Yu, Y T; Tuan, P H; Chang, K C; Hsieh, Y H; Huang, K F; Chen, Y F
2016-01-11
Broad-area vertical-cavity surface-emitting lasers (VCSELs) with different cavity sizes are experimentally exploited to manifest the influence of the finite confinement strength on the path-length distribution of quantum billiards. The subthreshold emission spectra of VCSELs are measured to obtain the path-length distributions by using the Fourier transform. It is verified that the number of the resonant peaks in the path-length distribution decreases with decreasing the confinement strength. Theoretical analyses for finite-potential quantum billiards are numerically performed to confirm that the mesoscopic phenomena of quantum billiards with finite confinement strength can be analogously revealed by using broad-area VCSELs.
NASA Technical Reports Server (NTRS)
Kim, Jae-Hoon; Larsson, Anders; Lee, Luke P.
1991-01-01
The paper reports on the first demonstration of pseudomorphic InGaAs single quantum well surface-emitting lasers (SELs), with etched vertical mirrors and integrated 45-deg beam deflectors fabricated by ion beam etching. 100-micron-wide broad-area SELs exhibited a threshold current of 320 mA, a total power of 126 mW, and a total external differential quantum efficiency of 0.09 W/A for a 500-micron-long cavity. The perpendicular far-field pattern of broad-area SELs showed a full width at half maximum of about 20 deg. Lasers with various types of cavities fabricated from the same wafer were compared. Broad-area edge-emitting lasers had a threshold current of 200 mA, a total power of 700 mW, and a total external differential quantum efficiency of 0.52 W/A.
Lateral modes of broad area semiconductor lasers - Theory and experiment
NASA Technical Reports Server (NTRS)
Lang, Robert J.; Larsson, Anders G.; Cody, Jeffrey G.
1991-01-01
Calculations of the lateral modes of an ideal broad area laser, including the nonlinear interaction between the carriers and the optical field, are made. The results include periodically modulated near fields and single- and double-lobed far fields similar to those previously measured. The unsaturable losses are higher and quantum efficiencies are lower than those determined from plane-wave approximations. Broad area InGaAs-GaAlAs-GaAs quantum-well lasers were fabricated and measured and found to closely agree with the theory in near, far, and spectrally resolved near fields. An occultation experiment on the far field confirms previously predicted unstable resonatorlike modes with V-shaped fronts.
Exploring Broad Area Quantum Cascade Lasers
2017-10-01
Research Laboratory AFRL /RDLTD 3550 Aberdeen Ave SE Kirtland AFB, NM 87117-5776 11. SPONSOR/MONITOR’S REPORT NUMBER(S) AFRL -RD-PS-TP-2017-0008 12...LIST DTIC/OCP 8725 John J. Kingman Rd, Suite 0944 Ft Belvoir, VA 22060-6218 1 cy AFRL /RVIL Kirtland AFB, NM 87117-5776 1 cy Chunte Lu... AFRL -RD-PS- AFRL -RD-PS- TP-2017-0008 TP-2017-0008 EXPLORING BROAD AREA QUANTUM CASCADE LASERS Tim Newell, et. al. 1 October 2017 Technical
Beam shaping in high-power broad-area quantum cascade lasers using optical feedback
Ferré, Simon; Jumpertz, Louise; Carras, Mathieu; Ferreira, Robson; Grillot, Frédéric
2017-01-01
Broad-area quantum cascade lasers with high output powers are highly desirable sources for various applications including infrared countermeasures. However, such structures suffer from strongly deteriorated beam quality due to multimode behavior, diffraction of light and self-focusing. Quantum cascade lasers presenting high performances in terms of power and heat-load dissipation are reported and their response to a nonlinear control based on optical feedback is studied. Applying optical feedback enables to efficiently tailor its near-field beam profile. The different cavity modes are sequentially excited by shifting the feedback mirror angle. Further control of the near-field profile is demonstrated using spatial filtering. The impact of an inhomogeneous gain as well as the influence of the cavity width are investigated. Compared to existing technologies, that are complex and costly, beam shaping with optical feedback is a more flexible solution to obtain high-quality mid-infrared sources. PMID:28287175
Beam shaping in high-power broad-area quantum cascade lasers using optical feedback.
Ferré, Simon; Jumpertz, Louise; Carras, Mathieu; Ferreira, Robson; Grillot, Frédéric
2017-03-13
Broad-area quantum cascade lasers with high output powers are highly desirable sources for various applications including infrared countermeasures. However, such structures suffer from strongly deteriorated beam quality due to multimode behavior, diffraction of light and self-focusing. Quantum cascade lasers presenting high performances in terms of power and heat-load dissipation are reported and their response to a nonlinear control based on optical feedback is studied. Applying optical feedback enables to efficiently tailor its near-field beam profile. The different cavity modes are sequentially excited by shifting the feedback mirror angle. Further control of the near-field profile is demonstrated using spatial filtering. The impact of an inhomogeneous gain as well as the influence of the cavity width are investigated. Compared to existing technologies, that are complex and costly, beam shaping with optical feedback is a more flexible solution to obtain high-quality mid-infrared sources.
NASA Astrophysics Data System (ADS)
Zhang, Wei; Zhang, Xuehua; Wang, Yongjin; Hu, Fangren
2017-10-01
Nanocolumn InGaN/GaN single quantum well crystals were deposited on Si (111) substrate with nitrified Ga dots as buffer layer. Transmission electron microscopy image shows the crystals' diameter of 100-130 nm and length of about 900 nm. Nanoscale spatial phase separation of cubic and hexagonal GaN was observed by selective area electron diffraction on the quantum well layer. Raman spectrum of the quantum well crystals proved that the crystals were fully relaxed. Room temperature photoluminescence from 450 to 750 nm and full width at half maximum of about 420 meV indicate broad color luminescence covering blue, green, yellow and red emission, which is helpful for the fabrication of tunable optoelectronic devices and colorful light emitting diodes.
Solar cells using quantum funnels.
Kramer, Illan J; Levina, Larissa; Debnath, Ratan; Zhitomirsky, David; Sargent, Edward H
2011-09-14
Colloidal quantum dots offer broad tuning of semiconductor bandstructure via the quantum size effect. Devices involving a sequence of layers comprised of quantum dots selected to have different diameters, and therefore bandgaps, offer the possibility of funneling energy toward an acceptor. Here we report a quantum funnel that efficiently conveys photoelectrons from their point of generation toward an intended electron acceptor. Using this concept we build a solar cell that benefits from enhanced fill factor as a result of this quantum funnel. This concept addresses limitations on transport in soft condensed matter systems and leverages their advantages in large-area optoelectronic devices and systems.
Continuous wave power scaling in high power broad area quantum cascade lasers
NASA Astrophysics Data System (ADS)
Suttinger, M.; Leshin, J.; Go, R.; Figueiredo, P.; Shu, H.; Lyakh, A.
2018-02-01
Experimental and model results for high power broad area quantum cascade lasers are presented. Continuous wave power scaling from 1.62 W to 2.34 W has been experimentally demonstrated for 3.15 mm-long, high reflection-coated 5.6 μm quantum cascade lasers with 15 stage active region for active region width increased from 10 μm to 20 μm. A semi-empirical model for broad area devices operating in continuous wave mode is presented. The model uses measured pulsed transparency current, injection efficiency, waveguide losses, and differential gain as input parameters. It also takes into account active region self-heating and sub-linearity of pulsed power vs current laser characteristic. The model predicts that an 11% improvement in maximum CW power and increased wall plug efficiency can be achieved from 3.15 mm x 25 μm devices with 21 stages of the same design but half doping in the active region. For a 16-stage design with a reduced stage thickness of 300Å, pulsed roll-over current density of 6 kA/cm2 , and InGaAs waveguide layers; optical power increase of 41% is projected. Finally, the model projects that power level can be increased to 4.5 W from 3.15 mm × 31 μm devices with the baseline configuration with T0 increased from 140 K for the present design to 250 K.
Broadly tunable terahertz generation in mid-infrared quantum cascade lasers.
Vijayraghavan, Karun; Jiang, Yifan; Jang, Min; Jiang, Aiting; Choutagunta, Karthik; Vizbaras, Augustinas; Demmerle, Frederic; Boehm, Gerhard; Amann, Markus C; Belkin, Mikhail A
2013-01-01
Room temperature, broadly tunable, electrically pumped semiconductor sources in the terahertz spectral range, similar in operation simplicity to diode lasers, are highly desired for applications. An emerging technology in this area are sources based on intracavity difference-frequency generation in dual-wavelength mid-infrared quantum cascade lasers. Here we report terahertz quantum cascade laser sources based on an optimized non-collinear Cherenkov difference-frequency generation scheme that demonstrates dramatic improvements in performance. Devices emitting at 4 THz display a mid-infrared-to-terahertz conversion efficiency in excess of 0.6 mW W(-2) and provide nearly 0.12 mW of peak power output. Devices emitting at 2 and 3 THz fabricated on the same chip display 0.09 and 0.4 mW W(-2) conversion efficiencies at room temperature, respectively. High terahertz-generation efficiency and relaxed phase-matching conditions offered by the Cherenkov scheme allowed us to demonstrate, for the first time, an external-cavity terahertz quantum cascade laser source tunable between 1.70 and 5.25 THz.
Superconducting nanoribbon with a constriction: A quantum-confined Josephson junction
NASA Astrophysics Data System (ADS)
Flammia, L.; Zhang, L.-F.; Covaci, L.; Perali, A.; Milošević, M. V.
2018-04-01
Extended defects are known to strongly affect nanoscale superconductors. Here, we report the properties of superconducting nanoribbons with a constriction formed between two adjacent step edges by solving the Bogoliubov-de Gennes equations self-consistently in the regime where quantum confinement is important. Since the quantum resonances of the superconducting gap in the constricted area are different from the rest of the nanoribbon, such constriction forms a quantum-confined S-S'-S Josephson junction, with a broadly tunable performance depending on the length and width of the constriction with respect to the nanoribbon, and possible gating. These findings provide an intriguing approach to further tailor superconducting quantum devices where Josephson effect is of use.
Sudden death of entanglement and non-locality in two- and three-component quantum systems
NASA Astrophysics Data System (ADS)
Ann, Kevin
2011-12-01
Quantum entanglement and non-locality are non-classical characteristics of quantum states with phase coherence that are of central importance to physics, and relevant to the foundations of quantum mechanics and quantum information science. This thesis examines quantum entanglement and non-locality in two- and three-component quantum states with phase coherence when they are subject to statistically independent, classical, Markovian, phase noise in various combinations at the local and collective level. Because this noise reduces phase coherence, it can also reduce quantum entanglement and Bell non-locality. After introducing and contextualizing the research, the results are presented in three broad areas. The first area characterizes the relative time scales of decoherence and disentanglement in 2 x 2 and 3 x 3 quantum states, as well as the various subsystems of the two classes of entangled tripartite two-level quantum states. In all cases, it was found that disentanglement time scales are less than or equal to decoherence time scales. The second area examines the finite-time loss of entanglement, even as quantum state coherence is lost only asymptotically in time due to local dephasing noise, a phenomenon entitled "Entanglement Sudden Death" (ESD). Extending the initial discovery in the simplest 2 x 2 case, ESD is shown to exist in all other systems where mixed-state entanglement measures exist, the 2 x 3 and d x d systems, for finite d > 2. The third area concerns non-locality, which is a physical phenomenon independent of quantum mechanics and related to, though fundamentally different from, entanglement. Non-locality, as quantified by classes of Bell inequalities, is shown to be lost in finite time, even when decoherence occurs only asymptotically. This phenomenon was named "Bell Non-locality Sudden Death" (BNSD).
Strained-layer InGaAs/GaAs/AlGaAs single quantum well lasers with high internal quantum efficiency
NASA Technical Reports Server (NTRS)
Larsson, Anders; Cody, Jeffrey; Lang, Robert J.
1989-01-01
Low threshold current density strained-layer In(0.2)Ga(0.8)As/GaAs/AlGaAs single quantum well lasers, emitting at 980 nm, have been grown by molecular beam epitaxy. Contrary to what has been reported for broad-area lasers with pseudomorphic InGaAs active layers grown by metalorganic chemical vapor deposition, these layers exhibit a high internal quantum efficiency (about 90 percent). The maximum external differential quantum efficiency is 70 percent, limited by an anomalously high internal loss possibly caused by a large lateral spreading of the optical mode. In addition, experimental results supporting the theoretically predicted strain-induced reduction of the valence-band nonparabolicity and density of states are presented.
Broad area quantum cascade lasers operating in pulsed mode above 100 °C λ ∼4.7 μm
NASA Astrophysics Data System (ADS)
Zhao, Yue; Yan, Fangliang; Zhang, Jinchuan; Liu, Fengqi; Zhuo, Ning; Liu, Junqi; Wang, Lijun; Wang, Zhanguo
2017-07-01
We demonstrate a broad area (400 μm) high power quantum cascade laser (QCL). A total peak power of 62 W operating at room temperature is achieved at λ ∼4.7 μm. The temperature dependence of the peak power characteristic is given in the experiment, and also the temperature of the active zone is simulated by a finite-element-method (FEM). We find that the interface roughness of the active core has a great effect on the temperature of the active zone and can be enormously improved using the solid source molecular beam epitaxy (MBE) growth system. Project supported by the National Basic Research Program of China (No. 2013CB632801), the National Key Research and Development Program (No. 2016YFB0402303), the National Natural Science Foundation of China (Nos. 61435014, 61627822, 61574136, 61306058, 61404131), the Key Projects of Chinese Academy of Sciences (No. ZDRW-XH-20164), and the Beijing Natural Science Foundation (No. 4162060).
Quantum simulation of a quantum stochastic walk
NASA Astrophysics Data System (ADS)
Govia, Luke C. G.; Taketani, Bruno G.; Schuhmacher, Peter K.; Wilhelm, Frank K.
2017-03-01
The study of quantum walks has been shown to have a wide range of applications in areas such as artificial intelligence, the study of biological processes, and quantum transport. The quantum stochastic walk (QSW), which allows for incoherent movement of the walker, and therefore, directionality, is a generalization on the fully coherent quantum walk. While a QSW can always be described in Lindblad formalism, this does not mean that it can be microscopically derived in the standard weak-coupling limit under the Born-Markov approximation. This restricts the class of QSWs that can be experimentally realized in a simple manner. To circumvent this restriction, we introduce a technique to simulate open system evolution on a fully coherent quantum computer, using a quantum trajectories style approach. We apply this technique to a broad class of QSWs, and show that they can be simulated with minimal experimental resources. Our work opens the path towards the experimental realization of QSWs on large graphs with existing quantum technologies.
Dependence of threshold current on the number of wells in AlGaAs-GaAs quantum well lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blood, P.; Fletcher, E.D.; Woodbridge, K.
1985-08-01
GaAs-AlGaAs multiple quantum well injection lasers have been grown by molecular beam epitaxy with different numbers (N) of uncoupled GaAs wells 25 A wide symmetrically disposed about the center of a 4000-A-wide waveguide. The devices emit at about 770 nm and for N = 4 the broad area threshold current density is 1.1 kA cm/sup -2/. The threshold current increases with increasing N (2
NASA Astrophysics Data System (ADS)
Kim, Younghyun; Sung, Yunsu; Yang, Jung-Tack; Choi, Woo-Young
2018-02-01
The characteristics of high-power broad-area laser diodes with the improved heat sinking structure are numerically analyzed by a technology computer-aided design based self-consistent electro-thermal-optical simulation. The high-power laser diodes consist of a separate confinement heterostructure of a compressively strained InGaAsP quantum well and GaInP optical cavity layers, and a 100-μm-wide rib and a 2000-μm long cavity. In order to overcome the performance deteriorations of high-power laser diodes caused by self-heating such as thermal rollover and thermal blooming, we propose the high-power broad-area laser diode with improved heat-sinking structure, which another effective heat-sinking path toward the substrate side is added by removing a bulk substrate. It is possible to obtain by removing a 400-μm-thick GaAs substrate with an AlAs sacrificial layer utilizing well-known epitaxial liftoff techniques. In this study, we present the performance improvement of the high-power laser diode with the heat-sinking structure by suppressing thermal effects. It is found that the lateral far-field angle as well as quantum well temperature is expected to be improved by the proposed heat-sinking structure which is required for high beam quality and optical output power, respectively.
NASA Astrophysics Data System (ADS)
Suttinger, Matthew; Go, Rowel; Figueiredo, Pedro; Todi, Ankesh; Shu, Hong; Leshin, Jason; Lyakh, Arkadiy
2018-01-01
Experimental and model results for 15-stage broad area quantum cascade lasers (QCLs) are presented. Continuous wave (CW) power scaling from 1.62 to 2.34 W has been experimentally demonstrated for 3.15-mm long, high reflection-coated QCLs for an active region width increased from 10 to 20 μm. A semiempirical model for broad area devices operating in CW mode is presented. The model uses measured pulsed transparency current, injection efficiency, waveguide losses, and differential gain as input parameters. It also takes into account active region self-heating and sublinearity of pulsed power versus current laser characteristic. The model predicts that an 11% improvement in maximum CW power and increased wall-plug efficiency can be achieved from 3.15 mm×25 μm devices with 21 stages of the same design, but half doping in the active region. For a 16-stage design with a reduced stage thickness of 300 Å, pulsed rollover current density of 6 kA/cm2, and InGaAs waveguide layers, an optical power increase of 41% is projected. Finally, the model projects that power level can be increased to ˜4.5 W from 3.15 mm×31 μm devices with the baseline configuration with T0 increased from 140 K for the present design to 250 K.
Anomaly detection in reconstructed quantum states using a machine-learning technique
NASA Astrophysics Data System (ADS)
Hara, Satoshi; Ono, Takafumi; Okamoto, Ryo; Washio, Takashi; Takeuchi, Shigeki
2014-02-01
The accurate detection of small deviations in given density matrices is important for quantum information processing. Here we propose a method based on the concept of data mining. We demonstrate that the proposed method can more accurately detect small erroneous deviations in reconstructed density matrices, which contain intrinsic fluctuations due to the limited number of samples, than a naive method of checking the trace distance from the average of the given density matrices. This method has the potential to be a key tool in broad areas of physics where the detection of small deviations of quantum states reconstructed using a limited number of samples is essential.
Tanabe, Katsuaki; Guimard, Denis; Bordel, Damien; Iwamoto, Satoshi; Arakawa, Yasuhiko
2010-05-10
An electrically pumped InAs/GaAs quantum dot laser on a Si substrate has been demonstrated. The double-hetero laser structure was grown on a GaAs substrate by metal-organic chemical vapor deposition and layer-transferred onto a Si substrate by GaAs/Si wafer bonding mediated by a 380-nm-thick Au-Ge-Ni alloy layer. This broad-area Fabry-Perot laser exhibits InAs quantum dot ground state lasing at 1.31 microm at room temperature with a threshold current density of 600 A/cm(2). (c) 2010 Optical Society of America.
Quantum Measurement Theory in Gravitational-Wave Detectors.
Danilishin, Stefan L; Khalili, Farid Ya
2012-01-01
The fast progress in improving the sensitivity of the gravitational-wave detectors, we all have witnessed in the recent years, has propelled the scientific community to the point at which quantum behavior of such immense measurement devices as kilometer-long interferometers starts to matter. The time when their sensitivity will be mainly limited by the quantum noise of light is around the corner, and finding ways to reduce it will become a necessity. Therefore, the primary goal we pursued in this review was to familiarize a broad spectrum of readers with the theory of quantum measurements in the very form it finds application in the area of gravitational-wave detection. We focus on how quantum noise arises in gravitational-wave interferometers and what limitations it imposes on the achievable sensitivity. We start from the very basic concepts and gradually advance to the general linear quantum measurement theory and its application to the calculation of quantum noise in the contemporary and planned interferometric detectors of gravitational radiation of the first and second generation. Special attention is paid to the concept of the Standard Quantum Limit and the methods of its surmounting.
Quantum Hamilton equations of motion for bound states of one-dimensional quantum systems
NASA Astrophysics Data System (ADS)
Köppe, J.; Patzold, M.; Grecksch, W.; Paul, W.
2018-06-01
On the basis of Nelson's stochastic mechanics derivation of the Schrödinger equation, a formal mathematical structure of non-relativistic quantum mechanics equivalent to the one in classical analytical mechanics has been established in the literature. We recently were able to augment this structure by deriving quantum Hamilton equations of motion by finding the Nash equilibrium of a stochastic optimal control problem, which is the generalization of Hamilton's principle of classical mechanics to quantum systems. We showed that these equations allow a description and numerical determination of the ground state of quantum problems without using the Schrödinger equation. We extend this approach here to deliver the complete discrete energy spectrum and related eigenfunctions for bound states of one-dimensional stationary quantum systems. We exemplify this analytically for the one-dimensional harmonic oscillator and numerically by analyzing a quartic double-well potential, a model of broad importance in many areas of physics. We furthermore point out a relation between the tunnel splitting of such models and mean first passage time concepts applied to Nelson's diffusion paths in the ground state.
A Gaussian measure of quantum phase noise
NASA Technical Reports Server (NTRS)
Schleich, Wolfgang P.; Dowling, Jonathan P.
1992-01-01
We study the width of the semiclassical phase distribution of a quantum state in its dependence on the average number of photons (m) in this state. As a measure of phase noise, we choose the width, delta phi, of the best Gaussian approximation to the dominant peak of this probability curve. For a coherent state, this width decreases with the square root of (m), whereas for a truncated phase state it decreases linearly with increasing (m). For an optimal phase state, delta phi decreases exponentially but so does the area caught underneath the peak: all the probability is stored in the broad wings of the distribution.
Electrical injection Ga(AsBi)/(AlGa)As single quantum well laser
NASA Astrophysics Data System (ADS)
Ludewig, P.; Knaub, N.; Hossain, N.; Reinhard, S.; Nattermann, L.; Marko, I. P.; Jin, S. R.; Hild, K.; Chatterjee, S.; Stolz, W.; Sweeney, S. J.; Volz, K.
2013-06-01
The Ga(AsBi) material system opens opportunities in the field of high efficiency infrared laser diodes. We report on the growth, structural investigations, and lasing properties of dilute bismide Ga(AsBi)/(AlGa)As single quantum well lasers with 2.2% Bi grown by metal organic vapor phase epitaxy on GaAs (001) substrates. Electrically injected laser operation at room temperature is achieved with a threshold current density of 1.56 kA/cm2 at an emission wavelength of ˜947 nm. These results from broad area devices show great promise for developing efficient IR laser diodes based on this emerging materials system.
Ultra-broad gain quantum cascade lasers tunable from 6.5 to 10.4 μm.
Xie, Feng; Caneau, C; Leblanc, H; Ho, M-T; Zah, C
2015-09-01
We present a quantum cascade laser structure with an ultra-broad gain profile that covers the wavelength range from 6.5 to 10.4 μm. In a grating-tuned external cavity, we demonstrated continuous tuning from 1027 cm(-1) to 1492 cm(-1) with this broad gain laser chip. We also fabricated distributed feedback quantum cascade laser arrays with this active region design and varied grating periods. We demonstrated single wavelength lasing from 962 (10.4) to 1542 cm(-1) (6.5 μm). The frequency coverage (580 cm(-1)) is about 46% of center frequency.
PREFACE: International Conference on Quantum Optics and Quantum Information (icQoQi) 2013
NASA Astrophysics Data System (ADS)
2014-11-01
Quantum Information can be understood as being naturally derived from a new understanding of information theory when quantum systems become information carriers and quantum effects become non negligible. Experiments and the realization of various interesting phenomena in quantum information within the established field of quantum optics have been reported, which has provided a very convenient framework for the former. Together, quantum optics and quantum information are among the most exciting areas of interdisciplinary research in modern day science which cover a broad spectrum of topics, from the foundations of quantum mechanics and quantum information science to the introduction of new types of quantum technologies and metrology. The International Conference on Quantum Optics and Quantum Information (icQoQi) 2013 was organized by the Faculty of Science, International Islamic University Malaysia with the objective of bringing together leading academic scientists, researchers and scholars in the domain of interest from around the world to share their experiences and research results about all aspects of quantum optics and quantum information. While the event was organized on a somewhat modest scale, it was in fact a rather fruitful meeting for established researchers and students as well, especially for the local scene where the field is relatively new. We would therefore, like to thank the organizing committee, our advisors and all parties for having made this event successful and last but not least would extend our sincerest gratitude to IOP for publishing these selected papers from icQoQi2013 in Journal of Physics: Conference Series.
Broad Area Distributed Gain, Distributed Index Profile GaAlAs Semiconductor Laser Diodes
1991-02-14
active region. The external and electron mobilities . This, along with the difference differential quantum efficiency and light-current slope ef- [91...nternotionoi .-. rnri in Circuit Thteor\\ 1991. and Aplications He also has served o~n iechnical and orovrai committees 1 -1 H C Case,, and NI B...sample temperatures. these defects are mobile and cause atomic diffusion, usually called radiation-enhanced diffusion (RED). Since this diffusion
Chiral quantum dot based materials
NASA Astrophysics Data System (ADS)
Govan, Joseph; Loudon, Alexander; Baranov, Alexander V.; Fedorov, Anatoly V.; Gun'ko, Yurii
2014-05-01
Recently, the use of stereospecific chiral stabilising molecules has also opened another avenue of interest in the area of quantum dot (QD) research. The main goal of our research is to develop new types of technologically important quantum dot materials containing chiral defects, study their properties and explore their applications. The utilisation of chiral penicillamine stabilisers allowed the preparation of new water soluble white emitting CdS quantum nanostructures which demonstrated circular dichroism in the band-edge region of the spectrum. It was also demonstrated that all three types of QDs (D-, L-, and Rac penicillamine stabilised) show very broad emission bands between 400 and 700 nm due to defects or trap states on the surfaces of the nanocrystals. In this work the chiral CdS based quantum nanostructures have also been doped by copper metal ions and new chiral penicilamine stabilized CuS nanoparticles have been prepared and investigated. It was found that copper doping had a strong effect at low levels in the synthesis of chiral CdS nanostructures. We expect that this research will open new horizons in the chemistry of chiral nanomaterials and their application in biotechnology, sensing and asymmetric synthesis.
Simulation and understanding of atomic and molecular quantum crystals
NASA Astrophysics Data System (ADS)
Cazorla, Claudio; Boronat, Jordi
2017-07-01
Quantum crystals abound in the whole range of solid-state species. Below a certain threshold temperature the physical behavior of rare gases (
Optimization of the highly strained InGaAs/GaAs quantum well lasers grown by MOVPE
NASA Astrophysics Data System (ADS)
Su, Y. K.; Chen, W. C.; Wan, C. T.; Yu, H. C.; Chuang, R. W.; Tsai, M. C.; Cheng, K. Y.; Hu, C.; Tsau, Seth
2008-07-01
In this article, we study the highly compressive-strained InGaAs/GaAs quantum wells and the broad-area lasers grown by MOVPE. Several epitaxial parameters were optimized, including the growth temperature, pressure and group V to group III (V/III) ratio. Grown with the optimized epitaxial parameters, the highly strained In 0.39Ga 0.61As/GaAs lasers could be continuously operated at 1.22 μm and their threshold current density Jth was 140 A/cm 2. To the best of our knowledge, the demonstrated InGaAs QW laser has the lowest threshold current per quantum well (Jth/QW) of 46.7 A/cm 2. The fitted characteristic temperature ( T0) was 146.2 K, indicating the good electron confinement ability. Furthermore, by lowering the growth temperature down to 475 °C and the TBAs/III ratio to 5, the emission wavelength of the In 0.42Ga 0.58As/GaAs quantum wells was as long as 1245 nm and FWHM was 43 meV.
NASA Astrophysics Data System (ADS)
Ryckaert, Jana; Correia, António; Smet, Kevin; Tessier, Mickael D.; Dupont, Dorian; Hens, Zeger; Hanselaer, Peter; Meuret, Youri
2017-09-01
Combining traditional phosphors with a broad emission spectrum and non-scattering quantum dots with a narrow emission spectrum can have multiple advantages for white LEDs. It allows to reduce the amount of scattering in the wavelength conversion element, increasing the efficiency of the complete system. Furthermore, the unique possibility to tune the emission spectrum of quantum dots allows to optimize the resulting LED spectrum in order to achieve optimal color rendering properties for the light source. However, finding the optimal quantum dot properties to achieve optimal efficacy and color rendering is a non-trivial task. Instead of simply summing up the emission spectra of the blue LED, phosphor and quantum dots, we propose a complete simulation tool that allows an accurate analysis of the final performance for a range of different quantum dot synthesis parameters. The recycling of the reflected light from the wavelength conversion element by the LED package is taken into account, as well as the re-absorption and the associated red-shift. This simulation tool is used to vary two synthesis parameters (core size and cadmium fraction) of InP/CdxZn1-xSe quantum dots. We find general trends for the ideal quantum dot that should be combined with a specific YAG:Ce broad band phosphor to obtain optimal efficiency and color rendering for a white LED with a specific pumping LED and recycling cavity, with a desired CCT of 3500K.
Quantum anomalous Hall Majorana platform
NASA Astrophysics Data System (ADS)
Zeng, Yongxin; Lei, Chao; Chaudhary, Gaurav; MacDonald, Allan H.
2018-02-01
We show that quasi-one-dimensional quantum wires can be written onto the surface of magnetic topological insulator (MTI) thin films by gate arrays. When the MTI is in a quantum anomalous Hall state, MTI/superconductor quantum wires have especially broad stability regions for both topological and nontopological states, facilitating creation and manipulation of Majorana particles on the MTI surface.
Surface defect assisted broad spectra emission from CdSe quantum dots for white LED application
NASA Astrophysics Data System (ADS)
Samuel, Boni; Mathew, S.; Anand, V. R.; Correya, Adrine Antony; Nampoori, V. P. N.; Mujeeb, A.
2018-02-01
This paper reports, broadband photoluminescence from CdSe quantum dots (QDs) under the excitation of 403 nm using fluorimeter and 403 nm CW laser excitation. The broad spectrum obtained from the colloidal quantum dots was ranges from 450 nm to 800 nm. The broadness of the spectra was attributed to the merging of band edge and defect driven emissions from the QDs. Six different sizes of particles were prepared via kinetic growth method by using CdO and elemental Se as sources of Cd and Se respectively. The particle sizes were measured from TEM images. The size dependent effect on broad emission was also studied and the defect state emission was found to be predominant in very small QDs. The defect driven emission was also observed to be redshifted, similar to the band edge emission, due to quantum confinement effect. The emission corresponding to different laser power was also studied and a linear relation was obtained. In order to study the colour characteristics of the emission, CIE chromaticity coordinate, CRI and CCT of the prepared samples were measured. It is observed that, these values were tunable by the addition of suitable intensity of blue light from the excitation source to yield white light of various colour temperatures. The broad photoluminescence spectrum of the QDs, were compared with that of a commercially available white LED. It was found that the prepared QDs are good alternatives for the phosphor in phosphor converted white LEDs, to provide good spectral tunability.
High brightness angled cavity quantum cascade lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heydari, D.; Bai, Y.; Bandyopadhyay, N.
2015-03-02
A quantum cascade laser (QCL) with an output power of 203 W is demonstrated in pulsed mode at 283 K with an angled cavity. The device has a ridge width of 300 μm, a cavity length of 5.8 mm, and a tilt angle of 12°. The back facet is high reflection coated, and the front facet is anti-reflection coated. The emitting wavelength is around 4.8 μm. In distinct contrast to a straight cavity broad area QCL, the lateral far field is single lobed with a divergence angle of only 3°. An ultrahigh brightness value of 156 MW cm{sup −2 }sr{sup −1} is obtained, which marks the brightestmore » QCL to date.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markmann, Sergej, E-mail: sergej.markmann@ruhr-uni-bochum.de; Nong, Hanond, E-mail: nong.hanond@ruhr-uni-bochum.de; Hekmat, Negar
2015-09-14
We demonstrate by injection seeding that the spectral emission of a terahertz (THz) quantum cascade laser (QCL) can be modified with broad-band THz pulses whose bandwidths are greater than the QCL bandwidth. Two broad-band THz pulses delayed in time imprint a modulation on the single THz pulse spectrum. The resulting spectrum is used to injection seed the THz QCL. By varying the time delay between the THz pulses, the amplitude distribution of the QCL longitudinal modes is modified. By applying this approach, the QCL emission is reversibly switched from multi-mode to single mode emission.
Light, the universe and everything - 12 Herculean tasks for quantum cowboys and black diamond skiers
NASA Astrophysics Data System (ADS)
Agarwal, Girish; Allen, Roland E.; Bezděková, Iva; Boyd, Robert W.; Chen, Goong; Hanson, Ronald; Hawthorne, Dean L.; Hemmer, Philip; Kim, Moochan B.; Kocharovskaya, Olga; Lee, David M.; Lidström, Sebastian K.; Lidström, Suzy; Losert, Harald; Maier, Helmut; Neuberger, John W.; Padgett, Miles J.; Raizen, Mark; Rajendran, Surjeet; Rasel, Ernst; Schleich, Wolfgang P.; Scully, Marlan O.; Shchedrin, Gavriil; Shvets, Gennady; Sokolov, Alexei V.; Svidzinsky, Anatoly; Walsworth, Ronald L.; Weiss, Rainer; Wilczek, Frank; Willner, Alan E.; Yablonovitch, Eli; Zheludev, Nikolay
2018-06-01
The Winter Colloquium on the Physics of Quantum Electronics (PQE) has been a seminal force in quantum optics and related areas since 1971. It is rather mind-boggling to recognize how the concepts presented at these conferences have transformed scientific understanding and human society. In January 2017, the participants of PQE were asked to consider the equally important prospects for the future, and to formulate a set of questions representing some of the greatest aspirations in this broad field. The result is this multi-authored paper, in which many of the world's leading experts address the following fundamental questions: (1) What is the future of gravitational wave astronomy? (2) Are there new quantum phases of matter away from equilibrium that can be found and exploited - such as the time crystal? (3) Quantum theory in uncharted territory: What can we learn? (4) What are the ultimate limits for laser photon energies? (5) What are the ultimate limits to temporal, spatial and optical resolution? (6) What novel roles will atoms play in technology? (7) What applications lie ahead for nitrogen-vacancy centres in diamond? (8) What is the future of quantum coherence, squeezing and entanglement for enhanced super-resolution and sensing? (9) How can we solve (some of) humanity's biggest problems through new quantum technologies? (10) What new understanding of materials and biological molecules will result from their dynamical characterization with free-electron lasers? (11) What new technologies and fundamental discoveries might quantum optics achieve by the end of this century? (12) What novel topological structures can be created and employed in quantum optics?
Some calculable contributions to entanglement entropy.
Hertzberg, Mark P; Wilczek, Frank
2011-02-04
Entanglement entropy appears as a central property of quantum systems in broad areas of physics. However, its precise value is often sensitive to unknown microphysics, rendering it incalculable. By considering parametric dependence on correlation length, we extract finite, calculable contributions to the entanglement entropy for a scalar field between the interior and exterior of a spatial domain of arbitrary shape. The leading term is proportional to the area of the dividing boundary; we also extract finite subleading contributions for a field defined in the bulk interior of a waveguide in 3+1 dimensions, including terms proportional to the waveguide's cross-sectional geometry: its area, perimeter length, and integrated curvature. We also consider related quantities at criticality and suggest a class of systems for which these contributions might be measurable.
Problems in particle theory. Technical report - 1993--1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adler, S.L.; Wilczek, F.
This report is a progress report on the work of two principal investigators in the broad area of particle physics theory, covering their personal work, that of their coworkers, and their proposed work for the future. One author has worked in the past on various topics in field theory and particle physics, among them current algebras, the physics of neutrino induced reactions, quantum electrodynamics (including strong magnetic field processes), the theory of the axial-vector current anomaly, topics in quantum gravity, and nonlinear models for quark confinement. While much of his work has been analytical, all of the projects listed abovemore » (except for the work on gravity) had phases which required considerable computer work as well. Over the next several years, he proposes to continue or initiate research on the following problems: (1) Acceleration algorithms for the Monte Carlo analysis of lattice field and gauge theories, and more generally, new research in computational neuroscience and pattern recognition. (2) Construction of quaternionic generalizations of complex quantum mechanics and field theory, and their application to composite models of quarks and leptons, and to the problem of unifying quantum theories of matter with general relativity. One author has worked on problems in exotic quantum statistics and its applications to condensed matter systems. His work has also continued on the quantum theory of black holes. This has evolved toward understanding properties of quantum field theory and string theory in incomplete regions of flat space.« less
Non-Abelian Bosonization and Fractional Quantum Hall Transitions
NASA Astrophysics Data System (ADS)
Hui, Aaron; Mulligan, Michael; Kim, Eun-Ah
A fully satisfying theoretical description for the quantum phase transition between fractional quantum Hall plateaus remains an outstanding problem. Experiments indicate scaling exponents that are not readily obtained in conventional theories. Using insights from duality, we describe a class of quantum critical effective theories that produce qualitatively realistic scaling exponents for the transition. We discuss the implications of our results for the physically-relevant interactions controlling this broad class of quantum critical behavior. Supported by National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1650441.
NASA Astrophysics Data System (ADS)
Kohn, Walter
It is a melancholy privilege for me to take part in this symposium in honor of my venerated teacher, Julian Schwinger. All of us here know that his brilliant scientific insights and methodologies have l deep imprints across the entire spectrum of theoretical physics, both pure and applied. No doubt his most outstanding work was his monumental relativistically covariant renormalization theory of quantum electrodynamics; other areas which he substantially reshaped include quantum gauge theories, whose significance he was one of the first to realize; nuclear physics — beginning with his first papers written as a teenager and in which he offered perhaps the first comprehensive lecture course; the theory of waveguides, a powerful reformulation during World War II in terms of tensor Green's functions and variational principles; scattering theory; particle accelerators; and, very broadly, the structure of elementary particle theory…
Fraine, A; Minaeva, O; Simon, D S; Egorov, R; Sergienko, A V
2012-01-30
A polarization mode dispersion (PMD) measurement of a commercial telecommunication wavelength selective switch (WSS) using a quantum interferometric technique with polarization-entangled states is presented. Polarization-entangled photons with a broad spectral width covering the telecom band are produced using a chirped periodically poled nonlinear crystal. The first demonstration of a quantum metrology application using an industrial commercial device shows a promising future for practical high-resolution quantum interference.
How to Build a Quantum Computer
NASA Astrophysics Data System (ADS)
Sanders, Barry C.
2017-11-01
Quantum computer technology is progressing rapidly with dozens of qubits and hundreds of quantum logic gates now possible. Although current quantum computer technology is distant from being able to solve computational problems beyond the reach of non-quantum computers, experiments have progressed well beyond simply demonstrating the requisite components. We can now operate small quantum logic processors with connected networks of qubits and quantum logic gates, which is a great stride towards functioning quantum computers. This book aims to be accessible to a broad audience with basic knowledge of computers, electronics and physics. The goal is to convey key notions relevant to building quantum computers and to present state-of-the-art quantum-computer research in various media such as trapped ions, superconducting circuits, photonics and beyond.
Chen, Yok; Gonzalez, Roberto
1986-01-01
Refractory oxide crystals having high-quantum efficiency and high thermal stability for use as broadly tunable laser host materials. The crystals are formed by removing hydrogen from a single crystal of the oxide material to a level below about 10.sup.12 protons per cm.sup.3 and subsequently thermochemically reducing the oxygen content of the crystal to form sufficient oxygen anion vacancies so that short-lived F.sup.+ luminescence is produced when the crystal is optically excited.
Chen, Yok; Gonzalez, R.
1985-07-03
Refractory oxide crystals having high-quantum efficiency and high thermal stability for use as broadly tunable laser host materials. The crystals are formed by removing hydrogen from a single crystal of the oxide material to a level below about 10/sup 12/ protons per cm/sup 3/ and subsequently thermochemically reducing the oxygen content of the crystal to form sufficient oxygen anion vacancies so that short-lived F/sup +/ luminescence is produced when the crystal is optically excited.
Razeghi, Manijeh; Zhou, Wenjia; Slivken, Steven; Lu, Quan-Yong; Wu, Donghai; McClintock, Ryan
2017-11-01
The quantum cascade laser (QCL) is becoming the leading laser source in the mid-infrared (mid-IR) range, which contains two atmospheric transmission windows and many molecular fingerprint absorption features. Since its first demonstration in 1994, the QCL has undergone tremendous development in terms of the output power, wall plug efficiency, wavelength coverage, tunability and beam quality. At the Center for Quantum Devices, we have demonstrated high-power continuous wave operation of QCLs covering a wide wavelength range from 3 to 12 μm, with power output up to 5.1 W at room temperature. Recent research has resulted in power scaling in pulsed mode with up to 203 W output, electrically tunable QCLs based on monolithic sampled grating design, heterogeneous QCLs with a broad spectral gain, broadly tunable on-chip beam-combined QCLs, QCL-based mid-IR frequency combs, and fundamental mode surface emitting quantum cascade ring lasers. The developed QCLs will be the basis for a number of next-generation spectroscopy and sensing systems.
Interband cascade lasers with >40% continuous-wave wallplug efficiency at cryogenic temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canedy, C. L.; Kim, C. S.; Merritt, C. D.
2015-09-21
Broad-area 10-stage interband cascade lasers (ICLs) emitting at λ = 3.0–3.2 μm are shown to maintain continuous-wave (cw) wallplug efficiencies exceeding 40% at temperatures up to 125 K, despite having a design optimized for operation at ambient and above. The cw threshold current density at 80 K is only 11 A/cm{sup 2} for a 2 mm cavity with anti-reflection/high-reflection coatings on the two facets. The external differential quantum efficiency for a 1-mm-long cavity with the same coatings is 70% per stage at 80 K, and still above 65% at 150 K. The results demonstrate that at cryogenic temperatures, where free carrier absorption losses are minimized, ICLs can convert electricalmore » to optical energy nearly as efficiently as the best specially designed intersubband-based quantum cascade lasers.« less
NASA Technical Reports Server (NTRS)
Derry, P. L.; Chen, H. Z.; Morkoc, H.; Yariv, A.; Lau, K. Y.
1988-01-01
Broad area graded-index separate-confinement heterostructure single quantum well lasers grown by molecular-beam epitaxy (MBE) with threshold current density as low as 93 A/sq cm (520 microns long) have been fabricated. Buried lasers formed from similarly structured MBE material with liquid phase epitaxy regrowth had threshold currents at submilliampere levels when high reflectivity coatings were applied to the end facets. A CW threshold current of 0.55 mA was obtained for a laser with facet reflectivities of about 80 percent, a cavity length of 120 micron, and an active region stripe width of 1 micron. These devices driven directly with logic level signals have switch-on delays less than 50 ps without any current prebias. Such lasers permit fully on-off switching while at the same time obviating the need for bias monitoring and feedback control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muller, Richard P.
2017-07-01
Sandia National Laboratories has developed a broad set of capabilities in quantum information science (QIS), including elements of quantum computing, quantum communications, and quantum sensing. The Sandia QIS program is built atop unique DOE investments at the laboratories, including the MESA microelectronics fabrication facility, the Center for Integrated Nanotechnologies (CINT) facilities (joint with LANL), the Ion Beam Laboratory, and ASC High Performance Computing (HPC) facilities. Sandia has invested $75 M of LDRD funding over 12 years to develop unique, differentiating capabilities that leverage these DOE infrastructure investments.
Investigation of germanium quantum-well light sources.
Fei, Edward T; Chen, Xiaochi; Zang, Kai; Huo, Yijie; Shambat, Gary; Miller, Gerald; Liu, Xi; Dutt, Raj; Kamins, Theodore I; Vuckovic, Jelena; Harris, James S
2015-08-24
In this paper, we report a broad investigation of the optical properties of germanium (Ge) quantum-well devices. Our simulations show a significant increase of carrier density in the Ge quantum wells. Photoluminescence (PL) measurements show the enhanced direct-bandgap radiative recombination rates due to the carrier density increase in the Ge quantum wells. Electroluminescence (EL) measurements show the temperature-dependent properties of our Ge quantum-well devices, which are in good agreement with our theoretical models. We also demonstrate the PL measurements of Ge quantum-well microdisks using tapered-fiber collection method and quantify the optical loss of the Ge quantum-well structure from the measured PL spectra for the first time.
Dynamics of Topological Excitations in a Model Quantum Spin Ice
NASA Astrophysics Data System (ADS)
Huang, Chun-Jiong; Deng, Youjin; Wan, Yuan; Meng, Zi Yang
2018-04-01
We study the quantum spin dynamics of a frustrated X X Z model on a pyrochlore lattice by using large-scale quantum Monte Carlo simulation and stochastic analytic continuation. In the low-temperature quantum spin ice regime, we observe signatures of coherent photon and spinon excitations in the dynamic spin structure factor. As the temperature rises to the classical spin ice regime, the photon disappears from the dynamic spin structure factor, whereas the dynamics of the spinon remain coherent in a broad temperature window. Our results provide experimentally relevant, quantitative information for the ongoing pursuit of quantum spin ice materials.
Wide spectral range confocal microscope based on endlessly single-mode fiber.
Hubbard, R; Ovchinnikov, Yu B; Hayes, J; Richardson, D J; Fu, Y J; Lin, S D; See, P; Sinclair, A G
2010-08-30
We report an endlessly single mode, fiber-optic confocal microscope, based on a large mode area photonic crystal fiber. The microscope confines a very broad spectral range of excitation and emission wavelengths to a single spatial mode in the fiber. Single-mode operation over an optical octave is feasible. At a magnification of 10 and λ = 900 nm, its resolution was measured to be 1.0 μm (lateral) and 2.5 μm (axial). The microscope's use is demonstrated by imaging single photons emitted by individual InAs quantum dots in a pillar microcavity.
NASA Astrophysics Data System (ADS)
Nötzel, Richard
2009-07-01
This volume of IOP Conference Series: Materials Science and Engineering contains papers that were presented at the special symposium K at the EMRS 2009 Spring Meeting held 8-12 June in Strasbourg, France, which was entitled 'Semiconductor Nanostructures towards Electronic and Optoelectronic Device Applications II'. Thanks to the broad interest a large variety of quantum dots and quantum wires and related nanostructures and their application in devices could be covered. There was significant progress in the epitaxial growth of semiconductor quantum dots seen in the operation of high-power, as well as mode locked laser diodes and the lateral positioning of quantum dots on patterned substrates or by selective area growth for future single quantum dot based optoelectronic and electronic devices. In the field of semiconductor nanowires high quality, almost twin free structures are now available together with a new degree of freedom for band structure engineering based on alternation of the crystal structure. In the search for Si based light emitting structures, nanocrystals and miniband-related near infrared luminescence of Si/Ge quantum dot superlattices with high quantum efficiency were reported. These highlights, among others, and the engaged discussions of the scientists, engineers and students brought together at the symposium emphasize how active the field of semiconductor nanostructures and their applications in devices is, so that we can look forward to the progress to come. Guest Editor Richard Nötzel COBRA Research Institute Department of Applied Physics Eindhoven University of Technology 5600 MB Eindhoven The Netherlands Tel.: +31 40 247 2047; fax: +31 40 246 1339 E-mail address: r.noetzel@tue.nl
Quantum learning of classical stochastic processes: The completely positive realization problem
NASA Astrophysics Data System (ADS)
Monràs, Alex; Winter, Andreas
2016-01-01
Among several tasks in Machine Learning, a specially important one is the problem of inferring the latent variables of a system and their causal relations with the observed behavior. A paradigmatic instance of this is the task of inferring the hidden Markov model underlying a given stochastic process. This is known as the positive realization problem (PRP), [L. Benvenuti and L. Farina, IEEE Trans. Autom. Control 49(5), 651-664 (2004)] and constitutes a central problem in machine learning. The PRP and its solutions have far-reaching consequences in many areas of systems and control theory, and is nowadays an important piece in the broad field of positive systems theory. We consider the scenario where the latent variables are quantum (i.e., quantum states of a finite-dimensional system) and the system dynamics is constrained only by physical transformations on the quantum system. The observable dynamics is then described by a quantum instrument, and the task is to determine which quantum instrument — if any — yields the process at hand by iterative application. We take as a starting point the theory of quasi-realizations, whence a description of the dynamics of the process is given in terms of linear maps on state vectors and probabilities are given by linear functionals on the state vectors. This description, despite its remarkable resemblance with the hidden Markov model, or the iterated quantum instrument, is however devoid of any stochastic or quantum mechanical interpretation, as said maps fail to satisfy any positivity conditions. The completely positive realization problem then consists in determining whether an equivalent quantum mechanical description of the same process exists. We generalize some key results of stochastic realization theory, and show that the problem has deep connections with operator systems theory, giving possible insight to the lifting problem in quotient operator systems. Our results have potential applications in quantum machine learning, device-independent characterization and reverse-engineering of stochastic processes and quantum processors, and more generally, of dynamical processes with quantum memory [M. Guţă, Phys. Rev. A 83(6), 062324 (2011); M. Guţă and N. Yamamoto, e-print arXiv:1303.3771(2013)].
Integrated generation of complex optical quantum states and their coherent control
NASA Astrophysics Data System (ADS)
Roztocki, Piotr; Kues, Michael; Reimer, Christian; Romero Cortés, Luis; Sciara, Stefania; Wetzel, Benjamin; Zhang, Yanbing; Cino, Alfonso; Chu, Sai T.; Little, Brent E.; Moss, David J.; Caspani, Lucia; Azaña, José; Morandotti, Roberto
2018-01-01
Complex optical quantum states based on entangled photons are essential for investigations of fundamental physics and are the heart of applications in quantum information science. Recently, integrated photonics has become a leading platform for the compact, cost-efficient, and stable generation and processing of optical quantum states. However, onchip sources are currently limited to basic two-dimensional (qubit) two-photon states, whereas scaling the state complexity requires access to states composed of several (<2) photons and/or exhibiting high photon dimensionality. Here we show that the use of integrated frequency combs (on-chip light sources with a broad spectrum of evenly-spaced frequency modes) based on high-Q nonlinear microring resonators can provide solutions for such scalable complex quantum state sources. In particular, by using spontaneous four-wave mixing within the resonators, we demonstrate the generation of bi- and multi-photon entangled qubit states over a broad comb of channels spanning the S, C, and L telecommunications bands, and control these states coherently to perform quantum interference measurements and state tomography. Furthermore, we demonstrate the on-chip generation of entangled high-dimensional (quDit) states, where the photons are created in a coherent superposition of multiple pure frequency modes. Specifically, we confirm the realization of a quantum system with at least one hundred dimensions. Moreover, using off-the-shelf telecommunications components, we introduce a platform for the coherent manipulation and control of frequencyentangled quDit states. Our results suggest that microcavity-based entangled photon state generation and the coherent control of states using accessible telecommunications infrastructure introduce a powerful and scalable platform for quantum information science.
Defence and security applications of quantum cascade lasers
NASA Astrophysics Data System (ADS)
Grasso, Robert J.
2016-09-01
Quantum Cascade Lasers (QCL) have seen tremendous recent application in the realm of Defence and Security. And, in many instances replacing traditional solid state lasers as the source of choice for Countermeasures, Remote Sensing, In-situ Sensing, Through-Barrier Sensing, and many others. Following their development and demonstration in the early 1990's, QCL's reached some maturity and specific defence and security application prior to 2005; with much initial development fostered by DARPA initiatives in the US, dstl, MoD, and EOARD funding initiatives in the UK, and University level R&D such as those by Prof Manijeh Razeghi at Northwestern University [1], and Prof Ted Masselink at Humboldt University [2]. As QCL's provide direct mid-IR laser output for electrical input, they demonstrate high quantum efficiency compared with diode pumped solid state lasers with optical parametric oscillators (OPOs) to generate mid-Infrared output. One particular advantage of QCL's is their very broad operational bandwidth, extending from the terahertz to the near-infrared spectral regions. Defence and Security areas benefiting from QCL's include: Countermeasures, Remote Sensing, Through-the-Wall Sensing, and Explosive Detection. All information used to construct this paper obtained from open sources.
Reflections of the observer and the observed in quantum gravity
NASA Astrophysics Data System (ADS)
Ahluwalia, Dharam Vir
A broad brush impressionistic view of physics from the vantage point of someone living on a nearby dark-planet Zimpok is presented so as to argue that the observed and the observer are reflected in quantum gravity through a universal mass shared by neurones and a unification scale of the high energy physics.
Cruz, C.; Soares-Pinto, D. O.; Brandão, P.; ...
2016-03-07
The control of quantum correlations in solid-state systems by means of material engineering is a broad avenue to be explored, since it makes possible steps toward the limits of quantum mechanics and the design of novel materials with applications on emerging quantum technologies. This letter explores the potential of molecular magnets to be prototypes of materials for quantum information technology in this context. More precisely, we engineered a material and from its geometric quantum discord we found significant quantum correlations up to 9540 K (even without entanglement); and, a pure singlet state occupied up to around 80 K (above liquidmore » nitrogen temperature), additionally. Our results could only be achieved due to the carboxylate group promoting a metal-to-metal huge magnetic interaction.« less
Monolithically Integrated Mid-Infrared Quantum Cascade Laser and Detector
Schwarz, Benedikt; Reininger, Peter; Detz, Hermann; Zederbauer, Tobias; Andrews, Aaron Maxwell; Schrenk, Werner; Strasser, Gottfried
2013-01-01
We demonstrate the monolithic integration of a mid-infrared laser and detector utilizing a bi-functional quantum cascade active region. When biased, this active region provides optical gain, while it can be used as a detector at zero bias. With our novel approach we can measure the light intensity of the laser on the same chip without the need of external lenses or detectors. Based on a bound-to-continuum design, the bi-functional active region has an inherent broad electro-luminescence spectrum of 200 cm−1, which indicate sits use for single mode laser arrays. We have measured a peak signal of 191.5 mV at theon-chip detector, without any amplification. The room-temperature pulsed emission with an averaged power consumption of 4 mW and the high-speed detection makes these devices ideal for low-power sensors. The combination of the on-chip detection functionality, the broad emission spectrum and the low average power consumption indicates the potential of our bi-functional quantum cascade structures to build a mid-infrared lab-on-a-chip based on quantum cascade laser technology. PMID:23389348
Multiparameter Estimation in Networked Quantum Sensors
NASA Astrophysics Data System (ADS)
Proctor, Timothy J.; Knott, Paul A.; Dunningham, Jacob A.
2018-02-01
We introduce a general model for a network of quantum sensors, and we use this model to consider the following question: When can entanglement between the sensors, and/or global measurements, enhance the precision with which the network can measure a set of unknown parameters? We rigorously answer this question by presenting precise theorems proving that for a broad class of problems there is, at most, a very limited intrinsic advantage to using entangled states or global measurements. Moreover, for many estimation problems separable states and local measurements are optimal, and can achieve the ultimate quantum limit on the estimation uncertainty. This immediately implies that there are broad conditions under which simultaneous estimation of multiple parameters cannot outperform individual, independent estimations. Our results apply to any situation in which spatially localized sensors are unitarily encoded with independent parameters, such as when estimating multiple linear or nonlinear optical phase shifts in quantum imaging, or when mapping out the spatial profile of an unknown magnetic field. We conclude by showing that entangling the sensors can enhance the estimation precision when the parameters of interest are global properties of the entire network.
Yuan, Xiang-Yang; Zhang, Li-Guang; Huang, Lei; Yang, Hui-Jie; Zhong, Yan-Ting; Ning, Na; Wen, Yin-Yuan; Dong, Shu-Qi; Song, Xi-E; Wang, Hong-Fu; Guo, Ping-Yi
2017-09-11
To explore the role of Brassinolide (BR) in improving the tolerance of Sigma Broad in foxtail millet (Setaria italica L.), effects of 0.1 mg/L of BR foliar application 24 h before 3.37 g/ha of Sigma Broad treatment at five-leaf stage of foxtail millet on growth parameters, antioxidant enzymes, malondialdehyde (MDA), chlorophyll, net photosynthetic rate (P N ), chlorophyll fluorescence and P 700 parameters were studied 7 and 15 d after herbicide treatment, respectively. Results showed that Sigma Broad significantly decreased plant height, activities of superoxide dismutase (SOD), chlorophyll content, P N , PS II effective quantum yield (Y (II)), PS II electron transport rate (ETR (II)), photochemical quantum yield of PSI(Y (I)) and PS I electron transport rate ETR (I), but significantly increased MDA. Compared to herbicide treatment, BR dramatically increased plant height, activities of SOD, Y (II), ETR (II), Y (I) and ETR (I). This study showed BR pretreatment could improve the tolerance of Sigma Broad in foxtail millet through improving the activity of antioxidant enzymes, keeping electron transport smooth, and enhancing actual photochemical efficiency of PS II and PSI.
Quantum healing of spacetime singularities: A review
NASA Astrophysics Data System (ADS)
Konkowski, D. A.; Helliwell, T. M.
2018-02-01
Singularities are commonplace in general relativistic spacetimes. It is natural to hope that they might be “healed” (or resolved) by the inclusion of quantum mechanics, either in the theory itself (quantum gravity) or, more modestly, in the description of the spacetime geodesic paths used to define them. We focus here on the latter, mainly using a procedure proposed by Horowitz and Marolf to test whether singularities in broad classes of spacetimes can be resolved by replacing geodesic paths with quantum wave packets. We list the spacetime singularities that various authors have studied in this context, and distinguish those which are healed quantum mechanically (QM) from those which remain singular. Finally, we mention some alternative approaches to healing singularities.
EDITOR IN CHIEF'S ANNOUNCEMENT: New Review article type New Review article type
NASA Astrophysics Data System (ADS)
2010-09-01
This issue sees the publication of our first `Brief Review', a new kind of review article that we are introducing to complement our existing, very popular Topical Review programme. While a Topical Review is a broad overview article providing comprehensive coverage of progress in an area, a Brief Review is designed to be a shorter, `snapshot' of a field that is expanding or developing rapidly. Written by experts in the field and commissioned by members of our Editorial Board, we hope you find Brief Reviews to be a useful source of information and perspective. Clifford M Will Editor in Chief Classical and Quantum Gravity
Amplification, Redundancy, and Quantum Chernoff Information
NASA Astrophysics Data System (ADS)
Zwolak, Michael; Riedel, C. Jess; Zurek, Wojciech H.
2014-04-01
Amplification was regarded, since the early days of quantum theory, as a mysterious ingredient that endows quantum microstates with macroscopic consequences, key to the "collapse of the wave packet," and a way to avoid embarrassing problems exemplified by Schrödinger's cat. Such a bridge between the quantum microworld and the classical world of our experience was postulated ad hoc in the Copenhagen interpretation. Quantum Darwinism views amplification as replication, in many copies, of the information about quantum states. We show that such amplification is a natural consequence of a broad class of models of decoherence, including the photon environment we use to obtain most of our information. This leads to objective reality via the presence of robust and widely accessible records of selected quantum states. The resulting redundancy (the number of copies deposited in the environment) follows from the quantum Chernoff information that quantifies the information transmitted by a typical elementary subsystem of the environment.
Gardas, Bartłomiej; Dziarmaga, Jacek; Zurek, Wojciech H.; ...
2018-03-14
The shift of interest from general purpose quantum computers to adiabatic quantum computing or quantum annealing calls for a broadly applicable and easy to implement test to assess how quantum or adiabatic is a specific hardware. Here we propose such a test based on an exactly solvable many body system–the quantum Ising chain in transverse field–and implement it on the D-Wave machine. An ideal adiabatic quench of the quantum Ising chain should lead to an ordered broken symmetry ground state with all spins aligned in the same direction. An actual quench can be imperfect due to decoherence, noise, flaws inmore » the implemented Hamiltonian, or simply too fast to be adiabatic. Imperfections result in topological defects: Spins change orientation, kinks punctuating ordered sections of the chain. Therefore, the number of such defects quantifies the extent by which the quantum computer misses the ground state, and is imperfect.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardas, Bartłomiej; Dziarmaga, Jacek; Zurek, Wojciech H.
The shift of interest from general purpose quantum computers to adiabatic quantum computing or quantum annealing calls for a broadly applicable and easy to implement test to assess how quantum or adiabatic is a specific hardware. Here we propose such a test based on an exactly solvable many body system–the quantum Ising chain in transverse field–and implement it on the D-Wave machine. An ideal adiabatic quench of the quantum Ising chain should lead to an ordered broken symmetry ground state with all spins aligned in the same direction. An actual quench can be imperfect due to decoherence, noise, flaws inmore » the implemented Hamiltonian, or simply too fast to be adiabatic. Imperfections result in topological defects: Spins change orientation, kinks punctuating ordered sections of the chain. Therefore, the number of such defects quantifies the extent by which the quantum computer misses the ground state, and is imperfect.« less
Broadly tunable terahertz difference-frequency generation in quantum cascade lasers on silicon
NASA Astrophysics Data System (ADS)
Jung, Seungyong; Kim, Jae Hyun; Jiang, Yifan; Vijayraghavan, Karun; Belkin, Mikhail A.
2018-01-01
We report broadly tunable terahertz (THz) sources based on intracavity Cherenkov difference-frequency generation in quantum cascade lasers transfer-printed on high-resistivity silicon substrates. Spectral tuning from 1.3 to 4.3 THz was obtained from a 2-mm long laser chip using a modified Littrow external cavity setup. The THz power output and the midinfrared-to-THz conversion efficiency of the devices transferred on silicon are dramatically enhanced, compared with the devices on a native semi-insulating InP substrate. Enhancement is particularly significant at higher THz frequencies, where the tail of the Reststrahlen band results in a strong absorption of THz light in the InP substrate.
Broad-gain (Δλ/λ0~0.4), temperature-insensitive (T<0~510K) quantum cascade lasers.
Fujita, Kazuue; Furuta, Shinichi; Dougakiuchi, Tatsuo; Sugiyama, Atsushi; Edamura, Tadataka; Yamanishi, Masamichi
2011-01-31
Broad-gain operation of λ~8.7 μm quantum cascade lasers based on dual-upper-state to multiple-lower-state transition design is reported. The devices exhibit surprisingly wide (~500 cm(-1)) electroluminescence spectra which are very insensitive to voltage and temperature changes above room temperature. With recourse to the temperature-insensitivity of electroluminescence spectra, the lasers demonstrate an extremely-weak temperature-dependence of laser performances: T0-value of 510 K, associated with a room temperature threshold current density of 2.6 kA/cm2. In addition, despite such wide gain spectra, room temperature, continuous wave operation of the laser with buried hetero structure is achieved.
Towards quantum chemistry on a quantum computer.
Lanyon, B P; Whitfield, J D; Gillett, G G; Goggin, M E; Almeida, M P; Kassal, I; Biamonte, J D; Mohseni, M; Powell, B J; Barbieri, M; Aspuru-Guzik, A; White, A G
2010-02-01
Exact first-principles calculations of molecular properties are currently intractable because their computational cost grows exponentially with both the number of atoms and basis set size. A solution is to move to a radically different model of computing by building a quantum computer, which is a device that uses quantum systems themselves to store and process data. Here we report the application of the latest photonic quantum computer technology to calculate properties of the smallest molecular system: the hydrogen molecule in a minimal basis. We calculate the complete energy spectrum to 20 bits of precision and discuss how the technique can be expanded to solve large-scale chemical problems that lie beyond the reach of modern supercomputers. These results represent an early practical step toward a powerful tool with a broad range of quantum-chemical applications.
Supercritical entanglement in local systems: Counterexample to the area law for quantum matter.
Movassagh, Ramis; Shor, Peter W
2016-11-22
Quantum entanglement is the most surprising feature of quantum mechanics. Entanglement is simultaneously responsible for the difficulty of simulating quantum matter on a classical computer and the exponential speedups afforded by quantum computers. Ground states of quantum many-body systems typically satisfy an "area law": The amount of entanglement between a subsystem and the rest of the system is proportional to the area of the boundary. A system that obeys an area law has less entanglement and can be simulated more efficiently than a generic quantum state whose entanglement could be proportional to the total system's size. Moreover, an area law provides useful information about the low-energy physics of the system. It is widely believed that for physically reasonable quantum systems, the area law cannot be violated by more than a logarithmic factor in the system's size. We introduce a class of exactly solvable one-dimensional physical models which we can prove have exponentially more entanglement than suggested by the area law, and violate the area law by a square-root factor. This work suggests that simple quantum matter is richer and can provide much more quantum resources (i.e., entanglement) than expected. In addition to using recent advances in quantum information and condensed matter theory, we have drawn upon various branches of mathematics such as combinatorics of random walks, Brownian excursions, and fractional matching theory. We hope that the techniques developed herein may be useful for other problems in physics as well.
