative to conventional Holmium:YAG laser lithotripsy using larger fibers.

  10. Detection of rail corrugation based on fiber laser accelerometers

    NASA Astrophysics Data System (ADS)

    Huang, Wenzhu; Zhang, Wentao; Du, Yanliang; Sun, Baochen; Ma, Huaixiang; Li, Fang

    2013-09-01

    Efficient inspection methods are necessary for detection of rail corrugation to improve the safety and ride quality of railway operations. This paper presents a novel fiber optic technology for detection of rail corrugation based on fiber laser accelerometers (FLAs), tailored to the measurement of surface damage on rail structures. The principle of detection of rail corrugation using double integration of axle-box acceleration is presented. Then we present the theoretical model and test results of FLAs which are installed on the bogie to detect the vertical axle-box acceleration of the train. Characteristics of high sensitivity and large dynamic range are achieved when using fiber optic interferometric demodulation. A flexible inertial algorithm based on double integration and the wavelet denoising method is proposed to accurately estimate the rail corrugation. A field test is carried out on the Datong-Qinhuangdao Railway in north China. The test results are compared with the results of a rail inspection car, which shows that the fiber laser sensing system has a good performance in monitoring rail corrugation.

  11. Flexible high-repetition-rate ultrafast fiber laser

    PubMed Central

    Mao, Dong; Liu, Xueming; Sun, Zhipei; Lu, Hua; Han, Dongdong; Wang, Guoxi; Wang, Fengqiu

    2013-01-01

    High-repetition-rate pulses have widespread applications in the fields of fiber communications, frequency comb, and optical sensing. Here, we have demonstrated high-repetition-rate ultrashort pulses in an all-fiber laser by exploiting an intracavity Mach-Zehnder interferometer (MZI) as a comb filter. The repetition rate of the laser can be tuned flexibly from about 7 to 1100 GHz by controlling the optical path difference between the two arms of the MZI. The pulse duration can be reduced continuously from about 10.1 to 0.55 ps with the spectral width tunable from about 0.35 to 5.7 nm by manipulating the intracavity polarization controller. Numerical simulations well confirm the experimental observations and show that filter-driven four-wave mixing effect, induced by the MZI, is the main mechanism that governs the formation of the high-repetition-rate pulses. This all-fiber-based laser is a simple and low-cost source for various applications where high-repetition-rate pulses are necessary. PMID:24226153

  12. Laser & Fiber Optics: Instructional Manual. The North Dakota High Technology Mobile Laboratory Project.

    ERIC Educational Resources Information Center

    Eickhoff, Luvern R.

    This instructional manual contains 20 learning activity packets for use in a workshop on lasers and fiber optics. The lessons cover the following topics: what a laser; coherent light; setting up the laser; characteristics of the laser beam; scattering of light; laser beam divergence, intensity, color, ophthalmology, and reflections; directivity of…

  13. Spectrum-, pulsewidth-, and wavelength-switchable all-fiber mode-locked Yb laser with fiber based birefringent filter.

    PubMed

    Fedotov, Y S; Kobtsev, S M; Arif, R N; Rozhin, A G; Mou, C; Turitsyn, S K

    2012-07-30

    We examined methods of controlling the pulse duration, spectral width and wavelength of the output from an all-fiber Yb laser mode-locked by carbon nanotubes. It is shown that a segment of polarization maintaining (PM) fiber inserted into a standard single mode fiber based laser cavity can function as a spectral selective filter. Adjustment of the length of the PM fiber from 1 to 2 m led to a corresponding variation in the pulse duration from 2 to 3.8 ps, the spectral bandwidth of the laser output changes from 0.15 to 1.26 nm. Laser output wavelength detuning within up to 5 nm was demonstrated with a fixed length of the PM fiber by adjustment of the polarization controller. PMID:23038330

  14. An optimized fiber delivery system for Q-switched, Nd:YAG lasers

    SciTech Connect

    Setchell, R.E.