Supercritical entanglement in local systems: Counterexample to the area law for quantum matter
Movassagh, Ramis; Shor, Peter W.
2016-01-01
Quantum entanglement is the most surprising feature of quantum mechanics. Entanglement is simultaneously responsible for the difficulty of simulating quantum matter on a classical computer and the exponential speedups afforded by quantum computers. Ground states of quantum many-body systems typically satisfy an “area law”: The amount of entanglement between a subsystem and the rest of the system is proportional to the area of the boundary. A system that obeys an area law has less entanglement and can be simulated more efficiently than a generic quantum state whose entanglement could be proportional to the total system’s size. Moreover, an area law provides useful information about the low-energy physics of the system. It is widely believed that for physically reasonable quantum systems, the area law cannot be violated by more than a logarithmic factor in the system’s size. We introduce a class of exactly solvable one-dimensional physical models which we can prove have exponentially more entanglement than suggested by the area law, and violate the area law by a square-root factor. This work suggests that simple quantum matter is richer and can provide much more quantum resources (i.e., entanglement) than expected. In addition to using recent advances in quantum information and condensed matter theory, we have drawn upon various branches of mathematics such as combinatorics of random walks, Brownian excursions, and fractional matching theory. We hope that the techniques developed herein may be useful for other problems in physics as well. PMID:27821725
Superconductivity and non-Fermi liquid behavior near a nematic quantum critical point.
Lederer, Samuel; Schattner, Yoni; Berg, Erez; Kivelson, Steven A
2017-05-09
Using determinantal quantum Monte Carlo, we compute the properties of a lattice model with spin [Formula: see text] itinerant electrons tuned through a quantum phase transition to an Ising nematic phase. The nematic fluctuations induce superconductivity with a broad dome in the superconducting [Formula: see text] enclosing the nematic quantum critical point. For temperatures above [Formula: see text], we see strikingly non-Fermi liquid behavior, including a "nodal-antinodal dichotomy" reminiscent of that seen in several transition metal oxides. In addition, the critical fluctuations have a strong effect on the low-frequency optical conductivity, resulting in behavior consistent with "bad metal" phenomenology.
Population Switching and Charge Sensing in Quantum Dots: A Case for a Quantum Phase Transition
NASA Astrophysics Data System (ADS)
Goldstein, Moshe; Berkovits, Richard; Gefen, Yuval
2010-06-01
A broad and a narrow level of a quantum dot connected to two external leads may swap their respective occupancies as a function of an external gate voltage. By mapping this problem onto a multiflavored Coulomb gas we show that such population switching is not abrupt. However, trying to measure it by adding a third electrostatically coupled lead may render this switching an abrupt first order quantum phase transition. This is related to the interplay of the Mahan mechanism versus the Anderson orthogonality catastrophe, in similitude to the Fermi edge singularity. A concrete setup for experimental observation of this effect is also suggested.
Efficient tomography of a quantum many-body system
NASA Astrophysics Data System (ADS)
Lanyon, B. P.; Maier, C.; Holzäpfel, M.; Baumgratz, T.; Hempel, C.; Jurcevic, P.; Dhand, I.; Buyskikh, A. S.; Daley, A. J.; Cramer, M.; Plenio, M. B.; Blatt, R.; Roos, C. F.
2017-12-01
Quantum state tomography is the standard technique for estimating the quantum state of small systems. But its application to larger systems soon becomes impractical as the required resources scale exponentially with the size. Therefore, considerable effort is dedicated to the development of new characterization tools for quantum many-body states. Here we demonstrate matrix product state tomography, which is theoretically proven to allow for the efficient and accurate estimation of a broad class of quantum states. We use this technique to reconstruct the dynamical state of a trapped-ion quantum simulator comprising up to 14 entangled and individually controlled spins: a size far beyond the practical limits of quantum state tomography. Our results reveal the dynamical growth of entanglement and describe its complexity as correlations spread out during a quench: a necessary condition for future demonstrations of better-than-classical performance. Matrix product state tomography should therefore find widespread use in the study of large quantum many-body systems and the benchmarking and verification of quantum simulators and computers.
ERIC Educational Resources Information Center
deSouza, Romualdo T.; Iyengar, Srinivasan S.
2013-01-01
A first-year undergraduate course that introduces students to chemistry through a conceptually detailed description of quantum mechanics is outlined. Quantization as arising from the confinement of a particle is presented and these ideas are used to introduce the reasons behind resonance, molecular orbital theory, degeneracy of electronic states,…
Multiparameter Estimation in Networked Quantum Sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Proctor, Timothy J.; Knott, Paul A.; Dunningham, Jacob A.
We introduce a general model for a network of quantum sensors, and we use this model to consider the question: When can entanglement between the sensors, and/or global measurements, enhance the precision with which the network can measure a set of unknown parameters? We rigorously answer this question by presenting precise theorems proving that for a broad class of problems there is, at most, a very limited intrinsic advantage to using entangled states or global measurements. Moreover, for many estimation problems separable states and local measurements are optimal, and can achieve the ultimate quantum limit on the estimation uncertainty. Thismore » immediately implies that there are broad conditions under which simultaneous estimation of multiple parameters cannot outperform individual, independent estimations. Our results apply to any situation in which spatially localized sensors are unitarily encoded with independent parameters, such as when estimating multiple linear or non-linear optical phase shifts in quantum imaging, or when mapping out the spatial profile of an unknown magnetic field. We conclude by showing that entangling the sensors can enhance the estimation precision when the parameters of interest are global properties of the entire network.« less
Multiparameter Estimation in Networked Quantum Sensors
Proctor, Timothy J.; Knott, Paul A.; Dunningham, Jacob A.
2018-02-21
We introduce a general model for a network of quantum sensors, and we use this model to consider the question: When can entanglement between the sensors, and/or global measurements, enhance the precision with which the network can measure a set of unknown parameters? We rigorously answer this question by presenting precise theorems proving that for a broad class of problems there is, at most, a very limited intrinsic advantage to using entangled states or global measurements. Moreover, for many estimation problems separable states and local measurements are optimal, and can achieve the ultimate quantum limit on the estimation uncertainty. Thismore » immediately implies that there are broad conditions under which simultaneous estimation of multiple parameters cannot outperform individual, independent estimations. Our results apply to any situation in which spatially localized sensors are unitarily encoded with independent parameters, such as when estimating multiple linear or non-linear optical phase shifts in quantum imaging, or when mapping out the spatial profile of an unknown magnetic field. We conclude by showing that entangling the sensors can enhance the estimation precision when the parameters of interest are global properties of the entire network.« less
Tunable quantum criticality and super-ballistic transport in a "charge" Kondo circuit.
Iftikhar, Z; Anthore, A; Mitchell, A K; Parmentier, F D; Gennser, U; Ouerghi, A; Cavanna, A; Mora, C; Simon, P; Pierre, F
2018-05-03
Quantum phase transitions (QPTs) are ubiquitous in strongly-correlated materials. However the microscopic complexity of these systems impedes the quantitative understanding of QPTs. Here, we observe and thoroughly analyze the rich strongly-correlated physics in two profoundly dissimilar regimes of quantum criticality. With a circuit implementing a quantum simulator for the three-channel Kondo model, we reveal the universal scalings toward different low-temperature fixed points and along the multiple crossovers from quantum criticality. Notably, an unanticipated violation of the maximum conductance for ballistic free electrons is uncovered. The present charge pseudospin implementation of a Kondo impurity opens access to a broad variety of strongly-correlated phenomena. Copyright © 2018, American Association for the Advancement of Science.
Single-photon emitting diode in silicon carbide.
Lohrmann, A; Iwamoto, N; Bodrog, Z; Castelletto, S; Ohshima, T; Karle, T J; Gali, A; Prawer, S; McCallum, J C; Johnson, B C
2015-07-23
Electrically driven single-photon emitting devices have immediate applications in quantum cryptography, quantum computation and single-photon metrology. Mature device fabrication protocols and the recent observations of single defect systems with quantum functionalities make silicon carbide an ideal material to build such devices. Here, we demonstrate the fabrication of bright single-photon emitting diodes. The electrically driven emitters display fully polarized output, superior photon statistics (with a count rate of >300 kHz) and stability in both continuous and pulsed modes, all at room temperature. The atomic origin of the single-photon source is proposed. These results provide a foundation for the large scale integration of single-photon sources into a broad range of applications, such as quantum cryptography or linear optics quantum computing.
Quantum-enhanced sensing from hyperentanglement
NASA Astrophysics Data System (ADS)
Walborn, S. P.; Pimentel, A. H.; Davidovich, L.; de Matos Filho, R. L.
2018-01-01
Hyperentanglement—simultaneous entanglement between multiple degrees of freedom of two or more systems—has been used to enhance quantum information tasks such as quantum communication and photonic quantum computing. Here we show that hyperentanglement can lead to increased quantum advantage in metrology, with contributions from the entanglement in each degree of freedom, allowing for Heisenberg scaling in the precision of parameter estimation. Our experiment employs photon pairs entangled in polarization and spatial degrees of freedom to estimate a small tilt angle of a mirror. Precision limits beyond shot noise are saturated through a simple binary measurement of the polarization state. The dynamics considered here have broad applicability, implying that similar strategies based on hyperentanglement can offer improvement in a wide variety of physical scenarios and metrological tasks.
L-Cysteine Capped CdSe Quantum Dots Synthesized by Photochemical Route.
Singh, Avinash; Kunwar, Amit; Rath, M C
2018-05-01
L-cysteine capped CdSe quantum dots were synthesized via photochemical route in aqueous solution under UV photo-irradiation. The as grown CdSe quantum dots exhibit broad fluorescence at room temperature. The CdSe quantum dots were found to be formed only through the reactions of the precursors, i.e., Cd(NH3)2+4 and SeSO2-3 with the photochemically generated 1-hydroxy-2-propyl radicals, (CH3)2COH radicals, which are formed through the process of H atom abstraction by the photoexcited acetone from 2-propanol. L-Cysteine was found to act as a suitable capping agent for the CdSe quantum dots and increases their biocompatability. Cytotoxicty effects of these quantum dots were evaluated in Chinese Hamster Ovary (CHO) epithelial cells, indicated a significant lower level for the L-cysteine capped CdSe quantum dots as compare to the bare ones.
Towards the Fundamental Quantum Limit of Linear Measurements of Classical Signals
NASA Astrophysics Data System (ADS)
Miao, Haixing; Adhikari, Rana X.; Ma, Yiqiu; Pang, Belinda; Chen, Yanbei
2017-08-01
The quantum Cramér-Rao bound (QCRB) sets a fundamental limit for the measurement of classical signals with detectors operating in the quantum regime. Using linear-response theory and the Heisenberg uncertainty relation, we derive a general condition for achieving such a fundamental limit. When applied to classical displacement measurements with a test mass, this condition leads to an explicit connection between the QCRB and the standard quantum limit that arises from a tradeoff between the measurement imprecision and quantum backaction; the QCRB can be viewed as an outcome of a quantum nondemolition measurement with the backaction evaded. Additionally, we show that the test mass is more a resource for improving measurement sensitivity than a victim of the quantum backaction, which suggests a new approach to enhancing the sensitivity of a broad class of sensors. We illustrate these points with laser interferometric gravitational-wave detectors.
Quantum Control of Graphene Plasmon Excitation and Propagation at Heaviside Potential Steps.
Wang, Dongli; Fan, Xiaodong; Li, Xiaoguang; Dai, Siyuan; Wei, Laiming; Qin, Wei; Wu, Fei; Zhang, Huayang; Qi, Zeming; Zeng, Changgan; Zhang, Zhenyu; Hou, Jianguo
2018-02-14
Quantum mechanical effects of single particles can affect the collective plasmon behaviors substantially. In this work, the quantum control of plasmon excitation and propagation in graphene is demonstrated by adopting the variable quantum transmission of carriers at Heaviside potential steps as a tuning knob. First, the plasmon reflection is revealed to be tunable within a broad range by varying the ratio γ between the carrier energy and potential height, which originates from the quantum mechanical effect of carrier propagation at potential steps. Moreover, the plasmon excitation by free-space photos can be regulated from fully suppressed to fully launched in graphene potential wells also through adjusting γ, which defines the degrees of the carrier confinement in the potential wells. These discovered quantum plasmon effects offer a unified quantum-mechanical solution toward ultimate control of both plasmon launching and propagating, which are indispensable processes in building plasmon circuitry.
Order parameter fluctuations at a buried quantum critical point
Feng, Yejun; Wang, Jiyang; Jaramillo, R.; van Wezel, Jasper; Haravifard, S.; Srajer, G.; Liu, Y.; Xu, Z.-A.; Littlewood, P. B.; Rosenbaum, T. F.
2012-01-01
Quantum criticality is a central concept in condensed matter physics, but the direct observation of quantum critical fluctuations has remained elusive. Here we present an X-ray diffraction study of the charge density wave (CDW) in 2H-NbSe2 at high pressure and low temperature, where we observe a broad regime of order parameter fluctuations that are controlled by proximity to a quantum critical point. X-rays can track the CDW despite the fact that the quantum critical regime is shrouded inside a superconducting phase; and in contrast to transport probes, allow direct measurement of the critical fluctuations of the charge order. Concurrent measurements of the crystal lattice point to a critical transition that is continuous in nature. Our results confirm the long-standing expectations of enhanced quantum fluctuations in low-dimensional systems, and may help to constrain theories of the quantum critical Fermi surface. PMID:22529348
Entanglement of spin waves among four quantum memories.
Choi, K S; Goban, A; Papp, S B; van Enk, S J; Kimble, H J
2010-11-18
Quantum networks are composed of quantum nodes that interact coherently through quantum channels, and open a broad frontier of scientific opportunities. For example, a quantum network can serve as a 'web' for connecting quantum processors for computation and communication, or as a 'simulator' allowing investigations of quantum critical phenomena arising from interactions among the nodes mediated by the channels. The physical realization of quantum networks generically requires dynamical systems capable of generating and storing entangled states among multiple quantum memories, and efficiently transferring stored entanglement into quantum channels for distribution across the network. Although such capabilities have been demonstrated for diverse bipartite systems, entangled states have not been achieved for interconnects capable of 'mapping' multipartite entanglement stored in quantum memories to quantum channels. Here we demonstrate measurement-induced entanglement stored in four atomic memories; user-controlled, coherent transfer of the atomic entanglement to four photonic channels; and characterization of the full quadripartite entanglement using quantum uncertainty relations. Our work therefore constitutes an advance in the distribution of multipartite entanglement across quantum networks. We also show that our entanglement verification method is suitable for studying the entanglement order of condensed-matter systems in thermal equilibrium.
Contactless measurement of alternating current conductance in quantum Hall structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drichko, I. L.; Diakonov, A. M.; Malysh, V. A.
2014-10-21
We report a procedure to determine the frequency-dependent conductance of quantum Hall structures in a broad frequency domain. The procedure is based on the combination of two known probeless methods—acoustic spectroscopy and microwave spectroscopy. By using the acoustic spectroscopy, we study the low-frequency attenuation and phase shift of a surface acoustic wave in a piezoelectric crystal in the vicinity of the electron (hole) layer. The electronic contribution is resolved using its dependence on a transverse magnetic field. At high frequencies, we study the attenuation of an electromagnetic wave in a coplanar waveguide. To quantitatively calibrate these data, we use themore » fact that in the quantum-Hall-effect regime the conductance at the maxima of its magnetic field dependence is determined by extended states. Therefore, it should be frequency independent in a broad frequency domain. The procedure is verified by studies of a well-characterized p-SiGe/Ge/SiGe heterostructure.« less
Quantum learning of classical stochastic processes: The completely positive realization problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monràs, Alex; Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543; Winter, Andreas
2016-01-15
Among several tasks in Machine Learning, a specially important one is the problem of inferring the latent variables of a system and their causal relations with the observed behavior. A paradigmatic instance of this is the task of inferring the hidden Markov model underlying a given stochastic process. This is known as the positive realization problem (PRP), [L. Benvenuti and L. Farina, IEEE Trans. Autom. Control 49(5), 651–664 (2004)] and constitutes a central problem in machine learning. The PRP and its solutions have far-reaching consequences in many areas of systems and control theory, and is nowadays an important piece inmore » the broad field of positive systems theory. We consider the scenario where the latent variables are quantum (i.e., quantum states of a finite-dimensional system) and the system dynamics is constrained only by physical transformations on the quantum system. The observable dynamics is then described by a quantum instrument, and the task is to determine which quantum instrument — if any — yields the process at hand by iterative application. We take as a starting point the theory of quasi-realizations, whence a description of the dynamics of the process is given in terms of linear maps on state vectors and probabilities are given by linear functionals on the state vectors. This description, despite its remarkable resemblance with the hidden Markov model, or the iterated quantum instrument, is however devoid of any stochastic or quantum mechanical interpretation, as said maps fail to satisfy any positivity conditions. The completely positive realization problem then consists in determining whether an equivalent quantum mechanical description of the same process exists. We generalize some key results of stochastic realization theory, and show that the problem has deep connections with operator systems theory, giving possible insight to the lifting problem in quotient operator systems. Our results have potential applications in quantum machine learning, device-independent characterization and reverse-engineering of stochastic processes and quantum processors, and more generally, of dynamical processes with quantum memory [M. Guţă, Phys. Rev. A 83(6), 062324 (2011); M. Guţă and N. Yamamoto, e-print http://arxiv.org/abs/1303.3771 (2013)].« less
Noise induced quantum effects in photosynthetic complexes
NASA Astrophysics Data System (ADS)
Dorfman, Konstantin; Voronine, Dmitri; Mukamel, Shaul; Scully, Marlan
2012-02-01
Recent progress in coherent multidimensional optical spectroscopy revealed effects of quantum coherence coupled to population leading to population oscillations as evidence of quantum transport. Their description requires reevaluation of the currently used methods and approximations. We identify couplings between coherences and populations as the noise-induced cross-terms in the master equation generated via Agarwal-Fano interference that have been shown earlier to enhance the quantum yield in a photocell. We investigated a broad range of typical parameter regimes, which may be applied to a variety of photosynthetic complexes. We demonstrate that quantum coherence may be induced in photosynthetic complexes under natural conditions of incoherent light from the sun. This demonstrates that a photosynthetic reaction center may be viewed as a biological quantum heat engine that transforms high-energy thermal photon radiation into low entropy electron flux.
Room temperature solid-state quantum emitters in the telecom range.
Zhou, Yu; Wang, Ziyu; Rasmita, Abdullah; Kim, Sejeong; Berhane, Amanuel; Bodrog, Zoltán; Adamo, Giorgio; Gali, Adam; Aharonovich, Igor; Gao, Wei-Bo
2018-03-01
On-demand, single-photon emitters (SPEs) play a key role across a broad range of quantum technologies. In quantum networks and quantum key distribution protocols, where photons are used as flying qubits, telecom wavelength operation is preferred because of the reduced fiber loss. However, despite the tremendous efforts to develop various triggered SPE platforms, a robust source of triggered SPEs operating at room temperature and the telecom wavelength is still missing. We report a triggered, optically stable, room temperature solid-state SPE operating at telecom wavelengths. The emitters exhibit high photon purity (~5% multiphoton events) and a record-high brightness of ~1.5 MHz. The emission is attributed to localized defects in a gallium nitride (GaN) crystal. The high-performance SPEs embedded in a technologically mature semiconductor are promising for on-chip quantum simulators and practical quantum communication technologies.
Practical quantum retrieval games
NASA Astrophysics Data System (ADS)
Arrazola, Juan Miguel; Karasamanis, Markos; Lütkenhaus, Norbert
2016-06-01
Complex cryptographic protocols are often constructed from simpler building blocks. In order to advance quantum cryptography, it is important to study practical building blocks that can be used to develop new protocols. An example is quantum retrieval games (QRGs), which have broad applicability and have already been used to construct quantum money schemes. In this work, we introduce a general construction of quantum retrieval games based on the hidden matching problem and show how they can be implemented in practice using available technology. More precisely, we provide a general method to construct (1-out-of-k ) QRGs, proving that their cheating probabilities decrease exponentially in k . In particular, we define QRGs based on coherent states of light, which can be implemented even in the presence of experimental imperfections. Our results constitute a tool in the arsenal of the practical quantum cryptographer.
Coherent spin transfer between molecularly bridged quantum dots.
Ouyang, Min; Awschalom, David D
2003-08-22
Femtosecond time-resolved Faraday rotation spectroscopy reveals the instantaneous transfer of spin coherence through conjugated molecular bridges spanning quantum dots of different size over a broad range of temperature. The room-temperature spin-transfer efficiency is approximately 20%, showing that conjugated molecules can be used not only as interconnections for the hierarchical assembly of functional networks but also as efficient spin channels. The results suggest that this class of structures may be useful as two-spin quantum devices operating at ambient temperatures and may offer promising opportunities for future versatile molecule-based spintronic technologies.
NASA Astrophysics Data System (ADS)
Osowski, Mark Louis
With the arrival of advanced growth technologies such as molecular beam epitaxy (MBE) and metalorganic chemical vapor deposition (MOCVD), research in III-V compound semiconductor photonic devices has flourished. Advances in fabrication processes have allowed the realization of high-performance quantum well lasers which emit over a wide spectral range and operate with low threshold currents. As a result, semiconductor lasers are presently employed in a wide variety of applications, including fiber-optic telecommunications, optical spectroscopy, solid-state laser pumping, and photonic integrated circuits. The work in this dissertation addresses three photonic device structures which are currently receiving a great deal of attention in the research community: integrable quantum well laser devices, distributed feedback (DFB) laser devices, and quantum wire arrays. For the realization of the integrable and integrated photonic devices described-in Chapter 2, a three-step selective-area growth technique was utilized. The selective epitaxy process was used to produce discrete buried-heterostructure Fabry Perot lasers with threshold currents as low as 2.6 mA. Based on this process, broad- spectrum edge-emitting superluminescent diodes are demonstrated which display spectral widths of over 80 nm. In addition, the monolithic integration of a multiwavelength emitter is demonstrated in which two distinct laser sources are coupled into a single output waveguide. The dissertation also describes the development of a single-growth-step ridge waveguide DFB laser. The DFB laser utilizes an asymmetric cladding waveguide structure to enhance the interaction of the optical mode with the titanium surface metal to promote single frequency emission via gain coupling. These lasers exhibit low threshold currents (11 mA), high side mode suppression ratios (50 dB), and narrow linewidths (45 kHz). In light of the substantial performance advantages of quantum well lasers relative to double heterostructure lasers, extensive efforts have been directed toward producing quantum wire systems. In view of this, the final subject of this dissertation details the fabrication and characterization of quantum wire arrays by selective-area MOCVD. The method employs a silicon dioxide grating mask with sub-micron oxide dimensions to achieve selective deposition of high-quality buried layers in the open areas of the patterned substrate. This allows the fabrication of embedded nanostructures in a single growth step, and the crystallographic nature of the growth allows for control of their lateral size. Using this process, the growth of strained InGaAs wires with a lateral dimension of less than 50 nm are obtained. Subsequent characterization by photoluminescence, scanning electron microscopy and transmission electron microscopy is also presented.
CW-pumped telecom band polarization entangled photon pair generation in a Sagnac interferometer.
Li, Yan; Zhou, Zhi-Yuan; Ding, Dong-Sheng; Shi, Bao-Sen
2015-11-02
Polarization entangled photon pair source is widely used in many quantum information processing applications such as teleportation, quantum communications, quantum computation and high precision quantum metrology. We report on the generation of a continuous-wave pumped 1550 nm polarization entangled photon pair source at telecom wavelength using a type-II periodically poled KTiOPO(4) (PPKTP) crystal in a Sagnac interferometer. Hong-Ou-Mandel (HOM) interference measurement yields signal and idler photon bandwidth of 2.4 nm. High quality of entanglement is verified by various kinds of measurements, for example two-photon interference fringes, Bell inequality and quantum states tomography. The source can be tuned over a broad range against temperature or pump power without loss of visibilities. This source will be used in our future experiments such as generation of orbital angular momentum entangled source at telecom wavelength for quantum frequency up-conversion, entanglement based quantum key distributions and many other quantum optics experiments at telecom wavelengths.
Quantum optics, cavity QED, and quantum optomechanics
NASA Astrophysics Data System (ADS)
Meystre, Pierre
2013-05-01
Quantum optomechanics provides a universal tool to achieve the quantum control of mechanical motion. It does that in devices spanning a vast range of parameters, with mechanical frequencies from a few Hertz to GHz, and with masses from 10-20 g to several kilos. Its underlying ideas can be traced back to the study of gravitational wave antennas, quantum optics, cavity QED and laser cooling which, when combined with the recent availability of advanced micromechanical and nanomechanical devices, opens a path to the realization of macroscopic mechanical systems that operate deep in the quantum regime. At the fundamental level this development paves the way to experiments that will lead to a more profound understanding of quantum mechanics; and from the point of view of applications, quantum optomechanical techniques will provide motion and force sensing near the fundamental limit imposed by quantum mechanics (quantum metrology) and significantly expand the toolbox of quantum information science. After a brief summary of key historical developments, the talk will give a broad overview of the current state of the art of quantum optomechanics, and comment on future prospects both in applied and in fundamental science. Work supported by NSF, ARO and the DARPA QuASAR and ORCHID programs.
Quantum Dots in the Therapy: Current Trends and Perspectives.
Pohanka, Miroslav
2017-01-01
Quantum dots are an emerging nanomaterial with broad use in technical disciplines; however, their application in the field of biomedicine becomes also relevant and significant possibilities have appeared since the discovery in 1980s. The current review is focused on the therapeutic applications of quantum dots which become an emerging use of the particles. They are introduced as potent carriers of drugs and as a material well suited for the diagnosis of disparate pathologies like visualization of cancer cells or pathogenic microorganisms. Quantum dots toxicity and modifications for the toxicity reduction are discussed here as well. Survey of actual papers and patents in the field of quantum dots use in the biomedicine is provided. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Optimal quantum networks and one-shot entropies
NASA Astrophysics Data System (ADS)
Chiribella, Giulio; Ebler, Daniel
2016-09-01
We develop a semidefinite programming method for the optimization of quantum networks, including both causal networks and networks with indefinite causal structure. Our method applies to a broad class of performance measures, defined operationally in terms of interative tests set up by a verifier. We show that the optimal performance is equal to a max relative entropy, which quantifies the informativeness of the test. Building on this result, we extend the notion of conditional min-entropy from quantum states to quantum causal networks. The optimization method is illustrated in a number of applications, including the inversion, charge conjugation, and controlization of an unknown unitary dynamics. In the non-causal setting, we show a proof-of-principle application to the maximization of the winning probability in a non-causal quantum game.
Milestones toward Majorana-based quantum computing
NASA Astrophysics Data System (ADS)
Alicea, Jason
Experiments on nanowire-based Majorana platforms now appear poised to move beyond the preliminary problem of zero-mode detection and towards loftier goals of realizing non-Abelian statistics and quantum information applications. Using an approach that synthesizes recent materials growth breakthroughs with tools long successfully deployed in quantum-dot research, I will outline a number of relatively modest milestones that progressively bridge the gap between the current state of the art and these grand longer-term challenges. The intermediate Majorana experiments surveyed in this talk should be broadly adaptable to other approaches as well. Supported by the National Science Foundation (DMR-1341822), Institute for Quantum Information and Matter, and Walter Burke Institute at Caltech.
NASA Astrophysics Data System (ADS)
Kaul, T.; Erbert, G.; Maaßdorf, A.; Knigge, S.; Crump, P.
2018-03-01
Broad area lasers with novel extreme double asymmetric structure (EDAS) vertical designs featuring increased optical confinement in the quantum well, Γ, are shown to have improved temperature stability without compromising series resistance, internal efficiency or losses. Specifically, we present here vertical design considerations for the improved continuous wave (CW) performance of devices operating at 940 nm, based on systematically increasing Γ from 0.26% to 1.1%, and discuss the impact on power saturation mechanisms. The results indicate that key power saturation mechanisms at high temperatures originate in high threshold carrier densities, which arise in the quantum well at low Γ. The characteristic temperatures, T 0 and T 1, are determined under short pulse conditions and are used to clarify the thermal contribution to power limiting mechanisms. Although increased Γ reduces thermal power saturation, it is accompanied by increased optical absorption losses in the active region, which has a significant impact on the differential external quantum efficiency, {η }{{diff}}. To quantify the impact of internal optical losses contributed by the quantum well, a resonator length-dependent simulation of {η }{{diff}} is performed and compared to the experiment, which also allows the estimation of experimental values for the light absorption cross sections of electrons and holes inside the quantum well. Overall, the analysis enables vertical designs to be developed, for devices with maximized power conversion efficiency at high CW optical power and high temperatures, in a trade-off between absorption in the well and power saturation. The best balance to date is achieved in devices using EDAS designs with {{Γ }}=0.54 % , which deliver efficiencies of 50% at 14 W optical output power at an elevated junction temperature of 105 °C.
Quantum adiabatic machine learning
NASA Astrophysics Data System (ADS)
Pudenz, Kristen L.; Lidar, Daniel A.
2013-05-01
We develop an approach to machine learning and anomaly detection via quantum adiabatic evolution. This approach consists of two quantum phases, with some amount of classical preprocessing to set up the quantum problems. In the training phase we identify an optimal set of weak classifiers, to form a single strong classifier. In the testing phase we adiabatically evolve one or more strong classifiers on a superposition of inputs in order to find certain anomalous elements in the classification space. Both the training and testing phases are executed via quantum adiabatic evolution. All quantum processing is strictly limited to two-qubit interactions so as to ensure physical feasibility. We apply and illustrate this approach in detail to the problem of software verification and validation, with a specific example of the learning phase applied to a problem of interest in flight control systems. Beyond this example, the algorithm can be used to attack a broad class of anomaly detection problems.
Gate-defined quantum confinement in suspended bilayer graphene
NASA Astrophysics Data System (ADS)
Allen, M. T.; Martin, J.; Yacoby, A.
2012-07-01
Quantum-confined devices that manipulate single electrons in graphene are emerging as attractive candidates for nanoelectronics applications. Previous experiments have employed etched graphene nanostructures, but edge and substrate disorder severely limit device functionality. Here we present a technique that builds quantum-confined structures in suspended bilayer graphene with tunnel barriers defined by external electric fields that open a bandgap, thereby eliminating both edge and substrate disorder. We report clean quantum dot formation in two regimes: at zero magnetic field B using the energy gap induced by a perpendicular electric field and at B>0 using the quantum Hall ν=0 gap for confinement. Coulomb blockade oscillations exhibit periodicity consistent with electrostatic simulations based on local top-gate geometry, a direct demonstration of local control over the band structure of graphene. This technology integrates single electron transport with high device quality and access to vibrational modes, enabling broad applications from electromechanical sensors to quantum bits.
Room temperature solid-state quantum emitters in the telecom range
Bodrog, Zoltán; Adamo, Giorgio; Gali, Adam
2018-01-01
On-demand, single-photon emitters (SPEs) play a key role across a broad range of quantum technologies. In quantum networks and quantum key distribution protocols, where photons are used as flying qubits, telecom wavelength operation is preferred because of the reduced fiber loss. However, despite the tremendous efforts to develop various triggered SPE platforms, a robust source of triggered SPEs operating at room temperature and the telecom wavelength is still missing. We report a triggered, optically stable, room temperature solid-state SPE operating at telecom wavelengths. The emitters exhibit high photon purity (~5% multiphoton events) and a record-high brightness of ~1.5 MHz. The emission is attributed to localized defects in a gallium nitride (GaN) crystal. The high-performance SPEs embedded in a technologically mature semiconductor are promising for on-chip quantum simulators and practical quantum communication technologies. PMID:29670945
Applications of ultrasensitive magnetic measurement technologies (invited) (abstract)
NASA Astrophysics Data System (ADS)
Hirschkoff, Eugene C.
1993-05-01
The development of reliable, easy-to-use magnetic measurement systems with significantly enhanced levels of sensitivity has opened up a number of broad new areas of application for magnetic sensing. Magnetometers based on optical pumping offer sensitivities at the picotesla level, while those that utilize superconducting quantum interference devices can operate at the femtotesla level. These systems are finding applications in areas as diverse as geophysical exploration, communications, and medical diagnostics. This review briefly surveys the capabilities and application areas for a number of magnetic sensing technologies. The emphasis then focuses on the application of the most sensitive of these to the field of medical diagnostics and functional imaging. Protocols for specific applications to noninvasive presurgical planning and to the noninvasive assay of cortical dysfunction in diseases ranging from epilepsy to migraine and schizophrenia will be described in detail. Data will be presented reporting independent validation of these techniques in ten patients who subsequently underwent surgery. Routine and reliable utilization of this ultrasensitive magnetic sensing technology in the clinic is now feasible and practical.
Fabrication and optimization of 1.55-μm InGaAsP/InP high-power semiconductor diode laser
NASA Astrophysics Data System (ADS)
Qing, Ke; Shaoyang, Tan; Songtao, Liu; Dan, Lu; Ruikang, Zhang; Wei, Wang; Chen, Ji
2015-09-01
A comprehensive design optimization of 1.55-μm high power InGaAsP/InP board area lasers is performed aiming at increasing the internal quantum efficiency (ηi) while maintaining the low internal loss (αi) of the device, thereby achieving high power operation. Four different waveguide structures of broad area lasers were fabricated and characterized in depth. Through theoretical analysis and experiment verifications, we show that laser structures with stepped waveguide and thin upper separate confinement layer will result in high ηi and overall slope efficiency. A continuous wave (CW) single side output power of 160 mW was obtained for an uncoated laser with a 50-μm active area width and 1 mm cavity length. Project supported by the National Natural Science Foundation of China (Nos. 61274046, 61201103) and the National High Technology Research and Development Program of China (No. 2013AA014202).
Li, Zhiming; Huang, Peng; Lin, Jing; He, Rong; Liu, Bing; Zhang, Xiaomin; Yang, Sen; Xi, Peng; Zhang, Xuejun; Ren, Qiushi; Cui, Daxiang
2010-08-01
Angiogenesis is essential for the development of malignant tumors and provides important targets for tumor diagnosis and therapy. Quantum dots have been broadly investigated for their potential application in cancer molecular imaging. In present work, CdSe quantum dots were synthesized, polyamidoamine dendrimers were used to modify surface of quantum dots and improve their solubility in water solution. Then, dendrimer-modified CdSe quantum dots were conjugated with arginine-glycine-aspartic acid (RGD) peptides. These prepared nanoprobes were injected into nude mice loaded with melanoma (A375) tumor xenografts via tail vessels, IVIS imaging system was used to image the targeting and bio-distribution of as-prepared nanoprobes. The dendrimer-modified quantum dots exhibit water-soluble, high quantum yield, and good biocompatibility. RGD-conjugated quantum dots can specifically target human umbilical vein endothelial cells (HUVEC) and A375 melanoma cells, as well as nude mice loaded with A735 melanoma cells. High-performance RGD-conjugated dendrimers modified quantum dot-based nanoprobes have great potential in application such as tumor diagnosis and therapy.
Quantum dot-polymer conjugates for stable luminescent displays.
Ghimire, Sushant; Sivadas, Anjaly; Yuyama, Ken-Ichi; Takano, Yuta; Francis, Raju; Biju, Vasudevanpillai
2018-05-23
The broad absorption of light in the UV-Vis-NIR region and the size-based tunable photoluminescence color of semiconductor quantum dots make these tiny crystals one of the most attractive antennae in solar cells and phosphors in electrooptical devices. One of the primary requirements for such real-world applications of quantum dots is their stable and uniform distribution in optically transparent matrices. In this work, we prepare transparent thin films of polymer-quantum dot conjugates, where CdSe/ZnS quantum dots are uniformly distributed at high densities in a chitosan-polystyrene copolymer (CS-g-PS) matrix. Here, quantum dots in an aqueous solution are conjugated to the copolymer by a phase transfer reaction. With the stable conjugation of quantum dots to the copolymer, we prevent undesired phase separation between the two and aggregation of quantum dots. Furthermore, the conjugate allows us to prepare transparent thin films in which quantum dots are uniformly distributed at high densities. The CS-g-PS copolymer helps us in not only preserving the photoluminescence properties of quantum dots in the film but also rendering excellent photostability to quantum dots at the ensemble and single particle levels, making the conjugate a promising material for photoluminescence-based devices.
Ryckaert, Jana; Correia, António; Tessier, Mickael D; Dupont, Dorian; Hens, Zeger; Hanselaer, Peter; Meuret, Youri
2017-11-27
Quantum dots can be used in white LEDs for lighting applications to fill the spectral gaps in the combined emission spectrum of the blue pumping LED and a broad band phosphor, in order to improve the source color rendering properties. Because quantum dots are low scattering materials, their use can also reduce the amount of backscattered light which can increase the overall efficiency of the white LED. The absorption spectrum and narrow emission spectrum of quantum dots can be easily tuned by altering their synthesis parameters. Due to the re-absorption events between the different luminescent materials and the light interaction with the LED package, determining the optimal quantum dot properties is a highly non-trivial task. In this paper we propose a methodology to select the optimal quantum dot to be combined with a broad band phosphor in order to realize a white LED with optimal luminous efficacy and CRI. The methodology is based on accurate and efficient simulations using the extended adding-doubling approach that take into account all the optical interactions. The method is elaborated for the specific case of a hybrid, remote phosphor white LED with YAG:Ce phosphor in combination with InP/CdxZn 1-x Se type quantum dots. The absorption and emission spectrum of the quantum dots are generated in function of three synthesis parameters (core size, shell size and cadmium fraction) by a semi-empirical 'quantum dot model' to include the continuous tunability of these spectra. The sufficiently fast simulations allow to scan the full parameter space consisting of these synthesis parameters and luminescent material concentrations in terms of CRI and efficacy. A conclusive visualization of the final performance allows to make a well-considered trade-off between these performance parameters. For the hybrid white remote phosphor LED with YAG:Ce and InP/CdxZn 1-x Se quantum dots a CRI Ra = 90 (with R9>50) and an overall efficacy of 110 lm/W is found.
NASA Technical Reports Server (NTRS)
Gunapala, S. D.; Bandara, S. V.
2004-01-01
A 640x512 pixel, long-wavelength cutoff, narrow-band (delta(lambda)/approx. 10%) quantum well infrared photodetector (QWIP) focal plane array (FPA), a four-band QWIP FPA in the 4-16 m spectral region, and a broad-band (delta(lambda)/approx. 42%) QWIP FPA having 15.4 m cutoff have been demonstrated.
High power frequency comb based on mid-infrared quantum cascade laser at λ ∼ 9 μm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Q. Y.; Razeghi, M., E-mail: razeghi@eecs.northwestern.edu; Slivken, S.
2015-02-02
We investigate a frequency comb source based on a mid-infrared quantum cascade laser at λ ∼ 9 μm with high power output. A broad flat-top gain with near-zero group velocity dispersion has been engineered using a dual-core active region structure. This favors the locking of the dispersed Fabry-Pérot modes into equally spaced frequency lines via four wave mixing. A current range with a narrow intermode beating linewidth of 3 kHz is identified with a fast detector and spectrum analyzer. This range corresponds to a broad spectral coverage of 65 cm{sup −1} and a high power output of 180 mW for ∼176 comb modes.
The effect of sampling techniques used in the multiconfigurational Ehrenfest method
NASA Astrophysics Data System (ADS)
Symonds, C.; Kattirtzi, J. A.; Shalashilin, D. V.
2018-05-01
In this paper, we compare and contrast basis set sampling techniques recently developed for use in the ab initio multiple cloning method, a direct dynamics extension to the multiconfigurational Ehrenfest approach, used recently for the quantum simulation of ultrafast photochemistry. We demonstrate that simultaneous use of basis set cloning and basis function trains can produce results which are converged to the exact quantum result. To demonstrate this, we employ these sampling methods in simulations of quantum dynamics in the spin boson model with a broad range of parameters and compare the results to accurate benchmarks.
NASA Astrophysics Data System (ADS)
Chemla, D. S.; Bar-Joseph, I.; Klingshirn, C.; Miller, D. A. B.; Kuo, J. M.
1987-03-01
Absorption switching in a semiconductor quantum well by electrically varying the charge density in the quantum well conducting channel of a selectively doped heterostructure transistor is reported for the first time. The phase-space absorption quenching (PAQ) is observed at room temperature in an InGaAs/InAlAs grown on InP FET, and it shows large absorption coefficient changes with relatively broad spectral bandwidth. This PAQ is large enough to be used for direct optical determination of the logic state of the FET.
The effect of sampling techniques used in the multiconfigurational Ehrenfest method.
Symonds, C; Kattirtzi, J A; Shalashilin, D V
2018-05-14
In this paper, we compare and contrast basis set sampling techniques recently developed for use in the ab initio multiple cloning method, a direct dynamics extension to the multiconfigurational Ehrenfest approach, used recently for the quantum simulation of ultrafast photochemistry. We demonstrate that simultaneous use of basis set cloning and basis function trains can produce results which are converged to the exact quantum result. To demonstrate this, we employ these sampling methods in simulations of quantum dynamics in the spin boson model with a broad range of parameters and compare the results to accurate benchmarks.
Entanglement in Quantum-Classical Hybrid
NASA Technical Reports Server (NTRS)
Zak, Michail
2011-01-01
It is noted that the phenomenon of entanglement is not a prerogative of quantum systems, but also occurs in other, non-classical systems such as quantum-classical hybrids, and covers the concept of entanglement as a special type of global constraint imposed upon a broad class of dynamical systems. Application of hybrid systems for physics of life, as well as for quantum-inspired computing, has been outlined. In representing the Schroedinger equation in the Madelung form, there is feedback from the Liouville equation to the Hamilton-Jacobi equation in the form of the quantum potential. Preserving the same topology, the innovators replaced the quantum potential with other types of feedback, and investigated the property of these hybrid systems. A function of probability density has been introduced. Non-locality associated with a global geometrical constraint that leads to an entanglement effect was demonstrated. Despite such a quantum like characteristic, the hybrid can be of classical scale and all the measurements can be performed classically. This new emergence of entanglement sheds light on the concept of non-locality in physics.
Fickler, Robert; Lapkiewicz, Radek; Huber, Marcus; Lavery, Martin P J; Padgett, Miles J; Zeilinger, Anton
2014-07-30
Photonics has become a mature field of quantum information science, where integrated optical circuits offer a way to scale the complexity of the set-up as well as the dimensionality of the quantum state. On photonic chips, paths are the natural way to encode information. To distribute those high-dimensional quantum states over large distances, transverse spatial modes, like orbital angular momentum possessing Laguerre Gauss modes, are favourable as flying information carriers. Here we demonstrate a quantum interface between these two vibrant photonic fields. We create three-dimensional path entanglement between two photons in a nonlinear crystal and use a mode sorter as the quantum interface to transfer the entanglement to the orbital angular momentum degree of freedom. Thus our results show a flexible way to create high-dimensional spatial mode entanglement. Moreover, they pave the way to implement broad complex quantum networks where high-dimensionally entangled states could be distributed over distant photonic chips.
Kim, Hyo-Jun; Shin, Min-Ho; Lee, Jae-Yong; Kim, Ji-Hoon; Kim, Young-Joo
2017-05-15
An optically efficient liquid-crystal display (LCD) structure using a patterned quantum dot (QD) film and a short-pass filter (SPF) was proposed and fabricated. The patterned QD film contributed to the generation of 95% in the area ratio (or 90% in the coverage ratio) of the Rec. 2020 color gamut. This was achieved by avoiding the problem of interaction between white backlight and broad transmittance spectra of color filters (CFs) as seen in a conventional LCD with a mixed QD film as a reference. The patterned QD film can maintain the narrow bandwidth of the green and the red QD colors before passing through the CFs. Additionally, the optical intensities of the red, green, and blue spectra were enhanced to 1.63, 1.72, and 2.16 times the reference LCD values, respectively. This was a result of separated emission of the red and green patterned QD film and reflection of the red and green light to the forward direction by the SPF.
Yu, Woo Jong; Liu, Yuan; Zhou, Hailong; Yin, Anxiang; Li, Zheng; Huang, Yu
2014-01-01
Layered materials of graphene and MoS2, for example, have recently emerged as an exciting material system for future electronics and optoelectronics. Vertical integration of layered materials can enable the design of novel electronic and photonic devices. Here, we report highly efficient photocurrent generation from vertical heterostructures of layered materials. We show that vertically stacked graphene–MoS2–graphene and graphene–MoS2–metal junctions can be created with a broad junction area for efficient photon harvesting. The weak electrostatic screening effect of graphene allows the integration of single or dual gates under and/or above the vertical heterostructure to tune the band slope and photocurrent generation. We demonstrate that the amplitude and polarity of the photocurrent in the gated vertical heterostructures can be readily modulated by the electric field of an external gate to achieve a maximum external quantum efficiency of 55% and internal quantum efficiency up to 85%. Our study establishes a method to control photocarrier generation, separation and transport processes using an external electric field. PMID:24162001
Quantum technology past, present, future: quantum energetics (Conference Presentation)
NASA Astrophysics Data System (ADS)
Choi, Sang H.
2017-04-01
Since the development of quantum physics in the early part of the 1900s, this field of study has made remarkable contributions to our civilization. Some of these advances include lasers, light-emitting diodes (LED), sensors, spectroscopy, quantum dots, quantum gravity and quantum entanglements. In 1998, the NASA Langley Research Center established a quantum technology committee to monitor the progress in this area and initiated research to determine the potential of quantum technology for future NASA missions. The areas of interest in quantum technology at NASA included fundamental quantum-optics materials associated with quantum dots and quantum wells, device-oriented photonic crystals, smart optics, quantum conductors, quantum information and computing, teleportation theorem, and quantum energetics. A brief review of the work performed, the progress made in advancing these technologies, and the potential NASA applications of quantum technology will be presented.
Quantum-Enhanced Machine Learning
NASA Astrophysics Data System (ADS)
Dunjko, Vedran; Taylor, Jacob M.; Briegel, Hans J.
2016-09-01
The emerging field of quantum machine learning has the potential to substantially aid in the problems and scope of artificial intelligence. This is only enhanced by recent successes in the field of classical machine learning. In this work we propose an approach for the systematic treatment of machine learning, from the perspective of quantum information. Our approach is general and covers all three main branches of machine learning: supervised, unsupervised, and reinforcement learning. While quantum improvements in supervised and unsupervised learning have been reported, reinforcement learning has received much less attention. Within our approach, we tackle the problem of quantum enhancements in reinforcement learning as well, and propose a systematic scheme for providing improvements. As an example, we show that quadratic improvements in learning efficiency, and exponential improvements in performance over limited time periods, can be obtained for a broad class of learning problems.
Certifying an Irreducible 1024-Dimensional Photonic State Using Refined Dimension Witnesses.
Aguilar, Edgar A; Farkas, Máté; Martínez, Daniel; Alvarado, Matías; Cariñe, Jaime; Xavier, Guilherme B; Barra, Johanna F; Cañas, Gustavo; Pawłowski, Marcin; Lima, Gustavo
2018-06-08
We report on a new class of dimension witnesses, based on quantum random access codes, which are a function of the recorded statistics and that have different bounds for all possible decompositions of a high-dimensional physical system. Thus, it certifies the dimension of the system and has the new distinct feature of identifying whether the high-dimensional system is decomposable in terms of lower dimensional subsystems. To demonstrate the practicability of this technique, we used it to experimentally certify the generation of an irreducible 1024-dimensional photonic quantum state. Therefore, certifying that the state is not multipartite or encoded using noncoupled different degrees of freedom of a single photon. Our protocol should find applications in a broad class of modern quantum information experiments addressing the generation of high-dimensional quantum systems, where quantum tomography may become intractable.
Quantum frequency conversion with ultra-broadband tuning in a Raman memory
NASA Astrophysics Data System (ADS)
Bustard, Philip J.; England, Duncan G.; Heshami, Khabat; Kupchak, Connor; Sussman, Benjamin J.
2017-05-01
Quantum frequency conversion is a powerful tool for the construction of hybrid quantum photonic technologies. Raman quantum memories are a promising method of conversion due to their broad bandwidths. Here we demonstrate frequency conversion of THz-bandwidth, fs-duration photons at the single-photon level using a Raman quantum memory based on the rotational levels of hydrogen molecules. We shift photons from 765 nm to wavelengths spanning from 673 to 590 nm—an absolute shift of up to 116 THz. We measure total conversion efficiencies of up to 10% and a maximum signal-to-noise ratio of 4.0(1):1, giving an expected conditional fidelity of 0.75, which exceeds the classical threshold of 2/3. Thermal noise could be eliminated by cooling with liquid nitrogen, giving noiseless conversion with wide tunability in the visible and infrared.
Certifying an Irreducible 1024-Dimensional Photonic State Using Refined Dimension Witnesses
NASA Astrophysics Data System (ADS)
Aguilar, Edgar A.; Farkas, Máté; Martínez, Daniel; Alvarado, Matías; Cariñe, Jaime; Xavier, Guilherme B.; Barra, Johanna F.; Cañas, Gustavo; Pawłowski, Marcin; Lima, Gustavo
2018-06-01
We report on a new class of dimension witnesses, based on quantum random access codes, which are a function of the recorded statistics and that have different bounds for all possible decompositions of a high-dimensional physical system. Thus, it certifies the dimension of the system and has the new distinct feature of identifying whether the high-dimensional system is decomposable in terms of lower dimensional subsystems. To demonstrate the practicability of this technique, we used it to experimentally certify the generation of an irreducible 1024-dimensional photonic quantum state. Therefore, certifying that the state is not multipartite or encoded using noncoupled different degrees of freedom of a single photon. Our protocol should find applications in a broad class of modern quantum information experiments addressing the generation of high-dimensional quantum systems, where quantum tomography may become intractable.
Evidence for a spinon Fermi surface in a triangular-lattice quantum-spin-liquid candidate
Shen, Yao; Li, Yao-Dong; Wo, Hongliang; ...
2016-12-05
A quantum spin liquid is an exotic quantum state of matter in which spins are highly entangled and remain disordered down to zero temperature. Such a state of matter is potentially relevant to high-temperature superconductivity and quantum-information applications, and experimental identification of a quantum spin liquid state is of fundamental importance for our understanding of quantum matter. Theoretical studies have proposed various quantum-spin-liquid ground states, most of which are characterized by exotic spin excitations with fractional quantum numbers (termed ‘spinons’). In this paper, we report neutron scattering measurements of the triangular-lattice antiferromagnet YbMgGaO 4 that reveal broad spin excitations coveringmore » a wide region of the Brillouin zone. The observed diffusive spin excitation persists at the lowest measured energy and shows a clear upper excitation edge, consistent with the particle–hole excitation of a spinon Fermi surface. Finally, our results therefore point to the existence of a quantum spin liquid state with a spinon Fermi surface in YbMgGaO 4, which has a perfect spin-1/2 triangular lattice as in the original proposal of quantum spin liquids.« less
NASA Astrophysics Data System (ADS)
Lee, Seok Jae; Lee, Song Eun; Lee, Dong Hyung; Koo, Ja Ryong; Lee, Ho Won; Yoon, Seung Soo; Park, Jaehoon; Kim, Young Kwan
2014-10-01
Blue phosphorescent organic light-emitting diodes with multiple quantum well (MQW) structures (from one to four quantum wells) within an emitting layer (EML) are fabricated with charge control layers (CCLs) to control carrier movement. The distributed recombination zone and balanced charge carrier injection within EML are achieved through the MQW structure with CCLs. Remarkably, the half-decay lifetime of a blue device with three quantum wells, measured at an initial luminance of 500 cd/m2, is 3.5 times longer than that using a conventional structure. Additionally, the device’s efficiency improved. These results are explained with the effects of triplet exciton confinement and triplet-triplet annihilation within each EML.
COST 288: Nanoscale and Ultrafast Photonics. Action Identification Data
2008-08-01
a wideband light source is suggested for avoiding the problem of usage of Si emitter. Transmission properties of symmetrical structure of a modulator...Britain to discuss science, technology and the view forward for ultrafast photonics. The commitment of the Japanese was impressive to all- fibre to...on the multi-wavelength amplification properties of GaInNAs quantum wells and quantum dots for broad-band SOAs. (WG1-approved by MC ) Year 3 12
Amaral, Jose Jussi; Wan, Jacky; Rodarte, Andrea L.; ...
2014-10-22
The design and development of multifunctional composite materials from artificial nano-constituents is one of the most compelling current research areas. This drive to improve over nature and produce ‘meta-materials’ has met with some success, but results have proven limited with regards to both the demonstration of synergistic functionalities and in the ability to manipulate the material properties post-fabrication and in situ. Here, magnetic nanoparticles (MNPs) and semiconducting quantum dots (QDs) are co-assembled in a nematic liquid crystalline (LC) matrix, forming composite structures in which the emission intensity of the quantum dots is systematically and reversibly controlled with a small appliedmore » magnetic field (<100 mT). This magnetic field-driven brightening, ranging between a two- to three-fold peak intensity increase, is a truly cooperative effect: the LC phase transition creates the co-assemblies, the clustering of the MNPs produces LC re-orientation at atypical low external field, and this re-arrangement produces compaction of the clusters, resulting in the detection of increased QD emission. These results demonstrate a synergistic, reversible, and an all-optical process to detect magnetic fields and additionally, as the clusters are self-assembled in a fluid medium, they offer the possibility for these sensors to be used in broad ranging fluid-based applications.« less
NASA Astrophysics Data System (ADS)
Hussain, Laiq; Karimi, Mohammad; Berg, Alexander; Jain, Vishal; Borgström, Magnus T.; Gustafsson, Anders; Samuelson, Lars; Pettersson, Håkan
2017-12-01
Radial GaInP/AlGaInP nanowire array light-emitting diodes (LEDs) are promising candidates for novel high-efficiency solid state lighting due to their potentially large strain-free active emission volumes compared to planar LEDs. Moreover, by proper tuning of the diameter of the nanowires, the fraction of emitted light extracted can be significantly enhanced compared to that of planar LEDs. Reports so far on radial growth of nanowire LED structures, however, still point to significant challenges related to obtaining defect-free radial heterostructures. In this work, we present evidence of optically active growth-induced defects in a fairly broad energy range in vertically processed radial GaInP/AlGaInP quantum well nanowire array LEDs using a variety of complementary experimental techniques. In particular, we demonstrate strong infrared electroluminescence in a spectral range centred around 1 eV (1.2 μm) in addition to the expected red light emission from the quantum well. Spatially resolved cathodoluminescence studies reveal a patchy red light emission with clear spectral features along the NWs, most likely induced by variations in QW thickness, composition and barriers. Dark areas are attributed to infrared emission generated by competing defect-assisted radiative transitions, or to trapping mechanisms involving non-radiative recombination processes. Possible origins of the defects are discussed.
Fermi observations of high-energy gamma-ray emission from GRB 080916C.
Abdo, A A; Ackermann, M; Arimoto, M; Asano, K; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Band, D L; Barbiellini, G; Baring, M G; Bastieri, D; Battelino, M; Baughman, B M; Bechtol, K; Bellardi, F; Bellazzini, R; Berenji, B; Bhat, P N; Bissaldi, E; Blandford, R D; Bloom, E D; Bogaert, G; Bogart, J R; Bonamente, E; Bonnell, J; Borgland, A W; Bouvier, A; Bregeon, J; Brez, A; Briggs, M S; Brigida, M; Bruel, P; Burnett, T H; Burrows, D; Busetto, G; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Ceccanti, M; Cecchi, C; Celotti, A; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Cominsky, L R; Connaughton, V; Conrad, J; Costamante, L; Cutini, S; Deklotz, M; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; Dingus, B L; do Couto E Silva, E; Drell, P S; Dubois, R; Dumora, D; Edmonds, Y; Evans, P A; Fabiani, D; Farnier, C; Favuzzi, C; Finke, J; Fishman, G; Focke, W B; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giommi, P; Giordano, F; Glanzman, T; Godfrey, G; Goldstein, A; Granot, J; Greiner, J; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Haller, G; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hernando Morat, J A; Hoover, A; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kavelaars, A; Kawai, N; Kelly, H; Kennea, J; Kerr, M; Kippen, R M; Knödlseder, J; Kocevski, D; Kocian, M L; Komin, N; Kouveliotou, C; Kuehn, F; Kuss, M; Lande, J; Landriu, D; Larsson, S; Latronico, L; Lavalley, C; Lee, B; Lee, S-H; Lemoine-Goumard, M; Lichti, G G; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Marangelli, B; Mazziotta, M N; McBreen, S; McEnery, J E; McGlynn, S; Meegan, C; Mészáros, P; Meurer, C; Michelson, P F; Minuti, M; Mirizzi, N; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Moretti, E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Nelson, D; Nolan, P L; Norris, J P; Nuss, E; Ohno, M; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ormes, J F; Ozaki, M; Paciesas, W S; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Perri, M; Pesce-Rollins, M; Petrosian, V; Pinchera, M; Piron, F; Porter, T A; Preece, R; Rainò, S; Ramirez-Ruiz, E; Rando, R; Rapposelli, E; Razzano, M; Razzaque, S; Rea, N; Reimer, A; Reimer, O; Reposeur, T; Reyes, L C; Ritz, S; Rochester, L S; Rodriguez, A Y; Roth, M; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Schalk, T L; Segal, K N; Sgrò, C; Shimokawabe, T; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Stamatikos, M; Starck, J-L; Stecker, F W; Steinle, H; Stephens, T E; Strickman, M S; Suson, D J; Tagliaferri, G; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Tenze, A; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Turri, M; Tuvi, S; Usher, T L; van der Horst, A J; Vigiani, L; Vilchez, N; Vitale, V; von Kienlin, A; Waite, A P; Williams, D A; Wilson-Hodge, C; Winer, B L; Wood, K S; Wu, X F; Yamazaki, R; Ylinen, T; Ziegler, M
2009-03-27
Gamma-ray bursts (GRBs) are highly energetic explosions signaling the death of massive stars in distant galaxies. The Gamma-ray Burst Monitor and Large Area Telescope onboard the Fermi Observatory together record GRBs over a broad energy range spanning about 7 decades of gammaray energy. In September 2008, Fermi observed the exceptionally luminous GRB 080916C, with the largest apparent energy release yet measured. The high-energy gamma rays are observed to start later and persist longer than the lower energy photons. A simple spectral form fits the entire GRB spectrum, providing strong constraints on emission models. The known distance of the burst enables placing lower limits on the bulk Lorentz factor of the outflow and on the quantum gravity mass.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Bo; Zeng, Yong Quan; Liang, Guozhen
2015-09-14
We report our progress in the development of broadly tunable single-mode slot waveguide quantum cascade lasers based on a continuum-to-continuum active region design. The electroluminescence spectrum of the continuum-to-continuum active region design has a full width at half maximum of 440 cm{sup −1} at center wavelength ∼10 μm at room temperature (300 K). Devices using the optimized slot waveguide structure and the continuum-to-continuum design can be tuned continuously with a lasing emission over 42 cm{sup −1}, from 9.74 to 10.16 μm, at room temperature by using only current tuning scheme, together with a side mode suppression ratio of above 15 dB within the whole tuning range.
A comparative study of different methods for calculating electronic transition rates
NASA Astrophysics Data System (ADS)
Kananenka, Alexei A.; Sun, Xiang; Schubert, Alexander; Dunietz, Barry D.; Geva, Eitan
2018-03-01
We present a comprehensive comparison of the following mixed quantum-classical methods for calculating electronic transition rates: (1) nonequilibrium Fermi's golden rule, (2) mixed quantum-classical Liouville method, (3) mean-field (Ehrenfest) mixed quantum-classical method, and (4) fewest switches surface-hopping method (in diabatic and adiabatic representations). The comparison is performed on the Garg-Onuchic-Ambegaokar benchmark charge-transfer model, over a broad range of temperatures and electronic coupling strengths, with different nonequilibrium initial states, in the normal and inverted regimes. Under weak to moderate electronic coupling, the nonequilibrium Fermi's golden rule rates are found to be in good agreement with the rates obtained via the mixed quantum-classical Liouville method that coincides with the fully quantum-mechanically exact results for the model system under study. Our results suggest that the nonequilibrium Fermi's golden rule can serve as an inexpensive yet accurate alternative to Ehrenfest and the fewest switches surface-hopping methods.
NASA Astrophysics Data System (ADS)
Tavakoli, Armin; Żukowski, Marek
2017-04-01
Communication complexity problems (CCPs) are tasks in which separated parties attempt to compute a function whose inputs are distributed among the parties. Their communication is limited so that not all inputs can be sent. We show that broad classes of Bell inequalities can be mapped to CCPs and that a quantum violation of a Bell inequality is a necessary and sufficient condition for an enhancement of the related CCP beyond its classical limitation. However, one can implement CCPs by transmitting a quantum system, encoding no more information than is allowed in the CCP, and extracting information by performing measurements. We show that for a large class of Bell inequalities, the improvement of the CCP associated with a quantum violation of a Bell inequality can be no greater than the improvement obtained from quantum prepare-transmit-measure strategies.
Ultra-broadband photodetectors based on epitaxial graphene quantum dots
NASA Astrophysics Data System (ADS)
El Fatimy, Abdel; Nath, Anindya; Kong, Byoung Don; Boyd, Anthony K.; Myers-Ward, Rachael L.; Daniels, Kevin M.; Jadidi, M. Mehdi; Murphy, Thomas E.; Gaskill, D. Kurt; Barbara, Paola
2018-03-01
Graphene is an ideal material for hot-electron bolometers due to its low heat capacity and weak electron-phonon coupling. Nanostructuring graphene with quantum-dot constrictions yields detectors of electromagnetic radiation with extraordinarily high intrinsic responsivity, higher than 1×109 V W-1 at 3 K. The sensing mechanism is bolometric in nature: the quantum confinement gap causes a strong dependence of the electrical resistance on the electron temperature. Here, we show that this quantum confinement gap does not impose a limitation on the photon energy for light detection and these quantum-dot bolometers work in a very broad spectral range, from terahertz through telecom to ultraviolet radiation, with responsivity independent of wavelength. We also measure the power dependence of the response. Although the responsivity decreases with increasing power, it stays higher than 1×108 V W-1 in a wide range of absorbed power, from 1 pW to 0.4 nW.
Quantum Synchronization of Two Ensembles of Atoms
NASA Astrophysics Data System (ADS)
Xu, Minghui; Tieri, David; Fine, Effie; Thompson, James; Holland, Murray
2014-05-01
We present a system that exhibits quantum synchronization as a modern analogue of the Huygens experiment which is implemented using state-of-the-art neutral atom lattice clocks of the highest precision. In particular, we study the correlated phase dynamics of two mesoscopic ensembles of atoms through their collective coupling to an optical cavity. We find a dynamical quantum phase transition induced by pump noise and cavity output-coupling. The spectral properties of the superradiant light emitted from the cavity show that at a critical pump rate the system undergoes a transition from the independent behavior of two disparate oscillators to the phase-locking that is the signature of quantum synchronization. Besides being of fundamental importance in nonequilibrium quantum many-body physics, this work could have broad implications for many practical applications of ultrastable lasers and precision measurements. This work was supported by the DARPA QuASAR program, the NSF, and NIST.
A quantum approach to homomorphic encryption
Tan, Si-Hui; Kettlewell, Joshua A.; Ouyang, Yingkai; Chen, Lin; Fitzsimons, Joseph F.
2016-01-01
Encryption schemes often derive their power from the properties of the underlying algebra on the symbols used. Inspired by group theoretic tools, we use the centralizer of a subgroup of operations to present a private-key quantum homomorphic encryption scheme that enables a broad class of quantum computation on encrypted data. The quantum data is encoded on bosons of distinct species in distinct spatial modes, and the quantum computations are manipulations of these bosons in a manner independent of their species. A particular instance of our encoding hides up to a constant fraction of the information encrypted. This fraction can be made arbitrarily close to unity with overhead scaling only polynomially in the message length. This highlights the potential of our protocol to hide a non-trivial amount of information, and is suggestive of a large class of encodings that might yield better security. PMID:27658349
Quantum error-correction failure distributions: Comparison of coherent and stochastic error models
NASA Astrophysics Data System (ADS)
Barnes, Jeff P.; Trout, Colin J.; Lucarelli, Dennis; Clader, B. D.
2017-06-01
We compare failure distributions of quantum error correction circuits for stochastic errors and coherent errors. We utilize a fully coherent simulation of a fault-tolerant quantum error correcting circuit for a d =3 Steane and surface code. We find that the output distributions are markedly different for the two error models, showing that no simple mapping between the two error models exists. Coherent errors create very broad and heavy-tailed failure distributions. This suggests that they are susceptible to outlier events and that mean statistics, such as pseudothreshold estimates, may not provide the key figure of merit. This provides further statistical insight into why coherent errors can be so harmful for quantum error correction. These output probability distributions may also provide a useful metric that can be utilized when optimizing quantum error correcting codes and decoding procedures for purely coherent errors.
Semiconductor quantum dots: synthesis and water-solubilization for biomedical applications.
Yu, William W
2008-10-01
Quantum dots (QDs) are generally nanosized inorganic particles. They have distinctive size-dependent optical properties due to their very small size (mostly < 10 nm). QDs are regarded as promising new fluorescent materials for biological labeling and imaging because of their superior properties compared with traditional organic molecular dyes. These properties include high quantum efficiency, long-term photostability and very narrow emission but broad absorption spectra. Recent developments in synthesizing high quality semiconductor QDs (mainly metal-chalcogenide compounds) and forming biocompatible structures for biomedical applications are discussed in this paper. This information may facilitate the research to create new materials/technologies for future clinical applications.
Reduction of CO2 to C1 products and fuel
Mill, T.; Ross, D.
2002-01-01
Photochemical semiconductor processes readily reduced CO2 to a broad range of C1 products. However the intrinsic and solar efficiencies for the processes were low. Improved quantum efficiencies could be realized utilizing quantum-sized particles, but at the expense of using less of the visible solar spectrum. Conversely, semiconductors with small bandgaps used more of the visible solar spectrum at the expense of quantum efficiency. Thermal reduction of CO2 with Fe(II) was thermodynamically favored for forming many kinds of organic compounds and occurred readily with olivine and other Fe(II) minerals above 200??C to form higher alkanes and alkenes. No added hydrogen was required.
Mapping repulsive to attractive interaction in driven-dissipative quantum systems
NASA Astrophysics Data System (ADS)
Li, Andy C. Y.; Koch, Jens
2017-11-01
Repulsive and attractive interactions usually lead to very different physics. Striking exceptions exist in the dynamics of driven-dissipative quantum systems. For the example of a photonic Bose-Hubbard dimer, we establish a one-to-one mapping relating cases of onsite repulsion and attraction. We prove that the mapping is valid for an entire class of Markovian open quantum systems with a time-reversal-invariant Hamiltonian and physically meaningful inverse-sign Hamiltonian. To underline the broad applicability of the mapping, we illustrate the one-to-one correspondence between the nonequilibrium dynamics in a geometrically frustrated spin lattice and those in a non-frustrated partner lattice.
Characterizing the performance of XOR games and the Shannon capacity of graphs.
Ramanathan, Ravishankar; Kay, Alastair; Murta, Gláucia; Horodecki, Paweł
2014-12-12
In this Letter we give a set of necessary and sufficient conditions such that quantum players of a two-party XOR game cannot perform any better than classical players. With any such game, we associate a graph and examine its zero-error communication capacity. This allows us to specify a broad new class of graphs for which the Shannon capacity can be calculated. The conditions also enable the parametrization of new families of games that have no quantum advantage for arbitrary input probability distributions, up to certain symmetries. In the future, these might be used in information-theoretic studies on reproducing the set of quantum nonlocal correlations.
NASA Astrophysics Data System (ADS)
Gruska, Jozef
2012-06-01
One of the most basic tasks in quantum information processing, communication and security (QIPCC) research, theoretically deep and practically important, is to find bounds on how really important are inherently quantum resources for speeding up computations. This area of research is bringing a variety of results that imply, often in a very unexpected and counter-intuitive way, that: (a) surprisingly large classes of quantum circuits and algorithms can be efficiently simulated on classical computers; (b) the border line between quantum processes that can and cannot be efficiently simulated on classical computers is often surprisingly thin; (c) the addition of a seemingly very simple resource or a tool often enormously increases the power of available quantum tools. These discoveries have put also a new light on our understanding of quantum phenomena and quantum physics and on the potential of its inherently quantum and often mysteriously looking phenomena. The paper motivates and surveys research and its outcomes in the area of de-quantisation, especially presents various approaches and their outcomes concerning efficient classical simulations of various families of quantum circuits and algorithms. To motivate this area of research some outcomes in the area of de-randomization of classical randomized computations.
Experimental observation of Bethe strings
NASA Astrophysics Data System (ADS)
Wang, Zhe; Wu, Jianda; Yang, Wang; Bera, Anup Kumar; Kamenskyi, Dmytro; Islam, A. T. M. Nazmul; Xu, Shenglong; Law, Joseph Matthew; Lake, Bella; Wu, Congjun; Loidl, Alois
2018-02-01
Almost a century ago, string states—complex bound states of magnetic excitations—were predicted to exist in one-dimensional quantum magnets. However, despite many theoretical studies, the experimental realization and identification of string states in a condensed-matter system have yet to be achieved. Here we use high-resolution terahertz spectroscopy to resolve string states in the antiferromagnetic Heisenberg-Ising chain SrCo2V2O8 in strong longitudinal magnetic fields. In the field-induced quantum-critical regime, we identify strings and fractional magnetic excitations that are accurately described by the Bethe ansatz. Close to quantum criticality, the string excitations govern the quantum spin dynamics, whereas the fractional excitations, which are dominant at low energies, reflect the antiferromagnetic quantum fluctuations. Today, Bethe’s result is important not only in the field of quantum magnetism but also more broadly, including in the study of cold atoms and in string theory; hence, we anticipate that our work will shed light on the study of complex many-body systems in general.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habercorn, Lasse; Merkl, Jan-Philip; Kloust, Hauke Christian
With the polymer encapsulation of quantum dots via seeded emulsion polymerization we present a powerful tool for the preparation of fluorescent nanoparticles with an extraordinary stability in aqueous solution. The method of the seeded emulsion polymerization allows a straightforward and simple in situ functionalization of the polymer shell under preserving the optical properties of the quantum dots. These requirements are inevitable for the application of semiconductor nanoparticles as markers for biomedical applications. Polymer encapsulated quantum dots have shown only a marginal loss of quantum yields when they were exposed to copper(II)-ions. Under normal conditions the quantum dots were totally quenchedmore » in presence of copper(II)-ions. Furthermore, a broad range of in situ functionalized polymer-coated quantum dots were obtained by addition of functional monomers or surfactants like fluorescent dye molecules, antibodies or specific DNA aptamers. Furthermore the emulsion polymerization can be used to prepare multifunctional hybrid systems, combining different nanoparticles within one construct without any adverse effect of the properties of the starting materials.{sup 1,2}.« less
Luminescent Quantum Dots as Ultrasensitive Biological Labels
NASA Astrophysics Data System (ADS)
Nie, Shuming
2000-03-01
Highly luminescent semiconductor quantum dots have been covalently coupled to biological molecules for use in ultrasensitive biological detection. This new class of luminescent labels is considerably brighter and more resistant againt photobleaching in comparison with organic dyes. Quantum dots labeled with the protein transferrin undergo receptor-mediated endocytosis (RME) in cultured HeLa cells, and those dots that were conjugated to immunomolecules recognize specific antibodies or antigens. In addition, we show that DNA functionalized quantum dots can be used to target specific genes by hybridization. We expect that quantum dot bioconjugates will have a broad range of biological applications, such as ligand-receptor interactions, real-time monitoring of molecular trafficking inside living cells, multicolor fluorescence in-situ hybridization (FISH), high-sensitivity detection in miniaturized devices (e.g., DNA chips), and fluorescent tagging of combinatorial chemical libraries. A potential clinical application is the use of quantum dots for ultrasensitive viral RNA detection, in which as low as 100 copies of hepatitis C and HIV viruses per ml blood should be detected.
Ultra-broad band, low power, highly efficient coherent wavelength conversion in quantum dot SOA.
Contestabile, G; Yoshida, Y; Maruta, A; Kitayama, K
2012-12-03
We report broadband, all-optical wavelength conversion over 100 nm span, in full S- and C-band, with positive conversion efficiency with low optical input power exploiting dual pump Four-Wave-Mixing in a Quantum Dot Semiconductor Optical Amplifier (QD-SOA). We also demonstrate by Error Vector Magnitude analysis the full transparency of the conversion scheme for coherent modulation formats (QPSK, 8-PSK, 16-QAM, OFDM-16QAM) in the whole C-band.
Graph-based linear scaling electronic structure theory.
Niklasson, Anders M N; Mniszewski, Susan M; Negre, Christian F A; Cawkwell, Marc J; Swart, Pieter J; Mohd-Yusof, Jamal; Germann, Timothy C; Wall, Michael E; Bock, Nicolas; Rubensson, Emanuel H; Djidjev, Hristo
2016-06-21
We show how graph theory can be combined with quantum theory to calculate the electronic structure of large complex systems. The graph formalism is general and applicable to a broad range of electronic structure methods and materials, including challenging systems such as biomolecules. The methodology combines well-controlled accuracy, low computational cost, and natural low-communication parallelism. This combination addresses substantial shortcomings of linear scaling electronic structure theory, in particular with respect to quantum-based molecular dynamics simulations.
Graph-based linear scaling electronic structure theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niklasson, Anders M. N., E-mail: amn@lanl.gov; Negre, Christian F. A.; Cawkwell, Marc J.
2016-06-21
We show how graph theory can be combined with quantum theory to calculate the electronic structure of large complex systems. The graph formalism is general and applicable to a broad range of electronic structure methods and materials, including challenging systems such as biomolecules. The methodology combines well-controlled accuracy, low computational cost, and natural low-communication parallelism. This combination addresses substantial shortcomings of linear scaling electronic structure theory, in particular with respect to quantum-based molecular dynamics simulations.
Advanced capabilities for materials modelling with Quantum ESPRESSO
NASA Astrophysics Data System (ADS)
Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Buongiorno Nardelli, M.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M.; Colonna, N.; Carnimeo, I.; Dal Corso, A.; de Gironcoli, S.; Delugas, P.; DiStasio, R. A., Jr.; Ferretti, A.; Floris, A.; Fratesi, G.; Fugallo, G.; Gebauer, R.; Gerstmann, U.; Giustino, F.; Gorni, T.; Jia, J.; Kawamura, M.; Ko, H.-Y.; Kokalj, A.; Küçükbenli, E.; Lazzeri, M.; Marsili, M.; Marzari, N.; Mauri, F.; Nguyen, N. L.; Nguyen, H.-V.; Otero-de-la-Roza, A.; Paulatto, L.; Poncé, S.; Rocca, D.; Sabatini, R.; Santra, B.; Schlipf, M.; Seitsonen, A. P.; Smogunov, A.; Timrov, I.; Thonhauser, T.; Umari, P.; Vast, N.; Wu, X.; Baroni, S.
2017-11-01
Quantum EXPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the-art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudopotential and projector-augmented-wave approaches. Quantum EXPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement their ideas. In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software.
Advanced capabilities for materials modelling with Quantum ESPRESSO.
Giannozzi, P; Andreussi, O; Brumme, T; Bunau, O; Buongiorno Nardelli, M; Calandra, M; Car, R; Cavazzoni, C; Ceresoli, D; Cococcioni, M; Colonna, N; Carnimeo, I; Dal Corso, A; de Gironcoli, S; Delugas, P; DiStasio, R A; Ferretti, A; Floris, A; Fratesi, G; Fugallo, G; Gebauer, R; Gerstmann, U; Giustino, F; Gorni, T; Jia, J; Kawamura, M; Ko, H-Y; Kokalj, A; Küçükbenli, E; Lazzeri, M; Marsili, M; Marzari, N; Mauri, F; Nguyen, N L; Nguyen, H-V; Otero-de-la-Roza, A; Paulatto, L; Poncé, S; Rocca, D; Sabatini, R; Santra, B; Schlipf, M; Seitsonen, A P; Smogunov, A; Timrov, I; Thonhauser, T; Umari, P; Vast, N; Wu, X; Baroni, S
2017-10-24
Quantum EXPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the-art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudopotential and projector-augmented-wave approaches. Quantum EXPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement their ideas. In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software.
Advanced capabilities for materials modelling with Quantum ESPRESSO.
Andreussi, Oliviero; Brumme, Thomas; Bunau, Oana; Buongiorno Nardelli, Marco; Calandra, Matteo; Car, Roberto; Cavazzoni, Carlo; Ceresoli, Davide; Cococcioni, Matteo; Colonna, Nicola; Carnimeo, Ivan; Dal Corso, Andrea; de Gironcoli, Stefano; Delugas, Pietro; DiStasio, Robert; Ferretti, Andrea; Floris, Andrea; Fratesi, Guido; Fugallo, Giorgia; Gebauer, Ralph; Gerstmann, Uwe; Giustino, Feliciano; Gorni, Tommaso; Jia, Junteng; Kawamura, Mitsuaki; Ko, Hsin-Yu; Kokalj, Anton; Küçükbenli, Emine; Lazzeri, Michele; Marsili, Margherita; Marzari, Nicola; Mauri, Francesco; Nguyen, Ngoc Linh; Nguyen, Huy-Viet; Otero-de-la-Roza, Alberto; Paulatto, Lorenzo; Poncé, Samuel; Giannozzi, Paolo; Rocca, Dario; Sabatini, Riccardo; Santra, Biswajit; Schlipf, Martin; Seitsonen, Ari Paavo; Smogunov, Alexander; Timrov, Iurii; Thonhauser, Timo; Umari, Paolo; Vast, Nathalie; Wu, Xifan; Baroni, Stefano
2017-09-27
Quantum ESPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudo-potential and projector-augmented-wave approaches. Quantum ESPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement theirs ideas. In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software. © 2017 IOP Publishing Ltd.
Quantum Stress: Density Functional Theory Formulation and Physical Manifestation
NASA Astrophysics Data System (ADS)
Hu, Hao; Liu, Feng
2012-02-01
The concept of ``quantum stress (QS)'' is introduced and formulated within density functional theory (DFT), to underlie extrinsic electronic effects on the stress state of solids and thin films in the absence of lattice strain. An explicit expression of QS (σ^Q) is derived in relation to the deformation potential of electronic states (ξ) and the variation of electron density (δn), σ^Q=ξ(δn), as a quantum analog of classical Hook's law. Two distinct QS manifestations are demonstrated quantitatively by DFT calculations: (1) in the form of bulk stress induced by charge carriers; and (2) in the form of surface stress induced by quantum confinement. QS has broad implications in physical phenomena and technological applications that are based on coupling of electronic structure with lattice strain.
Reducing noise in a Raman quantum memory.
Bustard, Philip J; England, Duncan G; Heshami, Khabat; Kupchak, Connor; Sussman, Benjamin J
2016-11-01
Optical quantum memories are an important component of future optical and hybrid quantum technologies. Raman schemes are strong candidates for use with ultrashort optical pulses due to their broad bandwidth; however, the elimination of deleterious four-wave mixing noise from Raman memories is critical for practical applications. Here, we demonstrate a quantum memory using the rotational states of hydrogen molecules at room temperature. Polarization selection rules prohibit four-wave mixing, allowing the storage and retrieval of attenuated coherent states with a mean photon number 0.9 and a pulse duration 175 fs. The 1/e memory lifetime is 85.5 ps, demonstrating a time-bandwidth product of ≈480 in a memory that is well suited for use with broadband heralded down-conversion and fiber-based photon sources.
[Infrared spectroscopy based on quantum cascade lasers].
Wen, Zhong-Quan; Chen, Gang; Peng, Chen; Yuan, Wei-Qing
2013-04-01
Quantum cascade lasers (QCLs) are promising infrared coherent sources. Thanks to the quantum theory and band-gap engineering, QCL can access the wavelength in the range from 3 to 100 microm. Since the fingerprint spectrum of most gases are located in the mid-infrared range, mid-infrared quantum cascade laser based gas sensing technique has become the research focus world wide because of its high power, narrow linewidth and fast scanning. Recent progress in the QCL technology leads to a great improvement in laser output power and efficiency, which stimulates a fast development in the infrared laser spectroscopy. The present paper gives a broad review on the QCL based spectroscopy techniques according to their working principles. A discussion on their applications in gas sensing and explosive detecting is also given at the end of the paper.
Novel Plasmonic Materials and Nanodevices for Integrated Quantum Photonics
NASA Astrophysics Data System (ADS)
Shalaginov, Mikhail Y.
Light-matter interaction is the foundation for numerous important quantum optical phenomena, which may be harnessed to build practical devices with higher efficiency and unprecedented functionality. Nanoscale engineering is seen as a fruitful avenue to significantly strengthen light-matter interaction and also make quantum optical systems ultra-compact, scalable, and energy efficient. This research focuses on color centers in diamond that share quantum properties with single atoms. These systems promise a path for the realization of practical quantum devices such as nanoscale sensors, single-photon sources, and quantum memories. In particular, we explored an intriguing methodology of utilizing nanophotonic structures, such as hyperbolic metamaterials, nanoantennae, and plasmonic waveguides, to improve the color centers performance. We observed enhancement in the color center's spontaneous emission rate, emission directionality, and cooperativity over a broad optical frequency range. Additionally, we studied the effect of plasmonic environments on the spin-readout sensitivity of color centers. The use of CMOS-compatible epitaxially grown plasmonic materials in the design of these nanophotonic structures promises a new level of performance for a variety of integrated room-temperature quantum devices based on diamond color centers.
Amplification of Information by Photons and the Quantum Chernoff Bound
NASA Astrophysics Data System (ADS)
Zwolak, Michael; Riedel, C. Jess; Zurek, Wojciech H.
2014-03-01
Amplification was regarded, since the early days of quantum theory, as a mysterious ingredient that endows quantum microstates with macroscopic consequences, key to the ``collapse of the wavepacket,'' and a way to avoid embarrassing problems exemplified by Schrödinger's cat. This bridge between the quantum microworld and the classical world of our experience was postulated ad hoc in the Copenhagen Interpretation. Quantum Darwinism views amplification as replication, in many copies, of information about quantum states. We show that such amplification is a natural consequence of a broad class of models of decoherence, including the photon environment we use to obtain most of our information. The resultant amplification is huge, proportional to # ξQCB . Here, # is the environment size and ξQCB is the ``typical'' Quantum Chernoff Information, which quantifies the efficiency of the amplification. The information communicated though the environment is imprinted in the states of individual environment subsystems, e.g., in single photons, which document the transfer of information into the environment and result in the emergence of the classical world. See, http://mike.zwolak.org
DNA nanosensor based on biocompatible graphene quantum dots and carbon nanotubes.
Qian, Zhao Sheng; Shan, Xiao Yue; Chai, Lu Jing; Ma, Juan Juan; Chen, Jian Rong; Feng, Hui
2014-10-15
An ultrasensitive nanosensor based on fluorescence resonance energy transfer (FRET) between biocompatible graphene quantum dots and carbon nanotubes for DNA detection was reported. We take advantage of good biocompatibility and strong fluorescence of graphene quantum dots, base pairing specificity of DNA and unique fluorescence resonance energy transfer between graphene quantum dots and carbon nanotubes to achieve the analysis of low concentrations of DNA. Graphene quantum dots with high quantum yield up to 0.20 were prepared and served as the fluorophore of DNA probe. FRET process between graphene quantum dots-labeled probe and oxidized carbon nanotubes is easily achieved due to their efficient self-assembly through specific π-π interaction. This nanosensor can distinguish complementary and mismatched nucleic acid sequences with high sensitivity and good reproducibility. The detection method based on this nanosensor possesses a broad linear span of up to 133.0 nM and ultralow detection limit of 0.4 nM. The constructed nanosensor is expected to be highly biocompatible because of all its components with excellent biocompatibility. Copyright © 2014 Elsevier B.V. All rights reserved.
Quantum storage of orbital angular momentum entanglement in cold atomic ensembles
NASA Astrophysics Data System (ADS)
Shi, Bao-Sen; Ding, Dong-Sheng; Zhang, Wei
2018-02-01
Electromagnetic waves have both spin momentum and orbital angular momentum (OAM). Light carrying OAM has broad applications in micro-particle manipulation, high-precision optical metrology, and potential high-capacity optical communications. In the concept of quantum information, a photon encoded with information in its OAM degree of freedom enables quantum networks to carry much more information and increase their channel capacity greatly compared with those of current technology because of the inherent infinite dimensions for OAM. Quantum memories are indispensable to construct quantum networks. Storing OAM states has attracted considerable attention recently, and many important advances in this direction have been achieved during the past few years. Here we review recent experimental realizations of quantum memories using OAM states, including OAM qubits and qutrits at true single photon level, OAM states entangled in a two-dimensional or a high-dimensional space, hyperentanglement and hybrid entanglement consisting of OAM and other degree of freedom in a physical system. We believe that all achievements described here are very helpful to study quantum information encoded in a high-dimensional space.
Roadmap on quantum optical systems
NASA Astrophysics Data System (ADS)
Dumke, Rainer; Lu, Zehuang; Close, John; Robins, Nick; Weis, Antoine; Mukherjee, Manas; Birkl, Gerhard; Hufnagel, Christoph; Amico, Luigi; Boshier, Malcolm G.; Dieckmann, Kai; Li, Wenhui; Killian, Thomas C.
2016-09-01
This roadmap bundles fast developing topics in experimental optical quantum sciences, addressing current challenges as well as potential advances in future research. We have focused on three main areas: quantum assisted high precision measurements, quantum information/simulation, and quantum gases. Quantum assisted high precision measurements are discussed in the first three sections, which review optical clocks, atom interferometry, and optical magnetometry. These fields are already successfully utilized in various applied areas. We will discuss approaches to extend this impact even further. In the quantum information/simulation section, we start with the traditionally successful employed systems based on neutral atoms and ions. In addition the marvelous demonstrations of systems suitable for quantum information is not progressing, unsolved challenges remain and will be discussed. We will also review, as an alternative approach, the utilization of hybrid quantum systems based on superconducting quantum devices and ultracold atoms. Novel developments in atomtronics promise unique access in exploring solid-state systems with ultracold gases and are investigated in depth. The sections discussing the continuously fast-developing quantum gases include a review on dipolar heteronuclear diatomic gases, Rydberg gases, and ultracold plasma. Overall, we have accomplished a roadmap of selected areas undergoing rapid progress in quantum optics, highlighting current advances and future challenges. These exciting developments and vast advances will shape the field of quantum optics in the future.
Innovative quantum technologies for microgravity fundamental physics and biological research
NASA Technical Reports Server (NTRS)
Kierk, I. K.
2002-01-01
This paper presents a new technology program, within the fundamental physics, focusing on four quantum technology areas: quantum atomics, quantum optics, space superconductivity and quantum sensor technology, and quantum field based sensor and modeling technology.
NASA Astrophysics Data System (ADS)
Kaul, T.; Erbert, G.; Maaßdorf, A.; Martin, D.; Crump, P.
2018-02-01
Broad area lasers that are tailored to be most efficient at the highest achievable optical output power are sought by industry to decrease operation costs and improve system performance. Devices using Extreme-Double-ASymmetric (EDAS) epitaxial designs are promising candidates for improved efficiency at high optical output powers due to low series resistance, low optical loss and low carrier leakage. However, EDAS designs leverage ultra-thin p-side waveguides, meaning that the optical mode is shifted into the n-side waveguide, resulting in a low optical confinement in the active region, low gain and hence high threshold current, limiting peak performance. We introduce here explicit design considerations that enable EDAS-based devices to be developed with increased optical confinement in the active layer without changing the p-side layer thicknesses. Specifically, this is realized by introducing a third asymmetric component in the vicinity of the quantum well. We call this approach Extreme-Triple-ASymmetric (ETAS) design. A series of ETAS-based vertical designs were fabricated into broad area lasers that deliver up to 63% power conversion efficiency at 14 W CW optical output power from a 100 μm stripe laser, which corresponds to the operation point of a kW optical output power in a laser bar. The design process, the impact of structural changes on power saturation mechanisms and finally devices with improved performance will be presented.
Cendagorta, Joseph R; Powers, Anna; Hele, Timothy J H; Marsalek, Ondrej; Bačić, Zlatko; Tuckerman, Mark E
2016-11-30
Clathrate hydrates hold considerable promise as safe and economical materials for hydrogen storage. Here we present a quantum mechanical study of H 2 and D 2 diffusion through a hexagonal face shared by two large cages of clathrate hydrates over a wide range of temperatures. Path integral molecular dynamics simulations are used to compute the free-energy profiles for the diffusion of H 2 and D 2 as a function of temperature. Ring polymer molecular dynamics rate theory, incorporating both exact quantum statistics and approximate quantum dynamical effects, is utilized in the calculations of the H 2 and D 2 diffusion rates in a broad temperature interval. We find that the shape of the quantum free-energy profiles and their height relative to the classical free energy barriers at a given temperature, as well as the rate of diffusion, are strongly affected by competing quantum effects: above 25 K, zero-point energy (ZPE) perpendicular to the reaction path for diffusion between cavities decreases the quantum rate compared to the classical rate, whereas at lower temperatures tunneling outcompetes the ZPE and as a result the quantum rate is greater than the classical rate.
NASA Astrophysics Data System (ADS)
Li, Wei; Jin, Yuanbin; Yu, Xudong; Zhang, Jing
2017-08-01
We experimentally study a protocol of using the broadband high-frequency squeezed vacuum to detect the low-frequency signal. In this scheme, the lower sideband field of the squeezed light carries the low-frequency modulation signal, and the two strong coherent light fields are applied as the bichromatic local oscillator in the homodyne detection to measure the quantum entanglement of the upper and lower sideband for the broadband squeezed light. The power of one of the local oscillators for detecting the upper sideband can be adjusted to optimize the conditional variance in the low-frequency regime by subtracting the photocurrent of the upper sideband field of the squeezed light from that of the lower sideband field. By means of the quantum correlation of the upper and lower sideband for the broadband squeezed light, the low-frequency signal beyond the standard quantum limit is measured. This scheme is appropriate for enhancing the sensitivity of the low-frequency signal by the aid of the broad squeezed light, such as gravitational waves detection, and does not need to directly produce the low-frequency squeezing in an optical parametric process.
NASA Astrophysics Data System (ADS)
Wang, Zhe; Lorenz, T.; Gorbunov, D. I.; Cong, P. T.; Kohama, Y.; Niesen, S.; Breunig, O.; Engelmayer, J.; Herman, A.; Wu, Jianda; Kindo, K.; Wosnitza, J.; Zherlitsyn, S.; Loidl, A.
2018-05-01
We report on magnetization, sound-velocity, and magnetocaloric-effect measurements of the Ising-like spin-1 /2 antiferromagnetic chain system BaCo2V2O8 as a function of temperature down to 1.3 K and an applied transverse magnetic field up to 60 T. While across the Néel temperature of TN˜5 K anomalies in magnetization and sound velocity confirm the antiferromagnetic ordering transition, at the lowest temperature the field-dependent measurements reveal a sharp softening of sound velocity v (B ) and a clear minimum of temperature T (B ) at B⊥c,3 D=21.4 T , indicating the suppression of the antiferromagnetic order. At higher fields, the T (B ) curve shows a broad minimum at B⊥c=40 T , accompanied by a broad minimum in the sound velocity and a saturationlike magnetization. These features signal a quantum phase transition, which is further characterized by the divergent behavior of the Grüneisen parameter ΓB∝(B -B⊥c)-1. By contrast, around the critical field, the Grüneisen parameter converges as temperature decreases, pointing to a quantum critical point of the one-dimensional transverse-field Ising model.
Quantum biological channel modeling and capacity calculation.
Djordjevic, Ivan B
2012-12-10
Quantum mechanics has an important role in photosynthesis, magnetoreception, and evolution. There were many attempts in an effort to explain the structure of genetic code and transfer of information from DNA to protein by using the concepts of quantum mechanics. The existing biological quantum channel models are not sufficiently general to incorporate all relevant contributions responsible for imperfect protein synthesis. Moreover, the problem of determination of quantum biological channel capacity is still an open problem. To solve these problems, we construct the operator-sum representation of biological channel based on codon basekets (basis vectors), and determine the quantum channel model suitable for study of the quantum biological channel capacity and beyond. The transcription process, DNA point mutations, insertions, deletions, and translation are interpreted as the quantum noise processes. The various types of quantum errors are classified into several broad categories: (i) storage errors that occur in DNA itself as it represents an imperfect storage of genetic information, (ii) replication errors introduced during DNA replication process, (iii) transcription errors introduced during DNA to mRNA transcription, and (iv) translation errors introduced during the translation process. By using this model, we determine the biological quantum channel capacity and compare it against corresponding classical biological channel capacity. We demonstrate that the quantum biological channel capacity is higher than the classical one, for a coherent quantum channel model, suggesting that quantum effects have an important role in biological systems. The proposed model is of crucial importance towards future study of quantum DNA error correction, developing quantum mechanical model of aging, developing the quantum mechanical models for tumors/cancer, and study of intracellular dynamics in general.
A summary of the research program in the broad field of electronics
NASA Technical Reports Server (NTRS)
1972-01-01
Summary reports of research projects covering solid state materials, semiconductors and devices, quantum electronics, plasmas, applied electromagnetics, electrical engineering systems to include control communication, computer and power systems, biomedical engineering and mathematical biosciences.
Composite Supraparticles with Tunable Light Emission
2017-01-01
Robust luminophores emitting light with broadly tunable colors are desirable in many applications such as light-emitting diode (LED)-based lighting, displays, integrated optoelectronics and biology. Nanocrystalline quantum dots with multicolor emission, from core- and shell-localized excitons, as well as solid layers of mixed quantum dots that emit different colors have been proposed. Here, we report on colloidal supraparticles that are composed of three types of Cd(Se,ZnS) core/(Cd,Zn)S shell nanocrystals with emission in the red, green, and blue. The emission of the supraparticles can be varied from pure to composite colors over the entire visible region and fine-tuned into variable shades of white light by mixing the nanocrystals in controlled proportions. Our approach results in supraparticles with sizes spanning the colloidal domain and beyond that combine versatility and processability with a broad, stable, and tunable emission, promising applications in lighting devices and biological research. PMID:28787121
Innovative quantum technologies for microgravity fundamental physics and biological research
NASA Technical Reports Server (NTRS)
Kierk, I.; Israelsson, U.; Lee, M.
2001-01-01
This paper presents a new technology program, within the fundamental physics research program, focusing on four quantum technology areas: quantum atomics, quantum optics, space superconductivity and quantum sensor technology, and quantum fluid based sensor and modeling technology.
Two Perspectives of the 2D Unit Area Quantum Sphere and Their Equivalence
NASA Astrophysics Data System (ADS)
Aru, Juhan; Huang, Yichao; Sun, Xin
2017-11-01
2D Liouville quantum gravity (LQG) is used as a toy model for 4D quantum gravity and is the theory of world-sheet in string theory. Recently there has been growing interest in studying LQG in the realm of probability theory: David et al. (Liouville quantum gravity on the Riemann sphere. Commun Math Phys 342(3):869-907, 2016) and Duplantier et al. (Liouville quantum gravity as a mating of trees. ArXiv e-prints: arXiv:1409.7055, 2014) both provide a probabilistic perspective of the LQG on the 2D sphere. In particular, in each of them one may find a definition of the so-called unit area quantum sphere. We examine these two perspectives and prove their equivalence by showing that the respective unit area quantum spheres are the same. This is done by considering a unified limiting procedure for defining both objects.
The Schrödinger Sessions: Science for Science Fiction
NASA Astrophysics Data System (ADS)
Orzel, Chad; Edwards, Emily; Rolston, Steven
In July 2015, we held a workshop for 17 science fiction writers working in a variety of media at the Joint Quantum Institute at the University of Maryland, College Park. ''The Schrödinger Sessions,'' funded by an outreach grant from APS, provided a three-day ''crash course'' on quantum physics and technology, including lectures from JQI scientists and tours of JQI labs. The goal was to better inform and inspire stories making use of quantum physics, as a means of outreach to inspire a broad audience of future scientists. We will report on the contents of the workshop, reactions from the attendees and presenters, and future plans. Funded by an Outreach Mini-Grant from the APS.
England, Duncan G; Fisher, Kent A G; MacLean, Jean-Philippe W; Bustard, Philip J; Lausten, Rune; Resch, Kevin J; Sussman, Benjamin J
2015-02-06
We report the storage and retrieval of single photons, via a quantum memory, in the optical phonons of a room-temperature bulk diamond. The THz-bandwidth heralded photons are generated by spontaneous parametric down-conversion and mapped to phonons via a Raman transition, stored for a variable delay, and released on demand. The second-order correlation of the memory output is g((2))(0)=0.65±0.07, demonstrating a preservation of nonclassical photon statistics throughout storage and retrieval. The memory is low noise, high speed and broadly tunable; it therefore promises to be a versatile light-matter interface for local quantum processing applications.
Gate-defined Quantum Confinement in Suspended Bilayer Graphene
NASA Astrophysics Data System (ADS)
Allen, Monica
2013-03-01
Quantum confined devices in carbon-based materials offer unique possibilities for applications ranging from quantum computation to sensing. In particular, nanostructured carbon is a promising candidate for spin-based quantum computation due to the ability to suppress hyperfine coupling to nuclear spins, a dominant source of spin decoherence. Yet graphene lacks an intrinsic bandgap, which poses a serious challenge for the creation of such devices. We present a novel approach to quantum confinement utilizing tunnel barriers defined by local electric fields that break sublattice symmetry in suspended bilayer graphene. This technique electrostatically confines charges via band structure control, thereby eliminating the edge and substrate disorder that hinders on-chip etched nanostructures to date. We report clean single electron tunneling through gate-defined quantum dots in two regimes: at zero magnetic field using the energy gap induced by a perpendicular electric field and at finite magnetic fields using Landau level confinement. The observed Coulomb blockade periodicity agrees with electrostatic simulations based on local top-gate geometry, a direct demonstration of local control over the band structure of graphene. This technology integrates quantum confinement with pristine device quality and access to vibrational modes, enabling wide applications from electromechanical sensors to quantum bits. More broadly, the ability to externally tailor the graphene bandgap over nanometer scales opens a new unexplored avenue for creating quantum devices.
Quantum lattice model solver HΦ
NASA Astrophysics Data System (ADS)
Kawamura, Mitsuaki; Yoshimi, Kazuyoshi; Misawa, Takahiro; Yamaji, Youhei; Todo, Synge; Kawashima, Naoki
2017-08-01
HΦ [aitch-phi ] is a program package based on the Lanczos-type eigenvalue solution applicable to a broad range of quantum lattice models, i.e., arbitrary quantum lattice models with two-body interactions, including the Heisenberg model, the Kitaev model, the Hubbard model and the Kondo-lattice model. While it works well on PCs and PC-clusters, HΦ also runs efficiently on massively parallel computers, which considerably extends the tractable range of the system size. In addition, unlike most existing packages, HΦ supports finite-temperature calculations through the method of thermal pure quantum (TPQ) states. In this paper, we explain theoretical background and user-interface of HΦ. We also show the benchmark results of HΦ on supercomputers such as the K computer at RIKEN Advanced Institute for Computational Science (AICS) and SGI ICE XA (Sekirei) at the Institute for the Solid State Physics (ISSP).
Strong quantum squeezing near the pull-in instability of a nonlinear beam
Passian, Ali; Siopsis, George
2016-08-04
Microscopic silicon-based suspended mechanical oscillators, constituting an extremely sensitive force probe, transducer, and actuator, are being increasingly employed in many developing microscopies, spectroscopies, and emerging optomechanical and chem-bio sensors. Here, we predict a significant squeezing in the quantum state of motion of an oscillator constrained as a beam and subject to an electrically induced nonlinearity. When we take into account the quantum noise, the underlying nonlinear dynamics is investigated in both the transient and stationary regimes of the driving force leading to the finding that strongly squeezed states are accessible in the vicinity of the pull-in instability of the oscillator.more » We discuss a possible application of this strong quantum squeezing as an optomechanical method for detecting broad-spectrum single or low-count photons, and further suggest other novel sensing actions.« less
Position-Momentum Duality and Fractional Quantum Hall Effect in Chern Insulators
Claassen, Martin; Lee, Ching-Hua; Thomale, Ronny; ...
2015-06-11
We develop a first quantization description of fractional Chern insulators that is the dual of the conventional fractional quantum Hall (FQH) problem, with the roles of position and momentum interchanged. In this picture, FQH states are described by anisotropic FQH liquids forming in momentum-space Landau levels in a fluctuating magnetic field. The fundamental quantum geometry of the problem emerges from the interplay of single-body and interaction metrics, both of which act as momentum-space duals of the geometrical picture of the anisotropic FQH effect. We then present a novel broad class of ideal Chern insulator lattice models that act as dualsmore » of the isotropic FQH effect. The interacting problem is well-captured by Haldane pseudopotentials and affords a detailed microscopic understanding of the interplay of interactions and non-trivial quantum geometry.« less
Haggett, Stephanie; Krakowski, Michel; Montrosset, Ivo; Cataluna, Maria Ana
2014-09-22
A high-power tunable external cavity laser configuration with a tapered quantum-dot semiconductor optical amplifier at its core is presented, enabling a record output power for a broadly tunable semiconductor laser source in the 1.2 - 1.3 µm spectral region. Two distinct optical amplifiers are investigated, using either chirped or unchirped quantum-dot structures, and their merits are compared, considering the combination of tunability and high output power generation. At 1230 nm, the chirped quantum-dot laser achieved a maximum power of 0.62 W and demonstrated nearly 100-nm tunability. The unchirped laser enabled a tunability range of 32 nm and at 1254 nm generated a maximum power of 0.97 W, representing a 22-fold increase in output power compared with similar narrow-ridge external-cavity lasers at the same current density.
Topics in black holes and quantum cosmology
NASA Astrophysics Data System (ADS)
Campiglia, Miguel
2012-06-01
Black holes and the big bang beginning of the universe are among the most spectacular predictions of general relativity, having a broad impact that ranges from observational astronomy to quantum gravity. In this thesis we will focus on classical and quantum aspects of these subjects: In the first part we present a coordinate-free way of describing the approach to equilibrium of black holes within the framework of dynamical and isolated horizons. In the second part we focus on loop quantum cosmology. We present a uniqueness theorem of its kinematics, and explore the possible ways to implement its dynamics via path integrals.¹ ¹The topics presented here form part of the research done during my PhD studies. See the Vita at the end of the Thesis for a complete list of my work during this period.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Dongxing; Wu, Jiarui; Gu, Ying, E-mail: ygu@pku.edu.cn
2014-09-15
We propose tailoring of the double Fano profiles via plasmon-assisted quantum interference in a hybrid exciton-plasmon system. Tailoring is performed by the interference between two exciton channels interacting with a common localized surface plasmon. Using an applied field of low intensity, the absorption spectrum of the hybrid system reveals a double Fano lineshape with four peaks. For relatively large field intensity, a broad flat window in the absorption spectrum appears which results from the destructive interference between excitons. Because of strong constructive interference, this window vanishes as intensity is further increased. We have designed a nanometer bandpass optical filter formore » visible light based on tailoring of the optical spectrum. This study provides a platform for quantum interference that may have potential applications in ultracompact tunable quantum devices.« less
Fermi Observations of High-Energy Gamma-Ray Emission from GRB 080916C
Abdo, A. A.; Ackermann, M.; Arimoto, M.; ...
2009-02-19
Gamma-ray bursts (GRBs) are highly energetic explosions signaling the death of massive stars in distant galaxies. The Gamma-ray Burst Monitor and Large Area Telescope onboard the Fermi Observatory together record GRBs over a broad energy range spanning about 7 decades of gammaray energy. In September 2008, Fermi observed the exceptionally luminous GRB 080916C, with the largest apparent energy release yet measured. The high-energy gamma rays are observed to start later and persist longer than the lower energy photons. A simple spectral form fits the entire GRB spectrum, providing strong constraints on emission models. Finally, the known distance of the burstmore » enables placing lower limits on the bulk Lorentz factor of the outflow and on the quantum gravity mass.« less
Ahn, K J; Milde, F; Knorr, A
2007-01-12
Acoustic wave excitation of semiconductor quantum dots generates resonance fluorescence of electronic intersublevel excitations. Our theoretical analysis predicts acoustoluminescence, in particular, a conversion of acoustic into electromagnetic THz waves over a broad spectral range.
Holographic injection locking of a broad area laser diode via a photorefractive thin-film device.
van Voorst, P D; de Wit, M R; Offerhaus, H L; Tay, S; Thomas, J; Peyghambarian, N; Boller, K-J
2007-12-24
We demonstrate locking of a high power broad area laser diode to a single frequency using holographic feedback from a photorefractive polymer thin-film device for the first time. A four-wave mixing setup is used to generate feedback for the broad area diode at the wavelength of the single frequency source (Ti:Sapphire laser) while the spatial distribution adapts to the preferred profile of the broad area diode. The result is an injection-locked broad area diode emitting with a linewidth comparable to the Ti:Sapphire laser.
Ramabhadran, Raghunath O; Raghavachari, Krishnan
2014-12-16
CONSPECTUS: Quantum chemistry and electronic structure theory have proven to be essential tools to the experimental chemist, in terms of both a priori predictions that pave the way for designing new experiments and rationalizing experimental observations a posteriori. Translating the well-established success of electronic structure theory in obtaining the structures and energies of small chemical systems to increasingly larger molecules is an exciting and ongoing central theme of research in quantum chemistry. However, the prohibitive computational scaling of highly accurate ab initio electronic structure methods poses a fundamental challenge to this research endeavor. This scenario necessitates an indirect fragment-based approach wherein a large molecule is divided into small fragments and is subsequently reassembled to compute its energy accurately. In our quest to further reduce the computational expense associated with the fragment-based methods and overall enhance the applicability of electronic structure methods to large molecules, we realized that the broad ideas involved in a different area, theoretical thermochemistry, are transferable to the area of fragment-based methods. This Account focuses on the effective merger of these two disparate frontiers in quantum chemistry and how new concepts inspired by theoretical thermochemistry significantly reduce the total number of electronic structure calculations needed to be performed as part of a fragment-based method without any appreciable loss of accuracy. Throughout, the generalized connectivity based hierarchy (CBH), which we developed to solve a long-standing problem in theoretical thermochemistry, serves as the linchpin in this merger. The accuracy of our method is based on two strong foundations: (a) the apt utilization of systematic and sophisticated error-canceling schemes via CBH that result in an optimal cutting scheme at any given level of fragmentation and (b) the use of a less expensive second layer of electronic structure method to recover all the missing long-range interactions in the parent large molecule. Overall, the work featured here dramatically decreases the computational expense and empowers the execution of very accurate ab initio calculations (gold-standard CCSD(T)) on large molecules and thereby facilitates sophisticated electronic structure applications to a wide range of important chemical problems.
NASA Astrophysics Data System (ADS)
Nesvizhevsky, Valery V.; Voronin, Alexei Yu.; Cubitt, Robert; Protasov, Konstantin V.
2010-02-01
The `whispering gallery' effect has been known since ancient times for sound waves in air, later in water and more recently for a broad range of electromagnetic waves: radio, optics, Roentgen and so on. It consists of wave localization near a curved reflecting surface and is expected for waves of various natures, for instance, for atoms and neutrons. For matter waves, it would include a new feature: a massive particle would be settled in quantum states, with parameters depending on its mass. Here, we present for the first time the quantum whispering-gallery effect for cold neutrons. This phenomenon provides an example of an exactly solvable problem analogous to the `quantum bouncer'; it is complementary to the recently discovered gravitationally bound quantum states of neutrons . These two phenomena provide a direct demonstration of the weak equivalence principle for a massive particle in a pure quantum state. Deeply bound whispering-gallery states are long-living and weakly sensitive to surface potential; highly excited states are short-living and very sensitive to the wall potential shape. Therefore, they are a promising tool for studying fundamental neutron-matter interactions, quantum neutron optics and surface physics effects.
Quantum enhanced feedback cooling of a mechanical oscillator using nonclassical light.
Schäfermeier, Clemens; Kerdoncuff, Hugo; Hoff, Ulrich B; Fu, Hao; Huck, Alexander; Bilek, Jan; Harris, Glen I; Bowen, Warwick P; Gehring, Tobias; Andersen, Ulrik L
2016-11-29
Laser cooling is a fundamental technique used in primary atomic frequency standards, quantum computers, quantum condensed matter physics and tests of fundamental physics, among other areas. It has been known since the early 1990s that laser cooling can, in principle, be improved by using squeezed light as an electromagnetic reservoir; while quantum feedback control using a squeezed light probe is also predicted to allow improved cooling. Here we show the implementation of quantum feedback control of a micro-mechanical oscillator using squeezed probe light. This allows quantum-enhanced feedback cooling with a measurement rate greater than it is possible with classical light, and a consequent reduction in the final oscillator temperature. Our results have significance for future applications in areas ranging from quantum information networks, to quantum-enhanced force and displacement measurements and fundamental tests of macroscopic quantum mechanics.
Angle-dependent quantum Otto heat engine based on coherent dipole-dipole coupling
NASA Astrophysics Data System (ADS)
Su, Shan-He; Luo, Xiao-Qing; Chen, Jin-Can; Sun, Chang-Pu
2016-08-01
Electromagnetic interactions between molecules or within a molecule have been widely observed in biological systems and exhibit broad application for molecular structural studies. Quantum delocalization of molecular dipole moments has inspired researchers to explore new avenues to utilize this physical effect for energy harvesting devices. Herein, we propose a simple model of the angle-dependent quantum Otto heat engine which seeks to facilitate the conversion of heat to work. Unlike previous studies, the adiabatic processes are accomplished by varying only the directions of the magnetic field. We show that the heat engine continues to generate power when the angle relative to the vector r joining the centres of coupled dipoles departs from the magic angle θm where the static coupling vanishes. A significant improvement in the device performance has to be attributed to the presence of the quantum delocalized levels associated with the coherent dipole-dipole coupling. These results obtained may provide a promising model for the biomimetic design and fabrication of quantum energy generators.
REVIEWS OF TOPICAL PROBLEMS: Concept of consciousness in the context of quantum mechanics
NASA Astrophysics Data System (ADS)
Menskii, Mikhail B.
2005-04-01
Conceptual problems of the quantum theory of measurement are considered, which are embodied in well-known paradoxes and in Bell's inequalities. Arguments are advanced in favor of the viewpoint that these problems may hardly be solved without direct inclusion of the observer's consciousness in the theoretical description of a quantum measurement. Discussed in this connection is the so-called many-worlds interpretation of quantum mechanics proposed by Everett, as is the extension of Everett's concept, which consists in the assumption that separating the quantum state components corresponding to alternative measurements is not only associated with the observer's consciousness but is completely identified with it. This approach is shown to open up qualitatively new avenues for the unification of physics and psychology and, more broadly, of the sciences and the humanities. This may lead to an extension of the theory of consciousness and shed light on significant and previously misunderstood phenomena in the sphere of consciousness.
Reconcile Planck-scale discreteness and the Lorentz-Fitzgerald contraction
NASA Astrophysics Data System (ADS)
Rovelli, Carlo; Speziale, Simone
2003-03-01
A Planck-scale minimal observable length appears in many approaches to quantum gravity. It is sometimes argued that this minimal length might conflict with Lorentz invariance, because a boosted observer can see the minimal length further Lorentz contracted. We show that this is not the case within loop quantum gravity. In loop quantum gravity the minimal length (more precisely, minimal area) does not appear as a fixed property of geometry, but rather as the minimal (nonzero) eigenvalue of a quantum observable. The boosted observer can see the same observable spectrum, with the same minimal area. What changes continuously in the boost transformation is not the value of the minimal length: it is the probability distribution of seeing one or the other of the discrete eigenvalues of the area. We discuss several difficulties associated with boosts and area measurement in quantum gravity. We compute the transformation of the area operator under a local boost, propose an explicit expression for the generator of local boosts, and give the conditions under which its action is unitary.
Strongly Cavity-Enhanced Spontaneous Emission from Silicon-Vacancy Centers in Diamond
Zhang, Jingyuan Linda; Sun, Shuo; Burek, Michael J.; ...
2018-01-29
Quantum emitters are an integral component for a broad range of quantum technologies, including quantum communication, quantum repeaters, and linear optical quantum computation. Solid-state color centers are promising candidates for scalable quantum optics due to their long coherence time and small inhomogeneous broadening. However, once excited, color centers often decay through phonon-assisted processes, limiting the efficiency of single-photon generation and photon-mediated entanglement generation. Herein, we demonstrate strong enhancement of spontaneous emission rate of a single silicon-vacancy center in diamond embedded within a monolithic optical cavity, reaching a regime in which the excited-state lifetime is dominated by spontaneous emission into themore » cavity mode. We observe 10-fold lifetime reduction and 42-fold enhancement in emission intensity when the cavity is tuned into resonance with the optical transition of a single silicon-vacancy center, corresponding to 90% of the excited-state energy decay occurring through spontaneous emission into the cavity mode. Here, we also demonstrate the largest coupling strength ( g/2π = 4.9 ± 0.3 GHz) and cooperativity ( C = 1.4) to date for color-center-based cavity quantum electrodynamics systems, bringing the system closer to the strong coupling regime.« less
A Quick and Parallel Analytical Method Based on Quantum Dots Labeling for ToRCH-Related Antibodies
NASA Astrophysics Data System (ADS)
Yang, Hao; Guo, Qing; He, Rong; Li, Ding; Zhang, Xueqing; Bao, Chenchen; Hu, Hengyao; Cui, Daxiang
2009-12-01
Quantum dot is a special kind of nanomaterial composed of periodic groups of II-VI, III-V or IV-VI materials. Their high quantum yield, broad absorption with narrow photoluminescence spectra and high resistance to photobleaching, make them become a promising labeling substance in biological analysis. Here, we report a quick and parallel analytical method based on quantum dots for ToRCH-related antibodies including Toxoplasma gondii, Rubella virus, Cytomegalovirus and Herpes simplex virus type 1 (HSV1) and 2 (HSV2). Firstly, we fabricated the microarrays with the five kinds of ToRCH-related antigens and used CdTe quantum dots to label secondary antibody and then analyzed 100 specimens of randomly selected clinical sera from obstetric outpatients. The currently prevalent enzyme-linked immunosorbent assay (ELISA) kits were considered as “golden standard” for comparison. The results show that the quantum dots labeling-based ToRCH microarrays have comparable sensitivity and specificity with ELISA. Besides, the microarrays hold distinct advantages over ELISA test format in detection time, cost, operation and signal stability. Validated by the clinical assay, our quantum dots-based ToRCH microarrays have great potential in the detection of ToRCH-related pathogens.
Semenov, Alexander; Babikov, Dmitri
2015-12-17
The mixed quantum classical theory, MQCT, for inelastic scattering of two molecules is developed, in which the internal (rotational, vibrational) motion of both collision partners is treated with quantum mechanics, and the molecule-molecule scattering (translational motion) is described by classical trajectories. The resultant MQCT formalism includes a system of coupled differential equations for quantum probability amplitudes, and the classical equations of motion in the mean-field potential. Numerical tests of this theory are carried out for several most important rotational state-to-state transitions in the N2 + H2 system, in a broad range of collision energies. Besides scattering resonances (at low collision energies) excellent agreement with full-quantum results is obtained, including the excitation thresholds, the maxima of cross sections, and even some smaller features, such as slight oscillations of energy dependencies. Most importantly, at higher energies the results of MQCT are nearly identical to the full quantum results, which makes this approach a good alternative to the full-quantum calculations that become computationally expensive at higher collision energies and for heavier collision partners. Extensions of this theory to include vibrational transitions or general asymmetric-top rotor (polyatomic) molecules are relatively straightforward.
Strongly Cavity-Enhanced Spontaneous Emission from Silicon-Vacancy Centers in Diamond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jingyuan Linda; Sun, Shuo; Burek, Michael J.
Quantum emitters are an integral component for a broad range of quantum technologies, including quantum communication, quantum repeaters, and linear optical quantum computation. Solid-state color centers are promising candidates for scalable quantum optics due to their long coherence time and small inhomogeneous broadening. However, once excited, color centers often decay through phonon-assisted processes, limiting the efficiency of single-photon generation and photon-mediated entanglement generation. Herein, we demonstrate strong enhancement of spontaneous emission rate of a single silicon-vacancy center in diamond embedded within a monolithic optical cavity, reaching a regime in which the excited-state lifetime is dominated by spontaneous emission into themore » cavity mode. We observe 10-fold lifetime reduction and 42-fold enhancement in emission intensity when the cavity is tuned into resonance with the optical transition of a single silicon-vacancy center, corresponding to 90% of the excited-state energy decay occurring through spontaneous emission into the cavity mode. Here, we also demonstrate the largest coupling strength ( g/2π = 4.9 ± 0.3 GHz) and cooperativity ( C = 1.4) to date for color-center-based cavity quantum electrodynamics systems, bringing the system closer to the strong coupling regime.« less
Recent progress of quantum communication in China (Conference Presentation)
NASA Astrophysics Data System (ADS)
Zhang, Qiang
2016-04-01
Quantum communication, based on the quantum physics, can provide information theoretical security. Building a global quantum network is one ultimate goal for the research of quantum information. Here, this talk will review the progress for quantum communication in China, including quantum key distribution over metropolitan area with untrustful relay, field test of quantum entanglement swapping over metropolitan network, the 2000 km quantum key distribution main trunk line, and satellite based quantum communication.
Conditions for monogamy of quantum correlations in multipartite systems
NASA Astrophysics Data System (ADS)
Kumar, Asutosh
2016-09-01
Monogamy of quantum correlations is a vibrant area of research because of its potential applications in several areas in quantum information ranging from quantum cryptography to co-operative phenomena in many-body physics. In this paper, we investigate conditions under which monogamy is preserved for functions of quantum correlation measures. We prove that a monogamous measure remains monogamous on raising its power, and a non-monogamous measure remains non-monogamous on lowering its power. We also prove that monogamy of a convex quantum correlation measure for arbitrary multipartite pure quantum state leads to its monogamy for mixed states in the same Hilbert space. Monogamy of squared negativity for mixed states and that of entanglement of formation follow as corollaries of our results.
Sixth International Conference on Squeezed States and Uncertainty Relations
NASA Technical Reports Server (NTRS)
Han, D. (Editor); Kim, Y. S. (Editor); Solimento, S. (Editor)
2000-01-01
These proceedings contain contributions from about 200 participants to the 6th International Conference on Squeezed States and Uncertainty Relations (ICSSUR'99) held in Naples May 24-29, 1999, and organized jointly by the University of Naples "Federico II," the University of Maryland at College Park, and the Lebedev Institute, Moscow. This was the sixth of a series of very successful meetings started in 1990 at the College Park Campus of the University of Maryland. The other meetings in the series were held in Moscow (1992), Baltimore (1993), Taiyuan P.R.C. (1995) and Balatonfuered, Hungary (1997). The present one was held at the campus Monte Sant'Angelo of the University "Federico II" of Naples. The meeting sought to provide a forum for updating and reviewing a wide range of quantum optics disciplines, including device developments and applications, and related areas of quantum measurements and quantum noise. Over the years, the ICSSUR Conference evolved from a meeting on quantum measurement sector of quantum optics, to a wide range of quantum optics themes, including multifacet aspects of generation, measurement, and applications of nonclassical light (squeezed and Schrodinger cat radiation fields, etc.), and encompassing several related areas, ranging from quantum measurement to quantum noise. ICSSUR'99 brought together about 250 people active in the field of quantum optics, with special emphasis on nonclassical light sources and related areas. The Conference was organized in 8 Sections: Squeezed states and uncertainty relations; Harmonic oscillators and squeeze transformations; Methods of quantum interference and correlations; Quantum measurements; Generation and characterisation of non-classical light; Quantum noise; Quantum communication and information; and Quantum-like systems.
Universal Linear Optics: An implementation of Boson Sampling on a Fully Reconfigurable Circuit
NASA Astrophysics Data System (ADS)
Harrold, Christopher; Carolan, Jacques; Sparrow, Chris; Russell, Nicholas J.; Silverstone, Joshua W.; Marshall, Graham D.; Thompson, Mark G.; Matthews, Jonathan C. F.; O'Brien, Jeremy L.; Laing, Anthony; Martín-López, Enrique; Shadbolt, Peter J.; Matsuda, Nobuyuki; Oguma, Manabu; Itoh, Mikitaka; Hashimoto, Toshikazu
Linear optics has paved the way for fundamental tests in quantum mechanics and has gone on to enable a broad range of quantum information processing applications for quantum technologies. We demonstrate an integrated photonics processor that is universal for linear optics. The device is a silica-on-silicon planar waveguide circuit (PLC) comprising a cascade of 15 Mach Zehnder interferometers, with 30 directional couplers and 30 tunable thermo-optic phase shifters which are electrically interfaced for the arbitrary setting of a phase. We input ensembles of up to six photons, and monitor the output with a 12-single-photon detector system. The calibrated device is capable of implementing any linear optical protocol. This enables the implementation of new quantum information processing tasks in seconds, which would have previously taken months to realise. We demonstrate 100 instances of the boson sampling problem with verification tests, and six-dimensional complex Hadamards. Also Imperial College London.
Experimental realization of the Yang-Baxter Equation via NMR interferometry.
Vind, F Anvari; Foerster, A; Oliveira, I S; Sarthour, R S; Soares-Pinto, D O; Souza, A M; Roditi, I
2016-02-10
The Yang-Baxter equation is an important tool in theoretical physics, with many applications in different domains that span from condensed matter to string theory. Recently, the interest on the equation has increased due to its connection to quantum information processing. It has been shown that the Yang-Baxter equation is closely related to quantum entanglement and quantum computation. Therefore, owing to the broad relevance of this equation, besides theoretical studies, it also became significant to pursue its experimental implementation. Here, we show an experimental realization of the Yang-Baxter equation and verify its validity through a Nuclear Magnetic Resonance (NMR) interferometric setup. Our experiment was performed on a liquid state Iodotrifluoroethylene sample which contains molecules with three qubits. We use Controlled-transfer gates that allow us to build a pseudo-pure state from which we are able to apply a quantum information protocol that implements the Yang-Baxter equation.
Nesvizhevsky, Valery
2018-05-14
We will discuss the scientific program to be studied in a new gravitational spectrometer GRANIT in a broad context of quantum states (quantum behaviour) of ultracold neutrons (UCN) in gravitational [1] and centrifugal [2] potentials, as well as applications of these phenomena/spectrometer to various domains of physics, ranging from studies of fundamental short-range interactions and symmetries to neutron quantum optics and reflectometry using UCN. All these topics, as well as related instrumental and methodical developments have been discussed during dedicated GRANIT-2010 Workshop [3]. The GRANIT spectrometer has been recently installed at the Institut Laue-Langevin, Grenoble, France [4] and could become operational in near future. 1. V.V. Nesvizhevsky et al (2002), Nature 415, 297. 2. V.V. Nesvizhevsky et al (2010), Nature Physics 6, 114. 3. GRANIT-2010, Les Houches, 14-19 february 2010. 4. M. Kreuz et al (2009), NIM 611, 326.
Adiabatic Theorem for Quantum Spin Systems
NASA Astrophysics Data System (ADS)
Bachmann, S.; De Roeck, W.; Fraas, M.
2017-08-01
The first proof of the quantum adiabatic theorem was given as early as 1928. Today, this theorem is increasingly applied in a many-body context, e.g., in quantum annealing and in studies of topological properties of matter. In this setup, the rate of variation ɛ of local terms is indeed small compared to the gap, but the rate of variation of the total, extensive Hamiltonian, is not. Therefore, applications to many-body systems are not covered by the proofs and arguments in the literature. In this Letter, we prove a version of the adiabatic theorem for gapped ground states of interacting quantum spin systems, under assumptions that remain valid in the thermodynamic limit. As an application, we give a mathematical proof of Kubo's linear response formula for a broad class of gapped interacting systems. We predict that the density of nonadiabatic excitations is exponentially small in the driving rate and the scaling of the exponent depends on the dimension.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, X. T.; Zhang, Y.; Liu, X. G., E-mail: liuxuguang@tyut.edu.cn
Carbon quantum dots (CQDs) with high quantum yield (51.4%) were synthesized by a one-step hydrothermal method using thiosalicylic acid and ethylenediamine as precursor. The CQDs have the average diameter of 2.3 nm and possess excitation-independent emission wavelength in the range from 320 to 440 nm excitation. Under an ultraviolet (UV) excitation, the CQDs aqueous solutions emit bright blue fluorescence directly and exhibit broad emission with a high spectral component ratio of 67.4% (blue to red intensity to total intensity). We applied the CQDs as a single white-light converter for white light emitting diodes (WLEDs) using a UV-LED chip as the excitation lightmore » source. The resulted WLED shows superior performance with corresponding color temperature of 5227 K and the color coordinates of (0.34, 0.38) belonging to the white gamut.« less
BOOK REVIEW: Quantum Gravity: third edition Quantum Gravity: third edition
NASA Astrophysics Data System (ADS)
Rovelli, Carlo
2012-09-01
The request by Classical and Quantum Gravity to review the third edition of Claus Kiefer's 'Quantum Gravity' puts me in a slightly awkward position. This is a remarkably good book, which every person working in quantum gravity should have on the shelf. But in my opinion quantum gravity has undergone some dramatic advances in the last few years, of which the book makes no mention. Perhaps the omission only attests to the current vitality of the field, where progress is happening fast, but it is strange for me to review a thoughtful, knowledgeable and comprehensive book on my own field of research, which ignores what I myself consider the most interesting results to date. Kiefer's book is unique as a broad introduction and a reliable overview of quantum gravity. There are numerous books in the field which (often notwithstanding titles) focus on a single approach. There are also countless conference proceedings and article collections aiming to be encyclopaedic, but offering disorganized patchworks. Kiefer's book is a careful and thoughtful presentation of all aspects of the immense problem of quantum gravity. Kiefer is very learned, and brings together three rare qualities: he is pedagogical, he is capable of simplifying matter to the bones and capturing the essential, and he offers a serious and balanced evaluation of views and ideas. In a fractured field based on a major problem that does not yet have a solution, these qualities are precious. I recommend Kiefer's book to my students entering the field: to work in quantum gravity one needs a vast amount of technical knowledge as well as a grasp of different ideas, and Kiefer's book offers this with remarkable clarity. This novel third edition simplifies and improves the presentation of several topics, but also adds very valuable new material on quantum gravity phenomenology, loop quantum cosmology, asymptotic safety, Horava-Lifshitz gravity, analogue gravity, the holographic principle, and more. This is a testament to the wide-angle attention of Claus Kiefer to the recent evolution of the field. It is also because of this attention that the neglect of a thriving research direction on which a large number of research groups are currently engaged jumps to the eye. The book provides a nice introduction to loop quantum gravity. The main kinematical results of the loop approach are carefully explained. At the point of discussing dynamics, however, it focuses only on the canonical formulation, mentioning the covariant loop theory only en passant. Given Kiefer's open-mindness, I imagine that the shortfall is due to the novelty of the major results of the covariant theory (or spinfoam formalism). The theorem proving the finiteness of the transition amplitudes to all orders, due to Han, Fairbairn and Meusburger, for instance, dates only from 2010. But the various theorems on the asymptotic of the vertex amplitude, by Barrett-Pereira-Dowdall-Fairbairn-Hellmann, Friedel-Conrady and others, which have sparked interest in the spinfoam approach by indicating that the theory may have the correct classical limit, are from 2009. The fact that they are not even mentioned in Kiefer's book is strident for me. The covariant loop amplitudes may not be the final solution to the problem of quantum gravity, but the existence of a family of Lorentz covariant amplitudes with indications of the correct classical limit, which are finite at each order of the expansion, is a result that cannot be ignored in a broad book that aims at being comprehensive in quantum gravity. There are other pages of the book where I was not very happy. For instance, the discussion of the so-called 'problem of time'. But surely a broad book in a recalcitrant field like quantum gravity will never make everybody entirely happy: at least as long as the problem is not solved. Which, we all hope, might not be too far into the future. Few fundamental problems have resisted the investigation of theoretical physics for so long, and today advances are fast. So, here is my recommendation: study this book, complement it with what is missing, and help us in finally solving the extraordinarily beautiful problem of understanding quantum spacetime.