    1996-11-01

    Interest in the transmission of high intensities through optical fibers is being motivated by an increasing number of applications. Using different laser types and fiber materials, various studies are encountering transmission limitations due to laser-induced damage processes. The authors have found that fiber transmission is often limited by a plasma-forming breakdown occurring at the fiber entrance face. System attributes that will affect breakdown and damage thresholds include laser characteristics, the design and alignment of laser-to-fiber injection optics, and fiber end-face preparation. In the present work the authors have combined insights gained in past studies in order to establish what thresholds can be achieved if all system attributes can be optimized to some degree. The multimode laser utilized past modifications that produced a relatively smooth, quasi-Gaussian profile. The laser-to-fiber injection system achieved a relatively low value for the ratio of peak-to-average fluences at the fiber entrance face, incorporated a mode scrambler to generate a broad mode power distribution within the initial segment of the fiber path, and had improved fixturing to insure that the fiber axis was collinear with the incident laser beam. Fiber end faces were prepared by a careful mechanical polishing schedule followed by surface conditioning using a CO{sub 2} laser. In combination, these factors resulted in higher thresholds for breakdown and damage than they had achieved previously in studies that utilized a simple lens injection system.

  15. Switchable multiwavelength erbium doped fiber laser based on a nonlinear optical loop mirror incorporating multiple fiber Bragg gratings.

    PubMed

    Tran, Thi Van Anh; Lee, Kwanil; Lee, Sang Bae; Han, Young-Geun

    2008-02-01

    We propose and experimentally demonstrate a switchable multiwavelength erbium doped fiber laser based on a highly nonlinear dispersion shifted fiber and multiple fiber Bragg gratings. A nonlinear optical loop mirror based on a highly nonlinear dispersion shifted fiber is implemented in the ring laser cavity to stabilize the multiwavelength output at room temperature. Multiple fiber Bragg gratings with the wavelength spacing of 0.8 nm are connected with an arrayed waveguide grating to establish a multichannel filter. The high quality of the multiwavelength output with a high extinction ratio of ~60 dB and high output flatness of ~0.5 dB is realized. The nonlinear polarization rotation based on the nonlinear optical loop mirror can provide the switching performance of the proposed multiwavelength fiber laser. The lasing wavelength can be switched individually by controlling the polarization controller and the cavity loss.

  16. 2 kW single-mode fiber laser with 20-m long delivery fiber and high SRS suppression

    NASA Astrophysics Data System (ADS)

    Mashiko, Y.; Nguyen, H. K.; Kashiwagi, M.; Kitabayashi, T.; Shima, K.; Tanaka, D.

    2016-03-01

    A 2 kw single-mode fiber laser with a 20-m long delivery fiber and high back reflection resistance has been demonstrated. An Yb-doped fiber with large core size and differential modal gain is used to realize high SRS suppression and single-mode operation simultaneously. The 20 m-long delivery fiber gives flexibility to the design of processing systems. An output power of 2 kW is achieved at a pump power of 2.86 kW. The slope efficiency is 70%. The power of the Stokes light is less than -50 dB below the laser power at the output power of 2 kW even with a 20-m delivery fiber. Nearly diffraction-limited beam quality is also confirmed (M2 = 1.2). An output power of 3 kW is believed to be achieved by increasing pumping power. The back reflection resistance properties of the fabricated singlemode fiber laser is evaluated numerically by the SRS gain calculated from measured laser output spectra and fiber characteristics. The acceptable power of the back reflection light into the fiber core is estimated to be 500 W which is high enough for processing of highly reflective materials. The output power fluctuation caused by SRS and back reflection in materials processing will be well suppressed. Our high power single-mode fiber lasers can provide high quality and stable processing of highly reflective materials.

  17. Hybrid distributed Raman amplification combining random fiber laser based 2nd-order and low-noise LD based 1st-order pumping.