Wavelets and the squeezed states of quantum optics
NASA Technical Reports Server (NTRS)
Defacio, B.
1992-01-01
Wavelets are new mathematical objects which act as 'designer trigonometric functions.' To obtain a wavelet, the original function space of finite energy signals is generalized to a phase-space, and the translation operator in the original space has a scale change in the new variable adjoined to the translation. Localization properties in the phase-space can be improved and unconditional bases are obtained for a broad class of function and distribution spaces. Operators in phase space are 'almost diagonal' instead of the traditional condition of being diagonal in the original function space. These wavelets are applied to the squeezed states of quantum optics. The scale change required for a quantum wavelet is shown to be a Yuen squeeze operator acting on an arbitrary density operator.
NASA Astrophysics Data System (ADS)
Shekaari, Ashkan; Abolhassani, Mohammad Reza
2017-06-01
First-principles molecular dynamics has been applied to inquire into the melting behaviors of n-atom (n = 6, 10) graphene quantum dots (GQD6 and zigzag GQD10) within the temperature range of T = 0-500 K. The temperature dependence of the geometry of each quantum dot is thoroughly evaluated via calculating the related shape deformation parameters and the eigenvalues of the quadrupole tensors. Examining the variations of some phase-transition indicators such as root-mean-square bond length fluctuations and mean square displacements broadly proposes the value of Tm = 70 K for the melting point of GQD6 while a continuous, two-stage phase transition has been concluded for zigzag GQD10.
Core-shell quantum dots tailor the fluorescence of dental resin composites.
Alves, Leandro P; Pilla, Viviane; Murgo, Dírian O A; Munin, Egberto
2010-02-01
We characterized the optical properties, such as absorbance and fluorescence, of dental resins containing quantum dots (QD). We also determined the doping level needed to obtain a broad and nearly flat emission spectrum that provides the perception of white color. The samples studied were resin composites from Charisma (Heraeus Kulzer) prepared with CdSe/ZnS core-shell QD (0.05-0.77 mass%). The results showed that the fluorescence of dental resin composites can be tailored by using CdSe/ZnS core-shell quantum dots. QD core incorporation into dental resins allows the fabrication of restorative materials with fluorescence properties that closely match those of natural human teeth. Copyright 2009 Elsevier Ltd. All rights reserved.
Near-field hyperspectral quantum probing of multimodal plasmonic resonators
NASA Astrophysics Data System (ADS)
Cuche, A.; Berthel, M.; Kumar, U.; Colas des Francs, G.; Huant, S.; Dujardin, E.; Girard, C.; Drezet, A.
2017-03-01
Quantum systems, excited by an external source of photons, display a photodynamics that is ruled by a subtle balance between radiative or nonradiative energy channels when interacting with metallic nanostructures. We apply and generalize this concept to achieve a quantum probing of multimodal plasmonic resonators by collecting and filtering the broad emission spectra generated by a nanodiamond (ND) hosting a small set of nitrogen-vacancy (NV) color centers attached at the apex of an optical tip. Spatially and spectrally resolved information on the photonic local density of states (ph-LDOS) can be recorded with this technique in the immediate vicinity of plasmonic resonators, paving the way for a complete near-field optical characterization of any kind of nanoresonators in the single photon regime.
NASA Astrophysics Data System (ADS)
Cernansky, Robert; Martini, Francesco; Politi, Alberto
2018-02-01
We demonstrate on chip generation of correlated pairs of photons in the near-visible spectrum using a CMOS compatible PECVD Silicon Nitride photonic device. Photons are generated via spontaneous four wave mixing enhanced by a ring resonator with high quality Q-factor of 320,000 resulting in a generation rate of 950,000 $\\frac{pairs}{mW}$. The high brightness of this source offers the opportunity to expand photonic quantum technologies over a broad wavelength range and provides a path to develop fully integrated quantum chips working at room temperature.
Spectral and spread-spectral teleportation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humble, Travis S.
2010-06-15
We report how quantum information encoded into the spectral degree of freedom of a single-photon state may be teleported using a finite spectrally entangled biphoton state. We further demonstrate how the bandwidth of the teleported wave form can be controllably and coherently dilated using a spread-spectral variant of teleportation. We calculate analytical expressions for the fidelities of spectral and spread-spectral teleportation when complex-valued Gaussian states are transferred using a proposed experimental approach. Finally, we discuss the utility of these techniques for integrating broad-bandwidth photonic qubits with narrow-bandwidth receivers in quantum communication systems.
Multiwavelength ultralow-threshold lasing in quantum dot photonic crystal microcavities.
Chakravarty, S; Bhattacharya, P; Chakrabarti, S; Mi, Z
2007-05-15
We demonstrate multiwavelength lasing of resonant modes in linear (L3) microcavities in a triangular-lattice 2D photonic crystal (PC) slab. The broad spontaneous emission spectrum from coupled quantum dots, modified by the PC microcavity, is studied as a function of the intensity of incident optical excitation. We observe lasing with an ultralow-threshold power of approximately 600 nW and an output efficiency of approximately 3% at threshold. Two other resonant modes exhibit weaker turnon characteristics and thresholds of approximately 2.5 and 200 microW, respectively.
Optical characterization of Nd (3+):AgBr.
Bunimovich, D; Nagli, L; Katzir, A
1997-10-20
The luminescence of silver bromide crystals, doped with neodymium, was investigated over the visible and near-infrared spectral ranges. The emission, excitation, and absorption spectra were measured over a broad temperature range. The absolute luminescence quantum yield was estimated by comparing the luminescence with that of a neodymium-doped phosphate glass, for which the manufacturer gives a value of 0.4. The Judd-Ofelt analysis was applied to both materials, and transition rates, branching ratios, and quantum efficiencies were calculated for all the observed bands. Good agreement was obtained between theory and experiment.
Dissipative production of a maximally entangled steady state of two quantum bits.
Lin, Y; Gaebler, J P; Reiter, F; Tan, T R; Bowler, R; Sørensen, A S; Leibfried, D; Wineland, D J
2013-12-19
Entangled states are a key resource in fundamental quantum physics, quantum cryptography and quantum computation. Introduction of controlled unitary processes--quantum gates--to a quantum system has so far been the most widely used method to create entanglement deterministically. These processes require high-fidelity state preparation and minimization of the decoherence that inevitably arises from coupling between the system and the environment, and imperfect control of the system parameters. Here we combine unitary processes with engineered dissipation to deterministically produce and stabilize an approximate Bell state of two trapped-ion quantum bits (qubits), independent of their initial states. Compared with previous studies that involved dissipative entanglement of atomic ensembles or the application of sequences of multiple time-dependent gates to trapped ions, we implement our combined process using trapped-ion qubits in a continuous time-independent fashion (analogous to optical pumping of atomic states). By continuously driving the system towards the steady state, entanglement is stabilized even in the presence of experimental noise and decoherence. Our demonstration of an entangled steady state of two qubits represents a step towards dissipative state engineering, dissipative quantum computation and dissipative phase transitions. Following this approach, engineered coupling to the environment may be applied to a broad range of experimental systems to achieve desired quantum dynamics or steady states. Indeed, concurrently with this work, an entangled steady state of two superconducting qubits was demonstrated using dissipation.
Calendar effects in quantum mechanics in view of interactive holography
NASA Astrophysics Data System (ADS)
Berkovich, Simon
2013-04-01
Quantum mechanics in terms of interactive holography appears as `normal' science [1]. With the holography quantum behavior is determined by the interplay of material formations and their conjugate images. To begin with, this effortlessly elucidates the nonlocality in quantum entanglements. Then, it has been shown that Schr"odinger's dynamics for a single particle arises from Bi-Fragmental random walks of the particle itself and its holographic image. For many particles this picture blurs with fragments merging as bosons or fermions. In biomolecules, swapping of particles and their holographic placeholders leads to self-replication of the living matter. Because of broad interpretations of quantum formalism direct experiments attributing it to holography may not be very compelling. The holographic mechanism better reveals as an absolute frame of reference. A number of physical and biological events exhibit annual variations when Earth orbital position changes with respect to the universal holographic mechanism. The well established calendar variations of heart attacks can be regarded as a positive outcome of a generalization of the Michelson experiment, where holography is interferometry and ailing hearts are detectors of pathologically replicated proteins. Also, there have been already observed calendar changes in radioactive decay rates. The same could be expected for various fine quantum experiences, like, e.g., Josephson tunneling. In other words, Quantum Mechanics (February) Quantum Mechanics (August). [1] S. Berkovich, ``A comprehensive explanation of quantum mechanics,'' www.cs.gwu.edu/research/technical-report/170 .
NASA Astrophysics Data System (ADS)
Marvian, Iman; Spekkens, Robert W.
2014-12-01
Finding the consequences of symmetry for open-system quantum dynamics is a problem with broad applications, including describing thermal relaxation, deriving quantum limits on the performance of amplifiers, and exploring quantum metrology in the presence of noise. The symmetry of the dynamics may reflect a symmetry of the fundamental laws of nature or a symmetry of a low-energy effective theory, or it may describe a practical restriction such as the lack of a reference frame. In this paper, we apply some tools of harmonic analysis together with ideas from quantum information theory to this problem. The central idea is to study the decomposition of quantum operations—in particular, states, measurements, and channels—into different modes, which we call modes of asymmetry. Under symmetric processing, a given mode of the input is mapped to the corresponding mode of the output, implying that one can only generate a given output if the input contains all of the necessary modes. By defining monotones that quantify the asymmetry in a particular mode, we also derive quantitative constraints on the resources of asymmetry that are required to simulate a given asymmetric operation. We present applications of our results for deriving bounds on the probability of success in nondeterministic state transitions, such as quantum amplification, and a simplified formalism for studying the degradation of quantum reference frames.
Quantum key distribution over an installed multimode optical fiber local area network.
Namekata, Naoto; Mori, Shigehiko; Inoue, Shuichiro
2005-12-12
We have investigated the possibility of a multimode fiber link for a quantum channel. Transmission of light in an extremely underfilled mode distribution promises a single-mode-like behavior in the multimode fiber. To demonstrate the performance of the fiber link we performed quantum key distribution, on the basis of the BB84 four-state protocol, over 550 m of an installed multimode optical fiber local area network, and the quantum-bit-error rate of 1.09 percent was achieved.
Open-System Quantum Annealing in Mean-Field Models with Exponential Degeneracy
2016-08-25
life quantum computers are inevitably affected by intrinsic noise resulting in dissipative nonunitary dynamics realized by these devices. We consider an... quantum computer . DOI: 10.1103/PhysRevX.6.021028 Subject Areas: Condensed Matter Physics, Quantum Physics, Quantum Information I. INTRODUCTION Quantum ... computing hardware is affected by a substantial level of intrinsic noise and therefore naturally realizes dis- sipative quantum dynamics [1,2
Energy-Cascaded Upconversion in an Organic Dye-Sensitized Core/Shell Fluoride Nanocrystal.
Chen, Guanying; Damasco, Jossana; Qiu, Hailong; Shao, Wei; Ohulchanskyy, Tymish Y; Valiev, Rashid R; Wu, Xiang; Han, Gang; Wang, Yan; Yang, Chunhui; Ågren, Hans; Prasad, Paras N
2015-11-11
Lanthanide-doped upconversion nanoparticles hold promises for bioimaging, solar cells, and volumetric displays. However, their emission brightness and excitation wavelength range are limited by the weak and narrowband absorption of lanthanide ions. Here, we introduce a concept of multistep cascade energy transfer, from broadly infrared-harvesting organic dyes to sensitizer ions in the shell of an epitaxially designed core/shell inorganic nanostructure, with a sequential nonradiative energy transfer to upconverting ion pairs in the core. We show that this concept, when implemented in a core-shell architecture with suppressed surface-related luminescence quenching, yields multiphoton (three-, four-, and five-photon) upconversion quantum efficiency as high as 19% (upconversion energy conversion efficiency of 9.3%, upconversion quantum yield of 4.8%), which is about ~100 times higher than typically reported efficiency of upconversion at 800 nm in lanthanide-based nanostructures, along with a broad spectral range (over 150 nm) of infrared excitation and a large absorption cross-section of 1.47 × 10(-14) cm(2) per single nanoparticle. These features enable unprecedented three-photon upconversion (visible by naked eye as blue light) of an incoherent infrared light excitation with a power density comparable to that of solar irradiation at the Earth surface, having implications for broad applications of these organic-inorganic core/shell nanostructures with energy-cascaded upconversion.
NASA Technical Reports Server (NTRS)
Hsu, J. P.
1983-01-01
The foundation of the quantum field theory is changed by introducing a new universal probability principle into field operators: one single inherent and invariant probability distribution P(/k/) is postulated for boson and fermion field oscillators. This can be accomplished only when one treats the four-dimensional symmetry from a broad viewpoint. Special relativity is too restrictive to allow such a universal probability principle. A radical length, R, appears in physics through the probability distribution P(/k/). The force between two point particles vanishes when their relative distance tends to zero. This appears to be a general property for all forces and resembles the property of asymptotic freedom. The usual infinities in vacuum fluctuations and in local interactions, however complicated they may be, are all removed from quantum field theories. In appendix A a simple finite and unitary theory of unified electroweak interactions is discussed without assuming Higgs scalar bosons.
Quantum Dot and Polymer Composite Cross-Reactive Array for Chemical Vapor Detection.
Bright, Collin J; Nallon, Eric C; Polcha, Michael P; Schnee, Vincent P
2015-12-15
A cross-reactive chemical sensing array was made from CdSe Quantum Dots (QDs) and five different organic polymers by inkjet printing to create segmented fluorescent composite regions on quartz substrates. The sensor array was challenged with exposures from two sets of analytes, including one set of 14 different functionalized benzenes and one set of 14 compounds related to security concerns, including the explosives trinitrotoluene (TNT) and ammonium nitrate. The array was broadly responsive to analytes with different chemical functionalities due to the multiple sensing mechanisms that altered the QDs' fluorescence. The sensor array displayed excellent discrimination between members within both sets. Classification accuracy of more than 93% was achieved, including the complete discrimination of very similar dinitrobenzene isomers and three halogenated, substituted benzene compounds. The simple fabrication, broad responsivity, and high discrimination capacity of this type of cross-reactive array are ideal qualities for the development of sensors with excellent sensitivity to chemical and explosive threats while maintaining low false alarm rates.
Emerging interpretations of quantum mechanics and recent progress in quantum measurement
NASA Astrophysics Data System (ADS)
Clarke, M. L.
2014-01-01
The focus of this paper is to provide a brief discussion on the quantum measurement process, by reviewing select examples highlighting recent progress towards its understanding. The areas explored include an outline of the measurement problem, the standard interpretation of quantum mechanics, quantum to classical transition, types of measurement (including weak and projective measurements) and newly emerging interpretations of quantum mechanics (decoherence theory, objective reality, quantum Darwinism and quantum Bayesianism).
Liu, Bo; Braiman, Yehuda
2018-02-06
In this paper, we introduced a compact V-shaped external Talbot cavity for phase locking of high power broad-area laser diodes. The length of compact cavity is ~25 mm. Near diffraction-limit coherent addition of 10 broad-area laser diodes indicated that high quality phase locking was achieved. We measured the near-field emission mode of each individual broad-area laser diode with different feedback, such as a volume Bragg grating and a high reflection mirror. Finally, we found out that the best result of phase locking broad-area laser diodes was achieved by the compact V-shaped external Talbot cavity with volume Bragg grating feedback.
NASA Astrophysics Data System (ADS)
Liu, Bo; Braiman, Yehuda
2018-05-01
We introduced a compact V-shaped external Talbot cavity for phase locking of high power broad-area laser diodes. The length of compact cavity is ∼25 mm. Near diffraction-limit coherent addition of 10 broad-area laser diodes indicated that high quality phase locking was achieved. We measured the near-field emission mode of each individual broad-area laser diode with different feedback, such as a volume Bragg grating and a high reflection mirror. We found out that the best result of phase locking broad-area laser diodes was achieved by the compact V-shaped external Talbot cavity with volume Bragg grating feedback.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Bo; Braiman, Yehuda
In this paper, we introduced a compact V-shaped external Talbot cavity for phase locking of high power broad-area laser diodes. The length of compact cavity is ~25 mm. Near diffraction-limit coherent addition of 10 broad-area laser diodes indicated that high quality phase locking was achieved. We measured the near-field emission mode of each individual broad-area laser diode with different feedback, such as a volume Bragg grating and a high reflection mirror. Finally, we found out that the best result of phase locking broad-area laser diodes was achieved by the compact V-shaped external Talbot cavity with volume Bragg grating feedback.
Parallel Quantum Circuit in a Tunnel Junction
NASA Astrophysics Data System (ADS)
Faizy Namarvar, Omid; Dridi, Ghassen; Joachim, Christian
2016-07-01
Spectral analysis of 1 and 2-states per line quantum bus are normally sufficient to determine the effective Vab(N) electronic coupling between the emitter and receiver states through the bus as a function of the number N of parallel lines. When Vab(N) is difficult to determine, an Heisenberg-Rabi time dependent quantum exchange process must be triggered through the bus to capture the secular oscillation frequency Ωab(N) between those states. Two different linear and regimes are demonstrated for Ωab(N) as a function of N. When the initial preparation is replaced by coupling of the quantum bus to semi-infinite electrodes, the resulting quantum transduction process is not faithfully following the Ωab(N) variations. Because of the electronic transparency normalisation to unity and of the low pass filter character of this transduction, large Ωab(N) cannot be captured by the tunnel junction. The broadly used concept of electrical contact between a metallic nanopad and a molecular device must be better described as a quantum transduction process. At small coupling and when N is small enough not to compensate for this small coupling, an N2 power law is preserved for Ωab(N) and for Vab(N).
Parallel Quantum Circuit in a Tunnel Junction
Faizy Namarvar, Omid; Dridi, Ghassen; Joachim, Christian
2016-01-01
Spectral analysis of 1 and 2-states per line quantum bus are normally sufficient to determine the effective Vab(N) electronic coupling between the emitter and receiver states through the bus as a function of the number N of parallel lines. When Vab(N) is difficult to determine, an Heisenberg-Rabi time dependent quantum exchange process must be triggered through the bus to capture the secular oscillation frequency Ωab(N) between those states. Two different linear and regimes are demonstrated for Ωab(N) as a function of N. When the initial preparation is replaced by coupling of the quantum bus to semi-infinite electrodes, the resulting quantum transduction process is not faithfully following the Ωab(N) variations. Because of the electronic transparency normalisation to unity and of the low pass filter character of this transduction, large Ωab(N) cannot be captured by the tunnel junction. The broadly used concept of electrical contact between a metallic nanopad and a molecular device must be better described as a quantum transduction process. At small coupling and when N is small enough not to compensate for this small coupling, an N2 power law is preserved for Ωab(N) and for Vab(N). PMID:27453262
Parallel Quantum Circuit in a Tunnel Junction.
Faizy Namarvar, Omid; Dridi, Ghassen; Joachim, Christian
2016-07-25
Spectral analysis of 1 and 2-states per line quantum bus are normally sufficient to determine the effective Vab(N) electronic coupling between the emitter and receiver states through the bus as a function of the number N of parallel lines. When Vab(N) is difficult to determine, an Heisenberg-Rabi time dependent quantum exchange process must be triggered through the bus to capture the secular oscillation frequency Ωab(N) between those states. Two different linear and regimes are demonstrated for Ωab(N) as a function of N. When the initial preparation is replaced by coupling of the quantum bus to semi-infinite electrodes, the resulting quantum transduction process is not faithfully following the Ωab(N) variations. Because of the electronic transparency normalisation to unity and of the low pass filter character of this transduction, large Ωab(N) cannot be captured by the tunnel junction. The broadly used concept of electrical contact between a metallic nanopad and a molecular device must be better described as a quantum transduction process. At small coupling and when N is small enough not to compensate for this small coupling, an N(2) power law is preserved for Ωab(N) and for Vab(N).
Qian, Zhao Sheng; Shan, Xiao Yue; Chai, Lu Jing; Chen, Jian Rong; Feng, Hui
2015-06-15
The sensitive detection of heavy metal ions in the organism and aquatic ecosystem using nanosensors based on environment friendly and biocompatible materials still remains a challenge. A fluorescent turn-on nanosensor for lead (II) detection based on biocompatible graphene quantum dots and graphene oxide by employment of Pb(2+)-induced G-quadruplex formation was reported. Graphene quantum dots with high quantum yield, good biocompatibility were prepared and served as the fluorophore of Pb(2+) probe. Fluorescence turn-off of graphene quantum dots is easily achieved through efficient photoinduced electron transfer between graphene quantum dots and graphene oxide, and subsequent fluorescence turn-on process is due to the formation of G-quadraplex aptamer-Pb(2+) complex triggered by the addition of Pb(2+). This nanosensor can distinguish Pb(2+) ion from other ions with high sensitivity and good reproducibility. The detection method based on this nanosensor possesses a fast response time of one minute, a broad linear span of up to 400.0 nM and ultralow detection limit of 0.6 nM. Copyright © 2015 Elsevier B.V. All rights reserved.
Sahu, Bibhuti Bhusan; Yin, Yongyi; Han, Jeon Geon; Shiratani, Masaharu
2016-06-21
The advanced materials process by non-thermal plasmas with a high plasma density allows the synthesis of small-to-big sized Si quantum dots by combining low-temperature deposition with superior crystalline quality in the background of an amorphous hydrogenated silicon nitride matrix. Here, we make quantum dot thin films in a reactive mixture of ammonia/silane/hydrogen utilizing dual-frequency capacitively coupled plasmas with high atomic hydrogen and nitrogen radical densities. Systematic data analysis using different film and plasma characterization tools reveals that the quantum dots with different sizes exhibit size dependent film properties, which are sensitively dependent on plasma characteristics. These films exhibit intense photoluminescence in the visible range with violet to orange colors and with narrow to broad widths (∼0.3-0.9 eV). The observed luminescence behavior can come from the quantum confinement effect, quasi-direct band-to-band recombination, and variation of atomic hydrogen and nitrogen radicals in the film growth network. The high luminescence yields in the visible range of the spectrum and size-tunable low-temperature synthesis with plasma and radical control make these quantum dot films good candidates for light emitting applications.
Green biosynthesis of biocompatible CdSe quantum dots in living Escherichia coli cells
NASA Astrophysics Data System (ADS)
Yan, Zhengyu; Qian, Jing; Gu, Yueqing; Su, Yilong; Ai, Xiaoxia; Wu, Shengmei
2014-03-01
A green and efficient biosynthesis method to prepare fluorescence-tunable biocompatible cadmium selenide quantum dots using Escherichia coli cells as biological matrix was proposed. Decisive factors in biosynthesis of cadmium selenide quantum dots in a designed route in Escherichia coli cells were elaborately investigated, including the influence of the biological matrix growth stage, the working concentration of inorganic reactants, and the co-incubation duration of inorganic metals to biomatrix. Ultraviolet-visible, photoluminescence, and inverted fluorescence microscope analysis confirmed the unique optical properties of the biosynthesized cadmium selenide quantum dots. The size distribution of the nanocrystals extracted from cells and the location of nanocrystals foci in vivo were also detected seriously by transmission electron microscopy. A surface protein capping layer outside the nanocrystals was confirmed by Fourier transform infrared spectroscopy measurements, which were supposed to contribute to reducing cytotoxicity and maintain a high viability of cells when incubating with quantum dots at concentrations as high as 2 μM. Cell morphology observation indicated an effective labeling of living cells by the biosynthesized quantum dots after a 48 h co-incubation. The present work demonstrated an economical and environmentally friendly approach to fabricating highly fluorescent quantum dots which were expected to be an excellent fluorescent dye for broad bio-imaging and labeling.
Quantum cluster algebras and quantum nilpotent algebras.
Goodearl, Kenneth R; Yakimov, Milen T
2014-07-08
A major direction in the theory of cluster algebras is to construct (quantum) cluster algebra structures on the (quantized) coordinate rings of various families of varieties arising in Lie theory. We prove that all algebras in a very large axiomatically defined class of noncommutative algebras possess canonical quantum cluster algebra structures. Furthermore, they coincide with the corresponding upper quantum cluster algebras. We also establish analogs of these results for a large class of Poisson nilpotent algebras. Many important families of coordinate rings are subsumed in the class we are covering, which leads to a broad range of applications of the general results to the above-mentioned types of problems. As a consequence, we prove the Berenstein-Zelevinsky conjecture [Berenstein A, Zelevinsky A (2005) Adv Math 195:405-455] for the quantized coordinate rings of double Bruhat cells and construct quantum cluster algebra structures on all quantum unipotent groups, extending the theorem of Geiß et al. [Geiß C, et al. (2013) Selecta Math 19:337-397] for the case of symmetric Kac-Moody groups. Moreover, we prove that the upper cluster algebras of Berenstein et al. [Berenstein A, et al. (2005) Duke Math J 126:1-52] associated with double Bruhat cells coincide with the corresponding cluster algebras.
Provably secure and high-rate quantum key distribution with time-bin qudits
Islam, Nurul T.; Lim, Charles Ci Wen; Cahall, Clinton; ...
2017-11-24
The security of conventional cryptography systems is threatened in the forthcoming era of quantum computers. Quantum key distribution (QKD) features fundamentally proven security and offers a promising option for quantum-proof cryptography solution. Although prototype QKD systems over optical fiber have been demonstrated over the years, the key generation rates remain several orders of magnitude lower than current classical communication systems. In an effort toward a commercially viable QKD system with improved key generation rates, we developed a discrete-variable QKD system based on time-bin quantum photonic states that can generate provably secure cryptographic keys at megabit-per-second rates over metropolitan distances. Wemore » use high-dimensional quantum states that transmit more than one secret bit per received photon, alleviating detector saturation effects in the superconducting nanowire single-photon detectors used in our system that feature very high detection efficiency (of more than 70%) and low timing jitter (of less than 40 ps). Our system is constructed using commercial off-the-shelf components, and the adopted protocol can be readily extended to free-space quantum channels. In conclusion, the security analysis adopted to distill the keys ensures that the demonstrated protocol is robust against coherent attacks, finite-size effects, and a broad class of experimental imperfections identified in our system.« less
Provably secure and high-rate quantum key distribution with time-bin qudits
Islam, Nurul T.; Lim, Charles Ci Wen; Cahall, Clinton; Kim, Jungsang; Gauthier, Daniel J.
2017-01-01
The security of conventional cryptography systems is threatened in the forthcoming era of quantum computers. Quantum key distribution (QKD) features fundamentally proven security and offers a promising option for quantum-proof cryptography solution. Although prototype QKD systems over optical fiber have been demonstrated over the years, the key generation rates remain several orders of magnitude lower than current classical communication systems. In an effort toward a commercially viable QKD system with improved key generation rates, we developed a discrete-variable QKD system based on time-bin quantum photonic states that can generate provably secure cryptographic keys at megabit-per-second rates over metropolitan distances. We use high-dimensional quantum states that transmit more than one secret bit per received photon, alleviating detector saturation effects in the superconducting nanowire single-photon detectors used in our system that feature very high detection efficiency (of more than 70%) and low timing jitter (of less than 40 ps). Our system is constructed using commercial off-the-shelf components, and the adopted protocol can be readily extended to free-space quantum channels. The security analysis adopted to distill the keys ensures that the demonstrated protocol is robust against coherent attacks, finite-size effects, and a broad class of experimental imperfections identified in our system. PMID:29202028
Provably secure and high-rate quantum key distribution with time-bin qudits.
Islam, Nurul T; Lim, Charles Ci Wen; Cahall, Clinton; Kim, Jungsang; Gauthier, Daniel J
2017-11-01
The security of conventional cryptography systems is threatened in the forthcoming era of quantum computers. Quantum key distribution (QKD) features fundamentally proven security and offers a promising option for quantum-proof cryptography solution. Although prototype QKD systems over optical fiber have been demonstrated over the years, the key generation rates remain several orders of magnitude lower than current classical communication systems. In an effort toward a commercially viable QKD system with improved key generation rates, we developed a discrete-variable QKD system based on time-bin quantum photonic states that can generate provably secure cryptographic keys at megabit-per-second rates over metropolitan distances. We use high-dimensional quantum states that transmit more than one secret bit per received photon, alleviating detector saturation effects in the superconducting nanowire single-photon detectors used in our system that feature very high detection efficiency (of more than 70%) and low timing jitter (of less than 40 ps). Our system is constructed using commercial off-the-shelf components, and the adopted protocol can be readily extended to free-space quantum channels. The security analysis adopted to distill the keys ensures that the demonstrated protocol is robust against coherent attacks, finite-size effects, and a broad class of experimental imperfections identified in our system.
Tunable ion-photon entanglement in an optical cavity.
Stute, A; Casabone, B; Schindler, P; Monz, T; Schmidt, P O; Brandstätter, B; Northup, T E; Blatt, R
2012-05-23
Proposed quantum networks require both a quantum interface between light and matter and the coherent control of quantum states. A quantum interface can be realized by entangling the state of a single photon with the state of an atomic or solid-state quantum memory, as demonstrated in recent experiments with trapped ions, neutral atoms, atomic ensembles and nitrogen-vacancy spins. The entangling interaction couples an initial quantum memory state to two possible light-matter states, and the atomic level structure of the memory determines the available coupling paths. In previous work, the transition parameters of these paths determined the phase and amplitude of the final entangled state, unless the memory was initially prepared in a superposition state (a step that requires coherent control). Here we report fully tunable entanglement between a single (40)Ca(+) ion and the polarization state of a single photon within an optical resonator. Our method, based on a bichromatic, cavity-mediated Raman transition, allows us to select two coupling paths and adjust their relative phase and amplitude. The cavity setting enables intrinsically deterministic, high-fidelity generation of any two-qubit entangled state. This approach is applicable to a broad range of candidate systems and thus is a promising method for distributing information within quantum networks.
Tunable spin-spin interactions and entanglement of ions in separate potential wells.
Wilson, A C; Colombe, Y; Brown, K R; Knill, E; Leibfried, D; Wineland, D J
2014-08-07
Quantum simulation--the use of one quantum system to simulate a less controllable one--may provide an understanding of the many quantum systems which cannot be modelled using classical computers. Considerable progress in control and manipulation has been achieved for various quantum systems, but one of the remaining challenges is the implementation of scalable devices. In this regard, individual ions trapped in separate tunable potential wells are promising. Here we implement the basic features of this approach and demonstrate deterministic tuning of the Coulomb interaction between two ions, independently controlling their local wells. The scheme is suitable for emulating a range of spin-spin interactions, but to characterize the performance of our set-up we select one that entangles the internal states of the two ions with a fidelity of 0.82(1) (the digit in parentheses shows the standard error of the mean). Extension of this building block to a two-dimensional network, which is possible using ion-trap microfabrication processes, may provide a new quantum simulator architecture with broad flexibility in designing and scaling the arrangement of ions and their mutual interactions. To perform useful quantum simulations, including those of condensed-matter phenomena such as the fractional quantum Hall effect, an array of tens of ions might be sufficient.
Quantum cluster algebras and quantum nilpotent algebras
Goodearl, Kenneth R.; Yakimov, Milen T.
2014-01-01
A major direction in the theory of cluster algebras is to construct (quantum) cluster algebra structures on the (quantized) coordinate rings of various families of varieties arising in Lie theory. We prove that all algebras in a very large axiomatically defined class of noncommutative algebras possess canonical quantum cluster algebra structures. Furthermore, they coincide with the corresponding upper quantum cluster algebras. We also establish analogs of these results for a large class of Poisson nilpotent algebras. Many important families of coordinate rings are subsumed in the class we are covering, which leads to a broad range of applications of the general results to the above-mentioned types of problems. As a consequence, we prove the Berenstein–Zelevinsky conjecture [Berenstein A, Zelevinsky A (2005) Adv Math 195:405–455] for the quantized coordinate rings of double Bruhat cells and construct quantum cluster algebra structures on all quantum unipotent groups, extending the theorem of Geiß et al. [Geiß C, et al. (2013) Selecta Math 19:337–397] for the case of symmetric Kac–Moody groups. Moreover, we prove that the upper cluster algebras of Berenstein et al. [Berenstein A, et al. (2005) Duke Math J 126:1–52] associated with double Bruhat cells coincide with the corresponding cluster algebras. PMID:24982197
Provably secure and high-rate quantum key distribution with time-bin qudits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Islam, Nurul T.; Lim, Charles Ci Wen; Cahall, Clinton
The security of conventional cryptography systems is threatened in the forthcoming era of quantum computers. Quantum key distribution (QKD) features fundamentally proven security and offers a promising option for quantum-proof cryptography solution. Although prototype QKD systems over optical fiber have been demonstrated over the years, the key generation rates remain several orders of magnitude lower than current classical communication systems. In an effort toward a commercially viable QKD system with improved key generation rates, we developed a discrete-variable QKD system based on time-bin quantum photonic states that can generate provably secure cryptographic keys at megabit-per-second rates over metropolitan distances. Wemore » use high-dimensional quantum states that transmit more than one secret bit per received photon, alleviating detector saturation effects in the superconducting nanowire single-photon detectors used in our system that feature very high detection efficiency (of more than 70%) and low timing jitter (of less than 40 ps). Our system is constructed using commercial off-the-shelf components, and the adopted protocol can be readily extended to free-space quantum channels. In conclusion, the security analysis adopted to distill the keys ensures that the demonstrated protocol is robust against coherent attacks, finite-size effects, and a broad class of experimental imperfections identified in our system.« less
NASA Astrophysics Data System (ADS)
Wang, Jing; Goh, Jane Betty; Goh, M. Cynthia; Giri, Neeraj Kumar; Paige, Matthew F.
2015-09-01
The synthesis and characterization of water-dispersible, luminescent CdSe/ZnS semiconductor quantum dots that exhibit nominal "white" fluorescence emission and have potential applications in solid-state lighting is described. The nanomaterials, prepared through counter ion-induced collapse and UV cross-linking of high-molecular weight polyacrylic acid in the presence of appropriate aqueous inorganic ions, were of ∼2-3 nm diameter and could be prepared in gram quantities. The quantum dots exhibited strong luminescence emission in two bands, the first in the blue-region (band edge) of the optical spectrum and the second, a broad emission in the red-region (attributed to deep trap states) of the optical spectrum. Because of the relative strength of emission of the band edge and deep trap state luminescence, it was possible to achieve visible white luminescence from the quantum dots in aqueous solution and in dried, solid films. The optical spectroscopic properties of the nanomaterials, including ensemble and single-molecule spectroscopy, was performed, with results compared to other white-emitting quantum dot systems described previously in the literature.
Cadmium-containing quantum dots: properties, applications, and toxicity.
Mo, Dan; Hu, Liang; Zeng, Guangming; Chen, Guiqiu; Wan, Jia; Yu, Zhigang; Huang, Zhenzhen; He, Kai; Zhang, Chen; Cheng, Min
2017-04-01
The marriage of biology with nanomaterials has significantly accelerated advancement of biological techniques, profoundly facilitating practical applications in biomedical fields. With unique optical properties (e.g., tunable broad excitation, narrow emission spectra, robust photostability, and high quantum yield), fluorescent quantum dots (QDs) have been reasonably functionalized with controllable interfaces and extensively used as a new class of optical probe in biological researches. In this review, we summarize the recent progress in synthesis and properties of QDs. Moreover, we provide an overview of the outstanding potential of QDs for biomedical research and innovative methods of drug delivery. Specifically, the applications of QDs as novel fluorescent nanomaterials for biomedical sensing and imaging have been detailedly highlighted and discussed. In addition, recent concerns on potential toxicity of QDs are also introduced, ranging from cell researches to animal models.
Protecting clean critical points by local disorder correlations
NASA Astrophysics Data System (ADS)
Hoyos, J. A.; Laflorencie, Nicolas; Vieira, André.; Vojta, Thomas
2011-03-01
We show that a broad class of quantum critical points can be stable against locally correlated disorder even if they are unstable against uncorrelated disorder. Although this result seemingly contradicts the Harris criterion, it follows naturally from the absence of a random-mass term in the associated order-parameter field theory. We illustrate the general concept with explicit calculations for quantum spin-chain models. Instead of the infinite-randomness physics induced by uncorrelated disorder, we find that weak locally correlated disorder is irrelevant. For larger disorder, we find a line of critical points with unusual properties such as an increase of the entanglement entropy with the disorder strength. We also propose experimental realizations in the context of quantum magnetism and cold-atom physics. Financial support: Fapesp, CNPq, NSF, and Research Corporation.
Sample-averaged biexciton quantum yield measured by solution-phase photon correlation.
Beyler, Andrew P; Bischof, Thomas S; Cui, Jian; Coropceanu, Igor; Harris, Daniel K; Bawendi, Moungi G
2014-12-10
The brightness of nanoscale optical materials such as semiconductor nanocrystals is currently limited in high excitation flux applications by inefficient multiexciton fluorescence. We have devised a solution-phase photon correlation measurement that can conveniently and reliably measure the average biexciton-to-exciton quantum yield ratio of an entire sample without user selection bias. This technique can be used to investigate the multiexciton recombination dynamics of a broad scope of synthetically underdeveloped materials, including those with low exciton quantum yields and poor fluorescence stability. Here, we have applied this method to measure weak biexciton fluorescence in samples of visible-emitting InP/ZnS and InAs/ZnS core/shell nanocrystals, and to demonstrate that a rapid CdS shell growth procedure can markedly increase the biexciton fluorescence of CdSe nanocrystals.
Machine learning & artificial intelligence in the quantum domain: a review of recent progress
NASA Astrophysics Data System (ADS)
Dunjko, Vedran; Briegel, Hans J.
2018-07-01
Quantum information technologies, on the one hand, and intelligent learning systems, on the other, are both emergent technologies that are likely to have a transformative impact on our society in the future. The respective underlying fields of basic research—quantum information versus machine learning (ML) and artificial intelligence (AI)—have their own specific questions and challenges, which have hitherto been investigated largely independently. However, in a growing body of recent work, researchers have been probing the question of the extent to which these fields can indeed learn and benefit from each other. Quantum ML explores the interaction between quantum computing and ML, investigating how results and techniques from one field can be used to solve the problems of the other. Recently we have witnessed significant breakthroughs in both directions of influence. For instance, quantum computing is finding a vital application in providing speed-ups for ML problems, critical in our ‘big data’ world. Conversely, ML already permeates many cutting-edge technologies and may become instrumental in advanced quantum technologies. Aside from quantum speed-up in data analysis, or classical ML optimization used in quantum experiments, quantum enhancements have also been (theoretically) demonstrated for interactive learning tasks, highlighting the potential of quantum-enhanced learning agents. Finally, works exploring the use of AI for the very design of quantum experiments and for performing parts of genuine research autonomously, have reported their first successes. Beyond the topics of mutual enhancement—exploring what ML/AI can do for quantum physics and vice versa—researchers have also broached the fundamental issue of quantum generalizations of learning and AI concepts. This deals with questions of the very meaning of learning and intelligence in a world that is fully described by quantum mechanics. In this review, we describe the main ideas, recent developments and progress in a broad spectrum of research investigating ML and AI in the quantum domain.
Machine learning & artificial intelligence in the quantum domain: a review of recent progress.
Dunjko, Vedran; Briegel, Hans J
2018-07-01
Quantum information technologies, on the one hand, and intelligent learning systems, on the other, are both emergent technologies that are likely to have a transformative impact on our society in the future. The respective underlying fields of basic research-quantum information versus machine learning (ML) and artificial intelligence (AI)-have their own specific questions and challenges, which have hitherto been investigated largely independently. However, in a growing body of recent work, researchers have been probing the question of the extent to which these fields can indeed learn and benefit from each other. Quantum ML explores the interaction between quantum computing and ML, investigating how results and techniques from one field can be used to solve the problems of the other. Recently we have witnessed significant breakthroughs in both directions of influence. For instance, quantum computing is finding a vital application in providing speed-ups for ML problems, critical in our 'big data' world. Conversely, ML already permeates many cutting-edge technologies and may become instrumental in advanced quantum technologies. Aside from quantum speed-up in data analysis, or classical ML optimization used in quantum experiments, quantum enhancements have also been (theoretically) demonstrated for interactive learning tasks, highlighting the potential of quantum-enhanced learning agents. Finally, works exploring the use of AI for the very design of quantum experiments and for performing parts of genuine research autonomously, have reported their first successes. Beyond the topics of mutual enhancement-exploring what ML/AI can do for quantum physics and vice versa-researchers have also broached the fundamental issue of quantum generalizations of learning and AI concepts. This deals with questions of the very meaning of learning and intelligence in a world that is fully described by quantum mechanics. In this review, we describe the main ideas, recent developments and progress in a broad spectrum of research investigating ML and AI in the quantum domain.
Soh, C B; Liu, W; Yong, A M; Chua, S J; Chow, S Y; Tripathy, S; Tan, R J N
2010-08-01
Phosphor-free apple-white light emitting diodes have been fabricated using a dual stacked InGaN/GaN multiple quantum wells comprising of a lower set of long wavelength emitting indium-rich nanostructures incorporated in multiple quantum wells with an upper set of cyan-green emitting multiple quantum wells. The light-emitting diodes were grown on nano-epitaxially lateral overgrown GaN template formed by regrowth of GaN over SiO(2) film patterned with an anodic aluminum oxide mask with holes of 125 nm diameter and a period of 250 nm. The growth of InGaN/GaN multiple quantum wells on these stress relaxed low defect density templates improves the internal quantum efficiency by 15% for the cyan-green multiple quantum wells. Higher emission intensity with redshift in the PL peak emission wavelength is obtained for the indium-rich nanostructures incorporated in multiple quantum wells. The quantum wells grown on the nano-epitaxially lateral overgrown GaN has a weaker piezoelectric field and hence shows a minimal peak shift with application of higher injection current. An enhancement of external quantum efficiency is achieved for the apple-white light emitting diodes grown on the nano-epitaxially lateral overgrown GaN template based on the light -output power measurement. The improvement in light extraction efficiency, η(extraction,) was found to be 34% for the cyan-green emission peak and 15% from the broad long wavelength emission with optimized lattice period.
NASA Astrophysics Data System (ADS)
Soh, C. B.; Liu, W.; Yong, A. M.; Chua, S. J.; Chow, S. Y.; Tripathy, S.; Tan, R. J. N.
2010-11-01
Phosphor-free apple-white light emitting diodes have been fabricated using a dual stacked InGaN/GaN multiple quantum wells comprising of a lower set of long wavelength emitting indium-rich nanostructures incorporated in multiple quantum wells with an upper set of cyan-green emitting multiple quantum wells. The light-emitting diodes were grown on nano-epitaxially lateral overgrown GaN template formed by regrowth of GaN over SiO2 film patterned with an anodic aluminum oxide mask with holes of 125 nm diameter and a period of 250 nm. The growth of InGaN/GaN multiple quantum wells on these stress relaxed low defect density templates improves the internal quantum efficiency by 15% for the cyan-green multiple quantum wells. Higher emission intensity with redshift in the PL peak emission wavelength is obtained for the indium-rich nanostructures incorporated in multiple quantum wells. The quantum wells grown on the nano-epitaxially lateral overgrown GaN has a weaker piezoelectric field and hence shows a minimal peak shift with application of higher injection current. An enhancement of external quantum efficiency is achieved for the apple-white light emitting diodes grown on the nano-epitaxially lateral overgrown GaN template based on the light -output power measurement. The improvement in light extraction efficiency, ηextraction, was found to be 34% for the cyan-green emission peak and 15% from the broad long wavelength emission with optimized lattice period.
NASA Astrophysics Data System (ADS)
Wang, Meng; Xiang, Yu; He, Qiongyi; Gong, Qihuang
2015-01-01
The multipartite entangled state has drawn broad attention for both foundations of quantum mechanics and applications in quantum information processing. Here, we study the spatially separated N -partite continuous-variable Greenberger-Horne-Zeilinger-like states, which can be produced by a linear optical network with squeezed light and N -1 beamsplitters. We investigate the properties of multipartite Einstein-Podolsky-Rosen steering possessed by those states, and find that the steering of a given quantum mode is allowed when not less than half of the modes within the states take part in the steering group. This is certified by the detection of the correlation between position and momentum quadratures of the steered mode and a combination of quadratures of other modes inside the steering group. The steering is evidenced by the high correlation where the steering group can infer the quadratures of the steered mode to high precision, i.e., below the quantum limit for the position and momentum quadratures of the steered quantum mode. We also examine the influence of inefficiency on the multipartite steering, and derive the threshold of the loss tolerance. Furthermore, we discuss the collective N -partite steering induced by the asymmetric loss on beams, which exists when a given quantum mode can only be steered by all the remaining N -1 modes collaboratively. The present multipartite steering correlation may have potential applications in certain quantum information tasks where the issue of trust is important, such as one-sided device-independent quantum secret sharing.
33 CFR 334.475 - Brickyard Creek and tributaries and the Broad River at Beaufort, SC.
Code of Federal Regulations, 2014 CFR
2014-07-01
... and the Broad River at Beaufort, SC. 334.475 Section 334.475 Navigation and Navigable Waters CORPS OF....475 Brickyard Creek and tributaries and the Broad River at Beaufort, SC. (a) The areas: (1) That...°. (9) (Laurel Bay Military Family Housing Area, Broad River). That section of the Broad River...
33 CFR 334.475 - Brickyard Creek and tributaries and the Broad River at Beaufort, SC.
Code of Federal Regulations, 2012 CFR
2012-07-01
... and the Broad River at Beaufort, SC. 334.475 Section 334.475 Navigation and Navigable Waters CORPS OF....475 Brickyard Creek and tributaries and the Broad River at Beaufort, SC. (a) The areas: (1) That...°. (9) (Laurel Bay Military Family Housing Area, Broad River). That section of the Broad River...
33 CFR 334.475 - Brickyard Creek and tributaries and the Broad River at Beaufort, SC.
Code of Federal Regulations, 2013 CFR
2013-07-01
... and the Broad River at Beaufort, SC. 334.475 Section 334.475 Navigation and Navigable Waters CORPS OF....475 Brickyard Creek and tributaries and the Broad River at Beaufort, SC. (a) The areas: (1) That...°. (9) (Laurel Bay Military Family Housing Area, Broad River). That section of the Broad River...
33 CFR 334.475 - Brickyard Creek and tributaries and the Broad River at Beaufort, SC.
Code of Federal Regulations, 2011 CFR
2011-07-01
... and the Broad River at Beaufort, SC. 334.475 Section 334.475 Navigation and Navigable Waters CORPS OF....475 Brickyard Creek and tributaries and the Broad River at Beaufort, SC. (a) The areas: (1) That...°. (9) (Laurel Bay Military Family Housing Area, Broad River). That section of the Broad River...
33 CFR 334.475 - Brickyard Creek and tributaries and the Broad River at Beaufort, SC.
Code of Federal Regulations, 2010 CFR
2010-07-01
... and the Broad River at Beaufort, SC. 334.475 Section 334.475 Navigation and Navigable Waters CORPS OF....475 Brickyard Creek and tributaries and the Broad River at Beaufort, SC. (a) The areas: (1) That...°. (9) (Laurel Bay Military Family Housing Area, Broad River). That section of the Broad River...
Plasmaron excitations in p(2×2)-K/graphite
NASA Astrophysics Data System (ADS)
Chis, V.; Silkin, V. M.; Hellsing, B.
2014-05-01
Plasmarons formed by the compound of photoelectrons and acoustic surface-plasmon excitations is investigated in the system p(2×2)-K/graphite. The physics behind this type of plasmarons (e plasmarons) differs from the physics of plasmarons recently found in graphene, where the loss feature is argued to result from the photohole-plasmon interaction (h plasmarons). Based on first principles methods we calculate the dispersion of the e-plasmaron excitation rate, which yields a broad feature below the parabolic quantum-well band with a peak about 0.4 eV below the quantum-well band at the Γ¯ point.
NASA Astrophysics Data System (ADS)
Kogan, Ian I.
We discuss a quantum { U}q [sl(2)] symmetry in the Landau problem, which naturally arises due to the relation between { U}q [sl(2)] and the group of magnetic translations. The latter is connected with W∞ and area-preserving (symplectic) diffeomorphisms which are the canonical transformations in the two-dimensional phase space. We shall discuss the hidden quantum symmetry in a 2 + 1 gauge theory with the Chern-Simons term and in a quantum Hall system, which are both connected with the Landau problem.
Entanglement in a Quantum Annealing Processor
2016-09-07
that QA is a viable technology for large- scale quantum computing . DOI: 10.1103/PhysRevX.4.021041 Subject Areas: Quantum Physics, Quantum Information...Superconductivity I. INTRODUCTION The past decade has been exciting for the field of quantum computation . A wide range of physical imple- mentations...measurements used in studying prototype universal quantum computers [9–14]. These constraints make it challenging to experimentally determine whether a scalable
Applications of Adaptive Quantum Control to Research Questions in Solar Energy Conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Damrauer, Niels
2017-02-07
This award supported a broad research effort at the University of Colorado at Boulder comprising synthesis, applications of computational chemistry, development of theory, exploration of material properties, and advancement of spectroscopic tools including femtosecond pulse shaping techniques. It funded six graduate students and two postdoctoral researchers.
Quantum coherence selective 2D Raman–2D electronic spectroscopy
Spencer, Austin P.; Hutson, William O.; Harel, Elad
2017-01-01
Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational–vibrational, electronic–vibrational and electronic–electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment–protein complexes. PMID:28281541
Magnetic Excitations and Continuum of a Possibly Field-Induced Quantum Spin Liquid in α -RuCl3
NASA Astrophysics Data System (ADS)
Wang, Zhe; Reschke, S.; Hüvonen, D.; Do, S.-H.; Choi, K.-Y.; Gensch, M.; Nagel, U.; Rõõm, T.; Loidl, A.
2017-12-01
We report on terahertz spectroscopy of quantum spin dynamics in α -RuCl3 , a system proximate to the Kitaev honeycomb model, as a function of temperature and magnetic field. We follow the evolution of an extended magnetic continuum below the structural phase transition at Ts 2=62 K . With the onset of a long-range magnetic order at TN=6.5 K , spectral weight is transferred to a well-defined magnetic excitation at ℏω1=2.48 meV , which is accompanied by a higher-energy band at ℏω2=6.48 meV . Both excitations soften in a magnetic field, signaling a quantum phase transition close to Bc=7 T , where a broad continuum dominates the dynamical response. Above Bc, the long-range order is suppressed, and on top of the continuum, emergent magnetic excitations evolve. These excitations follow clear selection rules and exhibit distinct field dependencies, characterizing the dynamical properties of a possibly field-induced quantum spin liquid.
Toolbox for the design of LiNbO3-based passive and active integrated quantum circuits
NASA Astrophysics Data System (ADS)
Sharapova, P. R.; Luo, K. H.; Herrmann, H.; Reichelt, M.; Meier, T.; Silberhorn, C.
2017-12-01
We present and discuss perspectives of current developments on advanced quantum optical circuits monolithically integrated in the lithium niobate platform. A set of basic components comprising photon pair sources based on parametric down conversion (PDC), passive routing elements and active electro-optically controllable switches and polarisation converters are building blocks of a toolbox which is the basis for a broad range of diverse quantum circuits. We review the state-of-the-art of these components and provide models that properly describe their performance in quantum circuits. As an example for applications of these models we discuss design issues for a circuit providing on-chip two-photon interference. The circuit comprises a PDC section for photon pair generation followed by an actively controllable modified mach-Zehnder structure for observing Hong-Ou-Mandel interference. The performance of such a chip is simulated theoretically by taking even imperfections of the properties of the individual components into account.
Generalized Entanglement Entropies of Quantum Designs.
Liu, Zi-Wen; Lloyd, Seth; Zhu, Elton Yechao; Zhu, Huangjun
2018-03-30
The entanglement properties of random quantum states or dynamics are important to the study of a broad spectrum of disciplines of physics, ranging from quantum information to high energy and many-body physics. This Letter investigates the interplay between the degrees of entanglement and randomness in pure states and unitary channels. We reveal strong connections between designs (distributions of states or unitaries that match certain moments of the uniform Haar measure) and generalized entropies (entropic functions that depend on certain powers of the density operator), by showing that Rényi entanglement entropies averaged over designs of the same order are almost maximal. This strengthens the celebrated Page's theorem. Moreover, we find that designs of an order that is logarithmic in the dimension maximize all Rényi entanglement entropies and so are completely random in terms of the entanglement spectrum. Our results relate the behaviors of Rényi entanglement entropies to the complexity of scrambling and quantum chaos in terms of the degree of randomness, and suggest a generalization of the fast scrambling conjecture.
NASA Astrophysics Data System (ADS)
Al-Saigh, Reem; Baira, Mourad; Salem, Bassem; Ilahi, Bouraoui
2018-06-01
Strain-engineered self-assembled GeSn/GeSiSn quantum dots in Ge matrix have been numerically investigated aiming to study their potentiality towards direct bandgap emission in the mid-IR range. The use of GeSiSn alloy as surrounding media for GeSn quantum dots (QD) allows adjusting the strain around the QD through the variation of Si and/or Sn composition. Accordingly, the lattice mismatch between the GeSn quantum dots and the GeSiSn surrounding layer has been tuned between - 2.3 and - 4.5% through the variation of the Sn barrier composition for different dome-shaped QD sizes. The obtained results show that the emission wavelength, fulfilling the specific QD directness criteria, can be successively tuned over a broad mid-IR range from 3 up to7 μm opening new perspectives for group IV laser sources fully integrated in Si photonic systems for sensing applications.
Generalized Entanglement Entropies of Quantum Designs
NASA Astrophysics Data System (ADS)
Liu, Zi-Wen; Lloyd, Seth; Zhu, Elton Yechao; Zhu, Huangjun
2018-03-01
The entanglement properties of random quantum states or dynamics are important to the study of a broad spectrum of disciplines of physics, ranging from quantum information to high energy and many-body physics. This Letter investigates the interplay between the degrees of entanglement and randomness in pure states and unitary channels. We reveal strong connections between designs (distributions of states or unitaries that match certain moments of the uniform Haar measure) and generalized entropies (entropic functions that depend on certain powers of the density operator), by showing that Rényi entanglement entropies averaged over designs of the same order are almost maximal. This strengthens the celebrated Page's theorem. Moreover, we find that designs of an order that is logarithmic in the dimension maximize all Rényi entanglement entropies and so are completely random in terms of the entanglement spectrum. Our results relate the behaviors of Rényi entanglement entropies to the complexity of scrambling and quantum chaos in terms of the degree of randomness, and suggest a generalization of the fast scrambling conjecture.
Pouthier, Vincent
2012-11-07
A communication protocol is proposed in which vibron-mediated quantum state transfer takes place in a molecular lattice. We consider two distant molecular groups grafted on each side of the lattice. These groups form two quantum computers where vibrational qubits are implemented and received. The lattice defines the communication channel along which a vibron delocalizes and interacts with a phonon bath. Using quasi-degenerate perturbation theory, vibron-phonon entanglement is taken into account through the effective Hamiltonian concept. A vibron is thus dressed by a virtual phonon cloud whereas a phonon is clothed by virtual vibronic transitions. It is shown that three quasi-degenerate dressed states define the relevant paths followed by a vibron to tunnel between the computers. When the coupling between the computers and the lattice is judiciously chosen, constructive interference takes place between these paths. Phonon-induced decoherence is minimized and a high-fidelity quantum state transfer occurs over a broad temperature range.
Spectroscopic Study of Terahertz Generation in Mid-Infrared Quantum Cascade Lasers.
Jiang, Yifan; Vijayraghavan, Karun; Jung, Seungyong; Jiang, Aiting; Kim, Jae Hyun; Demmerle, Frederic; Boehm, Gerhard; Amann, Markus C; Belkin, Mikhail A
2016-02-16
Terahertz quantum cascade laser sources based on intra-cavity difference-frequency generation are currently the only room-temperature mass-producible diode-laser-like emitters of coherent 1-6 THz radiation. Device performance has improved dramatically over the past few years to reach milliwatt-level power output and broad tuning from 1.2 to 5.9 THz, all at room-temperature. Terahertz output in these sources originates from intersubband optical nonlinearity in the laser active region. Here we report the first comprehensive spectroscopic study of the optical nonlinearity and investigate its dependence on the mid-infrared pump frequencies. Our work shows that the terahertz generation efficiency can vary by a factor of 2 or greater depending on the spectral position of the mid-infrared pumps for a fixed THz difference-frequency. We have also measured for the first time the linewidth for transitions between the lower quantum cascade laser states, which is critical for determining terahertz nonlinearity and predicting optical loss in quantum cascade laser waveguides.
Ni, Limeng; Huynh, Uyen; Cheminal, Alexandre; Thomas, Tudor H; Shivanna, Ravichandran; Hinrichsen, Ture F; Ahmad, Shahab; Sadhanala, Aditya; Rao, Akshay
2017-11-28
Self-assembled hybrid perovskite quantum wells have attracted attention due to their tunable emission properties, ease of fabrication, and device integration. However, the dynamics of excitons in these materials, especially how they couple to phonons, remains an open question. Here, we investigate two widely used materials, namely, butylammonium lead iodide (CH 3 (CH 2 ) 3 NH 3 ) 2 PbI 4 and hexylammonium lead iodide (CH 3 (CH 2 ) 5 NH 3 ) 2 PbI 4 , both of which exhibit broad photoluminescence tails at room temperature. We performed femtosecond vibrational spectroscopy to obtain a real-time picture of the exciton-phonon interaction and directly identified the vibrational modes that couple to excitons. We show that the choice of the organic cation controls which vibrational modes the exciton couples to. In butylammonium lead iodide, excitons dominantly couple to a 100 cm -1 phonon mode, whereas in hexylammonium lead iodide, excitons interact with phonons with frequencies of 88 and 137 cm -1 . Using the determined optical phonon energies, we analyzed photoluminescence broadening mechanisms. At low temperatures (<100 K), the broadening is due to acoustic phonon scattering, whereas at high temperatures, LO phonon-exciton coupling is the dominant mechanism. Our results help explain the broad photoluminescence line shape observed in hybrid perovskite quantum wells and provide insights into the mechanism of exciton-phonon coupling in these materials.
Safety of Nanotechnology in Food Industries
Amini, Seyed Mohammad; Gilaki, Marzieh; Karchani, Mohsen
2014-01-01
The arrival of nanotechnology in various industries has been so rapid and widespread because of its wide-ranging applications in our daily lives. Nutrition and food service is one of the biggest industries to be affected by nanotechnology in all areas, changing even the nature of food itself. Whether it’s farming, food packaging, or the prevention of microbial contamination the major food industries have seen dramatic changes because of nanotechnology. Different nanomaterials such as nanopowders, nanotubes, nano-fibers, quantum dots, and metal and metal-oxide nanoparticles are globally produced in large quantities due to their broad applicability in food-related industries. Because of the unique properties of nanostructures and nanomaterials – such as a large surface area, high activity, and small size, there is some concern about the potential for harmful adverse effects of used nanomaterials on health or the environment. However, because of tremendous advances in different industries, this concern may be unnecessary. This paper presents some uses of nanomaterials in food and related industries and their possible side-effects. This review covers the various aspects of nanomaterials and their impact on human exposure, safety, and environmental concerns. PMID:25763176
Pulsed Rabi oscillations in quantum two-level systems: beyond the area theorem
NASA Astrophysics Data System (ADS)
Fischer, Kevin A.; Hanschke, Lukas; Kremser, Malte; Finley, Jonathan J.; Müller, Kai; Vučković, Jelena
2018-01-01
The area theorem states that when a short optical pulse drives a quantum two-level system, it undergoes Rabi oscillations in the probability of scattering a single photon. In this work, we investigate the breakdown of the area theorem as both the pulse length becomes non-negligible and for certain pulse areas. Using simple quantum trajectories, we provide an analytic approximation to the photon emission dynamics of a two-level system. Our model provides an intuitive way to understand re-excitation, which elucidates the mechanism behind the two-photon emission events that can spoil single-photon emission. We experimentally measure the emission statistics from a semiconductor quantum dot, acting as a two-level system, and show good agreement with our simple model for short pulses. Additionally, the model clearly explains our recent results (Fischer and Hanschke 2017 et al Nat. Phys.) showing dominant two-photon emission from a two-level system for pulses with interaction areas equal to an even multiple of π.
Practical system for the generation of pulsed quantum frequency combs.
Roztocki, Piotr; Kues, Michael; Reimer, Christian; Wetzel, Benjamin; Sciara, Stefania; Zhang, Yanbing; Cino, Alfonso; Little, Brent E; Chu, Sai T; Moss, David J; Morandotti, Roberto
2017-08-07
The on-chip generation of large and complex optical quantum states will enable low-cost and accessible advances for quantum technologies, such as secure communications and quantum computation. Integrated frequency combs are on-chip light sources with a broad spectrum of evenly-spaced frequency modes, commonly generated by four-wave mixing in optically-excited nonlinear micro-cavities, whose recent use for quantum state generation has provided a solution for scalable and multi-mode quantum light sources. Pulsed quantum frequency combs are of particular interest, since they allow the generation of single-frequency-mode photons, required for scaling state complexity towards, e.g., multi-photon states, and for quantum information applications. However, generation schemes for such pulsed combs have, to date, relied on micro-cavity excitation via lasers external to the sources, being neither versatile nor power-efficient, and impractical for scalable realizations of quantum technologies. Here, we introduce an actively-modulated, nested-cavity configuration that exploits the resonance pass-band characteristic of the micro-cavity to enable a mode-locked and energy-efficient excitation. We demonstrate that the scheme allows the generation of high-purity photons at large coincidence-to-accidental ratios (CAR). Furthermore, by increasing the repetition rate of the excitation field via harmonic mode-locking (i.e. driving the cavity modulation at harmonics of the fundamental repetition rate), we managed to increase the pair production rates (i.e. source efficiency), while maintaining a high CAR and photon purity. Our approach represents a significant step towards the realization of fully on-chip, stable, and versatile sources of pulsed quantum frequency combs, crucial for the development of accessible quantum technologies.
Kumar, S Santhosh; Shankaranarayanan, S
2017-11-17
In a bipartite set-up, the vacuum state of a free Bosonic scalar field is entangled in real space and satisfies the area-law- entanglement entropy scales linearly with area of the boundary between the two partitions. In this work, we show that the area law is violated in two spatial dimensional model Hamiltonian having dynamical critical exponent z = 3. The model physically corresponds to next-to-next-to-next nearest neighbour coupling terms on a lattice. The result reported here is the first of its kind of violation of area law in Bosonic systems in higher dimensions and signals the evidence of a quantum phase transition. We provide evidence for quantum phase transition both numerically and analytically using quantum Information tools like entanglement spectra, quantum fidelity, and gap in the energy spectra. We identify the cause for this transition due to the accumulation of large number of angular zero modes around the critical point which catalyses the change in the ground state wave function due to the next-to-next-to-next nearest neighbor coupling. Lastly, using Hubbard-Stratanovich transformation, we show that the effective Bosonic Hamiltonian can be obtained from an interacting fermionic theory and provide possible implications for condensed matter systems.
Loop Quantum Gravity and the Meaning of Diffeomorphism Invariance
NASA Astrophysics Data System (ADS)
Rovelli, Carlo; Gaul, Marcus
This series of lectures gives an introduction to the non-perturbative and background-independent formulation for a quantum theory of gravitation which is called loop quantum gravity . The Hilbert space of kinematical quantum states is constructed and a complete basis of spin network states is introduced. Afterwards an application of the formalism is provided by the spectral analysis of the area operator, which is the quantum analogue of the classical area function. This leads to one of the key results of loop quantum gravity obtained in the last few years: the derivation of the discreteness of the geometry and the computation of the quanta of area. Special importance is attached to the role played by the diffeomorphism group in order to clarify the notion of observability in general relativity - a concept far from being trivial. Finally an outlock onto a possible dynamical extension of the theory is given, leading to a "sum over histories" approach, namely a so-called spin foam model . Throughout the whole lecture great significance is attached to conceptual and interpretational issues.
Quantum order, entanglement and localization in many-body systems
NASA Astrophysics Data System (ADS)
Khemani, Vedika
The interplay of disorder and interactions can have remarkable effects on the physics of quantum systems. A striking example is provided by the long conjectured--and recently confirmed--phenomenon of many-body localization. Many-body localized (MBL) phases violate foundational assumptions about ergodicity and thermalization in interacting systems, and represent a new frontier for non-equilibrium quantum statistical mechanics. We start with a study of the dynamical response of MBL phases to time-dependent perturbations. We find that that an asymptotically slow, local perturbation induces a highly non-local response, a surprising result for a localized insulator. A complementary calculation in the linear-response regime elucidates the structure of many-body resonances contributing to the dynamics of this phase. We then turn to a study of quantum order in MBL systems. It was shown that localization can allow novel high-temperature phases and phase transitions that are disallowed in equilibrium. We extend this idea of "localization protected order'' to the case of symmetry-protected topological phases and to the elucidation of phase structure in periodically driven Floquet systems. We show that Floquet systems can display nontrivial phases, some of which show a novel form of correlated spatiotemporal order and are absolutely stable to all generic perturbations. The next part of the thesis addresses the role of quantum entanglement, broadly speaking. Remarkably, it was shown that even highly-excited MBL eigenstates have low area-law entanglement. We exploit this feature to develop tensor-network based algorithms for efficiently computing and representing highly-excited MBL eigenstates. We then switch gears from disordered, localized systems and examine the entanglement Hamiltonian and its low energy spectrum from a statistical mechanical lens, particularly focusing on issues of universality and thermalization. We close with two miscellaneous results on topologically ordered phases. The first studies the nonequilibrium "Kibble-Zurek'' dynamics resulting from driving a system through a phase transition from a topologically ordered phase to a trivial one at a finite rate. The second shows that the four-state Potts model on the pyrochlore lattice exhibits a "Coulomb Phase'' characterized by three emergent gauge fields.
Franceschetti, Donald R; Gire, Elizabeth
2013-06-01
Quantum probability theory offers a viable alternative to classical probability, although there are some ambiguities inherent in transferring the quantum formalism to a less determined realm. A number of physicists are now looking at the applicability of quantum ideas to the assessment of physics learning, an area particularly suited to quantum probability ideas.
Bose-Einstein Condensation of Long-Lifetime Polaritons in Thermal Equilibrium.
Sun, Yongbao; Wen, Patrick; Yoon, Yoseob; Liu, Gangqiang; Steger, Mark; Pfeiffer, Loren N; West, Ken; Snoke, David W; Nelson, Keith A
2017-01-06
The experimental realization of Bose-Einstein condensation (BEC) with atoms and quasiparticles has triggered wide exploration of macroscopic quantum effects. Microcavity polaritons are of particular interest because quantum phenomena such as BEC and superfluidity can be observed at elevated temperatures. However, polariton lifetimes are typically too short to permit thermal equilibration. This has led to debate about whether polariton condensation is intrinsically a nonequilibrium effect. Here we report the first unambiguous observation of BEC of optically trapped polaritons in thermal equilibrium in a high-Q microcavity, evidenced by equilibrium Bose-Einstein distributions over broad ranges of polariton densities and bath temperatures. With thermal equilibrium established, we verify that polariton condensation is a phase transition with a well-defined density-temperature phase diagram. The measured phase boundary agrees well with the predictions of basic quantum gas theory.
Sample-Averaged Biexciton Quantum Yield Measured by Solution-Phase Photon Correlation
Beyler, Andrew P.; Bischof, Thomas S.; Cui, Jian; ...
2014-11-19
The brightness of nanoscale optical materials such as semiconductor nanocrystals is currently limited in high excitation flux applications by inefficient multiexciton fluorescence. We have devised a solution-phase photon correlation measurement that can conveniently and reliably measure the average biexciton-to-exciton quantum yield ratio of an entire sample without user selection bias. This technique can be used to investigate the multiexciton recombination dynamics of a broad scope of synthetically underdeveloped materials, including those with low exciton quantum yields and poor fluorescence stability. Here in this study, we have applied this method to measure weak biexciton fluorescence in samples of visible-emitting InP/ZnS andmore » InAs/ZnS core/shell nanocrystals, and to demonstrate that a rapid CdS shell growth procedure can markedly increase the biexciton fluorescence of CdSe nanocrystals.« less
Sample-Averaged Biexciton Quantum Yield Measured by Solution-Phase Photon Correlation
Beyler, Andrew P.; Bischof, Thomas S.; Cui, Jian; Coropceanu, Igor; Harris, Daniel K.; Bawendi, Moungi G.
2015-01-01
The brightness of nanoscale optical materials such as semiconductor nanocrystals is currently limited in high excitation flux applications by inefficient multiexciton fluorescence. We have devised a solution-phase photon correlation measurement that can conveniently and reliably measure the average biexciton-to-exciton quantum yield ratio of an entire sample without user selection bias. This technique can be used to investigate the multiexciton recombination dynamics of a broad scope of synthetically underdeveloped materials, including those with low exciton quantum yields and poor fluorescence stability. Here, we have applied this method to measure weak biexciton fluorescence in samples of visible-emitting InP/ZnS and InAs/ZnS core/shell nanocrystals, and to demonstrate that a rapid CdS shell growth procedure can markedly increase the biexciton fluorescence of CdSe nanocrystals. PMID:25409496
Core-shell silicon nanowire solar cells
Adachi, M. M.; Anantram, M. P.; Karim, K. S.
2013-01-01
Silicon nanowires can enhance broadband optical absorption and reduce radial carrier collection distances in solar cell devices. Arrays of disordered nanowires grown by vapor-liquid-solid method are attractive because they can be grown on low-cost substrates such as glass, and are large area compatible. Here, we experimentally demonstrate that an array of disordered silicon nanowires surrounded by a thin transparent conductive oxide has both low diffuse and specular reflection with total values as low as < 4% over a broad wavelength range of 400 nm < λ < 650 nm. These anti-reflective properties together with enhanced infrared absorption in the core-shell nanowire facilitates enhancement in external quantum efficiency using two different active shell materials: amorphous silicon and nanocrystalline silicon. As a result, the core-shell nanowire device exhibits a short-circuit current enhancement of 15% with an amorphous Si shell and 26% with a nanocrystalline Si shell compared to their corresponding planar devices. PMID:23529071
Broadband high resolution X-ray spectral analyzer
Silver, Eric H.; Legros, Mark; Madden, Norm W.; Goulding, Fred; Landis, Don
1998-01-01
A broad bandwidth high resolution x-ray fluorescence spectrometer has a performance that is superior in many ways to those currently available. It consists of an array of 4 large area microcalorimeters with 95% quantum efficiency at 6 keV and it produces x-ray spectra between 0.2 keV and 7 keV with an energy resolution of 7 to 10 eV. The resolution is obtained at input count rates per array element of 10 to 50 Hz in real-time, with analog pulse processing and thermal pile-up rejection. This performance cannot be matched by currently available x-ray spectrometers. The detectors are incorporated into a compact and portable cryogenic refrigerator system that is ready for use in many analytical spectroscopy applications as a tool for x-ray microanalysis or in research applications such as laboratory and astrophysical x-ray and particle spectroscopy.
Broadband high resolution X-ray spectral analyzer
Silver, E.H.; Legros, M.; Madden, N.W.; Goulding, F.; Landis, D.
1998-07-07
A broad bandwidth high resolution X-ray fluorescence spectrometer has a performance that is superior in many ways to those currently available. It consists of an array of 4 large area microcalorimeters with 95% quantum efficiency at 6 keV and it produces X-ray spectra between 0.2 keV and 7 keV with an energy resolution of 7 to 10 eV. The resolution is obtained at input count rates per array element of 10 to 50 Hz in real-time, with analog pulse processing and thermal pile-up rejection. This performance cannot be matched by currently available X-ray spectrometers. The detectors are incorporated into a compact and portable cryogenic refrigerator system that is ready for use in many analytical spectroscopy applications as a tool for X-ray microanalysis or in research applications such as laboratory and astrophysical X-ray and particle spectroscopy. 6 figs.
Quantum Sensors at the Intersections of Fundamental Science, Quantum Information Science & Computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chattopadhyay, Swapan; Falcone, Roger; Walsworth, Ronald
Over the last twenty years, there has been a boom in quantum science - i.e., the development and exploitation of quantum systems to enable qualitatively and quantitatively new capabilities, with high-impact applications and fundamental insights that can range across all areas of science and technology.
Weaknesses in Awarding Fees for the Broad Area Maritime Surveillance Contract
2010-11-02
Table of Contents Introduction 1 Audit Objectives 1 Background on Broad Area Maritime Surveillance 1...24 Mangement Comments The Assistant Secretary of the Navy for Research, Development, and Acquisition 25... Introduction Audit Objectives This is the first in a series of reports on the contract supporting the Broad Area Maritime
Entangling spin-spin interactions of ions in individually controlled potential wells
NASA Astrophysics Data System (ADS)
Wilson, Andrew; Colombe, Yves; Brown, Kenton; Knill, Emanuel; Leibfried, Dietrich; Wineland, David
2014-03-01
Physical systems that cannot be modeled with classical computers appear in many different branches of science, including condensed-matter physics, statistical mechanics, high-energy physics, atomic physics and quantum chemistry. Despite impressive progress on the control and manipulation of various quantum systems, implementation of scalable devices for quantum simulation remains a formidable challenge. As one approach to scalability in simulation, here we demonstrate an elementary building-block of a configurable quantum simulator based on atomic ions. Two ions are trapped in separate potential wells that can individually be tailored to emulate a number of different spin-spin couplings mediated by the ions' Coulomb interaction together with classical laser and microwave fields. We demonstrate deterministic tuning of this interaction by independent control of the local wells and emulate a particular spin-spin interaction to entangle the internal states of the two ions with 0.81(2) fidelity. Extension of the building-block demonstrated here to a 2D-network, which ion-trap micro-fabrication processes enable, may provide a new quantum simulator architecture with broad flexibility in designing and scaling the arrangement of ions and their mutual interactions. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), ONR, and the NIST Quantum Information Program.
A general transfer-function approach to noise filtering in open-loop quantum control
NASA Astrophysics Data System (ADS)
Viola, Lorenza
2015-03-01
Hamiltonian engineering via unitary open-loop quantum control provides a versatile and experimentally validated framework for manipulating a broad class of non-Markovian open quantum systems of interest, with applications ranging from dynamical decoupling and dynamically corrected quantum gates, to noise spectroscopy and quantum simulation. In this context, transfer-function techniques directly motivated by control engineering have proved invaluable for obtaining a transparent picture of the controlled dynamics in the frequency domain and for quantitatively analyzing performance. In this talk, I will show how to identify a computationally tractable set of ``fundamental filter functions,'' out of which arbitrary filter functions may be assembled up to arbitrary high order in principle. Besides avoiding the infinite recursive hierarchy of filter functions that arises in general control scenarios, this fundamental set suffices to characterize the error suppression capabilities of the control protocol in both the time and frequency domain. I will show, in particular, how the resulting notion of ``filtering order'' reveals conceptually distinct, albeit complementary, features of the controlled dynamics as compared to the ``cancellation order,'' traditionally defined in the Magnus sense. Implications for current quantum control experiments will be discussed. Work supported by the U.S. Army Research Office under Contract No. W911NF-14-1-0682.
QCCM - Center for NMR Quantum Information Processing
2011-02-16
2008, 77, 010802, 1 – 6. 8. Universal control of nuclear spins via anisotropic hyperfine interactions J. S. Hodges, J. C. Yang, C. Ramanthan and D. G...sample environmental noise over a broad frequency range 0.2-20MHz, and we observe a 1/fα-type spectrum which we independently confirm with a Rabi
Book Newsroom Newsroom News and features Press releases Photo gallery Fact sheets and brochures Media Big Bang. Featured New eBooks The Black Book of Quantum Chromodynamics This book by Fermilab author at the LHC This book aims to give a broad organizational and strategic understanding of the nature of
Laboratory measurements. [chemical and photochemical data relative to stratospheric modeling
NASA Technical Reports Server (NTRS)
1977-01-01
A compilation of chemical and photochemical data that are relevant to stratospheric modeling is presented. There are three broad categories of data: (1) rate constants for chemical reactions, including temperature and pressure dependencies along with product distributions; (2) absorption cross sections, photodissociation quantum yield, and photolysis; (3) heterogeneous chemical processes.
USDA-ARS?s Scientific Manuscript database
The wide array of applications using quantum dots (QDs) for detection of multiple analytes reflects the versatility of the technology. In this study, a novel immunoassay using 2 types of sensors (QDs and an enzyme) were simultaneously used for detecting multiple structurally different low-molecular...
NASA Astrophysics Data System (ADS)
Takeuchi, Eric B.; Rayner, Timothy; Weida, Miles; Crivello, Salvatore; Day, Timothy
2007-10-01
Civilian soft targets such as transportation systems are being targeted by terrorists using IEDs and suicide bombers. Having the capability to remotely detect explosives, precursors and other chemicals would enable these assets to be protected with minimal interruption of the flow of commerce. Mid-IR laser technology offers the potential to detect explosives and other chemicals in real-time and from a safe standoff distance. While many of these agents possess "fingerprint" signatures in the mid-IR (i.e. in the 3-20 micron regime), their effective interrogation by a practical, field-deployable system has been limited by size, complexity, reliability and cost constraints of the base laser technology. Daylight Solutions has addressed these shortcomings by developing compact, portable, broadly tunable mid-IR laser sources based upon external-cavity quantum cascade technology. This technology is now being applied by Daylight in system level architectures for standoff and remote detection of explosives, precursors and chemical agents. Several of these architectures and predicted levels of performance will be presented.
Dynamics of a broad-band quantum cascade laser: from chaos to coherent dynamics and mode-locking
NASA Astrophysics Data System (ADS)
Columbo, L. L.; Barbieri, S.; Sirtori, C.; Brambilla, M.
2018-02-01
The dynamics of a multimode Quantum Cascade Laser, is studied in a model based on effective semiconductor Maxwell-Bloch equations, encompassing key features for the radiationmedium interaction such as an asymmetric, frequency dependent, gain and refractive index as well as the phase-amplitude coupling provided by the Henry factor. By considering the role of the free spectral range and Henry factor, we develop criteria suitable to identify the conditions which allow to destabilize, close to threshold, the traveling wave emitted by the laser and lead to chaotic or regular multimode dynamics. In the latter case our simulations show that the field oscillations are associated to self-confined structures which travel along the laser cavity, bridging mode-locking and solitary wave propagation. In addition, we show how a RF modulation of the bias current leads to active mode-locking yielding high-contrast, picosecond pulses. Our results compare well with recent experiments on broad-band THz-QCLs and may help understanding the conditions for the generation of ultrashort pulses and comb operation in Mid-IR and THz spectral regions
Quantum-Dot-Based Lateral Flow Immunoassay for Detection of Neonicotinoid Residues in Tea Leaves.
Wang, Shuangjie; Liu, Ying; Jiao, Shasha; Zhao, Ying; Guo, Yirong; Wang, Mengcen; Zhu, Guonian
2017-11-22
Neonicotinoid insecticides are commonly used for pest control on tea plantations as a result of their broad-spectrum activity. However, neonicotinoid residues released from tea leaves into tea infusions pose a dietary risk to consumers. Therefore, a rapid, sensitive, and reliable on-site detection method for neonicotinoids is needed. We developed a quantum-dot-based fluorescent lateral flow immunochromatographic strip (LFICS) combined with a broad-specific antibody for detection of typical neonicotinoids (imidacloprid, imidaclothiz, and clothianidin), with sensitivities [50% inhibitory concentration (IC 50 )] of 0.104-0.33 ng/mL and visual detection limits of 0.5-1 ng/mL. The strip assay could be completed in less than 30 min. Using the LFICS to analyze spiked tea samples (green tea, black tea, and oolong tea), the average recovery of the three neonicotinoids ranged between 71 and 111%, with the coefficient of variation below 12%. The results from the LFICS tests for field samples were consistent with results from ultraperformance liquid chromatography-tandem mass spectrometry. The newly developed strip is a useful tool for the on-site detection of neonicotinoid residues in tea.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valenta, J., E-mail: jan.valenta@mff.cuni.cz; Greben, M.
2015-04-15
Application capabilities of optical microscopes and microspectroscopes can be considerably enhanced by a proper calibration of their spectral sensitivity. We propose and demonstrate a method of relative and absolute calibration of a microspectroscope over an extraordinary broad spectral range covered by two (parallel) detection branches in visible and near-infrared spectral regions. The key point of the absolute calibration of a relative spectral sensitivity is application of the standard sample formed by a thin layer of Si nanocrystals with stable and efficient photoluminescence. The spectral PL quantum yield and the PL spatial distribution of the standard sample must be characterized bymore » separate experiments. The absolutely calibrated microspectroscope enables to characterize spectral photon emittance of a studied object or even its luminescence quantum yield (QY) if additional knowledge about spatial distribution of emission and about excitance is available. Capabilities of the calibrated microspectroscope are demonstrated by measuring external QY of electroluminescence from a standard poly-Si solar-cell and of photoluminescence of Er-doped Si nanocrystals.« less
Approximation of Quantum Stochastic Differential Equations for Input-Output Model Reduction
2016-02-25
Approximation of Quantum Stochastic Differential Equations for Input-Output Model Reduction We have completed a short program of theoretical research...on dimensional reduction and approximation of models based on quantum stochastic differential equations. Our primary results lie in the area of...2211 quantum probability, quantum stochastic differential equations REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR
Open-system dynamics of entanglement:a key issues review
NASA Astrophysics Data System (ADS)
Aolita, Leandro; de Melo, Fernando; Davidovich, Luiz
2015-04-01
One of the greatest challenges in the fields of quantum information processing and quantum technologies is the detailed coherent control over each and every constituent of quantum systems with an ever increasing number of particles. Within this endeavor, harnessing of many-body entanglement against the detrimental effects of the environment is a major pressing issue. Besides being an important concept from a fundamental standpoint, entanglement has been recognized as a crucial resource for quantum speed-ups or performance enhancements over classical methods. Understanding and controlling many-body entanglement in open systems may have strong implications in quantum computing, quantum simulations of many-body systems, secure quantum communication or cryptography, quantum metrology, our understanding of the quantum-to-classical transition, and other important questions of quantum foundations. In this paper we present an overview of recent theoretical and experimental efforts to underpin the dynamics of entanglement under the influence of noise. Entanglement is thus taken as a dynamic quantity on its own, and we survey how it evolves due to the unavoidable interaction of the entangled system with its surroundings. We analyze several scenarios, corresponding to different families of states and environments, which render a very rich diversity of dynamical behaviors. In contrast to single-particle quantities, like populations and coherences, which typically vanish only asymptotically in time, entanglement may disappear at a finite time. In addition, important classes of entanglement display an exponential decay with the number of particles when subject to local noise, which poses yet another threat to the already-challenging scaling of quantum technologies. Other classes, however, turn out to be extremely robust against local noise. Theoretical results and recent experiments regarding the difference between local and global decoherence are summarized. Control and robustness-enhancement techniques, scaling laws, statistical and geometrical aspects of multipartite-entanglement decay are also reviewed; all in order to give a broad picture of entanglement dynamics in open quantum systems addressed to both theorists and experimentalists inside and outside the field of quantum information.
Open-system dynamics of entanglement: a key issues review.
Aolita, Leandro; de Melo, Fernando; Davidovich, Luiz
2015-04-01
One of the greatest challenges in the fields of quantum information processing and quantum technologies is the detailed coherent control over each and every constituent of quantum systems with an ever increasing number of particles. Within this endeavor, harnessing of many-body entanglement against the detrimental effects of the environment is a major pressing issue. Besides being an important concept from a fundamental standpoint, entanglement has been recognized as a crucial resource for quantum speed-ups or performance enhancements over classical methods. Understanding and controlling many-body entanglement in open systems may have strong implications in quantum computing, quantum simulations of many-body systems, secure quantum communication or cryptography, quantum metrology, our understanding of the quantum-to-classical transition, and other important questions of quantum foundations.In this paper we present an overview of recent theoretical and experimental efforts to underpin the dynamics of entanglement under the influence of noise. Entanglement is thus taken as a dynamic quantity on its own, and we survey how it evolves due to the unavoidable interaction of the entangled system with its surroundings. We analyze several scenarios, corresponding to different families of states and environments, which render a very rich diversity of dynamical behaviors.In contrast to single-particle quantities, like populations and coherences, which typically vanish only asymptotically in time, entanglement may disappear at a finite time. In addition, important classes of entanglement display an exponential decay with the number of particles when subject to local noise, which poses yet another threat to the already-challenging scaling of quantum technologies. Other classes, however, turn out to be extremely robust against local noise. Theoretical results and recent experiments regarding the difference between local and global decoherence are summarized. Control and robustness-enhancement techniques, scaling laws, statistical and geometrical aspects of multipartite-entanglement decay are also reviewed; all in order to give a broad picture of entanglement dynamics in open quantum systems addressed to both theorists and experimentalists inside and outside the field of quantum information.
Quantum communication for satellite-to-ground networks with partially entangled states
NASA Astrophysics Data System (ADS)
Chen, Na; Quan, Dong-Xiao; Pei, Chang-Xing; Yang-Hong
2015-02-01
To realize practical wide-area quantum communication, a satellite-to-ground network with partially entangled states is developed in this paper. For efficiency and security reasons, the existing method of quantum communication in distributed wireless quantum networks with partially entangled states cannot be applied directly to the proposed quantum network. Based on this point, an efficient and secure quantum communication scheme with partially entangled states is presented. In our scheme, the source node performs teleportation only after an end-to-end entangled state has been established by entanglement swapping with partially entangled states. Thus, the security of quantum communication is guaranteed. The destination node recovers the transmitted quantum bit with the help of an auxiliary quantum bit and specially defined unitary matrices. Detailed calculations and simulation analyses show that the probability of successfully transferring a quantum bit in the presented scheme is high. In addition, the auxiliary quantum bit provides a heralded mechanism for successful communication. Based on the critical components that are presented in this article an efficient, secure, and practical wide-area quantum communication can be achieved. Project supported by the National Natural Science Foundation of China (Grant Nos. 61072067 and 61372076), the 111 Project (Grant No. B08038), the Fund from the State Key Laboratory of Integrated Services Networks (Grant No. ISN 1001004), and the Fundamental Research Funds for the Central Universities (Grant Nos. K5051301059 and K5051201021).
Infrared near-field spectroscopy of trace explosives using an external cavity quantum cascade laser.
Craig, Ian M; Taubman, Matthew S; Lea, A Scott; Phillips, Mark C; Josberger, Erik E; Raschke, Markus B
2013-12-16
Utilizing a broadly-tunable external cavity quantum cascade laser for scattering-type scanning near-field optical microscopy (s-SNOM), we measure infrared spectra of particles of explosives by probing characteristic nitro-group resonances in the 7.1-7.9 µm wavelength range. Measurements are presented with spectral resolution of 0.25 cm(-1), spatial resolution of 25 nm, sensitivity better than 100 attomoles, and at a rapid acquisition time of 90 s per spectrum. We demonstrate high reproducibility of the acquired s-SNOM spectra with very high signal-to-noise ratios and relative noise of <0.02 in self-homodyne detection.
Photoabsorption spectra of small HeN+ clusters (N = 3, 4, 10). A quantum Monte Carlo modeling
NASA Astrophysics Data System (ADS)
Ćosić, Rajko; Karlický, František; Kalus, René
2018-05-01
Photoabsorption cross-sections have been calculated for HeN+ clusters of selected sizes (N = 3, 4, 10) over a broad range of photon energies (Ephot = 2 - 14 eV) and compared with available experimental data. Semiempirical electronic Hamiltonians derived from the diatomics-in-molecules approach have been used for electronic structure calculations and a quantum, path-integral Monte Carlo method has been employed to model the delocalization of helium nuclei. While a quantitative agreement has been achieved between the theory and experiment for He3+ and He4+, only qualitative correspondence is seen for He10+ .
In search of multipath interference using large molecules
Cotter, Joseph P.; Brand, Christian; Knobloch, Christian; Lilach, Yigal; Cheshnovsky, Ori; Arndt, Markus
2017-01-01
The superposition principle is fundamental to the quantum description of both light and matter. Recently, a number of experiments have sought to directly test this principle using coherent light, single photons, and nuclear spin states. We extend these experiments to massive particles for the first time. We compare the interference patterns arising from a beam of large dye molecules diffracting at single, double, and triple slit material masks to place limits on any high-order, or multipath, contributions. We observe an upper bound of less than one particle in a hundred deviating from the expectations of quantum mechanics over a broad range of transverse momenta and de Broglie wavelength. PMID:28819641
Broadband continuous-variable entanglement source using a chirped poling nonlinear crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, J. S.; Sun, L.; Yu, X. Q.
2010-01-15
Aperiodically poled nonlinear crystal can be used as a broadband continuous-variable entanglement source and has strong stability under perturbations. We study the conversion dynamics of the sum-frequency generation and the quantum correlation of the two pump fields in a chirped-structure nonlinear crystal using the quantum stochastic method. The results show that there exists a frequency window for the pumps where two optical fields can perform efficient upconversion. The two pump fields are demonstrated to be entangled in the window and the chirped-structure crystal can be used as a continuous-variable entanglement source with a broad response bandwidth.
Some Thoughts Regarding Practical Quantum Computing
NASA Astrophysics Data System (ADS)
Ghoshal, Debabrata; Gomez, Richard; Lanzagorta, Marco; Uhlmann, Jeffrey
2006-03-01
Quantum computing has become an important area of research in computer science because of its potential to provide more efficient algorithmic solutions to certain problems than are possible with classical computing. The ability of performing parallel operations over an exponentially large computational space has proved to be the main advantage of the quantum computing model. In this regard, we are particularly interested in the potential applications of quantum computers to enhance real software systems of interest to the defense, industrial, scientific and financial communities. However, while much has been written in popular and scientific literature about the benefits of the quantum computational model, several of the problems associated to the practical implementation of real-life complex software systems in quantum computers are often ignored. In this presentation we will argue that practical quantum computation is not as straightforward as commonly advertised, even if the technological problems associated to the manufacturing and engineering of large-scale quantum registers were solved overnight. We will discuss some of the frequently overlooked difficulties that plague quantum computing in the areas of memories, I/O, addressing schemes, compilers, oracles, approximate information copying, logical debugging, error correction and fault-tolerant computing protocols.
Increasing the critical thickness of InGaAs quantum wells using strain-relief technologies
NASA Astrophysics Data System (ADS)
Jones, Andrew Marquis
The advantages of optical communication through silica fiber have made long-distance electrical communication through copper wire obsolete. The two windows of operation for long-haul optical communication are centered around the wavelengths of 1.3 mum and 1.55 mum, which have minimal amounts of signal attenuation and dispersion. Benefits of optical communications within these windows include low system costs, high bandwidth, and high system reliability which have encouraged the development of emitters and receivers at these relatively long wavelengths. Long-wavelength semiconductor lasers are typically fabricated on InP substrates, but their performance suffers greatly with increases in operating temperature. Laser diodes on GaAs substrates are not as sensitive to operating temperature due to quantum-well active regions with relative deep potential barriers, but critical thickness limits the wavelength ceiling to 1.1 mum. Strain-relief technologies are currently being investigated to enable long-wavelength lasers with deeper potential wells leading to a corresponding increase in characteristic temperatures. Having a larger lattice constant than GaAs enables ternary InGaAs substrates to increase the 1.1-mum wavelength ceiling. Extending this ceiling to one of the optical communication windows could enable high-characteristic-temperature, long-wavelength lasers. Broad-area and buried-heterostructure lasers have demonstrated the potential of ternary substrates to increase characteristic temperatures and emission wavelengths. Wavelengths as long as 1.15 mum and characteristic temperatures as high as 145 K have been achieved. Reduced-area metalorganic chemical vapor deposition involves the deposition of strained materials on isolated islands. Due to the discontinuous nature of reduced-area epitaxy, strained materials are allowed to expand near the mesa edges, decreasing the overall strain in the structure. Laser diodes using this technology have been successfully fabricated, and evidence for partial relief of strain energy has been obtained. Compliant membranes enable strain relief by depositing on an ultra-thin semiconductor base. Unlike growth on typical thick substrates, expansion of the compliant membrane during strained-layer regrowth allows the membrane to accommodate most of the strain energy. Ternary InGaAs compliant films supported above a GaAs substrate with single AlGaAs pedestals have been utilized to fabricate long-wavelength (1.35 mum) InGaAs quantum wells on a GaAs substrate.
Quantum dot nanoparticle conjugation, characterization, and applications in neuroscience
NASA Astrophysics Data System (ADS)
Pathak, Smita
Quantum dot are semiconducting nanoparticles that have been used for decades in a variety of applications such as solar cells, LEDs and medical imaging. Their use in the last area, however, has been extremely limited despite their potential as revolutionary new biological labeling tools. Quantum dots are much brighter and more stable than conventional fluorophores, making them optimal for high resolution imaging and long term studies. Prior work in this area involves synthesizing and chemically conjugating quantum dots to molecules of interest in-house. However this method is both time consuming and prone to human error. Additionally, non-specific binding and nanoparticle aggregation currently prevent researchers from utilizing this system to its fullest capacity. Another critical issue that has not been addressed is determining the number of ligands bound to nanoparticles, which is crucial for proper interpretation of results. In this work, methods to label fixed cells using two types of chemically modified quantum dots are studied. Reproducible non-specific artifact labeling is consistently demonstrated if antibody-quantum dot conditions are less than optimal. In order to explain this, antibodies bound to quantum dots were characterized and quantified. While other groups have qualitatively characterized antibody functionalized quantum dots using TEM, AFM, UV spectroscopy and gel electrophoresis, and in some cases have reported calculated estimates of the putative number of total antibodies bound to quantum dots, no quantitative experimental results had been reported prior to this work. The chemical functionalization and characterization of quantum dot nanocrystals achieved in this work elucidates binding mechanisms of ligands to nanoparticles and allows researchers to not only translate our tools to studies in their own areas of interest but also derive quantitative results from these studies. This research brings ease of use and increased reliability to nanoparticles in medical imaging.
Quantum algorithms for quantum field theories.
Jordan, Stephen P; Lee, Keith S M; Preskill, John
2012-06-01
Quantum field theory reconciles quantum mechanics and special relativity, and plays a central role in many areas of physics. We developed a quantum algorithm to compute relativistic scattering probabilities in a massive quantum field theory with quartic self-interactions (φ(4) theory) in spacetime of four and fewer dimensions. Its run time is polynomial in the number of particles, their energy, and the desired precision, and applies at both weak and strong coupling. In the strong-coupling and high-precision regimes, our quantum algorithm achieves exponential speedup over the fastest known classical algorithm.
Continuous-time quantum random walks require discrete space
NASA Astrophysics Data System (ADS)
Manouchehri, K.; Wang, J. B.
2007-11-01
Quantum random walks are shown to have non-intuitive dynamics which makes them an attractive area of study for devising quantum algorithms for long-standing open problems as well as those arising in the field of quantum computing. In the case of continuous-time quantum random walks, such peculiar dynamics can arise from simple evolution operators closely resembling the quantum free-wave propagator. We investigate the divergence of quantum walk dynamics from the free-wave evolution and show that, in order for continuous-time quantum walks to display their characteristic propagation, the state space must be discrete. This behavior rules out many continuous quantum systems as possible candidates for implementing continuous-time quantum random walks.
Yao, Jun; Li, Pingfan; Li, Lin; Yang, Mei
2018-07-01
According to recent research, nanotechnology based on quantum dots (QDs) has been widely applied in the field of bioimaging, drug delivery, and drug analysis. Therefore, it has become one of the major forces driving basic and applied research. The application of nanotechnology in bioimaging has been of concern. Through in vitro labeling, it was found that luminescent QDs possess many properties such as narrow emission, broad UV excitation, bright fluorescence, and high photostability. The QDs also show great potential in whole-body imaging. The QDs can be combined with biomolecules, and hence, they can be used for targeted drug delivery and diagnosis. The characteristics of QDs make them useful for application in pharmacy and pharmacology. This review focuses on various applications of QDs, especially in imaging, drug delivery, pharmaceutical analysis, photothermal therapy, biochips, and targeted surgery. Finally, conclusions are made by providing some critical challenges and a perspective of how this field can be expected to develop in the future. Quantum dots (QDs) is an emerging field of interdisciplinary subject that involves physics, chemistry, materialogy, biology, medicine, and so on. In addition, nanotechnology based on QDs has been applied in depth in biochemistry and biomedicine. Some forward-looking fields emphatically reflected in some extremely vital areas that possess inspiring potential applicable prospects, such as immunoassay, DNA analysis, biological monitoring, drug discovery, in vitro labelling, in vivo imaging, and tumor target are closely connected to human life and health and has been the top and forefront in science and technology to date. Furthermore, this review has not only involved the traditional biochemical detection but also particularly emphasized its potential applications in life science and biomedicine. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Efficient Ga(As)Sb quantum dot emission in AlGaAs by GaAs intermediate layer
NASA Astrophysics Data System (ADS)
Loeber, Thomas Henning; Richter, Johannes; Strassner, Johannes; Heisel, Carina; Kimmle, Christina; Fouckhardt, Henning
2013-03-01
Ga(As)Sb quantum dots (QDs) are epitaxially grown in AlGaAs/GaAs in the Stranski-Krastanov mode. In the recent past we achieved Ga(As)Sb QDs in GaAs with an extremely high dot density of 9.8•1010 cm-2 by optimization of growth temperature, Sb/Ga flux pressure ratio, and coverage. Additionally, the QD emission wavelength could be chosen precisely with these growth parameters in the range between 876 and 1035 nm. Here we report a photoluminescence (PL) intensity improvement for the case with AlGaAs barriers. Again growth parameters and layer composition are varied. The aluminium content is varied between 0 and 90%. Reflectance anisotropy spectroscopy (RAS) is used as insitu growth control to determine growth rate, layer thickness, and AlGaAs composition. Ga(As)Sb QDs, directly grown in AlxGa1-xAs emit no PL signal, even with a very low x ≈ 0.1. With additional around 10 nm thin GaAs intermediate layers between the Ga(As)Sb QDs and the AlGaAs barriers PL signals are detected. Samples with 4 QD layers and AlxGa1-xAs/GaAs barriers in between are grown. The thickness and composition of the barriers are changed. Depending on these values PL intensity is more than 4 times as high as in the case with simple GaAs barriers. With these results efficient Ga(As)Sb QD lasers are realized, so far only with pure GaAs barriers. Our index-guided broad area lasers operate continuous-wave (cw) @ 90 K, emit optical powers of more than 2•50 mW and show a differential quantum efficiency of 54% with a threshold current density of 528 A/cm2.
NASA Astrophysics Data System (ADS)
Cirac, J. Ignacio; Kimble, H. Jeff
2017-01-01
Quantum optics is a well-established field that spans from fundamental physics to quantum information science. In the coming decade, areas including computation, communication and metrology are all likely to experience scientific and technological advances supported by this far-reaching research field.
Optically Driven Spin Based Quantum Dots for Quantum Computing - Research Area 6 Physics 6.3.2
2015-12-15
quantum dots (SAQD) in Schottky diodes . Based on spins in these dots, a scalable architecture has been proposed [Adv. in Physics, 59, 703 (2010)] by us...housed in two coupled quantum dots with tunneling between them, as described above, may not be scalable but can serve as a node in a quantum network. The... tunneling -coupled two-electron spin ground states in the vertically coupled quantum dots for “universal computation” two spin qubits within the universe of
1.55-μm mode-locked quantum-dot lasers with 300 MHz frequency tuning range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadeev, T., E-mail: tagir@mailbox.tu-berlin.de; Arsenijević, D.; Bimberg, D.
2015-01-19
Passive mode-locking of two-section quantum-dot mode-locked lasers grown by metalorganic vapor phase epitaxy on InP is reported. 1250-μm long lasers exhibit a wide tuning range of 300 MHz around the fundamental mode-locking frequency of 33.48 GHz. The frequency tuning is achieved by varying the reverse bias of the saturable absorber from 0 to −2.2 V and the gain section current from 90 to 280 mA. 3 dB optical spectra width of 6–7 nm leads to ex-facet optical pulses with full-width half-maximum down to 3.7 ps. Single-section quantum-dot mode-locked lasers show 0.8 ps broad optical pulses after external fiber-based compression. Injection current tuning from 70 tomore » 300 mA leads to 30 MHz frequency tuning.« less
From rotating atomic rings to quantum Hall states.
Roncaglia, M; Rizzi, M; Dalibard, J
2011-01-01
Considerable efforts are currently devoted to the preparation of ultracold neutral atoms in the strongly correlated quantum Hall regime. However, the necessary angular momentum is very large and in experiments with rotating traps this means spinning frequencies extremely near to the deconfinement limit; consequently, the required control on parameters turns out to be too stringent. Here we propose instead to follow a dynamic path starting from the gas initially confined in a rotating ring. The large moment of inertia of the ring-shaped fluid facilitates the access to large angular momenta, corresponding to giant vortex states. The trapping potential is then adiabatically transformed into a harmonic confinement, which brings the interacting atomic gas in the desired quantum-Hall regime. We provide numerical evidence that for a broad range of initial angular frequencies, the giant-vortex state is adiabatically connected to the bosonic ν = 1/2 Laughlin state.
Quantum tunneling of thermal protons through pristine graphene.
Poltavsky, Igor; Zheng, Limin; Mortazavi, Majid; Tkatchenko, Alexandre
2018-05-28
Engineering of atomically thin membranes for hydrogen isotope separation is an actual challenge which has a broad range of applications. Recent experiments [M. Lozada-Hidalgo et al., Science 351, 68 (2016)] unambiguously demonstrate an order-of-magnitude difference in permeabilities of graphene-based membranes to protons and deuterons at ambient conditions, making such materials promising for novel separation technologies. Here we demonstrate that the permeability mechanism in such systems changes from quantum tunneling for protons to quasi-classical transport for heavier isotopes. Quantum nuclear effects exhibit large temperature and mass dependence, modifying the Arrhenius activation energy and Arrhenius prefactor for protons by more than 0.5 eV and by seven orders of magnitude correspondingly. Our findings not only shed light on the separation process for hydrogen isotope ions passing through pristine graphene but also offer new insights for controlling ion transport mechanisms in nanostructured separation membranes by manipulating the shape of the barrier and transport process conditions.
Orbital-exchange and fractional quantum number excitations in an f-electron metal Yb 2Pt 2Pb
L. S. Wu; Zaliznyak, I. A.; Gannon, W. J.; ...
2016-06-03
Exotic quantum states and fractionalized magnetic excitations, such as spinons in one-dimensional chains, are generally expected to occur in 3d transition metal systems with spin 1/2. Our neutron-scattering experiments on the 4f-electron metal Yb 2Pt 2Pb overturn this conventional wisdom. We observe broad magnetic continuum dispersing in only one direction, which indicates that the underlying elementary excitations are spinons carrying fractional spin-1/2. These spinons are the emergent quantum dynamics of the anisotropic, orbital-dominated Yb moments. Owing to their unusual origin, only longitudinal spin fluctuations are measurable, whereas the transverse excitations such as spin waves are virtually invisible to magnetic neutronmore » scattering. Furthermore, the proliferation of these orbital-spinons strips the electrons of their orbital identity, resulting in charge-orbital separation.« less
Kahl, Oliver; Ferrari, Simone; Kovalyuk, Vadim; Goltsman, Gregory N.; Korneev, Alexander; Pernice, Wolfram H. P.
2015-01-01
Superconducting nanowire single-photon detectors (SNSPDs) provide high efficiency for detecting individual photons while keeping dark counts and timing jitter minimal. Besides superior detection performance over a broad optical bandwidth, compatibility with an integrated optical platform is a crucial requirement for applications in emerging quantum photonic technologies. Here we present SNSPDs embedded in nanophotonic integrated circuits which achieve internal quantum efficiencies close to unity at 1550 nm wavelength. This allows for the SNSPDs to be operated at bias currents far below the critical current where unwanted dark count events reach milli-Hz levels while on-chip detection efficiencies above 70% are maintained. The measured dark count rates correspond to noise-equivalent powers in the 10−19 W/Hz−1/2 range and the timing jitter is as low as 35 ps. Our detectors are fully scalable and interface directly with waveguide-based optical platforms. PMID:26061283
Kahl, Oliver; Ferrari, Simone; Kovalyuk, Vadim; Goltsman, Gregory N; Korneev, Alexander; Pernice, Wolfram H P
2015-06-10
Superconducting nanowire single-photon detectors (SNSPDs) provide high efficiency for detecting individual photons while keeping dark counts and timing jitter minimal. Besides superior detection performance over a broad optical bandwidth, compatibility with an integrated optical platform is a crucial requirement for applications in emerging quantum photonic technologies. Here we present SNSPDs embedded in nanophotonic integrated circuits which achieve internal quantum efficiencies close to unity at 1550 nm wavelength. This allows for the SNSPDs to be operated at bias currents far below the critical current where unwanted dark count events reach milli-Hz levels while on-chip detection efficiencies above 70% are maintained. The measured dark count rates correspond to noise-equivalent powers in the 10(-19) W/Hz(-1/2) range and the timing jitter is as low as 35 ps. Our detectors are fully scalable and interface directly with waveguide-based optical platforms.
Data-driven gradient algorithm for high-precision quantum control
NASA Astrophysics Data System (ADS)
Wu, Re-Bing; Chu, Bing; Owens, David H.; Rabitz, Herschel
2018-04-01
In the quest to achieve scalable quantum information processing technologies, gradient-based optimal control algorithms (e.g., grape) are broadly used for implementing high-precision quantum gates, but their performance is often hindered by deterministic or random errors in the system model and the control electronics. In this paper, we show that grape can be taught to be more effective by jointly learning from the design model and the experimental data obtained from process tomography. The resulting data-driven gradient optimization algorithm (d-grape) can in principle correct all deterministic gate errors, with a mild efficiency loss. The d-grape algorithm may become more powerful with broadband controls that involve a large number of control parameters, while other algorithms usually slow down due to the increased size of the search space. These advantages are demonstrated by simulating the implementation of a two-qubit controlled-not gate.
Quantum metabolism explains the allometric scaling of metabolic rates.
Demetrius, Lloyd; Tuszynski, J A
2010-03-06
A general model explaining the origin of allometric laws of physiology is proposed based on coupled energy-transducing oscillator networks embedded in a physical d-dimensional space (d = 1, 2, 3). This approach integrates Mitchell's theory of chemi-osmosis with the Debye model of the thermal properties of solids. We derive a scaling rule that relates the energy generated by redox reactions in cells, the dimensionality of the physical space and the mean cycle time. Two major regimes are found corresponding to classical and quantum behaviour. The classical behaviour leads to allometric isometry while the quantum regime leads to scaling laws relating metabolic rate and body size that cover a broad range of exponents that depend on dimensionality and specific parameter values. The regimes are consistent with a range of behaviours encountered in micelles, plants and animals and provide a conceptual framework for a theory of the metabolic function of living systems.
Experimental test of nonlocal causality
Ringbauer, Martin; Giarmatzi, Christina; Chaves, Rafael; Costa, Fabio; White, Andrew G.; Fedrizzi, Alessandro
2016-01-01
Explaining observations in terms of causes and effects is central to empirical science. However, correlations between entangled quantum particles seem to defy such an explanation. This implies that some of the fundamental assumptions of causal explanations have to give way. We consider a relaxation of one of these assumptions, Bell’s local causality, by allowing outcome dependence: a direct causal influence between the outcomes of measurements of remote parties. We use interventional data from a photonic experiment to bound the strength of this causal influence in a two-party Bell scenario, and observational data from a Bell-type inequality test for the considered models. Our results demonstrate the incompatibility of quantum mechanics with a broad class of nonlocal causal models, which includes Bell-local models as a special case. Recovering a classical causal picture of quantum correlations thus requires an even more radical modification of our classical notion of cause and effect. PMID:27532045
Dispersion compensated mid-infrared quantum cascade laser frequency comb with high power output
NASA Astrophysics Data System (ADS)
Lu, Q. Y.; Manna, S.; Slivken, S.; Wu, D. H.; Razeghi, M.
2017-04-01
Chromatic dispersion control plays an underlying role in optoelectronics and spectroscopy owing to its enhancement to nonlinear interactions by reducing the phase mismatching. This is particularly important to optical frequency combs based on quantum cascade lasers which require negligible dispersions for efficient mode locking of the dispersed modes into equally spaced comb modes. Here, we demonstrated a dispersion compensated mid-IR quantum cascade laser frequency comb with high power output at room temperature. A low-loss dispersive mirror has been engineered to compensate the device's dispersion residue for frequency comb generation. Narrow intermode beating linewidths of 40 Hz in the comb-working currents were identified with a high power output of 460 mW and a broad spectral coverage of 80 cm-1. This dispersion compensation technique will enable fast spectroscopy and high-resolution metrology based on QCL combs with controlled dispersion and suppressed noise.
Fractionally charged skyrmions in fractional quantum Hall effect
Balram, Ajit C.; Wurstbauer, U.; Wójs, A.; Pinczuk, A.; Jain, J. K.
2015-01-01
The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeeman energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region. PMID:26608906
Experimental test of nonlocal causality.
Ringbauer, Martin; Giarmatzi, Christina; Chaves, Rafael; Costa, Fabio; White, Andrew G; Fedrizzi, Alessandro
2016-08-01
Explaining observations in terms of causes and effects is central to empirical science. However, correlations between entangled quantum particles seem to defy such an explanation. This implies that some of the fundamental assumptions of causal explanations have to give way. We consider a relaxation of one of these assumptions, Bell's local causality, by allowing outcome dependence: a direct causal influence between the outcomes of measurements of remote parties. We use interventional data from a photonic experiment to bound the strength of this causal influence in a two-party Bell scenario, and observational data from a Bell-type inequality test for the considered models. Our results demonstrate the incompatibility of quantum mechanics with a broad class of nonlocal causal models, which includes Bell-local models as a special case. Recovering a classical causal picture of quantum correlations thus requires an even more radical modification of our classical notion of cause and effect.
High-order noise filtering in nontrivial quantum logic gates.
Green, Todd; Uys, Hermann; Biercuk, Michael J
2012-07-13
Treating the effects of a time-dependent classical dephasing environment during quantum logic operations poses a theoretical challenge, as the application of noncommuting control operations gives rise to both dephasing and depolarization errors that must be accounted for in order to understand total average error rates. We develop a treatment based on effective Hamiltonian theory that allows us to efficiently model the effect of classical noise on nontrivial single-bit quantum logic operations composed of arbitrary control sequences. We present a general method to calculate the ensemble-averaged entanglement fidelity to arbitrary order in terms of noise filter functions, and provide explicit expressions to fourth order in the noise strength. In the weak noise limit we derive explicit filter functions for a broad class of piecewise-constant control sequences, and use them to study the performance of dynamically corrected gates, yielding good agreement with brute-force numerics.
NASA Astrophysics Data System (ADS)
Adams, Allan; Carr, Lincoln D.; Schaefer, Thomas; Steinberg, Peter; Thomas, John E.
2013-04-01
The last few years have witnessed a dramatic convergence of three distinct lines of research concerned with different kinds of extreme quantum matter. Two of these involve new quantum fluids that can be studied in the laboratory, ultracold quantum gases and quantum chromodynamics (QCD) plasmas. Even though these systems involve vastly different energy scales, the physical properties of the two quantum fluids are remarkably similar. The third line of research is based on the discovery of a new theoretical tool for investigating the properties of extreme quantum matter, holographic dualties. The main goal of this focus issue is to foster communication and understanding between these three fields. We proceed to describe each in more detail. Ultracold quantum gases offer a new paradigm for the study of nonperturbative quantum many-body physics. With widely tunable interaction strength, spin composition, and temperature, using different hyperfine states one can model spin-1/2 fermions, spin-3/2 fermions, and many other spin structures of bosons, fermions, and mixtures thereof. Such systems have produced a revolution in the study of strongly interacting Fermi systems, for example in the Bardeen-Cooper-Schrieffer (BCS) to Bose-Einstein condensate (BEC) crossover region, where a close collaboration between experimentalists and theorists—typical in this field—enabled ground-breaking studies in an area spanning several decades. Half-way through this crossover, when the scattering length characterizing low-energy collisions diverges, one obtains a unitary quantum gas, which is universal and scale invariant. The unitary gas has close parallels in the hydrodynamics of QCD plasmas, where the ratio of viscosity to entropy density is extremely low and comparable to the minimum viscosity conjecture, an important prediction of AdS/CFT (see below). Exciting developments in the thermodynamic and transport properties of strongly interacting Fermi gases are of broad interdisciplinary appeal and include new studies of high temperature superfluidity, viscosity, spin-transport, spin-imbalanced mixtures, and three-component gases, this last having a close parallel to color superconductivity. Another system important for the field of strongly-interacting quantum fluids was revealed by analysis of data from the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. Despite naive expectations based on asymptotic freedom that the deconfinement of quarks and gluons at high temperatures would lead to a weakly-interacting quark gluon plasma (QGP), the system appeared to be quite strongly coupled. Subsequent estimates of the viscosity-to-entropy ratio suggest that the system is tantalizingly close to the postulated bound from AdS/CFT calculations. The field is quite dynamic at the moment; new measurements are expected from upgraded detectors at RHIC, and an entirely new energy regime is being opened up by heavy ion collisions at the Large Hadron Collider (LHC) at CERN. On the theoretical side, much work remains to be done to extract the precise values of the transport coefficients, and to characterize the nature of quasi-particle excitations in the plasma. Finally, holographic dualities such as anti-de Sitter/conformal field theory (AdS/CFT) have opened a new theoretical window on strongly correlated fluids. Holography relates strongly-interacting quantum many-body systems to weakly-coupled semi-classical gravitational systems, replacing quasiparticles with geometry and translating various difficult questions about quantum fluids into simple and calculable geometric exercises. Already, some of the earliest lessons of holography, such as the conjectural bound on the viscosity-to-entropy ratio, have had a considerable impact on the theoretical and experimental study of strongly correlated fluids, from RHIC to ultracold atoms. More recently, the study of holographic superconductors, non-Fermi liquids and unitary quantum gases has touched off a flurry of interest in holography as a toolkit for studying strongly-correlated many-body systems more generally. Holography also allows us to use results from quantum fluids to study classical and quantum gravity; for example, the phase structure of a quantum many-body system translates into a rich classification of black holes in the dual space-time. Given both the rapid progress in applied holography and the exciting developments in ultracold quantum gases and QCD plasmas discussed above, the time is ripe for new collaborations across traditional lines of specialization. This focus issue explores the convergence between three heretofore separate areas of physics. Over forty research groups have contributed original work, and there will be a review article which complements these advances, overviewing them and presenting them in the context of all three fields and their interconnections. The review concludes with a list of open questions. This sets the tone for the present focus issue; namely, interdisciplinary dialog, openness, innovation, and possibility, an emphasis for which New Journal of Physics, an open-access journal of the highest quality, is especially fitted.
NASA Astrophysics Data System (ADS)
Ribeiro-Palau, Rebeca; Lafont, Fabien; Kazazis, Dimitris; Michon, Adrien; Couturaud, Olivier; Consejo, Christophe; Jouault, Benoit; Poirier, Wilfrid; Schopfer, Felicien
2015-03-01
Replace GaAs-based quantum Hall resistance standards (GaAs-QHRS) by a more convenient one, based on graphene (Gr-QHRS), is an ongoing goal in metrology. The new Gr-QHRS are expected to work in less demanding experimental conditions than GaAs ones. It will open the way to a broad dissemination of quantum standards, potentially towards industrial end-users, and it will support the implementation of a new International System of Units based on fixed fundamental constants. Here, we present accurate quantum Hall resistance measurements in large graphene Hall bars, grown by the hybrid scalable technique of propane/hydrogen chemical vapor deposition (CVD) on silicon carbide (SiC). This new Gr-QHRS shows a relative accuracy of 1 ×10-9 of the Hall resistance under the lowest magnetic field ever achieved in graphene. These experimental conditions surpass those of the most wildely used GaAs-QHRS. These results confirm the promises of graphene for resistance metrology applications and emphasizes the quality of the graphene produced by the CVD on SiC for applications as demanding as the resistance metrology.
D-Glucosamine Conjugation Accelerates the Labeling Efficiency of Quantum Dots in Osteoblastic Cells
Xie, Ming-Fang
2014-01-01
Quantum dots (QDs) are useful imaging tools in the medical and biological fields due to their optical properties, such as a high fluorescence intensity, remarkable resistance to photobleaching, broad absorption spectra, and narrow emission spectra. This is the first study to investigate the uptake of carboxylated QDs conjugated with D-glucosamine (core size: approximately 3 nm, final modified size: 20–30 nm) into cultured osteoblastic cells. The QDs attached to the cell surface and were transported into the cytoplasm within approximately three hours of culture, whose process was clearly demonstrated using specific fluorescent staining of the cell membrane. Although the intranuclear distribution was not observed, a dramatic decrease in the transfer of quantum dots into the cytoplasm was recognized after approximately seven days of culture. Other interesting phenomena include the escape of the quantum dots from lysosomes in the cytoplasm, as confirmed by the merging of both QD fluorescence and specific fluorescent staining of lysosomes in the cytoplasm. These findings suggest that D-glucosamine conjugation enhances proton absorption in acid organelles and promotes the lysosomal escape of QDs. PMID:24818156
Ambient Pressure Structural Quantum Critical Point in the Phase Diagram of (CaxSr1-x)3Rh4Sn13
NASA Astrophysics Data System (ADS)
Goh, Swee K.; Tompsett, D. A.; Saines, P. J.; Chang, H. C.; Matsumoto, T.; Imai, M.; Yoshimura, K.; Grosche, F. M.
The quasiskutterudite superconductor Sr3Rh4Sn13 features a pronounced anomaly in electrical resistivity at T* ~ 138 K. The anomaly is caused by a second-order structural transition, which can be tuned to 0 K by applying physical pressure and chemical pressure via the substitution of Ca for Sr. A broad superconducting dome is centered around the structural quantum critical point. Detailed analysis of the tuning parameter dependence of T* as well as insights from lattice dynamics calculations strongly support the existence of a structural quantum critical point at ambient pressure when the fraction of Ca is 0.9 (xc=0.9). This establishes the (CaxSr1-x)3Rh4Sn13 series as an important system for exploring the physics of structural quantum criticality and its interplay with the superconductivity, without the need of applying high pressures. This work was supported by CUHK (Startup Grant, Direct Grant No. 4053071), UGC Hong Kong (ECS/24300214), Trinity College (Cam- bridge), Grants-in-Aid from MEXT (No. 22350029 and 23550152) and Glasstone Bequest (Oxford).
NASA Astrophysics Data System (ADS)
Alfaro-Martínez, Adrián; Hernández-Calderón, Isaac
2018-02-01
The close coincidence at low temperatures of the HeCd blue laser line (442 nm, Elaser = 2.808 eV) with the ZnSe bandgap, Eg = 2.821 eV, and with the excitonic emission at ˜2.80 eV, allows the observation of peculiar effects during photoluminescence studies of CdSe/ZnSe quantum wells with a typical experimental setup. One effect is the enhancement of the excitonic emission at ˜ 90 - 100 K; the second effect is the presence of strong longitudinal optical (LO) phonon lines (in a broad temperature range) due to resonant Raman scattering. Here, we will show that the enhancement of the excitonic emission, that can be misinterpreted as caused by an intrinsic temperature dependent behavior of the quantum wells, is due to the high absorption of the blue laser light by the barriers when the ZnSe bandgap coincides with Elaser at ˜ 90 K, electron and holes produced in the barriers diffuse to the quantum wells enhancing their excitonic emission.
Classical and quantum theories of proton disorder in hexagonal water ice
NASA Astrophysics Data System (ADS)
Benton, Owen; Sikora, Olga; Shannon, Nic
2016-03-01
It has been known since the pioneering work of Bernal, Fowler, and Pauling that common, hexagonal (Ih) water ice is the archetype of a frustrated material: a proton-bonded network in which protons satisfy strong local constraints (the "ice rules") but do not order. While this proton disorder is well established, there is now a growing body of evidence that quantum effects may also have a role to play in the physics of ice at low temperatures. In this paper, we use a combination of numerical and analytic techniques to explore the nature of proton correlations in both classical and quantum models of ice Ih. In the case of classical ice Ih, we find that the ice rules have two, distinct, consequences for scattering experiments: singular "pinch points," reflecting a zero-divergence condition on the uniform polarization of the crystal, and broad, asymmetric features, coming from its staggered polarization. In the case of the quantum model, we find that the collective quantum tunneling of groups of protons can convert states obeying the ice rules into a quantum liquid, whose excitations are birefringent, emergent photons. We make explicit predictions for scattering experiments on both classical and quantum ice Ih, and show how the quantum theory can explain the "wings" of incoherent inelastic scattering observed in recent neutron scattering experiments [Bove et al., Phys. Rev. Lett. 103, 165901 (2009), 10.1103/PhysRevLett.103.165901]. These results raise the intriguing possibility that the protons in ice Ih could form a quantum liquid at low temperatures, in which protons are not merely disordered, but continually fluctuate between different configurations obeying the ice rules.
From Quantum Moment to Ritual Moment: Notions of Time and the Development of Theological Models.
NASA Astrophysics Data System (ADS)
Robinson, David Clifton
1995-01-01
Discussion of models in theology has become a significant issue since the mid nineteen eighties. Whether in matters of soteriology, ecclesiology, missiology, or liturgy, many theologians have begun to examine the model structures of their specialties. Such an examination can serve as the foundation for scholarly contact with other disciplines, both in the humanities and the sciences, where the analysis of models is already well established. To date, there has been no broadly interdisciplinary inspection of such models and their points of commonality with theological disciplines. This dissertation investigates models (specifically, temporal models) in six different fields: cognitive psychology, hermeneutics, quantum and relativity physics, the philosophy of history and narrative, music, and ritual studies. Within these fields, specific attention is given to the role of symbol systems and metaphoric language, as well as to the phenomenology of temporal experience, in the formulation and development of models of time. The intention is to develop a prospectus for a theological model of time that is epistemologically sound, linguistically clear, and experientially grounded. In the area of cognitive psychology, the work of the biogenetic structuralist school, and that of Jean Piaget, are highlighted. The hermeneutic discussion focuses on the metaphoric studies of George Lakoff and Mark Johnson, as well as the writings of Hans Georg Gadamer. In the areas of quantum and relativity physics, the primary figures considered are Mary Hesse, Ian Barbour, Stephen Hawking, and P. C. W. Davies. History and narrative are approached through the metaphoric and historical analyses of Paul Ricoeur. The phenomenological and musicological issues of musical time are explored, with emphasis on the work of Susannne Langer, Henri Bergson, Jonathan Kramer, and Olivier Messiaen. Ritual notions of time are investigated in the works of Mircea Eliade, Victor Turner, Clifford Geertz, Pierre Bourdieu, and Ron Grimes. The intention is as much symphonic as it is analytic. An interdisciplinary investigation of temporal models can provide a forum, a point of shared conversation, for the meeting of a wide spectrum of scholarly disciplines. It is toward such conversation that this investigation is directed.
Dong, Haifeng; Dai, Wenhao; Ju, Huangxian; Lu, Huiting; Wang, Shiyan; Xu, Liping; Zhou, Shu-Feng; Zhang, Yue; Zhang, Xueji
2015-05-27
Photoluminescent (PL) graphene quantum dots (GQDs) with large surface area and superior mechanical flexibility exhibit fascinating optical and electronic properties and possess great promising applications in biomedical engineering. Here, a multifunctional nanocomposite of poly(l-lactide) (PLA) and polyethylene glycol (PEG)-grafted GQDs (f-GQDs) was proposed for simultaneous intracellular microRNAs (miRNAs) imaging analysis and combined gene delivery for enhanced therapeutic efficiency. The functionalization of GQDs with PEG and PLA imparts the nanocomposite with super physiological stability and stable photoluminescence over a broad pH range, which is vital for cell imaging. Cell experiments demonstrate the f-GQDs excellent biocompatibility, lower cytotoxicity, and protective properties. Using the HeLa cell as a model, we found the f-GQDs effectively delivered a miRNA probe for intracellular miRNA imaging analysis and regulation. Notably, the large surface of GQDs was capable of simultaneous adsorption of agents targeting miRNA-21 and survivin, respectively. The combined conjugation of miRNA-21-targeting and survivin-targeting agents induced better inhibition of cancer cell growth and more apoptosis of cancer cells, compared with conjugation of agents targeting miRNA-21 or survivin alone. These findings highlight the promise of the highly versatile multifunctional nanocomposite in biomedical application of intracellular molecules analysis and clinical gene therapeutics.
Bernstein, Daniel J; Lange, Tanja
2017-09-13
Cryptography is essential for the security of online communication, cars and implanted medical devices. However, many commonly used cryptosystems will be completely broken once large quantum computers exist. Post-quantum cryptography is cryptography under the assumption that the attacker has a large quantum computer; post-quantum cryptosystems strive to remain secure even in this scenario. This relatively young research area has seen some successes in identifying mathematical operations for which quantum algorithms offer little advantage in speed, and then building cryptographic systems around those. The central challenge in post-quantum cryptography is to meet demands for cryptographic usability and flexibility without sacrificing confidence.
NASA Astrophysics Data System (ADS)
Bernstein, Daniel J.; Lange, Tanja
2017-09-01
Cryptography is essential for the security of online communication, cars and implanted medical devices. However, many commonly used cryptosystems will be completely broken once large quantum computers exist. Post-quantum cryptography is cryptography under the assumption that the attacker has a large quantum computer; post-quantum cryptosystems strive to remain secure even in this scenario. This relatively young research area has seen some successes in identifying mathematical operations for which quantum algorithms offer little advantage in speed, and then building cryptographic systems around those. The central challenge in post-quantum cryptography is to meet demands for cryptographic usability and flexibility without sacrificing confidence.
Detection of viral infections using colloidal quantum dots
NASA Astrophysics Data System (ADS)
Bentzen, Elizabeth L.; House, Frances S.; Utley, Thomas J.; Crowe, James E., Jr.; Wright, David W.
2006-02-01
Fluorescence is a tool widely employed in biological assays. Fluorescent semiconducting nanocrystals, quantum dots (QDs), are beginning to find their way into the tool box of many biologist, chemist and biochemist. These quantum dots are an attractive alternative to the traditional organic dyes due to their broad excitation spectra, narrow emission spectra and photostability. Quantum dots were used to detect and monitor the progession of viral glycoproteins, F (fusion) and G (attachment), from Respiratory Syncytial Virus (RSV) in HEp-2 cells. Additionally, oligo-Qdot RNA probes have been developed for identification and detection of mRNA of the N(nucleocapsid) protein for RSV. The use of quantum dot-FISH probes provides another confirmatory route to diagnostics as well as a new class of probes for monitoring the flux and fate of viral RNA RSV is the most common cause of lower respiratory tract infection in children worldwide and the most common cause of hospitalization of infants in the US. Antiviral therapy is available for treatment of RSV but is only effective if given within the first 48 hours of infection. Existing test methods require a virus level of at least 1000-fold of the amount needed for infection of most children and require several days to weeks to obtain results. The use of quantum dots may provide an early, rapid method for detection and provide insight into the trafficking of viral proteins during the course of infection.
Prospects and applications near ferroelectric quantum phase transitions: a key issues review.