    PubMed

    Jia, Xin-Hong; Rao, Yun-Jiang; Yuan, Cheng-Xu; Li, Jin; Yan, Xiao-Dong; Wang, Zi-Nan; Zhang, Wei-Li; Wu, Han; Zhu, Ye-Yu; Peng, Fei

    2013-10-21

    A configuration of hybrid distributed Raman amplification (H-DRA), that is formed by incorporating a random fiber laser (RFL) based 2nd-order pump and a low-noise laser-diode (LD) based 1st-order pump, is proposed in this paper. In comparison to conventional bi-directional 1st-order DRA, the effective noise figure (ENF) is found to be lower by amount of 0 to 4 dB due to the RFL-based 2nd-order pump, depending on the on-off gain, while the low-noise 1st-order Raman pump is used for compensating the worsened signal-to-noise ratio (SNR) in the vicinity towards the far end of the fiber and avoiding the potential nonlinear impact induced by excess injection of pump power and suppressing the pump-signal relative intensity noise (RIN) transfer. As a result, the gain distribution can be optimized along ultra-long fiber link, due to combination of the 2nd-order RFL and low-noise 1st-order pumping, making the transmission distance be extended significantly. We utilized such a configuration to achieve ultra-long-distance distributed sensing based on Brillouin optical time-domain analysis (BOTDA). A repeater-less sensing distance record of up to 154.4 km with 5 m spatial resolution and ~ ± 1.4 °C temperature uncertainty is successfully demonstrated.

  18. Coilable single crystal fibers of doped-YAG for high power laser applications

    NASA Astrophysics Data System (ADS)

    Maxwell, Gisele; Soleimani, Nazila; Ponting, Bennett; Gebremichael, Eminet

    2013-05-01

    Single crystal fibers are an intermediate between laser crystals and doped glass fibers. They can combine the advantages of both by guiding laser light and matching the efficiencies found in bulk crystals, making them ideal candidates for high-power laser and fiber laser applications. In particular, a very interesting feature of single crystal fiber is that they can generate high power in the eye-safe range (Er:YAG) with a high efficiency, opening new possibilities for portable directed energy weapons. This work focuses on the growth of a flexible fiber with a core of dopant (Er, Nd, Yb, etc…) that will exhibit good waveguiding properties. Direct growth or a combination of growth and cladding experiments are described. We have, to date, demonstrated the growth of a flexible foot long 45 microns doped YAG fiber. Scattering loss measurements at visible wavelengths along with dopant profile characterization are also presented. Laser characterization for these fibers is in progress.

  19. Experimental verification of fiber-coupling efficiency for satellite-to-ground atmospheric laser downlinks.

    PubMed

    Takenaka, Hideki; Toyoshima, Morio; Takayama, Yoshihisa

    2012-07-01

    Optical communication is a high-capacity method that can handle considerable satellite data. When common-fiber optical devices such as optical fiber amplifiers based on single mode fibers are used in free-space laser communication systems, the laser beam has to be coupled to a single-mode fiber. Under atmospheric turbulence it would be difficult to make the required fiber coupling efficiency in satellite-to-ground laser propagation paths. A fast-steering mirror that can operate at high frequencies under atmospheric turbulence is fabricated, and its tracking performance is verified in real satellite-to-ground laser communication experiments. The measured fiber coupling loss of 10-19 dB in satellite-to-ground laser communication links under atmospheric turbulence shows good agreement with the predicted fiber coupling efficiency of 17 dB.

  20. Galvanometer beam-scanning system for laser fiber drawing.

    PubMed

    Oehrle, R C

    1979-02-15

    A major difficulty in using a laser to draw optical fibers from a glass preform has been uniformally distributing the laser's energy around the melt zone. Several systems have evolved in recent years, but to date the most successful technique has been the off-axis rotating lens system (RLS). The inability of this device to structure efficiently and dynamically the heat zone longitudinally along the preform has restricted its use to preform of less than 8-mm diameter. A new technique reported here employs two orthogonal mounted mirrors, driven by galvanometers to distribute the laser energy around the preform. This system can be retrofitted into the RLS to replace the rotating lens element. The new system, the galvanometer scanning system (GSS), operates at ten times the rotational speed of the RLS and can instantaneously modify the melt zone. The ability of the GSS to enlarge the melt zone reduces the vaporization rate at the surface of the preform permitting efficient use of higher laser power. Experiments i dicate that fibers can be drawn from significantly larger preforms by using the expanded heat zone provided by the GSS.