Chandra, P; Lonzarich, G G; Rowley, S E; Scott, J F
2017-11-01
The emergence of complex and fascinating states of quantum matter in the neighborhood of zero temperature phase transitions suggests that such quantum phenomena should be studied in a variety of settings. Advanced technologies of the future may be fabricated from materials where the cooperative behavior of charge, spin and current can be manipulated at cryogenic temperatures. The progagating lattice dynamics of displacive ferroelectrics make them appealing for the study of quantum critical phenomena that is characterized by both space- and time-dependent quantities. In this key issues article we aim to provide a self-contained overview of ferroelectrics near quantum phase transitions. Unlike most magnetic cases, the ferroelectric quantum critical point can be tuned experimentally to reside at, above or below its upper critical dimension; this feature allows for detailed interplay between experiment and theory using both scaling and self-consistent field models. Empirically the sensitivity of the ferroelectric T c 's to external and to chemical pressure gives practical access to a broad range of temperature behavior over several hundreds of Kelvin. Additional degrees of freedom like charge and spin can be added and characterized systematically. Satellite memories, electrocaloric cooling and low-loss phased-array radar are among possible applications of low-temperature ferroelectrics. We end with open questions for future research that include textured polarization states and unusual forms of superconductivity that remain to be understood theoretically.
NASA Astrophysics Data System (ADS)
Nesvizhevsky, Valery
2013-03-01
The `whispering gallery' effect has been known since ancient times for sound waves in air, later in water and more recently for a broad range of electromagnetic waves: radio, optics, Roentgen and so on. It is intensively used and explored due to its numerous crucial applications. It consists of wave localization near a curved reflecting surface and is expected for waves of various natures, for instance, for neutrons and (anti)atoms. For (anti)matter waves, it includes a new feature: a massive particle is settled in quantum states, with parameters depending on its mass. In this talk, we present the first observation of the quantum whispering-gallery effect for matter particles (cold neutrons) 1-2. This phenomenon provides an example of an exactly solvable problem analogous to the `quantum bouncer'; it is complementary to recently discovered gravitational quantum states of neutrons3. These two phenomena provide a direct demonstration of the weak equivalence principle for a massive particle in a quantum state. Deeply bound long-living states are weakly sensitive to surface potential; highly excited short-living states are very sensitive to the wall nuclear potential shape. Therefore, they are a promising tool for studying fundamental neutron-matter interactions, quantum neutron optics and surface physics effects. Analogous phenomena could be measured with atoms and anti-atoms 4-5.
Quantum image median filtering in the spatial domain
NASA Astrophysics Data System (ADS)
Li, Panchi; Liu, Xiande; Xiao, Hong
2018-03-01
Spatial filtering is one principal tool used in image processing for a broad spectrum of applications. Median filtering has become a prominent representation of spatial filtering because its performance in noise reduction is excellent. Although filtering of quantum images in the frequency domain has been described in the literature, and there is a one-to-one correspondence between linear spatial filters and filters in the frequency domain, median filtering is a nonlinear process that cannot be achieved in the frequency domain. We therefore investigated the spatial filtering of quantum image, focusing on the design method of the quantum median filter and applications in image de-noising. To this end, first, we presented the quantum circuits for three basic modules (i.e., Cycle Shift, Comparator, and Swap), and then, we design two composite modules (i.e., Sort and Median Calculation). We next constructed a complete quantum circuit that implements the median filtering task and present the results of several simulation experiments on some grayscale images with different noise patterns. Although experimental results show that the proposed scheme has almost the same noise suppression capacity as its classical counterpart, the complexity analysis shows that the proposed scheme can reduce the computational complexity of the classical median filter from the exponential function of image size n to the second-order polynomial function of image size n, so that the classical method can be speeded up.
Prospects and applications near ferroelectric quantum phase transitions: a key issues review
NASA Astrophysics Data System (ADS)
Chandra, P.; Lonzarich, G. G.; Rowley, S. E.; Scott, J. F.
2017-11-01
The emergence of complex and fascinating states of quantum matter in the neighborhood of zero temperature phase transitions suggests that such quantum phenomena should be studied in a variety of settings. Advanced technologies of the future may be fabricated from materials where the cooperative behavior of charge, spin and current can be manipulated at cryogenic temperatures. The progagating lattice dynamics of displacive ferroelectrics make them appealing for the study of quantum critical phenomena that is characterized by both space- and time-dependent quantities. In this key issues article we aim to provide a self-contained overview of ferroelectrics near quantum phase transitions. Unlike most magnetic cases, the ferroelectric quantum critical point can be tuned experimentally to reside at, above or below its upper critical dimension; this feature allows for detailed interplay between experiment and theory using both scaling and self-consistent field models. Empirically the sensitivity of the ferroelectric T c’s to external and to chemical pressure gives practical access to a broad range of temperature behavior over several hundreds of Kelvin. Additional degrees of freedom like charge and spin can be added and characterized systematically. Satellite memories, electrocaloric cooling and low-loss phased-array radar are among possible applications of low-temperature ferroelectrics. We end with open questions for future research that include textured polarization states and unusual forms of superconductivity that remain to be understood theoretically.
Closed-loop and robust control of quantum systems.
Chen, Chunlin; Wang, Lin-Cheng; Wang, Yuanlong
2013-01-01
For most practical quantum control systems, it is important and difficult to attain robustness and reliability due to unavoidable uncertainties in the system dynamics or models. Three kinds of typical approaches (e.g., closed-loop learning control, feedback control, and robust control) have been proved to be effective to solve these problems. This work presents a self-contained survey on the closed-loop and robust control of quantum systems, as well as a brief introduction to a selection of basic theories and methods in this research area, to provide interested readers with a general idea for further studies. In the area of closed-loop learning control of quantum systems, we survey and introduce such learning control methods as gradient-based methods, genetic algorithms (GA), and reinforcement learning (RL) methods from a unified point of view of exploring the quantum control landscapes. For the feedback control approach, the paper surveys three control strategies including Lyapunov control, measurement-based control, and coherent-feedback control. Then such topics in the field of quantum robust control as H(∞) control, sliding mode control, quantum risk-sensitive control, and quantum ensemble control are reviewed. The paper concludes with a perspective of future research directions that are likely to attract more attention.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qayyum, Hamza; Chen, Szu-yuan, E-mail: sychen@ltl.iams.sinica.edu.tw; Department of Physics, National Central University, Zhongli, Taoyuan 320, Taiwan
2016-05-15
The capability to fabricate Ge/Si quantum dots with small dot size and high dot density uniformly over a large area is crucial for many applications. In this work, we demonstrate that this can be achieved by scanning a pre-deposited Ge thin layer on Si substrate with a line-focused pulsed laser beam to induce formation of quantum dots. With suitable setting, Ge/Si quantum dots with a mean height of 2.9 nm, a mean diameter of 25 nm, and a dot density of 6×10{sup 10} cm{sup −2} could be formed over an area larger than 4 mm{sup 2}. The average size ofmore » the laser-induced quantum dots is smaller while their density is higher than that of quantum dots grown by using Stranski-Krastanov growth mode. Based on the dependence of the characteristics of quantum dots on the laser parameters, a model consisting of laser-induced strain, surface diffusion, and Ostwald ripening is proposed for the mechanism underlying the formation of the Ge/Si quantum dots. The technique demonstrated could be applicable to other materials besides Ge/Si.« less
Ultra-Broad-Band Optical Parametric Amplifier or Oscillator
NASA Technical Reports Server (NTRS)
Strekalov, Dmitry; Matsko, Andrey; Savchenkov, Anatolly; Maleki, Lute
2009-01-01
A concept for an ultra-broad-band optical parametric amplifier or oscillator has emerged as a by-product of a theoretical study in fundamental quantum optics. The study was originally intended to address the question of whether the two-photon temporal correlation function of light [in particular, light produced by spontaneous parametric down conversion (SPDC)] can be considerably narrower than the inverse of the spectral width (bandwidth) of the light. The answer to the question was found to be negative. More specifically, on the basis of the universal integral relations between the quantum two-photon temporal correlation and the classical spectrum of light, it was found that the lower limit of two-photon correlation time is set approximately by the inverse of the bandwidth. The mathematical solution for the minimum two-photon correlation time also provides the minimum relative frequency dispersion of the down-converted light components; in turn, the minimum relative frequency dispersion translates to the maximum bandwidth, which is important for the design of an ultra-broad-band optical parametric oscillator or amplifier. In the study, results of an analysis of the general integral relations were applied in the case of an optically nonlinear, frequency-dispersive crystal in which SPDC produces collinear photons. Equations were found for the crystal orientation and pump wavelength, specific for each parametric-down-converting crystal, that eliminate the relative frequency dispersion of collinear degenerate (equal-frequency) signal and idler components up to the fourth order in the frequency-detuning parameter
NASA Astrophysics Data System (ADS)
Wald, Robert M.
2004-01-01
I am very pleased to be assuming the Editorship of Classical and Quantum Gravity for the next five years. I hope to continue the successful policies that have made this journal well known for its openness to new developments in the field, for the efficiency of its editorial process, and for the quality and importance of its articles. Classical and Quantum Gravity has truly blossomed under the guidance of its previous Editors-in-Chief, Malcolm MacCallum, Kellogg Stelle, Gary Gibbons and Hermann Nicolai. During the past 12 months, a total of 847 manuscripts have been submitted, representing an increase of nearly 50% over the past four years alone. Beginning in 2000, the frequency of publication was increased from 12 to 24 issues per year. The rate of full-text downloads is now 7200 per month, nearly a three-fold increase over four years. For regular manuscripts, the average time between receipt and first decision now stands at only 59 days, the receipt-to-acceptance time is now only 72 days, and the receipt-to-online publication time is only 116 days. The corresponding times for letters are 36 days, 44 days and 62 days, respectively. Much of the improvement in refereeing and publication times can be directly attributed to the state-of-the art Web-based refereeing system, maintained by the able administration of the IOP editorial team, consisting of Andrew Wray, Joe Tennant, Joanne Rowse and Susannah Bruce. Both the growth in journal size and the decrease in publication times have been accomplished without any decrease in quality. As one objective measure of this, the 'impact factor' index of Classical and Quantum Gravity has risen steadily over the past four years. Even more significantly, Classical and Quantum Gravity has undergone major intellectual growth since its founding. In 1984, modern string theory was in the process of being born, the subject of 'loop quantum gravity' did not exist at all, 'new inflation' truly was 'new', and the possibility of observing gravitational radiation by laser interferometry was not much more than a dream. Similarly, neither the power of modern desktop computers nor the wealth of present cosmological data was widely anticipated. The subjects of 'classical and quantum gravity' were very different in 1984 from what they are in 2004, but the journal Classical and Quantum Gravity has kept up with the changes and developments (and, in some cases, revolutions) that have occurred in these areas. Much of this openness towards new developments in the field can be attributed to the distinguished Editorial Board of Classical and Quantum Gravity, comprising a very broad mix of leading researchers, many of whom are working at the cutting edge of research in their sub-fields. My goal during the next five years is to maintain the open and forward-looking approach that has been characteristic of Classical and Quantum Gravity, while at the same time ensuring that the highest intellectual standards are applied to all work published by the journal.
Quantum machine learning for quantum anomaly detection
NASA Astrophysics Data System (ADS)
Liu, Nana; Rebentrost, Patrick
2018-04-01
Anomaly detection is used for identifying data that deviate from "normal" data patterns. Its usage on classical data finds diverse applications in many important areas such as finance, fraud detection, medical diagnoses, data cleaning, and surveillance. With the advent of quantum technologies, anomaly detection of quantum data, in the form of quantum states, may become an important component of quantum applications. Machine-learning algorithms are playing pivotal roles in anomaly detection using classical data. Two widely used algorithms are the kernel principal component analysis and the one-class support vector machine. We find corresponding quantum algorithms to detect anomalies in quantum states. We show that these two quantum algorithms can be performed using resources that are logarithmic in the dimensionality of quantum states. For pure quantum states, these resources can also be logarithmic in the number of quantum states used for training the machine-learning algorithm. This makes these algorithms potentially applicable to big quantum data applications.
Broadband infrared light emitting waveguides based on UV curable PbS quantum dot composites
NASA Astrophysics Data System (ADS)
Shen, Kai; Baig, Sarfaraz; Jiang, Guomin; Paik, Young-hun; Kim, Sung Jin; Wang, Michael R.
2018-02-01
We present herein the active PbS-photopolymer waveguide fabricated by vacuum assisted microfluidic (VAM) soft lithography technique. The PbS Quantum Dots (QDs) were synthesized using colloidal chemistry methods with tunable sizes and emission wavelengths, resulting in efficient light emission around 1000 nm center wavelength. The PbS QDs have demonstrated much better solubility in our newly synthesized UV curable polymer than SU-8 photoresist, verified by Photoluminescence (PL) testing. Through refractive index control, the PbS QDs-polymer core material and polymer cladding material can efficiently confine the infrared emitting light with a broad spectral bandwidth of 180 nm. Both single-mode and multi-mode light emitting waveguides have been realized.
A quantum dot-spore nanocomposite pH sensor.
Zhang, Xingya; Li, Zheng; Zhou, Tao; Zhou, Qian; Zeng, Zhiming; Xu, Xiangdong; Hu, Yonggang
2016-04-01
A new quantum dot (QD)-based pH sensor design is investigated. The sensor is synthesized based on the self-assembly of green QDs onto treated spores to form QD@spore nanocomposites. The nanocomposites are characterized using laser scanning confocal microscopy, transmission electron microscope, and fluorescence spectroscopy, among others. Fluorescence measurements showed that these nanocomposites are sensitive to pH in a broad pH range of 5.0-10.0. The developed pH sensors have been satisfactorily applied for pH estimation of real samples and are comparable with those of the commercial assay method, indicating the potential practical application of the pH sensors. Copyright © 2015 Elsevier B.V. All rights reserved.
Quantum technology: from research to application
NASA Astrophysics Data System (ADS)
Schleich, Wolfgang P.; Ranade, Kedar S.; Anton, Christian; Arndt, Markus; Aspelmeyer, Markus; Bayer, Manfred; Berg, Gunnar; Calarco, Tommaso; Fuchs, Harald; Giacobino, Elisabeth; Grassl, Markus; Hänggi, Peter; Heckl, Wolfgang M.; Hertel, Ingolf-Volker; Huelga, Susana; Jelezko, Fedor; Keimer, Bernhard; Kotthaus, Jörg P.; Leuchs, Gerd; Lütkenhaus, Norbert; Maurer, Ueli; Pfau, Tilman; Plenio, Martin B.; Rasel, Ernst Maria; Renn, Ortwin; Silberhorn, Christine; Schiedmayer, Jörg; Schmitt-Landsiedel, Doris; Schönhammer, Kurt; Ustinov, Alexey; Walther, Philip; Weinfurter, Harald; Welzl, Emo; Wiesendanger, Roland; Wolf, Stefan; Zeilinger, Anton; Zoller, Peter
2016-05-01
The term quantum physics refers to the phenomena and characteristics of atomic and subatomic systems which cannot be explained by classical physics. Quantum physics has had a long tradition in Germany, going back nearly 100 years. Quantum physics is the foundation of many modern technologies. The first generation of quantum technology provides the basis for key areas such as semiconductor and laser technology. The "new" quantum technology, based on influencing individual quantum systems, has been the subject of research for about the last 20 years. Quantum technology has great economic potential due to its extensive research programs conducted in specialized quantum technology centres throughout the world. To be a viable and active participant in the economic potential of this field, the research infrastructure in Germany should be improved to facilitate more investigations in quantum technology research.
Ivanov, Mikhail; Dubernet, Marie-Lise; Babikov, Dmitri
2014-04-07
The mixed quantum/classical theory (MQCT) formulated in the space-fixed reference frame is used to compute quenching cross sections of several rotationally excited states of water molecule by impact of He atom in a broad range of collision energies, and is tested against the full-quantum calculations on the same potential energy surface. In current implementation of MQCT method, there are two major sources of errors: one affects results at energies below 10 cm(-1), while the other shows up at energies above 500 cm(-1). Namely, when the collision energy E is below the state-to-state transition energy ΔE the MQCT method becomes less accurate due to its intrinsic classical approximation, although employment of the average-velocity principle (scaling of collision energy in order to satisfy microscopic reversibility) helps dramatically. At higher energies, MQCT is expected to be accurate but in current implementation, in order to make calculations computationally affordable, we had to cut off the basis set size. This can be avoided by using a more efficient body-fixed formulation of MQCT. Overall, the errors of MQCT method are within 20% of the full-quantum results almost everywhere through four-orders-of-magnitude range of collision energies, except near resonances, where the errors are somewhat larger.
Tunneling-thermally activated vacancy diffusion mechanism in quantum crystals
NASA Astrophysics Data System (ADS)
Natsik, V. D.; Smirnov, S. N.
2017-10-01
We consider a quasiparticle model of a vacancy in a quantum crystal, with metastable quantum states localized at the lattice sites in potential wells of the crystal field. It is assumed that the quantum dynamics of such vacancies can be described in the semi-classical approximation, where its spectrum consists of a broad band with several split-off levels. The diffusive movement of the vacancy in the crystal volume is reduced to a sequence of tunneling and thermally activated hops between the lattice cites. The temperature dependence of the vacancy diffusion coefficient shows a monotonic decrease during cooling with a sharp transition from an exponential dependence that is characteristic of a high-temperature thermally activated diffusion, to a non-thermal tunneling process in the region of extremely low temperatures. Similar trends have been recently observed in an experimental study of mass-transfer in the 4He and 3He crystals [V. A. Zhuchkov et al., Low Temp. Phys. 41, 169 (2015); Low Temp. Phys. 42, 1075 (2016)]. This mechanism of vacancy diffusion and its analysis complement the concept of a diffusional flow of a defection-quasiparticle quantum gas with a band energy spectrum proposed by Andreev and Lifshitz [JETP 29, 1107 (1969)] and Andreev [Sov. Phys. Usp. 19, 137 (1976)].
RESEARCH AREA 7.1: Exploring the Systematics of Controlling Quantum Phenomena
2016-10-05
the bottom to the top of the landscape. Computational analyses for simple model quantum systems are performed to ascertain the relative abundance of...SECURITY CLASSIFICATION OF: This research is concerned with the theoretical and experimental control quantum dynamics phenomena. Advances include new...algorithms to accelerate quantum control as well as provide physical insights into the controlled dynamics. The latter research includes the
[Definition of quantum efficiency of X-ray detectors].
Zelikman, M I
2001-01-01
Different definitions available in the literature on the quantum efficiency of X-ray detectors are presented and compared. The relationship of this parameter to spatial frequencies for quantum accounting receivers and energy accumulating ones is analyzed. A procedure is proposed for evaluating the quantum efficiency of the detectors in the area of zero spatial frequencies, which is rather simple and requires no special testing equipment.
this award for his wide-ranging experimental physics research accomplishments. From 2015-2017 Fenton is a JQI Fellow and assistant professor of physics, and his chief area of research is experimental starting a new experimental research program focused on quantum memory and quantum information in solid
Genuine quantum correlations in quantum many-body systems: a review of recent progress
NASA Astrophysics Data System (ADS)
De Chiara, Gabriele; Sanpera, Anna
2018-07-01
Quantum information theory has considerably helped in the understanding of quantum many-body systems. The role of quantum correlations and in particular, bipartite entanglement, has become crucial to characterise, classify and simulate quantum many body systems. Furthermore, the scaling of entanglement has inspired modifications to numerical techniques for the simulation of many-body systems leading to the, now established, area of tensor networks. However, the notions and methods brought by quantum information do not end with bipartite entanglement. There are other forms of correlations embedded in the ground, excited and thermal states of quantum many-body systems that also need to be explored and might be utilised as potential resources for quantum technologies. The aim of this work is to review the most recent developments regarding correlations in quantum many-body systems focussing on multipartite entanglement, quantum nonlocality, quantum discord, mutual information but also other non classical measures of correlations based on quantum coherence. Moreover, we also discuss applications of quantum metrology in quantum many-body systems.
Superconductor Digital-RF Receiver Systems
NASA Astrophysics Data System (ADS)
Mukhanov, Oleg A.; Kirichenko, Dmitri; Vernik, Igor V.; Filippov, Timur V.; Kirichenko, Alexander; Webber, Robert; Dotsenko, Vladimir; Talalaevskii, Andrei; Tang, Jia Cao; Sahu, Anubhav; Shevchenko, Pavel; Miller, Robert; Kaplan, Steven B.; Sarwana, Saad; Gupta, Deepnarayan
Digital superconductor electronics has been experiencing rapid maturation with the emergence of smaller-scale, lower-cost communications applications which became the major technology drivers. These applications are primarily in the area of wireless communications, radar, and surveillance as well as in imaging and sensor systems. In these areas, the fundamental advantages of superconductivity translate into system benefits through novel Digital-RF architectures with direct digitization of wide band, high frequency radio frequency (RF) signals. At the same time the availability of relatively small 4K cryocoolers has lowered the foremost market barrier for cryogenically-cooled digital electronic systems. Recently, we have achieved a major breakthrough in the development, demonstration, and successful delivery of the cryocooled superconductor digital-RF receivers directly digitizing signals in a broad range from kilohertz to gigahertz. These essentially hybrid-technology systems combine a variety of superconductor and semiconductor technologies packaged with two-stage commercial cryocoolers: cryogenic Nb mixed-signal and digital circuits based on Rapid Single Flux Quantum (RSFQ) technology, room-temperature amplifiers, FPGA processing and control circuitry. The demonstrated cryocooled digital-RF systems are the world's first and fastest directly digitizing receivers operating with live satellite signals in X-band and performing signal acquisition in HF to L-band at ˜30GHz clock frequencies.
Field and long-term demonstration of a wide area quantum key distribution network.
Wang, Shuang; Chen, Wei; Yin, Zhen-Qiang; Li, Hong-Wei; He, De-Yong; Li, Yu-Hu; Zhou, Zheng; Song, Xiao-Tian; Li, Fang-Yi; Wang, Dong; Chen, Hua; Han, Yun-Guang; Huang, Jing-Zheng; Guo, Jun-Fu; Hao, Peng-Lei; Li, Mo; Zhang, Chun-Mei; Liu, Dong; Liang, Wen-Ye; Miao, Chun-Hua; Wu, Ping; Guo, Guang-Can; Han, Zheng-Fu
2014-09-08
A wide area quantum key distribution (QKD) network deployed on communication infrastructures provided by China Mobile Ltd. is demonstrated. Three cities and two metropolitan area QKD networks were linked up to form the Hefei-Chaohu-Wuhu wide area QKD network with over 150 kilometers coverage area, in which Hefei metropolitan area QKD network was a typical full-mesh core network to offer all-to-all interconnections, and Wuhu metropolitan area QKD network was a representative quantum access network with point-to-multipoint configuration. The whole wide area QKD network ran for more than 5000 hours, from 21 December 2011 to 19 July 2012, and part of the network stopped until last December. To adapt to the complex and volatile field environment, the Faraday-Michelson QKD system with several stability measures was adopted when we designed QKD devices. Through standardized design of QKD devices, resolution of symmetry problem of QKD devices, and seamless switching in dynamic QKD network, we realized the effective integration between point-to-point QKD techniques and networking schemes.
A short walk in quantum probability
NASA Astrophysics Data System (ADS)
Hudson, Robin
2018-04-01
This is a personal survey of aspects of quantum probability related to the Heisenberg commutation relation for canonical pairs. Using the failure, in general, of non-negativity of the Wigner distribution for canonical pairs to motivate a more satisfactory quantum notion of joint distribution, we visit a central limit theorem for such pairs and a resulting family of quantum planar Brownian motions which deform the classical planar Brownian motion, together with a corresponding family of quantum stochastic areas. This article is part of the themed issue `Hilbert's sixth problem'.
Study of a monogamous entanglement measure for three-qubit quantum systems
NASA Astrophysics Data System (ADS)
Li, Qiting; Cui, Jianlian; Wang, Shuhao; Long, Gui-Lu
2016-06-01
The entanglement quantification and classification of multipartite quantum states is an important research area in quantum information. In this paper, in terms of the reduced density matrices corresponding to all possible partitions of the entire system, a bounded entanglement measure is constructed for arbitrary-dimensional multipartite quantum states. In particular, for three-qubit quantum systems, we prove that our entanglement measure satisfies the relation of monogamy. Furthermore, we present a necessary condition for characterizing maximally entangled states using our entanglement measure.
Dynamics of a broad-band quantum cascade laser: from chaos to coherent dynamics and mode-locking.
Columbo, L L; Barbieri, S; Sirtori, C; Brambilla, M
2018-02-05
The dynamics of a multimode quantum cascade laser, are studied in a model based on effective semiconductor Maxwell-Bloch equations, encompassing key features for the radiation-medium interaction such as an asymmetric frequency dependent gain and refractive index as well as the phase-amplitude coupling provided by the linewidth enhancement factor. By considering its role and that of the free spectral range, we find the conditions in which the traveling wave emitted by the laser at the threshold can be destabilized by adjacent modes, thus leading the laser emission towards chaotic or regular multimode dynamics. In the latter case our simulations show that the field oscillations are associated to self-confined structures which travel along the laser cavity, bridging mode-locking and solitary wave propagation. In addition, we show how a RF modulation of the bias current leads to active mode-locking yielding high-contrast, picosecond pulses. Our results compare well with recent experiments on broad-band THz-QCLs and may help in the understanding of the conditions for the generation of ultrashort pulses and comb operation in mid-IR and THz spectral regions.
Breath analysis with broadly tunable quantum cascade lasers.
Wörle, Katharina; Seichter, Felicia; Wilk, Andreas; Armacost, Chris; Day, Tim; Godejohann, Matthias; Wachter, Ulrich; Vogt, Josef; Radermacher, Peter; Mizaikoff, Boris
2013-03-05
With the availability of broadly tunable external cavity quantum cascade lasers (EC-QCLs), particularly bright mid-infrared (MIR; 3-20 μm) light sources are available offering high spectral brightness along with an analytically relevant spectral tuning range of >2 μm. Accurate isotope ratio determination of (12)CO2 and (13)CO2 in exhaled breath is of critical importance in the field of breath analysis, which may be addressed via measurements in the MIR spectral regime. Here, we combine for the first time an EC-QCL tunable across the (12)CO2/(13)CO2 spectral band with a miniaturized hollow waveguide gas cell for quantitatively determining the (12)CO2/(13)CO2 ratio within the exhaled breath of mice. Due to partially overlapping spectral features, these studies are augmented by appropriate multivariate data evaluation and calibration techniques based on partial least-squares regression along with optimized data preprocessing. Highly accurate determinations of the isotope ratio within breath samples collected from a mouse intensive care unit validated via hyphenated gas chromatography-mass spectrometry confirm the viability of IR-HWG-EC-QCL sensing techniques for isotope-selective exhaled breath analysis.
Developing and Evaluating Animations for Teaching Quantum Mechanics Concepts
ERIC Educational Resources Information Center
Kohnle, Antje; Douglass, Margaret; Edwards, Tom J.; Gillies, Alastair D.; Hooley, Christopher A.; Sinclair, Bruce D.
2010-01-01
In this paper, we describe animations and animated visualizations for introductory and intermediate-level quantum mechanics instruction developed at the University of St Andrews. The animations aim to help students build mental representations of quantum mechanics concepts. They focus on known areas of student difficulty and misconceptions by…
The application of microwave photonic detection in quantum communication
NASA Astrophysics Data System (ADS)
Diao, Wenting; Zhuang, Yongyong; Song, Xuerui; Wang, Liujun; Duan, Chongdi
2018-03-01
Quantum communication has attracted much attention in recent years, provides an ultimate level of security, and uniquely it is one of the most likely practical quantum technologies at present. In order to realize global coverage of quantum communication networks, not only need the help of satellite to realize wide area quantum communication, need implementation of optical fiber system to realize city to city quantum communication, but also, it is necessary to implement end-to-end quantum communications intercity and wireless quantum communications that can be received by handheld devices. Because of the limitation of application of light in buildings, it needs quantum communication with microwave band to achieve quantum reception of wireless handheld devices. The single microwave photon energy is very low, it is difficult to directly detect, which become a difficulty in microwave quantum detection. This paper summarizes the mode of single microwave photon detection methods and the possibility of application in microwave quantum communication, and promotes the development of quantum communication in microwave band and quantum radar.
Private quantum computation: an introduction to blind quantum computing and related protocols
NASA Astrophysics Data System (ADS)
Fitzsimons, Joseph F.
2017-06-01
Quantum technologies hold the promise of not only faster algorithmic processing of data, via quantum computation, but also of more secure communications, in the form of quantum cryptography. In recent years, a number of protocols have emerged which seek to marry these concepts for the purpose of securing computation rather than communication. These protocols address the task of securely delegating quantum computation to an untrusted device while maintaining the privacy, and in some instances the integrity, of the computation. We present a review of the progress to date in this emerging area.
NASA Astrophysics Data System (ADS)
Das, Tapan Kumar; Ilaiyaraja, P.; Sudakar, C.
2017-05-01
We demonstrate white light emission (WLE) from (Cd,Zn)Se system, which is a composite of Zn alloyed CdSe quantum dot and ZnSe-amorphous (ZnSe-a) phase. Detailed structural and photoluminescence emission studies on pure CdSe and (Cd,Zn)Se show cubic zinc blende structure in the size range of 2.5 to 5 nm. (Cd,Zn)Se quantum dots (QDs) also have a significant fraction of ZnSe-a phase. The near-band-edge green-emission in crystalline CdSe and (Cd,Zn)Se is tunable between 500 to 600 nm. The (Cd,Zn)Se system also exhibits a broad, deep defect level (DL) red-emission in the range 600 to 750 nm and a sharp ZnSe near-band-edge blue-emission (ZS-NBE) between 445 to 465 nm. While DL and CdSe near-band-edge (CS-NBE) emissions significantly shift with the size of QD due to strong confinement effect, the ZS-NBE show minimal change in peak position indicating a weak confinement effect. The intensities of ZS-NBE and DL emissions also exhibit a strong dependence on the QD size. A gamut of emission colors is obtained by combining the CS-NBE with the ZS-NBE emission and broad DL emission in (Cd,Zn)Se system. Interestingly, we find the convergence of Commission Internationale de l'Eclairage (CIE) coordinates towards the white light with increasing Zn concentration in CdSe. We demonstrate by combining these three emissions in a proper weight ratio WLE can be achieved. Cd1-yZnySe (y = 0. 5; QD size ˜4.9 nm) alloy with a maximum quantum yield of 57% exhibits CIE coordinates of (0.39, 0.4), color rendering index (CRI) of 82, correlated color temperature (CCT) of 3922 K, and Duv of 0.0078 which is very promising for white light applications.
The case for artificial black holes.
Leonhardt, Ulf; Philbin, Thomas G
2008-08-28
The event horizon is predicted to generate particles from the quantum vacuum, an effect that bridges three areas of physics--general relativity, quantum mechanics and thermodynamics. The quantum radiation of real black holes is too feeble to be detectable, but black-hole analogues may probe several aspects of quantum black holes. In this paper, we explain in simple terms some of the motivations behind the study of artificial black holes.
Ultralow Noise Monolithic Quantum Dot Photonic Oscillators
2013-10-28
HBCU/MI) ULTRALOW NOISE MONOLITHIC QUANTUM DOT PHOTONIC OSCILLATORS LUKE LESTER UNIVERSITY OF NEW MEXICO 10/28/2013 Final Report DISTRIBUTION A...TELEPHONE NUMBER (Include area code) 24-10-2013 Final 01-06-2010 to 31-05-2013 Ultralow Noise Monolithic Quantum Dot Photonic Oscillators FA9550-10-1-0276...277-7647 Reset Grant Title: ULTRALOW NOISE MONOLITHIC QUANTUM DOT PHOTONIC OSCILLATORS Grant/Contract Number: FA9550-10-1-0276 Final Performance
Closed-Loop and Robust Control of Quantum Systems
Wang, Lin-Cheng
2013-01-01
For most practical quantum control systems, it is important and difficult to attain robustness and reliability due to unavoidable uncertainties in the system dynamics or models. Three kinds of typical approaches (e.g., closed-loop learning control, feedback control, and robust control) have been proved to be effective to solve these problems. This work presents a self-contained survey on the closed-loop and robust control of quantum systems, as well as a brief introduction to a selection of basic theories and methods in this research area, to provide interested readers with a general idea for further studies. In the area of closed-loop learning control of quantum systems, we survey and introduce such learning control methods as gradient-based methods, genetic algorithms (GA), and reinforcement learning (RL) methods from a unified point of view of exploring the quantum control landscapes. For the feedback control approach, the paper surveys three control strategies including Lyapunov control, measurement-based control, and coherent-feedback control. Then such topics in the field of quantum robust control as H ∞ control, sliding mode control, quantum risk-sensitive control, and quantum ensemble control are reviewed. The paper concludes with a perspective of future research directions that are likely to attract more attention. PMID:23997680
Nonclassical light sources for silicon photonics
NASA Astrophysics Data System (ADS)
Bajoni, Daniele; Galli, Matteo
2017-09-01
Quantum photonics has recently attracted a lot of attention for its disruptive potential in emerging technologies like quantum cryptography, quantum communication and quantum computing. Driven by the impressive development in nanofabrication technologies and nanoscale engineering, silicon photonics has rapidly become the platform of choice for on-chip integration of high performing photonic devices, now extending their functionalities towards quantum-based applications. Focusing on quantum Information Technology (qIT) as a key application area, we review recent progress in integrated silicon-based sources of nonclassical states of light. We assess the state of the art in this growing field and highlight the challenges that need to be overcome to make quantum photonics a reliable and widespread technology.
NASA Astrophysics Data System (ADS)
Bentzen, Elizabeth L.; House, Frances; Tomlinson, Ian D.; Rosenthal, Sandra J.; Crowe, James E.; Wright, David D.
2005-04-01
Fluorescence is a tool widely employed in biological assays. Fluorescent semiconducting nanocrystals, quantum dots (QDs), are beginning to find their way into the tool box of many biologist, chemist and biochemist. These quantum dots are an attractive alternative to the traditional organic dyes due to their broad excitation spectra, narrow emission spectra and photostability. Non-specific binding is a frequently encountered problem with fluorescent labeling in biological assays. In these studies various cell lines were examined for non-specific binding to quantum dots. Evidence suggests that non-specific binding is related to cell type and, may be significantly reduced by functionalizing quantum dots with polyethyleneglycol ligands (PEG). In addition quantum dots were used to detect and monitor the progession of the viral glycoproteins ,F (fusion) and G (attachment), from Respiratory Syncytial Virus (RSV) in HEp-2 cells. RSV is the most common cause of lower respiratory tract infection in children worldwide and the most common cause of hospitalization of infants in the US. Antiviral therapy is available for treatment of RSV but is only effective if given within the first 48 hours of infection. Existing test methods require a virus level of at least 1000-fold of the amount needed for infection of most children and require several days to weeks to obtain results. The use of quantum dots may provide an early, rapid method for detection and provide insight into the trafficking of viral proteins during the course of infection.
Preparation and coherent manipulation of pure quantum states of a single molecular ion
NASA Astrophysics Data System (ADS)
Chou, Chin-Wen; Kurz, Christoph; Hume, David B.; Plessow, Philipp N.; Leibrandt, David R.; Leibfried, Dietrich
2017-05-01
Laser cooling and trapping of atoms and atomic ions has led to advances including the observation of exotic phases of matter, the development of precision sensors and state-of-the-art atomic clocks. The same level of control in molecules could also lead to important developments such as controlled chemical reactions and sensitive probes of fundamental theories, but the vibrational and rotational degrees of freedom in molecules pose a challenge for controlling their quantum mechanical states. Here we use quantum-logic spectroscopy, which maps quantum information between two ion species, to prepare and non-destructively detect quantum mechanical states in molecular ions. We develop a general technique for optical pumping and preparation of the molecule into a pure initial state. This enables us to observe high-resolution spectra in a single ion (CaH+) and coherent phenomena such as Rabi flopping and Ramsey fringes. The protocol requires a single, far-off-resonant laser that is not specific to the molecule, so many other molecular ions, including polyatomic species, could be treated using the same methods in the same apparatus by changing the molecular source. Combined with the long interrogation times afforded by ion traps, a broad range of molecular ions could be studied with unprecedented control and precision. Our technique thus represents a critical step towards applications such as precision molecular spectroscopy, stringent tests of fundamental physics, quantum computing and precision control of molecular dynamics.
Preparation and coherent manipulation of pure quantum states of a single molecular ion.
Chou, Chin-Wen; Kurz, Christoph; Hume, David B; Plessow, Philipp N; Leibrandt, David R; Leibfried, Dietrich
2017-05-10
Laser cooling and trapping of atoms and atomic ions has led to advances including the observation of exotic phases of matter, the development of precision sensors and state-of-the-art atomic clocks. The same level of control in molecules could also lead to important developments such as controlled chemical reactions and sensitive probes of fundamental theories, but the vibrational and rotational degrees of freedom in molecules pose a challenge for controlling their quantum mechanical states. Here we use quantum-logic spectroscopy, which maps quantum information between two ion species, to prepare and non-destructively detect quantum mechanical states in molecular ions. We develop a general technique for optical pumping and preparation of the molecule into a pure initial state. This enables us to observe high-resolution spectra in a single ion (CaH + ) and coherent phenomena such as Rabi flopping and Ramsey fringes. The protocol requires a single, far-off-resonant laser that is not specific to the molecule, so many other molecular ions, including polyatomic species, could be treated using the same methods in the same apparatus by changing the molecular source. Combined with the long interrogation times afforded by ion traps, a broad range of molecular ions could be studied with unprecedented control and precision. Our technique thus represents a critical step towards applications such as precision molecular spectroscopy, stringent tests of fundamental physics, quantum computing and precision control of molecular dynamics.
NASA Astrophysics Data System (ADS)
Le, Loan T.
Over the span of more than 20 years of development, the Quantum Cascade (QC) laser has positioned itself as the most viable mid-infrared (mid-IR) light source. Today's QC lasers emit watts of continuous wave power at room temperature. Despite significant progress, the mid-IR region remains vastly under-utilized. State-of-the-art QC lasers are found in high power defense applications and detection of trace gases with narrow absorption lines. A large number of applications, however, do not require so much power, but rather, a broadly tunable laser source to detect molecules with broad absorption features. As such, a QC laser that is broadly tunable over the entire biochemical fingerprinting region remains the missing link to markets such as non- invasive biomedical diagnostics, food safety, and stand-off detection in turbid media. In this thesis, we detail how we utilized the inherent flexibility of the QC design space to conceive a new type of laser with the potential to bridge that missing link of the QC laser to large commercial markets. Our design concept, the Super Cascade (SC) laser, works contrary to conventional laser design principle by supporting multiple independent optical transitions, each contributing to broadening the gain spectrum. We have demonstrated a room temperature laser gain medium with electroluminescence spanning 3.3-12.5 ?m and laser emission from 6.2-12.5 ?m, the record spectral width for any solid state laser gain medium. This gain bandwidth covers the entire biochemical fingerprinting region. The achievement of such a spectrally broad gain medium presents engineering challenges of how to optimally utilize the bandwidth. As of this work, a monolithi- cally integrated array of Distributed Feedback QC (DFB-QC) lasers is one of the most promising ways to fully utilize the SC gain bandwidth. Therefore, in this thesis, we explore ways of improving the yield and ease of fabrication of DFB-QC lasers, including a re-examination of the role of current spreading in QC geometry.
Nano-Bio Quantum Technology for Device-Specific Materials
NASA Technical Reports Server (NTRS)
Choi, Sang H.
2009-01-01
The areas discussed are still under development: I. Nano structured materials for TE applications a) SiGe and Be.Te; b) Nano particles and nanoshells. II. Quantum technology for optical devices: a) Quantum apertures; b) Smart optical materials; c) Micro spectrometer. III. Bio-template oriented materials: a) Bionanobattery; b) Bio-fuel cells; c) Energetic materials.
Ultraviolet photosensor based on few layered reduced graphene oxide nanosheets
NASA Astrophysics Data System (ADS)
Shelke, Nitin T.; Karche, B. R.
2017-10-01
Reduced graphene oxide (RGO), a two-dimensional (2D) system, has attracted much interest in photonic applications owing to its ability to absorb light over a broad wavelength. This leads to several studies on RGO-based photosensors. In this paper, chemical oxidation of graphite was carried out at room temperature for the preparation of large area reduced graphene oxide using a modified Hummer's method. The as-prepared reduced graphene oxide was characterized by XRD, Raman spectroscopy, FESEM, and TEM to confirm the absence of impurities and to ascertain their morphology. In addition, the as-prepared reduced graphene oxide for its possible application as UV photosensor is reported. The electric and optoelectronic properties of RGO based UV photosensor shows a fast response and recovery time of 1 s and 3 s; high photoresponsitivity (3.74 AW-1) and quantum efficiency (1274%) indicating that the graphene oxide is an important material for high performance photosensor. This work demonstrates the ultrafast photoresponse with high photoresponsivity, proving its potential as a promising material for optoelectronic devices.
Comparison of measured and predicted performance of a SIS waveguide mixer at 345 GHz
NASA Technical Reports Server (NTRS)
Honingh, C. E.; Delange, G.; Dierichs, M. M. T. M.; Schaeffer, H. H. A.; Wezelman, J.; Vandekuur, J.; Degraauw, T.; Klapwijk, T. M.
1992-01-01
The measured gain and noise of a SIS waveguide mixer at 345 GHz have been compared with theoretical values, calculated from the quantum mixer theory using a three port model. As a mixing element, we use a series array of two Nb-Al2O3-Nb SIS junctions. The area of each junction is 0.8 sq microns and the normal state resistance is 52 omega. The embedding impedance of the mixer has been determined from the pumped DC-IV curves of the junction and is compared to results from scale model measurements (105 x). Good agreement was obtained. The measured mixer gain, however, is a factor of 0.45 plus or minus 0.5 lower than the theoretical predicted gain. The measured mixer noise temperature is a factor of 4-5 higher than the calculated one. These discrepancies are independent on pump power and are valid for a broad range of tuning conditions.
Molecular electronics: some views on transport junctions and beyond.
Joachim, Christian; Ratner, Mark A
2005-06-21
The field of molecular electronics comprises a fundamental set of issues concerning the electronic response of molecules as parts of a mesoscopic structure and a technology-facing area of science. We will overview some important aspects of these subfields. The most advanced ideas in the field involve the use of molecules as individual logic or memory units and are broadly based on using the quantum state space of the molecule. Current work in molecular electronics usually addresses molecular junction transport, where the molecule acts as a barrier for incoming electrons: This is the fundamental Landauer idea of "conduction as scattering" generalized to molecular junction structures. Another point of view in terms of superexchange as a guiding mechanism for coherent electron transfer through the molecular bridge is discussed. Molecules generally exhibit relatively strong vibronic coupling. The last section of this overview focuses on vibronic effects, including inelastic electron tunneling spectroscopy, hysteresis in junction charge transport, and negative differential resistance in molecular transport junctions.
Molecular electronics: Some views on transport junctions and beyond
Joachim, Christian; Ratner, Mark A.
2005-01-01
The field of molecular electronics comprises a fundamental set of issues concerning the electronic response of molecules as parts of a mesoscopic structure and a technology-facing area of science. We will overview some important aspects of these subfields. The most advanced ideas in the field involve the use of molecules as individual logic or memory units and are broadly based on using the quantum state space of the molecule. Current work in molecular electronics usually addresses molecular junction transport, where the molecule acts as a barrier for incoming electrons: This is the fundamental Landauer idea of “conduction as scattering” generalized to molecular junction structures. Another point of view in terms of superexchange as a guiding mechanism for coherent electron transfer through the molecular bridge is discussed. Molecules generally exhibit relatively strong vibronic coupling. The last section of this overview focuses on vibronic effects, including inelastic electron tunneling spectroscopy, hysteresis in junction charge transport, and negative differential resistance in molecular transport junctions. PMID:15956192
Type-I interband cascade lasers near 3.2 μm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Yuchao; Li, Lu; Yang, Rui Q., E-mail: Rui.Q.Yang@ou.edu
2015-01-26
Interband cascade (IC) lasers have been demonstrated based on type-I InGaAsSb/AlAsSb quantum well (QW) active regions. These type-I IC lasers are composed of 6-cascade stages and InAs/AlSb superlattice cladding layers. In contrast to the use of quinary AlGaInAsSb barriers for active region in previous type-I QW lasers, the type-I QW active region in each stage is sandwiched by digitally graded multiple InAs/AlSb QW electron injector and GaSb/AlSb QW hole injector. The fabricated type-I IC lasers were able to operate in continuous wave and pulsed modes at temperatures up to 306 and 365 K, respectively. The threshold current densities of broad-area lasersmore » were around 300 A/cm{sup 2} at 300 K with a lasing wavelength near 3.2 μm. The implications and prospects of these initial results are discussed.« less
Improved GaSb-based quantum well laser performance through metamorphic growth on GaAs substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richardson, Christopher J. K., E-mail: richardson@lps.umd.edu; He, Lei; Apiratikul, Paveen
The promise of the metamorphic growth paradigm is to enable design freedom of the substrate selection criteria beyond current choices that are limited by lattice matching requirements. A demonstration of this emerging degree of freedom is reported here by directly comparing identical laser structures grown both pseudomorphically on a GaSb substrate and metamorphically on a GaAs substrate. Improved thermal performance of the metamorphic laser material enables a higher output power before thermal roll-over begins. These performance gains are demonstrated in minimally processed gain-guided broad-area type-I lasers emitting close to 2-μm wavelengths and mounted p-side up. Continuous wave measurements at roommore » temperature yield a T{sub 0} of 145 K and peak output power of 192 mW from metamorphic lasers, compared to a T{sub 0} of 96 K and peak output power of 164 mW from identical lasers grown pseudomorphically on GaSb.« less
Genuine quantum correlations in quantum many-body systems: a review of recent progress.
De Chiara, Gabriele; Sanpera, Anna
2018-04-19
Quantum information theory has considerably helped in the understanding of quantum many-body systems. The role of quantum correlations and in particular, bipartite entanglement, has become crucial to characterise, classify and simulate quantum many body systems. Furthermore, the scaling of entanglement has inspired modifications to numerical techniques for the simulation of many-body systems leading to the, now established, area of tensor networks. However, the notions and methods brought by quantum information do not end with bipartite entanglement. There are other forms of correlations embedded in the ground, excited and thermal states of quantum many-body systems that also need to be explored and might be utilised as potential resources for quantum technologies. The aim of this work is to review the most recent developments regarding correlations in quantum many-body systems focussing on multipartite entanglement, quantum nonlocality, quantum discord, mutual information but also other non classical measures of correlations based on quantum coherence. Moreover, we also discuss applications of quantum metrology in quantum many-body systems. © 2018 IOP Publishing Ltd.
A short walk in quantum probability.
Hudson, Robin
2018-04-28
This is a personal survey of aspects of quantum probability related to the Heisenberg commutation relation for canonical pairs. Using the failure, in general, of non-negativity of the Wigner distribution for canonical pairs to motivate a more satisfactory quantum notion of joint distribution, we visit a central limit theorem for such pairs and a resulting family of quantum planar Brownian motions which deform the classical planar Brownian motion, together with a corresponding family of quantum stochastic areas.This article is part of the themed issue 'Hilbert's sixth problem'. © 2018 The Author(s).
2017-03-24
NUMBER (Include area code) 24 March 2017 Briefing Charts 01 March 2017 - 31 March 2017 Ab initio Quantum Chemical and Experimental Reaction Kinetics...Laboratory AFRL/RQRS 1 Ara Road Edwards AFB, CA 93524 *Email: ghanshyam.vaghjiani@us.af.mil Ab initio Quantum Chemical and Experimental Reaction ...Clearance 17161 Zador et al., Prog. Energ. Combust. Sci., 37 371 (2011) Why Quantum Chemical Reaction Kinetics Studies? DISTRIBUTION A: Approved for
Photodeposition of Ag2S on TiO2 nanorod arrays for quantum dot-sensitized solar cells
2013-01-01
Ag2S quantum dots were deposited on the surface of TiO2 nanorod arrays by a two-step photodeposition. The prepared TiO2 nanorod arrays as well as the Ag2S deposited electrodes were characterized by X-ray diffraction, scanning electron microscope, and transmission electron microscope, suggesting a large coverage of Ag2S quantum dots on the ordered TiO2 nanorod arrays. UV–vis absorption spectra of Ag2S deposited electrodes show a broad absorption range of the visible light. The quantum dot-sensitized solar cells (QDSSCs) based on these electrodes were fabricated, and the photoelectrochemical properties were examined. A high photocurrent density of 10.25 mA/cm2 with a conversion efficiency of 0.98% at AM 1.5 solar light of 100 mW/cm2 was obtained with an optimal photodeposition time. The performance of the QDSSC at different incident light intensities was also investigated. The results display a better performance at a lower incident light level with a conversion efficiency of 1.25% at 47 mW/cm2. PMID:23286551
SO(8) fermion dynamical symmetry and strongly correlated quantum Hall states in monolayer graphene
NASA Astrophysics Data System (ADS)
Wu, Lian-Ao; Murphy, Matthew; Guidry, Mike
2017-03-01
A formalism is presented for treating strongly correlated graphene quantum Hall states in terms of an SO(8) fermion dynamical symmetry that includes pairing as well as particle-hole generators. The graphene SO(8) algebra is isomorphic to an SO(8) algebra that has found broad application in nuclear physics, albeit with physically very different generators, and exhibits a strong formal similarity to SU(4) symmetries that have been proposed to describe high-temperature superconductors. The well-known SU(4) symmetry of quantum Hall ferromagnetism for single-layer graphene is recovered as one subgroup of SO(8), but the dynamical symmetry structure associated with the full set of SO(8) subgroup chains extends quantum Hall ferromagnetism and allows analytical many-body solutions for a rich set of collective states exhibiting spontaneously broken symmetry that may be important for the low-energy physics of graphene in strong magnetic fields. The SO(8) symmetry permits a natural definition of generalized coherent states that correspond to symmetry-constrained Hartree-Fock-Bogoliubov solutions, or equivalently a microscopically derived Ginzburg-Landau formalism, exhibiting the interplay between competing spontaneously broken symmetries in determining the ground state.
The donor-supply electrode enhances performance in colloidal quantum dot solar cells.
Maraghechi, Pouya; Labelle, André J; Kirmani, Ahmad R; Lan, Xinzheng; Adachi, Michael M; Thon, Susanna M; Hoogland, Sjoerd; Lee, Anna; Ning, Zhijun; Fischer, Armin; Amassian, Aram; Sargent, Edward H
2013-07-23
Colloidal quantum dot (CQD) solar cells combine solution-processability with quantum-size-effect tunability for low-cost harvesting of the sun's broad visible and infrared spectrum. The highest-performing colloidal quantum dot solar cells have, to date, relied on a depleted-heterojunction architecture in which an n-type transparent metal oxide such as TiO2 induces a depletion region in the p-type CQD solid. These devices have, until now, been limited by a modest depletion region depth produced in the CQD solid owing to limitations in the doping available in TiO2. Herein we report a new device geometry-one based on a donor-supply electrode (DSE)-that leads to record-performing CQD photovoltaic devices. Only by employing this new charge-extracting approach do we deepen the depletion region in the CQD solid and thereby extract notably more photocarriers, the key element in achieving record photocurrent and device performance. With the use of optoelectronic modeling corroborated by experiment, we develop the guidelines for building a superior CQD solar cell based on the DSE concept. We confirm that using a shallow-work-function terminal electrode is essential to producing improved charge extraction and enhanced performance.
Autonomous stabilizer for incompressible photon fluids and solids
NASA Astrophysics Data System (ADS)
Ma, Ruichao; Owens, Clai; Houck, Andrew; Schuster, David I.; Simon, Jonathan
2017-04-01
We suggest a simple approach to populate photonic quantum materials at nonzero chemical potential and near-zero temperature. Taking inspiration from forced evaporation in cold-atom experiments, the essential ingredients for our low-entropy thermal reservoir are (a) interparticle interactions and (b) energy-dependent loss. The resulting thermal reservoir may then be coupled to a broad class of Hamiltonian systems to produce low-entropy quantum phases. We present an idealized picture of such a reservoir, deriving the scaling of reservoir entropy with system parameters, and then propose several practical implementations using only standard circuit quantum electrodynamics tools, and extract the fundamental performance limits. Finally, we explore, both analytically and numerically, the coupling of such a thermalizer to the paradigmatic Bose-Hubbard chain, where we employ it to stabilize an n =1 Mott phase. In this case, the performance is limited by the interplay of dynamically arrested thermalization of the Mott insulator and finite heat capacity of the thermalizer, characterized by its repumping rate. This work explores an approach to preparation of quantum phases of strongly interacting photons, and provides a potential route to topologically protected phases that are difficult to reach through adiabatic evolution.
Tunable UV-visible absorption of SnS2 layered quantum dots produced by liquid phase exfoliation.
Fu, Xiao; Ilanchezhiyan, P; Mohan Kumar, G; Cho, Hak Dong; Zhang, Lei; Chan, A Sattar; Lee, Dong J; Panin, Gennady N; Kang, Tae Won
2017-02-02
4H-SnS 2 layered crystals synthesized by a hydrothermal method were used to obtain via liquid phase exfoliation quantum dots (QDs), consisting of a single layer (SLQDs) or multiple layers (MLQDs). Systematic downshift of the peaks in the Raman spectra of crystals with a decrease in size was observed. The bandgap of layered QDs, estimated by UV-visible absorption spectroscopy and the tunneling current measurements using graphene probes, increases from 2.25 eV to 3.50 eV with decreasing size. 2-4 nm SLQDs, which are transparent in the visible region, show selective absorption and photosensitivity at wavelengths in the ultraviolet region of the spectrum while larger MLQDs (5-90 nm) exhibit a broad band absorption in the visible spectral region and the photoresponse under white light. The results show that the layered quantum dots obtained by liquid phase exfoliation exhibit well-controlled and regulated bandgap absorption in a wide tunable wavelength range. These novel layered quantum dots prepared using an inexpensive method of exfoliation and deposition from solution onto various substrates at room temperature can be used to create highly efficient visible-blind ultraviolet photodetectors and multiple bandgap solar cells.
Quantum Inference on Bayesian Networks
NASA Astrophysics Data System (ADS)
Yoder, Theodore; Low, Guang Hao; Chuang, Isaac
2014-03-01
Because quantum physics is naturally probabilistic, it seems reasonable to expect physical systems to describe probabilities and their evolution in a natural fashion. Here, we use quantum computation to speedup sampling from a graphical probability model, the Bayesian network. A specialization of this sampling problem is approximate Bayesian inference, where the distribution on query variables is sampled given the values e of evidence variables. Inference is a key part of modern machine learning and artificial intelligence tasks, but is known to be NP-hard. Classically, a single unbiased sample is obtained from a Bayesian network on n variables with at most m parents per node in time (nmP(e) - 1 / 2) , depending critically on P(e) , the probability the evidence might occur in the first place. However, by implementing a quantum version of rejection sampling, we obtain a square-root speedup, taking (n2m P(e) -1/2) time per sample. The speedup is the result of amplitude amplification, which is proving to be broadly applicable in sampling and machine learning tasks. In particular, we provide an explicit and efficient circuit construction that implements the algorithm without the need for oracle access.
Near-Unity Internal Quantum Efficiency of Luminescent Silicon Nanocrystals with Ligand Passivation.
Sangghaleh, Fatemeh; Sychugov, Ilya; Yang, Zhenyu; Veinot, Jonathan G C; Linnros, Jan
2015-07-28
Spectrally resolved photoluminescence (PL) decays were measured for samples of colloidal, ligand-passivated silicon nanocrystals. These samples have PL emission energies with peak positions in the range ∼1.4-1.8 eV and quantum yields of ∼30-70%. Their ensemble PL decays are characterized by a stretched-exponential decay with a dispersion factor of ∼0.8, which changes to an almost monoexponential character at fixed detection energies. The dispersion factors and decay rates for various detection energies were extracted from spectrally resolved curves using a mathematical approach that excluded the effect of homogeneous line width broadening. Since nonradiative recombination would introduce a random lifetime variation, leading to a stretched-exponential decay for an ensemble, we conclude that the observed monoexponential decay in size-selected ensembles signifies negligible nonradiative transitions of a similar strength to the radiative one. This conjecture is further supported as extracted decay rates agree with radiative rates reported in the literature, suggesting 100% internal quantum efficiency over a broad range of emission wavelengths. The apparent differences in the quantum yields can then be explained by a varying fraction of "dark" or blinking nanocrystals.
Tsatrafyllis, N; Kominis, I K; Gonoskov, I A; Tzallas, P
2017-04-27
High-order harmonics in the extreme-ultraviolet spectral range, resulting from the strong-field laser-atom interaction, have been used in a broad range of fascinating applications in all states of matter. In the majority of these studies the harmonic generation process is described using semi-classical theories which treat the electromagnetic field of the driving laser pulse classically without taking into account its quantum nature. In addition, for the measurement of the generated harmonics, all the experiments require diagnostics in the extreme-ultraviolet spectral region. Here by treating the driving laser field quantum mechanically we reveal the quantum-optical nature of the high-order harmonic generation process by measuring the photon number distribution of the infrared light exiting the harmonic generation medium. It is found that the high-order harmonics are imprinted in the photon number distribution of the infrared light and can be recorded without the need of a spectrometer in the extreme-ultraviolet.
A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging
Antaris, Alexander L.; Chen, Hao; Diao, Shuo; Ma, Zhuoran; Zhang, Zhe; Zhu, Shoujun; Wang, Joy; Lozano, Alexander X.; Fan, Quli; Chew, Leila; Zhu, Mark; Cheng, Kai; Hong, Xuechuan; Dai, Hongjie; Cheng, Zhen
2017-01-01
Fluorescence imaging in the second near-infrared window (NIR-II) allows visualization of deep anatomical features with an unprecedented degree of clarity. NIR-II fluorophores draw from a broad spectrum of materials spanning semiconducting nanomaterials to organic molecular dyes, yet unfortunately all water-soluble organic molecules with >1,000 nm emission suffer from low quantum yields that have limited temporal resolution and penetration depth. Here, we report tailoring the supramolecular assemblies of protein complexes with a sulfonated NIR-II organic dye (CH-4T) to produce a brilliant 110-fold increase in fluorescence, resulting in the highest quantum yield molecular fluorophore thus far. The bright molecular complex allowed for the fastest video-rate imaging in the second NIR window with ∼50-fold reduced exposure times at a fast 50 frames-per-second (FPS) capable of resolving mouse cardiac cycles. In addition, we demonstrate that the NIR-II molecular complexes are superior to clinically approved ICG for lymph node imaging deep within the mouse body. PMID:28524850
NASA Astrophysics Data System (ADS)
Chernyavskiy, Andrey; Khamitov, Kamil; Teplov, Alexey; Voevodin, Vadim; Voevodin, Vladimir
2016-10-01
In recent years, quantum information technologies (QIT) showed great development, although, the way of the implementation of QIT faces the serious difficulties, some of which are challenging computational tasks. This work is devoted to the deep and broad analysis of the parallel algorithmic properties of such tasks. As an example we take one- and two-qubit transformations of a many-qubit quantum state, which are the most critical kernels of many important QIT applications. The analysis of the algorithms uses the methodology of the AlgoWiki project (algowiki-project.org) and consists of two parts: theoretical and experimental. Theoretical part includes features like sequential and parallel complexity, macro structure, and visual information graph. Experimental part was made by using the petascale Lomonosov supercomputer (Moscow State University, Russia) and includes the analysis of locality and memory access, scalability and the set of more specific dynamic characteristics of realization. This approach allowed us to obtain bottlenecks and generate ideas of efficiency improvement.
NASA Astrophysics Data System (ADS)
Kamp, E. J.; Carvajal, B.; Samarth, N.
2018-01-01
The ready optical detection and manipulation of bright nitrogen vacancy center spins in diamond plays a key role in contemporary quantum information science and quantum metrology. Other optically dark defects such as substitutional nitrogen atoms (`P1 centers') could also become potentially useful in this context if they could be as easily optically detected and manipulated. We develop a relatively straightforward continuous wave protocol that takes advantage of the dipolar coupling between nitrogen vacancy and P1 centers in type 1b diamond to detect and polarize the dark P1 spins. By combining mutual spin flip transitions with radio frequency driving, we demonstrate the simultaneous optical polarization and detection of the electron spin resonance of the P1 center. This technique should be applicable to detecting and manipulating a broad range of dark spin populations that couple to the nitrogen vacancy center via dipolar fields, allowing for quantum metrology using these spin populations.
Fractionally charged skyrmions in fractional quantum Hall effect
Balram, Ajit C.; Wurstbauer, U.; Wójs, A.; ...
2015-11-26
The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeemanmore » energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cinelli, C.; Di Nepi, G.; De Martini, F.
2004-08-01
A parametric source of polarization-entangled photon pairs with striking spatial characteristics is reported. The distribution of the output electromagnetic k modes excited by spontaneous parametric down-conversion and coupled to the output detectors can be very broad. Using these states realized over a full entanglement ring output distribution, the nonlocal properties of the generated entanglement have been tested by standard Bell measurements and by Ou-Mandel interferometry. A 'mode-patchwork' technique based on the quantum superposition principle is adopted to synthesize in a straightforward and reliable way any kind of mixed state, of large conceptual and technological interest in modern quantum information. Tunablemore » Werner states and maximally entangled mixed states have indeed been created by this technique and investigated by quantum tomography. A study of the entropic and nonlocal properties of these states has been undertaken experimentally and theoretically, by a unifying variational approach.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikitin, N. V., E-mail: nnikit@mail.cern.ch; Sotnikov, V.P., E-mail: sotnikov@physics.msu.ru; Toms, K. S., E-mail: ktoms@mail.cern.ch
A radically new class of Bell inequalities in Wigner’s form was obtained on the basis of Kolmorov’s axiomatization of probability theory and the hypothesis of locality. These inequalities take explicitly into account the dependence on time (time-dependent Bell inequalities in Wigner’s form). By using these inequalities, one can propose a means for experimentally testing Bohr’ complementarity principle in the relativistic region. The inequalities in question open broad possibilities for studying correlations of nonrelativistic and relativistic quantum systems in external fields. The violation of the time-dependent inequalities in quantum mechanics was studied by considering the behavior of a pair of anticorrelatedmore » spins in a constant external magnetic field and oscillations of neutral pseudoscalar mesons. The decay of a pseudoscalar particle to a fermion–antifermion pair is considered within quantum field theory. In order to test experimentally the inequalities proposed in the present study, it is not necessary to perform dedicated noninvasive measurements required in the Leggett–Garg approach, for example.« less
Selective far-field addressing of coupled quantum dots in a plasmonic nanocavity.
Tang, Jianwei; Xia, Juan; Fang, Maodong; Bao, Fanglin; Cao, Guanjun; Shen, Jianqi; Evans, Julian; He, Sailing
2018-04-27
Plasmon-emitter hybrid nanocavity systems exhibit strong plasmon-exciton interactions at the single-emitter level, showing great potential as testbeds and building blocks for quantum optics and informatics. However, reported experiments involve only one addressable emitting site, which limits their relevance for many fundamental questions and devices involving interactions among emitters. Here we open up this critical degree of freedom by demonstrating selective far-field excitation and detection of two coupled quantum dot emitters in a U-shaped gold nanostructure. The gold nanostructure functions as a nanocavity to enhance emitter interactions and a nanoantenna to make the emitters selectively excitable and detectable. When we selectively excite or detect either emitter, we observe photon emission predominantly from the target emitter with up to 132-fold Purcell-enhanced emission rate, indicating individual addressability and strong plasmon-exciton interactions. Our work represents a step towards a broad class of plasmonic devices that will enable faster, more compact optics, communication and computation.
A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antaris, Alexander L.; Chen, Hao; Diao, Shuo
Fluorescence imaging in the second near-infrared window (NIR-II) allows visualization of deep anatomical features with an unprecedented degree of clarity. NIR-II fluorophores draw from a broad spectrum of materials spanning semiconducting nanomaterials to organic molecular dyes, yet unfortunately all water-soluble organic molecules with 41,000 nm emission suffer from low quantum yields that have limited temporal resolution and penetration depth. We report tailoring the supramolecular assemblies of protein complexes with a sulfonated NIR-II organic dye (CH-4T) to produce a brilliant 110-fold increase in fluorescence, resulting in the highest quantum yield molecular fluorophore thus far. The bright molecular complex allowed for themore » fastest video-rate imaging in the second NIR window with B50-fold reduced exposure times at a fast 50 frames-per-second (FPS) capable of resolving mouse cardiac cycles. Additionally, we demonstrate that the NIR-II molecular complexes are superior to clinically approved ICG for lymph node imaging deep within the mouse body.« less
A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging
Antaris, Alexander L.; Chen, Hao; Diao, Shuo; ...
2017-05-19
Fluorescence imaging in the second near-infrared window (NIR-II) allows visualization of deep anatomical features with an unprecedented degree of clarity. NIR-II fluorophores draw from a broad spectrum of materials spanning semiconducting nanomaterials to organic molecular dyes, yet unfortunately all water-soluble organic molecules with 41,000 nm emission suffer from low quantum yields that have limited temporal resolution and penetration depth. We report tailoring the supramolecular assemblies of protein complexes with a sulfonated NIR-II organic dye (CH-4T) to produce a brilliant 110-fold increase in fluorescence, resulting in the highest quantum yield molecular fluorophore thus far. The bright molecular complex allowed for themore » fastest video-rate imaging in the second NIR window with B50-fold reduced exposure times at a fast 50 frames-per-second (FPS) capable of resolving mouse cardiac cycles. Additionally, we demonstrate that the NIR-II molecular complexes are superior to clinically approved ICG for lymph node imaging deep within the mouse body.« less
NASA Astrophysics Data System (ADS)
Liu, Zhaoxiang; Yao, Jinping; Chen, Jinming; Xu, Bo; Chu, Wei; Cheng, Ya
2018-02-01
The generation of laserlike narrow bandwidth emissions from nitrogen molecular ions (N2+ ) generated in intense near- and mid infrared femtosecond laser fields has aroused much interest because of the mysterious physics underlying such a phenomenon. Here, we perform a pump-probe measurement on the nonlinear interaction of rotational quantum wave packets of N2+ generated in midinfrared (e.g., at a wavelength centered at 1580 nm) femtosecond laser fields with an ultrashort probe pulse whose broad spectrum overlaps both P - and R -branch rotational transition lines between the electronic states N2+(B2Σu+,v'=0 ) and N2+(X2Σg+,v =0 ) . The results indicate the occurrence of highly efficient near-resonant stimulated Raman scattering in the quantum wave packets of N2+ ions generated in strong laser fields in the midinfrared region, of which the underlying mechanism is different from that of the air lasers generated in atmospheric environment when pumping with 800 nm intense pulses.
Volume-wise destruction of the antiferromagnetic Mott insulating state through quantum tuning.
Frandsen, Benjamin A; Liu, Lian; Cheung, Sky C; Guguchia, Zurab; Khasanov, Rustem; Morenzoni, Elvezio; Munsie, Timothy J S; Hallas, Alannah M; Wilson, Murray N; Cai, Yipeng; Luke, Graeme M; Chen, Bijuan; Li, Wenmin; Jin, Changqing; Ding, Cui; Guo, Shengli; Ning, Fanlong; Ito, Takashi U; Higemoto, Wataru; Billinge, Simon J L; Sakamoto, Shoya; Fujimori, Atsushi; Murakami, Taito; Kageyama, Hiroshi; Alonso, Jose Antonio; Kotliar, Gabriel; Imada, Masatoshi; Uemura, Yasutomo J
2016-08-17
RENiO3 (RE=rare-earth element) and V2O3 are archetypal Mott insulator systems. When tuned by chemical substitution (RENiO3) or pressure (V2O3), they exhibit a quantum phase transition (QPT) between an antiferromagnetic Mott insulating state and a paramagnetic metallic state. Because novel physics often appears near a Mott QPT, the details of this transition, such as whether it is first or second order, are important. Here, we demonstrate through muon spin relaxation/rotation (μSR) experiments that the QPT in RENiO3 and V2O3 is first order: the magnetically ordered volume fraction decreases to zero at the QPT, resulting in a broad region of intrinsic phase separation, while the ordered magnetic moment retains its full value until it is suddenly destroyed at the QPT. These findings bring to light a surprising universality of the pressure-driven Mott transition, revealing the importance of phase separation and calling for further investigation into the nature of quantum fluctuations underlying the transition.
Volume-wise destruction of the antiferromagnetic Mott insulating state through quantum tuning
NASA Astrophysics Data System (ADS)
Frandsen, Benjamin A.; Liu, Lian; Cheung, Sky C.; Guguchia, Zurab; Khasanov, Rustem; Morenzoni, Elvezio; Munsie, Timothy J. S.; Hallas, Alannah M.; Wilson, Murray N.; Cai, Yipeng; Luke, Graeme M.; Chen, Bijuan; Li, Wenmin; Jin, Changqing; Ding, Cui; Guo, Shengli; Ning, Fanlong; Ito, Takashi U.; Higemoto, Wataru; Billinge, Simon J. L.; Sakamoto, Shoya; Fujimori, Atsushi; Murakami, Taito; Kageyama, Hiroshi; Alonso, Jose Antonio; Kotliar, Gabriel; Imada, Masatoshi; Uemura, Yasutomo J.
2016-08-01
RENiO3 (RE=rare-earth element) and V2O3 are archetypal Mott insulator systems. When tuned by chemical substitution (RENiO3) or pressure (V2O3), they exhibit a quantum phase transition (QPT) between an antiferromagnetic Mott insulating state and a paramagnetic metallic state. Because novel physics often appears near a Mott QPT, the details of this transition, such as whether it is first or second order, are important. Here, we demonstrate through muon spin relaxation/rotation (μSR) experiments that the QPT in RENiO3 and V2O3 is first order: the magnetically ordered volume fraction decreases to zero at the QPT, resulting in a broad region of intrinsic phase separation, while the ordered magnetic moment retains its full value until it is suddenly destroyed at the QPT. These findings bring to light a surprising universality of the pressure-driven Mott transition, revealing the importance of phase separation and calling for further investigation into the nature of quantum fluctuations underlying the transition.
Charging effects in single InP/GaInP baby dots
NASA Astrophysics Data System (ADS)
Persson, Jonas
2001-03-01
It has recently been demonstrated that the matrix material plays a major role for the physical behavior of self-assembled InP/GaInP quantum dots. As the "intrinsically" n-type GaInP matrix fills the quantum dot with electrons the spectral behavior of the dot dramatically changes. For the larger, fully developed dots, the charging gives rise to several broad lines. With an external bias it is possible to reduce the electron population of the dot. For smaller dots, baby dots, we show the possibility of dramatically changing the appearance of the dot spectrum by a precise tuning of the size of the quantum dot. When the dot is small enough it is uncharged and the spectrum is very similar to other material systems, whereas a slightly larger dot is charged and the number of lines is dramatically increased. We present high spectral resolution photoluminescence measurements of individual InP/GaInP baby-dots and k\\cdotp calculations including direct and exchange interactions.
True random numbers from amplified quantum vacuum.
Jofre, M; Curty, M; Steinlechner, F; Anzolin, G; Torres, J P; Mitchell, M W; Pruneri, V
2011-10-10
Random numbers are essential for applications ranging from secure communications to numerical simulation and quantitative finance. Algorithms can rapidly produce pseudo-random outcomes, series of numbers that mimic most properties of true random numbers while quantum random number generators (QRNGs) exploit intrinsic quantum randomness to produce true random numbers. Single-photon QRNGs are conceptually simple but produce few random bits per detection. In contrast, vacuum fluctuations are a vast resource for QRNGs: they are broad-band and thus can encode many random bits per second. Direct recording of vacuum fluctuations is possible, but requires shot-noise-limited detectors, at the cost of bandwidth. We demonstrate efficient conversion of vacuum fluctuations to true random bits using optical amplification of vacuum and interferometry. Using commercially-available optical components we demonstrate a QRNG at a bit rate of 1.11 Gbps. The proposed scheme has the potential to be extended to 10 Gbps and even up to 100 Gbps by taking advantage of high speed modulation sources and detectors for optical fiber telecommunication devices.
Fourier transform spectra of quantum dots
NASA Astrophysics Data System (ADS)
Damian, V.; Ardelean, I.; Armăşelu, Anca; Apostol, D.
2009-09-01
Semiconductor quantum dots are nanometer-sized crystals with unique photochemical and photophysical properties that are not available from either isolated molecules or bulk solids. These nanocrystals absorb light over a very broad spectral range as compared to molecular fluorophores which have very narrow excitation spectra. High-quality QDs are proper to be use in different biological and medical applications (as fluorescent labels, the cancer treatment and the drug delivery). In this article, we discuss Fourier transform visible spectroscopy of commercial quantum dots. We reveal that QDs produced by Evident Technologies when are enlightened by laser or luminescent diode light provides a spectral shift of their fluorescence spectra correlated to exciting emission wavelengths, as shown by the ARCspectroNIR Fourier Transform Spectrometer. In the final part of this paper we show an important biological application of CdSe/ZnS core-shell ODs as microbial labeling both for pure cultures of cyanobacteria (Synechocystis PCC 6803) and for mixed cultures of phototrophic and heterotrophic microorganisms.
Fourier transform spectra of quantum dots
NASA Astrophysics Data System (ADS)
Damian, V.; Ardelean, I.; Armăşelu, Anca; Apostol, D.
2010-05-01
Semiconductor quantum dots are nanometer-sized crystals with unique photochemical and photophysical properties that are not available from either isolated molecules or bulk solids. These nanocrystals absorb light over a very broad spectral range as compared to molecular fluorophores which have very narrow excitation spectra. High-quality QDs are proper to be use in different biological and medical applications (as fluorescent labels, the cancer treatment and the drug delivery). In this article, we discuss Fourier transform visible spectroscopy of commercial quantum dots. We reveal that QDs produced by Evident Technologies when are enlightened by laser or luminescent diode light provides a spectral shift of their fluorescence spectra correlated to exciting emission wavelengths, as shown by the ARCspectroNIR Fourier Transform Spectrometer. In the final part of this paper we show an important biological application of CdSe/ZnS core-shell ODs as microbial labeling both for pure cultures of cyanobacteria (Synechocystis PCC 6803) and for mixed cultures of phototrophic and heterotrophic microorganisms.
Tsatrafyllis, N.; Kominis, I. K.; Gonoskov, I. A.; Tzallas, P.
2017-01-01
High-order harmonics in the extreme-ultraviolet spectral range, resulting from the strong-field laser-atom interaction, have been used in a broad range of fascinating applications in all states of matter. In the majority of these studies the harmonic generation process is described using semi-classical theories which treat the electromagnetic field of the driving laser pulse classically without taking into account its quantum nature. In addition, for the measurement of the generated harmonics, all the experiments require diagnostics in the extreme-ultraviolet spectral region. Here by treating the driving laser field quantum mechanically we reveal the quantum-optical nature of the high-order harmonic generation process by measuring the photon number distribution of the infrared light exiting the harmonic generation medium. It is found that the high-order harmonics are imprinted in the photon number distribution of the infrared light and can be recorded without the need of a spectrometer in the extreme-ultraviolet. PMID:28447616
Crossing Over from Attractive to Repulsive Interactions in a Tunneling Bosonic Josephson Junction.
Spagnolli, G; Semeghini, G; Masi, L; Ferioli, G; Trenkwalder, A; Coop, S; Landini, M; Pezzè, L; Modugno, G; Inguscio, M; Smerzi, A; Fattori, M
2017-06-09
We explore the interplay between tunneling and interatomic interactions in the dynamics of a bosonic Josephson junction. We tune the scattering length of an atomic ^{39}K Bose-Einstein condensate confined in a double-well trap to investigate regimes inaccessible to other superconducting or superfluid systems. In the limit of small-amplitude oscillations, we study the transition from Rabi to plasma oscillations by crossing over from attractive to repulsive interatomic interactions. We observe a critical slowing down in the oscillation frequency by increasing the strength of an attractive interaction up to the point of a quantum phase transition. With sufficiently large initial oscillation amplitude and repulsive interactions, the system enters the macroscopic quantum self-trapping regime, where we observe coherent undamped oscillations with a self-sustained average imbalance of the relative well population. The exquisite agreement between theory and experiments enables the observation of a broad range of many body coherent dynamical regimes driven by tunable tunneling energy, interactions and external forces, with applications spanning from atomtronics to quantum metrology.
Excitonic Emission of Monolayer Semiconductors Near-Field Coupled to High-Q Microresonators
NASA Astrophysics Data System (ADS)
Javerzac-Galy, Clément; Kumar, Anshuman; Schilling, Ryan D.; Piro, Nicolas; Khorasani, Sina; Barbone, Matteo; Goykhman, Ilya; Khurgin, Jacob B.; Ferrari, Andrea C.; Kippenberg, Tobias J.
2018-05-01
We present quantum yield measurements of single layer $\\textrm{WSe}_2$ (1L-$\\textrm{WSe}_2$) integrated with high-Q ($Q>10^6$) optical microdisk cavities, using an efficient ($\\eta>$90%) near-field coupling scheme based on a tapered optical fiber. Coupling of the excitonic emission is achieved by placing 1L-WSe$_2$ to the evanescent cavity field. This preserves the microresonator high intrinsic quality factor ($Q>10^6$) below the bandgap of 1L-WSe$_2$. The nonlinear excitation power dependence of the cavity quantum yield is in agreement with an exciton-exciton annihilation model. The cavity quantum yield is $\\textrm{QY}_\\textrm{c}\\sim10^{-3}$, consistent with operation in the \\textit{broad emitter} regime (i.e. the emission lifetime of 1L-WSe$_2$ is significantly shorter than the bare cavity decay time). This scheme can serve as a precise measurement tool for the excitonic emission of layered materials into cavity modes, for both in plane and out of plane excitation.
Localized surface plasmon and exciton interaction in silver-coated cadmium sulphide quantum dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, P.; Rustagi, K. C.; Vasa, P.
2015-05-15
Localized surface plasmon and exciton coupling has been investigated on colloidal solutions of silver-coated CdS nanoparticles (NPs), synthesized by gamma irradiation. Two broad photoluminescence (PL) bands (blue/red) corresponding to band to band and defect state transitions have been observed for the bare and coated samples. In case of bare CdS NPs, the intensity of the red PL peak is about ten times higher than the blue PL peak intensity. However, on coating the CdS NPs with silver, the peak intensity of the blue PL band gets enhanced and becomes equal to that of the red PL band. High-resolution transmission electronmore » microscopic (HRTEM) images adequately demonstrate size distribution of these metal/semiconductor nanocomposites. UV-Vis absorption studies show quantum confinement effect in these semiconductor quantum dot (SQD) systems. Absorption spectrum of silver-coated SQDs shows signature of surface plasmon-exciton coupling which has been theoretically verified.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, X., E-mail: iu.xiangming@nims.go.jp; National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044; Kumano, H.
2014-07-28
We have recently reported the successful fabrication of bright single-photon sources based on Ag-embedded nanocone structures that incorporate InAs quantum dots. The source had a photon collection efficiency as high as 24.6%. Here, we show the results of various types of photonic characterizations of the Ag-embedded nanocone structures that confirm their versatility as regards a broad range of quantum optical applications. We measure the first-order autocorrelation function to evaluate the coherence time of emitted photons, and the second-order correlation function, which reveals the strong suppression of multiple photon generation. The high indistinguishability of emitted photons is shown by the Hong-Ou-Mandel-typemore » two-photon interference. With quasi-resonant excitation, coherent population flopping is demonstrated through Rabi oscillations. Extremely high single-photon purity with a g{sup (2)}(0) value of 0.008 is achieved with π-pulse quasi-resonant excitation.« less
Yuan, Fanglong; Yuan, Ting; Sui, Laizhi; Wang, Zhibin; Xi, Zifan; Li, Yunchao; Li, Xiaohong; Fan, Louzhen; Tan, Zhan'ao; Chen, Anmin; Jin, Mingxing; Yang, Shihe
2018-06-08
Carbon quantum dots (CQDs) have emerged as promising materials for optoelectronic applications on account of carbon's intrinsic merits of high stability, low cost, and environment-friendliness. However, the CQDs usually give broad emission with full width at half maximum exceeding 80 nm, which fundamentally limit their display applications. Here we demonstrate multicolored narrow bandwidth emission (full width at half maximum of 30 nm) from triangular CQDs with a quantum yield up to 54-72%. Detailed structural and optical characterizations together with theoretical calculations reveal that the molecular purity and crystalline perfection of the triangular CQDs are key to the high color-purity. Moreover, multicolored light-emitting diodes based on these CQDs display good stability, high color-purity, and high-performance with maximum luminance of 1882-4762 cd m -2 and current efficiency of 1.22-5.11 cd A -1 . This work will set the stage for developing next-generation high-performance CQDs-based light-emitting diodes.
InAs(PSb)-based ``W'' quantum well laser diodes emitting near 3.3 μm
NASA Astrophysics Data System (ADS)
Joullié, A.; Skouri, E. M.; Garcia, M.; Grech, P.; Wilk, A.; Christol, P.; Baranov, A. N.; Behres, A.; Kluth, J.; Stein, A.; Heime, K.; Heuken, M.; Rushworth, S.; Hulicius, E.; Simecek, T.
2000-05-01
Mid-infrared laser diodes with an active region consisting of five "W" InAsSb/InAsP/InAsSb/InAsPSb quantum wells and broad InAsPSb waveguide were fabricated by metalorganic vapor phase epitaxy on InAs substrates. Laser emission was demonstrated at 3.3 μm up to 135 K from asymmetrical structures having n-type InAsPSb and p-type InPSb cladding layers. The devices operated in pulsed regime at 3.3 μm, with a lowest threshold current density of 120 A/cm2 at 90 K, and an output power efficiency of 31 mW/facet/A. The characteristic temperature was 35 K.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urbanczyk, A.; Keizer, J. G.; Koenraad, P. M.
2013-02-18
We demonstrate that molecular beam epitaxy-grown InAs quantum dots (QDs) on (100) GaAs obtained by conversion of In nanocrystals enable long wavelength emission in the InAs/GaAs material system. At room temperature they exhibit a broad photoluminescence band that extends well beyond 1.55 {mu}m. We correlate this finding with cross-sectional scanning tunneling microscopy measurements. They reveal that the QDs are composed of pure InAs which is in agreement with their long-wavelength emission. Additionally, the measurements reveal that the QDs have an anomalously undulated top surface which is very different to that observed for Stranski-Krastanow grown QDs.
On the Critical Behaviour, Crossover Point and Complexity of the Exact Cover Problem
NASA Technical Reports Server (NTRS)
Morris, Robin D.; Smelyanskiy, Vadim N.; Shumow, Daniel; Koga, Dennis (Technical Monitor)
2003-01-01
Research into quantum algorithms for NP-complete problems has rekindled interest in the detailed study a broad class of combinatorial problems. A recent paper applied the quantum adiabatic evolution algorithm to the Exact Cover problem for 3-sets (EC3), and provided an empirical evidence that the algorithm was polynomial. In this paper we provide a detailed study of the characteristics of the exact cover problem. We present the annealing approximation applied to EC3, which gives an over-estimate of the phase transition point. We also identify empirically the phase transition point. We also study the complexity of two classical algorithms on this problem: Davis-Putnam and Simulated Annealing. For these algorithms, EC3 is significantly easier than 3-SAT.
Inglis, Stephen; Melko, Roger G
2013-01-01
We implement a Wang-Landau sampling technique in quantum Monte Carlo (QMC) simulations for the purpose of calculating the Rényi entanglement entropies and associated mutual information. The algorithm converges an estimate for an analog to the density of states for stochastic series expansion QMC, allowing a direct calculation of Rényi entropies without explicit thermodynamic integration. We benchmark results for the mutual information on two-dimensional (2D) isotropic and anisotropic Heisenberg models, a 2D transverse field Ising model, and a three-dimensional Heisenberg model, confirming a critical scaling of the mutual information in cases with a finite-temperature transition. We discuss the benefits and limitations of broad sampling techniques compared to standard importance sampling methods.
Broadband standoff detection of large molecules by mid-infrared active coherent laser spectrometry.
Macleod, Neil A; Molero, Francisco; Weidmann, Damien
2015-01-26
A widely tunable active coherent laser spectrometer (ACLaS) has been demonstrated for standoff detection of broadband absorbers in the 1280 to 1318 cm-1 spectral region using an external cavity quantum cascade laser as a mid-infrared source. The broad tuning range allows detection and quantification of vapor phase molecules, such as dichloroethane, ethylene glycol dinitrate, and tetrafluoroethane. The level of confidence in molecular mixing ratios retrieved from interfering spectral measurements is assessed in a quantitative manner. A first qualitative demonstration of condensed phase chemical detection on nitroacetanilide has also been conducted. Detection performances of the broadband ACLaS have been placed in the context of explosive detection and compared to that obtained using distributed feedback quantum cascade lasers.
Nonequilibrium Energy Transfer at Nanoscale: A Unified Theory from Weak to Strong Coupling
NASA Astrophysics Data System (ADS)
Wang, Chen; Ren, Jie; Cao, Jianshu
2015-07-01
Unraveling the microscopic mechanism of quantum energy transfer across two-level systems provides crucial insights to the optimal design and potential applications of low-dimensional nanodevices. Here, we study the non-equilibrium spin-boson model as a minimal prototype and develop a fluctuation-decoupled quantum master equation approach that is valid ranging from the weak to the strong system-bath coupling regime. The exact expression of energy flux is analytically established, which dissects the energy transfer as multiple boson processes with even and odd parity. Our analysis provides a unified interpretation of several observations, including coherence-enhanced heat flux and negative differential thermal conductance. The results will have broad implications for the fine control of energy transfer in nano-structural devices.
Quantum Behavior of Water Molecules Confined to Nanocavities in Gemstones.
Gorshunov, Boris P; Zhukova, Elena S; Torgashev, Victor I; Lebedev, Vladimir V; Shakurov, Gil'man S; Kremer, Reinhard K; Pestrjakov, Efim V; Thomas, Victor G; Fursenko, Dimitry A; Dressel, Martin
2013-06-20
When water is confined to nanocavities, its quantum mechanical behavior can be revealed by terahertz spectroscopy. We place H2O molecules in the nanopores of a beryl crystal lattice and observe a rich and highly anisotropic set of absorption lines in the terahertz spectral range. Two bands can be identified, which originate from translational and librational motions of the water molecule isolated within the cage; they correspond to the analogous broad bands in liquid water and ice. In the present case of well-defined and highly symmetric nanocavities, the observed fine structure can be explained by macroscopic tunneling of the H2O molecules within a six-fold potential caused by the interaction of the molecule with the cavity walls.
GaAs Quantum Dot Thermometry Using Direct Transport and Charge Sensing
NASA Astrophysics Data System (ADS)
Maradan, D.; Casparis, L.; Liu, T.-M.; Biesinger, D. E. F.; Scheller, C. P.; Zumbühl, D. M.; Zimmerman, J. D.; Gossard, A. C.
2014-06-01
We present measurements of the electron temperature using gate-defined quantum dots formed in a GaAs 2D electron gas in both direct transport and charge sensing mode. Decent agreement with the refrigerator temperature was observed over a broad range of temperatures down to 10 mK. Upon cooling nuclear demagnetization stages integrated into the sample wires below 1 mK, the device electron temperature saturates, remaining close to 10 mK. The extreme sensitivity of the thermometer to its environment as well as electronic noise complicates temperature measurements but could potentially provide further insight into the device characteristics. We discuss thermal coupling mechanisms, address possible reasons for the temperature saturation and delineate the prospects of further reducing the device electron temperature.
Lasing from colloidal InP/ZnS quantum dots.
Gao, Shuai; Zhang, Chunfeng; Liu, Yanjun; Su, Huaipeng; Wei, Lai; Huang, Tony; Dellas, Nicholas; Shang, Shuzhen; Mohney, Suzanne E; Wang, Jingkang; Xu, Jian
2011-03-14
High-quality InP/ZnS core-shell nanocrystal quantum dots (NQDs) were synthesized as a heavy-metal-free alternative to the gain media of cadmium-based colloidal nanoparticles. Upon UV excitation, amplified spontaneous emission (ASE) and optical gain were observed, for the first time, in close-packed InP/ZnS core-shell NQDs. The ASE wavelength can be selected by tailoring the nanocrystal size over a broad range of the spectrum. Moreover, the optical gain profile of InP/ZnS NQDs was matched to the second order feedback of holographic polymer-dispersed liquid crystal gratings, leading to the very first demonstration of an optically-pumped, nanocrystal laser based on InP/ZnS core-shell NQDs.
Quantum effects in the understanding of consciousness.
Hameroff, Stuart R; Craddock, Travis J A; Tuszynski, Jack A
2014-06-01
This paper presents a historical perspective on the development and application of quantum physics methodology beyond physics, especially in biology and in the area of consciousness studies. Quantum physics provides a conceptual framework for the structural aspects of biological systems and processes via quantum chemistry. In recent years individual biological phenomena such as photosynthesis and bird navigation have been experimentally and theoretically analyzed using quantum methods building conceptual foundations for quantum biology. Since consciousness is attributed to human (and possibly animal) mind, quantum underpinnings of cognitive processes are a logical extension. Several proposals, especially the Orch OR hypothesis, have been put forth in an effort to introduce a scientific basis to the theory of consciousness. At the center of these approaches are microtubules as the substrate on which conscious processes in terms of quantum coherence and entanglement can be built. Additionally, Quantum Metabolism, quantum processes in ion channels and quantum effects in sensory stimulation are discussed in this connection. We discuss the challenges and merits related to quantum consciousness approaches as well as their potential extensions.
Minimal evolution time and quantum speed limit of non-Markovian open systems
Meng, Xiangyi; Wu, Chengjun; Guo, Hong
2015-01-01
We derive a sharp bound as the quantum speed limit (QSL) for the minimal evolution time of quantum open systems in the non-Markovian strong-coupling regime with initial mixed states by considering the effects of both renormalized Hamiltonian and dissipator. For a non-Markovian quantum open system, the possible evolution time between two arbitrary states is not unique, among the set of which we find that the minimal one and its QSL can decrease more steeply by adjusting the coupling strength of the dissipator, which thus provides potential improvements of efficiency in many quantum physics and quantum information areas. PMID:26565062
NASA Astrophysics Data System (ADS)
Brennen, Gavin; Giacobino, Elisabeth; Simon, Christoph
2015-05-01
Quantum memories are essential for quantum information processing and long-distance quantum communication. The field has recently seen a lot of progress, and the present focus issue offers a glimpse of these developments, showing both experimental and theoretical results from many of the leading groups around the world. On the experimental side, it shows work on cold gases, warm vapors, rare-earth ion doped crystals and single atoms. On the theoretical side there are in-depth studies of existing memory protocols, proposals for new protocols including approaches based on quantum error correction, and proposals for new applications of quantum storage. Looking forward, we anticipate many more exciting results in this area.
Multidisciplinary research in space sciences and engineering with emphasis on theoretical chemistry
NASA Technical Reports Server (NTRS)
Hirschfelder, J. O.; Curtiss, C. F.
1974-01-01
A broad program is reported of research in theoretical chemistry, particularly in molecular quantum and statistical mechanics, directed toward determination of the physical and chemical properties of materials, relation of these macroscopic properties to properties of individual molecules, and determination of the structure and properties of the individual molecules. Abstracts are presented for each research project conducted during the course of the program.
NASA Astrophysics Data System (ADS)
Field, Lauren D.; Walper, Scott A.; Susumu, Kimihiro; Oh, Eunkeu; Medintz, Igor L.; Delehanty, James B.
2017-02-01
Förster resonance energy transfer (FRET)-based assemblies currently comprise a significant portion of intracellularly based sensors. Although extremely useful, the fluorescent protein pairs typically utilized in such sensors are still plagued by many photophysical issues including significant direct acceptor excitation, small changes in FRET efficiency, and limited photostability. Luminescent semiconductor nanocrystals or quantum dots (QDs) are characterized by many unique optical properties including size-tunable photoluminescence, broad excitation profiles coupled to narrow emission profiles, and resistance to photobleaching, which can cumulatively overcome many of the issues associated with use of fluorescent protein FRET donors. Utilizing QDs for intracellular FRET-based sensing still requires significant development in many areas including materials optimization, bioconjugation, cellular delivery and assay design and implementation. We are currently developing several QD-based FRET sensors for various intracellular applications. These include sensors targeting intracellular proteolytic activity along with those based on theranostic nanodevices for monitoring drug release. The protease sensor is based on a unique design where an intracellularly expressed fluorescent acceptor protein substrate assembles onto a QD donor following microinjection, forming an active complex that can be monitored in live cells over time. In the theranostic configuration, the QD is conjugated to a carrier protein-drug analogue complex to visualize real-time intracellular release of the drug from its carrier in response to an external stimulus. The focus of this talk will be on the design, properties, photophysical characterization and cellular application of these sensor constructs.
The iQID Camera: An Ionizing-Radiation Quantum Imaging Detector
Miller, Brian W.; Gregory, Stephanie J.; Fuller, Erin S.; ...
2014-06-11
We have developed and tested a novel, ionizing-radiation Quantum Imaging Detector (iQID). This scintillation-based detector was originally developed as a high-resolution gamma-ray imager, called BazookaSPECT, for use in single-photon emission computed tomography (SPECT). Recently, we have investigated the detectors response and imaging potential with other forms of ionizing radiation including alpha, neutron, beta, and fission fragment particles. The detector’s response to a broad range of ionizing radiation has prompted its new title. The principle operation of the iQID camera involves coupling a scintillator to an image intensifier. The scintillation light generated particle interactions is optically amplified by the intensifier andmore » then re-imaged onto a CCD/CMOS camera sensor. The intensifier provides sufficient optical gain that practically any CCD/CMOS camera can be used to image ionizing radiation. Individual particles are identified and their spatial position (to sub-pixel accuracy) and energy are estimated on an event-by-event basis in real time using image analysis algorithms on high-performance graphics processing hardware. Distinguishing features of the iQID camera include portability, large active areas, high sensitivity, and high spatial resolution (tens of microns). Although modest, iQID has energy resolution that is sufficient to discrimate between particles. Additionally, spatial features of individual events can be used for particle discrimination. An important iQID imaging application that has recently been developed is single-particle, real-time digital autoradiography. In conclusion, we present the latest results and discuss potential applications.« less
Long-wavelength (1.3-1.5 micron) quantum dot lasers based on GaAs
NASA Astrophysics Data System (ADS)
Kovsh, Alexey R.; Ledentsov, Nikolai N.; Mikhrin, Sergei S.; Zhukov, Alexey E.; Livshits, Daniil A.; Maleev, Nikolay A.; Maximov, Mikhail V.; Ustinov, Victor M.; Gubenko, Alexey E.; Gadjiev, Igor M.; Portnoi, Efim L.; Wang, Jyh Shyang; Chi, Jim Y.; Ouyang, Donald N.; Bimberg, Dieter; Lott, James A.
2004-06-01
The molecular beam epitaxy of self-assembled quantum dots (QDs) has reached a level such that the principal advantages of QD lasers can now be fully realized. We overview the most important recent results achieved to date including excellent device performance of 1.3 μm broad area and ridge waveguide lasers (Jth<150A/cm2, Ith=1.4 mA, differential efficiency above 70%, CW 300 mW single lateral mode operation), suppression of non-linearity of QD lasers, which results to improved beam quality, reduced wavelength chirp and sensitivity to optical feedback. Effect of suppression of side wall recombination in QD lasers is also described. These effects give a possibility to further improve and simplify processing and fabrication of laser modules targeting their cost reduction. Recent realization of 2 mW single mode CW operation of QD VCSEL with all-semiconductor DBR is also presented. Long-wavelength QD lasers are promising candidate for mode-locking lasers for optical computer application. Very recently 1.7-ps-wide pulses at repetition rate of 20 GHz were obtained on mode-locked QD lasers with clear indication of possible shortening of pulse width upon processing optimization. First step of unification of laser technology for telecom range with QD-lasers grown on GaAs has been done. Lasing at 1.5 μm is achieved with threshold current density of 0.8 kA/cm2 and pulsed output power 7W.
Tandem luminescent solar concentrators based on engineered quantum dots
NASA Astrophysics Data System (ADS)
Wu, Kaifeng; Li, Hongbo; Klimov, Victor I.
2018-02-01
Luminescent solar concentrators (LSCs) can serve as large-area sunlight collectors for terrestrial and space-based photovoltaics. Due to their high emission efficiencies and readily tunable emission and absorption spectra, colloidal quantum dots have emerged as a new and promising type of LSC fluorophore. Spectral tunability of the quantum dots also facilitates the realization of stacked multilayered LSCs, where enhanced performance is obtained through spectral splitting of incident sunlight, as in multijunction photovoltaics. Here, we demonstrate a large-area (>230 cm2) tandem LSC based on two types of nearly reabsorption-free quantum dots spectrally tuned for optimal solar-spectrum splitting. This prototype device exhibits a high optical quantum efficiency of 6.4% for sunlight illumination and solar-to-electrical power conversion efficiency of 3.1%. The efficiency gains due to the tandem architecture over single-layer devices quickly increase with increasing LSC size and can reach more than 100% in structures with window sizes of more than 2,500 cm2.
U(1) Wilson lattice gauge theories in digital quantum simulators
NASA Astrophysics Data System (ADS)
Muschik, Christine; Heyl, Markus; Martinez, Esteban; Monz, Thomas; Schindler, Philipp; Vogell, Berit; Dalmonte, Marcello; Hauke, Philipp; Blatt, Rainer; Zoller, Peter
2017-10-01
Lattice gauge theories describe fundamental phenomena in nature, but calculating their real-time dynamics on classical computers is notoriously difficult. In a recent publication (Martinez et al 2016 Nature 534 516), we proposed and experimentally demonstrated a digital quantum simulation of the paradigmatic Schwinger model, a U(1)-Wilson lattice gauge theory describing the interplay between fermionic matter and gauge bosons. Here, we provide a detailed theoretical analysis of the performance and the potential of this protocol. Our strategy is based on analytically integrating out the gauge bosons, which preserves exact gauge invariance but results in complicated long-range interactions between the matter fields. Trapped-ion platforms are naturally suited to implementing these interactions, allowing for an efficient quantum simulation of the model, with a number of gate operations that scales polynomially with system size. Employing numerical simulations, we illustrate that relevant phenomena can be observed in larger experimental systems, using as an example the production of particle-antiparticle pairs after a quantum quench. We investigate theoretically the robustness of the scheme towards generic error sources, and show that near-future experiments can reach regimes where finite-size effects are insignificant. We also discuss the challenges in quantum simulating the continuum limit of the theory. Using our scheme, fundamental phenomena of lattice gauge theories can be probed using a broad set of experimentally accessible observables, including the entanglement entropy and the vacuum persistence amplitude.
Spectroscopic characterization of the quantum wires in titanosilicates ETS-4 and ETS-10
NASA Astrophysics Data System (ADS)
Yilmaz, Bilge; Warzywoda, Juliusz; Sacco, Albert, Jr.
2006-08-01
Titanosilicates ETS-4 and ETS-10 contain octahedrally coordinated monatomic semiconductor \\cdots \\mathrm {Ti} -O-Ti-O-\\mathrm {Ti}\\cdots (titania) chains in their frameworks. Titania chains are isolated from one another by a siliceous matrix. Thus, these chains can be regarded as one-dimensional nanostructures, i.e., 'quantum wires'. Diffuse reflectance UV-vis (DR-UV-vis) spectroscopy analysis demonstrated a significant blue-shift of the optical absorption edge (>60 nm) for both ETS-4 and ETS-10 compared to bulk titania. This blue-shift is consistent with the hypothesis that the titania chains in ETS-4 and ETS-10 are acting as quantum wires. A broad range of ETS-4 and ETS-10 samples with diverse crystallo-chemical characteristics was prepared. The DR-UV-vis and Raman spectra of various ETS-4 and ETS-10 samples exhibited different characteristics, which were hypothesized to be related to the titania chain 'quality'. Detailed investigation of the spectroscopic bands associated with the titania chains in ETS-4 was performed for the first time. The 'quality' of these titania chains/quantum wires in ETS-4 and ETS-10 was correlated with the crystal growth mechanisms of these materials. Comparison of the growth mechanisms and the spectroscopic behaviour for ETS-4 and ETS-10 suggests that the control of 'quantum wire quality' via hydrothermal synthesis is possible in ETS-4 but would be difficult in ETS-10.
NASA Astrophysics Data System (ADS)
Emani, Naresh Kumar; Khaidarov, Egor; Paniagua-Domínguez, Ramón; Fu, Yuan Hsing; Valuckas, Vytautas; Lu, Shunpeng; Zhang, Xueliang; Tan, Swee Tiam; Demir, Hilmi Volkan; Kuznetsov, Arseniy I.
2017-11-01
The dielectric nanophotonics research community is currently exploring transparent material platforms (e.g., TiO2, Si3N4, and GaP) to realize compact high efficiency optical devices at visible wavelengths. Efficient visible-light operation is key to integrating atomic quantum systems for future quantum computing. Gallium nitride (GaN), a III-V semiconductor which is highly transparent at visible wavelengths, is a promising material choice for active, nonlinear, and quantum nanophotonic applications. Here, we present the design and experimental realization of high efficiency beam deflecting and polarization beam splitting metasurfaces consisting of GaN nanostructures etched on the GaN epitaxial substrate itself. We demonstrate a polarization insensitive beam deflecting metasurface with 64% and 90% absolute and relative efficiencies. Further, a polarization beam splitter with an extinction ratio of 8.6/1 (6.2/1) and a transmission of 73% (67%) for p-polarization (s-polarization) is implemented to demonstrate the broad functionality that can be realized on this platform. The metasurfaces in our work exhibit a broadband response in the blue wavelength range of 430-470 nm. This nanophotonic platform of GaN shows the way to off- and on-chip nonlinear and quantum photonic devices working efficiently at blue emission wavelengths common to many atomic quantum emitters such as Ca+ and Sr+ ions.
Wang, Gongping; Zeng, Guangwei; Wang, Caie; Wang, Huasheng; Yang, Bo; Guan, Fangxia; Li, Dongpeng; Feng, Xiaoshan
2015-06-01
Amniotic membrane-derived mesenchymal stem cells (hAM-dMSCs) are a potential source of mesenchymal stem cells which could be used to repair skin damage. The use of mesenchymal stem cells to repair skin damage requires safe, effective and biocompatible agents to evaluate the effectiveness of the result. Quantum dots (QDs) composed of CdSe/ZnS are semiconductor nanocrystals with broad excitation and narrow emission spectra, which have been considered as a new chemical and fluorescent substance for non-invasively labeling different cells in vitro and in vivo. This study investigated the cytotoxic effects of QDs on hAM-dMSCs at different times following labeling. Using 0.75, 1.5 and 3.0 μL between quantum dots, labeled human amniotic mesenchymal stem cells were collected on days 1, 2 and 4 and observed morphological changes, performed an MTT cell growth assay and flow cytometry for mesenchymal stem cells molecular markers. Quantum dot concentration 0.75 μg/mL labeled under a fluorescence microscope, cell morphology was observed, The MTT assay showed cells in the proliferative phase. Flow cytometry expression CD29, CD31, CD34, CD44, CD90, CD105 and CD106. Within a certain range of concentrations between quantum dots labeled human amniotic mesenchymal stem cells has good biocompatibility.
NASA Astrophysics Data System (ADS)
Abranyos, Yonatan
1999-10-01
Quantum optical tests of the fundamental principles of quantum mechanics, in particular, complementarity, entanglement and non-locality, are the central themes of this dissertation. A which-path experiment is implemented based on a recent experiment by Eichmann et al. [1] involving two four-level atoms. In the version considered here a continuous Broad Band Excitation field drives the two trapped atoms and, depending on the type of scattering, information about which atom scattered the light is stored in the internal degrees of the atoms. Entanglement of the atoms-photon system is intimately connected to the availability of ``which way'' information. The quantum eraser disentangles the atoms-photon system and consequently ``which way'' information is lost leading to interference. Two different experimental schemes based on the Eichmann et al. experiment are proposed for the implementation of the quantum eraser. The quantum eraser schemes erase the ``which way'' information and interference is observed in the second order correlation function. With a slight modification of the experiment, a scheme that allows to verify recently derived inequalities by Englert [2] in connection with distinguishability and visibility in a two-way interferometer is proposed. These inequalities, in some sense, can be regarded as quantifying the notion of wave-particle duality. The visibility of interference depends on the detected polarization direction of the scattered light, and a reading out of the internal atomic states of one of the two atoms provides for partial ``which way'' information or distinguishability of the two different paths. Finally, the quantum eraser is used to measure the decoherence time of a local measurement process. The experiment proposed is similar to the quantum eraser setup and contains the complete measurement process of system-meter-environment interaction. The decoherence time is quantitatively expressed in the amount of reduction of the visibility in the second order correlation function. In addition, it explores how we can cast the question of quantum coherence of mesoscopic or macroscopic systems with a quantum eraser or in general interference experiments.
An Early Quantum Computing Proposal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Stephen Russell; Alexander, Francis Joseph; Barros, Kipton Marcos
The D-Wave 2X is the third generation of quantum processing created by D-Wave. NASA (with Google and USRA) and Lockheed Martin (with USC), both own D-Wave systems. Los Alamos National Laboratory (LANL) purchased a D-Wave 2X in November 2015. The D-Wave 2X processor contains (nominally) 1152 quantum bits (or qubits) and is designed to specifically perform quantum annealing, which is a well-known method for finding a global minimum of an optimization problem. This methodology is based on direct execution of a quantum evolution in experimental quantum hardware. While this can be a powerful method for solving particular kinds of problems,more » it also means that the D-Wave 2X processor is not a general computing processor and cannot be programmed to perform a wide variety of tasks. It is a highly specialized processor, well beyond what NNSA currently thinks of as an “advanced architecture.”A D-Wave is best described as a quantum optimizer. That is, it uses quantum superposition to find the lowest energy state of a system by repeated doses of power and settling stages. The D-Wave produces multiple solutions to any suitably formulated problem, one of which is the lowest energy state solution (global minimum). Mapping problems onto the D-Wave requires defining an objective function to be minimized and then encoding that function in the Hamiltonian of the D-Wave system. The quantum annealing method is then used to find the lowest energy configuration of the Hamiltonian using the current D-Wave Two, two-level, quantum processor. This is not always an easy thing to do, and the D-Wave Two has significant limitations that restrict problem sizes that can be run and algorithmic choices that can be made. Furthermore, as more people are exploring this technology, it has become clear that it is very difficult to come up with general approaches to optimization that can both utilize the D-Wave and that can do better than highly developed algorithms on conventional computers for specific applications. These are all fundamental challenges that must be overcome for the D-Wave, or similar, quantum computing technology to be broadly applicable.« less
Fine-grained state counting for black holes in loop quantum gravity.
Ghosh, A; Mitra, P
2009-04-10
A state of a black hole in loop quantum gravity is given by a distribution of spins on punctures on the horizon. The distribution is of the Boltzmann type, with the area playing the role of the energy. In investigations where the total area was kept approximately constant, there was a kind of thermal equilibrium between the spins which have the same analogue temperature and the entropy was proportional to the area. If the area is precisely fixed, however, multiple constraints appear, different spins have different analogue temperatures and the entropy is not strictly linear in the area, but is bounded by a linear rise.
Quantum Chess: Making Quantum Phenomena Accessible
NASA Astrophysics Data System (ADS)
Cantwell, Christopher
Quantum phenomena have remained largely inaccessible to the general public. There tends to be a scare factor associated with the word ``Quantum''. This is in large part due to the alien nature of phenomena such as superposition and entanglement. However, Quantum Computing is a very active area of research and one day we will have games that run on those quantum computers. Quantum phenomena such as superposition and entanglement will seem as normal as gravity. Is it possible to create such games today? Can we make games that are built on top of a realistic quantum simulation and introduce players of any background to quantum concepts in a fun and mentally stimulating way? One of the difficulties with any quantum simulation run on a classical computer is that the Hilbert space grows exponentially, making simulations of an appreciable size physically impossible due largely to memory restrictions. Here we will discuss the conception and development of Quantum Chess, and how to overcome some of the difficulties faced. We can then ask the question, ``What's next?'' What are some of the difficulties Quantum Chess still faces, and what is the future of quantum games?
Harnessing Sun’s Energy with Quantum Dots Based Next Generation Solar Cell
Halim, Mohammad A.
2012-01-01
Our energy consumption relies heavily on the three components of fossil fuels (oil, natural gas and coal) and nearly 83% of our current energy is consumed from those sources. The use of fossil fuels, however, has been viewed as a major environmental threat because of their substantial contribution to greenhouse gases which are responsible for increasing the global average temperature. Last four decades, scientists have been searching for alternative sources of energy which need to be environmentally clean, efficient, cost-effective, renewable, and sustainable. One of the promising sustainable sources of energy can be achieved by harnessing sun energy through silicon wafer, organic polymer, inorganic dye, and quantum dots based solar cells. Among them, quantum dots have an exceptional property in that they can excite multiple electrons using only one photon. These dots can easily be synthesized, processed in solution, and incorporated into solar cell application. Interestingly, the quantum dots solar cells can exceed the Shockley-Queisser limit; however, it is a great challenge for other solar cell materials to exceed the limit. Theoretically, the quantum dots solar cell can boost the power conversion efficiency up to 66% and even higher to 80%. Moreover, in changing the size of the quantum dots one can utilize the Sun’s broad spectrum of visible and infrared ranges. This review briefly overviews the present performance of different materials-based solar cells including silicon wafer, dye-sensitized, and organic solar cells. In addition, recent advances of the quantum dots based solar cells which utilize cadmium sulfide/selenide, lead sulfide/selenide, and new carbon dots as light harvesting materials has been reviewed. A future outlook is sketched as to how one could improve the efficiency up to 10% from the current highest efficiency of 6.6%. PMID:28348320
Size-Dependent Optoelectronic Properties and Controlled Doping of Semiconductor Quantum Dots
NASA Astrophysics Data System (ADS)
Engel, Jesse Hart
Given a rapidly developing world, the need exists for inexpensive renewable energy alternatives to help avoid drastic climate change. Photovoltaics have the potential to fill the energy needs of the future, but significant cost decreases are necessary for widespread adoption. Semiconductor nanocrystals, also known as quantum dots, are a nascent technology with long term potential to enable inexpensive and high efficiency photovoltaics. When deposited as a film, quantum dots form unique nanocomposites whose electronic and optical properties can be broadly tuned through manipulation of their individual constituents. The contents of this thesis explore methods to understand and optimize the optoelectronic properties of PbSe quantum dot films for use in photovoltaic applications. Systematic optimization of photovoltaic performance is demonstrated as a function of nanocrystal size, establishing the potential for utilizing extreme quantum confinement to improve device energetics and alignment. Detailed investigations of the mechanisms of electrical transport are performed, revealing that electronic coupling in quantum dot films is significantly less than often assumed based on optical shifts. A method is proposed to employ extended regions of built-in electrical field, through controlled doping, to sidestep issues of poor transport. To this end, treatments with chemical redox agents are found to effect profound and reversible doping within nanocrystal films, sufficient to enable their use as chemical sensors, but lacking the precision required for optoelectronic applications. Finally, a novel doping method employing "redox buffers" is presented to enact precise, stable, and reversible charge-transfer doping in porous semiconductor films. An example of oxidatively doping PbSe quantum dot thin films is presented, and the future potential for redox buffers in photovoltaic applications is examined.
Energy transfer mechanisms in layered 2D perovskites.
Williams, Olivia F; Guo, Zhenkun; Hu, Jun; Yan, Liang; You, Wei; Moran, Andrew M
2018-04-07
Two-dimensional (2D) perovskite quantum wells are generating broad scientific interest because of their potential for use in optoelectronic devices. Recently, it has been shown that layers of 2D perovskites can be grown in which the average thicknesses of the quantum wells increase from the back to the front of the film. This geometry carries implications for light harvesting applications because the bandgap of a quantum well decreases as its thickness increases. The general structural formula for the 2D perovskite systems under investigation in this work is (PEA) 2 (MA) n-1 [Pb n I 3n+1 ] (PEA = phenethyl ammonium, MA = methyl ammonium). Here, we examine two layered 2D perovskites with different distributions of quantum well thicknesses. Spectroscopic measurements and model calculations suggest that both systems funnel electronic excitations from the back to the front of the film through energy transfer mechanisms on the time scales of 100's of ps (i.e., energy transfer from thinner to thicker quantum wells). In addition, the model calculations demonstrate that the transient absorption spectra are composed of a progression of single exciton and biexciton resonances associated with the individual quantum wells. We find that exciton dissociation and/or charge transport dynamics make only minor contributions to the transient absorption spectra within the first 1 ns after photo-excitation. An analysis of the energy transfer kinetics indicates that the transitions occur primarily between quantum wells with values of n that differ by 1 because of the spectral overlap factor that governs the energy transfer rate. Two-dimensional transient absorption spectra reveal a pattern of resonances consistent with the dominance of sequential energy transfer dynamics.
Energy transfer mechanisms in layered 2D perovskites
NASA Astrophysics Data System (ADS)
Williams, Olivia F.; Guo, Zhenkun; Hu, Jun; Yan, Liang; You, Wei; Moran, Andrew M.
2018-04-01
Two-dimensional (2D) perovskite quantum wells are generating broad scientific interest because of their potential for use in optoelectronic devices. Recently, it has been shown that layers of 2D perovskites can be grown in which the average thicknesses of the quantum wells increase from the back to the front of the film. This geometry carries implications for light harvesting applications because the bandgap of a quantum well decreases as its thickness increases. The general structural formula for the 2D perovskite systems under investigation in this work is (PEA)2(MA)n-1[PbnI3n+1] (PEA = phenethyl ammonium, MA = methyl ammonium). Here, we examine two layered 2D perovskites with different distributions of quantum well thicknesses. Spectroscopic measurements and model calculations suggest that both systems funnel electronic excitations from the back to the front of the film through energy transfer mechanisms on the time scales of 100's of ps (i.e., energy transfer from thinner to thicker quantum wells). In addition, the model calculations demonstrate that the transient absorption spectra are composed of a progression of single exciton and biexciton resonances associated with the individual quantum wells. We find that exciton dissociation and/or charge transport dynamics make only minor contributions to the transient absorption spectra within the first 1 ns after photo-excitation. An analysis of the energy transfer kinetics indicates that the transitions occur primarily between quantum wells with values of n that differ by 1 because of the spectral overlap factor that governs the energy transfer rate. Two-dimensional transient absorption spectra reveal a pattern of resonances consistent with the dominance of sequential energy transfer dynamics.
Harnessing Sun's Energy with Quantum Dots Based Next Generation Solar Cell.
Halim, Mohammad A
2012-12-27
Our energy consumption relies heavily on the three components of fossil fuels (oil, natural gas and coal) and nearly 83% of our current energy is consumed from those sources. The use of fossil fuels, however, has been viewed as a major environmental threat because of their substantial contribution to greenhouse gases which are responsible for increasing the global average temperature. Last four decades, scientists have been searching for alternative sources of energy which need to be environmentally clean, efficient, cost-effective, renewable, and sustainable. One of the promising sustainable sources of energy can be achieved by harnessing sun energy through silicon wafer, organic polymer, inorganic dye, and quantum dots based solar cells. Among them, quantum dots have an exceptional property in that they can excite multiple electrons using only one photon. These dots can easily be synthesized, processed in solution, and incorporated into solar cell application. Interestingly, the quantum dots solar cells can exceed the Shockley - Queisser limit; however, it is a great challenge for other solar cell materials to exceed the limit. Theoretically, the quantum dots solar cell can boost the power conversion efficiency up to 66% and even higher to 80%. Moreover, in changing the size of the quantum dots one can utilize the Sun's broad spectrum of visible and infrared ranges. This review briefly overviews the present performance of different materials-based solar cells including silicon wafer, dye-sensitized, and organic solar cells. In addition, recent advances of the quantum dots based solar cells which utilize cadmium sulfide/selenide, lead sulfide/selenide, and new carbon dots as light harvesting materials has been reviewed. A future outlook is sketched as to how one could improve the efficiency up to 10% from the current highest efficiency of 6.6%.
Li, Ludong; Gu, Leilei; Lou, Zheng; Fan, Zhiyong; Shen, Guozhen
2017-04-25
Here we report the fabrication of high-performance ultraviolet photodetectors based on a heterojunction device structure in which ZnO quantum dots were used to decorate Zn 2 SnO 4 nanowires. Systematic investigations have shown their ultrahigh light-to-dark current ratio (up to 6.8 × 10 4 ), specific detectivity (up to 9.0 × 10 17 Jones), photoconductive gain (up to 1.1 × 10 7 ), fast response, and excellent stability. Compared with a pristine Zn 2 SnO 4 nanowire, a quantum dot decorated nanowire demonstrated about 10 times higher photocurrent and responsivity. Device physics modeling showed that their high performance originates from the rational energy band engineering, which allows efficient separation of electron-hole pairs at the interfaces between ZnO quantum dots and a Zn 2 SnO 4 nanowire. As a result of band engineering, holes migrate to ZnO quantum dots, which increases electron concentration and lifetime in the nanowire conduction channel, leading to significantly improved photoresponse. The enhancement mechanism found in this work can also be used to guide the design of high-performance photodetectors based on other nanomaterials. Furthermore, flexible ultraviolet photodetectors were fabricated and integrated into a 10 × 10 device array, which constitutes a high-performance flexible ultraviolet image sensor. These intriguing results suggest that the band alignment engineering on nanowires can be rationally achieved using compound semiconductor quantum dots. This can lead to largely improved device performance. Particularly for ZnO quantum dot decorated Zn 2 SnO 4 nanowires, these decorated nanowires may find broad applications in future flexible and wearable electronics.
Saturable nonlinear dielectric waveguide with applications to broad-area semiconductor lasers.
Mehuys, D; Mittelstein, M; Salzman, J; Yariv, A
1987-11-01
Self-focusing in a passive dielectric waveguide with a saturable nonlinearity is studied. The eigensolutions constitute a good approximation to the lateral modes of broad-area semiconductor lasers under low-duty-cycle pulsed conditions. The laser modes are predicted to consist of adjacent filaments coupled in phase, leading to a single-lobed far field, and to be stable with increased current injection above saturation intensity. The ultimate filament spacing is inversely proportional to the threshold gain, and thus wider filaments are expected in low-threshold broad-area lasers.
Protecting software agents from malicious hosts using quantum computing
NASA Astrophysics Data System (ADS)
Reisner, John; Donkor, Eric
2000-07-01
We evaluate how quantum computing can be applied to security problems for software agents. Agent-based computing, which merges technological advances in artificial intelligence and mobile computing, is a rapidly growing domain, especially in applications such as electronic commerce, network management, information retrieval, and mission planning. System security is one of the more eminent research areas in agent-based computing, and the specific problem of protecting a mobile agent from a potentially hostile host is one of the most difficult of these challenges. In this work, we describe our agent model, and discuss the capabilities and limitations of classical solutions to the malicious host problem. Quantum computing may be extremely helpful in addressing the limitations of classical solutions to this problem. This paper highlights some of the areas where quantum computing could be applied to agent security.
Generic isolated horizons in loop quantum gravity
NASA Astrophysics Data System (ADS)
Beetle, Christopher; Engle, Jonathan
2010-12-01
Isolated horizons model equilibrium states of classical black holes. A detailed quantization, starting from a classical phase space restricted to spherically symmetric horizons, exists in the literature and has since been extended to axisymmetry. This paper extends the quantum theory to horizons of arbitrary shape. Surprisingly, the Hilbert space obtained by quantizing the full phase space of all generic horizons with a fixed area is identical to that originally found in spherical symmetry. The entropy of a large horizon remains one-quarter its area, with the Barbero-Immirzi parameter retaining its value from symmetric analyses. These results suggest a reinterpretation of the intrinsic quantum geometry of the horizon surface.
Microwave Imaging Using a Tunable Reflectarray Antenna and Superradiance in Open Quantum Systems
NASA Astrophysics Data System (ADS)
Tayebi, Amin
Theory, experiment, and computation are the three paradigms for scientific discoveries. This dissertation includes work in all three areas. The first part is dedicated to the practical design and development of a microwave imaging system, a problem mostly experimental and computational in nature. The second part discusses theoretical foundations of possible future advances in quantum signal transmission. In part one, a new active microwave imaging system is proposed. At the heart of this novel system lies an electronically reconfigurable beam-scanning reflectarray antenna. The high tuning capability of the reflectarray provides a broad steering range of +/- 60 degrees in two distinct frequency bands: S and F bands. The array, combined with an external source, dynamically steers the incoming beam across this range in order to generate multi-angle projection data for target detection. The collected data is then used for image reconstruction by means of time reversal signal processing technique. Our design significantly reduces cost and operational complexities compared to traditional imaging systems. In conventional systems, the region of interest is enclosed by a costly array of transceiver antennas which additionally requires a complicated switching circuitry. The inclusion of the beam scanning array and the utilization of a single source, eliminates the need for multiple antennas and the involved circuitry. In addition, unlike conventional setups, this system is not constrained by the dimensions of the object under test. Therefore the inspection of large objects, such as extended laminate structures, composite airplane wings and wind turbine blades becomes possible. Experimental results of detection of various dielectric targets as well as detecting anomalies within them, such as defects and metallic impurities, using the imaging prototype are presented. The second part includes the theoretical consideration of three different problems: quantum transport through two different nanostructures, a solid state device suitable for quantum computing and spherical plasmonic nanoantennas and waveguides. These three physically different systems are all investigated within a single quantum theory; the effective non-Hermitian Hamiltonian framework. The non-Hermitian Hamiltonian approach is a convenient mathematical formalism for the description of open quantum systems. This method based on the Feshbach projection formalism provides an alternative to popular methods such as the Feynman diagrammatic techniques and the master equation approach that are commonly used for studying open quantum systems. It is formally exact but very flexible and can be adjusted to many specific situations. One bright phenomenon emerging in the situation with a sufficiently strong continuum coupling in the case when the number of open channels is relatively small compared to the number of involved intrinsic states is the so-called superradiance. Being an analog of superradiance in quantum optics, this term stands for the formation in the system of a collective superposition of the intrinsic states coherently coupled to the same decay channel. The footprint of superradiance in each system is investigated in detail. In the quantum transport problem, signal transmission is greatly enhanced at the transition to superradiance. In the proposed solid state based charge qubit, the superradiant states effectively protect the remaining internal states from decaying into the continuum and hence increase the lifetime of the device. Finally, the superradiance phenomenon provides us a tool to manipulate light at the nanoscale. It is responsible for the existence of modes with distinct radiation properties in a system of coupled plasmonic nanoantennas: superradiant states with enhanced and dark modes with extremely damped radiation. Furthermore, similar to the quantum case, energy transport through a plasmonic waveguide is greatly enhanced.
NASA Astrophysics Data System (ADS)
Kosolapova, K.; Al-Alwani, A.; Gorbachev, I.; Glukhovskoy, E.
2015-11-01
Recently, a new simple method for the purification of CdSe-CdS-ZnS quantum dots by using membrane filtration, the filtration process, successfully separated the oleic acid from quantum dots through membranes purification after synthesis; purification of quantum dots is a very significant part of post synthetical treatment that determines the properties of the material. We explore the possibilities of the Langmuir-Blodgett technique to make such layers, using quantum dots as a model system. The Langmuir monolayer of quantum dots were then investigated the surface pressure-area isotherm. From isotherm, we found the surface pressure monolayer changed with time.
JOURNAL SCOPE GUIDELINES: Paper classification scheme
NASA Astrophysics Data System (ADS)
2005-06-01
This scheme is used to clarify the journal's scope and enable authors and readers to more easily locate the appropriate section for their work. For each of the sections listed in the scope statement we suggest some more detailed subject areas which help define that subject area. These lists are by no means exhaustive and are intended only as a guide to the type of papers we envisage appearing in each section. We acknowledge that no classification scheme can be perfect and that there are some papers which might be placed in more than one section. We are happy to provide further advice on paper classification to authors upon request (please email jphysa@iop.org). 1. Statistical physics numerical and computational methods statistical mechanics, phase transitions and critical phenomena quantum condensed matter theory Bose-Einstein condensation strongly correlated electron systems exactly solvable models in statistical mechanics lattice models, random walks and combinatorics field-theoretical models in statistical mechanics disordered systems, spin glasses and neural networks nonequilibrium systems network theory 2. Chaotic and complex systems nonlinear dynamics and classical chaos fractals and multifractals quantum chaos classical and quantum transport cellular automata granular systems and self-organization pattern formation biophysical models 3. Mathematical physics combinatorics algebraic structures and number theory matrix theory classical and quantum groups, symmetry and representation theory Lie algebras, special functions and orthogonal polynomials ordinary and partial differential equations difference and functional equations integrable systems soliton theory functional analysis and operator theory inverse problems geometry, differential geometry and topology numerical approximation and analysis geometric integration computational methods 4. Quantum mechanics and quantum information theory coherent states eigenvalue problems supersymmetric quantum mechanics scattering theory relativistic quantum mechanics semiclassical approximations foundations of quantum mechanics and measurement theory entanglement and quantum nonlocality geometric phases and quantum tomography quantum tunnelling decoherence and open systems quantum cryptography, communication and computation theoretical quantum optics 5. Classical and quantum field theory quantum field theory gauge and conformal field theory quantum electrodynamics and quantum chromodynamics Casimir effect integrable field theory random matrix theory applications in field theory string theory and its developments classical field theory and electromagnetism metamaterials 6. Fluid and plasma theory turbulence fundamental plasma physics kinetic theory magnetohydrodynamics and multifluid descriptions strongly coupled plasmas one-component plasmas non-neutral plasmas astrophysical and dusty plasmas
Mixing of phosphorescent and exciplex emission in efficient organic electroluminescent devices.
Cherpak, Vladyslav; Stakhira, Pavlo; Minaev, Boris; Baryshnikov, Gleb; Stromylo, Evgeniy; Helzhynskyy, Igor; Chapran, Marian; Volyniuk, Dmytro; Hotra, Zenon; Dabuliene, Asta; Tomkeviciene, Ausra; Voznyak, Lesya; Grazulevicius, Juozas Vidas
2015-01-21
We fabricated a yellow organic light-emitting diode (OLED) based on the star-shaped donor compound tri(9-hexylcarbazol-3-yl)amine, which provides formation of the interface exciplexes with the iridium(III) bis[4,6-difluorophenyl]-pyridinato-N,C2']picolinate (FIrpic). The exciplex emission is characterized by a broad band and provides a condition to realize the highly effective white OLED. It consists of a combination of the blue phosphorescent emission from the FIrpic complex and a broad efficient delayed fluorescence induced by thermal activation with additional direct phosphorescence from the triplet exciplex formed at the interface. The fabricated exciplex-type device exhibits a high brightness of 38 000 cd/m(2) and a high external quantum efficiency.
Ultrashort electromagnetic pulse control of intersubband quantum well transitions
2012-01-01
We study the creation of high-efficiency controlled population transfer in intersubband transitions of semiconductor quantum wells. We give emphasis to the case of interaction of the semiconductor quantum well with electromagnetic pulses with a duration of few cycles and even a single cycle. We numerically solve the effective nonlinear Bloch equations for a specific double GaAs/AlGaAs quantum well structure, taking into account the ultrashort nature of the applied field, and show that high-efficiency population inversion is possible for specific pulse areas. The dependence of the efficiency of population transfer on the electron sheet density and the carrier envelope phase of the pulse is also explored. For electromagnetic pulses with a duration of several cycles, we find that the change in the electron sheet density leads to a very different response of the population in the two subbands to pulse area. However, for pulses with a duration equal to or shorter than 3 cycles, we show that efficient population transfer between the two subbands is possible, independent of the value of electron sheet density, if the pulse area is Π. PMID:22916956
Ultrashort electromagnetic pulse control of intersubband quantum well transitions.
Paspalakis, Emmanuel; Boviatsis, John
2012-08-23
: We study the creation of high-efficiency controlled population transfer in intersubband transitions of semiconductor quantum wells. We give emphasis to the case of interaction of the semiconductor quantum well with electromagnetic pulses with a duration of few cycles and even a single cycle. We numerically solve the effective nonlinear Bloch equations for a specific double GaAs/AlGaAs quantum well structure, taking into account the ultrashort nature of the applied field, and show that high-efficiency population inversion is possible for specific pulse areas. The dependence of the efficiency of population transfer on the electron sheet density and the carrier envelope phase of the pulse is also explored. For electromagnetic pulses with a duration of several cycles, we find that the change in the electron sheet density leads to a very different response of the population in the two subbands to pulse area. However, for pulses with a duration equal to or shorter than 3 cycles, we show that efficient population transfer between the two subbands is possible, independent of the value of electron sheet density, if the pulse area is Π.
HiFi-MBQC High Fidelitiy Measurement-Based Quantum Computing using Superconducting Detectors
2016-04-04
superconducting nanowire single photon detectors (SNSPDs) which allowed support of quantum photonics experiments leading to 14 peer-reviewed...sampling, and several other areas. 15. SUBJECT TERMS EOARD, photonics, cryostat, superconducting nanowire , SNSPD 16. SECURITY CLASSIFICATION OF: 17...quantum simulations. The main budget contribution was dedicated to develop superconducting nanowire detectors with efficiencies above 93% at telecom
NASA Technical Reports Server (NTRS)
Rosenfeld, D.; Bahir, G.
1993-01-01
A theoretical study of the effect of the direction of the incident light on the quantum efficiency of homogeneous HgCdTe photodiodes suitable for sensing infrared radiation in the 8-12 microns atmospheric window is presented. The probability of an excess minority carrier to reach the junction is derived as a function of its distance from the edge of the depletion region. Accordingly, the quantum efficiency of photodiodes is presented for two geometries. In the first, the light is introduced directly to the area in which it is absorbed (opaque region), while in the second, the light passes through a transparent region before it reaches the opaque region. Finally, the performance of the two types of diodes is analyzed with the objective of finding the optimal width of the absorption area. The quantum efficiency depends strongly on the way in which the light is introduced. The structure in which the radiation is absorbed following its crossing the transparent region is associated with both higher quantum efficiency and homogeneity. In addition, for absorption region widths higher than a certain minimum, the quantum efficiency in this case is insensitive to the width of the absorption region.
Change-Based Satellite Monitoring Using Broad Coverage and Targetable Sensing
NASA Technical Reports Server (NTRS)
Chien, Steve A.; Tran, Daniel Q.; Doubleday, Joshua R.; Doggett, Thomas
2013-01-01
A generic software framework analyzes data from broad coverage sweeps or general larger areas of interest. Change detection methods are used to extract subsets of directed swath areas that intersect areas of change. These areas are prioritized and allocated to targetable assets. This method is deployed in an automatic fashion, and has operated without human monitoring or intervention for sustained periods of time (months).
JPRS Report, Science and Technology, Europe.
1989-06-16
nature of their central energy sources, to the complex distribution of gases around the nucleus and possibly to understanding the origin of the diffuse...development. CCD’s are ideal for single photon X-ray imaging and spectroscopy. They have a high quantum efficiency over a broad energy range, high spatial...resolution, low readout noise, and an energy resolution approaching 100 at high energy levels. Reflection gratings have been chosen for XMM rather
Quantum effect on the energy levels of Eu2+ doped K2Ca2(SO4)3 nanoparticles.
Salah, Numan; Habib, Sami S; Khan, Zishan H
2010-09-01
Quantum confinement effect on the energy levels of Eu(2+) doped K(2)Ca(2)(SO(4))(3) nanoparticles has been observed. The broad photoluminescence (PL) emission band of Eu(2+) doped K(2)Ca(2)(SO(4))(3) microcrystalline sample observed at ∼436 nm is found to split into two narrow well resolved bands, located at 422 and 445 nm in the nanostructure form of this material. This has been attributed to the reduction in the crystal field strength of the nanomaterials, which results in widening the energy band gap and splitting the broad 4f(6)5d energy level of Eu(2+). Energy band gap values of the micro and nanocrystalline K(2)Ca(2)(SO(4))(3) samples were also determined by measuring the UV-visible absorption spectra. These values are 3.34 and 3.44 eV for the micro and nanocrystalline samples, respectively. These remarkable results suggest that activators having wide emission bands might be subjected to weak crystal strength via nanostructure materials to modify their electronic transitions. This might prove a powerful technique for producing new-advanced materials for use in the fields of solid state lasers and optoelectronic devises.
NASA Astrophysics Data System (ADS)
Bishop, Kevin P.; Roy, Pierre-Nicholas
2018-03-01
Free energy calculations are a crucial part of understanding chemical systems but are often computationally expensive for all but the simplest of systems. Various enhanced sampling techniques have been developed to improve the efficiency of these calculations in numerical simulations. However, the majority of these approaches have been applied using classical molecular dynamics. There are many situations where nuclear quantum effects impact the system of interest and a classical description fails to capture these details. In this work, path integral molecular dynamics has been used in conjunction with umbrella sampling, and it has been observed that correct results are only obtained when the umbrella sampling potential is applied to a single path integral bead post quantization. This method has been validated against a Lennard-Jones benchmark system before being applied to the more complicated water dimer system over a broad range of temperatures. Free energy profiles are obtained, and these are utilized in the calculation of the second virial coefficient as well as the change in free energy from the separated water monomers to the dimer. Comparisons to experimental and ground state calculation values from the literature are made for the second virial coefficient at higher temperature and the dissociation energy of the dimer in the ground state.
Bishop, Kevin P; Roy, Pierre-Nicholas
2018-03-14
Free energy calculations are a crucial part of understanding chemical systems but are often computationally expensive for all but the simplest of systems. Various enhanced sampling techniques have been developed to improve the efficiency of these calculations in numerical simulations. However, the majority of these approaches have been applied using classical molecular dynamics. There are many situations where nuclear quantum effects impact the system of interest and a classical description fails to capture these details. In this work, path integral molecular dynamics has been used in conjunction with umbrella sampling, and it has been observed that correct results are only obtained when the umbrella sampling potential is applied to a single path integral bead post quantization. This method has been validated against a Lennard-Jones benchmark system before being applied to the more complicated water dimer system over a broad range of temperatures. Free energy profiles are obtained, and these are utilized in the calculation of the second virial coefficient as well as the change in free energy from the separated water monomers to the dimer. Comparisons to experimental and ground state calculation values from the literature are made for the second virial coefficient at higher temperature and the dissociation energy of the dimer in the ground state.
NASA Astrophysics Data System (ADS)
Yanagawa, Hiroto; Inoue, Asuka; Sugimoto, Hiroshi; Shioi, Masahiko; Fujii, Minoru
2017-12-01
Near-field coupling between a silicon quantum dot (Si-QD) monolayer and a plasmonic substrate fabricated by nano-imprint lithography and having broad multiple resonances in the near-infrared (NIR) window of biological substances was studied by precisely controlling the QDs-substrate distance. A strong enhancement of the NIR photoluminescence (PL) of Si-QDs was observed. Detailed analyses of the PL and PL excitation spectra, the PL decay dynamics, and the reflectance spectra revealed that both the excitation cross-sections and the emission rates are enhanced by the surface plasmon resonances, thanks to the broad multiple resonances of the plasmonic substrate, and that the relative contribution of the two enhancement processes depends strongly on the excitation wavelength. Under excitation by short wavelength photons (405 nm), where enhancement of the excitation cross-section is not expected, the maximum enhancement was obtained when the QDs-substrate distance was around 30 nm. On the other hand, under long wavelength excitation (641 nm), where strong excitation cross-section enhancement is expected, the largest enhancement was obtained when the distance was minimum (around 1 nm). The achievement of efficient excitation of NIR luminescence of Si-QDs by long wavelength photons paves the way for the development of Si-QD-based fluorescence bio-sensing devices with a high bound-to-free ratio.
Experimental Machine Learning of Quantum States
NASA Astrophysics Data System (ADS)
Gao, Jun; Qiao, Lu-Feng; Jiao, Zhi-Qiang; Ma, Yue-Chi; Hu, Cheng-Qiu; Ren, Ruo-Jing; Yang, Ai-Lin; Tang, Hao; Yung, Man-Hong; Jin, Xian-Min
2018-06-01
Quantum information technologies provide promising applications in communication and computation, while machine learning has become a powerful technique for extracting meaningful structures in "big data." A crossover between quantum information and machine learning represents a new interdisciplinary area stimulating progress in both fields. Traditionally, a quantum state is characterized by quantum-state tomography, which is a resource-consuming process when scaled up. Here we experimentally demonstrate a machine-learning approach to construct a quantum-state classifier for identifying the separability of quantum states. We show that it is possible to experimentally train an artificial neural network to efficiently learn and classify quantum states, without the need of obtaining the full information of the states. We also show how adding a hidden layer of neurons to the neural network can significantly boost the performance of the state classifier. These results shed new light on how classification of quantum states can be achieved with limited resources, and represent a step towards machine-learning-based applications in quantum information processing.
Reply to "Comment on 'Fractional quantum mechanics' and 'Fractional Schrödinger equation' ".
Laskin, Nick
2016-06-01
The fractional uncertainty relation is a mathematical formulation of Heisenberg's uncertainty principle in the framework of fractional quantum mechanics. Two mistaken statements presented in the Comment have been revealed. The origin of each mistaken statement has been clarified and corrected statements have been made. A map between standard quantum mechanics and fractional quantum mechanics has been presented to emphasize the features of fractional quantum mechanics and to avoid misinterpretations of the fractional uncertainty relation. It has been shown that the fractional probability current equation is correct in the area of its applicability. Further studies have to be done to find meaningful quantum physics problems with involvement of the fractional probability current density vector and the extra term emerging in the framework of fractional quantum mechanics.
Quantum Algorithmic Readout in Multi-Ion Clocks.
Schulte, M; Lörch, N; Leroux, I D; Schmidt, P O; Hammerer, K
2016-01-08
Optical clocks based on ensembles of trapped ions promise record frequency accuracy with good short-term stability. Most suitable ion species lack closed transitions, so the clock signal must be read out indirectly by transferring the quantum state of the clock ions to cotrapped logic ions of a different species. Existing methods of quantum logic readout require a linear overhead in either time or the number of logic ions. Here we describe a quantum algorithmic readout whose overhead scales logarithmically with the number of clock ions in both of these respects. The scheme allows a quantum nondemolition readout of the number of excited clock ions using a single multispecies gate operation which can also be used in other areas of ion trap technology such as quantum information processing, quantum simulations, metrology, and precision spectroscopy.
What is quantum in quantum randomness?
Grangier, P; Auffèves, A
2018-07-13
It is often said that quantum and classical randomness are of different nature, the former being ontological and the latter epistemological. However, so far the question of 'What is quantum in quantum randomness?', i.e. what is the impact of quantization and discreteness on the nature of randomness, remains to be answered. In a first part, we make explicit the differences between quantum and classical randomness within a recently proposed ontology for quantum mechanics based on contextual objectivity. In this view, quantum randomness is the result of contextuality and quantization. We show that this approach strongly impacts the purposes of quantum theory as well as its areas of application. In particular, it challenges current programmes inspired by classical reductionism, aiming at the emergence of the classical world from a large number of quantum systems. In a second part, we analyse quantum physics and thermodynamics as theories of randomness, unveiling their mutual influences. We finally consider new technological applications of quantum randomness that have opened up in the emerging field of quantum thermodynamics.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).
Rovelli, Carlo
2008-01-01
The problem of describing the quantum behavior of gravity, and thus understanding quantum spacetime , is still open. Loop quantum gravity is a well-developed approach to this problem. It is a mathematically well-defined background-independent quantization of general relativity, with its conventional matter couplings. Today research in loop quantum gravity forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained so far are: (i) The computation of the spectra of geometrical quantities such as area and volume, which yield tentative quantitative predictions for Planck-scale physics. (ii) A physical picture of the microstructure of quantum spacetime, characterized by Planck-scale discreteness. Discreteness emerges as a standard quantum effect from the discrete spectra, and provides a mathematical realization of Wheeler's "spacetime foam" intuition. (iii) Control of spacetime singularities, such as those in the interior of black holes and the cosmological one. This, in particular, has opened up the possibility of a theoretical investigation into the very early universe and the spacetime regions beyond the Big Bang. (iv) A derivation of the Bekenstein-Hawking black-hole entropy. (v) Low-energy calculations, yielding n -point functions well defined in a background-independent context. The theory is at the roots of, or strictly related to, a number of formalisms that have been developed for describing background-independent quantum field theory, such as spin foams, group field theory, causal spin networks, and others. I give here a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.
Emerging Science And Technologies: Securing The Nation Through Dicovery and Innovation
2013-04-01
potential material for use in quantum computing and spintronics. R&D in the area of advanced carbon-based materials has the potential to revolutionize...seem to involve a dual-approach strategy. First, the vast majority of our sensory input information does not reach the level of consciousness ...WHITE PAPER | 17 Relevant technology areas that support Protection of the Intelligence Enterprise include: Quantum Computing and Associated
Nonequilibrium Energy Transfer at Nanoscale: A Unified Theory from Weak to Strong Coupling
Wang, Chen; Ren, Jie; Cao, Jianshu
2015-01-01
Unraveling the microscopic mechanism of quantum energy transfer across two-level systems provides crucial insights to the optimal design and potential applications of low-dimensional nanodevices. Here, we study the non-equilibrium spin-boson model as a minimal prototype and develop a fluctuation-decoupled quantum master equation approach that is valid ranging from the weak to the strong system-bath coupling regime. The exact expression of energy flux is analytically established, which dissects the energy transfer as multiple boson processes with even and odd parity. Our analysis provides a unified interpretation of several observations, including coherence-enhanced heat flux and negative differential thermal conductance. The results will have broad implications for the fine control of energy transfer in nano-structural devices. PMID:26152705
Inverse problems in quantum chemistry
NASA Astrophysics Data System (ADS)
Karwowski, Jacek
Inverse problems constitute a branch of applied mathematics with well-developed methodology and formalism. A broad family of tasks met in theoretical physics, in civil and mechanical engineering, as well as in various branches of medical and biological sciences has been formulated as specific implementations of the general theory of inverse problems. In this article, it is pointed out that a number of approaches met in quantum chemistry can (and should) be classified as inverse problems. Consequently, the methodology used in these approaches may be enriched by applying ideas and theorems developed within the general field of inverse problems. Several examples, including the RKR method for the construction of potential energy curves, determining parameter values in semiempirical methods, and finding external potentials for which the pertinent Schrödinger equation is exactly solvable, are discussed in detail.
Top mass from asymptotic safety
NASA Astrophysics Data System (ADS)
Eichhorn, Astrid; Held, Aaron
2018-02-01
We discover that asymptotically safe quantum gravity could predict the top-quark mass. For a broad range of microscopic gravitational couplings, quantum gravity could provide an ultraviolet completion for the Standard Model by triggering asymptotic freedom in the gauge couplings and bottom Yukawa and asymptotic safety in the top-Yukawa and Higgs-quartic coupling. We find that in a part of this range, a difference of the top and bottom mass of approximately 170GeV is generated and the Higgs mass is determined in terms of the top mass. Assuming no new physics below the Planck scale, we construct explicit Renormalization Group trajectories for Standard Model and gravitational couplings which link the transplanckian regime to the electroweak scale and yield a top pole mass of Mt,pole ≈ 171GeV.
NASA Astrophysics Data System (ADS)
Amaral, Barbara; Cabello, Adán; Cunha, Marcelo Terra; Aolita, Leandro
2018-03-01
Contextuality is a fundamental feature of quantum theory necessary for certain models of quantum computation and communication. Serious steps have therefore been taken towards a formal framework for contextuality as an operational resource. However, the main ingredient of a resource theory—a concrete, explicit form of free operations of contextuality—was still missing. Here we provide such a component by introducing noncontextual wirings: a class of contextuality-free operations with a clear operational interpretation and a friendly parametrization. We characterize them completely for general black-box measurement devices with arbitrarily many inputs and outputs. As applications, we show that the relative entropy of contextuality is a contextuality monotone and that maximally contextual boxes that serve as contextuality bits exist for a broad class of scenarios. Our results complete a unified resource-theoretic framework for contextuality and Bell nonlocality.
Bekenstein, Yehonadav; Koscher, Brent A.; Eaton, Samuel W.; ...
2015-12-15
Anisotropic colloidal quasi-two-dimensional nanoplates (NPLs) hold great promise as functional materials due to their combination of low dimensional optoelectronic properties and versatility through colloidal synthesis. Recently, lead-halide perovskites have emerged as important optoelectronic materials with excellent efficiencies in photovoltaic and light-emitting applications. Here we report the synthesis of quantum confined all inorganic cesium lead halide nanoplates in the perovskite crystal structure that are also highly luminescent (PLQY 84%). The controllable self-assembly of nanoplates either into stacked columnar phases or crystallographic-oriented thin-sheet structures is demonstrated. Furthermore, the broad accessible emission range, high native quantum yields, and ease of self-assembly make perovskitemore » NPLs an ideal platform for fundamental optoelectronic studies and the investigation of future devices.« less
Quantum cascade lasers, systems, and applications in Europe
NASA Astrophysics Data System (ADS)
Lambrecht, Armin
2005-03-01
Since the invention of the Quantum Cascade Laser (QCL) a decade ago an impressive progress has been achieved from first low temperature pulsed laser emission to continuous wave operation at room temperature. Distributed feedback (DFB) lasers working in pulsed mode at ambient temperatures and covering a broad spectral range in the mid infrared (MIR) are commercially available now. For many industrial applications e.g. automotive exhaust control and process monitoring, laser spectroscopy is an established technique, generally using near infrared (NIR) diode lasers. However, the mid infrared (MIR) spectral region is of special interest because of much stronger absorption lines compared to NIR. The status of QCL devices, system development and applications is reviewed. Special emphasis is given to the situation in Europe where a remarkable growth of QCL related R&D can be observed.
Amaral, Barbara; Cabello, Adán; Cunha, Marcelo Terra; Aolita, Leandro
2018-03-30
Contextuality is a fundamental feature of quantum theory necessary for certain models of quantum computation and communication. Serious steps have therefore been taken towards a formal framework for contextuality as an operational resource. However, the main ingredient of a resource theory-a concrete, explicit form of free operations of contextuality-was still missing. Here we provide such a component by introducing noncontextual wirings: a class of contextuality-free operations with a clear operational interpretation and a friendly parametrization. We characterize them completely for general black-box measurement devices with arbitrarily many inputs and outputs. As applications, we show that the relative entropy of contextuality is a contextuality monotone and that maximally contextual boxes that serve as contextuality bits exist for a broad class of scenarios. Our results complete a unified resource-theoretic framework for contextuality and Bell nonlocality.
Ab Initio Analysis of Auger-Assisted Electron Transfer.
Hyeon-Deuk, Kim; Kim, Joonghan; Prezhdo, Oleg V
2015-01-15
Quantum confinement in nanoscale materials allows Auger-type electron-hole energy exchange. We show by direct time-domain atomistic simulation and analytic theory that Auger processes give rise to a new mechanism of charge transfer (CT) on the nanoscale. Auger-assisted CT eliminates the renown Marcus inverted regime, rationalizing recent experiments on CT from quantum dots to molecular adsorbates. The ab initio simulation reveals a complex interplay of the electron-hole and charge-phonon channels of energy exchange, demonstrating a variety of CT scenarios. The developed Marcus rate theory for Auger-assisted CT describes, without adjustable parameters, the experimental plateau of the CT rate in the region of large donor-acceptor energy gap. The analytic theory and atomistic insights apply broadly to charge and energy transfer in nanoscale systems.
Realization of two-dimensional spin-orbit coupling for Bose-Einstein condensates.
Wu, Zhan; Zhang, Long; Sun, Wei; Xu, Xiao-Tian; Wang, Bao-Zong; Ji, Si-Cong; Deng, Youjin; Chen, Shuai; Liu, Xiong-Jun; Pan, Jian-Wei
2016-10-07
Cold atoms with laser-induced spin-orbit (SO) interactions provide a platform to explore quantum physics beyond natural conditions of solids. Here we propose and experimentally realize two-dimensional (2D) SO coupling and topological bands for a rubidium-87 degenerate gas through an optical Raman lattice, without phase-locking or fine-tuning of optical potentials. A controllable crossover between 2D and 1D SO couplings is studied, and the SO effects and nontrivial band topology are observed by measuring the atomic cloud distribution and spin texture in momentum space. Our realization of 2D SO coupling with advantages of small heating and topological stability opens a broad avenue in cold atoms to study exotic quantum phases, including topological superfluids. Copyright © 2016, American Association for the Advancement of Science.
Can quantum transition state theory be defined as an exact t = 0+ limit?
NASA Astrophysics Data System (ADS)
Jang, Seogjoo; Voth, Gregory A.
2016-02-01
The definition of the classical transition state theory (TST) as a t → 0+ limit of the flux-side time correlation function relies on the assumption that simultaneous measurement of population and flux is a well defined physical process. However, the noncommutativity of the two measurements in quantum mechanics makes the extension of such a concept to the quantum regime impossible. For this reason, quantum TST (QTST) has been generally accepted as any kind of quantum rate theory reproducing the TST in the classical limit, and there has been a broad consensus that no unique QTST retaining all the properties of TST can be defined. Contrary to this widely held view, Hele and Althorpe (HA) [J. Chem. Phys. 138, 084108 (2013)] recently suggested that a true QTST can be defined as the exact t → 0+ limit of a certain kind of quantum flux-side time correlation function and that it is equivalent to the ring polymer molecular dynamics (RPMD) TST. This work seeks to question and clarify certain assumptions underlying these suggestions and their implications. First, the time correlation function used by HA as a starting expression is not related to the kinetic rate constant by virtue of linear response theory, which is the first important step in relating a t = 0+ limit to a physically measurable rate. Second, a theoretical analysis calls into question a key step in HA's proof which appears not to rely on an exact quantum mechanical identity. The correction of this makes the true t = 0+ limit of HA's QTST different from the RPMD-TST rate expression, but rather equal to the well-known path integral quantum transition state theory rate expression for the case of centroid dividing surface. An alternative quantum rate expression is then formulated starting from the linear response theory and by applying a recently developed formalism of real time dynamics of imaginary time path integrals [S. Jang, A. V. Sinitskiy, and G. A. Voth, J. Chem. Phys. 140, 154103 (2014)]. It is shown that the t → 0+ limit of the new rate expression vanishes in the exact quantum limit.
Analysis and improvement of the quantum image matching
NASA Astrophysics Data System (ADS)
Dang, Yijie; Jiang, Nan; Hu, Hao; Zhang, Wenyin
2017-11-01
We investigate the quantum image matching algorithm proposed by Jiang et al. (Quantum Inf Process 15(9):3543-3572, 2016). Although the complexity of this algorithm is much better than the classical exhaustive algorithm, there may be an error in it: After matching the area between two images, only the pixel at the upper left corner of the matched area played part in following steps. That is to say, the paper only matched one pixel, instead of an area. If more than one pixels in the big image are the same as the one at the upper left corner of the small image, the algorithm will randomly measure one of them, which causes the error. In this paper, an improved version is presented which takes full advantage of the whole matched area to locate a small image in a big image. The theoretical analysis indicates that the network complexity is higher than the previous algorithm, but it is still far lower than the classical algorithm. Hence, this algorithm is still efficient.
GaSb superluminescent diodes with broadband emission at 2.55 μm
NASA Astrophysics Data System (ADS)
Zia, Nouman; Viheriälä, Jukka; Koivusalo, Eero; Virtanen, Heikki; Aho, Antti; Suomalainen, Soile; Guina, Mircea
2018-01-01
We report the development of superluminescent diodes (SLDs) emitting mW-level output power in a broad spectrum centered at a wavelength of 2.55 μm. The emitting structure consists of two compressively strained GaInAsSb/GaSb-quantum wells placed within a lattice-matched AlGaAsSb waveguide. An average output power of more than 3 mW and a peak power of 38 mW are demonstrated at room temperature under pulsed operation. A cavity suppression element is used to prevent lasing at high current injection allowing emission in a broad spectrum with a full width at half maximum (FWHM) of 124 nm. The measured far-field of the SLD confirms a good beam quality at different currents. These devices open further development possibilities in the field of spectroscopy, enabling, for example, detection of complex molecules and mixtures of gases that manifest a complex absorption spectrum over a broad spectral range.
NASA Astrophysics Data System (ADS)
Glaser, Steffen J.; Boscain, Ugo; Calarco, Tommaso; Koch, Christiane P.; Köckenberger, Walter; Kosloff, Ronnie; Kuprov, Ilya; Luy, Burkhard; Schirmer, Sophie; Schulte-Herbrüggen, Thomas; Sugny, Dominique; Wilhelm, Frank K.
2015-12-01
It is control that turns scientific knowledge into useful technology: in physics and engineering it provides a systematic way for driving a dynamical system from a given initial state into a desired target state with minimized expenditure of energy and resources. As one of the cornerstones for enabling quantum technologies, optimal quantum control keeps evolving and expanding into areas as diverse as quantum-enhanced sensing, manipulation of single spins, photons, or atoms, optical spectroscopy, photochemistry, magnetic resonance (spectroscopy as well as medical imaging), quantum information processing and quantum simulation. In this communication, state-of-the-art quantum control techniques are reviewed and put into perspective by a consortium of experts in optimal control theory and applications to spectroscopy, imaging, as well as quantum dynamics of closed and open systems. We address key challenges and sketch a roadmap for future developments.
Thermal quantum time-correlation functions from classical-like dynamics
NASA Astrophysics Data System (ADS)
Hele, Timothy J. H.
2017-07-01
Thermal quantum time-correlation functions are of fundamental importance in quantum dynamics, allowing experimentally measurable properties such as reaction rates, diffusion constants and vibrational spectra to be computed from first principles. Since the exact quantum solution scales exponentially with system size, there has been considerable effort in formulating reliable linear-scaling methods involving exact quantum statistics and approximate quantum dynamics modelled with classical-like trajectories. Here, we review recent progress in the field with the development of methods including centroid molecular dynamics , ring polymer molecular dynamics (RPMD) and thermostatted RPMD (TRPMD). We show how these methods have recently been obtained from 'Matsubara dynamics', a form of semiclassical dynamics which conserves the quantum Boltzmann distribution. We also apply the Matsubara formalism to reaction rate theory, rederiving t → 0+ quantum transition-state theory (QTST) and showing that Matsubara-TST, like RPMD-TST, is equivalent to QTST. We end by surveying areas for future progress.
BOOK REVIEW: A First Course in Loop Quantum Gravity A First Course in Loop Quantum Gravity
NASA Astrophysics Data System (ADS)
Dittrich, Bianca
2012-12-01
Students who are interested in quantum gravity usually face the difficulty of working through a large amount of prerequisite material before being able to deal with actual quantum gravity. A First Course in Loop Quantum Gravity by Rodolfo Gambini and Jorge Pullin, aimed at undergraduate students, marvellously succeeds in starting from the basics of special relativity and covering basic topics in Hamiltonian dynamics, Yang Mills theory, general relativity and quantum field theory, ending with a tour on current (loop) quantum gravity research. This is all done in a short 173 pages! As such the authors cannot cover any of the subjects in depth and indeed this book should be seen more as a motivation and orientation guide so that students can go on to follow the hints for further reading. Also, as there are many subjects to cover beforehand, slightly more than half of the book is concerned with more general subjects (special and general relativity, Hamiltonian dynamics, constrained systems, quantization) before the starting point for loop quantum gravity, the Ashtekar variables, are introduced. The approach taken by the authors is heuristic and uses simplifying examples in many places. However they take care in motivating all the main steps and succeed in presenting the material pedagogically. Problem sets are provided throughout and references for further reading are given. Despite the shortness of space, alternative viewpoints are mentioned and the reader is also referred to experimental results and bounds. In the second half of the book the reader gets a ride through loop quantum gravity; the material covers geometric operators and their spectra, the Hamiltonian constraints, loop quantum cosmology and, more broadly, black hole thermodynamics. A glimpse of recent developments and open problems is given, for instance a discussion on experimental predictions, where the authors carefully point out the very preliminary nature of the results. The authors close with an 'open issues and controversies' section, addressing some of the criticism of loop quantum gravity and pointing to weak points of the theory. Again, readers aiming at starting research in loop quantum gravity should take this as a guide and motivation for further study, as many technicalities are naturally left out. In summary this book fully reaches the aim set by the authors - to introduce the topic in a way that is widely accessible to undergraduates - and as such is highly recommended.
Novel quantum phase transition from bounded to extensive entanglement
Zhang, Zhao; Ahmadain, Amr
2017-01-01
The nature of entanglement in many-body systems is a focus of intense research with the observation that entanglement holds interesting information about quantum correlations in large systems and their relation to phase transitions. In particular, it is well known that although generic, many-body states have large, extensive entropy, ground states of reasonable local Hamiltonians carry much smaller entropy, often associated with the boundary length through the so-called area law. Here we introduce a continuous family of frustration-free Hamiltonians with exactly solvable ground states and uncover a remarkable quantum phase transition whereby the entanglement scaling changes from area law into extensively large entropy. This transition shows that entanglement in many-body systems may be enhanced under special circumstances with a potential for generating “useful” entanglement for the purpose of quantum computing and that the full implications of locality and its restrictions on possible ground states may hold further surprises. PMID:28461464
Novel quantum phase transition from bounded to extensive entanglement.
Zhang, Zhao; Ahmadain, Amr; Klich, Israel
2017-05-16
The nature of entanglement in many-body systems is a focus of intense research with the observation that entanglement holds interesting information about quantum correlations in large systems and their relation to phase transitions. In particular, it is well known that although generic, many-body states have large, extensive entropy, ground states of reasonable local Hamiltonians carry much smaller entropy, often associated with the boundary length through the so-called area law. Here we introduce a continuous family of frustration-free Hamiltonians with exactly solvable ground states and uncover a remarkable quantum phase transition whereby the entanglement scaling changes from area law into extensively large entropy. This transition shows that entanglement in many-body systems may be enhanced under special circumstances with a potential for generating "useful" entanglement for the purpose of quantum computing and that the full implications of locality and its restrictions on possible ground states may hold further surprises.
Broad Area Cooler Concepts for Cryogenic Propellant Tanks
NASA Technical Reports Server (NTRS)
Christie, R. J.; Tomsik, T. M.; Elchert, J. P.; Guzik, M. C.
2011-01-01
Numerous studies and ground tests have shown that broad area cooling (also known as distributed cooling) can reduce or eliminate cryogenic propellant boil-off and enable long duration storage in space. Various combinations of cryocoolers, circulators, heat exchangers and other hardware could be used to build the system. In this study, several configurations of broad area cooling systems were compared by weighing hardware combinations, input power requirements, component availability, and Technical Readiness Level (TRL). The preferred system has a high TRL and can be scaled up to provide cooling capacities on the order of 150W at 90K
Quantum image processing: A review of advances in its security technologies
NASA Astrophysics Data System (ADS)
Yan, Fei; Iliyasu, Abdullah M.; Le, Phuc Q.
In this review, we present an overview of the advances made in quantum image processing (QIP) comprising of the image representations, the operations realizable on them, and the likely protocols and algorithms for their applications. In particular, we focus on recent progresses on QIP-based security technologies including quantum watermarking, quantum image encryption, and quantum image steganography. This review is aimed at providing readers with a succinct, yet adequate compendium of the progresses made in the QIP sub-area. Hopefully, this effort will stimulate further interest aimed at the pursuit of more advanced algorithms and experimental validations for available technologies and extensions to other domains.
Experimental measurement-device-independent quantum digital signatures over a metropolitan network
NASA Astrophysics Data System (ADS)
Yin, Hua-Lei; Wang, Wei-Long; Tang, Yan-Lin; Zhao, Qi; Liu, Hui; Sun, Xiang-Xiang; Zhang, Wei-Jun; Li, Hao; Puthoor, Ittoop Vergheese; You, Li-Xing; Andersson, Erika; Wang, Zhen; Liu, Yang; Jiang, Xiao; Ma, Xiongfeng; Zhang, Qiang; Curty, Marcos; Chen, Teng-Yun; Pan, Jian-Wei
2017-04-01
Quantum digital signatures (QDSs) provide a means for signing electronic communications with information-theoretic security. However, all previous demonstrations of quantum digital signatures assume trusted measurement devices. This renders them vulnerable against detector side-channel attacks, just like quantum key distribution. Here we exploit a measurement-device-independent (MDI) quantum network, over a metropolitan area, to perform a field test of a three-party MDI QDS scheme that is secure against any detector side-channel attack. In so doing, we are able to successfully sign a binary message with a security level of about 10-7. Remarkably, our work demonstrates the feasibility of MDI QDSs for practical applications.
Advances in Fabry-Perot and tunable quantum cascade lasers
NASA Astrophysics Data System (ADS)
Patel, C. Kumar N.
2017-05-01
Quantum cascade lasers (QCLs) are becoming mature infrared emitting devices that convert electrical power directly into optical power and generate laser radiation in the mid wave infrared (MWIR) and long wave infrared (LWIR) regions. These lasers operate at room temperature in the 3.5 μm to >12.0 μm region. QCLs operate at longer wavelengths into the terahertz region; however, these require some level of cryogenic cooling. Nonetheless, QCLs are the only solid-state sources that convert electrical power into optical power directly in these spectral regions. Three critical advances have contributed to the broad range of applications of QCLs, since their first demonstration in 1994 [1]. The first of these was the utilization of two phonon resonance for deexcitation of electrons from the lower lasing level [2]; the second is the utilization of epi-down mounting with hard solder of QCLs for practical applications [3]; and the third is the invention of nonresonant extraction for deexciting electrons from the lower laser level and simultaneously removing constraints on QCL structure design for extending high power room temperature operation to a broad range of wavelengths [4]. Although QCLs generate CW radiation at room temperature at wavelengths ranging from 3.5 μm to <12.0 μm, two spectral regions are very important for a broad range of applications. These are the first and the second atmospheric transmission windows from 3.5 μm to 5.0 μm and from 8.0 μm to 12.0 μm, respectively. Both of these windows (except for the spectral region near 4.2 μm, which is dominated by the infrared absorption from atmospheric carbon dioxide) are relatively free from atmospheric absorption and have a range of applications that involve long distance propagation.
Duality Quantum Simulation of the Yang-Baxter Equation
NASA Astrophysics Data System (ADS)
Zheng, Chao; Wei, Shijie
2018-04-01
The Yang-Baxter equation has become a significant theoretical tool in a variety of areas of physics. It is desirable to investigate the quantum simulation of the Yang-Baxter equation itself, exploring the connections between quantum integrability and quantum information processing, in which the unity of both the Yang-Baxter equation system and its quantum entanglement should be kept as a whole. In this work, we propose a duality quantum simulation algorithm of the Yang-Baxter equation, which contains the Yang-Baxter system and an ancillary qubit. Contrasting to conventional methods in which the two hand sides of the equation are simulated separately, they are simulated simultaneously in this proposal. Consequently, it opens up a way to further investigate entanglements in a Yang-Baxter equation.
Duality Quantum Simulation of the Yang-Baxter Equation
NASA Astrophysics Data System (ADS)
Zheng, Chao; Wei, Shijie
2018-07-01
The Yang-Baxter equation has become a significant theoretical tool in a variety of areas of physics. It is desirable to investigate the quantum simulation of the Yang-Baxter equation itself, exploring the connections between quantum integrability and quantum information processing, in which the unity of both the Yang-Baxter equation system and its quantum entanglement should be kept as a whole. In this work, we propose a duality quantum simulation algorithm of the Yang-Baxter equation, which contains the Yang-Baxter system and an ancillary qubit. Contrasting to conventional methods in which the two hand sides of the equation are simulated separately, they are simulated simultaneously in this proposal. Consequently, it opens up a way to further investigate entanglements in a Yang-Baxter equation.
Randomness in quantum mechanics: philosophy, physics and technology.
Bera, Manabendra Nath; Acín, Antonio; Kuś, Marek; Mitchell, Morgan W; Lewenstein, Maciej
2017-12-01
This progress report covers recent developments in the area of quantum randomness, which is an extraordinarily interdisciplinary area that belongs not only to physics, but also to philosophy, mathematics, computer science, and technology. For this reason the article contains three parts that will be essentially devoted to different aspects of quantum randomness, and even directed, although not restricted, to various audiences: a philosophical part, a physical part, and a technological part. For these reasons the article is written on an elementary level, combining simple and non-technical descriptions with a concise review of more advanced results. In this way readers of various provenances will be able to gain while reading the article.
Quantum corrections to holographic mutual information
Agon, Cesar A.; Faulkner, Thomas
2016-08-22
We compute the leading contribution to the mutual information (MI) of two disjoint spheres in the large distance regime for arbitrary conformal field theories (CFT) in any dimension. This is achieved by refining the operator product expansion method introduced by Cardy [1]. For CFTs with holographic duals the leading contribution to the MI at long distances comes from bulk quantum corrections to the Ryu-Takayanagi area formula. According to the FLM proposal [2] this equals the bulk MI between the two disjoint regions spanned by the boundary spheres and their corresponding minimal area surfaces. We compute this quantum correction and providemore » in this way a non-trivial check of the FLM proposal.« less
NASA Astrophysics Data System (ADS)
Schaibley, J. R.; Burgers, A. P.; McCracken, G. A.; Steel, D. G.; Bracker, A. S.; Gammon, D.; Sham, L. J.
2013-03-01
Optical Rabi oscillations are coherent population oscillations of a two-level system coupled by an electric dipole transition when driven by a strong nearly resonant optical field. In quantum dot structures, these measurements have typically been performed as a function of the total pulse area ∫Ω0(t)dt where the pulse area varies as a function of Rabi frequency. Here, we report direct detection of the time-resolved coherent transient response of the resonance fluorescence to measure the time evolution of the optical Rabi oscillations in a single charged InAs quantum dot. We extract a decoherence rate consistent with the limit from the excited state lifetime.
Randomness in quantum mechanics: philosophy, physics and technology
NASA Astrophysics Data System (ADS)
Nath Bera, Manabendra; Acín, Antonio; Kuś, Marek; Mitchell, Morgan W.; Lewenstein, Maciej
2017-12-01
This progress report covers recent developments in the area of quantum randomness, which is an extraordinarily interdisciplinary area that belongs not only to physics, but also to philosophy, mathematics, computer science, and technology. For this reason the article contains three parts that will be essentially devoted to different aspects of quantum randomness, and even directed, although not restricted, to various audiences: a philosophical part, a physical part, and a technological part. For these reasons the article is written on an elementary level, combining simple and non-technical descriptions with a concise review of more advanced results. In this way readers of various provenances will be able to gain while reading the article.
Linear and nonlinear spectroscopy from quantum master equations.
Fetherolf, Jonathan H; Berkelbach, Timothy C
2017-12-28
We investigate the accuracy of the second-order time-convolutionless (TCL2) quantum master equation for the calculation of linear and nonlinear spectroscopies of multichromophore systems. We show that even for systems with non-adiabatic coupling, the TCL2 master equation predicts linear absorption spectra that are accurate over an extremely broad range of parameters and well beyond what would be expected based on the perturbative nature of the approach; non-equilibrium population dynamics calculated with TCL2 for identical parameters are significantly less accurate. For third-order (two-dimensional) spectroscopy, the importance of population dynamics and the violation of the so-called quantum regression theorem degrade the accuracy of TCL2 dynamics. To correct these failures, we combine the TCL2 approach with a classical ensemble sampling of slow microscopic bath degrees of freedom, leading to an efficient hybrid quantum-classical scheme that displays excellent accuracy over a wide range of parameters. In the spectroscopic setting, the success of such a hybrid scheme can be understood through its separate treatment of homogeneous and inhomogeneous broadening. Importantly, the presented approach has the computational scaling of TCL2, with the modest addition of an embarrassingly parallel prefactor associated with ensemble sampling. The presented approach can be understood as a generalized inhomogeneous cumulant expansion technique, capable of treating multilevel systems with non-adiabatic dynamics.
Linear and nonlinear spectroscopy from quantum master equations
NASA Astrophysics Data System (ADS)
Fetherolf, Jonathan H.; Berkelbach, Timothy C.
2017-12-01
We investigate the accuracy of the second-order time-convolutionless (TCL2) quantum master equation for the calculation of linear and nonlinear spectroscopies of multichromophore systems. We show that even for systems with non-adiabatic coupling, the TCL2 master equation predicts linear absorption spectra that are accurate over an extremely broad range of parameters and well beyond what would be expected based on the perturbative nature of the approach; non-equilibrium population dynamics calculated with TCL2 for identical parameters are significantly less accurate. For third-order (two-dimensional) spectroscopy, the importance of population dynamics and the violation of the so-called quantum regression theorem degrade the accuracy of TCL2 dynamics. To correct these failures, we combine the TCL2 approach with a classical ensemble sampling of slow microscopic bath degrees of freedom, leading to an efficient hybrid quantum-classical scheme that displays excellent accuracy over a wide range of parameters. In the spectroscopic setting, the success of such a hybrid scheme can be understood through its separate treatment of homogeneous and inhomogeneous broadening. Importantly, the presented approach has the computational scaling of TCL2, with the modest addition of an embarrassingly parallel prefactor associated with ensemble sampling. The presented approach can be understood as a generalized inhomogeneous cumulant expansion technique, capable of treating multilevel systems with non-adiabatic dynamics.
Anomalous negative magnetoresistance of two-dimensional electrons
NASA Astrophysics Data System (ADS)
Kanter, Jesse; Vitkalov, Sergey; Bykov, A. A.
2018-05-01
Effects of temperature T (6-18 K) and variable in situ static disorder on dissipative resistance of two-dimensional electrons are investigated in GaAs quantum wells placed in a perpendicular magnetic-field B⊥. Quantum contributions to the magnetoresistance, leading to quantum positive magnetoresistance (QPMR), are separated by application of an in-plane magnetic field. QPMR decreases considerably with both the temperature and the static disorder and is in good quantitative agreement with theory. The remaining resistance R decreases with the magnetic field exhibiting an anomalous polynomial dependence on B⊥:[R (B⊥) -R (0 ) ] =A (T ,τq) B⊥η where the power is η ≈1.5 ±0.1 in a broad range of temperatures and disorder. The disorder is characterized by electron quantum lifetime τq. The scaling factor A (T ,τq) ˜[κ(τq) +β (τq) T2] -1 depends significantly on both τq and T where the first term κ ˜τq-1/2 decreases with τq. The second term is proportional to the square of the temperature and diverges with increasing static disorder. Above a critical disorder the anomalous magnetoresistance is absent, and only a positive magnetoresistance, exhibiting no distinct polynomial behavior with the magnetic field, is observed. The presented model accounts memory effects and yields η = 3/2.
Principles of control for decoherence-free subsystems.
Cappellaro, P; Hodges, J S; Havel, T F; Cory, D G
2006-07-28
Decoherence-free subsystems (DFSs) are a powerful means of protecting quantum information against noise with known symmetry properties. Although Hamiltonians that can implement a universal set of logic gates on DFS encoded qubits without ever leaving the protected subsystem theoretically exist, the natural Hamiltonians that are available in specific implementations do not necessarily have this property. Here we describe some of the principles that can be used in such cases to operate on encoded qubits without losing the protection offered by the DFSs. In particular, we show how dynamical decoupling can be used to control decoherence during the unavoidable excursions outside of the DFS. By means of cumulant expansions, we show how the fidelity of quantum gates implemented by this method on a simple two physical qubit DFS depends on the correlation time of the noise responsible for decoherence. We further show by means of numerical simulations how our previously introduced "strongly modulating pulses" for NMR quantum information processing can permit high-fidelity operations on multiple DFS encoded qubits in practice, provided that the rate at which the system can be modulated is fast compared to the correlation time of the noise. The principles thereby illustrated are expected to be broadly applicable to many implementations of quantum information processors based on DFS encoded qubits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puthen-Veettil, B., E-mail: b.puthen-veettil@unsw.edu.au; Patterson, R.; König, D.
Efficient iso-entropic energy filtering of electronic waves can be realized through nanostructures with three dimensional confinement, such as quantum dot resonant tunneling structures. Large-area deployment of such structures is useful for energy selective contacts but such configuration is susceptible to structural disorders. In this work, the transport properties of quantum-dot-based wide-area resonant tunneling structures, subject to realistic disorder mechanisms, are studied. Positional variations of the quantum dots are shown to reduce the resonant transmission peaks while size variations in the device are shown to reduce as well as broaden the peaks. Increased quantum dot size distribution also results in amore » peak shift to lower energy which is attributed to large dots dominating transmission. A decrease in barrier thickness reduces the relative peak height while the overall transmission increases dramatically due to lower “series resistance.” While any shift away from ideality can be intuitively expected to reduce the resonance peak, quantification allows better understanding of the tolerances required for fabricating structures based on resonant tunneling phenomena/.« less
Code of Federal Regulations, 2013 CFR
2013-07-01
... Broad River; U.S. Marine Corps Recruit Depot, Parris Island, South Carolina; danger zones. 334.480... DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.480 Archers Creek, Ribbon Creek, and Broad River... danger zone on Archers Creek (between the Broad River and Beaufort River), Ribbon Creek, and the Broad...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Broad River; U.S. Marine Corps Recruit Depot, Parris Island, South Carolina; danger zones. 334.480... DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.480 Archers Creek, Ribbon Creek, and Broad River... danger zone on Archers Creek (between the Broad River and Beaufort River), Ribbon Creek, and the Broad...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Broad River; U.S. Marine Corps Recruit Depot, Parris Island, South Carolina; danger zones. 334.480... DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.480 Archers Creek, Ribbon Creek, and Broad River... danger zone on Archers Creek (between the Broad River and Beaufort River), Ribbon Creek, and the Broad...
Linewidth narrowing for 31Phosphorus MRI of cell membranes
NASA Astrophysics Data System (ADS)
Barrett, Sean; Frey, Merideth; Madri, Joseph; Michaud, Michael
2011-03-01
Most 31 P Magnetic Resonance Spectroscopy studies of tissues try to avoid contamination by a relatively large, but broad, spectral feature attributed to cell membrane phospholipids. MRI using this broad 31 P membrane spectrum is not even attempted, since the spatial resolution and signal-to-noise would be poor, relative to conventional MRI using the narrow 1 H water spectrum. This long-standing barrier has been overcome by a novel pulse sequence, recently discovered in fundamental quantum computation research, which narrows the broad 31 P spectrum by ~ 1000 × . Applying time-dependent gradients in synch with a repeating pulse block enables a new route to high spatial resolution, 3D 31 P MRI of the soft solid components of cells and tissues. So far, intact and sectioned samples of ex vivo fixed mouse organs have been imaged, with (sub-mm)3 voxels. Extending the reach of MRI to broad spectra in natural and artificial tissues opens a new window into cells, enabling progress in biomedical research. W.J. Thoma et al., J. MR 61, 141 (1985); E.J. Murphy et al., MR Med 12, 282 (1989); R. McNamara et al., NMR Biomed 7, 237 (1994).
Quantum transport in coupled resonators enclosed synthetic magnetic flux
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, L., E-mail: jinliang@nankai.edu.cn
Quantum transport properties are instrumental to understanding quantum coherent transport processes. Potential applications of quantum transport are widespread, in areas ranging from quantum information science to quantum engineering, and not restricted to quantum state transfer, control and manipulation. Here, we study light transport in a ring array of coupled resonators enclosed synthetic magnetic flux. The ring configuration, with an arbitrary number of resonators embedded, forms a two-arm Aharonov–Bohm interferometer. The influence of magnetic flux on light transport is investigated. Tuning the magnetic flux can lead to resonant transmission, while half-integer magnetic flux quantum leads to completely destructive interference and transmissionmore » zeros in an interferometer with two equal arms. -- Highlights: •The light transport is investigated through ring array of coupled resonators enclosed synthetic magnetic field. •Aharonov–Bohm ring interferometer of arbitrary configuration is investigated. •The half-integer magnetic flux quantum leads to destructive interference and transmission zeros for two-arm at equal length. •Complete transmission is available via tuning synthetic magnetic flux.« less
Wei, Yu-Jia; He, Yu-Ming; Chen, Ming-Cheng; Hu, Yi-Nan; He, Yu; Wu, Dian; Schneider, Christian; Kamp, Martin; Höfling, Sven; Lu, Chao-Yang; Pan, Jian-Wei
2014-11-12
Single photons are attractive candidates of quantum bits (qubits) for quantum computation and are the best messengers in quantum networks. Future scalable, fault-tolerant photonic quantum technologies demand both stringently high levels of photon indistinguishability and generation efficiency. Here, we demonstrate deterministic and robust generation of pulsed resonance fluorescence single photons from a single semiconductor quantum dot using adiabatic rapid passage, a method robust against fluctuation of driving pulse area and dipole moments of solid-state emitters. The emitted photons are background-free, have a vanishing two-photon emission probability of 0.3% and a raw (corrected) two-photon Hong-Ou-Mandel interference visibility of 97.9% (99.5%), reaching a precision that places single photons at the threshold for fault-tolerant surface-code quantum computing. This single-photon source can be readily scaled up to multiphoton entanglement and used for quantum metrology, boson sampling, and linear optical quantum computing.
Silicon CMOS architecture for a spin-based quantum computer.
Veldhorst, M; Eenink, H G J; Yang, C H; Dzurak, A S
2017-12-15
Recent advances in quantum error correction codes for fault-tolerant quantum computing and physical realizations of high-fidelity qubits in multiple platforms give promise for the construction of a quantum computer based on millions of interacting qubits. However, the classical-quantum interface remains a nascent field of exploration. Here, we propose an architecture for a silicon-based quantum computer processor based on complementary metal-oxide-semiconductor (CMOS) technology. We show how a transistor-based control circuit together with charge-storage electrodes can be used to operate a dense and scalable two-dimensional qubit system. The qubits are defined by the spin state of a single electron confined in quantum dots, coupled via exchange interactions, controlled using a microwave cavity, and measured via gate-based dispersive readout. We implement a spin qubit surface code, showing the prospects for universal quantum computation. We discuss the challenges and focus areas that need to be addressed, providing a path for large-scale quantum computing.
NASA Astrophysics Data System (ADS)
Delgado, Francisco
2017-12-01
Quantum information is an emergent area merging physics, mathematics, computer science and engineering. To reach its technological goals, it is requiring adequate approaches to understand how to combine physical restrictions, computational approaches and technological requirements to get functional universal quantum information processing. This work presents the modeling and the analysis of certain general type of Hamiltonian representing several physical systems used in quantum information and establishing a dynamics reduction in a natural grammar for bipartite processing based on entangled states.
Thermal stability of charged rotating quantum black holes
NASA Astrophysics Data System (ADS)
Sinha, Aloke Kumar; Majumdar, Parthasarathi
2017-12-01
Criteria for thermal stability of charged rotating black holes of any dimension are derived for horizon areas that are large relative to the Planck area (in these dimensions). The derivation is based on generic assumptions of quantum geometry, supported by some results of loop quantum gravity, and equilibrium statistical mechanics of the Grand Canonical ensemble. There is no explicit use of classical spacetime geometry in this analysis. The only assumption is that the mass of the black hole is a function of its horizon area, charge and angular momentum. Our stability criteria are then tested in detail against specific classical black holes in spacetime dimensions 4 and 5, whose metrics provide us with explicit relations for the dependence of the mass on the charge and angular momentum of the black holes. This enables us to predict which of these black holes are expected to be thermally unstable under Hawking radiation.
Bathed, Strained, Attenuated, Annihilated: Towards Quantum Optomechanics
NASA Astrophysics Data System (ADS)
Pepper, Brian Jeffrey
The field of optomechanics studies tiny devices that can be pushed mechanically by light. It is an extremely promising avenue towards tests of quantum mechanics on a macroscopic scale, by transferring quantum states of light to nano- or micromechanical objects. This dissertation concerns a long term research program to create quantum superpositions of a macroscopic mirror in an optomechanical cavity. This dissertation has two broad thrusts. The first focuses on microfabrication of a new type of device called optomechanical trampoline resonators, consisting of a small mirror on a cross-shaped tensed silicon nitride membrane. Devices have been fabricated with high mechanical and optical quality, including a 300 kHz device with quality factor 480,000, as well as a device of optical finesse 107,000. These devices are well into the sideband-resolved regime and suitable for optical cooling to the quantum ground state. One such device has been optically cooled to approximately 10 phonons. The second major thrust is theoretical. Creating a macroscopic superposition is a challenging problem, requiring optical cooling to the ground state, strong coupling, extremely high optical finesse and extremely low frequency. A realistic assessment of achievable parameters indicates that it is possible to achieve ground state cooling or strong coupling, but not both. This dissertation proposes a new technique using postselection to achieve macroscopic superpositions with only weak coupling. This relaxes some of the required parameters by orders of magnitude. Prospects for observing hypothetical novel decoherence mechanisms are also discussed.
NASA Astrophysics Data System (ADS)
Hassani Gangaraj, Seyyed Ali
At the interface of two different media such as metal and vacuum, light can couple to the electrons of the metal to form a wave that is bound to the interface. This wave is called a surface plasmon-plariton (SPP), generally characterized by intense fields that decay quickly away from the interface. Due to their unique properties, SPPs have found a broad range of applications in various areas of science, including light harvesting, medical science, energy transfer and imaging. In addition to the widely studied classical plasmonics, quantum plasmonics is also attracting considerable interest in the electromagnetics and quantum optics communities. In this thesis several new areas of investigation into quantum plasmonics is presented, focusing on entanglement mediated by SPPs in several different environments: 3D waveguides, 2D surfaces and on photonic topological insulators. Entanglement is an experimentally verified property of nature where pairs of quantum systems are connected in some manner such that the quantum state of each system cannot be described independently. Generating, preserving, and controlling entanglement is necessary for many quantum computer implementations. It is highly desirable to control entanglement between two multi-level emitters such as quantum dots via a macroscopic, easily-adjusted external parameter. SPPs guided by the medium, as a coupling agent between quantum dots, are highly tunable and offer a promising way to achieve having control over a SPP mediated entanglement. We first consider two quantum dots placed above 3D finite length waveguides. We have restricted our consideration to two waveguides types, i.e. a metal nanowire and a groove waveguide. Our main results in this work are to show that realistic finite-length nanowire and groove waveguides, with their associated discontinuities, play a crucial role in the engineering of highly entangled states. It is demonstrated that proper positioning of the emitters with respect to the waveguide edges can lead to a significant increase in entanglement compared to the case of the emitter coupled to an infinite plasmonic waveguide. Moreover, even for the infinite-length case, discontinuities in the waveguides do not always play a detrimental role, to be more specific, an increase in entanglement compared to the unperturbed waveguides can be achieved by introducing coupling slots (engineered perturbations) into the structure. In addition to 3D environments, two dimensional (2D) materials are of intense interest due to their extraordinary capabilities to manipulate reflection and transmission characteristics, and beam-forming. Some notable examples of 2D layered crystals include graphene, black phosphorus (BP) and boron nitride. Graphene in particular has received considerable attention as a promising 2D surface for many applications relating to its integrability and electronic tune-ability. Black phosphorus is also a layered material that has recently been exfoliated into its multilayers, showing good electrical transport properties and promising optical charactristics. Most of the previous studies of the electromagnetic response of 2D surfaces and metallic surface plasmons have considered isotropic structures with omnidirectional plasmonic surface wave propagation on the plane of these materials. Such an omnidirectional surface wave propagation does not allow for launching energy from electromagnetic source to a specific target on the surface, which is a desirable characteristic. However, an appropriate structured anisotropic surface can provide such a capability, such as an array of graphene strips. In addition, by tuning of the graphene doping it is possible to have a hyperbolic surface response. Working in this regime of surface conductivity, it is possible to launch SPPs along a specific direction, which is tunable via doping of the graphene. In this work, the electromagnetic response of anisotropic 2D surfaces has been investigated based on the analysis of the Green's function for the surface plasmonic wave contribution of the Sommerfeld integral. The Sommerfeld integral form of the Green's function can be time-consuming to evaluate, and here, it has been shown that for the surface waves, this integral can be evaluated efficiently as a mixture of continuous and discrete spectrums associated to the radiation of the source into the ambient space and energy coupled to the SPPs. Graphene strip arrays provide directive surface waves in the low THz regime, and unperturbed black phosphorus provides a similar response for higher frequency ranges. All plasmonic devices are impacted by SPP diffraction at surface defects and discontinuities. In particular, for reciprocal materials a surface defect/discontinuity can both scatter a forward mode into a backward mode (and vice versa) and cause significant radiation/diffraction of the SPP. The presence of a backward state comes from time reversal (TR) symmetry; when broken, a backward state may be absent, and reflection at a discontinuity can be suppressed. As a result, surface energy becomes unidirectional and follows the contour of the interface. This type of system can be broadly classified as a photonic topological insulators (PTIs). The properties of PTIs are quantified by the Berry phase, Berry connection, and an invariant known as the Chern number. Also the physical meaning of the Berry phase, connection, and curvature, how these quantities arise in electromagnetic problems, and the significance of Chern numbers for unidirectional, scattering-immune surface wave propagation are discussed. The Chern numbers for the electromagnetic modes supported by a biased plasma have been calculated. It has been demonstrated that the modes supported by biased plasmas indeed possess non-trivial Chern numbers, which leads to the propagation of a topologically protected and unidirectional surface modes (energy) at the interface between the biased plasma and topologically trivial material. The ability to guide the energy from one quantum dot to another one is a great advantage to achieve highly entangled states. Here, in this thesis for the first time, we investigated the unidirectional surface wave assisted entanglement in PTIs. We have investigated spontaneous and pumped entanglement of two level systems (quantum dots) in the vicinity of a photonic topological insulator interface, which supports a unidirectional SPP in the common bandgap of the bulk materials. We also have derived a master equation for quantum dots interactions in a general three-dimensional, nonreciprocal, inhomogeneous and lossy environment. The resulting entanglement is shown to be extremely robust to defects occurring in the material system.
Volume-wise destruction of the antiferromagnetic Mott insulating state through quantum tuning
B. A. Frandsen; Liu, L.; Cheung, S. C.; ...
2016-08-17
RENiO 3 (RE=rare-earth element) and V 2O 3 are archetypal Mott insulator systems. When tuned by chemical substitution (RENiO 3) or pressure (V 2O 3), they exhibit a quantum phase transition (QPT) between an antiferromagnetic Mott insulating state and a paramagnetic metallic state. Because novel physics often appears near a Mott QPT, the details of this transition, such as whether it is first or second order, are important. Here, we demonstrate through muon spin relaxation/rotation (μSR) experiments that the QPT in RENiO 3 and V 2O 3 is first order: the magnetically ordered volume fraction decreases to zero at themore » QPT, resulting in a broad region of intrinsic phase separation, while the ordered magnetic moment retains its full value until it is suddenly destroyed at the QPT. These findings bring to light a surprising universality of the pressure-driven Mott transition, revealing the importance of phase separation and calling for further investigation into the nature of quantum fluctuations underlying the transition.« less
Xing, Yun; Smith, Andrew M; Agrawal, Amit; Ruan, Gang; Nie, Shuming
2006-01-01
Semiconductor quantum dots (QDs) are a new class of fluorescent labels with broad applications in biomedical imaging, disease diagnostics, and molecular and cell biology. In comparison with organic dyes and fluorescent proteins, quantum dots have unique optical and electronic properties such as size-tunable light emission, improved signal brightness, resistance against photobleaching, and simultaneous excitation of multiple fluorescence colors. Recent advances have led to multifunctional nanoparticle probes that are highly bright and stable under complex in vitro and in vivo conditions. New designs involve encapsulating luminescent QDs with amphiphilic block copolymers, and linking the polymer coating to tumor-targeting ligands and drug-delivery functionalities. These improved QDs have opened new possibilities for real-time imaging and tracking of molecular targets in living cells, for multiplexed analysis of biomolecular markers in clinical tissue specimens, and for ultrasensitive imaging of malignant tumors in living animal models. In this article, we briefly discuss recent developments in bioaffinity QD probes and their applications in molecular profiling of individual cancer cells and clinical tissue specimens. PMID:17722280
The Holometer: An instrument to probe Planckian quantum geometry
Chou, Aaron; Glass, Henry; Gustafson, H. Richard; ...
2017-02-28
This paper describes the Fermilab Holometer, an instrument for measuring correlations of position variations over a four-dimensional volume of space-time. The apparatus consists of two co-located, but independent and isolated, 40 m power-recycled Michelson interferometers, whose outputs are cross-correlated to 25 MHz. The data are sensitive to correlations of differential position across the apparatus over a broad band of frequencies up to and exceeding the inverse light crossing time, 7.6 MHz. A noise model constrained by diagnostic and environmental data distinguishes among physical origins of measured correlations, and is used to verify shot-noise-limited performance. These features allow searches for exoticmore » quantum correlations that depart from classical trajectories at spacelike separations, with a strain noise power spectral density sensitivity smaller than the Planck time. As a result, the Holometer in current and future configurations is projected to provide precision tests of a wide class of models of quantum geometry at the Planck scale, beyond those already constrained by currently operating gravitational wave observatories.« less
NASA Astrophysics Data System (ADS)
Kwon, Woosung; Kim, Young-Hoon; Kim, Ji-Hee; Lee, Taehyung; Do, Sungan; Park, Yoonsang; Jeong, Mun Seok; Lee, Tae-Woo; Rhee, Shi-Woo
2016-04-01
Chemically derived graphene quantum dots (GQDs) to date have showed very broad emission linewidth due to many kinds of chemical bondings with different energy levels, which significantly degrades the color purity and color tunability. Here, we show that use of aniline derivatives to chemically functionalize GQDs generates new extrinsic energy levels that lead to photoluminescence of very narrow linewidths. We use transient absorption and time-resolved photoluminescence spectroscopies to study the electronic structures and related electronic transitions of our GQDs, which reveals that their underlying carrier dynamics is strongly related to the chemical properties of aniline derivatives. Using these functionalized GQDs as lumophores, we fabricate light-emitting didoes (LEDs) that exhibit green, orange, and red electroluminescence that has high color purity. The maximum current efficiency of 3.47 cd A-1 and external quantum efficiency of 1.28% are recorded with our LEDs; these are the highest values ever reported for LEDs based on carbon-nanoparticle phosphors. This functionalization of GQDs with aniline derivatives represents a new method to fabricate LEDs that produce natural color.
Toma, Andrea; Tuccio, Salvatore; Prato, Mirko; De Donato, Francesco; Perucchi, Andrea; Di Pietro, Paola; Marras, Sergio; Liberale, Carlo; Proietti Zaccaria, Remo; De Angelis, Francesco; Manna, Liberato; Lupi, Stefano; Di Fabrizio, Enzo; Razzari, Luca
2015-01-14
Terahertz spectroscopy has vast potentialities in sensing a broad range of elementary excitations (e.g., collective vibrations of molecules, phonons, excitons, etc.). However, the large wavelength associated with terahertz radiation (about 300 μm at 1 THz) severely hinders its interaction with nano-objects, such as nanoparticles, nanorods, nanotubes, and large molecules of biological relevance, practically limiting terahertz studies to macroscopic ensembles of these compounds, in the form of thick pellets of crystallized molecules or highly concentrated solutions of nanomaterials. Here we show that chains of terahertz dipole nanoantennas spaced by nanogaps of 20 nm allow retrieving the spectroscopic signature of a monolayer of cadmium selenide quantum dots, a significant portion of the signal arising from the dots located within the antenna nanocavities. A Fano-like interference between the fundamental antenna mode and the phonon resonance of the quantum dots is observed, accompanied by an absorption enhancement factor greater than one million. NETS can find immediate applications in terahertz spectroscopic studies of nanocrystals and molecules at extremely low concentrations. Furthermore, it shows a practicable route toward the characterization of individual nano-objects at these frequencies.